Science.gov

Sample records for ph range 2-11

  1. Effect of electrolyte pH on CIEF with narrow pH range ampholytes.

    PubMed

    Páger, Csilla; Vargová, Andrea; Takácsi-Nagy, Anna; Dörnyei, Ágnes; Kilár, Ferenc

    2012-11-01

    CIEF of components following sequential injection of ampholytes and the sample zone offers unique advantages for analysis. The most important one of these is the efficient separation of amphoteric compounds having pIs outside the pH range of the ampholytes applied, but the resolution of the components can be increased by an adequate setup in the injection protocol. In this study, the effect of the pH of the anolyte and catholyte on the selectivity and speed of the isoelectric focusing was investigated. Changes in the pH values significantly influenced the resolution and the length of the pH gradient, while changes in the charge state of components were also observed. Three ampholyte solutions (from different suppliers) covering only two pH units were used for the analyses of substituted nitrophenol dyes in uncoated capillary. With appropriate setup, the components, with pIs not covered by the ampholyte pH range, migrated in charged state outside the pH gradient. This phenomenon is preferable for coupling isoelectric focusing to MS detection, by evading the undesirable ion suppression effect of ampholytes. PMID:23086725

  2. CCD camera full range pH sensor array.

    PubMed

    Safavi, A; Maleki, N; Rostamzadeh, A; Maesum, S

    2007-01-15

    Changes in colors of an array of optical sensors that responds in full pH range were recorded using a CCD camera. The data of the camera were transferred to the computer through a capture card. Simple software was written to read the specific color of each sensor. In order to associate sensor array responses with pH values, a number of different mathematics and chemometrics methods were investigated and compared. The results show that the use of "Microsoft Excel's Solver" provides results which are in very good agreement with those obtained with chemometric methods such as artificial neural network (ANN) and partial least square (PLS) methods. PMID:19071333

  3. Fluorescent pH Sensors for Broad-Range pH Measurement Based on a Single Fluorophore.

    PubMed

    Qi, Jing; Liu, Daying; Liu, Xiaoyan; Guan, Shiquan; Shi, Fengli; Chang, Hexi; He, Huarui; Yang, Guangming

    2015-06-16

    We constructed a series of novel optical sensors for determination of broad-range pH based on a single fluorophore and multi-ionophores with different pK(a) values. These optical sensors use photoinduced electron transfer (PET) as the signal transduction and follow the design concept of "fluorophore-spacer-receptor (ionophore)" which employs 4-amino-1,8-naphthalimide as the single fluorophore, ethyl moiety as the spacer, and a series of phenols and anilines as the receptors. Key to the successful development of this sensor system is that coupling the receptors with six different pK(a) values with a single fluorophore produces the correct optical properties. This rational design affords a series of optical pH sensors with unique fluorescence property and accurately tunable pH measurement ranging from 1 to 14 pH units. Because of covalent immobilization of the indicators, these sensors demonstrate excellent stability, adequate reversibility, and satisfactory dynamic range up to full pH ranges (pH 1-14). PMID:25893705

  4. Narrow pH Range of Surface Water Bodies Receiving Pesticide Input in Europe.

    PubMed

    Bundschuh, Mirco; Weyers, Arnd; Ebeling, Markus; Elsaesser, David; Schulz, Ralf

    2016-01-01

    Fate and toxicity of the active ingredients (AI's) of plant protection products in surface waters is often influenced by pH. Although a general range of pH values is reported in literature, an evaluation targeting aquatic ecosystems with documented AI inputs is lacking at the larger scale. Results show 95% of European surface waters (n = 3075) with a documented history of AI exposure fall within a rather narrow pH range, between 7.0 and 8.5. Spatial and temporal variability in the data may at least be partly explained by the calcareous characteristics of parental rock material, the affiliation of the sampling site to a freshwater ecoregion, and the photosynthetic activity of macrophytes (i.e., higher pH values with photosynthesis). Nonetheless, the documented pH range fits well with the standard pH of most ecotoxicological test guidelines, confirming the fate and ecotoxicity of AIs are usually adequately addressed. PMID:26424537

  5. A Novel Anisotropic Supramolecular Hydrogel with High Stability over a Wide pH Range

    PubMed Central

    Zhao, Fan; Gao, Yuan; Shi, Junfeng; Browdy, Hayley M.; Xu, Bing

    2011-01-01

    The hydrolysis of carboxylic ester bond, by a base or catalyzed by an enzyme at weak basic condition, servers as the only path to obtain a novel anisotropic supramolecular hydrogel that is stable over a wide pH range. This result not only expands the molecular scope of supramolecular hydrogelators, but also illustrates the design principles for creating pH stable supramolecular soft materials. PMID:21138331

  6. Dynamic method as a simple approach for wide range pH measurements using optodes.

    PubMed

    Safavi, A; Banazadeh, A R

    2007-02-01

    In this paper, a flow system equipped with an optode has been suggested for wide range pH measurements. Triacetyl cellulose was used as the optode membrane in which different pH indicators were immobilized. For extending the pH range, the dynamic response rather than the steady-state response of the optode was measured. Since diffusion is the main process governing the system response, different parameters having influence on diffusion of the analyte into the membrane were optimized. Under the optimum conditions, wide range pH determination (up to 11 pH units) is simply achieved regardless of the pKa of the pH indicator immobilized in the membrane. To validate the application of the method different indicators with different structures and pKa values were tested and the results were all confirming the precision and accuracy of the method. The suggested method also has combined advantages of flow systems together with inherent advantages of kinetic systems. PMID:17386563

  7. Wide pH range tolerance in extremophiles: towards understanding an important phenomenon for future biotechnology.

    PubMed

    Dhakar, Kusum; Pandey, Anita

    2016-03-01

    Microorganisms that inhabit the extreme pH environments are classified as acidophiles and alkaliphiles. A number of studies emerged from extreme high (hot springs, hydrothermal vents) as well as low temperature (arctic and antarctic regions, sea water, ice shelf, marine sediments, cold deserts, glaciers, temperate forests, and plantations) environments have highlighted the occurrence of microorganisms (thermophiles/psychrophiles) with the ability to tolerate wide pH range, from acidic to alkaline (1.5-14.0 in some cases), under laboratory conditions. However, the sampling source (soil/sediment) of these microorganisms showed the pH to be neutral or slightly acidic/alkaline. The aim of the present review is to discuss the phenomenon of wide pH range tolerance possessed by these microorganisms as a hidden character in perspective of their habitats, possible mechanisms, phylogeny, ecological and biotechnological relevance, and future perspectives. It is believed that the genome is a probable reservoir of the hidden variations. The extremophiles have the ability to adapt against the environmental change that is probably through the expression/regulation of the specific genes that were already present in the genome. The phenomenon is likely to have broad implications in biotechnology, including both environmental (such as bioremediation, biodegradation, and biocontrol), and industrial applications (as a source of novel extremozymes and many other useful bioactive compounds with wide pH range tolerance). PMID:26780356

  8. Design, calibration and application of broad-range optical nanosensors for determining intracellular pH.

    PubMed

    Søndergaard, Rikke V; Henriksen, Jonas R; Andresen, Thomas L

    2014-12-01

    Particle-based nanosensors offer a tool for determining the pH in the endosomal-lysosomal system of living cells. Measurements providing absolute values of pH have so far been restricted by the limited sensitivity range of nanosensors, calibration challenges and the complexity of image analysis. This protocol describes the design and application of a polyacrylamide-based nanosensor (∼60 nm) that covalently incorporates two pH-sensitive fluorophores, fluorescein (FS) and Oregon Green (OG), to broaden the sensitivity range of the sensor (pH 3.1-7.0), and uses the pH-insensitive fluorophore rhodamine as a reference fluorophore. The nanosensors are spontaneously taken up via endocytosis and directed to the lysosomes where dynamic changes in pH can be measured with live-cell confocal microscopy. The most important focus areas of the protocol are the choice of pH-sensitive fluorophores, the design of calibration buffers, the determination of the effective range and especially the description of how to critically evaluate results. The entire procedure typically takes 2-3 weeks. PMID:25411952

  9. Stibiconite (Sb3O6OH), senarmontite (Sb2O3) and valentinite (Sb2O3): Dissolution rates at pH 2-11 and isoelectric points

    NASA Astrophysics Data System (ADS)

    Biver, M.; Shotyk, W.

    2013-05-01

    Batch reactor experiments were carried out in order to derive rate laws for the proton promoted dissolution of the main natural antimony oxide phases, namely stibiconite (idealized composition SbSb2O6OH), senarmontite (cubic Sb2O3) and (metastable) valentinite (orthorhombic Sb2O3) over the range 2 ⩽ pH ⩽ 11, under standard conditions and ionic strength I = 0.01 mol l-1. The rates of antimony release by stibiconite were r = (2.2 ± 0.2) × 10-9 a(H+)0.11±0.01 mol m-2 s-1 for 2.00 ⩽ pH ⩽ 4.74 and r = (4.3 ± 0.2) × 10-10 a(H+)-0.030±0.003 mol m-2 s-1 for 4.74 ⩽ pH ⩽ 10.54. The rates of dissolution of senarmontite were r = (5.3 ± 2.2) × 10-7 a(H+)0.54±0.05 mol m-2 s-1 for 2.00 ⩽ pH ⩽ 6.93 and r = (1.4 ± 0.3) × 10-14 a(H+)-0.53±0.07 mol m-2 s-1 for 6.93 ⩽ pH ⩽ 10.83. The rates of dissolution of valentinite were r = (6.3 ± 0.2) × 10-8 a(H+)0.052±0.003 mol m-2 s-1 for 1.97 ⩽ pH ⩽ 6.85. Above pH = 6.85, valentinite was found to dissolve at a constant rate of r = (2.79 ± 0.05) × 10-8 mol m-2 s-1. Activation energies were determined at selected pH values in the acidic and basic domain, over the temperature range 25-50 °C. The values for stibiconite are -10.6 ± 1.9 kJ mol-1 (pH = 2.00) and 53 ± 14 kJ mol-1 (pH = 8.7). For senarmontite, we found 46.6 ± 4.7 kJ mol-1 (pH = 3.0) and 68.1 ± 6.1 kJ mol-1 (pH = 9.9) and for valentinite 41.9 ± 1.1 kJ mol-1 (pH = 3.0) and 39.0 ± 4.6 kJ mol-1 (pH = 9.9). These activation energies are interpreted in the text. The solubility of stibiconite at 25 °C in the pH domain from 2 to 10 was determined; solubilities decrease from 452.0 μg l-1 (as Sb) at pH = 2.00 to 153.2 μg l-1 at pH = 7.55 and increase again in the basic region, up to 176.6 μg l-1 at pH = 9.92. A graphical synopsis of all the kinetic results, including those of stibnite (Sb2S3) from earlier work, is presented. This allows an easy comparison between the dissolution rates of stibnite and the minerals examined in the present work

  10. Carbon dots with strong excitation-dependent fluorescence changes towards pH. Application as nanosensors for a broad range of pH.

    PubMed

    Barati, Ali; Shamsipur, Mojtaba; Abdollahi, Hamid

    2016-08-10

    In this study, preparation of novel pH-sensitive N-doped carbon dots (NCDs) using glucose and urea is reported. The prepared NCDs present strong excitation-dependent fluorescence changes towards the pH that is a new behavior from these nanomaterials. By taking advantage of this unique behavior, two separated ratiometric pH sensors using emission spectra of the NCDs for both acidic (pH 2.0 to 8.0) and basic (pH 7.0 to 14.0) ranges of pH are constructed. Additionally, by considering the entire Excitation-Emission Matrix (EEM) of NCDs as analytical signal and using a suitable multivariate calibration method, a broad range of pH from 2.0 to 14.0 was well calibrated. The multivariate calibration method was independent from the concentration of NCDs and resulted in a very low average prediction error of 0.067 pH units. No changes in the predicted pH under UV irradiation (for 3 h) and at high ionic strength (up to 2 M NaCl) indicated the high stability of this pH nanosensor. The practicality of this pH nanosensor for pH determination in real water samples was validated with good accuracy and repeatability. PMID:27282748

  11. Comparison of Rumen Fluid pH by Continuous Telemetry System and Bench pH Meter in Sheep with Different Ranges of Ruminal pH

    PubMed Central

    Reis, Leonardo F.; Minervino, Antonio H. H.; Araújo, Carolina A. S. C.; Sousa, Rejane S.; Oliveira, Francisco L. C.; Rodrigues, Frederico A. M. L.; Meira-Júnior, Enoch B. S.; Barrêto-Júnior, Raimundo A.; Mori, Clara S.; Ortolani, Enrico L.

    2014-01-01

    We aimed to compare the measurements of sheep ruminal pH using a continuous telemetry system or a bench pH meter using sheep with different degrees of ruminal pH. Ruminal lactic acidosis was induced in nine adult crossbred Santa Ines sheep by the administration of 15 g of sucrose per kg/BW. Samples of rumen fluid were collected at the baseline, before the induction of acidosis (T0) and at six, 12, 18, 24, 48, and 72 hours after the induction for pH measurement using a bench pH meter. During this 72-hour period, all animals had electrodes for the continuous measurement of pH. The results were compared using the Bland-Altman analysis of agreement, Pearson coefficients of correlation and determination, and paired analysis of variance with Student's t-test. The measurement methods presented a strong correlation (r = 0.94, P < 0.05) but the rumen pH that was measured continuously using a telemetry system resulted in lower values than the bench pH meter (overall mean of 5.38 and 5.48, resp., P = 0.0001). The telemetry system was able to detect smaller changes in rumen fluid pH and was more accurate in diagnosing both subacute ruminal lactic acidosis and acute ruminal lactic acidosis in sheep. PMID:24967422

  12. A hydrogel based nanosensor with an unprecedented broad sensitivity range for pH measurements in cellular compartments.

    PubMed

    Zhang, M; Søndergaard, R V; Kumar, E K P; Henriksen, J R; Cui, D; Hammershøj, P; Clausen, M H; Andresen, T L

    2015-11-01

    Optical pH nanosensors have been applied for monitoring intracellular pH in real-time for about two decades. However, the pH sensitivity range of most nanosensors is too narrow, and measurements that are on the borderline of this range may not be correct. Furthermore, ratiometric measurements of acidic intracellular pH (pH < 4) in living cells are still challenging due to the lack of suitable nanosensors. In this paper we successfully developed a multiple sensor, a fluorophore based nanosensor, with an unprecedented broad measurement range from pH 1.4 to 7.0. In this nanosensor, three pH-sensitive fluorophores (difluoro-Oregon Green, Oregon Green 488, and fluorescein) and one pH-insensitive fluorophore (Alexa 568) were covalently incorporated into a nanoparticle hydrogel matrix. With this broad range quadruple-labelled nanosensor all physiological relevant pH levels in living cells can be measured without being too close to the limits of its pH-range. The nanosensor exhibits no susceptibility to interference by other intracellular ions at physiological concentrations. Due to its positive surface charge it is spontaneously internalized by HeLa cells and localizes to the lysosomes where the mean pH was measured at 4.6. This quadruple-labelled nanosensor performs accurate measurements of fluctuations of lysosomal pH in both directions, which was shown by treatment with the V-ATPase inhibitor bafilomycin A1 or its substrate ATP in HeLa cells. These measurements indicate that this novel quadruple-labelled nanosensor is a promising new tool for measuring the pH of acidic compartments in living cells. PMID:26393332

  13. Wide range pH measurements using a single H(+)-selective chromoionophore and a time-based flow method.

    PubMed

    Safavi, Afsaneh; Rostamzadeh, Abolfazl; Maesum, Saeed

    2006-02-28

    A hydrophilic transparent triacetyl cellulose membrane was adopted as a pH optode by immobilizing highly selective and sensitive Nile blue indicator on the membrane. Contrary to the common procedure for determinations using optodes, in which a steady state response is measured, a new approach is introduced in which the dynamic response of the optode is used as the analytical signal. While in common procedures, pH optodes exhibit limited linear dynamic range (often 2-4 pH units only), it is shown that in a time-based flow method, an optode with only one acid-base indicator can be used for measurement in the pH range of 0-10. The procedure is simple, inexpensive and rapid. PMID:18970487

  14. Proteomic profiling combining solution-phase isoelectric fractionation with two-dimensional gel electrophoresis using narrow-pH-range immobilized pH gradient gels with slightly overlapping pH ranges.

    PubMed

    Lee, KiBeom; Pi, KyungBae

    2010-01-01

    This paper describes a simple new approach toward improving resolution of two-dimensional (2-D) protein gels used to explore the mammalian proteome. The method employs sample prefractionation using solution-phase isoelectric focusing (IEF) to split the mammalian proteome into well-resolved pools. As crude samples are thus prefractionated by pI range, very-narrow-pH-range 2-D gels can be subsequently employed for protein separation. Using custom pH partition membranes and commercially available immobilized pH gradient (IPG) strips, we maximized the total separation distance and throughput of seven samples obtained by prefractionation. Both protein loading capacity and separation quality were higher than the values obtained by separation of fractionated samples on narrow-pH-range 2-D gels; the total effective IEF separation distance was ~82 cm over the pH range pH 3-10. This improved method for analyzing prefractionated samples on narrow-pH-range 2-D gels allows high protein resolution without the use of large gels, resulting in decreased costs and run times. PMID:19813004

  15. The characteristic AgcoreAushell nanoparticles as SERS substrates in detecting dopamine molecules at various pH ranges

    PubMed Central

    Bu, Yanru; Lee, Sang-Wha

    2015-01-01

    AgcoreAushell nanoparticles (NPs) are a promising surface-enhanced Raman scattering (SERS) substrate, which can offer a high enhancement factor through the combined effect of the high SERS activity of the Ag core and the biocompatibility of the Au shell. In this study, AgcoreAushell NPs were examined as SERS substrates for the sensitive detection of dopamine (DA) molecules in an aqueous solution. The SERS activity of the AgcoreAushell NPs was strongly dependent on the pH of the solution. When the pH of the solution was acidic (pH <5) or basic (pH >9), the AgcoreAushell NPs exhibited negligible SERS activity toward the DA molecules, due to the weakened interactions (or repulsive forces) between the DA molecules and the core–shell NPs. On the other hand, the AgcoreAushell NPs exhibited a high SERS activity in the intermediate pH ranges (pH 7–9), due to the molecular bridging effect of DA molecules, which allows probe molecules to be located at the interstitial junctions (so-called hot spots) between the core–shell NPs. The results of this study highlight the importance of probe-induced clustering of core–shell NPs in the SERS measurements at physiological pH. PMID:26345418

  16. Earth orientation from lunar laser range-differencing. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Leick, A.

    1978-01-01

    For the optimal use of high precision lunar laser ranging (LLR), an investigation regarding a clear definition of the underlying coordinate systems, identification of estimable quantities, favorable station geometry and optimal observation schedule is given.

  17. A single design strategy for dual sensitive pH probe with a suitable range to map pH in living cells

    PubMed Central

    Yu, Kang-Kang; Hou, Ji-Ting; Li, Kun; Yao, Qian; Yang, Jin; Wu, Ming-Yu; Xie, Yong-Mei; Yu, Xiao-Qi

    2015-01-01

    Due to the lack of a proper imaging approach, a veracious pH map of normal and abnormal cell is still rare. In this work, we presented a rhodamine-salicylaldehyde combination (Rh-SA2) as a novel pH probe, which has dual sensitive units for both acidic and basic environment. This dual sensitive probe acts like a chameleon in living cells and offers the doubling guarantees for endocellular pH mapping. Moreover, a quantitative measurement of cellular pH changes was allowed and the endocellular pH values under drug-associated stimuli were also investigated. PMID:26486180

  18. Pulsed multiwavelength laser ranging system. Ph.D. Thesis - Maryland Univ.

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.

    1982-01-01

    A pulsed multiwavelength laser ranging system for measuring atmospheric delay was built and tested, and its theoretical performance limits were calculated. The system uses a dye modelocked ND:YAG laser, which transmits 70 psec wide pulses simultaneously at 1064, 532, and 355 nm. The differential delay of the 1064 and 355 nm pulses is measured by a specially calibrated waveform digitizer to estimate the dry atmospheric delay. The delay time of the 532 nm pulse is used to measure the target distance. Static crossed field photomultipliers are used as detectors for all wavelengths. Theoretical analysis shows that path curvature and atmospheric turbulence are fundamental limits to the ranging accuracy of both single and multicolor systems operating over horizontal paths. For two color systems, an additional error is caused by the uncertainty in the path averaged water vapor. The standard deviation of the multicolor instrument's timing measurements is directly proportional to the laser pulse width plus photomultiplier jitter divided by the square root of the received photoelectron number. The prototype system's maximum range is km, which is limited by atmospheric and system transmission losses at 355 nm. System signal detection and false alarm calculations are also presented.

  19. Miniature sodium-selective ion-exchange optode with fluorescent pH chromoionophores and tunable dynamic range.

    PubMed

    Shortreed, M; Bakker, E; Kopelman, R

    1996-08-01

    An extension into the fluorescence mode of ion-exchange optodes is described, allowing miniaturization and its concomitant benefits. A micrometer-size, fluorescent fiber-optic sodium sensor is described, based on a highly sodium-selective, crown ether-capped calix[4]arene ionophore, capable of ratiometric operation. Three sensor configurations are given, employing different lipophilic, fluorescent pH chromoionophores (Nile Blue derivatives), demonstrating the ability to improve the detection limit and tune the dynamic range to the desired region of interest. Two of the sensors are of special interest in that their working ranges lie within those desired for measuring intracellular cytosolic or blood levels of sodium at the respective physiological pH. These optodes have excellent sodium selectivity, with other physiologically relevant cations (e.g., potassium, calcium, and magnesium) being highly discriminated. Three simple mathematical relationships are given for the three experimentally used fluorescent signal mechanisms (intensity, intensity ratios, and inner-filter or energy transfer effects), permitting visualization on a single graph and enabling direct comparison of the different sensors' optical responses on a common platform. Finally, these optodes measure the sample's sodium activity, rather than the concentration, provided that the sample's pH is measured simultaneously by another sensor, such as a glass electrode. PMID:8694263

  20. Continuous fast focusing in a trapezoidal void channel based on bidirectional isotachophoresis in a wide pH range.

    PubMed

    Stastna, Miroslava; Slais, Karel

    2015-10-01

    This study concentrates on development of instrumentation for focusing and separation of analytes in continuous flow. It is based on bidirectional ITP working in wide pH range with separation space of closed void channel of trapezoidal shape and continuous supply of sample. The novel instrumentation is working with electrolyte system formulated previously and on the contrary to devices currently available, it allows preparative separation and concentration of cationic, anionic, and amphoteric analytes simultaneously and in wide pH range. The formation of sharp edges at zone boundaries as well as low conductivity zones are avoided in suggested system and thus, local overheating is eliminated allowing for high current densities at initial stages of focusing. This results in high focusing speed and reduction of analysis time, which is particularly advantageous for separations performed in continuous flow systems. The closed void channel is designed to avoid basic obstacles related to liquid leakage, bubbles formation, contacts with electrodes, channel height and complicated assembling. The performance of designed instrumentation and focusing dynamics were tested by using colored low molecular mass pH indicators for local pH determination, focusing pattern, and completion. In addition, feasibility and separation efficiency were demonstrated by focusing of cytochrome C and myoglobin. The collection of fractions at instrument output allows for subsequent analysis and identification of sample components that are concentrated and conveniently in form of solution for further processing. Since the instrumentation operates with commercially available simple defined buffers and compounds without need of carrier ampholytes background, it is economically favorable. PMID:26104601

  1. Recombinant broad-range phospholipase C from Listeria monocytogenes exhibits optimal activity at acidic pH.

    PubMed

    Huang, Qiongying; Gershenson, Anne; Roberts, Mary F

    2016-06-01

    The broad-range phospholipase C (PLC) from Listeria monocytogenes has been expressed using an intein expression system and characterized. This zinc metalloenzyme, similar to the homologous enzyme from Bacillus cereus, targets a wide range of lipid substrates. With monomeric substrates, the length of the hydrophobic acyl chain has significant impact on enzyme efficiency by affecting substrate affinity (Km). Based on a homology model of the enzyme to the B. cereus protein, several active site residue mutations were generated. While this PLC shares many of the mechanistic characteristics of the B. cereus PLC, a major difference is that the L. monocytogenes enzyme displays an acidic pH optimum regardless of substrate status (monomer, micelle, or vesicle). This unusual behavior might be advantageous for its role in the pathogenicity of L. monocytogenes. PMID:26976751

  2. Semimetallic MoP2: an active and stable hydrogen evolution electrocatalyst over the whole pH range

    NASA Astrophysics Data System (ADS)

    Pu, Zonghua; Saana Amiinu, Ibrahim; Wang, Min; Yang, Yushi; Mu, Shichun

    2016-04-01

    Developing efficient non-precious metal hydrogen evolution reaction (HER) electrocatalysts is a great challenge for sustainable hydrogen production from water. In this communication, for the first time, semimetallic MoP2 nanoparticle films on a metal Mo plate (MoP2 NPs/Mo) are fabricated through a facile two-step strategy. When used as a binder-free hydrogen evolution cathode, the as-prepared MoP2 NPs/Mo electrode exhibits superior HER catalytic activity at all pH values. At a current density of 10 mA cm-2, the catalyst displays overpotentials of 143, 211 and 194 mV in 0.5 M H2SO4, 1.0 M phosphate buffer solution and 1.0 M KOH, respectively. Furthermore, it exhibits excellent stability over a wide pH range. Thus, this in situ route opens up a new avenue for the fabrication of highly efficient, cost-effective and binder-free non-precious catalysts for water splitting and other electrochemical devices.Developing efficient non-precious metal hydrogen evolution reaction (HER) electrocatalysts is a great challenge for sustainable hydrogen production from water. In this communication, for the first time, semimetallic MoP2 nanoparticle films on a metal Mo plate (MoP2 NPs/Mo) are fabricated through a facile two-step strategy. When used as a binder-free hydrogen evolution cathode, the as-prepared MoP2 NPs/Mo electrode exhibits superior HER catalytic activity at all pH values. At a current density of 10 mA cm-2, the catalyst displays overpotentials of 143, 211 and 194 mV in 0.5 M H2SO4, 1.0 M phosphate buffer solution and 1.0 M KOH, respectively. Furthermore, it exhibits excellent stability over a wide pH range. Thus, this in situ route opens up a new avenue for the fabrication of highly efficient, cost-effective and binder-free non-precious catalysts for water splitting and other electrochemical devices. Electronic supplementary information (ESI) available: Experimental section and figures. See DOI: 10.1039/c6nr00820h

  3. The potential of selected macroalgal species for treatment of AMD at different pH ranges in temperate regions.

    PubMed

    Oberholster, Paul J; Cheng, Po-Hsun; Botha, Anna-Maria; Genthe, Bettina

    2014-09-01

    The metal bioaccumulation potential of selected macroalgae species at different pH ranges was study for usage as part of a possible secondary passive acid mine drainage (AMD) treatment technology in algae ponds. Two separate studies were conducted to determine the suitability of macroalgae for passive treatment when metabolic processes in macrophytes and microorganisms in constructed wetlands decrease during winter months. In the field study, the bioconcentration of metals (mg/kg dry weight) measured in the benthic macroalgae mats was in the following order: site 1. Oedogonium crassum Al > Fe > Mn > Zn; site 2. Klebsormidium klebsii, Al > Fe > Mn > Zn; site 3. Microspora tumidula, Fe > Al > Mn > Zn and site 4. M. tumidula, Fe > Mn > Al > Zn. In the laboratory study, cultured macroalgae K. klebsii, O. crassum and M. tumidula isolated from the field sampling sites were exposed to three different pH values (3, 5 and 7), while bioaccumulation of the metals, Al, Fe, Mn and Zn and glutathione S-transferase (GST) activity were measured in the different selected algae species at a constant water temperature of 14 °C. Bioaccumulation of Al was the highest for O. crassum followed by K. klebsii and M. tumidula (p < 0.0001). From the study it was evident that the highest metal bioaccumulation occurred in the macroalgae O. crassum at all three tested pH values under constant low water temperature. PMID:24835955

  4. Effect of chloride ion on the sedimentation volume and zeta potential of zinc insulin suspensions in neutral pH range.

    PubMed

    Kim, Y; Cuff, G W; Morris, R M

    1995-06-01

    When zinc insulin suspensions of different pH values were prepared in the presence of sodium chloride, an unusually high sedimentation volume was found at about pH 6.9. An experimental investigation was conducted in an effort to understand this phenomenon. The experiments involved measurements of electrophoretic mobilities to calculate zeta potentials and sedimentation volumes of zinc insulin suspensions prepared at different NaCl concentrations (0, 17, and 120 mM) and at various pH values from 5 to 8. The general trend observed was that the magnitude of the zeta potential increased with pH when it was higher than the isoelectric point of 5.3. When the sodium chloride concentration was 120 mM, a very rapid change in zeta potential was observed in the pH range of 6.6 to 7.2, with a maximum magnitude of zeta potential at about pH 6.9, the same pH that was observed to yield the largest sedimentation volume. Our experimental results indicate that the greatest adsorption of chloride ion on the zinc insulin suspension particles occurred in the same pH range, which appeared to be responsible for the rapid change of zeta potential in that pH range. The experimental data were interpreted by DLVO (Derjaguin, Landau, Vervey, and Overbeek) theory, which involves a comparison of the forces of electrostatic repulsion and of the van der Waals attraction. PMID:7562418

  5. Rapid identification of compound mutations in patients with Ph-positive leukemias by long-range next generation sequencing

    PubMed Central

    Kastner, R.; Zopf, A.; Preuner, S.; Pröll, J.; Niklas, N.; Foskett, P.; Valent, P.; Lion, T.; Gabriel, C.

    2016-01-01

    An emerging problem in patients with Ph-positive leukemias is the occurrence of cells with multiple mutations in the BCR-ABL1 tyrosine kinase domain (TKD) associated with high resistance to different tyrosine kinase inhibitors. Rapid and sensitive detection of leukemic subclones carrying such changes, referred to as compound mutations, is therefore of increasing clinical relevance. However, current diagnostic methods including next generation sequencing (NGS) of short fragments do not optimally meet these requirements. We have therefore established a long-range (LR) NGS approach permitting massively parallel sequencing of the entire TKD length of 933bp in a single read using 454 sequencing with the GS FLX+ instrument (454 Life Sciences). By testing a series of individual and consecutive specimens derived from six patients with chronic myeloid leukemia, we demonstrate that long-range NGS analysis permits sensitive identification of mutations and their assignment to the same or to separate subclones. This approach also facilitates readily interpretable documentation of insertions and deletions in the entire BCR-ABL1 TKD. The long-range NGS findings were reevaluated by an independent technical approach in select cases. PCR amplicons of the BCR-ABL1 TKD derived from individual specimens were subcloned into pGEM®-T plasmids, and >100 individual clones were subjected to analysis by Sanger sequencing. The NGS results were confirmed, thus documenting the reliability of the new technology. Long-range NGS analysis therefore provides an economic approach to the identification of compound mutations and other genetic alterations in the entire BCR-ABL1 TKD, and represents an important advancement of the diagnostic armamentarium for rapid assessment of impending resistant disease. PMID:24365090

  6. 29 CFR 2.11 - General principles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 1 2011-07-01 2011-07-01 false General principles. 2.11 Section 2.11 Labor Office of the Secretary of Labor GENERAL REGULATIONS Audiovisual Coverage of Administrative Hearings § 2.11 General... involve administrative hearings. If such administrative hearings are held, we encourage their...

  7. 29 CFR 2.11 - General principles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 1 2010-07-01 2010-07-01 true General principles. 2.11 Section 2.11 Labor Office of the Secretary of Labor GENERAL REGULATIONS Audiovisual Coverage of Administrative Hearings § 2.11 General... involve administrative hearings. If such administrative hearings are held, we encourage their...

  8. Nitrogen-rich functional groups carbon nanoparticles based fluorescent pH sensor with broad-range responding for environmental and live cells applications.

    PubMed

    Shi, Bingfang; Su, Yubin; Zhang, Liangliang; Liu, Rongjun; Huang, Mengjiao; Zhao, Shulin

    2016-08-15

    A nitrogen-rich functional groups carbon nanoparticles (N-CNs) based fluorescent pH sensor with a broad-range responding was prepared by one-pot hydrothermal treatment of melamine and triethanolamine. The as-prepared N-CNs exhibited excellent photoluminesence properties with an absolute quantum yield (QY) of 11.0%. Furthermore, the N-CNs possessed a broad-range pH response. The linear pH response range was 3.0 to 12.0, which is much wider than that of previously reported fluorescent pH sensors. The possible mechanism for the pH-sensitive response of the N-CNs was ascribed to photoinduced electron transfer (PET). Cell toxicity experiment showed that the as-prepared N-CNs exhibited low cytotoxicity and excellent biocompatibility with the cell viabilities of more than 87%. The proposed N-CNs-based pH sensor was used for pH monitoring of environmental water samples, and pH fluorescence imaging of live T24 cells. The N-CNs is promising as a convenient and general fluorescent pH sensor for environmental monitoring and bioimaging applications. PMID:27085956

  9. Hemoglobin niobate composite based biosensor for efficient determination of hydrogen peroxide in a broad pH range.

    PubMed

    Gao, Lu; Gao, Qiuming

    2007-02-15

    Inorganic layered niobates (HCa2Nb3O10) were used as immobilization matrices of hemoglobin (Hb) because of their tunable interlayer spaces, large surface areas and good biocompatibilities. A pair of well-defined, quasi-reversible cycle voltammertric peaks were obtained at the Hb-HCa2Nb3O10 modified pyrolytic graphite electrode, suggesting that the layered niobates facilitate the electron transfer between the proteins and the electrode. Hb-HCa2Nb3O10 modified electrode exhibited electrocatalytic response for monitoring H2O2 with a large linear detection range from 25 microM to 3.0 mM and a relatively high sensitivity of 172 microA mM-1 cm-2. Based on the stabilizing effect of the layered niobates, Hb-HCa2Nb3O10 modified electrode can detect H2O2 in strongly acidic and basic solutions with pH of 1-12, which greatly expands the application fields of biosensors. PMID:16887346

  10. Peroxidase-like activity of gold nanoparticles stabilized by hyperbranched polyglycidol derivatives over a wide pH range.

    PubMed

    Drozd, Marcin; Pietrzak, Mariusz; Parzuchowski, Paweł; Mazurkiewicz-Pawlicka, Marta; Malinowska, Elżbieta

    2015-12-11

    The aim of this work was to carry out comparative studies on the peroxidase-like activity of gold nanoparticles (AuNPs) stabilized with low molecular weight hyperbranched polyglycidol (HBPG-OH) and its derivative modified with maleic acid residues (HBPG-COOH). The influence of the stabilizer to gold precursor ratio on the size and morphology of nanoparticles obtained was checked, and prepared nanoparticles were characterized by means of transmission electron microscopy and UV-Vis spectroscopy. The results indicated the divergent effect of increasing the concentration of stabilizers (HBPG-OH or HBPG-COOH) on the size of the nanostructures obtained. The gold nanoparticles obtained were characterized as having intrinsic peroxidase-like activity and the mechanism of catalysis in acidic and alkaline mediums was consistent with the standard Michaelis-Menten kinetics, revealing a strong affinity of AuNPs with 2, 2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 3, 3', 5, 5'-tetramethylbenzidine (TMB), and significantly lower affinity towards phenol. By comparing the kinetic parameters, a negligible effect of polymeric ligand charge on activity against various types of substrates (anionic or cationic) was indicated. The superiority of steric stabilization via the application of tested low-weight hyperbranched polymers over typical stabilizers in preventing salt-induced aggregation and maintaining high catalytic activity in time was proved. The applied hyperbranched stabilizers provide a good tool for manufacturing gold-based nanozymes, which are highly stable and active over a wide pH range. PMID:26567596

  11. Mapping the pharyngeal and intestinal pH of Caenorhabditis elegans and real-time luminal pH oscillations using extended dynamic range pH-sensitive nanosensors.

    PubMed

    Chauhan, Veeren M; Orsi, Gianni; Brown, Alan; Pritchard, David I; Aylott, Jonathan W

    2013-06-25

    Extended dynamic range pH-sensitive ratiometric nanosensors, capable of accurately mapping the full physiological pH range, have been developed and used to characterize the pH of the pharyngeal and intestinal lumen of Caenorhabditis elegans in real-time. Nanosensors, 40 nm in diameter, were prepared by conjugating pH-sensitive fluorophores, carboxyfluorescein (FAM) and Oregon Green (OG) in a 1:1 ratio, and a reference fluorophore, 5-(and-6)-carboxytetramethylrhodamine (TAMRA) to an inert polyacrylamide matrix. Accurate ratiometric pH measurements were calculated through determination of the fluorescence ratio between the pH-sensitive and reference fluorophores. Nanosensors were calibrated with an automated image analysis system and validated to demonstrate a pH measurement resolution of ±0.17 pH units. The motility of C. elegans populations, as an indicator for viability, showed nematodes treated with nanosensors, for concentrations ranging from 50.00 to 3.13 mg/mL, were not statistically different to nematodes not challenged with nanosensors up to a period of 4 days (p < 0.05). The nanosensors were also found to remain in the C. elegans lumen >24 h after nanosensor challenge was removed. The pH of viable C. elegans lumen was found to range from 5.96 ± 0.31 in the anterior pharynx to 3.59 ± 0.09 in the posterior intestine. The pharyngeal pumping rate, which dictates the transfer of ingested material from the pharynx to the intestine, was found to be temperature dependent. Imaging C. elegans at 4 °C reduced the pharyngeal pumping rate to 7 contractions/min and enabled the reconstruction of rhythmic pH oscillations in the intestinal lumen in real-time with fluorescence microscopy. PMID:23668893

  12. Peroxidase-like activity of gold nanoparticles stabilized by hyperbranched polyglycidol derivatives over a wide pH range

    NASA Astrophysics Data System (ADS)

    Drozd, Marcin; Pietrzak, Mariusz; Parzuchowski, Paweł; Mazurkiewicz-Pawlicka, Marta; Malinowska, Elżbieta

    2015-12-01

    The aim of this work was to carry out comparative studies on the peroxidase-like activity of gold nanoparticles (AuNPs) stabilized with low molecular weight hyperbranched polyglycidol (HBPG-OH) and its derivative modified with maleic acid residues (HBPG-COOH). The influence of the stabilizer to gold precursor ratio on the size and morphology of nanoparticles obtained was checked, and prepared nanoparticles were characterized by means of transmission electron microscopy and UV-Vis spectroscopy. The results indicated the divergent effect of increasing the concentration of stabilizers (HBPG-OH or HBPG-COOH) on the size of the nanostructures obtained. The gold nanoparticles obtained were characterized as having intrinsic peroxidase-like activity and the mechanism of catalysis in acidic and alkaline mediums was consistent with the standard Michaelis-Menten kinetics, revealing a strong affinity of AuNPs with 2, 2‧-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 3, 3‧, 5, 5‧-tetramethylbenzidine (TMB), and significantly lower affinity towards phenol. By comparing the kinetic parameters, a negligible effect of polymeric ligand charge on activity against various types of substrates (anionic or cationic) was indicated. The superiority of steric stabilization via the application of tested low-weight hyperbranched polymers over typical stabilizers in preventing salt-induced aggregation and maintaining high catalytic activity in time was proved. The applied hyperbranched stabilizers provide a good tool for manufacturing gold-based nanozymes, which are highly stable and active over a wide pH range.

  13. Voltammetric characterization of DNA intercalators across the full pH range: anthraquinone-2,6-disulfonate and anthraquinone-2-sulfonate.

    PubMed

    Batchelor-McAuley, Christopher; Li, Qian; Dapin, Sophie M; Compton, Richard G

    2010-03-25

    The use of anthraquinone and its derivatives, notably the sulfonate and disulfonate salts, for the detection of DNA via electrochemical techniques, has been the focus of a number of recent articles. This study provides a quantitative model of the two redox systems of anthraquinone-2,6-disulfonate and anthraquinone-2-sulfonate, over the full aqueous pH range (0-13); the model is based upon the theoretical "scheme of squares" for a 2H(+), 2e(-) system, as first proposed by Jacq (Jacq, J. J. Electroanal. Chem. 1971, 29, 149-180). The effect of pH and ionic strength on the observed cyclic voltammetry was investigated experimentally. The variation of the electrochemical response with proton concentration was modeled through use of the commercially available simulation software, DIGISIM; the system was successfully fitted with attention to voltammetric peak height, position, width, and shape. The model demonstrates how the pK(a) values of the anthraquinone intermediates dominate the observed pH dependence of the voltammetry. At high pH (above pH 12), a simple EE process is found to occur. As the pH decreases, the formation of other protonated species becomes possible; this not only causes a Nernstian shift in the measured electrochemical potential for the redox couple but also results in changes in the mechanistic pathway. At pH 10, an EECC process dominates, as the pH is further lowered into the range 4-7, the overall mechanism is an ECEC process, and finally a CECE mechanism operates at around pH 1 and below. This work provides physical insight into the complex mechanistic pathways involved and will aid the future development of more sophisticated and accurate anthraquinone based DNA sensors. PMID:20196578

  14. Is the optimal pH for membrane fusion in host cells by avian influenza viruses related to host range and pathogenicity?

    PubMed

    Okamatsu, Masatoshi; Motohashi, Yurie; Hiono, Takahiro; Tamura, Tomokazu; Nagaya, Kazuki; Matsuno, Keita; Sakoda, Yoshihiro; Kida, Hiroshi

    2016-08-01

    Influenza viruses isolated from wild ducks do not replicate in chickens. This fact is not explained solely by the receptor specificity of the hemagglutinin (HA) from such viruses for target host cells. To investigate this restriction in host range, the fusion activities of HA molecules from duck and chicken influenza viruses were examined. Influenza viruses A/duck/Mongolia/54/2001 (H5N2) (Dk/MNG) and A/chicken/Ibaraki/1/2005 (H5N2) (Ck/IBR), which replicate only in their primary hosts, were used. The optimal pH for membrane fusion of Ck/IBR was 5.9, higher than that of Dk/MNG at 4.9. To assess the relationship between the optimal pH for fusion and the host range of avian influenza viruses, the optimal pH for fusion of 55 influenza virus strains isolated from ducks and chickens was examined. No correlation was found between the host range and optimal pH for membrane fusion by the viruses, and this finding applied also to the H5N1 highly pathogenic avian influenza viruses. The optimal pH for membrane fusion for avian influenza viruses was shown to not necessarily be correlated with their host range or pathogenicity in ducks and chickens. PMID:27231009

  15. Oxidation of iodide and iodine on birnessite (delta-MnO2) in the pH range 4-8.

    PubMed

    Allard, Sébastien; von Gunten, Urs; Sahli, Elisabeth; Nicolau, Rudy; Gallard, Hervé

    2009-08-01

    The oxidation of iodide by synthetic birnessite (delta-MnO(2)) was studied in perchlorate media in the pH range 4-8. Iodine (I(2)) was detected as an oxidation product that was subsequently further oxidized to iodate (IO(3)(-)). The third order rate constants, second order on iodide and first order on manganese oxide, determined by extraction of iodine in benzene decreased with increasing pH (6.3-7.5) from 1790 to 3.1M(-2) s(-1). Both iodine and iodate were found to adsorb significantly on birnessite with an adsorption capacity of 12.7 microM/g for iodate at pH 5.7. The rate of iodine oxidation by birnessite decreased with increasing ionic strength, which resulted in a lower rate of iodate formation. The production of iodine in iodide-containing waters in contact with manganese oxides may result in the formation of undesired iodinated organic compounds (taste and odor, toxicity) in natural and technical systems. The probability of the formation of such compounds is highest in the pH range 5-7.5. For pH <5 iodine is quickly oxidized to iodate, a non-toxic and stable sink for iodine. At pH >7.5, iodide is not oxidized to a significant extent. PMID:19540547

  16. Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH

    NASA Astrophysics Data System (ADS)

    Chen, Guohua; Hoffman, Allan S.

    1995-01-01

    THERE are many potential applications of 'intelligent' aqueous polymer systems1-8 in medicine, biotechnology, industry and in environmental problems9-13. Many of these polymer systems undergo reversible phase transitions-for example, abrupt changes in volume-in response to external stimuli such as temperature, pH or the nature of the solvent. Most of the polymers studied previously are responsive to only one kind of stimulus. But for some applications, independent responsiveness to several factors, such as temperature and pH, may be required. Here we describe a polymer that undergoes marked solubility changes in water in response to temperature and/or pH changes. The polymer is prepared by grafting temperature-sensitive side chains onto a pH-sensitive backbone. We also find that block copolymers, in which the temperature- and pH-sensitive units alternate along the chain, show similar behaviour.

  17. Study of retention and peak shape in hydrophilic interaction chromatography over a wide pH range.

    PubMed

    McCalley, David V

    2015-09-11

    Retention factor and column efficiency measurements were made for 14 test compounds comprising acids, bases and neutrals on two pairs of amide and bare silica HILIC columns, each pair obtained from a different manufacturer. The columns were tested with up to 6 different mobile phases with acetonitrile-water containing formic (FA), trifluoroacetic (TFA), heptafluorobutyric acids (HFBA) and ammonium salt buffers at w(w)pH 3, 6 and 9. Measurements of mobile phase pH in water (w(w)pH) and in the aqueous-organic mixture (w(s)pH) were performed, and calculations of ionic strength made, in order to aid interpretation of the chromatographic results. Stronger acids like TFA produced very different selectivity compared with ammonium formate buffers at similar aqueous pH. On a given column using TFA as additive, the retention of strongly acidic solutes was considerably increased relative to that of bases. Some bases even showed exclusion on both amide, and on a hybrid silica column. Conversely, in ammonium formate buffers of similar aqueous pH, bases had increased retention compared with acids, particularly on the bare silica columns. This result can be attributed to the higher pH of the salt buffers when measured in the aqueous-organic phase and interaction with negatively charged silanols. It is possible that the silica surface becomes positively charged at the low pH of TFA, leading to anion exchange properties that become competitive with the cation exchange properties normally attributed to silanol dissociation, although other explanations of these results are possible. Very marked selectivity differences were obtained by use of TFA in the mobile phase. Useful selectivity differences may also be obtained with salt buffers at different pH if the use of TFA is not desired due to its relatively unfavourable properties in mass spectrometry. PMID:26275863

  18. Short-range variability of soil pH in a regional geochemical survey, communicating uncertainty to the data user

    NASA Astrophysics Data System (ADS)

    Ander, Louise; Knights, Kate; Lark, Murray

    2015-04-01

    The north of Ireland is well-furnished with geochemical data after completion of the Tellus survey of Northern Ireland and the Tellus Border survey of six northern counties of the Republic of Ireland. These data are of considerable interest to the agricultural sector, in particular the data on soil pH. However, a geochemical survey at regional scale cannot resolve significant variation of soil pH, in particular effects of soil management and fine-scale variation of superficial material. This leads to uncertainties in the mapped soil pH which must be accounted for when making decisions about management interventions, including more detailed local sampling. In this poster we show how uncertainty of predicted soil pH, relative to established threshold values, can be quantified by disjunctive kriging. The uncertainty is expressed in terms of probabilities. We show how this can be communicated to the data user by means of the calibrated phrases of the IPCC, using results from recent research on its efficacy to modify its presentation.

  19. Sorption of dissolved lead from shooting range soils using hydroxyapatite amendments synthesized from industrial byproducts as affected by varying pH conditions.

    PubMed

    Hashimoto, Yohey; Taki, Tomohiro; Sato, Takeshi

    2009-04-01

    For immobilization technologies to be successful, the use of readily available and cost advantageous amendment is important when the remediation targets vast amounts of contaminated soils. The objectives of this study were to investigate whether the byproduct-synthesized hydroxyapatite can be used as an immobilizing amendment for dissolved Pb from a shooting range soil, and to model the kinetic data collected from dissolution experiments. A soil-solution kinetic experiment was conducted under fixed pH conditions as a function of time. A Pb-contaminated soil was reacted with various hydroxyapatite amendments to determine the dissolution rate and mineral products of soil Pb. Three types of amendments used were pure hydroxyapatite (HA), and poorly crystalline hydroxyapatites synthesized from gypsum waste (CHA), and synthesized from incinerated poultry litter (PHA). The dissolved Pb concentration decreased with the addition of amendments at pH 3-7. Both CHA and PHA were more effective than HA for attenuating Pb dissolution at pH 6 and above. According to the thermodynamic calculation at pH 6, the dissolved Pb concentration for CHA and PHA treatments was predicted to be 66% and 50% lower than that of HA treatment, respectively. A better Pb immobilization effect demonstrated by CHA and PHA resulted in their greater solubility at higher pH, which may promote the formation of chloropyromorphite precipitates. Dissolution kinetics of soil Pb was adequately explained by pseudo-first order and pseudo-second order equations in acid pH ranges. According to the ion exchange model, an adequate agreement between the experimental data and regression curves was shown in the initial 40 min of the reaction process, but the accuracy of model predictability decreased thereafter. According to kinetic models and dissolution phenomena, CHA and PHA amendments had better Pb sorption capacity with rapid kinetics than pure hydroxyapatite at weak acid to neutral pH. PMID:19111967

  20. Electron impact total cross sections for H2S and PH3 for a wide energy range

    NASA Astrophysics Data System (ADS)

    Limbachiya, Chetan; Vinodkumar, Minaxi; Mason, Nigel

    2011-10-01

    In this paper we have computed total cross sections for H2S and PH3 using two different molecular codes, Quantemol N for low energy calculations and Spherical Complex Optical Potential for intermediate and high energies. We present rotationally elastic total cross sections for electron scattering from H2S and PH3, to demonstrate the possibility of producing robust cross sections from 0.01 eV to 2 keV using two different theoretical formalisms. We use the commercial Quantemol-N formalism for calculating total cross sections up to threshold of the target and the Spherical Optical Complex Potential (SCOP) method for calculating total sections beyond threshold up to 2 keV. CGL thanks UGC & MVK thanks DST for the Major research project.

  1. A broad pH range indicator-based spectrophotometric assay for true lipases using tributyrin and tricaprylin[S

    PubMed Central

    Camacho-Ruiz, María de los Angeles; Mateos-Díaz, Juan Carlos; Carrière, Frédéric; Rodriguez, Jorge A.

    2015-01-01

    A continuous assay is proposed for the screening of acidic, neutral, or alkaline lipases using microtiter plates, emulsified short- and medium-chain TGs, and a pH indicator. The lipase activity measurement is based on the decrease of the pH indicator optical density due to protonation which is caused by the release of FFAs during the hydrolysis of TGs and thus acidification. Purified lipases with distinct pH optima and an esterase were used to validate the method. The rate of lipolysis was found to be linear with time and proportional to the amount of enzyme added in each case. Specific activities measured with this microplate assay method were lower than those obtained by the pH-stat technique. Nevertheless, the pH-dependent profiles of enzymatic activity were similar with both assays. In addition, the substrate preference of each enzyme tested was not modified and this allowed discriminating lipase and esterase activities using tributyrin (low water solubility) and tricaprylin (not water soluble) as substrates. This continuous lipase assay is compatible with a high sample throughput and can be applied for the screening of lipases and lipase inhibitors from biological samples. PMID:25748441

  2. A broad pH range indicator-based spectrophotometric assay for true lipases using tributyrin and tricaprylin.

    PubMed

    Camacho-Ruiz, María de Los Angeles; Mateos-Díaz, Juan Carlos; Carrière, Frédéric; Rodriguez, Jorge A

    2015-05-01

    A continuous assay is proposed for the screening of acidic, neutral, or alkaline lipases using microtiter plates, emulsified short- and medium-chain TGs, and a pH indicator. The lipase activity measurement is based on the decrease of the pH indicator optical density due to protonation which is caused by the release of FFAs during the hydrolysis of TGs and thus acidification. Purified lipases with distinct pH optima and an esterase were used to validate the method. The rate of lipolysis was found to be linear with time and proportional to the amount of enzyme added in each case. Specific activities measured with this microplate assay method were lower than those obtained by the pH-stat technique. Nevertheless, the pH-dependent profiles of enzymatic activity were similar with both assays. In addition, the substrate preference of each enzyme tested was not modified and this allowed discriminating lipase and esterase activities using tributyrin (low water solubility) and tricaprylin (not water soluble) as substrates. This continuous lipase assay is compatible with a high sample throughput and can be applied for the screening of lipases and lipase inhibitors from biological samples. PMID:25748441

  3. Bio-inspired anti-oil-fouling chitosan-coated mesh for oil/water separation suitable for broad pH range and hyper-saline environments.

    PubMed

    Zhang, Shiyan; Lu, Fei; Tao, Lei; Liu, Na; Gao, Changrui; Feng, Lin; Wei, Yen

    2013-11-27

    Here, we report a bio-inspired chitosan (CS)-based mesh with high separation efficiency, oil-fouling repellency, and stability in a complex liquid environment. The surface of the CS coating maintains underwater superoleophobicity and low oil adhesion (<1 μN) in pure water and hyper-saline solutions, and it can keep stable special wettability in broad pH range environments after the CS mesh is fully cross-linked with glutaraldehyde and then reduced by sodium borohydride to form a stable carbon-nitrogen single bond. The separation process is solely gravity-driven, and the mesh can separate a range of different oil/water mixtures with >99% separation efficiency in hyper-saline and broad pH range conditions. We envision that such a separation method will be useful in oil spill cleanup and industrial oily wastewater treatment in extreme environments. PMID:24180691

  4. Fluorescence signaling of hydrogen sulfide in broad pH range using a copper complex based on BINOL-benzimidazole ligands.

    PubMed

    Sun, Mingtai; Yu, Huan; Li, Huihui; Xu, Hongda; Huang, Dejian; Wang, Suhua

    2015-04-20

    A weakly fluorescent complex derived from a binaphthol-benzimidazole ligand was designed and synthesized for hydrogen sulfide at different pH conditions. It was demonstrated that the probe showed the same reactivity to various hydrogen sulfide species in a broad range of pH values to generate highly fluorescent product through a displacement reaction mechanism, whereas the product's fluorescence spectrum exhibited a hypsochromic shift of ∼73 nm (2393 cm(-1)) as pH increased from neutral to basic, which can be used for distinguishing the various species of hydrogen sulfide. This turn-on fluorescence probe was highly selective and sensitive to hydrogen sulfide with a detection limit of 0.11 μM. It was then applied for evaluating the total content of sulfide (including hydrogen sulfide, hydrosulfide, and sulfide) as well as for the visual detection of gaseous H2S in air using a simple test paper strip. PMID:25839192

  5. Template-free synthesis of ZnWO{sub 4} powders via hydrothermal process in a wide pH range

    SciTech Connect

    Hojamberdiev, Mirabbos; Zhu, Gangqiang; Xu, Yunhua

    2010-12-15

    ZnWO{sub 4} powders with different morphologies were fabricated through a template-free hydrothermal method at 180 {sup o}C for 8 h in a wide pH range. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-visible and luminescence spectrophotometers were applied to study the effects of pH values on crystallinity, morphology, optical and luminescence properties. The XRD results showed that the WO{sub 3} + ZnWO{sub 4}, ZnWO{sub 4}, and ZnO phases could form after hydrothermal processing at 180 {sup o}C for 8 h with the pH values of 1, 3-11, and 13, respectively. The SEM and TEM observation revealed that the morphological transformation of ZnWO{sub 4} powders occurred with an increase in pH values as follows: star anise-, peony-, and desert rose-like microstructures and soya bean- and rod-like nanostructures. The highest luminescence intensity was found to be in sample consisting of star anise-like crystallites among all the samples due to the presence of larger particles with high crystallinity resulted from the favorable pH under the current hydrothermal conditions.

  6. Stepwise error-prone PCR and DNA shuffling changed the pH activity range and product specificity of the cyclodextrin glucanotransferase from an alkaliphilic Bacillus sp.

    PubMed Central

    Melzer, Susanne; Sonnendecker, Christian; Föllner, Christina; Zimmermann, Wolfgang

    2015-01-01

    Cyclodextrin glucanotransferase (EC 2.4.1.19) from the alkaliphilic Bacillus sp. G-825-6 converts starch mainly to γ-cyclodextrin (CD8). A combination of error-prone PCR and DNA shuffling was used to obtain variants of this enzyme with higher product specificity for CD8 and a broad pH activity range. The variant S54 with seven amino acid substitutions showed a 1.2-fold increase in CD8-synthesizing activity and the product ratio of CD7:CD8 was shifted to 1:7 compared to 1:3 of the wild-type enzyme. Nine amino acid substitutions of the cyclodextrin glucanotransferase were performed to generate the variant S35 active in a pH range 4.0–10.0. Compared to the wild-type enzyme which is inactive below pH 6.0, S35 retained 70% of its CD8-synthesizing activity at pH 4.0. PMID:26155461

  7. Wide pH range for fluoride removal from water by MHS-MgO/MgCO₃ adsorbent: kinetic, thermodynamic and mechanism studies.

    PubMed

    Zhang, Kaisheng; Wu, Shibiao; Wang, Xuelong; He, Junyong; Sun, Bai; Jia, Yong; Luo, Tao; Meng, Fanli; Jin, Zhen; Lin, Dongyue; Shen, Wei; Kong, Lingtao; Liu, Jinhuai

    2015-05-15

    A novel environment friendly adsorbent, micro-nano hierarchical structured flower-like MgO/MgCO3 (MHS-MgO/MgCO3), was developed for fluoride removal from water. The adsorbent was characterized and its defluoridation properties were investigated. Adsorption kinetics fitted well the pseudo-second-order model. Kinetic data revealed that the fluoride adsorption was rapid, more than 83-90% of fluoride could be removed within 30 min, and the adsorption equilibrium was achieved in the following 4 h. The fluoride adsorption isotherm was well described by Freundlich model. The maximum adsorption capacity was about 300 mg/g at pH=7. Moreover, this adsorbent possessed a very wide available pH range of 5-11, and the fluoride removal efficiencies even reached up to 86.2%, 83.2% and 76.5% at pH=11 for initial fluoride concentrations of 10, 20 and 30 mg/L, respectively. The effects of co-existing anions indicated that the anions had less effect on adsorption of fluoride except phosphate. In addition, the adsorption mechanism analysis revealed that the wide available pH range toward fluoride was mainly resulted from the exchange of the carbonate and hydroxyl groups on the surface of the MHS-MgO/MgCO3 with fluoride anions. PMID:25668780

  8. 42 CFR 2.11 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... to prevent or treat child abuse or neglect, including training on nutrition and child care and... DRUG ABUSE PATIENT RECORDS General Provisions § 2.11 Definitions. For purposes of these regulations: Alcohol abuse means the use of an alcoholic beverage which impairs the physical, mental, emotional,...

  9. 42 CFR 2.11 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... to prevent or treat child abuse or neglect, including training on nutrition and child care and... DRUG ABUSE PATIENT RECORDS General Provisions § 2.11 Definitions. For purposes of these regulations: Alcohol abuse means the use of an alcoholic beverage which impairs the physical, mental, emotional,...

  10. 42 CFR 2.11 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... to prevent or treat child abuse or neglect, including training on nutrition and child care and... DRUG ABUSE PATIENT RECORDS General Provisions § 2.11 Definitions. For purposes of these regulations: Alcohol abuse means the use of an alcoholic beverage which impairs the physical, mental, emotional,...

  11. 42 CFR 2.11 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... to prevent or treat child abuse or neglect, including training on nutrition and child care and... DRUG ABUSE PATIENT RECORDS General Provisions § 2.11 Definitions. For purposes of these regulations: Alcohol abuse means the use of an alcoholic beverage which impairs the physical, mental, emotional,...

  12. 42 CFR 2.11 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... to prevent or treat child abuse or neglect, including training on nutrition and child care and... DRUG ABUSE PATIENT RECORDS General Provisions § 2.11 Definitions. For purposes of these regulations: Alcohol abuse means the use of an alcoholic beverage which impairs the physical, mental, emotional,...

  13. Electrostatic Assemblies of Well-Dispersed AgNPs on the Surface of Electrospun Nanofibers as Highly Active SERS Substrates for Wide-Range pH Sensing.

    PubMed

    Yang, Tong; Ma, Jun; Zhen, Shu Jun; Huang, Cheng Zhi

    2016-06-15

    Surface-enhanced Raman scattering (SERS) has shown high promise in analysis and bioanalysis, wherein noble metal nanoparticles (NMNPs) such as silver nanoparticles were employed as substrates because of their strong localized surface plasmon resonance (LSPR) properties. However, SERS-based pH sensing was restricted because of the aggregation of NMNPs in acidic medium or biosamples with high ionic strength. Herein, by using the electrostatic interaction as a driving force, AgNPs are assembled on the surface of ethylene imine polymer (PEI)/poly(vinyl alcohol) (PVA) electrospun nanofibers, which are then applied as highly sensitive and reproducible SERS substrate with an enhancement factor (EF) of 10(7)-10(8). When p-aminothiophenol (p-ATP) is used as an indicator with its b2 mode, a good and wide linear response to pH ranging from 2.56 to 11.20 could be available, and the as-prepared nanocomposite fibers then could be fabricated as excellent pH sensors in complicated biological samples such as urine, considering that the pH of urine could reflect the acid-base status of a person. This work not only emerges a cost-effective, direct, and convenient approach to homogeneously decorate AgNPs on the surface of polymer nanofibers but also supplies a route for preparing other noble metal nanofibrous sensing membranes. PMID:27214514

  14. Graduate Students Have an Unprecedented Range of Choices as Ph.D. Offerings in Black Studies Proliferate.

    ERIC Educational Resources Information Center

    Cage, Mary Crystal

    1996-01-01

    Sudden growth in the number of doctoral programs in black studies is helping to legitimize the discipline in academe, and diversity of curricula is providing students with many more choices of emphasis. Programs have a wide range of focus, from the broadest, the black American experience, to the African diaspora and comparative black studies.…

  15. C-Terminal proline-rich sequence broadens the optimal temperature and pH ranges of recombinant xylanase from Geobacillus thermodenitrificans C5.

    PubMed

    Irfan, Muhammad; Guler, Halil Ibrahim; Ozer, Aysegul; Sapmaz, Merve Tuncel; Belduz, Ali Osman; Hasan, Fariha; Shah, Aamer Ali

    2016-09-01

    Efficient utilization of hemicellulose entails high catalytic capacity containing xylanases. In this study, proline rich sequence was fused together with a C-terminal of xylanase gene from Geobacillus thermodenitrificans C5 and designated as GthC5ProXyl. Both GthC5Xyl and GthC5ProXyl were expressed in Escherichia coli BL21 host in order to determine effect of this modification. The C-terminal oligopeptide had noteworthy effects and instantaneously extended the optimal temperature and pH ranges and progressed the specific activity of GthC5Xyl. Compared with GthC5Xyl, GthC5ProXyl revealed improved specific activity, a higher temperature (70°C versus 60°C) and pH (8 versus 6) optimum, with broad ranges of temperature and pH (60-80°C and 6.0-9.0 versus 40-60°C and 5.0-8.0, respectively). The modified enzyme retained more than 80% activity after incubating in xylan for 3h at 80°C as compared to wild -type with only 45% residual activity. Our study demonstrated that proper introduction of proline residues on C-terminal surface of xylanase family might be very effective in improvement of enzyme thermostability. Moreover, this study reveals an engineering strategy to improve the catalytic performance of enzymes. PMID:27444327

  16. Extending the working pH of nitrobenzene degradation using ultrasonic/heterogeneous Fenton to the alkaline range via amino acid modification.

    PubMed

    ElShafei, Gamal M S; Yehia, F Z; Dimitry, O I H; Badawi, A M; Eshaq, Gh

    2015-11-01

    Oxides of iron, α-Fe2O3 (I), and copper, CuO (II) prepared by usual precipitation method without surfactant were used at room temperature in the process of nitrobenzene (10mgL(-1)) degradation at different pH values with ultrasonic at 20kHz. The degradation was complete in 20 and 30min for (I) and (II), respectively in the pH range 2-7 using1.0gL(-1) of solids and 10mM of H2O2. A remarkable decrease in degradation efficiency was recorded on increasing the pH to values higher than the neutral range. This loss in efficiency was cancelled to a great extent through modifying the used oxides with amino acids. Arginine showed higher improving effect to (II) (1:1 weight ration) than glycine or glutamic acid. Modification of both oxides with increasing amounts of arginine increased the degradation efficiency of (I) in a more regular way than in case of (II). However, the extent of improvement due to amino acid modification was higher in case of (II) because of its originally low degradation efficiency in strongly alkaline media. PMID:25592465

  17. Fe/Al bimetallic particles for the fast and highly efficient removal of Cr(VI) over a wide pH range: Performance and mechanism.

    PubMed

    Fu, Fenglian; Cheng, Zihang; Dionysiou, Dionysios D; Tang, Bing

    2015-11-15

    The iron/aluminum (Fe/Al) bimetallic particles with high efficiency for the removal of Cr(VI) were prepared. Fe/Al bimetallic particles were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), SEM mapping, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). SEM mapping showed that the core of bimetal was Al, and the planting Fe was deposited on the surface of Al. In acidic and neutral conditions, Fe/Al bimetal can completely remove Cr(VI) from wastewater in 20 min. Even at pH 11.0, the Cr(VI) removal efficiency achieved was 93.5%. Galvanic cell effect and high specific surface area are the main reasons for the enhanced removal of Cr(VI) by bimetallic particles. There were no iron ions released in solutions at pH values ranging from 3.0 to 11.0. The released Al(3+) ions concentrations in acidic and neutral conditions were all less than 0.2mg/L. The bimetal can be used 4 times without losing activity at initial pH 3.0. XPS indicated that the removed Cr(VI) was immobilized via the formation of Cr(III) hydroxide and Cr(III)-Fe(III) hydroxide/oxyhydroxide on the surface of Fe/Al bimetal. The Fe/Al bimetallic particles are promising for further testing for the rapid and effective removal of contaminants from water. PMID:26073381

  18. Hierarchical MoS2@MoP core-shell heterojunction electrocatalysts for efficient hydrogen evolution reaction over a broad pH range

    NASA Astrophysics Data System (ADS)

    Wu, Aiping; Tian, Chungui; Yan, Haijing; Jiao, Yanqing; Yan, Qing; Yang, Guoyu; Fu, Honggang

    2016-05-01

    A low-cost catalyst for the hydrogen evolution reaction (HER) over a broad pH range is highly desired to meet the practical needs in different areas. In this study, hierarchical flower-like MoS2@MoP core-shell heterojunctions (HF-MoSP) are designed as a promising catalyst for HER over a broad pH range. The materials are obtained by the controllable phosphidation of the hierarchical MoS2 flower (HF-MoS2) composed of thin silk belt-like sheets. The phosphidation degree, P/S ratio and work function (WF) of HF-MoSP can be tuned easily over broad range by changing the phosphidation temperature. Under optimized condition, HF-MoSP exhibits excellent electrocatalytic activity for HER with a low onset overpotential of 29 mV and η of 108 mV at 10 mA cm-2 in 0.5 M H2SO4 and retains its good activity for 30 h. In addition, the catalyst shows excellent activity in 1 M KOH with an onset overpotential of 42 mV and η of 119 mV at 10 mA cm-2. The catalysts also exhibit obvious activity in neutral, weak acid and weak alkaline conditions. The good performance is relative to the synergy of the MoP shell and MoS2 core and the high WF of HF-MoSP close to Pt, and the large SBET of HF-MoSP benefited from the hierarchical structure. This study represents the construction of the core-shell heterojunction and provides a new way to provide the low-cost and high-performance catalyst for HER.A low-cost catalyst for the hydrogen evolution reaction (HER) over a broad pH range is highly desired to meet the practical needs in different areas. In this study, hierarchical flower-like MoS2@MoP core-shell heterojunctions (HF-MoSP) are designed as a promising catalyst for HER over a broad pH range. The materials are obtained by the controllable phosphidation of the hierarchical MoS2 flower (HF-MoS2) composed of thin silk belt-like sheets. The phosphidation degree, P/S ratio and work function (WF) of HF-MoSP can be tuned easily over broad range by changing the phosphidation temperature. Under optimized

  19. Hierarchical MoS2@MoP core-shell heterojunction electrocatalysts for efficient hydrogen evolution reaction over a broad pH range.

    PubMed

    Wu, Aiping; Tian, Chungui; Yan, Haijing; Jiao, Yanqing; Yan, Qing; Yang, Guoyu; Fu, Honggang

    2016-06-01

    A low-cost catalyst for the hydrogen evolution reaction (HER) over a broad pH range is highly desired to meet the practical needs in different areas. In this study, hierarchical flower-like MoS2@MoP core-shell heterojunctions (HF-MoSP) are designed as a promising catalyst for HER over a broad pH range. The materials are obtained by the controllable phosphidation of the hierarchical MoS2 flower (HF-MoS2) composed of thin silk belt-like sheets. The phosphidation degree, P/S ratio and work function (WF) of HF-MoSP can be tuned easily over broad range by changing the phosphidation temperature. Under optimized condition, HF-MoSP exhibits excellent electrocatalytic activity for HER with a low onset overpotential of 29 mV and η of 108 mV at 10 mA cm(-2) in 0.5 M H2SO4 and retains its good activity for 30 h. In addition, the catalyst shows excellent activity in 1 M KOH with an onset overpotential of 42 mV and η of 119 mV at 10 mA cm(-2). The catalysts also exhibit obvious activity in neutral, weak acid and weak alkaline conditions. The good performance is relative to the synergy of the MoP shell and MoS2 core and the high WF of HF-MoSP close to Pt, and the large SBET of HF-MoSP benefited from the hierarchical structure. This study represents the construction of the core-shell heterojunction and provides a new way to provide the low-cost and high-performance catalyst for HER. PMID:27172989

  20. A low-temperature-active alkaline pectate lyase from Xanthomonas campestris ACCC 10048 with high activity over a wide pH range.

    PubMed

    Yuan, Peng; Meng, Kun; Wang, Yaru; Luo, Huiying; Shi, Pengjun; Huang, Huoqing; Tu, Tao; Yang, Peilong; Yao, Bin

    2012-11-01

    Alkaline pectate lyases are favorable for the textile industry. Here, we report the gene cloning and expression of a low-temperature-active alkaline pectate lyase (PL D) from Xanthomonas campestris ACCC 10048. Deduced PL D consists of a putative 27-residue signal peptide and a catalytic domain of 320 residues belonging to family PF09492. Recombinant PL D (r-PL D) produced in Escherichia coli was purified to electrophoretic homogeneity with a single step of Ni(2+)-NTA affinity chromatography and showed an apparent molecular weight of ~38 kDa. The pH and temperature optima of r-PL D were found to be 9.0 °C and 30 °C, respectively. Compared with its microbial counterparts, r-PL D had higher activity over a wide pH range (>45 % of the maximum activity at pH 3.0-12.0) and at lower temperatures (>35 % of activity even at 0 °C). The K(m) and V(max) values of r-PL D for polygalacturonic acid were 4.9 gl(-1) and 30.1 μmolmin(-1) mg(-1), respectively. Compared with the commercial compound pectinase from Novozymes, r-PL D showed similar efficacy in reducing the intrinsic viscosity of polygalacturonic acid (35.1 % vs. 36.5 %) and in bioscouring of jute (10.25 % vs. 10.82 %). Thus, r-PL D is a valuable additive candidate for the textile industry. PMID:22983714

  1. Climate and pH Predict the Potential Range of the Invasive Apple Snail (Pomacea insularum) in the Southeastern United States

    PubMed Central

    Byers, James E.; McDowell, William G.; Dodd, Shelley R.; Haynie, Rebecca S.; Pintor, Lauren M.; Wilde, Susan B.

    2013-01-01

    Predicting the potential range of invasive species is essential for risk assessment, monitoring, and management, and it can also inform us about a species’ overall potential invasiveness. However, modeling the distribution of invasive species that have not reached their equilibrium distribution can be problematic for many predictive approaches. We apply the modeling approach of maximum entropy (MaxEnt) that is effective with incomplete, presence-only datasets to predict the distribution of the invasive island apple snail, Pomacea insularum. This freshwater snail is native to South America and has been spreading in the USA over the last decade from its initial introductions in Texas and Florida. It has now been documented throughout eight southeastern states. The snail’s extensive consumption of aquatic vegetation and ability to accumulate and transmit algal toxins through the food web heighten concerns about its spread. Our model shows that under current climate conditions the snail should remain mostly confined to the coastal plain of the southeastern USA where it is limited by minimum temperature in the coldest month and precipitation in the warmest quarter. Furthermore, low pH waters (pH <5.5) are detrimental to the snail’s survival and persistence. Of particular note are low-pH blackwater swamps, especially Okefenokee Swamp in southern Georgia (with a pH below 4 in many areas), which are predicted to preclude the snail’s establishment even though many of these areas are well matched climatically. Our results elucidate the factors that affect the regional distribution of P. insularum, while simultaneously presenting a spatial basis for the prediction of its future spread. Furthermore, the model for this species exemplifies that combining climatic and habitat variables is a powerful way to model distributions of invasive species. PMID:23451090

  2. Climate and pH predict the potential range of the invasive apple snail (Pomacea insularum) in the southeastern United States.

    PubMed

    Byers, James E; McDowell, William G; Dodd, Shelley R; Haynie, Rebecca S; Pintor, Lauren M; Wilde, Susan B

    2013-01-01

    Predicting the potential range of invasive species is essential for risk assessment, monitoring, and management, and it can also inform us about a species' overall potential invasiveness. However, modeling the distribution of invasive species that have not reached their equilibrium distribution can be problematic for many predictive approaches. We apply the modeling approach of maximum entropy (MaxEnt) that is effective with incomplete, presence-only datasets to predict the distribution of the invasive island apple snail, Pomacea insularum. This freshwater snail is native to South America and has been spreading in the USA over the last decade from its initial introductions in Texas and Florida. It has now been documented throughout eight southeastern states. The snail's extensive consumption of aquatic vegetation and ability to accumulate and transmit algal toxins through the food web heighten concerns about its spread. Our model shows that under current climate conditions the snail should remain mostly confined to the coastal plain of the southeastern USA where it is limited by minimum temperature in the coldest month and precipitation in the warmest quarter. Furthermore, low pH waters (pH <5.5) are detrimental to the snail's survival and persistence. Of particular note are low-pH blackwater swamps, especially Okefenokee Swamp in southern Georgia (with a pH below 4 in many areas), which are predicted to preclude the snail's establishment even though many of these areas are well matched climatically. Our results elucidate the factors that affect the regional distribution of P. insularum, while simultaneously presenting a spatial basis for the prediction of its future spread. Furthermore, the model for this species exemplifies that combining climatic and habitat variables is a powerful way to model distributions of invasive species. PMID:23451090

  3. Antenna Effect on the Organic Spacer-Modified Eu-Doped Layered Gadolinium Hydroxide for the Detection of Vanadate Ions over a Wide pH Range.

    PubMed

    Jeong, Heejin; Lee, Byung-Il; Byeon, Song-Ho

    2016-05-01

    The excitation of the adsorbed vanadate group led to the red emission arising from the efficient energy transfer to Eu-doped layered gadolinium hydroxide (LGdH:Eu). This light-harvesting antenna effect allowed LGdH:Eu to detect selectively a vanadate in aqueous solution at different pHs. Because vanadate exists in various forms by extensive oligomerization and protonation reactions in aqueous solution depending on pH, it is important to detect a vanadate regardless of its form over a wide pH range. In particular, spacer molecules with long alkyl chains greatly facilitated access of a vanadate antenna into the interlayer surface of LGdH:Eu. The concomitant increase in adsorption capacity of LGdH:Eu achieved a strong antenna effect of vanadate on the red emission from Eu(3+). When a suspension containing LGdH:Eu nanosheets (1.0 g/L) was used, the vanadate concentration down to 1 × 10(-5) M could even be visually monitored, and the detection limit based on the (5)D0 → (7)F2 emission intensity could reach 4.5 × 10(-8) M. PMID:27077701

  4. Interconnected Co-Entrapped, N-Doped Carbon Nanotube Film as Active Hydrogen Evolution Cathode over the Whole pH Range.

    PubMed

    Xing, Zhicai; Liu, Qian; Xing, Wei; Asiri, Abdullah M; Sun, Xuping

    2015-06-01

    The use of electrocatalysts with low metal content (metal-deficient) or metal free for the hydrogen evolution reaction (HER) can prevent or decrease metal ion release, which reduces environmental impact; development of such catalysts with high activity and durability over the whole pH range is thus highly desired but still remains a huge challenge. Herein, we describe the direct growth of a film consisting of interconnected Co-entrapped, N-doped carbon nanotubes on carbon cloth using chemical vapor deposition from dicyanodiamine using a Co3 O4 nanowire array as catalyst. This integrated architecture is used as a flexible 3D electrode for the electrolytic hydrogen evolution with outstanding catalytic activity and durability in acidic media. Moreover, this electrode is also highly efficient under neutral and basic conditions. It offers us an attractive carbon-based metal-deficient HER catalyst outperforming most transition-metal and all metal-free/deficient catalysts. PMID:25916622

  5. 4-(8-Quinolyl)amino-7-nitro-2,1,3-benzoxadiazole as a new selective and sensitive fluorescent and colorimetric pH probe with dual-responsive ranges in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Li, Xutian; Zhang, Min; Liang, Haipeng; Huang, Zhaowei; Tang, Jiang; Chen, Zhi; Yang, Liting; Ma, Li-Jun; Wang, Yuhai; Xu, Baiping

    2016-01-01

    Fluorescent and colorimetric pH probe possess many advantages including rapid response time, nondestructive testing, and excellent pH sensitivity. However, they usually cannot be utilized simultaneously in both acidic and basic pH ranges. In this study, a new selective and sensitive fluorescent and colorimetric pH probe, 4-(8- quinolyl)amino-7-nitro-2,1,3-benzoxadiazole (1), was designated and synthesized. The optical probe exhibited dual-responsive pH ranges to both acidic and basic aqueous solutions. When the solution pH was gradually increased from 8.5 to 13.3, the absorption spectra of 1 showed an obvious hyperchromicity, accompanied with a red shift of the absorption band at 340 nm, a blue shift of the absorption band at 482 nm, and a distinct color change from orange to violet pink to yellow. Within the pH range from 2.2 to 0.2, the fluorescent spectra of 1 showed a "turn-on" response signal to solution pH. In order to understand the response mechanism of the probe to solution pH, the probe molecule was split into two parts, 8-aminoquinoline (2) and 4-amino-7- nitro-benzofurazan (3). UV-vis absorption and fluorescent experiments of 2 and 3 indicated that both are sensitive optical pH probes. Furthermore, the NMR experiment of 1 was explored in basic and acidic conditions. The results indicated that the colorimetric responses of 1 to pH under basic condition should be attributed to the deprotonation of the imino group on the quinolyl ring, and the fluorescent recognition of 1 to pH under acidic condition was probably due to the protonation of the nitrogen atoms from the benzofurazan and quinolyl rings.

  6. A National Content Analysis of PhD Program Objectives, Structures, and Curricula: Do Programs Address the Full Range of Social Work's Needs?

    ERIC Educational Resources Information Center

    Drisko, James; Hunnicutt, Christie; Berenson, Laura

    2015-01-01

    The Group for the Advancement of Doctoral Education (GADE) promotes excellence in PhD education in Social Work. GADE's 2013 Quality Guidelines for PhD Programs heavily emphasize preparation for research. Little is known, however, about the details of the contemporary social work PhD program structure and curriculum. Several prior surveys have…

  7. Purification, biochemical characterization and antifungal activity of a novel Aspergillus tubingensis glucose oxidase steady on broad range of pH and temperatures.

    PubMed

    Kriaa, Mouna; Hammami, Inès; Sahnoun, Mouna; Azebou, Manel Cheffi; Triki, Mohamed Ali; Kammoun, Radhouane

    2015-11-01

    This study was carried out to evaluate the in vitro and in vivo antifungal efficiency of Aspergillus tubingensis CTM 507 glucose oxidase (GOD) against plant pathogenic fungi. GOD displayed a wide inhibitory spectrum toward different fungi at a concentration of 20 AU. The GOD had a strong inhibitor effect on mycelia growth and spore germination of Pythium ultimum. Interestingly, the GOD exhibited a potent in vivo antifungal effect against P. ultimum responsible for potato plants disease. The antifungal GOD was purified 13-fold with 27 % yield and a specific activity of 3435 U/mg. The relative molecular mass of the GOD was 180 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The GOD activity was optimum at pH 4.5 and 60 °C. It was found to be stable over a large pH range (3-9). It also displayed a marked thermostability with a 50-min half-life at 65 °C. The 10 residues of the N-terminal sequence of the purified GOD (S-K-G-S-A-V-T-T-P-D) showed no homology to the other reported GOD, identifying a novel GOD. FTIR spectroscopic analysis revealed the presence of C-O and C=O groups corresponding to a D-glucono-lactone. The findings indicated that GOD is the first A. tubingensis-produced fungicide ever reported to exhibit such promising biological properties. It could become a natural alternative to synthetic fungicides to control certain important plant microbial diseases. PMID:26280215

  8. 9 CFR 2.11 - Denial of initial license application.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Denial of initial license application. 2.11 Section 2.11 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE REGULATIONS Licensing § 2.11 Denial of initial license application....

  9. 9 CFR 2.11 - Denial of initial license application.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Denial of initial license application. 2.11 Section 2.11 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE REGULATIONS Licensing § 2.11 Denial of initial license application....

  10. 7 CFR 2.11 - New principles and periodic reviews.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 1 2011-01-01 2011-01-01 false New principles and periodic reviews. 2.11 Section 2.11 Agriculture Office of the Secretary of Agriculture DELEGATIONS OF AUTHORITY BY THE SECRETARY OF AGRICULTURE... Agriculture § 2.11 New principles and periodic reviews. In the exercise of authority delegated by...

  11. 7 CFR 2.11 - New principles and periodic reviews.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false New principles and periodic reviews. 2.11 Section 2.11 Agriculture Office of the Secretary of Agriculture DELEGATIONS OF AUTHORITY BY THE SECRETARY OF AGRICULTURE... Agriculture § 2.11 New principles and periodic reviews. In the exercise of authority delegated by...

  12. The genome of alkaliphilic Bacillus pseudofirmus OF4 reveals adaptations that support the ability to grow in an external pH range from 7.5 to 11.4

    PubMed Central

    Janto, Benjamin; Ahmed, Azad; Ito, Masahiro; Liu, Jun; Hicks, David B.; Pagni, Sarah; Fackelmayer, Oliver J.; Smith, Terry-Ann; Earl, Joshua; Elbourne, Liam D.H.; Hassan, Karl; Paulsen, Ian T.; Kolstø, Anne-Brit; Tourasse, Nicolas J.; Ehrlich, Garth D.; Boissy, Robert; Ivey, D. Mack; Li, Gang; Xue, Yanfen; Ma, Yanhe; Hu, Fen Z.; Krulwich, Terry A.

    2011-01-01

    Summary Bacillus pseudofirmus OF4 is an extreme but facultative alkaliphile that grows non-fermentatively in a pH range from 7.5 to above 11.4 and can withstand large sudden increases in external pH. It is a model organism for studies of bioenergetics at high pH, at which energy demands are higher than at neutral pH because both cytoplasmic pH homeostasis and ATP synthesis require more energy. The alkaliphile also tolerates a cytoplasmic pH > 9.0 at external pH values at which the pH homeostasis capacity is exceeded, and manages other stresses that are exacerbated at alkaline pH, e.g. sodium, oxidative and cell wall stresses. The genome of B. pseudofirmus OF4 includes two plasmids that are lost from some mutants without viability loss. The plasmids may provide a reservoir of mobile elements that promote adaptive chromosomal rearrangements under particular environmental conditions. The genome also reveals a more acidic pI profile for proteins exposed on the outer surface than found in neutralophiles. A large array of transporters and regulatory genes are predicted to protect the alkaliphile from its overlapping stresses. In addition, unanticipated metabolic versatility was observed, which could ensure requisite energy for alkaliphily under diverse conditions. PMID:21951522

  13. Complexation of trivalent cations (Al(III), Cr(III), Fe(III)) with two phosphonic acids in the pH range of fresh waters.

    PubMed

    Lacour, S; Deluchat, V; Bollinger, J C; Bernard Serpaud

    1998-08-01

    The complex formation constants of two phosphonic acids, HEDP and ATMP, with three trivalent metallic cations, Al(III), Cr(III) and Fe(III), have been determined by acid-base titration at 25 degrees C and constant ionic strength (0.1 mol l(-1), KNO(3)), using Martell and Motekaitis' computer programs. Species distribution curves showed that all three cations are in complex form in the pH range of fresh waters (5-9). The study of different cation/ligand ratios proved that both ligands mainly form anionic soluble complexes for systems having an excess of ligand-as protonated and unprotonated forms and especially ternary complexes with HEDP. For higher metal concentrations (excess of cation), weakly soluble species of HEDP and ATMP were formed with Al(III) and Cr(III). Two insoluble complexes with ATMP have been identified by SEM/EDAX as AlH(3)X((s)) and Cr(2)X((s)). Regarding Fe(III) species, Fe(OH)(3(s)) precipitate seems to predominate in solution. PMID:18967224

  14. Modifying the Cold Gelation Properties of Quinoa Protein Isolate: Influence of Heat-Denaturation pH in the Alkaline Range.

    PubMed

    Mäkinen, Outi E; Zannini, Emanuele; Arendt, Elke K

    2015-09-01

    Heat-denaturation of quinoa protein isolate (QPI) at alkali pH and its influence on the physicochemical and cold gelation properties was investigated. Heating QPI at pH 8.5 led to increased surface hydrophobicity and decreases in free and bound sulfhydryl group contents. Heating at pH 10.5 caused a lesser degree of changes in sulfhydryl groups and surface hydrophobicity, and the resulting solutions showed drastically increased solubility. SDS PAGE revealed the presence of large aggregates only in the sample heated at pH 8.5, suggesting that any aggregates present in the sample heated at pH 10.5 were non-covalently bound and disintegrated in the presence of SDS. Reducing conditions partially dissolved the aggregates in the pH 8.5 heated sample indicating the occurrence of disulphide bonding, but caused no major alterations in the separation pattern of the pH 10.5 heated sample. Denaturation pH influenced the cold gelation properties greatly. Solutions heated at pH 8.5 formed a coarse coagulum with maximum G' of 5 Pa. Heat-denaturation at 10.5 enabled the proteins to form a finer and regularly structured gel with a maximum G' of 1140 Pa. Particle size analysis showed that the pH 10.5 heated sample contained a higher level of very small particles (0.1-2 μm), and these readily aggregated into large particles (30-200 μm) when pH was lowered to 5.5. Differences in the nature of aggregates formed during heating may explain the large variation in gelation properties. PMID:25986749

  15. Incorporating graphene oxide and gold nanoclusters: a synergistic catalyst with surprisingly high peroxidase-like activity over a broad pH range and its application for cancer cell detection.

    PubMed

    Tao, Yu; Lin, Youhui; Huang, Zhenzhen; Ren, Jinsong; Qu, Xiaogang

    2013-05-14

    A synergistic graphene oxide-gold nanocluster (GO-AuNC) hybrid has been constructed as an enzyme mimic that is able to show high catalytic activity over a broad pH range, especially at neutral pH. Importantly, the target-functionalized hybrid has been applied as a robust nanoprobe for selective, quantitative, and fast colorimetric detection of cancer cells. PMID:23418013

  16. Tailoring aqueous solubility of functionalized single-wall carbon nanotubes over a wide pH range through substituent chain length.

    PubMed

    Zeng, Liling; Zhang, Lei; Barron, Andrew R

    2005-10-01

    Carboxylic acid-functionalized SWNTs prepared via the reaction of an amino acid, NH2(CH2)nCO2H, with fluoronanotubes show similar levels of sidewall functionalization; however, the solubility in water is controlled by the length of the hydrocarbon side chain (i.e., n). The 6-aminohexanoic acid derivative is soluble in aqueous solution (0.5 mg mL(-1)) between pH 4 and 11, whereas the glysine and 11-aminoundecanoic acid derivatives are insoluble across all pH values. PMID:16218726

  17. Comprehensive study on the structure of the BSA from extended-to aged form in wide (2-12) pH range.

    PubMed

    Varga, N; Hornok, V; Sebők, D; Dékány, I

    2016-07-01

    In this work we studied the structure of the bovine serum albumin (BSA) and the protein-ligand interactions since researchers prefer to use them as carriers in drug delivery systems. Systematic study (between pH 2-12, in double distilled water and physiological salt solution) was carried out to determine the changes in the secondary and the tertiary structures of the BSA, the apparent molecular weight (Mw), the size (dLS) and the electrokinetic potential (ζ). At pH 7, the BSA has higher stability in the absence (ζ=-69mV, dLS=2.2nm, A2=1.4×10(-3)mlmol/g(2)) than in the presence of salt solution (ζ=-2.4mV, dLS=5.3nm, A2=-3.2×10(-4)mlmol/g(2)). The Mw strongly depends on the pH and the ionic strength (at pH 3 in the absence of salt, the Mw is 54.6kDa while in the presence of salt is 114kDa) which determines the geometry of the protein. The protein-ligand interactions were characterized by fluorescence (FL) and isothermal microcalorimetry (ITC) methods; these independent techniques provided similar thermodynamic parameters such as the binding constant (K) and the Gibbs free energy (ΔG). PMID:26995614

  18. Constituted oxides/nitrides on nitriding 304, 430 and 17-4 PH stainless steel in salt baths over the temperature range 723 to 923 K

    NASA Astrophysics Data System (ADS)

    Shih, Teng-Shih; Huang, Yung-Sen; Chen, Chi-Fan

    2011-10-01

    The progressively developed oxides and nitrides that form on nitriding 304, 430 and 17-4 PH stainless steel are analysed by X-ray Diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS) in this study. The experimental results show that the Cr contents and matrix structures (ferrite, austenite and martensite) play an important role in forming FeCr 2O 4, Cr 2O 3 and Fe 2O 3 oxides as well as nitrides. After a short immersion time, oxides of Cr 2O 3 and FeCr 2O 4 form in nitride films on 304 stainless steel samples. Fe 2O 3 oxide will subsequently form following an increasing immersion time. For the 430 stainless steel, Cr 2O 3 predominately forms after a short dipping time which hinders the growth of the nitride layer. As a result, this sample had the thinnest nitride film of the three for a given immersion time. After the formation of oxides, both CrN and Cr 2N were detected near the surface of the nitride films of three samples while Cr 2N phases formed in the deeper zone. The greatest amount of Fe 2O 3 oxide among the three samples was obtained on the nitriding 17-4 PH stainless steel which also had a high intensity count of N 1s.

  19. Amino acid modified Ni catalyst exhibits reversible H2 oxidation/production over a broad pH range at elevated temperatures

    PubMed Central

    Dutta, Arnab; DuBois, Daniel L.; Roberts, John A. S.; Shaw, Wendy J.

    2014-01-01

    Hydrogenases interconvert H2 and protons at high rates and with high energy efficiencies, providing inspiration for the development of molecular catalysts. Studies designed to determine how the protein scaffold can influence a catalytically active site have led to the synthesis of amino acid derivatives of [Ni(P2RN2R′)2]2+ complexes, [Ni(P2CyN2Amino acid)2]2+ (CyAA). It is shown that these CyAA derivatives can catalyze fully reversible H2 production/oxidation at rates approaching those of hydrogenase enzymes. The reversibility is achieved in acidic aqueous solutions (pH = 0–6), 1 atm 25% H2/Ar, and elevated temperatures (tested from 298 to 348 K) for the glycine (CyGly), arginine (CyArg), and arginine methyl ester (CyArgOMe) derivatives. As expected for a reversible process, the catalytic activity is dependent upon H2 and proton concentrations. CyArg is significantly faster in both directions (∼300 s−1 H2 production and 20 s−1 H2 oxidation; pH = 1, 348 K, 1 atm 25% H2/Ar) than the other two derivatives. The slower turnover frequencies for CyArgOMe (35 s−1 production and 7 s−1 oxidation under the same conditions) compared with CyArg suggests an important role for the COOH group during catalysis. That CyArg is faster than CyGly (3 s−1 production and 4 s−1 oxidation) suggests that the additional structural features imparted by the guanidinium groups facilitate fast and reversible H2 addition/release. These observations demonstrate that outer coordination sphere amino acids work in synergy with the active site and can play an important role for synthetic molecular electrocatalysts, as has been observed for the protein scaffold of redox active enzymes. PMID:25368196

  20. Variation of photoautotrophic fatty acid production from a highly CO2 tolerant alga, Chlorococcum littorale, with inorganic carbon over narrow ranges of pH.

    PubMed

    Ota, Masaki; Takenaka, Motohiro; Sato, Yoshiyuki; Smith, Richard L; Inomata, Hiroshi

    2015-01-01

    Photoautotrophic fatty acid production of a highly CO2 -tolerant green alga Chlorococcum littorale in the presence of inorganic carbon at 295 K and light intensity of 170 µmol-photon m(-2) s(-1) was investigated. CO2 concentration in the bubbling gas was adjusted by mixing pure gas components of CO2 and N2 to avoid photorespiration and β-oxidation of fatty acids under O2 surrounding conditions. Maximum content of total fatty acid showed pH-dependence after nitrate depletion of the culture media and increased with the corresponding inorganic carbon ratio. Namely, [HCO3 (-) ]/([CO2 ]+n[ CO32-]) ratio in the culture media was found to be a controlling factor for photoautotrophic fatty acid production after the nitrate limitation. At a CO2 concentration of 5% (vol/vol) and a pH of 6.7, the fatty acid content was 47.8 wt % (dry basis) at its maximum that is comparable with land plant seed oils. PMID:25919350

  1. Amino acid modified Ni catalyst exhibits reversible H2 oxidation/production over a broad pH range at elevated temperatures

    SciTech Connect

    Dutta, Arnab; DuBois, Daniel L.; Roberts, John A.; Shaw, Wendy J.

    2014-11-18

    Hydrogenases interconvert H2 and protons at high rates and with high energy efficiencies, providing inspiration for the development of molecular catalysts. Studies designed to determine how the protein scaffold can influence a catalytically active site has led to the synthesis of amino acid derivatives, [Ni(PCy2NAmino acid2)2]2+ (CyAA), of [Ni(PR2NR'2)2]2+ complexes. It is shown that these CyAA derivatives can catalyze fully reversible H2 production/oxidation, a feature reminiscent of enzymes. The reversibility is achieved in acidic aqueous solutions, 0.25% H2/Ar, and elevated temperatures (tested up to 348 K) for the glycine (CyGly), arginine (CyArg), and arginine methyl ester (CyArgOMe) derivatives. As expected for a reversible process, the activity is dependent upon H2 and proton concentration. CyArg is significantly faster in both directions than the other two derivatives (~300 s-1 H2 production and 20 s-1 H2 oxidation; pH=1, 348 K). The significantly slower rates for CyArgOMe (35 s-1 production and 7 s-1 oxidation) compared to CyArg suggests an important role for the COOH group during catalysis. That CyArg is faster than CyGly (3 s-1 production and 4 s-1 oxidation under the same conditions) suggests that the additional structural features imparted by the guanidinium groups facilitate fast and reversible H2 addition/release. These observations demonstrate that appended, outer coordination sphere amino acids work in synergy with the active site and can play an equally important role for synthetic molecular electrocatalysts as the protein scaffold does for redox active enzymes. This work was funded by the Office of Science Early Career Research Program through the US DOE, BES (AD, WJS), and the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US DOE, BES (DLD, JASR). PNNL is operated by Battelle for the US DOE.

  2. Monitoring of crustal movements in the San Andreas fault zone by a satellite-borne ranging system. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Kumar, M.

    1976-01-01

    The Close Grid Geodynamic Measurement System is conceived as an orbiting ranging device with a ground base grid of reflectors or transponders (spacing 1.0 to 30 km), which are projected to be of low cost (maintenance free and unattended), and which will permit the saturation of a local area to obtain data useful to monitor crustal movements in the San Andreas fault zone. The system includes a station network of 75 stations covering an area between 36 deg N and 38 deg N latitudes, and 237 deg E and 239 deg E longitudes, with roughly half of the stations on either side of the faults. In addition, the simulation of crustal movements through the introduction of changes in the relative positions between grid stations, weather effect for intervisibility between satellite and station and loss of observations thereof, and comparative evaluation of various observational scheme-patterns have been critically studied.

  3. Miniaturization of cytotoxicity tests for concentration range-finding studies prior to conducting the pH 6.7 Syrian hamster embryo cell-transformation assay.

    PubMed

    Plöttner, Sabine; Käfferlein, Heiko U; Brüning, Thomas

    2013-08-15

    The Syrian hamster embryo (SHE) cell-transformation assay (SHE assay) is a promising alternative method to animal testing for the identification of potential carcinogens in vitro. Prior to conducting the SHE assay the appropriate concentration range for each test chemical must be established, with a maximum concentration causing approximately 50% cytotoxicity. Concentration range-finding is done in separate experiments, which are similar to the final SHE assay but with less replicates and more concentrations. Here we present an alternative for the cytotoxicity testing by miniaturization of the test procedure by use of 24-well plates and surpluses from feeder-cell preparations as target cells. In addition, we integrated the photometry-based neutral red (NR) assay. For validation of the assay, incubations with dimethyl sulf-oxide, p-phenylenediamine-2HCl, aniline, o-toluidine-HCl, 2,4-diaminotoluene, and 2-naphthylamine were carried out in the miniaturized approach and compared with the standard procedure in terms of calculating the relative plating efficiencies (RPEs). To directly compare both methods, concentrations that produced 50% cytotoxicity (IC50) were calculated. Excellent associations were observed between the number of colonies and NR uptake. For all test substances a concentration-dependent, concomitant decrease of NR uptake in the miniaturized approach and RPEs in the standard test was observed after a 7-day incubation. The results from both test setups showed a comparable order of magnitude and the IC50 values differed by a factor <2 (1.4-1.9), depending on the substance in question. Overall, the miniaturized approach should be considered an improved alternative for cytotoxicity testing in the SHE assay, as it saves valuable SHE cells and speeds-up the time, to obtain test results more rapidly. PMID:23830925

  4. Last-Century Increases in Intrinsic Water-Use Efficiency of Grassland Communities Have Occurred over a Wide Range of Vegetation Composition, Nutrient Inputs, and Soil pH1[OPEN

    PubMed Central

    Köhler, Iris H.; Macdonald, Andy J.; Schnyder, Hans

    2016-01-01

    Last-century climate change has led to variable increases of the intrinsic water-use efficiency (Wi; the ratio of net CO2 assimilation to stomatal conductance for water vapor) of trees and C3 grassland ecosystems, but the causes of the variability are not well understood. Here, we address putative drivers underlying variable Wi responses in a wide range of grassland communities. Wi was estimated from carbon isotope discrimination in archived herbage samples from 16 contrasting fertilizer treatments in the Park Grass Experiment, Rothamsted, England, for the 1915 to 1929 and 1995 to 2009 periods. Changes in Wi were analyzed in relation to nitrogen input, soil pH, species richness, and functional group composition. Treatments included liming as well as phosphorus and potassium additions with or without ammonium or nitrate fertilizer applications at three levels. Wi increased between 11% and 25% (P < 0.001) in the different treatments between the two periods. None of the fertilizers had a direct effect on the change of Wi (ΔWi). However, soil pH (P < 0.05), species richness (P < 0.01), and percentage grass content (P < 0.01) were significantly related to ΔWi. Grass-dominated, species-poor plots on acidic soils showed the largest ΔWi (+14.7 μmol mol−1). The ΔWi response of these acidic plots was probably related to drought effects resulting from aluminum toxicity on root growth. Our results from the Park Grass Experiment show that Wi in grassland communities consistently increased over a wide range of nutrient inputs, soil pH, and plant community compositions during the last century. PMID:26620525

  5. Last-Century Increases in Intrinsic Water-Use Efficiency of Grassland Communities Have Occurred over a Wide Range of Vegetation Composition, Nutrient Inputs, and Soil pH.

    PubMed

    Köhler, Iris H; Macdonald, Andy J; Schnyder, Hans

    2016-02-01

    Last-century climate change has led to variable increases of the intrinsic water-use efficiency (Wi; the ratio of net CO2 assimilation to stomatal conductance for water vapor) of trees and C3 grassland ecosystems, but the causes of the variability are not well understood. Here, we address putative drivers underlying variable Wi responses in a wide range of grassland communities. Wi was estimated from carbon isotope discrimination in archived herbage samples from 16 contrasting fertilizer treatments in the Park Grass Experiment, Rothamsted, England, for the 1915 to 1929 and 1995 to 2009 periods. Changes in Wi were analyzed in relation to nitrogen input, soil pH, species richness, and functional group composition. Treatments included liming as well as phosphorus and potassium additions with or without ammonium or nitrate fertilizer applications at three levels. Wi increased between 11% and 25% (P < 0.001) in the different treatments between the two periods. None of the fertilizers had a direct effect on the change of Wi (ΔWi). However, soil pH (P < 0.05), species richness (P < 0.01), and percentage grass content (P < 0.01) were significantly related to ΔWi. Grass-dominated, species-poor plots on acidic soils showed the largest ΔWi (+14.7 μmol mol(-1)). The ΔWi response of these acidic plots was probably related to drought effects resulting from aluminum toxicity on root growth. Our results from the Park Grass Experiment show that Wi in grassland communities consistently increased over a wide range of nutrient inputs, soil pH, and plant community compositions during the last century. PMID:26620525

  6. A C-terminal proline-rich sequence simultaneously broadens the optimal temperature and pH ranges and improves the catalytic efficiency of glycosyl hydrolase family 10 ruminal xylanases.

    PubMed

    Li, Zhongyuan; Xue, Xianli; Zhao, Heng; Yang, Peilong; Luo, Huiying; Zhao, Junqi; Huang, Huoqing; Yao, Bin

    2014-06-01

    Efficient degradation of plant polysaccharides in rumen requires xylanolytic enzymes with a high catalytic capacity. In this study, a full-length xylanase gene (xynA) was retrieved from the sheep rumen. The deduced XynA sequence contains a putative signal peptide, a catalytic motif of glycoside hydrolase family 10 (GH10), and an extra C-terminal proline-rich sequence without a homolog. To determine its function, both mature XynA and its C terminus-truncated mutant, XynA-Tr, were expressed in Escherichia coli. The C-terminal oligopeptide had significant effects on the function and structure of XynA. Compared with XynA-Tr, XynA exhibited improved specific activity (12-fold) and catalytic efficiency (14-fold), a higher temperature optimum (50°C versus 45°C), and broader ranges of temperature and pH optima (pH 5.0 to 7.5 and 40 to 60°C versus pH 5.5 to 6.5 and 40 to 50°C). Moreover, XynA released more xylose than XynA-Tr when using beech wood xylan and wheat arabinoxylan as the substrate. The underlying mechanisms responsible for these changes were analyzed by substrate binding assay, circular dichroism (CD) spectroscopy, isothermal titration calorimetry (ITC), and xylooligosaccharide hydrolysis. XynA had no ability to bind to any of the tested soluble and insoluble polysaccharides. However, it contained more α helices and had a greater affinity and catalytic efficiency toward xylooligosaccharides, which benefited complete substrate degradation. Similar results were obtained when the C-terminal sequence was fused to another GH10 xylanase from sheep rumen. This study reveals an engineering strategy to improve the catalytic performance of enzymes. PMID:24657866

  7. Microbial Metabolic Landscapes Derived from Complementary Mineralogical, Aqueous Geochemical, and Gas Data Associated with High pH, Actively Serpentinizing Springs in the Coast Range Ophiolite (CA,USA) and Zambales and Palawan Ophiolites (Philippines)

    NASA Astrophysics Data System (ADS)

    Cardace, D.; Meyer-Dombard, D. R.; Arcilla, C. A.; Hoehler, T. M.; McCollom, T. M.; Schrenk, M. O.

    2013-12-01

    We applied x-ray diffraction and thin section petrography to profile the mineralogy of serpentinites and relict peridotites pertinent to the Coast Range Ophiolite Microbiological Observatory (CROMO, an array of 8 water monitoring wells installed in serpentinizing ultramafic rocks, sited at the UC-Davis McLaughlin Natural Reserve, Lower Lake, CA) and Zambales and Palawan ophiolites in the Philippines. In general, serpentinization in near surface samples was extensive, obscuring many protolith characteristics, but relict olivine grains are apparent. Upwelling serpentinizing formation fluids react to varying degrees with shallow hydrological regimes impacted by meteoric inputs. In the vicinity of CROMO, modest pH (7 to 8.5) waters form spring deposits. In the Philippines ophiolites, high pH (10.8 to 11. 3) waters form extensive travertines near Manleluag Springs and newly faulted sections of the Poon Bato River. Travertine fabric and chemistry indicate episodic spring flow and suggest that ambient water chemistry shifts over time. A multiprobe meter simultaneously measured pH, temperature, conductivity, oxidation-reduction potential, and dissolved oxygen at selected springs. Filtered water samples from monitoring wells and springs were analyzed for major elements and some ions. Dissolved gases and gas bubbles were captured and transported for analysis of H2, CO, and CH4. Aqueous and gas geochemistry data were transformed into activity data using EQ3: A Computer Program for Geochemical Aqueous Speciation-Solubility Calculations (Wolery, 1992) and the Gibbs Energy values for selected metabolic reactions, given the environmental conditions, were calculated. Metabolisms considered were: methanogenesis, methane oxidation, ferric iron reduction, ferrous iron oxidation, oxidation of S in pyrite, nitrification, denitrification, and N-fixation. At all sites tapping waters sourced in actively serpentinizing systems, regardless of geography, ferrous iron oxidation was the most

  8. Continuous Bulk FeCuC Aerogel with Ultradispersed Metal Nanoparticles: An Efficient 3D Heterogeneous Electro-Fenton Cathode over a Wide Range of pH 3-9.

    PubMed

    Zhao, Hongying; Qian, Lin; Guan, Xiaohong; Wu, Deli; Zhao, Guohua

    2016-05-17

    Novel iron-copper-carbon (FeCuC) aerogel was fabricated through a one-step process from metal-resin precursors and then activated with CO2 and N2 in environmentally friendly way. The activated FeCuC aerogel was applied in a heterogeneous electro-Fenton (EF) process and exhibited higher mineralization efficiency than homogeneous EF technology. High total organic carbon (TOC) removal of organic pollutants with activated FeCuC aerogel was achieved at a wide range of pH values (3-9). The chemical oxygen demand (COD) of real dyeing wastewater was below China's discharge standard after 30 min of treatment, and the specific energy consumption was low (9.2 kW·h·kg(-1)COD(-1)), corresponding to a power consumption of only ∼0.34 kW·h per ton of wastewater. The enhanced mineralization efficiency of FeCuC aerogel was mostly attributable to ultradispersed metallic Fe-Cu nanoparticles embedded in 3D carbon matrix and the CO2-N2 treatment. The CO2 activation enhanced the accessibility of the aerogel's pores, and the secondary N2 activation enlarged the porosity and regenerated the ultradispersed zerovalent iron (Fe(0)) with reductive carbon. Cu(0) acted as a reduction promoter for interfacial electron transfer. Moreover, activated FeCuC aerogel presented low iron leaching (<0.1 ppm) in acidic solution and can be molded into different sizes with high flexibility. Thus, this material could be used as a low-cost cathode and efficient heterogeneous EF technology for actual wastewater treatment. PMID:27082750

  9. 41 CFR 60-2.11 - Organizational profile.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... concentrated. The contractor must use either the organizational display or the workforce analysis as its.../Pacific Islanders, and American Indians/Alaskan Natives. (c) Workforce analysis. (1) A workforce analysis... disciplines, in order of wage rates or salary ranges. (4) For each job title, the total number of...

  10. 41 CFR 60-2.11 - Organizational profile.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... concentrated. The contractor must use either the organizational display or the workforce analysis as its.../Pacific Islanders, and American Indians/Alaskan Natives. (c) Workforce analysis. (1) A workforce analysis... disciplines, in order of wage rates or salary ranges. (4) For each job title, the total number of...

  11. Evidence for intramolecular aromatic-ring stacking in the physiological pH range of the monodeprotonated xanthine residue in mixed-ligand complexes containing xanthosinate 5'-monophosphate (XMP).

    PubMed

    Sigel, Helmut; Operschall, Bert P; Massoud, Salah S; Song, Bin; Griesser, Rolf

    2006-12-14

    The stability constants of the mixed-ligand complexes formed between Cu(Arm)2+ [Arm = 2,2'-bipyridine (Bpy) or 1,10-phenanthroline (Phen)], and the di- or trianion of xanthosine 5'-monophosphoric acid [= XMP(2-) or (XMP - H)(3-)] were determined by potentiometric pH titration in aqueous solution (25 degrees C; I = 0.1 M, NaNO3). Those for the monoanion, i.e., the Cu(Arm)(H;XMP)+ complexes, could only be estimated; for these species it is concluded that the metal ion is overwhelmingly bound at N7 and the proton resides at the phosphate group. Similarly, in the Cu(Arm)(XMP)+/- [= Cu(Arm)(X - H.MP.H)+/-] complexes Cu(Arm)2+ is also at N7 but the xanthine residue has lost a proton whereas the phosphate group still carries one, i.e., stacking plays, if at all, only a very minor role, yet, the N7-bound Cu(Arm)2+ appears to form an outer-sphere macrochelate with P(O)2(OH)-, its formation degree being about 60%. All this is different in the Cu(Arm)(XMP - H)- complexes, which are formed by the (XMP - H)(3-) species, that occur at the physiological pH of 7.5 and for which previously evidence has been provided that in a tautomeric equilibrium the xanthine moiety loses a proton either from (N1)H or (N3)H. In Cu(Arm)(XMP - H)- the phosphate group is the primary binding site for Cu(Arm)2+ and the observed increased complex stability is mainly due to intramolecular stack (st) formation between the aromatic-ring systems of Phen or Bpy and the monodeprotonated xanthine residue of (XMP - H)(3-); e.g., the stacked Cu(Phen)(XMP - H) isomer occurs with approximately 76%. Regarding biological systems the most important result is that at physiological pH the xanthine moiety has lost a proton from the (N1)H/(N3)H sites forming (XMP - H)(3-) and that its anionic xanthinate residue is able to undergo aromatic-ring stacking. PMID:17117222

  12. A satellite measurement of cosmic-ray abundances and spectra in the charge range 2 less than or equal to 7 less than or equal to 10. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Brown, J. W.

    1973-01-01

    The composition of the nuclear component of the cosmic radiation was studied to yield information concerning the source, propagation, and confinement of cosmic rays within the galaxy. The first comprehensive satellite measurement is presented of cosmic-ray composition and spectra in the charge range 2 equal to or less than Z equal to or less than 10 using the geomagnetic field as a rigidity analyzer through the entire range of vertical cutoffs. The results indicate that the spectra of all the elements in the observed range are similar, and thus that various ratios of elemental abundances are nearly independent of rigidity over the range 2 equal to or less than P equal to or less than 15 GV. Calculations of the propagation of cosmic rays through the interstellar and interplanetary media predict that there should be a variation with rigidity of ratios of various elements, because of the charge-dependent effects of ionization of the interstellar gas by the cosmic rays. The absence of this variation can be explained by assuming a rigidity-dependent confinement of the cosmic rays in the galaxy.

  13. Acid loading test (pH)

    MedlinePlus

    The acid loading test (pH) measures the ability of the kidneys to send acid to the urine when there is too much acid in the ... Urine with a pH less than 5.3 is normal. Normal value ranges may vary slightly among different laboratories. Some labs use different ...

  14. Fetal scalp pH testing

    MedlinePlus

    ... Normal pH: 7.25 to 7.35 Borderline pH: 7.20 to 7.25 The examples above are common measurements for results of these tests. Normal value ranges may vary slightly among different laboratories. Some ...

  15. The C3H2 2(20)-2(11) transition - Absorption in cold dark clouds

    NASA Technical Reports Server (NTRS)

    Matthews, H. E.; Avery, L. W.; Madden, S. C.; Irvine, W. M.

    1986-01-01

    The first observations of the 2(20)-2(11) transition of cyclopropenylidene (C3H2) at 21.6 GHz are described. The most significant finding is that the 2(20)-2(11) transition line is always seen in absorption, in contrast to the 18.3-GHz 1(10)-1(01) resonance line of the ortho species which always appears in emission in cold dust clouds. Thus the former must have an excitation temperature less than the brightness temperature of the universal microwave background and becomes only the second molecule to exhibit such 'refrigeration' below this temperature in cold, dark dust clouds.

  16. Complexation Key to a pH Locked Redox Reaction

    ERIC Educational Resources Information Center

    Rizvi, Masood Ahmad; Dangat, Yuvraj; Shams, Tahir; Khan, Khaliquz Zaman

    2016-01-01

    An unfavorable pH can block a feasible electron transfer for a pH dependent redox reaction. In this experiment, a series of potentiometric titrations demonstrate the sequential loss in feasibility of iron(II) dichromate redox reaction over a pH range of 0-4. The pH at which this reaction failed to occur was termed as a pH locked reaction. The…

  17. 43 CFR 2.11 - Why is it important to send my request to the right office?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Why is it important to send my request to the right office? 2.11 Section 2.11 Public Lands: Interior Office of the Secretary of the Interior RECORDS AND TESTIMONY; FREEDOM OF INFORMATION ACT Requests for Records under the FOIA § 2.11 Why is...

  18. 43 CFR 2.11 - Why is it important to send my request to the right office?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Why is it important to send my request to the right office? 2.11 Section 2.11 Public Lands: Interior Office of the Secretary of the Interior RECORDS AND TESTIMONY; FREEDOM OF INFORMATION ACT Requests for Records under the FOIA § 2.11 Why is...

  19. A Molecular Chameleon: Reversible pH- and Cation-Induced Control of the Optical Properties of Phthalocyanine-Based Complexes in the Visible and Near-Infrared Spectral Ranges.

    PubMed

    Safonova, Evgeniya A; Martynov, Alexander G; Nefedov, Sergey E; Kirakosyan, Gayane A; Gorbunova, Yulia G; Tsivadze, Aslan Yu

    2016-03-01

    A series of novel nonperipherally substituted tetra-15-crown-5-dibutoxyoxanthrenocyanines (H2, Mg, Zn), acting as chameleons with the unique properties of switchable absorption and emission in the near-infrared (NIR) spectral range have been synthesized and characterized by X-ray diffraction. The attachment of 15-crown-5-α-dibutoxyoxanthreno moieties to phthalocyanine is responsible for the high solubility of the resulting molecules and the red shift of the Q band to the NIR region and offers a unique possibility for postsynthetic modification of the optical properties of the molecules. Both aggregation of phthalocyanine and its participation in an acid-base equilibrium strongly alter their optical properties. For example, the absorption of complexes can be reversibly tuned from 686 up to 1028 nm because of the cation-induced formation of supramolecular dimers or subsequent protonation of meso-N atoms orf macrocycle, in contrast to peripherally substituted tetra-15-crown-5-phthalocyanines without oxanthrene moieties. The reversibility of these processes can be controlled by the addition of [2.2.2]cryptand or amines. All investigated compounds exhibit fluorescence with moderate quantum yield, which can also be switched between the ON and OFF states by the action of similar agents. PMID:26910047

  20. Losing Our Way? The Downward Path for Outdoor Learning for Children Aged 2-11 Years

    ERIC Educational Resources Information Center

    Waite, Sue

    2010-01-01

    This paper draws on three related empirical studies in the South West of England: a survey of outdoor experiential learning opportunities, examining attitudes, practice and aspirations of practitioners and children in educational and care settings for children between 2-11 years within a rural county; a follow-up series of five case studies; and…

  1. Synthesis and Evaluation of a 2,11‐Cembranoid‐Inspired Library

    PubMed Central

    Welford, Amanda J; Liu, Manjuan; Richards, Meirion; Brown, Nathan; Lomas, Cara; Tizzard, Graham J.; Pitak, Mateusz B.; Coles, Simon J.; Eccles, Suzanne A.; Raynaud, Florence I.; Collins, Ian

    2016-01-01

    Abstract The 2,11‐cembranoid family of natural products has been used as inspiration for the synthesis of a structurally simplified, functionally diverse library of octahydroisobenzofuran‐based compounds designed to augment a typical medicinal chemistry library screen. Ring‐closing metathesis, lactonisation and SmI2‐mediated methods were exemplified and applied to the installation of a third ring to mimic the nine‐membered ring of the 2,11‐cembranoids. The library was assessed for aqueous solubility and permeability, with a chemical‐space analysis performed for comparison to the family of cembranoid natural products and a sample set of a screening library. Preliminary investigations in cancer cells showed that the simpler scaffolds could recapitulate the reported anti‐migratory activity of the natural products. PMID:26929153

  2. Evaluation of fluorimetric pH sensors for bioprocess monitoring at low pH.

    PubMed

    Janzen, Nils H; Schmidt, Michael; Krause, Christian; Weuster-Botz, Dirk

    2015-09-01

    Optical chemical sensors are the standard for pH monitoring in small-scale bioreactors such as microtiter plates, shaking flasks or other single-use bioreactors. The dynamic pH range of the so far commercially available fluorescent pH sensors applied in small-scale bioreactors is restricted to pH monitoring around neutral pH, although many fermentation processes are performed at pH < 6 on industrial scale. Thus, two new prototype acidic fluorescence pH sensors immobilized in single-use stirred-tank bioreactors, one with excitation at 470 nm and emission at 550 nm (sensor 470/550) and the other with excitation at 505 nm and emission at 600 nm (sensor 505/600), were characterized with respect to dynamic ranges and operational stability in representative fermentation media. Best resolution and dynamic range was observed with pH sensor 505/600 in mineral medium (dynamic range of 3.9 < pH < 7.2). Applying the same pH sensors to complex medium results in a drastic reduction of resolution and dynamic ranges. Yeast extract in complex medium was found to cause background fluorescence at the sensors' operating wavelength combinations. Optical isolation of the sensor by adding a black colored polymer layer above the sensor spot and fixing an aperture made of adhesive photoresistant foil between the fluorescence reader and the transparent bottom of the polystyrene reactors enabled full re-establishment of the sensor's characteristics. Reliability and operational stability of sensor 505/600 was shown by online pH monitoring (4.5 < pH < 5.8) of parallel anaerobic batch fermentations of Clostridium acetobutylicum for the production of acetone, butanol and ethanol (ABE) with offline pH measurements with a standard glass electrode as reference. PMID:25969385

  3. Plant Habitat (PH)

    NASA Technical Reports Server (NTRS)

    Onate, Bryan

    2016-01-01

    The International Space Station (ISS) will soon have a platform for conducting fundamental research of Large Plants. Plant Habitat (PH) is designed to be a fully controllable environment for high-quality plant physiological research. PH will control light quality, level, and timing, temperature, CO2, relative humidity, and irrigation, while scrubbing ethylene. Additional capabilities include leaf temperature and root zone moisture and oxygen sensing. The light cap will have red (630 nm), blue (450 nm), green (525 nm), far red (730 nm) and broad spectrum white LEDs. There will be several internal cameras (visible and IR) to monitor and record plant growth and operations.

  4. pH Basics

    ERIC Educational Resources Information Center

    Lunelli, Bruno; Scagnolari, Francesco

    2009-01-01

    The exposition of the pervasive concept of pH, of its foundations and implementation as a meaningful quantitative measurement, in nonspecialist university texts is often not easy to follow because too many of its theoretical and operative underpinnings are neglected. To help the inquiring student we provide a concise introduction to the depth just…

  5. Ph.D. shortage

    NASA Astrophysics Data System (ADS)

    The late 1990s will see a shortage of Ph.D. graduates, according to the Association of American Universities, Washington, D.C. AAU's new comprehensive study, “The Ph.D. Shortage: The Federal Role,” reports that competition for new Ph.D.s is already intense and can only intensify because demand is greater than supply in both academic and nonacademic markets.Doctoral education plays an increasingly important role in U.S. research and development programs. Students have a pivotal part in doing research and enriching it with new ideas. The AAU report says that graduate students are “major determinants of the creativity and productivity of U.S. academic research, the source of more than 50% of the nation's basic research.’ The market for doctoral education extends beyond the university. In 1985, about 43% of all Ph.D.s employed in this country were working outside higher education; the demand for doctorate recipients in nonacademic sectors continues to grow.

  6. pH optrode

    DOEpatents

    Northrup, M. Allen; Langry, Kevin C.

    1993-01-01

    A process is provided for forming a long-lasting, stable, pH-sensitive dye-acrylamide copolymer useful as a pH-sensitive material for use in an optrode or other device sensitive to pH. An optrode may be made by mechanically attaching the copolymer to a sensing device such as an optical fiber.

  7. Calculation of electron-impact rotationally elastic total cross sections for NH{sub 3}, H{sub 2}S, and PH{sub 3} over the energy range from 0.01 eV to 2 keV

    SciTech Connect

    Limbachiya, Chetan; Vinodkumar, Minaxi; Mason, Nigel

    2011-04-15

    This paper report results of calculation of the total cross section Q{sub T} for electron impact on NH{sub 3}, H{sub 2}S, and PH{sub 3} over a wide range of incident energies from 0.01 eV to 2 keV. Total cross sections Q{sub T} (elastic plus electronic excitation) for incident energies below the ionization threshold of the target were calculated using the UK molecular R-matrix code through the Quantemol-N software package and cross sections at higher energies were derived using the spherical complex optical potential formalism. The two methods are found to give self-consistent values where they overlap. The present results are, in general, found to be in good agreement with previous experimental and theoretical results.

  8. 17-4 PH and 15-5 PH

    NASA Technical Reports Server (NTRS)

    Johnson, Howard T.

    1995-01-01

    17-4 PH and 15-5 PH are extremely useful and versatile precipitation-hardening stainless steels. Armco 17-4 PH is well suited for the magnetic particle inspection requirements of Aerospace Material Specification. Armco 15-5 PH and 17-4 PH are produced in billet, plate, bar, and wire. Also, 15-5 PH is able to meet the stringent mechanical properties required in the aerospace and nuclear industries. Both products are easy to heat treat and machine, making them very useful in many applications.

  9. Fiber-Optic pH Sensor

    NASA Astrophysics Data System (ADS)

    Ganesh, A. Balaji; Radhakrishnan, T. K.

    The new enhancement in the determination of pH using optical fiber system is described here. This work uses the membrane made of cellulose acetate membrane for reagent immobilization and congo red (pKa 3.7) and neutral red (pKa 7.2) as pH indicators. An effective covalent chemical binding procedure is used to immobilize the indicatorsE The response time, reversibility, linear range, reproducibility, and long-term stability of fiber optic sensor with congo red as well as neutral red have been determined. The linear range measured for the sensor based on the congo red and neutral red is 4.2-6.3 and 4.1-9.0, respectively. The response time of sensor membrane is measured by varying the substance pH values between 11.0 and 2.0.

  10. Eukaryotic diversity at pH extremes

    PubMed Central

    Amaral-Zettler, Linda A.

    2013-01-01

    Extremely acidic (pH < 3) and extremely alkaline (pH > 9) environments support a diversity of single-cell and to a lesser extent, multicellular eukaryotic life. This study compared alpha and beta diversity in eukaryotic communities from seven diverse aquatic environments with pH values ranging from 2 to 11 using massively-parallel pyrotag sequencing targeting the V9 hypervariable region of the 18S ribosomal RNA (rRNA) gene. A total of 946 operational taxonomic units (OTUs) were recovered at a 6% cut-off level (94% similarity) across the sampled environments. Hierarchical clustering of the samples segregated the communities into acidic and alkaline groups. Similarity percentage (SIMPER) analysis followed by indicator OTU analysis (IOA) and non-metric multidimensional scaling (NMDS) were used to determine which characteristic groups of eukaryotic taxa typify acidic or alkaline extremes and the extent to which pH explains eukaryotic community structure in these environments. Spain's Rio Tinto yielded the fewest observed OTUs while Nebraska Sandhills alkaline lakes yielded the most. Distinct OTUs, including metazoan OTUs, numerically dominated pH extreme sites. Indicator OTUs included the diatom Pinnularia and unidentified opisthokonts (Fungi and Filasterea) in the extremely acidic environments, and the ciliate Frontonia across the extremely alkaline sites. Inferred from NMDS, pH explained only a modest fraction of the variation across the datasets, indicating that other factors influence the underlying community structure in these environments. The findings from this study suggest that the ability for eukaryotes to adapt to pH extremes over a broad range of values may be rare, but further study of taxa that can broadly adapt across diverse acidic and alkaline environments, respectively present good models for understanding adaptation and should be targeted for future investigations. PMID:23335919

  11. Urine pH test

    MedlinePlus

    A urine pH test measures the level of acid in urine. ... pH - urine ... meat products, or cheese can decrease your urine pH. ... to check for changes in your urine acid levels. It may be done to ... more effective when urine is acidic or non-acidic (alkaline).

  12. Investigation of Cyg OB2 #11(O5 Ifc) by Modelling its Atmosphere

    NASA Astrophysics Data System (ADS)

    Maryeva, Olga; Zhuchkov, Roman; Malogolovets, Eugene

    2014-04-01

    We continue the study of O-supergiants belonging to the association Cyg OB2 using moderate-resolution spectra. In this paper we present results of the modelling of the stellar atmosphere of Cyg OB2 #11. This object belongs to the spectral class Ofc, which was recently introduced and is yet small in numbers. Ofc class consists of stars with normal spectra with CIII λλ4647, 4650, 4652 emission lines of comparable intensity to those of the Of-defining lines NIII λλ4634, 4640, 4642. We combined new spectral data obtained by the 1.5-m Russian-Turkish telescope with spectra from MAST and CASU archives and determined physical parameters of the wind and chemical composition of the stellar atmosphere using cmfgen code. The estimated nitrogen abundance is lower than one in atmospheres of `normal' O-supergiants (i.e. O4-6 supergiants without additional spectral index `n' or `c') and carbon abundance is solar. Also we find an excess in silicon. We present an illustrative comparison of our modelling results with current Geneva evolutionary models for rotating massive stars. The position on the Hertzsprung-Russell diagram corresponds to the star mass of about 50 M⊙ and age about 4.5 Myr. Moreover, we carried out the high angular resolution (~ 0.02arcsec) observations on the Russian 6-m telescope aiming to find weaker companions of this star, which did not reveal any.

  13. ART: Surveying the Local Universe at 2-11 keV

    NASA Technical Reports Server (NTRS)

    O'Dell, S. L.; Ramsey, B. D.; Adams, M. L.; Brandt, W. N.; Bubarev, M. V.; Hassinger, G.; Pravlinski, M.; Predehl, P.; Romaine, S. E.; Swartz, D. A.; Urry, C. M.; Vikhlinin, A.; Weisskopf, M. C.

    2008-01-01

    The Astronomical Rontgen Telescope (ART) is a medium-energy x-ray telescope system proposed for the Russian-led mission Spectrum Rontgen-Gamma (SRG). Optimized for performance over the 2-11-keV band, ART complements the softer response of the SRG prime instrument-the German eROSITA x-ray telescope system. The anticipated number of ART detections is 50,000-with 1,000 heavily-obscured (N(sub H)> 3x10(exp 23)/sq cm) AGN-in the SRG 4-year all-sky survey, plus a comparable number in deeper wide-field (500 deg(sup 2) total) surveys. ART's surveys will provide a minimally-biased, nearly-complete census of the local Universe in the medium-energy x-ray band (including Fe-K lines), at CCD spectral resolution. During long (approx.100-ks) pointed observations, ART can obtain statistically significant spectral data up to about 15 keY for bright sources and medium-energy x-ray continuum and Fe-K-line spectra of AGN detected with the contemporaneous NuSTAR hard-x-ray mission.

  14. Range Ecosystems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    After more than two hundred years, grazing remains California’s most extensive land use. The ‘Range Ecosystems’ chapter in the ‘Ecosystems of California’ sourcebook provides an integrated picture of the biophysical, social, and economic aspects of lands grazed by livestock in the state. Grazing mana...

  15. Molecular aspects of bacterial pH sensing and homeostasis

    PubMed Central

    Krulwich, Terry A.; Sachs, George; Padan, Etana

    2011-01-01

    Diverse mechanisms for pH-sensing and cytoplasmic pH homeostasis enable most bacteria to tolerate or grow at external pH values that are outside the cytoplasmic pH range they must maintain for growth. The most extreme cases are exemplified by the extremophiles that inhabit environments whose pH is below 3 or above 11. Here we describe how recent insights into the structure and function of key molecules and their regulators reveal novel strategies of bacterial pH-homeostasis. These insights may help us better target certain pathogens and better harness the capacities of environmental bacteria. PMID:21464825

  16. Range and range rate system

    NASA Technical Reports Server (NTRS)

    Graham, Olin L. (Inventor); Russell, Jim K. (Inventor); Epperly, Walter L. (Inventor)

    1988-01-01

    A video controlled solid state range finding system which requires no radar, high power laser, or sophisticated laser target is disclosed. The effective range of the system is from 1 to about 200 ft. The system includes an opto-electric camera such as a lens CCD array device. A helium neon laser produces a source beam of coherent light which is applied to a beam splitter. The beam splitter applies a reference beam to the camera and produces an outgoing beam applied to a first angularly variable reflector which directs the outgoing beam to the distant object. An incoming beam is reflected from the object to a second angularly variable reflector which reflects the incoming beam to the opto-electric camera via the beam splitter. The first reflector and the second reflector are configured so that the distance travelled by the outgoing beam from the beam splitter and the first reflector is the same as the distance travelled by the incoming beam from the second reflector to the beam splitter. The reference beam produces a reference signal in the geometric center of the camera. The incoming beam produces an object signal at the camera.

  17. The pH Game.

    ERIC Educational Resources Information Center

    Chemecology, 1996

    1996-01-01

    Describes a game that can be used to teach students about the acidity of liquids and substances around their school and enable them to understand what pH levels tell us about the environment. Students collect samples and measure the pH of water, soil, plants, and other natural material. (DDR)

  18. Immunogenicity and safety of tetravalent dengue vaccine in 2-11 year-olds previously vaccinated against yellow fever: randomized, controlled, phase II study in Piura, Peru.

    PubMed

    Lanata, Claudio F; Andrade, Teresa; Gil, Ana I; Terrones, Cynthia; Valladolid, Omar; Zambrano, Betzana; Saville, Melanie; Crevat, Denis

    2012-09-01

    In a randomized, placebo-controlled, monocenter, observer blinded study conducted in an area where dengue is endemic, we assessed the safety and immunogenicity of a recombinant, live, attenuated, tetravalent dengue vaccine candidate (CYD-TDV) in 2-11 year-olds with varying levels of pre-existing yellow-fever immunity due to vaccination 1-7 years previously. 199 children received 3 injections of CYD-TDV (months 0, 6 and 12) and 99 received placebo (months 0 and 6) or pneumococcal polysaccharide vaccine (month 12). One month after the third dengue vaccination, serotype specific neutralizing antibody GMTs were in the range of 178-190 (1/dil) (versus 16.7-38.1 in the control group), a 10-20 fold-increase from baseline, and 94% of vaccines were seropositive to all four serotypes (versus 39% in the control group). There were no vaccine-related SAEs. The observed reactogenicity profile was consistent with phase I studies, with severity grade 1-2 injection site pain, headache, malaise and fever most frequently reported and no increase after subsequent vaccinations. Virologically confirmed dengue cases were seen after completion of the 3 doses: 1 in the CYD-TDV group (N=199), and 3 in the control group (N=99). A 3-dose regimen of CYD-TDV had a good safety profile in 2-11 year olds with a history of YF vaccination and elicited robust antibody responses that were balanced against the four serotypes. PMID:22863660

  19. 43 CFR 2.11 - Why is it important to send my request to the right office?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Why is it important to send my request to... RECORDS AND TESTIMONY; FREEDOM OF INFORMATION ACT Requests for Records under the FOIA § 2.11 Why is it... delayed if you send it to the Secretary of the Interior (or other high-level officials), the Office...

  20. Optoelectronic pH Meter: Further Details

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Antony S.; Anderson, Mejody M.; Macatangay, Ariel V.

    2009-01-01

    A collection of documents provides further detailed information about an optoelectronic instrument that measures the pH of an aqueous cell-culture medium to within 0.1 unit in the range from 6.5 to 7.5. The instrument at an earlier stage of development was reported in Optoelectronic Instrument Monitors pH in a Culture Medium (MSC-23107), NASA Tech Briefs, Vol. 28, No. 9 (September 2004), page 4a. To recapitulate: The instrument includes a quartz cuvette through which the medium flows as it is circulated through a bioreactor. The medium contains some phenol red, which is an organic pH-indicator dye. The cuvette sits between a light source and a photodetector. [The light source in the earlier version comprised red (625 nm) and green (558 nm) light-emitting diodes (LEDs); the light source in the present version comprises a single green- (560 nm)-or-red (623 nm) LED.] The red and green are repeatedly flashed in alternation. The responses of the photodiode to the green and red are processed electronically to obtain the ratio between the amounts of green and red light transmitted through the medium. The optical absorbance of the phenol red in the green light varies as a known function of pH. Hence, the pH of the medium can be calculated from the aforesaid ratio.

  1. Field measurement of alkalinity and pH

    USGS Publications Warehouse

    Barnes, Ivan

    1964-01-01

    The behavior of electrometric pH equipment under field conditions departs from the behavior predicted from Nernst's law. The response is a linear function of pH, and hence measured pH values may be corrected to true pH if the instrument is calibrated with two reference solutions for each measurement. Alkalinity titrations may also be made in terms of true pH. Standard methods, such as colorimetric titrations, were rejected as unreliable or too cumbersome for rapid field use. The true pH of the end point of the alkalinity titration as a function of temperature, ionic strength, and total alkalinity has been calculated. Total alkalinity in potable waters is the most important factor influencing the end point pH, which varies from 5.38 (0 ? C, 5 ppm (parts per million) HC0a-) to 4.32 (300 ppm HC0a-,35 ? C), for the ranges of variables considered. With proper precautions, the pH may be determined to =i:0.02 pH and the alkalinity to =i:0.6 ppm HCO3- for many naturally occurring bodies of fresh water.

  2. Nanosensor aided photoacoustic measurement of pH in vivo

    NASA Astrophysics Data System (ADS)

    Ray, Aniruddha; Yoon, Hyung Ki; Kopelman, Raoul; Wang, Xueding

    2013-03-01

    pH plays a critical role in many aspects of cell and tissues physiology. Lower pH is also a typical characteristic of arthritic joints and tumor tissues. These pH anomalies are also exploited in different drug delivery mechanisms. Here we present, a new method of pH sensing in vivo using spectroscopic photoacoustic measurements facilitated by pH sensitive nanosensors. The nanosensors consist of Seminaphtharhodafluor (SNARF), a pH sensitive dye, encapsulated in a specially designed polyacrylamide hydrogel matrix with a hydrophobic core. The photoacoustic intensity ratio between the excitation wavelengths of 585nm and 565nm increases in the pH range from 6.0 to 8.0 and is used to determine the pH of the local environment. These nanosensors are biodegradable, biocompatible, have a long plasma lifetime and can be targeted to any type of cells or tissues by surface modification using proper targeting moieties. The encapsulation of the dye prevents the interaction of the dye with proteins in plasma and also reduces the dye degradation. The SNARF dye in its free form loses 90% of its absorbance in presence of albumin, a protein found in abundance in plasma, and this has severely limited its adaptation to in vivo environments. In comparison, the SNARF nanosensors lose only 16% of their absorbance in the same environment. We employ these nanosensors to demonstrate the feasibility of pH sensing in vivo through photoacoustic measurements on a rat joint model.

  3. Esophageal pH monitoring

    MedlinePlus

    pH monitoring - esophageal; Esophageal acidity test ... esophagitis You may need to have the following tests if your doctor suspects esophagitis : Barium swallow Esophagogastroduodenoscopy (also called upper GI endoscopy)

  4. PhEDEx Data Service

    NASA Astrophysics Data System (ADS)

    Egeland, Ricky; Wildish, Tony; Huang, Chih-Hao

    2010-04-01

    The PhEDEx Data Service provides access to information from the central PhEDEx database, as well as certificate-authenticated managerial operations such as requesting the transfer or deletion of data. The Data Service is integrated with the "SiteDB" service for fine-grained access control, providing a safe and secure environment for operations. A plug-in architecture allows server-side modules to be developed rapidly and easily by anyone familiar with the schema, and can automatically return the data in a variety of formats for use by different client technologies. Using HTTP access via the Data Service instead of direct database connections makes it possible to build monitoring web-pages with complex drill-down operations, suitable for debugging or presentation from many aspects. This will form the basis of the new PhEDEx website in the near future, as well as providing access to PhEDEx information and certificate-authenticated services for other CMS dataflow and workflow management tools such as CRAB, WMCore, DBS and the dashboard. A PhEDEx command-line client tool provides one-stop access to all the functions of the PhEDEx Data Service interactively, for use in simple scripts that do not access the service directly. The client tool provides certificate-authenticated access to managerial functions, so all the functions of the PhEDEx Data Service are available to it. The tool can be expanded by plug-ins which can combine or extend the client-side manipulation of data from the Data Service, providing a powerful environment for manipulating data within PhEDEx.

  5. An efficient and practical synthesis of [2-11C]indole via superfast nucleophilic [11C]cyanation and RANEY® Nickel catalyzed reductive cyclization

    DOE PAGESBeta

    So Jeong Lee; Fowler, Joanna S.; Alexoff, David; Schueller, Michael; Kim, Dohyun; Nauth, Alexander; Weber, Carina; Kim, Sung Won; Hooker, Jacob M.; Ma, Ling; et al

    2015-09-21

    We developed a rapid method for the synthesis of carbon-11 radiolabeled indole using a sub-nanomolar quantity of no-carrier-added [11C]cyanide as radio-precursor. Based upon a reported synthesis of 2-(2-nitrophenyl)acetonitrile (2), a highly reactive substrate 2-nitrobenzyl bromide (1) was evaluated for nucleophilic [11C]cyanation. Additionally, related reaction conditions were explored with the goal of obtaining of highly reactive 2-(2-nitrophenyl)-[1-11C]acetonitrile ([11C]-2) while inhibiting its rapid conversion to 2,3-bis(2-nitrophenyl)-[1-11C]propanenitrile ([11C]-3). Next, a Raney Nickel catalyzed reductive cyclization method was utilized for synthesizing the desired [2-11C]indole with hydrazinium monoformate as the active reducing agent. Extensive and iterative screening of basicity, temperature and stoichiometry was required tomore » overcome the large stoichiometry bias that favored 2-nitrobenzylbromide (1) over [11C]cyanide, which both caused further alkylation of the desired nitrile and poisoned the Raney Nickel catalyst. The result is an efficient two-step, streamlined method to reliably synthesize [2-11C]indole with an entire radiochemical yield of 21 ± 2.2% (n = 5, ranging from 18 – 24%). The radiochemical purity of the final product was > 98% and specific activity was 176 ± 24.8 GBq/μmol (n = 5, ranging from 141 – 204 GBq/μmol). The total radiosynthesis time including product purification by semi-preparative HPLC was 50 – 55 min from end of cyclotron bombardment.« less

  6. Voltammetric pH Nanosensor.

    PubMed

    Michalak, Magdalena; Kurel, Malgorzata; Jedraszko, Justyna; Toczydlowska, Diana; Wittstock, Gunther; Opallo, Marcin; Nogala, Wojciech

    2015-12-01

    Nanoscale pH evaluation is a prerequisite for understanding the processes and phenomena occurring at solid-liquid, liquid-liquid, and liquid-gas interfaces, e.g., heterogeneous catalysis, extraction, partitioning, and corrosion. Research on the homogeneous processes within small volumes such as intracellular fluids, microdroplets, and microfluidic chips also requires nanometer scale pH assessment. Due to the opacity of numerous systems, optical methods are useless and, if applicable, require addition of a pH-sensitive dye. Potentiometric probes suffer from many drawbacks such as potential drift and lack of selectivity. Here, we present a voltammetric nanosensor for reliable pH assessment between pH 2 and 12 with high spatial resolution. It consists of a pyrolytic carbon nanoelectrode obtained by chemical vapor deposition (CVD) inside a quartz nanopipette. The carbon is modified by adsorption of syringaldazine from its ethanolic solution. It exhibits a stable quasi-reversible cyclic voltammogram with nearly Nernstian dependency of midpeak potentials (-54 mV/pH). This sensor was applied as a probe for scanning electrochemical microscopy (SECM) in order to map pH over a platinum ultramicroelectrode (UME), generating hydroxide ions (OH(-)) by the oxygen reduction reaction (ORR) at a diffusion-controlled rate in aerated phosphate buffered saline (PBS). The results reveal the alkalization of the electrolyte close to the oxygen reducing electrode, showing the insufficient buffer capacity of PBS to maintain a stable pH at the given conditions. PMID:26516786

  7. An in vitro and in silico study on the flavonoid-mediated modulation of the transport of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) through Caco-2 monolayers

    SciTech Connect

    Schutte, Maaike E. . E-mail: maaike.schutte@wur.nl; Freidig, Andreas P.; Sandt, Johannes J.M. van de; Rietjens, Ivonne M.C.M.

    2006-12-01

    The present study describes the effect of different flavonoids on the absorption of the pro-carcinogen PhIP through Caco-2 monolayers and the development of an in silico model describing this process taking into account passive diffusion and active transport of PhIP. Various flavonoids stimulated the apical to basolateral PhIP transport. Using the in silico model for flavone, kaempferol and chrysoeriol, the apparent Ki value for inhibition of the active transport to the apical side was estimated to be below 53 {mu}M and for morin, robinetin and taxifolin between 164 and 268 {mu}M. For myricetin, luteolin, naringenin and quercetin, the apparent Ki values were determined more accurately and amounted to 37.3, 12.2, 11.7 and 5.6 {mu}M respectively. Additional experiments revealed that the apical to basolateral PhIP transport was also increased in the presence of a typical BCRP or MRP inhibitor with apparent Ki values in the same range as those of the flavonoids. This observation together with the fact that flavonoids are known to be inhibitors of MRPs and BCRP, corroborates that inhibition of these apical membrane transporters is involved in the flavonoid-mediated increased apical to basolateral PhIP transport. Based on the apparent Ki values obtained, it is concluded that the flavonols, at the levels present in the regular Western diet, are capable of stimulating the transport of PhIP through Caco-2 monolayers from the apical to the basolateral compartment. This points to flavonoid-mediated stimulation of the bioavailability of PhIP and, thus, a possible adverse effect of these supposed beneficial food ingredients.

  8. IMPACT OF WATER PH ON ZEBRA MUSSEL MORTALITY

    SciTech Connect

    Daniel P. Molloy

    2002-10-15

    The experiments conducted this past quarter have suggested that the bacterium Pseudomonas fluorescens strain CL0145A is effective at killing zebra mussels throughout the entire range of pH values tested (7.2 to 8.6). Highest mortality was achieved at pH values characteristic of preferred zebra mussel waterbodies, i.e., hard waters with a range of 7.8 to 8.6. In all water types tested, however, ranging from very soft to very hard, considerable mussel kill was achieved (83 to 99% mean mortality), suggesting that regardless of the pH or hardness of the treated water, significant mussel kill can be achieved upon treatment with P. fluorescens strain CL0145A. These results further support the concept that this bacterium has significant potential for use as a zebra mussel control agent in power plant pipes receiving waters with a wide range of physical and chemical characteristics.

  9. Mixed metal oxide films as pH sensing materials

    NASA Astrophysics Data System (ADS)

    Arshak, Khalil; Gill, Edric; Korostynska, Olga; Arshak, Arousian

    2007-05-01

    Due to the demand for accurate, reliable and highly sensitive pH sensors, research is being pursued to find novel materials to achieve this goal. Semiconducting metal oxides, such as TiO, SnO and SnO II and insulating oxides such as Nb IIO 5 and Bi IIO 3, and their mixtures in different proportions are being investigated for this purpose. The films of these materials mixtures are used in conjunction with an interdigitated electrode pattern to produce a conductimetric/capacitive pH sensor. The advantages of this approach include straightforward manufacturing, versatility and cost-effectiveness. It was noted that upon contact with a solution, the electrical parameters of the films, such as resistance etc., change. The correlation of these changes with pH values is the basis for the proposed system development. The ultimate goal is to find materials composition, which would have the highest sensitivity towards the pH level of the solutions. It was found that the materials that produced the highest sensitivity either had a long response time or were unstable over a wide pH range. Those exhibiting lower sensitivities were found to be more stable over a wide pH range. All oxide films tested demonstrated a change in electrical parameters upon contact with buffers of known pH value.

  10. Modeling pH variation in reverse osmosis.

    PubMed

    Nir, Oded; Bishop, Noga Fridman; Lahav, Ori; Freger, Viatcheslav

    2015-12-15

    The transport of hydronium and hydroxide ions through reverse osmosis membranes constitutes a unique case of ionic species characterized by uncommonly high permeabilities. Combined with electromigration, this leads to complex behavior of permeate pH, e.g., negative rejection, as often observed for monovalent ions in nanofiltration of salt mixtures. In this work we employed a rigorous phenomenological approach combined with chemical equilibrium to describe the trans-membrane transport of hydronium and hydroxide ions along with salt transport and calculate the resulting permeate pH. Starting from the Nernst-Planck equation, a full non-linear transport equation was derived, for which an approximate solution was proposed based on the analytical solution previously developed for trace ions in a dominant salt. Using the developed approximate equation, transport coefficients were deduced from experimental results obtained using a spiral wound reverse osmosis module operated under varying permeate flux (2-11 μm/s), NaCl feed concentrations (0.04-0.18 M) and feed pH values (5.5-9.0). The approximate equation agreed well with the experimental results, corroborating the finding that diffusion and electromigration, rather than a priori neglected convection, were the major contributors to the transport of hydronium and hydroxide. The approach presented here has the potential to improve the predictive capacity of reverse osmosis transport models for acid-base species, thereby improving process design/control. PMID:26447944

  11. Fertigation with micronized sulfur rapidly reduces soil pH in highbush blueberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Blueberry is adapted to low soil pH in the range of 4-5.5. At higher pH, soil is often modified with elemental sulfur (S) prior to planting. A 2-year study was conducted to determine the potential of applying micronized wettable S by fertigation through the drip system to reduce soil pH in highbush ...

  12. 40 CFR 432.3 - General limitation or standard for pH.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false General limitation or standard for pH... limitation or standard for pH. Any discharge subject to BPT, BCT, or NSPS limitations or standards in this part must remain within the pH range of 6 to 9....

  13. 40 CFR 432.3 - General limitation or standard for pH.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false General limitation or standard for pH... limitation or standard for pH. Any discharge subject to BPT, BCT, or NSPS limitations or standards in this part must remain within the pH range of 6 to 9....

  14. 40 CFR 439.4 - General limitation or standard for pH.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false General limitation or standard for pH. 439.4 Section 439.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT... General limitation or standard for pH. The pH must remain within the range 6.0 to 9.0 in any...

  15. 40 CFR 439.4 - General limitation or standard for pH.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false General limitation or standard for pH. 439.4 Section 439.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT... General limitation or standard for pH. The pH must remain within the range 6.0 to 9.0 in any...

  16. 40 CFR 432.3 - General limitation or standard for pH.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false General limitation or standard for pH... limitation or standard for pH. Any discharge subject to BPT, BCT, or NSPS limitations or standards in this part must remain within the pH range of 6 to 9....

  17. 40 CFR 439.4 - General limitation or standard for pH.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false General limitation or standard for pH. 439.4 Section 439.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT... General limitation or standard for pH. The pH must remain within the range 6.0 to 9.0 in any...

  18. 40 CFR 432.3 - General limitation or standard for pH.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false General limitation or standard for pH... standard for pH. Any discharge subject to BPT, BCT, or NSPS limitations or standards in this part must remain within the pH range of 6 to 9....

  19. 40 CFR 432.3 - General limitation or standard for pH.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false General limitation or standard for pH... standard for pH. Any discharge subject to BPT, BCT, or NSPS limitations or standards in this part must remain within the pH range of 6 to 9....

  20. pH Optrode Instrumentation

    NASA Technical Reports Server (NTRS)

    Tabacco, Mary Beth; Zhou, Quan

    1995-01-01

    pH-sensitive chromophoric reagents immobilized in porous optical fibers. Optoelectronic instrumentation system measures acidity or alkalinity of aqueous nutrient solution. Includes one or more optrodes, which are optical-fiber chemical sensors, in sense, analogous to electrodes but not subject to some of spurious effects distorting readings taken by pH electrodes. Concept of optrodes also described in "Ethylene-Vapor Optrodes" (KSC-11579). pH optrode sensor head, with lead-in and lead-out optical fibers, convenient for monitoring solutions located away from supporting electronic equipment.

  1. Effects of pH on the growth rate, motility and photosynthesis in Euglena gracilis.

    PubMed

    Danilov, R A; Ekelund, N G

    2001-01-01

    The influence of pH 3-10 on the growth, motility and photosynthesis in Euglena gracilis was demonstrated during a 7-d cultivation. The cells did not survive at pH < 4 and > 8, highest growth rate being detected at pH 7. Motility followed a similar pattern as growth rate. Photosynthetic response curves were shown to be of the same type over the whole pH range. High respiration was characteristic for cells grown at pH 5 and 6, the lowest one at 7. At high and also at low pH more active respiration was found which can be considered as a protective response on proton stress. Respiration was not completely inhibited with potassium cyanide. Photosynthesis was the most effective at pH 6; lower and higher pH decreased photosynthetic efficiency. pH affected more the growth rate than the photosynthesis. PMID:11898347

  2. Urine pH test

    MedlinePlus

    ... J. Martin, MD, MPH, ABIM Board Certified in Internal Medicine and Hospice and Palliative Medicine, Atlanta, GA. Also reviewed by David Zieve, MD, MHA, Isla Ogilvie, PhD, and the A.D.A.M. Editorial team. Related MedlinePlus Health Topics Kidney Stones Urinalysis Browse the Encyclopedia A. ...

  3. Making pH Tangible.

    ERIC Educational Resources Information Center

    McIntosh, Elizabeth; Moss, Robert

    1995-01-01

    Presents a laboratory exercise in which students test the pH of different substances, study the effect of a buffer on acidic solutions by comparing the behavior of buffered and unbuffered solutions upon the addition of acid, and compare common over-the-counter antacid remedies. (MKR)

  4. Responses of Rat Root ( Raf.) Plants to Salinity and pH Conditions.

    PubMed

    Calvo-Polanco, Monica; Alejandra Equiza, María; Señorans, Jorge; Zwiazek, Janusz J

    2014-03-01

    Growth and physiological parameters were examined in rat root ( Raf.) plants grown under controlled environment conditions in hydroponics and subjected to different pH and salinity treatments to determine whether these environmental factors may contribute to poor establishment of in oil sands constructed wetlands. When plants were subjected to a root zone pH ranging from 6.0 to 9.5, the plants that were growing at pH 7.0 showed the highest relative growth rates and chlorophyll concentrations compared with lower and higher pH levels. The greatest inhibition of growth occurred at pH ranging from 8.0 to 9.5. High pH also triggered significant reductions in tissue concentrations of N, P, and microelements, whereas the concentrations of Mg increased at pH >8. When NaCl (25, 50, and 100 mmol L) was added to the nutrient solution at pH 7.0 and 8.5, higher mortality and greater tissue concentrations of Na and Cl were measured in plants growing at pH 8.5 compared with pH 7.0. The results show that plants growing at the optimum pH of 7.0 can better tolerate salinity compared with plants exposed to high root zone pH. Both pH and salinity may present important environmental constraints to growth and establishment of plants in oil sands constructed wetlands. PMID:25602659

  5. 41 CFR 302-2.11 - May the 1-year time limitation for completing all aspects of a relocation be extended?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... limitation for completing all aspects of a relocation be extended? 302-2.11 Section 302-2.11 Public Contracts... completing all aspects of a relocation be extended? Yes, the 1-year time limitation for completing all aspects of a relocation may be extended by your Agency for up to one additional year, but only if you...

  6. 41 CFR 302-2.11 - May the 1-year time limitation for completing all aspects of a relocation be extended?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 4 2013-07-01 2012-07-01 true May the 1-year time limitation for completing all aspects of a relocation be extended? 302-2.11 Section 302-2.11 Public Contracts and Property Management Federal Travel Regulation System RELOCATION ALLOWANCES INTRODUCTION 2-EMPLOYEES ELIGIBILITY REQUIREMENTS General...

  7. The Methods Behind PH WINS

    PubMed Central

    Leider, Jonathon P.; Bharthapudi, Kiran; Pineau, Vicki; Liu, Lin; Harper, Elizabeth

    2015-01-01

    The Public Health Workforce Interests and Needs Survey (PH WINS) has yielded the first-ever nationally representative sample of state health agency central office employees. The survey represents a step forward in rigorous, systematic data collection to inform the public health workforce development agenda in the United States. PH WINS is a Web-based survey and was developed with guidance from a panel of public health workforce experts including practitioners and researchers. It draws heavily from existing and validated items and focuses on 4 main areas: workforce perceptions about training needs, workplace environment and job satisfaction, perceptions about national trends, and demographics. This article outlines the conceptualization, development, and implementation of PH WINS, as well as considerations and limitations. It also describes the creation of 2 new data sets that will be available in public use for public health officials and researchers—a nationally representative data set for permanently employed state health agency central office employees comprising over 10 000 responses, and a pilot data set with approximately 12 000 local and regional health department staff responses. PMID:26422490

  8. The Methods Behind PH WINS.

    PubMed

    Leider, Jonathon P; Bharthapudi, Kiran; Pineau, Vicki; Liu, Lin; Harper, Elizabeth

    2015-01-01

    The Public Health Workforce Interests and Needs Survey (PH WINS) has yielded the first-ever nationally representative sample of state health agency central office employees. The survey represents a step forward in rigorous, systematic data collection to inform the public health workforce development agenda in the United States. PH WINS is a Web-based survey and was developed with guidance from a panel of public health workforce experts including practitioners and researchers. It draws heavily from existing and validated items and focuses on 4 main areas: workforce perceptions about training needs, workplace environment and job satisfaction, perceptions about national trends, and demographics. This article outlines the conceptualization, development, and implementation of PH WINS, as well as considerations and limitations. It also describes the creation of 2 new data sets that will be available in public use for public health officials and researchers--a nationally representative data set for permanently employed state health agency central office employees comprising over 10,000 responses, and a pilot data set with approximately 12,000 local and regional health department staff responses. PMID:26422490

  9. Comparing Metal Leaching and Toxicity from High pH, Low pH, and High Ammonia Fly Ash

    SciTech Connect

    Palumbo, Anthony Vito; Phillips, Jana Randolph; Fagan, Lisa Anne; Drake, Meghan M; Ruther, Rose Emily; Fisher, L. Suzanne; Amonette, J. E.

    2007-01-01

    Previous work with both class F and class C fly ash indicated minimal leaching from most fly ashes tested. However, the addition of NOx removal equipment might result in higher levels of ammonia in the fly ash. We have recently been testing fly ash with a wide range of pH (3.7-12.4) originating from systems with NOx removal equipment. Leaching experiments were done using dilute CaCl2 solutions in batch and columns and a batch nitric acid method. All methods indicated that the leaching of heavy metals was different in the highest ammonia sample tested and the high pH sample. However, toxicity testing with the Microtox system has indicated little potential toxicity in leachates except for the fly ash at the highest pH (12.4). When the leachate from the high pH fly ash was neutralized, toxicity was eliminated.

  10. Comparing metal leaching and toxicity from high pH, low pH, and high ammonia fly ash

    SciTech Connect

    Palumbo, Anthony V.; Tarver, Jana R.; Fagan, Lisa A.; McNeilly, Meghan S.; Ruther, Rose; Fisher, L. S.; Amonette, James E.

    2007-07-01

    Previous work with both class F and class C fly ash indicated minimal leaching from most fly ashes tested. However, the addition of NOx removal equipment might result in higher levels of ammonia in the fly ash. We have recently been testing fly ash with a wide range of pH (3.7–12.4) originating from systems with NOx removal equipment. Leaching experiments were done using dilute CaCl2 solutions in batch and columns and a batch nitric acid method. All methods indicated that the leaching of heavy metals was different in the highest ammonia sample tested and the high pH sample. However, toxicity testing with the Microtox* system has indicated little potential toxicity in leachates except for the fly ash at the highest pH (12.4). When the leachate from the high pH fly ash was neutralized, toxicity was eliminated.

  11. The Influence of pH on Prokaryotic Cell Size and Temperature

    NASA Astrophysics Data System (ADS)

    Sundararajan, D.; Gutierrez, F.; Heim, N. A.; Payne, J.

    2015-12-01

    The pH of a habitat is essential to an organism's growth and success in its environment. Although most organisms maintain a neutral internal pH, their environmental pH can vary greatly. However, little research has been done concerning an organism's environmental pH across a wide range of taxa. We studied pH tolerance in prokaryotes and its relationship with biovolume, taxonomic classification, and ideal temperature. We had three hypotheses: pH and temperature are not correlated; pH tolerance is similar within taxonomic groups; and extremophiles have small cell sizes. To test these hypotheses, we used pH, size, and taxonomic data from The Prokaryotes. We found that the mean optimum external pH was neutral for prokaryotes as a whole and when divided by domain, phylum, and class. Using ANOVA to test for pH within and among group variances, we found that variation of pH in domains, phyla, classes, and families was greater than between them. pH and size did not show much of a correlation, except that the largest and smallest sized prokaryotes had nearly neutral pH. This seems significant because extremophiles need to divert more of their energy from growth to maintain a neutral internal pH. Acidophiles showed a larger range of optimum pH values than alkaliphiles. A similar result was seen with the minimum and maximum pH values of acidophiles and alkaliphiles. While acidophiles were spread out and had some alkaline maximum values, alkaliphiles had smaller ranges, and unlike some acidophiles that had pH minimums close to zero, alkaliphile pH maximums did not go beyond a pH of 12. No statistically significant differences were found between sizes of acidophiles and alkaliphiles. However, optimum temperatures of acidophiles and alkaliphiles did have a statistically significant difference. pH and temperature had a negative correlation. Therefore, pH seems to have a correlation with cell size, temperature, and taxonomy to some extent.

  12. Characterisation and deployment of an immobilised pH sensor spot towards surface ocean pH measurements.

    PubMed

    Clarke, Jennifer S; Achterberg, Eric P; Rérolle, Victoire M C; Abi Kaed Bey, Samer; Floquet, Cedric F A; Mowlem, Matthew C

    2015-10-15

    The oceans are a major sink for anthropogenic atmospheric carbon dioxide, and the uptake causes changes to the marine carbonate system and has wide ranging effects on flora and fauna. It is crucial to develop analytical systems that allow us to follow the increase in oceanic pCO2 and corresponding reduction in pH. Miniaturised sensor systems using immobilised fluorescence indicator spots are attractive for this purpose because of their simple design and low power requirements. The technology is increasingly used for oceanic dissolved oxygen measurements. We present a detailed method on the use of immobilised fluorescence indicator spots to determine pH in ocean waters across the pH range 7.6-8.2. We characterised temperature (-0.046 pH/°C from 5 to 25 °C) and salinity dependences (-0.01 pH/psu over 5-35), and performed a preliminary investigation into the influence of chlorophyll on the pH measurement. The apparent pKa of the sensor spots was 6.93 at 20 °C. A drift of 0.00014 R (ca. 0.0004 pH, at 25 °C, salinity 35) was observed over a 3 day period in a laboratory based drift experiment. We achieved a precision of 0.0074 pH units, and observed a drift of 0.06 pH units during a test deployment of 5 week duration in the Southern Ocean as an underway surface ocean sensor, which was corrected for using certified reference materials. The temperature and salinity dependences were accounted for with the algorithm, R=0.00034-0.17·pH+0.15·S(2)+0.0067·T-0.0084·S·1.075. This study provides a first step towards a pH optode system suitable for autonomous deployment. The use of a short duration low power illumination (LED current 0.2 mA, 5 μs illumination time) improved the lifetime and precision of the spot. Further improvements to the pH indicator spot operations include regular application of certified reference materials for drift correction and cross-calibration against a spectrophotometric pH system. Desirable future developments should involve novel

  13. Economical wireless optical ratiometric pH sensor

    NASA Astrophysics Data System (ADS)

    Vuppu, Sandeep; Kostov, Yordan; Rao, Govind

    2009-04-01

    The development and application of a portable, wireless fluorescence-based optical pH sensor is presented. The design incorporates the MSP430 microcontroller as the control unit, an RF transceiver for wireless communication, digital filters and amplifiers and a USB-based communication module for data transmission. The pH sensor is based on ratiometric fluorescence detection from pH sensitive dye incorporated in a peel-and-stick patch. The ability of the instrument to detect the pH of the solution with contact only between the sensor patch and the solution makes it partially non-invasive. The instrument also has the ability to transmit data wirelessly, enabling its use in processes that entail stringent temperature control and sterility. The use of the microcontroller makes it a reliable, low-cost and low-power device. The luminous intensity of the light source can be digitally controlled to maximize the sensitivity of the instrument. It has a resolution of 0.05 pH. The sensor is accurate and reversible over the pH range of 6.5-9.

  14. The pH of antiseptic cleansers

    PubMed Central

    Kulthanan, Kanokvalai; Varothai, Supenya; Nuchkull, Piyavadee

    2014-01-01

    Background Daily bathing with antiseptic cleansers are proposed by some physicians as an adjunctive management of atopic dermatitis (AD). As atopic skin is sensitive, selection of cleansing products becomes a topic of concern. Objective Our purpose is to evaluate the pH of various antiseptic body cleansers to give an overview for recommendation to patients with AD. Methods Commonly bar and liquid cleansers consisted of antiseptic agents were measured for pH using pH meter and pH-indicator strips. For comparison, mild cleansers and general body cleansers were also measured. Results All cleansing bars had pH 9.8-11.3 except syndet bar that had neutral pH. For liquid cleansers, three cleansing agents had pH close to pH of normal skin, one of antiseptic cleansers, one of mild cleansers and another one of general cleansers. The rest of antiseptic cleansers had pH 8.9-9.6 while mild cleansers had pH 6.9-7.5. Syndet liquid had pH 7 and general liquid cleansers had pH 9.6. Conclusion The pH of cleanser depends on composition of that cleanser. Adding antiseptic agents are not the only factor determining variation of pH. Moreover, benefit of antiseptic properties should be considered especially in cases of infected skin lesions in the selection of proper cleansers for patients with AD. PMID:24527408

  15. Near-infrared noninvasive spectroscopic determination of pH

    DOEpatents

    Alam, Mary K.; Robinson, Mark R.

    1998-08-11

    Methods and apparatus for, preferably, determining noninvasively and in vitro pH in a human. The non-invasive method includes the steps of: generating light at three or more different wavelengths in the range of 1000 nm to 2500 nm; irradiating blood containing tissue; measuring the intensities of the wavelengths emerging from the blood containing tissue to obtain a set of at least three spectral intensities v. wavelengths; and determining the unknown values of pH. The determination of pH is made by using measured intensities at wavelengths that exhibit change in absorbance due to histidine titration. Histidine absorbance changes are due to titration by hydrogen ions. The determination of the unknown pH values is performed by at least one multivariate algorithm using two or more variables and at least one calibration model. The determined pH values are within the physiological ranges observed in blood containing tissue. The apparatus includes a tissue positioning device, a source, at least one detector, electronics, a microprocessor, memory, and apparatus for indicating the determined values.

  16. A ph sensor based on a flexible substrate

    NASA Astrophysics Data System (ADS)

    Huang, Wen-Ding

    pH sensor is an essential component used in many chemical, food, and bio-material industries. Conventional glass electrodes have been used to construct pH sensors, however, have some disadvantages. Glass electrodes are easily affected by alkaline or HF solution, they require a high input impedance pH meter, they often exhibit a sluggish response. In some specific applications, it is also difficult to use glass electrodes for in vivo biomedical or food monitoring applications due to the difficulty of size miniaturization, planarization and polymerization based on current manufacturing technologies. In this work, we have demonstrated a novel flexible pH sensor based on low-cost sol-gel fabrication process of iridium oxide (IrOx) sensing film (IROF). A pair of flexible miniature IrOx/AgCl electrode generated the action potential from the solution by electrochemical mechanism to obtain the pH level of the reagent. The fabrication process including sol-gel, thermal oxidation, and the electro-plating process of the silver chloride (AgCl) reference electrode were reported in the work. The IrOx film was verified and characterized using electron dispersive analysis (EDAX), scanning electron microscope (SEM), and x-ray diffraction (XRD). The flexible pH sensor's performance and characterization have been investigated with different testing parameters such as sensitivity, response time, stability, reversibility, repeatability, selectivity and temperature dependence. The flexible IrOx pH sensors exhibited promising sensing performance with a near-Nernstian response of sensitivity which is between --51.1mV/pH and --51.7mV/pH in different pH levels ranging from 1.5 to 12 at 25°C. Two applications including gastroesophageal reflux disease (GERD) diagnosis and food freshness wireless monitoring using our micro-flexible IrOx pH sensors were demonstrated. For the GERD diagnosing system, we embedded the micro flexible pH sensor on a 1.2cmx3.8cm of the capsule size of wireless sensor

  17. Acid loading test (pH)

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003615.htm Acid loading test (pH) To use the sharing features on this page, please enable JavaScript. The acid loading test (pH) measures the ability of the ...

  18. The bimodal pH distribution of volcanic lake waters

    NASA Astrophysics Data System (ADS)

    Marini, Luigi; Vetuschi Zuccolini, Marino; Saldi, Giuseppe

    2003-02-01

    Volcanic lake waters have a bimodal pH distribution with an acidic mode at pH 0.5-1.5 and a near neutral mode at pH 6-6.5, with relatively few samples having pH 3.5-5. To investigate the reasons for this distribution, the irreversible water-rock mass exchanges during the neutralization of acid SO 4-Cl waters with andesite, under both low- and high-temperature conditions, were simulated by means of the EQ3/6 software package, version 7.2. Reaction path modeling under low temperature and atmospheric P CO 2 and f O 2, suggests that several homogeneous and/or heterogeneous pH buffers exist both in the acidic and neutral regions, but no buffer is active in the intermediate, central pH region. Again, the same titration, under high-temperature, hydrothermal-magmatic conditions, is expected to produce comparatively infrequent aqueous solutions with pH values in the 3.5-5 range, upon their cooling below 100°C. Substantially different pH values are obtained depending on the cooling paths, either through boiling or conductive heat losses. These distinct pH values are governed by either HSO 4- and HCl (aq), in poorly neutralized aqueous solutions, or the CO 2(aq)/HCO 3- couple and the P CO 2 value as well, in neutralized aqueous solutions. Finally, mixing of the acid lake water with the aqueous solutions produced through high-temperature titration and cooled below 100°C is unlikely to generate mixtures with pH values higher than 3, unless the fraction of the acidic water originally present in the lake becomes very small, which means its virtually complete substitution. Summing up, the evidence gathered through reaction path modeling of the neutralization of acid lake waters with andesite, both at low and high temperatures, explains the scarcity of volcanic lake waters with measured pH values of 3.5-5.

  19. A ph sensor based on a flexible substrate

    NASA Astrophysics Data System (ADS)

    Huang, Wen-Ding

    pH sensor is an essential component used in many chemical, food, and bio-material industries. Conventional glass electrodes have been used to construct pH sensors, however, have some disadvantages. Glass electrodes are easily affected by alkaline or HF solution, they require a high input impedance pH meter, they often exhibit a sluggish response. In some specific applications, it is also difficult to use glass electrodes for in vivo biomedical or food monitoring applications due to the difficulty of size miniaturization, planarization and polymerization based on current manufacturing technologies. In this work, we have demonstrated a novel flexible pH sensor based on low-cost sol-gel fabrication process of iridium oxide (IrOx) sensing film (IROF). A pair of flexible miniature IrOx/AgCl electrode generated the action potential from the solution by electrochemical mechanism to obtain the pH level of the reagent. The fabrication process including sol-gel, thermal oxidation, and the electro-plating process of the silver chloride (AgCl) reference electrode were reported in the work. The IrOx film was verified and characterized using electron dispersive analysis (EDAX), scanning electron microscope (SEM), and x-ray diffraction (XRD). The flexible pH sensor's performance and characterization have been investigated with different testing parameters such as sensitivity, response time, stability, reversibility, repeatability, selectivity and temperature dependence. The flexible IrOx pH sensors exhibited promising sensing performance with a near-Nernstian response of sensitivity which is between --51.1mV/pH and --51.7mV/pH in different pH levels ranging from 1.5 to 12 at 25°C. Two applications including gastroesophageal reflux disease (GERD) diagnosis and food freshness wireless monitoring using our micro-flexible IrOx pH sensors were demonstrated. For the GERD diagnosing system, we embedded the micro flexible pH sensor on a 1.2cmx3.8cm of the capsule size of wireless sensor

  20. Measurement and control of pH in hydrothermal solutions

    SciTech Connect

    Wesolowski, D.J.; Palmer, D.A.; Mesmer, R.E.

    1995-12-31

    Hydrogen-electrode concentration cells with liquid junction are routinely used to measure the pH of aqueous solutions from 0 to 300 C. Results include the dissociation constants of common acids and bases and the hydrolysis and complexation of metal ions in aqueous electrolytes over a wide range of salinities. Recently, we have utilized these cells to examine the sorption of H{sup +} on mineral surfaces, the solubility of minerals with continuous in situ pH measurement, and the thermal decompositon rates of organic acids.

  1. Stress corrosion cracking properties of 15-5PH steel

    NASA Technical Reports Server (NTRS)

    Rosa, Ferdinand

    1993-01-01

    Unexpected occurrence of failures, due to stress corrosion cracking (SCC) of structural components, indicate a need for improved characterization of materials and more advanced analytical procedures for reliably predicting structures performance. Accordingly, the purpose of this study was to determine the stress corrosion susceptibility of 15-5PH steel over a wide range of applied strain rates in a highly corrosive environment. The selected environment for this investigation was a highly acidified sodium chloride (NaCl) aqueous solution. The selected alloy for the study was a 15-5PH steel in the H900 condition. The slow strain rate technique was selected to test the metals specimens.

  2. pH tolerance in freshwater bacterioplankton: trait variation of the community as measured by leucine incorporation.

    PubMed

    Bååth, Erland; Kritzberg, Emma

    2015-11-01

    pH is an important factor determining bacterial community composition in soil and water. We have directly determined the community tolerance (trait variation) to pH in communities from 22 lakes and streams ranging in pH from 4 to 9 using a growth-based method not relying on distinguishing between individual populations. The pH in the water samples was altered to up to 16 pH values, covering in situ pH ± 2.5 U, and the tolerance was assessed by measuring bacterial growth (Leu incorporation) instantaneously after pH adjustment. The resulting unimodal response curves, reflecting community tolerance to pH, were well modeled with a double logistic equation (mean R(2) = 0.97). The optimal pH for growth (pHopt) among the bacterial communities was closely correlated with in situ pH, with a slope (0.89 ± 0.099) close to unity. The pH interval, in which growth was ≥90% of that at pHopt, was 1.1 to 3 pH units wide (mean 2.0 pH units). Tolerance response curves of communities originating from circum-neutral pH were symmetrical, whereas in high-pH (8.9) and especially in low-pH (<5.5) waters, asymmetric tolerance curves were found. In low-pH waters, decreasing pH was more detrimental for bacterial growth than increasing pH, with a tendency for the opposite for high-pH waters. A pH tolerance index, using the ratio of growth at only two pH values (pH 4 and 8), was closely related to pHopt (R(2) = 0.83), allowing for easy determination of pH tolerance during rapid changes in pH. PMID:26276108

  3. pH Tolerance in Freshwater Bacterioplankton: Trait Variation of the Community as Measured by Leucine Incorporation

    PubMed Central

    Kritzberg, Emma

    2015-01-01

    pH is an important factor determining bacterial community composition in soil and water. We have directly determined the community tolerance (trait variation) to pH in communities from 22 lakes and streams ranging in pH from 4 to 9 using a growth-based method not relying on distinguishing between individual populations. The pH in the water samples was altered to up to 16 pH values, covering in situ pH ± 2.5 U, and the tolerance was assessed by measuring bacterial growth (Leu incorporation) instantaneously after pH adjustment. The resulting unimodal response curves, reflecting community tolerance to pH, were well modeled with a double logistic equation (mean R2 = 0.97). The optimal pH for growth (pHopt) among the bacterial communities was closely correlated with in situ pH, with a slope (0.89 ± 0.099) close to unity. The pH interval, in which growth was ≥90% of that at pHopt, was 1.1 to 3 pH units wide (mean 2.0 pH units). Tolerance response curves of communities originating from circum-neutral pH were symmetrical, whereas in high-pH (8.9) and especially in low-pH (<5.5) waters, asymmetric tolerance curves were found. In low-pH waters, decreasing pH was more detrimental for bacterial growth than increasing pH, with a tendency for the opposite for high-pH waters. A pH tolerance index, using the ratio of growth at only two pH values (pH 4 and 8), was closely related to pHopt (R2 = 0.83), allowing for easy determination of pH tolerance during rapid changes in pH. PMID:26276108

  4. A survey of beef muscle color and pH.

    PubMed

    Page, J K; Wulf, D M; Schwotzer, T R

    2001-03-01

    The objectives of this study were to define a beef carcass population in terms of muscle color, ultimate pH, and electrical impedance; to determine the relationships among color, pH, and impedance and with other carcasses characteristics; and to determine the effect of packing plant, breed type, and sex class on these variables. One thousand beef carcasses were selected at three packing plants to match the breed type, sex class, marbling score, dark-cutting discount, overall maturity, carcass weight, and yield grade distributions reported for the U.S. beef carcass population by the 1995 National Beef Quality Audit. Data collected on these carcasses included USDA quality and yield grade data and measurements of muscle color (L*, a*, b*), muscle pH, and electrical impedance of the longissimus muscle. About one-half (53.1%) of the carcasses fell within a muscle pH range of 5.40 to 5.49, and 81.3% of the carcasses fell within a longissimus muscle pH range of 5.40 to 5.59. A longissimus muscle pH of 5.87 was the approximate cut-off between normal and dark-cutting carcasses. Frequency distributions indicated that L* values were normally distributed, whereas a* and b* values were abnormally distributed (skewed because of a longer tail for lower values, a tail corresponding with dark-cutting carcasses). Electrical impedance was highly variable among carcasses but was not highly related to any other variable measured. Color measurements (L*, a*, b*) were correlated (P < 0.05) with lean maturity score (-.58, -.31, and -.43, respectively) and with muscle pH (-.40, -.58, and -.56, respectively). In addition, fat thickness was correlated with muscle pH and color (P < 0.05). There was a threshold at approximately .76 cm fat thickness, below which carcasses had higher muscle pH values and lower colorimeter readings. Steer carcasses (L* = 39.62, a* = 25.20, and b* = 11.03) had slightly higher colorimeter readings (P < 0.05) than heifer carcasses (L* = 39.20, a* = 24.78, and b

  5. Rhizosphere pH responses to simulated acid rain as measured with glass microelectrodes

    SciTech Connect

    Conkling, B.L.

    1988-01-01

    The objectives of this study were to develop a useful experimental system for studying the rhizosphere of growing roots, and to investigate the effects of bulk soil pH and foliar acid rain application on the rhizosphere pH of alfalfa, corn and soybeans. First, a study was done to compare soil pH measurements made with a standard glass pH electrode with those made using an antimony (Sb) microelectrode. Because of uncertainty with the Sb microelectrodes' response, glass pH-sensitive microelectrodes were made and tested for rhizosphere pH measurements. The influence of soil water pressure gradients in the range of {minus}10 to {minus}1500 kPa in the proximity of the pH and reference electrodes on pH measurements made with microelectrodes was studied. The effect of foliar acid rain application on the rhizosphere pH of alfalfa, corn, and soybean as a function of soil pH were studied. Alfalfa, corn, and soybean were grown into minirhizotrons containing reformed samples of both Seymour A and Bt soil horizons, and the rhizosphere pH measured. The measured in situ bulk soil pH ranged from 4.9 to 6.2 in the A horizon and from 4.0 to 5.7 in the Bt horizon. Plants received acid or non-acid foliar rain applications. Rhizosphere pH was measured using a glass pH-sensitive microelectrode. Acid rain applications caused foliar damage, but had little effect on the rhizosphere pH. The general trend was for the lateral root pH values to be slightly higher than the main root values.

  6. Effect of Soil pH on Nematicide Efficacy on Soybean

    PubMed Central

    Schmitt, D. P.

    1989-01-01

    To determine the efficacy of selected nematicides under different soil pH regimes in a sandy soil, soil pH ranges were achieved by adding lime or sulfur. Nematicides increased soybean yields, and their efficacy was generally not influenced by soil pH. Belonolaimus longicaudatus was negatively correlated (r = -0.58, P = 0.01) with yield in 1977. PMID:19287658

  7. 40 CFR 439.4 - General limitation or standard for pH.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false General limitation or standard for pH. 439.4 Section 439.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT... limitation or standard for pH. The pH must remain within the range 6.0 to 9.0 in any discharge subject to...

  8. 40 CFR 439.4 - General limitation or standard for pH.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false General limitation or standard for pH. 439.4 Section 439.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT... limitation or standard for pH. The pH must remain within the range 6.0 to 9.0 in any discharge subject to...

  9. Precision of a field method for determination of pH in dilute lakes

    USGS Publications Warehouse

    Turk, J.T.

    1986-01-01

    Replicate pH measurements in three dilute lakes made during extreme conditions indicate that pH can be measured in the field with a variance due to measurement error of 0.005 unit. Error of the field technique in measuring the pH of dilute solutions in the laboratory ranges from less than 0.01 unit in dilute strong-acid solutions to about 0.05 unit in air-saturated deionized water.

  10. Measuring Phagosome pH by Ratiometric Fluorescence Microscopy.

    PubMed

    Nunes, Paula; Guido, Daniele; Demaurex, Nicolas

    2015-01-01

    Phagocytosis is a fundamental process through which innate immune cells engulf bacteria, apoptotic cells or other foreign particles in order to kill or neutralize the ingested material, or to present it as antigens and initiate adaptive immune responses. The pH of phagosomes is a critical parameter regulating fission or fusion with endomembranes and activation of proteolytic enzymes, events that allow the phagocytic vacuole to mature into a degradative organelle. In addition, translocation of H(+) is required for the production of high levels of reactive oxygen species (ROS), which are essential for efficient killing and signaling to other host tissues. Many intracellular pathogens subvert phagocytic killing by limiting phagosomal acidification, highlighting the importance of pH in phagosome biology. Here we describe a ratiometric method for measuring phagosomal pH in neutrophils using fluorescein isothiocyanate (FITC)-labeled zymosan as phagocytic targets, and live-cell imaging. The assay is based on the fluorescence properties of FITC, which is quenched by acidic pH when excited at 490 nm but not when excited at 440 nm, allowing quantification of a pH-dependent ratio, rather than absolute fluorescence, of a single dye. A detailed protocol for performing in situ dye calibration and conversion of ratio to real pH values is also provided. Single-dye ratiometric methods are generally considered superior to single wavelength or dual-dye pseudo-ratiometric protocols, as they are less sensitive to perturbations such as bleaching, focus changes, laser variations, and uneven labeling, which distort the measured signal. This method can be easily modified to measure pH in other phagocytic cell types, and zymosan can be replaced by any other amine-containing particle, from inert beads to living microorganisms. Finally, this method can be adapted to make use of other fluorescent probes sensitive to different pH ranges or other phagosomal activities, making it a generalized

  11. A novel optical probe for pH sensing in gastro-esophageal apparatus

    NASA Astrophysics Data System (ADS)

    Baldini, F.; Ghini, G.; Giannetti, A.; Senesi, F.; Trono, C.

    2011-03-01

    Monitoring gastric pH for long periods, usually 24 h, may be essential in analyzing the physiological pattern of acidity, in obtaining information on changes in activity during peptic ulcer disease, and in assessing the effect of antisecretory drugs. Gastro-esophageal reflux, which causes a pH decrease in the esophagus content from pH 7 even down to pH 2, can determine esophagitis with possible strictures and Barrett's esophagus. One of the difficulties of the optical measurement of pH in the gastro-esophageal apparatus lies in the required extended working range from 1 to 8 pH units. The present paper deals with a novel optical pH sensor, using methyl red as optical pH indicator. Contrary to all acidbase indicators characterized by working ranges limited to 2-3 pH units, methyl red, after its covalent immobilization on controlled pore glass (CPG), is characterized by a wide working range which fits with the clinical requirements. The novel probe design here described is suitable for gastro-esophageal applications and allows the optimization of the performances of the CPG with the immobilised indicator. This leads to a very simple configuration characterized by a very fast response time.

  12. Interfacial pH during mussel adhesive plaque formation

    PubMed Central

    Rodriguez, Nadine R. Martinez; Das, Saurabh; Kaufman, Yair; Israelachvili, Jacob N.; Waite, J. Herbert

    2015-01-01

    Mussel (Mytilus californianus) adhesion to marine surfaces involves an intricate and adaptive synergy of molecules and spatio-temporal processes. Although the molecules, such as mussel foot proteins (mfps), are well characterized, deposition details remain vague and speculative. Developing methods for the precise surveillance of conditions that apply during mfp deposition would aid both in understanding mussel adhesion and translating this adhesion into useful technologies. To probe the interfacial pH at which mussels buffer the local environment during mfp deposition, a lipid bilayer with tethered pH-sensitive fluorochromes was assembled on mica. The interfacial pH during foot contact with modified mica ranged from 2.2−3.3, which is well below the seawater pH of ~8. The acidic pH serves multiple functions: it limits mfp-Dopa oxidation, thereby enabling the catecholic functionalities to adsorb to surface oxides by H-bonding and metal ion coordination, and provides a solubility switch for mfps, most of which aggregate at pH ≥ 7-8. PMID:25875963

  13. pH regulation of an egg cortex tyrosine kinase.

    PubMed

    Jiang, W P; Veno, P A; Wood, R W; Peaucellier, G; Kinsey, W H

    1991-07-01

    Fertilization of the echinoderm egg is known to result in the phosphorylation, on tyrosine, of a high-molecular-weight cortical protein (HMWCP) localized in the egg cortex. Studies using various parthenogenic agents indicate that this phosphorylation event occurs in response to the alkaline shift in cytoplasmic pHi which normally occurs 1 to 2 min after fertilization. In the present study, the purified egg cell surface complex was used as in vitro system to determine whether a small alkaline shift in pH, such as occurs upon fertilization, could stimulate the activity of the egg cortex-associated tyrosine kinase toward endogenous protein substrates. The results demonstrated that the cell surface complex is highly enriched in a tyrosine kinase activity which accounts for the majority of the protein kinase activity in this preparation. The activity of this tyrosine kinase toward the HMWCP and other cortical proteins was highly dependent on pH over the range pH 6.8 to 7.3. This indicates that the fertilization-associated change in cytoplasmic pH would be sufficient to trigger increased tyrosine phosphorylation of the high-molecular-weight cortical protein in vivo. The regulation of tyrosine phosphorylation by small changes in pH represents a novel control mechanism in which a tyrosine protein kinase may act as a pH-sensitive transducer. PMID:2060713

  14. Interfacial pH during mussel adhesive plaque formation.

    PubMed

    Martinez Rodriguez, Nadine R; Das, Saurabh; Kaufman, Yair; Israelachvili, Jacob N; Waite, J Herbert

    2015-01-01

    Mussel (Mytilus californianus) adhesion to marine surfaces involves an intricate and adaptive synergy of molecules and spatio-temporal processes. Although the molecules, such as mussel foot proteins (mfps), are well characterized, deposition details remain vague and speculative. Developing methods for the precise surveillance of conditions that apply during mfp deposition would aid both in understanding mussel adhesion and translating this adhesion into useful technologies. To probe the interfacial pH at which mussels buffer the local environment during mfp deposition, a lipid bilayer with tethered pH-sensitive fluorochromes was assembled on mica. The interfacial pH during foot contact with modified mica ranged from 2.2 to 3.3, which is well below the seawater pH of ~ 8. The acidic pH serves multiple functions: it limits mfp-Dopa oxidation, thereby enabling the catecholic functionalities to adsorb to surface oxides by H-bonding and metal ion coordination, and provides a solubility switch for mfps, most of which aggregate at pH ≥ 7-8. PMID:25875963

  15. Iron respiration by Acidiphilium cryptum at pH 5.

    PubMed

    Bilgin, Azize Azra; Silverstein, JoAnn; Jenkins, Joy D

    2004-07-01

    The growth of acidophilic iron respiring bacteria at pH > 4.5 may be a key to the transition from acidic to circumneutral conditions that would occur during restoration of acid mine drainage sites. Flasks containing Acidiphilium cryptum ATCC 33463 were incubated initially under aerobic conditions in liquid medium containing Fe(2)(SO(4))(3) and glucose at an initial pH of 5. Significant iron respiration was observed after flasks were sealed to prevent oxygenation; at the same time, medium pH increased from 4.5 to 6. No soluble Fe(III) was detected throughout the experiments, consistent with pH conditions, indicating that bacteria were able to respire using precipitated ferric iron species. In addition, the concentration of soluble Fe(2+) reached a plateau, even though iron respiration appeared to continue, possibly due to precipitation of mixed Fe (II)/Fe(III)-oxide as magnetite. Results suggest that A. cryptum has a wide range of pH tolerance, which may enable it to play a role in controlling acid generation by means of establishing growth conditions favorable to neutrophilic bacteria such as sulfate reduction. PMID:19712391

  16. Functional photoacoustic microscopy of pH

    NASA Astrophysics Data System (ADS)

    Chatni, M. Rameez; Yao, Junjie; Danielli, Amos; Favazza, Christopher P.; Maslov, Konstantin I.; Wang, Lihong V.

    2012-02-01

    pH is a tightly regulated indicator of metabolic activity. In mammalian systems, imbalance of pH regulation may result from or result in serious illness. Even though the regulation system of pH is very robust, tissue pH can be altered in many diseases such as cancer, osteoporosis and diabetes mellitus. Traditional high-resolution optical imaging techniques, such as confocal microscopy, routinely image pH in cells and tissues using pH sensitive fluorescent dyes, which change their fluorescence properties with the surrounding pH. Since strong optical scattering in biological tissue blurs images at greater depths, high-resolution pH imaging is limited to penetration depths of 1mm. Here, we report photoacoustic microscopy (PAM) of commercially available pH-sensitive fluorescent dye in tissue phantoms. Using both opticalresolution photoacoustic microscopy (OR-PAM), and acoustic resolution photoacoustic microscopy (AR-PAM), we explored the possibility of recovering the pH values in tissue phantoms. In this paper, we demonstrate that PAM was capable of recovering pH values up to a depth of 2 mm, greater than possible with other forms of optical microscopy.

  17. Influence of the pH on the itaconic acid production with Aspergillus terreus.

    PubMed

    Hevekerl, Antje; Kuenz, Anja; Vorlop, Klaus-Dieter

    2014-12-01

    Itaconic acid is mainly produced with the filamentous fungi Aspergillus terreus. An increase in the pH during the production phase of the cultivation resulted in an increase in the itaconic acid concentration. The pH was raised by a single pH shift ranging from pH 4 to 6 or by a pH control to pH 3. Different lyes can be used for the pH shift, but ammonia solution has proven to be the best, because here the productivity does not drop after the pH shift. The highest itaconic acid concentration of 146 g/L was reached when a pH control to pH 3 was started after 2.1 days of cultivation. This is an increase of 68 % to the cultivation without pH control. When this technique was combined with previously found optimizations, a final itaconic acid concentration of 129 g/L was reached after 4.7 days of cultivation, resulting in a productivity of 1.15 g/L/h. PMID:25213913

  18. Simultaneous in vivo pH and temperature mapping using a PARACEST-MRI contrast agent.

    PubMed

    McVicar, Nevin; Li, Alex X; Suchý, Mojmír; Hudson, Robert H E; Menon, Ravi S; Bartha, Robert

    2013-10-01

    Altered tissue temperature and/or pH is a common feature in pathological conditions, where metabolic demand exceeds oxygen supply such as in tumors and following stroke. Therefore, in vivo tissue temperature and pH may become valuable biomarkers for disease detection and the monitoring of disease progression or treatment response in conditions with altered metabolic demand. In this study, pH is measured using the amide protons of a thulium (Tm(3+)) complex with a DOTAM-Glycine-Lysine (ligand: Tm(3+)-DOTAM-Gly-Lys). The pH was uniquely determined from the linewidth of the asymmetry curve of the chemical exchange saturation transfer spectrum, independent of contrast agent concentration, or temperature for a given saturation pulse. pH maps with an inter-pixel standard deviation of less than 0.1 pH units were obtained in 10 mM Tm(3+)-DOTAM-Gly-Lys solutions with pH ranging from 6.0 to 8.0 pH units at 37°C. Temperature maps were simultaneously obtained using the chemical shift of the chemical exchange saturation transfer peak. Temperature and pH maps are demonstrated in the mouse leg (N = 3), where the mean and standard deviation for pH was 7.2 ± 0.2 pH unit and temperature was 37.4 ± 0.5°C. PMID:23165779

  19. Site-specific management of soil pH and nutrients in blueberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Site-specific management of soil pH and fertilizers is one of the most promising strategies in precision agriculture and is potentially applicable to many horticultural crops, including blueberry. Unlike most fruit crops, blueberry is adapted to low soil pH conditions in the range of 4-5.5 and has ...

  20. pH Meter probe assembly

    DOEpatents

    Hale, Charles J.

    1983-01-01

    An assembly for mounting a pH probe in a flowing solution, such as a sanitary sewer line, which prevents the sensitive glass portion of the probe from becoming coated with grease, oil, and other contaminants, whereby the probe gives reliable pH indication over an extended period of time. The pH probe assembly utilizes a special filter media and a timed back-rinse feature for flushing clear surface contaminants of the filter. The flushing liquid is of a known pH and is utilized to check performance of the probe.

  1. pH Meter probe assembly

    DOEpatents

    Hale, C.J.

    1983-11-15

    An assembly for mounting a pH probe in a flowing solution, such as a sanitary sewer line, which prevents the sensitive glass portion of the probe from becoming coated with grease, oil, and other contaminants, whereby the probe gives reliable pH indication over an extended period of time. The pH probe assembly utilizes a special filter media and a timed back-rinse feature for flushing clear surface contaminants of the filter. The flushing liquid is of a known pH and is utilized to check performance of the probe. 1 fig.

  2. Simultaneous analysis of PhIP, 4'-OH-PhIP, and their precursors using UHPLC-MS/MS.

    PubMed

    Yan, Yan; Zeng, Mao-Mao; Zheng, Zong-Ping; He, Zhi-Yong; Tao, Guan-Jun; Zhang, Shuang; Gao, Ya-Hui; Chen, Jie

    2014-12-01

    A novel method allowing simultaneous analysis of PhIP, 4'-OH-PhIP, and their precursors (phenylalanine, tyrosine, creatine, creatinine, glucose) has been developed as a robust kinetic study tool by using ultra high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). A direct hydrochloric acid (HCl) extraction was applied to achieve the simultaneous extraction of all seven analytes, with the mean recoveries ranging from 60% to 120% at two concentration levels. Then, an Atlantis dC18 column selected from four different chromatographic columns was ultimately used to separate these compounds within 15 min. The limits of detection range of allseven analytes were calculated as 0.14-325.00 μg L(-1). The intra- and interday precision of the proposed method were less than 15.4 and 19.9%, respectively. The proposed method was successfully applied to depict the kinetic profiles of PhIP, 4'-OH-PhIP, and their precursors in pork model, reducing the analysis time and cost in the kinetic study. PMID:25407701

  3. pH sensing and regulation in cancer

    PubMed Central

    Damaghi, Mehdi; Wojtkowiak, Jonathan W.; Gillies, Robert J.

    2013-01-01

    Cells maintain intracellular pH (pHi) within a narrow range (7.1–7.2) by controlling membrane proton pumps and transporters whose activity is set by intra-cytoplasmic pH sensors. These sensors have the ability to recognize and induce cellular responses to maintain the pHi, often at the expense of acidifying the extracellular pH. In turn, extracellular acidification impacts cells via specific acid-sensing ion channels (ASICs) and proton-sensing G-protein coupled receptors (GPCRs). In this review, we will discuss some of the major players in proton sensing at the plasma membrane and their downstream consequences in cancer cells and how these pH-mediated changes affect processes such as migration and metastasis. The complex mechanisms by which they transduce acid pH signals to the cytoplasm and nucleus are not well understood. However, there is evidence that expression of proton-sensing GPCRs such as GPR4, TDAG8, and OGR1 can regulate aspects of tumorigenesis and invasion, including cofilin and talin regulated actin (de-)polymerization. Major mechanisms for maintenance of pHi homeostasis include monocarboxylate, bicarbonate, and proton transporters. Notably, there is little evidence suggesting a link between their activities and those of the extracellular H+-sensors, suggesting a mechanistic disconnect between intra- and extracellular pH. Understanding the mechanisms of pH sensing and regulation may lead to novel and informed therapeutic strategies that can target acidosis, a common physical hallmark of solid tumors. PMID:24381558

  4. pH sensitive quantum dot-anthraquinone nanoconjugates

    NASA Astrophysics Data System (ADS)

    Ruedas-Rama, Maria Jose; Hall, Elizabeth A. H.

    2014-05-01

    Semiconductor quantum dots (QDs) have been shown to be highly sensitive to electron or charge transfer processes, which may alter their optical properties. This feature can be exploited for different sensing applications. Here, we demonstrate that QD-anthraquinone conjugates can function as electron transfer-based pH nanosensors. The attachment of the anthraquinones on the surface of QDs results in the reduction of electron hole recombination, and therefore a quenching of the photoluminescence intensity. For some anthraquinone derivatives tested, the quenching mechanism is simply caused by an electron transfer process from QDs to the anthraquinone, functioning as an electron acceptor. For others, electron transfer and energy transfer (FRET) processes were found. A detailed analysis of the quenching processes for CdSe/ZnS QD of two different sizes is presented. The photoluminescence quenching phenomenon of QDs is consistent with the pH sensitive anthraquinone redox chemistry. The resultant family of pH nanosensors shows pKa ranging ˜5-8, being ideal for applications of pH determination in physiological samples like blood or serum, for intracellular pH determination, and for more acidic cellular compartments such as endosomes and lysosomes. The nanosensors showed high selectivity towards many metal cations, including the most physiologically important cations which exist at high concentration in living cells. The reversibility of the proposed systems was also demonstrated. The nanosensors were applied in the determination of pH in samples mimicking the intracellular environment. Finally, the possibility of incorporating a reference QD to achieve quantitative ratiometric measurements was investigated.

  5. Role of pH in metal adsorption from aqueous solutions containing chelating agents on chitosan

    SciTech Connect

    Wu, F.C.; Tseng, R.L.; Juang, R.S.

    1999-01-01

    The role of pH in adsorption of Cu(II) from aqueous solutions containing chelating agents on chitosan was emphasized. Four chelating agents including ethylenediaminetetraacetic acid (EDTA), citric acid, tartaric acid, and sodium gluconate were used. It was shown that the adsorption ability of Cu(II) on chitosan from its chelated solutions varied significantly with pH variations. The competition between coordination of Cu(II) with unprotonated chitosan and electrostatic interaction of the Cu(II) chelates with protonated chitosan took place because of the change in solution pH during adsorption. The maximum adsorption capacity was obtained within each optimal pH range determined from titration curves of the chelated solutions. Coordination of Cu(II) with the unprotonated chitosan was found to dominate at pH below such an optimal pH value.

  6. Relation of pH to toxicity of lampricide TFM in the laboratory

    USGS Publications Warehouse

    Bills, T.D.; Marking, L.L.; Howe, G.E.; Rach, J.J.

    1988-01-01

    In the control of larval sea lamprey (Petromyzon marinus ) with 3-trifluoromethyl-4-nitrophenol (TFM) in tributaries of the Great Lakes, occasional kills of other fishes have caused concern about the effects of the chemical on non-target organisms. Stream treatment rates have been based on previous application rates, alkalinity measurements, results of on-site toxicity tests, or combinations of these. Laboratory studies in 1987 showed that pH is the primary factor that affects the toxicity of TFM (the lower the pH, the greater the toxicity): even small changes in pH alter the toxicity, whereas substantial changes in alkalinity have little effect. In 12-h exposures, the 96-h LC50 for TFM to rainbow trout (Salmo gairdneri ) ranged from about 0.9 mg/L at pH 6.5 to > 100 mg/L at pH 9.5, but (at pH 7.5) the LC50's differed little at total alkalinities of about 18 mg/L and 207 mg/L. Decreases in pH as small as 0.5 pH unit caused nontoxic solutions to become toxic to rainbow trout. Some kills of non-target fish during stream treatments were reportedly caused by decreases in pH, and (conversely) that some stream treatments for sea lampreys were ineffective because pH increased.

  7. Improved pH measurements with a single PARACEST MRI contrast agent

    PubMed Central

    Sheth, Vipul R.; Liu, Guanshu; Li, Yuguo; Pagel, Mark D.

    2016-01-01

    The measurement of extracellular pH has potential utility for assessing the therapeutic effects of pH-dependent and pH-altering therapies. A PARAmagnetic chemical exchange saturation transfer (PARACEST) MRI contrast agent, Yb–DO3A–oAA, has two CEST effects that are dependent on pH. A ratio derived from these CEST effects was linearly correlated with pH throughout the physiological pH range. The pH can be measured with a precision of 0.21 pH units and an accuracy of 0.09 pH units. The pH measurement is independent of concentration and T1 relaxation times, but is dependent on temperature. Although MR coalescence affects the CEST measurements, especially at high pH, the ratiometric analysis of the CEST effects can account for incomplete saturation of the agent’s amide and amine that results from MR coalescence. Provided that an empirical calibration is determined with saturation conditions, magnetic field strength and temperature that can be used for subsequent studies, these results demonstrate that this single PARACEST MRI contrast agent can accurately measure pH. PMID:22344877

  8. Middle School and pH?

    ERIC Educational Resources Information Center

    Herricks, Susan

    2007-01-01

    A local middle school requested that the Water Center of Advanced Materials for Purification of Water With Systems (WaterCAMPWS), a National Science Foundation Science and Technology Center, provide an introduction to pH for their seventh-grade water-based service learning class. After sorting through a multitude of information about pH, a…

  9. Inexpensive and Disposable pH Electrodes

    ERIC Educational Resources Information Center

    Goldcamp, Michael J.; Conklin, Alfred; Nelson, Kimberly; Marchetti, Jessica; Brashear, Ryan; Epure, Emily

    2010-01-01

    Inexpensive electrodes for the measurement of pH have been constructed using the ionophore tribenzylamine for sensing H[superscript +] concentrations. Both traditional liquid-membrane electrodes and coated-wire electrodes have been constructed and studied, and both exhibit linear, nearly Nernstian responses to changes in pH. Measurements of pH…

  10. CALCULATING THE PH OF CALCIUM CARBONATE SATURATION

    EPA Science Inventory

    Two new expressions for the pH of saturation (pH subs) were derived. One is a simplified equation developed from an aqueous carbonate equilibrium system in which correction for ionic strength was considered. The other is a more accurate quadratic formula that involves computerize...

  11. pH [Measure of Acidity].

    ERIC Educational Resources Information Center

    Henderson, Paula

    This autoinstructional program deals with the study of the pH of given substances by using litmus and hydrion papers. It is a learning activity directed toward low achievers involved in the study of biology at the secondary school level. The time suggested for the unit is 25-30 minutes (plus additional time for further pH testing). The equipment…

  12. pH. Agricultural Lesson Plans.

    ERIC Educational Resources Information Center

    Southern Illinois Univ., Carbondale. Dept. of Agricultural Education and Mechanization.

    This lesson plan is intended for use in conducting classes on the effect of pH on plant growth. Presented first are an attention step/problem statement and a series of questions and answers designed to convey general information about soil pH and its effect on plants. The following topics are among those discussed: acidity and alkalinity; the…

  13. Recent developments with high temperature stabilized-zirconia pH sensors

    SciTech Connect

    Danielson, M.J.; Koski, O.H.; Meyers, J.

    1985-02-01

    The pH response of 8 weight percent yttria-stabilized zirconia sensors is examined over a temperature range of 373-573 K. Good pH response was found throughout the temperature range. The internal half-cell was discovered to be poised by oxygen, which permits some simplification in the calibration of the sensor. Activation energy measurements imply that the primary conduction process involves the oxide ion. An improved electrical/mechanica seal is also discussed.

  14. The effect of pH on phosphorus availability and speciation in an aquaponics nutrient solution.

    PubMed

    Cerozi, Brunno da Silva; Fitzsimmons, Kevin

    2016-11-01

    The interaction between the main ions in aquaponics nutrient solutions affects chemical composition and availability of nutrients, and nutrient uptake by plant roots. This study determined the effect of pH on phosphorus (P) speciation and availability in an aquaponics nutrient solution and used Visual MINTEQ to simulate P species and P activity. In both experimental and simulated results, P availability decreased with increase in pH of aquaponics nutrient solutions. According to simulations, P binds to several cations leaving less free phosphate ions available in solution. High pH values resulted in the formation of insoluble calcium phosphate species. The study also demonstrated the importance of organic matter and alkalinity in keeping free phosphate ions in solution at high pH ranges. It is recommended though that pH in aquaponics systems is maintained at a 5.5-7.2 range for optimal availability and uptake by plants. PMID:27575336

  15. Role of pH on the stress corrosion cracking of titanium alloys

    NASA Technical Reports Server (NTRS)

    Khokhar, M. I.; Beck, F. H.; Fontana, M. G.

    1973-01-01

    Stress corrosion cracking (SCC) experiments were conducted on Ti-8-1-1 wire specimens in hydrochloric and sulfuric acids of variable pH in order to determine the effect of pH on the susceptibility to cracking. The alloy exhibited increasing susceptibility with decreasing pH. By varying the applied potential, it was observed that susceptibility zones exist both in the cathodic and the anodic ranges. In the cathodic range, susceptibility also increased with decreasing applied potential. Corrosion potential-time data in hydrochloric acid (pH 1.7) and sulfuric acid (pH 1.7) indicate that chloride ions lower the corrosion potential of the specimen which, in turn, increases the susceptibility.

  16. 41 CFR 302-2.11 - May the 1-year time limitation for completing all aspects of a relocation be extended?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 41 Public Contracts and Property Management 4 2012-07-01 2012-07-01 false May the 1-year time... and Property Management Federal Travel Regulation System RELOCATION ALLOWANCES INTRODUCTION 2-EMPLOYEES ELIGIBILITY REQUIREMENTS General Rules Time Limits § 302-2.11 May the 1-year time limitation...

  17. 41 CFR 302-2.11 - May the 2-year time limitation for completing all aspects of a relocation be extended?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 4 2011-07-01 2011-07-01 false May the 2-year time... and Property Management Federal Travel Regulation System RELOCATION ALLOWANCES INTRODUCTION 2-EMPLOYEES ELIGIBILITY REQUIREMENTS General Rules Time Limits § 302-2.11 May the 2-year time limitation...

  18. 41 CFR 302-2.11 - May the 2-year time limitation for completing all aspects of a relocation be extended?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 4 2010-07-01 2010-07-01 false May the 2-year time... and Property Management Federal Travel Regulation System RELOCATION ALLOWANCES INTRODUCTION 2-EMPLOYEES ELIGIBILITY REQUIREMENTS General Rules Time Limits § 302-2.11 May the 2-year time limitation...

  19. 17 CFR 230.142 - Definition of “participates” and “participation,” as used in section 2(11), in relation to...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... and âparticipation,â as used in section 2(11), in relation to certain transactions. 230.142 Section... to distribution. (b) As used in this section: (1) The term issuer shall have the meaning defined in... REGULATIONS, SECURITIES ACT OF 1933 General § 230.142 Definition of “participates” and “participation,”...

  20. 17 CFR 230.142 - Definition of “participates” and “participation,” as used in section 2(11), in relation to...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... and âparticipation,â as used in section 2(11), in relation to certain transactions. 230.142 Section... to distribution. (b) As used in this section: (1) The term issuer shall have the meaning defined in... REGULATIONS, SECURITIES ACT OF 1933 General § 230.142 Definition of “participates” and “participation,”...

  1. Precision and accuracy of spectrophotometric pH measurements at environmental conditions in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Hammer, Karoline; Schneider, Bernd; Kuliński, Karol; Schulz-Bull, Detlef E.

    2014-06-01

    The increasing uptake of anthropogenic CO2 by the oceans has raised an interest in precise and accurate pH measurement in order to assess the impact on the marine CO2-system. Spectrophotometric pH measurements were refined during the last decade yielding a precision and accuracy that cannot be achieved with the conventional potentiometric method. However, until now the method was only tested in oceanic systems with a relative stable and high salinity and a small pH range. This paper describes the first application of such a pH measurement system at conditions in the Baltic Sea which is characterized by a wide salinity and pH range. The performance of the spectrophotometric system at pH values as low as 7.0 (“total” scale) and salinities between 0 and 35 was examined using TRIS-buffer solutions, certified reference materials, and tests of consistency with measurements of other parameters of the marine CO2 system. Using m-cresol purple as indicator dye and a spectrophotometric measurement system designed at Scripps Institution of Oceanography (B. Carter, A. Dickson), a precision better than ±0.001 and an accuracy between ±0.01 and ±0.02 was achieved within the observed pH and salinity ranges in the Baltic Sea. The influence of the indicator dye on the pH of the sample was determined theoretically and is presented as a pH correction term for the different alkalinity regimes in the Baltic Sea. Because of the encouraging tests, the ease of operation and the fact that the measurements refer to the internationally accepted “total” pH scale, it is recommended to use the spectrophotometric method also for pH monitoring and trend detection in the Baltic Sea.

  2. Determination Of Ph Including Hemoglobin Correction

    DOEpatents

    Maynard, John D.; Hendee, Shonn P.; Rohrscheib, Mark R.; Nunez, David; Alam, M. Kathleen; Franke, James E.; Kemeny, Gabor J.

    2005-09-13

    Methods and apparatuses of determining the pH of a sample. A method can comprise determining an infrared spectrum of the sample, and determining the hemoglobin concentration of the sample. The hemoglobin concentration and the infrared spectrum can then be used to determine the pH of the sample. In some embodiments, the hemoglobin concentration can be used to select an model relating infrared spectra to pH that is applicable at the determined hemoglobin concentration. In other embodiments, a model relating hemoglobin concentration and infrared spectra to pH can be used. An apparatus according to the present invention can comprise an illumination system, adapted to supply radiation to a sample; a collection system, adapted to collect radiation expressed from the sample responsive to the incident radiation; and an analysis system, adapted to relate information about the incident radiation, the expressed radiation, and the hemoglobin concentration of the sample to pH.

  3. Parameters affecting downhole pH

    SciTech Connect

    Garber, J.D.; Jangama, V.R.; Willmon, J.

    1997-09-01

    The presence of acetic and formic acids in the produced water of gas condensate wells has been known for some time by the industry. In traditional water analysis, it has been titrated and reported as alkalinity. The calculation of accurate downhole pH values requires that these ions be analyzed separately in the water and that an organic acid material balance be performed on all three phases in the separator. In this manner, it is then possible to use phase distribution coefficients involving ionic equilibrium to determine how these acids distribute themselves between phases as the pH calculation proceeds downhole. In this paper, the above method of calculation of pH and {Delta}pH is used to examine the effect that various concentrations of these acids have on the downhole pH. Various concentrations of acids are examined, and two cases are calculated in which the effect of condensate on the pH is examined.

  4. A Framework for Developing pH Guidance for Drinking Water Treatment and Distribution - abstract

    EPA Science Inventory

    Worldwide, many agencies have historically limited the range of pH values of distributed water between 6.5 and 8.5. Although this range is not a regulatory limit, many jurisdictions have used it as one. In some cases, the range has been a barrier to optimizing distribution syste...

  5. A Framework for Developing pH Guidance for Drinking Water Treatment and Distribution

    EPA Science Inventory

    Worldwide, many agencies have historically limited the range of pH values of distributed water between 6.5 and 8.5. Although this range is not a regulatory limit, many jurisdictions have used it as one. In some cases, the range has been a barrier to optimizing distribution syste...

  6. High-resolution ocean pH dynamics in four subtropical Atlantic benthic habitats

    NASA Astrophysics Data System (ADS)

    Hernández, C. A.; Clemente, S.; Sangil, C.; Hernández, J. C.

    2015-12-01

    Oscillations of ocean pH are largely unknown in coastal environments and ocean acidification studies often do not account for natural variability yet most of what is known about marine species and populations is found out via studies conducted in near shore environments. Most experiments designed to make predictions about future climate change scenarios are carried out in coastal environments with no research that takes into account the natural pH variability. In order to fill this knowledge gap and to provide reliable measures of pH oscillation, seawater pH was measured over time using moored pH sensors in four contrasting phytocenoses typical of the north Atlantic subtropical region. Each phytocenosis was characterized by its predominant engineer species: (1) Cystoseira abies-marina, (2) a mix of gelidiales and geniculate corallines, (3) Lobophora variegata, and (4) encrusting corallines. The autonomous pH measuring systems consisted of a pH sensor; a data logger and a battery encased in a waterproof container and allowed the acquisition of high-resolution continuous pH data at each of the study sites. The pH variation observed ranged by between 0.09 and 0.24 pHNBS units. A clear daily variation in seawater pH was detected at all the studied sites (0.04-0.12 pHNBS units). Significant differences in daily pH oscillations were also observed between phytocenoses, which shows that macroalgal communities influence the seawater pH in benthic habitats. Natural oscillations in pH must be taken into account in future ocean acidification studies to put findings in perspective and for any ecological recommendations to be realistic.

  7. Carbon Nanotube Chemiresistor for Wireless pH Sensing

    NASA Astrophysics Data System (ADS)

    Gou, Pingping; Kraut, Nadine D.; Feigel, Ian M.; Bai, Hao; Morgan, Gregory J.; Chen, Yanan; Tang, Yifan; Bocan, Kara; Stachel, Joshua; Berger, Lee; Mickle, Marlin; Sejdić, Ervin; Star, Alexander

    2014-03-01

    The ability to accurately measure real-time pH fluctuations in-vivo could be highly advantageous. Early detection and potential prevention of bacteria colonization of surgical implants can be accomplished by monitoring associated acidosis. However, conventional glass membrane or ion-selective field-effect transistor (ISFET) pH sensing technologies both require a reference electrode which may suffer from leakage of electrolytes and potential contamination. Herein, we describe a solid-state sensor based on oxidized single-walled carbon nanotubes (ox-SWNTs) functionalized with the conductive polymer poly(1-aminoanthracene) (PAA). This device had a Nernstian response over a wide pH range (2-12) and retained sensitivity over 120 days. The sensor was also attached to a passively-powered radio-frequency identification (RFID) tag which transmits pH data through simulated skin. This battery-less, reference electrode free, wirelessly transmitting sensor platform shows potential for biomedical applications as an implantable sensor, adjacent to surgical implants detecting for infection.

  8. Lignocellulose pretreatment severity - relating pH to biomatrix opening.

    PubMed

    Pedersen, Mads; Meyer, Anne S

    2010-12-31

    In cellulose-to-ethanol processes a physico-chemical pretreatment of the lignocellulosic feedstock is a crucial prerequisite for increasing the amenability of the cellulose to enzymatic attack. Currently published pretreatment strategies span over a wide range of reaction conditions involving different pH values, temperatures, types of catalysts and holding times. The consequences of the pretreatment on lignocellulosic biomass are described with special emphasis on the chemical alterations of the biomass during pretreatment, especially highlighting the significance of the pretreatment pH. We present a new illustration of the pretreatment effects encompassing the differential responses to the pH and temperature. A detailed evaluation of the use of severity factor calculations for pretreatment comparisons signifies that the multiple effects of different pretreatment factors on the subsequent monosaccharide yields after enzymatic hydrolysis cannot be reliably compared by a one-dimensional severity factor, even within the same type of pretreatment strategy. However, a quantitative comparison of published data for wheat straw pretreatment illustrates that there is some correlation between the hydrolysis yields (glucose and xylose) and the pretreatment pH, but no correlation with the pretreatment temperature (90-200°C). A better recognition and understanding of the factors affecting biomatrix opening, and use of more standardized evaluation protocols, will allow for the identification of new pretreatment strategies that improve biomass utilization and permit rational enzymatic hydrolysis of the cellulose. PMID:20460178

  9. The pH tolerance of Chlamydomonas applanata (Volvocales, Chlorophyta).

    PubMed

    Visviki, I; Santikul, D

    2000-02-01

    The effects of hydrogen ions on the growth and ultrastructure of Chlamydomonas applanata Pringsheim were examined. This species exhibits wide tolerance growing at pH values ranging from 3.4 to 8.4, with optimum growth obtained at 7.4. Growth is noticeably depressed at pH 4.4 and 3.4. At the ultrastructural level, exposure to pH 4.4 results in a 10% decrease in cell volume of single vegetative cells, an increase in pyrenoidal volume, and reduction of starch reserves. Palmelloid colonies also appear. pH 3.4 induces excessive production of mucilage and leads to the preponderance of palmelloid colonies. Cell death of both colony and single cells is seen, as well as loss of motility and abnormal cell division. Surviving single cells are significantly larger than controls, with thicker cell walls, smaller chloroplasts, and larger vacuome. Such cells entering dormancy ensure the survival of the species in times of stress. PMID:10629274

  10. Application of SERS Nanoparticles for Intracellular pH Measurements

    SciTech Connect

    Laurence, T; Talley, C; Colvin, M; Huser, T

    2004-10-21

    We present an alternative approach to optical probes that will ultimately allow us to measure chemical concentrations in microenvironments within cells and tissues. This approach is based on monitoring the surface-enhanced Raman scattering (SERS) response of functionalized metal nanoparticles (50-100 nm in diameter). SERS allows for the sensitive detection of changes in the state of chemical groups attached to individual nanoparticles and small clusters. Here, we present the development of a nanoscale pH meter. The pH response of these nanoprobes is tested in a cell-free medium, measuring the pH of the solution immediately surrounding the nanoparticles. Heterogeneities in the SERS signal, which can result from the formation of small nanoparticle clusters, are characterized using SERS correlation spectroscopy and single particle/cluster SERS spectroscopy. The response of the nanoscale pH meters is tested under a wide range of conditions to approach the complex environment encountered inside living cells and to optimize probe performance.

  11. Carbon Nanotube Chemiresistor for Wireless pH Sensing

    PubMed Central

    Gou, Pingping; Kraut, Nadine D.; Feigel, Ian M.; Bai, Hao; Morgan, Gregory J.; Chen, Yanan; Tang, Yifan; Bocan, Kara; Stachel, Joshua; Berger, Lee; Mickle, Marlin; Sejdić, Ervin; Star, Alexander

    2014-01-01

    The ability to accurately measure real-time pH fluctuations in-vivo could be highly advantageous. Early detection and potential prevention of bacteria colonization of surgical implants can be accomplished by monitoring associated acidosis. However, conventional glass membrane or ion-selective field-effect transistor (ISFET) pH sensing technologies both require a reference electrode which may suffer from leakage of electrolytes and potential contamination. Herein, we describe a solid-state sensor based on oxidized single-walled carbon nanotubes (ox-SWNTs) functionalized with the conductive polymer poly(1-aminoanthracene) (PAA). This device had a Nernstian response over a wide pH range (2–12) and retained sensitivity over 120 days. The sensor was also attached to a passively-powered radio-frequency identification (RFID) tag which transmits pH data through simulated skin. This battery-less, reference electrode free, wirelessly transmitting sensor platform shows potential for biomedical applications as an implantable sensor, adjacent to surgical implants detecting for infection. PMID:24667793

  12. Does soil pH influence swallow-wort distribution in its current range?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The perennial non-native vines, pale swallow-wort (Cynanchum rossicum [Kleopow] Borhidi) and black swallow-wort (Cynanchum louiseae [L.] Kartesz & Gandhi), are established invaders in the northeastern United States and southeastern Canada, and are spreading westward. The swallow-worts typically colo...

  13. Ultrathin Laminar Ir Superstructure as Highly Efficient Oxygen Evolution Electrocatalyst in Broad pH Range.

    PubMed

    Pi, Yecan; Zhang, Nan; Guo, Shaojun; Guo, Jun; Huang, Xiaoqing

    2016-07-13

    Shape-controlled noble metal nanocrystals (NCs), such as Au, Ag, Pt, Pd, Ru, and Rh are of great success due to their new and enhanced properties and applications in chemical conversion, fuel cells, and sensors, but the realization of shape control of Ir NCs for achieving enhanced electrocatalysis remains a significant challenge. Herein, we report an efficient solution method for a new class of three-dimensional (3D) Ir superstructure that consists of ultrathin Ir nanosheets as subunits. Electrochemical studies show that it delivers the excellent electrocatalytic activity toward oxygen evolution reaction (OER) in alkaline condition with an onset potential at 1.43 V versus reversible hydrogen electrode (RHE) and a very low Tafel slope of 32.7 mV decade(-1). In particular, it even shows superior performance for OER in acidic solutions with the low onset overpotential of 1.45 V versus RHE and small Tafel slope of 40.8 mV decade(-1), which are much better than those of small Ir nanoparticles (NPs). The 3D Ir superstructures also exhibit good stability under acidic condition with the potential shift of less than 20 mV after 8 h i-t test. The present work highlights the importance of tuning 3D structures of Ir NCs for enhancing OER performance. PMID:27249544

  14. Limited range of motion

    MedlinePlus

    Limited range of motion is a term meaning that a joint or body part cannot move through its normal range of motion. ... Motion may be limited because of a problem within the joint, swelling of tissue around the joint, ...

  15. Telemetry Ranging: Concepts

    NASA Astrophysics Data System (ADS)

    Hamkins, J.; Kinman, P.; Xie, H.; Vilnrotter, V.; Dolinar, S.

    2015-11-01

    Telemetry ranging is a proposed alternative to conventional two-way ranging for determining the two-way time delay between a Deep Space Station (DSS) and a spacecraft. The advantage of telemetry ranging is that the ranging signal on the uplink is not echoed to the downlink, so that telemetry alone modulates the downlink carrier. The timing information needed on the downlink, in order to determine the two-way time delay, is obtained from telemetry frames. This article describes the phase and timing estimates required for telemetry ranging, and how two-way range is calculated from these estimates. It explains why the telemetry ranging architecture does not require the spacecraft transponder to have a high-frequency or high-quality oscillator, and it describes how a telemetry ranging system can be infused in the Deep Space Network.

  16. Determination of baseline human nasal pH and the effect of intranasally administered buffers.

    PubMed

    Washington, N; Steele, R J; Jackson, S J; Bush, D; Mason, J; Gill, D A; Pitt, K; Rawlins, D A

    2000-04-01

    The nose is becoming a common route of drug administration, however, little is known about the pH of the human nasal cavity. Local pH may have a direct effect on the rate and extent of absorption of ionizable compounds and hence this study was performed to investigate normal pH values and whether pH could be manipulated by various buffers. Twelve healthy volunteers participated in a study to measure pH in the anterior and posterior sites of the nasal cavity. Miniature pH electrodes were placed 3 cm apart in the nasal cavity and a baseline was recorded for 30 min once the pH had stabilized. One hundred microlitres of isotonic solution was sprayed into the nostril and the pH was measured for 4 h post-dose. The following five formulations were tested: formulation A--sodium chloride (0.9%) at pH 7.2; formulation B--sodium chloride (0.9%) at pH 5.8; formulation C--Sorensens phosphate buffer (0.06 M) at pH 5. 8; formulation D--Sorensens phosphate buffer (0.13 M) at pH 5.8 and formulation E--formulation as (c) but adjusted to pH 5.0. Each formulation also contained saccharin sodium (0.5%) as a taste marker for nasal clearance. The time at which each subject detected the taste of saccharin was noted. The 30-minute baseline recording prior to administration of the nasal spray formulation demonstrates that there was both considerable intersubject and intrasubject variation in nasal pH. The average pH in the anterior of the nose was 6.40 (+0. 11, -0.15 S.D.) when calculated from H(+) values. The pH in the posterior of the nasal cavity was 6.27 (+0.13, -0.18 S.D.). The overall range in pH was 5.17-8.13 for anterior pH and 5.20-8.00 for posterior pH. Formulation A caused the pH in the anterior part of the nasal cavity to reach a maximum of 7.06 in 11.25 min from the baseline of pH 6.14 (P<0.05). The mean baseline pH was 6.5 for the posterior part of the nose which did not change over the recording period. Formulation B caused the anterior pH to increase from pH 6. 60 to 7

  17. Long Range Technology Planning.

    ERIC Educational Resources Information Center

    Ambron, Sueann, Ed.

    1986-01-01

    This summary of a meeting of the Apple Education Advisory Council, on long range technology plans at the state, county, district, and school levels, includes highlights from group discussions on future planning, staff development, and curriculum. Three long range technology plans at the state level are provided: Long Range Educational Technology…

  18. SAR ambiguous range suppression.

    SciTech Connect

    Doerry, Armin Walter

    2006-09-01

    Pulsed Radar systems suffer range ambiguities, that is, echoes from pulses transmitted at different times arrive at the receiver simultaneously. Conventional mitigation techniques are not always adequate. However, pulse modulation schemes exist that allow separation of ambiguous ranges in Doppler space, allowing easy filtering of problematic ambiguous ranges.

  19. RADIO RANGING DEVICE

    DOEpatents

    Nieset, R.T.

    1961-05-16

    A radio ranging device is described. It utilizes a super regenerative detector-oscillator in which echoes of transmitted pulses are received in proper phase to reduce noise energy at a selected range and also at multiples of the selected range.

  20. Preparation of a novel pH optical sensor using orange (II) based on agarose membrane as support.

    PubMed

    Heydari, Rouhollah; Hosseini, Mohammad; Amraei, Ahmadreza; Mohammadzadeh, Ali

    2016-04-01

    A novel and cost effective optical pH sensor was prepared using covalent immobilization of orange (II) indicator on the agarose membrane as solid support. The fabricated optical sensor was fixed into a sample holder of a spectrophotometer instrument for pH monitoring. Variables affecting sensor performance including pH of dye bonding to agarose membrane and dye concentration were optimized. The sensor responds to the pH changes in the range of 3.0-10.0 with a response time of 2.0 min and appropriate reproducibility (RSD ≤ 0.9%). No significant variation was observed on sensor response after increasing the ionic strength in the range of 0.0-0.5M of sodium chloride. Determination of pH using the proposed optical sensor is quick, simple, inexpensive, selective and sensitive in the pH range of 3.0-10.0. PMID:26838857

  1. [Characteristics of precipitation pH and conductivity at Mt. Huang].

    PubMed

    Shi, Chun-e; Deng, Xue-liang; Wu, Bi-wen; Hong, Jie; Zhang, Su; Yang, Yuan-jian

    2013-05-01

    To understand the general characteristics of pH distribution and pollution in precipitation at Mt. Huang, statistical analyses were conducted for the routine measurements of pH and conductivity (K) at Mt. Huang during 2006-2011. The results showed that: (1) Over the period of study, the annual volume weighted mean (VWM) precipitation pH varied from 4.81 to 5.57, with precipitation acidity strengthening before 2009 and weakening thereafter. The precipitation acidity showed evident seasonal variations, with the VWM pH lowest in winter (4.78), and highest in summer (5.33). The occurrence frequency of acid rain was 46% , accounting for 45% of total rainfalls and with the most frequent pH falling into weak acid to neutral rain. (2) The annual VWM K varied from 16.91 to 27.84 microS x cm(-1), with no evident trend. As for ions pollution, the precipitation was relatively clean at Mt. Huang, with the most frequent K range being below 15 microS x cm(-1), followed by 15-25 microS x cm(-1). From February 2010 to December 2011, precipitation samples were collected on daily basis for ions analysis, as well as pH and K measurement in lab. Detailed comparisons were conducted between the two sets of pH and K, one set from field measurement and the other from lab measurement. The results indicated: (1) The lab measured pH (K) was highly correlated with the field pH (K); however, the lab pH tended to move towards neutral comparing with the corresponding field pH, and the shift range was closely correlated with the field pH and rainfall. The shift range of K from field to lab was highly correlated with the total ion concentration of precipitation. The field K showed evident negative correlation with the field pH with a correlation coefficient of -0.51. (2) When sampling with nylon-polyethylene bags, the statistics showed smaller bias between two sets of pH, with higher correlation coefficient between two sets of K. Furthermore, the lab K also showed evident negative correlation with

  2. Effects of saliva on starch-thickened drinks with acidic and neutral pH.

    PubMed

    Hanson, Ben; Cox, Ben; Kaliviotis, Efstathios; Smith, Christina H

    2012-09-01

    Powdered maize starch thickeners are used to modify drink consistency in the clinical management of dysphagia. Amylase is a digestive enzyme found in saliva which breaks down starch. This action is dependent on pH, which varies in practice depending on the particular drink. This study measured the effects of human saliva on the viscosity of drinks thickened with a widely used starch-based thickener. Experiments simulated a possible clinical scenario whereby saliva enters a cup and contaminates a drink. Citric acid (E330) was added to water to produce a controlled range of pH from 3.0 to 7.0, and several commercially available drinks with naturally low pH were investigated. When saliva was added to thickened water, viscosity was reduced to less than 1% of its original value after 10-15 min. However, lowering pH systematically slowed the reduction in viscosity attributable to saliva. At pH 3.5 and below, saliva was found to have no significant effect on viscosity. The pH of drinks in this study ranged from 2.6 for Coca Cola to 6.2 for black coffee. Again, low pH slowed the effect of saliva. For many popular drinks, having pH of 3.6 or less, viscosity was not significantly affected by the addition of saliva. PMID:22210234

  3. Telemetry Ranging: Signal Processing

    NASA Astrophysics Data System (ADS)

    Hamkins, J.; Kinman, P.; Xie, H.; Vilnrotter, V.; Dolinar, S.

    2016-02-01

    This article describes the details of the signal processing used in a telemetry ranging system in which timing information is extracted from the downlink telemetry signal in order to compute spacecraft range. A previous article describes telemetry ranging concepts and architecture, which are a slight variation of a scheme published earlier. As in that earlier work, the telemetry ranging concept eliminates the need for a dedicated downlink ranging signal to communicate the necessary timing information. The present article describes the operation and performance of the major receiver functions on the spacecraft and the ground --- many of which are standard tracking loops already in use in JPL's flight and ground radios --- and how they can be used to provide the relevant information for making a range measurement. It also describes the implementation of these functions in software, and performance of an end-to-end software simulation of the telemetry ranging system.

  4. Optimizing Calcium Phosphates by the Control of pH and Temperature via Wet Precipitation.

    PubMed

    Kim, YoungJae; Lee, Seon Yong; Roh, Yul; Lee, Jinhyeok; Kim, Juyeun; Lee, Yongwoo; Bang, Junseok; Lee, Young Jae

    2015-12-01

    A series of calcium phosphates synthesized through a wet precipitation route of hydroxylapatite (HAP) was investigated over a wide range of temperature and pH (25-80 degrees C, and pH 6.5-10.0) using a combination of microscopic and spectroscopic analyses. XRD and FTIR show that monetite and brushite are formed as a single phase at non-ideal conditions of HAP, respectively. From TGA results, it is found that brushite is converted to monetite at a range 175-200 degrees C when heated at the heating rate, 10 degrees C/min. This phase transformation is also observed when brushite is aged at pH 8.5 and 60 degrees C for 24 hr in solution. Morphology of brushite is sensitive to pH variation. At pH 6.5, tabular and platy crystals of brushite are observed whereas needle-like ones are predominant at pH 8.5. For HAP formed at pH 10.0, their shapes tend toward needle-like particles as temperature increases. HAP particles at pH 8.5 are very similar in morphology to HAP at pH 10.0, but their lengths are two or three times as great as those at pH 10.0. These observations demonstrate that desired phase and properties of calcium phosphates can be controlled by pH, temperature, and aging time through a wet precipitation method. PMID:26682446

  5. Improved granular activated carbon for the stabilization of wastewater pH

    SciTech Connect

    1996-10-01

    Many times the start up of granular activated carbon adsorption systems for the control of organic contaminants in wastewater cm exhibit unacceptable increases in the adscurber effluent pH. Experience shows that the duration of the pH increase ranges from several hours to several days, during which time several hundred bed volumes of water can be discharged with a pH in excess of 9. Laboratory studies have identified the cause of the pH rise as an interaction between the naturally occurring anions and protons ar the water and the carbon surface. The interaction can be described as an ion exchange type of phenomenon, in which the carbon surface sorbs the anions and corresponding hydronium ions from the water. Capacities of the carbon for the anions range from 2 to 9 mg/g GAC, depending upon the water characteristics, the carbon type, the nature of the anion and its influent concentration. These studies have shown de the anion sorption and resulting pH increase is independent of the raw material used for die activated carbon production, e.g. bituminous or sub-bituminous coal, peat, wood or coconut. Also, the pH excursions occur with virgin, reactivated, and acid washed granular carbons. Current pH control technologies focus on adjustment of wastewater pH prior to discharge or recycle of the initial effluent water until the pH increase abates. However, improved water pH control options have been realized by altering the carbon surface rather than the water chemistry. The change to the carbon surface is accomplished through a controlled oxidation process. This process provides a more acidic carbon surface with a reduced affinity for the anions in the waste water. As a result, the pH excursions above 9 are eliminated and the initial effluent from the adsorption system can be discharged without further treatment.

  6. pH gradient and distribution of streptococci, lactobacilli, prevotellae, and fusobacteria in carious dentine

    PubMed Central

    Nguyen, Ky-Anh T.; Browne, Gina V.; Simonian, Mary; Hunter, Neil

    2013-01-01

    Objectives Caries process comprises acidogenic and aciduric bacteria that are responsible for lowering the pH and subsequent destruction of hydroxyapatite matrix in enamel and dentine. The aim of this study was to identify the correlation between the pH gradient of a carious lesion and proportion and distribution of four bacterial genera; lactobacilli, streptococci, prevotellae, and fusobacteria with regard to total load of bacteria. Materials and methods A total of 25 teeth with extensive dentinal caries were sampled in sequential layers. Using quantitative real-time PCR of 16S rRNA gene, we quantified the total load of bacteria as well as the proportion of the abovementioned genera following pH measurement of each sample with a fine microelectrode. Results We demonstrated the presence of a pH gradient across the lesion with a strong association between the quantity of lactobacilli and the lowest pH range (pH 4.5–5.0; p = 0.003). Streptococci had a tendency to occupy the most superficial aspect of the carious lesion but showed no correlation to any pH value. Prevotellae showed clear preference for the pH range 5.5–6.0 (p = 0.042). The total representation of these four genera did not reach more than one quarter of the total bacterial load in most carious samples. Conclusion We revealed differential colonization behavior of bacteria with respect to pH gradient and a lower than expected abundance of lactobacilli and streptococci in established carious lesions. The data indicate the numerical importance of relatively unexplored taxa within the lesion of dentinal caries. Clinical relevance The gradient nature of pH in the lesion as well as colonization difference of examined bacterial taxa with reference to pH provides a new insight in regard to conservative caries management. PMID:23771212

  7. Measurement of pH micro-heterogeneity in natural cheese matrices by fluorescence lifetime imaging

    PubMed Central

    Burdikova, Zuzana; Svindrych, Zdenek; Pala, Jan; Hickey, Cian D.; Wilkinson, Martin G.; Panek, Jiri; Auty, Mark A. E.; Periasamy, Ammasi; Sheehan, Jeremiah J.

    2015-01-01

    Cheese, a product of microbial fermentation may be defined as a protein matrix entrapping fat, moisture, minerals and solutes as well as dispersed bacterial colonies. The growth and physiology of bacterial cells in these colonies may be influenced by the microenvironment around the colony, or alternatively the cells within the colony may modify the microenvironment (e.g., pH, redox potential) due to their metabolic activity. While cheese pH may be measured at macro level there remains a significant knowledge gap relating to the degree of micro-heterogeneity of pH within the cheese matrix and its relationship with microbial, enzymatic and physiochemical parameters and ultimately with cheese quality, consistency and ripening patterns. The pH of cheese samples was monitored both at macroscopic scale and at microscopic scale, using a non-destructive microscopic technique employing C-SNARF-4 and Oregon Green 488 fluorescent probes. The objectives of this work were to evaluate the suitability of these dyes for microscale pH measurements in natural cheese matrices and to enhance the sensitivity and extend the useful pH range of these probes using fluorescence lifetime imaging (FLIM). In particular, fluorescence lifetime of Oregon Green 488 proved to be sensitive probe to map pH micro heterogeneity within cheese matrices. Good agreement was observed between macroscopic scale pH measurement by FLIM and by traditional pH methods, but in addition considerable localized microheterogeneity in pH was evident within the curd matrix with pH range between 4.0 and 5.5. This technique provides significant potential to further investigate the relationship between cheese matrix physico-chemistry and bacterial metabolism during cheese manufacture and ripening. PMID:25798136

  8. Telemetry-Based Ranging

    NASA Technical Reports Server (NTRS)

    Hamkins, Jon; Vilnrotter, Victor A.; Andrews, Kenneth S.; Shambayati, Shervin

    2011-01-01

    A telemetry-based ranging scheme was developed in which the downlink ranging signal is eliminated, and the range is computed directly from the downlink telemetry signal. This is the first Deep Space Network (DSN) ranging technology that does not require the spacecraft to transmit a separate ranging signal. By contrast, the evolutionary ranging techniques used over the years by NASA missions, including sequential ranging (transmission of a sequence of sinusoids) and PN-ranging (transmission of a pseudo-noise sequence) whether regenerative (spacecraft acquires, then regenerates and retransmits a noise-free ranging signal) or transparent (spacecraft feeds the noisy demodulated uplink ranging signal into the downlink phase modulator) relied on spacecraft power and bandwidth to transmit an explicit ranging signal. The state of the art in ranging is described in an emerging CCSDS (Consultative Committee for Space Data Systems) standard, in which a pseudo-noise (PN) sequence is transmitted from the ground to the spacecraft, acquired onboard, and the PN sequence is coherently retransmitted back to the ground, where a delay measurement is made between the uplink and downlink signals. In this work, the telemetry signal is aligned with the uplink PN code epoch. The ground station computes the delay between the uplink signal transmission and the received downlink telemetry. Such a computation is feasible because symbol synchronizability is already an integral part of the telemetry design. Under existing technology, the telemetry signal cannot be used for ranging because its arrival-time information is not coherent with any Earth reference signal. By introducing this coherence, and performing joint telemetry detection and arrival-time estimation on the ground, a high-rate telemetry signal can provide all the precision necessary for spacecraft ranging.

  9. The Effect of pH on Nickel Alloy SCC and Corrosion Performance

    SciTech Connect

    D.S. Morton; M. Hansen

    2002-10-10

    Alloy X-750 condition HTH stress corrosion crack growth rate (SCCGR) tests have been conducted at 360 C (680 F) with 50 cc/kg hydrogen as a function of coolant pH. Results indicate no appreciable influence of pH on crack growth in the pH (at 360 C) range of {approx} 6.2 to 8.7, consistent with previous alloy 600 findings. These intermediate pH results suggest that pH is not a key variable which must be accounted for when modeling pressurized water reactor (PWR) primary water SCC. In this study, however, a nearly three fold reduction in X-750 crack growth rate was observed in reduced pH environments (pH 3.8 through HCl addition and pH 4-5.3 through H{sub 2}SO{sub 4} addition). Crack growth rates did not directly correlate with corrosion film thickness. In fact, 10x thicker corrosion films were observed in the reduced pH environments.

  10. Effect of pH on phosphorus, copper, and zinc elution from swine wastewater activated sludge.

    PubMed

    Waki, Miyoko; Yasuda, Tomoko; Fukumoto, Yasuyuki; Suzuki, Kazuyoshi

    2014-01-01

    With the goal of reducing the amounts of phosphorus (P), copper (Cu), and zinc (Zn) discharged from swine wastewater activated sludge treatment facilities, we studied the elution of these elements from activated sludge at various pH values. Sludge samples with neutral pH collected from three farms were incubated at pH values ranging from 3 to 10. The soluble concentrations of these elements changed dramatically with pH and were highest at pH 3. We assumed that P present in the sludge under neutral and alkaline conditions was in insoluble form bound up with magnesium (Mg) and calcium (Ca), because Ca and Mg also eluted from the sludge at low pH. To clarify forms of Zn and Cu in the sludge, we performed a sequential extraction analysis. Zinc in adsorbed, organically bound, and sulfide fractions made up a large proportion of the total Zn. Copper in organically bound, carbonate, and sulfide fractions made up a large proportion of the total Cu. The soluble P concentrations were lowest at pH 9 or 10 (11-36 mg/L), the soluble Zn concentrations were lowest at pH 8 or 9 (0.07-0.15 mg/L), and the soluble Cu concentrations were lowest at pH 6-9 (0.2 mg/L, the detection limit). PMID:25116486

  11. Empirical algorithms to estimate water column pH in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Williams, N. L.; Juranek, L. W.; Johnson, K. S.; Feely, R. A.; Riser, S. C.; Talley, L. D.; Russell, J. L.; Sarmiento, J. L.; Wanninkhof, R.

    2016-04-01

    Empirical algorithms are developed using high-quality GO-SHIP hydrographic measurements of commonly measured parameters (temperature, salinity, pressure, nitrate, and oxygen) that estimate pH in the Pacific sector of the Southern Ocean. The coefficients of determination, R2, are 0.98 for pH from nitrate (pHN) and 0.97 for pH from oxygen (pHOx) with RMS errors of 0.010 and 0.008, respectively. These algorithms are applied to Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) biogeochemical profiling floats, which include novel sensors (pH, nitrate, oxygen, fluorescence, and backscatter). These algorithms are used to estimate pH on floats with no pH sensors and to validate and adjust pH sensor data from floats with pH sensors. The adjusted float data provide, for the first time, seasonal cycles in surface pH on weekly resolution that range from 0.05 to 0.08 on weekly resolution for the Pacific sector of the Southern Ocean.

  12. A wearable fingernail chemical sensing platform: pH sensing at your fingertips.

    PubMed

    Kim, Jayoung; Cho, Thomas N; Valdés-Ramírez, Gabriela; Wang, Joseph

    2016-04-01

    This article demonstrates an example of a wearable chemical sensor based on a fingernail platform. Fingernails represent an attractive wearable platform, merging beauty products with chemical sensing, to enable monitoring of our surrounding environment. The new colorimetric pH fingernail sensor relies on coating artificial nails with a recognition layer consisted of pH indicators entrapped in a polyvinyl chloride (PVC) matrix. Such color changing fingernails offer fast and reversible response to pH changes, repeated use, and intense color change detected easily with naked eye. The PVC matrix prevents leaching out of the indicator molecules from the fingernail sensor toward such repeated use. The limited narrow working pH range of a single pH indicator has been addressed by multiplexing three different pH indicators: bromothymol blue (pH 6.0-7.6), bromocresol green (pH 3.8-5.4), and cresol red (pH 7.2-8.8), as demonstrated for analyses of real-life samples of acidic, neutral, and basic character. The new concept of an optical wearable chemical sensor on fingernail platforms can be expanded towards diverse analytes for various applications in connection to the judicious design of the recognition layer. PMID:26838451

  13. An efficient ratiometric fluorescent probe for tracking dynamic changes in lysosomal pH.

    PubMed

    Wang, Qianqian; Zhou, Liyi; Qiu, Liping; Lu, Danqing; Wu, Yongxiang; Zhang, Xiao-Bing

    2015-08-21

    Lysosomes are acidic organelles (approximately pH 4.5-5.5) and tracking the changes in lysosomal pH is of great biological importance. To address this issue, quite a few of fluorescent probes have been developed. However, few of these probes can realize the tracking of dynamic changes in lysosomal pH. Herein, we report a new lysosome-targeted ratiometric fluorescent probe (FR-Lys) by hybridizing morpholine with a xanthane derivative and an o-hydroxy benzoxazole group. In this probe, the morpholine group serves as a targeting unit for lysosome, the xanthane derivative exhibits a pH-modulated open/close reaction of the spirocycle, while the o-hydroxy benzoxazole moiety shows a pH modulated excited-state intramolecular proton transfer (ESIPT) process. Such a design affords the probe a ratiometric fluorescence response towards pH with pH values ranging from 4.0 to 6.3. The response of the probe to pH was fast and reversible with high selectivity. Moreover, this probe possesses further advantages such as easy synthesis, high photostability and low cytotoxicity. These features are favorable for tracking dynamic pH changes in biosystems. It was then applied for dynamic imaging pH changes in lysosomes with satisfactory results. PMID:26107774

  14. Colorimetric Determination of pH.

    ERIC Educational Resources Information Center

    Tucker, Sheryl; And Others

    1989-01-01

    Presented is an activity in which the pH of a solution can be quantitatively measured using a spectrophotometer. The theory, experimental details, sample preparation and selection, instrumentation, and results are discussed. (CW)

  15. Brenda K. Edwards, PhD

    Cancer.gov

    Brenda K. Edwards, PhD, has been with the Surveillance Research Program (SRP) and its predecessor organizations at the National Cancer Institute (NCI) since 1989, serving as SRP’s Associate Director from 1990-2011.

  16. Miniature Chemical Optical Fiber Sensors For Ph Measurements

    NASA Astrophysics Data System (ADS)

    Boisde, G.; Perez, J. J.

    1987-10-01

    A miniature optode (diameter about 1 mm) was built with 200/280 all-silica fibers usable over long distances. The immobilized indicator is fixed on a cross-linked styrene/divinyl-benzene copolymer (XADZI). The sensors are constructed so that measurements can be taken either by absorption at many different points in the single optical fiber, or by reflection from the end of the fiber. A wide range of pH values are encountered with radioactive wastes, and experiments are performed either with bromophenol blue (3.0 to 6.0) or a double-indicator (thymol blue) between 0.8 and 3.2, and 9 and 13 pH, as well as other indicators. Lifetimes, reversibility and kinetics are considered. A new low-cost device is proposed for chemical process control and medical applications.

  17. Hot Ductility of the 17-4 PH Stainless Steels

    NASA Astrophysics Data System (ADS)

    Herrera Lara, V.; Guerra Fuentes, L.; Covarrubias Alvarado, O.; Salinas Rodriguez, A.; Garcia Sanchez, E.

    2016-03-01

    The mechanisms of loss of hot ductility and the mechanical behavior of 17-4 PH alloys were investigated using hot tensile testing at temperatures between 700 and 1100 °C and strain rates of 10-4, 10-2, and 10-1 s-1. Scanning electron microscopy was used in conjunction with the results of the tensile tests to find the temperature region of loss of ductility and correlate it with cracking observed during processing by hot upsetting prior to ring rolling. It is reported that 17-4 PH alloys lose ductility in a temperature range around 900 °C near to the duplex austenite + ferrite phase field. Furthermore, it is found that niobium carbides precipitated at austenite/ferrite interfaces and grain boundaries have a pronounced effect on the mechanical behavior of the alloy during high-temperature deformation.

  18. Morphosynthesis of alanine mesocrystals by pH control.

    PubMed

    Ma, Yurong; Cölfen, Helmut; Antonietti, Markus

    2006-06-01

    Crystallization of DL-alanine is studied as a single polymorph model case to analyze the different modes of crystallization of polar organic molecules in absence of any structure directing additives. Depending on supersaturation, which is controlled either by temperature or by pH, and in the absence of additives, crystallization by mesoscale assembly of nanoparticles is found over a wide range of conditions, leading to so-called mesocrystals. This supplements the classical molecule-based crystallization mechanism, which is identified at lower supersaturations and at pH values away from the isoelectric point (IEP). The resulting alanine crystals are characterized by SEM, XRD, and single-crystal analysis. Time-resolved conductivity measurements and dynamic light scattering of the reaction solutions reveal information about precursor structures and reaction kinetics. A formation mechanism is proposed for the alanine mesocrystals. PMID:16771332

  19. Photochemical Performance of the Acidophilic Red Alga Cyanidium sp. in a pH Gradient

    NASA Astrophysics Data System (ADS)

    Kvíderová, Jana

    2012-06-01

    The acidophilic red alga Cyanidium sp. is one of the dominant mat-forming species in the highly acidic waters of Río Tinto, Spain. The culture of Cyanidium sp., isolated from a microbial mat sample collected at Río Tinto, was exposed to 9 different pH conditions in a gradient from 0.5 to 5 for 24 h and its physiological status evaluated by variable chlorophyll a fluorescence kinetics measurements. Maximum quantum yield was determined after 30 min, 1 h, 2 h, 4 h, 6 h and 24 h of exposure after 15 min dark adaptation. The effect of pH on photochemical activity of Cyanidium sp. was observable as early as 30 min after exposure and the pattern remained stable or with only minor modifications for 24 h. The optimum pH ranged from 1.5 to 2.5. A steep decrease of the photochemical activity was observed at pH below 1 even after 30 min of exposure. Although the alga had tolerated the exposure to pH = 1 for at least 6 h, longer (24 h) exposure resulted in reduction of the photochemical activity. At pH above 2.5, the decline was more moderate and its negative effect on photochemistry was less severe. According to the fluorescence measurements, the red alga Cyanidium sp. is well-adapted to prevailing pH at its original locality at Río Tinto, i.e. pH of 1 to 3. The short-term survival in pH < 1.5 may be adaptation to rare exposures to such low pH in the field. The tolerance of pH above 3 could be caused by adaptation to the microenvironment of the inner parts of microbial mats in which Cyanidium sp. usually dominates and where higher pH could occur due to photosynthetic oxygen production.

  20. Origin, Emission, and Propagation of P-H Pulses

    NASA Astrophysics Data System (ADS)

    Kikuchi, H.

    2007-05-01

    Origin, Emission, and Propagation of P-H Pulses H. Kikuchi Institute for Environmental Electromagnetics 3-8-18, Komagome, Toshima-ku, Tokyo 170, Japan e-mail: hkikuchi@mars.dti.ne.jp Abstract According to Pulinets, characters of P-H pulses is following. The registered emission has not continuous but pulsed character and has very wide frequency spectrum from kHz to more than hundred MHz. These two facts imply that should be the electric discharge-like emission similar to thunderstorm flashes emission. The emission is connected in some way with seismic activity and the emission intensity increases 12-24 hour before the seismic shock. Another intriguing factor is that emission is registered at large distances up to 500 km (some witness claim up to 1500 km). Taking into account that emission is registered at VHF band also, the source of emission cannot be situated on the ground. This paper puts forwards a model of P-H pulses generation based on "dust dynamics". Rotating ions ascending, for instance erupped metalic ions in the earth's crust into the atmosphere incorporating aerosols might be captured by diffuse dust layers which may exist below or beyond the electric mirror point produced by quadrupole-like thunder- cloud configurations or even form a portion of dust layers and could be a source-origin of P-H pulses that might be emitted by local electric discharges within diffuse dust layers somewhat similar to thundercloud discharges, though emission frequencies and characters are quite different, namely P-H pulses are over a wide range of frequencies, say from kHz to more than hundred MHz with pulsed character in contrast to lightning emission with more continuous character whose frequencies are 1 to 10 kHz. Such diffuse dust layers could be formed over a wide range of height in the troposphere, stratosphere, mesosphere and the thermosphere. Propagation distance of P-H pulses are very large up to 500-1500 km.

  1. Improved ranging systems

    NASA Technical Reports Server (NTRS)

    Young, Larry E.

    1989-01-01

    Spacecraft range measurements have provided the most accurate tests, to date, of some relativistic gravitational parameters, even though the measurements were made with ranging systems having error budgets of about 10 meters. Technology is now available to allow an improvement of two orders of magnitude in the accuracy of spacecraft ranging. The largest gains in accuracy result from the replacement of unstable analog components with high speed digital circuits having precisely known delays and phase shifts.

  2. Laboratory measurement of the 2-centimeter, 2/11/-2/12/ transition of normal formaldehyde and its carbon-13 and oxygen-18 species.

    NASA Technical Reports Server (NTRS)

    Tucker, K. D.; Tomasevich, G. R.; Thaddeus, P.

    1972-01-01

    Beam-maser spectrometric measurements to an accuracy of about 100 Hz have been conducted of the 2(11)-2(12) transition for the isotopic species of greatest astronomical interest - i.e., H2CO, H2(13)CO, and H2C(18)O. The samples used were not isotopically enriched, monomeric formaldehyde vapors. For these species, all the coupling constants required to calculate the hyperfine structure of any rotational transition have been determined.

  3. Automatic range selector

    DOEpatents

    McNeilly, Clyde E.

    1977-01-04

    A device is provided for automatically selecting from a plurality of ranges of a scale of values to which a meter may be made responsive, that range which encompasses the value of an unknown parameter. A meter relay indicates whether the unknown is of greater or lesser value than the range to which the meter is then responsive. The rotatable part of a stepping relay is rotated in one direction or the other in response to the indication from the meter relay. Various positions of the rotatable part are associated with particular scales. Switching means are sensitive to the position of the rotatable part to couple the associated range to the meter.

  4. Trivalent lanthanide lacunary phosphomolybdate complexes: a structural and spectroscopic study across the series [Ln(PMo11O39)2]11-.

    PubMed

    Copping, Roy; Gaunt, Andrew J; May, Iain; Sarsfield, Mark J; Collison, David; Helliwell, Madeleine; Denniss, Iain S; Apperley, David C

    2005-04-01

    We report the syntheses and crystal structures of (NH4)11[Ln(III)(PMo11O39)2.xH2O (where Ln = every trivalent lanthanide cation except promethium) in which two lacunary [PMo11O39]7- anions sandwich an 8-coordinate Ln(III) cation to yield the complex anion, [LnIII(PMo11O39)2]11-. The 14 salts crystallise in two different space groups, C2/c or P1, but the LnIII containing anions are isostructural across the whole series, a very rare example of such a complete study. Solid state and solution 31P NMR, Raman and IR spectroscopies have been used to prove the stability of [Ln(PMo11O39)2]11- in aqueous solution. As expected, the LnIII cation contracts across the series and the Ln-O bond distances decrease uniformly. Interestingly, the splitting in the nu(P-O) mode within the [PMo11O39]7- unit increases uniformly across the series, which we attribute to the stronger interaction with the smaller, higher charge density LnIII cation as the series is traversed. For the 31P NMR measurements a direct comparison of Lanthanide Induced (paramagnetic) Shift could be made with the analogous [P(W11O39)2]11- complexes. PMID:15782262

  5. Evaluation of the 11CO2 positron emission tomographic method for measuring brain pH. I. pH changes measured in states of altered PCO2.

    PubMed

    Buxton, R B; Alpert, N M; Babikian, V; Weise, S; Correia, J A; Ackerman, R H

    1987-12-01

    The 11CO2 method for measuring local brain pH with positron emission tomography (PET) has been experimentally evaluated, testing the adequacy of the kinetic model and the ability of the method to measure changes in brain pH. Plasma and tissue time/activity curves measured during and following continuous inhalation of 11CO2 were fit with a kinetic model that includes effects of tissue pH, blood flow, and fixation of CO2 into compounds other than dissolved gas and bicarbonate ions. For each of ten dogs, brain pH was measured with PET at two values of PaCO2 (range 21-67 mm Hg). The kinetic model fit the data well during both inhalation and washout of the label, with residual root mean square (RMS) deviations of the model from the measurements consistent with the statistical quality of the PET data. Brain pH calculated from the PET data shows a linear variation with log(PaCO2). These results were in good agreement with previously reported measurements of brain pH, both in absolute value and in variation with PCO2. The interpretation of these pH values in normal and pathological states is discussed. PMID:3121647

  6. Herpesvirus Entry into Host Cells Mediated by Endosomal Low pH.

    PubMed

    Nicola, Anthony V

    2016-09-01

    Herpesviral pathogenesis stems from infection of multiple cell types including the site of latency and cells that support lytic replication. Herpesviruses utilize distinct cellular pathways, including low pH endocytic pathways, to enter different pathophysiologically relevant target cells. This review details the impact of the mildly acidic milieu of endosomes on the entry of herpesviruses, with particular emphasis on herpes simplex virus 1 (HSV-1). Epithelial cells, the portal of primary HSV-1 infection, support entry via low pH endocytosis mechanisms. Mildly acidic pH triggers reversible conformational changes in the HSV-1 class III fusion protein glycoprotein B (gB). In vitro treatment of herpes simplex virions with a similar pH range inactivates infectivity, likely by prematurely activating the viral entry machinery in the absence of a target membrane. How a given herpesvirus mediates both low pH and pH-independent entry events is a key unresolved question. PMID:27126894

  7. Immobilized fluorescent dyes for sensitive pH measurements on enamel surfaces with fiber optics

    NASA Astrophysics Data System (ADS)

    Rumphorst, A.; Seeger, Stefan; Duschner, H.

    1996-01-01

    Information on the pH directly on surfaces of dental enamel is an important aspect in research on tooth decay. As an alternative to pH-electrodes our approach to the problem is the optical determination of pH by pH sensitive fluorescent dyes immobilized to tooth surfaces. In this study a model for measuring pH either on aminated cellulose substrates or on enamel (in vitro) with a fluorescein type dye is presented. The experimental realization is a fiber optic sensor with a nitrogen-pumped dye laser system and photodiode for the detection of the emitted fluorescence light. The surface pH values in the range between 4 and 7 were derived from the ratios of the excitation bands at 490 nm and 460 nm.

  8. Influence of pH extremes on sporulation and ultrastructure of sarcina ventriculi

    SciTech Connect

    Lowe, S.E.; Pankratz, H.S. ); Zeikus, J.G. )

    1989-07-01

    Distinct morphological changes in the ultrastructure of Sarcina ventriculi were observed when cells were grown in medium of constant composition at pH extremes of 3.0 and 8.0. Transmission electron microscopy revealed that at low pH ({le}3.0) the cells formed regular packets and cell division was uniform. When the pH was increased (to {ge}7.0), the cells became larger and cell division resulted in irregular cells that varied in shape and size. Sporulation occurred at high pH (i.e., {ge}8.0). The sporulation cycle followed the conventional sequence of development for refractile endospores, with the appearance of a cortex and multiple wall layers. The spores were resistant to oxygen, lysozyme, or heating at 90{degree}C for 15 min. Spores germinated within the pH range of 4.6 to 7.0.

  9. Range Scheduling Aid (RSA)

    NASA Technical Reports Server (NTRS)

    Logan, J. R.; Pulvermacher, M. K.

    1991-01-01

    Range Scheduling Aid (RSA) is presented in the form of the viewgraphs. The following subject areas are covered: satellite control network; current and new approaches to range scheduling; MITRE tasking; RSA features; RSA display; constraint based analytic capability; RSA architecture; and RSA benefits.

  10. Laser ranging data analysis

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Near real-time Lageos laser ranging data are analyzed in terms of range bias, time bias, and internal precision, and estimates for earth orientation parameters X(sub p), Y(sub p), and UT1 are obtained. The results of these analyses are reported in a variety of formats. Copies of monthly summaries from November, 1986 through November, 1987 are included.