Science.gov

Sample records for pgv-1000 thermal-hydraulic analysis

  1. Thermal-Hydraulic-Analysis Program

    NASA Technical Reports Server (NTRS)

    Walton, J. T.

    1993-01-01

    ELM computer program is simple computational tool for modeling steady-state thermal hydraulics of flows of propellants through fuel-element-coolant channels in nuclear thermal rockets. Evaluates various heat-transfer-coefficient and friction-factor correlations available for turbulent pipe flow with addition of heat. Comparisons possible within one program. Machine-independent program written in FORTRAN 77.

  2. Thermal Hydraulic Analysis of Spent Fuel Casks

    SciTech Connect

    Rector, D. R.; Cuta, J. M.; Enderlin, C. W.

    1997-10-08

    COBRA-SFS (Spent Fuel Storage) is a code for thermal-hydraulic analysis of multi-assembly spent fuel storage and transportation systems. It uses a lumped parameter finite difference approach to predict flow and temperature distributions in spent fuel storage systems and fuel assemblies, under forced and natural convection heat transfer conditions. Derived from the COBRA family of codes, which have been extensively evaluated against in-pile and out-of-pile data, COBRA-SFS retains all the important features of the COBRA codes for single phase fluid analysis, and extends the range application to include problems with two-dimensional radiative and three-dimensional conductive heat transfer. COBRA-SFS has been used to analyze various single- and multi-assembly spent fuel storage systems containing unconsolidated and consolidated fuel rods, with a variety of fill media, including air, helium and vacuum. Cycle 0 of COBRA-SFS was released in 1986. Subsequent applications of the code led to development of additional capabilities, which resulted in the release of Cycle 1 in February 1989. Since then, the code has undergone an independent technical review as part of a submittal to the Nuclear Regulatory Commission for a generic license to apply the code to spent fuel storage system analysis. Modifications and improvements to the code have been combined to form Cycle 2. Cycle 3., the newest version of COBRA-SFS, has been validated and verified for transient applications, such as a storage cask thermal response to a pool fire.

  3. Thermal Hydraulic Analysis of Spent Fuel Casks

    Energy Science and Technology Software Center (ESTSC)

    1997-10-08

    COBRA-SFS (Spent Fuel Storage) is a code for thermal-hydraulic analysis of multi-assembly spent fuel storage and transportation systems. It uses a lumped parameter finite difference approach to predict flow and temperature distributions in spent fuel storage systems and fuel assemblies, under forced and natural convection heat transfer conditions. Derived from the COBRA family of codes, which have been extensively evaluated against in-pile and out-of-pile data, COBRA-SFS retains all the important features of the COBRA codesmore » for single phase fluid analysis, and extends the range application to include problems with two-dimensional radiative and three-dimensional conductive heat transfer. COBRA-SFS has been used to analyze various single- and multi-assembly spent fuel storage systems containing unconsolidated and consolidated fuel rods, with a variety of fill media, including air, helium and vacuum. Cycle 0 of COBRA-SFS was released in 1986. Subsequent applications of the code led to development of additional capabilities, which resulted in the release of Cycle 1 in February 1989. Since then, the code has undergone an independent technical review as part of a submittal to the Nuclear Regulatory Commission for a generic license to apply the code to spent fuel storage system analysis. Modifications and improvements to the code have been combined to form Cycle 2. Cycle 3., the newest version of COBRA-SFS, has been validated and verified for transient applications, such as a storage cask thermal response to a pool fire.« less

  4. An Approach of Uncertainty Evaluation for Thermal-Hydraulic Analysis

    SciTech Connect

    Katsunori Ogura; Hisashi Ninokata

    2002-07-01

    An approach to evaluate uncertainty systematically for thermal-hydraulic analysis programs is demonstrated. The approach is applied to the Peach Bottom Unit 2 Turbine Trip 2 Benchmark and is validated. (authors)

  5. Development of thermal-hydraulic analysis capabilities for Oyster creek

    SciTech Connect

    Lee, R.B.

    1987-01-01

    GPU Nuclear (GPUN) has been involved in developing analytical methodologies for Oyster Creek plant thermal-hydraulic response simulation for approx. 15 yr. Plant-system-related transient analysis is being accomplished via RETRAN02 MOD4 and loss-of-coolant accident (LOCA) analysis by SAFER-CORECOOL. This paper reviews the developmental process and lessons learned through this process.

  6. Overview of rod-bundle thermal-hydraulic analysis

    SciTech Connect

    Sha, W.T.

    1980-11-01

    Three methods used in rod-bundle thermal-hydraulic analysis are summarized. These methods are: (1) subchannel analysis, and its inherent assumptions are clearly stated; (2) porous medium formulation with volume porosity, surface permeability, distributed resistance and distributed heat source (sink) - the concept of surface permeability is new in porous medium formulation, and greatly facilitates modeling anisotropic effects; and (3) benchmark rod-bundle thermal-hydraulic analysis using a boundary-fitted coordinate system, and it represents the most rigorous method to date. For laminar flow, this method gives solutions without any assumptions and it requires information on rod bundle geometry and thermal physical properties of the fluid. Basic limitations and merits of each method are discussed in detail. 19 refs., 6 figs., 1 tab.

  7. An analysis of factors causing the occurrence of off-design thermally induced force effects in the zone of weld joint no. 111-1 in a PGV-1000M steam generator and recommendations on excluding them

    NASA Astrophysics Data System (ADS)

    Bakirov, M. B.; Levchuk, V. I.; Povarov, V. P.; Gromov, A. F.

    2014-08-01

    Inadmissible operational flaws occurring in the critical zones of heat-transfer and mechanical equipment are commonly revealed in all nuclear power plant units both in Russia and abroad. The number of such flaws will only grow in the future because the majority of nuclear power plants have been in operation for a time that is either close to or even exceeds the assigned service life. In this connection, establishing cause-and-effect relations with regard to accelerated incipience and growth of flaws, working out compensating measures aimed at reducing operational damageability, and setting up monitoring of equipment integrity degradation of during operation are becoming the matters of utmost importance. There is a need to introduce new approaches to comprehensive diagnostics of the technical state of important nuclear power plant equipment, including continuous monitoring of its operational damageability and the extent of its loading in the most critical zones. Starting from 2011, such a monitoring system has successfully been used for the Novovoronezh NPP Unit 5 in the zone of weld joint no. 111-1 of steam generator no. 4. Based on the results from operation of this system in 2011-2013, unsteady thermally induced force effects (periodic thermal shocks and temperature abnormalities) were reveled, which had not been considered in the design, and which have an essential influence on the operational loading of this part. Based on an analysis of cause-and-effect relations pertinent to temperature abnormalities connected with technological operations, a set of measures aimed at reducing the thermally induced force loads exerted on pipeline sections was developed, which includes corrections to the process regulations for safe operation and to the operating manuals (involving changes in the algorithms for manipulating with the stop and control valves in the steam generator blowdown system).

  8. Portable Life Support Subsystem Thermal Hydraulic Performance Analysis

    NASA Technical Reports Server (NTRS)

    Barnes, Bruce; Pinckney, John; Conger, Bruce

    2010-01-01

    This paper presents the current state of the thermal hydraulic modeling efforts being conducted for the Constellation Space Suit Element (CSSE) Portable Life Support Subsystem (PLSS). The goal of these efforts is to provide realistic simulations of the PLSS under various modes of operation. The PLSS thermal hydraulic model simulates the thermal, pressure, flow characteristics, and human thermal comfort related to the PLSS performance. This paper presents modeling approaches and assumptions as well as component model descriptions. Results from the models are presented that show PLSS operations at steady-state and transient conditions. Finally, conclusions and recommendations are offered that summarize results, identify PLSS design weaknesses uncovered during review of the analysis results, and propose areas for improvement to increase model fidelity and accuracy.

  9. THERMAL HYDRAULIC ANALYSIS OF FIRE DIVERTOR

    SciTech Connect

    C.B. bAXI; M.A. ULRICKSON; D.E. DRIMEYER; P. HEITZENROEDER

    2000-10-01

    The Fusion Ignition Research Experiment (FIRE) is being designed as a next step in the US magnetic fusion program. The FIRE tokamak has a major radius of 2 m, a minor radius of 0.525 m, and liquid nitrogen cooled copper coils. The aim is to produce a pulse length of 20 s with a plasma current of 6.6 MA and with alpha dominated heating. The outer divertor and baffle of FIRE are water cooled. The worst thermal condition for the outer divertor and baffle is the baseline D-T operating mode (10 T, 6.6 MA, 20 s) with a plasma exhaust power of 67 MW and a peak heat flux of 20 MW/m{sup 2}. A swirl tape (ST) heat transfer enhancement method is used in the outer divertor cooling channels to increase the heat transfer coefficient and the critical heat flux (CHF). The plasma-facing surface consists of tungsten brush. The finite element (FE) analysis shows that for an inlet water temperature of 30 C, inlet pressure of 1.5 MPa and a flow velocity of 10 m/s, the incident critical heat flux is greater than 30 MW/m{sup 2}. The peak copper temperature is 490 C, peak tungsten temperature is 1560 C, and the pressure drop is less than 0.5 MPa. All these results fulfill the design requirements.

  10. 3D neutronic/thermal-hydraulic coupled analysis of MYRRHA

    SciTech Connect

    Vazquez, M.; Martin-Fuertes, F.

    2012-07-01

    The current tendency in multiphysics calculations applied to reactor physics is the use of already validated computer codes, coupled by means of an iterative approach. In this paper such an approach is explained concerning neutronics and thermal-hydraulics coupled analysis with MCNPX and COBRA-IV codes using a driver program and file exchange between codes. MCNPX provides the neutronic analysis of heterogeneous nuclear systems, both in critical and subcritical states, while COBRA-IV is a subchannel code that can be used for rod bundles or core thermal-hydraulics analysis. In our model, the MCNP temperature dependence of nuclear data is handled via pseudo-material approach, mixing pre-generated cross section data set to obtain the material with the desired cross section temperature. On the other hand, COBRA-IV has been updated to allow for the simulation of liquid metal cooled reactors. The coupled computational tool can be applied to any geometry and coolant, as it is the case of single fuel assembly, at pin-by-pin level, or full core simulation with the average pin of each fuel-assembly. The coupling tool has been applied to the critical core layout of the SCK-CEN MYRRHA concept, an experimental LBE cooled fast reactor presently in engineering design stage. (authors)

  11. Thermal hydraulics analysis of LIBRA-SP target chamber

    SciTech Connect

    Mogahed, E.A.

    1996-12-31

    LIBRA-SP is a conceptual design study of an inertially confined 1000 MWe fusion power reactor utilizing self-pinched light ion beams. There are 24 ion beams which are arranged around the reactor cavity. The reaction chamber is an upright cylinder with an inverted conical roof resembling a mushroom, and a pool floor. The vertical sides of the cylinder are occupied by a blanket zone consisting of many perforated rigid HT-9 ferritic steel tubes called PERITs (PEr-forated RIgid Tube). The breeding/cooling material, liquid lead-lithium, flows through the PERITs, providing protection to the reflector/vacuum chamber so as to make it a lifetime component. The neutronics analysis and cavity hydrodynamics calculations are performed to account for the neutron heating and also to determine the effects of vaporization/condensation processes on the surface heat flux. The steady state nuclear heating distribution at the midplane is used for thermal hydraulics calculations. The maximum surface temperature of the HT-9 is chosen to not exceed 625{degree}C to avoid drastic deterioration of the metal`s mechanical properties. This choice restricts the thermal hydraulics performance of the reaction cavity. The inlet first surface coolant bulk temperature is 370{degree}C, and the heat exchanger inlet coolant bulk temperature is 502{degree}C. 4 refs., 6 figs., 2 tabs.

  12. COBRA-SFS. Thermal Hydraulic Analysis of Spent Fuel Casks

    SciTech Connect

    Michener, T.E.; Rector, D.R.; Cuta, J.M.; Enderlin, C.W.

    1995-09-01

    COBRA-SFS (Spent Fuel Storage) is a code for thermal-hydraulic analysis of multi-assembly spent fuel storage and transportation systems. It uses a lumped parameter finite difference approach to predict flow and temperature distributions in spent fuel storage systems and fuel assemblies, under forced and natural convection heat transfer conditions. Derived from the COBRA family of codes, which have been extensively evaluated against in-pile and out-of-pile data, COBRA-SFS retains all the important features of the COBRA codes for single phase fluid analysis, and extends the range application to include problems with two-dimensional radiative and three-dimensional conductive heat transfer. COBRA-SFS has been used to analyze various single- and multi-assembly spent fuel storage systems containing unconsolidated and consolidated fuel rods, with a variety of fill media, including air, helium and vacuum. Cycle 0 of COBRA-SFS was released in 1986. Subsequent applications of the code led to development of additional capabilities, which resulted in the release of Cycle 1 in February 1989. Since then, the code has undergone an independent technical review as part of a submittal to the Nuclear Regulatory Commission for a generic license to apply the code to spent fuel storage system analysis. Modifications and improvements to the code have been combined to form the latest release of the code, Cycle 2.

  13. 75 FR 80544 - NUREG-1953, Confirmatory Thermal-Hydraulic Analysis To Support Specific Success Criteria in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-22

    ... COMMISSION NUREG-1953, Confirmatory Thermal-Hydraulic Analysis To Support Specific Success Criteria in the..., ``Confirmatory Thermal-Hydraulic Analysis to Support Specific Success Criteria in the Standardized Plant Analysis... . SUPPLEMENTARY INFORMATION: NUREG-1953, ``Confirmatory Thermal-Hydraulic Analysis to Support Specific...

  14. Momentum Integral Network Method for Thermal-Hydraulic Systems Analysis.

    Energy Science and Technology Software Center (ESTSC)

    2000-11-20

    EPIPE is used for design or design evaluation of complex large piping systems. The piping systems can be viewed as a network of straight pipe elements (or tangents) and curved elements (pipe bends) interconnected at joints (or nodes) with intermediate supports and anchors. The system may be subject to static loads such as thermal, dead weight, internal pressure, or dynamic loads such as earthquake motions and flow-induced vibrations, or any combination of these. MINET (Momentummore » Integral NETwork) was developed for the transient analysis of intricate fluid flow and heat transfer networks, such as those found in the balance of plant in power generating facilities. It can be utilized as a stand-alone program or interfaced to another computer program for concurrent analysis. Through such coupling, a computer code limited by either the lack of required component models or large computational needs can be extended to more fully represent the thermal hydraulic system thereby reducing the need for estimating essential transient boundary conditions. The MINET representation of a system is one or more networks of volumes, segments, and boundaries linked together via heat exchangers only, i.e., heat can transfer between networks, but fluids cannot. Volumes are used to represent tanks or other volume components, as well as locations in the system where significant flow divisions or combinations occur. Segments are composed of one or more pipes, pumps, heat exchangers, turbines, and/or valves each represented by one or more nodes. Boundaries are simply points where the network interfaces with the user or another computer code. Several fluids can be simulated, including water, sodium, NaK, and air.« less

  15. Momentum Integral Network Method for Thermal-Hydraulic Systems Analysis.

    SciTech Connect

    2000-11-20

    EPIPE is used for design or design evaluation of complex large piping systems. The piping systems can be viewed as a network of straight pipe elements (or tangents) and curved elements (pipe bends) interconnected at joints (or nodes) with intermediate supports and anchors. The system may be subject to static loads such as thermal, dead weight, internal pressure, or dynamic loads such as earthquake motions and flow-induced vibrations, or any combination of these. MINET (Momentum Integral NETwork) was developed for the transient analysis of intricate fluid flow and heat transfer networks, such as those found in the balance of plant in power generating facilities. It can be utilized as a stand-alone program or interfaced to another computer program for concurrent analysis. Through such coupling, a computer code limited by either the lack of required component models or large computational needs can be extended to more fully represent the thermal hydraulic system thereby reducing the need for estimating essential transient boundary conditions. The MINET representation of a system is one or more networks of volumes, segments, and boundaries linked together via heat exchangers only, i.e., heat can transfer between networks, but fluids cannot. Volumes are used to represent tanks or other volume components, as well as locations in the system where significant flow divisions or combinations occur. Segments are composed of one or more pipes, pumps, heat exchangers, turbines, and/or valves each represented by one or more nodes. Boundaries are simply points where the network interfaces with the user or another computer code. Several fluids can be simulated, including water, sodium, NaK, and air.

  16. Application of computational fluid dynamics methods to improve thermal hydraulic code analysis

    NASA Astrophysics Data System (ADS)

    Sentell, Dennis Shannon, Jr.

    A computational fluid dynamics code is used to model the primary natural circulation loop of a proposed small modular reactor for comparison to experimental data and best-estimate thermal-hydraulic code results. Recent advances in computational fluid dynamics code modeling capabilities make them attractive alternatives to the current conservative approach of coupled best-estimate thermal hydraulic codes and uncertainty evaluations. The results from a computational fluid dynamics analysis are benchmarked against the experimental test results of a 1:3 length, 1:254 volume, full pressure and full temperature scale small modular reactor during steady-state power operations and during a depressurization transient. A comparative evaluation of the experimental data, the thermal hydraulic code results and the computational fluid dynamics code results provides an opportunity to validate the best-estimate thermal hydraulic code's treatment of a natural circulation loop and provide insights into expanded use of the computational fluid dynamics code in future designs and operations. Additionally, a sensitivity analysis is conducted to determine those physical phenomena most impactful on operations of the proposed reactor's natural circulation loop. The combination of the comparative evaluation and sensitivity analysis provides the resources for increased confidence in model developments for natural circulation loops and provides for reliability improvements of the thermal hydraulic code.

  17. Thermal hydraulic analysis of advanced Pb-Bi cooled NPP using natural circulation

    NASA Astrophysics Data System (ADS)

    Novitrian, Su'ud, Zaki; Waris, Abdul

    2012-06-01

    We present thermal hydraulic analysis for a low power advanced nuclear reactor cooled by lead-bismuth eutectic. In this work is to study the thermal hydraulic analysis of a low power SPINNOR (Small Power Reactor, Indonesia, No On-site Refuelling) reactor with 125 MWth which a design a core with very small volume and fuel column height, resulting in a negative coolant temperature coefficient and very low channel pressure drop. And also at full power the heat can be completely removed by natural circulation in the primary circuit, thus eliminating the needs for pumps.

  18. Thermal hydraulic analysis for the Oregon State TRIGA reactor using RELAP5-3D

    SciTech Connect

    Marcum, W.R.; Woods, B.G.; Hartman, M.

    2008-07-15

    Thermal hydraulic analyses have being conducted at Oregon State University (OSU) in support of the conversion of the OSU TRIGA reactor (OSTR) core from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel as part of the Reduced Enrichment for Research and Test Reactors program. The goals of the thermal hydraulic analyses were to calculate natural circulation flow rates, coolant temperatures and fuel temperatures as a function of core power for both the HEU and LEU cores; calculate peak values of fuel temperature, cladding temperature, surface heat flux as well as departure from nuclear boiling ratio (DNBR) for steady state and pulse operation; and perform accident analyses for the accident scenarios identified in the OSTR safety analysis report. RELAP5-3D Version 2.4.2 was implemented to develop a model for the thermal hydraulic study. The OSTR core conversion is planned to take place in late 2008. (author)

  19. SUPERENERGY-2: a multiassembly, steady-state computer code for LMFBR core thermal-hydraulic analysis

    SciTech Connect

    Basehore, K.L.; Todreas, N.E.

    1980-08-01

    Core thermal-hydraulic design and performance analyses for Liquid Metal Fast Breeder Reactors (LMFBRs) require repeated detailed multiassembly calculations to determine radial temperature profiles and subchannel outlet temperatures for various core configurations and subassembly structural analyses. At steady-state, detailed core-wide temperature profiles are required for core restraint calculations and subassembly structural analysis. In addition, sodium outlet temperatures are routinely needed for each reactor operating cycle. The SUPERENERGY-2 thermal-hydraulic code was designed specifically to meet these designer needs. It is applicable only to steady-state, forced-convection flow in LMFBR core geometries.

  20. Application of the ATHOS3 code for steam generator thermal hydraulics and fouling analysis

    SciTech Connect

    Srikantiah, G.S.; Chappidi, P.R.

    1996-09-01

    The steam generator is a most important component in the coolant loop of Pressurized Water Reactors. Although designed for a 30--40 year operating life, severe material degradation problems have occurred within the first ten years of operation. Performance and reliability evaluations are required on a continuing basis to develop solutions and design modifications to ensure reliable operation of these systems. Thermal hydraulic analysis provides basic information such as velocity and void fraction distributions within the secondary side of the steam generator needed for the evaluation of sludge deposition, bundle fouling, tube vibration, fretting, wear and fatigue. This paper presents detailed thermal hydraulic analysis of several steam generator designs, and analyzes the correlation between thermal hydraulic distributions, sludge deposition and bundle fouling using a recent model for sludge transport and deposition. The correlation between thermal hydraulic distributions and other degradation mechanisms such as circumferential cracking of tubes is also presented. The results show that there is a strong correlation between flow velocity, void fraction and sludge deposition. The calculated sludge deposit potential maps are in very good agreement with the observed results within operating steam generators.

  1. THERMAL HYDRAULIC ANALYSIS OF A LIQUID-METAL-COOLED NEUTRON SPALLATION TARGET

    SciTech Connect

    W. GREGORY; R. MARTIN; T. VALACHOVIC

    2000-07-01

    We have carried out numerical simulations of the thermal hydraulic behavior of a neutron spallation target where liquid metal lead-bismuth serves as both coolant and as a neutron spallation source. The target is one of three designs provided by the Institute of Physics and Power Engineering (IPPE) in Russia. This type of target is proposed for Accelerator-driven Transmutation of Waste (ATW) to eliminate plutonium from hazardous fission products. The thermal hydraulic behavior was simulated by use of a commercial CFD computer code called CFX. Maximum temperatures in the diaphragm window and in the liquid lead were determined. In addition the total pressure drop through the target was predicted. The results of the CFX analysis were close to those results predicted by IPPE in their preliminary analysis.

  2. Thermal-hydraulics Analysis of a Radioisotope-powered Mars Hopper Propulsion System

    SciTech Connect

    Robert C. O'Brien; Andrew C. Klein; William T. Taitano; Justice Gibson; Brian Myers; Steven D. Howe

    2011-02-01

    Thermal-hydraulics analyses results produced using a combined suite of computational design and analysis codes are presented for the preliminary design of a concept Radioisotope Thermal Rocket (RTR) propulsion system. Modeling of the transient heating and steady state temperatures of the system is presented. Simulation results for propellant blow down during impulsive operation are also presented. The results from this study validate the feasibility of a practical thermally capacitive RTR propulsion system.

  3. Lead Coolant Test Facility Systems Design, Thermal Hydraulic Analysis and Cost Estimate

    SciTech Connect

    Soli Khericha; Edwin Harvego; John Svoboda; Ryan Dalling

    2012-01-01

    The Idaho National Laboratory prepared a preliminary technical and functional requirements (T&FR), thermal hydraulic design and cost estimate for a lead coolant test facility. The purpose of this small scale facility is to simulate lead coolant fast reactor (LFR) coolant flow in an open lattice geometry core using seven electrical rods and liquid lead or lead-bismuth eutectic coolant. Based on review of current world lead or lead-bismuth test facilities and research needs listed in the Generation IV Roadmap, five broad areas of requirements were identified as listed: (1) Develop and Demonstrate Feasibility of Submerged Heat Exchanger; (2) Develop and Demonstrate Open-lattice Flow in Electrically Heated Core; (3) Develop and Demonstrate Chemistry Control; (4) Demonstrate Safe Operation; and (5) Provision for Future Testing. This paper discusses the preliminary design of systems, thermal hydraulic analysis, and simplified cost estimate. The facility thermal hydraulic design is based on the maximum simulated core power using seven electrical heater rods of 420 kW; average linear heat generation rate of 300 W/cm. The core inlet temperature for liquid lead or Pb/Bi eutectic is 4200 C. The design includes approximately seventy-five data measurements such as pressure, temperature, and flow rates. The preliminary estimated cost of construction of the facility is $3.7M (in 2006 $). It is also estimated that the facility will require two years to be constructed and ready for operation.

  4. Development of numerical simulation system for thermal-hydraulic analysis in fuel assembly of sodium-cooled fast reactor

    NASA Astrophysics Data System (ADS)

    Ohshima, Hiroyuki; Uwaba, Tomoyuki; Hashimoto, Akihiko; Imai, Yasutomo; Ito, Masahiro

    2015-12-01

    A numerical simulation system, which consists of a deformation analysis program and three kinds of thermal-hydraulics analysis programs, is being developed in Japan Atomic Energy Agency in order to offer methodologies to clarify thermal-hydraulic phenomena in fuel assemblies of sodium-cooled fast reactors under various operating conditions. This paper gives the outline of the system and its applications to fuel assembly analyses as a validation study.

  5. Development of numerical simulation system for thermal-hydraulic analysis in fuel assembly of sodium-cooled fast reactor

    SciTech Connect

    Ohshima, Hiroyuki; Uwaba, Tomoyuki; Hashimoto, Akihiko; Imai, Yasutomo; Ito, Masahiro

    2015-12-31

    A numerical simulation system, which consists of a deformation analysis program and three kinds of thermal-hydraulics analysis programs, is being developed in Japan Atomic Energy Agency in order to offer methodologies to clarify thermal-hydraulic phenomena in fuel assemblies of sodium-cooled fast reactors under various operating conditions. This paper gives the outline of the system and its applications to fuel assembly analyses as a validation study.

  6. Substantiation of recommendations for ensuring the design service life of heat-transfer tubes used in a PGV-1000MKP steam generator

    NASA Astrophysics Data System (ADS)

    Popadchuk, V. S.; Trunov, N. B.; Brykov, S. I.; Zhukov, R. Yu.; Tupikov, R. A.; Seleznev, A. V.; Popkov, R. I.; Metal'Nikov, M. S.; Styazhkin, P. S.; Karzov, G. P.; Suvorov, S. A.

    2011-03-01

    We present the results obtained from tests and studies carried out on the model of tube bundles for a PGV-1000 horizontal steam generator that were conducted for experimentally substantiating the design service life of a steam generator tube bundle intended for use at new nuclear power stations equipped with a PGV-1000MKP steam generator. Measures taken to minimize the incipience and development of local corrosion damage to the heat-transfer tubes and ensure their design service life are substantiated and confirmed.

  7. VIPRE-01. a thermal-hydraulic analysis code for reactor cores. Volume 1. Mathematical modeling. [PWR; BWR

    SciTech Connect

    Stewart, C.W.; Cuta, J.M.; Koontz, A.S.; Kelly, J.M.; Basehore, K.L.; George, T.L.; Rowe, D.S.

    1983-04-01

    VIPRE (Versatile Internals and Component Program for Reactors; EPRI) has been developed for nuclear power utility thermal-hydraulic analysis applications. It is designed to help evaluate nuclear reactor core safety limits including minimum departure from nucleate boiling ratio (MDNBR), critical power ratio (CPR), fuel and clad temperatures, and coolant state in normal operation and assumed accident conditions. This volume (Volume 1: Mathematical Modeling) explains the major thermal hydraulic models and supporting correlations in detail.

  8. Monte Carlo Neutronics and Thermal Hydraulics Analysis of Reactor Cores with Multilevel Grids

    NASA Astrophysics Data System (ADS)

    Bernnat, W.; Mattes, M.; Guilliard, N.; Lapins, J.; Zwermann, W.; Pasichnyk, I.; Velkov, K.

    2014-06-01

    Power reactors are composed of assemblies with fuel pin lattices or other repeated structures with several grid levels, which can be modeled in detail by Monte Carlo neutronics codes such as MCNP6 using corresponding lattice options, even for large cores. Except for fresh cores at beginning of life, there is a varying material distribution due to burnup in the different fuel pins. Additionally, for power states the fuel and moderator temperatures and moderator densities vary according to the power distribution and cooling conditions. Therefore, a coupling of the neutronics code with a thermal hydraulics code is necessary. Depending on the level of detail of the analysis, a very large number of cells with different materials and temperatures must be regarded. The assignment of different material properties to all elements of a multilevel grid is very elaborate and may exceed program limits if the standard input procedure is used. Therefore, an internal assignment is used which overrides uniform input parameters. The temperature dependency of continuous energy cross sections, probability tables for the unresolved resonance region and thermal neutron scattering laws is taken into account by interpolation, requiring only a limited number of data sets generated for different temperatures. The method is applied with MCNP6 and proven for several full core reactor models. For the coupling of MCNP6 with thermal hydraulics appropriate interfaces were developed for the GRS system code ATHLET for liquid coolant and the IKE thermal hydraulics code ATTICA-3D for gaseous coolant. Examples will be shown for different applications for PWRs with square and hexagonal lattices, fast reactors (SFR) with hexagonal lattices and HTRs with pebble bed and prismatic lattices.

  9. Verification of combined thermal-hydraulic and heat conduction analysis code FLOWNET/TRUMP

    NASA Astrophysics Data System (ADS)

    Maruyama, Soh; Fujimoto, Nozomu; Kiso, Yoshihiro; Murakami, Tomoyuki; Sudo, Yukio

    1988-09-01

    This report presents the verification results of the combined thermal-hydraulic and heat conduction analysis code, FLOWNET/TRUMP which has been utilized for the core thermal hydraulic design, especially for the analysis of flow distribution among fuel block coolant channels, the determination of thermal boundary conditions for fuel block stress analysis and the estimation of fuel temperature in the case of fuel block coolant channel blockage accident in the design of the High Temperature Engineering Test Reactor(HTTR), which the Japan Atomic Energy Research Institute has been planning to construct in order to establish basic technologies for future advanced very high temperature gas-cooled reactors and to be served as an irradiation test reactor for promotion of innovative high temperature new frontier technologies. The verification of the code was done through the comparison between the analytical results and experimental results of the Helium Engineering Demonstration Loop Multi-channel Test Section(HENDEL T(sub 1-M)) with simulated fuel rods and fuel blocks.

  10. NATCRCTR: One-dimensional thermal-hydraulics analysis code for natural-circulation TRIGA reactors

    SciTech Connect

    Feltus, M.A.; Rubinaccio, G.

    1996-12-31

    The Pennsylvania State University nuclear engineering department is evaluating the upgrade of the Reed College (Portland, Oregon) TRIGA reactor from 250 kW to 1 MW in two areas: thermal-hydraulics and steady-state neutronics analysis. This analysis was initiated as a cooperative effort between Penn State and Reed College as a training project for two International Atomic Energy Agency (IAEA) fellows from Ghana. The two Ghanaian IAEA fellows were assisted by G. Rubinaccio, an undergraduate, who undertook the task of writing the new computer programs for the thermal-hydraulic and physics evaluation as a three-credit special design project course. The Reed College TRIGA, which has a fixed graphite radial reflector, is cooled by natural circulation, without external cross-flow; whereas, the Penn State Breazeale Reactor has significant crossflow into its sides. To model the Reed TRIGA, the NATCRCTR program has been developed from first principles using the following assumptions: 1. The core is surrounded by the fixed reflector structure, which acts as a one-dimensional channel. 2. The core inlet temperature distribution is constant at the core bottom. 3. The axial heat flux distribution is a chopped cosine shape. 4. The heat transfer in the fuel is primarily in the radial directions. 5. A small gap between the fuel and cladding exists. The NATCRCTR code is used to find the peak centerline fuel, gap, and cladding surface temperatures, based on assumed flux and engineering peaking factors.

  11. Thermal hydraulic method for whole core design analysis of an HTGR

    SciTech Connect

    Huning, A. J.; Garimella, S.

    2013-07-01

    A new thermal hydraulic method and initial results are presented for core-wide steady state analysis of prismatic High Temperature Gas-Cooled Reactors (HTGR). The method allows for the complete solution of temperature and coolant mass flow distribution by solving quasi-steady energy balances for the discretized core. Assembly blocks are discretized into unit cells for which the average temperature of each unit cell is determined. Convective heat removal is coupled to the unit cell energy balances by a 1-D axial flow model. The flow model uses established correlations for friction factor and Nusselt number. Bypass flow is explicitly calculated by using an initial guess for mass flow distribution and determining the exit pressure of each flow channel. The mass flow distribution is updated until a uniform core exit pressure condition is reached. Results are obtained for the MHTGR-350 with emphasis on the change in thermal hydraulic parameters due to various steady state power profiles and bypass gap widths. Steady state temperature distribution and its variations are discussed. (authors)

  12. Fundamental approaches for analysis thermal hydraulic parameter for Puspati Research Reactor

    NASA Astrophysics Data System (ADS)

    Hashim, Zaredah; Lanyau, Tonny Anak; Farid, Mohamad Fairus Abdul; Kassim, Mohammad Suhaimi; Azhar, Noraishah Syahirah

    2016-01-01

    The 1-MW PUSPATI Research Reactor (RTP) is the one and only nuclear pool type research reactor developed by General Atomic (GA) in Malaysia. It was installed at Malaysian Nuclear Agency and has reached the first criticality on 8 June 1982. Based on the initial core which comprised of 80 standard TRIGA fuel elements, the very fundamental thermal hydraulic model was investigated during steady state operation using the PARET-code. The main objective of this paper is to determine the variation of temperature profiles and Departure of Nucleate Boiling Ratio (DNBR) of RTP at full power operation. The second objective is to confirm that the values obtained from PARET-code are in agreement with Safety Analysis Report (SAR) for RTP. The code was employed for the hot and average channels in the core in order to calculate of fuel's center and surface, cladding, coolant temperatures as well as DNBR's values. In this study, it was found that the results obtained from the PARET-code showed that the thermal hydraulic parameters related to safety for initial core which was cooled by natural convection was in agreement with the designed values and safety limit in SAR.

  13. 75 FR 69140 - NUREG-1953, Confirmatory Thermal-Hydraulic Analysis To Support Specific Success Criteria in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-10

    ... COMMISSION NUREG-1953, Confirmatory Thermal-Hydraulic Analysis To Support Specific Success Criteria in the...- Hydraulic Analysis to Support Specific Success Criteria in the Standardized Plant Analysis Risk Models...-Hydraulic Analysis to Support Specific Success Criteria in the Standardized Plant Analysis Risk...

  14. KUGEL: a thermal, hydraulic, fuel performance, and gaseous fission product release code for pebble bed reactor core analysis

    SciTech Connect

    Shamasundar, B.I.; Fehrenbach, M.E.

    1981-05-01

    The KUGEL computer code is designed to perform thermal/hydraulic analysis and coated-fuel particle performance calculations for axisymmetric pebble bed reactor (PBR) cores. This computer code was developed as part of a Department of Energy (DOE)-funded study designed to verify the published core performance data on PBRs. The KUGEL code is designed to interface directly with the 2DB code, a two-dimensional neutron diffusion code, to obtain distributions of thermal power, fission rate, fuel burnup, and fast neutron fluence, which are needed for thermal/hydraulic and fuel performance calculations. The code is variably dimensioned so that problem size can be easily varied. An interpolation routine allows variable mesh size to be used between the 2DB output and the two-dimensional thermal/hydraulic calculations.

  15. Thermal-hydraulic post-test analysis of OECD LOFT LP-FP-2 experiment

    SciTech Connect

    Pena, J.J. ); Enciso, S. ); Reventos, F. )

    1992-04-01

    An assessment of RELAP5/MOD2 and SCDAP/MOD1 against the OECD LOFT experiment LP-FP-2 is presented. LP-FP-2 studies the hypothetical release of fission products and their transport following a large-break LOCA scenario. The report comprises a general description of the LP-FP-2 experiment, a summary of thermal-hydraulic data, a simulation of the LP-FP-2 experiment, results of the RELAP5/MOD2 base calculation, the RELAP5/MOD2 sensitivity analysis, the SCDAP/MOD1 nodalization for an LP-FP-2 experiment, the results of the SCDAP/MOD1 calculation, and the summary and conclusions.

  16. 4C code analysis of thermal-hydraulic transients in the KSTAR PF1 superconducting coil

    NASA Astrophysics Data System (ADS)

    Savoldi Richard, L.; Bonifetto, R.; Chu, Y.; Kholia, A.; Park, S. H.; Lee, H. J.; Zanino, R.

    2013-01-01

    The KSTAR tokamak, in operation since 2008 at the National Fusion Research Institute in Korea, is equipped with a full superconducting magnet system including the central solenoid (CS), which is made of four symmetric pairs of coils PF1L/U-PF4L/U. Each of the CS coils is pancake wound using Nb3Sn cable-in-conduit conductors with a square Incoloy jacket. The coils are cooled with supercritical He in forced circulation at nominal 4.5 K and 5.5 bar inlet conditions. During different test campaigns the measured temperature increase due to AC losses turned out to be higher than expected, which motivates the present study. The 4C code, already validated against and applied to different types of thermal-hydraulic transients in different superconducting coils, is applied here to the thermal-hydraulic analysis of a full set of trapezoidal current pulses in the PF1 coils, with different ramp rates. We find the value of the coupling time constant nτ that best fits, at each current ramp rate, the temperature increase up to the end of the heating at the coil outlet. The agreement between computed results and the whole set of measured data, including temperatures, pressures and mass flow rates, is then shown to be very good both at the inlet and at the outlet of the coil. The nτ values needed to explain the experimental results decrease at increasing current ramp rates, consistently with the results found in the literature.

  17. Numerical investigation of three-dimensional flows of steam-water mixture in the housing of the PGV-1000 steam generator

    NASA Astrophysics Data System (ADS)

    Kroshilin, A. E.; Kroshilin, V. E.; Smirnov, A. V.

    2008-05-01

    Results are given of numerical simulation of three-dimensional pattern of flow of a two-phase steam-water mixture in the house of a PGV-1000 horizontal steam generator obtained using the BAGIRA best-estimate thermohydrodynamic computer codes. The space distributions of velocities and local void fractions in the steam generator housing for different modes of operation of power-generating unit are calculated and compared with available experimental data.

  18. COBRA-SFS CYCLE 3. Thermal Hydraulic Analysis of Spent Fuel Casks

    SciTech Connect

    Rector, D.R.; Cuta, J.M.; Enderlin, C.W.

    1995-09-01

    COBRA-SFS (Spent Fuel Storage) is a code for thermal-hydraulic analysis of multi-assembly spent fuel storage and transportation systems. It uses a lumped parameter finite difference approach to predict flow and temperature distributions in spent fuel storage systems and fuel assemblies, under forced and natural convection heat transfer conditions. Derived from the COBRA family of codes, which have been extensively evaluated against in-pile and out-of-pile data, COBRA-SFS retains all the important features of the COBRA codes for single phase fluid analysis, and extends the range application to include problems with two-dimensional radiative and three-dimensional conductive heat transfer. COBRA-SFS has been used to analyze various single- and multi-assembly spent fuel storage systems containing unconsolidated and consolidated fuel rods, with a variety of fill media, including air, helium and vacuum. Cycle 0 of COBRA-SFS was released in 1986. Subsequent applications of the code led to development of additional capabilities, which resulted in the release of Cycle 1 in February 1989. Since then, the code has undergone an independent technical review as part of a submittal to the Nuclear Regulatory Commission for a generic license to apply the code to spent fuel storage system analysis. Modifications and improvements to the code have been combined to form Cycle 2. Cycle 3., the newest version of COBRA-SFS, has been validated and verified for transient applications, such as a storage cask thermal response to a pool fire.

  19. Thermal Hydraulic Analysis of an Experimental Reactor Cavity Cooling System with Water: Performance and Stability

    NASA Astrophysics Data System (ADS)

    Lisowski, Darius D.

    This experimental study investigated the thermal hydraulic behavior and boiling mechanisms present in a scaled reactor cavity cooling system (RCCS). The experimental facility reflects a ¼ scale model of one conceptual design for decay heat removal in advanced GenIV nuclear reactors. Radiant heaters supply up to 25 kW/m2 onto a three parallel riser tube and cooling panel test section assembly, representative of a 5° sector model of the full scale concept. Derived similarity relations have preserved the thermal hydraulic flow patterns and integral system response, ensuring relevant data and similarity among scales. Attention will first be given to the characterization of design features, form and heat losses, nominal behavior, repeatability, and data uncertainty. Then, tests performed in single-phase have evaluated the steady-state behavior. Following, the transition to saturation and subsequent boiling allowed investigations onto four parametric effects at two-phase flow and will be the primary focus area of remaining analysis. Baseline conditions at two-phase flow were defined by 15.19 kW of heated power and 80% coolant inventory, and resulted in semi-periodic system oscillations by the mechanism of hydrostatic head fluctuations. Void generation was the result of adiabatic expansion of the fluid due to a reduction in hydrostatic head pressure, a phenomena similar to flashing. At higher powers of 17.84 and 20.49 kW, this effect was augmented, creating large flow excursions that followed a smooth and sinusoidal shaped path. Stabilization can occur if the steam outflow condition incorporates a nominal restriction, as it will serve to buffer the short time scale excursions of the gas space pressure and dampen oscillations. The influences of an inlet restriction, imposed by an orifice plate, introduced subcooling boiling within the heated core and resulted in chaotic interactions among the parallel risers. The penultimate parametric examined effects of boil-off and

  20. COBRA-SFS: A thermal-hydraulic analysis code for spent fuel storage and transportation casks

    SciTech Connect

    Michener, T.E.; Rector, D.R.; Cuta, J.M.; Dodge, R.E.; Enderlin, C.W.

    1995-09-01

    COBRA-SFS is a general thermal-hydraulic analysis computer code for prediction of material temperatures and fluid conditions in a wide variety of systems. The code has been validated for analysis of spent fuel storage systems, as part of the Commercial Spent Fuel Management Program of the US Department of Energy. The code solves finite volume equations representing the conservation equations for mass, moment, and energy for an incompressible single-phase heat transfer fluid. The fluid solution is coupled to a finite volume solution of the conduction equation in the solid structure of the system. This document presents a complete description of Cycle 2 of COBRA-SFS, and consists of three main parts. Part 1 describes the conservation equations, constitutive models, and solution methods used in the code. Part 2 presents the User Manual, with guidance on code applications, and complete input instructions. This part also includes a detailed description of the auxiliary code RADGEN, used to generate grey body view factors required as input for radiative heat transfer modeling in the code. Part 3 describes the code structure, platform dependent coding, and program hierarchy. Installation instructions are also given for the various platform versions of the code that are available.

  1. Multi-Function Waste Tank Facility thermal hydraulic analysis for Title II design

    SciTech Connect

    Cramer, E.R.

    1994-11-10

    The purpose of this work was to provide the thermal hydraulic analysis for the Multi-Function Waste Tank Facility (MWTF) Title II design. Temperature distributions throughout the tank structure were calculated for subsequent use in the structural analysis and in the safety evaluation. Calculated temperatures of critical areas were compared to design allowables. Expected operating parameters were calculated for use in the ventilation system design and in the environmental impact documentation. The design requirements were obtained from the MWTF Functional Design Criteria (FDC). The most restrictive temperature limit given in the FDC is the 200 limit for the haunch and dome steel and concrete. The temperature limit for the rest of the primary and secondary tanks and concrete base mat and supporting pad is 250 F. Also, the waste should not be allowed to boil. The tank geometry was taken from ICF Kaiser Engineers Hanford drawing ES-W236A-Z1, Revision 1, included here in Appendix B. Heat removal rates by evaporation from the waste surface were obtained from experimental data. It is concluded that the MWTF tank cooling system will meet the design temperature limits for the design heat load of 700,000 Btu/h, even if cooling flow is lost to the annulus region, and temperatures change very slowly during transients due to the high heat capacity of the tank structure and the waste. Accordingly, transients will not be a significant operational problem from the viewpoint of meeting the specified temperature limits.

  2. Independent assessment of MELCOR as a severe accident thermal-hydraulic/source term analysis tool

    SciTech Connect

    Madni, I.K.; Eltawila, F.

    1994-01-01

    MELCOR is a fully integrated computer code that models all phases of the progression of severe accidents in light water reactor nuclear power plants, and is being developed for the US Nuclear Regulatory Commission (NRC) by Sandia National Laboratories (SNL). Brookhaven National Laboratory (BNL) has a program with the NRC called ``MELCOR Verification, Benchmarking, and Applications,`` whose aim is to provide independent assessment of MELCOR as a severe accident thermal-hydraulic/source term analysis tool. The scope of this program is to perform quality control verification on all released versions of MELCOR, to benchmark MELCOR against more mechanistic codes and experimental data from severe fuel damage tests, and to evaluate the ability of MELCOR to simulate long-term severe accident transients in commercial LWRs, by applying the code to model both BWRs and PWRs. Under this program, BNL provided input to the NRC-sponsored MELCOR Peer Review, and is currently contributing to the MELCOR Cooperative Assessment Program (MCAP). This paper presents a summary of MELCOR assessment efforts at BNL and their contribution to NRC goals with respect to MELCOR.

  3. Thermal-hydraulics and safety analysis of sectored compact reactor for lunar surface power

    SciTech Connect

    Schriener, T. M.; El-Genk, M. S.

    2012-07-01

    The liquid NaK-cooled, fast-neutron spectrum, Sectored Compact Reactor (SCoRe-N 5) concept has been developed at the Univ. of New Mexico for lunar surface power applications. It is loaded with highly enriched UN fuel pins in a triangular lattice, and nominally operates at exit and inlet coolant temperatures of 850 K and 900 K. This long-life reactor generates up to 1 MWth continuously for {>=} 20 years. To avoid a single point failure in reactor cooling, the core is divided into 6 sectors that are neutronically and thermally coupled, but hydraulically independent. This paper performs a 3-D the thermal-hydraulic analysis of SCoRe--N 5 at nominal operation temperatures and a power level of 1 MWth. In addition, the paper investigates the potential of continuing reactor operation at a lower power in the unlikely event that one sector in the core experiences a loss of coolant (LOC). Redesigning the core with a contiguous steel matrix enhances the cooling of the sector experiencing a LOC. Results show that with a core sector experiencing a LOC, SCORE-N 5 could continue operating safely at a reduced power of 166.6 kWth. (authors)

  4. Development of a Spatially-Selective, Nonlinear Refinement Algorithm for Thermal-Hydraulic Safety Analysis

    NASA Astrophysics Data System (ADS)

    Lloyd, Lewis John

    This work focused on developing a novel method for solving the nonlinear partial differential equations associated with thermal-hydraulic safety analysis software. Traditional methods involve solving large systems of nonlinear equations. One class of methods linearizes the nonlinear equations and attempts to minimize the nonlinear truncation error with timestep size selection. These linearized methods are characterized by low computational cost but reduced accuracy. Another class resolves those nonlinearities by using an iterative nonlinear refinement technique. However, these iterative methods are computationally expensive when multiple iterates are required to resolve the nonlinearities. These two paradigms stand at the opposite ends of a spectrum, and the middle ground had yet to be investigated. This research sought to find that middle ground, a balance between the competing incentives of computational cost and accuracy, by creating a hybrid method: a spatially-selective, nonlinear refinement (SNR) algorithm. As part of this work, the two-phase, three-field software COBRA was converted from a linearized semi-implicit solver to a nonlinearly convergent solver; an operator-based scaling that provides a physically meaningful convergence measure was developed and implemented; and the SNR algorithm was developed to enable a subdomain of the simulation to be subjected to multiple nonlinear iterates while maintaining global consistency. By selecting those areas of the computational domain where nonlinearities are expected to be high and subjecting only them to multiple nonlinear iterations, the accuracy of the nonlinear solver may be obtained without its associated computational cost.

  5. Program ELM: A tool for rapid thermal-hydraulic analysis of solid-core nuclear rocket fuel elements

    NASA Technical Reports Server (NTRS)

    Walton, James T.

    1992-01-01

    This report reviews the state of the art of thermal-hydraulic analysis codes and presents a new code, Program ELM, for analysis of fuel elements. ELM is a concise computational tool for modeling the steady-state thermal-hydraulics of propellant flow through fuel element coolant channels in a nuclear thermal rocket reactor with axial coolant passages. The program was developed as a tool to swiftly evaluate various heat transfer coefficient and friction factor correlations generated for turbulent pipe flow with heat addition which have been used in previous programs. Thus, a consistent comparison of these correlations was performed, as well as a comparison with data from the NRX reactor experiments from the Nuclear Engine for Rocket Vehicle Applications (NERVA) project. This report describes the ELM Program algorithm, input/output, and validation efforts and provides a listing of the code.

  6. Thermal-hydraulic analysis for changing feedwater check valve leakage rate testing methodology

    SciTech Connect

    Fuller, R.; Harrell, J.

    1996-12-01

    The current design and testing requirements for the feedwater check valves (FWCVs) at the Grand Gulf Nuclear Station are established from original licensing requirements that necessitate extremely restrictive air testing with tight allowable leakage limits. As a direct result of these requirements, the original high endurance hard seats in the FWCVs were modified with elastomeric seals to provide a sealing surface capable of meeting the stringent air leakage limits. However, due to the relatively short functional life of the elastomeric seals compared to the hard seats, the overall reliability of the sealing function actually decreased. This degraded performance was exhibited by frequent seal failures and subsequent valve repairs. The original requirements were based on limited analysis and the belief that all of the high energy feedwater vaporized during the LOCA blowdown. These phenomena would have resulted in completely voided feedwater lines and thus a steam environment within the feedwater leak pathway. To challenge these criteria, a comprehensive design basis accident analysis was developed using the RELAP5/MOD3.1 thermal-hydraulic code. Realistic assumptions were used to more accurately model the post-accident fluid conditions within the feedwater system. The results of this analysis demonstrated that no leak path exists through the feedwater lines during the reactor blowdown phase and that sufficient subcooled water remains in various portions of the feedwater piping to form liquid water loop seals that effectively isolate this leak path. These results provided the bases for changing the leak testing requirements of the FWCVs from air to water. The analysis results also established more accurate allowable leakage limits, determined the real effective margins associated with the FWCV safety functions, and led to design changes that improved the overall functional performance of the valves.

  7. VIPRE-01: a thermal-hydraulic analysis code for reactor cores. Volume 3. Programmer's manual. Final report. [PWR; BWR

    SciTech Connect

    Stewart, C.W.; Koontz, A.S.; Cuta, J.M.; Montgomery, S.D.

    1983-05-01

    VIPRE (Versatile Internals and Component Program for Reactors; EPRI) has been developed for nuclear power utility thermal-hydraulic analysis applications. It is designed to help evaluate nuclear-reactor-core safety limits including minimum departure from nucleate boiling ratio (MDNBR), critical power ratio (CPR), fuel and clad temperatures, and coolant state in normal operation and assumed accident conditions. This is Volume 3, the Programmer's Manual. It explains the codes' structures and the computer interfaces.

  8. Thermal hydraulic design analysis of ternary carbide fueled square-lattice honeycomb nuclear rocket engine

    SciTech Connect

    Furman, Eric M.; Anghaie, Samim

    1999-01-22

    A computational analysis is conducted to determine the optimum thermal-hydraulic design parameters for a square-lattice honeycomb nuclear rocket engine core that will incorporate ternary carbide based uranium fuels. Recent studies at the Innovative Nuclear Space Power and Propulsion Institute (INSPI) have demonstrated the feasibility of processing solid solution, ternary carbide fuels such as (U, Zr, Nb)C, (U, Zr, Ta)C, (U, Zr, Hf)C and (U, Zr, W)C. The square-lattice honeycomb design provides high strength and is amenable to the processing complexities of these ultrahigh temperature fuels. A parametric analysis is conducted to examine how core geometry, fuel thickness and the propellant flow area effect the thermal performance of the nuclear rocket engine. The principal variables include core size (length and diameter) and fuel element dimensions. The optimum core configuration requires a balance between high specific impulse and thrust level performance, and maintaining the temperature and strength limits of the fuel. A nuclear rocket engine simulation code is developed and used to examine the system performance as well as the performance of the main reactor core components. The system simulation code was originally developed for analysis of NERVA-Derivative and Pratt and Whitney XNR-2000 nuclear thermal rockets. The code is modified and adopted to the square-lattice geometry of the new fuel design. Thrust levels ranging from 44,500 to 222,400 N (10,000 to 50,000 lbf) are considered. The average hydrogen exit temperature is kept at 2800 K, which is well below the melting point of these fuels. For a nozzle area ratio of 300 and a thrust chamber pressure of 4.8 Mpa (700 psi), the specific impulse is 930 s. Hydrogen temperature and pressure distributions in the core and the fuel maximum temperatures are calculated.

  9. COBRA-SFS CYCLE 3: Code System for Thermal Hydraulic Analysis of Spent Fuel Casks

    Energy Science and Technology Software Center (ESTSC)

    2003-11-01

    COBRA-SFS (Spent Fuel Storage) is a code for thermal-hydraulic analysis of multi-assembly spent fuel storage and transportation systems. It uses a lumped parameter finite difference approach to predict flow and temperature distributions in spent fuel storage systems and fuel assemblies, under forced and natural convection heat transfer conditions. Derived from the COBRA family of codes, which have been extensively evaluated against in-pile and out-of-pile data, COBRA-SFS retains all the important features of the COBRA codesmore » for single phase fluid analysis and extends the range application to include problems with two-dimensional radiative and three-dimensional conductive heat transfer. COBRA-SFS has been used to analyze various single- and multi-assembly spent fuel storage systems containing unconsolidated and consolidated fuel rods, with a variety of fill media, including air, helium and vacuum. Cycle 0 of COBRA-SFS was released in 1986. Subsequent applications of the code led to development of additional capabilities, which resulted in the release of Cycle 1 in February 1989. Since then, the code has undergone an independent technical review as part of a submittal to the Nuclear Regulatory Commission for a generic license to apply the code to spent fuel storage system analysis. Modifications and improvements to the code have been combined to form Cycle 2. Cycle 3., the newest version of COBRA-SFS, has been validated and verified for transient applications, such as a storage cask thermal response to a pool fire.« less

  10. Overview of the Use of ATHENA for Thermal-Hydraulic Analysis of Systems with Lead-Bismuth Coolant

    SciTech Connect

    Davis, Cliff Bybee; Shieh, Arthur Shan Luk

    2000-04-01

    The INEEL and MIT are investigating the suitability of lead-bismuth cooled fast reactor for producing low-cost electricity as well as for actinide burning. This paper is concerned with the general area of thermal-hydraulics of lead-bismuth cooled reactors. The ATHENA code is being used in the thermal-hydraulic design and analysis of lead-bismuth cooled reactors. The ATHENA code was reviewed to determine its applicability for simulating lead-bismuth cooled reactors. Two modifications were made to the code as a result of this review. Specifically, a correlation to represent heat transfer from rod bundles to a liquid metal and a void correlation based on data taken in a mixture of lead-bismuth and steam were added the code. The paper also summarizes the analytical work that is being performed with the code and plans for future analytical work.

  11. Overview of the use of ATHENA for thermal-hydraulic analysis of systems with lead-bismuth coolant

    SciTech Connect

    C. B. Davis; A. S. Shieh

    2000-04-02

    The INEEL and MIT are investigating the suitability of lead-bismuth cooled fast reactor for producing low-cost electricity as well as for actinide burning. This paper is concerned with the general area of thermal-hydraulics of lead-bismuth cooled reactors. The ATHENA code is being used in the thermal-hydraulic design and analysis of lead-bismuth cooled reactors. The ATHENA code was reviewed to determine its applicability for simulating lead-bismuth cooled reactors. Two modifications were made to the code as a result of this review. Specifically, a correlation to represent heat transfer from rod bundles to a liquid metal and a void correlation based on data taken in a mixture of lead-bismuth and steam were added the code. The paper also summarizes the analytical work that is being performed with the code and plans for future analytical work.

  12. Thermal Hydraulic Design and Analysis of a Water-Cooled Ceramic Breeder Blanket with Superheated Steam for CFETR

    NASA Astrophysics Data System (ADS)

    Cheng, Xiaoman; Ma, Xuebin; Jiang, Kecheng; Chen, Lei; Huang, Kai; Liu, Songlin

    2015-09-01

    The water-cooled ceramic breeder blanket (WCCB) is one of the blanket candidates for China fusion engineering test reactor (CFETR). In order to improve power generation efficiency and tritium breeding ratio, WCCB with superheated steam is under development. The thermal-hydraulic design is the key to achieve the purpose of safe heat removal and efficient power generation under normal and partial loading operation conditions. In this paper, the coolant flow scheme was designed and one self-developed analytical program was developed, based on a theoretical heat transfer model and empirical correlations. Employing this program, the design and analysis of related thermal-hydraulic parameters were performed under different fusion power conditions. The results indicated that the superheated steam water-cooled blanket is feasible. supported by the National Special Project for Magnetic Confined Nuclear Fusion Energy of China (Nos. 2013GB108004, 2014GB122000 and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)

  13. CFX Analysis of the CANDU Moderator Thermal-Hydraulics in the Stern Lab. Test Facility

    NASA Astrophysics Data System (ADS)

    Kim, Hyoung Tae

    2014-06-01

    A numerical calculation with the commercial CFD code CFX is conducted for a test facility simulating the CANDU moderator thermal-hydraulics. Two kinds of moderator thermal-hydraulic tests at Stern Laboratories Inc. were performed in the full geometric configuration of the CANDU moderator circulating vessel, which is called a Calandria, housing a matrix of horizontal rod bundles simulating the Calandria tubes. The first of these tests is the pressure drop measurement of a cross flow in the horizontal rod bundles. The other is the local temperature measurement on the cross section of the horizontal cylinder vessel simulating the Calandria. In the present study the full geometric details of the Calandria are incorporated in the grid generation of the computational domain to which the boundary conditions for each experiment are applied. The numerical solutions are reviewed and compared with the available test data.

  14. Computational Fluid Dynamics in Support of the SNS Liquid Mercury Thermal-Hydraulic Analysis

    SciTech Connect

    Siman-Tov, M.; Wendel, M.W.; Yoder, G.L.

    1999-11-14

    Experimental and computational thermal-hydraulic research is underway to support the liquid mercury target design for the Spallation Neutron Source (SNS) facility. The SNS target will be subjected to internal nuclear heat generation that results from pulsed proton beam collisions with the mercury nuclei. Recirculation and stagnation zones within the target are of particular concern because of the likelihood that they will result in local hot spots and diminished heat removal from the target structure. Computational fluid dynamics (CFD) models are being used as a part of this research. Recent improvements to the 3D target model include the addition of the flow adapter which joins the inlet/outlet coolant pipes to the target body and an updated heat load distribution at the new baseline proton beam power level of 2 MW. Two thermal-hydraulic experiments are planned to validate the CFD model.

  15. IAEA Coordinated Research Project on HTGR Reactor Physics, Thermal-hydraulics and Depletion Uncertainty Analysis

    SciTech Connect

    Strydom, Gerhard; Bostelmann, F.

    2015-09-01

    The continued development of High Temperature Gas Cooled Reactors (HTGRs) requires verification of HTGR design and safety features with reliable high fidelity physics models and robust, efficient, and accurate codes. The predictive capability of coupled neutronics/thermal-hydraulics and depletion simulations for reactor design and safety analysis can be assessed with sensitivity analysis (SA) and uncertainty analysis (UA) methods. Uncertainty originates from errors in physical data, manufacturing uncertainties, modelling and computational algorithms. (The interested reader is referred to the large body of published SA and UA literature for a more complete overview of the various types of uncertainties, methodologies and results obtained). SA is helpful for ranking the various sources of uncertainty and error in the results of core analyses. SA and UA are required to address cost, safety, and licensing needs and should be applied to all aspects of reactor multi-physics simulation. SA and UA can guide experimental, modelling, and algorithm research and development. Current SA and UA rely either on derivative-based methods such as stochastic sampling methods or on generalized perturbation theory to obtain sensitivity coefficients. Neither approach addresses all needs. In order to benefit from recent advances in modelling and simulation and the availability of new covariance data (nuclear data uncertainties) extensive sensitivity and uncertainty studies are needed for quantification of the impact of different sources of uncertainties on the design and safety parameters of HTGRs. Only a parallel effort in advanced simulation and in nuclear data improvement will be able to provide designers with more robust and well validated calculation tools to meet design target accuracies. In February 2009, the Technical Working Group on Gas-Cooled Reactors (TWG-GCR) of the International Atomic Energy Agency (IAEA) recommended that the proposed Coordinated Research Program (CRP) on

  16. Thermal hydraulic behavior and efficiency analysis of an all-vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Xiong, Binyu; Zhao, Jiyun; Tseng, K. J.; Skyllas-Kazacos, Maria; Lim, Tuti Mariana; Zhang, Yu

    2013-11-01

    Vanadium redox flow batteries (VRBs) are very competitive for large-capacity energy storage in power grids and in smart buildings due to low maintenance costs, high design flexibility, and long cycle life. Thermal hydraulic modeling of VRB energy storage systems is an important issue and temperature has remarkable impacts on the battery efficiency, the lifetime of material and the stability of the electrolytes. In this paper, a lumped model including auxiliary pump effect is developed to investigate the VRB temperature responses under different operating and surrounding environmental conditions. The impact of electrolyte flow rate and temperature on the battery electrical characteristics and efficiencies are also investigated. A one kilowatt VRB system is selected to conduct numerical simulations. The thermal hydraulic model is benchmarked with experimental data and good agreement is found. Simulation results show that pump power is sensitive to hydraulic design and flow rates. The temperature in the stack and tanks rises up about 10 °C under normal operating conditions for the stack design and electrolyte volume selected. An optimal flow rate of around 90 cm3 s-1 is obtained for the proposed battery configuration to maximize battery efficiency. The models developed in this paper can also be used for the development of a battery control strategy to achieve satisfactory thermal hydraulic performance and maximize energy efficiency.

  17. Thermal-hydraulic analysis of the liquid mercury target for the national spallation neutron source

    SciTech Connect

    Siman-Tov, M.; Wendel, M.W.; Haines, J.R.; Rogers, M.

    1997-04-01

    The National Spallation Neutron Source (NSNS) is a high-energy, accelerator-based spallation neutron source being designed by a multi-laboratory team led by Oak Ridge National Laboratory (ORNL) to achieve very high fluxes of neutrons for scientific experiments. The NSNS is proposed to have a 1 MW beam of high-energy ({approximately}1 GeV) protons upgradable to 5 MW and operating at 60 Hz with a pulse duration of 0.5 {mu}s. Peak steady-state power density in the target is about 640 MW/m{sup 3} for 1 MW, whereas the pulse instantaneous peak power density is as high as 22,000 GW/m{sup 3}. The local peak temperature rise for a single pulse over it`s time-averaged value is only 6{degrees}C, but the rate of this temperature rise during the pulse is extremely fast ({approximately}12 million {degrees}C/s). In addition to the resulting thermal shock and materials compatibility concerns, key feasibility issues for the target are related to its thermal-hydraulic performance. These include proper flow distribution, flow reversals and stagnation zones, possible {open_quotes}hot spots{close_quotes}, cooling of the beam {open_quotes}window{close_quotes}, and the challenge of mitigating the effects of thermal shock through possible injection of helium bubbles. An analytic approach was used on the PC spreadsheet EXCEL to evaluate target design options and to determine the global T/H parameters in the current concept. The general computational fluid dynamics (CFD) code CFX was used to simulate the detailed time-averaged two-dimensional thermal and flow distributions in the liquid mercury. In this paper, an overview of the project and the results of this preliminary work are presented. Heat transfer characteristics of liquid mercury under wetting and non-wetting conditions are discussed, and future directions of the program in T/H analysis and R&D are outlined.

  18. Code System to Perform Neutronic and Thermal-Hydraulic Subchannel Analysis from Converged Coarse-Mesh Nodal Solutions.

    Energy Science and Technology Software Center (ESTSC)

    2000-06-14

    Version 00 NORMA-FP is an auxiliary program which can perform a neutronic and thermal-hydraulic subchannel analysis, starting from global core calculations carried out by both PSR-471/NORMA or PSR-492/QUARK codes. Detailed flux and power distributions inside homogenized nodes are computed by a two-stage bivariate interpolation method, upon separation of the axial variable for which an analytical solution is adopted. The actual heterogeneous structure of a node is accounted for by fuel rod power factors computed asmore » functions of burnup, burnup-weighted coolant density, and instantaneous coolant density.« less

  19. VIPRE-01: a thermal-hydraulic analysis code for reactor cores. Volume 2. User's manual. [PWR; BWR

    SciTech Connect

    Cuta, J.M.; Koontz, A.S.; Stewart, C.W.; Montgomery, S.D.

    1983-04-01

    VIPRE (Versatile Internals and Component Program for Reactors; EPRI) has been developed for nuclear power utility thermal-hydraulic analysis applications. It is designed to help evaluate nuclear energy reactor core safety limits including minimum departure from nucleate boiling ratio (MDNBR), critical power ratio (CPR), fuel and clad temperatures, and coolant state in normal operation and assumed accident conditions. This volume (Volume 2: User's Manual) describes the input requirements of VIPRE and its auxiliary programs, SPECSET, ASP and DECCON, and lists the input instructions for each code.

  20. Nuclear-coupled thermal-hydraulic stability analysis of boiling water reactors

    NASA Astrophysics Data System (ADS)

    Karve, Atul A.

    We have studied the nuclear-coupled thermal-hydraulic stability of boiling water reactors (BWRs) using a model we developed from: the space-time modal neutron kinetics equations based on spatial omega-modes, the equations for two-phase flow in parallel boiling channels, the fuel rod heat conduction equations, and a simple model for the recirculation loop. The model is represented as a dynamical system comprised of time-dependent nonlinear ordinary differential equations, and it is studied using stability analysis, modern bifurcation theory, and numerical simulations. We first determine the stability boundary (SB) in the most relevant parameter plane, the inlet-subcooling-number/external-pressure-drop plane, for a fixed control rod induced external reactivity equal to the 100% rod line value and then transform the SB to the practical power-flow map. Using this SB, we show that the normal operating point at 100% power is very stable, stability of points on the 100% rod line decreases as the flow rate is reduced, and that points are least stable in the low-flow/high-power region. We also determine the SB when the modal kinetics is replaced by simple point reactor kinetics and show that the first harmonic mode has no significant effect on the SB. Later we carry out the relevant numerical simulations where we first show that the Hopf bifurcation, that occurs as a parameter is varied across the SB is subcritical, and that, in the important low-flow/high-power region, growing oscillations can result following small finite perturbations of stable steady-states on the 100% rod line. Hence, a point on the 100% rod line in the low-flow/high-power region, although stable, may nevertheless be a point at which a BWR should not be operated. Numerical simulations are then done to calculate the decay ratios (DRs) and frequencies of oscillations for various points on the 100% rod line. It is determined that the NRC requirement of DR < 0.75-0.8 is not rigorously satisfied in the low

  1. 2D Thermal Hydraulic Analysis and Benchmark in Support of HFIR LEU Conversion using COMSOL

    SciTech Connect

    Freels, James D; Bodey, Isaac T; Lowe, Kirk T; Arimilli, Rao V

    2010-09-01

    The research documented herein was funded by a research contract between the Research Reactors Division (RRD) of Oak Ridge National Laboratory (ORNL) and the University of Tennessee, Knoxville (UTK) Mechanical, Aerospace and Biomedical Engineering Department (MABE). The research was governed by a statement of work (SOW) which clearly defines nine specific tasks. This report is outlined to follow and document the results of each of these nine specific tasks. The primary goal of this phase of the research is to demonstrate, through verification and validation methods, that COMSOL is a viable simulation tool for thermal-hydraulic modeling of the High Flux Isotope Reactor (HFIR) core. A secondary goal of this two-dimensional phase of the research is to establish methodology and data base libraries that are also needed in the full three-dimensional COMSOL simulation to follow. COMSOL version 3.5a was used for all of the models presented throughout this report.

  2. Thermal hydraulic codes for LWR safety analysis - present status and future perspective

    SciTech Connect

    Staedtke, H.

    1997-07-01

    The aim of the present paper is to give a review on the current status and future perspective of present best-estimate Thermal Hydraulic codes. Reference is made to internationally well-established codes which have reached a certain state of maturity. The first part of the paper deals with the common basic code features with respect to the physical modelling and their numerical methods used to describe complex two-phase flow and heat transfer processes. The general predictive capabilities are summarized identifying some remaining code deficiencies and their underlying limitations. The second part discusses various areas including physical modelling, numerical techniques and informatic structure where the codes could be substantially improved.

  3. RELAP5-3D thermal hydraulic analysis of the target cooling system in the SPES experimental facility

    NASA Astrophysics Data System (ADS)

    Giardina, M.; Castiglia, F.; Buffa, P.; Palermo, G.; Prete, G.

    2014-11-01

    The SPES (Selective Production of Exotic Species) experimental facility, under construction at the Italian National Institute of Nuclear Physics (INFN) Laboratories of Legnaro, Italy, is a second generation Isotope Separation On Line (ISOL) plant for advanced nuclear physic studies. The UCx target-ion source system works at temperature of about 2273 K, producing a high level of radiation (105 Sv/h), for this reason a careful risk analysis for the target chamber is among the major safety issues. In this paper, the obtained results of thermofluid-dynamics simulations of accidental transients in the SPES target cooling system are reported. The analysis, performed by using the RELAP5-3D 2.4.2 qualified thermal-hydraulic system code, proves good safety performance of this system during different accidental conditions.

  4. COBRA-SFS (Spent Fuel Storage): A thermal-hydraulic analysis computer code: Volume 2, User's manual

    SciTech Connect

    Rector, D.R.; Cuta, J.M.; Lombardo, N.J.; Michener, T.E.; Wheeler, C.L.

    1986-11-01

    COBRA-SFS (Spent Fuel Storage) is a general thermal-hydraulic analysis computer code used to predict temperatures and velocities in a wide variety of systems. The code was refined and specialized for spent fuel storage system analyses for the US Department of Energy's Commercial Spent Fuel Management Program. The finite-volume equations governing mass, momentum, and energy conservation are written for an incompressible, single-phase fluid. The flow equations model a wide range of conditions including natural circulation. The energy equations include the effects of solid and fluid conduction, natural convection, and thermal radiation. The COBRA-SFS code is structured to perform both steady-state and transient calculations; however, the transient capability has not yet been validated. This volume contains the input instructions for COBRA-SFS and an auxiliary radiation exchange factor code, RADX-1. It is intended to aid the user in becoming familiar with the capabilities and modeling conventions of the code.

  5. COBRA-SFS (Spent Fuel Storage): A thermal-hydraulic analysis computer code: Volume 1, Mathematical models and solution method

    SciTech Connect

    Rector, D.R.; Wheeler, C.L.; Lombardo, N.J.

    1986-11-01

    COBRA-SFS (Spent Fuel Storage) is a general thermal-hydraulic analysis computer code used to predict temperatures and velocities in a wide variety of systems. The code was refined and specialized for spent fuel storage system analyses for the US Department of Energy's Commercial Spent Fuel Management Program. The finite-volume equations governing mass, momentum, and energy conservation are written for an incompressible, single-phase fluid. The flow equations model a wide range of conditions including natural circulation. The energy equations include the effects of solid and fluid conduction, natural convection, and thermal radiation. The COBRA-SFS code is structured to perform both steady-state and transient calculations: however, the transient capability has not yet been validated. This volume describes the finite-volume equations and the method used to solve these equations. It is directed toward the user who is interested in gaining a more complete understanding of these methods.

  6. Feasibility study Part I - Thermal hydraulic analysis of LEU target for {sup 99}Mo production in Tajoura reactor

    SciTech Connect

    Bsebsu, F.M.; Abotweirat, F. E-mail: abutweirat@yahoo.com; Elwaer, S.

    2008-07-15

    The Renewable Energies and Water Desalination Research Center (REWDRC), Libya, will implement the technology for {sup 99}Mo isotope production using LEU foil target, to obtain new revenue streams for the Tajoura nuclear research reactor and desiring to serve the Libyan hospitals by providing the medical radioisotopes. Design information is presented for LEU target with irradiation device and irradiation Beryllium (Be) unit in the Tajoura reactor core. Calculated results for the reactor core with LEU target at different level of power are presented for steady state and several reactivity induced accident situations. This paper will present the steady state thermal hydraulic design and transient analysis of Tajoura reactor was loaded with LEU foil target for {sup 99}Mo production. The results of these calculations show that the reactor with LEU target during the several cases of transient are in safe and no problems will occur. (author)

  7. Preliminary LOCA analysis of the westinghouse small modular reactor using the WCOBRA/TRAC-TF2 thermal-hydraulics code

    SciTech Connect

    Liao, J.; Kucukboyaci, V. N.; Nguyen, L.; Frepoli, C.

    2012-07-01

    The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (> 225 MWe) integral pressurized water reactor (iPWR) with all primary components, including the steam generator and the pressurizer located inside the reactor vessel. The reactor core is based on a partial-height 17x17 fuel assembly design used in the AP1000{sup R} reactor core. The Westinghouse SMR utilizes passive safety systems and proven components from the AP1000 plant design with a compact containment that houses the integral reactor vessel and the passive safety systems. A preliminary loss of coolant accident (LOCA) analysis of the Westinghouse SMR has been performed using the WCOBRA/TRAC-TF2 code, simulating a transient caused by a double ended guillotine (DEG) break in the direct vessel injection (DVI) line. WCOBRA/TRAC-TF2 is a new generation Westinghouse LOCA thermal-hydraulics code evolving from the US NRC licensed WCOBRA/TRAC code. It is designed to simulate PWR LOCA events from the smallest break size to the largest break size (DEG cold leg). A significant number of fluid dynamics models and heat transfer models were developed or improved in WCOBRA/TRAC-TF2. A large number of separate effects and integral effects tests were performed for a rigorous code assessment and validation. WCOBRA/TRAC-TF2 was introduced into the Westinghouse SMR design phase to assist a quick and robust passive cooling system design and to identify thermal-hydraulic phenomena for the development of the SMR Phenomena Identification Ranking Table (PIRT). The LOCA analysis of the Westinghouse SMR demonstrates that the DEG DVI break LOCA is mitigated by the injection and venting from the Westinghouse SMR passive safety systems without core heat up, achieving long term core cooling. (authors)

  8. Rod bundle thermal-hydraulic and melt progression analysis of CORA severe fuel damage experiments

    SciTech Connect

    Suh, K.Y. )

    1994-04-01

    An integral, fast-running computational model is developed to simulate the thermal-hydraulic and melt progression behavior in a nuclear reactor rod bundle under severe fuel damage conditions. This consists of the submodels for calculating steaming from the core, hydrogen formation, heat transfer in and out of the core, cooling from core spray or injection, and, most importantly, fuel melting, relocation, and freezing with chemical interactions taking place among the material constituents in a degrading core. The integral model is applied to three German severe fuel damage tests to analyze the core thermal and melt behavior: CORA-16 (18-rod bundle and slow cooling), CORA-17 (18-rod bundle and quenching), and CORA-18 (48-rod bundle and slow cooling). Results of the temperature response of the fuel rods, the channel box, and the absorber blade; hydrogen generation from the fuel rod and the channel box; and core material eutectic formation, melt relocation, and blockage formation are discussed. Reasonable agreement is observed for component temperatures at midelevation where prediction and measurement uncertainties are minimal. However, discrepancies or uncertainties are noticed for hydrogen generation and core-melt progression. The experimentally observed peak generation of hydrogen upon reflooding is not able to be reproduced, and the total amount generated is generally underpredicted primarily because of the early relocation of the Zircaloy fuel channel box and cladding. Also, difficulties are encountered in the process of assessing the core-melt formation and the relocation model because of either modeling uncertainties or a lack of definitive metallurgical data as a function of time throughout the transient.

  9. An analysis of the proposed MITR-III core to establish thermal-hydraulic limits at 10 MW. Final report

    SciTech Connect

    Harling, O.K.; Lanning, D.D.; Bernard, J.A.; Meyer, J.E.; Henry, A.F.

    1997-06-01

    The 5 MW Massachusetts Institute of Technology Research Reactor (MITR-II) is expected to operate under a new license beginning in 1999. Among the options being considered is an upgrade in the heat removal system to allow operation at 10 MW. The purpose of this study is to predict the Limiting Safety System Settings and Safety Limits for the upgraded reactor (MITR-III). The MITR Multi-Channel Analysis Code was written to analyze the response of the MITR system to a series of anticipated transients in order to determine the Limiting Safety System Settings and Safety Limits under various operating conditions. The MIT Multi-Channel Analysis Code models the primary and secondary systems, with special emphasis placed on analyzing the thermal-hydraulic conditions in the core. The code models each MITR fuel element explicitly in order to predict the behavior of the system during flow instabilities. The results of the code are compared to experimental data from MITR-II and other sources. New definitions are suggested for the Limiting Safety System Settings and Safety Limits. MITR Limit Diagrams are included for three different heat removal system configurations. It is concluded that safe, year-round operating at 10 MW is possible, given that the primary and secondary flow rates are both increased by approximately 40%.

  10. Steady-state thermal-hydraulic analysis of the pellet-bed reactor for nuclear thermal propulsion

    SciTech Connect

    El-Genk, M.S.; Morley, N.J.; Yang, J.Y. )

    1992-01-01

    The pellet-bed reactor (PBR) for nuclear thermal propulsion is a hydrogen-cooled, BeO-reflected, fast reactor, consisting of an annular core region filled with randomly packed, spherical fuel pellets. The fuel pellets in the PBR are self-supported, eliminating the need for internal core structure, which simplifies the core design and reduces the size and mass of the reactor. Each spherical fuel pellet is composed of hundreds of fuel microspheres embedded in a zirconium carbide (ZrC) matrix. Each fuel microsphere is composed of a UC-NbC fuel kernel surrounded by two consecutive layers of the NbC and ZrC. Gaseous hydrogen serves both as core coolant and as the propellant for the PBR rocket engine. The cold hydrogen flows axially down the inlet channel situated between the core and the external BeO reflector and radially through the orifices in the cold frit, the core, and the orifices in the hot frit. Finally, the hot hydrogen flows axially out the central channel and exits through converging-diverging nozzle. A thermal-hydraulic analysis of the PBR core was performed with an emphasis on optimizing the size and axial distribution of the orifices in the hot and cold frits to ensure that hot spots would not develop in the core during full-power operation. Also investigated was the validity of the assumptions of neglecting the axial conduction and axial cross flow in the core.

  11. Thermal Hydraulics Design and Analysis Methodology for a Solid-Core Nuclear Thermal Rocket Engine Thrust Chamber

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Canabal, Francisco; Chen, Yen-Sen; Cheng, Gary; Ito, Yasushi

    2013-01-01

    Nuclear thermal propulsion is a leading candidate for in-space propulsion for human Mars missions. This chapter describes a thermal hydraulics design and analysis methodology developed at the NASA Marshall Space Flight Center, in support of the nuclear thermal propulsion development effort. The objective of this campaign is to bridge the design methods in the Rover/NERVA era, with a modern computational fluid dynamics and heat transfer methodology, to predict thermal, fluid, and hydrogen environments of a hypothetical solid-core, nuclear thermal engine the Small Engine, designed in the 1960s. The computational methodology is based on an unstructured-grid, pressure-based, all speeds, chemically reacting, computational fluid dynamics and heat transfer platform, while formulations of flow and heat transfer through porous and solid media were implemented to describe those of hydrogen flow channels inside the solid24 core. Design analyses of a single flow element and the entire solid-core thrust chamber of the Small Engine were performed and the results are presented herein

  12. Analysis of the OECD/NRC BWR Turbine Trip Transient Benchmark with the Coupled Thermal-Hydraulics and Neutronics Code TRAC-M/PARCS

    SciTech Connect

    Lee, Deokjung; Downar, Thomas J.; Ulses, Anthony; Akdeniz, Bedirhan; Ivanov, Kostadin N.

    2004-10-15

    An analysis of the Peach Bottom Unit 2 Turbine Trip 2 (TT2) experiment has been performed using the U.S. Nuclear Regulatory Commission coupled thermal-hydraulics and neutronics code TRAC-M/PARCS. The objective of the analysis was to assess the performance of TRAC-M/PARCS on a BWR transient with significance in two-phase flow and spatial variations of the neutron flux. TRAC-M/PARCS results are found to be in good agreement with measured plant data for both steady-state and transient phases of the benchmark. Additional analyses of four fictitious extreme scenarios are performed to provide a basis for code-to-code comparisons and comprehensive testing of the thermal-hydraulics/neutronics coupling. The obtained results of sensitivity studies on the effect of direct moderator heating on transient simulation indicate the importance of this modeling aspect.

  13. RDS - A systematic approach towards system thermal hydraulics input code development for a comprehensive deterministic safety analysis

    SciTech Connect

    Salim, Mohd Faiz; Roslan, Ridha; Ibrahim, Mohd Rizal Mamat

    2014-02-12

    Deterministic Safety Analysis (DSA) is one of the mandatory requirements conducted for Nuclear Power Plant licensing process, with the aim of ensuring safety compliance with relevant regulatory acceptance criteria. DSA is a technique whereby a set of conservative deterministic rules and requirements are applied for the design and operation of facilities or activities. Computer codes are normally used to assist in performing all required analysis under DSA. To ensure a comprehensive analysis, the conduct of DSA should follow a systematic approach. One of the methodologies proposed is the Standardized and Consolidated Reference Experimental (and Calculated) Database (SCRED) developed by University of Pisa. Based on this methodology, the use of Reference Data Set (RDS) as a pre-requisite reference document for developing input nodalization was proposed. This paper shall describe the application of RDS with the purpose of assessing its effectiveness. Two RDS documents were developed for an Integral Test Facility of LOBI-MOD2 and associated Test A1-83. Data and information from various reports and drawings were referred in preparing the RDS. The results showed that by developing RDS, it has made possible to consolidate all relevant information in one single document. This is beneficial as it enables preservation of information, promotes quality assurance, allows traceability, facilitates continuous improvement, promotes solving of contradictions and finally assisting in developing thermal hydraulic input regardless of whichever code selected. However, some disadvantages were also recognized such as the need for experience in making engineering judgments, language barrier in accessing foreign information and limitation of resources. Some possible improvements are suggested to overcome these challenges.

  14. RDS - A systematic approach towards system thermal hydraulics input code development for a comprehensive deterministic safety analysis

    NASA Astrophysics Data System (ADS)

    Salim, Mohd Faiz; Roslan, Ridha; Ibrahim, Mohd Rizal Mamat @

    2014-02-01

    Deterministic Safety Analysis (DSA) is one of the mandatory requirements conducted for Nuclear Power Plant licensing process, with the aim of ensuring safety compliance with relevant regulatory acceptance criteria. DSA is a technique whereby a set of conservative deterministic rules and requirements are applied for the design and operation of facilities or activities. Computer codes are normally used to assist in performing all required analysis under DSA. To ensure a comprehensive analysis, the conduct of DSA should follow a systematic approach. One of the methodologies proposed is the Standardized and Consolidated Reference Experimental (and Calculated) Database (SCRED) developed by University of Pisa. Based on this methodology, the use of Reference Data Set (RDS) as a pre-requisite reference document for developing input nodalization was proposed. This paper shall describe the application of RDS with the purpose of assessing its effectiveness. Two RDS documents were developed for an Integral Test Facility of LOBI-MOD2 and associated Test A1-83. Data and information from various reports and drawings were referred in preparing the RDS. The results showed that by developing RDS, it has made possible to consolidate all relevant information in one single document. This is beneficial as it enables preservation of information, promotes quality assurance, allows traceability, facilitates continuous improvement, promotes solving of contradictions and finally assisting in developing thermal hydraulic input regardless of whichever code selected. However, some disadvantages were also recognized such as the need for experience in making engineering judgments, language barrier in accessing foreign information and limitation of resources. Some possible improvements are suggested to overcome these challenges.

  15. Developmental assessment of the multidimensional component in RELAP5 for Savannah River Site thermal hydraulic analysis

    SciTech Connect

    Hanson, R.G.; Johnson, E.C.; Carlson, K.E.; Chou, C.Y.; Davis, C.B.; Martin, R.P.; Riemke, R.A.; Wagner, R.J.

    1992-07-01

    This report documents ten developmental assessment problems which were used to test the multidimensional component in RELAP5/MOD2.5, Version 3w. The problems chosen were a rigid body rotation problem, a pure radial symmetric flow problem, an r-[theta] symmetric flow problem, a fall problem, a rest problem, a basic one-dimensional flow test problem, a gravity wave problem, a tank draining problem, a flow through the center problem, and coverage analysis using PIXIE. The multidimensional code calculations are compared to analytical solutions and one-dimensional code calculations. The discussion section of each problem contains information relative to the code's ability to simulate these problems.

  16. Thermal-hydraulic analysis of N Reactor graphite and shield cooling system performance

    SciTech Connect

    Low, J.O.; Schmitt, B.E.

    1988-02-01

    A series of bounding (worst-case) calculations were performed using a detailed hydrodynamic RELAP5 model of the N Reactor graphite and shield cooling system (GSCS). These calculations were specifically aimed to answer issues raised by the Westinghouse Independent Safety Review (WISR) committee. These questions address the operability of the GSCS during a worst-case degraded-core accident that requires the GDCS to mitigate the consequences of the accident. An accident scenario previously developed was designed as the hydrogen-mitigation design-basis accident (HMDBA). Previous HMDBA heat transfer analysis,, using the TRUMP-BD code, was used to define the thermal boundary conditions that the GSDS may be exposed to. These TRUMP/HMDBA analysis results were used to define the bounding operating conditions of the GSCS during the course of an HMDBA transient. Nominal and degraded GSCS scenarios were investigated using RELAP5 within or at the bounds of the HMDBA transient. 10 refs., 42 figs., 10 tabs.

  17. COBRA-SFS (Spent Fuel Storage): A thermal-hydraulic analysis computer code: Volume 3, Validation assessments

    SciTech Connect

    Lombardo, N.J.; Cuta, J.M.; Michener, T.E.; Rector, D.R.; Wheeler, C.L.

    1986-12-01

    This report presents the results of the COBRA-SFS (Spent Fuel Storage) computer code validation effort. COBRA-SFS, while refined and specialized for spent fuel storage system analyses, is a lumped-volume thermal-hydraulic analysis computer code that predicts temperature and velocity distributions in a wide variety of systems. Through comparisons of code predictions with spent fuel storage system test data, the code's mathematical, physical, and mechanistic models are assessed, and empirical relations defined. The six test cases used to validate the code and code models include single-assembly and multiassembly storage systems under a variety of fill media and system orientations and include unconsolidated and consolidated spent fuel. In its entirety, the test matrix investigates the contributions of convection, conduction, and radiation heat transfer in spent fuel storage systems. To demonstrate the code's performance for a wide variety of storage systems and conditions, comparisons of code predictions with data are made for 14 runs from the experimental data base. The cases selected exercise the important code models and code logic pathways and are representative of the types of simulations required for spent fuel storage system design and licensing safety analyses. For each test, a test description, a summary of the COBRA-SFS computational model, assumptions, and correlations employed are presented. For the cases selected, axial and radial temperature profile comparisons of code predictions with test data are provided, and conclusions drawn concerning the code models and the ability to predict the data and data trends. Comparisons of code predictions with test data demonstrate the ability of COBRA-SFS to successfully predict temperature distributions in unconsolidated or consolidated single and multiassembly spent fuel storage systems.

  18. ELM - A SIMPLE TOOL FOR THERMAL-HYDRAULIC ANALYSIS OF SOLID-CORE NUCLEAR ROCKET FUEL ELEMENTS

    NASA Technical Reports Server (NTRS)

    Walton, J. T.

    1994-01-01

    ELM is a simple computational tool for modeling the steady-state thermal-hydraulics of propellant flow through fuel element coolant channels in nuclear thermal rockets. Written for the nuclear propulsion project of the Space Exploration Initiative, ELM evaluates the various heat transfer coefficient and friction factor correlations available for turbulent pipe flow with heat addition. In the past, these correlations were found in different reactor analysis codes, but now comparisons are possible within one program. The logic of ELM is based on the one-dimensional conservation of energy in combination with Newton's Law of Cooling to determine the bulk flow temperature and the wall temperature across a control volume. Since the control volume is an incremental length of tube, the corresponding pressure drop is determined by application of the Law of Conservation of Momentum. The size, speed, and accuracy of ELM make it a simple tool for use in fuel element parametric studies. ELM is a machine independent program written in FORTRAN 77. It has been successfully compiled on an IBM PC compatible running MS-DOS using Lahey FORTRAN 77, a DEC VAX series computer running VMS, and a Sun4 series computer running SunOS UNIX. ELM requires 565K of RAM under SunOS 4.1, 360K of RAM under VMS 5.4, and 406K of RAM under MS-DOS. Because this program is machine independent, no executable is provided on the distribution media. The standard distribution medium for ELM is one 5.25 inch 360K MS-DOS format diskette. ELM was developed in 1991. DEC, VAX, and VMS are trademarks of Digital Equipment Corporation. Sun4 and SunOS are trademarks of Sun Microsystems, Inc. IBM PC is a registered trademark of International Business Machines. MS-DOS is a registered trademark of Microsoft Corporation.

  19. Developmental assessment of the multidimensional component in RELAP5 for Savannah River Site thermal hydraulic analysis

    SciTech Connect

    Hanson, R.G.; Johnson, E.C.; Carlson, K.E.; Chou, C.Y.; Davis, C.B.; Martin, R.P.; Riemke, R.A.; Wagner, R.J.

    1992-07-01

    This report documents ten developmental assessment problems which were used to test the multidimensional component in RELAP5/MOD2.5, Version 3w. The problems chosen were a rigid body rotation problem, a pure radial symmetric flow problem, an r-{theta} symmetric flow problem, a fall problem, a rest problem, a basic one-dimensional flow test problem, a gravity wave problem, a tank draining problem, a flow through the center problem, and coverage analysis using PIXIE. The multidimensional code calculations are compared to analytical solutions and one-dimensional code calculations. The discussion section of each problem contains information relative to the code`s ability to simulate these problems.

  20. Neutronic and thermal hydraulic analysis of the Geological Survey TRIGA Reactor

    NASA Astrophysics Data System (ADS)

    Shugart, Nicolas

    The United States Geological Survey TRIGA Reactor (GSTR) is a 1 MW reactor located in Lakewood, Colorado. In support of the GSTR's relicensing efforts, this project developed and validated a Monte Carlo N-Particle Version 5 (MCNP5) model of the GSTR reactor. The model provided estimates of the excess reactivity, power distribution and the fuel temperature, water temperature, void, and power reactivity coefficients for the current and limiting core. The MCNP5 model predicts a limiting core excess reactivity of 6.48 with a peak rod power of 22.2 kW. The fuel and void reactivity coefficients for the limiting core are strongly negative, and the core water reactivity coefficient is slightly positive, consistent with other TRIGA analyses. The average fuel temperature reactivity coefficient of the full power limiting core is -0.0135 /K while the average core void coefficient is -0.069 /K from 0-20 % void. The core water temperature reactivity coefficient is +0.012 /K. Following the neutronics analysis, the project developed RELAP5 and PARET-ANL models of the GSTR hot-rod fuel channel under steady state and transient conditions. The GSTR limiting core, determined as part of this analysis, provides a worst case operating scenario for the reactor. During steady state operations, the hot rod of the limiting core has a peak fuel temperature of 829 K and a minimum departure from nucleate boiling ratio of 2.16. After a $3.00 pulse reactivity insertion the fuel reaches a peak temperature is 1070 K. Examining the model results several seconds after a pulse reveals flow instabilities that result from weaknesses in the current two-channel model.

  1. Helical coil thermal hydraulic model

    NASA Astrophysics Data System (ADS)

    Caramello, M.; Bertani, C.; De Salve, M.; Panella, B.

    2014-11-01

    A model has been developed in Matlab environment for the thermal hydraulic analysis of helical coil and shell steam generators. The model considers the internal flow inside one helix and its associated control volume of water on the external side, both characterized by their inlet thermodynamic conditions and the characteristic geometry data. The model evaluates the behaviour of the thermal-hydraulic parameters of the two fluids, such as temperature, pressure, heat transfer coefficients, flow quality, void fraction and heat flux. The evaluation of the heat transfer coefficients as well as the pressure drops has been performed by means of the most validated literature correlations. The model has been applied to one of the steam generators of the IRIS modular reactor and a comparison has been performed with the RELAP5/Mod.3.3 code applied to an inclined straight pipe that has the same length and the same elevation change between inlet and outlet of the real helix. The predictions of the developed model and RELAP5/Mod.3.3 code are in fairly good agreement before the dryout region, while the dryout front inside the helical pipes is predicted at a lower distance from inlet by the model.

  2. Statistical Safety Evaluation of BWR Turbine Trip Scenario Using Coupled Neutron Kinetics and Thermal Hydraulics Analysis Code SKETCH-INS/TRACE5.0

    NASA Astrophysics Data System (ADS)

    Ichikawa, Ryoko; Masuhara, Yasuhiro; Kasahara, Fumio

    The Best Estimate Plus Uncertainty (BEPU) method has been prepared for the regulatory cross-check analysis at Japan Nuclear Energy Safety Organization (JNES) on base of the three-dimensional neutron-kinetics/thermal- hydraulics coupled code SKETCH-INS/TRACE5.0. In the preparation, TRACE5.0 is verified against the large-scale thermal-hydraulic tests carried out with NUPEC facility. These tests were focused on the pressure drop of steam-liquid two phase flow and void fraction distribution. From the comparison of the experimental data with other codes (RELAP5/MOD3.3 and TRAC-BF1), TRACE5.0 was judged better than other codes. It was confirmed that TRACE5.0 has high reliability for thermal hydraulics behavior and are used as a best-estimate code for the statistical safety evaluation. Next, the coupled code SKETCH-INS/TRACE5.0 was applied to turbine trip tests performed at the Peach Bottom-2 BWR4 Plant. The turbine trip event shows the rapid power peak due to the voids collapse with the pressure increase. The analyzed peak value of core power is better simulated than the previous version SKETCH-INS/TRAC-BF1. And the statistical safety evaluation using SKETCH-INS/TRACE5.0 was applied to the loss of load transient for examining the influence of the choice of sampling method.

  3. Simulation of the passive condensation cooling tank of the PASCAL test facility using the component thermal-hydraulic analysis code CUPID

    SciTech Connect

    Cho, H. K.; Lee, S. J.; Kang, K. H.; Yoon, H. Y.

    2012-07-01

    For the analysis of transient two-phase flows in nuclear reactor components, a three-dimensional thermal hydraulics code, named CUPID, has been being developed. In the present study, the CUPID code was applied for the simulation of the PASCAL (PAFS Condensing Heat Removal Assessment Loop) test facility constructed with an aim of validating the cooling and operational performance of the PAFS (Passive Auxiliary Feedwater System). The PAFS is one of the advanced safety features adopted in the APR+ (Advanced Power Reactor +), which is intended to completely replace the conventional active auxiliary feedwater system. This paper presents the preliminary simulation results of the PASCAL facility performed with the CUPID code in order to verify its applicability to the thermal-hydraulic phenomena inside the system. A standalone calculation for the passive condensation cooling tank was performed by imposing a heat source boundary condition and the transient thermal-hydraulic behaviors inside the system, such as the water level, temperature and velocity, were qualitatively investigated. The simulation results verified that the natural circulation and boiling phenomena in the water pool can be well reproduced by the CUPID code. (authors)

  4. Dynamic thermal-hydraulic modeling and stack flow pattern analysis for all-vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Wei, Zhongbao; Zhao, Jiyun; Skyllas-Kazacos, Maria; Xiong, Binyu

    2014-08-01

    The present study focuses on dynamic thermal-hydraulic modeling for the all-vanadium flow battery and investigations on the impact of stack flow patterns on battery performance. The inhomogeneity of flow rate distribution and reversible entropic heat are included in the thermal-hydraulic model. The electrolyte temperature in tanks is modeled with the finite element modeling (FEM) technique considering the possible non-uniform distribution of electrolyte temperature. Results show that the established model predicts electrolyte temperature accurately under various ambient temperatures and current densities. Significant temperature gradients exist in the battery system at extremely low flow rates, while the electrolyte temperature tends to be the same in different components under relatively high flow rates. Three stack flow patterns including flow without distribution channels and two cases of flow with distribution channels are compared to investigate their effects on battery performance. It is found that the flow rates are not uniformly distributed in cells especially when the stack is not well designed, while adding distribution channels alleviates the inhomogeneous phenomenon. By comparing the three flow patterns, it is found that the serpentine-parallel pattern is preferable and effectively controls the uniformity of flow rates, pressure drop and electrolyte temperature all at expected levels.

  5. Innovative and Advanced Coupled Neutron Transport and Thermal Hydraulic Method (Tool) for the Design, Analysis and Optimization of VHTR/NGNP Prismatic Reactors

    SciTech Connect

    Rahnema, Farzad; Garimeela, Srinivas; Ougouag, Abderrafi; Zhang, Dingkang

    2013-11-29

    This project will develop a 3D, advanced coarse mesh transport method (COMET-Hex) for steady- state and transient analyses in advanced very high-temperature reactors (VHTRs). The project will lead to a coupled neutronics and thermal hydraulic (T/H) core simulation tool with fuel depletion capability. The computational tool will be developed in hexagonal geometry, based solely on transport theory without (spatial) homogenization in complicated 3D geometries. In addition to the hexagonal geometry extension, collaborators will concurrently develop three additional capabilities to increase the code’s versatility as an advanced and robust core simulator for VHTRs. First, the project team will develop and implement a depletion method within the core simulator. Second, the team will develop an elementary (proof-of-concept) 1D time-dependent transport method for efficient transient analyses. The third capability will be a thermal hydraulic method coupled to the neutronics transport module for VHTRs. Current advancements in reactor core design are pushing VHTRs toward greater core and fuel heterogeneity to pursue higher burn-ups, efficiently transmute used fuel, maximize energy production, and improve plant economics and safety. As a result, an accurate and efficient neutron transport, with capabilities to treat heterogeneous burnable poison effects, is highly desirable for predicting VHTR neutronics performance. This research project’s primary objective is to advance the state of the art for reactor analysis.

  6. Transient thermal, hydraulic, and mechanical analysis of a counter flow offset strip fin intermediate heat exchanger using an effective porous media approach

    NASA Astrophysics Data System (ADS)

    Urquiza, Eugenio

    This work presents a comprehensive thermal hydraulic analysis of a compact heat exchanger using offset strip fins. The thermal hydraulics analysis in this work is followed by a finite element analysis (FEA) to predict the mechanical stresses experienced by an intermediate heat exchanger (IHX) during steady-state operation and selected flow transients. In particular, the scenario analyzed involves a gas-to-liquid IHX operating between high pressure helium and liquid or molten salt. In order to estimate the stresses in compact heat exchangers a comprehensive thermal and hydraulic analysis is needed. Compact heat exchangers require very small flow channels and fins to achieve high heat transfer rates and thermal effectiveness. However, studying such small features computationally contributes little to the understanding of component level phenomena and requires prohibitive computational effort using computational fluid dynamics (CFD). To address this issue, the analysis developed here uses an effective porous media (EPM) approach; this greatly reduces the computation time and produces results with the appropriate resolution [1]. This EPM fluid dynamics and heat transfer computational code has been named the Compact Heat Exchanger Explicit Thermal and Hydraulics (CHEETAH) code. CHEETAH solves for the two-dimensional steady-state and transient temperature and flow distributions in the IHX including the complicating effects of temperature-dependent fluid thermo-physical properties. Temperature- and pressure-dependent fluid properties are evaluated by CHEETAH and the thermal effectiveness of the IHX is also calculated. Furthermore, the temperature distribution can then be imported into a finite element analysis (FEA) code for mechanical stress analysis using the EPM methods developed earlier by the University of California, Berkeley, for global and local stress analysis [2]. These simulation tools will also allow the heat exchanger design to be improved through an

  7. Incorporation of a Helical Tube Heat Transfer Model in the MARS Thermal Hydraulic Systems Analysis Code for the T/H Analyses of the SMART Reactor

    SciTech Connect

    Young Jin Lee; Bub Dong Chung; Jong Chull Jo; Hho Jung Kim; Un Chul Lee

    2004-07-01

    SMART is a medium sized integral type advanced pressurized water reactor currently under development at KAERI. The steam generators of SMART are designed with helically coiled tubes and these are designed to produce superheated steam. The helical shape of the tubes can induce strong centrifugal effect on the secondary coolant as it flows inside the tubes. The presence of centrifugal effect is expected to enhance the formation of cross-sectional circulation flows within the tubes that will increase the overall heat transfer. Furthermore, the centrifugal effect is expected to enhance the moisture separation and thus make it easier to produce superheated steam. MARS is a best-estimate thermal-hydraulic systems analysis code with multi-phase, multi-dimensional analysis capability. The MARS code was produced by restructuring and merging the RELAP5 and the COBRA-TF codes. However, MARS as well as most other best-estimate systems analysis codes in current use lack the detailed models needed to describe the thermal hydraulics of helically coiled tubes. In this study, the heat transfer characteristics and relevant correlations for both the tube and shell sides of helical tubes have been investigated, and the appropriate models have been incorporated into the MARS code. The newly incorporated helical tube heat transfer package is available to the MARS users via selection of the appropriate option in the input. A performance analysis on the steam generator of SMART under full power operation was carried out using the modified MARS code. The results of the analysis indicate that there is a significant improvement in the code predictability. (authors)

  8. Thermal-Hydraulic Analysis of the 3-MW TRIGA MARK-II Research Reactor Under Steady-State and Transient Conditions

    SciTech Connect

    Huda, M.Q.; Bhuiyan, S.I.; Chakrobortty, T.K.; Sarker, M.M.; Mondal, M.A.W

    2001-07-15

    Important thermal-hydraulic parameters of the 3-MW TRIGA MARK-II research reactor operating under both steady-state and transient conditions are reported. Neutronic analyses were performed by using the CITATION diffusion code and the MCNP4B2 Monte Carlo code. The output of CITATION and MCNP4B2 were input to the PARET thermal-hydraulic code to study the steady-state and transient thermal-hydraulic behavior of the reactor. To benchmark the PARET model, data were obtained from different measurements performed by thermocouples in the instrumented fuel (IF) rod during the steady-state operation both under forced- and natural-convection mode and compared with the calculation. The mass flow rates needed for input to PARET were taken from the Final Safety Analysis Report for a downward forced coolant flow equivalent to 3500 gal/min. For natural convection cooling of the reactor, the mass flow rate was generated using the NCTRIGA code. Peak fuel temperatures measured by the thermocouples in the IF rods at different power levels of the TRIGA core were compared with the values calculated by PARET. The axial distribution of the temperatures of the fuel centerline, fuel surface, and the cladding surface in the hot channel were calculated for the reactor operating at the full-power level. Fuel surface heat flux and heat transfer coefficients for the hot channel were also calculated for the reactor operating at the full-power level. The investigated results were found to be in good agreement with the experimental and operational values. The testing of the PARET model calculations through benchmarking the available TRIGA experimental and operational data for pulse-mode operations showed that PARET can successfully be used to analyze the transient behavior of the reactor. Major transient parameters, such as peak power and prompt energy released after pulse, full-width at half-maximum of pulse peak, and maximum fuel centerline temperatures for different fuel elements at different

  9. Neutronic and thermal-hydraulic analysis of new irradiation channels inside the Moroccan TRIGA Mark II research reactor core.

    PubMed

    Chham, E; El Bardouni, T; Benaalilou, K; Boukhal, H; El Bakkari, B; Boulaich, Y; El Younoussi, C; Nacir, B

    2016-10-01

    This study was conducted to improve the capacity of radioisotope production in the Moroccan TRIGA Mark II research reactor, which is considered as one of the most important applications of research reactors. The aim of this study is to enhance the utilization of TRIGA core in the field of neutron activation and ensure an economic use of the fuel. The main idea was to create an additional irradiation channel (IC) inside the core. For this purpose, three new core configurations are proposed, which differ according to the IC position in the core. Thermal neutron flux distribution and other neutronic safety parameters such as power peaking factors, excess reactivity, and control rods worth reactivity were calculated using the Monte Carlo N-Particle Transport (MCNP) code and neutron cross-section library based on ENDF/B-VII evaluation. The calculated thermal flux in the central thimble (CT) and in the added IC for the reconfigured core is compared with the thermal flux in the CT of the existing core, which is taken as a reference. The results show that all the obtained fluxes in CTs are very close to the reference value, while a remarkable difference is observed between the fluxes in the new ICs and reference. This difference depends on the position of IC in the reactor core. To demonstrate that the Moroccan TRIGA reactor could safely operate at 2MW, with new configurations based on new ICs, different safety-related thermal-hydraulic parameters were investigated. The PARET model was used in this study to verify whether the safety margins are met despite the new modifications of the core. The results show that it is possible to introduce new ICs safely in the reactor core, because the obtained values of the parameters are largely far from compromising the safety of the reactor. PMID:27552124

  10. Process management using component thermal-hydraulic function classes

    DOEpatents

    Morman, J.A.; Wei, T.Y.C.; Reifman, J.

    1999-07-27

    A process management expert system where following malfunctioning of a component, such as a pump, for determining system realignment procedures such as for by-passing the malfunctioning component with on-line speeds to maintain operation of the process at full or partial capacity or to provide safe shut down of the system while isolating the malfunctioning component. The expert system uses thermal-hydraulic function classes at the component level for analyzing unanticipated as well as anticipated component malfunctions to provide recommended sequences of operator actions. Each component is classified according to its thermal-hydraulic function, and the generic and component-specific characteristics for that function. Using the diagnosis of the malfunctioning component and its thermal hydraulic class, the expert system analysis is carried out using generic thermal-hydraulic first principles. One aspect of the invention employs a qualitative physics-based forward search directed primarily downstream from the malfunctioning component in combination with a subsequent backward search directed primarily upstream from the serviced component. Generic classes of components are defined in the knowledge base according to the three thermal-hydraulic functions of mass, momentum and energy transfer and are used to determine possible realignment of component configurations in response to thermal-hydraulic function imbalance caused by the malfunctioning component. Each realignment to a new configuration produces the accompanying sequence of recommended operator actions. All possible new configurations are examined and a prioritized list of acceptable solutions is produced. 5 figs.

  11. Process management using component thermal-hydraulic function classes

    DOEpatents

    Morman, James A.; Wei, Thomas Y. C.; Reifman, Jaques

    1999-01-01

    A process management expert system where following malfunctioning of a component, such as a pump, for determining system realignment procedures such as for by-passing the malfunctioning component with on-line speeds to maintain operation of the process at full or partial capacity or to provide safe shut down of the system while isolating the malfunctioning component. The expert system uses thermal-hydraulic function classes at the component level for analyzing unanticipated as well as anticipated component malfunctions to provide recommended sequences of operator actions. Each component is classified according to its thermal-hydraulic function, and the generic and component-specific characteristics for that function. Using the diagnosis of the malfunctioning component and its thermal hydraulic class, the expert system analysis is carried out using generic thermal-hydraulic first principles. One aspect of the invention employs a qualitative physics-based forward search directed primarily downstream from the malfunctioning component in combination with a subsequent backward search directed primarily upstream from the serviced component. Generic classes of components are defined in the knowledge base according to the three thermal-hydraulic functions of mass, momentum and energy transfer and are used to determine possible realignment of component configurations in response to thermal-hydraulic function imbalance caused by the malfunctioning component. Each realignment to a new configuration produces the accompanying sequence of recommended operator actions. All possible new configurations are examined and a prioritized list of acceptable solutions is produced.

  12. GCFR thermal-hydraulic experiments

    SciTech Connect

    Schlueter, G.; Baxi, C.B.; Dalle Donne, M.; Gat, U.; Fenech, H.; Hanson, D.; Hudina, M.

    1980-01-01

    The thermal-hydraulic experimental studies performed and planned for the Gas-Cooled Fast Reactor (GCFR) core assemblies are described. The experiments consist of basic studies performed to obtain correlations, and bundle experiments which provide input for code validation and design verification. These studies have been performed and are planned at European laboratories, US national laboratories, Universities in the US, and at General Atomic Company

  13. Process management using component thermal-hydraulic function classes

    SciTech Connect

    Morman, James A.; Wei, Thomas Y.C.; Reifman, Jaques

    1997-12-01

    A process management expert system for a nuclear, chemical or other process is effective following malfunctioning of a component, such as a pump, for determining system realignment procedures such as for by-passing the malfunctioning component with on-line speeds to maintain operation of the process at full or partial capacity or to provide safe shut down of the system while isolating the malfunctioning component. The expert system uses thermal-hydraulic function classes at the component level for analyzing unanticipated as well as anticipated component malfunctions to provide recommended sequences of operator actions. Each component is classified according to its thermal-hydraulic function, and the generic and component-specific characteristics for that function. Using the diagnosis of the malfunctioning component and its thermal hydraulic class, the expert system analysis is carried out using generic thermal-hydraulic first principles. One aspect of the invention employs a qualitative physics-based forward search directed primarily downstream from the malfunctioning component in combination with a subsequent backward search directed primarily upstream from the serviced component. Generic classes of components are defined in the knowledge base according to the three thermal-hydraulic functions of mass, momentum and energy transfer and are used to determine possible realignment of component configurations in response to thermal-hydraulic function imbalance caused by the malfunctioning component. The search process is based upon mass, momentum and energy conservation principles so that qualitative thermal-hydraulic fundamental principles are satisfied for new system configurations. Each realignment to a new configuration produces the accompanying sequence of recommended operator actions. All possible new configurations are examined and a prioritized list of acceptable solutions is produced.

  14. TRAC-PF1/MOD1: an advanced best-estimate computer program for pressurized water reactor thermal-hydraulic analysis

    SciTech Connect

    Liles, D.R.; Mahaffy, J.H.

    1986-07-01

    The Los Alamos National Laboratory is developing the Transient Reactor Analysis Code (TRAC) to provide advanced best-estimate predictions of postulated accidents in light-water reactors. The TRAC-PF1/MOD1 program provides this capability for pressurized water reactors and for many thermal-hydraulic test facilities. The code features either a one- or a three-dimensional treatment of the pressure vessel and its associated internals, a two-fluid nonequilibrium hydrodynamics model with a noncondensable gas field and solute tracking, flow-regime-dependent constitutive equation treatment, optional reflood tracking capability for bottom-flood and falling-film quench fronts, and consistent treatment of entire accident sequences including the generation of consistent initial conditions. The stability-enhancing two-step (SETS) numerical algorithm is used in the one-dimensional hydrodynamics and permits this portion of the fluid dynamics to violate the material Courant condition. This technique permits large time steps and, hence, reduced running time for slow transients.

  15. Thermal-Hydraulic Analysis of an Experimental Reactor Cavity Cooling System with Air. Part I: Experiments; Part II: Separate Effects Tests and Modeling

    SciTech Connect

    Corradin, Michael; Anderson, M.; Muci, M.; Hassan, Yassin; Dominguez, A.; Tokuhiro, Akira; Hamman, K.

    2014-10-15

    This experimental study investigates the thermal hydraulic behavior and the heat removal performance for a scaled Reactor Cavity Cooling System (RCCS) with air. A quarter-scale RCCS facility was designed and built based on a full-scale General Atomics (GA) RCCS design concept for the Modular High Temperature Gas Reactor (MHTGR). The GA RCCS is a passive cooling system that draws in air to use as the cooling fluid to remove heat radiated from the reactor pressure vessel to the air-cooled riser tubes and discharged the heated air into the atmosphere. Scaling laws were used to preserve key aspects and to maintain similarity. The scaled air RCCS facility at UW-Madison is a quarter-scale reduced length experiment housing six riser ducts that represent a 9.5° sector slice of the full-scale GA air RCCS concept. Radiant heaters were used to simulate the heat radiation from the reactor pressure vessel. The maximum power that can be achieved with the radiant heaters is 40 kW with a peak heat flux of 25 kW per meter squared. The quarter-scale RCCS was run under different heat loading cases and operated successfully. Instabilities were observed in some experiments in which one of the two exhaust ducts experienced a flow reversal for a period of time. The data and analysis presented show that the RCCS has promising potential to be a decay heat removal system during an accident scenario.

  16. The IAEA Coordinated Research Program on HTGR Reactor Physics, Thermal-hydraulics and Depletion Uncertainty Analysis: Description of the Benchmark Test Cases and Phases

    SciTech Connect

    Frederik Reitsma; Gerhard Strydom; Bismark Tyobeka; Kostadin Ivanov

    2012-10-01

    The continued development of High Temperature Gas Cooled Reactors (HTGRs) requires verification of design and safety features with reliable high fidelity physics models and robust, efficient, and accurate codes. The uncertainties in the HTR analysis tools are today typically assessed with sensitivity analysis and then a few important input uncertainties (typically based on a PIRT process) are varied in the analysis to find a spread in the parameter of importance. However, one wish to apply a more fundamental approach to determine the predictive capability and accuracies of coupled neutronics/thermal-hydraulics and depletion simulations used for reactor design and safety assessment. Today there is a broader acceptance of the use of uncertainty analysis even in safety studies and it has been accepted by regulators in some cases to replace the traditional conservative analysis. Finally, there is also a renewed focus in supplying reliable covariance data (nuclear data uncertainties) that can then be used in uncertainty methods. Uncertainty and sensitivity studies are therefore becoming an essential component of any significant effort in data and simulation improvement. In order to address uncertainty in analysis and methods in the HTGR community the IAEA launched a Coordinated Research Project (CRP) on the HTGR Uncertainty Analysis in Modelling early in 2012. The project is built on the experience of the OECD/NEA Light Water Reactor (LWR) Uncertainty Analysis in Best-Estimate Modelling (UAM) benchmark activity, but focuses specifically on the peculiarities of HTGR designs and its simulation requirements. Two benchmark problems were defined with the prismatic type design represented by the MHTGR-350 design from General Atomics (GA) while a 250 MW modular pebble bed design, similar to the INET (China) and indirect-cycle PBMR (South Africa) designs are also included. In the paper more detail on the benchmark cases, the different specific phases and tasks and the latest

  17. VIPRE-01: A thermal-hydraulic code for reactor cores:

    SciTech Connect

    Stewart, C.W.; Cuta, J.M.

    1988-03-01

    VIPRE (Versatile Internals and Component Program for Reactors;EPRI) has been developed for nuclear power utility thermal-hydraulic analysis applications. It is designed to help evaluate nuclear reactor core safety limits including minimum departure from nucleate boiling ratio (NDNBR), critical power ratio (CPR), fuel and clad temperatures, and coolant state in normal operation and assumed accident conditions. This volume discusses general and specific considerations in using VIPRE as a thermal-hydraulic analysis tool. Volume 1: Mathematical Modeling, explains the major thermal-hydraulic models and supporting mathematial correlations in detail. Volume 2: Users's Manual, describes the input requirements of the codes in the VIPRE code package. Volume 3: Programmer's Manual, explains the code structure and computer interface. Experimence in running VIPRE is documented in Volume 4: Applications. 25 refs., 31 figs., 7 tabs.

  18. TEMPEST. Transient 3-D Thermal-Hydraulic

    SciTech Connect

    Eyler, L.L.

    1992-01-31

    TEMPEST is a transient, three-dimensional, hydrothermal program that is designed to analyze a range of coupled fluid dynamic and heat transfer systems of particular interest to the Fast Breeder Reactor (FBR) thermal-hydraulic design community. The full three-dimensional, time-dependent equations of motion, continuity, and heat transport are solved for either laminar or turbulent fluid flow, including heat diffusion and generation in both solid and liquid materials. The equations governing mass, momentum, and energy conservation for incompressible flows and small density variations (Boussinesq approximation) are solved using finite-difference techniques. Analyses may be conducted in either cylindrical or Cartesian coordinate systems. Turbulence is treated using a two-equation model. Two auxiliary plotting programs, SEQUEL and MANPLOT, for use with TEMPEST output are included. SEQUEL may be operated in batch or interactive mode; it generates data required for vector plots, contour plots of scalar quantities, line plots, grid and boundary plots, and time-history plots. MANPLOT reads the SEQUEL-generated data and creates the hardcopy plots. TEMPEST can be a valuable hydrothermal design analysis tool in areas outside the intended FBR thermal-hydraulic design community.

  19. LMR thermal hydraulics calculations in the US

    SciTech Connect

    Dunn, F.E.; Malloy, D.J.; Mohr, D.

    1987-04-27

    A wide range of thermal hydraulics computer codes have been developed by various organizations in the US. These codes cover an extensive range of purposes from within-assembly-wise pin temperature calculations to plant wide transient analysis. The codes are used for static analysis, for analysis of protected anticipated transients, and for analysis of a wide range of unprotected transients for the more recent inherently safe LMR designs. Some of these codes are plant-specific codes with properties of a specific plant built into them. Other codes are more general and can be applied to a number of plants or designs. These codes, and the purposes for which they have been used, are described.

  20. Thermal hydraulics development for CASL

    SciTech Connect

    Lowrie, Robert B

    2010-12-07

    This talk will describe the technical direction of the Thermal-Hydraulics (T-H) Project within the Consortium for Advanced Simulation of Light Water Reactors (CASL) Department of Energy Innovation Hub. CASL is focused on developing a 'virtual reactor', that will simulate the physical processes that occur within a light-water reactor. These simulations will address several challenge problems, defined by laboratory, university, and industrial partners that make up CASL. CASL's T-H efforts are encompassed in two sub-projects: (1) Computational Fluid Dynamics (CFD), (2) Interface Treatment Methods (ITM). The CFD subproject will develop non-proprietary, scalable, verified and validated macroscale CFD simulation tools. These tools typically require closures for their turbulence and boiling models, which will be provided by the ITM sub-project, via experiments and microscale (such as DNS) simulation results. The near-term milestones and longer term plans of these two sub-projects will be discussed.

  1. An assessment of the critical heat flux approaches of thermal-hydraulic system analysis codes using bundle data from the Heat Transfer Research Facility

    SciTech Connect

    Min Lee . Dept. of Nuclear Engineering); Lihyih Liao )

    1994-02-01

    Critical heat flux (CHF) bundle data from the Heat Transfer Research Facility of Columbia University are used to check the validity of the CHF approaches used in thermal-hydraulic system analysis codes for light water reactors. The CHF approaches assessed include the Biasi et al. correlation of TRAC, the Groeneveld et al. CHF table lookup approach of RELAP5/MOD3, the CHF table lookup approach of CATHARE, and the CHF approach of RETRAN. Depending on system pressure, RETRAN uses the B and W2, Barnett, and modified Barnett correlations and a linear interpolation scheme to predict CHF. Results show that among these CHF approaches, the Groeneveld et al. approach has the best prediction accuracy and the smallest uncertainty in the estimation of the HTRF bundle data. On the average, the Groeneveld et al. approach overpredicts the uniform axial heat flux distribution by 3.6% and the nonuniform axial heat flux distribution by 0.9%. The performance of the RETRAN approach is comparable with that of the Groenevel et al. Approach for uniform axial heat flux. In general, the accuracy and the uncertainty of all the approaches, except that of CATHARE, are worse under a nonuniform axial heat distribution than under a uniform axial heat distribution. All the CHF approaches assessed have a tendency to overpredict the HTRF bundle data at low pressure, low measured CHF, and high CHF quality. The performance of the Groenevel et al. approach is improved through a CHF table update and modification of the bundle correction factor using the HTRF bundle data.

  2. Recent improvements to steady-state thermal-hydraulic analysis of research reactors in the RERTR Program at ANL.

    SciTech Connect

    Olson, A. P.; Kalimullah; Feldman, E. E.; Nuclear Engineering Division

    2006-01-01

    Recent reactor conversion studies in the RERTR Program have required expansion or revision of modeling capabilities for steady state thermalhydraulic analysis. For example, some reactors operate in laminar flow, necessitating new correlations for Nusselt number and for friction loss. Others have single-sided heating of edge channels. And some have geometrical details that require new modeling approaches to either simulate or validate. Computational fluid dynamics was compared with the 2-dimensional approximation to heat flow used by the PLTEMP/ANL V3.0 code. A very systematic approach to hot channel factors is implemented. A closed-form solution is now used in flat-plate geometry to improve both speed and accuracy of the solution. Direct heating to clad and coolant is now included. The Groenveld table lookup method is now available for determination of CHF. Flow excursion prediction is updated. All of these improvements have been incorporated in the PLTEMP/ANL V3.0 code.

  3. Verification and Validation of the PLTEMP/ANL Code for Thermal-Hydraulic Analysis of Experimental and Test Reactors

    SciTech Connect

    Kalimullah, M.; Olson, Arne P.; Feldman, E. E.; Hanan, N.; Dionne, B.

    2015-04-07

    The document compiles in a single volume several verification and validation works done for the PLTEMP/ANL code during the years of its development and improvement. Some works that are available in the open literature are simply referenced at the outset, and are not included in the document. PLTEMP has been used in conversion safety analysis reports of several US and foreign research reactors that have been licensed and converted. A list of such reactors is given. Each chapter of the document deals with the verification or validation of a specific model. The model verification is usually done by comparing the code with hand calculation, Microsoft spreadsheet calculation, or Mathematica calculation. The model validation is done by comparing the code with experimental data or a more validated code like the RELAP5 code.

  4. BEACON/MOD: a computer program for thermal-hydraulic analysis of nuclear reactor containments - user's manual

    SciTech Connect

    Broadus, C.R.; Doyle, R.J.; James, S.W.; Lime, J.F.; Mings, W.J.

    1980-04-01

    The BEACON code is a best-estimate, advanced containment code designed to perform a best-estimate analysis of the flow of a mixture of air, water, and steam in a nuclear reactor containment system under loss-of-coolant accident conditions. The code can simulate two-component, two-phase fluid flow in complex geometries using a combination of two-dimensional, one-dimensional, and lumped-parameter representations for the various parts of the system. The current version of BEACON, which is designated BEACON/MOD3, contains mass and heat transfer models for wall film and wall conduction. It is suitable for the evaluation of short-term transients in dry-containment systems. This manual describes the models employed in BEACON/MOD3 and specifies code implementation requirements. It provides application information for input data preparation and for output data interpretation.

  5. THE THREE DIMENSIONAL THERMAL HYDRAULIC CODE BAGIRA.

    SciTech Connect

    KALINICHENKO,S.D.; KOHUT,P.; KROSHILIN,A.E.; KROSHILIN,V.E.; SMIRNOV,A.V.

    2003-05-04

    BAGIRA - a thermal-hydraulic program complex was primarily developed for using it in nuclear power plant simulator models, but is also used as a best-estimate analytical tool for modeling two-phase mixture flows. The code models allow consideration of phase transients and the treatment of the hydrodynamic behavior of boiling and pressurized water reactor circuits. It provides the capability to explicitly model three-dimensional flow regimes in various regions of the primary and secondary circuits such as, the mixing regions, circular downcomer, pressurizer, reactor core, main primary loops, the steam generators, the separator-reheaters. In addition, it is coupled to a severe-accident module allowing the analysis of core degradation and fuel damage behavior. Section II will present the theoretical basis for development and selected results are presented in Section III. The primary use for the code complex is to realistically model reactor core behavior in power plant simulators providing enhanced training tools for plant operators.

  6. Coupled 3D-neutronics / thermal-hydraulics analysis of an unprotected loss-of-flow accident for a 3600 MWth SFR core

    SciTech Connect

    Sun, K.; Chenu, A.; Mikityuk, K.; Krepel, J.; Chawla, R.

    2012-07-01

    The core behaviour of a large (3600 MWth) sodium-cooled fast reactor (SFR) is investigated in this paper with the use of a coupled TRACE/PARCS model. The SFR neutron spectrum is characterized by several performance advantages, but also leads to one dominating neutronics drawback - a positive sodium void reactivity. This implies a positive reactivity effect when sodium coolant is removed from the core. In order to evaluate such feedback in terms of the dynamics, a representative unprotected loss-of-flow (ULOF) transient, i.e. flow run-down without SCRAM in which sodium boiling occurs, is analyzed. Although analysis of a single transient cannot allow general conclusions to be drawn, it does allow better understanding of the underlying physics and can lead to proposals for improving the core response during such an accident. The starting point of this study is the reference core design considered in the framework of the Collaborative Project on the European Sodium Fast Reactor (CP-ESFR). To reduce the void effect, the core has been modified by introducing an upper sodium plenum (along with a boron layer) and by reducing the core height-to-diameter ratio. For the ULOF considered, a sharp increase in core power results in melting of the fuel in the case of the reference core. In the modified core, a large dryout leads to melting of the clad. It seems that, for the hypothetical event considered, fuel failure cannot be avoided with just improvement of the neutronics design; therefore, thermal-hydraulics optimization has been considered. An innovative assembly design is proposed to prevent sodium vapour blocking the fuel channel. This results in preventing a downward propagation of the sodium boiling to the core center, thus limiting it to the upper region. Such a void map introduces a negative coolant density reactivity feedback, which dominates the total reactivity change. As a result, the power level and the fuel temperature are effectively reduced, and a large dryout

  7. Current and anticipated uses of thermal hydraulic codes in Korea

    SciTech Connect

    Kim, Kyung-Doo; Chang, Won-Pyo

    1997-07-01

    In Korea, the current uses of thermal hydraulic codes are categorized into 3 areas. The first application is in designing both nuclear fuel and NSSS. The codes have usually been introduced based on the technology transfer programs agreed between KAERI and the foreign vendors. Another area is in the supporting of the plant operations and licensing by the utility. The third category is research purposes. In this area assessments and some applications to the safety issue resolutions are major activities using the best estimate thermal hydraulic codes such as RELAP5/MOD3 and CATHARE2. Recently KEPCO plans to couple thermal hydraulic codes with a neutronics code for the design of the evolutionary type reactor by 2004. KAERI also plans to develop its own best estimate thermal hydraulic code, however, application range is different from KEPCO developing code. Considering these activities, it is anticipated that use of the best estimate hydraulic analysis code developed in Korea may be possible in the area of safety evaluation within 10 years.

  8. Analysis of Thermal-Hydraulic Gravity/ Buoyancy Effects in the Testing of the ITER Poloidal Field Full Size Joint Sample (PF-FSJS)

    SciTech Connect

    Zanino, R.; Savoldi Richard, L.; Bruzzone, P.; Ciazynski, D.; Nicollet, S.

    2004-06-23

    The PF-FSJS is a full-size joint sample, based on the NbTi dual-channel cable-in-conduit conductor (CICC) design currently foreseen for the International Thermonuclear Experimental Reactor (ITER) Poloidal Field coil system. It was tested during the summer of 2002 in the Sultan facility of CRPP at a background peak magnetic field of typically 6 T. It includes about 3 m of two jointed conductor sections, using different strands but with identical layout. The sample was cooled by supercritical helium at nominal 4.5-5.0 K and 0.9-1.0 MPa, in forced convection from the top to the bottom of the vertical configuration. A pulsed coil was used to test AC losses in the two legs resulting, above a certain input power threshold, in bundle helium backflow from the heated region. Here we study the thermal-hydraulics of the phenomenon with the M and M code, with particular emphasis on the effects of buoyancy on the helium dynamics, as well as on the thermal-hydraulic coupling between the wrapped bundles of strands in the annular cable region and the central cooling channel. Both issues are ITER relevant, as they affect the more general question of the heat removal capability of the helium in this type of conductors.

  9. Thermal-hydraulic interfacing code modules for CANDU reactors

    SciTech Connect

    Liu, W.S.; Gold, M.; Sills, H.

    1997-07-01

    The approach for CANDU reactor safety analysis in Ontario Hydro Nuclear (OHN) and Atomic Energy of Canada Limited (AECL) is presented. Reflecting the unique characteristics of CANDU reactors, the procedure of coupling the thermal-hydraulics, reactor physics and fuel channel/element codes in the safety analysis is described. The experience generated in the Canadian nuclear industry may be useful to other types of reactors in the areas of reactor safety analysis.

  10. Analysis of the OECD Main Steam Line Break Benchmark Problem Using the Refined Core Thermal-Hydraulic Nodalization Feature of the MARS/MASTER Code

    SciTech Connect

    Joo, Han Gyu; Jeong, Jae-Jun; Cho, Byung-Oh; Lee, Won Jae; Zee, Sung Quun

    2003-05-15

    The refined core thermal-hydraulics (T-H) nodalization feature of the MARS/MASTER code is used to generate a high-fidelity solution to the OECD main steam line break benchmark problem and to investigate the effects of core T-H nodalization. The MARS/MASTER coupling scheme is introduced first that enables efficient refined node core T-H calculations via the COBRA-III module. The base solution is generated using a fine T-H nodalization consisting of fuel assembly-sized radial nodes. Sensitivity studies are performed on core T-H nodalization to examine the impacts on core reactivity, power distribution, and transient behavior. The results indicate that the error in the peak local power can be very large (up to 25%) with a coarse T-H nodalization because of the inability to incorporate detailed thermal feedback. A demonstrative departure from nucleate boiling (DNB) calculation shows no occurrence of DNB in this problem.

  11. Views on the future of thermal hydraulic modeling

    SciTech Connect

    Ishii, M.

    1997-07-01

    It is essential for the U.S. NRC to sustain the highest level of the thermal-hydraulics and reactor safety research expertise and continuously improve their accident analysis capability. Such expertise should span over four different areas which are strongly related to each other. These are: (1) Reactor Safety Code Development, (2) Two-phase Flow Modeling, (3) Instrumentation and Fundamental Experimental Research, and (4) Separate Effect and Integral Test. The NRC is already considering a new effort in the area of advanced thermal-hydraulics effort. Its success largely depends on the availability of a significantly improved two-phase flow formulation and constitutive relations supported by detailed experimental data. Therefore, it is recommended that the NRC start significant research efforts in the areas of two-phase flow modeling, instrumentation, basic and separate effect experiments which should be pursued systematically and with clearly defined objectives. It is desirable that some international program is developed in this area. This paper is concentrated on those items in the thermal-hydraulic area which eventually determine the quality of future accident analysis codes.

  12. Scaling approach and thermal-hydraulic analysis in the reactor cavity cooling system of a high temperature gas -cooled reactor and thermal-jet mixing in a sodium fast reactor

    NASA Astrophysics Data System (ADS)

    Omotowa, Olumuyiwa A.

    This dissertation develops and demonstrates the application of the top-down and bottom-up scaling methodologies to thermal-hydraulic flows in the reactor cavity cooling system (RCCS) of the high temperature gas reactor (HTGR) and upper plenum of the sodium fast reactor (SFR), respectively. The need to integrate scaled separate effects and integral tests was identified. Experimental studies and computational tools (CFD) have been integrated to guide the engineering design, analysis and assessment of this scaling methods under single and two-phase flow conditions. To test this methods, two applicable case studies are considered, and original contributions are noted. Case 1: "Experimental Study of RCCS for the HTGR". Contributions include validation of scaling analysis using the top-down approach as guide to a ¼-scale integral test facility. System code, RELAP5, was developed based on the derived scaling parameters. Tests performed included system sensitivity to decay heat load and heat sink inventory variations. System behavior under steady-state and transient scenarios were predicted. Results show that the system has the capacity to protect the cavity walls from over-heating during normal operations and provide a means for decay heat removal under accident scenarios. A full width half maximum statistical method was devised to characterize the thermal-hydraulics of the non-linear two-phase oscillatory behavior. This facilitated understanding of the thermal hydraulic coupling of the loop segments of the RCCS, the heat transfer, and the two-phase flashing flow phenomena; thus the impact of scaling overall. Case 2: "Computational Studies of Thermal Jet Mixing in SFR". In the pool-type SFR, susceptible regions to thermal striping are the upper instrumentation structure and the intermediate heat exchanger (IHX). We investigated the thermal mixing above the core to UIS and the potential impact due to poor mixing. The thermal mixing of dual-jet flows at different

  13. 10. Floor Layout of Thermal Hydraulics Laboratory, from The Thermal ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Floor Layout of Thermal Hydraulics Laboratory, from The Thermal Hydraulics Laboratory at Hanford. General Electric Company, Hanford Atomic Products Operation, Richland, Washington, 1961. - D-Reactor Complex, Deaeration Plant-Refrigeration Buildings, Area 100-D, Richland, Benton County, WA

  14. Upgrading the HFIR Thermal-Hydraulic Legacy Code Using COMSOL

    SciTech Connect

    Bodey, Isaac T; Arimilli, Rao V; Freels, James D

    2010-01-01

    Modernization of the High Flux Isotope Reactor (HFIR) thermal-hydraulic (TH) design and safety analysis capability is an important step in preparation for the conversion of the HFIR core from a high enriched uranium (HEU) fuel to a low enriched uranium (LEU) fuel. Currently, an important part of the HFIR TH analysis is based on the legacy Steady State Heat Transfer Code (SSHTC), which adds much conservatism to the safety analysis. The multi-dimensional multi-physics capabilities of the COMSOL environment allow the analyst to relax the number and magnitude of conservatisms, imposed by the SSHTC, to present a more physical model of the TH aspect of the HFIR.

  15. Thermal Hydraulic Computer Code System.

    Energy Science and Technology Software Center (ESTSC)

    1999-07-16

    Version 00 RELAP5 was developed to describe the behavior of a light water reactor (LWR) subjected to postulated transients such as loss of coolant from large or small pipe breaks, pump failures, etc. RELAP5 calculates fluid conditions such as velocities, pressures, densities, qualities, temperatures; thermal conditions such as surface temperatures, temperature distributions, heat fluxes; pump conditions; trip conditions; reactor power and reactivity from point reactor kinetics; and control system variables. In addition to reactor applications,more » the program can be applied to transient analysis of other thermal‑hydraulic systems with water as the fluid. This package contains RELAP5/MOD1/029 for CDC computers and RELAP5/MOD1/025 for VAX or IBM mainframe computers.« less

  16. Thermal-hydraulic modeling needs for passive reactors

    SciTech Connect

    Kelly, J.M.

    1997-07-01

    The U.S. Nuclear Regulatory Commission has received an application for design certification from the Westinghouse Electric Corporation for an Advanced Light Water Reactor design known as the AP600. As part of the design certification process, the USNRC uses its thermal-hydraulic system analysis codes to independently audit the vendor calculations. The focus of this effort has been the small break LOCA transients that rely upon the passive safety features of the design to depressurize the primary system sufficiently so that gravity driven injection can provide a stable source for long term cooling. Of course, large break LOCAs have also been considered, but as the involved phenomena do not appear to be appreciably different from those of current plants, they were not discussed in this paper. Although the SBLOCA scenario does not appear to threaten core coolability - indeed, heatup is not even expected to occur - there have been concerns as to the performance of the passive safety systems. For example, the passive systems drive flows with small heads, consequently requiring more precision in the analysis compared to active systems methods for passive plants as compared to current plants with active systems. For the analysis of SBLOCAs and operating transients, the USNRC uses the RELAP5 thermal-hydraulic system analysis code. To assure the applicability of RELAP5 to the analysis of these transients for the AP600 design, a four year long program of code development and assessment has been undertaken.

  17. Current and anticipated uses of thermal hydraulic codes at the Japan Atomic Energy Research Institute

    SciTech Connect

    Akimoto, Hajime; Kukita; Ohnuki, Akira

    1997-07-01

    The Japan Atomic Energy Research Institute (JAERI) is conducting several research programs related to thermal-hydraulic and neutronic behavior of light water reactors (LWRs). These include LWR safety research projects, which are conducted in accordance with the Nuclear Safety Commission`s research plan, and reactor engineering projects for the development of innovative reactor designs or core/fuel designs. Thermal-hydraulic and neutronic codes are used for various purposes including experimental analysis, nuclear power plant (NPP) safety analysis, and design assessment.

  18. COMMIX-1B. 3-D Single-Phase Thermal Hydraulics

    SciTech Connect

    Wildman, D.J.

    1986-01-31

    COMMIX-1B is designed to perform steady-state or transient, single-phase, three-dimensional analysis of fluid flow with heat transfer in a single-component or multicomponent system. The program was developed for the analysis of heat transfer and fluid flow processes in a nuclear reactor system; however, it can easily be applied to non-nuclear systems requiring heat transfer and/or fluid flow analysis. COMMIX-1B solves the conservation equations of mass, momentum, and energy, and transport equations of turbulence parameters and provides detailed local velocity, temperature, and pressure fields for the problem under consideration. It is capable of solving thermal-hydraulic problems involving either a single component, such as a rod bundle, reactor plenum, piping system, heat exchanger, etc., or a multicomponent system that is a combination of these components.

  19. Thermal hydraulic analysis of two-phase closed thermosyphon cooling system for new cold neutron source moderator of Breazeale research reactor at Penn State

    NASA Astrophysics Data System (ADS)

    Habte, Melaku

    A cold neutron source cooling system is required for the Penn State's next generation cold neutron source facility that can accommodate a variable heat load up to about ˜10W with operating temperature of about 28K. An existing cold neutron source cooling system operating at the University of Texas Cold Neutron Source (TCNS) facility failed to accommodate heat loads upwards of 4W with the moderator temperature reaching a maximum of 44K, which is the critical temperature for the operating fluid neon. The cooling system that was used in the TCNS cooling system was a two-phase closed thermosyphon with a reservoir (TPCTR). The reservoir containing neon gas is kept at room temperature. In this study a detailed thermal analysis of the fundamental operating principles of a TPCTR were carried out. A detailed parametric study of the various geometric and thermo-physical factors that affect the limits of the operational capacity of the TPCTR investigated. A CFD analysis is carried out in order to further refine the heat transfer analysis and understand the flow structure inside the thermosyphon and the two-phase nucleate boiling in the evaporator section of the thermosyphon. In order to help the new design, a variety of ways of increasing the operating range and heat removal capacity of the TPCTR cooling system were analyzed so that it can accommodate the anticipated heat load of 10W or more. It is found, for example, that doubling the pressure of the system will increase the capacity index zeta by 50% for a system with an initial fill ratio FR of 1. A decrease in cryorefrigeration performance angle increases the capacity index. For example taking the current condition of the TCNS system and reducing the angle from the current value of ˜700 by half (˜350) will increase the cooling power 300%. Finally based on detailed analytic and CFD analysis the best operating condition were proposed.

  20. COBRA-IV PC: A personal computer version of COBRA-IV-I for thermal-hydraulic analysis of rod bundle nuclear fuel elements and cores

    SciTech Connect

    Webb, B.J.

    1988-01-01

    COBRA-IV PC is a modified version of COBRA-IV-I, adapted for use with most IBM PC and PC-compatible desktop computers. Like COBRA-IV-I, COBRA-IV PC uses the subchannel analysis approach to determine the enthalpy and flow distribution in rod bundles for both steady-state and transient conditions. The steady-state and transient solution schemes used in COBRA-IIIC are still available in COBRA-IV PC as the implicit solution scheme option. An explicit solution scheme is also available, allowing the calculation of severe transients involving flow reversals, recirculations, expulsions, and reentry flows, with a pressure or flow boundary condition specified. In addition, several modifications have been incorporated into COBRA-IV PC to allow the code to run on the PC. These include a reduction in the array dimensions, the removal of the dump and restart options, and the inclusion of several code modifications by Oregon State University, most notably, a critical heat flux correlation for boiling water reactor fuel and a new solution scheme for cross-flow distribution calculations. 7 refs., 8 figs., 1 tab.

  1. Proceedings of the OECD/CSNI workshop on transient thermal-hydraulic and neutronic codes requirements

    SciTech Connect

    Ebert, D.

    1997-07-01

    This is a report on the CSNI Workshop on Transient Thermal-Hydraulic and Neutronic Codes Requirements held at Annapolis, Maryland, USA November 5-8, 1996. This experts` meeting consisted of 140 participants from 21 countries; 65 invited papers were presented. The meeting was divided into five areas: (1) current and prospective plans of thermal hydraulic codes development; (2) current and anticipated uses of thermal-hydraulic codes; (3) advances in modeling of thermal-hydraulic phenomena and associated additional experimental needs; (4) numerical methods in multi-phase flows; and (5) programming language, code architectures and user interfaces. The workshop consensus identified the following important action items to be addressed by the international community in order to maintain and improve the calculational capability: (a) preserve current code expertise and institutional memory, (b) preserve the ability to use the existing investment in plant transient analysis codes, (c) maintain essential experimental capabilities, (d) develop advanced measurement capabilities to support future code validation work, (e) integrate existing analytical capabilities so as to improve performance and reduce operating costs, (f) exploit the proven advances in code architecture, numerics, graphical user interfaces, and modularization in order to improve code performance and scrutibility, and (g) more effectively utilize user experience in modifying and improving the codes.

  2. Simulation of the PBF-Candu test with coupled thermal-hydraulic and fuel thermo-mechanical responses

    SciTech Connect

    Baschuk, J. J.

    2012-07-01

    During a large loss-of-coolant accident (LLOCA), the fuel sheath temperature is influenced by thermal-hydraulic and thermo-mechanical phenomena. The thermal-hydraulic phenomena include the heat transfer from the sheath to the coolant and surroundings. Thermo-mechanical phenomena, such as creep and thermal expansion, influence the size of the fuel-to-sheath gap, and thus the heat transfer from the fuel to the sheath. Therefore, coupling the thermal-hydraulic and thermo-mechanical analysis of an LLOCA would result in more accurate predictions of sheath temperature. This is illustrated by comparing the sheath temperature predictions from coupled and decoupled simulations of the PBF-Candu Test with experimental measurements. The codes CATHENA and ELOCA were used for the thermal-hydraulic and thermo-mechanical analysis, respectively. The predicted sheath temperatures from both the coupled and decoupled simulations were higher than the measured values. However, after the initial power pulse, when the fuel-to-sheath gap was calculated as being opened, the sheath temperatures predicted by the coupled simulation were closer to the experimental measurements. Thus, under conditions of an open fuel-to-sheath gap, a coupled thermal-hydraulic and thermo-mechanical analysis can improve predictions of sheath temperatures. (authors)

  3. RAMONA-3B/MINET composite representation of BWR thermal-hydraulic systems

    SciTech Connect

    Van Tuyle, G.J.; Slovik, G.; Cazzoli, E.G.; Nepsee, T.C.; Guppy, J.G.

    1985-01-01

    The modification and interfacing of two computer codes, RAMONA-3B and MINET, for the thermal hydraulic transient analysis of a Boiling Water Reactor nuclear steam supply system, is described. The RAMONA-3B code provides for multi-channel thermal hydraulics and three-dimensional (or one-dimensional) neutron kinetics analysis of a boiling water reactor core. The RAMONA-3B system representation terminates at the end of the steam line and at the junction of the feedwater line at the vessel inlet. By interfacing RAMONA-3B with MINET, a generic balance-of-plant systems analysis code, a complete BWR systems code with detailed core modeling was obtained. The result is a code of particular importance to the analysis of transients such as ATWS. A comparison between the 3-D and 1-D neutronics representation is provided, along with a test case utilizing the composite RAMONA-3B/MINET code.

  4. SMITHERS: An object-oriented modular mapping methodology for MCNP-based neutronic–thermal hydraulic multiphysics

    DOE PAGESBeta

    Richard, Joshua; Galloway, Jack; Fensin, Michael; Trellue, Holly

    2015-04-04

    A novel object-oriented modular mapping methodology for externally coupled neutronics–thermal hydraulics multiphysics simulations was developed. The Simulator using MCNP with Integrated Thermal-Hydraulics for Exploratory Reactor Studies (SMITHERS) code performs on-the-fly mapping of material-wise power distribution tallies implemented by MCNP-based neutron transport/depletion solvers for use in estimating coolant temperature and density distributions with a separate thermal-hydraulic solver. The key development of SMITHERS is that it reconstructs the hierarchical geometry structure of the material-wise power generation tallies from the depletion solver automatically, with only a modicum of additional information required from the user. In addition, it performs the basis mapping from themore » combinatorial geometry of the depletion solver to the required geometry of the thermal-hydraulic solver in a generalizable manner, such that it can transparently accommodate varying levels of thermal-hydraulic solver geometric fidelity, from the nodal geometry of multi-channel analysis solvers to the pin-cell level of discretization for sub-channel analysis solvers.« less

  5. SMITHERS: An object-oriented modular mapping methodology for MCNP-based neutronic–thermal hydraulic multiphysics

    SciTech Connect

    Richard, Joshua; Galloway, Jack; Fensin, Michael; Trellue, Holly

    2015-04-04

    A novel object-oriented modular mapping methodology for externally coupled neutronics–thermal hydraulics multiphysics simulations was developed. The Simulator using MCNP with Integrated Thermal-Hydraulics for Exploratory Reactor Studies (SMITHERS) code performs on-the-fly mapping of material-wise power distribution tallies implemented by MCNP-based neutron transport/depletion solvers for use in estimating coolant temperature and density distributions with a separate thermal-hydraulic solver. The key development of SMITHERS is that it reconstructs the hierarchical geometry structure of the material-wise power generation tallies from the depletion solver automatically, with only a modicum of additional information required from the user. In addition, it performs the basis mapping from the combinatorial geometry of the depletion solver to the required geometry of the thermal-hydraulic solver in a generalizable manner, such that it can transparently accommodate varying levels of thermal-hydraulic solver geometric fidelity, from the nodal geometry of multi-channel analysis solvers to the pin-cell level of discretization for sub-channel analysis solvers.

  6. Visualization tools for uncertainty and sensitivity analyses on thermal-hydraulic transients

    NASA Astrophysics Data System (ADS)

    Popelin, Anne-Laure; Iooss, Bertrand

    2014-06-01

    In nuclear engineering studies, uncertainty and sensitivity analyses of simulation computer codes can be faced to the complexity of the input and/or the output variables. If these variables represent a transient or a spatial phenomenon, the difficulty is to provide tool adapted to their functional nature. In this paper, we describe useful visualization tools in the context of uncertainty analysis of model transient outputs. Our application involves thermal-hydraulic computations for safety studies of nuclear pressurized water reactors.

  7. Reactor thermal-hydraulic FY 1986 status report for the multimegawatt Space Nuclear Power Program

    SciTech Connect

    Krotiuk, W.J.; Antoniak, Z.I.

    1986-10-01

    PNL's 1986 activities can be divided into three basic areas: code assessment, correlation assessment and experimental activities. The ultimate goal of all these activities is developing computer codes and verifying their use to perform the thermal-hydraulic analysis and design of the reactor core and plenum of the various proposed concepts. To perform this task as assessment is made of existing computer codes, models, correlations, and microgravity experimental data.

  8. Two-dimensional thermal-hydraulics analyses of the Pellet Bed Reactor for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Morley, Nicholas J.; El-Genk, Mohamed S.

    1993-01-01

    Thermal-hydraulics design and analyses of the Pellet Bed Reactor for nuclear thermal propulsion are performed using the nuclear propulsion thermal-hydraulic analysis model to determine the 2D steady-state temperature, pressure, and flow fields in the core and optimize the orificing in the hot-frit to avoid hot spots in the core at full power operation. Results show that by properly adjusting the axial porosity profile in the hot frit, hot spots in the core can be essentially eliminated during full power operation. This important accomplishment is achieved at the expense of slightly larger pressure losses in the core because of flow restriction at the hot frit. However, the overall pressure losses is only about 11 percent of the propellant inlet pressure.

  9. Assessment of uncertainties of the models used in thermal-hydraulic computer codes

    NASA Astrophysics Data System (ADS)

    Gricay, A. S.; Migrov, Yu. A.

    2015-09-01

    The article deals with matters concerned with the problem of determining the statistical characteristics of variable parameters (the variation range and distribution law) in analyzing the uncertainty and sensitivity of calculation results to uncertainty in input data. A comparative analysis of modern approaches to uncertainty in input data is presented. The need to develop an alternative method for estimating the uncertainty of model parameters used in thermal-hydraulic computer codes, in particular, in the closing correlations of the loop thermal hydraulics block, is shown. Such a method shall feature the minimal degree of subjectivism and must be based on objective quantitative assessment criteria. The method includes three sequential stages: selecting experimental data satisfying the specified criteria, identifying the key closing correlation using a sensitivity analysis, and carrying out case calculations followed by statistical processing of the results. By using the method, one can estimate the uncertainty range of a variable parameter and establish its distribution law in the above-mentioned range provided that the experimental information is sufficiently representative. Practical application of the method is demonstrated taking as an example the problem of estimating the uncertainty of a parameter appearing in the model describing transition to post-burnout heat transfer that is used in the thermal-hydraulic computer code KORSAR. The performed study revealed the need to narrow the previously established uncertainty range of this parameter and to replace the uniform distribution law in the above-mentioned range by the Gaussian distribution law. The proposed method can be applied to different thermal-hydraulic computer codes. In some cases, application of the method can make it possible to achieve a smaller degree of conservatism in the expert estimates of uncertainties pertinent to the model parameters used in computer codes.

  10. An analytical study on excitation of nuclear-coupled thermal-hydraulic instability due to seismically induced resonance in BWR

    SciTech Connect

    Hirano, Masashi

    1997-07-01

    This paper describes the results of a scoping study on seismically induced resonance of nuclear-coupled thermal-hydraulic instability in BWRs, which was conducted by using TRAC-BF1 within a framework of a point kinetics model. As a result of the analysis, it is shown that a reactivity insertion could occur accompanied by in-surge of coolant into the core resulted from the excitation of the nuclear-coupled instability by the external acceleration. In order to analyze this phenomenon more in detail, it is necessary to couple a thermal-hydraulic code with a three-dimensional nuclear kinetics code.

  11. Thermal hydraulic characteristics study of prototype NET and CEA cable-in-conduit conductors (CICCs)

    SciTech Connect

    Maekawa, Ryuji

    1995-10-31

    The thermal hydraulic characteristics of low temperature helium in a Cable-in-Conduit Conductor (CICC) significantly affects the overall design and performance of the associated large scale superconducting magnet system. It is essential to understand the transient and steady state behavior of the helium in the conductor. Throughout the development of CICCs, the reduction of flow impedance has been one of the key factors to improving the overall pressure drop. The newly developed CICC for the ITER project has a hybrid cooling scheme: a central channel that is surrounded by bundles, for which the thermal hydraulic characteristics are not well understood. This thesis describes an experimental and analytical investigation of thermal hydraulic characteristics of low temperature helium in conventional and hybrid CICCS. Pressure drop measurements for both NET and CEA conductors have been conducted, using low temperature helium and liquid nitrogen to obtain a range of Reynolds numbers. The results are correlated with classical friction factor and Reynolds number analysis. The flow impedance reduction of the CEA conductor is described by measures of a developed flow model. Thermally induced flow in the CEA conductor has been studied with an inductive heating method. The induced velocity in the central channel is measured by a Pitot tube with steady state Reynolds number up to {approximately}7000. The transient pressure wave propagation has been recorded with pressure transducers placed equally along the conductor. The supercritical helium temperature in the central channel has been measured with the thermometer probe. However, the reduction of the central channel area significantly affects the overall thermal hydraulic characteristics of the conductor. The results suggest the importance of the central channel. A transient heat transfer experiment studied the.transverse heat transfer mechanism in the CEA conductor. The temperatures in the central channel and bundle region

  12. An assessment of the CORCON-MOD3 code. Part 1: Thermal-hydraulic calculations

    SciTech Connect

    Strizhov, V.; Kanukova, V.; Vinogradova, T.; Askenov, E.; Nikulshin, V.

    1996-09-01

    This report deals with the subject of CORCON-Mod3 code validation (thermal-hydraulic modeling capability only) based on MCCI (molten core concrete interaction) experiments conducted under different programs in the past decade. Thermal-hydraulic calculations (i.e., concrete ablation, melt temperature, melt energy, concrete temperature, and condensible and non-condensible gas generation) were performed with the code, and compared with the data from 15 experiments, conducted at different scales using both simulant (metallic and oxidic) and prototypic melt materials, using different concrete types, and with and without an overlying water pool. Sensitivity studies were performed in a few cases involving, for example, heat transfer from melt to concrete, condensed phase chemistry, etc. Further, special analysis was performed using the ACE L8 experimental data to illustrate the differences between the experimental and the reactor conditions, and to demonstrate that with proper corrections made to the code, the calculated results were in better agreement with the experimental data. Generally, in the case of dry cavity and metallic melts, CORCON-Mod3 thermal-hydraulic calculations were in good agreement with the test data. For oxidic melts in a dry cavity, uncertainties in heat transfer models played an important role for two melt configurations--a stratified geometry with segregated metal and oxide layers, and a heterogeneous mixture. Some discrepancies in the gas release data were noted in a few cases.

  13. Evaluation of operational safety at Babcock and Wilcox Plants: Volume 2, Thermal-hydraulic results

    SciTech Connect

    Wheatley, P.D.; Davis, C.B.; Callow, R.A.; Fletcher, C.D.; Dobbe, C.A.; Beelman, R.J.

    1987-11-01

    The Nuclear Regulatory Commission has initiated a research program to develop a methodology to assess the operational performance of Babcock and Wilcox plants and to apply this methodology on a trial basis. The methodology developed for analyzing Babcock and Wilcox plants integrated methods used in both thermal-hydraulics and human factors and compared results with information used in the assessment of risk. The integrated methodology involved an evaluation of a selected plant for each pressurized water reactor vendor during a limited number of transients. A plant was selected to represent each vendor, and three transients were identified for analysis. The plants were Oconee Unit 1 for Babcock and Wilcox, H.B. Robinson Unit 2 for Westinghouse, and Calvert Cliffs Unit 1 for Combustion Engineering. The three transients were a complete loss of all feedwater, a small-break loss-of-coolant accident, and a steam-generator overfill with auxiliary feedwater. Included in the integrated methodology was an assessment of the thermal-hydraulic behavior, including event timing, of the plants during the three transients. Thermal-hydraulic results are presented in this volume (Volume 2) of the report. 26 refs., 30 figs., 7 tabs.

  14. Coupled Monte Carlo neutronics and thermal hydraulics for power reactors

    SciTech Connect

    Bernnat, W.; Buck, M.; Mattes, M.; Zwermann, W.; Pasichnyk, I.; Velkov, K.

    2012-07-01

    The availability of high performance computing resources enables more and more the use of detailed Monte Carlo models even for full core power reactors. The detailed structure of the core can be described by lattices, modeled by so-called repeated structures e.g. in Monte Carlo codes such as MCNP5 or MCNPX. For cores with mainly uniform material compositions, fuel and moderator temperatures, there is no problem in constructing core models. However, when the material composition and the temperatures vary strongly a huge number of different material cells must be described which complicate the input and in many cases exceed code or memory limits. The second problem arises with the preparation of corresponding temperature dependent cross sections and thermal scattering laws. Only if these problems can be solved, a realistic coupling of Monte Carlo neutronics with an appropriate thermal-hydraulics model is possible. In this paper a method for the treatment of detailed material and temperature distributions in MCNP5 is described based on user-specified internal functions which assign distinct elements of the core cells to material specifications (e.g. water density) and temperatures from a thermal-hydraulics code. The core grid itself can be described with a uniform material specification. The temperature dependency of cross sections and thermal neutron scattering laws is taken into account by interpolation, requiring only a limited number of data sets generated for different temperatures. Applications will be shown for the stationary part of the Purdue PWR benchmark using ATHLET for thermal- hydraulics and for a generic Modular High Temperature reactor using THERMIX for thermal- hydraulics. (authors)

  15. An effective thermal-hydraulics methodology for prismatic core HTGR and VHTR

    SciTech Connect

    Travis, B. W.; El-Genk, M. S.

    2012-07-01

    Optimizing the performance and design of a prismatic core HTGR or VHTR requires a full core thermal-hydraulics analysis. Owing to the complexity and massive core structure, such analysis requires extensive and massively parallelized computation capabilities and a relatively long time (weeks to months) to complete. These demanding requirements are not due to the 3-D simulation of heat conduction in the annular core of the reactor, but rather the 3-D computational fluid dynamics (CFD) simulation of the helium gas flow in the 10-m long cooling channels in the 102 hexagonal fuel elements and the axial graphite reflector blocks in the core. This paper applies and examines the effectiveness of using a 1-D simulation of the helium flow in the core coolant channels, coupled to a 3-D simulation of the heat conduction in the graphite and fuel compacts, to perform thermal-hydraulics analysis of a hexagonal fuel element and of a 1/6 full core. This methodology employs typical cosine and constant axial power profiles and an applicable convective heat transfer correlation for the helium flow in the coolant channels. The correlation has recently been validated for a 10 m tall, single channel fuel module and shown to significantly reduce the computation time and memory requirements without compromising the accuracy of the calculations. The fidelity and accuracy of the present results for a hexagonal fuel element are verified by comparing them to those of a full 3-D numerical analysis. In addition to the temperature fields, results compare the computation time and number of numerical grid elements for implementing the two numerical simulation methods. The results of the thermal-hydraulics analysis of a 1/6 full core with the simplified methodology are also presented. All performed analysis accounts for the temperature dependent properties of helium, graphite in the reactor core and reflector blocks and the TRISO particle fuel compacts. (authors)

  16. Thermal hydraulic feasibility assessment for the Spent Nuclear Fuel Project

    SciTech Connect

    Heard, F.J.; Cramer, E.R.; Beaver, T.R.; Thurgood, M.J.

    1996-01-01

    A series of scoping analyses have been completed investigating the thermal-hydraulic performance and feasibility of the Spent Nuclear Fuel Project (SNFP) Integrated Process Strategy (IPS). The SNFP was established to develop engineered solutions for the expedited removal, stabilization, and storage of spent nuclear fuel from the K Basins at the U.S. Department of Energy`s Hanford Site in Richland, Washington. The subject efforts focused on independently investigating, quantifying, and establishing the governing heat production and removal mechanisms for each of the IPS operations and configurations, obtaining preliminary results for comparison with and verification of other analyses, and providing technology-based recommendations for consideration and incorporation into the design bases for the SNFP. The goal was to develop a series fo thermal-hydraulic models that could respond to all process and safety-related issues that may arise pertaining to the SNFP. A series of sensitivity analyses were also performed to help identify those parameters that have the greatest impact on energy transfer and hence, temperature control. It is anticipated that the subject thermal-hydraulic models will form the basis for a series of advanced and more detailed models that will more accurately reflect the thermal performance of the IPS and alleviate the necessity for some of the more conservative assumptions and oversimplifications, as well as form the basis for the final process and safety analyses.

  17. Subchannel thermal-hydraulic modeling of an APT tungsten target rod bundle

    SciTech Connect

    Hamm, L.L.; Shadday, M.A. Jr.

    1997-09-01

    The planned target for the Accelerator Production of Tritium (APT) neutron source consists of an array of tungsten rod bundles through which D{sub 2}O coolant flows axially. Here, a scoping analysis of flow through an APT target rod bundle was conducted to demonstrate that lateral cross-flows are important, and therefore subchannel modeling is necessary to accurately predict thermal-hydraulic behavior under boiling conditions. A local reactor assembly code, FLOWTRAN, was modified to model axial flow along the rod bundle as flow through three concentric heated annular passages.

  18. INL Experimental Program Roadmap for Thermal Hydraulic Code Validation

    SciTech Connect

    Glenn McCreery; Hugh McIlroy

    2007-09-01

    Advanced computer modeling and simulation tools and protocols will be heavily relied on for a wide variety of system studies, engineering design activities, and other aspects of the Next Generation Nuclear Power (NGNP) Very High Temperature Reactor (VHTR), the DOE Global Nuclear Energy Partnership (GNEP), and light-water reactors. The goal is for all modeling and simulation tools to be demonstrated accurate and reliable through a formal Verification and Validation (V&V) process, especially where such tools are to be used to establish safety margins and support regulatory compliance, or to design a system in a manner that reduces the role of expensive mockups and prototypes. Recent literature identifies specific experimental principles that must be followed in order to insure that experimental data meet the standards required for a “benchmark” database. Even for well conducted experiments, missing experimental details, such as geometrical definition, data reduction procedures, and manufacturing tolerances have led to poor Benchmark calculations. The INL has a long and deep history of research in thermal hydraulics, especially in the 1960s through 1980s when many programs such as LOFT and Semiscle were devoted to light-water reactor safety research, the EBRII fast reactor was in operation, and a strong geothermal energy program was established. The past can serve as a partial guide for reinvigorating thermal hydraulic research at the laboratory. However, new research programs need to fully incorporate modern experimental methods such as measurement techniques using the latest instrumentation, computerized data reduction, and scaling methodology. The path forward for establishing experimental research for code model validation will require benchmark experiments conducted in suitable facilities located at the INL. This document describes thermal hydraulic facility requirements and candidate buildings and presents examples of suitable validation experiments related

  19. Modeling Reactor Coolant Systems Thermal-Hydraulic Transients

    Energy Science and Technology Software Center (ESTSC)

    1999-10-05

    RELAP5/MOD3.2* is used to model reactor coolant systems during postulated accidents. The code models the coupled behavior of the reactor coolant system and the core for loss-of-coolant accidents and operational transients such as anticipated transients without scram, loss of offsite power, loss of feedwater, and loss of flow. A generic modeling approach is used that permits simulating a variety of thermal-hydraulic systems. Control system and secondary system components are included to allow modeling of themore » plant controls, turbines, condensers, and secondary feedwater systems.« less

  20. Development of an integrated thermal-hydraulics capability incorporating RELAP5 and PANTHER neutronics code

    SciTech Connect

    Page, R.; Jones, J.R.

    1997-07-01

    Ensuring that safety analysis needs are met in the future is likely to lead to the development of new codes and the further development of existing codes. It is therefore advantageous to define standards for data interfaces and to develop software interfacing techniques which can readily accommodate changes when they are made. Defining interface standards is beneficial but is necessarily restricted in application if future requirements are not known in detail. Code interfacing methods are of particular relevance with the move towards automatic grid frequency response operation where the integration of plant dynamic, core follow and fault study calculation tools is considered advantageous. This paper describes the background and features of a new code TALINK (Transient Analysis code LINKage program) used to provide a flexible interface to link the RELAP5 thermal hydraulics code with the PANTHER neutron kinetics and the SIBDYM whole plant dynamic modelling codes used by Nuclear Electric. The complete package enables the codes to be executed in parallel and provides an integrated whole plant thermal-hydraulics and neutron kinetics model. In addition the paper discusses the capabilities and pedigree of the component codes used to form the integrated transient analysis package and the details of the calculation of a postulated Sizewell `B` Loss of offsite power fault transient.

  1. Teaching Thermal Hydraulics & Numerical Methods: An Introductory Control Volume Primer

    SciTech Connect

    D. S. Lucas

    2004-10-01

    A graduate level course for Thermal Hydraulics (T/H) was taught through Idaho State University in the spring of 2004. A numerical approach was taken for the content of this course since the students were employed at the Idaho National Laboratory and had been users of T/H codes. The majority of the students had expressed an interest in learning about the Courant Limit, mass error, semi-implicit and implicit numerical integration schemes in the context of a computer code. Since no introductory text was found the author developed notes taught from his own research and courses taught for Westinghouse on the subject. The course started with a primer on control volume methods and the construction of a Homogeneous Equilibrium Model (HEM) (T/H) code. The primer was valuable for giving the students the basics behind such codes and their evolution to more complex codes for Thermal Hydraulics and Computational Fluid Dynamics (CFD). The course covered additional material including the Finite Element Method and non-equilibrium (T/H). The control volume primer and the construction of a three-equation (mass, momentum and energy) HEM code are the subject of this paper . The Fortran version of the code covered in this paper is elementary compared to its descendants. The steam tables used are less accurate than the available commercial version written in C Coupled to a Graphical User Interface (GUI). The Fortran version and input files can be downloaded at www.microfusionlab.com.

  2. Performance of a parallel thermal-hydraulics code TEMPEST

    SciTech Connect

    Fann, G.I.; Trent, D.S.

    1996-11-01

    The authors describe the parallelization of the Tempest thermal-hydraulics code. The serial version of this code is used for production quality 3-D thermal-hydraulics simulations. Good speedup was obtained with a parallel diagonally preconditioned BiCGStab non-symmetric linear solver, using a spatial domain decomposition approach for the semi-iterative pressure-based and mass-conserved algorithm. The test case used here to illustrate the performance of the BiCGStab solver is a 3-D natural convection problem modeled using finite volume discretization in cylindrical coordinates. The BiCGStab solver replaced the LSOR-ADI method for solving the pressure equation in TEMPEST. BiCGStab also solves the coupled thermal energy equation. Scaling performance of 3 problem sizes (221220 nodes, 358120 nodes, and 701220 nodes) are presented. These problems were run on 2 different parallel machines: IBM-SP and SGI PowerChallenge. The largest problem attains a speedup of 68 on an 128 processor IBM-SP. In real terms, this is over 34 times faster than the fastest serial production time using the LSOR-ADI solver.

  3. VIPRE (Versatile Internals and Component Program for Reactors; EPRI)-01: A thermal-hydraulic code for reactor cores: Volume 4, Applications: Final report

    SciTech Connect

    Cuta, J.M.; Stewart, C.W.; Koontz, A.S.; Montgomery, S.D.

    1987-04-01

    VIPRE (Versatile Internals and Component Program for Reactors; EPRI) has been developed for nuclear power utility thermal-hydraulic analysis applications. It is designed to help evaluate nuclear reactor core safety limits including minimum departure from nucleate boiling ratio (MDNBR), critical power ratio (CPR), fuel and clad temperatures, and coolant state in normal operation and assumed accident conditions. This volume (Volume 4: Applications) contains extensive comparisons of VIPRE calculations to experimental data. There are also sensitivity studies and evaluations of code numerical and computational performance. In addition, calculations performed by member utilities using VIPRE for comparisons with transient CHF data, and FSAR plant analyses are presented. Comparisons are also presented of plant thermal-hydraulic calculations with VIPRE and other COBRA codes. These calculations demonstrate the suitability of VIPRE for PWR core thermal-hydraulic analysis.

  4. THR-TH: a high-temperature gas-cooled nuclear reactor core thermal hydraulics code

    SciTech Connect

    Vondy, D.R.

    1984-07-01

    The ORNL version of PEBBLE, the (RZ) pebble bed thermal hydraulics code, has been extended for application to a prismatic gas cooled reactor core. The supplemental treatment is of one-dimensional coolant flow in up to a three-dimensional core description. Power density data from a neutronics and exposure calculation are used as the basic information for the thermal hydraulics calculation of heat removal. Two-dimensional neutronics results may be expanded for a three-dimensional hydraulics calculation. The geometric description for the hydraulics problem is the same as used by the neutronics code. A two-dimensional thermal cell model is used to predict temperatures in the fuel channel. The capability is available in the local BOLD VENTURE computation system for reactor core analysis with capability to account for the effect of temperature feedback by nuclear cross section correlation. Some enhancements have also been added to the original code to add pebble bed modeling flexibility and to generate useful auxiliary results. For example, an estimate is made of the distribution of fuel temperatures based on average and extreme conditions regularly calculated at a number of locations.

  5. Thermal-hydraulic development a small, simplified, proliferation-resistant reactor.

    SciTech Connect

    Farmer, M. T.; Hill, D. J.; Sienicki, J. J.; Spencer, B. W.; Wade, D. C.

    1999-07-02

    This paper addresses thermal-hydraulics related criteria and preliminary concepts for a small (300 MWt), proliferation-resistant, liquid-metal-cooled reactor system. A main objective is to assess what extent of simplification is achievable in the concepts with the primary purpose of regaining economic competitiveness. The approach investigated features lead-bismuth eutectic (LBE) and a low power density core for ultra-long core lifetime (goal 15 years) with cartridge core replacement at end of life. This potentially introduces extensive simplifications resulting in capital cost and operating cost savings including: (1) compact, modular, pool-type configuration for factory fabrication, (2) 100+% natural circulation heat transport with the possibility of eliminating the main coolant pumps, (3) steam generator modules immersed directly in the primary coolant pool for elimination of the intermediate heat transport system, and (4) elimination of on-site fuel handling and storage provisions including rotating plug. Stage 1 natural circulation model and results are presented. Results suggest that 100+% natural circulation heat transport is readily achievable using LBE coolant and the long-life cartridge core approach; moreover, it is achievable in a compact pool configuration considerably smaller than PRISM A (for overland transportability) and with peak cladding temperature within the existing database range for ferritic steel with oxide layer surface passivation. Stage 2 analysis follows iteration with core designers. Other thermal hydraulic investigations are underway addressing passive, auxiliary heat removal by air cooling of the reactor vessel and the effects of steam generator tube rupture.

  6. Shape optimization of a printed-circuit heat exchanger to enhance thermal-hydraulic performance

    SciTech Connect

    Lee, S. M.; Kim, K. Y.

    2012-07-01

    Printed circuit heat exchanger (PCHE) is recently considered as a recuperator for the high temperature gas cooled reactor. In this work, the zigzag-channels of a PCHE have been optimized by using three-dimensional Reynolds-Averaged Navier-Stokes (RANS) analysis and response surface approximation (RSA) modeling technique to enhance thermal-hydraulic performance. Shear stress transport turbulence model is used as a turbulence closure. The objective function is defined as a linear combination of the functions related to heat transfer and friction loss of the PCHE, respectively. Three geometric design variables viz., the ratio of the radius of the fillet to hydraulic diameter of the channels, the ratio of wavelength to hydraulic diameter of the channels, and the ratio of wave height to hydraulic diameter of the channels, are used for the optimization. Design points are selected through Latin-hypercube sampling. The optimal design is determined through the RSA model which uses RANS derived calculations at the design points. The results show that the optimum shape enhances considerably the thermal-hydraulic performance than a reference shape. (authors)

  7. Thermal hydraulic modeling of integrated cooling water systems

    SciTech Connect

    Niyogi, K.K.; Rathi, J.S.; Phan, T.Q.; Chaudhary, A.

    1994-12-31

    Thermal hydraulic modeling of cooling water systems has been extended to multiple system configurations with heat exchangers as interface components between systems. The computer program PC-TRAX has been used as the basic tool for the system simulation. Additional heat exchanger modules have been incorporated to accurately predict the thermal performance of systems for the design as well as off-design conditions. The modeling accommodates time-dependent changes in conditions, temperature and pressure controllers, and detailed physical parameters of the heat exchangers. The modeling has been illustrated with examples from actual plant systems. An integrated system consisting of Spent Fuel Pool, Primary Component Cooling Water, and Service Water System has been successfully modeled to predict their performance under normal operations and emergency conditions. System configurations are changed from the base model by using a command module.

  8. Thermal-Hydraulic Analyses Of The LS-VHTR

    SciTech Connect

    Cliff B. Davis; Grant L. Hawkes

    2006-06-01

    Thermal-hydraulic analyses were performed to evaluate the safety characteristics of the Liquid-Salt-Cooled Very High-Temperature Reactor (LS-VHTR). A one-dimensional model of the LS-VHTR was developed using the RELAP5-3D computer program. The thermal calculations from the one-dimensional model of a fuel block were benchmarked against a multi-dimensional finite element model. The RELAP5-3D model was used to simulate a transient initiated by loss of forced convection in which the Reactor Vessel Auxiliary Cooling System (RVACS) passively removed decay heat. Parametric calculations were performed to investigate the effects of various parameters, including bypass flow fraction, coolant channel diameter, and the coolant outlet temperature. Additional parametric calculations investigated the effects of an enhanced RVACS design, failure to scram, and radial/axial conduction in the core.

  9. Numerical simulation of thermal-hydraulic generators running in a single regime

    NASA Astrophysics Data System (ADS)

    Chioreanu, Nicolae; Mitran, Tudor; Rus, Alexandru; Beles, Horia

    2014-06-01

    The paper presents the basis for the design of thermal-hydraulic generators running in a single regime. The thermal-hydraulic generators in a single regime running represent an absolute novelty worldwide (a pioneer invention). Based on the methodology concerning this subject, the design calculus for an experimental model was developed.

  10. Thermal hydraulics of the impurity control system for FED/INTOR

    SciTech Connect

    Cha, Y.S.; Mattas, R.F.; Abdou, M.A.; Haines, J.R.

    1983-01-01

    This paper addresses two important aspects of thermal hydraulics related to the design of the impurity control system (limiter and divertor) of the Fusion Engineering Device (FED) and the International Tokamak Reactor (INTOR). The first part of the paper is devoted to the determination of temperature distributions in various combinations of the coating/structural materials proposed for the limiter/divertor of FED and INTOR. The second part of the paper describes the analysis of the tangential motion of the melt layer under the influence of magnetic force during plasma disruption. The results of both analysis provide inputs to the determination of the life time of the limiter (or divertor) which is the most critical problem for the impurity control system as far as engineering and materials consideration is concerned.

  11. Code System for 2-Group, 3D Neutronic Kinetics Calculations Coupled to Core Thermal Hydraulics.

    Energy Science and Technology Software Center (ESTSC)

    2000-05-12

    Version 00 QUARK is a combined computer program comprising a revised version of the QUANDRY three-dimensional, two-group neutron kinetics code and an upgraded version of the COBRA transient core analysis code (COBRA-EN). Starting from either a critical steady-state (k-effective or critical dilute Boron problem) or a subcritical steady-state (fixed source problem) in a PWR plant, the code allows one to simulate the neutronic and thermal-hydraulic core transient response to reactivity accidents initiated both inside themore » vessel (such as a control rod ejection) and outside the vessel (such as the sudden change of the Boron concentration in the coolant). QUARK output can be used as input to PSR-470/NORMA-FP to perform a subchannel analysis from converged coarse-mesh nodal solutions.« less

  12. Relationship of core exit-temperature noise to thermal-hydraulic conditions in PWRs

    SciTech Connect

    Sweeney, F.J.; Upadhyaya, B.R.

    1983-01-01

    Core exit thermocouple temperature noise and neutron detector noise measurements were performed at the Loss of Fluid Test Facility (LOFT) reactor and a Westinghouse, 1148 MW(e) PWR to relate temperature noise to core thermal-hydraulic conditions. The noise analysis results show that the RMS of the temperature noise increases linearly with increasing core ..delta..T at LOFT and the commercial PWR. Out-of-core test loop temperature noise has shown similar behavior. The phase angle between core exit temperature noise and in-core or ex-core neutron noise is directly related to the core coolant flow velocity. However, if the thermocouple response time is slow, compared to the coolant transit time between the sensors, velocities inferred from the phase angle are lower than measured coolant flow velocities.

  13. Thermal-hydraulic-structural behavior of the EBR-II IHX for overpower transients

    SciTech Connect

    Mohr, D.; Chang, L.K.; Lee, M.J.; Feldman, E.E.

    1982-01-01

    A detailed study has been made of the effects of the Operational Reliability Testing (ORT) program on major plant components of the Experimental Breeder Reactor No. II (EBR-II). This paper describes the integrated thermal-hydraulic-structural analyses conducted for the intermediate heat exchanger (IHX) with the aid of the NATDEMO, THTB, and ANSYS codes. An extensive analysis revealed the stress limiting area to be the junction between the upper head and upper tube sheet. The analyses indicate, however, that the EBR-II IHX, the major plant component most affected by the ORT program, will be able to withstand the thermal stress and accumulated fatigue damage during the lifetime of the plant including the ORT program.

  14. Prototypic Thermal-Hydraulic Experiment in NRU to Simulate Loss-of-Coolant Accidents

    SciTech Connect

    Mohr, C. L.; Hesson, G. M.; Russcher, G. E.; Marsh, R. K.; King, L. L.; Wildung, N. J.; Rausch, W. N.; Bennett, W. D.

    1981-04-01

    Quick-look test results are reported for the initial test series of the Loss-of-Coolant Accident (LOCA) Simulation in the National Research Universal {NRU) test program, conducted by Pacific Northwest Laboratory (PNL) for the U.S. Nuclear Regulatory Commission (NRC). This test was devoted to evaluating the thermal-hydraulic characteristics of a full-length light water reactor (LWR) fuel bundle during the heatup, reflood, and quench phases of a LOCA. Experimental results from 28 tests cover reflood rates of 0.74 in./sec to 11 in./sec and delay times to initiate reflood of 3 sec to 66 sec. The results indicate that current analysis methods can predict peak temperatures within 10% and measured quench times for the bundle were significantly less than predicted. For reflood rates of 1 in./sec where long quench times were predicted (>2000 sec}, measured quench times of 200 sec were found.

  15. Coupled thermal-hydraulic-chemical modelling of enhanced geothermal systems

    NASA Astrophysics Data System (ADS)

    Bächler, D.; Kohl, T.

    2005-05-01

    The study investigates thermal-, hydraulic- and chemically coupled processes of enhanced geothermal systems (EGS). On the basis of the two existing numerical codes, the finite element program FRACTURE and the geochemical module of CHEMTOUGH, FRACHEM was developed, to simulate coupled thermal-hydraulic-chemical (THC) processes, accounting for the Soultz specific conditions such as the high salinity of the reservoir fluid and the high temperatures. The finite element part calculates the thermal and hydraulic field and the geochemical module the chemical processes. According to the characteristics of the Soultz EGS reservoir, the geochemical module was modified. (i) The Debye-Huckel approach was replaced by the Pitzer formalism. (ii) New kinetic laws for calcite, dolomite, quartz and pyrite were implemented. (iii) The porosity-permeability relation was replaced by a new relation for fractured rock. (iv) The possibility of re-injecting the produced fluid was implemented. The sequential non-iterative approach (SNIA) was used to couple transport and reactions. Sensitivity analyses proved the proper functionality of FRACHEM, but highlighted the sensitivity of the SNIA approach to time steps. To quantify the FRACHEM results, a comparative simulation with the code SHEMAT was conducted, which validated FRACHEM. Coupled THC processes in a fractured zone in the Soultz reservoir at 3500 m (T0= 165 °C), which occur as a result of the injection of fluid (Tinj= 65 °C) at one end of the zone and the production at the other end, were modelled for 2 yr. Calcite is the most reactive mineral and therefore the porosity and permeability evolution results from the calcite reactions: near the injection point, porosity and permeability increase and near the production well they decrease. After 2 yr, the system seems to be very close to steady-state. Therefore, mineral dissolution and precipitation during the circulation of the fluid in the reservoir do not represent a limiting factor on

  16. High-Fidelity Coupled Monte-Carlo/Thermal-Hydraulics Calculations

    NASA Astrophysics Data System (ADS)

    Ivanov, Aleksandar; Sanchez, Victor; Ivanov, Kostadin

    2014-06-01

    Monte Carlo methods have been used as reference reactor physics calculation tools worldwide. The advance in computer technology allows the calculation of detailed flux distributions in both space and energy. In most of the cases however, those calculations are done under the assumption of homogeneous material density and temperature distributions. The aim of this work is to develop a consistent methodology for providing realistic three-dimensional thermal-hydraulic distributions by coupling the in-house developed sub-channel code SUBCHANFLOW with the standard Monte-Carlo transport code MCNP. In addition to the innovative technique of on-the fly material definition, a flux-based weight-window technique has been introduced to improve both the magnitude and the distribution of the relative errors. Finally, a coupled code system for the simulation of steady-state reactor physics problems has been developed. Besides the problem of effective feedback data interchange between the codes, the treatment of temperature dependence of the continuous energy nuclear data has been investigated.

  17. Engineered Barrier Systems Thermal-Hydraulic-Chemical Column Test Report

    SciTech Connect

    W.E. Lowry

    2001-12-13

    The Engineered Barrier System (EBS) Thermal-Hydraulic-Chemical (THC) Column Tests provide data needed for model validation. The EBS Degradation, Flow, and Transport Process Modeling Report (PMR) will be based on supporting models for in-drift THC coupled processes, and the in-drift physical and chemical environment. These models describe the complex chemical interaction of EBS materials, including granular materials, with the thermal and hydrologic conditions that will be present in the repository emplacement drifts. Of particular interest are the coupled processes that result in mineral and salt dissolution/precipitation in the EBS environment. Test data are needed for thermal, hydrologic, and geochemical model validation and to support selection of introduced materials (CRWMS M&O 1999c). These column tests evaluated granular crushed tuff as potential invert ballast or backfill material, under accelerated thermal and hydrologic environments. The objectives of the THC column testing are to: (1) Characterize THC coupled processes that could affect performance of EBS components, particularly the magnitude of permeability reduction (increases or decreases), the nature of minerals produced, and chemical fractionation (i.e., concentrative separation of salts and minerals due to boiling-point elevation). (2) Generate data for validating THC predictive models that will support the EBS Degradation, Flow, and Transport PMR, Rev. 01.

  18. PRATHAM: Parallel Thermal Hydraulics Simulations using Advanced Mesoscopic Methods

    SciTech Connect

    Joshi, Abhijit S; Jain, Prashant K; Mudrich, Jaime A; Popov, Emilian L

    2012-01-01

    At the Oak Ridge National Laboratory, efforts are under way to develop a 3D, parallel LBM code called PRATHAM (PaRAllel Thermal Hydraulic simulations using Advanced Mesoscopic Methods) to demonstrate the accuracy and scalability of LBM for turbulent flow simulations in nuclear applications. The code has been developed using FORTRAN-90, and parallelized using the message passing interface MPI library. Silo library is used to compact and write the data files, and VisIt visualization software is used to post-process the simulation data in parallel. Both the single relaxation time (SRT) and multi relaxation time (MRT) LBM schemes have been implemented in PRATHAM. To capture turbulence without prohibitively increasing the grid resolution requirements, an LES approach [5] is adopted allowing large scale eddies to be numerically resolved while modeling the smaller (subgrid) eddies. In this work, a Smagorinsky model has been used, which modifies the fluid viscosity by an additional eddy viscosity depending on the magnitude of the rate-of-strain tensor. In LBM, this is achieved by locally varying the relaxation time of the fluid.

  19. Current and anticipated uses of the thermal hydraulics codes at the NRC

    SciTech Connect

    Caruso, R.

    1997-07-01

    The focus of Thermal-Hydraulic computer code usage in nuclear regulatory organizations has undergone a considerable shift since the codes were originally conceived. Less work is being done in the area of {open_quotes}Design Basis Accidents,{close_quotes}, and much more emphasis is being placed on analysis of operational events, probabalistic risk/safety assessment, and maintenance practices. All of these areas need support from Thermal-Hydraulic computer codes to model the behavior of plant fluid systems, and they all need the ability to perform large numbers of analyses quickly. It is therefore important for the T/H codes of the future to be able to support these needs, by providing robust, easy-to-use, tools that produce easy-to understand results for a wider community of nuclear professionals. These tools need to take advantage of the great advances that have occurred recently in computer software, by providing users with graphical user interfaces for both input and output. In addition, reduced costs of computer memory and other hardware have removed the need for excessively complex data structures and numerical schemes, which make the codes more difficult and expensive to modify, maintain, and debug, and which increase problem run-times. Future versions of the T/H codes should also be structured in a modular fashion, to allow for the easy incorporation of new correlations, models, or features, and to simplify maintenance and testing. Finally, it is important that future T/H code developers work closely with the code user community, to ensure that the code meet the needs of those users.

  20. Isotope Production Facility Conceptual Thermal-Hydraulic Design Review and Scoping Calculations

    SciTech Connect

    Pasamehmetoglu, K.O.; Shelton, J.D.

    1998-08-01

    The thermal-hydraulic design of the target for the Isotope Production Facility (IPF) is reviewed. In support of the technical review, scoping calculations are performed. The results of the review and scoping calculations are presented in this report.

  1. Thermal Hydraulics of the Very High Temperature Gas Cooled Reactor

    SciTech Connect

    Chang Oh; Eung Kim; Richard Schultz; Mike Patterson; Davie Petti

    2009-10-01

    The U.S Department of Energy (DOE) is conducting research on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core will be either a prismatic graphite block type core or a pebble bed core. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during reactor core-accidents. The objectives of the NGNP Project are to: Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission, and Demonstrate safe and economical nuclear-assisted production of hydrogen and electricity. The DOE laboratories, led by the INL, perform research and development (R&D) that will be critical to the success of the NGNP, primarily in the areas of: • High temperature gas reactor fuels behavior • High temperature materials qualification • Design methods development and validation • Hydrogen production technologies • Energy conversion. This paper presents current R&D work that addresses fundamental thermal hydraulics issues that are relevant to a variety of possible NGNP designs.

  2. Current and anticipated uses of thermal-hydraulic codes in NFI

    SciTech Connect

    Tsuda, K.; Takayasu, M.

    1997-07-01

    This paper presents the thermal-hydraulic codes currently used in NFI for the LWR fuel development and licensing application including transient and design basis accident analyses of LWR plants. The current status of the codes are described in the context of code capability, modeling feature, and experience of code application related to the fuel development and licensing. Finally, the anticipated use of the future thermal-hydraulic code in NFI is briefly given.

  3. Thermal hydraulic calculations to support increase in operating power in McClellen Nuclear Radiation Center(MNRC) TRIGA reactor.

    SciTech Connect

    Jensen, R. T.

    1998-05-05

    The RELAP5/Mod3.1 computer program has been used to successfully perform thermal-hydraulic analyses to support the Safety Analysis for increasing the MNRC reactor from 1.0 MW to 2.0 MW. The calculation results show the reactor to have operating margin for both the fuel temperature and critical heat flux limits. The calculated maximum fuel temperature of 705 C is well below the 750 C operating limit. The critical heat flux ratio was calculated to be 2.51.

  4. Numerical Modeling of a Thermal-Hydraulic Loop and Test Section Design for Heat Transfer Studies in Supercritical Fluids

    NASA Astrophysics Data System (ADS)

    McGuire, Daniel

    A numerical tool for the simulation of the thermal dynamics of pipe networks with heat transfer has been developed with the novel capability of modeling supercritical fluids. The tool was developed to support the design and deployment of two thermal-hydraulic loops at Carleton University for the purpose of heat transfer studies in supercritical and near-critical fluids. First, the system was characterized based on its defining features; the characteristic length of the flow path is orders of magnitude larger than the other characteristic lengths that define the system's geometry; the behaviour of the working fluid in the supercritical thermodynamic state. An analysis of the transient thermal behaviour of the model's domains is then performed to determine the accuracy and range of validity of the modeling approach for simulating the transient thermal behaviour of a thermal-hydraulic loop. Preliminary designs of three test section geometries, for the purpose of heat transfer studies, are presented in support of the overall design of the Carleton supercritical thermal-hydraulic loops. A 7-rod-bundle, annular and tubular geometries are developed with support from the new numerical tool. Materials capable of meeting the experimental requirements while operating in supercritical water are determined. The necessary geometries to satisfy the experimental goals are then developed based on the material characteristics and predicted heat transfer behaviour from previous simulation results. An initial safety analysis is performed on the test section designs, where they are evaluated against the ASME Boiler, Pressure Vessel, and Pressure Piping Code standard, required for safe operation and certification.

  5. Thermal-hydraulic analysis of spent fuel storage systems

    SciTech Connect

    Rector, D.R.; Wheeler, C.L.; Lombardo, N.J.

    1987-01-01

    This paper describes the COBRA-SFS (Spent Fuel Storage) computer code, which is designed to predict flow and temperature distributions in spent nuclear fuel storage and transportation systems. The decay heat generated by spent fuel in a dry storage cask is removed through a combination of conduction, natural convection, and thermal radiation. One major advantage of COBRA-SFS is that fluid recirculation within the cask is computed directly by solving the mass and momentum conservation equations. In addition, thermal radiation heat transfer is modeled using detailed radiation exchange factors based on quarter-rod segments. The equations governing mass, momentum, and energy conservation for incompressible flows are presented, and the semi-implicit solution method is described. COBRA-SFS predictions are compared to temperature data from a spent fuel storage cask test and the effect of different fill media on the cladding temperature distribution is discussed. The effect of spent fuel consolidation on cask thermal performance is also investigated. 16 refs., 6 figs., 2 tabs.

  6. AP600 design certification thermal hydraulics testing and analysis

    SciTech Connect

    Hochreiter, L.E.; Piplica, E.J.

    1995-09-01

    Westinghouse Electric Corporation, in conjunction with the Department of Energy and the Electric Power Research Institute, have been developing an advanced light water reactor design; the AP600. The AP600 is a 1940 Mwt, 600Mwe unit which is similar to a Westinghouse two-loop Pressurized Water Reactor. The accumulated knowledge on reactor design to reduce the capital costs, construction time, and the operational and maintenance cost of the unit once it begins to generate electrical power. The AP600 design goal is to maintain an overall cost advantage over fossil generated electrical power.

  7. Thermal hydraulic analysis of the FFTF core using SUPERENERGY-2

    SciTech Connect

    Cramer, E.R.; Basehore, K.L.

    1980-01-01

    SUPERENERGY-2 is the latest steady-state code in the ENERGY series, combining all of the desirable features of the previous ENERGY-I and SUPERENERGY versions in an optimized form. The result is an easily redimensionable, multiassembly code with many user-convenience features, such as automatic noding and a default constitutive package, that help minimize the effort and time associated with setting up large forced-convection problems. Improvements in physical modeling include generalized facial boundary conditions, duct wall gamma heating, and a model for double-ducted assemblies. The latter is used for modeling both multiduct test and absorber assemblies. SUPERENERGY-2 was used to calculate the temperature distribution in the first six rows of the FFTF core.

  8. Thermal hydraulics modeling of the US Geological Survey TRIGA reactor

    NASA Astrophysics Data System (ADS)

    Alkaabi, Ahmed K.

    The Geological Survey TRIGA reactor (GSTR) is a 1 MW Mark I TRIGA reactor located in Lakewood, Colorado. Single channel GSTR thermal hydraulics models built using RELAP5/MOD3.3, RELAP5-3D, TRACE, and COMSOL Multiphysics predict the fuel, outer clad, and coolant temperatures as a function of position in the core. The results from the RELAP5/MOD3.3, RELAP5-3D, and COMSOL models are similar. The TRACE model predicts significantly higher temperatures, potentially resulting from inappropriate convection correlations. To more accurately study the complex fluid flow patterns within the core, this research develops detailed RELAP5/MOD3.3 and COMSOL multichannel models of the GSTR core. The multichannel models predict lower fuel, outer clad, and coolant temperatures compared to the single channel models by up to 16.7°C, 4.8°C, and 9.6°C, respectively, as a result of the higher mass flow rates predicted by these models. The single channel models and the RELAP5/MOD3.3 multichannel model predict that the coolant temperatures in all fuel rings rise axially with core height, as the coolant in these models flows predominantly in the axial direction. The coolant temperatures predicted by the COMSOL multichannel model rise with core height in the B-, C-, and D-rings and peak and then decrease in the E-, F-, and G-rings, as the coolant tends to flow from the bottom sides of the core to the center of the core in this model. Experiments at the GSTR measured coolant temperatures in the GSTR core to validate the developed models. The axial temperature profiles measured in the GSTR show that the flow patterns predicted by the COMSOL multichannel model are consistent with the actual conditions in the core. Adjusting the RELAP5/MOD3.3 single and multichannel models by modifying the axial and cross-flow areas allow them to better predict the GSTR coolant temperatures; however, the adjusted models still fail to predict accurate axial temperature profiles in the E-, F-, and G-rings.

  9. An anisotropic numerical model for thermal hydraulic analyses: application to liquid metal flow in fuel assemblies

    NASA Astrophysics Data System (ADS)

    Vitillo, F.; Vitale Di Maio, D.; Galati, C.; Caruso, G.

    2015-11-01

    A CFD analysis has been carried out to study the thermal-hydraulic behavior of liquid metal coolant in a fuel assembly of triangular lattice. In order to obtain fast and accurate results, the isotropic two-equation RANS approach is often used in nuclear engineering applications. A different approach is provided by Non-Linear Eddy Viscosity Models (NLEVM), which try to take into account anisotropic effects by a nonlinear formulation of the Reynolds stress tensor. This approach is very promising, as it results in a very good numerical behavior and in a potentially better fluid flow description than classical isotropic models. An Anisotropic Shear Stress Transport (ASST) model, implemented into a commercial software, has been applied in previous studies, showing very trustful results for a large variety of flows and applications. In the paper, the ASST model has been used to perform an analysis of the fluid flow inside the fuel assembly of the ALFRED lead cooled fast reactor. Then, a comparison between the results of wall-resolved conjugated heat transfer computations and the results of a decoupled analysis using a suitable thermal wall-function previously implemented into the solver has been performed and presented.

  10. Investigation of approximations in thermal-hydraulic modeling of core conversions

    SciTech Connect

    Garner, Patrick L.; Hanan, Nelson A.

    2008-07-15

    Neutronics analyses for core conversions are usually fairly detailed, for example representing all 4 flats and all 4 corners of all 6 tubes of all 20 IRT-3M or -4M fuel assemblies in the core of the VVR-SM reactor in Uzbekistan. The coupled neutronics and thermal-hydraulic analysis for safety analysis transients is usually less detailed, for example modeling only a hot and an average fuel plate and the associated coolant. Several of the approximations have been studied using the RELAP5 and PARET computer codes in order to provide assurance that the lack of full detail is not important to the safety analysis. Two specific cases studied are (1) representation of a core of same- type fuel assemblies by a hot and an average assembly each having multiple channels as well as by merely a hot and average channel and (2) modeling a core containing multiple fuel types as the sum of fractional core models for each fuel type. (author)

  11. Leap Frog and Time Step Sub-Cycle Scheme for Coupled Neutronics and Thermal-Hydraulic Codes

    SciTech Connect

    Lu, S.

    2002-07-01

    As the result of the advancing TCP/IP based inter-process communication technology, more and more legacy thermal-hydraulic codes have been coupled with neutronics codes to provide best-estimate capabilities for reactivity related reactor transient analysis. Most of the coupling schemes are based on closely coupled serial or parallel approaches. Therefore, the execution of the coupled codes usually requires significant CPU time, when a complicated system is analyzed. Leap Frog scheme has been used to reduce the run time. The extent of the decoupling is usually determined based on a trial and error process for a specific analysis. It is the intent of this paper to develop a set of general criteria, which can be used to invoke the automatic Leap Frog algorithm. The algorithm will not only provide the run time reduction but also preserve the accuracy. The criteria will also serve as the base of an automatic time step sub-cycle scheme when a sudden reactivity change is introduced and the thermal-hydraulic code is marching with a relatively large time step. (authors)

  12. Validation and Calibration of Nuclear Thermal Hydraulics Multiscale Multiphysics Models - Subcooled Flow Boiling Study

    SciTech Connect

    Anh Bui; Nam Dinh; Brian Williams

    2013-09-01

    In addition to validation data plan, development of advanced techniques for calibration and validation of complex multiscale, multiphysics nuclear reactor simulation codes are a main objective of the CASL VUQ plan. Advanced modeling of LWR systems normally involves a range of physico-chemical models describing multiple interacting phenomena, such as thermal hydraulics, reactor physics, coolant chemistry, etc., which occur over a wide range of spatial and temporal scales. To a large extent, the accuracy of (and uncertainty in) overall model predictions is determined by the correctness of various sub-models, which are not conservation-laws based, but empirically derived from measurement data. Such sub-models normally require extensive calibration before the models can be applied to analysis of real reactor problems. This work demonstrates a case study of calibration of a common model of subcooled flow boiling, which is an important multiscale, multiphysics phenomenon in LWR thermal hydraulics. The calibration process is based on a new strategy of model-data integration, in which, all sub-models are simultaneously analyzed and calibrated using multiple sets of data of different types. Specifically, both data on large-scale distributions of void fraction and fluid temperature and data on small-scale physics of wall evaporation were simultaneously used in this work’s calibration. In a departure from traditional (or common-sense) practice of tuning/calibrating complex models, a modern calibration technique based on statistical modeling and Bayesian inference was employed, which allowed simultaneous calibration of multiple sub-models (and related parameters) using different datasets. Quality of data (relevancy, scalability, and uncertainty) could be taken into consideration in the calibration process. This work presents a step forward in the development and realization of the “CIPS Validation Data Plan” at the Consortium for Advanced Simulation of LWRs to enable

  13. Thermal-hydraulic calculations for the conversion to LEU of a research reactor core

    SciTech Connect

    Grigoriadis, D.; Varvayanni, M.; Catsaros, N.; Stakakis, E.

    2008-07-15

    The thermal-hydraulic analysis performed for the needs of the conversion of the open pool 5MW Greek Research Reactor (GRR-1) to a pure Low Enrichment (LEU) configuration is presented. The methodology was based on a complete set of neutronic calculations performed for the new core configuration, in compliance with pre-defined Operation Limiting Conditions. The hottest channel analysis approach was adopted, and peaking factors were used to account for fabrication or measuring uncertainties. Calculations were carried out using the numerical codes NATCON, PLTEMP and PARET provided by Argonne National Laboratory (ANL). Two main different classes of conditions were considered, namely i) steady state normal operating conditions and ii) transient cases related to accidental events including reactivity feedback effects. For steady state operating conditions the behaviour of the new configuration was examined both for forced and natural convection cooling modes. Transient calculations considered several initiating events including reactivity insertion accidents (slow or fast reactivity insertion) and total or partial loss-of-flow accidents, i.e. in accordance to guidelines provided by the IAEA for research Reactors. (author)

  14. Oyster Creek fuel thermal margin during core thermal-hydraulic oscillations

    SciTech Connect

    Dougher, J.D.

    1990-01-01

    The Oyster Creek nuclear facility, a boiling water reactor (BWR)-2 plant type, has never experienced core thermal-hydraulic instability. Power oscillations, however, have been observed in other BWR cores both domestically and internationally. Two modes of oscillations have been observed, core wide and regional half-core. During core wide oscillations, the neutron flux in the core oscillates in the radial fundamental mode. During regional half-core oscillations, higher order harmonics in the radial plane result in out-of-phase oscillations with the neutron flux in one half of the core oscillating 180 deg out-of-phase with the neutron flux in the other half of the core. General Design Criteria 12 requires either prevention or detection and suppression of power oscillations which could result in violations of fuel design limits. Analyses performed by General Electric have demonstrated that for large-magnitude oscillations the potential exists for violation of the safety limit minimum critical power ratio (MCPR). However, for plants with a flow-biased neutron flux scram automatic mitigation of oscillations may be provided at an oscillation magnitude below that at which the safety limit is challenged. Plant-specific analysis for Oyster Creek demonstrates that the existing average power range monitor (APRM) system will sense and suppress power oscillations prior to violation of any safety limits.

  15. Thermal hydraulic evaluation of consolidating tank C-106 waste into tank AY-102

    SciTech Connect

    Sathyanarayana, K.

    1996-02-01

    This report describes the thermal hydraulic analysis performed to provide a technical basis in support of consolidation of tank C-106 waste into tank AY-102. Several parametric calculations were performed using the HUB and GOTH computer codes. First, the current heat load of tank AY-102 was determined. Potential quantities of waste transfer from tank C-106 were established to maintain the peak temperatures of consolidated sludge in tank AY-102 to remain within Operating Specification limits. For this purpose, it was shown that active cooling of the tank floor was essential and a secondary ventilation flow of 2,000 cfm should be maintained. Transient calculations were also conducted to evaluate the effects of ambient meteorological cyclic conditions on sludge peak temperature, and loss of ventilation systems. Detailed calculations were also performed to estimate the insulating concrete air channels cooling effectiveness and the resulting peak temperatures for the consolidated sludge in tank AY-102. Calculations are were also performed for a primary and secondary ventilation systems outage, both individually and combined to establish limits on outage duration. Because of its active cooling mode of operation, the secondary ventilation system limits the outage duration.

  16. Stabilized FE simulation of prototype thermal-hydraulics problems with integrated adjoint-based capabilities

    NASA Astrophysics Data System (ADS)

    Shadid, J. N.; Smith, T. M.; Cyr, E. C.; Wildey, T. M.; Pawlowski, R. P.

    2016-09-01

    A critical aspect of applying modern computational solution methods to complex multiphysics systems of relevance to nuclear reactor modeling, is the assessment of the predictive capability of specific proposed mathematical models. In this respect the understanding of numerical error, the sensitivity of the solution to parameters associated with input data, boundary condition uncertainty, and mathematical models is critical. Additionally, the ability to evaluate and or approximate the model efficiently, to allow development of a reasonable level of statistical diagnostics of the mathematical model and the physical system, is of central importance. In this study we report on initial efforts to apply integrated adjoint-based computational analysis and automatic differentiation tools to begin to address these issues. The study is carried out in the context of a Reynolds averaged Navier-Stokes approximation to turbulent fluid flow and heat transfer using a particular spatial discretization based on implicit fully-coupled stabilized FE methods. Initial results are presented that show the promise of these computational techniques in the context of nuclear reactor relevant prototype thermal-hydraulics problems.

  17. 77 FR 9707 - Advisory Committee on Reactor Safeguards Meeting of the ACRS Subcommittee on Thermal-Hydraulics...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-17

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards Meeting of the ACRS Subcommittee on Thermal-Hydraulics... for the ACRS Subcommittee meeting on Thermal-Hydraulics Phenomena scheduled to be held on February...

  18. FFTF thermal-hydraulic testing results affecting piping and vessel component design in LMFBR's

    SciTech Connect

    Stover, R.L.; Beaver, T.R.; Chang, S.C.

    1983-01-01

    The Fast Flux Test Facility completed four years of pre-operational testing in April 1982. This paper describes thermal-hydraulic testing results from this period which impact piping and vessel component design in LMFBRs. Data discussed are piping flow oscillations, piping thermal stratification and vessel upper plenum stratification. Results from testing verified that plant design limits were met.

  19. Thermal-hydraulic assessment of concrete storage cubicle with horizontal 3013 canisters

    SciTech Connect

    HEARD, F.J.

    1999-04-08

    The FIDAP computer code was used to perform a series of analyses to assess the thermal-hydraulic performance characteristics of the concrete plutonium storage cubicles, as modified for the horizontal placement of 3013 canisters. Four separate models were developed ranging from a full height model of the storage cubicle to a very detailed standalone model of a horizontal 3013 canister.

  20. 78 FR 8202 - Meeting of the Joint ACRS Subcommittees on Thermal Hydraulic Phenomena and Materials, Metallurgy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-05

    ... ACRS meetings were published in the Federal Register on October 18, 2012, (77 FR 64146- 64147... Hydraulic Phenomena and Materials, Metallurgy and Reactor Fuels; Notice of Meeting The Joint ACRS Subcommittees on Thermal Hydraulic Phenomena and Materials, Metallurgy and Reactor Fuels will hold a meeting...

  1. Thermal hydraulic study of the ESPRESSO blanket for a Tandem Mirror Reactor

    SciTech Connect

    Raffray, A.R.; Hoffman, M.A.

    1986-02-01

    This paper deals primarily with the thermal-hydraulic design and some critical thermomechanical aspects of the proposed ESPRESSO blanket for the Tandem Mirror Fusion Reactor. This conceptual design was based on the same physics as used in the MARS study.

  2. Thermal-hydraulic modeling of the Pennsylvania State University Breazeale Nuclear Reactor (PSBR)

    NASA Astrophysics Data System (ADS)

    Chang, Jong E.

    2005-11-01

    Earlier experiments determined that the Pennsylvania State University Breazeale Nuclear Reactor (PSBR) core is cooled, not by an axial flow, but rather by a strong cross flow due to the thermal expansion of the coolant. To further complicate the flow field, a nitrogen-16 (N-16) pump was installed above the PSBR core to mix the exiting core buoyant thermal plume in order to delay the rapid release of radioactive N-16 to the PSBR pool surface. Thus, the interaction between the N-16 jet flow and the buoyancy driven flow complicates the analysis of the flow distribution in the PSBR pool. The main objectives of this study is to model the thermal-hydraulic behavior of the PSBR core and pool. During this study four major things were performed including the Computational Fluid Dynamics (CFD) model for the PSBR pool, the stand-alone fuel rod model for a PSBR fuel rod, the velocity measurements in and around the PSBR core, and the temperature measurements in the PSBR pool. Once the flow field was predicted by the CFD model, the measurement devices were manufactured and calibrated based on the CFD results. The major contribution of this study is to understand and to explain the flow behavior in the PSBR subchannels and pool using the FLOW3D model. The stand-alone dynamic fuel rod model was developed to determine the temperature distribution inside a PSBR fuel rod. The stand-alone fuel rod model was coupled to the FLOW3D model and used to predict the temperature behavior during steady-state and pulsing. The heat transfer models in the stand-alone fuel rod code are used in order to overcome the disadvantage of the CFD code, which does not calculate the mechanical stress, the gap conductance, and the two phase heat transfer. (Abstract shortened by UMI.)

  3. Thermal-hydraulic/heat transfer code development for sphere-pac-fueled LMFBRs. [COBRA-3SP code

    SciTech Connect

    Morris, D.G.

    1980-06-01

    Sphere-pac fuel has received much attention recently in light of the development of proliferation-resistant fuel cycles for the Fast Breeder Reactor Program in the United States. However, for sphere-pac fuel to be a viable alternative to conventional pellet fuel, a means to analyze the thermal behavior of sphere-pac-fueled pin bundles is needed. To meet this need, a thermal-hydraulic/heat transfer computer code has been developed for sphere-pac-fueled fast breeder reactors. The code, COBRA-3SP, is a modified version of COBRA-3M incorporating a three-region sphere-pac fuel pin model which permits fuel restructuring. With COBRA-3SP, steady-state and transient analysis of sphere-pac-fueled pin bundles is possible. The validity of the sphere-pac fuel pin model has been verified using experimental results of irradiated sphere-pac fuel.

  4. Some computational challenges of developing efficient parallel algorithms for data-dependent computations in thermal-hydraulics supercomputer applications

    SciTech Connect

    Woodruff, S.B.

    1992-05-01

    The Transient Reactor Analysis Code (TRAC), which features a two- fluid treatment of thermal-hydraulics, is designed to model transients in water reactors and related facilities. One of the major computational costs associated with TRAC and similar codes is calculating constitutive coefficients. Although the formulations for these coefficients are local the costs are flow-regime- or data-dependent; i.e., the computations needed for a given spatial node often vary widely as a function of time. Consequently, poor load balancing will degrade efficiency on either vector or data parallel architectures when the data are organized according to spatial location. Unfortunately, a general automatic solution to the load-balancing problem associated with data-dependent computations is not yet available for massively parallel architectures. This document discusses why developers algorithms, such as a neural net representation, that do not exhibit algorithms, such as a neural net representation, that do not exhibit load-balancing problems.

  5. Thermal hydraulic simulations, error estimation and parameter sensitivity studies in Drekar::CFD

    SciTech Connect

    Smith, Thomas Michael; Shadid, John N.; Pawlowski, Roger P.; Cyr, Eric C.; Wildey, Timothy Michael

    2014-01-01

    This report describes work directed towards completion of the Thermal Hydraulics Methods (THM) CFD Level 3 Milestone THM.CFD.P7.05 for the Consortium for Advanced Simulation of Light Water Reactors (CASL) Nuclear Hub effort. The focus of this milestone was to demonstrate the thermal hydraulics and adjoint based error estimation and parameter sensitivity capabilities in the CFD code called Drekar::CFD. This milestone builds upon the capabilities demonstrated in three earlier milestones; THM.CFD.P4.02 [12], completed March, 31, 2012, THM.CFD.P5.01 [15] completed June 30, 2012 and THM.CFD.P5.01 [11] completed on October 31, 2012.

  6. Thermal Hydraulic Characteristics of Fuel Defects in Plate Type Nuclear Research Reactors

    SciTech Connect

    Bodey, Isaac T

    2014-05-01

    Turbulent flow coupled with heat transfer is investigated for a High Flux Isotope Reactor (HFIR) fuel plate. The Reynolds Averaged Navier-Stokes Models are used for fluid dynamics and the transfer of heat from a thermal nuclear fuel plate using the Multi-physics code COMSOL. Simulation outcomes are compared with experimental data from the Advanced Neutron Source Reactor Thermal Hydraulic Test Loop. The computational results for the High Flux Isotope Reactor core system provide a more physically accurate simulation of this system by modeling the turbulent flow field in conjunction with the diffusion of thermal energy within the solid and fluid phases of the model domain. Recommendations are made regarding Nusselt number correlations and material properties for future thermal hydraulic modeling efforts

  7. Cold source moderator vessel development for the High Flux Isotope Reactor: Thermal-hydraulic studies

    SciTech Connect

    Williams, P.T.; Lucas, A.T.; Wendel, M.W.

    1998-07-01

    A project is underway at Oak Ridge National Laboratory (ORNL) to design, test, and install a cold neutron source facility in the High Flux Isotope Reactor (HFIR). This new cold source employs supercritical hydrogen at cryogenic temperatures both as the medium for neutron moderation and as the working fluid for removal of internally-generated nuclear heating. The competing design goals of minimizing moderator vessel mass and providing adequate structural integrity for the vessel motivated the requirement of detailed multidimensional thermal-hydraulic analyses of the moderator vessel as a critical design subtask. This paper provides a summary review of the HFIR cold source moderator vessel design and a description of the thermal-hydraulic studies that were carried out to support the vessel development.

  8. Condensation heat transfer coefficient with noncondensible gases for heat transfer in thermal hydraulic codes

    SciTech Connect

    Banerjee, S.; Hassan, Y.A.

    1995-09-01

    Condensation in the presence of noncondensible gases plays an important role in the nuclear industry. The RELAP5/MOD3 thermal hydraulic code was used to study the ability of the code to predict this phenomenon. Two separate effects experiments were simulated using this code. These were the Massachusetts Institute of Technology`s (MIT) Pressurizer Experiment, the MIT Single Tube Experiment. A new iterative approach to calculate the interface temperature and the degraded heat transfer coefficient was developed and implemented in the RELAP5/MOD3 thermal hydraulic code. This model employs the heat transfer simultaneously. This model was found to perform much better than the reduction factor approach. The calculations using the new model were found to be in much better agreement with the experimental values.

  9. Current and anticipated uses of thermal-hydraulic codes in Germany

    SciTech Connect

    Teschendorff, V.; Sommer, F.; Depisch, F.

    1997-07-01

    In Germany, one third of the electrical power is generated by nuclear plants. ATHLET and S-RELAP5 are successfully applied for safety analyses of the existing PWR and BWR reactors and possible future reactors, e.g. EPR. Continuous development and assessment of thermal-hydraulic codes are necessary in order to meet present and future needs of licensing organizations, utilities, and vendors. Desired improvements include thermal-hydraulic models, multi-dimensional simulation, computational speed, interfaces to coupled codes, and code architecture. Real-time capability will be essential for application in full-scope simulators. Comprehensive code validation and quantification of uncertainties are prerequisites for future best-estimate analyses.

  10. TWIST: a transient two-dimensional intra-subassembly thermal hydraulics model for LMFBRs

    SciTech Connect

    Khatib-Rahbar, M.; Cazzoli, E.G.

    1984-06-03

    Mathematical models and numerical methods for a two-dimensional porous body simulation of steady state and transient thermal-hydraulics conditions in LMFBR subassemblies resulting in the TWIST computer code are presented. Comparison of calculated results to steady state and transient out-of-pile sodium experiments show good agreement for cross-assembly temperature distributions for a wide range of heat transfer and flow conditions.

  11. Test program element II blanket and shield thermal-hydraulic and thermomechanical testing, experimental facility survey

    SciTech Connect

    Ware, A.G.; Longhurst, G.R.

    1981-12-01

    This report presents results of a survey conducted by EG and G Idaho to determine facilities available to conduct thermal-hydraulic and thermomechanical testing for the Department of Energy Office of Fusion Energy First Wall/Blanket/Shield Engineering Test Program. In response to EG and G queries, twelve organizations (in addition to EG and G and General Atomic) expressed interest in providing experimental facilities. A variety of methods of supplying heat is available.

  12. Applications of a general thermal/hydraulic simulation tool

    NASA Technical Reports Server (NTRS)

    Cullimore, B. A.

    1989-01-01

    The analytic techniques, sample applications, and development status of a general-purpose computer program called SINDA '85/FLUINT (for systems improved numerical differencing analyzer, 1985 version with fluid integrator), designed for simulating thermal structures and internal fluid systems, are described, with special attention given to the applications of the fluid system capabilities. The underlying assumptions, methodologies, and modeling capabilities of the system are discussed. Sample applications include component-level and system-level simulations. A system-level analysis of a cryogenic storage system is presented.

  13. Feasibility Study on Thermal-Hydraulic Performance of Innovative Water Reactor for Flexible Fuel Cycle (FLWR)

    SciTech Connect

    Akira, Ohnuki; Kazuyuki, Takase; Masatoshi, Kureta; Hiroyuki, Yoshida; Hidesada, Tamai; Wei, Liu; Toru, Nakatsuka; Takeharu, Misawa; Hajime, Akimoto

    2006-07-01

    R and D project to investigate thermal-hydraulic performance in tight-lattice rod bundles of Innovative Water Reactor for Flexible Fuel Cycle (FLWR) is started at Japan Atomic Energy Agency (JAEA) in collaboration with power company, reactor vendors, universities since 2002. The FLWR can attain the favorable characteristics such as effective utilization of uranium resources, multiple recycling of plutonium, high burn-up and long operation cycle, based on matured LWR technologies. MOX fuel assemblies with tight lattice arrangement are used to increase the conversion ratio by reducing the moderation of neutron. Increasing the in-core void fraction also contributes to the reduction of neutron moderation. The confirmation of thermal-hydraulic feasibility is one of the most important R and D items for the FLWR because of the tight lattice configuration. In this paper, we will show the R and D plan and summarize experimental studies. The experimental study is performed mainly using large-scale (37-rod bundle) test facility. Most important objective of the large-scale test is to resolve a fundamental subject whether the core cooling under a tight-lattice configuration is feasible. The characteristics of critical power and flow behavior are investigated under different geometrical configuration and boundary conditions. The configuration parameter is the gap between rods (FY2004) and the rod bowing (FY2005). We have confirmed the thermal-hydraulic feasibility from the experimental results. (authors)

  14. Design of a Resistively Heated Thermal Hydraulic Simulator for Nuclear Rocket Reactor Cores

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Foote, John P.; Ramachandran, Narayanan; Wang, Ten-See; Anghaie, Samim

    2007-01-01

    A preliminary design study is presented for a non-nuclear test facility which uses ohmic heating to replicate the thermal hydraulic characteristics of solid core nuclear reactor fuel element passages. The basis for this testing capability is a recently commissioned nuclear thermal rocket environments simulator, which uses a high-power, multi-gas, wall-stabilized constricted arc-heater to produce high-temperature pressurized hydrogen flows representative of reactor core environments, excepting radiation effects. Initially, the baseline test fixture for this non-nuclear environments simulator was configured for long duration hot hydrogen exposure of small cylindrical material specimens as a low cost means of evaluating material compatibility. It became evident, however, that additional functionality enhancements were needed to permit a critical examination of thermal hydraulic effects in fuel element passages. Thus, a design configuration was conceived whereby a short tubular material specimen, representing a fuel element passage segment, is surrounded by a backside resistive tungsten heater element and mounted within a self-contained module that inserts directly into the baseline test fixture assembly. With this configuration, it becomes possible to create an inward directed radial thermal gradient within the tubular material specimen such that the wall-to-gas heat flux characteristics of a typical fuel element passage are effectively simulated. The results of a preliminary engineering study for this innovative concept are fully summarized, including high-fidelity multi-physics thermal hydraulic simulations and detailed design features.

  15. Thermal hydraulic modeling of the mock fuel facility

    NASA Astrophysics Data System (ADS)

    Gardner, Jacob

    The major focus of this thesis was to make improved three dimensional models of the Mock Fuel Facility. Three distinct experiment types run with the Mock Fuel Facility (MFF) were the main focus of this thesis. Two of the experiments were modeled and an in-depth analysis of the model results was performed to gain a better understanding of the Mock Fuel Facility. For the third experiment the process of creating a model was begun. There were multiple purposes for the work completed in this thesis. The work was done partially to gain a greater understanding of the UMass Lowell Research Reactor (UMLRR). There is minimal instrumentation within the UMLRR to measure localized temperatures within the UMLRR. It is hoped that the work done in this thesis will provide a basis for future modeling work which will give insight into the temperature profiles within the UMLRR. This work is also being done to gain insight into the capabilities of the COMSOL multiphysics modelling software and evaluate its potential for future modelling work. Finally this work is also being done for its potential as an educational tool. The MFF and COMSOL have potential to be used for experimental lab work by students to learn about computer modeling and validation.

  16. Thermal hydraulic modeling of a natural circulation loop

    NASA Astrophysics Data System (ADS)

    Jiang, S. Y.; Wu, X. X.; Zhang, Y. J.; Jia, H. J.

    The experiment was carried out on the test loop HRTL-5, which simulates the geometry and system design of a 5MW nuclear heating reactor. The analysis was based on a one-dimensional two-phase flow drift model with conservation equations for mass, steam, energy and momentum. Clausius-Clapeyron equation was used for the calculation of flashing front in the riser. A set of ordinary equations, which describes the behavior of two-phase flow in the natural circulation system, was derived through integration of the above conservation equations for the subcooled boiling region, bulk boiling region in the heated section and for the riser. The method of time-domain was used for the calculation. Both static and dynamic results are presented. System pressure, inlet subcooling and heat flux are varied as input parameters. The results show that subcooled boiling in the heated section and void flashing in the riser have significant influence on the distribution of the void fraction, mass flow rate and flow instability of the system, especially at low pressure. The response of mass flow rate, after a small disturbance in the heat flux is shown, and based on it the instability map of the system is given through experiment and calculation. There exists three regions in the instability map of the investigated natural circulation system, namely, the stable two-phase flow region, the unstable bulk and subcooled boiling flow region and the stable subcooled boiling and single phase flow region. The mechanism of two-phase flow oscillation is interpreted.

  17. Strategic Need for Multi-Purpose Thermal Hydraulic Loop for Support of Advanced Reactor Technologies

    SciTech Connect

    James E. O'Brien; Piyush Sabharwall; Su-Jong Yoon; Gregory K. Housley

    2014-09-01

    This report presents a conceptual design for a new high-temperature multi fluid, multi loop test facility for the INL to support thermal hydraulic, materials, and thermal energy storage research for nuclear and nuclear-hybrid applications. In its initial configuration, the facility will include a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The three loops will be thermally coupled through an intermediate heat exchanger (IHX) and a secondary heat exchanger (SHX). Research topics to be addressed with this facility include the characterization and performance evaluation of candidate compact heat exchangers such as printed circuit heat exchangers (PCHEs) at prototypical operating conditions, flow and heat transfer issues related to core thermal hydraulics in advanced helium-cooled and salt-cooled reactors, and evaluation of corrosion behavior of new cladding materials and accident-tolerant fuels for LWRs at prototypical conditions. Based on its relevance to advanced reactor systems, the new facility has been named the Advanced Reactor Technology Integral System Test (ARTIST) facility. Research performed in this facility will advance the state of the art and technology readiness level of high temperature intermediate heat exchangers (IHXs) for nuclear applications while establishing the INL as a center of excellence for the development and certification of this technology. The thermal energy storage capability will support research and demonstration activities related to process heat delivery for a variety of hybrid energy systems and grid stabilization strategies. Experimental results obtained from this research will assist in development of reliable predictive models for thermal hydraulic design and safety codes over the range of expected advanced reactor operating conditions. Proposed/existing IHX heat transfer and friction correlations and criteria will be assessed with information on materials compatibility and instrumentation

  18. Resolution of thermal-hydraulic safety and licensing issues for the system 80+{sup {trademark}} design

    SciTech Connect

    Carpentino, S.E.; Ritterbusch, S.E.; Schneider, R.E.

    1995-09-01

    The System 80+{sup {trademark}} Standard Design is an evolutionary Advanced Light Water Reactor (ALWR) with a generating capacity of 3931 MWt (1350 MWe). The Final Design Approval (FDA) for this design was issued by the Nuclear Regulatory Commission (NRC) in July 1994. The design certification by the NRC is anticipated by the end of 1995 or early 1996. NRC review of the System 80+ design has involved several new safety issues never before addressed in a regulatory atmosphere. In addition, conformance with the Electric Power Research Institute (EPRI) ALWR Utility Requirements Document (URD) required that the System 80+ plant address nuclear industry concerns with regard to design, construction, operation and maintenance of nuclear power plants. A large number of these issues/concerns deals with previously unresolved generic thermal-hydraulic safety issues and severe accident prevention and mitigation. This paper discusses the thermal-hydraulic analyses and evaluations performed for the System 80+ design to resolve safety and licensing issues relevant to both the Nuclear Stream Supply System (NSSS) and containment designs. For the NSSS design, the Safety Depressurization System mitigation capability and resolution of the boron dilution concern are described. Examples of containment design issues dealing with containment shell strength, robustness of the reactor cavity walls and hydrogen mixing under severe accident conditions are also provided. Finally, the overall approach used in the application of NRC`s new (NUREG-1465) radiological source term for System 80+ evaluation is described. The robustness of the System 80+ containment design to withstand severe accident consequences was demonstrated through detailed thermal-hydraulic analyses and evaluations. This advanced design to shown to meet NRC severe accident policy goals and ALWR URD requirements without any special design features and unnecessary costs.

  19. Coupled neutronic and thermal-hydraulic code benchmark activities at the International Nuclear Safety Center.

    SciTech Connect

    Podlazov, L. N.

    1998-07-29

    Two realistic benchmark problems are defined and used to assess the performance of coupled thermal-hydraulic and neutronic codes used in simulating dynamic processes in VVER-1000 and RBMK reactor systems. One of the problems simulates a design basis accident involving the ejection of three control and protection system rods from a VVER-1000 reactor. The other is based on a postulated rod withdrawal from an operating RBMK reactor. Preliminary results calculated by various codes are compared. While these results show significant differences, the intercomparisons performed so far provide a basis for further evaluation of code limitations and modeling assumptions.

  20. A parallelization approach to the COBRA-TF thermal-hydraulic subchannel code

    NASA Astrophysics Data System (ADS)

    Ramos, Enrique; Abarca, Agustín; Roman, Jose E.; Miró, Rafael

    2014-06-01

    In order to reduce the response time when simulating large reactors in detail, we have developed a parallel version of the thermal-hydraulic subchannel code COBRA-TF, with standard message passing technology (MPI). The parallelization is oriented to reactor cells, so it is best suited for models consisting of many cells. The generation of the Jacobian is parallelized, in such a way that each processor is in charge of generating the data associated to a subset of cells. Also, the solution of the linear system of equations is done in parallel, using the PETSc toolkit.

  1. Thermal-hydraulic aspects of flow inversion in a research reactor

    SciTech Connect

    Smith, R.S.; Woodruff, W.L.

    1986-11-01

    PARET, a neutronics and thermal-hydraulics computer code, has been modified to account for natural convection in a reactor core. The code was then used to analyze the flow inversion that occurs in a reactor with heat removal by forced convection in the downward direction after a pump failure. Typical results are shown for a number of parameters. Research reactors normally operating much above ten MW are predicted to experience nucleate boiling in the event of a flow inversion. Comparison with experimental results from the Belgian BR2 reactor indicated general agreement although nucleate boiling that was analytically predicted was not noted in the BR2 data.

  2. Integral and Separate Effects Tests for Thermal Hydraulics Code Validation for Liquid-Salt Cooled Nuclear Reactors

    SciTech Connect

    Peterson, Per

    2012-10-30

    The objective of the 3-year project was to collect integral effects test (IET) data to validate the RELAP5-3D code and other thermal hydraulics codes for use in predicting the transient thermal hydraulics response of liquid salt cooled reactor systems, including integral transient response for forced and natural circulation operation. The reference system for the project is a modular, 900-MWth Pebble Bed Advanced High Temperature Reactor (PB-AHTR), a specific type of Fluoride salt-cooled High temperature Reactor (FHR). Two experimental facilities were developed for thermal-hydraulic integral effects tests (IETs) and separate effects tests (SETs). The facilities use simulant fluids for the liquid fluoride salts, with very little distortion to the heat transfer and fluid dynamics behavior. The CIET Test Bay facility was designed, built, and operated. IET data for steady state and transient natural circulation was collected. SET data for convective heat transfer in pebble beds and straight channel geometries was collected. The facility continues to be operational and will be used for future experiments, and for component development. The CIET 2 facility is larger in scope, and its construction and operation has a longer timeline than the duration of this grant. The design for the CIET 2 facility has drawn heavily on the experience and data collected on the CIET Test Bay, and it was completed in parallel with operation of the CIET Test Bay. CIET 2 will demonstrate start-up and shut-down transients and control logic, in addition to LOFC and LOHS transients, and buoyant shut down rod operation during transients. Design of the CIET 2 Facility is complete, and engineering drawings have been submitted to an external vendor for outsourced quality controlled construction. CIET 2 construction and operation continue under another NEUP grant. IET data from both CIET facilities is to be used for validation of system codes used for FHR modeling, such as RELAP5-3D. A set of

  3. A three-dimensional transient neutronics routine for the TRAC-PF1 reactor thermal hydraulic computer code

    SciTech Connect

    Bandini, B.R. Los Alamos National Lab., NM

    1990-05-01

    No present light water reactor accident analysis code employs both high state of the art neutronics and thermal-hydraulics computational algorithms. Adding a modern three-dimensional neutron kinetics model to the present TRAC-PFI/MOD2 code would create a fully up to date pressurized water reactor accident evaluation code. After reviewing several options, it was decided that the Nodal Expansion Method would best provide the basis for this multidimensional transient neutronic analysis capability. Steady-state and transient versions of the Nodal Expansion Method were coded in both three-dimensional Cartesian and cylindrical geometries. In stand-alone form this method of solving the few group neutron diffusion equations was shown to yield efficient and accurate results for a variety of steady-state and transient benchmark problems. The Nodal Expansion Method was then incorporated into TRAC-PFl/MOD2. The combined NEM/TRAC code results agreed well with the EPRI-ARROTTA core-only transient analysis code when modelling a severe PWR control rod ejection accident.

  4. Thermal-Hydraulic Mockup Tests with Two-Phase Thermosyphon for Cold Neutron Source

    SciTech Connect

    Lee, C.H.; Chan, Y.K.; Lee, D.J.; Chang, C.J.; Hong, W.T.

    2002-07-01

    The improvement and utilization promotion project of the Taiwan Research Reactor (TRR-II) is carrying out at the Institute of Nuclear Energy Research (INER). The Cold Neutron Source (CNS) with a two-phase thermosyphon will be installed in the heavy water reactor of TRR-II. The hydrogen cold loop of TRR-II CNS consists of a cylindrical moderator cell, a single transfer tube, and a condenser. The thermal-hydraulic characteristics of a two-phase thermosyphon are investigated against the variations of mass inventory, tube geometry and heat loads. The thermal-hydraulic experiments have been performed using a full-scale mockup loop and a Freon-11 as a working fluid. The scaling approach is that the mass-fluxes of the liquid and the vapor in the Wallis correlation are identical between hydrogen and Freon-11. So, the same density ratio and a scaling heat load are applied to the loop. The flooding limitations as a function of initial Freon-11 inventory, transfer tube diameter, transfer tube geometry, and heat loads are presented. (authors)

  5. Thermal-hydraulic criteria for the APT tungsten neutron source design

    SciTech Connect

    Pasamehmetoglu, K.

    1998-03-01

    This report presents the thermal-hydraulic design criteria (THDC) developed for the tungsten neutron source (TNS). The THDC are developed for the normal operations, operational transients, and design-basis accidents. The requirements of the safety analyses are incorporated into the design criteria, consistent with the integrated safety management and the safety-by-design philosophy implemented throughout the APT design process. The phenomenology limiting the thermal-hydraulic design and the confidence level requirements for each limit are discussed. The overall philosophy of the uncertainty analyses and the confidence level requirements also are presented. Different sets of criteria are developed for normal operations, operational transients, anticipated accidents, unlikely accidents, extremely unlikely accidents, and accidents during TNS replacement. In general, the philosophy is to use the strictest criteria for the high-frequency events. The criteria is relaxed as the event frequencies become smaller. The THDC must be considered as a guide for the design philosophy and not as a hard limit. When achievable, design margins greater than those required by the THDC must be used. However, if a specific event sequence cannot meet the THDC, expensive design changes are not necessary if the single event sequence results in sufficient margin to safety criteria and does not challenge the plant availability or investment protection considerations.

  6. Thermal-hydraulic studies of the Advanced Neutron Source cold source

    SciTech Connect

    Williams, P.T.; Lucas, A.T.

    1995-08-01

    The Advanced Neutron Source (ANS), in its conceptual design phase at Oak Ridge National Laboratory, was to be a user-oriented neutron research facility producing the most intense steady-state flux of thermal and cold neutrons in the world. Among its many scientific applications, the production of cold neutrons was a significant research mission for the ANS. The cold neutrons come from two independent cold sources positioned near the reactor core. Contained by an aluminum alloy vessel, each cold source is a 410-mm-diam sphere of liquid deuterium that functions both as a neutron moderator and a cryogenic coolant. With nuclear heating of the containment vessel and internal baffling, steady-state operation requires close control of the liquid deuterium flow near the vessel`s inner surface. Preliminary thermal-hydraulic analyses supporting the cold source design were performed with heat conduction simulations of the vessel walls and multidimensional computational fluid dynamics simulations of the liquid deuterium flow and heat transfer. This report presents the starting phase of a challenging program and describes the cold source conceptual design, the thermal-hydraulic feasibility studies of the containment vessel, and the future computational and experimental studies that were planned to verify the final design.

  7. IAEA coordinated research project on thermal-hydraulics of Supercritical Water-Cooled Reactors (SCWRs)

    SciTech Connect

    Yamada, K.; Aksan, S. N.

    2012-07-01

    The Supercritical Water-Cooled Reactor (SCWR) is an innovative water-cooled reactor concept, which uses supercritical pressure water as reactor coolant. It has been attracting interest of many researchers in various countries mainly due to its benefits of high thermal efficiency and simple primary systems, resulting in low capital cost. The IAEA started in 2008 a Coordinated Research Project (CRP) on Thermal-Hydraulics of SCWRs as a forum to foster the exchange of technical information and international collaboration in research and development. This paper summarizes the activities and current status of the CRP, as well as major progress achieved to date. At present, 15 institutions closely collaborate in several tasks. Some organizations have been conducting thermal-hydraulics experiments and analysing the data, and others have been participating in code-to-test and/or code-to-code benchmark exercises. The expected outputs of the CRP are also discussed. Finally, the paper introduces several IAEA activities relating to or arising from the CRP. (authors)

  8. The Thermal Hydraulics of Tube Support Fouling in Nuclear Steam Generators

    SciTech Connect

    Rummens, Helena E.C.; Rogers, J.T.; Turner, C.W.

    2004-12-15

    It is hypothesized that the thermal-hydraulic environment plays a role in the fouling of tube supports in nuclear steam generators. Experiments were performed to simulate the thermal-hydraulic environment near various designs of supports. Pressure loss, local velocity, turbulence intensity, and local void fraction were measured to characterize the effect of the support. Fouling mechanisms specific to supports were inferred from these experimental data and from actual steam generator inspection results. An analytical model was developed to predict the rate of particulate deposition on the supports, to better understand the complex processes involved.This paper presents the following set of tools for assessing the fouling propensity of a given support design: (1) proposed fouling mechanisms, (2) criteria for support fouling propensity, (3) correlation of fouling with parameters such as mass flux and quality, (4) descriptions of experimental tools such as flow visualization and measurement of pressure-loss profiles, and (5) analytical tools.An important conclusion from this and our previous work is that the fouling propensity is greater with broached support plates, both trefoil and quatrefoil, than with lattice bar supports and formed bar supports, in which significant cross flows occur.

  9. Development of Design Technology on Thermal-Hydraulic Performance in Tight-Lattice Rod Bundles: II - Rod Bowing Effect on Boiling Transition under Transient Conditions

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Tamai, Hidesada; Kureta, Masatoshi; Ohnuki, Akira; Akimoto, Hajime

    A thermal-hydraulic feasibility project for an Innovative Water Reactor for Flexible fuel cycle (FLWR) has been performed since 2002. In this R&D project, large-scale thermal-hydraulic tests, several model experiments and development of advanced numerical analysis codes have been carried out. In this paper, we describe the critical power characteristics in a 37-rod tight-lattice bundle with rod bowing under transient states. It is observed that transient Boiling Transition (BT) always occurs axially at exit elevation of upper high-heat-flux region and transversely in the central area of the bundle, which is same as that under steady state. For the postulated power increase and flow decrease cases that may be possibly met in a normal operation of the FLWR, it is confirmed that no BT occurs when Initial Critical Power Ratio (ICPR) is 1.3. Moreover, when the transients are run under severer ICPR that causes BT, the transient critical powers are generally same as the steady ones. The experiments are analyzed with a modified TRAC-BFI code, where Japan Atomic Energy Agency (JAEA) newest critical power correlation is implemented for the BT judgement. The code shows good prediction for the occurrence or the non occurrence of the BT and predicts the BT starting time conservatively. Traditional quasi-steady state prediction of the transient BT is confirmed being applicable for the postulated abnormal transient processes in the tight-lattice bundle with rod bowing.

  10. Thermal-Hydraulic Performance of Cross-Shaped Spiral Fuel in High-Power-Density BWRs

    SciTech Connect

    Conboy, Thomas; Hejzlar, Pavel

    2006-07-01

    Power up-rating of existing nuclear reactors promises to be an area of great study for years to come. One of the major approaches to efficiently increasing power density is by way of advanced fuel design, and cross-shaped spiral-fuel has shown such potential in previous studies. Our work aims to model the thermal-hydraulic consequences of filling a BWR core with these spiral-shaped pins. The helically-wound pins have a cross-section resembling a 4-petaled flower. They fill an assembly in a tight bundle, their dimensions chosen carefully such that the petals of neighboring pins contact each other at their outer-most extent in a self-supporting lattice, absent of grid spacers. Potential advantages of this design raise much optimism from a thermal-hydraulic perspective. These spiral rods possess about 40% larger surface area than traditional rods, resulting in increased cooling and a proportional reduction in average surface heat flux. The thin petal-like extensions help by lowering thermal resistance between the hot central region of the pin and the bulk coolant flow, decreasing the maximum fuel temperature by 200 deg. C according to Finite Element (COSMOS) models. However, COSMOS models also predict a potential problem area at the 'elbow' region of two adjoining petals, where heat flux peaking is twice that along the extensions. Preliminary VIPRE models, which account only for the surface area increase, predict a 22% increase in critical power. It is also anticipated that the spiral twist would provide the flowing coolant with an additional radial velocity component, and likely promote turbulence and mixing within an assembly. These factors are expected to provide further margin for increased power density, and are currently being incorporated into the VIPRE model. The reduction in pressure drop inherent in any core without grid-spacers is also expected to be significant in aiding core stability, though this has not yet been quantified. Spiral-fuel seems to be a

  11. Advanced neutron source reactor thermal-hydraulic test loop facility description

    SciTech Connect

    Felde, D.K.; Farquharson, G.; Hardy, J.H.; King, J.F.; McFee, M.T.; Montgomery, B.H.; Pawel, R.E.; Power, B.H.; Shourbaji, A.A.; Siman-Tov, M.; Wood, R.J.; Yoder, G.L.

    1994-02-01

    The Thermal-Hydraulic Test Loop (THTL) is a facility for experiments constructed to support the development of the Advanced Neutron Source Reactor (ANSR) at Oak Ridge National Laboratory. The ANSR is both cooled and moderated by heavy water and uses uranium silicide fuel. The core is composed of two coaxial fuel-element annuli, each of different diameter. There are 684 parallel aluminum-clad fuel plates (252 in the inner-lower core and 432 in the outer-upper core) arranged in an involute geometry that effectively creates an array of thin rectangular flow channels. Both the fuel plates and the coolant channels are 1.27 mm thick, with a span of 87 mm (lower core), 70 mm (upper core), and 507-mm heated length. The coolant flows vertically upwards at a mass flux of 27 Mg/m{sup 2}s (inlet velocity of 25 m/s) with an inlet temperature of 45{degrees}C and inlet pressure of 3.2 MPa. The average and peak heat fluxes are approximately 6 and 12 MW/m{sup 2}, respectively. The availability of experimental data for both flow excursion (FE) and true critical heat flux (CHF) at the conditions applicable to the ANSR is very limited. The THTL was designed and built to simulate a full-length coolant subchannel of the core, allowing experimental determination of thermal limits under the expected ANSR thermal-hydraulic conditions. For these experimental studies, the involute-shaped fuel plates of the ANSR core with the narrow 1.27-mm flow gap are represented by a narrow rectangular channel. Tests in the THTL will provide both single- and two-phase thermal-hydraulic information. The specific phenomena that are to be examined are (1) single-phase heat-transfer coefficients and friction factors, (2) the point of incipient boiling, (3) nucleate boiling heat-transfer coefficients, (4) two-phase pressure-drop characteristics in the nucleate boiling regime, (5) flow instability limits, and (6) CHF limits.

  12. MNSR transient analyses and thermal-hydraulic safety margins for HEU and LEU cores using PARET

    SciTech Connect

    Olson, Arne P.; Jonah, S.A.

    2008-07-15

    Thermal-hydraulic performance characteristics of Miniature Neutron Source Reactors under long-term steady-state and transient conditions are investigated. Safety margins and limiting conditions attained during these events are determined. Modeling extensions are presented that enable the PARET/ANL code to realistically track primary loop heatup, heat exchange to the pool, and heat loss from the pool to air over the pool. Comparisons are made of temperature predictions for HEU and LEU fueled cores under transient conditions. Results are obtained using three different natural convection heat transfer correlations: the original (PARET/ANL version 5), Churchill-Chu, and an experiment- based correlation from the China Institute of Atomic Energy (CIAE). The MNSR, either fueled by HEU or by LEU, satisfies the design limits for long-term transient operation. (author)

  13. PEBBLE: a two-dimensional steady-state pebble bed reactor thermal hydraulics code

    SciTech Connect

    Vondy, D.R.

    1981-09-01

    This report documents the local implementation of the PEBBLE code to treat the two-dimensional steady-state pebble bed reactor thermal hydraulics problem. This code is implemented as a module of a computation system used for reactor core history calculations. Given power density data, the geometric description in (RZ), and basic heat removal conditions and thermal properties, the coolant properties, flow conditions, and temperature distributions in the pebble fuel elements are predicted. The calculation is oriented to the continuous fueling, steady state condition with consideration of the effect of the high energy neutron flux exposure and temperature history on the thermal conductivity. The coolant flow conditions are calculated for the same geometry as used in the neutronics calculation, power density and fluence data being used directly, and temperature results are made available for subsequent use.

  14. Use of separate-effects experiments in verification of system thermal-hydraulics

    SciTech Connect

    Saha, P.

    1982-01-01

    In recent years, a number of advanced, best-estimate systems codes such as TRAC and RELAP5 have been developed in order to accurately predict the consequences of various postulated accidents and transients in Light Water Reactor (LWR) systems. Although these codes had to go through some verification or assessment during the developmental stage, it has been recognized that an independent assessment of these codes is necessary before they should be applied to any decision making process. The USNRC is, therefore, sponsoring such efforts at several national laboratories including BNL. The overall assessment matrix includes separate-effects, integral and plant tests. However, this paper will focus on how the separate-effects tests can be utilized in verifying the thermal-hydraulic models that control the various stages of postulated accidents and/or transients in a LWR system.

  15. A comparison of the CHF between tubes and annuli under PWR thermal-hydraulic conditions

    SciTech Connect

    Herer, C.

    1995-09-01

    Critical Heat Flux (CHF) tests were carried out in three tubes with inside diameters of 8, 13, and 19.2 mm and in two annuli with an inner tube of 9.5 mm and an outer tube of 13 or 19.2 mm. All axial heat flux distributions in the test sections were uniform. The coolant fluid was Refrigerant 12 (Freon-12) under PWR thermal-hydraulic conditions (equivalent water conditions - Pressure: 7 to 20 MPa, Mass Velocity: 1000 to 6000 kg/m2/s, Local Quality: -75% to +45%). The effect of tube diameter is correlated for qualities under 15%. The change from the tube to the annulus configuration is correctly taken into account by the equivalent hydraulic diameter. Useful information is also provided concerning the effect of a cold wall in an annulus.

  16. Best Estimate Code System to Calculate Thermal & Hydraulic Phenomena in a Nuclear Reactor or Related System.

    Energy Science and Technology Software Center (ESTSC)

    1999-05-19

    Version 00 RELAP4/MOD7/101 performs best estimate analyses of nuclear reactors or related systems undergoing a transient. Transient thermal-hydraulic, two-phase phenomena are calculated from formulations of one-dimensional, homogeneous, equilibrium conservation equations for water mass, momentum, and energy. Heat structures are modeled using a transient one-dimensional heat conduction solution that is coupled to the fluid through heat transfer relations. Various explicit models are used to calculate nonhomogeneous, nonequilibrium behavior including a phase separation model, a vertical slipmore » model, and a nonequilibrium model. Other models are used to represent critical flow, reactor kinetics, pressurized water reactor reflood behavior, nuclear fuel rod swelling and blockage, and components such as pumps, valves, and accumulators.« less

  17. Thermal-hydraulic tests of a recirculation cooling installation for the Rostov nuclear power station

    NASA Astrophysics Data System (ADS)

    Balunov, B. F.; Balashov, V. A.; Il'in, V. A.; Krayushnikov, V. V.; Lychakov, V. D.; Meshalkin, V. V.; Ustinov, A. N.; Shcheglov, A. A.

    2013-09-01

    Results obtained from thermal-hydraulic tests of the recirculation cooling installation used as part of the air cooling system under the containments of the Rostov nuclear power station Units 3 and 4 are presented. The operating modes of the installation during normal operation (air cooling on the surface of finned tubes), under the conditions of anticipated operational occurrences (air cooling and steam condensation from a steam-air mixture), and during an accident (condensation of pure steam) are considered. Agreement is obtained between the results of tests and calculations carried out according to the recommendations given in the relevant regulatory documents. A procedure of carrying out thermal calculation for the case of steam condensation from a steam-air mixture on the surface of fins is proposed. The possibility of efficient use of the recirculation cooling installation in the system for reducing emergency pressure under the containment of a nuclear power station is demonstrated.

  18. Thermal-hydraulic processes involved in loss of residual heat removal during reduced inventory operation

    SciTech Connect

    Fletcher, C.D.; McHugh, P.R.; Naff, S.A.; Johnsen, G.W.

    1991-02-01

    This paper identifies the topics needed to understand pressurized water reactor response to an extended loss of residual heat removal event during refueling and maintenance outages. By identifying the possible plant conditions and cooling methods that would be used for each cooling mode, the controlling thermal-hydraulic processes and phenomena were identified. Controlling processes and phenomena include: gravity drain, core water boil-off, and reflux cooling processes. Important subcategories of the reflux cooling processes include: the initiation of reflux cooling from various plant conditions, the effects of air on reflux cooling, core level depression effects, issues regarding the steam generator secondaries, and the special case of boiler-condenser cooling with once-through steam generators. 25 refs., 6 figs., 1 tab.

  19. COMSOL Simulations for Steady State Thermal Hydraulics Analyses of ORNL s High Flux Isotope Reactor

    SciTech Connect

    Khane, Vaibhav B; Jain, Prashant K; Freels, James D

    2012-01-01

    Simulation models for steady state thermal hydraulics analyses of Oak Ridge National Laboratory s High Flux Isotope Reactor (HFIR) have been developed using the COMSOL Multiphysics simulation software. A single fuel plate and coolant channel of each type of HFIR fuel element was modeled in three dimensions; coupling to adjacent plates and channels was accounted for by using periodic boundary conditions. The standard k- turbulence model was used in simulating turbulent flow with conjugate heat transfer. The COMSOL models were developed to be fully parameterized to allow assessing impacts of fuel fabrication tolerances and uncertainties related to low enriched uranium (LEU) fuel design and reactor operating parameters. Heat source input for the simulations was obtained from separate Monte Carlo N Particle calculations for the axially non-contoured LEU fuel designs at the beginning of the reactor cycle. Mesh refinement studies have been performed to calibrate the models against the pressure drop measured across the HFIR core.

  20. Simulating HFIR Core Thermal Hydraulics Using 3D-2D Model Coupling

    SciTech Connect

    Travis, Adam R; Freels, James D; Ekici, Kivanc

    2013-01-01

    A model utilizing interdimensional variable coupling is presented for simulating the thermal hydraulic interactions of the High Flux Isotope Reactor (HFIR) core at Oak Ridge National Laboratory (ORNL). The model s domain consists of a single, explicitly represented three-dimensional fuel plate and a simplified two-dimensional coolant channel slice. In simplifying the coolant channel, and thus the number of mesh points in which the Navier-Stokes equations must be solved, the computational cost and solution time are both greatly reduced. In order for the reduced-dimension coolant channel to interact with the explicitly represented fuel plate, however, interdimensional variable coupling must be enacted along all shared boundaries. The primary focus of this paper is in detailing the collection, storage, passage, and application of variables across this interdimensional interface. Comparisons are made showing the general speed-up associated with this simplified coupled model.

  1. Numerical simulation of combined natural and forced convection during thermal-hydraulic transients. [LMFBR

    SciTech Connect

    Domanus, H.M.; Sha, W.T.

    1981-01-01

    The single-phase COMMIX (COMponent MIXing) computer code performs fully three-dimensional, transient, thermal-hydraulic analyses of liquid-sodium LMFBR components. It solves the conservation equations of mass, momentum, and energy as a boundary-value problem in space and as an initial-value problem in time. The concepts of volume porosity, surface permeability and distributed resistance, and heat source have been employed in quasi-continuum (rod-bundle) applications. Results from three transient simulations involving forced and natural convection are presented: (1) a sodium-filled horizontal pipe initially of uniform temperature undergoing an inlet velocity rundown transient, as well as an inlet temperature transient; (2) a 19-pin LMFBR rod bundle undergoing a velocity transient; and, (3) a simulation of a water test of a 1/10-scale outlet plenum undergoing both velocity and temperature transients.

  2. Thermal-hydraulics for space power, propulsion, and thermal management system design

    SciTech Connect

    Krotiuk, W.J.

    1990-01-01

    The present volume discusses thermal-hydraulic aspects of current space projects, Space Station thermal management systems, the thermal design of the Space Station Free-Flying Platforms, the SP-100 Space Reactor Power System, advanced multi-MW space nuclear power concepts, chemical and electric propulsion systems, and such aspects of the Space Station two-phase thermal management system as its mechanical pumped loop and its capillary pumped loop's supporting technology. Also discussed are the startup thaw concept for the SP-100 Space Reactor Power System, calculational methods and experimental data for microgravity conditions, an isothermal gas-liquid flow at reduced gravity, low-gravity flow boiling, computations of Space Shuttle high pressure cryogenic turbopump ball bearing two-phase coolant flow, and reduced-gravity condensation.

  3. Conceptual design and thermal-hydraulic characteristics of natural circulation Boiling Water Reactors

    SciTech Connect

    Kataoka, Y.; Suzuki, H.; Murase, M. ); Horiuchi, T.; Miki, M. )

    1988-08-01

    A natural circulation boiling water reactor (BWR) with a rated capacity of 600 MW (electric) has been conceptually designed for small- and medium-sized light water reactors. The components and systems in the reactor are simplified by eliminating pumped recirculation systems and pumped emergency core cooling systems. Consequently, the volume of the reactor building is -- 50% of that for current BWRs with the same rated capacity; the construction period is also shorter. Its thermal-hydraulic characteristics, critical power ratio (CPR) and flow stability at steady state, decrease in the minimum CPR (..delta..MCPR) at transients, and the two-phase mixture level in the reactor pressure vessel (RPV) during accidents are investigated. The two-phase mixture level in the RPV during an accident does not decrease to lower than the top of the core; the core uncovery and heatup of fuel cladding would not occur during any loss-of-coolant accident.

  4. Interface requirements to couple thermal-hydraulic codes to severe accident codes: ATHLET-CD

    SciTech Connect

    Trambauer, K.

    1997-07-01

    The system code ATHLET-CD is being developed by GRS in cooperation with IKE and IPSN. Its field of application comprises the whole spectrum of leaks and large breaks, as well as operational and abnormal transients for LWRs and VVERs. At present the analyses cover the in-vessel thermal-hydraulics, the early phases of core degradation, as well as fission products and aerosol release from the core and their transport in the Reactor Coolant System. The aim of the code development is to extend the simulation of core degradation up to failure of the reactor pressure vessel and to cover all physically reasonable accident sequences for western and eastern LWRs including RMBKs. The ATHLET-CD structure is highly modular in order to include a manifold spectrum of models and to offer an optimum basis for further development. The code consists of four general modules to describe the reactor coolant system thermal-hydraulics, the core degradation, the fission product core release, and fission product and aerosol transport. Each general module consists of some basic modules which correspond to the process to be simulated or to its specific purpose. Besides the code structure based on the physical modelling, the code follows four strictly separated steps during the course of a calculation: (1) input of structure, geometrical data, initial and boundary condition, (2) initialization of derived quantities, (3) steady state calculation or input of restart data, and (4) transient calculation. In this paper, the transient solution method is briefly presented and the coupling methods are discussed. Three aspects have to be considered for the coupling of different modules in one code system. First is the conservation of masses and energy in the different subsystems as there are fluid, structures, and fission products and aerosols. Second is the convergence of the numerical solution and stability of the calculation. The third aspect is related to the code performance, and running time.

  5. FY 1995 progress report on the ANS thermal-hydraulic test loop operation and results

    SciTech Connect

    Siman-Tov, M.; Felde, D.K.; Farquharson, G.; McDuffee, J.L.; McFee, M.T.; Ruggles, A.E.; Wendel, M.W.; Yoder, G.L.

    1997-07-01

    The Thermal-Hydraulic Test Loop (THTL) is an experimental facility constructed to support the development of the Advanced Neutron Source Reactor (ANSR) at Oak Ridge National Laboratory (ORNL). The THTL facility was designed and built to provide known thermal-hydraulic (T/H) conditions for a simulated full-length coolant subchannel of the ANS reactor core, thus facilitating experimental determination of FE and CHF thermal limits under expected ANSR T/H conditions. Special consideration was given to allow operation of the system in a stiff mode (constant flow) and in a soft mode (constant pressure drop) for proper implementation of true FE and DNB experiments. The facility is also designed to examine other T/H phenomena, including onset of incipient boiling (IB), single-phase heat transfer coefficients and friction factors, and two-phase heat transfer and pressure drop characteristics. Tests will also be conducted that are representative of decay heat levels at both high pressure and low pressure as well as other quasi-equilibrium conditions encountered during transient scenarios. A total of 22 FE tests and 2 CHF tests were performed during FY 1994 and FY 1995 with water flowing vertically upward. Comparison of these data as well as extensive data from other investigators led to a proposed modification to the Saha and Zuber correlation for onset of significant void (OSV), applied to FE prediction. The modification takes into account a demonstrated dependence of the OSV or FE thermal limits on subcooling levels, especially in the low subcooling regime.

  6. Thermal hydraulic-severe accident code interfaces for SCDAP/RELAP5/MOD3.2

    SciTech Connect

    Coryell, E.W.; Siefken, L.J.; Harvego, E.A.

    1997-07-01

    The SCDAP/RELAP5 computer code is designed to describe the overall reactor coolant system thermal-hydraulic response, core damage progression, and fission product release during severe accidents. The code is being developed at the Idaho National Engineering Laboratory under the primary sponsorship of the Office of Nuclear Regulatory Research of the U.S. Nuclear Regulatory Commission. The code is the result of merging the RELAP5, SCDAP, and COUPLE codes. The RELAP5 portion of the code calculates the overall reactor coolant system, thermal-hydraulics, and associated reactor system responses. The SCDAP portion of the code describes the response of the core and associated vessel structures. The COUPLE portion of the code describes response of lower plenum structures and debris and the failure of the lower head. The code uses a modular approach with the overall structure, input/output processing, and data structures following the pattern established for RELAP5. The code uses a building block approach to allow the code user to easily represent a wide variety of systems and conditions through a powerful input processor. The user can represent a wide variety of experiments or reactor designs by selecting fuel rods and other assembly structures from a range of representative core component models, and arrange them in a variety of patterns within the thermalhydraulic network. The COUPLE portion of the code uses two-dimensional representations of the lower plenum structures and debris beds. The flow of information between the different portions of the code occurs at each system level time step advancement. The RELAP5 portion of the code describes the fluid transport around the system. These fluid conditions are used as thermal and mass transport boundary conditions for the SCDAP and COUPLE structures and debris beds.

  7. FY 1993 progress report on the ANS thermal-hydraulic test loop operation and results

    SciTech Connect

    Siman-Tov, M.; Felde, D.K.; Farquharson, G.

    1994-07-01

    The Thermal-Hydraulic Test Loop (THTL) is an experimental facility constructed to support the development of the Advanced Neutron Source Reactor (ANSR) at Oak Ridge National Laboratory (ORNL). Highly subcooled heavy-water coolant flows vertically upward at a very high mass flux of almost 27 MG/m{sup 2}-s. In a parallel fuel plate configuration as in the ANSR, the flow is subject to a potential excursive static-flow instability that can very rapidly lead to flow starvation and departure from nucleate boiling (DNB) in the ``hot channel``. The current correlations and experimental data bases for flow excursion (FE) and critical heat flux (CHF) seldom evaluate the specific combination of ANSR operating parameters. The THTL facility was designed and built to provide known thermal-hydraulic (T/H) conditions for a simulated full-length coolant subchannel of the ANS reactor core, thus facilitating experimental determination of FE and CHF thermal limits under expected ANSR T/H conditions. A series of FE tests with water flowing vertically upward was completed over a nominal heat flux range of 6 to 17 MW/m{sup 2}, a mass flux range of 8 to 28 Mg/m{sup 2}-s, an exit pressure range of 1.4 to 2.1 MPa, and an inlet temperature range of 40 to 50 C. FE experiments were also conducted using as ``soft`` a system as possible to secure a true FE phenomena (actual secondary burnout). True DNB experiments under similar conditions were also conducted. To the author`s knowledge, no other FE data have been reported in the literature to date that dover such a combination of conditions of high mass flux, high heat flux, and moderately high pressure.

  8. Neutron Tomography Using Mobile Neutron Generators for Assessment of Void Distributions in Thermal Hydraulic Test Loops

    NASA Astrophysics Data System (ADS)

    Andersson, P.; Bjelkenstedt, T.; Sundén, E. Andersson; Sjöstrand, H.; Jacobsson-Svärd, S.

    Detailed knowledge of the lateral distribution of steam (void) and water in a nuclear fuel assembly is of great value for nuclear reactor operators and fuel manufacturers, with consequences for both reactor safety and economy of operation. Therefore, nuclear relevant two-phase flows are being studied at dedicated thermal-hydraulic test loop, using two-phase flow systems ranging from simplified geometries such as heated circular pipes to full scale mock-ups of nuclear fuel assemblies. Neutron tomography (NT) has been suggested for assessment of the lateral distribution of steam and water in such test loops, motivated by a good ability of neutrons to penetrate the metallic structures of metal pipes and nuclear fuel rod mock-ups, as compared to e.g. conventional X-rays, while the liquid water simultaneously gives comparatively good contrast. However, these stationary test loops require the measurement setup to be mobile, which is often not the case for NT setups. Here, it is acknowledged that fast neutrons of 14 MeV from mobile neutron generators constitute a viable option for a mobile NT system. We present details of the development of neutron tomography for this purpose at the division of Applied Nuclear Physics at Uppsala University. Our concept contains a portable neutron generator, exploiting the fusion reaction of deuterium and tritium, and a detector with plastic scintillator elements designed to achieveadequate spatial and energy resolution, all mounted in a light-weight frame without collimators or bulky moderation to allow for a mobile instrument that can be moved about the stationary thermal hydraulic test sections. The detector system stores event-to-event pulse-height information to allow for discrimination based on the energy deposition in the scintillator elements.

  9. Current and anticipated use of thermal-hydraulic codes for BWR transient and accident analyses in Japan

    SciTech Connect

    Arai, Kenji; Ebata, Shigeo

    1997-07-01

    This paper summarizes the current and anticipated use of the thermal-hydraulic and neutronic codes for the BWR transient and accident analyses in Japan. The codes may be categorized into the licensing codes and the best estimate codes for the BWR transient and accident analyses. Most of the licensing codes have been originally developed by General Electric. Some codes have been updated based on the technical knowledge obtained in the thermal hydraulic study in Japan, and according to the BWR design changes. The best estimates codes have been used to support the licensing calculations and to obtain the phenomenological understanding of the thermal hydraulic phenomena during a BWR transient or accident. The best estimate codes can be also applied to a design study for a next generation BWR to which the current licensing model may not be directly applied. In order to rationalize the margin included in the current BWR design and develop a next generation reactor with appropriate design margin, it will be required to improve the accuracy of the thermal-hydraulic and neutronic model. In addition, regarding the current best estimate codes, the improvement in the user interface and the numerics will be needed.

  10. Investigation of the possibility to use a fine-mesh solver for resolving coupled neutronics and thermal-hydraulics

    SciTech Connect

    Jareteg, K.; Vinai, P.; Demaziere, C.

    2013-07-01

    The development of a fine-mesh coupled neutronic/thermal-hydraulic solver is touched upon in this paper. The reported work investigates the feasibility of using finite volume techniques to discretize a set of conservation equations modeling neutron transport, fluid dynamics, and heat transfer within a single numerical tool. With the long-term objective of developing fine-mesh computing capabilities for a few selected fuel assemblies in a nuclear core, this preliminary study considers an infinite array of a single fuel assembly having a finite height. Thermal-hydraulic conditions close to the ones existing in PWRs are taken as a first test case. The neutronic modeling relies on the diffusion approximation in a multi-energy group formalism, with cross-sections pre-calculated and tabulated at the sub-pin level using a Monte Carlo technique. The thermal-hydraulics is based on the Navier-Stokes equations, complemented by an energy conservation equation. The non-linear coupling terms between the different conservation equations are fully resolved using classical iteration techniques. Early tests demonstrate that the numerical tool provides an unprecedented level of details of the coupled solution estimated within the same numerical tool and thus avoiding any external data transfer, using fully consistent models between the neutronics and the thermal-hydraulics. (authors)

  11. Investigation of the MTC noise estimation with a coupled neutronic/thermal-hydraulic dedicated model - 'Closing the loop'

    SciTech Connect

    Demaziere, C.; Larsson, V.

    2012-07-01

    This paper investigates the reliability of different noise estimators aimed at determining the Moderator Temperature Coefficient (MTC) of reactivity in Pressurized Water Reactors. By monitoring the inherent fluctuations in the neutron flux and moderator temperature, an on-line monitoring of the MTC without perturbing reactor operation is possible. In order to get an accurate estimation of the MTC by noise analysis, the point-kinetic component of the neutron noise and the core-averaged moderator temperature noise have to be used. Because of the scarcity of the in-core instrumentation, the determination of these quantities is difficult, and several possibilities thus exist for estimating the MTC by noise analysis. Furthermore, the effect of feedback has to be negligible at the frequency chosen for estimating the MTC in order to get a proper determination of the MTC. By using an integrated neutronic/thermal- hydraulic model specifically developed for estimating the three-dimensional distributions of the fluctuations in neutron flux, moderator properties, and fuel temperature, different approaches for estimating the MTC by noise analysis can be tested individually. It is demonstrated that a reliable MTC estimation can only be provided if the core is equipped with a sufficient number of both neutron detectors and temperature sensors, i.e. if the core contain in-core detectors monitoring both the axial and radial distributions of the fluctuations in neutron flux and moderator temperature. It is further proven that the effect of feedback is negligible for frequencies higher than 0.1 Hz, and thus the MTC noise estimations have to be performed at higher frequencies. (authors)

  12. TWO-PHASE FLOW STUDIES IN NUCLEAR POWER PLANT PRIMARY CIRCUITS USING THE THREE-DIMENSIONAL THERMAL-HYDRAULIC CODE BAGIRA.

    SciTech Connect

    KOHURT, P. , KALINICHENKO, S.D.; KROSHILIN, A.E.; KROSHILIN, V.E.; SMIRNOV, A.V.

    2006-06-04

    In this paper we present recent results of the application of the thermal-hydraulic code BAGIRA to the analysis of complex two-phase flows in nuclear power plants primary loops. In particular, we performed benchmark numerical simulation of an integral LOCA experiment performed on a test facility modeling the primary circuit of VVER-1000. In addition, we have also analyzed the flow patterns in the VVER-1000 steam generator vessel for stationary and transient operation regimes. For both of these experiments we have compared the numerical results with measured data. Finally, we demonstrate the capabilities of BAGIRA by modeling a hypothetical severe accident for a VVER-1000 type nuclear reactor. The numerical analysis, which modeled all stages of the hypothetical severe accident up to the complete ablation of the reactor cavity bottom, shows the importance of multi-dimensional flow effects.

  13. Simplified modeling of liquid sodium medium with temperature and velocity gradient using real thermal-hydraulic data. Application to ultrasonic thermometry in sodium fast reactor

    NASA Astrophysics Data System (ADS)

    Massacret, N.; Moysan, J.; Ploix, M. A.; Jeannot, J. P.; Corneloup, G.

    2013-01-01

    In the framework of the French R&D program for the Generation IV reactors and specifically for the sodium cooled fast reactors (SFR), studies are carried out on innovative instrumentation methods in order to improve safety and to simplify the monitoring of fundamental physical parameters during reactor operation. The aim of the present work is to develop an acoustic thermometry method to follow up the sodium temperature at the outlet of subassemblies. The medium is a turbulent flow of liquid sodium at 550 °C with temperature inhomogeneities. To understand the effect of disturbance created by this medium, numerical simulations are proposed. A ray tracing code has been developed with Matlabin order to predict acoustic paths in this medium. This complex medium is accurately described by thermal-hydraulic data which are issued from a simulation of a real experiment in Japan. The analysis of these results allows understanding the effects of medium inhomogeneities on the further thermometric acoustic measurement.

  14. Applicability of RELAP5-3D for Thermal-Hydraulic Analyses of a Sodium-Cooled Actinide Burner Test Reactor

    SciTech Connect

    C. B. Davis

    2006-07-01

    The Actinide Burner Test Reactor (ABTR) is envisioned as a sodium-cooled, fast reactor that will burn the actinides generated in light water reactors to reduce nuclear waste and ease proliferation concerns. The RELAP5-3D computer code is being considered as the thermal-hydraulic system code to support the development of the ABTR. An evaluation was performed to determine the applicability of RELAP5-3D for the analysis of a sodium-cooled fast reactor. The applicability evaluation consisted of several steps, including identifying the important transients and phenomena expected in the ABTR, identifying the models and correlations that affect the code’s calculation of the important phenomena, and evaluating the applicability of the important models and correlations for calculating the important phenomena expected in the ABTR. The applicability evaluation identified code improvements and additional models needed to simulate the ABTR. The accuracy of the calculated thermodynamic and transport properties for sodium was also evaluated.

  15. Integral Circulation Experiment: Thermal-hydraulic simulator of a heavy liquid metal reactor

    NASA Astrophysics Data System (ADS)

    Tarantino, M.; Agostini, P.; Benamati, G.; Coccoluto, G.; Gaggini, P.; Labanti, V.; Venturi, G.; Class, A.; Liftin, K.; Forgione, N.; Moreau, V.

    2011-08-01

    In the frame of the IP-EUROTRANS (6th Framework Program EU), domain DEMETRA, ENEA was involved in the Work Package 4.5 " Large Scale Integral Test", devoted to characterize a relevant portion of a sub-critical ADS reactor block (core, internals, heat exchanger, cladding for fuel elements) in steady state, transient and accidental conditions. More in details ENEA assumed the commitment to perform an integral experiment aiming to reproduce the primary flow path of the " European Transmutation Demonstrator (ETD)" pool-type nuclear reactor, cooled by Lead Bismuth Eutectics (LBE). This experimental activity, called " Integral Circulation Experiment (ICE)", has been implemented merging the efforts of several research institutes, among which, besides ENEA, FZK, CRS4 and University of Pisa, allowing to design an appropriate test section to be installed in the CIRCE facility. The goal of the experiments is therefore to demonstrate the technological feasibility of a heavy liquid metal (HLM) nuclear system pool-type in a relevant scale (1 MW), investigating the related thermal-hydraulic behaviour (heat source and heat exchanger coupling, primary system and downcomer coupling, gas trapping into the main stream, thermal stratification in the pool, forced and mixed convection in rod bundle) under both steady state and transient conditions. Moreover the preliminary as well as the planned experiments aims to address performance and reliability tests of some prototypical components, such as heat source, heat exchanger, chemistry control system. The paper reports a detailed description of the experiment, the design performed for the test section and its main components as well as the preliminary experimental results carried out in the first experimental campaign run on the CIRCE pool, which consists of a full power steady state test. The preliminary experimental results carried out have demonstrate the proper design of the test section trough the experiment goals as well as the HLM

  16. Thermal-Hydraulic Design of a Fluoride High-Temperature Demonstration Reactor

    SciTech Connect

    Carbajo, Juan J; Qualls, A L

    2016-01-01

    INTRODUCTION The Fluoride High-Temperature Reactor (FHR) named the Demonstration Reactor (DR) is a novel reactor concept using molten salt coolant and TRIstructural ISOtropic (TRISO) fuel that is being developed at Oak Ridge National Laboratory (ORNL). The objective of the FHR DR is to advance the technology readiness level of FHRs. The FHR DR will demonstrate technologies needed to close remaining gaps to commercial viability. The FHR DR has a thermal power of 100 MWt, very similar to the SmAHTR, another FHR ORNL concept (Refs. 1 and 2) with a power of 125 MWt. The FHR DR is also a small version of the Advanced High Temperature Reactor (AHTR), with a power of 3400 MWt, cooled by a molten salt and also being developed at ORNL (Ref. 3). The FHR DR combines three existing technologies: (1) high-temperature, low-pressure molten salt coolant, (2) high-temperature coated-particle TRISO fuel, (3) and passive decay heat cooling systems by using Direct Reactor Auxiliary Cooling Systems (DRACS). This paper presents FHR DR thermal-hydraulic design calculations.

  17. Methodology of Internal Assessment of Uncertainty and Extension to Neutron Kinetics/Thermal-Hydraulics Coupled Codes

    SciTech Connect

    Petruzzi, A.; D'Auria, F.; Giannotti, W.; Ivanov, K.

    2005-02-15

    The best-estimate calculation results from complex system codes are affected by approximations that are unpredictable without the use of computational tools that account for the various sources of uncertainty.The code with (the capability of) internal assessment of uncertainty (CIAU) has been previously proposed by the University of Pisa to realize the integration between a qualified system code and an uncertainty methodology and to supply proper uncertainty bands each time a nuclear power plant (NPP) transient scenario is calculated. The derivation of the methodology and the results achieved by the use of CIAU are discussed to demonstrate the main features and capabilities of the method.In a joint effort between the University of Pisa and The Pennsylvania State University, the CIAU method has been recently extended to evaluate the uncertainty of coupled three-dimensional neutronics/thermal-hydraulics calculations. The result is CIAU-TN. The feasibility of the approach has been demonstrated, and sample results related to the turbine trip transient in the Peach Bottom NPP are shown. Notwithstanding that the full implementation and use of the procedure requires a database of errors not available at the moment, the results give an idea of the errors expected from the present computational tools.

  18. Incorporating Artificial Neural Networks in the dynamic thermal-hydraulic model of a controlled cryogenic circuit

    NASA Astrophysics Data System (ADS)

    Carli, S.; Bonifetto, R.; Savoldi, L.; Zanino, R.

    2015-09-01

    A model based on Artificial Neural Networks (ANNs) is developed for the heated line portion of a cryogenic circuit, where supercritical helium (SHe) flows and that also includes a cold circulator, valves, pipes/cryolines and heat exchangers between the main loop and a saturated liquid helium (LHe) bath. The heated line mimics the heat load coming from the superconducting magnets to their cryogenic cooling circuits during the operation of a tokamak fusion reactor. An ANN is trained, using the output from simulations of the circuit performed with the 4C thermal-hydraulic (TH) code, to reproduce the dynamic behavior of the heated line, including for the first time also scenarios where different types of controls act on the circuit. The ANN is then implemented in the 4C circuit model as a new component, which substitutes the original 4C heated line model. For different operational scenarios and control strategies, a good agreement is shown between the simplified ANN model results and the original 4C results, as well as with experimental data from the HELIOS facility confirming the suitability of this new approach which, extended to an entire magnet systems, can lead to real-time control of the cooling loops and fast assessment of control strategies for heat load smoothing to the cryoplant.

  19. Use of laser flow visualization techniques in reactor component thermal-hydraulic studies

    SciTech Connect

    Oras, J.J.; Kasza, K.E.

    1984-01-01

    To properly design reactor components, an understanding of the various thermal hydraulic phenomena, i.e., thermal stratification flow channeling, recirculation regions, shear layers, etc., is necessary. In the liquid metal breeder reactor program, water is commonly used to replace sodium in experimental testing to facilitate the investigations, (i.e., reduce cost and allow fluid velocity measurement or flow pattern study). After water testing, limited sodium tests can be conducted to validate the extrapolation of the water results to sodium. This paper describes a novel laser flow visualization technique being utilized at ANL together with various examples of its use and plans for further development. A 3-watt argon-ion laser, in conjunction with a cylindrical opticallens, has been used to create a thin (approx. 1-mm) intense plane of laser light for the illuminiation of various flow tracers in precisely defined regions of interest within a test article having windows. Both fluorescing dyes tuned to the wavelength of the laser light (to maximize brightness and sharpness of flow image) and small (< 0.038-mm, 0.0015-in. dia.) opaque, nearly neutrally buoyant polystyrene spheres (to ensure that the particles trace out the fluid motion) have been used as flow tracers.

  20. Scalable three-dimensional thermal-hydraulic best-estimate code BAGIRA

    SciTech Connect

    Vasenin, V. A.; Krivchikov, M. A.; Kroshilin, V. E.; Kroshilin, A. E.; Roganov, V. A.

    2012-07-01

    The three-dimensional thermal-hydraulic best-estimate code BAGIRA for modeling of multi-phase flows was developed without any artificial physical assumptions or simplifications. The mathematical model is based on numerical approximations of exact three-dimensional equations, including effective multi-dimensional models for turbulent heat and mass transfer. With use of BAGIRA All-Russian Scientific Research Inst. of Nuclear Power Plants (VNIIAES) has developed a full-scope and analytical simulators using BAGIRA for a number of power plants with VVER-1000 and RBMK type design, which are being used in Kalinin, Kursk, Smolensk, Chernobyl, and Bilibino NPPs. The comparison of calculated and experimental results shows that BAGIRA can successfully reproduce the most important processes observed in experiments. BAGIRA is implemented in FORTRAN. It is a relatively complicated code that tends to decompose task by aspects. Such a style is welcoming for extensions, which can be added without code redesign. We would like to present an aspect-oriented mix-in approach for BAGIRA code extension. It allows to make it scalable in number of directions leaving original code base untouched. It is possible to add new effects/units, and even to produce a supercomputer version of the code. The last is a key point today due to availability of low-cost compact supercomputers, which makes building compact NPP simulators possible. (authors)

  1. Summary of papers on current and anticipated uses of thermal-hydraulic codes

    SciTech Connect

    Caruso, R.

    1997-07-01

    The author reviews a range of recent papers which discuss possible uses and future development needs for thermal/hydraulic codes in the nuclear industry. From this review, eight common recommendations are extracted. They are: improve the user interface so that more people can use the code, so that models are easier and less expensive to prepare and maintain, and so that the results are scrutable; design the code so that it can easily be coupled to other codes, such as core physics, containment, fission product behaviour during severe accidents; improve the numerical methods to make the code more robust and especially faster running, particularly for low pressure transients; ensure that future code development includes assessment of code uncertainties as integral part of code verification and validation; provide extensive user guidelines or structure the code so that the `user effect` is minimized; include the capability to model multiple fluids (gas and liquid phase); design the code in a modular fashion so that new models can be added easily; provide the ability to include detailed or simplified component models; build on work previously done with other codes (RETRAN, RELAP, TRAC, CATHARE) and other code validation efforts (CSAU, CSNI SET and IET matrices).

  2. Theoretical investigation of the thermal hydraulic behaviour of a slab-type liquid metal target

    SciTech Connect

    Dury, T.V.; Smith, B.L.

    1996-06-01

    The thermal hydraulics codes CFDS-FLOW3D and ASTEC have been used to simulate a slabtype design of ESS spallation target. This design is single-skinned, and of tapering form (in the beam direction), with rounded sides in a cross-section through a plane normal to the beam. The coolant fluid used is mercury, under forced circulation, with an inlet temperature of 180{degrees}C. The goal of these computer studies was to understand the behaviour of the coolant flow, and hence to arrive at a design which optimises the heat extraction for a given beam power - in the sense of: (1) minimising the peak local fluid temperature within the target, (2) maintaining an acceptable temperature level and distribution over and through the target outer wall, (3) keeping the overall fluid pressure loss through the complete target to a minimum, (4) staying within the physical limits of overall size required, particularly in the region of primary spallation. Two- and three-dimensional models have been used, with different arrangements and design of internal baffles, and different coolant flow distributions at the target inlet. Nominal total inlet mass flow was 245 kg/s, and a heat deposition profile used which was based on the proton beam energy distribution. This gave a nominal total heat load of 3.23 MW - of which 8.2kW were deposited in the window steel.

  3. Thermal-Hydraulic Analyses of the Submersion-Subcritical Safe Space (S and 4) Reactor

    SciTech Connect

    King, Jeffrey C.; El-Genk, Mohamed S.

    2007-01-30

    Detailed thermal-hydraulic analyses of the S and 4 reactor are performed to reduce the maximum fuel temperature of the Submersion-Subcritical Safe Space (S and 4) reactor to below 1300 K. The fuel pellet diameter is reduced from 1.315 cm to 1.25 cm, decreasing the thermal resistance of the pellets and each of the 1.54 cm diameter coolant channels in the reactor core are replaced with several 0.3 cm ID channels to increase the effective heat transfer area and to encourage mixing of the flowing helium-28% xenon coolant. The calculated maximum fuel temperature decreased from more than 1900 K to 1302 K and the relative pressure drop across the reactor core increased from 1.98% to 2.57% of the inlet pressure. Moving the concentric inlet and outlet pipes 1 cm towards the center of the reactor core encouraged more flow through the center region, further reducing the maximum fuel temperature by 14 degrees to 1288 K, with a negligible effect on the core pressure losses.

  4. Current and anticipated uses of thermal-hydraulic codes in Spain

    SciTech Connect

    Pelayo, F.; Reventos, F.

    1997-07-01

    Spanish activities in the field of Applied Thermal-Hydraulics are steadily increasing as the codes are becoming practicable enough to efficiently sustain engineering decision in the Nuclear Power industry. Before reaching this point, a lot of effort has been devoted to achieve this goal. This paper briefly describes this process, points at the current applications and draws conclusions on the limitations. Finally it establishes the applications where the use of T-H codes would be worth in the future, this in turn implies further development of the codes to widen the scope of application and improve the general performance. Due to the different uses of the codes, the applications mainly come from the authority, industry, universities and research institutions. The main conclusion derived from this paper establishes that further code development is justified if the following requisites are considered: (1) Safety relevance of scenarios not presently covered is established. (2) A substantial gain in margins or the capability to use realistic assumptions is obtained. (3) A general consensus on the licensability and methodology for application is reached. The role of Regulatory Body is stressed, as the most relevant outcome of the project may be related to the evolution of the licensing frame.

  5. Thermal-hydraulic characteristics of a Westinghouse Model 51 steam generator. Volume 2. Appendix A, numerical results. Interim report. [CALIPSOS code numerical data

    SciTech Connect

    Fanselau, R.W.; Thakkar, J.G.; Hiestand, J.W.; Cassell, D.

    1981-03-01

    The Comparative Thermal-Hydraulic Evaluation of Steam Generators program represents an analytical investigation of the thermal-hydraulic characteristics of four PWR steam generators. The analytical tool utilized in this investigation is the CALIPSOS code, a three-dimensional flow distribution code. This report presents the steady state thermal-hydraulic characteristics on the secondary side of a Westinghouse Model 51 steam generator. Details of the CALIPSOS model with accompanying assumptions, operating parameters, and transport correlations are identified. Comprehensive graphical and numerical results are presented to facilitate the desired comparison with other steam generators analyzed by the same flow distribution code.

  6. Proceedings of the 7th International Meeting on Nuclear Reactor Thermal-Hydraulics NURETH-7. Volume 1, Sessions 1-5

    SciTech Connect

    Block, R.C.; Feiner, F.

    1995-09-01

    This document, Volume 1, includes papers presented at the 7th International Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-7) September 10--15, 1995 at Saratoga Springs, N.Y. The following subjects are discussed: Progress in analytical and experimental work on the fundamentals of nuclear thermal-hydraulics, the development of advanced mathematical and numerical methods, and the application of advancements in the field in the development of novel reactor concepts. Also combined issues of thermal-hydraulics and reactor/power-plant safety, core neutronics and/or radiation. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  7. Thermal-Hydraulics and Electrochemistry of a Boiling Solution in a Porous Sludge Pile A Test Methodology

    SciTech Connect

    R.F. Voelker

    2001-05-03

    When boiling occurs in a pile of porous corrosion products (sludge), chemical species can concentrate. These species can react with the corrosion products and transform the sludge into a rock hard mass and/or create a corrosive environment. In-situ measurements are required to improve the understanding of this process, and the thermal-hydraulic and electrochemical environment in the pile. A test method is described that utilizes a water heated instrumented tube array in an autoclave to perform the in-situ measurements. As a proof of method feasibility, tests were performed in an alkaline phosphate solution. The test data is discussed. Temperature changes and electrochemical potential shifts were used to indicate when chemicals concentrate and if/when the pile hardens. Post-test examinations confirmed hardening occurred. Experiments were performed to reverse the hardening process. A one-dimensional model, utilizing capillary forces, was developed to understand the thermal-hydraulic measurements.

  8. ATHENA (Advanced Thermal Hydraulic Energy Network Analyzer) simulation of a loss of coolant accident in a space reactor

    SciTech Connect

    Roth, P.A.; Shumway, R.W.

    1988-01-01

    The Advanced Thermal Hydraulic Energy Network Analyzer (ATHENA) code was used to simulate a loss-of-coolant accident (LOCA) in a conceptual space reactor design. ATHENA provides the capability of simulating the thermal-hydraulic behavior of the wide variety of systems which are being considered for use in space reactors. Flow loops containing any one of several available working fluids may interact through thermal connections with other loops containing the same or a different working fluid. The code can be used to model special systems such as: heat pipes, point reactor kinetics, plant control systems, turbines, valves, and pumps. This work demonstrates the application of the thermal radiation model which has been recently incorporated into ATHENA and verifies the need for supplemental reactor cooling to prevent reactor fuel damage in the event of a LOCA.

  9. History of the 185-/189-D thermal hydraulics laboratory and its effects on reactor operations at the Hanford Site

    SciTech Connect

    Gerber, M.S.

    1994-09-01

    The 185-D deaeration building and the 189-D refrigeration building were constructed at Hanford during 1943 and 1944. Both buildings were constructed as part of the influent water cooling system for D reactor. The CMS studies eliminated the need for 185-D function. Early gains in knowledge ended the original function of the 189-D building mission. In 1951, 185-D and 189-D were converted to a thermal-hydraulic laboratory. The experiments held in the thermal-hydraulic lab lead to historic changes in Hanford reactor operations. In late 1951, the exponential physics experiments were moved to the 189-D building. In 1958, new production reactor experiments were begun in 185/189-D. In 1959, Plutonium Recycle Test Reactor experiments were added to the 185/189-D facility. By 1960, the 185/189-D thermal hydraulics laboratory was one of the few full service facilities of its type in the nation. During the years 1961--1963 tests continued in the facility in support of existing reactors, new production reactors, and the Plutonium Recycle Test Reactor. In 1969, Fast Flux Test Facility developmental testings began in the facility. Simulations in 185/189-D building aided in the N Reactor repairs in the 1980`s. In 1994 the facility was nominated to the National Register of Historic Places, because of its pioneering role over many years in thermal hydraulics, flow studies, heat transfer, and other reactor coolant support work. During 1994 and 1995 it was demolished in the largest decontamination and decommissioning project thus far in Hanford Site history.

  10. RELAP5 model to simulate the thermal-hydraulic effects of grid spacers and cladding rupture during reflood

    SciTech Connect

    Nithianandan, C.K.; Klingenfus, J.A.; Reilly, S.S.

    1995-09-01

    Droplet breakup at spacer grids and a cladding swelled and ruptured locations plays an important role in the cooling of nuclear fuel rods during the reflooding period of a loss-of-coolant accident (LOCA) in a pressurized water reactor (PWR). During the reflood phase, a spacer grid affects the thermal-hydraulic system behavior through increased turbulence, droplet breakup due to impact on grid straps, grid rewetting, and liquid holdup due to grid form losses. Recently, models to simulate spacer grid effects and blockage and rupture effects on system thermal hydraulics were added to the B&W Nuclear Technologies (BWNT) version of the RELAP5/MOD2 computer code. Several FLECHT-SEASET forced reflood tests, CCTF Tests C1-19 and C2-6, SCTF Test S3-15, and G2 Test 561 were simulated using RELAP5/MOD2-B&W to verify the applicability of the model at the cladding swelled and rupture locations. The results demonstrate the importance of modeling the thermal-hydraulic effects due to grids, and clad swelling and rupture to correctly predict the clad temperature response during the reflood phase of large break LOCA. The RELAP5 models and the test results are described in this paper.