Science.gov

Sample records for pha-specific acetoacetyl coenzyme

  1. Unprecedented acetoacetyl-coenzyme A synthesizing enzyme of the thiolase superfamily involved in the mevalonate pathway.

    PubMed

    Okamura, Eiji; Tomita, Takeo; Sawa, Ryuichi; Nishiyama, Makoto; Kuzuyama, Tomohisa

    2010-06-22

    Acetoacetyl-CoA is the precursor of 3-hydroxy-3-methylglutaryl (HMG)-CoA in the mevalonate pathway, which is essential for terpenoid backbone biosynthesis. Acetoacetyl-CoA is also the precursor of poly-beta-hydroxybutyrate, a polymer belonging to the polyester class produced by microorganisms. The de novo synthesis of acetoacetyl-CoA is usually catalyzed by acetoacetyl-CoA thiolase via a thioester-dependent Claisen condensation reaction between two molecules of acetyl-CoA. Here, we report that nphT7, found in the mevalonate pathway gene cluster from a soil-isolated Streptomyces sp. strain, encodes an unusual acetoacetyl-CoA synthesizing enzyme. The recombinant enzyme overexpressed in Escherichia coli catalyzes a single condensation of acetyl-CoA and malonyl-CoA to give acetoacetyl-CoA and CoA. Replacement of malonyl-CoA with malonyl-(acyl carrier protein) resulted in loss of the condensation activity. No acetoacetyl-CoA synthesizing activity was detected through the condensation of two molecules of acetyl-CoA. Based on these properties of NphT7, we propose to name this unusual enzyme of the thiolase superfamily acetoacetyl-CoA synthase. Coexpression of nphT7 with the HMG-CoA synthase gene and the HMG-CoA reductase gene in a heterologous host allowed 3.5-fold higher production of mevalonate than when only the HMG-CoA synthase and HMG-CoA reductase genes were expressed. This result suggests that nphT7 can be used to significantly increase the concentration of acetoacetyl-CoA in cells, eventually leading to the production of useful terpenoids and poly-beta-hydroxybutyrate. PMID:20534558

  2. Cloning and expression of clostridium acetobutylicum ATCC 824 acetoacetyl-coenzyme A:acetate/butyrate:coenzyme A-transferase in Escherichia coli

    SciTech Connect

    Cary, J.W.; Petersen, D.J.; Bennett, G.N. ); Papoutsakis, E.T. )

    1990-06-01

    Coenzyme A (CoA)-transferase (acetoacetyl-CoA:acetate/butyrate:CoA-transferase (butyrate-acetoacetate CoA-transferase) (EC 2.8.3.9)) of Clostridium acetobutylicum ATCC 824 is an important enzyme in the metabolic shift between the acid-producing and solvent-forming states of this organism. The genes encoding the two subunits of this enzyme have been cloned and subsequent subcloning experiments established the position of the structural genes for CoA-transferase. Complementation of Escherichia coli ato mutants with the recombinant plasmid pCoAT4 (pUC19 carrying a 1.8-kilobase insert of C. acetobutylicum DNA encoding CoA-transferase activity) enabled the transformants to grow on butyrate as a sole carbon source. Despite the ability of CoA-transferase to complement the ato defect in E. coli mutants, Southern blot and Western blot (immunoblot) analyses showed showed that neither the C. acetobutylicum genes encoding CoA-transferase nor the enzyme itself shared any apparent homology with its E. coli counterpart. Polypeptides of M{sub r} of the purified CoA-transferase subunits were observed by Western blot and maxicell analysis of whole-cell extracts of E.coli harboring pCoAT4. The proximity and orientation of the genes suggest that the genes encoding the two subunits of CoA-transferase may form an operon similar to that found in E. coli. In the plasmid, however, transcription appears to be primarily from the lac promoter of the vector.

  3. Identification of a novel exonic mutation at -13 from 5' splice site causing exon skipping in a girl with mitochondrial acetoacetyl-coenzyme A thiolase deficiency.

    PubMed Central

    Fukao, T; Yamaguchi, S; Wakazono, A; Orii, T; Hoganson, G; Hashimoto, T

    1994-01-01

    We identified a novel exonic mutation which causes exon skipping in the mitochondrial acetoacetyl-CoA thiolase (T2) gene from a girl with T2 deficiency (GK07). GK07 is a compound heterozygote; the maternal allele has a novel G to T transversion at position 1136 causing Gly379 to Val substitution (G379V) of the T2 precursor. In case of in vivo expression analysis, cells transfected with this mutant cDNA showed no evidence of restored T2 activity. The paternal allele was associated with exon 8 skipping at the cDNA level. At the gene level, a C to T transition causing Gln272 to termination codon (Q272STOP) was identified within exon 8, 13 bp from the 5' splice site of intron 8 in the paternal allele. The mRNA with Q272STOP could not be detected in GK07 fibroblasts, presumably because pre-mRNA with Q272STOP was unstable because of the premature termination. In vivo splicing experiments revealed that the exonic mutation caused partial skipping of exon 8. This substitution was thought to alter the secondary structure of T2 pre-mRNA around exon 8 and thus impede normal splicing. The role of exon sequences in the splicing mechanism is indicated by the exon skipping which occurred with an exonic mutation. Images PMID:7907600

  4. Site-specific cleavage of acetoacetyl-CoA synthetase by legumain.

    PubMed

    Hasegawa, Shinya; Inoue, Daiki; Yamasaki, Masahiro; Li, Chuan; Imai, Masahiko; Takahashi, Noriko; Fukui, Tetsuya

    2016-06-01

    Acetoacetyl-CoA synthetase (AACS) is a ketone body-utilizing enzyme and is responsible for the synthesis of cholesterol and fatty acids. We have previously shown that AACS is cleaved by legumain, a lysosomal asparaginyl endopeptidase. In this study, we attempted to determine the cleavage site of AACS. Mutagenesis analysis of AACS revealed that Asn547 is the specific cleavage site of AACS in mouse livers. The cleaved form of AACS (1-547) lost the ability to convert acetoacetate to acetoacetyl-CoA. Moreover, hydrodynamics-based gene transduction showed that overexpression of AACS (1-547) increases the protein expression of caveolin-1, the principal component of the caveolae. These results suggest that cleavage of AACS by legumain is critical for the regulation of enzymatic activity and results in gain-of-function changes. PMID:27129883

  5. Dictyostelium acetoacetyl-CoA thiolase is a dual-localizing enzyme that localizes to peroxisomes, mitochondria and the cytosol.

    PubMed

    Isezaki, Nana; Sekiba, Atsushi; Itagaki, Shoko; Nagayama, Koki; Ochiai, Hiroshi; Ohmachi, Tetsuo

    2015-07-01

    Acetoacetyl-CoA thiolase is an enzyme that catalyses both the CoA-dependent thiolytic cleavage of acetoacetyl-CoA and the reverse condensation reaction. In Dictyostelium discoideum, acetoacetyl-CoA thiolase (DdAcat) is encoded by a single acat gene. The aim of this study was to assess the localization of DdAcat and to determine the mechanism of its cellular localization. Subcellular localization of DdAcat was investigated using a fusion protein with GFP, and it was found to be localized to peroxisomes. The findings showed that the targeting signal of DdAcat to peroxisomes is a unique nonapeptide sequence (15RMYTTAKNL23) similar to the conserved peroxisomal targeting signal-2 (PTS-2). Cell fractionation experiments revealed that DdAcat also exists in the cytosol. Distribution to the cytosol was caused by translational initiation from the second Met codon at position 16. The first 18 N-terminal residues also exhibited function as a mitochondrial targeting signal (MTS). These results indicate that DdAcat is a dual-localizing enzyme that localizes to peroxisomes, mitochondria and the cytosol using both PTS-2 and MTS signals, which overlap each other near the N-terminus, and the alternative utilization of start codons. PMID:25911059

  6. Cloning, Expression and Purification of an Acetoacetyl CoA Thiolase from Sunflower Cotyledon

    PubMed Central

    Dyer, James H.; Maina, Anthony; Gomez, Iris D.; Cadet, Melissa; Oeljeklaus, Silke; Schiedel, Anke C.

    2009-01-01

    Thiolase I and II coexist as part of the glyoxysomal β-oxidation system in sunflower (Helianthus annuus L.) cotyledons, the only system shown to have both forms. The importance of thiolases can be underscored not only by their ubiquity, but also by their involvement in a wide variety of processes in plants, animals and bacteria. Here we describe the cloning, expression and purification of acetoacetyl CoA thiolase (AACT) in enzymatically active form. Use of the extensive amount of sequence information from the databases facilitated the efficient generation of the gene-specific primers used in the RACE protocols. The recombinant AACT (1233 bp) shares 75% similarity with other plant AACTs. Comparison of specific activity of this recombinant AACT to a previously reported enzyme purified from primary sunflower cotyledon tissue was very similar (263 nkat/mg protein vs 220 nkat/mg protein, respectively). Combining the most pure fractions from the affinity column, the enzyme was purified 88-fold with a 55% yield of the enzymatically active, 47 kDa AACT. PMID:20011134

  7. Coenzyme Q10 Therapy

    PubMed Central

    Garrido-Maraver, Juan; Cordero, Mario D.; Oropesa-Ávila, Manuel; Fernández Vega, Alejandro; de la Mata, Mario; Delgado Pavón, Ana; de Miguel, Manuel; Pérez Calero, Carmen; Villanueva Paz, Marina; Cotán, David; Sánchez-Alcázar, José A.

    2014-01-01

    For a number of years, coenzyme Q10 (CoQ10) was known for its key role in mitochondrial bioenergetics; later studies demonstrated its presence in other subcellular fractions and in blood plasma, and extensively investigated its antioxidant role. These 2 functions constitute the basis for supporting the clinical use of CoQ10. Also, at the inner mitochondrial membrane level, CoQ10 is recognized as an obligatory cofactor for the function of uncoupling proteins and a modulator of the mitochondrial transition pore. Furthermore, recent data indicate that CoQ10 affects the expression of genes involved in human cell signaling, metabolism and transport, and some of the effects of CoQ10 supplementation may be due to this property. CoQ10 deficiencies are due to autosomal recessive mutations, mitochondrial diseases, aging-related oxidative stress and carcinogenesis processes, and also statin treatment. Many neurodegenerative disorders, diabetes, cancer, and muscular and cardiovascular diseases have been associated with low CoQ10 levels as well as different ataxias and encephalomyopathies. CoQ10 treatment does not cause serious adverse effects in humans and new formulations have been developed that increase CoQ10 absorption and tissue distribution. Oral administration of CoQ10 is a frequent antioxidant strategy in many diseases that may provide a significant symptomatic benefit. PMID:25126052

  8. Membrane reactors for continuous coenzyme regeneration

    NASA Astrophysics Data System (ADS)

    Wandrey, C.; Wichmann, R.

    1982-12-01

    The importance of continuous coenzyme regeneration is discussed with respect to chemical reaction engineering. The benefit of coenzymes covalently bound to water soluble polymers is especially stressed. The performance of membrane reactors for coenzyme regeneration is discussed in comparison with other reactor concepts. The coenzyme dependent production of L-amino acids from the corresponding alpha-keto acids is used to illustrate how precise turnover numbers as a function of enzyme/coenzyme ratio, initial substrate concentration, and conversion are obtained. Thus, it becomes possible to develop a concept for optimal operating points with respect to enzyme, coenzyme, and substrate costs per unit weight of product.

  9. Characterization of cyclo-Acetoacetyl-L-Tryptophan Dimethylallyltransferase in Cyclopiazonic Acid Biosynthesis: Substrate Promiscuity and Site Directed Mutagenesis Studies

    PubMed Central

    Liu, Xinyu; Walsh, Christopher T.

    2009-01-01

    The fungal neurotoxin α-cyclopiazonic acid (CPA), a nanomolar inhibitor of Ca2+-ATPase with a unique pentacyclic indole tetramic acid scaffold is assembled by a three enzyme pathway CpaS, CpaD and CpaO in Aspergillus sp. We recently characterized the first pathway-specific enzyme CpaS, a hybrid two module polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS) that generates cyclo-acetoacetyl-L-tryptophan (cAATrp). Here we report the characterization of the second pathway-specific enzyme CpaD that regiospecifically dimethylallylates cAATrp to form β-cyclopiazonic acid. By exploring the tryptophan and tetramate moieties of cAATrp, we demonstrate that CpaD discriminates against free Trp but accepts tryptophan-containing thiohydantoins, diketopiperazines and linear peptides as substrates for C4-prenylation and also acts as regiospecific O-dimethylallyltransferase (DMAT) on a tyrosine-derived tetramic acid. Comparative evaluation of CpaDs from A. oryzae RIB40 and A. flavus NRRL3357 indicated the importance of the N-terminal region for its activity. Sequence alignment of CpaD with eleven homologous fungal Trp-DMATs revealed five regions of conservation suggesting the presense of critical motifs that could be diagonostic for discovering additional Trp-DMATs. Subsequent site-directed mutagenesis studies identified five polar/charged residues and five tyrosine residues within these motifs that are critical for CpaD activity. This motif characerization will enable a gene probe-based approach to discover additional biosynthetic Trp-DMATs. PMID:19877600

  10. Coenzyme Q and Mitochondrial Disease

    ERIC Educational Resources Information Center

    Quinzii, Catarina M.; Hirano, Michio

    2010-01-01

    Coenzyme Q[subscript 10] (CoQ[subscript 10]) is an essential electron carrier in the mitochondrial respiratory chain and an important antioxidant. Deficiency of CoQ[subscript 10] is a clinically and molecularly heterogeneous syndrome, which, to date, has been found to be autosomal recessive in inheritance and generally responsive to CoQ[subscript…

  11. Acetoacetylation of insulin

    PubMed Central

    Lindsay, D. G.; Shall, S.

    1969-01-01

    Insulin was treated with diketen at pH6·9. The reaction mixture was resolved into four components by DEAE-Sephadex chromatography. The first component was unchanged insulin. The second and third components were shown by end-group analysis to be substituted on phenylalanine B-1 and glycine A-1 respectively. The fourth component was disubstituted on both phenylalanine B-1 and glycine A-1. The ∈-amino group of lysine B-29 was not involved in the reaction at low reagent concentrations. The purity of these derivatives was checked by their electrophoretic behaviour and by measurement of the rate of their reaction with trinitrobenzenesulphonic acid. The hormonal activity of the derivatives was determined. The effect of the modifications on the hormonal activity and the tertiary structure of insulin is discussed. ImagesFig. 10. PMID:5353531

  12. Coenzyme q 10 : a review.

    PubMed

    Singh, Deependra; Jain, Vandana; Saraf, Swarnlata; Saraf, S

    2002-10-01

    Ubiquinone or Co Q(10) is essentially a vitamin like substance and is a cofactor of an enzyme. It is an integral part of the memberanes of mitocondria where it is involved in the energy production. It is a nutrient necessary for the function of every cell of the body especially vital organs of the body like heart, liver, brain etc. Studies have shown that coenzyme Q(10) alters the natural history of cardiovascular illness and has the potential of prevention of cardiovascular diseases through the inhibition of LDL cholesterol oxidation by maintenance of optimal cellular and mitochondrial function throughout the ravages of time internal and external stress. PMID:22557086

  13. Kinetics and catalytic properties of coenzyme A transferase from Peptostreptococcus elsdenii.

    PubMed Central

    Schulman, M; Valentino, D

    1976-01-01

    Coenzyme A (CoA) transferase from Peptostreptococcus elsdenii was purified to homogeneity, and some of its physical and catalytic properties were determined. The native enzyme has a molecular weight of 181,000 and is composed of two alpha subunits (molecular weight, 65,000) and one beta subunit (molecular weight 50,000). Heat treatment of the crude cell extract to 58 degrees C causes proteolysis of the native enzyme and yields a catalytically active enzyme with an approximate molecular weight of 120,000. The native CoA transferase is specific for CoA esters of short-chain alkyl monocarboxylic acids. With acetate as CoA acceptor the enzyme is active with propionyl-, butyryl-, isobutyryl-, valeryl-, isovaleryl,- and hexanoyl-CoA but not with heptanoyl or longer-chain CoA esters. There is no activity with acetoacetyl-CoA or the CoA esters of dicarboxylic acids. Steady-state kinetics indicated that the reaction proceeds via a classical bi-, bi-ping-pong mechanism. Maximal activity is obtained with propionyl- or butyryl-CoA, and both the Vmax and Km decrease as the alkyl chain length of the CoA ester increases. All CoA esters apompetitive inhibitor although it is not active as a substrate. Evidence for an enzyme CoA intermediate was provided by demonstration of an exchange between 14C-free acids (acetate and butyrate) and their corresponding CoA esters and by isolation of a 3H-labeled CoA enzyme after incubation of the enzyme with 3H-labeled acetyl-CoA. Approximately 2 mol of CoA was bound per mol of enzyme. Images PMID:977540

  14. Enterococcus faecalis 3-hydroxy-3-methylglutaryl coenzyme A synthase, an enzyme of isopentenyl diphosphate biosynthesis.

    PubMed

    Sutherlin, Autumn; Hedl, Matija; Sanchez-Neri, Barbara; Burgner, John W; Stauffacher, Cynthia V; Rodwell, Victor W

    2002-08-01

    Biosynthesis of the isoprenoid precursor isopentenyl diphosphate (IPP) proceeds via two distinct pathways. Sequence comparisons and microbiological data suggest that multidrug-resistant strains of gram-positive cocci employ exclusively the mevalonate pathway for IPP biosynthesis. Bacterial mevalonate pathway enzymes therefore offer potential targets for development of active site-directed inhibitors for use as antibiotics. We used the PCR and Enterococcus faecalis genomic DNA to isolate the mvaS gene that encodes 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase, the second enzyme of the mevalonate pathway. mvaS was expressed in Escherichia coli from a pET28 vector with an attached N-terminal histidine tag. The expressed enzyme was purified by affinity chromatography on Ni(2+)-agarose to apparent homogeneity and a specific activity of 10 micromol/min/mg. Analytical ultracentrifugation showed that the enzyme is a dimer (mass, 83.9 kDa; s(20,w), 5.3). Optimal activity occurred in 2.0 mM MgCl(2) at 37(o)C. The DeltaH(a) was 6,000 cal. The pH activity profile, optimum activity at pH 9.8, yielded a pK(a) of 8.8 for a dissociating group, presumably Glu78. The stoichiometry per monomer of acetyl-CoA binding was 1.2 +/- 0.2 and that of covalent acetylation was 0.60 +/- 0.02. The K(m) for the hydrolysis of acetyl-CoA was 10 microM. Coupled conversion of acetyl-CoA to mevalonate was demonstrated by using HMG-CoA synthase and acetoacetyl-CoA thiolase/HMG-CoA reductase from E. faecalis. PMID:12107122

  15. Self-Incorporation of Coenzymes by Ribozymes

    NASA Technical Reports Server (NTRS)

    Breaker, Ronald R.; Joyce, Gerald F.

    1995-01-01

    RNA molecules that are assembled from the four standard nucleotides contain a limited number of chemical functional groups, a characteristic that is generally thought to restrict the potential for catalysis by ribozymes. Although polypeptides carry a wider range of functional groups, many contemporary protein-based enzymes employ coenzymes to augment their capabilities. The coenzymes possess additional chemical moieties that can participate directly in catalysis and thereby enhance catalytic function. In this work, we demonstrate a mechanism by which ribozymes can supplement their limited repertoire of functional groups through RNAcatalyzed incorporation of various coenzymes and coenzyme analogues. The group I ribozyme of Tetrahymena thermophila normally mediates a phosphoester transfer reaction that results in the covalent attachment of guanosine to the ribozyme. Here, a shortened version of the ribozyme is shown to catalyze the self-incorporation of coenzymes and coenzyme analogues, such as NAD+ and dephosphorylated CoA-SH. Similar ribozyme activities may have played an important role in the "RNA world," when RNA enzymes are thought to have maintained a complex metabolism in the absence of proteins and would have benefited from the inclusion of additional functional groups.

  16. Generation of poly-β-hydroxybutyrate from acetate in higher plants: Detection of acetoacetyl CoA reductase- and PHB synthase- activities in rice.

    PubMed

    Tsuda, Hirohisa; Shiraki, Mari; Inoue, Eri; Saito, Terumi

    2016-08-20

    It has been reported that Poly-β-hydroxybutyrate (PHB) is generated from acetate in the rice root. However, no information is available about the biosynthetic pathway of PHB from acetate in plant cells. In the bacterium Ralstonia eutropha H16 (R. eutropha), PHB is synthesized from acetyl CoA by the consecutive reaction of three enzymes: β-ketothiolase (EC: 2.3.1.9), acetoacetyl CoA reductase (EC: 1.1.1.36) and PHB synthase (EC: 2.3.1.-). Thus, in this study, we examined whether the above three enzymatic activities were also detected in rice seedlings. The results clearly showed that the activities of the above three enzymes were all detected in rice. In particular, the PHB synthase activity was detected specifically in the sonicated particulate fractions (2000g 10min precipitate (ppt) and the 8000g 30min ppt) of rice roots and leaves. In addition to these enzyme activities, several new experimental results were obtained on PHB synthesis in higher plants: (a) (14)C-PHB generated from 2-(14)C-acetate was mainly localized in the 2000g 10min ppt and the 8000g 30min ppt of rice root. (b) Addition of acetate (0.1-10mM) to culture medium of rice seedlings did not increase the content of PHB in the rice root or leaf. (c) In addition to C3 plants, PHB was generated from acetate in a C4 plant (corn) and in a CAM plant (Bryophyllum pinnatum). d) Washing with ethylenediaminetetraacetic acid (EDTA) strongly suggested that the PHB synthesized from acetate was of plant origin and was not bacterial contamination. PMID:27372278

  17. Reverse genetic characterization of two paralogous acetoacetyl CoA thiolase genes in Arabidopsis reveals their importance in plant growth and development

    SciTech Connect

    Jin, Huanan; Song, Zhihong; Nikolau, Basil J.

    2012-03-31

    Acetoacetyl CoA thiolase (AACT, EC 2.3.1.9) catalyzes the condensation of two acetyl CoA molecules to form acetoacetyl CoA. Two AACT‐encoding genes, At5g47720 (AACT1) and At5g48230 (AACT2), were functionally identified in the Arabidopsis genome by direct enzymological assays and functional expression in yeast. Promoter::GUS fusion experiments indicated that AACT1 is primarily expressed in the vascular system and AACT2 is highly expressed in root tips, young leaves, top stems and anthers. Characterization of T‐DNA insertion mutant alleles at each AACT locus established that AACT2 function is required for embryogenesis and for normal male gamete transmission. In contrast, plants lacking AACT1 function are completely viable and show no apparent growth phenotypes, indicating that AACT1 is functionally redundant with respect to AACT2 function. RNAi lines that express reduced levels of AACT2 show pleiotropic phenotypes, including reduced apical dominance, elongated life span and flowering duration, sterility, dwarfing, reduced seed yield and shorter root length. Microscopic analysis reveals that the reduced stature is caused by a reduction in cell size and fewer cells, and male sterility is caused by loss of the pollen coat and premature degeneration of the tapetal cells. Biochemical analyses established that the roots of AACT2 RNAi plants show quantitative and qualitative alterations in phytosterol profiles. These phenotypes and biochemical alterations are reversed when AACT2 RNAi plants are grown in the presence of mevalonate, which is consistent with the role of AACT2 in generating the bulk of the acetoacetyl CoA precursor required for the cytosol‐localized, mevalonate‐derived isoprenoid biosynthetic pathway.

  18. Crystal structure of enoyl-coenzyme A (CoA) hydratase at 2.5 angstroms resolution: a spiral fold defines the CoA-binding pocket.

    PubMed Central

    Engel, C K; Mathieu, M; Zeelen, J P; Hiltunen, J K; Wierenga, R K

    1996-01-01

    The crystal structure of rat liver mitochondrial enoyl-coenzyme A (CoA) hydratase complexed with the potent inhibitor acetoacetyl-CoA has been refined at 2.5 angstroms resolution. This enzyme catalyses the reversible addition of water to alpha,beta-unsaturated enoyl-CoA thioesters, with nearly diffusion-controlled reaction rates for the best substrates. Enoyl-CoA hydratase is a hexamer of six identical subunits of 161 kDa molecular mass for the complex. The hexamer is a dimer of trimers. The monomer is folded into a right-handed spiral of four turns, followed by two small domains which are involved in trimerization. Each turn of the spiral consists of two beta-strands and an alpha-helix. The mechanism for the hydratase/dehydratase reaction follows a syn-stereochemistry, a preference that is opposite to the nonenzymatic reaction. The active-site architecture agrees with this stereochemistry. It confirms the importance of Glu164 as the catalytic acid for providing the alpha-proton during the hydratase reaction. It also shows the importance of Glu144 as the catalytic base for the activation of a water molecule in the hydratase reaction. The comparison of an unliganded and a liganded active site within the same crystal form shows a water molecule in the unliganded subunit. This water molecule is bound between the two catalytic glutamates and could serve as the activated water during catalysis. Images PMID:8895557

  19. Gene encoding acetyl-coenzyme A carboxylase

    DOEpatents

    Roessler, P.G.; Ohlrogge, J.B.

    1996-09-24

    A DNA encoding an acetyl-coenzyme A carboxylase (ACCase) from a photosynthetic organism and functional derivatives are disclosed which are resistant to inhibition from certain herbicides. This gene can be placed in organisms to increase their fatty acid content or to render them resistant to certain herbicides. 5 figs.

  20. Gene encoding acetyl-coenzyme A carboxylase

    DOEpatents

    Roessler, Paul G.; Ohlrogge, John B.

    1996-01-01

    A DNA encoding an acetyl-coenzyme A carboxylase (ACCase) from a photosynthetic organism and functional derivatives thereof which are resistant to inhibition from certain herbicides. This gene can be placed in organisms to increase their fatty acid content or to render them resistant to certain herbicides.

  1. Thermophilic Coenzyme B12-Dependent Acyl Coenzyme A (CoA) Mutase from Kyrpidia tusciae DSM 2912 Preferentially Catalyzes Isomerization of (R)-3-Hydroxybutyryl-CoA and 2-Hydroxyisobutyryl-CoA

    PubMed Central

    Weichler, Maria-Teresa; Kurteva-Yaneva, Nadya; Przybylski, Denise; Schuster, Judith; Müller, Roland H.; Harms, Hauke

    2015-01-01

    The recent discovery of a coenzyme B12-dependent acyl-coenzyme A (acyl-CoA) mutase isomerizing 3-hydroxybutyryl- and 2-hydroxyisobutyryl-CoA in the mesophilic bacterium Aquincola tertiaricarbonis L108 (N. Yaneva, J. Schuster, F. Schäfer, V. Lede, D. Przybylski, T. Paproth, H. Harms, R. H. Müller, and T. Rohwerder, J Biol Chem 287:15502–15511, 2012, http://dx.doi.org/10.1074/jbc.M111.314690) could pave the way for a complete biosynthesis route to the building block chemical 2-hydroxyisobutyric acid from renewable carbon. However, the enzyme catalyzes only the conversion of the stereoisomer (S)-3-hydroxybutyryl-CoA at reasonable rates, which seriously hampers an efficient combination of mutase and well-established bacterial poly-(R)-3-hydroxybutyrate (PHB) overflow metabolism. Here, we characterize a new 2-hydroxyisobutyryl-CoA mutase found in the thermophilic knallgas bacterium Kyrpidia tusciae DSM 2912. Reconstituted mutase subunits revealed highest activity at 55°C. Surprisingly, already at 30°C, isomerization of (R)-3-hydroxybutyryl-CoA was about 7,000 times more efficient than with the mutase from strain L108. The most striking structural difference between the two mutases, likely determining stereospecificity, is a replacement of active-site residue Asp found in strain L108 at position 117 with Val in the enzyme from strain DSM 2912, resulting in a reversed polarity at this binding site. Overall sequence comparison indicates that both enzymes descended from different prokaryotic thermophilic methylmalonyl-CoA mutases. Concomitant expression of PHB enzymes delivering (R)-3-hydroxybutyryl-CoA (beta-ketothiolase PhaA and acetoacetyl-CoA reductase PhaB from Cupriavidus necator) with the new mutase in Escherichia coli JM109 and BL21 strains incubated on gluconic acid at 37°C led to the production of 2-hydroxyisobutyric acid at maximal titers of 0.7 mM. Measures to improve production in E. coli, such as coexpression of the chaperone MeaH and repression of

  2. [Coenzyme metabolic therapy in infectious allergic myocarditis].

    PubMed

    Mazurets, A F; Gurevich, M A; Kubyshkin, V F; Dziuba, M V; Vikharev, N P

    1995-01-01

    A trial was performed of clinical efficacy of the coenzyme complex incorporating piridoxalphosphate, cobamamide and phosphaden in patients with infectious allergic myocarditis. Myo- cardial dystrophy and correlations of the myocardial enzymatic status with blood lymphocytes in the above patients were taken in consideration. Corrective action of metabolic therapy on myocardial bioenergy was coupled with positive antiarrhythmic and cardiotonic effects. Cytochemical follow-up investigations enabled long-term monitoring over the patients' condition and further catamnesis. PMID:8815275

  3. Better than Nature: Nicotinamide Biomimetics That Outperform Natural Coenzymes.

    PubMed

    Knaus, Tanja; Paul, Caroline E; Levy, Colin W; de Vries, Simon; Mutti, Francesco G; Hollmann, Frank; Scrutton, Nigel S

    2016-01-27

    The search for affordable, green biocatalytic processes is a challenge for chemicals manufacture. Redox biotransformations are potentially attractive, but they rely on unstable and expensive nicotinamide coenzymes that have prevented their widespread exploitation. Stoichiometric use of natural coenzymes is not viable economically, and the instability of these molecules hinders catalytic processes that employ coenzyme recycling. Here, we investigate the efficiency of man-made synthetic biomimetics of the natural coenzymes NAD(P)H in redox biocatalysis. Extensive studies with a range of oxidoreductases belonging to the "ene" reductase family show that these biomimetics are excellent analogues of the natural coenzymes, revealed also in crystal structures of the ene reductase XenA with selected biomimetics. In selected cases, these biomimetics outperform the natural coenzymes. "Better-than-Nature" biomimetics should find widespread application in fine and specialty chemicals production by harnessing the power of high stereo-, regio-, and chemoselective redox biocatalysts and enabling reactions under mild conditions at low cost. PMID:26727612

  4. Prebiotic syntheses of vitamin coenzymes: I. Cysteamine and 2-mercaptoethanesulfonic acid (coenzyme M)

    NASA Technical Reports Server (NTRS)

    Miller, S. L.; Schlesinger, G.

    1993-01-01

    The reaction of NH3 and SO3(2-) with ethylene sulfide is shown to be a prebiotic synthesis of cysteamine and 2-mercaptoethanesulfonic acid (coenzyme M). A similar reaction with ethylene imine would give cysteamine and taurine. Ethylene oxide would react with NH3 and N(CH3)3 to give the phospholipid components ethanolamine and choline. The prebiotic sources of ethylene sulfide, ethylene imine and ethylene oxide are discussed. Cysteamine itself is not a suitable thioester for metabolic processes because of acyl transfer to the amino group, but this can be prevented by using an amide of cysteamine. The use of cysteamine in coenzyme A may have been due to its prebiotic abundance. The facile prebiotic synthesis of both cysteamine and coenzyme M suggests that they were involved in very early metabolic pathways.

  5. Elucidation of methanogenic coenzyme biosyntheses: from spectroscopy to genomics.

    PubMed

    Graham, David E; White, Robert H

    2002-04-01

    Methanogenesis, the anaerobic production of methane from CO2 or simple carbon compounds, requires seven organic coenzymes. This review describes pathways for the biosynthesis of methanofuran, 5,6,7,8-tetrahydromethanopterin, coenzyme F420, coenzyme M (2-mercaptoethanesulfonic acid) and coenzyme B (7-mercaptoheptanoyl-L-threonine phosphate). Spectroscopic evidence for the pathways is reviewed and recent efforts are described to identify and characterize the biosynthetic enzymes from methanogenic archaea. The literature from 1971 to September 2001 is reviewed, and 169 references are cited. PMID:12013276

  6. Prebiotic syntheses of vitamin coenzymes: II. Pantoic acid, pantothenic acid, and the composition of coenzyme A

    NASA Technical Reports Server (NTRS)

    Miller, S. L.; Schlesinger, G.

    1993-01-01

    Pantoic acid can by synthesized in good prebiotic yield from isobutyraldehyde or alpha-ketoisovaleric acid + H2CO + HCN. Isobutyraldehyde is the Strecker precursor to valine and alpha-ketoisovaleric acid is the valine transamination product. Mg2+ and Ca2+ as well as several transition metals are catalysts for the alpha-ketoisovaleric acid reaction. Pantothenic acid is produced from pantoyl lactone (easily formed from pantoic acid) and the relatively high concentrations of beta-alanine that would be formed on drying prebiotic amino acid mixtures. There is no selectivity for this reaction over glycine, alanine, or gamma-amino butyric acid. The components of coenzyme A are discussed in terms of ease of prebiotic formation and stability and are shown to be plausible choices, but many other compounds are possible. The gamma-OH of pantoic acid needs to be capped to prevent decomposition of pantothenic acid. These results suggest that coenzyme A function was important in the earliest metabolic pathways and that the coenzyme A precursor contained most of the components of the present coenzyme.

  7. Acyl-coenzyme A:cholesterol acyltransferases

    PubMed Central

    Chang, Ta-Yuan; Li, Bo-Liang; Chang, Catherine C. Y.; Urano, Yasuomi

    2009-01-01

    The enzymes acyl-coenzyme A (CoA):cholesterol acyltransferases (ACATs) are membrane-bound proteins that utilize long-chain fatty acyl-CoA and cholesterol as substrates to form cholesteryl esters. In mammals, two isoenzymes, ACAT1 and ACAT2, encoded by two different genes, exist. ACATs play important roles in cellular cholesterol homeostasis in various tissues. This chapter summarizes the current knowledge on ACAT-related research in two areas: 1) ACAT genes and proteins and 2) ACAT enzymes as drug targets for atherosclerosis and for Alzheimer's disease. PMID:19141679

  8. Electronic Structure of B12 coenzymes

    NASA Astrophysics Data System (ADS)

    Ouyang, Lizhi; Ching, W. Y.; Randaccio, Lucio

    2001-06-01

    We have carried out an ab-initio local density functional calculations of the two most important B12 coenzymes, adoensyl-cobalamin (Ado-Cbl) and methyl-cobalamin (Me-Cbl). The crystal structures were determined by accurate X-ray synchrotron radiation measurements. Both crystals have space group P2121 with four molecules, or about 800 atoms, per unit cell. Our electronic structure calculation is based on one full molecule including the side chains. Results are analyzed in terms of atom and orbital resolved partial density of states (PDOS), Mulliken effective charges and bond orders. The PDOS analysis shows that the Co complexes of both B12 coenzymes had a HOMO/LUMO gap of about 1.5 eV. The Co-C bond order in Me-Cbl is smaller than that in Ado-Cbl. This appears to be in contradiction with the measured bond dissociated energies. However, this could also indicate the importance of the effects of solvents, which were not included in the calculation. We are investigating whether the effect of the solvents could dramatically modify the electronic structures of Ado-Cbl and Me-Cbl.

  9. [Hplc estimation of coenzyme Q(10) redox status in plasma after intravenous coenzyme Q(10) administration].

    PubMed

    Kalenikova, E I; Kharitonova, E V; Gorodetskaya, E A; Tokareva, O G; Medvedev, O S

    2015-01-01

    The pharmacokinetics of the total pool of coenzyme Q(10) (Co(10)), its oxidized (ubiquinone) and reduced (ubiquinol, CoQ(10)H₂) forms have been investigated in rats plasma during 48 h after a single intravenous injection of a solution of solubilized CoQ(10) (10 mg/kg) to rats. Plasma levels of CoQ(10) were determined by HPLC with spectrophotometric and coulometric detection. In plasma samples taken during the first minutes after the CoQ(10) intravenous injection, the total pool of coenzyme Q(10) and proportion of CoQ(10)H₂ remained unchanged during two weeks of storage at -20°C. The kinetic curve of the total pool of coenzyme Q(10) corresponds to a one-part model (R² = 0.9932), while the corresponding curve of its oxidized form fits to the two-part model. During the first minutes after the injection a significant portion of plasma ubiquinone undergoes reduction, and after 7 h the concentration of ubiquinol predominates. The decrease in the total plasma coenzyme Q(10) content was accompanied by the gradual increase in plasma ubiquinol, which represented about 90% of total plasma CoQ(10) by the end of the first day. The results of this study demonstrate the ability of the organism to transform high concentrations of the oxidized form of CoQ(10) into the effective antioxidant (reduced) form and justify prospects of the development of parenteral dosage forms of CoQ(10) for the use in the treatment of acute pathological conditions. PMID:25762606

  10. Molecular diagnosis of coenzyme Q10 deficiency.

    PubMed

    Yubero, Delia; Montero, Raquel; Armstrong, Judith; Espinós, Carmen; Palau, Francesc; Santos-Ocaña, Carlos; Salviati, Leonardo; Navas, Placido; Artuch, Rafael

    2015-01-01

    Coenzyme Q10 (CoQ) deficiency syndromes comprise a growing number of neurological and extraneurological disorders. Primary-genetic but also secondary CoQ deficiencies have been reported. The biochemical determination of CoQ is a good tool for the rapid identification of CoQ deficiencies but does not allow the selection of candidate genes for molecular diagnosis. Moreover, the metabolic pathway for CoQ synthesis is an intricate and not well-understood process, where a large number of genes are implicated. Thus, only next-generation sequencing techniques (either genetic panels of whole-exome and -genome sequencing) are at present appropriate for a rapid and realistic molecular diagnosis of these syndromes. The potential treatability of CoQ deficiency strongly supports the necessity of a rapid molecular characterization of patients, since primary CoQ deficiencies may respond well to CoQ treatment. PMID:26144946

  11. Specificity and biological distribution of coenzyme M (2-mercaptoethanesulfonic acid).

    PubMed Central

    Balch, W E; Wolfe, R S

    1979-01-01

    The specificity of the growth requirement of Methanobacterium ruminantium strain M1 for a new coenzyme, 2-mercaptoethanesulfonic acid (HS--CoM), was examined. A variety of derivatives, analogs, and potential biosynthetic precursors of coenzyme M were tested; only a restricted range of thioether, thioester, and thiocarbonate derivatives of the cofactor were found to replace the HS--CoM requirement. Bromoethanesulfonic acid (BrCH2CH2SO3-), a halogenated analog of HS--CoM, potently inhibited the growth response. No coenzyme was detectable in a wide range of nonmethanogenic eucaryotic tissues and procaryotic organisms. However, all methanogens available in pure culture exhibited high levels of coenzyme M which ranged from 0.3 to 16 nmol/mg of dry weight. PMID:104960

  12. Neutron study of B 12 coenzyme at 15 K

    NASA Astrophysics Data System (ADS)

    Bouquiere, J. P.

    1992-06-01

    This high resolution and low temperature study, at 15 K, of the vitamin B 12 coenzyme ( C72H100N18O17PCo) was undertaken to confirm and clarify the water networks identified at 279 K by Savage [1]. Details of the data collection and refinement of the low temperature structure are described, a comparison of the coenzyme molecule structures at 15 and 279 K is made, and that of solvent structures outlined.

  13. Better than Nature: Nicotinamide Biomimetics That Outperform Natural Coenzymes

    PubMed Central

    2016-01-01

    The search for affordable, green biocatalytic processes is a challenge for chemicals manufacture. Redox biotransformations are potentially attractive, but they rely on unstable and expensive nicotinamide coenzymes that have prevented their widespread exploitation. Stoichiometric use of natural coenzymes is not viable economically, and the instability of these molecules hinders catalytic processes that employ coenzyme recycling. Here, we investigate the efficiency of man-made synthetic biomimetics of the natural coenzymes NAD(P)H in redox biocatalysis. Extensive studies with a range of oxidoreductases belonging to the “ene” reductase family show that these biomimetics are excellent analogues of the natural coenzymes, revealed also in crystal structures of the ene reductase XenA with selected biomimetics. In selected cases, these biomimetics outperform the natural coenzymes. “Better-than-Nature” biomimetics should find widespread application in fine and specialty chemicals production by harnessing the power of high stereo-, regio-, and chemoselective redox biocatalysts and enabling reactions under mild conditions at low cost. PMID:26727612

  14. Plasma membrane coenzyme Q: evidence for a role in autism

    PubMed Central

    Crane, Frederick L; Löw, Hans; Sun, Iris; Navas, Placido; Gvozdjáková, Anna

    2014-01-01

    Background The Voltage Dependent Anion Channel (VDAC) is involved in control of autism. Treatments, including coenzyme Q, have had some success on autism control. Data sources Correlation of porin redox activity and expression of autism is based on extensive literature, especially studies of antibodies, identification of cytosolic nicotinamide adenine dinucleotide reduced (NADH) dehydrogenase activity in the VDAC, and evidence for extreme sensitivity of the dehydrogenase to a mercurial. Evidence for a coenzyme Q requirement came from extraction and analog inhibition of NADH ferricyanide reductase in the erythrocyte plasma membrane, done in 1994, and reinterpreted when it was identified in VDAC in 2004. The effects of ubiquinol (the QH2 – reduced form of coenzyme Q) in children with autism were studied. Results A new role for coenzyme Q in the porin channels has implications on autism. Ubiquinol, the more active form of coenzyme Q, produces favorable response in children with autism. Agents which affected electron transport in porin show parallel effects in autism. Conclusion We propose a hypothesis that autism is controlled by a coenzyme Q-dependent redox system in the porin channels; this conclusion is based on the effects of agents that positively or negatively affect electron transport and the symptoms of autism. The full understanding of the mechanism of their control needs to be established. PMID:24920882

  15. Clinical applications of coenzyme Q10.

    PubMed

    Garrido-Maraver, Juan; Cordero, Mario D; Oropesa-Avila, Manuel; Vega, Alejandro Fernandez; de la Mata, Mario; Pavon, Ana Delgado; Alcocer-Gomez, Elisabet; Calero, Carmen Perez; Paz, Marina Villanueva; Alanis, Macarena; de Lavera, Isabel; Cotan, David; Sanchez-Alcazar, Jose A

    2014-01-01

    Coenzyme Q10 (CoQ10) or ubiquinone was known for its key role in mitochondrial bioenergetics as electron and proton carrier; later studies demonstrated its presence in other cellular membranes and in blood plasma, and extensively investigated its antioxidant role. These two functions constitute the basis for supporting the clinical indication of CoQ10. Furthermore, recent data indicate that CoQ10 affects expression of genes involved in human cell signalling, metabolism and transport and some of the effects of CoQ10 supplementation may be due to this property. CoQ10 deficiencies are due to autosomal recessive mutations, mitochondrial diseases, ageing-related oxidative stress and carcinogenesis processes, and also a secondary effect of statin treatment. Many neurodegenerative disorders, diabetes, cancer, fibromyalgia, muscular and cardiovascular diseases have been associated with low CoQ10 levels. CoQ10 treatment does not cause serious adverse effects in humans and new formulations have been developed that increase CoQ10 absorption and tissue distribution. Oral CoQ10 treatment is a frequent mitochondrial energizer and antioxidant strategy in many diseases that may provide a significant symptomatic benefit. PMID:24389208

  16. Biosynthesis of coenzyme Q in eukaryotes.

    PubMed

    Kawamukai, Makoto

    2015-01-01

    Coenzyme Q (CoQ) is a component of the electron transport chain that participates in aerobic cellular respiration to produce ATP. In addition, CoQ acts as an electron acceptor in several enzymatic reactions involving oxidation-reduction. Biosynthesis of CoQ has been investigated mainly in Escherichia coli and Saccharomyces cerevisiae, and the findings have been extended to various higher organisms, including plants and humans. Analyses in yeast have contributed greatly to current understanding of human diseases related to CoQ biosynthesis. To date, human genetic disorders related to mutations in eight COQ biosynthetic genes have been reported. In addition, the crystal structures of a number of proteins involved in CoQ synthesis have been solved, including those of IspB, UbiA, UbiD, UbiX, UbiI, Alr8543 (Coq4 homolog), Coq5, ADCK3, and COQ9. Over the last decade, knowledge of CoQ biosynthesis has accumulated, and striking advances in related human genetic disorders and the crystal structure of proteins required for CoQ synthesis have been made. This review focuses on the biosynthesis of CoQ in eukaryotes, with some comparisons to the process in prokaryotes. PMID:26183239

  17. Genetics of Coenzyme Q10 Deficiency

    PubMed Central

    Doimo, Mara; Desbats, Maria A.; Cerqua, Cristina; Cassina, Matteo; Trevisson, Eva; Salviati, Leonardo

    2014-01-01

    Coenzyme Q10 (CoQ10) is an essential component of eukaryotic cells and is involved in crucial biochemical reactions such as the production of ATP in the mitochondrial respiratory chain, the biosynthesis of pyrimidines, and the modulation of apoptosis. CoQ10 requires at least 13 genes for its biosynthesis. Mutations in these genes cause primary CoQ10 deficiency, a clinically and genetically heterogeneous disorder. To date mutations in 8 genes (PDSS1, PDSS2, COQ2, COQ4, COQ6, ADCK3, ADCK4, and COQ9) have been associated with CoQ10 deficiency presenting with a wide variety of clinical manifestations. Onset can be at virtually any age, although pediatric forms are more common. Symptoms include those typical of respiratory chain disorders (encephalomyopathy, ataxia, lactic acidosis, deafness, retinitis pigmentosa, hypertrophic cardiomyopathy), but some (such as steroid-resistant nephrotic syndrome) are peculiar to this condition. The molecular bases of the clinical diversity of this condition are still unknown. It is of critical importance that physicians promptly recognize these disorders because most patients respond to oral administration of CoQ10. PMID:25126048

  18. Coenzyme Q10 Deficiencies in Neuromuscular Diseases

    PubMed Central

    Salviati, Leonardo; Jackson, Sandra; Hirano, Michio; Navas, Plácido

    2011-01-01

    Coenzyme Q (CoQ) is an essential component of the respiratory chain but also participates in other mitochondrial functions such as regulation of the transition pore and uncoupling proteins. Furthermore, this compound is a specific substrate for enzymes of the fatty acids β–oxidation pathway and pyrimidine nucleotide biosynthesis. Furthermore, CoQ is an antioxidant that acts in all cellular membranes and lipoproteins. A complex of at least ten nuclear (COQ) genes encoded proteins synthesizes CoQ but its regulation is unknown. Since 1989, a growing number of patients with multisystemic mitochondrial disorders and neuromuscular disorders showing deficiencies of CoQ have been identified. CoQ deficiency caused by muta-tion(s) in any of the COQ genes is designated primary deficiency. Other patients have displayed other genetic defects independent on the CoQ biosynthesis pathway, and are considered to have secondary deficiencies. This review updates the clinical and molecular aspects of both types of CoQ deficiencies and proposes new approaches to understanding their molecular bases. PMID:20225022

  19. Bioelectrochemical activity of an electroactive macromolecular weight coenzyme derivative

    NASA Astrophysics Data System (ADS)

    Liu, Pu; Zheng, Haitao; Nie, Pingping; Wei, Yaotian; Feng, Zhenchao; Sun, Tao

    2009-07-01

    As coenzyme utilized by more than hundreds of dehydrogenases, the efficient immobilization and regeneration of nicotinamide adenine dinucleotide (NAD+) are of great importance and have practical applications in industrial, analytical and biomedical field. In this paper, an electroactive macromolecular weight coenzyme derivative (PEI-DHBNAD) was prepared by attaching both NAD+ and 3,4-dihydroxybenzaldehyde (3,4-DHB) to a water-soluble polyelectrolyte, poly(ethylenimine) (PEI). The functional polymer exhibited both electrochemical properties of catechol unites and coenzymatic activity of NAD moieties. The macromolecular NAD analogue showed a substantial degree of efficiency relative to free NAD+ with alcohol dehydrogenase (ADH) and glucose-6-phophate dehydrogenase (G6PDH), and a litter higher Michaelis-Menton constant (Km) was obtained for the coenzyme derivative than free NAD+. The bioelectrochemical properties of PEI-DHB-NAD were investigated by using G6PDH as the model enzyme, and both of them were retained on electrode surface by ultrafiltration membrane. The modified electrode showed typical response to substrate without the addition of free coenzyme, which indicated that PEI-DHB-NAD can carry out the electron transfer between electrode and NAD-dependent dehydrogenase. The utilization of polymer-based PEI-DHB-NAD is convenient for the immobilization of both electron mediator and coenzyme, and offers a practical approach for the construction of reagentless biosensors.

  20. Coenzyme Q biosynthesis in health and disease.

    PubMed

    Acosta, Manuel Jesús; Vazquez Fonseca, Luis; Desbats, Maria Andrea; Cerqua, Cristina; Zordan, Roberta; Trevisson, Eva; Salviati, Leonardo

    2016-08-01

    Coenzyme Q (CoQ, or ubiquinone) is a remarkable lipid that plays an essential role in mitochondria as an electron shuttle between complexes I and II of the respiratory chain, and complex III. It is also a cofactor of other dehydrogenases, a modulator of the permeability transition pore and an essential antioxidant. CoQ is synthesized in mitochondria by a set of at least 12 proteins that form a multiprotein complex. The exact composition of this complex is still unclear. Most of the genes involved in CoQ biosynthesis (COQ genes) have been studied in yeast and have mammalian orthologues. Some of them encode enzymes involved in the modification of the quinone ring of CoQ, but for others the precise function is unknown. Two genes appear to have a regulatory role: COQ8 (and its human counterparts ADCK3 and ADCK4) encodes a putative kinase, while PTC7 encodes a phosphatase required for the activation of Coq7. Mutations in human COQ genes cause primary CoQ(10) deficiency, a clinically heterogeneous mitochondrial disorder with onset from birth to the seventh decade, and with clinical manifestation ranging from fatal multisystem disorders, to isolated encephalopathy or nephropathy. The pathogenesis of CoQ(10) deficiency involves deficient ATP production and excessive ROS formation, but possibly other aspects of CoQ(10) function are implicated. CoQ(10) deficiency is unique among mitochondrial disorders since an effective treatment is available. Many patients respond to oral CoQ(10) supplementation. Nevertheless, treatment is still problematic because of the low bioavailability of the compound, and novel pharmacological approaches are currently being investigated. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi. PMID:27060254

  1. Coenzyme Q supplementation in pulmonary arterial hypertension

    PubMed Central

    Sharp, Jacqueline; Farha, Samar; Park, Margaret M.; Comhair, Suzy A.; Lundgrin, Erika L.; Tang, W.H. Wilson; Bongard, Robert D.; Merker, Marilyn P.; Erzurum, Serpil C.

    2014-01-01

    Mitochondrial dysfunction is a fundamental abnormality in the vascular endothelium and smooth muscle of patients with pulmonary arterial hypertension (PAH). Because coenzyme Q (CoQ) is essential for mitochondrial function and efficient oxygen utilization as the electron carrier in the inner mitochondrial membrane, we hypothesized that CoQ would improve mitochondrial function and benefit PAH patients. To test this, oxidized and reduced levels of CoQ, cardiac function by echocardiogram, mitochondrial functions of heme synthesis and cellular metabolism were evaluated in PAH patients (N=8) in comparison to healthy controls (N=7), at baseline and after 12 weeks oral CoQ supplementation. CoQ levels were similar among PAH and control individuals, and increased in all subjects with CoQ supplementation. PAH patients had higher CoQ levels than controls with supplementation, and a tendency to a higher reduced-to-oxidized CoQ ratio. Cardiac parameters improved with CoQ supplementation, although 6-minute walk distances and BNP levels did not significantly change. Consistent with improved mitochondrial synthetic function, hemoglobin increased and red cell distribution width (RDW) decreased in PAH patients with CoQ, while hemoglobin declined slightly and RDW did not change in healthy controls. In contrast, metabolic and redox parameters, including lactate, pyruvate and reduced or oxidized gluthathione, did not change in PAH patients with CoQ. In summary, CoQ improved hemoglobin and red cell maturation in PAH, but longer studies and/or higher doses with a randomized placebo-controlled controlled design are necessary to evaluate the clinical benefit of this simple nutritional supplement. PMID:25180165

  2. Genetic Confirmation of the Role of Sulfopyruvate Decarboxylase in Coenzyme M Biosynthesis in Methanococcus maripaludis

    DOE PAGESBeta

    Sarmiento, Felipe; Ellison, Courtney K.; Whitman, William B.

    2013-01-01

    Coenzyme M is an essential coenzyme for methanogenesis. The proposed biosynthetic pathway consists of five steps, of which the fourth step is catalyzed by sulfopyruvate decarboxylase (ComDE). Disruption of the gene comE by transposon mutagenesis resulted in a partial coenzyme M auxotroph, which grew poorly in the absence of coenzyme M and retained less than 3% of the wild type level of coenzyme M biosynthesis. Upon coenzyme M addition, normal growth of the mutant was restored. Moreover, complementation of the mutation with the wild type comE gene in trans restored full growth in the absence of coenzyme M. Thesemore » results confirm that ComE plays an important role in coenzyme M biosynthesis. The inability to yield a complete CoM auxotroph suggests that either the transposon insertion failed to completely inactivate the gene or M. maripaludis possesses a promiscuous activity that partially complemented the mutation.« less

  3. Structural Insight into Methyl-Coenzyme M Reductase Chemistry Using Coenzyme B Analogues

    SciTech Connect

    Cedervall, Peder E.; Dey, Mishtu; Pearson, Arwen R.; Ragsdale, Stephen W.; Wilmot, Carrie M.

    2010-09-07

    Methyl-coenzyme M reductase (MCR) catalyzes the final and rate-limiting step in methane biogenesis: the reduction of methyl-coenzyme M (methyl-SCoM) by coenzyme B (CoBSH) to methane and a heterodisulfide (CoBS-SCoM). Crystallographic studies show that the active site is deeply buried within the enzyme and contains a highly reduced nickel-tetrapyrrole, coenzyme F430. Methyl-SCoM must enter the active site prior to CoBSH, as species derived from methyl-SCoM are always observed bound to the F430 nickel in the deepest part of the 30 {angstrom} long substrate channel that leads from the protein surface to the active site. The seven-carbon mercaptoalkanoyl chain of CoBSH binds within a 16 {angstrom} predominantly hydrophobic part of the channel close to F430, with the CoBSH thiolate lying closest to the nickel at a distance of 8.8 {angstrom}. It has previously been suggested that binding of CoBSH initiates catalysis by inducing a conformational change that moves methyl-SCoM closer to the nickel promoting cleavage of the C-S bond of methyl-SCoM. In order to better understand the structural role of CoBSH early in the MCR mechanism, we have determined crystal structures of MCR in complex with four different CoBSH analogues: pentanoyl, hexanoyl, octanoyl, and nonanoyl derivatives of CoBSH (CoB5SH, CoB6SH, CoB8SH, and CoB9SH, respectively). The data presented here reveal that the shorter CoB5SH mercaptoalkanoyl chain overlays with that of CoBSH but terminates two units short of the CoBSH thiolate position. In contrast, the mercaptoalkanoyl chain of CoB6SH adopts a different conformation, such that its thiolate is coincident with the position of the CoBSH thiolate. This is consistent with the observation that CoB6SH is a slow substrate. A labile water in the substrate channel was found to be a sensitive indicator for the presence of CoBSH and HSCoM. The longer CoB8SH and CoB9SH analogues can be accommodated in the active site through exclusion of this water. These analogues

  4. 3-Hydroxybenzoate:coenzyme A ligase and 4-coumarate:coenzyme A ligase from cultured cells of Centaurium erythraea.

    PubMed

    Barillas, W; Beerhues, L

    1997-01-01

    3-Hydroxybenzoate:coenzyme A ligase, an enzyme involved in xanthone biosynthesis, was detected in cell-free extracts from cultured cells of Centaurium erythraea Rafn. The enzyme was separated from 4-coumarate:coenzyme A ligase by fractionated ammonium sulphate precipitation and hydrophobic interaction chromatography. The CoA ligases exhibited different substrate specificities. 3-Hydroxybenzoate:coenzyme A ligase activated 3-hydroxybenzoic acid most efficiently and lacked affinity for cinnamic acids. In contrast, 4-coumarate:CoA ligase mainly catalyzed the activation of 4-coumaric acid but did not act on benzoic acids. The two enzymes were similar with respect to their relative molecular weight, their pH and temperature optima, their specific activity and the changes in their activity during cell culture growth. PMID:9177055

  5. Coenzyme Q10 Administration Increases Brain Mitochondrial Concentrations and Exerts Neuroprotective Effects

    NASA Astrophysics Data System (ADS)

    Matthews, Russell T.; Yang, Lichuan; Browne, Susan; Baik, Myong; Flint Beal, M.

    1998-07-01

    Coenzyme Q10 is an essential cofactor of the electron transport chain as well as a potent free radical scavenger in lipid and mitochondrial membranes. Feeding with coenzyme Q10 increased cerebral cortex concentrations in 12- and 24-month-old rats. In 12-month-old rats administration of coenzyme Q10 resulted in significant increases in cerebral cortex mitochondrial concentrations of coenzyme Q10. Oral administration of coenzyme Q10 markedly attenuated striatal lesions produced by systemic administration of 3-nitropropionic acid and significantly increased life span in a transgenic mouse model of familial amyotrophic lateral sclerosis. These results show that oral administration of coenzyme Q10 increases both brain and brain mitochondrial concentrations. They provide further evidence that coenzyme Q10 can exert neuroprotective effects that might be useful in the treatment of neurodegenerative diseases.

  6. Conversion of 4-Hydroxybutyrate to Acetyl Coenzyme A and Its Anapleurosis in the Metallosphaera sedula 3-Hydroxypropionate/4-Hydroxybutyrate Carbon Fixation Pathway

    SciTech Connect

    Hawkins, AB; Adams, MWW; Kelly, RM

    2014-03-25

    The extremely thermoacidophilic archaeon Metallosphaera sedula (optimum growth temperature, 73 degrees C, pH 2.0) grows chemolithoautotrophically on metal sulfides or molecular hydrogen by employing the 3-hydroxypropionate/4-hydroxybutyrate (3HP/4HB) carbon fixation cycle. This cycle adds two CO2 molecules to acetyl coenzyme A (acetyl-CoA) to generate 4HB, which is then rearranged and cleaved to form two acetyl-CoA molecules. Previous metabolic flux analysis showed that two-thirds of central carbon precursor molecules are derived from succinyl-CoA, which is oxidized to malate and oxaloacetate. The remaining one-third is apparently derived from acetyl-CoA. As such, the steps beyond succinyl-CoA are essential for completing the carbon fixation cycle and for anapleurosis of acetyl-CoA. Here, the final four enzymes of the 3HP/4HB cycle, 4-hydroxybutyrate-CoA ligase (AMP forming) (Msed_0406), 4-hydroxybutyryl-CoA dehydratase (Msed_1321), crotonyl-CoA hydratase/(S)-3-hydroxybutyryl-CoA dehydrogenase (Msed_0399), and acetoacetyl-CoA beta-ketothiolase (Msed_0656), were produced recombinantly in Escherichia coli, combined in vitro, and shown to convert 4HB to acetyl-CoA. Metabolic pathways connecting CO2 fixation and central metabolism were examined using a gas-intensive bioreactor system in which M. sedula was grown under autotrophic (CO2-limited) and heterotrophic conditions. Transcriptomic analysis revealed the importance of the 3HP/4HB pathway in supplying acetyl-CoA to anabolic pathways generating intermediates in M. sedula metabolism. The results indicated that flux between the succinate and acetyl-CoA branches in the 3HP/4HB pathway is governed by 4-hydroxybutyrate-CoA ligase, possibly regulated posttranslationally by the protein acetyltransferase (Pat)/Sir2-dependent system. Taken together, this work confirms the final four steps of the 3HP/4HB pathway, thereby providing the framework for examining connections between CO2 fixation and central metabolism in M. sedula.

  7. Conversion of 4-Hydroxybutyrate to Acetyl Coenzyme A and Its Anapleurosis in the Metallosphaera sedula 3-Hydroxypropionate/4-Hydroxybutyrate Carbon Fixation Pathway

    PubMed Central

    Hawkins, Aaron B.; Adams, Michael W. W.

    2014-01-01

    The extremely thermoacidophilic archaeon Metallosphaera sedula (optimum growth temperature, 73°C, pH 2.0) grows chemolithoautotrophically on metal sulfides or molecular hydrogen by employing the 3-hydroxypropionate/4-hydroxybutyrate (3HP/4HB) carbon fixation cycle. This cycle adds two CO2 molecules to acetyl coenzyme A (acetyl-CoA) to generate 4HB, which is then rearranged and cleaved to form two acetyl-CoA molecules. Previous metabolic flux analysis showed that two-thirds of central carbon precursor molecules are derived from succinyl-CoA, which is oxidized to malate and oxaloacetate. The remaining one-third is apparently derived from acetyl-CoA. As such, the steps beyond succinyl-CoA are essential for completing the carbon fixation cycle and for anapleurosis of acetyl-CoA. Here, the final four enzymes of the 3HP/4HB cycle, 4-hydroxybutyrate-CoA ligase (AMP forming) (Msed_0406), 4-hydroxybutyryl-CoA dehydratase (Msed_1321), crotonyl-CoA hydratase/(S)-3-hydroxybutyryl-CoA dehydrogenase (Msed_0399), and acetoacetyl-CoA β-ketothiolase (Msed_0656), were produced recombinantly in Escherichia coli, combined in vitro, and shown to convert 4HB to acetyl-CoA. Metabolic pathways connecting CO2 fixation and central metabolism were examined using a gas-intensive bioreactor system in which M. sedula was grown under autotrophic (CO2-limited) and heterotrophic conditions. Transcriptomic analysis revealed the importance of the 3HP/4HB pathway in supplying acetyl-CoA to anabolic pathways generating intermediates in M. sedula metabolism. The results indicated that flux between the succinate and acetyl-CoA branches in the 3HP/4HB pathway is governed by 4-hydroxybutyrate-CoA ligase, possibly regulated posttranslationally by the protein acetyltransferase (Pat)/Sir2-dependent system. Taken together, this work confirms the final four steps of the 3HP/4HB pathway, thereby providing the framework for examining connections between CO2 fixation and central metabolism in M. sedula. PMID

  8. Coenzyme B12 can be produced by engineered Escherichia coli under both anaerobic and aerobic conditions.

    PubMed

    Ko, Yeounjoo; Ashok, Somasundar; Ainala, Satish Kumar; Sankaranarayanan, Mugesh; Chun, Ah Yeong; Jung, Gyoo Yeol; Park, Sunghoon

    2014-12-01

    Coenzyme B12 (Vitamin B12 ) is one of the most complex biomolecules and an essential cofactor required for the catalytic activity of many enzymes. Pseudomonas denitrificans synthesizes coenzyme B12 in an oxygen-dependent manner using a pathway encoded by more than 25 genes that are located in six different operons. Escherichia coli, a robust and suitable host for metabolic engineering was used to produce coenzyme B12 . These genes were cloned into three compatible plasmids and expressed heterologously in E. coli BL21 (DE3). Real-time PCR, SDS-PAGE analysis and bioassay showed that the recombinant E. coli expressed the coenzyme B12 synthetic genes and successfully produced coenzyme B12 . However, according to the quantitative determination by inductively coupled plasma-mass spectrometry, the amount of coenzyme B12 produced by the recombinant E. coli (0.21 ± 0.02 μg/g cdw) was approximately 13-fold lower than that by P. denitrificans (2.75 ± 0.22 μg/g cdw). Optimization of the culture conditions to improve the production of coenzyme B12 by the recombinant E. coli was successful, and the highest titer (0.65 ± 0.03 μg/g cdw) of coenzyme B12 was obtained. Interestingly, although the synthesis of coenzyme B12 in P. denitrificans is strictly oxygen-dependent, the recombinant E. coli could produce coenzyme B12 under anaerobic conditions. PMID:25146562

  9. Coenzyme B12 Repurposed for Photoregulation of Gene Expression.

    PubMed

    Gruber, Karl; Kräutler, Bernhard

    2016-05-01

    Old cofactor, new tricks: In enzymes, coenzyme B12 has a well-known function as a radical initiator through homolysis of the Co-C bond. It has recently been shown that nature has repurposed this cofactor as a photosensitive switch for the regulation of bacterial carotenoid biosynthesis. Co-C bond breakage is again the key event in this process, triggering huge conformational changes in the B12 -binding protein. PMID:27010518

  10. Deregulated Coenzyme A, Loss of Metabolic Flexibility and Diabetes

    PubMed Central

    Jackowski, Suzanne; Leonardi, Roberta

    2016-01-01

    Coenzyme A (CoA) is an essential cofactor that is emerging as a global regulator of energy metabolism. Tissue CoA levels are tightly regulated and vary in response to different conditions including nutritional state and diabetes. Recent studies reveal the ability of this cofactor to control the output of key metabolic pathways. CoA regulation is important for the maintenance of metabolic flexibility and glucose homeostasis. PMID:25110012

  11. Mitofusin 2 is required to maintain mitochondrial coenzyme Q levels

    PubMed Central

    Mourier, Arnaud; Motori, Elisa; Brandt, Tobias; Lagouge, Marie; Atanassov, Ilian; Galinier, Anne; Rappl, Gunter; Brodesser, Susanne; Hultenby, Kjell; Dieterich, Christoph

    2015-01-01

    Mitochondria form a dynamic network within the cell as a result of balanced fusion and fission. Despite the established role of mitofusins (MFN1 and MFN2) in mitochondrial fusion, only MFN2 has been associated with metabolic and neurodegenerative diseases, which suggests that MFN2 is needed to maintain mitochondrial energy metabolism. The molecular basis for the mitochondrial dysfunction encountered in the absence of MFN2 is not understood. Here we show that loss of MFN2 leads to impaired mitochondrial respiration and reduced ATP production, and that this defective oxidative phosphorylation process unexpectedly originates from a depletion of the mitochondrial coenzyme Q pool. Our study unravels an unexpected and novel role for MFN2 in maintenance of the terpenoid biosynthesis pathway, which is necessary for mitochondrial coenzyme Q biosynthesis. The reduced respiratory chain function in cells lacking MFN2 can be partially rescued by coenzyme Q10 supplementation, which suggests a possible therapeutic strategy for patients with diseases caused by mutations in the Mfn2 gene. PMID:25688136

  12. Autotrophic acetyl coenzyme A biosynthesis in Methanococcus maripaludis.

    PubMed Central

    Shieh, J; Whitman, W B

    1988-01-01

    To detect autotrophic CO2 assimilation in cell extracts of Methanococcus maripaludis, lactate dehydrogenase and NADH were added to convert pyruvate formed from autotrophically synthesized acetyl coenzyme A to lactate. The lactate produced was determined spectrophotometrically. When CO2 fixation was pulled in the direction of lactate synthesis, CO2 reduction to methane was inhibited. Bromoethanesulfonate (BES), a potent inhibitor of methanogenesis, enhanced lactate synthesis, and methyl coenzyme M inhibited it in the absence of BES. Lactate synthesis was dependent on CO2 and H2, but H2 + CO2-independent synthesis was also observed. In cell extracts, the rate of lactate synthesis was about 1.2 nmol min-1 mg of protein-1. When BES was added, the rate of lactate synthesis increased to 2.3 nmol min-1 mg of protein-1. Because acetyl coenzyme A did not stimulate lactate synthesis, pyruvate synthase may have been the limiting activity in these assays. Radiolabel from 14CO2 was incorporated into lactate. The percentages of radiolabel in the C-1, C-2, and C-3 positions of lactate were 73, 33, and 11%, respectively. Both carbon monoxide and formaldehyde stimulated lactate synthesis. 14CH2O was specifically incorporated into the C-3 of lactate, and 14CO was incorporated into the C-1 and C-2 positions. Low concentrations of cyanide also inhibited autotrophic growth, CO dehydrogenase activity, and autotrophic lactate synthesis. These observations are in agreement with the acetogenic pathway of autotrophic CO2 assimilation. PMID:3133359

  13. The role of zinc in the methylation of the coenzyme M thiol group in methanol:coenzyme M methyltransferase from Methanosarcina barkeri.

    PubMed

    Krüer, Markus; Haumann, Michael; Meyer-Klaucke, Wolfram; Thauer, Rudolf K; Dau, Holger

    2002-04-01

    Methanol:coenzyme M methyltransferase from methanogenic archaea is a cobalamin-dependent enzyme composed of three different subunits: MtaA, MtaB and MtaC. MtaA is a zinc protein that catalyzes the methylation of coenzyme M (HS-CoM) with methylcob(III)alamin. We report zinc XAFS (X-ray absorption fine structure) results indicating that, in the absence of coenzyme M, zinc is probably coordinated by a single sulfur ligand and three oxygen or nitrogen ligands. In the presence of coenzyme M, one (N/O)-ligand was replaced by sulfur, most likely due to ligation of the thiol group of coenzyme M. Mutations in His237 or Cys239, which are proposed to be involved in ligating zinc, resulted in an over 90% loss in enzyme activity and in distinct changes in the zinc ligands. In the His237-->Ala and Cys239-->Ala mutants, coenzyme M also seemed to bind efficiently by ligation to zinc indicating that some aspects of the zinc ligand environment are surprisingly uncritical for coenzyme M binding. PMID:11985589

  14. Regulation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity in mouse peritoneal macrophages.

    PubMed Central

    Angelin, B

    1988-01-01

    The lipoprotein-mediated regulation of 3-hydroxy-3-methylglutaryl-(HMG-) CoA reductase in cultured mouse peritoneal macrophages has been investigated. In contrast to what has been reported for other cells, HMG-CoA reductase activity is not suppressed by normal serum or by normal low density lipoproteins (LDL) from humans or dogs. Suppression of reductase activity occurred when cells were cultured in the presence of beta-migrating very low density lipoproteins (beta-VLDL) or LDL from hypercholesterolaemic dogs, or LDL modified by acetoacetylation. Human beta-VLDL from an atypical type III hyperlipoproteinaemic patient was also effective, as was apolipoprotein (apo) E-containing high density lipoproteins (HDL) from cholesterol-fed dogs (apo-E HDLc). The results indicate that cholesterol biosynthesis in mouse peritoneal macrophages is regulated by lipoprotein cholesterol entering via receptor-mediated endocytosis. Normal LDL were not effective because of the poor binding and uptake of these lipoproteins by the apo-B, E (LDL) receptor. Only beta-VLDL, apo-E HDLc, and hypercholesterolaemic LDL were avidly taken up by this receptor and were able to suppress HMG-CoA reductase. Acetoacetylated LDL were internalized via the acetyl-LDL (scavenger) receptor. Thus, mouse macrophages differ from human fibroblasts and smooth muscle cells in their physiological regulation of cholesterogenesis. PMID:3202831

  15. Excited flavin and pterin coenzyme molecules in evolution.

    PubMed

    Kritsky, M S; Telegina, T A; Vechtomova, Y L; Kolesnikov, M P; Lyudnikova, T A; Golub, O A

    2010-10-01

    Excited flavin and pterin molecules are active in intermolecular energy transfer and in photocatalysis of redox reactions resulting in conservation of free energy. Flavin-containing pigments produced in models of the prebiotic environment are capable of converting photon energy into the energy of phosphoanhydride bonds of ATP. However, during evolution photochemical reactions involving excited FMN or FAD molecules failed to become participants of bioenergy transfer systems, but they appear in enzymes responsible for repair of UV-damaged DNA (DNA photolyases) and also in receptors of blue and UV-A light regulating vital functions of organisms. The families of these photoproteins (DNA-photolyases and cryptochromes, LOV-domain- and BLUF-domain-containing proteins) are different in the structure and in mechanisms of the photoprocesses. The excited flavin molecules are involved in photochemical processes in reaction centers of these photoproteins. In DNA photolyases and cryptochromes the excitation energy on the reaction center flavin is supplied from an antenna molecule that is bound with the same polypeptide. The role of antenna is played by MTHF or by 8-HDF in some DNA photolyases, i.e. also by molecules with known coenzyme functions in biocatalysis. Differences in the structure of chromophore-binding domains suggest an independent origin of the photoprotein families. The analysis of structure and properties of coenzyme molecules reveals some specific features that were significant in evolution for their being selected as chromophores in these proteins. PMID:21166638

  16. Coenzyme Q-10 in Human Health: Supporting Evidence?

    PubMed

    Saha, Sibu P; Whayne, Thomas F

    2016-01-01

    Coenzyme Q-10 (CoQ10) is a widely used alternative medication or dietary supplement and one of its roles is as an antioxidant. It naturally functions as a coenzyme and component of oxidative phosphorylation in mitochondria. Decreased levels have been demonstrated in diseased myocardium and in Parkinson disease. Farnesyl pyrophosphate is a critical intermediate for CoQ10 synthesis and blockage of this step may be important in statin myopathy. Deficiency of CoQ10 also has been associated with encephalomyopathy, severe infantile multisystemic disease, cerebellar ataxia, nephrotic syndrome, and isolated myopathy. Although supplementation with CoQ10 has been reported to be beneficial in treating hypertension, congestive heart failure, statin myopathy, and problems associated with chemotherapy for cancer treatement, this use of CoQ10 as a supplement has not been confirmed in randomized controlled clinical trials. Nevertheless, it appears to be a safe supplementary medication where usage in selected clinical situations may not be inappropriate. This review is an attempt to actualize the available information on CoQ10 and define its potential benefit and appropriate usage. PMID:26741866

  17. Molecular Insights into the Biosynthesis of the F420 Coenzyme

    SciTech Connect

    Forouhar,F.; Abashidze, M.; Xu, H.; Grochowski, L.; Seetharaman, J.; Hussain, M.; Kuzin, A.; Chen, Y.; Zhou, W.; et al

    2008-01-01

    Coenzyme F420, a hydride carrier, is found in Archaea and some bacteria and has crucial roles in methanogenesis, antibiotic biosynthesis, DNA repair, and activation of antitubercular compounds. CofD, 2-phospho-l-lactate transferase, catalyzes the last step in the biosynthesis of F420-0 (F420 without polyglutamate), by transferring the lactyl phosphate moiety of lactyl(2)diphospho-(5')guanosine to 7,8-didemethyl-8-hydroxy-5-deazariboflavin ribitol (Fo). CofD is highly conserved among F420-producing organisms, and weak sequence homologs are also found in non-F420-producing organisms. This superfamily does not share any recognizable sequence conservation with other proteins. Here we report the first crystal structures of CofD, the free enzyme and two ternary complexes, with Fo and Pi or with Fo and GDP, from Methanosarcina mazei. The active site is located at the C-terminal end of a Rossmann fold core, and three large insertions make significant contributions to the active site and dimer formation. The observed binding modes of Fo and GDP can explain known biochemical properties of CofD and are also supported by our binding assays. The structures provide significant molecular insights into the biosynthesis of the F420 coenzyme. Large structural differences in the active site region of the non-F420-producing CofD homologs suggest that they catalyze a different biochemical reaction.

  18. Coenzyme-like ligands for affinity isolation of cholesterol oxidase.

    PubMed

    Xin, Yu; Lu, Liushen; Wang, Qing; Zhang, Ling; Tong, Yanjun; Wang, Wu

    2016-05-15

    Two coenzyme-like chemical ligands were designed and synthesized for affinity isolation of cholesterol oxidase (COD). To simulate the structure of natural coenzyme of COD (flavin adenine dinucleotide (FAD)), on Sepharose beads, 5-aminouracil, cyanuric chloride and 1, 4-butanediamine were composed and then modified. The COD gene from Brevibacterium sp. (DQ345780) was expressed in Escherichia coli BL21 (DE3), and then the sorbents were applied to adsorption analysis with the pure enzyme. Subsequently, the captured enzyme was applied to SDS-PAGE and activity analysis. As calculated, the theoretical maximum adsorption (Qmax) of the two affinity sorbents (RL-1 and RL-2) were ∼83.5 and 46.3mg/g wet gel; and the desorption constant Kd of the two sorbents were ∼6.02×10(-4) and 1.19×10(-4)μM. The proteins after cell lysis were applied to affinity isolation, and then after one step of affinity binding on the two sorbents, the protein recoveries of RL-1 and RL-2 were 9.2% and 9.7%; the bioactivity recoveries were 92.7% and 91.3%, respectively. SDS-PAGE analysis revealed that the purities of COD isolated with the two affinity sorbents were approximately 95%. PMID:26856529

  19. Mechanistic implications from structures of yeast alcohol dehydrogenase complexed with coenzyme and an alcohol.

    PubMed

    Plapp, Bryce V; Charlier, Henry A; Ramaswamy, S

    2016-02-01

    Yeast alcohol dehydrogenase I is a homotetramer of subunits with 347 amino acid residues, catalyzing the oxidation of alcohols using NAD(+) as coenzyme. A new X-ray structure was determined at 3.0 Å where both subunits of an asymmetric dimer bind coenzyme and trifluoroethanol. The tetramer is a pair of back-to-back dimers. Subunit A has a closed conformation and can represent a Michaelis complex with an appropriate geometry for hydride transfer between coenzyme and alcohol, with the oxygen of 2,2,2-trifluoroethanol ligated at 2.1 Å to the catalytic zinc in the classical tetrahedral coordination with Cys-43, Cys-153, and His-66. Subunit B has an open conformation, and the coenzyme interacts with amino acid residues from the coenzyme binding domain, but not with residues from the catalytic domain. Coenzyme appears to bind to and dissociate from the open conformation. The catalytic zinc in subunit B has an alternative, inverted coordination with Cys-43, Cys-153, His-66 and the carboxylate of Glu-67, while the oxygen of trifluoroethanol is 3.5 Å from the zinc. Subunit B may represent an intermediate in the mechanism after coenzyme and alcohol bind and before the conformation changes to the closed form and the alcohol oxygen binds to the zinc and displaces Glu-67. PMID:26743849

  20. Preparation and physicochemical characterization of aqueous dispersions of coenzyme Q10 nanoparticles.

    PubMed

    Siekmann, B; Westesen, K

    1995-02-01

    The present study describes a novel pharmaceutical formulation of coenzyme Q10, viz. submicron-sized dispersions of the substance prepared by emulsification of molten coenzyme Q10 in an aqueous phase. Photon correlation spectroscopy reveals mean diameters of 60 to 300 nm depending on process parameters. Coenzyme Q10 nanoparticles remain stable on storage for more than 30 months. Lipophilic drugs can be incorporated into the nanoparticles demonstrating their potential use as a drug carrier system. Transmission electron micrographs of freeze-fractured replica show spherical particles with an amorphous core. Cryo-electron microscopy reveals the coexistence of small unilamellar vesicles in phospholipid stabilized dispersions. Thermoanalysis and X-ray studies indicate that the dispersed and emulsified coenzyme Q10 does not recrystallize even at 4 degrees C over 30 months. These agree with 1H NMR data which demonstrate that coenzyme Q10 molecules have a high mobility when formulated as nanoparticles and that colloidally dispersed coenzyme Q10 remains in the state of a supercooled melt. Despite the high melting point of the bulk material, coenzyme Q10 dispersions represent no suspensions but O/W emulsions according to the IUPAC definition (1). PMID:7784334

  1. Synthetic biology for engineering acetyl coenzyme A metabolism in yeast.

    PubMed

    Nielsen, Jens

    2014-01-01

    The yeast Saccharomyces cerevisiae is a widely used cell factory for the production of fuels, chemicals, and pharmaceuticals. The use of this cell factory for cost-efficient production of novel fuels and chemicals requires high yields and low by-product production. Many industrially interesting chemicals are biosynthesized from acetyl coenzyme A (acetyl-CoA), which serves as a central precursor metabolite in yeast. To ensure high yields in production of these chemicals, it is necessary to engineer the central carbon metabolism so that ethanol production is minimized (or eliminated) and acetyl-CoA can be formed from glucose in high yield. Here the perspective of generating yeast platform strains that have such properties is discussed in the context of a major breakthrough with expression of a functional pyruvate dehydrogenase complex in the cytosol. PMID:25370498

  2. Pyridine nucleotide coenzymes: Chemical, biological, and medical aspects. Vol. 2, Pt. A

    SciTech Connect

    Dolphin, D.; Poulson, R.; Avramovic, O.

    1987-01-01

    This text contains the following: History of the Pyridine Nucleotides Nomenclature; Evolution of Pyridine Nucleotide; Relationship Between Biosynthesis and Evolution; Crystal Structure; Coenzyme Conformations; Protein Interactions; Optical Spectroscopy of the Pyridine Nucleotides; Excited States of Pyridine Nucleotide Coenzymes; Fluorescence and Phosphorescence; Nuclear Magnetic Resonance Spectroscopy of Pyridine Nucleotides; Mass Spectrometry of Pyridine Nucleotides; Mechanism of Action of the Pyridine Nucleotides; Chemical Stability and Reactivity of Pyridine Nucleotide Coenzymes; Stereochemistry of Fatty Acid Biosynthesis and Metabolism; Kinetics of Pyridine Nucleotide-Utilizing Enzymes; Preparation and Properties of NAD and NADP Analogs; Model Studies and Biological Activity of Analogs; and Spin-Labeled Pyridine Nucleotide Derivatives.

  3. Tissue concentrations of coenzyme Q10 in the rat following its oral and intraperitoneal administration.

    PubMed

    Reahal, S; Wrigglesworth, J

    1992-01-01

    Daily oral or ip administration of coenzyme Q10 to rats for time periods of 2 to 10 weeks leads to its accumulation in liver, concentrating in the soluble fraction of the liver cells. No uptake of coenzyme Q10 can be detected in the heart or kidney. Intraperitoneal administration also results in the accumulation of coenzyme Q10 in the spleen. It is concluded that the normal endogenous levels of quinone in the rat heart and kidney cannot be supplemented over the long term by administration of exogenous quinone. PMID:1355718

  4. The Reaction Mechanism of Methyl-Coenzyme M Reductase

    PubMed Central

    Wongnate, Thanyaporn; Ragsdale, Stephen W.

    2015-01-01

    Methyl-coenzyme M reductase (MCR) is a nickel tetrahydrocorphinoid (coenzyme F430) containing enzyme involved in the biological synthesis and anaerobic oxidation of methane. MCR catalyzes the conversion of methyl-2-mercaptoethanesulfonate (methyl-SCoM) and N-7-mercaptoheptanoylthreonine phosphate (CoB7SH) to CH4 and the mixed disulfide CoBS-SCoM. In this study, the reaction of MCR from Methanothermobacter marburgensis, with its native substrates was investigated using static binding, chemical quench, and stopped-flow techniques. Rate constants were measured for each step in this strictly ordered ternary complex catalytic mechanism. Surprisingly, in the absence of the other substrate, MCR can bind either substrate; however, only one binary complex (MCR·methyl-SCoM) is productive whereas the other (MCR·CoB7SH) is inhibitory. Moreover, the kinetic data demonstrate that binding of methyl-SCoM to the inhibitory MCR·CoB7SH complex is highly disfavored (Kd = 56 mm). However, binding of CoB7SH to the productive MCR·methyl-SCoM complex to form the active ternary complex (CoB7SH·MCR(NiI)·CH3SCoM) is highly favored (Kd = 79 μm). Only then can the chemical reaction occur (kobs = 20 s−1 at 25 °C), leading to rapid formation and dissociation of CH4 leaving the binary product complex (MCR(NiII)·CoB7S−·SCoM), which undergoes electron transfer to regenerate Ni(I) and the final product CoBS-SCoM. This first rapid kinetics study of MCR with its natural substrates describes how an enzyme can enforce a strictly ordered ternary complex mechanism and serves as a template for identification of the reaction intermediates. PMID:25691570

  5. Coenzyme world model of the origin of life.

    PubMed

    Sharov, Alexei A

    2016-06-01

    The origin of life means the emergence of heritable and evolvable self-reproduction. However the mechanisms of primordial heredity were different from those in contemporary cells. Here I argue that primordial life had no nucleic acids; instead heritable signs were represented by isolated catalytically active self-reproducing molecules, similar to extant coenzymes, which presumably colonized surfaces of oil droplets in water. The model further assumes that coenzyme-like molecules (CLMs) changed surface properties of oil droplets (e.g., by oxidizing terminal carbons), and in this way created and sustained favorable conditions for their own self-reproduction. Such niche-dependent self-reproduction is a necessary condition for cooperation between different kinds of CLMs because they have to coexist in the same oil droplets and either succeed or perish together. Additional kinds of hereditary molecules were acquired via coalescence of oil droplets carrying different kinds of CLMs or via modification of already existing CLMs. Eventually, polymerization of CLMs became controlled by other polymers used as templates; and this kind of template-based synthesis eventually resulted in the emergence of RNA-like replicons. Apparently, oil droplets transformed into the outer membrane of cells via engulfing water, stabilization of the surface, and osmoregulation. In result, the metabolism was internalized allowing cells to accumulate free-floating resources (e.g., animoacids, ATP), which was a necessary condition for the development of protein synthesis. Thus, life originated from simple but already functional molecules, and its gradual evolution towards higher complexity was driven by cooperation and natural selection. PMID:26968100

  6. Component A of the methyl coenzyme M methylreductase system of Methanobacterium: resolution into four components.

    PubMed Central

    Nagle, D P; Wolfe, R S

    1983-01-01

    Component A, the oxygen-sensitive protein fraction of the methyl coenzyme M methylreductase system of Methanobacterium thermoautotrophicum, has been stabilized and resolved into three protein fractions and one cofactor that are required to reconstitute component A activity. Component A1 is oxygen-stable and contains hydrogen-dependent deazaflavin (coenzyme F420)-reducing activity. Component A2 is acidic; components A2 and A3 are oxygen sensitive. The specific functions of each component in methyl group reduction are unknown. Resolution of component A revealed a new cofactor requirement of the methylreductase system for FAD. Hydrogen-dependent reduction of methyl coenzyme M to methane and coenzyme M, the terminal step of CO2 reduction by methanogenic bacteria, requires protein components A1, A2, A3, and C in addition to component B, FAD, ATP, and Mg2+. PMID:6403944

  7. Supplementation of Coenzyme Q10 among Patients with Type 2 Diabetes Mellitus

    PubMed Central

    Shen, Qiuhua; Pierce, Janet D.

    2015-01-01

    Type 2 diabetes mellitus (T2DM) is a major cause of morbidity and mortality with ever increasing prevalence in the United States and worldwide. There is growing body of evidence suggesting that mitochondrial dysfunction secondary to oxidative stress plays a critical role in the pathogenesis of T2DM. Coenzyme Q10 is an important micronutrient acting on the electron transport chain of the mitochondria with two major functions: (1) synthesis of adenosine triphosphate (ATP); and (2) a potent antioxidant. Deficiency in coenzyme Q10 is often seen in patients with T2DM. Whether restoration of coenzyme Q10 will help alleviate oxidative stress, preserve mitochondrial function, and thus improve glycemic control in T2DM is unclear. This article reviews the relationships among oxidative stress, mitochondrial dysfunction, and T2DM and examines the evidence for potential use of coenzyme Q10 as a supplement for the treatment of T2DM. PMID:27417763

  8. Coenzyme Q10 and periodontal treatment: is there any beneficial effect?

    PubMed

    Watts, T L

    1995-03-25

    Many dentists have been surprised by recent media claims of periodontal benefits with a purportedly revolutionary dietary supplement. The research literature on coenzyme Q10's periodontal effects does not extend to the international English language dental literature, which perhaps explains the surprise. A review of the available literature does not give any ground for the claims made, and selected papers are discussed to show that there is actually some evidence that coenzyme Q10 has no place in periodontal treatment. PMID:7718355

  9. The Relationship between Coenzyme Q10, Oxidative Stress, and Antioxidant Enzymes Activities and Coronary Artery Disease

    PubMed Central

    Lee, Bor-Jen; Lin, Yi-Chin; Huang, Yi-Chia; Ko, Ya-Wen; Hsia, Simon; Lin, Ping-Ting

    2012-01-01

    A higher oxidative stress may contribute to the pathogenesis of coronary artery disease (CAD). The purpose of this study was to investigate the relationship between coenzyme Q10 concentration and lipid peroxidation, antioxidant enzymes activities and the risk of CAD. Patients who were identified by cardiac catheterization as having at least 50% stenosis of one major coronary artery were assigned to the case group (n = 51). The control group (n = 102) comprised healthy individuals with normal blood biochemical values. The plasma coenzyme Q10, malondialdehyde (MDA) and antioxidant enzymes activities (catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx)) were measured. Subjects with CAD had significant lower plasma coenzyme Q10, CAT and GPx activities and higher MDA and SOD levels compared to those of the control group. The plasma coenzyme Q10 was positively correlated with CAT and GPx activities and negatively correlated with MDA and SOD. However, the correlations were not significant after adjusting for the potential confounders of CAD with the exception of SOD. A higher level of plasma coenzyme Q10 (≥0.52 μmol/L) was significantly associated with reducing the risk of CAD. Our results support the potential cardioprotective impact of coenzyme Q10. PMID:22645453

  10. Purification and Characterization of Cinnamoyl-Coenzyme A:NADP Oxidoreductase in Eucalyptus gunnii.

    PubMed Central

    Goffner, D.; Campbell, M. M.; Campargue, C.; Clastre, M.; Borderies, G.; Boudet, A.; Boudet, A. M.

    1994-01-01

    Cinnamoyl-coenzyme A:NADP oxidoreductase (CCR, EC 1.2.1.44), the entry-point enzyme into the monolignol biosynthetic pathway, was purified to apparent electrophoretic homogeneity from differentiating xylem of Eucalyptus gunnii Hook. The purified protein is a monomer of 38 kD and has an isoelectric point of 7. Although Eucalyptus gunnii CCR has approximately equal affinities for all possible substrates (p-coumaroyl-coenzyme A, feruloyl-coenzyme A, and sinapoyl-coenzyme A), it is approximately three times more effective at converting feruloyl-coenzyme A than the other substrates. To gain a better understanding of the catalytic regulation of Eucalyptus CCR, a variety of compounds were tested to determine their effect on CCR activity. CCR activity is inhibited by NADP and coenzyme A. Effectors that bind lysine and cysteine residues also inhibit CCR activity. As a prerequisite to the study of the regulation of CCR at the molecular level, polyclonal antibodies were obtained. PMID:12232355

  11. Neutron Laue diffraction studies of coenzyme cob(II)alamin.

    PubMed

    Langan, P; Lehmann, M; Wilkinson, C; Jogl, G; Kratky, C

    1999-01-01

    Using a recently designed neutron single-crystal diffractometer utilizing a narrow-band Laue concept (LADI), diffraction data were collected from a crystal of the coenzyme cob(II)alamin (B12r), crystallized from a mixture of D2O and perdeuterated acetone. The instrument was placed at the end of a cold neutron guide at the Institute Laue Langevin (ILL, Grenoble, France), and data collection with neutrons of 1.8-8.0 A wavelength to a crystallographic resolution of 1.43 A was complete after about 36 h. This compares favourably with a previous experiment utilizing the same crystal specimen, where more than four weeks were required to collect monochromatic diffraction data to about 1 A resolution. Using the Laue data, the structure was solved by molecular replacement with the known X-ray crystal structure. Difference density maps revealed the atomic positions (including deuterium atoms) of seven ordered solvent water molecules and two (partially disordered) acetone molecules. These density maps were compared with corresponding maps computed with monochromatic neutron-diffraction data collected to 1. 0 A resolution using the same crystal specimen, as well as to maps derived from high-resolution (0.90 A) synchrotron X-ray data. In spite of the better definition of atomic positions in the two high-resolution maps, the 1.43 A LADI maps show considerable power for the determination of the location of hydrogen and deuterium positions. PMID:10089394

  12. Decreased Coenzyme Q10 Levels in Multiple System Atrophy Cerebellum.

    PubMed

    Barca, Emanuele; Kleiner, Giulio; Tang, Guomei; Ziosi, Marcello; Tadesse, Saba; Masliah, Eliezer; Louis, Elan D; Faust, Phyllis; Kang, Un J; Torres, Jose; Cortes, Etty P; Vonsattel, Jean-Paul G; Kuo, Sheng-Han; Quinzii, Catarina M

    2016-07-01

    In familial and sporadic multiple system atrophy (MSA) patients, deficiency of coenzyme Q10 (CoQ10) has been associated with mutations in COQ2, which encodes the second enzyme in the CoQ10 biosynthetic pathway. Cerebellar ataxia is the most common presentation of CoQ10 deficiency, suggesting that the cerebellum might be selectively vulnerable to low levels of CoQ10 To investigate whether CoQ10 deficiency represents a common feature in the brains of MSA patients independent of the presence of COQ2 mutations, we studied CoQ10 levels in postmortem brains of 12 MSA, 9 Parkinson disease (PD), 9 essential tremor (ET) patients, and 12 controls. We also assessed mitochondrial respiratory chain enzyme activities, oxidative stress, mitochondrial mass, and levels of enzymes involved in CoQ biosynthesis. Our studies revealed CoQ10 deficiency in MSA cerebellum, which was associated with impaired CoQ biosynthesis and increased oxidative stress in the absence of COQ2 mutations. The levels of CoQ10 in the cerebella of ET and PD patients were comparable or higher than in controls. These findings suggest that CoQ10 deficiency may contribute to the pathogenesis of MSA. Because no disease modifying therapies are currently available, increasing CoQ10 levels by supplementation or upregulation of its biosynthesis may represent a novel treatment strategy for MSA patients. PMID:27235405

  13. Protein Acetylation and Acetyl Coenzyme A Metabolism in Budding Yeast

    PubMed Central

    Galdieri, Luciano; Zhang, Tiantian; Rogerson, Daniella; Lleshi, Rron

    2014-01-01

    Cells sense and appropriately respond to the physical conditions and availability of nutrients in their environment. This sensing of the environment and consequent cellular responses are orchestrated by a multitude of signaling pathways and typically involve changes in transcription and metabolism. Recent discoveries suggest that the signaling and transcription machineries are regulated by signals which are derived from metabolism and reflect the metabolic state of the cell. Acetyl coenzyme A (CoA) is a key metabolite that links metabolism with signaling, chromatin structure, and transcription. Acetyl-CoA is produced by glycolysis as well as other catabolic pathways and used as a substrate for the citric acid cycle and as a precursor in synthesis of fatty acids and steroids and in other anabolic pathways. This central position in metabolism endows acetyl-CoA with an important regulatory role. Acetyl-CoA serves as a substrate for lysine acetyltransferases (KATs), which catalyze the transfer of acetyl groups to the epsilon-amino groups of lysines in histones and many other proteins. Fluctuations in the concentration of acetyl-CoA, reflecting the metabolic state of the cell, are translated into dynamic protein acetylations that regulate a variety of cell functions, including transcription, replication, DNA repair, cell cycle progression, and aging. This review highlights the synthesis and homeostasis of acetyl-CoA and the regulation of transcriptional and signaling machineries in yeast by acetylation. PMID:25326522

  14. Coenzyme Q10 protects hair cells against aminoglycoside.

    PubMed

    Sugahara, Kazuma; Hirose, Yoshinobu; Mikuriya, Takefumi; Hashimoto, Makoto; Kanagawa, Eiju; Hara, Hirotaka; Shimogori, Hiroaki; Yamashita, Hiroshi

    2014-01-01

    It is well known that the production of free radicals is associated with sensory cell death induced by an aminoglycoside. Many researchers have reported that antioxidant reagents protect sensory cells in the inner ear, and coenzyme Q10 (CoQ10) is an antioxidant that is consumed as a health food in many countries. The purpose of this study was to investigate the role of CoQ10 in mammalian vestibular hair cell death induced by aminoglycoside. Cultured utricles of CBA/CaN mice were divided into three groups (control group, neomycin group, and neomycin + CoQ10 group). In the neomycin group, utricles were cultured with neomycin (1 mM) to induce hair cell death. In the neomycin + CoQ10 group, utricles were cultured with neomycin and water-soluble CoQ10 (30-0.3 µM). Twenty-four hours after exposure to neomycin, the cultured tissues were fixed, and vestibular hair cells were labeled using an anti-calmodulin antibody. Significantly more hair cells survived in the neomycin + CoQ10 group than in the neomycin group. These data indicate that CoQ10 protects sensory hair cells against neomycin-induced death in the mammalian vestibular epithelium; therefore, CoQ10 may be useful as a protective drug in the inner ear. PMID:25265538

  15. Coenzyme Q10 analytical determination in biological matrices and pharmaceuticals.

    PubMed

    Lucangioli, Silvia; Martinefski, Manuela; Tripodi, Valeria

    2016-01-01

    In recent years, the analytical determination of coenzyme Q10 (CoQ10) has gained importance in clinical diagnosis and in pharmaceutical quality control. CoQ10 is an important cofactor in the mitochondrial respiratory chain and a potent endogenous antioxidant. CoQ10 deficiency is often associated with numerous diseases and patients with these conditions may benefit from administration of supplements of CoQ10. In this regard, it has been observed that the best benefits are obtained when CoQ10 deficiency is diagnosed and treated early. Therefore, it is of great value to develop analytical methods for the detection and quantification of CoQ10 in this type of disease. The methods above mentioned should be simple enough to be used in routine clinical laboratories as well as in quality control of pharmaceutical formulations containing CoQ10. Here, we discuss the advantages and disadvantages of different methods of CoQ10 analysis. PMID:27100710

  16. The cobalamin (coenzyme B12) biosynthetic genes of Escherichia coli.

    PubMed Central

    Lawrence, J G; Roth, J R

    1995-01-01

    The enteric bacterium Escherichia coli synthesizes cobalamin (coenzyme B12) only when provided with the complex intermediate cobinamide. Three cobalamin biosynthetic genes have been cloned from Escherichia coli K-12, and their nucleotide sequences have been determined. The three genes form an operon (cob) under the control of several promoters and are induced by cobinamide, a precursor of cobalamin. The cob operon of E. coli comprises the cobU gene, encoding the bifunctional cobinamide kinase-guanylyltransferase; the cobS gene, encoding cobalamin synthetase; and the cobT gene, encoding dimethylbenzimidazole phosphoribosyltransferase. The physiological roles of these sequences were verified by the isolation of Tn10 insertion mutations in the cobS and cobT genes. All genes were named after their Salmonella typhimurium homologs and are located at the corresponding positions on the E. coli genetic map. Although the nucleotide sequences of the Salmonella cob genes and the E. coli cob genes are homologous, they are too divergent to have been derived from an operon present in their most recent common ancestor. On the basis of comparisons of G+C content, codon usage bias, dinucleotide frequencies, and patterns of synonymous and nonsynonymous substitutions, we conclude that the cob operon was introduced into the Salmonella genome from an exogenous source. The cob operon of E. coli may be related to cobalamin synthetic genes now found among non-Salmonella enteric bacteria. PMID:7592411

  17. MeaA, a Putative Coenzyme B12-Dependent Mutase, Provides Methylmalonyl Coenzyme A for Monensin Biosynthesis in Streptomyces cinnamonensis

    PubMed Central

    Zhang, Weiwen; Reynolds, Kevin A.

    2001-01-01

    The ratio of the major monensin analogs produced by Streptomyces cinnamonensis is dependent upon the relative levels of the biosynthetic precursors methylmalonyl-coenzyme A (CoA) (monensin A and monensin B) and ethylmalonyl-CoA (monensin A). The meaA gene of this organism was cloned and sequenced and was shown to encode a putative 74-kDa protein with significant amino acid sequence identity to methylmalonyl-CoA mutase (MCM) (40%) and isobutyryl-CoA mutase (ICM) large subunit (36%) and small subunit (52%) from the same organism. The predicted C terminus of MeaA contains structural features highly conserved in all coenzyme B12-dependent mutases. Plasmid-based expression of meaA from the ermE∗ promoter in the S. cinnamonensis C730.1 strain resulted in a decreased ratio of monensin A to monensin B, from 1:1 to 1:3. Conversely, this ratio increased to 4:1 in a meaA mutant, S. cinnamonensis WM2 (generated from the C730.1 strain by insertional inactivation of meaA by using the erythromycin resistance gene). In both of these experiments, the overall monensin titers were not significantly affected. Monensin titers, however, did decrease over 90% in an S. cinnamonensis WD2 strain (an icm meaA mutant). Monensin titers in the WD2 strain were restored to at least wild-type levels by plasmid-based expression of the meaA gene or the Amycolatopsis mediterranei mutAB genes (encoding MCM). In contrast, growth of the WD2 strain in the presence of 0.8 M valine led only to a partial restoration (<25%) of monensin titers. These results demonstrate that the meaA gene product is significantly involved in methylmalonyl-CoA production in S. cinnamonensis and that under the tested conditions the presence of both MeaA and ICM is crucial for monensin production in the WD2 strain. These results also indicate that valine degradation, implicated in providing methylmalonyl-CoA precursors for many polyketide biosynthetic processes, does not do so to a significant degree for monensin biosynthesis

  18. Changes in concentrations of coenzyme F420 analogs during batch growth of Methanosarcina barkeri and Methanosarcina mazei.

    PubMed Central

    Peck, M W

    1989-01-01

    Coenzyme F420 has been assayed by high-performance liquid chromatography with fluorimetric detection; this permits quantification of individual coenzyme F420 analogs whilst avoiding the inclusion of interfering material. The total intracellular coenzyme F420 content of Methanosarcina barkeri MS cultivated on methanol and on H2-CO2 and of Methanosarcina mazei S-6 cultured on methanol remained relatively constant during batch growth. The most abundant analogs in M. barkeri were coenzymes F420-2 and F420-4, whilst in M. mazei coenzymes F420-2 and F420-3 predominated. Significant changes in the relative proportions of the coenzyme F420 analogs were noted during batch growth, with coenzymes F420-2 and F420-4 showing opposite responses to each other and the same being also true for coenzymes F420-3 and F420-5. This suggests that an enzyme responsible for transferring pairs of glutamic acid residues may be active. The degradation fragment FO was also detected in cells in late exponential and stationary phase. Coenzyme F420 analogs were present in the culture supernatant of both methanogens, in similar proportions to that in the cells, except for FO which was principally located in the supernatant. PMID:2729992

  19. Coenzyme Q10 protects ischemic myocardium in an open-chest swine model.

    PubMed

    Atar, D; Mortensen, S A; Flachs, H; Herzog, W R

    1993-01-01

    Myocardial stunning, defined as a reversible decrease in contractility after ischemia and reperfusion, may be a manifestation of reperfusion injury caused by free oxygen radical damage. The aim of this study was to test the hypothesis that pretreatment with coenzyme Q10 (ubiquinone), believed to act as a free radical scavenger, reduces myocardial stunning in a porcine model. Twelve swine were randomized to receive either oral supplementation with coenzyme Q10 or placebo for 20 days. A normothermic open-chest model was used with short occlusion (8 min) of the distal left descending coronary artery followed by reperfusion. Regional contractile function was measured with epicardial Doppler crystals in ischemic and nonischemic segments by measuring thickening fraction of the left ventricular wall during systole. Stunning time was defined as the elapsed time of reduced contractility until return to baseline. Coenzyme Q10 concentrations were measured in blood and homogenized myocardial tissue by high performance liquid chromatography. Plasma levels of reduced coenzyme Q10 (ubiquinol) were higher in swine pretreated with the experimental medication as compared to placebo (mean 0.45 mg/l versus 0.11 mg/l, respectively). Myocardial tissue concentrations, however, did not show any changes (mean 0.79 micrograms/mg dry weight versus 0.74 micrograms/mg). Stunning time was significantly reduced in coenzyme Q10 pretreated animals (13.7 +/- 7.7 min versus 32.8 +/- 3.1 min, P < 0.01). In conclusion, chronic pretreatment with coenzyme Q10 protects ischemic myocardium in an open-chest swine model. The beneficial effect of coenzyme Q10 on myocardial stunning may be due to protection from free radical mediated reperfusion injury. This protective effect seems to be generated by a humoral rather than intracellular mechanism. PMID:8241692

  20. Properties of succinyl-coenzyme A:D-citramalate coenzyme A transferase and its role in the autotrophic 3-hydroxypropionate cycle of Chloroflexus aurantiacus.

    PubMed

    Friedmann, Silke; Alber, Birgit E; Fuchs, Georg

    2006-09-01

    The phototrophic bacterium Chloroflexus aurantiacus uses the 3-hydroxypropionate cycle for autotrophic CO(2) fixation. This cycle starts with acetyl-coenzyme A (CoA) and produces glyoxylate. Glyoxylate is an unconventional cell carbon precursor that needs special enzymes for assimilation. Glyoxylate is combined with propionyl-CoA to beta-methylmalyl-CoA, which is converted to citramalate. Cell extracts catalyzed the succinyl-CoA-dependent conversion of citramalate to acetyl-CoA and pyruvate, the central cell carbon precursor. This reaction is due to the combined action of enzymes that were upregulated during autotrophic growth, a coenzyme A transferase with the use of succinyl-CoA as the CoA donor and a lyase cleaving citramalyl-CoA to acetyl-CoA and pyruvate. Genomic analysis identified a gene coding for a putative coenzyme A transferase. The gene was heterologously expressed in Escherichia coli and shown to code for succinyl-CoA:d-citramalate coenzyme A transferase. This enzyme, which catalyzes the reaction d-citramalate + succinyl-CoA --> d-citramalyl-CoA + succinate, was purified and studied. It belongs to class III of the coenzyme A transferase enzyme family, with an aspartate residue in the active site. The homodimeric enzyme composed of 44-kDa subunits was specific for succinyl-CoA as a CoA donor but also accepted d-malate and itaconate instead of d-citramalate. The CoA transferase gene is part of a cluster of genes which are cotranscribed, including the gene for d-citramalyl-CoA lyase. It is proposed that the CoA transferase and the lyase catalyze the last two steps in the glyoxylate assimilation route. PMID:16952935

  1. The Antioxidant Status and Concentrations of Coenzyme Q10 and Vitamin E in Metabolic Syndrome

    PubMed Central

    Yen, Chi-Hua; Yang, Nae-Cherng; Lee, Bor-Jen; Lin, Jui-Yuan; Hsia, Simon

    2013-01-01

    The purpose of this study was to investigate the levels of coenzyme Q10 and vitamin E and the antioxidant status in subjects with metabolic syndrome (MS). Subjects with MS (n = 72) were included according to the criteria for MS. The non-MS group (n = 105) was comprised of healthy individuals with normal blood biochemical values. The plasma coenzyme Q10, vitamin E concentrations, lipid profiles, and antioxidant enzymes levels (catalase, superoxide dismutase, and glutathione peroxidase) were measured. The subjects with MS had significantly higher concentrations of plasma coenzyme Q10 and vitamin E than those in the non-MS group, but these differences were not significant after being normalized for triglyceride level. The levels of antioxidant enzymes were significantly lower in the MS group than in the non-MS group. The subjects with the higher antioxidant enzymes activities had significant reductions in the risk of MS (P < 0.01) after being adjusted for coenzyme Q10 and vitamin E. In conclusion, the subjects with MS might be under higher oxidative stress resulting in low levels of antioxidant enzyme activities. A higher level of antioxidant enzymes activities was significantly associated with a reduction in the risk of MS independent of the levels of coenzyme Q10 and vitamin E. PMID:24082857

  2. Identification of mitochondrial coenzyme a transporters from maize and Arabidopsis.

    PubMed

    Zallot, Rémi; Agrimi, Gennaro; Lerma-Ortiz, Claudia; Teresinski, Howard J; Frelin, Océane; Ellens, Kenneth W; Castegna, Alessandra; Russo, Annamaria; de Crécy-Lagard, Valérie; Mullen, Robert T; Palmieri, Ferdinando; Hanson, Andrew D

    2013-06-01

    Plants make coenzyme A (CoA) in the cytoplasm but use it for reactions in mitochondria, chloroplasts, and peroxisomes, implying that these organelles have CoA transporters. A plant peroxisomal CoA transporter is already known, but plant mitochondrial or chloroplastic CoA transporters are not. Mitochondrial CoA transporters belonging to the mitochondrial carrier family, however, have been identified in yeast (Saccharomyces cerevisiae; Leu-5p) and mammals (SLC25A42). Comparative genomic analysis indicated that angiosperms have two distinct homologs of these mitochondrial CoA transporters, whereas nonflowering plants have only one. The homologs from maize (Zea mays; GRMZM2G161299 and GRMZM2G420119) and Arabidopsis (Arabidopsis thaliana; At1g14560 and At4g26180) all complemented the growth defect of the yeast leu5Δ mitochondrial CoA carrier mutant and substantially restored its mitochondrial CoA level, confirming that these proteins have CoA transport activity. Dual-import assays with purified pea (Pisum sativum) mitochondria and chloroplasts, and subcellular localization of green fluorescent protein fusions in transiently transformed tobacco (Nicotiana tabacum) Bright Yellow-2 cells, showed that the maize and Arabidopsis proteins are targeted to mitochondria. Consistent with the ubiquitous importance of CoA, the maize and Arabidopsis mitochondrial CoA transporter genes are expressed at similar levels throughout the plant. These data show that representatives of both monocotyledons and eudicotyledons have twin, mitochondrially located mitochondrial carrier family carriers for CoA. The highly conserved nature of these carriers makes possible their reliable annotation in other angiosperm genomes. PMID:23590975

  3. Nutritional programming of coenzyme Q: potential for prevention and intervention?

    PubMed

    Tarry-Adkins, Jane L; Fernandez-Twinn, Denise S; Chen, Jian-Hua; Hargreaves, Iain P; Martin-Gronert, Malgorzata S; McConnell, Josie M; Ozanne, Susan E

    2014-12-01

    Low birth weight and rapid postnatal growth increases risk of cardiovascular-disease (CVD); however, underlying mechanisms are poorly understood. Previously, we demonstrated that rats exposed to a low-protein diet in utero that underwent postnatal catch-up growth (recuperated) have a programmed deficit in cardiac coenzyme Q (CoQ) that was associated with accelerated cardiac aging. It is unknown whether this deficit occurs in all tissues, including those that are clinically accessible. We investigated whether aortic and white blood cell (WBC) CoQ is programmed by suboptimal early nutrition and whether postweaning dietary supplementation with CoQ could prevent programmed accelerated aging. Recuperated male rats had reduced aortic CoQ [22 d (35±8.4%; P<0.05); 12 m (53±8.8%; P<0.05)], accelerated aortic telomere shortening (P<0.01), increased DNA damage (79±13% increase in nei-endonucleaseVIII-like-1), increased oxidative stress (458±67% increase in NAPDH-oxidase-4; P<0.001), and decreased mitochondrial complex II-III activity (P<0.05). Postweaning dietary supplementation with CoQ prevented these detrimental programming effects. Recuperated WBCs also had reduced CoQ (74±5.8%; P<0.05). Notably, WBC CoQ levels correlated with aortic telomere-length (P<0.0001) suggesting its potential as a diagnostic marker of vascular aging. We conclude that early intervention with CoQ in at-risk individuals may be a cost-effective and safe way of reducing the global burden of CVDs. PMID:25172893

  4. Reduction of ascites mortality in broilers by coenzyme Q10.

    PubMed

    Geng, A L; Guo, Y M; Yang, Y

    2004-09-01

    Effects of coenzyme Q10 (CoQ10) supplementation on growth performance and ascites were studied in broilers. One hundred eighty 1-d-old Arbor Acre male broiler chicks were randomly allocated into 3 groups with 6 replicates each. From d 8, the diets were supplemented with CoQ10 at levels of 0, 20, and 40 mg/kg, respectively. From d 15 to 21, all the chicks were exposed to low ambient temperature (15 to 18 degrees C) to induce ascites. Average feed intake, BW gain, and feed conversion ratio of the broilers during 0 to 3 wk, 3 to 6 wk, and 0 to 6 wk were measured. The results showed that there were no influences observed on broilers' growth performance, but the mortality due to ascites was reduced by CoQ10 supplementation (P < or = 0.05). Erythrocyte osmotic fragility (EOF) was significantly decreased by 40 mg/kg CoQ10 compared with the control, but no significant changes were observed on blood packed cell volume (PCV) among the treatments. Pulmonary arterial diastolic pressure was significantly decreased on d 36, but no significant changes were observed on right ventricular pressure (RVP), pulmonary arterial systolic pressure, and the maximum change ratio of right intraventricular pressure (+/- dp/ dtmax). Ascites heart index (AHI) was significantly decreased by 40 mg/kg CoQ10 supplementation (P < or = 0.05). The results of this study suggested that CoQ10 has a beneficial effect in reducing ascites mortality in broilers, and 40 mg/kg CoQ10 seems to be more effective than 20 mg/ kg CoQ10. PMID:15384911

  5. Regulation of 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Activity in Human Fibroblasts by Lipoproteins

    PubMed Central

    Brown, Michael S.; Dana, Suzanna E.; Goldstein, Joseph L.

    1973-01-01

    The activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase (EC 1.1.1.34), the rate-limiting enzyme of hepatic cholesterol biosynthesis, is suppressed in human fibroblasts cultured in the presence of serum. This enzyme activity increases by more than 10-fold after the removal of serum from the medium. The rise in enzyme activity requires de novo protein synthesis and is not accompanied by changes in the activities of several other cellular enzymes. The factor responsible for the suppression of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in cultured fibroblasts is present in the sera of at least four mammalian species, and in human serum it is found in the low-density lipoproteins. Human high-density lipoproteins, very low-density lipoproteins from chicken egg yolk, and the fraction of human serum containing no lipoproteins do not suppress the activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase. PMID:4352976

  6. The effect of simvastatin on coenzyme Q and antioxidant/oxidant balance in diabetic-hypercholesterolaemic rats.

    PubMed

    Kuzelová, Magdaléna; Adameová, Adriana; Sumbalová, Zuzana; Paulíková, Ingrid; Harcárová, Anna; Svec, Pavel; Kucharská, Jarmila

    2008-12-01

    The effect of simvastatin administered for 10 days on coenzyme Q and antioxidant/oxidant balance in a rat model of diabetes mellitus and hypercholesterolaemia was studied. In the diabetic-hypercholesterolaemic rats the signs of oxidative stress-decreased alpha-tocopherol/cholesterol in the plasma (p < 0.01) and alpha-tocopherol in liver (p < 0.001) together with increased lipid peroxidation in the liver (TBARS, p < 0.05) were found. Increased coenzyme Q9 concentrations in the plasma (p < 0.05) and liver (p < 0.01), coenzyme Q10 in the myocardium (p < 0.05) and in the liver (p < 0.01) may indicate adaptation to oxidative stress. Administration of simvastatin (10 mg/kg) to the diabetic-hypercholesterolaemic rats counteracted increased myocardial (coenzyme Q10, p < 0.05) and liver (total coenzyme Q9, p < 0.05) coenzyme Q concentrations but did not improve alpha-tocopherol depletion and increased formation of TBARS in the liver. Even though simvastatin treatment did not induce coenzyme Q deficiency in plasma, heart and liver of the diabetic-hypercholesterolaemic rats as compared to the control levels, it was not able to prevent completely the changes in antioxidant/oxidant balance induced by diabetes and hypercholesterolaemia. The results highlight the importance of studying the effect of statins on the coenzyme Q levels in the animal models of pathological conditions known to change the initial antioxidant defence system. PMID:19202203

  7. Effects of fluvastatin and coenzyme Q10 on skeletal muscle in normo- and hypercholesterolaemic rats.

    PubMed

    Vincze, J; Jenes, Á; Füzi, M; Almássy, J; Németh, R; Szigeti, G; Dienes, B; Gaál, Z; Szentesi, P; Jóna, I; Kertai, P; Paragh, G; Csernoch, L

    2015-06-01

    Myalgia and muscle weakness may appreciably contribute to the poor adherence to statin therapy. Although the pathomechanism of statin-induced myopathy is not completely understood, changes in calcium homeostasis and reduced coenzyme Q10 levels are hypothesized to play important roles. In our experiments, fluvastatin and/or coenzyme Q10 was administered chronically to normocholesterolaemic or hypercholaestherolaemic rats, and the modifications of the calcium homeostasis and the strength of their muscles were investigated. While hypercholesterolaemia did not change the frequency of sparks, fluvastatin increased it on muscles both from normocholesterolaemic and from hypercholesterolaemic rats. This effect, however, was not mediated by a chronic modification of the ryanodine receptor as shown by the unchanged ryanodine binding in the latter group. While coenzyme Q10 supplementation significantly reduced the frequency of the spontaneous calcium release events, it did not affect their amplitude and spatial spread in muscles from fluvastatin-treated rats. This indicates that coenzyme Q10 supplementation prevented the spark frequency increasing effect of fluvastatin without having a major effect on the amount of calcium released during individual sparks. In conclusion, we have found that fluvastatin, independently of the cholesterol level in the blood, consistently and specifically increased the frequency of calcium sparks in skeletal muscle cells, an effect which could be prevented by the addition of coenzyme Q10 to the diet. These results support theories favouring the role of calcium handling in the pathophysiology of statin-induced myopathy and provide a possible pathway for the protective effect of coenzyme Q10 in statin treated patients symptomatic of this condition. PMID:25920381

  8. Cloning and characterization of the methyl coenzyme M reductase genes from Methanobacterium thermoautotrophicum.

    PubMed Central

    Bokranz, M; Bäumner, G; Allmansberger, R; Ankel-Fuchs, D; Klein, A

    1988-01-01

    The genes coding for methyl coenzyme M reductase were cloned from a genomic library of Methanobacterium thermoautotrophicum Marburg into Escherichia coli by using plasmid expression vectors. When introduced into E. coli, the reductase genes were expressed, yielding polypeptides identical in size to the three known subunits of the isolated enzyme, alpha, beta, and gamma. The polypeptides also reacted with the antibodies raised against the respective enzyme subunits. In M. thermoautotrophicum, the subunits are encoded by a gene cluster whose transcript boundaries were mapped. Sequence analysis revealed two more open reading frames of unknown function located between two of the methyl coenzyme M reductase genes. Images PMID:2448287

  9. Estimation of Methanogen Biomass by Quantitation of Coenzyme M

    PubMed Central

    Elias, Dwayne A.; Krumholz, Lee R.; Tanner, Ralph S.; Suflita, Joseph M.

    1999-01-01

    Determination of the role of methanogenic bacteria in an anaerobic ecosystem often requires quantitation of the organisms. Because of the extreme oxygen sensitivity of these organisms and the inherent limitations of cultural techniques, an accurate biomass value is very difficult to obtain. We standardized a simple method for estimating methanogen biomass in a variety of environmental matrices. In this procedure we used the thiol biomarker coenzyme M (CoM) (2-mercaptoethanesulfonic acid), which is known to be present in all methanogenic bacteria. A high-performance liquid chromatography-based method for detecting thiols in pore water (A. Vairavamurthy and M. Mopper, Anal. Chim. Acta 78:363–370, 1990) was modified in order to quantify CoM in pure cultures, sediments, and sewage water samples. The identity of the CoM derivative was verified by using liquid chromatography-mass spectroscopy. The assay was linear for CoM amounts ranging from 2 to 2,000 pmol, and the detection limit was 2 pmol of CoM/ml of sample. CoM was not adsorbed to sediments. The methanogens tested contained an average of 19.5 nmol of CoM/mg of protein and 0.39 ± 0.07 fmol of CoM/cell. Environmental samples contained an average of 0.41 ± 0.17 fmol/cell based on most-probable-number estimates. CoM was extracted by using 1% tri-(N)-butylphosphine in isopropanol. More than 90% of the CoM was recovered from pure cultures and environmental samples. We observed no interference from sediments in the CoM recovery process, and the method could be completed aerobically within 3 h. Freezing sediment samples resulted in 46 to 83% decreases in the amounts of detectable CoM, whereas freezing had no effect on the amounts of CoM determined in pure cultures. The method described here provides a quick and relatively simple way to estimate methanogenic biomass. PMID:10584015

  10. Evidence for acetyl coenzyme A and cinnamoyl coenzyme A in the anaerobic toluene mineralization pathway in Azoarcus tolulyticus Tol-4.

    PubMed Central

    Chee-Sanford, J C; Frost, J W; Fries, M R; Zhou, J; Tiedje, J M

    1996-01-01

    A toluene-degrading denitrifier, Azoarcus tolulyticus Tol-4, was one of eight similar strains isolated from three petroleum-contaminated aquifer sediments. When the strain was grown anaerobically on toluene, 68% of the carbon from toluene was found as CO2 and 30% was found as biomass. Strain Tol-4 had a doubling time of 4.3 h, a Vmax of 50 micromol x min-1 x g of protein-1, and a cellular yield of 49.6 g x mol of toluene-1. Benzoate appeared to be an intermediate, since F-benzoates accumulated from F-toluenes and [14C]benzoate was produced from [14C]toluene in the presence of excess benzoate. Two metabolites, E-phenylitaconic acid (1 to 2%) and benzylsuccinic acid (<1%), accumulated from anaerobic toluene metabolism. These same products were also produced when cells were grown on hydrocinnamic acid and trans-cinnamic acid but were not produced from benzylalcohol, benzaldehyde, benzoate, p-cresol, or their hydroxylated analogs. The evidence supports an anaerobic toluene degradation pathway involving an initial acetyl coenzyme A (acetyl-CoA) attack in strain Tol-4, as proposed by Evans and coworkers (P. J. Evans, W. Ling, B. Goldschmidt, E. R. Ritter, and L. Y. Young, Appl. Environ. Microbiol. 58:496-501, 1992) for another toluene-degrading denitrifier, strain T1. Our findings support a modification of the proposed pathway in which cinnamoyl-CoA follows the oxidation of hydrocinnamoyl-CoA, analogous to the presumed oxidation of benzylsuccinic acid to form E-phenylitaconic acid. Cinnamic acid was detected in Tol-4 cultures growing in the presence of toluene and [14C]acetate. We further propose a second acetyl-CoA addition to cinnamoyl-CoA as the source of benzylsuccinic acid and E-phenylitaconic acid. This pathway is supported by the finding that monofluoroacetate added to toluene-growing cultures resulted in a significant increase in production of benzylsuccinic acid and E-phenylitaconic acid and by the finding that [14C]benzylsuccinic acid was detected after

  11. Nano-encapsulation of coenzyme Q10 using octenyl succinic anhydride modified starch

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Octenyl succinic anhydride modified starch (OSA-ST) was used to encapsulate Coenzyme Q10 (CoQ10). CoQ10 was dissolved in rice bran oil (RBO), and incorporated into an aqueous OSA-ST solution. High pressure homogenization (HPH) of the mixture was conducted at 170 MPa for 5-6 cycles. The resulting ...

  12. Aldose and aldehyde reductases : structure-function studies on the coenzyme and inhibitor-binding sites.

    SciTech Connect

    El-Kabbani, O.; Old, S. E.; Ginell, S. L.; Carper, D. A.; Biosciences Division; Monash Univ.; NIH

    1999-09-03

    PURPOSE: To identify the structural features responsible for the differences in coenzyme and inhibitor specificities of aldose and aldehyde reductases. METHODS: The crystal structure of porcine aldehyde reductase in complex with NADPH and the aldose reductase inhibitor sorbinil was determined. The contribution of each amino acid lining the coenzyme-binding site to the binding of NADPH was calculated using the Discover package. In human aldose reductase, the role of the non-conserved Pro 216 (Ser in aldehyde reductase) in the binding of coenzyme was examined by site-directed mutagenesis. RESULTS: Sorbinil binds to the active site of aldehyde reductase and is hydrogen-bonded to Trp 22, Tyr 50, His 113, and the non-conserved Arg 312. Unlike tolrestat, the binding of sorbinil does not induce a change in the side chain conformation of Arg 312. Mutation of Pro 216 to Ser in aldose reductase makes the binding of coenzyme more similar to that of aldehyde reductase. CONCLUSIONS: The participation of non-conserved active site residues in the binding of inhibitors and the differences in the structural changes required for the binding to occur are responsible for the differences in the potency of inhibition of aldose and aldehyde reductases. We report that the non-conserved Pro 216 in aldose reductase contributes to the tight binding of NADPH.

  13. Structural insights into substrate and coenzyme preference by SDR family protein Gox2253 from Gluconobater oxydans.

    PubMed

    Yin, Bo; Cui, Dongbing; Zhang, Lujia; Jiang, Shuiqin; Machida, Satoru; Yuan, Y Adam; Wei, Dongzhi

    2014-11-01

    Gox2253 from Gluconobacter oxydans belongs to the short-chain dehydrogenases/reductases family, and catalyzes the reduction of heptanal, octanal, nonanal, and decanal with NADPH. To develop a robust working platform to engineer novel G. oxydans oxidoreductases with designed coenzyme preference, we adopted a structure based rational design strategy using computational predictions that considers the number of hydrogen bonds formed between enzyme and docked coenzyme. We report the crystal structure of Gox2253 at 2.6 Å resolution, ternary models of Gox2253 mutants in complex with NADH/short-chain aldehydes, and propose a structural mechanism of substrate selection. Molecular dynamics simulation shows that hydrogen bonds could form between 2'-hydroxyl group in the adenosine moiety of NADH and the side chain of Gox2253 mutant after arginine at position 42 is replaced with tyrosine or lysine. Consistent with the molecular dynamics prediction, Gox2253-R42Y/K mutants can use both NADH and NADPH as a coenzyme. Hence, the strategies here could provide a practical platform to engineer coenzyme selectivity for any given oxidoreductase and could serve as an additional consideration to engineer substrate-binding pockets. PMID:24825769

  14. A possible prebiotic synthesis of pantetheine, a precursor to coenzyme A

    NASA Technical Reports Server (NTRS)

    Keefe, A. D.; Newton, G. L.; Miller, S. L.

    1995-01-01

    The involvement of coenzyme A in many enzyme reactions suggests that it acted in this capacity very early in the development of life on Earth. Particularly relevant in this regard is its role in the activation of amino acids and hydroxy acids in the biosynthesis of some peptide antibiotics--a mechanism of peptide synthesis that forms the basis for the proposal that a thioester world could have preceded the RNA world. The components of coenzyme A have been shown to be probable prebiotic compounds: beta-alanine, pantoyl lactone and cysteamine and possibly adenosine. We show here that the pantetheine moiety of coenzyme A (which also occurs in a number of enzymes) can be synthesized in yields of several per cent by heating pantoyl lactone, beta-alanine and cysteamine at temperatures as low as 40 degrees C. These components are extremely soluble and so would have been preferentially concentrated in evaporating bodies of water, for example on beaches and at lagoon margins. Our results show that amide bonds can be formed at temperatures as low as 40 degrees C, and provide circumstantial support for the suggestion that pantetheine and coenzyme A were important in the earliest metabolic systems.

  15. A coenzyme-independent decarboxylase/oxygenase cascade for the efficient synthesis of vanillin.

    PubMed

    Furuya, Toshiki; Miura, Misa; Kino, Kuniki

    2014-10-13

    Vanillin is one of the most widely used flavor compounds in the world as well as a promising versatile building block. The biotechnological production of vanillin from plant-derived ferulic acid has attracted much attention as a new alternative to chemical synthesis. One limitation of the known metabolic pathway to vanillin is its requirement for expensive coenzymes. Here, we developed a novel route to vanillin from ferulic acid that does not require any coenzymes. This artificial pathway consists of a coenzyme-independent decarboxylase and a coenzyme-independent oxygenase. When Escherichia coli cells harboring the decarboxylase/oxygenase cascade were incubated with ferulic acid, the cells efficiently synthesized vanillin (8.0 mM, 1.2 g L(-1) ) via 4-vinylguaiacol in one pot, without the generation of any detectable aromatic by-products. The efficient method described here might be applicable to the synthesis of other high-value chemicals from plant-derived aromatics. PMID:25164030

  16. 4-Hydroxybenzoate-coenzyme A ligase from Rhodopseudomonas palustris: purification, gene sequence, and role in anaerobic degradation.

    PubMed Central

    Gibson, J; Dispensa, M; Fogg, G C; Evans, D T; Harwood, C S

    1994-01-01

    Anaerobic metabolism of most aromatic acids is initiated by coenzyme A thioester formation. Rhodopseudomonas palustris grows well under anaerobic, phototrophic conditions with many aromatic acids, including benzoate and 4-hydroxybenzoate, as a carbon source. A coenzyme A ligase that reacts with 4-hydroxybenzoate was purified from 4-hydroxybenzoate-grown cells of R. palustris. This enzyme required MgATP, reduced coenzyme A, and 4-hydroxybenzoate, benzoate, or cyclohex-1,4-dienecarboxylate for optimal activity but also used phosphopantetheine, cyclohex-2,5-dienecarboxylate, and 4-fluorobenzoate at lower rates. The 4-hydroxybenzoate-coenzyme A ligase differed in molecular characteristics from a previously described benzoate-coenzyme A ligase from R. palustris, and the two ligases did not cross-react immunologically. The gene encoding the 4-hydroxybenzoate enzyme was cloned and sequenced. The deduced gene product showed about 20% amino acid identity with bacterial coenzyme A ligases involved in aerobic degradation of aromatic acids. An R. palustris mutant carrying a disrupted 4-hydroxybenzoate-coenzyme A ligase gene was unable to grow with 4-hydroxybenzoate under anaerobic conditions, indicating that the enzyme is essential for anaerobic degradation of this compound. Images PMID:8300518

  17. Characterization of the enzymatic conversion of sulfoacetaldehyde and L-cysteine into coenzyme M (2-mercaptoethanesulfonic acid)

    SciTech Connect

    White, R.H. )

    1988-09-20

    Sulfoacetaldehyde was shown to be converted enzymatically into coenzyme M by cell-free extracts of methanogenic bacteria. Gas chromatography-mass spectrometry (GC-MS) of the S-methyl methyl ester derivative of the coenzyme M isolated from the extracts was used to measure both the extent and position of the deuterium incorporated into coenzyme M from (2,2-{sup 2}H{sub 2})sulfoacetaldehyde. The conversion of sulfoacetaldehyde into coenzyme M was greatly stimulated by the addition of L-cysteine (20 mM) to the extracts and/or by incubating the extracts under hydrogen, whereas incubation in the presence of sulfide (20 mM) greatly reduced coenzyme M synthesis. Incubation of a cell-free extract from Methanobacterium formicicum with (2,2-{sup 2}H{sub 2})sulfoacetaldehyde and ({sup 34}S)-L-cysteine (92.6 atom % {sup 34}S) led to the production of coenzyme M in which the thiol portion of the molecule contained 90 atom % {sup 34}S. (ethylene-{sup 2}H{sub 4})-S-(2-Sulfoethyl)cysteine, incubated with this cell-free extract at a concentration of 22 mM, readily cleaved to coenzyme M. On the basis of these observations, it is concluded that sulfoacetaldehyde is converted into coenzyme M by reacting with cysteine to form the thiazolidine adduct (2-(sulfomethyl)thiazolidine-4-carboxylic acid), which undergoes a reductive cleavage of the heterocyclic C(2)-N bond to form S-(2-sulfoethyl)cysteine, which, in turn, undergoes a {beta}-elimination to produce coenzyme M.

  18. Benzoate-coenzyme A ligase, encoded by badA, is one of three ligases able to catalyze benzoyl-coenzyme A formation during anaerobic growth of Rhodopseudomonas palustris on benzoate.

    PubMed Central

    Egland, P G; Gibson, J; Harwood, C S

    1995-01-01

    The first step of anaerobic benzoate degradation is the formation of benzoyl-coenzyme A by benzoate-coenzyme A ligase. This enzyme, purified from Rhodopseudomonas palustris, is maximally active with 5 microM benzoate. To study the molecular basis for this reaction, the benzoate-coenzyme A ligase gene (badA) was cloned and sequenced. The deduced amino acid sequence of badA showed substantial similarity to other coenzyme A ligases, with the highest degree of similarity being that to 4-hydroxybenzoate-coenzyme A ligase (50% amino acid identity) from R. palustris. A badA mutant that was constructed had barely detectable levels of ligase activity when cell extracts were assayed at 10 microM benzoate. Despite this, the mutant grew at wild-type rates on benzoate under laboratory culture conditions (3 mM benzoate), and mutant cell extracts had high levels of ligase activity when assayed at a high concentration of benzoate (1 mM). This suggested that R. palustris expresses, in addition to BadA, a benzoate-activating enzyme(s) with a relatively low affinity for benzoate. A possible role of 4-hydroxybenzoate-coenzyme A ligase (encoded by hbaA) in this capacity was investigated by constructing a badA hbaA double mutant. Although the double mutant grew more slowly on benzoate than badA cells, growth rates were still significant, suggesting the involvement of a third enzyme in benzoate activation. Competition experiments involving the addition of a small amount of cyclohexanecarboxylate to ligase assay mixtures implicated cyclohexanecarboxylate-coenzyme A ligase as being this third enzyme. These results show that wild-type R. palustris cells synthesize at least three enzymes that can catalyze the initial step in anaerobic benzoate degradation during growth on benzoate. This observation supports previous suggestions that benzoyl-coenzyme A formation plays a central role in anaerobic aromatic compound biodegradation. PMID:7592432

  19. Ni/sup II/(dioxo(16)aneN/sub 5/)-induced methane formation from methyl coenzyme M

    SciTech Connect

    Drain, C.M.; Sable, D.B.; Corden, B.B.

    1988-07-13

    A mechanism has been previously proposed for methyl-coenzyme M (H/sub 3/CSCH/sub 2/CH/sub 2/SO/sub 3//sup /minus//) reductase where Ni/sup II/F/sub 430/ is first reduced to NiF/sub 430/, which homolytically cleaves the methyl-coenzyme M to produce methyl-Ni/sup I/F/sub 430/ followed by the protonation of methyl-Ni/sup I/F/sub 430/ to yield CH/sub 4/ and Ni/sup II/F/sub 430/. The role of the nickel ion oxidation state in methyl-coenzyme M catalysis has been examined. It was found that both the mono- and divalent oxidation states of the water soluble Ni (dioxo(16)-aneN/sub 5/), NiL, complex catalyze the methyl-coenzyme M to methane and coenzyme M. Some aqueous solutions of other nickel compounds, e.g. nickel (II) acetate, nickel(II) tetraethylenepentamine, or nickel(II) 1,4,8,11-tetraazacyclotetradecane-5,7-dione, do not convert methyl-coenzyme M to methane under argon or hydrogen. 30 references, 1 figure.

  20. Impaired Coenzyme A metabolism affects histone and tubulin acetylation in Drosophila and human cell models of pantothenate kinase associated neurodegeneration.

    PubMed

    Siudeja, Katarzyna; Srinivasan, Balaji; Xu, Lanjun; Rana, Anil; de Jong, Jannie; Nollen, Ellen A A; Jackowski, Suzanne; Sanford, Lynn; Hayflick, Susan; Sibon, Ody C M

    2011-12-01

    Pantothenate kinase-associated neurodegeneration (PKAN is a neurodegenerative disease with unresolved pathophysiology. Previously, we observed reduced Coenzyme A levels in a Drosophila model for PKAN. Coenzyme A is required for acetyl-Coenzyme A synthesis and acyl groups from the latter are transferred to lysine residues of proteins, in a reaction regulated by acetyltransferases. The tight balance between acetyltransferases and their antagonistic counterparts histone deacetylases is a well-known determining factor for the acetylation status of proteins. However, the influence of Coenzyme A levels on protein acetylation is unknown. Here we investigate whether decreased levels of the central metabolite Coenzyme A induce alterations in protein acetylation and whether this correlates with specific phenotypes of PKAN models. We show that in various organisms proper Coenzyme A metabolism is required for maintenance of histone- and tubulin acetylation, and decreased acetylation of these proteins is associated with an impaired DNA damage response, decreased locomotor function and decreased survival. Decreased protein acetylation and the concurrent phenotypes are partly rescued by pantethine and HDAC inhibitors, suggesting possible directions for future PKAN therapy development. PMID:21998097

  1. Impaired Coenzyme A metabolism affects histone and tubulin acetylation in Drosophila and human cell models of pantothenate kinase associated neurodegeneration

    PubMed Central

    Siudeja, Katarzyna; Srinivasan, Balaji; Xu, Lanjun; Rana, Anil; de Jong, Jannie; Nollen, Ellen A A; Jackowski, Suzanne; Sanford, Lynn; Hayflick, Susan; Sibon, Ody C M

    2011-01-01

    Pantothenate kinase-associated neurodegeneration (PKAN is a neurodegenerative disease with unresolved pathophysiology. Previously, we observed reduced Coenzyme A levels in a Drosophila model for PKAN. Coenzyme A is required for acetyl-Coenzyme A synthesis and acyl groups from the latter are transferred to lysine residues of proteins, in a reaction regulated by acetyltransferases. The tight balance between acetyltransferases and their antagonistic counterparts histone deacetylases is a well-known determining factor for the acetylation status of proteins. However, the influence of Coenzyme A levels on protein acetylation is unknown. Here we investigate whether decreased levels of the central metabolite Coenzyme A induce alterations in protein acetylation and whether this correlates with specific phenotypes of PKAN models. We show that in various organisms proper Coenzyme A metabolism is required for maintenance of histone- and tubulin acetylation, and decreased acetylation of these proteins is associated with an impaired DNA damage response, decreased locomotor function and decreased survival. Decreased protein acetylation and the concurrent phenotypes are partly rescued by pantethine and HDAC inhibitors, suggesting possible directions for future PKAN therapy development. PMID:21998097

  2. DNA sequencing and expression of the formyl coenzyme A transferase gene, frc, from Oxalobacter formigenes.

    PubMed Central

    Sidhu, H; Ogden, S D; Lung, H Y; Luttge, B G; Baetz, A L; Peck, A B

    1997-01-01

    Oxalic acid, a highly toxic by-product of metabolism, is catabolized by a limited number of bacterial species utilizing an activation-decarboxylation reaction which yields formate and CO2. frc, the gene encoding formyl coenzyme A transferase, an enzyme which transfers a coenzyme A moiety to activate oxalic acid, was cloned from the bacterium Oxalobacter formigenes. DNA sequencing revealed a single open reading frame of 1,284 bp capable of encoding a 428-amino-acid protein. A presumed promoter region and a rho-independent termination sequence suggest that this gene is part of a monocistronic operon. A PCR fragment containing the open reading frame, when overexpressed in Escherichia coli, produced a product exhibiting enzymatic activity similar to the purified native enzyme. With this, the two genes necessary for bacterial catabolism of oxalate, frc and oxc, have now been cloned, sequenced, and expressed. PMID:9150242

  3. Probing reversible chemistry in coenzyme B12 -dependent ethanolamine ammonia lyase with kinetic isotope effects.

    PubMed

    Jones, Alex R; Rentergent, Julius; Scrutton, Nigel S; Hay, Sam

    2015-06-01

    Coenzyme B12 -dependent enzymes such as ethanolamine ammonia lyase have remarkable catalytic power and some unique properties that enable detailed analysis of the reaction chemistry and associated dynamics. By selectively deuterating the substrate (ethanolamine) and/or the β-carbon of the 5'-deoxyadenosyl moiety of the intrinsic coenzyme B12 , it was possible to experimentally probe both the forward and reverse hydrogen atom transfers between the 5'-deoxyadenosyl radical and substrate during single-turnover stopped-flow measurements. These data are interpreted within the context of a kinetic model where the 5'-deoxyadenosyl radical intermediate may be quasi-stable and rearrangement of the substrate radical is essentially irreversible. Global fitting of these data allows estimation of the intrinsic rate constants associated with CoC homolysis and initial H-abstraction steps. In contrast to previous stopped-flow studies, the apparent kinetic isotope effects are found to be relatively small. PMID:25950663

  4. Role of Heme Oxygenase, Leptin, Coenzyme Q10 and Trace Elements in Pre-eclamptic Women.

    PubMed

    Abo-Elmatty, Dina M; Badawy, Ehsan A; Hussein, Jihan S; Elela, Somaya Abo; Megahed, Hoda A

    2012-10-01

    The objective of this study to evaluate heme oxygenase (COHb), leptin and coenzyme Q10 (CoQ10) in pre-eclamptic women. Also Zinc, copper, Iron, total iron binding capacity, Ferritin and uric acid were assessed. 120 female subjects were included in this study. They were divided into, 60 female with normal pregnancy attending the outpatient clinic, 60 pre-eclamptic patients were recruited from obstetrics and gynaecology department El-kasr El-Aini hospital. The results showed that in pre-eclampatic group, leptin level was significantly increased while COHb and CoQ10 was significantly decreased. It is concluded that hemeoxygenase, leptin and coenzyme CoQ10 can be considered as new markers for prediction of pre-eclampsia. PMID:24082464

  5. Diol Dehydratase-Reactivase Is Essential for Recycling of Coenzyme B12 in Diol Dehydratase.

    PubMed

    Toraya, Tetsuo; Tanokuchi, Aya; Yamasaki, Ai; Nakamura, Takehiro; Ogura, Kenichi; Tobimatsu, Takamasa

    2016-01-12

    Holoenzymes of adenosylcobalamin-dependent diol and glycerol dehydratases undergo mechanism-based inactivation by glycerol and O2 inactivation in the absence of substrate, which accompanies irreversible cleavage of the coenzyme Co-C bond. The inactivated holodiol dehydratase and the inactive enzyme·cyanocobalamin complex were (re)activated by incubation with NADH, ATP, and Mg(2+) (or Mn(2+)) in crude extracts of Klebsiella oxytoca, suggesting the presence of a reactivating system in the extract. The reducing system with NADH could be replaced by FMNH2. When inactivated holoenzyme or the enzyme·cyanocobalamin complex, a model of inactivated holoenzyme, was incubated with purified recombinant diol dehydratase-reactivase (DD-R) and an ATP:cob(I)alamin adenosyltransferase in the presence of FMNH2, ATP, and Mg(2+), diol dehydratase activity was restored. Among the three adenosyltransferases (PduO, EutT, and CobA) of this bacterium, PduO and CobA were much more efficient for the reactivation than EutT, although PduO showed the lowest adenosyltransfease activity toward free cob(I)alamin. These results suggest that (1) diol dehydratase activity is maintained through coenzyme recycling by a reactivating system for diol dehydratase composed of DD-R, PduO adenosyltransferase, and a reducing system, (2) the releasing factor DD-R is essential for the recycling of adenosycobalamin, a tightly bound, prosthetic group-type coenzyme, and (3) PduO is a specific adenosylating enzyme for the DD reactivation, whereas CobA and EutT exert their effects through free synthesized coenzyme. Although FMNH2 was mainly used as a reductant in this study, a natural reducing system might consist of PduS cobalamin reductase and NADH. PMID:26704729

  6. Primary coenzyme Q10 deficiency presenting as fatal neonatal multiorgan failure.

    PubMed

    Desbats, Maria Andrea; Vetro, Annalisa; Limongelli, Ivan; Lunardi, Giada; Casarin, Alberto; Doimo, Mara; Spinazzi, Marco; Angelini, Corrado; Cenacchi, Giovanna; Burlina, Alberto; Rodriguez Hernandez, Maria Angeles; Chiandetti, Lino; Clementi, Maurizio; Trevisson, Eva; Navas, Placido; Zuffardi, Orsetta; Salviati, Leonardo

    2015-09-01

    Coenzyme Q10 deficiency is a clinically and genetically heterogeneous disorder, with manifestations that may range from fatal neonatal multisystem failure, to adult-onset encephalopathy. We report a patient who presented at birth with severe lactic acidosis, proteinuria, dicarboxylic aciduria, and hepatic insufficiency. She also had dilation of left ventricle on echocardiography. Her neurological condition rapidly worsened and despite aggressive care she died at 23 h of life. Muscle histology displayed lipid accumulation. Electron microscopy showed markedly swollen mitochondria with fragmented cristae. Respiratory-chain enzymatic assays showed a reduction of combined activities of complex I+III and II+III with normal activities of isolated complexes. The defect was confirmed in fibroblasts, where it could be rescued by supplementing the culture medium with 10 μM coenzyme Q10. Coenzyme Q10 levels were reduced (28% of controls) in these cells. We performed exome sequencing and focused the analysis on genes involved in coenzyme Q10 biosynthesis. The patient harbored a homozygous c.545T>G, p.(Met182Arg) alteration in COQ2, which was validated by functional complementation in yeast. In this case the biochemical and morphological features were essential to direct the genetic diagnosis. The parents had another pregnancy after the biochemical diagnosis was established, but before the identification of the genetic defect. Because of the potentially high recurrence risk, and given the importance of early CoQ10 supplementation, we decided to treat with CoQ10 the newborn child pending the results of the biochemical assays. Clinicians should consider a similar management in siblings of patients with CoQ10 deficiency without a genetic diagnosis. PMID:25564041

  7. The complete coenzyme B12 biosynthesis gene cluster of Lactobacillus reuteri CRL1098.

    PubMed

    Santos, Filipe; Vera, Jose L; van der Heijden, René; Valdez, Graciela; de Vos, Willem M; Sesma, Fernando; Hugenholtz, Jeroen

    2008-01-01

    The coenzyme B(12) production pathway in Lactobacillus reuteri has been deduced using a combination of genetic, biochemical and bioinformatics approaches. The coenzyme B(12) gene cluster of Lb. reuteri CRL1098 has the unique feature of clustering together the cbi, cob and hem genes. It consists of 29 ORFs encoding the complete enzymic machinery necessary for de novo biosynthesis. Transcriptional analysis showed it to be expressed as two tandem transcripts of approximately 22 and 4 kb, carrying cobD, cbiABCDETFGHJ, cobA/hemD, cbiKLMNQOP, sirA, hemACBL, and cobUSC, hemD, cobT, respectively. Both transcripts appear to be similarly regulated, and under the conditions assayed are induced in the late-exponential growth phase. Evidence for a regulatory mechanism of negative feedback inhibition by vitamin B(12) itself was observed. Comparative genomics analysis of the coding sequences showed them to be most similar to those coding for the anaerobic coenzyme B(12) pathways previously characterized in a few representatives of the genera Listeria and Salmonella. This contrasts with the trusted species phylogeny and suggests horizontal gene transfer of the B(12) biosynthesis genes. G+C content and codon adaptation index analysis is suggestive that the postulated transfer of these genes was not a recent event. Additional comparative genomics and transcriptional analysis of the sequences acquired during this study suggests a functional link between coenzyme B(12) biosynthesis and reuterin production, which might be implicated in Lb. reuteri's success in colonizing the gastrointestinal tract. This information on gene organization, gene transcription and gene acquisition is relevant for the development of (fermented) foods and probiotics enriched in B(12). PMID:18174128

  8. Metal plasmon-coupled fluorescence imaging and label free coenzyme detection in cells

    SciTech Connect

    Zhang, Jian; Fu, Yi; Li, Ge; Zhao, Richard Y.

    2012-08-31

    Highlights: Black-Right-Pointing-Pointer Metal nanoparticle for fluorescence cell imaging. Black-Right-Pointing-Pointer Non-invasive emission detection of coenzyme in cell on time-resolved confocal microscope. Black-Right-Pointing-Pointer Near-field interaction of flavin adenine dinucleotide with silver substrate. Black-Right-Pointing-Pointer Isolation of emissions by coenzymes from cellular autofluorescence on fluorescence cell imaging. -- Abstract: Flavin adenine dinucleotide (FAD) is a key metabolite in cellular energy conversion. Flavin can also bind with some enzymes in the metabolic pathway and the binding sites may be changed due to the disease progression. Thus, there is interest on studying its expression level, distribution, and redox state within the cells. FAD is naturally fluorescent, but it has a modest extinction coefficient and quantum yield. Hence the intrinsic emission from FAD is generally too weak to be isolated distinctly from the cellular backgrounds in fluorescence cell imaging. In this article, the metal nanostructures on the glass coverslips were used as substrates to measure FAD in cells. Particulate silver films were fabricated with an optical resonance near the absorption and the emission wavelengths of FAD which can lead to efficient coupling interactions. As a result, the emission intensity and quantum yield by FAD were greatly increased and the lifetime was dramatically shortened resulting in less interference from the longer lived cellular background. This feature may overcome the technical limits that hinder the direct observation of intrinsically fluorescent coenzymes in the cells by fluorescence microscopy. Fluorescence cell imaging on the metallic particle substrates may provide a non-invasive strategy for collecting the information of coenzymes in cells.

  9. Catalytic Formation of Hydrogen Peroxide from Coenzyme NADH and Dioxygen with a Water-Soluble Iridium Complex and a Ubiquinone Coenzyme Analogue.

    PubMed

    Suenobu, Tomoyoshi; Shibata, Satoshi; Fukuzumi, Shunichi

    2016-08-01

    A ubiquinone coenzyme analogue (Q0: 2,3-dimethoxy-5-methyl-1,4-benzoquinone) was reduced by coenzyme NADH to yield the corresponding reduced form of Q0 (Q0H2) in the presence of a catalytic amount of a [C,N] cyclometalated organoiridium complex (1: [Ir(III)(Cp*)(4-(1H-pyrazol-1-yl-κN(2))benzoic acid-κC(3))(H2O)]2SO4) in water at ambient temperature as observed in the respiratory chain complex I (Complex I). In the catalytic cycle, the reduction of 1 by NADH produces the corresponding iridium hydride complex that in turn reduces Q0 to produce Q0H2. Q0H2 reduced dioxygen to yield hydrogen peroxide (H2O2) under slightly basic conditions. Catalytic generation of H2O2 was made possible in the reaction of O2 with NADH as the functional expression of NADH oxidase in white blood cells utilizing the redox cycle of Q0 as well as 1 for the first time in a nonenzymatic homogeneous reaction system. PMID:27403568

  10. Determination of coenzyme Q10, coenzyme Q9, and melatonin contents in virgin argan oils: comparison with other edible vegetable oils.

    PubMed

    Venegas, Carmen; Cabrera-Vique, Carmen; García-Corzo, Laura; Escames, Germaine; Acuña-Castroviejo, Darío; López, Luis Carlos

    2011-11-23

    Virgin argan oil possesses high antioxidant capacity (AC), which may be partially explained by its high content in antioxidant molecules such as polyphenols and tocopherols. However, the content in other antioxidant molecules, for example, coenzyme Q10 (CoQ(10)), coenzyme Q9 (CoQ(9)), and melatonin (Mel), which have been identified in other edible vegetable oils, have not been evaluated in virgin argan oil. Consequently, it was decided to evaluate the contents of CoQ(10), CoQ(9), and Mel in virgin argan oils and compare the results to those obtained in extra virgin olive oils and some varieties of seed oils. By the use of sensitive HPLC-EC/F methods, the results showed that virgin argan oil is a rich source of CoQ(10) and Mel, but no CoQ(9) was detected. Extra virgin olive oil showed higher levels of CoQ(10) and lower levels of Mel than virgin argan oil. Between the seed oil samples, only virgin soybean oil showed higher CoQ(10) and Mel levels than virgin argan oil. The results may be relevant for the contribution of CoQ(10) and Mel to the biological activities of virgin argan oil. PMID:22007968

  11. Cloning, expression, and characterization of coenzyme-B12-dependent diol dehydratase from Lactobacillus diolivorans.

    PubMed

    Wei, Xuqin; Meng, Xiaolei; Chen, Yunlai; Wei, Yutuo; Du, Liqin; Huang, Ribo

    2014-01-01

    The three gldCDE genes from Lactobacillus diolivorans, that encode the three subunits of the glycerol dehydratase, were cloned and the proteins were co-expressed in soluble form in Escherichia coli with added sorbitol and betaine hydrochloride. The purified enzyme exists as a heterohexamer (α2β2γ2) structure with a native molecular mass of 210 kDa. It requires coenzyme B12 for catalytic activity and is subject to suicide inactivation by glycerol during catalysis. The enzyme had maximum activity at pH 8.6 and 37 °C. The apparent K m values for coenzyme B12, 1,2-ethanediol, 1,2-propanediol, and glycerol were 1.5 μM, 10.5 mM, 1.3 mM, and 5.8 mM, respectively. Together, these results indicated that the three genes gldCDE encoding the proteins make up a coenzyme B12-dependent diol dehydratase and not a glycerol dehydratase. PMID:24078133

  12. An in vitro evolved glmS ribozyme has the wildtype fold but loses coenzyme dependence

    PubMed Central

    Lau, Matthew W. L.; Ferré-D’Amaré, Adrian R.

    2014-01-01

    Uniquely among known ribozymes, the glmS ribozyme-riboswitch requires a small-molecule coenzyme, glucosamine-6-phosphate (GlcN6P). Although consistent with its gene-regulatory function, use of GlcN6P is unexpected because all other characterized self-cleaving ribozymes employ RNA functional groups or divalent cations for catalysis. To determine what active site features make this ribozyme reliant on GlcN6P, and to evaluate whether it might have evolved from a coenzyme-independent ancestor, we isolated a GlcN6P-independent variant through in vitro selection. Three active site mutations suffice to generate a highly reactive RNA that adopts the wildtype fold but employs divalent cations for catalysis and is insensitive to GlcN6P. Biochemical and crystallographic comparisons of wildtype and mutant ribozymes show that a handful of functional groups fine-tune the RNA to be either coenzyme- or cation-dependent. These results indicate that a few mutations can confer novel biochemical activities on structured RNAs. Thus, families of structurally related ribozymes with divergent function may exist. PMID:24096303

  13. Coenzyme Q{sub 10} and alpha-tocopherol protect against amitriptyline toxicity

    SciTech Connect

    Cordero, Mario D.; Moreno-Fernandez, Ana Maria; Gomez-Skarmeta, Jose Luis; Miguel, Manuel de; Garrido-Maraver, Juan; Oropesa-Avila, Manuel; Rodriguez-Hernandez, Angeles; Navas, Placido; Sanchez-Alcazar, Jose Antonio

    2009-03-15

    Since amitriptyline is a very frequently prescribed antidepressant drug, it is not surprising that amitriptyline toxicity is relatively common. Amitriptyline toxic systemic effects include cardiovascular, autonomous nervous, and central nervous systems. To understand the mechanisms of amitriptyline toxicity we studied the cytotoxic effects of amitriptyline treatment on cultured primary human fibroblasts and zebrafish embryos, and the protective role of coenzyme Q{sub 10} and alpha-tocopherol, two membrane antioxidants. We found that amitriptyline treatment induced oxidative stress and mitochondrial dysfunction in primary human fibroblasts. Mitochondrial dysfunction in amitriptyline treatment was characterized by reduced expression levels of mitochondrial proteins and coenzyme Q{sub 10}, decreased NADH:cytochrome c reductase activity, and a drop in mitochondrial membrane potential. Moreover, and as a consequence of these toxic effects, amitriptyline treatment induced a significant increase in apoptotic cell death activating mitochondrial permeability transition. Coenzyme Q{sub 10} and alpha-tocopherol supplementation attenuated ROS production, lipid peroxidation, mitochondrial dysfunction, and cell death, suggesting that oxidative stress affecting cell membrane components is involved in amitriptyline cytotoxicity. Furthermore, amitriptyline-dependent toxicity and antioxidant protection were also evaluated in zebrafish embryos, a well established vertebrate model to study developmental toxicity. Amitriptyline significantly increased embryonic cell death and apoptosis rate, and both antioxidants provided a significant protection against amitriptyline embryotoxicity.

  14. The Phosphatase Ptc7 Induces Coenzyme Q Biosynthesis by Activating the Hydroxylase Coq7 in Yeast*

    PubMed Central

    Martín-Montalvo, Alejandro; González-Mariscal, Isabel; Pomares-Viciana, Teresa; Padilla-López, Sergio; Ballesteros, Manuel; Vazquez-Fonseca, Luis; Gandolfo, Pablo; Brautigan, David L.; Navas, Placido; Santos-Ocaña, Carlos

    2013-01-01

    The study of the components of mitochondrial metabolism has potential benefits for health span and lifespan because the maintenance of efficient mitochondrial function and antioxidant capacity is associated with improved health and survival. In yeast, mitochondrial function requires the tight control of several metabolic processes such as coenzyme Q biosynthesis, assuring an appropriate energy supply and antioxidant functions. Many mitochondrial processes are regulated by phosphorylation cycles mediated by protein kinases and phosphatases. In this study, we determined that the mitochondrial phosphatase Ptc7p, a Ser/Thr phosphatase, was required to regulate coenzyme Q6 biosynthesis, which in turn activated aerobic metabolism and enhanced oxidative stress resistance. We showed that Ptc7p phosphatase specifically activated coenzyme Q6 biosynthesis through the dephosphorylation of the demethoxy-Q6 hydroxylase Coq7p. The current findings revealed that Ptc7p is a regulator of mitochondrial metabolism that is essential to maintain proper function of the mitochondria by regulating energy metabolism and oxidative stress resistance. PMID:23940037

  15. Structure of a methyl-coenzyme M reductase from Black Sea mats that oxidize methane anaerobically.

    PubMed

    Shima, Seigo; Krueger, Martin; Weinert, Tobias; Demmer, Ulrike; Kahnt, Jörg; Thauer, Rudolf K; Ermler, Ulrich

    2012-01-01

    The anaerobic oxidation of methane (AOM) with sulphate, an area currently generating great interest in microbiology, is accomplished by consortia of methanotrophic archaea (ANME) and sulphate-reducing bacteria. The enzyme activating methane in methanotrophic archaea has tentatively been identified as a homologue of methyl-coenzyme M reductase (MCR) that catalyses the methane-forming step in methanogenic archaea. Here we report an X-ray structure of the 280 kDa heterohexameric ANME-1 MCR complex. It was crystallized uniquely from a protein ensemble purified from consortia of microorganisms collected with a submersible from a Black Sea mat catalysing AOM with sulphate. Crystals grown from the heterogeneous sample diffract to 2.1 Å resolution and consist of a single ANME-1 MCR population, demonstrating the strong selective power of crystallization. The structure revealed ANME-1 MCR in complex with coenzyme M and coenzyme B, indicating the same substrates for MCR from methanotrophic and methanogenic archaea. Differences between the highly similar structures of ANME-1 MCR and methanogenic MCR include a F(430) modification, a cysteine-rich patch and an altered post-translational amino acid modification pattern, which may tune the enzymes for their functions in different biological contexts. PMID:22121022

  16. The PduL Phosphotransacylase Is Used To Recycle Coenzyme A within the Pdu Microcompartment

    PubMed Central

    Liu, Yu; Jorda, Julien; Yeates, Todd O.

    2015-01-01

    ABSTRACT In Salmonella enterica, 1,2-propanediol (1,2-PD) utilization (Pdu) is mediated by a bacterial microcompartment (MCP). The Pdu MCP consists of a multiprotein shell that encapsulates enzymes and cofactors for 1,2-PD catabolism, and its role is to sequester a reactive intermediate (propionaldehyde) to minimize cellular toxicity and DNA damage. For the Pdu MCP to function, the enzymes encapsulated within must be provided with a steady supply of substrates and cofactors. In the present study, Western blotting assays were used to demonstrate that the PduL phosphotransacylase is a component of the Pdu MCP. We also show that the N-terminal 20-residue-long peptide of PduL is necessary and sufficient for targeting PduL and enhanced green fluorescent protein (eGFP) to the lumen of the Pdu MCP. We present the results of genetic tests that indicate that PduL plays a role in the recycling of coenzyme A internally within the Pdu MCP. However, the results indicate that some coenzyme A recycling occurs externally to the Pdu MCP. Hence, our results support a model in which a steady supply of coenzyme A is provided to MCP lumen enzymes by internal recycling by PduL as well as by the movement of coenzyme A across the shell by an unknown mechanism. These studies expand our understanding of the Pdu MCP, which has been linked to enteric pathogenesis and which provides a possible basis for the development of intracellular bioreactors for use in biotechnology. IMPORTANCE Bacterial MCPs are widespread organelles that play important roles in pathogenesis and global carbon fixation. Here we show that the PduL phosphotransacylase is a component of the Pdu MCP. We also show that PduL plays a key role in cofactor homeostasis by recycling coenzyme A internally within the Pdu MCP. Further, we identify a potential N-terminal targeting sequence using a bioinformatic approach and show that this short sequence extension is necessary and sufficient for directing PduL as well as heterologous

  17. Coenzyme Q10 Supplementation Modulates NFκB and Nrf2 Pathways in Exercise Training

    PubMed Central

    Pala, Ragip; Orhan, Cemal; Tuzcu, Mehmet; Sahin, Nurhan; Ali, Shakir; Cinar, Vedat; Atalay, Mustafa; Sahin, Kazim

    2016-01-01

    This study reports the effects of Q10, coenzyme Q10 or ubiquinone, a component of the electron transport chain in mitochondria, on nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB), inhibitors of kappa B (IκB), nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and hemeoxygenase 1 (HO-1) in rats after chronic exercise training for 6 weeks. 8-week old male Wistar rats were assigned randomly to one of four treatments planned in a 2 x 2 factorial arrangement of two condition (sedentary vs. exercise training), and two coenzyme Q10 levels (0 and 300 mg/kg per day for 6 weeks). The expression levels of the target proteins were determined in the heart, liver and muscle, and biochemical parameters including creatinine, urea, glucose and lipid profile were investigated in plasma. When compared with sedentary group, significant decreases in heart, liver and muscle NFκB levels by 45%, 26% and 44% were observed in Q10 supplemented rats after exercise training, respectively, while the inhibitory protein IκB increased by 179%, 111% and 127% in heart, liver and muscle tissues. Q10 supplementation caused an increase in Nrf2 (167%, 165% and 90%) and HO-1 (107%, 156% and 114%) after exercise training in heart, liver and muscle tissues (p < 0.05). No significant change was observed in any of the parameters associated with protein, carbohydrate and lipid metabolism, except that exercise caused a decrease in plasma triglyceride, which was further decreased by Q10. In conclusion, these results suggest that Q10 modulates the expression of NFκB, IκB, Nrf2 and HO-1 in exercise training, indicating an anti-inflammatory effect of Q10 and emphasizes its role in antioxidant defense. Key points Coenzyme Q10 is a component of the electron transport chain in mitochondria which is linked to the generation of energy in the cell. Coenzyme Q10 may inhibit the peroxidation of lipids, thus acting as an antioxidant and protects tissue against oxidative injury. Using of coenzyme

  18. Beta-oxidation of very-long-chain fatty acids and their coenzyme A derivatives by human skin fibroblasts.

    PubMed

    Singh, H; Derwas, N; Poulos, A

    1987-05-01

    The beta-oxidation of lignoceric acid (C24:0), hexacosanoic acid (C26:0), and their coenzyme A derivatives was investigated in human skin fibroblast homogenates. The cofactor requirements for oxidation of lignoceric acid and hexacosanoic acid were identical but were different from their coenzyme A derivatives. For example, lignoceric acid and hexacosanoic acid oxidation was strictly ATP dependent whereas the oxidation of the corresponding coenzyme A derivatives was ATP independent. Also the rate of oxidation of coenzyme A derivatives of lignoceric acid or hexacosanoic acid was much higher compared to the free fatty acids. In patients with Zellweger's syndrome, X-linked adrenoleukodystrophy and infantile Refsum's disease, the beta-oxidation of lignoceric and hexacosanoic acids was defective whereas the oxidation of their corresponding coenzyme A derivatives was nearly normal. The results presented in this communication suggest strongly that the beta-oxidation of very-long-chain fatty acids occurs exclusively in peroxisomes. However, the coenzyme A derivatives of very-long-chain fatty acids can be oxidized in mitochondria as well as in peroxisomes. The inability of the mitochondrial system to oxidize free fatty acids may be due to its inability to convert them to their corresponding coenzyme A derivatives. Our results suggest that a specific very-long-chain fatty acyl CoA synthetase may be required for the activation of the free fatty acids and that this synthetase may be deficient in patients with Zellweger's syndrome and possibly X-linked adrenoleukodystrophy, as well. The results presented suggest that substrate specificity and the subcellular localization of the synthetase may regulate the beta-oxidation of very-long-chain fatty acids in the cell. PMID:2437859

  19. Thermodynamics of various F420 coenzyme models as sources of electrons, hydride ions, hydrogen atoms and protons in acetonitrile.

    PubMed

    Xia, Ke; Shen, Guang-Bin; Zhu, Xiao-Qing

    2015-06-14

    32 F420 coenzyme models with alkylation of the three different N atoms (N1, N3 and N10) in the core structure (XFH(-)) were designed and synthesized and the thermodynamic driving forces (defined in terms of the molar enthalpy changes or the standard redox potentials in this work) of the 32 XFH(-) releasing hydride ions, hydrogen atoms and electrons, the thermodynamic driving forces of the 32 XFH˙ releasing protons and hydrogen atoms and the thermodynamic driving forces of XF(-)˙ releasing electrons in acetonitrile were determined using titration calorimetry and electrochemical methods. The effects of the methyl group at N1, N3 and N10 and a negative charge on N1 and N10 atoms on the six thermodynamic driving forces of the F420 coenzyme models and their related reaction intermediates were examined; the results show that seating arrangements of the methyl group and the negative charge have remarkably different effects on the thermodynamic properties of the F420 coenzyme models and their related reaction intermediates. The effects of the substituents at C7 and C8 on the six thermodynamic driving forces of the F420 coenzyme models and their related reaction intermediates were also examined; the results show that the substituents at C7 and C8 have good Hammett linear free energy relationships with the six thermodynamic parameters. Meanwhile, a reasonable determination of possible reactions between members of the F420 family and NADH family in vivo was given according to a thermodynamic analysis platform constructed using the elementary step thermodynamic parameter of F420 coenzyme model 2FH(-) and NADH model MNAH releasing hydride ions in acetonitrile. The information disclosed in this work can not only fill a gap in the chemical thermodynamics of F420 coenzyme models as a class of very important organic sources of electrons, hydride ions, hydrogen atoms and protons, but also strongly promote the fast development of the chemistry and applications of F420 coenzyme

  20. Spectroscopic and computational studies of reduction of the metalversus the tetrapyrrole ring of coenzyme F-430 from methyl-coenzyme Mreductase

    SciTech Connect

    Dey, Mishtu; Kunz, Ryan C.; van Heuvelen, Katherine M.; Craft,Jennifer L.; Horng, Yih-Chern; Tang, Qun; Bocian, David F.; George, SimonJ.; Brunold, Thomas C.; Ragsdale, Stephen W.

    2006-06-30

    Methyl-coenzyme M reductase (MCR) catalyzes the final stepin methane biosynthesis by methanogenic archaea and contains aredox-active nickel tetrahydrocorphin, coenzyme F430, at its active site.Spectroscopic and computational methods have been used to study a novelform of the coenzyme, called F330, which is obtained by reducing F430with sodium borohydride (NaBH4). F330 exhibits a prominent absorptionpeak at 330 nm, which is blue shifted by 100 nm relative to F430. Massspectrometric studies demonstrate that the tetrapyrrole ring in F330 hasundergone reduction, on the basis of the incorporation of protium (ordeuterium), upon treatment of F430 with NaBH4 (or NaBD4). One- andtwo-dimensional NMR studies show that the site of reduction is theexocyclic ketone group of the tetrahydrocorphin. Resonance Raman studiesindicate that elimination of this pibond increases the overall pi-bondorder in the conjugative framework. X-ray absorption, magnetic circulardichroism, and computational results show that F330 contains low-spinNi(II). Thus, conversion of F430 to F330 reduces the hydrocorphin ringbut not the metal. Conversely, reduction of F430 with Ti(III) citrate togenerate F380 (corresponding to the active MCRred1 state) reduces theNi(II) to Ni(I) but does not reduce the tetrapyrrole ring system, whichis consistent with other studies [Piskorski, R., and Jaun, B. (2003) J.Am. Chem. Soc. 125, 13120-13125; Craft, J. L., et al. (2004) J. Biol.Inorg. Chem. 9, 77-89]. The distinct origins of the absorption bandshifts associated with the formation of F330 and F380 are discussedwithin the framework of our computational results. These studies on thenature of the product(s) of reduction of F430 are of interest in thecontext of the mechanism of methane formation by MCR and in relation tothe chemistry of hydroporphinoid systems in general. The spectroscopicand time-dependent DFT calculations add important insight into theelectronic structure of the nickel hydrocorphinate in its Ni(II) and

  1. Monolignol Pathway 4-Coumaric Acid:Coenzyme A Ligases in Populus. trichocarpa: Novel Specificity, Metabolic Regulation, and Simulation of Coenzyme A Ligation Fluxes1[W

    PubMed Central

    Chen, Hsi-Chuan; Song, Jina; Williams, Cranos M.; Shuford, Christopher M.; Liu, Jie; Wang, Jack P.; Li, Quanzi; Shi, Rui; Gokce, Emine; Ducoste, Joel; Muddiman, David C.; Sederoff, Ronald R.; Chiang, Vincent L.

    2013-01-01

    4-Coumaric acid:coenzyme A ligase (4CL) is involved in monolignol biosynthesis for lignification in plant cell walls. It ligates coenzyme A (CoA) with hydroxycinnamic acids, such as 4-coumaric and caffeic acids, into hydroxycinnamoyl-CoA thioesters. The ligation ensures the activated state of the acid for reduction into monolignols. In Populus spp., it has long been thought that one monolignol-specific 4CL is involved. Here, we present evidence of two monolignol 4CLs, Ptr4CL3 and Ptr4CL5, in Populus trichocarpa. Ptr4CL3 is the ortholog of the monolignol 4CL reported for many other species. Ptr4CL5 is novel. The two Ptr4CLs exhibited distinct Michaelis-Menten kinetic properties. Inhibition kinetics demonstrated that hydroxycinnamic acid substrates are also inhibitors of 4CL and suggested that Ptr4CL5 is an allosteric enzyme. Experimentally validated flux simulation, incorporating reaction/inhibition kinetics, suggested two CoA ligation paths in vivo: one through 4-coumaric acid and the other through caffeic acid. We previously showed that a membrane protein complex mediated the 3-hydroxylation of 4-coumaric acid to caffeic acid. The demonstration here of two ligation paths requiring these acids supports this 3-hydroxylation function. Ptr4CL3 regulates both CoA ligation paths with similar efficiencies, whereas Ptr4CL5 regulates primarily the caffeic acid path. Both paths can be inhibited by caffeic acid. The Ptr4CL5-catalyzed caffeic acid metabolism, therefore, may also act to mitigate the inhibition by caffeic acid to maintain a proper ligation flux. A high level of caffeic acid was detected in stem-differentiating xylem of P. trichocarpa. Our results suggest that Ptr4CL5 and caffeic acid coordinately modulate the CoA ligation flux for monolignol biosynthesis. PMID:23344904

  2. The use of coenzyme Q0 as a template in the development of a molecularly imprinted polymer for the selective recognition of coenzyme Q10.

    PubMed

    Contin, Mario; Flor, Sabrina; Martinefski, Manuela; Lucangioli, Silvia; Tripodi, Valeria

    2014-01-01

    In this work, a novel molecularly imprinted polymer (MIP) for use as a solid phase extraction sorbent was developed for the determination of coenzyme Q10 (CoQ10) in liver extract. CoQ10 is an essential cofactor in mitochondrial oxidative phosphorylation and a powerful antioxidant agent found in low concentrations in biological samples. This fact and its high hydrophobicity make the analysis of CoQ10 technically challenging. Accordingly, a MIP was synthesised using coenzyme Q0 as the template, methacrylic acid as the functional monomer, acetonitrile as the porogen, ethylene glycol dimethacrylate as the crosslinker and benzoyl peroxide as the initiator. Various parameters affecting the polymer preparation and extraction efficiency were evaluated. Morphological characterisation of the MIP and its proper comparison with C18 as a sorbent in solid phase extraction were performed. The optimal conditions for the molecularly imprinted solid phase extraction (MISPE) consisted of 400 μL of sample mixed with 30 mg of MIP and 600 μL of water to reach the optimum solution loading. The loading was followed by a washing step consisting of 1 mL of a 1-propanol solution (1-propanol:water, 30:70,v/v) and elution with 1 mL of 1-propanol. After clean-up, the CoQ10 in the samples was analysed by high performance liquid chromatography. The extraction recoveries were higher than 73.7% with good precision (3.6-8.3%). The limits of detection and quantification were 2.4 and 7.5 μg g(-1), respectively, and a linear range between 7.5 and 150 μg g(-1) of tissue was achieved. The new MISPE procedure provided a successful clean-up for the determination of CoQ10 in a complex matrix. PMID:24356222

  3. Properties of succinyl-coenzyme A:L-malate coenzyme A transferase and its role in the autotrophic 3-hydroxypropionate cycle of Chloroflexus aurantiacus.

    PubMed

    Friedmann, Silke; Steindorf, Astrid; Alber, Birgit E; Fuchs, Georg

    2006-04-01

    The 3-hydroxypropionate cycle has been proposed to operate as the autotrophic CO2 fixation pathway in the phototrophic bacterium Chloroflexus aurantiacus. In this pathway, acetyl coenzyme A (acetyl-CoA) and two bicarbonate molecules are converted to malate. Acetyl-CoA is regenerated from malyl-CoA by L-malyl-CoA lyase. The enzyme forming malyl-CoA, succinyl-CoA:L-malate coenzyme A transferase, was purified. Based on the N-terminal amino acid sequence of its two subunits, the corresponding genes were identified on a gene cluster which also contains the gene for L-malyl-CoA lyase, the subsequent enzyme in the pathway. Both enzymes were severalfold up-regulated under autotrophic conditions, which is in line with their proposed function in CO2 fixation. The two CoA transferase genes were cloned and heterologously expressed in Escherichia coli, and the recombinant enzyme was purified and studied. Succinyl-CoA:L-malate CoA transferase forms a large (alphabeta)n complex consisting of 46- and 44-kDa subunits and catalyzes the reversible reaction succinyl-CoA + L-malate --> succinate + L-malyl-CoA. It is specific for succinyl-CoA as the CoA donor but accepts L-citramalate instead of L-malate as the CoA acceptor; the corresponding d-stereoisomers are not accepted. The enzyme is a member of the class III of the CoA transferase family. The demonstration of the missing CoA transferase closes the last gap in the proposed 3-hydroxypropionate cycle. PMID:16547052

  4. Sensitive non-radioactive determination of aminotransferase stereospecificity for C-4' hydrogen transfer on the coenzyme

    SciTech Connect

    Jomrit, Juntratip; Summpunn, Pijug; Meevootisom, Vithaya; Wiyakrutta, Suthep

    2011-02-25

    Research highlights: {yields} Stereochemical mechanism of PLP enzymes is important but difficult to determine. {yields} This new method is significantly less complicated than the previous ones. {yields} This assay is as sensitive as the radioactive based method. {yields} LC-MS/MS positively identify the analyte coenzyme. {yields} The method can be used with enzyme whose apo form is unstable. -- Abstract: A sensitive non-radioactive method for determination of the stereospecificity of the C-4' hydrogen transfer on the coenzymes (pyridoxal phosphate, PLP; and pyridoxamine phosphate, PMP) of aminotransferases has been developed. Aminotransferase of unknown stereospecificity in its PLP form was incubated in {sup 2}H{sub 2}O with a substrate amino acid resulted in PMP labeled with deuterium at C-4' in the pro-S or pro-R configuration according to the stereospecificity of the aminotransferase tested. The [4'-{sup 2}H]PMP was isolated from the enzyme protein and divided into two portions. The first portion was incubated in aqueous buffer with apo-aspartate aminotransferase (a reference si-face specific enzyme), and the other was incubated with apo-branched-chain amino acid aminotransferase (a reference re-face specific enzyme) in the presence of a substrate 2-oxo acid. The {sup 2}H at C-4' is retained with the PLP if the aminotransferase in question transfers C-4' hydrogen on the opposite face of the coenzyme compared with the reference aminotransferase, but the {sup 2}H is removed if the test and reference aminotransferases catalyze hydrogen transfer on the same face. PLP formed in the final reactions was analyzed by LC-MS/MS for the presence or absence of {sup 2}H. The method was highly sensitive that for the aminotransferase with ca. 50 kDa subunit molecular weight, only 2 mg of the enzyme was sufficient for the whole test. With this method, the use of radioactive substances could be avoided without compromising the sensitivity of the assay.

  5. Structure of the corrinoid:coenzyme M methyltransferase MtaA from Methanosarcina mazei.

    PubMed

    Hoeppner, Astrid; Thomas, Frank; Rueppel, Alma; Hensel, Reinhard; Blankenfeldt, Wulf; Bayer, Peter; Faust, Annette

    2012-11-01

    The zinc-containing corrinoid:coenzyme M methyltransferase MtaA is part of the methanol-coenzyme M-methyltransferase complex of Methanosarcina mazei. The whole complex consists of three subunits: MtaA, MtaB and MtaC. The MtaB-MtaC complex catalyses the cleavage of methanol (bound to MtaB) and the transfer of the methyl group onto the cobalt of cob(I)alamin (bound to MtaC). The MtaA-MtaC complex catalyses methyl transfer from methyl-cob(III)alamin (bound to MtaC) to coenzyme M (bound to MtaA). The crystal structure of the MtaB-MtaC complex from M. barkeri has previously been determined. Here, the crystal structures of MtaA from M. mazei in a substrate-free but Zn(2+)-bound state and in complex with Zn(2+) and coenzyme M (HS-CoM) are reported at resolutions of 1.8 and 2.1 Å, respectively. A search for homologous proteins revealed that MtaA exhibits 23% sequence identity to human uroporphyrinogen III decarboxylase, which has also the highest structural similarity (r.m.s.d. of 2.03 Å for 306 aligned amino acids). The main structural feature of MtaA is a TIM-barrel-like fold, which is also found in all other zinc enzymes that catalyse thiol-group alkylation. The active site of MtaA is situated at the narrow bottom of a funnel such that the thiolate group of HS-CoM points towards the Zn(2+) ion. The Zn(2+) ion in the active site of MtaA is coordinated tetrahedrally via His240, Cys242 and Cys319. In the substrate-free form the fourth ligand is Glu263. Binding of HS-CoM leads to exchange of the O-ligand of Glu263 for the S-ligand of HS-CoM with inversion of the zinc geometry. The interface between MtaA and MtaC for transfer of the methyl group from MtaC-bound methylcobalamin is most likely to be formed by the core complex of MtaB-MtaC and the N-terminal segment (a long loop containing three α-helices and a β-hairpin) of MtaA, which is not part of the TIM-barrel core structure of MtaA. PMID:23090404

  6. A new role for coenzyme F420 in aflatoxin reduction by soil mycobacteria.

    PubMed

    Graham, David E

    2010-11-01

    Hepatotoxic aflatoxins have found a worthy adversary in two new families of bacterial oxidoreductases. These enzymes use the reduced coenzyme F420 to initiate the degradation of furanocoumarin compounds, including the major mycotoxin products of Aspergillus flavus. Along with pyridoxal 5'-phosphate synthases and aryl nitroreductases, these proteins form a large and versatile superfamily of flavin and deazaflavin-dependent oxidoreductases. F420-dependent members of this family appear to share a common mechanism of hydride transfer from the reduced, low-potential deazaflavin to the electron-deficient ring systems of their substrates. PMID:21038477

  7. Regeneration of Nicotinamide Coenzymes: Principles and Applications for the Synthesis of Chiral Compounds

    NASA Astrophysics Data System (ADS)

    Weckbecker, Andrea; Gröger, Harald; Hummel, Werner

    Dehydrogenases which depend on nicotinamide coenzymes are of increasing interest for the preparation of chiral compounds, either by reduction of a prochiral precursor or by oxidative resolution of their racemate. The regeneration of oxidized and reduced nicotinamide cofactors is a very crucial step because the use of these cofactors in stoichiometric amounts is too expensive for application. There are several possibilities to regenerate nicotinamide cofactors: established methods such as formate/formate dehydrogenase (FDH) for the regeneration of NADH, recently developed electrochemical methods based on new mediator structures, or the application of gene cloning methods for the construction of "designed" cells by heterologous expression of appropriate genes.

  8. MicroCommentary: A New Role for Coenzyme F420 in Aflatoxin Reduction by Soil Mycobacteria

    SciTech Connect

    Graham, David E

    2010-01-01

    Hepatotoxic aflatoxins have found a worthy adversary in two new families of bacterial oxidoreductases. These enzymes use the reduced coenzyme F420 to initiate the degradation of furanocoumarin compounds, including the major mycotoxin products of Aspergillus flavus. Along with pyridoxalamine 5 -phosphate oxidases and aryl nitroreductases, these proteins form a large and versatile superfamily of flavin and deazaflavin-dependent oxidoreductases. F420-dependent members of this family appear to share a common mechanism of hydride transfer from the reduced deazaflavin to the electron-deficient ring systems of their substrates.

  9. Site-Selective Synthesis of (15)N- and (13)C-Enriched Flavin Mononucleotide Coenzyme Isotopologues.

    PubMed

    Neti, Syam Sundar; Poulter, C Dale

    2016-06-17

    Flavin mononucleotide (FMN) is a coenzyme for numerous proteins involved in key cellular and physiological processes. Isotopically labeled flavin is a powerful tool for studying the structure and mechanism of flavoenzyme-catalyzed reactions by a variety of techniques, including NMR, IR, Raman, and mass spectrometry. In this report, we describe the preparation of labeled FMN isotopologues enriched with (15)N and (13)C isotopes at various sites in the pyrazine and pyrimidine rings of the isoalloxazine core of the cofactor from readily available precursors by a five-step chemo-enzymatic synthesis. PMID:27176708

  10. 3-hydroxy 3-methylglutaryl coenzyme A reductase: a new biomarker of fish exposure to water pollution.

    PubMed

    Pallottini, Valentina; Scalici, Massimiliano; Gibertini, Giancarlo; Marino, Maria; Trentalance, Anna

    2010-10-01

    The aim of this study was to identify a new putative biomarker in Salmo trutta exposed to water pollution. Variations in the levels of hepatic 3-hydroxy 3-methylglutaryl Coenzyme A reductase (HMG-CoAR), the rate-limiting enzyme of cholesterol biosynthesis, were compared to heat shock protein 70 and hypoxia inducible factor α, biomarkers of pollution exposure and lowered O₂, respectively. The results confirm that HMG-CoAR levels increase in polluted water irrespective of water temperature or O₂ content, indicating that HMG-CoAR could be used as a specific biomarker for water pollution. PMID:20835703

  11. An Improvement of Oxidative Stress in Diabetic Rats by Ubiquinone-10 and Ubiquinol-10 and Bioavailability after Short- and Long-Term Coenzyme Q10 Supplementation.

    PubMed

    Prangthip, Pattaneeya; Kettawan, Aikkarach; Posuwan, Juthathip; Okuno, Masaaki; Okamoto, Tadashi

    2016-11-01

    This study explored effects of ubiquinol-10 and ubiquinone-10, two different forms of coenzyme Q10, in diabetic rats. Oxidative stress is characterized by the depletion of antioxidant defenses and overproduction of free radicals that might contribute to, and even accelerate, the development of diabetes mellitus (DM) complications. Coenzyme Q10 was administered orally to diabetic rats and oxidative stress markers were then assessed. Bioavailability in normal rats was additionally assessed in various tissues and subcellular fractions after short-term and long-term coenzyme Q10 supplementation. Elevated nonfasting blood glucose and blood pressure in diabetic rats were decreased by ubiquinone-10. Both ubiquinol-10 and ubiquinone-10 ameliorated oxidative stress, based on assays for reactive oxygen metabolites and malondialdehyde. Coenzyme Q10 levels increased with both treatments and liver nicotinamide adenine dinucleotide phosphate (NADPH) coenzyme Q reductase with ubiquinone-10. Ubiquinol-10 was better absorbed in the liver and pancreas than ubiquinone-10, though both were similarly effective. In bioavailability study, a longer period of coenzyme Q10 supplementation did not lead to its accumulation in tissues or organelles. Both forms of coenzyme Q10 reduced oxidative stress in diabetic rats. Long-term supplementation of coenzyme Q10 appeared to be safe. PMID:27064932

  12. Effects of menopause and hormone replacement therapy on serum levels of coenzyme Q10 and other lipid-soluble antioxidants.

    PubMed

    Palan, Prabhudas R; Connell, Kathleen; Ramirez, Elizabeth; Inegbenijie, Christian; Gavara, Rachana Y; Ouseph, Jacob A; Mikhail, Magdy S

    2005-01-01

    The present study examines the influence of menopause and hormone replacement therapy (HRT) on serum levels of coenzyme Q(10) and other lipid-soluble antioxidants in normal women. Serum levels of coenzyme Q(10), alpha-tocopherol, gamma-tocopherol, beta-carotene and lycopene in 50 premenopausal women (not using oral contraceptives), 33 healthy postmenopausal and 15 postmenopausal women on HRT ("Prempo"; combination of 0.625 mg conjugated estrogen and 2.5 mg medroxyprogesterone acetate) were measured by high-pressure liquid chromatography. Lipid profiles were also analyzed. Significantly higher serum coenzyme Q(10) and alpha-tocopherol levels were detected in postmenopausal compared with premenopausal women (P < 0.05, and < 0.001); whereas, in postmenopausal subjects on HRT, we detected a significant decrease in coenzyme Q(10) and gamma-tocopherol levels (P < 0.001, and < 0.05) and increased alpha-tocopherol levels (P < 0.05). Serum levels of beta-carotene, lycopene, LDL, HDL, cholesterol and triglyceride were comparable among the study groups. Coenzyme Q(10) is postulated to be involved in preventing cardiovascular disease (CVD) because of its bioenergetics role in the mitochondrial respiratory chain and its antioxidant properties at the mitochondrial and extramitochondrial levels. The decrease in serum concentrations of coenzyme Q(10), produced by HRT, may promote oxygen free radical-induced membrane damage and may, thus alter cardiovascular risk in postmenopausal women. HRT-induced reductions in lipid-soluble antioxidant(s) levels, and its potential consequences on CVD, needs to be further investigated. PMID:16873930

  13. Structural Analysis of a Ni-Methyl Species in Methyl-Coenzyme M Reductase from Methanothermobacter marburgensis

    SciTech Connect

    Cedervall, Peder E.; Dey, Mishtu; Li, Xianghui; Sarangi, Ritimukta; Hedman, Britt; Ragsdale, Stephen W.; Wilmot, Carrie M.

    2012-02-15

    We present the 1.2 {angstrom} resolution X-ray crystal structure of a Ni-methyl species that is a proposed catalytic intermediate in methyl-coenzyme M reductase (MCR), the enzyme that catalyzes the biological formation of methane. The methyl group is situated 2.1 {angstrom} proximal of the Ni atom of the MCR coenzyme F{sub 430}. A rearrangement of the substrate channel has been posited to bring together substrate species, but Ni(III)-methyl formation alone does not lead to any observable structural changes in the channel.

  14. New insights into the chemistry of Coenzyme Q-0: A voltammetric and spectroscopic study.

    PubMed

    Gulaboski, Rubin; Bogeski, Ivan; Kokoskarova, Pavlinka; Haeri, Haleh H; Mitrev, Sasa; Stefova, Marina; Stanoeva, Jasmina Petreska; Markovski, Velo; Mirčeski, Valentin; Hoth, Markus; Kappl, Reinhard

    2016-10-01

    Coenzyme Q-0 (CoQ-0) is the only Coenzyme Q lacking an isoprenoid group on the quinoid ring, a feature important for its physico-chemical properties. Here, the redox behavior of CoQ-0 in buffered and non-buffered aqueous media was examined. In buffered aqueous media CoQ-0 redox chemistry can be described by a 2-electron-2-proton redox scheme, characteristic for all benzoquinones. In non-buffered media the number of electrons involved in the electrode reaction of CoQ-0 is still 2; however, the number of protons involved varies between 0 and 2. This results in two additional voltammetric signals, attributed to 2-electrons-1H(+) and 2-electrons-0H(+) redox processes, in which mono- and di-anionic compounds of CoQ-0 are formed. In addition, CoQ-0 exhibits a complex chemistry in strong alkaline environment. The reaction of CoQ-0 and OH(-) anions generates several hydroxyl derivatives as products. Their structures were identified with HPLC/MS. The prevailing radical reaction mechanism was analyzed by electron paramagnetic resonance spectroscopy. The hydroxyl derivatives of CoQ-0 have a strong antioxidative potential and form stable complexes with Ca(2+) ions. In summary, our results allow mechanistic insights into the redox properties of CoQ-0 and its hydroxylated derivatives and provide hints on possible applications. PMID:27268099

  15. Molecular characterization of methanogenic N(5)-methyl-tetrahydromethanopterin: Coenzyme M methyltransferase.

    PubMed

    Upadhyay, Vikrant; Ceh, Katharina; Tumulka, Franz; Abele, Rupert; Hoffmann, Jan; Langer, Julian; Shima, Seigo; Ermler, Ulrich

    2016-09-01

    Methanogenic archaea share one ion gradient forming reaction in their energy metabolism catalyzed by the membrane-spanning multisubunit complex N(5)-methyl-tetrahydromethanopterin: coenzyme M methyltransferase (MtrABCDEFGH or simply Mtr). In this reaction the methyl group transfer from methyl-tetrahydromethanopterin to coenzyme M mediated by cobalamin is coupled with the vectorial translocation of Na(+) across the cytoplasmic membrane. No detailed structural and mechanistic data are reported about this process. In the present work we describe a procedure to provide a highly pure and homogenous Mtr complex on the basis of a selective removal of the only soluble subunit MtrH with the membrane perturbing agent dimethyl maleic anhydride and a subsequent two-step chromatographic purification. A molecular mass determination of the Mtr complex by laser induced liquid bead ion desorption mass spectrometry (LILBID-MS) and size exclusion chromatography coupled with multi-angle light scattering (SEC-MALS) resulted in a (MtrABCDEFG)3 heterotrimeric complex of ca. 430kDa with both techniques. Taking into account that the membrane protein complex contains various firmly bound small molecules, predominantly detergent molecules, the stoichiometry of the subunits is most likely 1:1. A schematic model for the subunit arrangement within the MtrABCDEFG protomer was deduced from the mass of Mtr subcomplexes obtained by harsh IR-laser LILBID-MS. PMID:27342374

  16. Probing Reversible Chemistry in Coenzyme B12-Dependent Ethanolamine Ammonia Lyase with Kinetic Isotope Effects

    PubMed Central

    Jones, Alex R; Rentergent, Julius; Scrutton, Nigel S; Hay, Sam

    2015-01-01

    Coenzyme B12-dependent enzymes such as ethanolamine ammonia lyase have remarkable catalytic power and some unique properties that enable detailed analysis of the reaction chemistry and associated dynamics. By selectively deuterating the substrate (ethanolamine) and/or the β-carbon of the 5′-deoxyadenosyl moiety of the intrinsic coenzyme B12, it was possible to experimentally probe both the forward and reverse hydrogen atom transfers between the 5′-deoxyadenosyl radical and substrate during single-turnover stopped-flow measurements. These data are interpreted within the context of a kinetic model where the 5′-deoxyadenosyl radical intermediate may be quasi-stable and rearrangement of the substrate radical is essentially irreversible. Global fitting of these data allows estimation of the intrinsic rate constants associated with CoC homolysis and initial H-abstraction steps. In contrast to previous stopped-flow studies, the apparent kinetic isotope effects are found to be relatively small. PMID:25950663

  17. Role of active site loop in coenzyme binding and flavin reduction in cytochrome P450 reductase.

    PubMed

    Mothersole, Robert G; Meints, Carla E; Louder, Alex; Wolthers, Kirsten R

    2016-09-15

    Cytochrome P450 reductase (CPR) contains a loop within the active site (comprising Asp(634), Ala(635), Arg(636) and Asn(637); human CPR numbering) that relocates upon NADPH binding. Repositioning of the loop triggers the reorientation of an FAD-shielding tryptophan (Trp(679)) to a partially stacked conformer, reducing the energy barrier for displacement of the residue by the NADPH nicotinamide ring: an essential step for hydride transfer. We used site-directed mutagenesis and kinetic analysis to investigate if the amino acid composition of the loop influences the catalytic properties of CPR. The D634A and D634N variants elicited a modest increase in coenzyme binding affinity coupled with a 36- and 10-fold reduction in cytochrome c(3+) turnover and a 17- and 3-fold decrease in the pre-steady state rate of flavin reduction. These results, in combination with a reduction in the kinetic isotope effect for hydride transfer, suggest that diminished activity is due to destabilization of the partially stacked conformer of Trp(677) and slower release of NADP(+). In contrast, R636A, R636S and an A635G/R636S double mutant led to a modest increase in cytochrome c(3+) reduction, which is linked to weaker coenzyme binding and faster interflavin electron transfer. A potential mechanism by which Arg(636) influences catalysis is discussed. PMID:27461959

  18. Biochemical Characterization and Complete Conversion of Coenzyme Specificity of Isocitrate Dehydrogenase from Bifidobacterium longum

    PubMed Central

    Huang, Shi-Ping; Cheng, Hong-Mei; Wang, Peng; Zhu, Guo-Ping

    2016-01-01

    Bifidobacterium longum is a very important gram-positive non-pathogenic bacterium in the human gastrointestinal tract for keeping the digestive and immune system healthy. Isocitrate dehydrogenase (IDH) from B. longum (BlIDH), a novel member in Type II subfamily, was overexpressed, purified and biochemically characterized in detail. The active form of BlIDH was an 83-kDa homodimer. Kinetic analysis showed BlIDH was a NADP+-dependent IDH (NADP-IDH), with a 567- and 193-fold preference for NADP+ over NAD+ in the presence of Mg2+ and Mn2+, respectively. The maximal activity for BlIDH occurred at 60 °C (with Mn2+) and 65 °C (with Mg2+), and pH 7.5 (with Mn2+) and pH 8.0 (with Mg2+). Heat-inactivation profiles revealed that BlIDH retained 50% of maximal activity after incubation at 45 °C for 20 min with either Mn2+ or Mg2+. Furthermore, the coenzyme specificity of BlIDH can be completely reversed from NADP+ to NAD+ by a factor of 2387 by replacing six residues. This current work, the first report on the coenzyme specificity conversion of Type II NADP-IDHs, would provide better insight into the evolution of NADP+ use by the IDH family. PMID:26927087

  19. Inhibition of acetyl-coenzyme A carboxylase by two classes of grass-selective herbicides

    SciTech Connect

    Rendina, A.R.; Craig-Kennard, A.C.; Beaudoin, J.D.; Breen, M.K. )

    1990-05-01

    The selective grass herbicides diclofop, haloxyfop, and trifop (((aryloxy)phenoxy)propionic acids) and alloxydim, sethoxydim, and clethodim (cyclohexanediones) are potent, reversible inhibitors of acetyl-coenzyme A carboxylase (ACC) partially purified from barley, corn, and wheat. Although inhibition of the wheat enzyme by clethodim and diclofop is noncompetitive versus each of the substrates adenosine triphosphate (ATP), HCO{sub 3}{sup {minus}}, and acetyl-coenzyme A (acetyl-CoA), diclofop and clethodim are nearly competitive versus acetyl-CoA since the level of inhibition is most sensitive to the concentration of acetyl-CoA (K{sub is} < K{sub ii}). To conclusively show whether the herbicides interact at the biotin carboxylation site or the carboxyl transfer site, the inhibition of isotope exchange and partial reactions catalyzed at each site was studied with the wheat enzyme. Only the ({sup 14}C)acetyl-CoA-malonyl-CoA exchange and decarboxylation of ({sup 14}C)malonyl-CoA reactions are strongly inhibited by clethodim and diclofop, suggesting that the herbicides interfere with the carboxyl transfer site rather than the biotin carboxylation site of the enzyme. Double-inhibition studies with diclofop and clethodim suggest that the ((aryloxy)phenoxy)propionic acid and cyclohexanedione herbicides may bind to the same region of the enzyme.

  20. Mitochondrial ADCK3 employs an atypical protein kinase-like fold to enable coenzyme Q biosynthesis.

    PubMed

    Stefely, Jonathan A; Reidenbach, Andrew G; Ulbrich, Arne; Oruganty, Krishnadev; Floyd, Brendan J; Jochem, Adam; Saunders, Jaclyn M; Johnson, Isabel E; Minogue, Catherine E; Wrobel, Russell L; Barber, Grant E; Lee, David; Li, Sheng; Kannan, Natarajan; Coon, Joshua J; Bingman, Craig A; Pagliarini, David J

    2015-01-01

    The ancient UbiB protein kinase-like family is involved in isoprenoid lipid biosynthesis and is implicated in human diseases, but demonstration of UbiB kinase activity has remained elusive for unknown reasons. Here, we quantitatively define UbiB-specific sequence motifs and reveal their positions within the crystal structure of a UbiB protein, ADCK3. We find that multiple UbiB-specific features are poised to inhibit protein kinase activity, including an N-terminal domain that occupies the typical substrate binding pocket and a unique A-rich loop that limits ATP binding by establishing an unusual selectivity for ADP. A single alanine-to-glycine mutation of this loop flips this coenzyme selectivity and enables autophosphorylation but inhibits coenzyme Q biosynthesis in vivo, demonstrating functional relevance for this unique feature. Our work provides mechanistic insight into UbiB enzyme activity and establishes a molecular foundation for further investigation of how UbiB family proteins affect diseases and diverse biological pathways. PMID:25498144

  1. Mitochondrial ADCK3 employs an atypical protein kinase-like fold to enable coenzyme Q biosynthesis

    PubMed Central

    Stefely, Jonathan A.; Reidenbach, Andrew G.; Ulbrich, Arne; Oruganty, Krishnadev; Floyd, Brendan J.; Jochem, Adam; Saunders, Jaclyn M.; Johnson, Isabel E.; Minogue, Catherine E.; Wrobel, Russell L.; Barber, Grant E.; Lee, David; Li, Sheng; Kannan, Natarajan; Coon, Joshua J.; Bingman, Craig A.; Pagliarini, David J.

    2014-01-01

    SUMMARY The ancient UbiB protein kinase-like family is involved in isoprenoid lipid biosynthesis and is implicated in human diseases, but demonstration of UbiB kinase activity has remained elusive for unknown reasons. Here, we quantitatively define UbiB-specific sequence motifs and reveal their positions within the crystal structure of a UbiB protein, ADCK3. We find that multiple UbiB-specific features are poised to inhibit protein kinase activity, including an N-terminal domain that occupies the typical substrate binding pocket and a unique A-rich loop that limits ATP binding by establishing an unusual selectivity for ADP. A single alanine-to-glycine mutation of this loop flips this coenzyme selectivity and enables autophosphorylation, but inhibits coenzyme Q biosynthesis in vivo, demonstrating functional relevance for this unique feature. Our work provides mechanistic insight into UbiB enzyme activity and establishes a molecular foundation for further investigation of how UbiB family proteins affect diseases and diverse biological pathways. PMID:25498144

  2. Reversal of statin-induced memory dysfunction by co-enzyme Q10: a case report.

    PubMed

    Okeahialam, Basil N

    2015-01-01

    Statins are useful in the armamentarium of the clinician dealing with dyslipidemia, which increases cardiovascular morbi-mortality in hypertensive and diabetic patients among others. Dyslipidemia commonly exists as a comorbidity factor in the development of atherosclerotic cardiovascular disease. Use of statins is however associated with side effects which at times are so disabling as to interfere with activities of daily living. There are various ways of dealing with this, including use of more water-soluble varieties, intermittent dosing, or use of statin alternatives. Of late, use of co-enzyme Q10 has become acceptable for the muscle side effects. Only one report of any benefit on the rarely reported memory side effect was encountered by the author in the search of English medical literature. This is a report of a documented case of a Nigerian woman with history of statin intolerance in this case, memory dysfunction despite persisting dyslipidemia comorbidity. Her memory dysfunction side effect which interfered with activities of daily living and background muscle pain cleared when coenzyme Q10 was administered alongside low dose statin. Her lipid profile normalized and has remained normal. It is being recommended for use when statin side effects (muscle- and memory-related) impair quality of life and leave patient at dyslipidemia-induced cardiovascular morbi-mortality. PMID:26604775

  3. Effect of Coenzyme Q on Serum Levels of Creatine Phosphokinase in Preclinical Muscular Dystrophy*†

    PubMed Central

    Folkers, Karl; Nakamura, Ryo; Littarru, Gian Paolo; Zellweger, Hans; Brunkhorst, John B.; Williams, Coyle W.; Langston, John H.

    1974-01-01

    Coenzyme Q10 (CoQ10) exists in human tissue, and is indispensable to mitochondrial enzymes of respiration. CoQ was administered to children with preclinical muscular dystrophy, CoQ enzymology was emphasized, and serum creatine phosphokinase, CPK, (ATP:creatine N-phosphotransferase, EC 2.7.3.2) was repeatedly monitored. A 40-week treatment of an infant, 1-2 years of age, reduced serum CPK (P < 0.001; total CPK assays, 76). A 40-week treatment of a boy, 3-5 years of age, reduced serum CPK (P < 0.01); treatment through 80 weeks reduced CPK (P < 0.001; total CPK assays, 118). This response of preclinical dystrophy to CoQ implies a deficiency of CoQ in skeletal muscle that was actually found previously by assay of the activity of the succinate dehydrogenase:coenzyme Q10 reductase of the rectus abdominis. The relationships among a CoQ deficiency in muscle, serum CPK, and use of CPK in muscle are uncertain; however, restoration of CoQ enzyme activity in muscle by oral administration of CoQ could lead to increased use of CPK in muscle to form phosphocreatine from creatine and ATP, with a corresponding decrease in serum levels of CPK. The great excess of CPK in serum comes from deteriorating muscle in which CPK is below normal. PMID:4525474

  4. Biochemical Characterization and Complete Conversion of Coenzyme Specificity of Isocitrate Dehydrogenase from Bifidobacterium longum.

    PubMed

    Huang, Shi-Ping; Cheng, Hong-Mei; Wang, Peng; Zhu, Guo-Ping

    2016-01-01

    Bifidobacterium longum is a very important gram-positive non-pathogenic bacterium in the human gastrointestinal tract for keeping the digestive and immune system healthy. Isocitrate dehydrogenase (IDH) from B. longum (BlIDH), a novel member in Type II subfamily, was overexpressed, purified and biochemically characterized in detail. The active form of BlIDH was an 83-kDa homodimer. Kinetic analysis showed BlIDH was a NADP⁺-dependent IDH (NADP-IDH), with a 567- and 193-fold preference for NADP⁺ over NAD⁺ in the presence of Mg(2+) and Mn(2+), respectively. The maximal activity for BlIDH occurred at 60 °C (with Mn(2+)) and 65 °C (with Mg(2+)), and pH 7.5 (with Mn(2+)) and pH 8.0 (with Mg(2+)). Heat-inactivation profiles revealed that BlIDH retained 50% of maximal activity after incubation at 45 °C for 20 min with either Mn(2+) or Mg(2+). Furthermore, the coenzyme specificity of BlIDH can be completely reversed from NADP⁺ to NAD⁺ by a factor of 2387 by replacing six residues. This current work, the first report on the coenzyme specificity conversion of Type II NADP-IDHs, would provide better insight into the evolution of NADP⁺ use by the IDH family. PMID:26927087

  5. [Cloning and tissue expression of 4-coumarate coenzyme A ligase gene in Angelica sinensis].

    PubMed

    Wen, Sui-chao; Wang, Yin-quan; Luo, Jun; Xia, Qi; Fan, Qin; Li, Shu-nan; Wang, Zhen-heng

    2015-12-01

    4-coumarate coenzyme A ligase is a key enzyme of phenylpropanoid metabolic pathway in higher plant and may regulate the biosynthesis of ferulic acid in Angelica sinensis. In this study, the homology-based cloning and rapid amplification of cDNA ends (RACE) technique were used to clone a full length cDNA encoding 4-coumarate coenzyme A ligase gene (4CL), and then qRT-PCR was taken for analyzing 4CL gene expression levels in the root, stem and root tissue at different growth stages of seedlings of A. sinensis. The results showed that a full-length 4CL cDNA (1,815 bp) was obtained (GenBank accession number: KT880508) which shares an open reading frame (ORF) of 1 632 bp, encodes 544 amino acid polypeptides. We found 4CL gene was expressed in all tissues including leaf, stem and root of seedlings of A. sinensis. The expressions in the leave and stem were increased significantly with the growth of seedlings of A. sinensis (P < 0.05), while it in the root showed little change. It indicates a time-space pattern of 4CL gene expression in seedlings of A. sinensis. These findings will be useful for establishing an experiment basis for studying the structure and function of 4CL gene and elucidating mechanism of ferulic acid biosynthesis and space-time regulation in A. sinensis. PMID:27245029

  6. High-resolution neutron crystallographic studies of the hydration of the coenzyme cob(II)alamin

    SciTech Connect

    Jogl, Gerwald; Wang, Xiaoping; Mason, Sax A.; Kovalevsky, Andrey; Mustyakimov, Marat; Fisher, Zöe; Hoffman, Christina; Kratky, Christoph; Langan, Paul

    2011-06-01

    High-resolution crystallographic studies of the hydration of the coenzyme cob(II)alamin have provided hydrogen-bond parameters of unprecedented accuracy for a biomacromolecule. The hydration of the coenzyme cob(II)alamin has been studied using high-resolution monochromatic neutron crystallographic data collected at room temperature to a resolution of 0.92 Å on the original D19 diffractometer with a prototype 4° × 64° detector at the high-flux reactor neutron source run by the Institute Laue–Langevin. The resulting structure provides hydrogen-bonding parameters for the hydration of biomacromolecules to unprecedented accuracy. These experimental parameters will be used to define more accurate force fields for biomacromolecular structure refinement. The presence of a hydrophobic bowl motif surrounded by flexible side chains with terminal functional groups may be significant for the efficient scavenging of ligands. The feasibility of extending the resolution of this structure to ultrahigh resolution was investigated by collecting time-of-flight neutron crystallographic data during commissioning of the TOPAZ diffractometer with a prototype array of 14 modular 2° × 21° detectors at the Spallation Neutron Source run by Oak Ridge National Laboratory.

  7. 3-Hydroxybenzoate:coenzyme A ligase from cell cultures of Centaurium erythraea: isolation and characterization.

    PubMed

    Barillas, W; Beerhues, L

    2000-02-01

    In xanthone biosynthesis, 3-hydroxybenzoate:coenzyme A ligase (3HBL) supplies the starter substrate for the formation of an intermediate benzophenone. 3HBL from cell cultures of the medicinal plant Centaurium erythraea was purified to apparent homogeneity using a seven-step-procedure. The enzyme was an AMP-forming CoA ligase with a Km = 14.7 microM for 3-hydroxybenzoic acid, 8.5 microM for coenzyme A and 229 microM for ATP. The pH and temperature optima were 7.5 and 35 degrees C, respectively. In SDS-PAGE, two polypeptides of Mr 41,500 and 40,500 were detected. Both proteins were structurally related to each other as shown by tryptic digestion. Their N-termini were blocked. The difference in their apparent molecular masses could not be attributed to glycosylation. 3HBL had a native Mr of approx. 50,000 and is thus active as a monomer. PMID:10746747

  8. Plasma coenzyme Q10 levels in type 2 diabetic patients with retinopathy

    PubMed Central

    Ates, Orhan; Bilen, Habip; Keles, Sadullah; Alp, H. Hakan; Keleş, Mevlüt Sait; Yıldırım, Kenan; Öndaş, Osman; Pınar, L. Can; Civelekler, Mustafa; Baykal, Orhan

    2013-01-01

    AIM To determine the relationship between proliferative diabetic retinopathy (PDRP) and plasma coenzyme Q10(CoQ10) concentration. METHODS Patients with type 2 diabetes and PDRP were determined to be the case group (n=50). The control group was consist of healthy individuals (n=50). Plasma CoQ10 and malondialdehyde (MDA) levels were measured in both groups. RESULTS Ubiquinone-10 (Coenzyme Q10) levels in PDRP and control subjects are 3.81±1.19µmol/L and 1.91±0.62µmol/L, respectively. Plasma MDA levels in PDRP and control subjects were 8.16±2µmol/L and 3.44±2.08µmol/L, respectively. Ratio of Ubiquinol-10/ubiquinone-10 in PDRP and control subjects were 0.26±0.16 and 1.41±0.68, respectively. CONCLUSION The ratio of ubiquinol-10/ubiquinone-10 is found lower in patients with PDRP. High levels of plasma ubiquinol-10/ubiquinone-10 ratio indicate the protective effect on diabetic retinopathy. PMID:24195048

  9. In vitro evolution of coenzyme-independent variants from the glmS ribozyme structural scaffold.

    PubMed

    Lau, Matthew W L; Ferré-D'Amaré, Adrian R

    2016-08-15

    Uniquely among known natural ribozymes that cleave RNA sequence-specifically, the glmS ribozyme-riboswitch employs a small molecule, glucosamine-6-phosphate (GlcN6P) as a catalytic cofactor. In vitro selection was employed to search for coenzyme-independent variants of this ribozyme. In addition to shedding light on the catalytic mechanism of the ribozyme, such variants could resemble the evolutionary ancestors of the modern, GlcN6P-regulated ribozyme-riboswitch. A mutant pool was constructed such that the secondary structure elements, which define the triply-pseudoknotted global fold of the ribozyme, was preserved. A stringent selection scheme that relies on thiol-mercury affinity chromatography for separating active and inactive sequences ultimately yielded a triple mutant with a cleavage rate exceeding 3min(-1) that only requires divalent cations for activity. Mutational analysis demonstrated that a point reversion of the variant toward the wild-type sequence was sufficient to partially restore GlcN6P-dependence, suggesting that coenzyme dependence can be readily be acquired by RNAs that adopt the glmS ribozyme fold. The methods employed to perform this selection experiment are described in detail in this review. PMID:27130889

  10. Production of a Brassica napus low-molecular mass acyl-coenzyme A-binding protein in Arabidopsis alters the acyl-coenzyme A pool and acyl composition of oil in seeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low-molecular mass (10 kD) cytosolic acyl-coenzyme A-binding protein (ACBP) has a substantial influence over fatty acid (FA) composition in oilseeds, possibly via an effect on the partitioning of acyl groups between elongation and desaturation pathways. Previously, we demonstrated that the expressio...

  11. Assay for methylmalonyl coenzyme A mutase activity based on determination of succinyl coenzyme A by ultrahigh-performance liquid chromatography tandem mass spectrometry.

    PubMed

    Gotoh, Kana; Nakajima, Yoko; Tajima, Go; Hotta, Yuji; Kataoka, Tomoya; Kawade, Yoshihiro; Sugiyama, Naruji; Ito, Tetsuya; Kimura, Kazunori; Maeda, Yasuhiro

    2015-07-01

    Methylmalonic acidemia (MMA) is an inherited metabolic disease. In this condition, metabolism from methylmalonyl coenzyme A (CoA) to succinyl-CoA is inhibited because of either low methylmalonyl-CoA mutase (MCM) activity or adenosylcobalamin deficiency owing to altered vitamin B12 metabolism. A high-precision assay for detecting MCM activity would facilitate not only MMA diagnosis but also the ability to determine the severity of MMA. We developed an MCM assay method based on ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) that involves the determination of succinyl-CoA, which is formed in an enzyme reaction, using peripheral lymphocytes. Using 0.05, 0.5, and 5 μmol/L succinyl-CoA, the intra-assay coefficient of variation (CV) was less than 5.2% and the inter-assay CV was less than 8.7%. The MCM activities of five healthy individuals and four patients were investigated with this assay. The MCM activities of the patients were very low in relation to those of healthy individuals. Together, these results show that the UPLC-MS/MS method is useful for a detailed MCM activity assay. PMID:26018627

  12. Novel Hydroxycinnamoyl-Coenzyme A Quinate Transferase Genes from Artichoke Are Involved in the Synthesis of Chlorogenic Acid1[W

    PubMed Central

    Sonnante, Gabriella; D'Amore, Rosalinda; Blanco, Emanuela; Pierri, Ciro L.; De Palma, Monica; Luo, Jie; Tucci, Marina; Martin, Cathie

    2010-01-01

    Artichoke (Cynara cardunculus subsp. scolymus) extracts have high antioxidant capacity, due primarily to flavonoids and phenolic acids, particularly chlorogenic acid (5-caffeoylquinic acid [CGA]), dicaffeoylquinic acids, and caffeic acid, which are abundant in flower bracts and bioavailable to humans in the diet. The synthesis of CGA can occur following different routes in plant species, and hydroxycinnamoyl-coenzyme A transferases are important enzymes in these pathways. Here, we report on the isolation and characterization of two novel genes both encoding hydroxycinnamoyl-coenzyme A quinate transferases (HQT) from artichoke. The recombinant proteins (HQT1 and HQT2) were assayed after expression in Escherichia coli, and both showed higher affinity for quinate over shikimate. Their preferences for acyl donors, caffeoyl-coenzyme A or p-coumaroyl-coenzyme A, were examined. Modeling and docking analyses were used to propose possible pockets and residues involved in determining substrate specificities in the HQT enzyme family. Quantitative real-time polymerase chain reaction analysis of gene expression indicated that HQT1 might be more directly associated with CGA content. Transient and stable expression of HQT1 in Nicotiana resulted in a higher production of CGA and cynarin (1,3-dicaffeoylquinic acid). These findings suggest that several isoforms of HQT contribute to the synthesis of CGA in artichoke according to physiological needs and possibly following various metabolic routes. PMID:20431089

  13. The Impact of Coenzyme Q[subscript10] Supplement on the Indicators of Muscle Damage in Young Male Skiing Athletes

    ERIC Educational Resources Information Center

    Demirci, Nevzat

    2015-01-01

    This study was conducted in order to know the impact of coenzyme Q[subscript 10] (CoQ[subscript 10]) supplement on the muscle damage and total oxidant (TOS) enzyme levels of young skiing athletes during exercise. 15 male athletes were used for two weeks in the study. The athletes were divided into three groups: the control group and two subject…

  14. [Corrective effect of trimethylglycine on the nicotinamide coenzyme and adenine nucleotide content of the tissues in experimental atherosclerosis].

    PubMed

    Zapadniuk, V I; Chekman, I S; Panteleĭmonova, T N; Tumanov, V A

    1986-01-01

    Experiments on adult rabbits with experimental atherosclerosis induced by cholesterol (0.25 g/kg for 90 days) showed that chronic administration of trimethylglycine (1.5 g/kg for 30 days) prevented a decrease of the liver and myocardium content of nicotinamide coenzymes and adenine nucleotides. PMID:3758334

  15. Regulation of 4CL, encoding 4-coumarate: coenzyme A ligase, expression in kenaf under diverse stress conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We cloned the full length 4CL ortholog encoding 4-coumarate: coenzymeA ligase from kenaf (Hibiscus cannabiuns) using degenerate primers and RACE (rapid amplification of cDNA ends) systems. The 4CL is a key regulatory enzyme of the phenylpropanoid pathway that regulates the activation of cinnamic ac...

  16. Absence of malonyl coenzyme A decarboxylase in mice increases cardiac glucose oxidation and protects the heart from ischemic injury

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acute pharmacological inhibition of cardiac malonyl coenzyme A decarboxylase (MCD) protects the heart from ischemic damage by inhibiting fatty acid oxidation and stimulating glucose oxidation. However, it is unknown whether chronic inhibition of MCD results in altered cardiac function, energy metabo...

  17. Structural determinants in bacterial 2-keto-3-deoxy-D-gluconate dehydrogenase KduD for dual-coenzyme specificity.

    PubMed

    Takase, Ryuichi; Maruyama, Yukie; Oiki, Sayoko; Mikami, Bunzo; Murata, Kousaku; Hashimoto, Wataru

    2016-07-01

    Short-chain dehydrogenase/reductase (SDR) is distributed in many organisms, from bacteria to humans, and has significant roles in metabolism of carbohydrates, lipids, amino acids, and other biomolecules. An important intermediate in acidic polysaccharide metabolism is 2-keto-3-deoxy-d-gluconate (KDG). Recently, two short and long loops in Sphingomonas KDG-producing SDR enzymes (NADPH-dependent A1-R and NADH-dependent A1-R') involved in alginate metabolism were shown to be crucial for NADPH or NADH coenzyme specificity. Two SDR family enzymes-KduD from Pectobacterium carotovorum (PcaKduD) and DhuD from Streptococcus pyogenes (SpyDhuD)-prefer NADH as coenzyme, although only PcaKduD can utilize both NADPH and NADH. Both enzymes reduce 2,5-diketo-3-deoxy-d-gluconate to produce KDG. Tertiary and quaternary structures of SpyDhuD and PcaKduD and its complex with NADH were determined at high resolution (approximately 1.6 Å) by X-ray crystallography. Both PcaKduD and SpyDhuD consist of a three-layered structure, α/β/α, with a coenzyme-binding site in the Rossmann fold; similar to enzymes A1-R and A1-R', both arrange the two short and long loops close to the coenzyme-binding site. The primary structures of the two loops in PcaKduD and SpyDhuD were similar to those in A1-R' but not A1-R. Charge neutrality and moderate space at the binding site of the nucleoside ribose 2' coenzyme region were determined to be structurally crucial for dual-coenzyme specificity in PcaKduD by structural comparison of the NADH- and NADPH-specific SDR enzymes. The corresponding site in SpyDhuD was negatively charged and spatially shallow. This is the first reported study on structural determinants in SDR family KduD related to dual-coenzyme specificity. Proteins 2016; 84:934-947. © 2016 Wiley Periodicals, Inc. PMID:27028675

  18. The STM4195 Gene Product (PanS) Transports Coenzyme A Precursors in Salmonella enterica

    PubMed Central

    Ernst, Dustin C.

    2015-01-01

    ABSTRACT Coenzyme A (CoA) is a ubiquitous coenzyme involved in fundamental metabolic processes. CoA is synthesized from pantothenic acid by a pathway that is largely conserved among bacteria and eukaryotes and consists of five enzymatic steps. While higher organisms, including humans, must scavenge pantothenate from the environment, most bacteria and plants are capable of de novo pantothenate biosynthesis. In Salmonella enterica, precursors to pantothenate can be salvaged, but subsequent intermediates are not transported due to their phosphorylated state, and thus the pathway from pantothenate to CoA is considered essential. Genetic analyses identified the STM4195 gene product of Salmonella enterica serovar Typhimurium as a transporter of pantothenate precursors, ketopantoate and pantoate and, to a lesser extent, pantothenate. Further results indicated that STM4195 transports a product of CoA degradation that serves as a precursor to CoA and enters the biosynthetic pathway between PanC and CoaBC (dfp). The relevant CoA derivative is distinguishable from pantothenate, pantetheine, and pantethine and has spectral properties indicating the adenine moiety of CoA is intact. Taken together, the results presented here provide evidence of a transport mechanism for the uptake of ketopantoate, pantoate, and pantothenate and demonstrate a role for STM4195 in the salvage of a CoA derivative of unknown structure. The STM4195 gene is renamed panS to reflect participation in pantothenate salvage that was uncovered herein. IMPORTANCE This manuscript describes a transporter for two pantothenate precursors in addition to the existence and transport of a salvageable coenzyme A (CoA) derivative. Specifically, these studies defined a function for an STM protein in S. enterica that was distinct from the annotated role and led to its designation as PanS (pantothenate salvage). The presence of a salvageable CoA derivative and a transporter for it suggests the possibility that this

  19. L-Carnitine, but not coenzyme Q10, enhances the anti-osteoporotic effect of atorvastatin in ovariectomized rats

    PubMed Central

    Murad, Hussam A. S.

    2016-01-01

    Objective: Statins’ therapy in osteoporosis can aggravate muscle damage. This study was designed to assess which agent, L-carnitine or coenzyme Q10, could enhance the anti-osteoporotic effect of atorvastatin while antagonizing myopathy in ovariectomized rats. Methods: Forty-eight female Sprague Dawley rats were used; forty rats were ovariectomized while eight were sham-operated. Eight weeks post-ovariectomy, rats were divided into ovariectomized-untreated group and four ovariectomized-treated groups (n=8) which received by gavage (mg/(kg∙d), for 8 weeks) 17β-estradiol (0.1), atorvastatin (50), atorvastatin (50)+L-carnitine (100), or atorvastatin (50)+coenzyme Q10 (20). At the end of therapy, bone mineral density (BMD), bone mineral content (BMC), and serum levels of bone metabolic markers (BMMs) and creatine kinase (CK) were measured. Femurs were used for studying the breaking strength and histopathological changes. Results: Treatment with atorvastatin+L-carnitine restored BMD, BMC, and bone strength to near normal levels. Estrogen therapy restored BMD and BMC to near normal levels, but failed to increase bone strength. Although atorvastatin and atorvastatin+coenzyme Q10 improved BMD, BMC, and bone strength, they failed to restore levels to normal. All treatments decreased BMMs and improved histopathological changes maximally with atorvastatin+L-carnitine which restored levels to near normal. Atorvastatin aggravated the ovariectomy-induced increase in CK level while estrogen, atorvastatin+L-carnitine, and atorvastatin+coenzyme Q10 decreased its level mainly with atorvastatin+L-carnitine which restored the level to near normal. Conclusions: Co-administration of L-carnitine, but not coenzyme Q10, enhances the anti-osteoporotic effect of atorvastatin while antagonizing myopathy in ovariectomized rats. This could be valuable in treatment of osteoporotic patients. However, further confirmatory studies are needed. PMID:26739525

  20. Ultra-fast simultaneous detection of obesity-related coenzymes in mice using microchip electrophoresis with a LIF detector.

    PubMed

    Lee, Hee Gu; Kumar, K S; Soh, Ju-Ryoun; Cha, Youn-Soo; Kang, Seong Ho

    2008-06-30

    Hepatic acyl-coenzyme A synthetase (ACS), carnitine palmitoyltransferase-I (CPT-I) and acetyl coenzyme A carboxylase (ACC) are coenzymes associated with the genetic type of obesity in animal models. This paper reports the use of microchip electrophoresis (ME) with a laser-induced fluorescence (LIF) detector based on a reverse transcriptase-polymerase chain reaction (RT-PCR) to detect the amplified DNA fragments of these coenzymes (ACS, CPT-I and ACC) in the mRNA extracted from mice. DNA fragments ranging from 50 to 2652 bp were well resolved using this procedure with a running buffer (1x TBE), 0.5% polyvinylpyrrolidone (M(r) 1,000,000) as the coating gel and 0.7% polyethyleneoxide (M(r) 8,000,000) as the sieving gel at pH 8.30. The separation of the three RT-PCR products was achieved by ME in a single-run within 17 s using programmed field strength gradients (PFSG) (470 V cm(-1) for 9 s, 205.8 V cm(-1) for 2 s, 411.6 V cm(-1) for 4 s, 117.6 V cm(-1) for 2 s and 470.4V cm(-1) for 8 s). The ME-PFSG method was found to be 4 times faster than the method using a constant field and 138 times faster than slab gel electrophoresis. Moreover, the amplified RT-PCR products of the obesity-related coenzymes in C57BL/6J mice were analyzed using only sub-micro liter samples. PMID:18539180

  1. Antiatherogenic, hepatoprotective, and hypolipidemic effects of coenzyme Q10 in alloxan-induced type 1 diabetic rats

    PubMed Central

    Ahmadvand, Hassan; Ghasemi-Dehnoo, Maryam

    2014-01-01

    BACKGROUND Diabetes mellitus, one of the leading metabolic syndromes, accounts for highest morbidity and mortality worldwide. In this study, we examined possible protective effect of coenzyme Q10 on lipid profile, atherogenic index, and liver enzyme markers in alloxan-induced type 1 diabetic rats. METHODS A total of 30 male rats were randomly divided into three groups; group 1 as control, group 2 diabetic untreatment, and group 3 treatments with coenzyme Q10 by 15 mg/kg i.p. daily, respectively .Diabetes was induced in the second and third groups by alloxan injection subcutaneously. After 8 weeks, the levels of fasting blood glucose (FBG), triglyceride (TG), total cholesterol (TC), low density lipoprotein (LDL), very low-density lipoprotein (VLDL), high density lipoprotein (HDL), atherogenic index, atherogenic coefficient, cardiac risk ratio, and the activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) of all groups were analyzed. Data were analyzed using non-parametric Mann-Whitney test (using SPSS) and P < 0.05 was considered as significant. RESULTS Coenzyme Q10 inhibited significantly the activities of ALT (11.17%), AST (19.35%) and ALP (36.67%) and decreased FBG (21.19%), TG (37.24%), TC (17.15%), LDL (30.44%), VLDL (37.24%), atherogenic index (44.24%), atherogenic coefficient (49.69%), and cardiac risk ratio (37.97%), HDL level was significantly (33.38%) increased when treated with coenzyme Q10. CONCLUSION The findings of this study suggest that coenzyme Q10 exert beneficial effects on the lipid profile, atherogenic index, and liver enzymes activity in alloxan-induced type 1 diabetic rats. PMID:25258634

  2. Hemolytic uremic syndrome and rhabdomyolysis in a patient with succinate coenzyme Q reductase (complex II) deficiency.

    PubMed

    Micheletti, M V; Lavoratti, G; Gasperini, S; Donati, M A; Pela, I

    2011-07-01

    Hemolytic uremic syndrome (HUS) is characterized by microangiopathic hemolytic anemia, thrombocytopenia and acute renal failure. Besides diarrhea-associated HUS, due to verotoxin-producing Escherichia coli, in children HUS without prodromal diarrhea may be associated with other infectious and autoimmune diseases, genetic defects of the complement-regulator alternative-pathway, and inborn errors of vitamin B12 metabolism. Rhabdomyolysis is the dissolution of skeletal muscle due to various causes, including inborn errors of metabolism. Recurrent rhabdomyolysis and HUS have been previously described in one patient with a genetic defect of oxidative phosphorylation. We report the case of a 2-year-old boy with recurrent HUS and rhabdomyolysis in whom a succinate coenzyme Q reductase (complex II) deficiency was diagnosed. We hypothesize that defects of oxidative phosphorylation could be another etiological factor in atypical HUS. PMID:21722608

  3. beta-hydroxyisobutyryl coenzyme A deacylase deficiency: a defect in valine metabolism associated with physical malformations

    SciTech Connect

    Brown, G.K.; Hunt, S.M.; Scholem, R.; Fowler, K.; Grimes, A.; Mercer, J.F.; Truscott, R.M.; Cotton, R.G.; Rogers, J.G.; Danks, D.M.

    1982-10-01

    An infant, born to parents who were first cousins had multiple physical malformations. An associated biochemical abnormality was suggested by the urinary excretion of cysteine and cysteamine conjugates of methacrylic acid. The coenzyme A (CoA) ester of this compound is an intermediate in the pathway of valine oxidation. Subsequent investigation revealed a deficiency of beta-hydroxyisobutyryl-CoA deacylase, an enzyme unique to valine metabolism. The enzyme defect results in accumulation of methacrylyl-CoA, a highly reactive compound, which readily undergoes addition reactions with free sulfhydryl groups. Tissue damage due to reactions between methacrylyl-CoA and important sulfhydryl-containing enzymes and cofactors may account for the teratogenic effects seen in this patient.

  4. Coenzyme Q(10): a novel therapeutic approach for Fibromyalgia? case series with 5 patients.

    PubMed

    Cordero, Mario D; Alcocer-Gómez, Elísabet; de Miguel, Manuel; Cano-García, Francisco Javier; Luque, Carlos M; Fernández-Riejo, Patricia; Fernández, Ana María Moreno; Sánchez-Alcazar, José Antonio

    2011-07-01

    Coenzyme Q(10) (CoQ(10)) is an essential electron carrier in the mitochondrial respiratory chain and a strong antioxidant. Low CoQ(10) levels have been detected in patients with Fibromyalgia (FM). The purpose of the present work was to assess the effect of CoQ(10) on symptoms of five patients with FM. Patients were evaluated clinically with Visual Analogical Scale of pain (VAS), and Fibromyalgia Impact Questionnaire (FIQ). Patients with CoQ(10) deficiency showed a statistically significant reduction on symptoms after CoQ(10) treatment during 9 months (300 mg/day). Determination of deficiency and consequent supplementation in FM may result in clinical improvement. Further analysis involving more scientifically rigorous methodology will be required to confirm this observation. PMID:21496502

  5. Mutations in the midway gene disrupt a Drosophila acyl coenzyme A: diacylglycerol acyltransferase.

    PubMed Central

    Buszczak, Michael; Lu, Xiaohui; Segraves, William A; Chang, Ta Yuan; Cooley, Lynn

    2002-01-01

    During Drosophila oogenesis, defective or unwanted egg chambers are eliminated during mid-oogenesis by programmed cell death. In addition, final cytoplasm transport from nurse cells to the oocyte depends upon apoptosis of the nurse cells. To study the regulation of germline apoptosis, we analyzed the midway mutant, in which egg chambers undergo premature nurse cell death and degeneration. The midway gene encodes a protein similar to mammalian acyl coenzyme A: diacylglycerol acyltransferase (DGAT), which converts diacylglycerol (DAG) into triacylglycerol (TAG). midway mutant egg chambers contain severely reduced levels of neutral lipids in the germline. Expression of midway in insect cells results in high levels of DGAT activity in vitro. These results show that midway encodes a functional DGAT and that changes in acylglycerol lipid metabolism disrupt normal egg chamber development in Drosophila. PMID:11973306

  6. The radical mechanism of biological methane synthesis by methyl-coenzyme M reductase.

    PubMed

    Wongnate, Thanyaporn; Sliwa, Dariusz; Ginovska, Bojana; Smith, Dayle; Wolf, Matthew W; Lehnert, Nicolai; Raugei, Simone; Ragsdale, Stephen W

    2016-05-20

    Methyl-coenzyme M reductase, the rate-limiting enzyme in methanogenesis and anaerobic methane oxidation, is responsible for the biological production of more than 1 billion tons of methane per year. The mechanism of methane synthesis is thought to involve either methyl-nickel(III) or methyl radical/Ni(II)-thiolate intermediates. We employed transient kinetic, spectroscopic, and computational approaches to study the reaction between the active Ni(I) enzyme and substrates. Consistent with the methyl radical-based mechanism, there was no evidence for a methyl-Ni(III) species; furthermore, magnetic circular dichroism spectroscopy identified the Ni(II)-thiolate intermediate. Temperature-dependent transient kinetics also closely matched density functional theory predictions of the methyl radical mechanism. Identifying the key intermediate in methanogenesis provides fundamental insights to develop better catalysts for producing and activating an important fuel and potent greenhouse gas. PMID:27199421

  7. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase modulator: toward age- and sex-personalized medicine.

    PubMed

    Pallottini, Valentina

    2015-01-01

    Cholesterol homeostasis maintenance is regulated by a cellular feedback system that senses cholesterol amount in cellular membranes. 3-hydroxy 3-methylglutaryl coenzyme A reductase (HMGR) plays a pivotal role in cholesterol metabolism as it is the key rate-limiting enzyme of its biosynthetic pathway; its inhibition provokes a feedback response capable of reducing plasma cholesterol content. HMGR inhibition is a keystone in the treatment and prevention of cardiovascular disease and, therefore, statins (HMGR inhibitors) are widely prescribed even though they may sometimes induce side effects. These drugs are prescribed indifferently to both man and women even if there are several well-known differences in cholesterol metabolism depending on the gender and the age. Thus, gender-related differences in cholesterol metabolism should be taken into account to identify new targets for customized pharmacological treatments for hypercholesterolemia. PMID:26135220

  8. Prolonged QTc interval in association with medium-chain acyl-coenzyme A dehydrogenase deficiency.

    PubMed

    Wiles, Jason R; Leslie, Nancy; Knilans, Timothy K; Akinbi, Henry

    2014-06-01

    Medium-chain acyl-coenzyme A dehydrogenase (MCAD) deficiency is the most common disorder of mitochondrial fatty acid oxidation. We report a term male infant who presented at 3 days of age with hypoglycemia, compensated metabolic acidosis, hypocalcemia, and prolonged QTc interval. Pregnancy was complicated by maternal premature atrial contractions and premature ventricular contractions. Prolongation of the QTc interval resolved after correction of metabolic derangements. The newborn screen was suggestive for MCAD deficiency, a diagnosis that was confirmed on genetic analysis that showed homozygosity for the disease-associated missense A985G mutation in the ACADM gene. This is the first report of acquired prolonged QTc in a neonate with MCAD deficiency, and it suggests that MCAD deficiency should be considered in the differential diagnoses of acute neonatal illnesses associated with electrocardiographic abnormality. We review the clinical presentation and diagnosis of MCAD deficiency in neonates. PMID:24799540

  9. Effects of aeration on formation and localization of the acetyl coenzyme A synthetases of Saccharomyces cerevisiae

    NASA Technical Reports Server (NTRS)

    Klein, H. P.; Jahnke, L.

    1979-01-01

    Previous studies on the yeast Saccharomyces cerevisiae have shown that two different forms of the enzyme acetyl coenzyme A synthetase (ACS) are present, depending on the conditions under which the cells are grown. The paper evaluates the usefulness of a method designed to assay both synthetases simultaneously in yeast homogenates. The data presented confirm the possibility of simultaneous detection and estimation of the amount of both ACSs of S. cerevisiae in crude homogenates of this strain, making possible the study of physiological factors involved in the formation of these isoenzymes. One important factor for specifying which of the two enzymes is found in these yeast cells is the presence or absence of oxygen in their environment. Aeration not only affects the ratio of the two ACSs but also appears to affect the cellular distribution of these enzymes. Most of the data presented suggest the possibility that the nonaerobic ACS may serve as a precursor to the aerobic form.

  10. Variations in the Localization of Acetyl-Coenzyme A Synthetase in Aerobic Yeast Cells

    PubMed Central

    Klein, Harold P.; Jahnke, Linda

    1971-01-01

    In cells of Saccharomyces cerevisiae growing aerobically for 24 hr, acetyl-coenzyme A synthetase [acetate: CoA ligase (AMP), EC 6.2.1.1] was localized principally in the microsomal fraction. On density gradients, the enzyme in such cells behaved as a low-density particle, readily separable from the soluble proteins. After 48 hr of incubation, the cells showed a bimodal distribution of enzyme, with most of the activity now sedimenting with the mitochondrial fraction and only a smaller amount with the microsomal fraction. By using density gradients, two forms of synthetase were obtained from these cells: one band denser and the other band less dense than the intact mitochondria. In all preparations containing synthetase activity, appreciable levels of phospholipids were also detected. Images PMID:4102333

  11. Factors affecting the palmitoyl-coenzyme A desaturase of Saccharomyces cerevisiae

    NASA Technical Reports Server (NTRS)

    Klein, H. P.; Volkmann, C. M.

    1975-01-01

    The activity and stability of the palmitoyl-coenzyme A (CoA) desaturase complex of Saccharomyces cerevisiae was influenced by several factors. Cells, grown nonaerobically and then incubated with glucose, either in air or under N2, showed a marked increase in desaturase activity. Cycloheximide, added during such incubations, prevented the increase in activity, suggesting de novo synthesis. The stability of the desaturase from cells grown nonaerobically was affected by subsequent treatment of the cells; enzyme from freshly harvested cells, or from cells that were then shaken under nitrogen, readily lost activity upon washing or during density gradient analysis, whereas aerated cells, in the presence or absence of glucose, yielded stable enzyme preparations. The loss of activity in nonaerobic preparations could be reversed by adding soluble supernatant from these homogenates and could be prevented by growing the cells in the presence of palmitoleic acid and ergosterol, but not with several other lipids tested.

  12. Coenzyme A Binding to the Aminoglycoside Acetyltransferase (3)-IIIb Increases Conformational Sampling of Antibiotic Binding Site

    SciTech Connect

    Hu, Xiaohu; Norris, Adrianne; Baudry, Jerome Y; Serpersu, Engin H

    2011-01-01

    NMR spectroscopy experiments and molecular dynamics simulations were performed to describe the dynamic properties of the aminoglycoside acetyltransferase (3)-IIIb (AAC) in its apo and coenzyme A (CoASH) bound forms. The {sup 15}N-{sup 1}H HSQC spectra indicate a partial structural change and coupling of the CoASH binding site with another region in the protein upon the CoASH titration into the apo enzyme. Molecular dynamics simulations indicate a significant structural and dynamic variation of the long loop in the antibiotic binding domain in the form of a relatively slow (250 ns), concerted opening motion in the CoASH enzyme complex and that binding of the CoASH increases the structural flexibility of the loop, leading to an interchange between several similar equally populated conformations.

  13. The Diverse Roles of Flavin Coenzymes - Nature’s Most Versatile Thespians

    PubMed Central

    Mansoorabadi, Steven O.; Thibodeaux, Christopher J.; Liu, Hung-wen

    2008-01-01

    Flavin coenzymes play a variety of roles in biological systems. This Perspective highlights the chemical versatility of flavins by reviewing research on five flavoenzymes that have been studied in our laboratory. Each of the enzymes discussed in this review (the acyl-CoA dehydrogenases (ACDs), CDP-6-deoxy-L-threo-D-glycero-4-hexulose-3-dehydrase reductase (E3), CDP-4-aceto-3,6-dideoxygalactose synthase (YerE), UDP-galactopyranose mutase (UGM), and type II isopentenyl diphosphate:dimethylallyl diphosphate isomerase (IDI-2)) utilize flavin in a distinct role. In particular, the catalytic mechanisms of two of these enzymes, UGM and IDI-2, may involve novel flavin chemistry. PMID:17580897

  14. Metabolic perturbation of an essential pathway: evaluation of a glycine precursor of coenzyme A.

    PubMed

    Rothmann, Michael; Kang, MinJin; Villa, Reymundo; Ntai, Ioanna; La Clair, James J; Kelleher, Neil L; Chapman, Eli; Burkart, Michael D

    2013-04-24

    Pantetheine and its corresponding disulfide pantethine play a key role in metabolism as building blocks of coenzyme A (CoA), an essential cofactor utilized in ~4% of primary metabolism and central to fatty acid, polyketide, and nonribosomal peptide synthases. Using a combination of recombinant engineering and chemical synthesis, we show that the disulfide of N-pantoylglycyl-2-aminoethanethiol (GlyPan), with one fewer carbon than pantetheine, can rescue a mutant E. coli strain MG1655ΔpanC lacking a functional pantothenate synthetase. Using mass spectrometry, we show that the GlyPan variant is accepted by the downstream CoA biosynthetic machinery, ultimately being incorporated into essential acyl carrier proteins. These findings point to further flexibility in CoA-dependent pathways and offer the opportunity to incorporate orthogonal analogues. PMID:23550886

  15. Metabolic perturbation of an essential pathway: evaluation of a glycine precursor of Coenzyme A

    PubMed Central

    Rothmann, Michael; Kang, MinJin; Villa, Reymundo; Ntai, Ioanna; La Clair, James J.; Kelleher, Neil L.; Chapman, Eli; Burkart, Michael D.

    2013-01-01

    Pantetheine, and its corresponding disulfide pantethine, play a key role in metabolism as a building block of coenzyme A (CoA), an essential cofactor utilized in ~4% of primary metabolism and central to fatty acid, polyketide, and non-ribosomal peptide synthases. Using a combination of recombinant engineering and chemical synthesis, we demonstrate that the disulfide of N-pantoylglycyl-2-aminoethanethiol (GlyPan), with one carbon deletion from pantetheine, can rescue a mutant E. coli strain MG1655CΔpanC lacking a functional pantothenate synthetase. Using mass spectral methods, we demonstrate that the GlyPan variant is accepted by the downstream CoA biosynthetic machinery, ultimately being incorporated into essential acyl carrier proteins. These findings point to further flexibility in CoA-dependent pathways and offer the opportunity to incorporate orthogonal analogs. PMID:23550886

  16. Ockham's razor gone blunt: coenzyme Q adaptation and redox balance in tropical reef fishes

    PubMed Central

    Gagliano, Monica; Dunlap, Walter C.; de Nys, Rocky; Depczynski, Martial

    2009-01-01

    The ubiquitous coenzyme Q (CoQ) is a powerful antioxidant defence against cellular oxidative damage. In fishes, differences in the isoprenoid length of CoQ and its associated antioxidant efficacy have been proposed as an adaptation to different thermal environments. Here, we examine this broad contention by a comparison of the CoQ composition and its redox status in a range of coral reef fishes. Contrary to expectations, most species possessed CoQ8 and their hepatic redox balance was mostly found in the reduced form. These elevated concentrations of the ubiquinol antioxidant are indicative of a high level of protection required against oxidative stress. We propose that, in contrast to the current paradigm, CoQ variation in coral reef fishes is not a generalized adaptation to thermal conditions, but reflects species-specific ecological habits and physiological constraints associated with oxygen demand. PMID:19324638

  17. Smoking habits and coenzyme Q10 status in healthy European adults

    PubMed Central

    Fischer, Alexandra; Onur, Simone; Paulussen, Michael; Menke, Thomas; Döring, Frank

    2016-01-01

    Introduction Coenzyme Q10 (CoQ10) is a lipophilic endogenously synthesised antioxidant that is present in nearly all human tissues and plays an important role in mitochondrial energy production. It has been postulated that smoking has a consumptive effect on CoQ10. Material and methods To further define the relation between smoking and the serum CoQ10 status, 276 healthy volunteers aged 19 to 62 years were grouped into non-smokers (n = 113; 77 male, 36 female) and smokers (n = 163; 102 male, 61 female). Serum lipid profile was analysed by standard clinical chemistry. Coenzyme Q10 concentration and redox status were analysed by high-pressure liquid chromatography with electrochemical detection. Results Male smokers showed higher serum CoQ10 levels than female smokers. This sex-related difference was accounted for when CoQ10 was related to low-density lipoprotein (LDL) cholesterol as the main carrier of CoQ10 in the circulation. Neither LDL-adjusted CoQ10 concentration nor redox status significantly differed when smokers and non-smokers were compared. Regarding the smoking history, the number of cigarettes consumed per day did not significantly affect the CoQ10 status. Interestingly, with increasing time of smoking habit we observed increasing levels of LDL-adjusted serum CoQ10 concentration (Spearman's p < 0.002) and of the reduced form of CoQ10 (Spearman's p < 0.0001). Conclusions As an adaptive response to oxidative stress in long-term smokers an increased demand for antioxidant capacity may be covered by increasing levels of LDL-adjusted CoQ10 serum concentrations and by a concomitantly increased availability of the reduced, active form of CoQ10, possibly by induction of enzymes that are involved in converting CoQ10ox to CoQ10red. PMID:27478450

  18. Concurrent administration of coenzyme Q10 and alpha-tocopherol improves learning in aged mice.

    PubMed

    McDonald, Shelley R; Sohal, Rajindar S; Forster, Michael J

    2005-03-15

    The main purpose of this study was to determine whether supplemental intake of coenzyme Q10 (CoQ) (ubiquinone-10) or alpha-tocopherol, either alone or together, could improve brain function of aged mice, as reflected in their cognitive or psychomotor performance. Separate groups of aged mice (24 months) were administered either CoQ (123 mg/kg/day), or alpha-tocopherol acetate (200 mg/kg/day), or both, or the vehicle (soybean oil) via gavage for a period of 14 weeks. Three weeks following the initiation of these treatments, mice were given a battery of age-sensitive behavioral tests for the assessment of learning, recent memory, and psychomotor function. In a test that required the mice to rapidly identify and remember the correct arm of a T-maze, and to respond preemptively in order to avoid an electric shock, the intake of alpha-tocopherol plus CoQ resulted in more rapid learning compared to the control group. Learning was not significantly improved in the mice receiving CoQ or alpha-tocopherol alone. None of the treatments resulted in a significant improvement of psychomotor performance in the old mice. In a separate study, treatment with higher doses of CoQ alone (250 or 500 mg/kg/day) for 14 weeks failed to produce effects comparable to those of the combination of alpha-tocopherol and CoQ. The apparent interaction of CoQ and alpha-tocopherol treatments is consistent with the previous suggestion, based on biochemical studies, that coenzyme Q and alpha-tocopherol act in concert. Overall, the findings suggest that concurrent supplementation of alpha-tocopherol with CoQ is more likely to be effective as a potential treatment for age-related learning deficits than supplementation with CoQ or alpha-tocopherol alone. PMID:15721983

  19. Structure of Coenzyme A-Disulfide Reductase from Staphylococcus aureus at 1.54 Angstrom Resolution

    SciTech Connect

    Mallett,T.; Wallen, J.; Karplus, P.; Sakai, H.; Tsukihara, T.; Claiborne, A.

    2006-01-01

    Coenzyme A (CoASH) replaces glutathione as the major low molecular weight thiol in Staphylococcus aureus; it is maintained in the reduced state by coenzyme A-disulfide reductase (CoADR), a homodimeric enzyme similar to NADH peroxidase but containing a novel Cys43-SSCoA redox center. The crystal structure of S. aureus CoADR has been solved using multiwavelength anomalous dispersion data and refined at a resolution of 1.54 {angstrom}. The resulting electron density maps define the Cys43-SSCoA disulfide conformation, with Cys43-S{gamma} located at the flavin si face, 3.2 {angstrom} from FAD-C4aF, and the CoAS- moiety lying in an extended conformation within a cleft at the dimer interface. A well-ordered chloride ion is positioned adjacent to the Cys43-SSCoA disulfide and receives a hydrogen bond from Tyr361'-OH of the complementary subunit, suggesting a role for Tyr361' as an acid-base catalyst during the reduction of CoAS-disulfide. Tyr419'-OH is located 3.2 {angstrom} from Tyr361'-OH as well and, based on its conservation in known functional CoADRs, also appears to be important for activity. Identification of residues involved in recognition of the CoAS-disulfide substrate and in formation and stabilization of the Cys43-SSCoA redox center has allowed development of a CoAS-binding motif. Bioinformatics analyses indicate that CoADR enzymes are broadly distributed in both bacterial and archaeal kingdoms, suggesting an even broader significance for the CoASH/CoAS-disulfide redox system in prokaryotic thiol/disulfide homeostasis.

  20. TD-DFT Insight into Photodissociation of Co-C Bond in Coenzyme B12

    NASA Astrophysics Data System (ADS)

    Kozlowski, Pawel; Liu, Hui; Kornobis, Karina; Lodowski, Piotr; Jaworska, Maria

    2013-12-01

    Coenzyme B12 (AdoCbl) is one of the most biologically active forms of vitamin B12, and continues to be a topic of active research interest. The mechanism of Co-C bond cleavage in AdoCbl, and the corresponding enzymatic reactions are however, not well understood at the molecular level. In this work, time-dependent density functional theory (TD-DFT) has been applied to investigate the photodissociation of coenzyme B12. To reduce computational cost, while retaining the major spectroscopic features of AdoCbl, a truncated model based on ribosylcobalamin (RibCbl) was used to simulate Co-C photodissociation. Equilibrium geometries of RibCbl were obtained by optimization at the DFT/BP86/TZVP level of theory, and low-lying excited states were calculated by TD-DFT using the same functional and basis set. The calculated singlet states, and absorption spectra were simulated in both the gas phase, and water, using the polarizable continuum model (PCM). Both spectra were in reasonable agreement with experimental data, and potential energy curves based on vertical excitations were plotted to explore the nature of Co-C bond dissociation. It was found that a repulsive 3(σCo-C → σ*Co-C) triplet state became dissociative at large Co-C bond distance, similar to a previous observation for methylcobalamin (MeCbl). Furthermore, potential energy surfaces (PESs) obtained as a function of both Co-CRib and Co-NIm distances, identify the S1 state as a key intermediate generated during photoexcitation of RibCbl, attributed to a mixture of a MLCT (metal-to-ligand charge transfer) and a σ bonding-ligand charge transfer (SBLCT) states.

  1. Regulation of a Protein Acetyltransferase in Myxococcus xanthus by the Coenzyme NADP+

    PubMed Central

    Liu, Xin-Xin

    2015-01-01

    ABSTRACT NADP+ is a vital cofactor involved in a wide variety of activities, such as redox potential and cell death. Here, we show that NADP+ negatively regulates an acetyltransferase from Myxococcus xanthus, Mxan_3215 (MxKat), at physiologic concentrations. MxKat possesses an NAD(P)-binding domain fused to the Gcn5-type N-acetyltransferase (GNAT) domain. We used isothermal titration calorimetry (ITC) and a coupled enzyme assay to show that NADP+ bound to MxKat and that the binding had strong effects on enzyme activity. The Gly11 residue of MxKat was confirmed to play an important role in NADP+ binding using site-directed mutagenesis and circular dichroism spectrometry. In addition, using mass spectrometry, site-directed mutagenesis, and a coupling enzymatic assay, we demonstrated that MxKat acetylates acetyl coenzyme A (acetyl-CoA) synthetase (Mxan_2570) at Lys622 in response to changes in NADP+ concentration. Collectively, our results uncovered a mechanism of protein acetyltransferase regulation by the coenzyme NADP+ at physiological concentrations, suggesting a novel signaling pathway for the regulation of cellular protein acetylation. IMPORTANCE Microorganisms have developed various protein posttranslational modifications (PTMs), which enable cells to respond quickly to changes in the intracellular and extracellular milieus. This work provides the first biochemical characterization of a protein acetyltransferase (MxKat) that contains a fusion between a GNAT domain and NADP+-binding domain with Rossmann folds, and it demonstrates a novel signaling pathway for regulating cellular protein acetylation in M. xanthus. We found that NADP+ specifically binds to the Rossmann fold of MxKat and negatively regulates its acetyltransferase activity. This finding provides novel insight for connecting cellular metabolic status (NADP+ metabolism) with levels of protein acetylation, and it extends our understanding of the regulatory mechanisms underlying PTMs. PMID:26598367

  2. Coenzyme Q10 protects against acute consequences of experimental myocardial infarction in rats

    PubMed Central

    Eleawa, Samy M; Alkhateeb, Mahmoud; Ghosh, Sanjoy; Al-Hashem, Fahaid; Shatoor, Abdullah S; Alhejaily, Abdulmohsen; Khalil, Mohammad A

    2015-01-01

    Aim: Myocardial infarction (MI) due to sudden occlusion of a major coronary artery leads to a complex series of events that result in left ventricle (LV) impairment eventual heart failure. Therapeutic options are limited to reverse such trends post MI. The aim of this study was to compare the acute cardioprotective effects of the antioxidants, resveratrol (RES) and coenzyme Q10 (CoQ10), either individually or in combination, on infracts size, LV hemodynamics, inflammation and oxidative stress markers in rats with experimentally induced MI. Methods: Male Wistar rats were randomly divided into six groups: control without surgery, sham without occlusion, MI without antioxidants, RES pre-treated then MI (20 mg/kg, orally), CoQ10 then MI (20 mg/kg, intramuscular.), and combined RES and CoQ10 then MI with (each group n = 10). Pretreatment commenced 7 days prior to the permanent occlusion of the left anterior descending (LAD) coronary artery. Infarct area, hemodynamics, inflammation and oxidative stress markers were assessed 24 hours post-MI. Results: Compared to RES alone, CoQ10 pre-administration either by itself or in combination with RES, significantly reduced LV infarct area (57%), and normalized LV hemodynamic parameters like LVEDP (100%), LVSP (95.4%), LV +dp/dt and -dp/dt (102 and 73.1%, respectively). CoQ10 also decreased serum levels of brain natriuretic peptide (70%), and various circulating inflammatory markers like TNF-α (83.2%) and IL-6 (83.2%). Regarding oxidative stress, TBARS scores were lowered with a concurrent increase in both superoxide dismutase and glutathione peroxidase activities with CoQ10 alone or in combination with RES. Conclusion: Coenzyme Q10 protects against the acute sequelae of myocardial infarction. It profoundly reduced infarct area, inflammation and oxidative stress while normalizing LV hemodynamics post MI. PMID:26069524

  3. TD-DFT insight into photodissociation of the Co-C bond in coenzyme B12

    PubMed Central

    Liu, Hui; Kornobis, Karina; Lodowski, Piotr; Jaworska, Maria; Kozlowski, Pawel M.

    2014-01-01

    Coenzyme B12 (AdoCbl) is one of the most biologically active forms of vitamin B12, and continues to be a topic of active research interest. The mechanism of Co-C bond cleavage in AdoCbl, and the corresponding enzymatic reactions are however, not well understood at the molecular level. In this work, time-dependent density functional theory (TD-DFT) has been applied to investigate the photodissociation of coenzyme B12. To reduce computational cost, while retaining the major spectroscopic features of AdoCbl, a truncated model based on ribosylcobalamin (RibCbl) was used to simulate Co-C photodissociation. Equilibrium geometries of RibCbl were obtained by optimization at the DFT/BP86/TZVP level of theory, and low-lying excited states were calculated by TD-DFT using the same functional and basis set. The calculated singlet states, and absorption spectra were simulated in both the gas phase, and water, using the polarizable continuum model (PCM). Both spectra were in reasonable agreement with experimental data, and potential energy curves based on vertical excitations were plotted to explore the nature of Co-C bond dissociation. It was found that a repulsive 3(σCo−C → σ*Co−C) triplet state became dissociative at large Co-C bond distance, similar to a previous observation for methylcobalamin (MeCbl). Furthermore, potential energy surfaces (PESs) obtained as a function of both Co-CRib and Co-NIm distances, identify the S1 state as a key intermediate generated during photoexcitation of RibCbl, attributed to a mixture of a metal-to-ligand charge transfer (MLCT) and a σ bonding-ligand charge transfer (SBLCT) states. PMID:24790969

  4. Transcriptional Regulation by the Short-Chain Fatty Acyl Coenzyme A Regulator (ScfR) PccR Controls Propionyl Coenzyme A Assimilation by Rhodobacter sphaeroides

    PubMed Central

    Carter, Michael S.

    2015-01-01

    ABSTRACT Propionyl coenzyme A (propionyl-CoA) assimilation by Rhodobacter sphaeroides proceeds via the methylmalonyl-CoA pathway. The activity of the key enzyme of the pathway, propionyl-CoA carboxylase (PCC), was upregulated 20-fold during growth with propionate compared to growth with succinate. Because propionyl-CoA is an intermediate in acetyl-CoA assimilation via the ethylmalonyl-CoA pathway, acetate growth also requires the methylmalonyl-CoA pathway. PCC activities were upregulated 8-fold in extracts of acetate-grown cells compared to extracts of succinate-grown cells. The upregulation of PCC activities during growth with propionate or acetate corresponded to increased expression of the pccB gene, which encodes a subunit of PCC. PccR (RSP_2186) was identified to be a transcriptional regulator required for the upregulation of pccB transcript levels and, consequently, PCC activity: growth substrate-dependent regulation was lost when pccR was inactivated by an in-frame deletion. In the pccR mutant, lacZ expression from a 215-bp plasmid-borne pccB upstream fragment including 27 bp of the pccB coding region was also deregulated. A loss of regulation as a result of mutations in the conserved motifs TTTGCAAA-X4-TTTGCAAA in the presence of PccR allowed the prediction of a possible operator site. PccR, together with homologs from other organisms, formed a distinct clade within the family of short-chain fatty acyl coenzyme A regulators (ScfRs) defined here. Some members from other clades within the ScfR family have previously been shown to be involved in regulating acetyl-CoA assimilation by the glyoxylate bypass (RamB) or propionyl-CoA assimilation by the methylcitrate cycle (MccR). IMPORTANCE Short-chain acyl-CoAs are intermediates in essential biosynthetic and degradative pathways. The regulation of their accumulation is crucial for appropriate cellular function. This work identifies a regulator (PccR) that prevents the accumulation of propionyl-CoA by controlling

  5. Survival transcriptome in the coenzyme Q10 deficiency syndrome is acquired by epigenetic modifications: a modelling study for human coenzyme Q10 deficiencies

    PubMed Central

    Fernández-Ayala, Daniel J M; Guerra, Ignacio; Jiménez-Gancedo, Sandra; Cascajo, Maria V; Gavilán, Angela; DiMauro, Salvatore; Hirano, Michio; Briones, Paz; Artuch, Rafael; De Cabo, Rafael; Salviati, Leonardo; Navas, Plácido

    2013-01-01

    Objectives Coenzyme Q10 (CoQ10) deficiency syndrome is a rare condition that causes mitochondrial dysfunction and includes a variety of clinical presentations as encephalomyopathy, ataxia and renal failure. First, we sought to set up what all have in common, and then investigate why CoQ10 supplementation reverses the bioenergetics alterations in cultured cells but not all the cellular phenotypes. Design Modelling study This work models the transcriptome of human CoQ10 deficiency syndrome in primary fibroblast from patients and study the genetic response to CoQ10 treatment in these cells. Setting Four hospitals and medical centres from Spain, Italy and the USA, and two research laboratories from Spain and the USA. Participants Primary cells were collected from patients in the above centres. Measurements We characterised by microarray analysis the expression profile of fibroblasts from seven CoQ10-deficient patients (three had primary deficiency and four had a secondary form) and aged-matched controls, before and after CoQ10 supplementation. Results were validated by Q-RT-PCR. The profile of DNA (CpG) methylation was evaluated for a subset of gene with displayed altered expression. Results CoQ10-deficient fibroblasts (independently from the aetiology) showed a common transcriptomic profile that promotes cell survival by activating cell cycle and growth, cell stress responses and inhibiting cell death and immune responses. Energy production was supported mainly by glycolysis while CoQ10 supplementation restored oxidative phosphorylation. Expression of genes involved in cell death pathways was partially restored by treatment, while genes involved in differentiation, cell cycle and growth were not affected. Stably demethylated genes were unaffected by treatment whereas we observed restored gene expression in either non-methylated genes or those with an unchanged methylation pattern. Conclusions CoQ10 deficiency induces a specific transcriptomic profile that promotes

  6. l-Malyl-Coenzyme A/β-Methylmalyl-Coenzyme A Lyase Is Involved in Acetate Assimilation of the Isocitrate Lyase-Negative Bacterium Rhodobacter capsulatus

    PubMed Central

    Meister, Michael; Saum, Stephan; Alber, Birgit E.; Fuchs, Georg

    2005-01-01

    Cell extracts of Rhodobacter capsulatus grown on acetate contained an apparent malate synthase activity but lacked isocitrate lyase activity. Therefore, R. capsulatus cannot use the glyoxylate cycle for acetate assimilation, and a different pathway must exist. It is shown that the apparent malate synthase activity is due to the combination of a malyl-coenzyme A (CoA) lyase and a malyl-CoA-hydrolyzing enzyme. Malyl-CoA lyase activity was 20-fold up-regulated in acetate-grown cells versus glucose-grown cells. Malyl-CoA lyase was purified 250-fold with a recovery of 6%. The enzyme catalyzed not only the reversible condensation of glyoxylate and acetyl-CoA to l-malyl-CoA but also the reversible condensation of glyoxylate and propionyl-CoA to β-methylmalyl-CoA. Enzyme activity was stimulated by divalent ions with preference for Mn2+ and was inhibited by EDTA. The N-terminal amino acid sequence was determined, and a corresponding gene coding for a 34.2-kDa protein was identified and designated mcl1. The native molecular mass of the purified protein was 195 ± 20 kDa, indicating a homohexameric composition. A homologous mcl1 gene was found in the genomes of the isocitrate lyase-negative bacteria Rhodobacter sphaeroides and Rhodospirillum rubrum in similar genomic environments. For Streptomyces coelicolor and Methylobacterium extorquens, mcl1 homologs are located within gene clusters implicated in acetate metabolism. We therefore propose that l-malyl-CoA/β-methylmalyl-CoA lyase encoded by mcl1 is involved in acetate assimilation by R. capsulatus and possibly other glyoxylate cycle-negative bacteria. PMID:15687206

  7. Oral Coenzyme Q10 Supplementation Does Not Prevent Cardiac Alterations During a High Altitude Trek to Everest Base Camp

    PubMed Central

    Holloway, Cameron J.; Mitchell, Kay; Martin, Daniel S.; Johnson, Andrew W.; Cochlin, Lowri E.; Codreanu, Ion; Dhillon, Sundeep; Rodway, George W.; Ashmore, Tom; Levett, Denny Z.H.; Neubauer, Stefan; Montgomery, Hugh E.; Grocott, Michael P.W.; Clarke, Kieran

    2014-01-01

    Abstract Holloway, Cameron J., Andrew J. Murray, Kay Mitchell, Daniel S. Martin, Andrew W. Johnson, Lowri E. Cochlin, Ion Codreanu, Sundeep Dhillon, George W. Rodway, Tom Ashmore, Denny Z.H. Levett, Stefan Neubauer, Hugh E. Montgomery, Michael P.W. Grocott, and Kieran Clarke, on behalf of the Caudwell Xtreme Everest 2009 Investigators. Oral Coenzyme Q supplementation does not prevent cardiac alterations during a high altitude trek to Everest Base Camp. High Alt Med Biol 15:000—000, 2014.—Exposure to high altitude is associated with sustained, but reversible, changes in cardiac mass, diastolic function, and high-energy phosphate metabolism. Whilst the underlying mechanisms remain elusive, tissue hypoxia increases generation of reactive oxygen species (ROS), which can stabilize hypoxia-inducible factor (HIF) transcription factors, bringing about transcriptional changes that suppress oxidative phosphorylation and activate autophagy. We therefore investigated whether oral supplementation with an antioxidant, Coenzyme Q10, prevented the cardiac perturbations associated with altitude exposure. Twenty-three volunteers (10 male, 13 female, 46±3 years) were recruited from the 2009 Caudwell Xtreme Everest Research Treks and studied before, and within 48 h of return from, a 17-day trek to Everest Base Camp, with subjects receiving either no intervention (controls) or 300 mg Coenzyme Q10 per day throughout altitude exposure. Cardiac magnetic resonance imaging and echocardiography were used to assess cardiac morphology and function. Following altitude exposure, body mass fell by 3 kg in all subjects (p<0.001), associated with a loss of body fat and a fall in BMI. Post-trek, left ventricular mass had decreased by 11% in controls (p<0.05) and by 16% in Coenzyme Q10-treated subjects (p<0.001), whereas mitral inflow E/A had decreased by 18% in controls (p<0.05) and by 21% in Coenzyme Q10-treated subjects (p<0.05). Coenzyme Q10 supplementation did not, therefore, prevent

  8. The Protective Effects of Alpha-Lipoic Acid and Coenzyme Q10 Combination on Ovarian Ischemia-Reperfusion Injury: An Experimental Study

    PubMed Central

    Bozkurt, Mehmet Fatih; Koken, Tulay; Dogan, Nurhan; Pektaş, Mine Kanat; Baskin Embleton, Didem

    2016-01-01

    Objective. This study aims to evaluate whether alpha-lipoic acid and/or coenzyme Q10 can protect the prepubertal ovarian tissue from ischemia-reperfusion injury in an experimental rat model of ovarian torsion. Materials and Methods. Forty-two female preadolescent Wistar-Albino rats were divided into 6 equal groups randomly. The sham group had laparotomy without torsion; the other groups had torsion/detorsion procedure. After undergoing torsion, group 2 received saline, group 3 received olive oil, group 4 received alpha-lipoic acid, group 5 received coenzyme Q10, and group 6 received both alpha-lipoic acid and coenzyme Q10 orally. The oxidant-antioxidant statuses of these groups were compared using biochemical measurement of oxidized/reduced glutathione, glutathione peroxidase and malondialdehyde, pathological evaluation of damage and apoptosis within the ovarian tissue, and immunohistochemical assessment of nitric oxide synthase. Results. The left ovaries of the alpha-lipoic acid + coenzyme Q10 group had significantly lower apoptosis scores and significantly higher nitric oxide synthase content than the left ovaries of the control groups. The alpha-lipoic acid + coenzyme Q10 group had significantly higher glutathione peroxidase levels and serum malondialdehyde concentrations than the sham group. Conclusions. The combination of alpha-lipoic acid and coenzyme Q10 has beneficial effects on oxidative stress induced by ischemia-reperfusion injury related to ovarian torsion. PMID:27597986

  9. The Protective Effects of Alpha-Lipoic Acid and Coenzyme Q10 Combination on Ovarian Ischemia-Reperfusion Injury: An Experimental Study.

    PubMed

    Tuncer, Ahmet Ali; Bozkurt, Mehmet Fatih; Koken, Tulay; Dogan, Nurhan; Pektaş, Mine Kanat; Baskin Embleton, Didem

    2016-01-01

    Objective. This study aims to evaluate whether alpha-lipoic acid and/or coenzyme Q10 can protect the prepubertal ovarian tissue from ischemia-reperfusion injury in an experimental rat model of ovarian torsion. Materials and Methods. Forty-two female preadolescent Wistar-Albino rats were divided into 6 equal groups randomly. The sham group had laparotomy without torsion; the other groups had torsion/detorsion procedure. After undergoing torsion, group 2 received saline, group 3 received olive oil, group 4 received alpha-lipoic acid, group 5 received coenzyme Q10, and group 6 received both alpha-lipoic acid and coenzyme Q10 orally. The oxidant-antioxidant statuses of these groups were compared using biochemical measurement of oxidized/reduced glutathione, glutathione peroxidase and malondialdehyde, pathological evaluation of damage and apoptosis within the ovarian tissue, and immunohistochemical assessment of nitric oxide synthase. Results. The left ovaries of the alpha-lipoic acid + coenzyme Q10 group had significantly lower apoptosis scores and significantly higher nitric oxide synthase content than the left ovaries of the control groups. The alpha-lipoic acid + coenzyme Q10 group had significantly higher glutathione peroxidase levels and serum malondialdehyde concentrations than the sham group. Conclusions. The combination of alpha-lipoic acid and coenzyme Q10 has beneficial effects on oxidative stress induced by ischemia-reperfusion injury related to ovarian torsion. PMID:27597986

  10. Coenzyme F430, quantification and isotope analysis from the Eel River Basin California

    NASA Astrophysics Data System (ADS)

    Bird, L. R.; Fulton, J. M.; Dawson, K.; Orphan, V. J.; Freeman, K. H.

    2012-12-01

    Large amounts of methane are oxidized by communities of methanotrophic archaea and sulphate-reducing bacteria, preventing this greenhouse gas from reaching the atmosphere (Orphan et al., 2001; Scheller et al., 2010). Methyl-coenzyme M reductase, an enzyme traditionally associated with methanogenesis, has recently been linked to the anaerobic oxidation of methane suggesting methane oxidation follows a pathway similar to reverse methanogenesis. Coenzyme F430, a tetrapyrrole-nickel complex within the active site of methyl-coenzyme M, is used in methanogenesis and is hypothesized to play a key role in archaeal methanotrophy (Scheller et al., 2010). We recently developed a method to extract and isolate F430 from natural sediments so it can be purified for carbon and nitrogen stable isotope analysis. Sediments are extracted using an ultrasonic homogenizer, first in water (pH 7), then twice in dilute formic acid (pH 3). The combined extract is neutralized and the F430-containing fraction is isolated using Sephadex and Amberlite column chromatography. Further purification is performed using two dimensional high performance liquid chromatography, first with a reverse phase C-18 column followed by separation on a ThermoFisher Hypercarb column. F430 is then quantified using photo diode array detection with fractions collected for isotope analysis using a nano-scale elemental analyzer isotope ratio mass spectrometer (nano-EA-IRMS; Polissar et al., 2009). Compound identity and purity are confirmed using molar C:N ratios, UV absorbance and MSn detection of the parent ion (m/z 905). Here, we report F430 concentrations and isotopic data determined from active seep sediment cores from the Eel River Basin (California), a site where the anoxic oxidation of methane occurs. A spike in the concentration of F430 is observed at the 3-6 cm depth horizon corresponding with peak abundance in ANME-2/Desulfosarcina/Desulfococcus aggregate counts. Carbon isotope values of F430 are significantly

  11. The C-terminal extension of bacterial flavodoxin-reductases: involvement in the hydride transfer mechanism from the coenzyme.

    PubMed

    Bortolotti, Ana; Sánchez-Azqueta, Ana; Maya, Celia M; Velázquez-Campoy, Adrián; Hermoso, Juan A; Medina, Milagros; Cortez, Néstor

    2014-01-01

    To study the role of the mobile C-terminal extension present in bacterial class of plant type NADP(H):ferredoxin reductases during catalysis, we generated a series of mutants of the Rhodobacter capsulatus enzyme (RcFPR). Deletion of the six C-terminal amino acids beyond alanine 266 was combined with the replacement A266Y, emulating the structure present in plastidic versions of this flavoenzyme. Analysis of absorbance and fluorescence spectra suggests that deletion does not modify the general geometry of FAD itself, but increases exposure of the flavin to the solvent, prevents a productive geometry of FAD:NADP(H) complex and decreases the protein thermal stability. Although the replacement A266Y partially coats the isoalloxazine from solvent and slightly restores protein stability, this single change does not allow formation of active charge-transfer complexes commonly present in the wild-type FPR, probably due to restraints of C-terminus pliability. A proton exchange process is deduced from ITC measurements during coenzyme binding. All studied RcFPR variants display higher affinity for NADP(+) than wild-type, evidencing the contribution of the C-terminus in tempering a non-productive strong (rigid) interaction with the coenzyme. The decreased catalytic rate parameters confirm that the hydride transfer from NADPH to the flavin ring is considerably hampered in the mutants. Although the involvement of the C-terminal extension from bacterial FPRs in stabilizing overall folding and bent-FAD geometry has been stated, the most relevant contributions to catalysis are modulation of coenzyme entrance and affinity, promotion of the optimal geometry of an active complex and supply of a proton acceptor acting during coenzyme binding. PMID:24016470

  12. On the assignment of nickel oxidation states of the Ox1,Ox2 forms of methyl-coenzyme M reductase

    SciTech Connect

    Telser, J.; Horng, Y.C.; Becker, D.F.; Hoffman, B.M.; Ragsdale, S.W.

    2000-01-12

    Methyl-coenzyme M reductase (MCR) catalyzes the chemical step of methane formation by methanogenic organisms. The reaction involves the two-electron reduction of CH{sub 3}S-CoM by N-7-mercaptoheptanoylthreoinine phosphate (CoB-SH). The authors have employed 35 GHz EPR and ENDOR spectroscopy to resolve the oxidation state of Ni in ox1, ox2 and red1 forms of MCR, isolated from methanobacterium thermoautotrophicum strain Marburg and prepared as described previously.

  13. Simultaneous Analysis of Major Coenzymes of Cellular Redox Reactions and Energy Using ex Vivo 1H NMR Spectroscopy

    PubMed Central

    2016-01-01

    Coenzymes of cellular redox reactions and cellular energy mediate biochemical reactions fundamental to the functioning of all living cells. Despite their immense interest, no simple method exists to gain insights into their cellular concentrations in a single step. We show that a simple 1H NMR experiment can simultaneously measure oxidized and reduced forms of nicotinamide adenine dinucleotide (NAD+ and NADH), oxidized and reduced forms of nicotinamide adenine dinucleotide phosphate (NADP+ and NADPH), and adenosine triphosphate (ATP) and its precursors, adenosine diphosphate (ADP) and adenosine monophosphate (AMP), using mouse heart, kidney, brain, liver, and skeletal muscle tissue extracts as examples. Combining 1D/2D NMR experiments, chemical shift libraries, and authentic compound data, reliable peak identities for these coenzymes have been established. To assess this methodology, cardiac NADH and NAD+ ratios/pool sizes were measured using mouse models with a cardiac-specific knockout of the mitochondrial Complex I Ndufs4 gene (cKO) and cardiac-specific overexpression of nicotinamide phosphoribosyltransferase (cNAMPT) as examples. Sensitivity of NAD+ and NADH to cKO or cNAMPT was observed, as anticipated. Time-dependent investigations showed that the levels of NADH and NADPH diminish by up to ∼50% within 24 h; concomitantly, NAD+ and NADP+ increase proportionately; however, degassing the sample and flushing the sample tubes with helium gas halted such changes. The analysis protocol along with the annotated characteristic fingerprints for each coenzyme is provided for easy identification and absolute quantification using a single internal reference for routine use. The ability to visualize the ubiquitous coenzymes fundamental to cellular functions, simultaneously and reliably, offers a new avenue to interrogate the mechanistic details of cellular function in health and disease. PMID:27043450

  14. Simultaneous Analysis of Major Coenzymes of Cellular Redox Reactions and Energy Using ex Vivo (1)H NMR Spectroscopy.

    PubMed

    Nagana Gowda, G A; Abell, Lauren; Lee, Chi Fung; Tian, Rong; Raftery, Daniel

    2016-05-01

    Coenzymes of cellular redox reactions and cellular energy mediate biochemical reactions fundamental to the functioning of all living cells. Despite their immense interest, no simple method exists to gain insights into their cellular concentrations in a single step. We show that a simple (1)H NMR experiment can simultaneously measure oxidized and reduced forms of nicotinamide adenine dinucleotide (NAD(+) and NADH), oxidized and reduced forms of nicotinamide adenine dinucleotide phosphate (NADP(+) and NADPH), and adenosine triphosphate (ATP) and its precursors, adenosine diphosphate (ADP) and adenosine monophosphate (AMP), using mouse heart, kidney, brain, liver, and skeletal muscle tissue extracts as examples. Combining 1D/2D NMR experiments, chemical shift libraries, and authentic compound data, reliable peak identities for these coenzymes have been established. To assess this methodology, cardiac NADH and NAD(+) ratios/pool sizes were measured using mouse models with a cardiac-specific knockout of the mitochondrial Complex I Ndufs4 gene (cKO) and cardiac-specific overexpression of nicotinamide phosphoribosyltransferase (cNAMPT) as examples. Sensitivity of NAD(+) and NADH to cKO or cNAMPT was observed, as anticipated. Time-dependent investigations showed that the levels of NADH and NADPH diminish by up to ∼50% within 24 h; concomitantly, NAD(+) and NADP(+) increase proportionately; however, degassing the sample and flushing the sample tubes with helium gas halted such changes. The analysis protocol along with the annotated characteristic fingerprints for each coenzyme is provided for easy identification and absolute quantification using a single internal reference for routine use. The ability to visualize the ubiquitous coenzymes fundamental to cellular functions, simultaneously and reliably, offers a new avenue to interrogate the mechanistic details of cellular function in health and disease. PMID:27043450

  15. para-Aminobenzoic Acid Is a Precursor in Coenzyme Q6 Biosynthesis in Saccharomyces cerevisiae*

    PubMed Central

    Marbois, Beth; Xie, Letian X.; Choi, Samuel; Hirano, Kathleen; Hyman, Kyle; Clarke, Catherine F.

    2010-01-01

    Coenzyme Q (ubiquinone or Q) is a crucial mitochondrial lipid required for respiratory electron transport in eukaryotes. 4-Hydroxybenozoate (4HB) is an aromatic ring precursor that forms the benzoquinone ring of Q and is used extensively to examine Q biosynthesis. However, the direct precursor compounds and enzymatic steps for synthesis of 4HB in yeast are unknown. Here we show that para-aminobenzoic acid (pABA), a well known precursor of folate, also functions as a precursor for Q biosynthesis. A hexaprenylated form of pABA (prenyl-pABA) is normally present in wild-type yeast crude lipid extracts but is absent in yeast abz1 mutants starved for pABA. A stable 13C6-isotope of pABA (p- amino[aromatic-13C6]benzoic acid ([13C6]pABA)), is prenylated in either wild-type or abz1 mutant yeast to form prenyl-[13C6]pABA. We demonstrate by HPLC and mass spectrometry that yeast incubated with either [13C6]pABA or [13C6]4HB generate both 13C6-demethoxy-Q (DMQ), a late stage Q biosynthetic intermediate, as well as the final product 13C6-coenzyme Q. Pulse-labeling analyses show that formation of prenyl-pABA occurs within minutes and precedes the synthesis of Q. Yeast utilizing pABA as a ring precursor produce another nitrogen containing intermediate, 4-imino-DMQ6. This intermediate is produced in small quantities in wild-type yeast cultured in standard media and in abz1 mutants supplemented with pABA. We suggest a mechanism where Schiff base-mediated deimination forms DMQ6 quinone, thereby eliminating the nitrogen contributed by pABA. This scheme results in the convergence of the 4HB and pABA pathways in eukaryotic Q biosynthesis and has implications regarding the action of pABA-based antifolates. PMID:20592037

  16. Substrate-Induced Radical Formation in 4-Hydroxybutyryl Coenzyme A Dehydratase from Clostridium aminobutyricum

    PubMed Central

    Zhang, Jin; Friedrich, Peter; Pierik, Antonio J.; Martins, Berta M.

    2014-01-01

    4-Hydroxybutyryl-coenzyme A (CoA) dehydratase (4HBD) from Clostridium aminobutyricum catalyzes the reversible dehydration of 4-hydroxybutyryl-CoA to crotonyl-CoA and the irreversible isomerization of vinylacetyl-CoA to crotonyl-CoA. 4HBD is an oxygen-sensitive homotetrameric enzyme with one [4Fe-4S]2+ cluster and one flavin adenine dinucleotide (FAD) in each subunit. Upon the addition of crotonyl-CoA or the analogues butyryl-CoA, acetyl-CoA, and CoA, UV-visible light and electron paramagnetic resonance (EPR) spectroscopy revealed an internal one-electron transfer to FAD and the [4Fe-4S]2+ cluster prior to hydration. We describe an active recombinant 4HBD and variants produced in Escherichia coli. The variants of the cluster ligands (H292C [histidine at position 292 is replaced by cysteine], H292E, C99A, C103A, and C299A) had no measurable dehydratase activity and were composed of monomers, dimers, and tetramers. Variants of other potential catalytic residues were composed only of tetramers and exhibited either no measurable (E257Q, E455Q, and Y296W) hydratase activity or <1% (Y296F and T190V) dehydratase activity. The E455Q variant but not the Y296F or E257Q variant displayed the same spectral changes as the wild-type enzyme after the addition of crotonyl-CoA but at a much lower rate. The results suggest that upon the addition of a substrate, Y296 is deprotonated by E455 and reduces FAD to FADH·, aided by protonation from E257 via T190. In contrast to FADH·, the tyrosyl radical could not be detected by EPR spectroscopy. FADH· appears to initiate the radical dehydration via an allylic ketyl radical that was proposed 19 years ago. The mode of radical generation in 4HBD is without precedent in anaerobic radical chemistry. It differs largely from that in enzymes, which use coenzyme B12, S-adenosylmethionine, ATP-driven electron transfer, or flavin-based electron bifurcation for this purpose. PMID:25452282

  17. 4-Coumarate:coenzyme A ligase and isoperoxidase expression in Zinnia mesophyll cells induced to differentiate into tracheary elements

    NASA Technical Reports Server (NTRS)

    Church, D. L.; Galston, A. W.

    1988-01-01

    When cultured in inductive medium containing adequate auxin and cytokinin, isolated mesophyll cells of Zinnia elegans L. cv Envy differentiate into tracheary elements with lignified secondary wall thickenings. Differentiation does not occur when cells are cultured in control medium, which has reduced levels of auxin and/or cytokinin. The activities of two enzymes involved in lignin synthesis, 4-coumarate:coenzyme A ligase and peroxidase, were examined. An induction-specific cationic isoperoxidase, visualized by low pH polyacrylamide gel electrophoresis, is detectable in soluble and wall fractions of cultured Zinnia cells long before tracheary elements visibly differentiate and is thus an early marker of differentiation. Compounds (such as antiauxins, anticytokinins, and tunicamycin) that inhibit or delay differentiation alter the expression of this isoperoxidase. 4-Coumarate:coenzyme A ligase activity increases dramatically only as cells differentiate. Together, these results suggest that the onset of lignification in differentiating Zinnia cells might be controlled by the availability of precursors synthesized by way of 4-coumarate:coenzyme A ligase. These precursors would then be polymerized into lignin in the cell wall by the induction-specific isoperoxidase.

  18. High-Throughput Screening of Coenzyme Preference Change of Thermophilic 6-Phosphogluconate Dehydrogenase from NADP+ to NAD+

    PubMed Central

    Huang, Rui; Chen, Hui; Zhong, Chao; Kim, Jae Eung; Zhang, Yi-Heng Percival

    2016-01-01

    Coenzyme engineering that changes NAD(P) selectivity of redox enzymes is an important tool in metabolic engineering, synthetic biology, and biocatalysis. Here we developed a high throughput screening method to identify mutants of 6-phosphogluconate dehydrogenase (6PGDH) from a thermophilic bacterium Moorella thermoacetica with reversed coenzyme selectivity from NADP+ to NAD+. Colonies of a 6PGDH mutant library growing on the agar plates were treated by heat to minimize the background noise, that is, the deactivation of intracellular dehydrogenases, degradation of inherent NAD(P)H, and disruption of cell membrane. The melted agarose solution containing a redox dye tetranitroblue tetrazolium (TNBT), phenazine methosulfate (PMS), NAD+, and 6-phosphogluconate was carefully poured on colonies, forming a second semi-solid layer. More active 6PGDH mutants were examined via an enzyme-linked TNBT-PMS colorimetric assay. Positive mutants were recovered by direct extraction of plasmid from dead cell colonies followed by plasmid transformation into E. coli TOP10. By utilizing this double-layer screening method, six positive mutants were obtained from two-round saturation mutagenesis. The best mutant 6PGDH A30D/R31I/T32I exhibited a 4,278-fold reversal of coenzyme selectivity from NADP+ to NAD+. This screening method could be widely used to detect numerous redox enzymes, particularly for thermophilic ones, which can generate NAD(P)H reacted with the redox dye TNBT. PMID:27587230

  19. Coenzyme F430 as a possible catalyst for the reductive dehalogenation of chlorinated C1 hydrocarbons in methanogenic bacteria

    SciTech Connect

    Krone, U.E.; Laufer, K.; Thauer, R.K.; Hogenkamp, H.P. )

    1989-12-26

    Corrinoids, such as aquocobalamin, methylcobalamin, and (cyanoaquo)cobinamide, catalyze the reductive dehalogenation of CCl4 with titanium(III) citrate as the electron donor. We report here that this reaction is also effectively mediated by the nickel-containing porphinoid, coenzyme F430, found in methanogenic bacteria. Chloroform, methylene chloride, methyl chloride, and methane were detected as intermediates and products. Ethane was formed in trace amounts, and several as yet unidentified nonvolatile compounds were also generated. The rate of dehalogenation decreased in the series of CCl4, CHCl3, and CH2Cl2. With coenzyme F430 as the catalyst, the reduction of CH3Cl to CH4 proceeded more than 50 times faster than with aquocobalamin. Cell suspensions of Methanosarcina barkeri were found to catalyze the reductive dehalogenation of CCl4 with CO as the electron donor (E'0 = -0.524 V). Methylene chloride was the main end product. The kinetics of CHCl3 and CH2Cl2 formation from CCl4 were similar to those with coenzyme F430 or aquocobalamin as catalysts and titanium(III) citrate as the reductant.

  20. High-Throughput Screening of Coenzyme Preference Change of Thermophilic 6-Phosphogluconate Dehydrogenase from NADP(+) to NAD(.).

    PubMed

    Huang, Rui; Chen, Hui; Zhong, Chao; Kim, Jae Eung; Zhang, Yi-Heng Percival

    2016-01-01

    Coenzyme engineering that changes NAD(P) selectivity of redox enzymes is an important tool in metabolic engineering, synthetic biology, and biocatalysis. Here we developed a high throughput screening method to identify mutants of 6-phosphogluconate dehydrogenase (6PGDH) from a thermophilic bacterium Moorella thermoacetica with reversed coenzyme selectivity from NADP(+) to NAD(+). Colonies of a 6PGDH mutant library growing on the agar plates were treated by heat to minimize the background noise, that is, the deactivation of intracellular dehydrogenases, degradation of inherent NAD(P)H, and disruption of cell membrane. The melted agarose solution containing a redox dye tetranitroblue tetrazolium (TNBT), phenazine methosulfate (PMS), NAD(+), and 6-phosphogluconate was carefully poured on colonies, forming a second semi-solid layer. More active 6PGDH mutants were examined via an enzyme-linked TNBT-PMS colorimetric assay. Positive mutants were recovered by direct extraction of plasmid from dead cell colonies followed by plasmid transformation into E. coli TOP10. By utilizing this double-layer screening method, six positive mutants were obtained from two-round saturation mutagenesis. The best mutant 6PGDH A30D/R31I/T32I exhibited a 4,278-fold reversal of coenzyme selectivity from NADP(+) to NAD(+). This screening method could be widely used to detect numerous redox enzymes, particularly for thermophilic ones, which can generate NAD(P)H reacted with the redox dye TNBT. PMID:27587230

  1. Molecular mechanisms of the non-coenzyme action of thiamin in brain: biochemical, structural and pathway analysis

    PubMed Central

    Mkrtchyan, Garik; Aleshin, Vasily; Parkhomenko, Yulia; Kaehne, Thilo; Luigi Di Salvo, Martino; Parroni, Alessia; Contestabile, Roberto; Vovk, Andrey; Bettendorff, Lucien; Bunik, Victoria

    2015-01-01

    Thiamin (vitamin B1) is a pharmacological agent boosting central metabolism through the action of the coenzyme thiamin diphosphate (ThDP). However, positive effects, including improved cognition, of high thiamin doses in neurodegeneration may be observed without increased ThDP or ThDP-dependent enzymes in brain. Here, we determine protein partners and metabolic pathways where thiamin acts beyond its coenzyme role. Malate dehydrogenase, glutamate dehydrogenase and pyridoxal kinase were identified as abundant proteins binding to thiamin- or thiazolium-modified sorbents. Kinetic studies, supported by structural analysis, revealed allosteric regulation of these proteins by thiamin and/or its derivatives. Thiamin triphosphate and adenylated thiamin triphosphate activate glutamate dehydrogenase. Thiamin and ThDP regulate malate dehydrogenase isoforms and pyridoxal kinase. Thiamin regulation of enzymes related to malate-aspartate shuttle may impact on malate/citrate exchange, responsible for exporting acetyl residues from mitochondria. Indeed, bioinformatic analyses found an association between thiamin- and thiazolium-binding proteins and the term acetylation. Our interdisciplinary study shows that thiamin is not only a coenzyme for acetyl-CoA production, but also an allosteric regulator of acetyl-CoA metabolism including regulatory acetylation of proteins and acetylcholine biosynthesis. Moreover, thiamin action in neurodegeneration may also involve neurodegeneration-related 14-3-3, DJ-1 and β-amyloid precursor proteins identified among the thiamin- and/or thiazolium-binding proteins. PMID:26212886

  2. Identification and molecular characterization of the acetyl coenzyme A synthetase gene (acoE) of Alcaligenes eutrophus.

    PubMed Central

    Priefert, H; Steinbüchel, A

    1992-01-01

    The gene locus acoE, which is involved in the utilization of acetoin in Alcaligenes eutrophus, was identified as the structural gene of an acetyl coenzyme A synthetase (acetate:coenzyme A ligase [AMP forming]; EC 6.2.1.1). This gene was localized on a 3.8-kbp SmaI-EcoRI subfragment of an 8.1-kbp EcoRI restriction fragment (fragment E) that was cloned recently (C. Fründ, H. Priefert, A. Steinbüchel, and H. G. Schlegel, J. Bacteriol. 171:6539-6548, 1989). The 1,983 bp acoE gene encoded a protein with a relative molecular weight of 72,519, and it was preceded by a putative Shine-Dalgarno sequence. A comparison analysis of the amino acid sequence deduced from acoE revealed a high degree of homology to primary structures of acetyl coenzyme A synthetases from other sources (amounting to up to 50.5% identical amino acids). Tn5 insertions in two transposon-induced mutants of A. eutrophus, that were impaired in the catabolism of acetoin were mapped 481 and 1,159 bp downstream from the translational start codon of acoE. The expression of acoE in Escherichia coli led to the formation of an acyl coenzyme A synthetase that accepted acetate as the preferred substrate (100% relative activity) but also reacted with propionate (46%) and hydroxypropionate (87%); fatty acids consisting of four or more carbon atoms were not accepted. In addition, evidence for the presence of a second acyl coenzyme A synthetase was obtained; this enzyme exhibited a different substrate specificity. The latter enzyme is obviously required for the activation of propionate, e.g., during the formation of the storage compound poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) when propionate is provided as the sole carbon source. An analysis of mutants provided evidence that the expression of the uptake protein for propionate depends on the presence of alternate sigma factor sigma 54. Images PMID:1356967

  3. Stability of ubiquinol-10 (reduced form of coenzyme Q10 ) in human blood.

    PubMed

    Matsuo, Kazuhiko; Kasai, Kazuaki; Hosoe, Kazunori; Funahashi, Iwao

    2016-04-01

    The ratio of ubiquinol-10 in total coenzyme Q10 (TQ10 ) in human plasma has been proposed as a useful biomarker of oxidative stress. Since ubiquinol-10 is easily oxidized in air, it is necessary to perform suitable processing at medical institutions prior to analysis. To establish stable storage conditions for blood to determine the ubiquinol-10/TQ10 ratios properly, the effects of temperature conditions on the stability of ubiquinol-10 were studied. Blood samples were collected from nine male Japanese volunteers. Changes in ubiquinol-10/TQ10 ratios in blood samples were evaluated under three temperature conditions (room temperature, refrigerated and ice-cooled). Plasma levels of ubiquinol-10 and ubiquinone-10 were determined by an HPLC system with electrochemical detection and the ubiquinol-10/TQ10 ratios were calculated. We found that the ubiquinol-10/TQ10 ratio was stable up to 8 or 4 h when blood samples were stored in refrigerator or ice-cold container, respectively, and its decreases during these periods were <1.0%. We conclude that, in order to evaluate ubiquinol-10/TQ10 ratios, blood samples should be stored in a refrigerator or an ice-cold container, and processed for plasma separation within 4 h. PMID:26248527

  4. Coenzyme Q10 in human blood: native levels and determinants of oxidation during processing and storage.

    PubMed

    Franke, Adrian A; Morrison, Cynthia M; Bakke, Jesse L; Custer, Laurie J; Li, Xingnan; Cooney, Robert V

    2010-06-15

    Coenzyme Q10 (Q10) is present in the circulation mainly in its reduced form (ubiquinol-10; UL10), but oxidizes quickly ex vivo to ubiquinone-10 (UN10). Therefore, native UL10:UN10 ratios, used as markers of redox status and disease risk, are difficult to measure. We established an RP-(U)HPLC method with coulometric detection to measure natively circulating UL10 and UN10 concentrations by adding a ubiquinol/ubiquinone mixture as an internal standard immediately after plasma preparation. This allowed adjustment for unavoidable artificial UL10 oxidation as well as for total losses (or gains) of analytes during sample storage, processing, and analysis because the internal standards exactly paralleled the chemical behavior of Q10. This technique applied to blood (n = 13) revealed Q10 levels of 680-3300 nM with a mean UL10:UN10 ratio of 95:5, which was inversely associated with total Q10 (r=-0.69; p=0.004). The oxidation of UL10 to UN10 was equimolar, increased by O(2), and decreased by lower temperatures or various degassing methods. Although UL10 was stable in blood or when pure in organic solvents at 22 degrees C, its oxidation was catalyzed dose dependently by alpha-tocopherol and butylated hydroxytoluene, particularly when present in combination. Key structural features for the catalytic pro-oxidant properties of phenolic antioxidants included two substituents vicinal to the phenolic hydroxyl group. PMID:20226852

  5. Cofilin/Twinstar Phosphorylation Levels Increase in Response to Impaired Coenzyme A Metabolism

    PubMed Central

    Siudeja, Katarzyna; Grzeschik, Nicola A.; Rana, Anil; de Jong, Jannie; Sibon, Ody C. M.

    2012-01-01

    Coenzyme A (CoA) is a pantothenic acid-derived metabolite essential for many fundamental cellular processes including energy, lipid and amino acid metabolism. Pantothenate kinase (PANK), which catalyses the first step in the conversion of pantothenic acid to CoA, has been associated with a rare neurodegenerative disorder PKAN. However, the consequences of impaired PANK activity are poorly understood. Here we use Drosophila and human neuronal cell cultures to show how PANK deficiency leads to abnormalities in F-actin organization. Cells with reduced PANK activity are characterized by abnormally high levels of phosphorylated cofilin, a conserved actin filament severing protein. The increased levels of phospho-cofilin coincide with morphological changes of PANK-deficient Drosophila S2 cells and human neuronal SHSY-5Y cells. The latter exhibit also markedly reduced ability to form neurites in culture – a process that is strongly dependent on actin remodeling. Our results reveal a novel and conserved link between a metabolic biosynthesis pathway, and regulation of cellular actin dynamics. PMID:22912811

  6. Evaluation of Coenzyme Q as an Antioxidant Strategy for Alzheimer’s Disease

    PubMed Central

    Wadsworth, Teri L; Bishop, James A; Pappu, Anuradha S; Woltjer, Randall L; Quinn, Joseph F

    2010-01-01

    Increasing evidence suggests that Alzheimer's disease (AD) is associated with oxidative damage that is caused in part by mitochondrial dysfunction. Here we investigated the feasibility of modifying Alzheimer pathology with the mitochondrial antioxidant coenzyme Q (CoQ). Exogenous CoQ protected MC65 neuroblastoma cells from amyloid precursor protein C-terminal fragment (APP CTF)-induced neurotoxicity in a concentration dependent manner, with concentrations of 6.25 µM and higher providing near complete protection. Dietary supplementation with CoQ at a dose of 10 g/kg diet to C65/Bl6 mice for one month significantly suppressed brain protein carbonyl levels, which are markers of oxidative damage. Treatment for one month with 2 g lovastatin/kg diet, which interferes with CoQ synthesis, resulted in a significant lowering of brain CoQ10 levels. Mitochondrial energetics (brain ATP levels and mitochondrial membrane potential) were unaffected by either CoQ or lovastatin treatment. Our results suggest that oral CoQ may be a viable antioxidant strategy for neurodegenerative disease. Our data supports a trial of CoQ in an animal model of AD in order to determine whether a clinical trial is warranted. PMID:18560133

  7. Coenzyme Q10 Abrogated the 28 Days Aluminium Chloride Induced Oxidative Changes in Rat Cerebral Cortex

    PubMed Central

    Majumdar, Anuradha S.; Nirwane, Abhijit; Kamble, Rahul

    2014-01-01

    Objective: The present study was designed to elucidate the impact of oral administration of aluminium chloride for 28 days with respect to oxidative stress in the cerebral cortex of female rats. Further, to investigate the potentials of Coenzyme (Co) Q10 (4, 8, and 12 mg/kg, i.p.) in mitigating the detrimental changes. Materials and Methods: Biochemical estimations of cerebral lipid peroxidation (LPO), reduced glutathione (GSH), vitamin E and activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were carried out after 28 days of aluminium chloride (AlCl3) and Co Q10 exposures along with histopathological examination of cerebral cortex of the rats. Results: Subacute exposure to AlCl3(5 mg/kg) led to significant decrease in levels of GSH, vitamin E and activities of SOD, CAT, GPx, and an increase in LPO of cerebral cortex. These aberrations were restored by Co Q10 (12 mg/kg, i.p.). This protection offered was comparable to that of L-deprenyl (1 mg/kg, i.p.) which served as a reference standard. Histopathological evaluations confirmed that the normal cerebral morphology was maintained by Co Q10. Conclusion: Thus, AlCl3 exposure hampers the activities of various antioxidant enzymes and induces oxidative stress in cerebral cortex of female Wistar rats. Supplementation with intraperitoneal Co Q10 abrogated these deleterious effects of AlCl3. PMID:25253934

  8. Can coenzyme q10 improve clinical and molecular parameters in fibromyalgia?

    PubMed

    Cordero, Mario D; Alcocer-Gómez, Elísabet; de Miguel, Manuel; Culic, Ognjen; Carrión, Angel M; Alvarez-Suarez, José Miguel; Bullón, Pedro; Battino, Maurizio; Fernández-Rodríguez, Ana; Sánchez-Alcazar, José Antonio

    2013-10-20

    Fibromyalgia (FM) is a complex disorder that affects up to 5% of the general population worldwide. Its pathophysiological mechanisms are difficult to identify and current drug therapies demonstrate limited effectiveness. Both mitochondrial dysfunction and coenzyme Q10 (CoQ10) deficiency have been implicated in FM pathophysiology. We have investigated the effect of CoQ10 supplementation. We carried out a randomized, double-blind, placebo-controlled trial to evaluate clinical and gene expression effects of forty days of CoQ10 supplementation (300 mg/day) on 20 FM patients. This study was registered with controlled-trials.com (ISRCTN 21164124). An important clinical improvement was evident after CoQ10 versus placebo treatment showing a reduction of FIQ (p<0.001), and a most prominent reduction in pain (p<0.001), fatigue, and morning tiredness (p<0.01) subscales from FIQ. Furthermore, we observed an important reduction in the pain visual scale (p<0.01) and a reduction in tender points (p<0.01), including recovery of inflammation, antioxidant enzymes, mitochondrial biogenesis, and AMPK gene expression levels, associated with phosphorylation of the AMPK activity. These results lead to the hypothesis that CoQ10 have a potential therapeutic effect in FM, and indicate new potential molecular targets for the therapy of this disease. AMPK could be implicated in the pathophysiology of FM. PMID:23458405

  9. Coenzyme Q10 depletion in medical and neuropsychiatric disorders: potential repercussions and therapeutic implications.

    PubMed

    Morris, Gerwyn; Anderson, George; Berk, Michael; Maes, Michael

    2013-12-01

    Coenzyme Q10 (CoQ10) is an antioxidant, a membrane stabilizer, and a vital cofactor in the mitochondrial electron transport chain, enabling the generation of adenosine triphosphate. It additionally regulates gene expression and apoptosis; is an essential cofactor of uncoupling proteins; and has anti-inflammatory, redox modulatory, and neuroprotective effects. This paper reviews the known physiological role of CoQ10 in cellular metabolism, cell death, differentiation and gene regulation, and examines the potential repercussions of CoQ10 depletion including its role in illnesses such as Parkinson's disease, depression, myalgic encephalomyelitis/chronic fatigue syndrome, and fibromyalgia. CoQ10 depletion may play a role in the pathophysiology of these disorders by modulating cellular processes including hydrogen peroxide formation, gene regulation, cytoprotection, bioenegetic performance, and regulation of cellular metabolism. CoQ10 treatment improves quality of life in patients with Parkinson's disease and may play a role in delaying the progression of that disorder. Administration of CoQ10 has antidepressive effects. CoQ10 treatment significantly reduces fatigue and improves ergonomic performance during exercise and thus may have potential in alleviating the exercise intolerance and exhaustion displayed by people with myalgic encepholamyletis/chronic fatigue syndrome. Administration of CoQ10 improves hyperalgesia and quality of life in patients with fibromyalgia. The evidence base for the effectiveness of treatment with CoQ10 may be explained via its ability to ameliorate oxidative stress and protect mitochondria. PMID:23761046

  10. Simultaneous analysis of ellagic acid and coenzyme Q(10) by derivative spectroscopy and HPLC.

    PubMed

    Ratnam, D Venkat; Bhardwaj, V; Kumar, M N V Ravi

    2006-09-15

    Antioxidants are gaining tremendous interest as chemopreventive as well as chemotherapeutic agents. Ellagic acid (EA) is a plant derived compound with very poor solubility in water and very low octanol/water partition coefficient and coenzyme Q(10) (CoQ(10)) is a highly lipophilic compound, which is synthesized in the body and can be derived from food supplements as well. The new insights in the combination therapy are promising a better future in many challenging diseases. Synergism is among the key advantages of combination therapy apart from decreased intensity of unwanted effects of a compound, increased patient compliance and reduction in cost of therapy. EA and CoQ(10) supplementation in combination will be beneficial in strengthening the weakened antioxidant defense system in many diseases related to oxidative stress. Here we report first derivative UV spectroscopic and HPLC methods for the simultaneous analysis of these two agents in pharmaceutical preparations. Results obtained indicate that the derivative spectroscopy is as efficient as HPLC method in quantitative analysis. Retention of ellagic acid can be increased using PEG bonded column which is poorly retained on C(18) column. PEG column can be used for rapid simultaneous analysis of EA and CoQ(10), which are having diverse physicochemical properties. PMID:18970780

  11. Application of Coenzyme Q10 for Accelerating Soft Tissue Wound Healing after Tooth Extraction in Rats

    PubMed Central

    Yoneda, Toshiki; Tomofuji, Takaaki; Kawabata, Yuya; Ekuni, Daisuke; Azuma, Tetsuji; Kataoka, Kota; Kunitomo, Muneyoshi; Morita, Manabu

    2014-01-01

    Accelerating wound healing after tooth extraction is beneficial in dental treatment. Application of antioxidants, such as reduced coenzyme Q10 (rCoQ10), may promote wound healing after tooth extraction. In this study, we examined the effects of topical application of rCoQ10 on wound healing after tooth extraction in rats. After maxillary first molars were extracted, male Fischer 344 rats (8 weeks old) (n = 27) received topical application of ointment containing 5% rCoQ10 (experimental group) or control ointment (control group) to the sockets for 3 or 8 days (n = 6–7/group). At 3 days after extraction, the experimental group showed higher collagen density and lower numbers of polymorphonuclear leukocytes in the upper part of socket, as compared to the control group (p < 0.05). Gene expression of interleukin-1β, tumor necrosis factor-α and nuclear factor-κB were also lower in the experimental group than in the control group (p < 0.05). At 8 days after tooth extraction, there were no significant differences in collagen density, number of polymorphonuclear leukocytes and bone fill between the groups. Our results suggest that topical application of rCoQ10 promotes wound healing in the soft tissue of the alveolar socket, but that rCoQ10 has a limited effect on bone remodeling in rats. PMID:25514392

  12. Coenzyme Q and Its Role in the Dietary Therapy against Aging.

    PubMed

    Varela-López, Alfonso; Giampieri, Francesca; Battino, Maurizio; Quiles, José L

    2016-01-01

    Coenzyme Q (CoQ) is a naturally occurring molecule located in the hydrophobic domain of the phospholipid bilayer of all biological membranes. Shortly after being discovered, it was recognized as an essential electron transport chain component in mitochondria where it is particularly abundant. Since then, more additional roles in cell physiology have been reported, including antioxidant, signaling, death prevention, and others. It is known that all cells are able to synthesize functionally sufficient amounts of CoQ under normal physiological conditions. However, CoQ is a molecule found in different dietary sources, which can be taken up and incorporated into biological membranes. It is known that mitochondria have a close relationship with the aging process. Additionally, delaying the aging process through diet has aroused the interest of scientists for many years. These observations have stimulated investigation of the anti-aging potential of CoQ and its possible use in dietary therapies to alleviate the effects of aging. In this context, the present review focus on the current knowledge and evidence the roles of CoQ cells, its relationship with aging, and possible implications of dietary CoQ in relation to aging, lifespan or age-related diseases. PMID:26999099

  13. The Structural Basis of Coenzyme A Recycling in a Bacterial Organelle

    PubMed Central

    Kerfeld, Cheryl A.

    2016-01-01

    Bacterial Microcompartments (BMCs) are proteinaceous organelles that encapsulate critical segments of autotrophic and heterotrophic metabolic pathways; they are functionally diverse and are found across 23 different phyla. The majority of catabolic BMCs (metabolosomes) compartmentalize a common core of enzymes to metabolize compounds via a toxic and/or volatile aldehyde intermediate. The core enzyme phosphotransacylase (PTAC) recycles Coenzyme A and generates an acyl phosphate that can serve as an energy source. The PTAC predominantly associated with metabolosomes (PduL) has no sequence homology to the PTAC ubiquitous among fermentative bacteria (Pta). Here, we report two high-resolution PduL crystal structures with bound substrates. The PduL fold is unrelated to that of Pta; it contains a dimetal active site involved in a catalytic mechanism distinct from that of the housekeeping PTAC. Accordingly, PduL and Pta exemplify functional, but not structural, convergent evolution. The PduL structure, in the context of the catalytic core, completes our understanding of the structural basis of cofactor recycling in the metabolosome lumen. PMID:26959993

  14. Plasma and hepatic carnitine and coenzyme A pools in a patient with fatal, valproate induced hepatotoxicity.

    PubMed Central

    Krähenbühl, S; Mang, G; Kupferschmidt, H; Meier, P J; Krause, M

    1995-01-01

    Reduced hepatic mitochondrial beta-oxidation and changes in the plasma carnitine pool are important biochemical findings in valproate induced liver toxicity. The carnitine pools in plasma and liver and the liver coenzyme A (CoA) pool in a patient with fatal, valproate induced hepatotoxicity were measured. In plasma and liver the free and total carnitine contents were decreased, whereas the ratios short chain acylcarnitine/total acid soluble carnitine were increased. The long chain acylcarnitine content was unchanged in plasma, and increased in liver. The total CoA content in liver was decreased by 84%. This was due to reduced concentrations of CoASH, acetyl-CoA, and long chain acyl-CoA whereas the concentrations of succinyl-CoA and propionyl-CoA were both increased. The good agreement between the plasma and liver carnitine pools reflects the close relation between these two pools. The observed decrease in the hepatic CoASH and total CoA content has so far not been reported in humans with valproate induced hepatotoxicity and may be functionally significant. PMID:7672665

  15. Recovery of MERRF fibroblasts and cybrids pathophysiology by coenzyme Q10.

    PubMed

    De la Mata, Mario; Garrido-Maraver, Juan; Cotán, David; Cordero, Mario D; Oropesa-Ávila, Manuel; Izquierdo, Lourdes Gómez; De Miguel, Manuel; Lorite, Juan Bautista; Infante, Eloy Rivas; Ybot, Patricia; Jackson, Sandra; Sánchez-Alcázar, José A

    2012-04-01

    Mitochondrial DNA mutations are an important cause of human disease for which there is no effective treatment. Myoclonic epilepsy with ragged-red fibers (MERRF) is a mitochondrial disease usually caused by point mutations in transfer RNA genes encoded by mitochondrial DNA. The most common mutation associated with MERRF syndrome, m.8344A > G in the gene MT-TK, which encodes transfer RNA(Lysine), affects the translation of all mitochondrial DNA encoded proteins. This impairs the assembly of the electron transport chain complexes leading to decreased mitochondrial respiratory function. Here we report on how this mutation affects mitochondrial function in primary fibroblast cultures established from patients harboring the A8344G mutation. Coenzyme Q10 levels, as well as mitochondrial respiratory chain activity, and mitochondrial protein expression levels were significantly decreased in MERRF fibroblasts. Mitotracker staining and imaging analysis of individual mitochondria indicated the presence of small, rounded, depolarized mitochondria in MERRF fibroblasts. Mitochondrial dysfunction was associated with increased oxidative stress and increased degradation of impaired mitochondria by mitophagy. Transmitochondrial cybrids harboring the A8344G mutation also showed CoQ10 deficiency, mitochondrial dysfunction, and increased mitophagy activity. All these abnormalities in patient-derived fibroblasts and cybrids were partially restored by CoQ10 supplementation, indicating that these cell culture models may be suitable for screening and validation of novel drug candidates for MERRF disease. PMID:22354625

  16. Investigation of Pyridine Carboxylic Acids in CM2 Carbonaceous Chondrites: Potential Precursor Molecules for Ancient Coenzymes

    NASA Technical Reports Server (NTRS)

    Smith, Karen E.; Callahan, Michael P.; Gerakines, Perry A.; Dworkin, Jason P.; House, Christopher H.

    2014-01-01

    The distribution and abundances of pyridine carboxylic acids (including nicotinic acid) in eight CM2 carbonaceous chondrites (ALH 85013, DOM 03183, DOM 08003, EET 96016, LAP 02333, LAP 02336, LEW 85311, and WIS 91600) were investigated by liquid chromatography coupled to UV detection and high resolution Orbitrap mass spectrometry. We find that pyridine monocarboxylic acids are prevalent in CM2-type chondrites and their abundance negatively correlates with the degree of pre-terrestrial aqueous alteration that the meteorite parent body experienced. We lso report the first detection of pyridine dicarboxylic acids in carbonaceous chondrites. Additionally, we carried out laboratory studies of proton-irradiated pyridine in carbon dioxide-rich ices (a 1:1 mixture) to serve as a model of the interstellar ice chemistry that may have led to the synthesis of pyridine carboxylic acids. Analysis of the irradiated ice residue shows that a comparable suite of pyridine mono- and dicarboxylic acids was produced, although aqueous alteration may still play a role in the synthesis (and ultimate yield) of these compounds in carbonaceous meteorites. Nicotinic acid is a precursor to nicotinamide adenine dinucleotide, a likely ancient molecule used in cellular metabolism in all of life, and its common occurrence in CM2 chondrites may indicate that meteorites may have been a source of molecules for the emergence of more complex coenzymes on the early Earth.

  17. Investigation of Pyridine Carboxylic Acids in CM2 Carbonaceous Chondrites: Potential Precursor Molecules for Ancient Coenzymes

    NASA Technical Reports Server (NTRS)

    Smith, Karen E.; Callahan, Michael P.; Gerakines, Perry A.; Dworkin, Jason P.; House, Christopher H.

    2014-01-01

    The distribution and abundances of pyridine carboxylic acids (including nicotinic acid) in eight CM2 carbonaceous chondrites (ALH 85013, DOM 03183, DOM 08003, EET 96016, LAP 02333, LAP 02336, LEW 85311, and WIS 91600) were investigated by liquid chromatography coupled to UV detection and high resolution Orbitrap mass spectrometry. We find that pyridine monocarboxylic acids are prevalent in CM2-type chondrites and their abundance negatively correlates with the degree of pre-terrestrial aqueous alteration that the meteorite parent body experienced. We also report the first detection of pyridine dicarboxylic acids in carbonaceous chondrites. Additionally, we carried out laboratory studies of proton-irradiated pyridine in carbon dioxide-rich ices (a 1:1 mixture) to serve as a model of the interstellar ice chemistry that may have led to the synthesis of pyridine carboxylic acids. Analysis of the irradiated ice residue shows that a comparable suite of pyridine mono- and dicarboxylic acids was produced, although aqueous alteration may still play a role in the synthesis (and ultimate yield) of these compounds in carbonaceous meteorites. Nicotinic acid is a precursor to nicotinamide adenine dinucleotide, a likely ancient molecule used in cellular metabolism in all of life, and its common occurrence in CM2 chondrites may indicate that meteorites may have been a source of molecules for the emergence of more complex coenzymes on the early Earth.

  18. Nano-encapsulation of coenzyme Q10 using octenyl succinic anhydride modified starch.

    PubMed

    Cheuk, Sherwin Y; Shih, Frederick F; Champagne, Elaine T; Daigle, Kim W; Patindol, James A; Mattison, Christopher P; Boue, Stephen M

    2015-05-01

    Octenyl succinic anhydride modified starch (OSA-ST) was used to encapsulate coenzyme Q10 (CoQ10). CoQ10 was dissolved in rice bran oil and incorporated into an aqueous OSA-ST solution. High pressure homogenisation of the mixture was conducted at 170 MPa for 56 cycles. The resulting emulsion had a particle size range of 200-300 nm and the absolute zeta potential varied between 8.4 and 10.6 mV. CoQ10 retention of the emulsion and freeze dried products, determined by a hexane rinse, was 98.2%. Reconstitution of the freeze dried product in Mcllvaine citrate-phosphate buffers with pH values of 3-5 and temperatures at 4 and 25 °C had very little effect on the range and distribution of the nanoparticles' size. The inflection point of the zeta potential and pH plot occurred at the first pKa of succinic acid (pH 4.2), indicating succinate as the main influence over zeta potential. PMID:25529723

  19. Getting a Handle on the Role of Coenzyme M in Alkene Metabolism

    SciTech Connect

    Krishnakumar, A.M.; Sliwa, D.; Endrizzi, J.A.; Boyd, E.S.; Ensign, S.A.; Peters, J.W.

    2009-05-20

    Coenzyme M (2-mercaptoethanesulfonate; CoM) is one of several atypical cofactors discovered in methanogenic archaea which participate in the biological reduction of CO{sub 2} to methane. Elegantly simple, CoM, so named for its role as a methyl carrier in all methanogenic archaea, is the smallest known organic cofactor. It was thought that this cofactor was used exclusively in methanogenesis until it was recently discovered that CoM is a key cofactor in the pathway of propylene metabolism in the gram-negative soil microorganism Xanthobacter autotrophicus Py2. A four-step pathway requiring CoM converts propylene and CO{sub 2} to acetoacetate, which feeds into central metabolism. In this process, CoM is used to activate and convert highly electrophilic epoxypropane, formed from propylene epoxidation, into a nucleophilic species that undergoes carboxylation. The unique properties of CoM provide a chemical handle for orienting compounds for site-specific redox chemistry and stereospecific catalysis. The three-dimensional structures of several of the enzymes in the pathway of propylene metabolism in defined states have been determined, providing significant insights into both the enzyme mechanisms and the role of CoM in this pathway. These studies provide the structural basis for understanding the efficacy of CoM as a handle to direct organic substrate transformations at the active sites of enzymes.

  20. Accelerated Regeneration of ATP Level after Irradiation in Human Skin Fibroblasts by Coenzyme Q10.

    PubMed

    Schniertshauer, Daniel; Müller, Sonja; Mayr, Tobias; Sonntag, Tanja; Gebhard, Daniel; Bergemann, Jörg

    2016-05-01

    Human skin is exposed to a number of harmful agents of which the ultraviolet (UV) component of solar radiation is most important. UV-induced damages include direct DNA lesions as well as oxidative damage in DNA, proteins and lipids caused by reactive oxygen species (ROS). Being the main site of ROS generation in the cell, mitochondria are particularly affected by photostress. The resulting mitochondrial dysfunction may have negative effects on many essential cellular processes. To counteract these effects, coenzyme Q10 (CoQ10 ) is used as a potent therapeutic in a number of diseases. We analyzed the mitochondrial respiration profile, the mitochondrial membrane potential and cellular ATP level in skin fibroblasts after irradiation. We observed an accelerated regeneration of cellular ATP level, a decrease in mitochondrial dysfunction as well as a preservation of the mitochondrial membrane potential after irradiation in human skin fibroblasts by treatment with CoQ10 . We conclude that the faster regeneration of the ATP level was achieved by a preservation of mitochondrial function by the addition of CoQ10 and that the protective effect of CoQ10 is primarily mediated via its antioxidative function. We suggest also that it might be further dependent on a stimulation of DNA repair enzymes by CoQ10 . PMID:26946184

  1. ANO10 mutations cause ataxia and coenzyme Q₁₀ deficiency.

    PubMed

    Balreira, Andrea; Boczonadi, Veronika; Barca, Emanuele; Pyle, Angela; Bansagi, Boglarka; Appleton, Marie; Graham, Claire; Hargreaves, Iain P; Rasic, Vedrana Milic; Lochmüller, Hanns; Griffin, Helen; Taylor, Robert W; Naini, Ali; Chinnery, Patrick F; Hirano, Michio; Quinzii, Catarina M; Horvath, Rita

    2014-11-01

    Inherited ataxias are heterogeneous disorders affecting both children and adults, with over 40 different causative genes, making molecular genetic diagnosis challenging. Although recent advances in next-generation sequencing have significantly improved mutation detection, few treatments exist for patients with inherited ataxia. In two patients with adult-onset cerebellar ataxia and coenzyme Q10 (CoQ10) deficiency in muscle, whole exome sequencing revealed mutations in ANO10, which encodes anoctamin 10, a member of a family of putative calcium-activated chloride channels, and the causative gene for autosomal recessive spinocerebellar ataxia-10 (SCAR10). Both patients presented with slowly progressive ataxia and dysarthria leading to severe disability in the sixth decade. Epilepsy and learning difficulties were also present in one patient, while retinal degeneration and cataract were present in the other. The detection of mutations in ANO10 in our patients indicate that ANO10 defects cause secondary low CoQ10 and SCAR10 patients may benefit from CoQ10 supplementation. PMID:25182700

  2. Protective effects of coenzyme q(10) on decreased oxidative stress resistance induced by simvastatin.

    PubMed

    Kettawan, Aikkarach; Takahashi, Takayuki; Kongkachuichai, Ratchanee; Charoenkiatkul, Somsri; Kishi, Takeo; Okamoto, Tadashi

    2007-05-01

    The effects of simvastatin, an inhibitor of 3-hydroxy-3-methylglutaryl CoA reductase (HMG-CoA reductase), on oxidative stress resistance and the protective effects of coenzyme Q (CoQ) were investigated. When simvastatin was administered orally to mice, the levels of oxidized and reduced CoQ(9) and CoQ(10) in serum, liver, and heart, decreased significantly when compared to those of control. The levels of thiobarbituric acid reactive substances induced by Fe(2+)-ascorbate in liver and heart mitochondria also increased significantly with simvastatin. Furthermore, cultured cardiac myocytes treated with simvastatin exhibited less resistance to oxidative stress, decreased time to the cessation of spontaneous beating in response to H(2)O(2) addition, and decreased responsiveness to electrical field stimulation. These results suggested that oral administration of simvastatin suppresses the biosynthesis of CoQ, which shares the same biosynthesis pathway as cholesterol up to farnesyl pyrophosphate, thus compromising the physiological function of reduced CoQ, which possesses antioxidant activity. However, these undesirable effects induced by simvastatin were alleviated by coadministering CoQ(10) with simvastatin to mice. Simvastatin also reduced the activity of NADPH-CoQ reductase, a biological enzyme that converts oxidized CoQ to the corresponding reduced CoQ, while CoQ(10) administration improved it. These findings may also support the efficacy of coadministering CoQ(10) with statins. PMID:18398496

  3. Severe encephalopathy associated to pyruvate dehydrogenase mutations and unbalanced coenzyme Q10 content.

    PubMed

    Asencio, Claudio; Rodríguez-Hernandez, María A; Briones, Paz; Montoya, Julio; Cortés, Ana; Emperador, Sonia; Gavilán, Angela; Ruiz-Pesini, Eduardo; Yubero, Dèlia; Montero, Raquel; Pineda, Mercedes; O'Callaghan, María M; Alcázar-Fabra, María; Salviati, Leonardo; Artuch, Rafael; Navas, Plácido

    2016-03-01

    Coenzyme Q10 (CoQ10) deficiency is associated to a variety of clinical phenotypes including neuromuscular and nephrotic disorders. We report two unrelated boys presenting encephalopathy, ataxia, and lactic acidosis, who died with necrotic lesions in different areas of brain. Levels of CoQ10 and complex II+III activity were increased in both skeletal muscle and fibroblasts, but it was a consequence of higher mitochondria mass measured as citrate synthase. In fibroblasts, oxygen consumption was also increased, whereas steady state ATP levels were decreased. Antioxidant enzymes such as NQO1 and MnSOD and mitochondrial marker VDAC were overexpressed. Mitochondria recycling markers Fis1 and mitofusin, and mtDNA regulatory Tfam were reduced. Exome sequencing showed mutations in PDHA1 in the first patient and in PDHB in the second. These genes encode subunits of pyruvate dehydrogenase complex (PDH) that could explain the compensatory increase of CoQ10 and a defect of mitochondrial homeostasis. These two cases describe, for the first time, a mitochondrial disease caused by PDH defects associated with unbalanced of both CoQ10 content and mitochondria homeostasis, which severely affects the brain. Both CoQ10 and mitochondria homeostasis appears as new markers for PDH associated mitochondrial disorders. PMID:26014431

  4. Preparation, characterization and in silico modeling of biodegradable nanoparticles containing cyclosporine A and coenzyme Q10

    NASA Astrophysics Data System (ADS)

    Ankola, D. D.; Durbin, E. W.; Buxton, G. A.; Schäfer, J.; Bakowsky, U.; Kumar, M. N. V. Ravi

    2010-02-01

    Combination therapy will soon become a reality, particularly for those patients requiring poly-therapy to treat co-existing disease states. This becomes all the more important with the increasing cost, time and complexity of the drug discovery process prompting one to look at new delivery systems to increase the efficacy, safety and patient compliance of existing drugs. Along this line, we attempted to design nano-scale systems for simultaneous encapsulation of cyclosporine A (CsA) and coenzyme Q10 (CoQ10) and model their encapsulation and release kinetics. The in vitro characterization of the co-encapsulated nanoparticles revealed that the surfactant nature, concentration, external phase volume, droplet size reduction method and drug loading concentration can all influence the overall performance of the nanoparticles. The semi-quantitative solubility study indicates the strong influence of CoQ10 on CsA entrapment which was thought to be due to an increase in the lipophilicity of the overall system. The in vitro dissolution profile indicates the influence of CoQ10 on CsA release (64%) to that of individual particles of CsA, where the release is faster and higher (86%) on 18th day. The attempts to model the encapsulation and release kinetics were successful, offering a possibility to use such models leading to high throughput screening of drugs and their nature, alone or in combination for a particular polymer, if chi-parameters are understood.

  5. Structural basis for the alteration of coenzyme specificity in a malate dehydrogenase mutant

    SciTech Connect

    Tomita, Takeo; Fushinobu, Shinya; Kuzuyama, Tomohisa; Nishiyama, Makoto . E-mail: umanis@mail.ecc.u-tokyo.ac.jp

    2006-08-25

    To elucidate the structural basis for the alteration of coenzyme specificity from NADH toward NADPH in a malate dehydrogenase mutant EX7 from Thermus flavus, we determined the crystal structures at 2.0 A resolution of EX7 complexed with NADPH and NADH, respectively. In the EX7-NADPH complex, Ser42 and Ser45 form hydrogen bonds with the 2'-phosphate group of the adenine ribose of NADPH, although the adenine moiety is not seen in the electron density map. In contrast, although Ser42 and Ser45 occupy a similar position in the EX7-NADH complex structure, both the adenine and adenine ribose moieties of NADH are missing in the map. These results and kinetic analysis of site-directed mutant enzymes indicate (1) that the preference of EX7 for NADPH over NADH is ascribed to the recognition of the 2'-phosphate group by two Ser and Arg44, and (2) that the adenine moiety of NADPH is not recognized in this mutant.

  6. Preformed {beta}-amyloid fibrils are destabilized by coenzyme Q{sub 10} in vitro

    SciTech Connect

    Ono, Kenjiro; Hasegawa, Kazuhiro; Naiki, Hironobu; Yamada, Masahito . E-mail: m-yamada@med.kanazawa-u.ac.jp

    2005-04-29

    Inhibition of the formation of {beta}-amyloid fibrils (fA{beta}), as well as the destabilization of preformed fA{beta} in the CNS, would be attractive therapeutic targets for the treatment of Alzheimer's disease (AD). We reported previously that nordihydroguaiaretic acid (NDGA) and wine-related polyphenol, myricetin (Myr), inhibit fA{beta} formation from A{beta} and destabilize preformed fA{beta} in vitro. Using fluorescence spectroscopic analysis with thioflavin T and electron microscopic studies, we examined the effects of coenzyme Q{sub 10} (CoQ{sub 10}) on the formation, extension, and destabilization of fA{beta} at pH 7.5 at 37 deg C in vitro. We next compared the anti-amyloidogenic activities of CoQ{sub 10} with NDGA and Myr. CoQ{sub 10} dose-dependently inhibited fA{beta} formation from amyloid {beta}-peptide (A{beta}), as well as their extension. Moreover, it destabilized preformed fA{beta}s. The anti-amyloidogenic effects of CoQ{sub 10} were slightly weaker than those of NDGA and Myr. CoQ{sub 10} could be a key molecule for the development of therapeutics for AD.

  7. Investigation of pyridine carboxylic acids in CM2 carbonaceous chondrites: Potential precursor molecules for ancient coenzymes

    NASA Astrophysics Data System (ADS)

    Smith, Karen E.; Callahan, Michael P.; Gerakines, Perry A.; Dworkin, Jason P.; House, Christopher H.

    2014-07-01

    The distribution and abundances of pyridine carboxylic acids (including nicotinic acid) in eight CM2 carbonaceous chondrites (ALH 85013, DOM 03183, DOM 08003, EET 96016, LAP 02333, LAP 02336, LEW 85311, and WIS 91600) were investigated by liquid chromatography coupled to UV detection and high resolution Orbitrap mass spectrometry. We find that pyridine monocarboxylic acids are prevalent in CM2-type chondrites and their abundance negatively correlates with the degree of pre-terrestrial aqueous alteration that the meteorite parent body experienced. We also report the first detection of pyridine dicarboxylic acids in carbonaceous chondrites. Additionally, we carried out laboratory studies of proton-irradiated pyridine in carbon dioxide-rich ices (a 1:1 mixture) to serve as a model of the interstellar ice chemistry that may have led to the synthesis of pyridine carboxylic acids. Analysis of the irradiated ice residue shows that a comparable suite of pyridine mono- and dicarboxylic acids was produced, although aqueous alteration may still play a role in the synthesis (and ultimate yield) of these compounds in carbonaceous meteorites. Nicotinic acid is a precursor to nicotinamide adenine dinucleotide, a likely ancient molecule used in cellular metabolism in all of life, and its common occurrence in CM2 chondrites may indicate that meteorites may have been a source of molecules for the emergence of more complex coenzymes on the early Earth.

  8. Coenzyme Q biosynthesis and its role in the respiratory chain structure.

    PubMed

    Alcázar-Fabra, María; Navas, Plácido; Brea-Calvo, Gloria

    2016-08-01

    Coenzyme Q (CoQ) is a unique electron carrier in the mitochondrial respiratory chain, which is synthesized on-site by a nuclear encoded multiprotein complex. CoQ receives electrons from different redox pathways, mainly NADH and FADH2 from tricarboxylic acid pathway, dihydroorotate dehydrogenase, electron transfer flavoprotein dehydrogenase and glycerol-3-phosphate dehydrogenase that support key aspects of the metabolism. Here we explore some lines of evidence supporting the idea of the interaction of CoQ with the respiratory chain complexes, contributing to their superassembly, including respirasome, and its role in reactive oxygen species production in the mitochondrial inner membrane. We also review the current knowledge about the involvement of mitochondrial genome defects and electron transfer flavoprotein dehydrogenase mutations in the induction of secondary CoQ deficiency. This mechanism would imply specific interactions coupling CoQ itself or the CoQ-biosynthetic apparatus with the respiratory chain components. These interactions would regulate mitochondrial CoQ steady-state levels and function. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi. PMID:26970214

  9. The Influence of Environment on the Reactivity, Dynamics and Spectroscopy of B12 Coenzymes.

    NASA Astrophysics Data System (ADS)

    Sension, Roseanne; Ahmasi Harris, D.; Carroll, Elizabeth; Stickrath, Andrew

    2006-03-01

    Adenosylcobalamin (AdoCbl) dependent enzymes catalyze a variety of chemically difficult reactions that proceed by mechanisms involving organic radicals. In these enzymes radicals are initially generated by homolysis of the cobalt-carbon bond to produce an adenosyl radical and a cob(II)alamin radical. This radical pair may also be generated by optical excitation of the AdoCbl cofactor with visible light. In the work presented here, time-resolved spectroscopic measurements spanning the time range from 10 fs to 10 ns are used to investigate the energetics and dynamics of AdoCbl and other cobalamins as a function of environment. These studies probe the influence of environment on the energy of the low-lying charge transfer states of the cobalamin and on the barriers for dissociation and for recombination of the geminate radical pair. When the AdoCbl coenzyme is bound to the enzyme glutamate mutase, the protein environment is found to stabilize the charge transfer state of AdoCbl relative to observations in water and ethylene glycol. However, the intrinsic rate constant for recombination is only slightly smaller than the rate constant measured in free solution, suggesting the protein does not greatly perturb the ground state stability of the cobalt-carbon bond.

  10. Coenzyme Q10: Is There a Clinical Role and a Case for Measurement?

    PubMed Central

    Molyneux, Sarah L; Young, Joanna M; Florkowski, Christopher M; Lever, Michael; George, Peter M

    2008-01-01

    Coenzyme Q10 (CoQ10) is an essential cofactor in the mitochondrial electron transport pathway, and is also a lipid-soluble antioxidant. It is endogenously synthesised via the mevalonate pathway, and some is obtained from the diet. CoQ10 supplements are available over the counter from health food shops and pharmacies. CoQ10 deficiency has been implicated in several clinical disorders, including but not confined to heart failure, hypertension, Parkinson’s disease and malignancy. Statin, 3-hydroxy-3- methyl-glutaryl (HMG)-CoA reductase inhibitor therapy inhibits conversion of HMG-CoA to mevalonate and lowers plasma CoQ10 concentrations. The case for measurement of plasma CoQ10 is based on the relationship between levels and outcomes, as in chronic heart failure, where it may identify individuals most likely to benefit from supplementation therapy. During CoQ10 supplementation plasma CoQ10 levels should be monitored to ensure efficacy, given that there is variable bioavailability between commercial formulations, and known inter-individual variation in CoQ10 absorption. Knowledge of biological variation and reference change values is important to determine whether a significant change in plasma CoQ10 has occurred, whether a reduction for example following statin therapy or an increase following supplementation. Emerging evidence will determine whether CoQ10 does indeed have an important clinical role and in particular, whether there is a case for measurement. PMID:18787645

  11. Functional Analyses of Two Acetyl Coenzyme A Synthetases in the Ascomycete Gibberella zeae ▿ †

    PubMed Central

    Lee, Seunghoon; Son, Hokyoung; Lee, Jungkwan; Min, Kyunghun; Choi, Gyung Ja; Kim, Jin-Cheol; Lee, Yin-Won

    2011-01-01

    Acetyl coenzyme A (acetyl-CoA) is a crucial metabolite for energy metabolism and biosynthetic pathways and is produced in various cellular compartments with spatial and temporal precision. Our previous study on ATP citrate lyase (ACL) in Gibberella zeae revealed that ACL-dependent acetyl-CoA production is important for histone acetylation, especially in sexual development, but is not involved in lipid synthesis. In this study, we deleted additional acetyl-CoA synthetic genes, the acetyl-CoA synthetases (ACS genes ACS1 and ACS2), to identify alternative acetyl-CoA production mechanisms for ACL. The ACS1 deletion resulted in a defect in sexual development that was mainly due to a reduction in 1-palmitoyl-2-oleoyl-3-linoleoyl-rac-glycerol production, which is required for perithecium development and maturation. Another ACS coding gene, ACS2, has accessorial functions for ACS1 and has compensatory functions for ACL as a nuclear acetyl-CoA producer. This study showed that acetate is readily generated during the entire life cycle of G. zeae and has a pivotal role in fungal metabolism. Because ACSs are components of the pyruvate-acetaldehyde-acetate pathway, this fermentation process might have crucial roles in various physiological processes for filamentous fungi. PMID:21666077

  12. Structural requirements for novel coenzyme-substrate derivatives to inhibit intracellular ornithine decarboxylase and cell proliferation.

    PubMed

    Wu, Fang; Gehring, Heinz

    2009-02-01

    Creating transition-state mimics has proven to be a powerful strategy in developing inhibitors to treat malignant diseases in several cases. In the present study, structurally diverse coenzyme-substrate derivatives mimicking this type for pyridoxal 5'-phosphate-dependent human ornithine decarboxylase (hODC), a potential anticancer target, were designed, synthesized, and tested to elucidate the structural requirements for optimal inhibition of intracellular ODC as well as of tumor cell proliferation. Of 23 conjugates, phosphopyridoxyl- and pyridoxyl-L-tryptophan methyl ester (pPTME, PTME) proved significantly more potent in suppression proliferation (IC(50) up to 25 microM) of glioma cells (LN229) than alpha-DL-difluoromethylornithine (DFMO), a medically used irreversible inhibitor of ODC. In agreement with molecular modeling predictions, the inhibitory action of pPTME and PTME toward intracellular ODC of LN229 cells exceeded that of the previous designed lead compound POB. The inhibitory active compounds feature hydrophobic side chain fragments and a kind of polyamine motif (-NH-(CH(X))(4)-NH-). In addition, they induce, as polyamine analogs often do, the activity of the polyamine catabolic enzymes polyamine oxidase and spermine/spermidine N(1)-acetyltransferase up to 250 and 780%, respectively. The dual-action mode of these compounds in LN229 cells affects the intracellular polyamine metabolism and might underlie the more favorable cell proliferation inhibition in comparison with DFMO. PMID:18922879

  13. Coenzyme Q10-Binding/Transfer Protein Saposin B also Binds gamma-Tocopherol.

    PubMed

    Jin, Guangzhi; Horinouchi, Ryo; Sagawa, Tomofumi; Orimo, Nobutsune; Kubo, Hiroshi; Yoshimura, Shinichi; Fujisawa, Akio; Kashiba, Misato; Yamamoto, Yorihiro

    2008-09-01

    gamma-Tocopherol, the major form of dietary vitamin E, is absorbed in the intestine and is secreted in chylomicrons, which are then transferred to liver lysosomes. Most gamma-tocopherol is transferred to liver microsomes and is catabolized by cytochrome p450. Due to the hydrophobicity of gamma-tocopherol, a binding and transfer protein is plausible, but none have yet been isolated and characterized. We recently found that a ubiquitous cytosolic protein, saposin B, binds and transfers coenzyme Q10 (CoQ10), which is an essential factor for ATP production and an important antioxidant. Here, we report that saposin B also binds gamma-tocopherol, but not alpha-tocopherol, as efficiently as CoQ10 at pH 7.4. At acidic pH, saposin B binds gamma-tocopherol preferentially to CoQ10 and alpha-tocopherol. Furthermore, we confirmed that saposin B selectively binds gamma-tocopherol instead of CoQ10 and alpha-tocopherol at every pH between 5.4 and 8.0 when all three lipids are competing for binding. We detected gamma-tocopherol in human saposin B monoclonal antibody-induced immunoprecipitates from human urine, although the amount of gamma-tocopherol was much smaller than that of CoQ10. These results suggest that saposin B binds and transports gamma-tocopherol in human cells. PMID:18818759

  14. NLRP3 Inflammasome Is Activated in Fibromyalgia: The Effect of Coenzyme Q10

    PubMed Central

    Alcocer-Gómez, Elísabet; Culic, Ognjen; Carrión, Angel M.; de Miguel, Manuel; Díaz-Parrado, Eduardo; Pérez-Villegas, Eva M.; Bullón, Pedro; Battino, Maurizio; Sánchez-Alcazar, José Antonio

    2014-01-01

    Abstract Aims: Fibromyalgia (FM) is a prevalent chronic pain syndrome characterized by generalized hyperalgesia associated with a wide spectrum of symptoms such as fatigue and joint stiffness. Diagnosis of FM is difficult due to the lack of reliable diagnostic biomarkers, while treatment is largely inadequate. We have investigated the role of coenzyme Q10 (CoQ10) deficiency and mitochondrial dysfunction in inflammasome activation in blood cells from FM patients, and in vitro and in vivo CoQ10 deficiency models. Results: Mitochondrial dysfunction was accompanied by increased protein expression of interleukin (IL)-1β, NLRP3 (NOD-like receptor family, pyrin domain containing 3) and caspase-1 activation, and an increase of serum levels of proinflammatory cytokines (IL-1β and IL-18). CoQ10 deficiency induced by p-aminobenzoate treatment in blood mononuclear cells and mice showed NLRP3 inflammasome activation with marked algesia. A placebo-controlled trial of CoQ10 in FM patients has shown a reduced NLRP3 inflammasome activation and IL-1β and IL-18 serum levels. Innovation: These results show an important role for the NLRP3 inflammasome in the pathogenesis of FM, and the capacity of CoQ10 in the control of inflammasome. Conclusion: These findings provide new insights into the pathogenesis of FM and suggest that NLRP3 inflammasome inhibition represents a new therapeutic intervention for the disease. Antioxid. Redox Signal. 20, 1169–1180. PMID:23886272

  15. Coenzyme Q10 Levels Are Decreased in the Cerebellum of Multiple-System Atrophy Patients

    PubMed Central

    Schottlaender, Lucia V.; Bettencourt, Conceição; Kiely, Aoife P.; Chalasani, Annapurna; Neergheen, Viruna; Holton, Janice L.; Hargreaves, Iain; Houlden, Henry

    2016-01-01

    Background The objective of this study was to evaluate whether the levels of coenzyme Q10 (CoQ10) in brain tissue of multiple system atrophy (MSA) patients differ from those in elderly controls and in patients with other neurodegenerative diseases. Methods Flash frozen brain tissue of a series of 20 pathologically confirmed MSA patients [9 olivopontocerebellar atrophy (OPCA) type, 6 striatonigral degeneration (SND) type, and 5 mixed type] was used for this study. Elderly controls (n = 37) as well as idiopathic Parkinson's disease (n = 7), dementia with Lewy bodies (n = 20), corticobasal degeneration (n = 15) and cerebellar ataxia (n = 18) patients were used as comparison groups. CoQ10 was measured in cerebellar and frontal cortex tissue by high performance liquid chromatography. Results We detected a statistically significant decrease (by 3–5%) in the level of CoQ10 in the cerebellum of MSA cases (P = 0.001), specifically in OPCA (P = 0.001) and mixed cases (P = 0.005), when compared to controls as well as to other neurodegenerative diseases [dementia with Lewy bodies (P<0.001), idiopathic Parkinson's disease (P<0.001), corticobasal degeneration (P<0.001), and cerebellar ataxia (P = 0.001)]. Conclusion Our results suggest that a perturbation in the CoQ10 biosynthetic pathway is associated with the pathogenesis of MSA but the mechanism behind this finding remains to be elucidated. PMID:26894433

  16. Coenzyme Q10 and α-tocopherol reversed age-associated functional impairments in mice

    PubMed Central

    Shetty, Ritu A.; Ikonne, Uzoma S.; Forster, Michael J.; Sumien, Nathalie

    2014-01-01

    The purpose of this study was to determine if intake of the antioxidants coenzyme Q10 (CoQ10) or α-tocopherol (Toc), either alone or in combination, could ameliorate cognitive and psychomotor impairments of aged mice, as well as reduce oxidative burden in tissues. For a period of 10 weeks, male C57BL/6J mice (3 or 18 months) were fed either a control diet, or one of three diets supplemented with Toc, CoQ10 or their combination, and were tested for cognitive and psychomotor function. Old mice on the Toc or Toc/CoQ10 diets showed improved coordinated running performance. Mice on the diet containing Toc/CoQ10 demonstrated improved performance in the discriminated avoidance task. CoQ10 and Toc alone also resulted in improved performance, albeit to a lesser degree. Protein damage was decreased especially when the mice received Toc + CoQ10 combination. Overall, these results suggest that, Toc and CoQ supplementation can ameliorate age-related impairment and reduce protein oxidation. Moreover, concurrent supplementation of CoQ10 and Toc may be more effective than either antioxidant alone. PMID:25149567

  17. The Role of the 3-Hydroxy 3-Methylglutaryl Coenzyme A Reductase Cytosolic Domain in Karmellae Biogenesis

    PubMed Central

    Profant, Deborah A.; Roberts, Christopher J.; Koning, Ann J.; Wright, Robin L.

    1999-01-01

    In all cells examined, specific endoplasmic reticulum (ER) membrane arrays are induced in response to increased levels of the ER membrane protein 3-hydroxy 3-methylglutaryl coenzyme A (HMG-CoA) reductase. In yeast, expression of Hmg1p, one of two yeast HMG-CoA reductase isozymes, induces assembly of nuclear-associated ER stacks called karmellae. Understanding the features of HMG-CoA reductase that signal karmellae biogenesis would provide useful insights into the regulation of membrane biogenesis. The HMG-CoA reductase protein consists of two domains, a multitopic membrane domain and a cytosolic catalytic domain. Previous studies had indicated that the HMG-CoA reductase membrane domain was exclusively responsible for generation of ER membrane proliferations. Surprisingly, we discovered that this conclusion was incorrect: sequences at the carboxyl terminus of HMG-CoA reductase can profoundly affect karmellae biogenesis. Specifically, truncations of Hmg1p that removed or shortened the carboxyl terminus were unable to induce karmellae assembly. This result indicated that the membrane domain of Hmg1p was not sufficient to signal for karmellae assembly. Using β-galactosidase fusions, we demonstrated that the carboxyl terminus was unlikely to simply serve as an oligomerization domain. Our working hypothesis is that a truncated or misfolded cytosolic domain prevents proper signaling for karmellae by interfering with the required tertiary structure of the membrane domain. PMID:10512876

  18. Purification and properties of the inducible coenzyme A-linked butyraldehyde dehydrogenase from Clostridium acetobutylicum.

    PubMed Central

    Palosaari, N R; Rogers, P

    1988-01-01

    The coenzyme A (CoA)-linked butyraldehyde dehydrogenase (BAD) from Clostridium acetobutylicum was characterized and purified to homogeneity. The enzyme was induced over 200-fold, coincident with a shift from an acidogenic to a solventogenic fermentation, during batch culture growth. The increase in enzyme activity was found to require new protein synthesis since induction was blocked by the addition of rifampin and antibody against the purified enzyme showed the appearance of enzyme antigen beginning at the shift of the fermentation and increasing coordinately with the increase in enzyme specific activity. The CoA-linked acetaldehyde dehydrogenase was copurified with BAD during an 89-fold purification, indicating that one enzyme accounts for the synthesis of the two aldehyde intermediates for both butanol and ethanol production. Butanol dehydrogenase activity was clearly separate from the BAD enzyme activity on TEAE cellulose. A molecular weight of 115,000 was determined for the native enzyme, and the enzyme subunit had a molecular weight of 56,000 indicating that the active form is a homodimer. Kinetic constants were determined in both the forward and reverse directions. In the reverse direction both the Vmax and the apparent affinity for butyraldehyde and caproaldehyde were significantly greater than they were for acetaldehyde, while in the forward direction, the Vmax for butyryl-CoA was fivefold that for acetyl-CoA. These and other properties of BAD indicate that this enzyme is distinctly different from other reported CoA-dependent aldehyde dehydrogenases. Images PMID:3384801

  19. Polyunsaturated fatty acyl-coenzyme As are inhibitors of cholesterol biosynthesis in zebrafish and mice

    PubMed Central

    Karanth, Santhosh; Tran, Vy My; Kuberan, Balagurunathan; Schlegel, Amnon

    2013-01-01

    SUMMARY Lipid disorders pose therapeutic challenges. Previously we discovered that mutation of the hepatocyte β-hydroxybutyrate transporter Slc16a6a in zebrafish causes hepatic steatosis during fasting, marked by increased hepatic triacylglycerol, but not cholesterol. This selective diversion of trapped ketogenic carbon atoms is surprising because acetate and acetoacetate can exit mitochondria and can be incorporated into both fatty acids and cholesterol in normal hepatocytes. To elucidate the mechanism of this selective diversion of carbon atoms to fatty acids, we fed wild-type and slc16a6a mutant animals high-protein ketogenic diets. We find that slc16a6a mutants have decreased activity of the rate-limiting enzyme of cholesterol biosynthesis, 3-hydroxy-3-methylglutaryl-coenzyme A reductase (Hmgcr), despite increased Hmgcr protein abundance and relative incorporation of mevalonate into cholesterol. These observations suggest the presence of an endogenous Hmgcr inhibitor. We took a candidate approach to identify such inhibitors. First, we found that mutant livers accumulate multiple polyunsaturated fatty acids (PUFAs) and PUFA-CoAs, and we showed that human HMGCR is inhibited by PUFA-CoAs in vitro. Second, we injected mice with an ethyl ester of the PUFA eicosapentaenoic acid and observed an acute decrease in hepatic Hmgcr activity, without alteration in Hmgcr protein abundance. These results elucidate a mechanism for PUFA-mediated cholesterol lowering through direct inhibition of Hmgcr. PMID:24057001

  20. The Human Malaria Parasite Plasmodium falciparum Is Not Dependent on Host Coenzyme A Biosynthesis*

    PubMed Central

    Spry, Christina; Saliba, Kevin J.

    2009-01-01

    Pantothenate, a precursor of the fundamental enzyme cofactor coenzyme A (CoA), is essential for growth of the intraerythrocytic stage of human and avian malaria parasites. Avian malaria parasites have been reported to be incapable of de novo CoA synthesis and instead salvage CoA from the host erythrocyte; hence, pantothenate is required for CoA biosynthesis within the host cell and not the parasite itself. Whether the same is true of the intraerythrocytic stage of the human malaria parasite, Plasmodium falciparum, remained to be established. In this study we investigated the metabolic fate of [14C]pantothenate within uninfected and P. falciparum-infected human erythrocytes. We provide evidence consistent with normal human erythrocytes, unlike rat erythrocytes (which have been reported to possess an incomplete CoA biosynthesis pathway), being capable of CoA biosynthesis from pantothenate. We also show that CoA biosynthesis is substantially higher in P. falciparum-infected erythrocytes and that P. falciparum, unlike its avian counterpart, generates most of the CoA synthesized in the infected erythrocyte, presumably necessitated by insufficient CoA biosynthesis in the host erythrocyte. Our data raise the possibility that malaria parasites rationalize their biosynthetic activity depending on the capacity of their host cell to synthesize the metabolites they require. PMID:19584050

  1. SILEC: a protocol for generating and using isotopically labeled coenzyme A mass spectrometry standards

    PubMed Central

    Basu, Sankha S; Blair, Ian A

    2013-01-01

    Stable isotope labeling by essential nutrients in cell culture (SILEC) was recently developed to generate isotopically labeled coenzyme A (CoA) and short-chain acyl-CoA thioesters. This was accomplished by modifying the widely used technique of stable isotope labeling by amino acids in cell culture to include [13C315N]-pantothenate (vitamin B5), a CoA precursor, instead of the isotopically labeled amino acids. The lack of a de novo pantothenate synthesis pathway allowed for efficient and near-complete labeling of the measured CoA species. This protocol provides a step-by-step approach for generating stable isotope-labeled short-chain acyl-CoA internal standards in mammalian and insect cells as well as instructions on how to use them in stable isotope dilution mass spectrometric-based analyses. Troubleshooting guidelines, as well as a list of unlabeled and labeled CoA species, are also included. This protocol represents a prototype for generating stable isotope internal standards from labeled essential nutrients such as pantothenate. The generation and use of SILEC standards takes approximately 2–3 weeks. PMID:22157971

  2. Modeling of process parameters for enhanced production of coenzyme Q10 from Rhodotorula glutinis.

    PubMed

    Balakumaran, Palanisamy Athiyaman; Meenakshisundaram, Sankaranarayanan

    2015-01-01

    Coenzyme Q10 (CoQ10) plays an indispensable role in ATP generation through oxidative phosphorylation and helps in scavenging superoxides generated during electron transfer reactions. It finds extensive applications specifically related to oxidative damage and metabolic dysfunctions. This article reports the use of a statistical approach to optimize the concentration of key variables for the enhanced production of CoQ10 by Rhodotorula glutinis in a lab-scale fermenter. The culture conditions that promote optimum growth and CoQ10 production were optimized and the interaction of significant variables para-hydroxybenzoic acid (PHB, 819.34 mg/L) and soybean oil (7.78% [v/v]) was studied using response surface methodology (RSM). CoQ10 production increased considerably from 10 mg/L (in control) to 39.2 mg/L in batch mode with RSM-optimized precursor concentration. In the fed-batch mode, PHB and soybean oil feeding strategy enhanced CoQ10 production to 78.2 mg/L. PMID:24842452

  3. High resolution neutron crystallographic studies of the hydration of coenzyme cob(II)alamin

    SciTech Connect

    Jogl, Gerwald; Wang, Xiaoping; Mason, Sax; Kovalevsky, Andrey; Mustyakimov, Marat; Fisher, Zoe; Hoffmann, Christina; Kratky, Christoph; Langan, Paul

    2011-01-01

    The hydration of coenzyme cob(II)alamin has been studied using high resolution monochromatic neutron crystallographic data collected at room temperature to a resolution of surrounded by flexible side chains with terminal functional groups may be significant for 0.92 on the original diffractometer D19 with a prototype 4o x 64o detector at the high-flux reactor neutron source run by the Institute Laue Langevin. The resulting structure provides H bonding parameters for the hydration of biomacromolecules to unprecedented accuracy. These experimental parameters will be used to define more accurate force-fields for biomacromolecular structure refinement. The presence of a hydrophobic bowl motif efficient scavenging of ligands. The feasibility of extending the resolution of this structure to ultra high resolution was investigated by collecting time-of-flight neutron crystallographic data on diffractometer TOPAZ with a prototype array of 14 modular 21o x 21o detectors at the Spallation Neutron Source run by Oak Ridge National Laboratory.

  4. Dependence of Brown Adipose Tissue Function on CD36-Mediated Coenzyme Q Uptake

    PubMed Central

    Anderson, Courtney M.; Kazantzis, Melissa; Wang, Jinshan; Venkatraman, Subramaniam; Goncalves, Renata L. S.; Quinlan, Casey L.; Ng, Ryan; Jastroch, Martin; Benjamin, Daniel I.; Nie, Biao; Herber, Candice; Ngoc Van, An-Angela; Park, Michael J.; Yun, Dawee; Chan, Karen; Yu, Angela; Vuong, Peter; Febbraio, Maria; Nomura, Daniel; Napoli, Joseph; Brand, Martin D.; Stahl, Andreas

    2014-01-01

    Summary Brown adipose tissue (BAT) possesses the inherent ability to dissipate metabolic energy as heat through uncoupled mitochondrial respiration. An essential component of the mitochondrial electron transport chain is coenzyme Q (CoQ). While cells mostly synthesize CoQ endogenously, exogenous supplementation with CoQ has been successful as a therapy for patients with CoQ deficiency. However, which tissues depend on exogenous CoQ uptake as well as the mechanism by which CoQ is taken up by cells and the role of this process in BAT function is not well understood. Here we report that the scavenger receptor CD36 drives the uptake of CoQ by BAT and is required for normal BAT function. BAT from mice lacking CD36 displays CoQ deficiency, impaired CoQ uptake, hypertrophy, altered lipid metabolism, mitochondrial dysfunction, and defective non-shivering thermogenesis. Together, these data reveal an important new role for the systemic transport of CoQ to BAT and its function in thermogenesis. PMID:25620701

  5. Reduction and Methyl Transfer Kinetics of the Alpha Subunit from Acetyl-Coenzyme A Synthase

    SciTech Connect

    Xiangshi Tan; Christopher Sewell; Qingwu Yang; Paul A. Lindahl

    2003-01-15

    OAK-B135 Stopped-flow was used to evaluate the methylation and reduction kinetics of the isolated alpha subunit of acetyl-Coenzyme A synthase from Moorella thermoacetica. This catalytically active subunit contains a novel Ni-X-Fe4S4 cluster and a putative unidentified n =2 redox site called D. The D-site must be reduced for a methyl group to transfer from a corrinoid-iron-sulfur protein, a key step in the catalytic synthesis of acetyl-CoA. The Fe4S4 component of this cluster is also redox active, raising the possibility that it is the D-site or a portion thereof. Results presented demonstrate that the D-site reduces far faster than the Fe4S4 component, effectively eliminating this possibility. Rather, this component may alter catalytically important properties of the Ni center. The D-site is reduced through a pathway that probably does not involve the Fe4S4 component of this active-site cluster.

  6. Development and evaluation of coenzyme Q10 loaded solid lipid nanoparticle hydrogel for enhanced dermal delivery.

    PubMed

    Korkm, Emrah; Gokce, Evren H; Ozer, Ozgen

    2013-12-01

    Coenzyme Q10 (Q10) loaded solid lipid nanoparticles (SLN) were prepared by the high speed homogenization method and incorporated into Carbopol 974P hydrogels. Compritol 888 ATO (C888) was employed as the lipid base; Poloxamer 188 (P188) and Tween 80 (Tw80) were used as surfactant and co-surfactant. Optimum particle size with narrow distribution was obtained as 152.2 nm for blank and 142.4 nm for Q10 loaded SLNs. The overall charge of loaded SLNs was -13.7 ± 1.3 mV. Q10 entrapment efficiency was 89 % and the production yield was 94 %. Transmission electron microscopy analysis provided evidence of colloidal size, spherical shape while differential scanning calorimetry analysis confirmed recrystallization of the lipid after the preparation of SLNs. Trolox equivalent antioxidant capacity (TEAC) analysis has shown that antioxidant potential of Q10 can be protected in SLNs. Rheological characteristics demonstrated that the SLN incorporating gels were shear thinning and the mechanical strength of the gels was suitable for topical application. Diffusion studies from rat abdominal skin revealed that the delivery of Q10 was doubled in SLN incorporating gels, approximately 40 μg cm-2, in comparison with gels prepared with only Q10 (not incorporated in SLNs). As a result, it can be stated that Q10-SLN loaded gels can be successful delivery systems for carrying Q10 efficiently into the skin without losing its antioxidant properties. PMID:24451076

  7. The Structural Basis of Coenzyme A Recycling in a Bacterial Organelle.

    PubMed

    Erbilgin, Onur; Sutter, Markus; Kerfeld, Cheryl A

    2016-03-01

    Bacterial Microcompartments (BMCs) are proteinaceous organelles that encapsulate critical segments of autotrophic and heterotrophic metabolic pathways; they are functionally diverse and are found across 23 different phyla. The majority of catabolic BMCs (metabolosomes) compartmentalize a common core of enzymes to metabolize compounds via a toxic and/or volatile aldehyde intermediate. The core enzyme phosphotransacylase (PTAC) recycles Coenzyme A and generates an acyl phosphate that can serve as an energy source. The PTAC predominantly associated with metabolosomes (PduL) has no sequence homology to the PTAC ubiquitous among fermentative bacteria (Pta). Here, we report two high-resolution PduL crystal structures with bound substrates. The PduL fold is unrelated to that of Pta; it contains a dimetal active site involved in a catalytic mechanism distinct from that of the housekeeping PTAC. Accordingly, PduL and Pta exemplify functional, but not structural, convergent evolution. The PduL structure, in the context of the catalytic core, completes our understanding of the structural basis of cofactor recycling in the metabolosome lumen. PMID:26959993

  8. The role of acyl-coenzyme A carboxylase complex in lipstatin biosynthesis of Streptomyces toxytricini

    PubMed Central

    Demirev, Atanas V.; Khanal, Anamika; Sedai, Bhishma R.; Lim, Si Kyu; Na, Min Kyun

    2010-01-01

    Streptomyces toxytricini produces lipstatin, a specific inhibitor of pancreatic lipase, which is derived from two fatty acid moieties with eight and 14 carbon atoms. The pccB gene locus in 10.6 kb fragment of S. toxytricini chromosomal DNA contains three genes for acyl-coenzyme A carboxylase (ACCase) complex accA3, pccB, and pccE that are presumed to be involved in secondary metabolism. The pccB gene encoding a β subunit of ACCase [carboxyltransferase (CT)] was identified upstream of pccE gene for a small protein of ε subunit. The accA3 encoding the α subunit of ACCase [biotin carboxylase (BC)] was also identified downstream of pccB gene. When the pccB and pccE genes were inactivated by homologous recombination, the lipstatin production was reduced as much as 80%. In contrast, the accumulation of another compound, tetradeca-5.8-dienoic acid (the major lipstatin precursor), was 4.5-fold increased in disruptant compared with wild-type. It implies that PccB of S. toxytricini is involved in the activation of octanoic acid to hexylmalonic acid for lipstatin biosynthesis. Electronic supplementary material The online version of this article (doi:10.1007/s00253-010-2587-2) contains supplementary material, which is available to authorized users. PMID:20437235

  9. In Vivo Analysis of Folate Coenzymes and Their Compartmentation in Saccharomyces Cerevisiae

    PubMed Central

    McNeil, J. B.; Bognar, A. L.; Pearlman, R. E.

    1996-01-01

    In eukaryotes, enzymes responsible for the interconversion of one-carbon units exist in parallel in both mitochondria and the cytoplasm. Strains of Saccharomyces cerevisiae were constructed that possess combinations of gene disruptions at the SHM1 [mitochondrial serine hydroxymethyltransferase (SHMTm)], SHM2 [cytoplasmic SHMT (SHMTc)], MIS1 [mitochondrial C(1)-tetrahydrofolate synthase (C(1)-THFSm)], ADE3 [cytoplasmic C(1)-THF synthase (C(1)-THFSc)], GCV1 [glycine cleavage system (GCV) protein T], and the GLY1 (involved in glycine synthesis) loci. Analysis of the in vivo growth characteristics and phenotypes was used to determine the contribution to cytoplasmic nucleic acid and amino acid anabolism by the mitochondrial enzymes involved in the interconversion of folate coenzymes. The data indicate that mitochondria transport formate to the cytoplasmic compartment and mitochondrial synthesis of formate appears to rely primarily on SHMTm rather than the glycine cleavage system. The glycine cleavage system and SHMTm cooperate to specifically synthesize serine. With the inactivation of SHM1, however, the glycine cleavage system can make an observable contribution to the level of mitochondrial formate. Inactivation of SHM1, SHM2 and ADE3 is required to render yeast auxotrophic for TMP and methionine, suggesting that TMP synthesized in mitochondria may be available to the cytoplasmic compartment. PMID:8852837

  10. Distribution of coenzyme F420 and properties of its hydrolytic fragments.

    PubMed

    Eirich, L D; Vogels, G D; Wolfe, R S

    1979-10-01

    The ability of hydrolytic products of coenzyme F420 to substitute for F420 in the hydrogenase and nicotinamide adenine dinucleotide phosphate-liniked hydrogenase systems of Methanobacterium strain M.o.H. was kinetically determined. The nicotinamide adenine dinucleotide phosphate-linked hydrogenase system was employed to quantitate the levels of F420 in a number of methanogenic bacteria as well as in some nonmethanogens. Methanobacterium ruminantium and Methanosarcina barkeri contained low levels of F420, whereas other methanogens tested contained high levels (100 to 400 mg/kg of cells). F420 from six of the seven methanogens was tested by thin-layer electrophoresis and was found to be electrophoretically identical to that purified from Methanobacterium strain M.o.H. The only exception was M. barkeri, which contained a more electronegative derivative of F420. Acetobacterium woodii, Escherichia coli, and yeast extract contained no compounds able to substitute for F420 in the nicotinamide adenine dinucleotide phosphate-linked hydrogenase system. PMID:40952

  11. Distribution of coenzyme F420 and properties of its hydrolytic fragments.

    PubMed Central

    Eirich, L D; Vogels, G D; Wolfe, R S

    1979-01-01

    The ability of hydrolytic products of coenzyme F420 to substitute for F420 in the hydrogenase and nicotinamide adenine dinucleotide phosphate-liniked hydrogenase systems of Methanobacterium strain M.o.H. was kinetically determined. The nicotinamide adenine dinucleotide phosphate-linked hydrogenase system was employed to quantitate the levels of F420 in a number of methanogenic bacteria as well as in some nonmethanogens. Methanobacterium ruminantium and Methanosarcina barkeri contained low levels of F420, whereas other methanogens tested contained high levels (100 to 400 mg/kg of cells). F420 from six of the seven methanogens was tested by thin-layer electrophoresis and was found to be electrophoretically identical to that purified from Methanobacterium strain M.o.H. The only exception was M. barkeri, which contained a more electronegative derivative of F420. Acetobacterium woodii, Escherichia coli, and yeast extract contained no compounds able to substitute for F420 in the nicotinamide adenine dinucleotide phosphate-linked hydrogenase system. PMID:40952

  12. Dependence of brown adipose tissue function on CD36-mediated coenzyme Q uptake.

    PubMed

    Anderson, Courtney M; Kazantzis, Melissa; Wang, Jinshan; Venkatraman, Subramaniam; Goncalves, Renata L S; Quinlan, Casey L; Ng, Ryan; Jastroch, Martin; Benjamin, Daniel I; Nie, Biao; Herber, Candice; Van, An-Angela Ngoc; Park, Michael J; Yun, Dawee; Chan, Karen; Yu, Angela; Vuong, Peter; Febbraio, Maria; Nomura, Daniel K; Napoli, Joseph L; Brand, Martin D; Stahl, Andreas

    2015-02-01

    Brown adipose tissue (BAT) possesses the inherent ability to dissipate metabolic energy as heat through uncoupled mitochondrial respiration. An essential component of the mitochondrial electron transport chain is coenzyme Q (CoQ). While cells synthesize CoQ mostly endogenously, exogenous supplementation with CoQ has been successful as a therapy for patients with CoQ deficiency. However, which tissues depend on exogenous CoQ uptake as well as the mechanism by which CoQ is taken up by cells and the role of this process in BAT function are not well understood. Here, we report that the scavenger receptor CD36 drives the uptake of CoQ by BAT and is required for normal BAT function. BAT from mice lacking CD36 displays CoQ deficiency, impaired CoQ uptake, hypertrophy, altered lipid metabolism, mitochondrial dysfunction, and defective nonshivering thermogenesis. Together, these data reveal an important new role for the systemic transport of CoQ to BAT and its function in thermogenesis. PMID:25620701

  13. Strategies for regeneration of nicotinamide coenzymes emphasizing self-sufficient closed-loop recycling systems.

    PubMed

    Hummel, Werner; Gröger, Harald

    2014-12-10

    Biocatalytic reduction reactions depending on nicotinamide coenzymes require an additional reaction to regenerate the consumed cofactor. For preparative application the preferred method is the simultaneous coupling of an in situ regeneration reaction. There are different strategically advantageous routes to achieve this goal. The standard method uses a second enzyme and a second co-substrate, for example formate and formate dehydrogenase or glucose and glucose dehydrogenase. Alternatively, a second substrate is employed which is converted by the same enzyme used for the primary reaction. For example, alcohol dehydrogenase catalyzed reactions are often coupled with excess 2-propanol which is oxidized to acetone during the regeneration of NAD(P)H. A third method utilizes a reaction-internal sequence by the direct coupling of an oxidizing and a reducing enzyme reaction. Neither an additional substrate nor a further regenerating enzyme are required for the recycling reaction. This kind of "closed-loop" or "self-sufficient" redox process for cofactor regeneration has been used rarely so far. Its most intriguing advantage is that even redox reactions with unstable precursors can be realized provided that this compound is produced in situ by an opposite redox reaction. This elegant method is applicable in special cases only but increasing numbers of examples have been published during the last years. PMID:25102236

  14. Acyl-coenzyme A:cholesterol O-acyltransferase is not identical to liver microsomal carboxylesterase.

    PubMed

    Diczfalusy, M A; Björkhem, I; Einarsson, K; Alexson, S E

    1996-04-01

    Acyl-coenzyme A (CoA):cholesterol O-acyltransferase (ACAT) is responsible for esterification of cholesterol in the cell. The enzyme has never been purified, but two cDNA sequences coding for this enzyme were recently reported. One of the sequences was identical to human liver carboxylesterase. We have used inhibitors to elucidate the relation between microsomal carboxylesterase, acyl-CoA hydrolase (ACH), and ACAT activities in rat liver. Low concentrations of serine esterase inhibitors strongly inhibited carboxylesterase and acyl-CoA hydrolase activities but stimulated ACAT activity. At higher concentrations, ACAT activity was also inhibited. A sulfhydryl-modifying agent was found to be a potent inhibitor of ACAT without affecting carboxylesterase activity. Similarly, two specific ACAT inhibitors, DL-melinamide and PD 138142-15, inhibited ACAT activity but did not affect carboxylesterase or ACH activities. Our data thus exclude ACAT as a liver microsomal carboxylesterase. The complex inhibition patterns observed with serine esterase inhibitors indicate that carboxylesterases and ACHs may interfere with ACAT activity by competing for the substrate. It is obvious that final identification of ACAT requires demonstration of an active homogenous protein. PMID:8624784

  15. [3-hydroxy-3-methylglutaryl-coenzyme A lyase deficiency as a cause of severe neurological damage].

    PubMed

    Dodelson de Kremer, R; Kelley, R I; Depetris de Boldini, C; Paschini de Capra, A; Corbella, L; Givogri, I; Giner de Ayala, A; Albarenque, M

    1992-01-01

    This paper describes the first Argentine case of 3-hydroxy-3-methylglutaric aciduria, a genetic defect of ketogenesis and leucine catabolism step. At the age of 4 months, the patient presented a life-threatening episode of hypoglucemia, metabolic acidosis and hyperammonemia resembling Reye syndrome. The lack of urinary ketone bodies, normal levels of plasma aminoacids and normal urinary excretion of p-hydroxyphenolic acids, led us to look for a ketogenic defect. An abnormal profile of urinary organic acids detected by thin layer chromatography and later characterized and quantified by gas chromatography-mass spectrometry (Figs. 1, 2; Table 1), showed a marked increase in the acidic metabolites typical of the 3-hydroxy-3-methylglutaric aciduria: 3-hydroxy-3-methylglutaric, 3-methylglutaconic, 3-methylglutaric and 3-hydroxyisovaleric acids. The activity of 3-hydroxy-3-methylglutaryl coenzyme A lyase was absent in white cell pellets and between 2-5% of the control values in skin fibroblasts (Table 2). Treatment of the disorder, mainly restricted leucine or low-protein diet and addition of L-carnitine had no significant effect on the severe neurological injuries present since the first illness. MRI of the brain, at the age of 1 year and 8 months, showed images in T1 suggestive of marked cerebral atrophy and in T2 hyperintensive images predominating in the right frontal and posterior parietal areas and of the punctiform lesions in the basal ganglia, particularly in the heads of both caudate nuclei.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1302289

  16. Structural and Functional Consequences of Coenzyme Binding to the Inactive Asian Variant of Mitochondrial Aldehyde Dehydrogenase: Roles of Residues 475 and 487

    SciTech Connect

    Larson,H.; Zhou, J.; Chen, Z.; Stamler, J.; Weiner, H.; Hurley, T.

    2007-01-01

    The common mitochondrial aldehyde dehydrogenase (ALDH2) ALDH2*2 polymorphism is associated with impaired ethanol metabolism and decreased efficacy of nitroglycerin treatment. These physiological effects are due to the substitution of Lys for Glu-487 that reduces the k{sub cat} for these processes and increases the K{sub m} for NAD{sup +}, as compared with ALDH2. In this study, we sought to understand the nature of the interactions that give rise to the loss of structural integrity and low activity in ALDH2*2 even when complexed with coenzyme. Consequently, we have solved the crystal structure of ALDH2*2 complexed with coenzyme to 2.5 {angstrom}. We have also solved the structures of a mutated form of ALDH2 where Arg-475 is replaced by Gln (R475Q). The structural and functional properties of the R475Q enzyme are intermediate between those of wild-type and the ALDH2*2 enzymes. In both cases, the binding of coenzyme restores most of the structural deficits observed in the apoenzyme structures. The binding of coenzyme to the R475Q enzyme restores its structure and catalytic properties to near wild-type levels. In contrast, the disordered helix within the coenzyme binding pocket of ALDH2*2 is reordered, but the active site is only partially reordered. Consistent with the structural data, ALDH2*2 showed a concentration-dependent increase in esterase activity and nitroglycerin reductase activity upon addition of coenzyme, but the levels of activity do not approach those of the wild-type enzyme or that of the R475Q enzyme. The data presented shows that Glu-487 maintains a critical function in linking the structure of the coenzyme binding site to that of the active site through its interactions with Arg-264 and Arg-475, and in doing so, creates the stable structural scaffold conducive to catalysis.

  17. Subcellular Localization of Arabidopsis 3-Hydroxy-3-Methylglutaryl-Coenzyme A Reductase1

    PubMed Central

    Leivar, Pablo; González, Víctor M.; Castel, Susanna; Trelease, Richard N.; López-Iglesias, Carmen; Arró, Montserrat; Boronat, Albert; Campos, Narciso; Ferrer, Albert; Fernàndez-Busquets, Xavier

    2005-01-01

    Plants produce diverse isoprenoids, which are synthesized in plastids, mitochondria, endoplasmic reticulum (ER), and the nonorganellar cytoplasm. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR) catalyzes the synthesis of mevalonate, a rate-limiting step in the cytoplasmic pathway. Several branches of the pathway lead to the synthesis of structurally and functionally varied, yet essential, isoprenoids. Several HMGR isoforms have been identified in all plants examined. Studies based on gene expression and on fractionation of enzyme activity suggested that subcellular compartmentalization of HMGR is an important intracellular channeling mechanism for the production of the specific classes of isoprenoids. Plant HMGR has been shown previously to insert in vitro into the membrane of microsomal vesicles, but the final in vivo subcellular localization(s) remains controversial. To address the latter in Arabidopsis (Arabidopsis thaliana) cells, we conducted a multipronged microscopy and cell fractionation approach that included imaging of chimeric HMGR green fluorescent protein localizations in transiently transformed cell leaves, immunofluorescence confocal microscopy in wild-type and stably transformed seedlings, immunogold electron microscopy examinations of endogenous HMGR in seedling cotyledons, and sucrose density gradient analyses of HMGR-containing organelles. Taken together, the results reveal that endogenous Arabidopsis HMGR is localized at steady state within ER as expected, but surprisingly also predominantly within spherical, vesicular structures that range from 0.2- to 0.6-μm diameter, located in the cytoplasm and within the central vacuole in differentiated cotyledon cells. The N-terminal region, including the transmembrane domain of HMGR, was found to be necessary and sufficient for directing HMGR to ER and the spherical structures. It is believed, although not directly demonstrated, that these vesicle-like structures are derived from segments of HMGR

  18. Simultaneous binding of coenzyme and two ligand molecules into the active site of fungal trihydroxynaphthalene reductase.

    PubMed

    Stojan, Jure; Brunskole, Mojca; Rizner, Tea Lanisnik

    2009-03-16

    We present here a kinetic characterization of the oxidation of the artificial substrate 2,3-dihydro-2,5-dihydroxy-4H-benzopyran-4-one in the presence of NADP(+) by trihydroxynaphthalene reductase from the filamentous fungus Curvularia lunata. Although the experimental data were gathered by conventional equipment and were only available for the reaction in one direction, the analysis confirms the bi-bi reaction mechanism and yields estimates of kinetic parameters of the intermediates. It is based on an independent estimation of coenzyme binding constants and on a sequential analysis of three portions of the progress curves, from the beginning of the reaction until equilibrium is reached. First, the plateaus are used to determine the overall equilibrium constant of the non-catalyzed reaction. Then, the dissociation constants of the oxidized and reduced cofactor are estimated by titration. Subsequently, the initial parts of the progress curves are analyzed using the rate equation that is derived under combined assumptions of equilibrium and steady state. The macroscopic relations obtained are then fixed in the final progress curve analysis where the information for only two remaining rate constants is extracted from their curved portions by fitting numerically solved model-specific differential equations to the data. At pH 8, the overall equilibrium largely favours the oxidized substrate and reduced cofactor, and the activity of the holoenzyme is inhibited by high substrate concentrations. Substrate inhibition can be discriminated from true cooperativity through the effects of apigenin, a flavonoid inhibitor that is structurally similar, but larger, than the substrate used in the study. PMID:19071099

  19. Enzymes of the benzoyl-coenzyme A degradation pathway in the hyperthermophilic archaeon Ferroglobus placidus.

    PubMed

    Schmid, Georg; René, Sandra Bosch; Boll, Matthias

    2015-09-01

    The Fe(III)-respiring Ferroglobus placidus is the only known archaeon and hyperthermophile for which a complete degradation of aromatic substrates to CO2 has been reported. Recent genome and transcriptome analyses proposed a benzoyl-coenzyme A (CoA) degradation pathway similar to that found in the phototrophic Rhodopseudomonas palustris, which involves a cyclohex-1-ene-1-carboxyl-CoA (1-enoyl-CoA) forming, ATP-dependent key enzyme benzoyl-CoA reductase (BCR). In this work, we demonstrate, by first in vitro studies, that benzoyl-CoA is ATP-dependently reduced by two electrons to cyclohexa-1,5-dienoyl-CoA (1,5-dienoyl-CoA), which is further degraded by hydration to 6-hydroxycyclohex-1-ene-1-carboxyl-CoA (6-OH-1-enoyl-CoA); upon addition of NAD(+) , the latter was subsequently converted to β-oxidation intermediates. The four candidate genes of BCR were heterologously expressed, and the enriched, oxygen-sensitive enzyme catalysed the two-electron reduction of benzoyl-CoA to 1,5-dienoyl-CoA. A gene previously assigned to a 2,3-didehydropimeloyl-CoA hydratase was heterologously expressed and shown to act as a typical 1,5-dienoyl-CoA hydratase that does not accept 1-enoyl-CoA. A gene previously assigned to a 1-enoyl-CoA hydratase was heterologously expressed and identified to code for a bifunctional crotonase/3-OH-butyryl-CoA dehydrogenase. In summary, the results consistently provide biochemical evidence that F. placidus and probably other archaea predominantly degrade aromatics via the Thauera/Azoarcus type and not or only to a minor extent via the predicted R. palustris-type benzoyl-CoA degradation pathway. PMID:25630364

  20. Coenzyme Q10 for the treatment of heart failure: a review of the literature

    PubMed Central

    DiNicolantonio, James J; Bhutani, Jaikrit; McCarty, Mark F; O'Keefe, James H

    2015-01-01

    Coenzyme Q10 (CoQ10) is an endogenously synthesised and diet-supplied lipid-soluble cofactor that functions in the mitochondrial inner membrane to transfer electrons from complexes I and II to complex III. In addition, its redox activity enables CoQ10 to act as a membrane antioxidant. In patients with congestive heart failure, myocardial CoQ10 content tends to decline as the degree of heart failure worsens. A number of controlled pilot trials with supplemental CoQ10 in heart failure found improvements in functional parameters such as ejection fraction, stroke volume and cardiac output, without side effects. Subsequent meta-analyses have confirmed these findings, although the magnitude of benefit tends to be less notable in patients with severe heart failure, or within the context of ACE inhibitor therapy. The multicentre randomised placebo-controlled Q-SYMBIO trial has assessed the impact of supplemental CoQ10 on hard endpoints in heart failure. A total of 420 patients received either CoQ10 (100 mg three times daily) or placebo and were followed for 2 years. Although short-term functional endpoints were not statistically different in the two groups, CoQ10 significantly reduced the primary long-term endpoint—a major adverse cardiovascular event—which was observed in 15% of the treated participants compared to 26% of those receiving placebo (HR=0.50, CI 0.32 to 0.80, p=0.003). Particularly in light of the excellent tolerance and affordability of this natural physiological compound, supplemental CoQ10 has emerged as an attractive option in the management of heart failure, and merits evaluation in additional large studies. PMID:26512330

  1. Resveratrol and para-coumarate serve as ring precursors for coenzyme Q biosynthesis[S

    PubMed Central

    Xie, Letian X.; Williams, Kevin J.; He, Cuiwen H.; Weng, Emily; Khong, San; Rose, Tristan E.; Kwon, Ohyun; Bensinger, Steven J.; Marbois, Beth N.; Clarke, Catherine F.

    2015-01-01

    Coenzyme Q (Q or ubiquinone) is a redox-active polyisoprenylated benzoquinone lipid essential for electron and proton transport in the mitochondrial respiratory chain. The aromatic ring 4-hydroxybenzoic acid (4HB) is commonly depicted as the sole aromatic ring precursor in Q biosynthesis despite the recent finding that para-aminobenzoic acid (pABA) also serves as a ring precursor in Saccharomyces cerevisiae Q biosynthesis. In this study, we employed aromatic 13C6-ring-labeled compounds including 13C6-4HB, 13C6-pABA, 13C6-resveratrol, and 13C6-coumarate to investigate the role of these small molecules as aromatic ring precursors in Q biosynthesis in Escherichia coli, S. cerevisiae, and human and mouse cells. In contrast to S. cerevisiae, neither E. coli nor the mammalian cells tested were able to form 13C6-Q when cultured in the presence of 13C6-pABA. However, E. coli cells treated with 13C6-pABA generated 13C6-ring-labeled forms of 3-octaprenyl-4-aminobenzoic acid, 2-octaprenyl-aniline, and 3-octaprenyl-2-aminophenol, suggesting UbiA, UbiD, UbiX, and UbiI are capable of using pABA or pABA-derived intermediates as substrates. E. coli, S. cerevisiae, and human and mouse cells cultured in the presence of 13C6-resveratrol or 13C6-coumarate were able to synthesize 13C6-Q. Future evaluation of the physiological and pharmacological responses to dietary polyphenols should consider their metabolism to Q. PMID:25681964

  2. Effect of Coenzyme Q10 Supplementation in Statin-Treated Obese Rats

    PubMed Central

    Choi, Hye-Kyung; Won, Eun-Kyung; Choung, Se-Young

    2016-01-01

    Statins, HMG-CoA reductase inhibitors, are known to cause serious muscle injuries (e.g. myopathy, myositis and rhabdomyolysis), and these adverse effects can be rescued by co-administration of coenzyme Q10 (CoQ10) with statins. The goal of the current research is to assess the efficacy of combined treatment of CoQ10 with Atorvastatin for hyperlipidemia induced by high-fat diet in SD rats. 4-week-old Sprague-Dawley male rats were fed normal diet or high-fat diet for 6 weeks. Then, rats were treated with either Statin or Statin with various dosages of CoQ10 (30, 90 or 270 mg/kg/day, p.o.) for another 6 weeks. Compared to Statin only-treatment, CoQ10 supplementation significantly reduced creatine kinase and aspartate aminotransferase levels in serum which are markers for myopathy. Moreover, CoQ10 supplementation with Statin further reduced total fat, triglycerides, total cholesterol, and low-density lipoprotein-cholesterol. In contrast, the levels of high-density lipoprotein-cholesterol and CoQ10 were increased in the CoQ10 co-treated group. These results indicate that CoQ10 treatment not only reduces the side effects of Statin, but also has an anti-obesity effect. Therefore an intake of supplementary CoQ10 is helpful for solving problem of obese metabolism, so the multiple prescription of CoQ10 makes us think a possibility that can be solved in being contiguous to the obesity problem, a sort of disease of the obese metabolism. PMID:26797109

  3. Enzyme-coupled assays for flip-flop of acyl-Coenzyme A in liposomes.

    PubMed

    Bavdek, Andrej; Vazquez, Hector M; Conzelmann, Andreas

    2015-11-01

    Acyl-Coenzyme A is made in the cytosol. Certain enzymes using acyl-CoA seem to operate in the lumen of the ER but no corresponding flippases for acyl-CoA or an activated acyl have been described. In order to test the ability of purified candidate flippases to operate the transport of acyl-CoA through lipid bilayers in vitro we developed three enzyme-coupled assays using large unilamellar vesicles (LUVs) obtained by detergent removal. The first assay uses liposomes encapsulating a water-soluble acyl-CoA:glycerol-3-phosphate acyl transferase plus glycerol-3-phosphate (G3P). It measures formation of [(3)H]lyso-phosphatidic acid inside liposomes after [(3)H]palmitoyl-CoA has been added from outside. Two other tests use empty liposomes containing [(3)H]palmitoyl-CoA in the inner membrane leaflet, to which either soluble acyl-CoA:glycerol-3-phosphate acyl transferase plus glycerol-3-phosphate or alkaline phosphatase are added from outside. Here one can follow the appearance of [(3)H]lyso-phosphatidic acid or of dephosphorylated [(3)H]acyl-CoA, respectively, both being made outside the liposomes. Although the liposomes may retain small amounts of detergent, all these tests show that palmitoyl-CoA crosses the lipid bilayer only very slowly and that the lipid composition of liposomes barely affects the flip-flop rate. Thus, palmitoyl-CoA cannot cross the membrane spontaneously implying that in vivo some transport mechanism is required. PMID:26325346

  4. Oxidative Stress Correlates with Headache Symptoms in Fibromyalgia: Coenzyme Q10 Effect on Clinical Improvement

    PubMed Central

    Cordero, Mario D.; Cano-García, Francisco Javier; Alcocer-Gómez, Elísabet; De Miguel, Manuel; Sánchez-Alcázar, José Antonio

    2012-01-01

    Background Fibromyalgia (FM) is a chronic pain syndrome with unknown etiology and a wide spectrum of symptoms such as allodynia, debilitating fatigue, joint stiffness and migraine. Recent studies have shown some evidences demonstrating that oxidative stress is associated to clinical symptoms in FM of fibromyalgia. We examined oxidative stress and bioenergetic status in blood mononuclear cells (BMCs) and its association to headache symptoms in FM patients. The effects of oral coenzyme Q10 (CoQ10) supplementation on biochemical markers and clinical improvement were also evaluated. Methods We studied 20 FM patients and 15 healthy controls. Clinical parameters were evaluated using the Fibromyalgia Impact Questionnaire (FIQ), visual analogues scales (VAS), and the Headache Impact Test (HIT-6). Oxidative stress was determined by measuring CoQ10, catalase and lipid peroxidation (LPO) levels in BMCs. Bioenergetic status was assessed by measuring ATP levels in BMCs. Results We found decreased CoQ10, catalase and ATP levels in BMCs from FM patients as compared to normal control (P<0.05 and P<0.001, respectively) We also found increased level of LPO in BMCs from FM patients as compared to normal control (P<0.001). Significant negative correlations between CoQ10 or catalase levels in BMCs and headache parameters were observed (r = −0.59, P<0.05; r = −0.68, P<0.05, respectively). Furthermore, LPO levels showed a significant positive correlation with HIT-6 (r = 0.33, P<0.05). Oral CoQ10 supplementation restored biochemical parameters and induced a significant improvement in clinical and headache symptoms (P<0.001). Discussion The results of this study suggest a role for mitochondrial dysfunction and oxidative stress in the headache symptoms associated with FM. CoQ10 supplementation should be examined in a larger placebo controlled trial as a possible treatment in FM. PMID:22532869

  5. Characterisation and Skin Distribution of Lecithin-Based Coenzyme Q10-Loaded Lipid Nanocapsules

    NASA Astrophysics Data System (ADS)

    Zhou, Huafeng; Yue, Yang; Liu, Guanlan; Li, Yan; Zhang, Jing; Yan, Zemin; Duan, Mingxing

    2010-10-01

    The purpose of this study was to investigate the influence of the inner lipid ratio on the physicochemical properties and skin targeting of surfactant-free lecithin-based coenzyme Q10-loaded lipid nanocapsules (CoQ10-LNCs). The smaller particle size of CoQ10-LNCs was achieved by high pressure and a lower ratio of CoQ10/GTCC (Caprylic/capric triglyceride); however, the zeta potential of CoQ10-LNCs was above /- 60 mV/ with no distinct difference among them at different ratios of CoQ10/GTCC. Both the crystallisation point and the index decreased with the decreasing ratio of CoQ10/GTCC and smaller particle size; interestingly, the supercooled state of CoQ10-LNCs was observed at particle size below about 200 nm, as verified by differential scanning calorimetry (DSC) in one heating-cooling cycle. The lecithin monolayer sphere structure of CoQ10-LNCs was investigated by cryogenic transmission electron microscopy (Cryo-TEM). The skin penetration results revealed that the distribution of Nile red-loaded CoQ10-LNCs depended on the ratio of inner CoQ10/GTCC; moreover, epidermal targeting and superficial dermal targeting were achieved by the CoQ10-LNCs application. The highest fluorescence response was observed at a ratio of inner CoQ10/GTCC of 1:1. These observations suggest that lecithin-based LNCs could be used as a promising topical delivery vehicle for lipophilic compounds.

  6. Crystal Structure of the alpha6beta6 Holoenzyme of propionyl-coenzyme A Carboxylase

    SciTech Connect

    Huang, C.; Sadre-Bazzaz, K; Shen, Y; Deng, B; Zhou, Z; Tong, L

    2010-01-01

    Propionyl-coenzyme A carboxylase (PCC), a mitochondrial biotin-dependent enzyme, is essential for the catabolism of the amino acids Thr, Val, Ile and Met, cholesterol and fatty acids with an odd number of carbon atoms. Deficiencies in PCC activity in humans are linked to the disease propionic acidaemia, an autosomal recessive disorder that can be fatal in infants. The holoenzyme of PCC is an {alpha}{sub 6}{beta}{sub 6} dodecamer, with a molecular mass of 750 kDa. The {alpha}-subunit contains the biotin carboxylase (BC) and biotin carboxyl carrier protein (BCCP) domains, whereas the {beta}-subunit supplies the carboxyltransferase (CT) activity. Here we report the crystal structure at 3.2-{angstrom} resolution of a bacterial PCC {alpha}{sub 6}{beta}{sub 6} holoenzyme as well as cryo-electron microscopy (cryo-EM) reconstruction at 15-{angstrom} resolution demonstrating a similar structure for human PCC. The structure defines the overall architecture of PCC and reveals unexpectedly that the {alpha}-subunits are arranged as monomers in the holoenzyme, decorating a central {beta}{sub 6} hexamer. A hitherto unrecognized domain in the {alpha}-subunit, formed by residues between the BC and BCCP domains, is crucial for interactions with the {beta}-subunit. We have named it the BT domain. The structure reveals for the first time the relative positions of the BC and CT active sites in the holoenzyme. They are separated by approximately 55 {angstrom}, indicating that the entire BCCP domain must translocate during catalysis. The BCCP domain is located in the active site of the {beta}-subunit in the current structure, providing insight for its involvement in the CT reaction. The structural information establishes a molecular basis for understanding the large collection of disease-causing mutations in PCC and is relevant for the holoenzymes of other biotin-dependent carboxylases, including 3-methylcrotonyl-CoA carboxylase (MCC) and eukaryotic acetyl-CoA carboxylase (ACC).

  7. Role of Carnitine Acetyltransferases in Acetyl Coenzyme A Metabolism in Aspergillus nidulans ▿

    PubMed Central

    Hynes, Michael J.; Murray, Sandra L.; Andrianopoulos, Alex; Davis, Meryl A.

    2011-01-01

    The flow of carbon metabolites between cellular compartments is an essential feature of fungal metabolism. During growth on ethanol, acetate, or fatty acids, acetyl units must enter the mitochondrion for metabolism via the tricarboxylic acid cycle, and acetyl coenzyme A (acetyl-CoA) in the cytoplasm is essential for the biosynthetic reactions and for protein acetylation. Acetyl-CoA is produced in the cytoplasm by acetyl-CoA synthetase during growth on acetate and ethanol while β-oxidation of fatty acids generates acetyl-CoA in peroxisomes. The acetyl-carnitine shuttle in which acetyl-CoA is reversibly converted to acetyl-carnitine by carnitine acetyltransferase (CAT) enzymes is important for intracellular transport of acetyl units. In the filamentous ascomycete Aspergillus nidulans, a cytoplasmic CAT, encoded by facC, is essential for growth on sources of cytoplasmic acetyl-CoA while a second CAT, encoded by the acuJ gene, is essential for growth on fatty acids as well as acetate. We have shown that AcuJ contains an N-terminal mitochondrial targeting sequence and a C-terminal peroxisomal targeting sequence (PTS) and is localized to both peroxisomes and mitochondria, independent of the carbon source. Mislocalization of AcuJ to the cytoplasm does not result in loss of growth on acetate but prevents growth on fatty acids. Therefore, while mitochondrial AcuJ is essential for the transfer of acetyl units to mitochondria, peroxisomal localization is required only for transfer from peroxisomes to mitochondria. Peroxisomal AcuJ was not required for the import of acetyl-CoA into peroxisomes for conversion to malate by malate synthase (MLS), and export of acetyl-CoA from peroxisomes to the cytoplasm was found to be independent of FacC when MLS was mislocalized to the cytoplasm. PMID:21296915

  8. Coenzyme Q10 and α-Tocopherol Prevent the Lipid Peroxidation of Cooled Equine Semen.

    PubMed

    Nogueira, B G; Sampaio, B F B; Souza, M I L; Costa E Silva, E V; Zúccari, C E S N

    2015-12-01

    Biotechnology applied for equine semen increases the levels of reactive oxygen species and reduces the natural antioxidant defence, by both dilution and removal of seminal plasma. Therefore, the aims of this study were to evaluate the effect of adding coenzyme Q10 (CoQ10) and α-tocopherol (α-TOH) to the cooling extender, singly or in combination, on sperm parameters, and their effectiveness in preventing lipid peroxidation (LPO) of equine semen during cooling at 5°C for 72 h. Ten adult stallions of proven fertility were used, using two ejaculates each, subjecting them to the treatments with the following concentrations: α-TOH: 2 mm; CoQ10: 40 μg/ml; and CoQ10 + α-TOH: 40 μg/ml + 2 mm for control (C) without the addition of antioxidants and for vehicle control (EtOH) with 100 μl ethanol. The CoQ10 group had a higher percentage of total motility (69.1 ± 16.2%) compared to control (62.1 ± 16.2%) and EtOH (58.1 ± 18.6%). CoQ10 + α-TOH and α-TOH groups were most effective in preventing LPO compared to controls (1765.9 ± 695.9, 1890.8 ± 749.5, 2506.2 ± 769.4 ng malondialdehyde/10(8) sptz, respectively). In conclusion, CoQ10 and α-TOH were effective during the cooling process of equine semen at 5°C for 72 h, providing increased levels of total motility, as well as lower LPO. PMID:26489521

  9. Functional characterization of human COQ4, a gene required for Coenzyme Q{sub 10} biosynthesis

    SciTech Connect

    Casarin, Alberto; Trevisson, Eva; Pertegato, Vanessa; Doimo, Mara; Ferrero-Gomez, Maria Lara; Abbadi, Sara; Quinzii, Catarina; Hirano, Michio; Basso, Giuseppe; Salviati, Leonardo

    2008-07-18

    Defects in genes involved in coenzyme Q (CoQ) biosynthesis cause primary CoQ deficiency, a severe multisystem disorders presenting as progressive encephalomyopathy and nephropathy. The COQ4 gene encodes an essential factor for biosynthesis in Saccharomyces cerevisiae. We have identified and cloned its human ortholog, COQ4, which is located on chromosome 9q34.13, and is transcribed into a 795 base-pair open reading frame, encoding a 265 amino acid (aa) protein (Isoform 1) with a predicted N-terminal mitochondrial targeting sequence. It shares 39% identity and 55% similarity with the yeast protein. Coq4 protein has no known enzymatic function, but may be a core component of multisubunit complex required for CoQ biosynthesis. The human transcript is detected in Northern blots as a {approx}1.4 kb single band and is expressed ubiquitously, but at high levels in liver, lung, and pancreas. Transcription initiates at multiple sites, located 333-23 nucleotides upstream of the ATG. A second group of transcripts originating inside intron 1 of the gene encodes a 241 aa protein, which lacks the mitochondrial targeting sequence (isoform 2). Expression of GFP-fusion proteins in HeLa cells confirmed that only isoform 1 is targeted to mitochondria. The functional significance of the second isoform is unknown. Human COQ4 isoform 1, expressed from a multicopy plasmid, efficiently restores both growth in glycerol, and CoQ content in COQ4{sup null} yeast strains. Human COQ4 is an interesting candidate gene for patients with isolated CoQ{sub 10} deficiency.

  10. Saposin B is a human coenzyme q10-binding/transfer protein.

    PubMed

    Jin, Guangzhi; Kubo, Hiroshi; Kashiba, Misato; Horinouchi, Ryo; Hasegawa, Makoto; Suzuki, Masaru; Sagawa, Tomofumi; Oizumi, Mikiko; Fujisawa, Akio; Tsukamoto, Hideo; Yoshimura, Shinichi; Yamamoto, Yorihiro

    2008-03-01

    Coenzyme Q10 (CoQ10) is essential for ATP production in the mitochondria, and is an important antioxidant in every biomembrane and lipoprotein. Due to its hydrophobicity, a binding and transfer protein for CoQ10 is plausible, but none have yet been isolated and characterized. Here we purified a CoQ10-binding protein from human urine and identified it to be saposin B, a housekeeping protein necessary for sphingolipid hydrolysis in lysosomes. We confirmed that cellular saposin B binds CoQ10 in human sperm and the hepatoma cell line HepG2 by using saposin B monoclonal antibody. The molar ratios of CoQ10 to saposin B were estimated to be 0.22 in urine, 0.003 in HepG2, and 0.12 in sperm. We then confirmed that aqueous saposin B extracts CoQ10 from hexane to form a saposin B-CoQ10 complex. Lipid binding affinity to saposin B decreased in the following order: CoQ10>CoQ9>CoQ7>alpha-tocopherol>cholesterol (no binding). The CoQ10-binding affinity to saposin B increased with pH, with maximal binding seen at pH 7.4. On the other hand, the CoQ10-donating activity of the saposin B-CoQ10 complex to erythrocyte ghost membranes increased with decreasing pH. These results suggest that saposin B binds and transports CoQ10 in human cells. PMID:18385835

  11. Mesaconyl-coenzyme A hydratase, a new enzyme of two central carbon metabolic pathways in bacteria.

    PubMed

    Zarzycki, Jan; Schlichting, Ansgar; Strychalsky, Nina; Müller, Michael; Alber, Birgit E; Fuchs, Georg

    2008-02-01

    The coenzyme A (CoA)-activated C5-dicarboxylic acids mesaconyl-CoA and beta-methylmalyl-CoA play roles in two as yet not completely resolved central carbon metabolic pathways in bacteria. First, these compounds are intermediates in the 3-hydroxypropionate cycle for autotrophic CO2 fixation in Chloroflexus aurantiacus, a phototrophic green nonsulfur bacterium. Second, mesaconyl-CoA and beta-methylmalyl-CoA are intermediates in the ethylmalonyl-CoA pathway for acetate assimilation in various bacteria, e.g., in Rhodobacter sphaeroides, Methylobacterium extorquens, and Streptomyces species. In both cases, mesaconyl-CoA hydratase was postulated to catalyze the interconversion of mesaconyl-CoA and beta-methylmalyl-CoA. The putative genes coding for this enzyme in C. aurantiacus and R. sphaeroides were cloned and heterologously expressed in Escherichia coli, and the proteins were purified and studied. The recombinant homodimeric 80-kDa proteins catalyzed the reversible dehydration of erythro-beta-methylmalyl-CoA to mesaconyl-CoA with rates of 1,300 micromol min(-1) mg protein(-1). Genes coding for similar enzymes with two (R)-enoyl-CoA hydratase domains are present in the genomes of Roseiflexus, Methylobacterium, Hyphomonas, Rhodospirillum, Xanthobacter, Caulobacter, Magnetospirillum, Jannaschia, Sagittula, Parvibaculum, Stappia, Oceanicola, Loktanella, Silicibacter, Roseobacter, Roseovarius, Dinoroseobacter, Sulfitobacter, Paracoccus, and Ralstonia species. A similar yet distinct class of enzymes containing only one hydratase domain was found in various other bacteria, such as Streptomyces species. The role of this widely distributed new enzyme is discussed. PMID:18065535

  12. Characterization of an Archaeal Medium-Chain Acyl Coenzyme A Synthetase from Methanosarcina acetivorans▿

    PubMed Central

    Meng, Yu; Ingram-Smith, Cheryl; Cooper, Leroy L.; Smith, Kerry S.

    2010-01-01

    Short- and medium-chain acyl coenzyme A (acyl-CoA) synthetases catalyze the formation of acyl-CoA from an acyl substrate, ATP, and CoA. These enzymes catalyze mechanistically similar two-step reactions that proceed through an enzyme-bound acyl-AMP intermediate. Here we describe the characterization of a member of this enzyme family from the methane-producing archaeon Methanosarcina acetivorans. This enzyme, a medium-chain acyl-CoA synthetase designated MacsMa, utilizes 2-methylbutyrate as its preferred substrate for acyl-CoA synthesis but cannot utilize acetate and thus cannot catalyze the first step of acetoclastic methanogenesis in M. acetivorans. When propionate or other less favorable acyl substrates, such as butyrate, 2-methylpropionate, or 2-methylvalerate, were utilized, the acyl-CoA was not produced or was produced at reduced levels. Instead, acyl-AMP and PPi were released in the absence of CoA, whereas in the presence of CoA, the intermediate was broken down into AMP and the acyl substrate, which were released along with PPi. These results suggest that although acyl-CoA synthetases may have the ability to utilize a broad range of substrates for the acyl-adenylate-forming first step of the reaction, the intermediate may not be suitable for the thioester-forming second step. The MacsMa structure has revealed the putative acyl substrate- and CoA-binding pockets. Six residues proposed to form the acyl substrate-binding pocket, Lys256, Cys298, Gly351, Trp259, Trp237, and Trp254, were targeted for alteration. Characterization of the enzyme variants indicates that these six residues are critical in acyl substrate binding and catalysis, and even conservative alterations significantly reduced the catalytic ability of the enzyme. PMID:20851904

  13. Compartmentalization of stearoyl-coenzyme A desaturase 1 activity in HepG2 cells*

    PubMed Central

    Yee, Jennifer K.; Mao, Catherine S.; Hummel, Heidi S.; Lim, Shu; Sugano, Sharon; Rehan, Virender K.; Xiao, Gary; Lee, Wai-Nang Paul

    2008-01-01

    Stearoyl-coenzyme A desaturase 1 (SCD1) catalyzes the conversion of stearate (18:0) to oleate (18:1n-9) and of palmitate (16:0) to palmitoleate (16:1), which are key steps in triglyceride synthesis in the fatty acid metabolic network. This study investigated the role of SCD1 in fatty acid metabolism in HepG2 cells using SCD1 inhibitors and stable isotope tracers. HepG2 cells were cultured with [U-13C]stearate, [U-13C]palmitate, or [1,2-13C]acetate and (1) DMSO, (2) compound CGX0168 or CGX0290, or (3) trans-10,cis-12 conjugated linoleic acid (CLA). 13C incorporation into fatty acids was determined by GC-MS and desaturation indices calculated from the respective ion chromatograms. FAS, SCD1, peroxisome proliferator-activated receptor α, and peroxisome proliferator-activated receptor γ mRNA levels were assessed by semiquantitative RT-PCR. The addition of CGX0168 and CGX0290 decreased the stearate and palmitate desaturation indices in HepG2 cells. CLA led to a decrease in the desaturation of stearate only, but not palmitate. Comparison of desaturation indices based on isotope enrichment ratios differed, depending on the origin of saturated fatty acid. SCD1 gene expression was not affected in any group. In conclusion, the differential effects of SCD1 inhibitors and CLA on SCD1 activity combined with the dependence of desaturation indices on the source of saturated fatty acid strongly support the compartmentalization of desaturation systems. The effects of SCD1 inhibition on fatty acid composition in HepG2 cells occurred through changes in the dynamics of the fatty acid metabolic network and not through transcriptional regulatory mechanisms. PMID:18599738

  14. Decreased hepatic contents of coenzyme A molecular species in mice after subchronic mild social defeat stress.

    PubMed

    Kubota, Yoshifumi; Goto, Tatsuhiko; Hagiya, Yuki; Chohnan, Shigeru; Toyoda, Atsushi

    2016-03-01

    Social stress may precipitate psychiatric disorders such as depression, which is related to the occurrence of the metabolic syndrome, including obesity and type 2 diabetes. We have evaluated the effects of social stress on central and peripheral metabolism using a model of depression in mice. In the present study, we focused on coenzyme A (CoA) molecular species [i.e. non-esterified CoA (CoASH), acetyl-CoA and malonyl-CoA] which play important roles in numerous metabolic pathways, and we analyzed changes in expression of these molecules in the hypothalamus and liver of adult male mice (C57BL/6J) subjected to 10 days of subchronic mild social defeat stress (sCSDS) with ICR mice as aggressors. Mice (n = 12) exposed to showed hyperphagia- and polydipsia-like symptoms and increased body weight gain compared with control mice which were not affected by exposure to ICR mice (n = 12). To elucidate the underlying metabolic features in the sCSDS model, acetyl-CoA, malonyl-CoA and CoASH tissue levels were analyzed using the acyl-CoA cycling method. The levels of hypothalamic malonyl-CoA, which decreases feeding behavior, were not influenced by sCSDS. However, sCSDS reduced levels of acetyl-CoA, malonyl-CoA and total CoA (sum of the three CoA molecular species) in the liver. Hence, hyperphagia-like symptoms in sCSDS mice evidently occurred independently of hypothalamic malonyl-CoA, but might consequently lead to down-regulation of hepatic CoA via altered expression of nudix hydrolase 7. Future studies should investigate the molecular mechanism(s) underlying the down-regulation of liver CoA pools in sCSDS mice. PMID:26864137

  15. Promotion of growth by Coenzyme Q10 is linked to gene expression in C. elegans.

    PubMed

    Fischer, Alexandra; Niklowitz, Petra; Menke, Thomas; Döring, Frank

    2014-10-01

    Coenzyme Q (CoQ, ubiquinone) is an essential component of the respiratory chain, a cofactor of pyrimidine biosynthesis and acts as an antioxidant in extra mitochondrial membranes. More recently CoQ has been identified as a modulator of apoptosis, inflammation and gene expression. CoQ deficient Caenorhabditis elegans clk-1 mutants show several phenotypes including a delayed postembryonic growth. Using wild type and two clk-1 mutants, here we established an experimental set-up to study the consequences of endogenous CoQ deficiency or exogenous CoQ supply on gene expression and growth. We found that a deficiency of endogenous CoQ synthesis down-regulates a cluster of genes that are important for growth (i.e., RNA polymerase II, eukaryotic initiation factor) and up-regulates oxidation reactions (i.e., cytochrome P450, superoxide dismutase) and protein interactions (i.e., F-Box proteins). Exogenous CoQ supply partially restores the expression of these genes as well as the growth retardation of CoQ deficient clk-1 mutants. On the other hand exogenous CoQ supply does not alter the expression of a further sub-set of genes. These genes are involved in metabolism (i.e., succinate dehydrogenase complex), cell signalling or synthesis of lectins. Thus, our work provides a comprehensive overview of genes which can be modulated in their expression by endogenous or exogenous CoQ. As growth retardation in CoQ deficiency is linked to the gene expression profile we suggest that CoQ promotes growth via gene expression. PMID:25234594

  16. Genetic bases and clinical manifestations of coenzyme Q10 (CoQ 10) deficiency.

    PubMed

    Desbats, Maria Andrea; Lunardi, Giada; Doimo, Mara; Trevisson, Eva; Salviati, Leonardo

    2015-01-01

    Coenzyme Q(10) is a remarkable lipid involved in many cellular processes such as energy production through the mitochondrial respiratory chain (RC), beta-oxidation of fatty acids, and pyrimidine biosynthesis, but it is also one of the main cellular antioxidants. Its biosynthesis is still incompletely characterized and requires at least 15 genes. Mutations in eight of them (PDSS1, PDSS2, COQ2, COQ4, COQ6, ADCK3, ADCK4, and COQ9) cause primary CoQ(10) deficiency, a heterogeneous group of disorders with variable age of onset (from birth to the seventh decade) and associated clinical phenotypes, ranging from a fatal multisystem disease to isolated steroid resistant nephrotic syndrome (SRNS) or isolated central nervous system disease. The pathogenesis is complex and related to the different functions of CoQ(10). It involves defective ATP production and oxidative stress, but also an impairment of pyrimidine biosynthesis and increased apoptosis. CoQ(10) deficiency can also be observed in patients with defects unrelated to CoQ(10) biosynthesis, such as RC defects, multiple acyl-CoA dehydrogenase deficiency, and ataxia and oculomotor apraxia.Patients with both primary and secondary deficiencies benefit from high-dose oral supplementation with CoQ(10). In primary forms treatment can stop the progression of both SRNS and encephalopathy, hence the critical importance of a prompt diagnosis. Treatment may be beneficial also for secondary forms, although with less striking results.In this review we will focus on CoQ(10) biosynthesis in humans, on the genetic defects and the specific clinical phenotypes associated with CoQ(10) deficiency, and on the diagnostic strategies for these conditions. PMID:25091424

  17. Molecular characterization of the human COQ5 C-methyltransferase in coenzyme Q10 biosynthesis.

    PubMed

    Nguyen, Theresa P T; Casarin, Alberto; Desbats, Maria Andrea; Doimo, Mara; Trevisson, Eva; Santos-Ocaña, Carlos; Navas, Placido; Clarke, Catherine F; Salviati, Leonardo

    2014-11-01

    Coq5 catalyzes the only C-methylation involved in the biosynthesis of coenzyme Q (Q or ubiquinone) in humans and yeast Saccharomyces cerevisiae. As one of eleven polypeptides required for Q production in yeast, Coq5 has also been shown to assemble with the multi-subunit complex termed the CoQ-synthome. In humans, mutations in several COQ genes cause primary Q deficiency, and a decrease in Q biosynthesis is associated with mitochondrial, cardiovascular, kidney and neurodegenerative diseases. In this study, we characterize the human COQ5 polypeptide and examine its complementation of yeast coq5 point and null mutants. We show that human COQ5 RNA is expressed in all tissues and that the COQ5 polypeptide is associated with the mitochondrial inner membrane on the matrix side. Previous work in yeast has shown that point mutations within or adjacent to conserved COQ5 methyltransferase motifs result in a loss of Coq5 function but not Coq5 steady state levels. Here, we show that stabilization of the CoQ-synthome within coq5 point mutants or by over-expression of COQ8 in coq5 null mutants permits the human COQ5 homolog to partially restore coq5 mutant growth on respiratory media and Q6 content. Immunoblotting against the human COQ5 polypeptide in isolated yeast mitochondria shows that the human Coq5 polypeptide migrates in two-dimensional blue-native/SDS-PAGE at the same high molecular mass as other yeast Coq proteins. The results presented suggest that human and Escherichia coli Coq5 homologs expressed in yeast retain C-methyltransferase activity but are capable of rescuing the coq5 yeast mutants only when the CoQ-synthome is assembled. PMID:25152161

  18. Relations between coenzyme A and presumptive acyl carrier protein in different conditions of streptococcal growth.

    PubMed

    Das, D N; Toennies, G

    1969-06-01

    Exploration of the specific role of cystine in the postexponential growth of Streptococcus faecalis led to an inquiry into the fate of cellular coenzyme A (CoA) and acyl carrier protein (ACP), both of which depend for their biosynthesis on cystine and pantothenate as precursors. In S. faecalis cells labeled by growth in the presence of (14)C-pantothenate, the label could be separated on the basis of solubility at pH 2.1 into two fractions of sharply differing metabolic characteristics. The fractions were not purified, but the soluble (14)C behaved analytically like CoA, and the insoluble (14)C was considered to represent an ACP-like entity on the basis of circumstantial evidence. The fate of these two fractions under various conditions of growth was studied. When the medium contained an excess of the needed precursors, the cellular content of CoA and ACP appeared to remain constant during exponential growth, and in a molar ratio of about 4 CoA to 1 ACP. Cellular ACP, once formed, appeared to be stable under these conditions, but CoA was degraded and replaced at the rate of approximately 20% per division period. With restrictive levels of pantothenate in the medium, initially formed CoA disappeared during growth, as a result, apparently of being converted to ACP. However, when the resulting CoA-depleted cells were returned to a medium containing enough pantothenate, resumption of normal growth was preceded by a lag period, during which rapid conversion of ACP to CoA appeared to take place. PMID:4977991

  19. An Arabidopsis mutant impaired in coenzyme A biosynthesis is sugar dependent for seedling establishment.

    PubMed

    Rubio, Silvia; Larson, Tony R; Gonzalez-Guzman, Miguel; Alejandro, Santiago; Graham, Ian A; Serrano, Ramón; Rodriguez, Pedro L

    2006-03-01

    Once the plant coenzyme A (CoA) biosynthetic pathway has been elucidated by comparative genomics, it is feasible to analyze the physiological relevance of CoA biosynthesis in plant life. To this end, we have identified and characterized Arabidopsis (Arabidopsis thaliana) T-DNA knockout mutants of two CoA biosynthetic genes, HAL3A and HAL3B. The HAL3A gene encodes a 4'-phosphopantothenoyl-cysteine decarboxilase that generates 4'-phosphopantetheine. A second gene, HAL3B, whose gene product is 86% identical to that of HAL3A, is present in the Arabidopsis genome. HAL3A appears to have a predominant role over HAL3B according to their respective mRNA expression levels. The hal3a-1, hal3a-2, and hal3b mutants were viable and showed a similar growth rate as that in wild-type plants; in contrast, a hal3a-1 hal3b double mutant was embryo lethal. Unexpectedly, seedlings that were null for HAL3A and heterozygous for HAL3B (aaBb genotype) displayed a sucrose (Suc)-dependent phenotype for seedling establishment, which is in common with mutants defective in beta-oxidation. This phenotype was genetically complemented in aaBB siblings of the progeny and chemically complemented by pantethine. In contrast, seedling establishment of Aabb plants was not Suc dependent, proving a predominant role of HAL3A over HAL3B at this stage. Total fatty acid and acyl-CoA measurements of 5-d-old aaBb seedlings in medium lacking Suc revealed stalled storage lipid catabolism and impaired CoA biosynthesis; in particular, acetyl-CoA levels were reduced by approximately 80%. Taken together, these results provide in vivo evidence for the function of HAL3A and HAL3B, and they point out the critical role of CoA biosynthesis during early postgerminative growth. PMID:16415216

  20. The bioinformatics of nucleotide sequence coding for proteins requiring metal coenzymes and proteins embedded with metals

    NASA Astrophysics Data System (ADS)

    Tremberger, G.; Dehipawala, Sunil; Cheung, E.; Holden, T.; Sullivan, R.; Nguyen, A.; Lieberman, D.; Cheung, T.

    2015-09-01

    All metallo-proteins need post-translation metal incorporation. In fact, the isotope ratio of Fe, Cu, and Zn in physiology and oncology have emerged as an important tool. The nickel containing F430 is the prosthetic group of the enzyme methyl coenzyme M reductase which catalyzes the release of methane in the final step of methano-genesis, a prime energy metabolism candidate for life exploration space mission in the solar system. The 3.5 Gyr early life sulfite reductase as a life switch energy metabolism had Fe-Mo clusters. The nitrogenase for nitrogen fixation 3 billion years ago had Mo. The early life arsenite oxidase needed for anoxygenic photosynthesis energy metabolism 2.8 billion years ago had Mo and Fe. The selection pressure in metal incorporation inside a protein would be quantifiable in terms of the related nucleotide sequence complexity with fractal dimension and entropy values. Simulation model showed that the studied metal-required energy metabolism sequences had at least ten times more selection pressure relatively in comparison to the horizontal transferred sequences in Mealybug, guided by the outcome histogram of the correlation R-sq values. The metal energy metabolism sequence group was compared to the circadian clock KaiC sequence group using magnesium atomic level bond shifting mechanism in the protein, and the simulation model would suggest a much higher selection pressure for the energy life switch sequence group. The possibility of using Kepler 444 as an example of ancient life in Galaxy with the associated exoplanets has been proposed and is further discussed in this report. Examples of arsenic metal bonding shift probed by Synchrotron-based X-ray spectroscopy data and Zn controlled FOXP2 regulated pathways in human and chimp brain studied tissue samples are studied in relationship to the sequence bioinformatics. The analysis results suggest that relatively large metal bonding shift amount is associated with low probability correlation R

  1. Coenzyme Q10 and Heart Failure: A State-of-the-Art Review.

    PubMed

    Sharma, Abhinav; Fonarow, Gregg C; Butler, Javed; Ezekowitz, Justin A; Felker, G Michael

    2016-04-01

    Heart failure (HF) with either preserved or reduced ejection fraction is associated with increased morbidity and mortality. Evidence-based therapies are often limited by tolerability, hypotension, electrolyte disturbances, and renal dysfunction. Coenzyme Q10 (CoQ10) may represent a safe therapeutic option for patients with HF. CoQ10 is a highly lipophilic molecule with a chemical structure similar to vitamin K. Although being a common component of cellular membranes, CoQ10's most prominent role is to facilitate the production of adenosine triphosphate in the mitochondria by participating in redox reactions within the electron transport chain. Numerous trials during the past 30 years examining CoQ10 in patients with HF have been limited by small numbers and lack of contemporary HF therapies. The recent publication of the Q-SYMBIO randomized controlled trial demonstrated a reduction in major adverse cardiovascular events with CoQ10 supplementation in a contemporary HF population. Although having limitations, this study has renewed interest in evaluating CoQ10 supplementation in patients with HF. Current literature suggests that CoQ10 is relatively safe with few drug interactions and side effects. Furthermore, it is already widely available as an over-the-counter supplement. These findings warrant future adequately powered randomized controlled trials of CoQ10 supplementation in patients with HF. This state-of-the-art review summarizes the literature about the mechanisms, clinical data, and safety profile of CoQ10 supplementation in patients with HF. PMID:27012265

  2. Serum coenzyme Q10 levels are associated with coronary flow reserve in hemodialysis patients.

    PubMed

    Macunluoglu, Beyza; Kaya, Yuksel; Atakan, Aydin; Ari, Elif; Kaspar, Cigdem; Demir, Halit; Alp, Hamit Hakan; Asicioglu, Ebru; Kedrah, Alla Eldeen

    2013-07-01

    Accelerated atherosclerosis is the major cause of mortality in patients on chronic hemodialysis (HD). The aim of this study was to evaluate the relation between coenzyme Q10 (CoQ10) levels and coronary flow reserve (CFR) in HD patients as an indicator of atherosclerosis. Seventy-one chronic HD patients and 65 age- and sex-matched healthy individuals were included in the study. Plasma CoQ10 levels were performed by high-performance liquid chromatography measurements. CFR was assessed by transthoracic Doppler echocardiography. Serum CoQ10 levels (1.36 ± 0.43 vs. 2.53 ± 0.55, P < 0.001) and CFR values (1.73 ± 0.11 vs. 2.32 ± 0.28, P < 0.001) were significantly lower in HD patients compared with controls. There was a significant positive correlation between CFR and serum levels of CoQ10 (r = 0.669, P < 0.001). A linear regression analysis showed that serum levels of CoQ10 were still significantly and positively correlated with CFR (regression coefficient = 0.235, P < 0.001). Our data have demonstrated that HD patients exhibit decreased plasma CoQ10 levels and CFR values. The study also showed for the first time that serum CoQ10 levels independently predict CFR in HD patients. PMID:23185999

  3. Structure and Mechanism of the Diiron Benzoyl-Coenzyme A Epoxidase BoxB*

    PubMed Central

    Rather, Liv J.; Weinert, Tobias; Demmer, Ulrike; Bill, Eckhard; Ismail, Wael; Fuchs, Georg; Ermler, Ulrich

    2011-01-01

    The coenzyme A (CoA)-dependent aerobic benzoate metabolic pathway uses an unprecedented chemical strategy to overcome the high aromatic resonance energy by forming the non-aromatic 2,3-epoxybenzoyl-CoA. The crucial dearomatizing reaction is catalyzed by three enzymes, BoxABC, where BoxA is an NADPH-dependent reductase, BoxB is a benzoyl-CoA 2,3-epoxidase, and BoxC is an epoxide ring hydrolase. We characterized the key enzyme BoxB from Azoarcus evansii by structural and Mössbauer spectroscopic methods as a new member of class I diiron enzymes. Several family members were structurally studied with respect to the diiron center architecture, but no structure of an intact diiron enzyme with its natural substrate has been reported. X-ray structures between 1.9 and 2.5 Å resolution were determined for BoxB in the diferric state and with bound substrate benzoyl-CoA in the reduced state. The substrate-bound reduced state is distinguished from the diferric state by increased iron-ligand distances and the absence of directly bridging groups between them. The position of benzoyl-CoA inside a 20 Å long channel and the position of the phenyl ring relative to the diiron center are accurately defined. The C2 and C3 atoms of the phenyl ring are closer to one of the irons. Therefore, one oxygen of activated O2 must be ligated predominantly to this proximate iron to be in a geometrically suitable position to attack the phenyl ring. Consistent with the observed iron/phenyl geometry, BoxB stereoselectively should form the 2S,3R-epoxide. We postulate a reaction cycle that allows a charge delocalization because of the phenyl ring and the electron-withdrawing CoA thioester. PMID:21632537

  4. Methylthiol:coenzyme M methyltransferase from Methanosarcina barkeri, an enzyme of methanogenesis from dimethylsulfide and methylmercaptopropionate.

    PubMed Central

    Tallant, T C; Krzycki, J A

    1997-01-01

    During growth on acetate, Methanosarcina barkeri expresses catabolic enzymes for other methanogenic substrates such as monomethylamine. The range of substrates used by cells grown on acetate was further explored, and it was found that cells grown on acetate also converted dimethylsulfide (DMS) and methylmercaptopropionate (MMPA) to methane. Cells or extracts of cells grown on trimethylamine or methanol did not utilize either DMS or MMPA. During growth on acetate, cultures demethylated MMPA, producing methane and mercaptopropionate. Extracts of acetate-grown cells possessed DMS- and MMPA-dependent coenzyme M (CoM) methylation activities. The activity peaks of CoM methylation with either DMS or MMPA coeluted upon gel permeation chromatography of extracts of acetate-grown cells consistent with an apparent molecular mass of 470 kDa. A 480-kDa corrinoid protein, previously demonstrated to be a CoM methylase but otherwise of unknown physiological function, was found to methylate CoM with either DMS or MMPA. MMPA was demethylated by the purified 480-kDa CoM methylase, consuming 1 mol of CoM and producing 1 mol of mercaptopropionate. DMS was demethylated by the purified protein, consuming 1 mol of CoM and producing 1 mol of methanethiol. The methylthiol:CoM methyltransferase reaction could be initiated only with the enzyme-bound corrinoid in the methylated state. CoM could demethylate, and DMS and MMPA could remethylate, the corrinoid cofactor. The monomethylamine corrinoid protein and the A isozyme of methylcobamide:CoM methyltransferase (proteins homologous to the two subunits comprising the 480-kDa CoM methylase) did not catalyze CoM methylation with methylated thiols. These results indicate that the 480-kDa corrinoid protein functions as a CoM methylase during methanogenesis from DMS or MMPA. PMID:9371433

  5. Ethylmalonyl coenzyme A mutase operates as a metabolic control point in Methylobacterium extorquens AM1.

    PubMed

    Good, Nathan M; Martinez-Gomez, N Cecilia; Beck, David A C; Lidstrom, Mary E

    2015-02-15

    The metabolism of one- and two-carbon compounds by the methylotrophic bacterium Methylobacterium extorquens AM1 involves high carbon flux through the ethylmalonyl coenzyme A (ethylmalonyl-CoA) pathway (EMC pathway). During growth on ethylamine, the EMC pathway operates as a linear pathway carrying the full assimilatory flux to produce glyoxylate, malate, and succinate. Assimilatory carbon enters the ethylmalonyl-CoA pathway directly as acetyl-CoA, bypassing pathways for formaldehyde oxidation/assimilation and the regulatory mechanisms controlling them, making ethylamine growth a useful condition to study the regulation of the EMC pathway. Wild-type M. extorquens cells were grown at steady state on a limiting concentration of succinate, and the growth substrate was then switched to ethylamine, a condition where the cell must make a sudden switch from utilizing the tricarboxylic acid (TCA) cycle to using the ethylmalonyl-CoA pathway for assimilation, which has been an effective strategy for identifying metabolic control points. A 9-h lag in growth was observed, during which butyryl-CoA, a degradation product of ethylmalonyl-CoA, accumulated, suggesting a metabolic imbalance. Ethylmalonyl-CoA mutase activity increased to a level sufficient for the observed growth rate at 9 h, which correlated with an upregulation of RNA transcripts for ecm and a decrease in the levels of ethylmalonyl-CoA. When the wild-type strain overexpressing ecm was tested with the same substrate switchover experiment, ethylmalonyl-CoA did not accumulate, growth resumed earlier, and, after a transient period of slow growth, the culture grew at a higher rate than that of the control. These findings demonstrate that ethylmalonyl-CoA mutase is a metabolic control point in the EMC pathway, expanding our understanding of its regulation. PMID:25448820

  6. Protection of dichlorvos induced oxidative stress and nigrostriatal neuronal death by chronic Coenzyme Q{sub 10} pretreatment

    SciTech Connect

    Binukumar, BK; Gupta, Nidhi; Bal, Amanjit; Gill, Kiran Dip

    2011-10-01

    Numerous epidemiological studies have shown an association between pesticide exposure and increased risk of developing Parkinson's diseases. Oxidative stress generated as a result of mitochondrial dysfunction has been implicated as an important factor in the etiology of Parkinson's disease. Previously, we reported that chronic dichlorvos exposure causes mitochondrial impairments and nigrostriatal neuronal death in rats. The present study was designed to test whether Coenzyme Q{sub 10} (CoQ{sub 10}) administration has any neuroprotective effect against dichlorvos mediated nigrostriatal neuronal death, {alpha}-synuclein aggregation, and motor dysfunction. Male albino rats were administered dichlorvos by subcutaneous injection at a dose of 2.5 mg/kg body weight over a period of 12 weeks. Results obtained there after showed that dichlorvos exposure leads to enhanced mitochondrial ROS production, {alpha}-synuclein aggregation, decreased dopamine and its metabolite levels resulting in nigrostriatal neurodegeneration. Pretreatment by Coenzyme Q{sub 10} (4.5 mg/kg ip for 12 weeks) to dichlorvos treated animals significantly attenuated the extent of nigrostriatal neuronal damage, in terms of decreased ROS production, increased dopamine and its metabolite levels, and restoration of motor dysfunction when compared to dichlorvos treated animals. Thus, the present study shows that Coenzyme Q{sub 10} administration may attenuate dichlorvos induced nigrostriatal neurodegeneration, {alpha}-synuclein aggregation and motor dysfunction by virtue of its antioxidant action. - Highlights: > CoQ{sub 10} administration attenuates dichlorvos induced nigrostriatal neurodegenaration. > CoQ{sub 10} pre treatment leads to preservation of TH-IR neurons. > CoQ{sub 10} may decrease oxidative damage and {alpha}-synuclin aggregation. > CoQ{sub 10} treatment enhances motor function and protects rats from catalepsy.

  7. Increased oxidative stress and coenzyme Q10 deficiency in juvenile fibromyalgia: amelioration of hypercholesterolemia and fatigue by ubiquinol-10 supplementation.

    PubMed

    Miyamae, Takako; Seki, Manabu; Naga, Tomoko; Uchino, Shinya; Asazuma, Haruki; Yoshida, Takuma; Iizuka, Yuki; Kikuchi, Masako; Imagawa, Tomoyuki; Natsumeda, Yutaka; Yokota, Shumpei; Yamamoto, Yorihiro

    2013-01-01

    Fibromyalgia (FM) is characterized by generalized pain and chronic fatigue of unknown etiology. To evaluate the role of oxidative stress in this disorder, we measured plasma levels of ubiquinone-10, ubiquinol-10, free cholesterol (FC), cholesterol esters (CE), and free fatty acids (FFA) in patients with juvenile FM (n=10) and in healthy control subjects (n=67). Levels of FC and CE were significantly increased in juvenile FM as compared with controls, suggesting the presence of hypercholesterolemia in this disease. However, plasma level of ubiquinol-10 was significantly decreased and the ratio of ubiquinone-10 to total coenzyme Q10 (%CoQ10) was significantly increased in juvenile FM relative to healthy controls, suggesting that FM is associated with coenzyme Q10 deficiency and increased oxidative stress. Moreover, plasma level of FFA was significantly higher and the content of polyunsaturated fatty acids (PUFA) in total FFA was significantly lower in FM than in controls, suggesting increased tissue oxidative damage in juvenile FM. Interestingly, the content of monoenoic acids, such as oleic and palmitoleic acids, was significantly increased in FM relative to controls, probably to compensate for the loss of PUFA. Next, we examined the effect of ubiquinol-10 supplementation (100 mg/day for 12 weeks) in FM patients. This resulted in an increase in coenzyme Q10 levels and a decrease in %CoQ10. No changes were observed in FFA levels or their composition. However, plasma levels of FC and CE significantly decreased and the ratio of FC to CE also significantly decreased, suggesting that ubiquinol-10 supplementation improved cholesterol metabolism. Ubiquinol-10 supplementation also improved chronic fatigue scores as measured by the Chalder Fatigue Scale. PMID:23394493

  8. [Overexpression, homology modeling and coenzyme docking studies of the cytochrome P450nor2 from Cylindrocarpon tonkinense].

    PubMed

    Li, N; Zhang, Y Z; Li, D D; Niu, Y H; Liu, J; Li, S X; Yuan, Y Z; Chen, S L; Geng, H; Liu, D L

    2016-01-01

    Cytochrome P450nor catalyzes an unusual reaction that transfers electrons from NADP/NADPH to bound heme directly. To improve the expression level of P450nor2 from Cylindrocarpon tonkinense (C.P450nor2), Escherichia coli system was utilized to substitute the yeast system we constructed for expression of the P450nor2 gene, and the protein was purified in soluble form using Ni(+)-NTA affinity chromatography. In contrast to P450nor from Fusarium oxysporum (F.P450nor) and P450nor1 from Cylindrocarpon tonkinense (C.P450nor1), C.P450nor2 shows a dual specificity for using NADH or NADPH as electron donors. The present study developed a computational approach in order to illustrate the coenzyme specificity of C.P450nor2 for NADH and NADPH. This study involved homology modeling of C.P450nor2 and docking analyses of NADH and NADPH into the crystal structure of F.P450nor and the predictive model of C.P450nor2, respectively. The results suggested that C.P450nor2 and F.P450nor have different coenzyme specificity for NADH and NADPH; whilst the space around the B'-helix of the C.P450nor2, especially the Ser79 and Gly81, play a crucial role for the specificity of C.P450nor2. In the absence of the experimental structure of C.P450nor2, we hope that our model will be useful to provide rational explanation on coenzyme specificity of C.P450nor2. PMID:27239859

  9. Cloning, characterization, and functional expression of acs, the gene which encodes acetyl coenzyme A synthetase in Escherichia coli.

    PubMed Central

    Kumari, S; Tishel, R; Eisenbach, M; Wolfe, A J

    1995-01-01

    Acetyl coenzyme A synthetase (Acs) activates acetate to acetyl coenzyme A through an acetyladenylate intermediate; two other enzymes, acetate kinase (Ack) and phosphotransacetylase (Pta), activate acetate through an acetyl phosphate intermediate. We subcloned acs, the Escherichia coli open reading frame purported to encode Acs (F. R. Blattner, V. Burland, G. Plunkett III, H. J. Sofia, and D. L. Daniels, Nucleic Acids Res. 21:5408-5417, 1993). We constructed a mutant allele, delta acs::Km, with the central 0.72-kb BclI-BclI portion of acs deleted, and recombined it into the chromosome. Whereas wild-type cells grew well on acetate across a wide range of concentrations (2.5 to 50 mM), those deleted for acs grew poorly on low concentrations (< or = 10 mM), those deleted for ackA and pta (which encode Ack and Pta, respectively) grew poorly on high concentrations (> or = 25 mM), and those deleted for acs, ackA, and pta did not grow on acetate at any concentration tested. Expression of acs from a multicopy plasmid restored growth to cells deleted for all three genes. Relative to wild-type cells, those deleted for acs did not activate acetate as well, those deleted for ackA and pta displayed even less activity, and those deleted for all three genes did not activate acetate at any concentration tested. Induction of acs resulted in expression of a 72-kDa protein, as predicted by the reported sequence. This protein immunoreacted with antiserum raised against purified Acs isolated from an unrelated species, Methanothrix soehngenii. The purified E. coli Acs then was used to raise anti-E. coli Acs antiserum, which immunoreacted with a 72-kDa protein expressed by wild-type cells but not by those deleted for acs. When purified in the presence, but not in the absence, of coenzyme A, the E. coli enzyme activated acetate across a wide range of concentrations in a coenzyme A-dependent manner. On the basis of these and other observations, we conclude that this open reading frame

  10. Methanol:coenzyme M methyltransferase from Methanosarcina barkeri -- substitution of the corrinoid harbouring subunit MtaC by free cob(I)alamin.

    PubMed

    Sauer, K; Thauer, R K

    1999-05-01

    Methyl-coenzyme M formation from coenzyme M and methanol in Methanosarcina barkeri is catalysed by an enzyme system composed of three polypeptides MtaA, MtaB and MtaC, the latter of which harbours a corrinoid prosthetic group. We report here that MtaC can be substituted by free cob(I)alamin which is methylated with methanol in an MtaB-catalysed reaction and demethylated with coenzyme M in an MtaA-catalysed reaction. Methyl transfer from methanol to coenzyme M was found to proceed at a relatively high specific activity at micromolar concentrations of cob(I)alamin. This finding was surprising because the methylation of cob(I)alamin catalysed by MtaB alone and the demethylation of methylcob(III)alamin catalysed by MtaA alone exhibit apparent Km for cob(I)alamin and methylcob(III)alamin of above 1 mm. A possible explanation is that MtaA positively affects the MtaB catalytic efficiency and vice versa by decreasing the apparent Km for their corrinoid substrates. Activation of MtaA by MtaB was methanol-dependent. In the assay for methanol:coenzyme M methyltransferase activity cob(I)alamin could be substituted by cob(I)inamide which is devoid of the nucleotide loop. Substitution was, however, only possible when the assays were supplemented with imidazole: approximately 1 mm imidazole being required for half-maximal activity. Methylation of cob(I)inamide with methanol was found to be dependent on imidazole but not on the demethylation of methylcob(III)inamide with coenzyme M. The demethylation reaction was even inhibited by imidazole. The structure and catalytic mechanism of the MtaABC complex are compared with the cobalamin-dependent methionine synthase. PMID:10215883

  11. Coenzyme Q10 Supplementation and Oocyte Aneuploidy in Women Undergoing IVF–ICSI Treatment

    PubMed Central

    Bentov, Yaakov; Hannam, Thomas; Jurisicova, Andrea; Esfandiari, Navid; Casper, Robert F.

    2014-01-01

    BACKGROUND The age-related reduction in live-birth rate is attributed to a high rate of aneuploidy and follicle depletion. We showed in an animal model that treatment with Coenzyme Q10 (CoQ10) markedly improved reproductive outcome. The aim of this study was to compare the post-meiotic oocyte aneuploidy rate in in vitro fertilization (IVF) and intra cytoplasmic sperm injection (ICSI) patients treated with CoQ10 or placebo. METHODS We conducted a double blind placebo controlled randomized trial that included IVF–ICSI patients 35–43 years of age. The patients were treated with either 600 mg of CoQ10 or an equivalent number of placebo caps. We compared the post-meiotic aneuploidy rate using polar body biopsy (PBBX) and comparative genomic hybridization (CGH). According to the power calculation, 27 patients were needed for each arm. RESULTS Owing to safety concerns regarding the effects of polar body biopsy on embryo quality and implantation, the study was terminated before reaching the target number of participants. A total of 39 patients were evaluated and randomized (17 CoQ10, 22 placebo), 27 were given the study medication (12 CoQ10, 15 placebo), and 24 completed an IVF–ICSI cycle including PBBX and embryo transfer (10 CoQ10, 14 placebo). Average age, base line follicle stimulating hormone (FSH), peak estradiol and progesterone serum level, as well as the total number of human menopausal gonadotropin (hMG) units—did not differ between the groups. The rate of aneuploidy was 46.5% in the CoQ10 group compared to 62.8% in the control. Clinical pregnancy rate was 33% for the CoQ10 group and 26.7% for the control group. CONCLUSION No significant differences in outcome were detected between the CoQ10 and placebo groups. However, the final study was underpowered to detect a difference in the rate of aneuploidy. PMID:24987272

  12. Coenzyme Q10 production in plants: current status and future prospects.

    PubMed

    Parmar, Sanjay Singh; Jaiwal, Anjali; Dhankher, Om Parkash; Jaiwal, Pawan K

    2015-06-01

    Coenzyme Q10 (CoQ10) or Ubiquinone10 (UQ10), an isoprenylated benzoquinone, is well-known for its role as an electron carrier in aerobic respiration. It is a sole representative of lipid soluble antioxidant that is synthesized in our body. In recent years, it has been found to be associated with a range of patho-physiological conditions and its oral administration has also reported to be of therapeutic value in a wide spectrum of chronic diseases. Additionally, as an antioxidant, it has been widely used as an ingredient in dietary supplements, neutraceuticals, and functional foods as well as in anti-aging creams. Since its limited dietary uptake and decrease in its endogenous synthesis in the body with age and under various diseases states warrants its adequate supply from an external source. To meet its growing demand for pharmaceutical, cosmetic and food industries, there is a great interest in the commercial production of CoQ10. Various synthetic and fermentation of microbial natural producers and their mutated strains have been developed for its commercial production. Although, microbial production is the major industrial source of CoQ10 but due to low yield and high production cost, other cost-effective and alternative sources need to be explored. Plants, being photosynthetic, producing high biomass and the engineering of pathways for producing CoQ10 directly in food crops will eliminate the additional step for purification and thus could be used as an ideal and cost-effective alternative to chemical synthesis and microbial production of CoQ10. A better understanding of CoQ10 biosynthetic enzymes and their regulation in model systems like E. coli and yeast has led to the use of metabolic engineering to enhance CoQ10 production not only in microbes but also in plants. The plant-based CoQ10 production has emerged as a cost-effective and environment-friendly approach capable of supplying CoQ10 in ample amounts. The current strategies, progress and constraints of

  13. Characterization of Novel Acyl Coenzyme A Dehydrogenases Involved in Bacterial Steroid Degradation

    PubMed Central

    Ruprecht, Amanda; Maddox, Jaymie; Stirling, Alexander J.; Visaggio, Nicole

    2015-01-01

    ABSTRACT The acyl coenzyme A (acyl-CoA) dehydrogenases (ACADs) FadE34 and CasC, encoded by the cholesterol and cholate gene clusters of Mycobacterium tuberculosis and Rhodococcus jostii RHA1, respectively, were successfully purified. Both enzymes differ from previously characterized ACADs in that they contain two fused acyl-CoA dehydrogenase domains in a single polypeptide. Site-specific mutagenesis showed that only the C-terminal ACAD domain contains the catalytic glutamate base required for enzyme activity, while the N-terminal ACAD domain contains an arginine required for ionic interactions with the pyrophosphate of the flavin adenine dinucleotide (FAD) cofactor. Therefore, the two ACAD domains must associate to form a single active site. FadE34 and CasC were not active toward the 3-carbon side chain steroid metabolite 3-oxo-23,24-bisnorchol-4-en-22-oyl-CoA (4BNC-CoA) but were active toward steroid CoA esters containing 5-carbon side chains. CasC has similar specificity constants for cholyl-CoA, deoxycholyl-CoA, and 3β-hydroxy-5-cholen-24-oyl-CoA, while FadE34 has a preference for the last compound, which has a ring structure similar to that of cholesterol metabolites. Knockout of the casC gene in R. jostii RHA1 resulted in a reduced growth on cholate as a sole carbon source and accumulation of a 5-carbon side chain cholate metabolite. FadE34 and CasC represent unique members of ACADs with primary structures and substrate specificities that are distinct from those of previously characterized ACADs. IMPORTANCE We report here the identification and characterization of acyl-CoA dehydrogenases (ACADs) involved in the metabolism of 5-carbon side chains of cholesterol and cholate. The two homologous enzymes FadE34 and CasC, from M. tuberculosis and Rhodococcus jostii RHA1, respectively, contain two ACAD domains per polypeptide, and we show that these two domains interact to form a single active site. FadE34 and CasC are therefore representatives of a new class of

  14. Actinobacterial Acyl Coenzyme A Synthetases Involved in Steroid Side-Chain Catabolism

    PubMed Central

    Casabon, Israël; Swain, Kendra; Crowe, Adam M.

    2014-01-01

    Bacterial steroid catabolism is an important component of the global carbon cycle and has applications in drug synthesis. Pathways for this catabolism involve multiple acyl coenzyme A (CoA) synthetases, which activate alkanoate substituents for β-oxidation. The functions of these synthetases are poorly understood. We enzymatically characterized four distinct acyl-CoA synthetases from the cholate catabolic pathway of Rhodococcus jostii RHA1 and the cholesterol catabolic pathway of Mycobacterium tuberculosis. Phylogenetic analysis of 70 acyl-CoA synthetases predicted to be involved in steroid metabolism revealed that the characterized synthetases each represent an orthologous class with a distinct function in steroid side-chain degradation. The synthetases were specific for the length of alkanoate substituent. FadD19 from M. tuberculosis H37Rv (FadD19Mtb) transformed 3-oxo-4-cholesten-26-oate (kcat/Km = 0.33 × 105 ± 0.03 × 105 M−1 s−1) and represents orthologs that activate the C8 side chain of cholesterol. Both CasGRHA1 and FadD17Mtb are steroid-24-oyl-CoA synthetases. CasG and its orthologs activate the C5 side chain of cholate, while FadD17 and its orthologs appear to activate the C5 side chain of one or more cholesterol metabolites. CasIRHA1 is a steroid-22-oyl-CoA synthetase, representing orthologs that activate metabolites with a C3 side chain, which accumulate during cholate catabolism. CasI had similar apparent specificities for substrates with intact or extensively degraded steroid nuclei, exemplified by 3-oxo-23,24-bisnorchol-4-en-22-oate and 1β(2′-propanoate)-3aα-H-4α(3″-propanoate)-7aβ-methylhexahydro-5-indanone (kcat/Km = 2.4 × 105 ± 0.1 × 105 M−1 s−1 and 3.2 × 105 ± 0.3 × 105 M−1 s−1, respectively). Acyl-CoA synthetase classes involved in cholate catabolism were found in both Actinobacteria and Proteobacteria. Overall, this study provides insight into the physiological roles of acyl-CoA synthetases in steroid catabolism and

  15. Yeast Coq9 controls deamination of coenzyme Q intermediates that derive from para-aminobenzoic acid.

    PubMed

    He, Cuiwen H; Black, Dylan S; Nguyen, Theresa P T; Wang, Charles; Srinivasan, Chandra; Clarke, Catherine F

    2015-09-01

    Coq9 is a polypeptide subunit in a mitochondrial multi-subunit complex, termed the CoQ-synthome, required for biosynthesis of coenzyme Q (ubiquinone or Q). Deletion of COQ9 results in dissociation of the CoQ-synthome, but over-expression of Coq8 putative kinase stabilizes the CoQ-synthome in the coq9 null mutant and leads to the accumulation of two nitrogen-containing Q intermediates, imino-demethoxy-Q6 (IDMQ6) and 3-hexaprenyl-4-aminophenol (4-AP) when para-aminobenzoic acid (pABA) is provided as a ring precursor. To investigate whether Coq9 is responsible for deamination steps in Q biosynthesis, we utilized the yeast coq5-5 point mutant. The yeast coq5-5 point mutant is defective in the C-methyltransferase step of Q biosynthesis but retains normal steady-state levels of the Coq5 polypeptide. Here, we show that when high amounts of 13C6-pABA are provided, the coq5-5 mutant accumulates both 13C6-imino-demethyl-demethoxy-Q6 (13C6-IDDMQ6) and 13C6-demethyl-demethoxy-Q6 (13C6-DDMQ6). Deletion of COQ9 in the yeast coq5-5 mutant along with Coq8 over-expression and 13C6- pABA labeling leads to the absence of 13C6-DDMQ6, and the nitrogen-containing intermediates 13C6-4-AP and 13C6-IDDMQ6 persist. We describe a coq9 temperature-sensitive mutant and show that at the non-permissive temperature, steady-state polypeptide levels of Coq9-ts19 increased, while Coq4, Coq5, Coq6, and Coq7 decreased. The coq9-ts19 mutant had decreased Q6 content and increased levels of nitrogen-containing intermediates. These findings identify Coq9 as a multi-functional protein that is required for the function of Coq6 and Coq7 hydroxylases, for removal of the nitrogen substituent from pABA-derived Q intermediates, and is an essential component of the CoQ synthome. PMID:26008578

  16. The Regulation of Coenzyme Q Biosynthesis in Eukaryotic Cells: All That Yeast Can Tell Us

    PubMed Central

    González-Mariscal, Isabel; García-Testón, Elena; Padilla, Sergio; Martín-Montalvo, Alejandro; Pomares Viciana, Teresa; Vazquez-Fonseca, Luis; Gandolfo Domínguez, Pablo; Santos-Ocaña, Carlos

    2014-01-01

    Coenzyme Q (CoQ) is a mitochondrial lipid, which functions mainly as an electron carrier from complex I or II to complex III at the mitochondrial inner membrane, and also as antioxidant in cell membranes. CoQ is needed as electron acceptor in β-oxidation of fatty acids and pyridine nucleotide biosynthesis, and it is responsible for opening the mitochondrial permeability transition pore. The yeast model has been very useful to analyze the synthesis of CoQ, and therefore, most of the knowledge about its regulation was obtained from the Saccharomyces cerevisiae model. CoQ biosynthesis is regulated to support 2 processes: the bioenergetic metabolism and the antioxidant defense. Alterations of the carbon source in yeast, or in nutrient availability in yeasts or mammalian cells, upregulate genes encoding proteins involved in CoQ synthesis. Oxidative stress, generated by chemical or physical agents or by serum deprivation, modifies specifically the expression of some COQ genes by means of stress transcription factors such as Msn2/4p, Yap1p or Hsf1p. In general, the induction of COQ gene expression produced by metabolic changes or stress is modulated downstream by other regulatory mechanisms such as the protein import to mitochondria, the assembly of a multi-enzymatic complex composed by Coq proteins and also the existence of a phosphorylation cycle that regulates the last steps of CoQ biosynthesis. The CoQ biosynthetic complex assembly starts with the production of a nucleating lipid such as HHB by the action of the Coq2 protein. Then, the Coq4 protein recognizes the precursor HHB acting as the nucleus of the complex. The activity of Coq8p, probably as kinase, allows the formation of an initial pre-complex containing all Coq proteins with the exception of Coq7p. This pre-complex leads to the synthesis of 5-demethoxy-Q6 (DMQ6), the Coq7p substrate. When de novo CoQ biosynthesis is required, Coq7p becomes dephosphorylated by the action of Ptc7p increasing the synthesis

  17. Acyl-coenzyme A binding domain containing 3 (ACBD3; PAP7; GCP60): an emerging signaling molecule

    PubMed Central

    Fan, Jinjiang; Liu, Jun; Culty, Martine; Papadopoulos, Vassilios

    2010-01-01

    Golgi body-mediated signaling has been linked to its fragmentation and regeneration during the mitotic cycle of the cell. During this process, Golgi-resident proteins are released to the cytosol and interact with other signaling molecules to regulate various cellular processes. Acyl-coenzyme A binding domain containing 3 protein (ACBD3) is a Golgi protein involved in several signaling events. ACBD3 protein was previously known as peripheral-type benzodiazepine receptor and cAMP-dependent protein kinase associated protein 7 (PAP7), Golgi complex-associated protein of 60 kDa (GCP60), Golgi complex-associated protein 1 (GOCAP1), and Golgi phosphoprotein 1 (GOLPH1). In this review, we present the gene ontology of ACBD3, its relations to other Acyl-coenzyme A binding protein (ACBP) domain containing proteins, and its biological function in steroidogenesis, apoptosis, neurogenesis, and embryogenesis. We also discuss the role of ACBD3 in asymmetric cell division and cancer. New findings about ACBD3 may help understand this newly characterized signaling molecule and stimulate further research into its role in molecular endocrinology, neurology, and stem cell biology. PMID:20043945

  18. Involvement of tristetraprolin in transcriptional activation of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase by insulin

    SciTech Connect

    Ness, Gene C.; Edelman, Jeffrey L.; Brooks, Patricia A.

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer siRNAs to tristetraprolin blocks transcription of HMGR in vivo in rat liver. Black-Right-Pointing-Pointer siRNAs to tristetraprolin inhibits insulin activation of HMGR transcription. Black-Right-Pointing-Pointer Insulin acts to rapidly increase tristetraprolin in liver nuclear extracts. -- Abstract: Several AU-rich RNA binding element (ARE) proteins were investigated for their possible effects on transcription of hepatic 3-hydroxy-3-methyglutaryl coenzyme A reductase (HMGR) in normal rats. Using in vivo electroporation, four different siRNAs to each ARE protein were introduced together with HMGR promoter (-325 to +20) luciferase construct and compared to saline controls. All four siRNAs to tristetraprolin (TTP) completely eliminated transcription from the HMGR promoter construct. Since insulin acts to rapidly increase hepatic HMGR transcription, the effect of TTP siRNA on induction by insulin was tested. The 3-fold stimulation by insulin was eliminated by this treatment. In comparison, siRNA to AU RNA binding protein/enoyl coenzyme A hydratase (AUH) had no effect. These findings indicate a role for TTP in the insulin-mediated activation of hepatic HMGR transcription.

  19. Structural analysis, plastid localization, and expression of the biotin carboxylase subunit of acetyl-coenzyme A carboxylase from tobacco.

    PubMed

    Shorrosh, B S; Roesler, K R; Shintani, D; van de Loo, F J; Ohlrogge, J B

    1995-06-01

    Acetyl-coenzyme A carboxylase (ACCase, EC 6.4.1.2) catalyzes the synthesis of malonyl-coenzyme A, which is utilized in the plastid for de novo fatty acid synthesis and outside the plastid for a variety of reactions, including the synthesis of very long chain fatty acids and flavonoids. Recent evidence for both multifunctional and multisubunit ACCase isozymes in dicot plants has been obtained. We describe here the isolation of a tobacco (Nicotiana tabacum L. cv bright yellow 2 [NT1]) cDNA clone (E3) that encodes a 58.4-kD protein that shares 80% sequence similarity and 65% identity with the Anabaena biotin carboxylase subunit of ACCase. Similar to other biotin carboxylase subunits of acetyl-CoA carboxylase, the E3-encoded protein contains a putative ATP-binding motif but lacks a biotin-binding site (methionine-lysine-methionine or methionine-lysine-leucine). The deduced protein sequence contains a putative transit peptide whose function was confirmed by its ability to direct in vitro chloroplast uptake. The subcellular localization of this biotin carboxylase has also been confirmed to be plastidial by western blot analysis of pea (Pisum sativum), alfalfa (Medicago sativa L.), and castor (Ricinus communis L.) plastid preparations. Northern blot analysis indicates that the plastid biotin carboxylase transcripts are expressed at severalfold higher levels in castor seeds than in leaves. PMID:7610168

  20. Structure of L-3-hydroxyacyl-coenzyme A dehydrogenase: preliminary chain tracing at 2.8-A resolution.

    PubMed Central

    Birktoft, J J; Holden, H M; Hamlin, R; Xuong, N H; Banaszak, L J

    1987-01-01

    The conformation of L-3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35) has been derived from electron-density maps calculated at 2.8-A resolution with phases obtained from two heavy-atom derivatives and the bound coenzyme, NAD. Like other dehydrogenases, 3-hydroxyacyl-CoA dehydrogenase is a double-domain structure, but the bilobal nature of this enzyme is more pronounced than has been previously observed. The amino-terminal domain, which comprises approximately the first 200 residues, is responsible for binding the NAD cofactor and displays considerable structural homology with the dinucleotide binding domains observed in other NAD-, NADP-, and FAD-dependent enzymes. The carboxyl-terminal domain, comprising the remaining 107 residues, appears to be all alpha-helical and bears little homology to other known dehydrogenases. The subunit-subunit interface in the 3-hydroxyacyl-CoA dehydrogenase dimer is formed almost exclusively by residues in the smaller helical domain. A difference map between the apo and holo forms of the crystalline enzyme has been interpreted in terms of the NAD molecule being bound in a typically extended conformation. The location of the coenzyme binding site, along with the structural homology to other dehydrogenases, makes it possible to speculate about the location of the binding site for the fatty acyl-CoA substrate. PMID:3479790

  1. Studies on the "Aerobic" Acetyl-Coenzyme A Synthetase of Saccharomyces Cerevisiae: Purification, Crystallization, and Physical Properties of the Enzyme

    NASA Technical Reports Server (NTRS)

    Satyanarayana, T.; Klein, Harold P.

    1976-01-01

    A procedure for the purification of a stable acetyl-coenzyme A synthetase (ACS) from aerobic cells of Saccharomyces cerevisiae is presented. The steps include differential centrifugation, solubilization of the bound enzyme from the crude mitochondrial fraction, ammonium sulfate fractionation, crystallization to constant specific activity from ammonium sulfate solutions followed by Bio-Gel A-1.5 m column chromatography. The resulting enzyme preparation is homogeneous as judged by chromatography on Bio-Gel columns, QAE-Sephadex A-50 anion exchange columns, analytical ultracentrifugal studies, and polyacrylamide gel electrophoresis. Sedimentation velocity runs revealed a single symmetric peak with an s(sub (20,w)) value of 10.6. The molecular weight of the native enzyme, as determined by gel filtration and analytical ultracentrifugation, is 250,000 +/- 500. In polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, the molecular weight of the single polypeptide chain is 83,000 +/- 500. The purified enzyme is inhibited by palmityl-coenzyme A with a Hill interaction coefficient, n, of 2.88. These studies indicate that the ACS of aerobic Saccharomyces cerevisiae is composed of three subunits of identical or nearly identical size.

  2. Kinetic characterization of the inhibition of acyl coenzyme A: steroid acyltransferases by tributyltin in the eastern mud snail (Ilyanassa obsoleta).

    PubMed

    Sternberg, Robin M; LeBlanc, Gerald A

    2006-06-30

    Exposure to tributyltin (TBT) has been causally associated with the global occurrence of a pseudohermaphroditic condition called imposex in neogastropod species. TBT elevates free testosterone levels in these organisms, and this upsurge in testosterone may be involved in the development of imposex. We investigated the ability of TBT to inhibit acyl coenzyme A:testosterone acyltransferase (ATAT) activity as well as microsomal acyl-coenzyme A:17beta-estradiol acyltransferase (AEAT) in a neogastropod, the eastern mud snail Ilyanassa obsoleta as a mechanism by which TBT elevates free testosterone. TBT significantly inhibited both ATAT and AEAT activities in vitro at toxicologically relevant in vivo concentrations. Kinetic analyses revealed that TBT is a competitive inhibitor of ATAT (K(i)= approximately 9microM) and is a weaker, noncompetitive inhibitor of AEAT (K(i)= approximately 31microM). ATAT and AEAT activities associated with different microsome preparations were significantly correlated, and 17beta-estradiol competitively inhibited the fatty acid esterification of testosterone suggesting that one enzyme is responsible for biotransforming both testosterone and 17beta-estradiol to their corresponding fatty acid esters. Overall, the results of this study supply the much-needed mechanistic support for the hypothesis that TBT elevates free testosterone in neogastropods by inhibiting their major regulatory process for maintaining free testosterone homeostasis-the fatty acid esterification of testosterone. PMID:16638618

  3. Analysis of Hydroxycinnamic Acid Degradation in Agrobacterium fabrum Reveals a Coenzyme A-Dependent, Beta-Oxidative Deacetylation Pathway

    PubMed Central

    Campillo, Tony; Renoud, Sébastien; Kerzaon, Isabelle; Vial, Ludovic; Baude, Jessica; Gaillard, Vincent; Bellvert, Floriant; Chamignon, Cécile; Comte, Gilles; Lavire, Céline; Hommais, Florence

    2014-01-01

    The soil- and rhizosphere-inhabiting bacterium Agrobacterium fabrum (genomospecies G8 of the Agrobacterium tumefaciens species complex) is known to have species-specific genes involved in ferulic acid degradation. Here, we characterized, by genetic and analytical means, intermediates of degradation as feruloyl coenzyme A (feruloyl-CoA), 4-hydroxy-3-methoxyphenyl-β-hydroxypropionyl–CoA, 4-hydroxy-3-methoxyphenyl-β-ketopropionyl–CoA, vanillic acid, and protocatechuic acid. The genes atu1416, atu1417, and atu1420 have been experimentally shown to be necessary for the degradation of ferulic acid. Moreover, the genes atu1415 and atu1421 have been experimentally demonstrated to be essential for this degradation and are proposed to encode a phenylhydroxypropionyl-CoA dehydrogenase and a 4-hydroxy-3-methoxyphenyl-β-ketopropionic acid (HMPKP)–CoA β-keto-thiolase, respectively. We thus demonstrated that the A. fabrum hydroxycinnamic degradation pathway is an original coenzyme A-dependent β-oxidative deacetylation that could also transform p-coumaric and caffeic acids. Finally, we showed that this pathway enables the metabolism of toxic compounds from plants and their use for growth, likely providing the species an ecological advantage in hydroxycinnamic-rich environments, such as plant roots or decaying plant materials. PMID:24657856

  4. Analysis of coenzyme Q10 in bee pollen using online cleanup by accelerated solvent extraction and high performance liquid chromatography.

    PubMed

    Xue, Xiaofeng; Zhao, Jing; Chen, Lanzhen; Zhou, Jinhui; Yue, Bing; Li, Yi; Wu, Liming; Liu, Fengmao

    2012-07-15

    A method for the determination of coenzyme Q10 in bee pollen has been developed applying an online cleanup of accelerated solvent extraction and using environmentally acceptable organic solvents. The extracted samples were analysed by high performance liquid chromatography with diode array detection. The optimised method employed 10 mL extraction cells, 1g sample size, absolute ethanol as extraction solvent, 80°C of extraction temperature, one extraction cycle, 5 min of static time, Cleanert Alumina-N as sorbent and 60% flush volume. The method was validated by means of an evaluation of the matrix effects, linearity, limit of detection (LOD) and quantification (LOQ), trueness, precision and stability. The assay was linear over the concentration range of 0.25-200mg/L and the LOD and LOQ were 0.16 and 0.35 mg/kg, respectively. The recoveries were above 90%. The inter- and intra-day precision was below 6.3%. The method has been successfully applied to the analysis of bee pollen samples. For 20 bee pollen products, the coenzyme Q10 content varied from not detectable to 192.8 mg/kg. PMID:25683435

  5. Coenzyme Q Biosynthesis: Evidence for a Substrate Access Channel in the FAD-Dependent Monooxygenase Coq6

    PubMed Central

    Ismail, Alexandre; Leroux, Vincent; Smadja, Myriam; Gonzalez, Lucie; Lombard, Murielle; Pierrel, Fabien; Mellot-Draznieks, Caroline; Fontecave, Marc

    2016-01-01

    Coq6 is an enzyme involved in the biosynthesis of coenzyme Q, a polyisoprenylated benzoquinone lipid essential to the function of the mitochondrial respiratory chain. In the yeast Saccharomyces cerevisiae, this putative flavin-dependent monooxygenase is proposed to hydroxylate the benzene ring of coenzyme Q (ubiquinone) precursor at position C5. We show here through biochemical studies that Coq6 is a flavoprotein using FAD as a cofactor. Homology models of the Coq6-FAD complex are constructed and studied through molecular dynamics and substrate docking calculations of 3-hexaprenyl-4-hydroxyphenol (4-HP6), a bulky hydrophobic model substrate. We identify a putative access channel for Coq6 in a wild type model and propose in silico mutations positioned at its entrance capable of partially (G248R and L382E single mutations) or completely (a G248R-L382E double-mutation) blocking access to the channel for the substrate. Further in vivo assays support the computational predictions, thus explaining the decreased activities or inactivation of the mutated enzymes. This work provides the first detailed structural information of an important and highly conserved enzyme of ubiquinone biosynthesis. PMID:26808124

  6. Increased Malonyl Coenzyme A Biosynthesis by Tuning the Escherichia coli Metabolic Network and Its Application to Flavanone Production▿ †

    PubMed Central

    Fowler, Zachary L.; Gikandi, William W.; Koffas, Mattheos A. G.

    2009-01-01

    Identification of genetic targets able to bring about changes to the metabolite profiles of microorganisms continues to be a challenging task. We have independently developed a cipher of evolutionary design (CiED) to identify genetic perturbations, such as gene deletions and other network modifications, that result in optimal phenotypes for the production of end products, such as recombinant natural products. Coupled to an evolutionary search, our method demonstrates the utility of a purely stoichiometric network to predict improved Escherichia coli genotypes that more effectively channel carbon flux toward malonyl coenzyme A (CoA) and other cofactors in an effort to generate recombinant strains with enhanced flavonoid production capacity. The engineered E. coli strains were constructed first by the targeted deletion of native genes predicted by CiED and then second by incorporating selected overexpressions, including those of genes required for the coexpression of the plant-derived flavanones, acetate assimilation, acetyl-CoA carboxylase, and the biosynthesis of coenzyme A. As a result, the specific flavanone production from our optimally engineered strains was increased by over 660% for naringenin (15 to 100 mg/liter/optical density unit [OD]) and by over 420% for eriodictyol (13 to 55 mg/liter/OD). PMID:19633125

  7. Quantitative determination of coenzyme Q10 from dietary supplements by FT-NIR spectroscopy and statistical analysis.

    PubMed

    Rácz, Anita; Vass, Andrea; Héberger, Károly; Fodor, Marietta

    2015-04-01

    A novel, time- and money-sparing method has been developed and validated for the quantitative determination of coenzyme Q10 (CoQ10) from several dietary supplements. FT-NIR spectroscopy was applied for the examination, and a calibration model was built by partial least-square regression (PLS-R) using 50 dietary supplements. The combination of FT-NIRS and multivariate calibration methods is a very fast and simple way to replace the commonly used HPLC-UV method; because in contrast with the traditional techniques, sample pretreatment and reagents are not required and no wastes are produced. The calibration models could be improved by different variable selection techniques (for instance interval PLS, interval selectivity ratio, genetic algorithm), which are very fast and user-friendly. The R(2) (goodness of calibration) and Q(2) (goodness of validation) of the variable selected models are highly increased, the R(2) values being over 0.90 and the Q(2) values being over 0.86 in every case. Fivefold cross-validation and external validation were applied. The developed method(s) could be used by quality assurance laboratories for routine measurement of coenzyme Q10 products. PMID:25662936

  8. Identification of a Long-Chain Polyunsaturated Fatty Acid Acyl-Coenzyme A Synthetase from the Diatom Thalassiosira pseudonana1

    PubMed Central

    Tonon, Thierry; Qing, Renwei; Harvey, David; Li, Yi; Larson, Tony Robert; Graham, Ian Alexander

    2005-01-01

    The draft genome of the diatom Thalassiosira pseudonana was searched for DNA sequences showing homology with long-chain acyl-coenzyme A synthetases (LACSs), since the corresponding enzyme may play a key role in the accumulation of health-beneficial polyunsaturated fatty acids (PUFAs) in triacylglycerol. Among the candidate genes identified, an open reading frame named TplacsA was found to be full length and constitutively expressed during cell cultivation. The predicted amino acid sequence of the corresponding protein, TpLACSA, exhibited typical features of acyl-coenzyme A (acyl-CoA) synthetases involved in the activation of long-chain fatty acids. Feeding experiments carried out in yeast (Saccharomyces cerevisiae) transformed with the algal gene showed that TpLACSA was able to activate a number of PUFAs, including eicosapentaenoic acid and docosahexaenoic acid (DHA). Determination of acyl-CoA synthetase activities by direct measurement of acyl-CoAs produced in the presence of different PUFA substrates showed that TpLACSA was most active toward DHA. Heterologous expression also revealed that TplacsA transformants were able to incorporate more DHA in triacylglycerols than the control yeast. PMID:15821149

  9. Dietary whole cottonseed depresses lipogenesis but has no effect on stearoyl coenzyme desaturase activity in bovine subcutaneous adipose tissue.

    PubMed

    Page, A M; Sturdivant, C A; Lunt, D K; Smith, S B

    1997-09-01

    The primary objective of this study was to determine the effect of long-term feeding of whole cottonseed (WCS) on lipogenesis and stearoyl-coenzyme A desaturase activity in growing steers. Brangus steers were fed either a control, cornbased diet (n = 11) or 30% WCS (n = 12). The 30% WCS contributed an estimated 6.6% additional lipid to the diet. Steers fed the added WCS had greater live weights (P = 0.04) and kidney, pelvic, and heart fat (P = 0.005). Subcutaneous fat thickness was not different (P = 0.20) between treatment groups, although WCS elicited an increase in the proportion of large diameter subcutaneous adipocytes. The rate of [U-14C]acetate incorporation into fatty acids in subcutaneous adipose tissue was reduced by dietary WCS (171.4 vs 122.1 nmol x 100 mg adipose tissue-1 x 2 hr-1, P = 0.03), indicating that the increased dietary fat depressed de novo lipogenesis. Hepatic desaturase activity was much lower than that of subcutaneous adipose tissue, a feature common to cattle. We anticipated that added WCS also would depress stearoyl-coenzyme A desaturase activity in subcutaneous adipose tissue and liver due to its cyclopropene fatty acid content. Instead, desaturase activity was numerically (although not significantly) greater in liver (P = 0.37) and adipose tissue (P = 0.23). PMID:9417995

  10. Mitochondrial dysfunction in obesity: potential benefit and mechanism of Co-enzyme Q10 supplementation in metabolic syndrome

    PubMed Central

    2014-01-01

    Co-enzyme Q10 (Co-Q10) is an essential component of the mitochondrial electron transport chain. Most cells are sensitive to co-enzyme Q10 (Co-Q10) deficiency. This deficiency has been implicated in several clinical disorders such as heart failure, hypertension, Parkinson’s disease and obesity. The lipid lowering drug statin inhibits conversion of HMG-CoA to mevalonate and lowers plasma Co-Q10 concentrations. However, supplementation with Co-Q10 improves the pathophysiological condition of statin therapy. Recent evidence suggests that Co-Q10 supplementation may be useful for the treatment of obesity, oxidative stress and the inflammatory process in metabolic syndrome. The anti-inflammatory response and lipid metabolizing effect of Co-Q10 is probably mediated by transcriptional regulation of inflammation and lipid metabolism. This paper reviews the evidence showing beneficial role of Co-Q10 supplementation and its potential mechanism of action on contributing factors of metabolic and cardiovascular complications. PMID:24932457

  11. A de novo NADPH generation pathway for improving lysine production of Corynebacterium glutamicum by rational design of the coenzyme specificity of glyceraldehyde 3-phosphate dehydrogenase.

    PubMed

    Bommareddy, Rajesh Reddy; Chen, Zhen; Rappert, Sugima; Zeng, An-Ping

    2014-09-01

    Engineering the cofactor availability is a common strategy of metabolic engineering to improve the production of many industrially important compounds. In this work, a de novo NADPH generation pathway is proposed by altering the coenzyme specificity of a native NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) to NADP, which consequently has the potential to produce additional NADPH in the glycolytic pathway. Specifically, the coenzyme specificity of GAPDH of Corynebacterium glutamicum is systematically manipulated by rational protein design and the effect of the manipulation for cellular metabolism and lysine production is evaluated. By a combinatorial modification of four key residues within the coenzyme binding sites, different GAPDH mutants with varied coenzyme specificity were constructed. While increasing the catalytic efficiency of GAPDH towards NADP enhanced lysine production in all of the tested mutants, the most significant improvement of lysine production (~60%) was achieved with the mutant showing similar preference towards both NAD and NADP. Metabolic flux analysis with (13)C isotope studies confirmed that there was no significant change of flux towards the pentose phosphate pathway and the increased lysine yield was mainly attributed to the NADPH generated by the mutated GAPDH. The present study highlights the importance of protein engineering as a key strategy in de novo pathway design and overproduction of desired products. PMID:24953302

  12. The hypoxia-induced dehydrogenase HorA is required for coenzyme Q10 biosynthesis, azole sensitivity and virulence of Aspergillus fumigatus.

    PubMed

    Kroll, Kristin; Shekhova, Elena; Mattern, Derek J; Thywissen, Andreas; Jacobsen, Ilse D; Strassburger, Maria; Heinekamp, Thorsten; Shelest, Ekaterina; Brakhage, Axel A; Kniemeyer, Olaf

    2016-07-01

    Aspergillus fumigatus is the predominant airborne pathogenic fungus causing invasive aspergillosis in immunocompromised patients. During infection A. fumigatus has to adapt to oxygen-limiting conditions in inflammatory or necrotic tissue. Previously, we identified a mitochondrial protein to be highly up-regulated during hypoxic adaptation. Here, this protein was found to represent the novel oxidoreductase HorA. In Saccharomyces cerevisiae a homologue was shown to play a role in biosynthesis of coenzyme Q. Consistently, reduced coenzyme Q content in the generated ΔhorA mutant indicated a respective function in A. fumigatus. Since coenzyme Q is involved in cellular respiration and maintaining cellular redox homeostasis, the strain ΔhorA displayed an impaired response to both oxidative and reductive stress, a delay in germination and an accumulation of NADH. Moreover, an increased resistance against antifungal drugs was observed. All phenotypes were completely reversed by the addition of the synthetic electron carrier menadione. The deletion strain ΔhorA showed significantly attenuated virulence in two murine infection models of invasive pulmonary aspergillosis. Therefore, the biosynthesis of coenzyme Q and, particularly, the fungal-specific protein HorA play a crucial role in virulence of A. fumigatus. Due to its absence in mammals, HorA might represent a novel therapeutic target against fungal infections. PMID:26991818

  13. Phylogenetic analysis of ascomycete yeasts that form coenzyme Q-9 and the proposal of the new genera Babjeviella, Meyerozyma, Millerozyma, Priceomyces and Scheffersomyces

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Species assigned to the genera Debaryomyces, Lodderomyces, Spathaspora and Yamadazyma, as well as selected species of Pichia and Candida that also form coenzyme Q-9, were phylogenetically analyzed from the combined sequences of the D1/D2 domains of the large subunit and the small subunit rRNA genes....

  14. 4-Coumarate:Coenzyme A Ligase Has the Catalytic Capacity to Synthesize and Reuse Various (Di)Adenosine Polyphosphates1

    PubMed Central

    Pietrowska-Borek, Małgorzata; Stuible, Hans-Peter; Kombrink, Erich; Guranowski, Andrzej

    2003-01-01

    4-Coumarate:coenzyme A ligase (4CL) is known to activate cinnamic acid derivatives to their corresponding coenzyme A esters. As a new type of 4CL-catalyzed reaction, we observed the synthesis of various mono- and diadenosine polyphosphates. Both the native 4CL2 isoform from Arabidopsis (At4CL2 wild type) and the At4CL2 gain of function mutant M293P/K320L, which exhibits the capacity to use a broader range of phenolic substrates, catalyzed the synthesis of adenosine 5′-tetraphosphate (p4A) and adenosine 5′-pentaphosphate when incubated with MgATP−2 and tripolyphosphate or tetrapolyphosphate (P4), respectively. Diadenosine 5′,5‴,-P1,P4-tetraphosphate represented the main product when the enzymes were supplied with only MgATP2−. The At4CL2 mutant M293P/K320L was studied in more detail and was also found to catalyze the synthesis of additional dinucleoside polyphosphates such as diadenosine 5′,5‴-P1,P5-pentaphosphate and dAp4dA from the appropriate substrates, p4A and dATP, respectively. Formation of Ap3A from ATP and ADP was not observed with either At4CL2 variant. In all cases analyzed, (di)adenosine polyphosphate synthesis was either strictly dependent on or strongly stimulated by the presence of a cognate cinnamic acid derivative. The At4CL2 mutant enzyme K540L carrying a point mutation in the catalytic center that is critical for adenylate intermediate formation was inactive in both p4A and diadenosine 5′,5‴,-P1,P4-tetraphosphate synthesis. These results indicate that the cinnamoyl-adenylate intermediate synthesized by At4CL2 not only functions as an intermediate in coenzyme A ester formation but can also act as a cocatalytic AMP-donor in (di)adenosine polyphosphate synthesis. PMID:12644689

  15. Oral Coenzyme Q10 supplementation does not prevent cardiac alterations during a high altitude trek to everest base cAMP.

    PubMed

    Holloway, Cameron J; Murray, Andrew J; Mitchell, Kay; Martin, Daniel S; Johnson, Andrew W; Cochlin, Lowri E; Codreanu, Ion; Dhillon, Sundeep; Rodway, George W; Ashmore, Tom; Levett, Denny Z H; Neubauer, Stefan; Montgomery, Hugh E; Grocott, Michael P W; Clarke, Kieran

    2014-12-01

    Exposure to high altitude is associated with sustained, but reversible, changes in cardiac mass, diastolic function, and high-energy phosphate metabolism. Whilst the underlying mechanisms remain elusive, tissue hypoxia increases generation of reactive oxygen species (ROS), which can stabilize hypoxia-inducible factor (HIF) transcription factors, bringing about transcriptional changes that suppress oxidative phosphorylation and activate autophagy. We therefore investigated whether oral supplementation with an antioxidant, Coenzyme Q10, prevented the cardiac perturbations associated with altitude exposure. Twenty-three volunteers (10 male, 13 female, 46±3 years) were recruited from the 2009 Caudwell Xtreme Everest Research Treks and studied before, and within 48 h of return from, a 17-day trek to Everest Base Camp, with subjects receiving either no intervention (controls) or 300 mg Coenzyme Q10 per day throughout altitude exposure. Cardiac magnetic resonance imaging and echocardiography were used to assess cardiac morphology and function. Following altitude exposure, body mass fell by 3 kg in all subjects (p<0.001), associated with a loss of body fat and a fall in BMI. Post-trek, left ventricular mass had decreased by 11% in controls (p<0.05) and by 16% in Coenzyme Q10-treated subjects (p<0.001), whereas mitral inflow E/A had decreased by 18% in controls (p<0.05) and by 21% in Coenzyme Q10-treated subjects (p<0.05). Coenzyme Q10 supplementation did not, therefore, prevent the loss of left ventricular mass or change in diastolic function that occurred following a trek to Everest Base Camp. PMID:24661196

  16. Topical treatment with coenzyme Q10-containing formulas improves skin's Q10 level and provides antioxidative effects.

    PubMed

    Knott, Anja; Achterberg, Volker; Smuda, Christoph; Mielke, Heiko; Sperling, Gabi; Dunckelmann, Katja; Vogelsang, Alexandra; Krüger, Andrea; Schwengler, Helge; Behtash, Mojgan; Kristof, Sonja; Diekmann, Heike; Eisenberg, Tanya; Berroth, Andreas; Hildebrand, Janosch; Siegner, Ralf; Winnefeld, Marc; Teuber, Frank; Fey, Sven; Möbius, Janne; Retzer, Dana; Burkhardt, Thorsten; Lüttke, Juliane; Blatt, Thomas

    2015-01-01

    Ubiquinone (coenzyme Q10, Q10) represents an endogenously synthesized lipid-soluble antioxidant which is crucial for cellular energy production but is diminished with age and under the influence of external stress factors in human skin. Here, it is shown that topical Q10 treatment is beneficial with regard to effective Q10 replenishment, augmentation of cellular energy metabolism, and antioxidant effects. Application of Q10-containing formulas significantly increased the levels of this quinone on the skin surface. In the deeper layers of the epidermis the ubiquinone level was significantly augmented indicating effective supplementation. Concurrent elevation of ubiquinol levels suggested metabolic transformation of ubiquinone resulting from increased energy metabolism. Incubation of cultured human keratinocytes with Q10 concentrations equivalent to treated skin showed a significant augmentation of energy metabolism. Moreover, the results demonstrated that stressed skin benefits from the topical Q10 treatment by reduction of free radicals and an increase in antioxidant capacity. PMID:26648450

  17. The substrate promiscuity of a phosphopantetheinyl transferase SchPPT for coenzyme A derivatives and acyl carrier proteins.

    PubMed

    Wang, Yue-Yue; Luo, Hong-Dou; Zhang, Xiao-Sheng; Lin, Tao; Jiang, Hui; Li, Yong-Quan

    2016-03-01

    Phosphopantetheinyl transferases (PPTases) catalyze the posttranslational modification of acyl carrier proteins (ACPs) in fatty acid synthases (FASs), ACPs in polyketide synthases, and peptidyl carrier proteins (PCPs) in nonribosomal peptide synthetases (NRPSs) in all organisms. Some bacterial PPTases have broad substrate specificities for ACPs/PCPs and/or coenzyme A (CoA)/CoA analogs, facilitating their application in metabolite production in hosts and/or labeling of ACPs/PCPs, respectively. Here, a group II PPTase SchPPT from Streptomyces chattanoogensis L10 was characterized to accept a heterologous ACP and acetyl-CoA. Thus, SchPPT is a promiscuous PPTase and may be used on polyketide production in heterologous bacterial host and labeling of ACPs. PMID:26748983

  18. Crystal structure of tabtoxin resistance protein complexed with acetyl coenzyme A reveals the mechanism for {beta}-lactam acetylation.

    SciTech Connect

    He, H.; Ding, Y.; Bartlam, M.; Sun, F.; Le, Y.; Qin, X.; Tang, H.; Zhang, R.; Joachimiak, A.; Liu, J.; Zhao, N.; Rao, Z.; Biosciences Division; Tsinghua Univ.; Chinese Academy of Science

    2003-01-31

    Tabtoxin resistance protein (TTR) is an enzyme that renders tabtoxin-producing pathogens, such as Pseudomonas syringae, tolerant to their own phytotoxins. Here, we report the crystal structure of TTR complexed with its natural cofactor, acetyl coenzyme A (AcCoA), to 1.55 {angstrom} resolution. The binary complex forms a characteristic 'V' shape for substrate binding and contains the four motifs conserved in the GCN5-related N-acetyltransferase (GNAT) superfamily, which also includes the histone acetyltransferases (HATs). A single-step mechanism is proposed to explain the function of three conserved residues, Glu92, Asp130 and Tyr141, in catalyzing the acetyl group transfer to its substrate. We also report that TTR possesses HAT activity and suggest an evolutionary relationship between TTR and other GNAT members.

  19. Coenzyme Q10 prevents accelerated cardiac aging in a rat model of poor maternal nutrition and accelerated postnatal growth.

    PubMed

    Tarry-Adkins, Jane L; Blackmore, Heather L; Martin-Gronert, Malgorzata S; Fernandez-Twinn, Denise S; McConnell, Josie M; Hargreaves, Iain P; Giussani, Dino A; Ozanne, Susan E

    2013-01-01

    Studies in human and animals have demonstrated that nutritionally induced low birth-weight followed by rapid postnatal growth increases the risk of metabolic syndrome and cardiovascular disease. Although the mechanisms underlying such nutritional programming are not clearly defined, increased oxidative-stress leading to accelerated cellular aging has been proposed to play an important role. Using an established rodent model of low birth-weight and catch-up growth, we show here that post-weaning dietary supplementation with coenzyme Q10, a key component of the electron transport chain and a potent antioxidant rescued many of the detrimental effects of nutritional programming on cardiac aging. This included a reduction in nitrosative and oxidative-stress, telomere shortening, DNA damage, cellular senescence and apoptosis. These findings demonstrate the potential for postnatal antioxidant intervention to reverse deleterious phenotypes of developmental programming and therefore provide insight into a potential translatable therapy to prevent cardiovascular disease in at risk humans. PMID:24327963

  20. Computational study of the three-dimensional structure of N-acetyltransferase 2-acetyl coenzyme a complex.

    PubMed

    Oda, Akifumi; Kobayashi, Kana; Takahashi, Ohgi

    2010-01-01

    N-Acetyltransferase 2 (NAT2) is one of the most important polymorphic drug-metabolizing enzymes and plays a significant role in individual differences of drug efficacies and/or side effects. Coenzyme A (CoA) is a cofactor in the experimentally determined crystal structure of NAT2, although the acetyl source of acetylation reactions catalyzed by NAT is not CoA, but rather acetyl CoA. In this study, the three-dimensional structure of NAT2, including acetyl CoA, was calculated using molecular dynamics simulation. By substituting acetyl CoA for CoA the amino acid residue Gly286, which is known to transform into a glutamate residue by NAT2*7A and NAT2*7B, comes close to the cofactor binding site. In addition, the binding pocket around the sulfur atom of acetyl CoA expanded in the NAT2-acetyl CoA complex. PMID:20930369

  1. Molecular cloning of a malyl coenzyme A lyase gene from Pseudomonas sp. strain AM1, a facultative methylotroph.

    PubMed Central

    Fulton, G L; Nunn, D N; Lidstrom, M E

    1984-01-01

    A genomic library containing HindIII partial digests of Pseudomonas sp. strain AM1 DNA was constructed in the broad-host-range cosmid pVK100. PCT57, a Pseudomonas sp. strain AM1 methanol mutant deficient in malyl coenzyme A lyase activity, was complemented to a methanol-positive phenotype by mobilization of the pVK100 library into PCT57 recipients with the ColE1/RK2 mobilizing plasmid pRK2013. Six different complemented isolates all contained a recombinant plasmid carrying the same 19.6-kilobase-pair Pseudomonas sp. strain AM1 DNA insert. Subcloning and complementation analysis demonstrated that the gene deficient in PCT57 (mcl-1) was located in a 1.6-kilobase-pair region within a 7.4-kilobase-pair EcoRI-HindIII fragment. PMID:6094488

  2. Determination of urinary coenzyme Q10 by HPLC with electrochemical detection: Reference values for a paediatric population.

    PubMed

    Yubero, Dèlia; Montero, Raquel; Ramos, Maria; Neergheen, Viruna; Navas, Plácido; Artuch, Rafael; Hargreaves, Iain

    2015-01-01

    Kidney dysfunction is being increasingly associated with mitochondrial diseases and coenzyme Q10 (CoQ) deficiency. The assessment of CoQ status requires the biochemical determination of CoQ in biological fluids and different cell types, but no methods have been developed as yet for the analysis of CoQ in excretory systems. The aim of this study was to standardize a new procedure for urinary CoQ determination and to establish reference values for a paediatric population. Urinary CoQ was analyzed by HPLC with electrochemical detection. Reference values (n = 43) were stratified into two age groups (2-10 years: range 24-109 nmol CoQ/gram of pellet protein; 11-17 years: range 43-139 nmol CoQ/gram of pellet protein). In conclusion, urinary CoQ analysis is a noninvasive, reliable, and reproducible method to determine urinary tract CoQ status. PMID:26768296

  3. Design and Implementation of the First Randomized Controlled Trial of Coenzyme Q10 in Children with Primary Mitochondrial Diseases

    PubMed Central

    Stacpoole, Peter W.; deGrauw, Ton. J.; Feigenbaum, Annette S.; Hoppel, Charles; Kerr, Douglas S.; McCandless, Shawn E.; Miles, Michael V.; Robinson, Brian H.; Tang, Peter H.

    2014-01-01

    We report the design and implementation of the first phase 3 trial of CoenzymeQ10 (CoQ10) in children with genetic mitochondrial diseases. A novel, rigorous set of eligibility criteria was established. The trial, which remains open to recruitment, continues to address multiple challenges to the recruitment of patients, including widely condoned empiric use of CoQ10 by individuals with proven or suspected mitochondrial disease and skepticism among professional and lay mitochondrial disease communities about participating in placebo-controlled trials. These attitudes represent significant barriers to the ethical and scientific evaluation–and ultimate approval–of nutritional and pharmacological therapies for patients with life-threatening inborn errors of energy metabolism. PMID:23022402

  4. Apolipoprotein A1 regulates coenzyme Q10 absorption, mitochondrial function, and infarct size in a mouse model of myocardial infarction.

    PubMed

    Dadabayev, Alisher R; Yin, Guotian; Latchoumycandane, Calivarathan; McIntyre, Thomas M; Lesnefsky, Edward J; Penn, Marc S

    2014-07-01

    HDL and apolipoprotein A1 (apoA1) concentrations inversely correlate with risk of death from ischemic heart disease; however, the role of apoA1 in the myocardial response to ischemia has not been well defined. To test whether apoA1, the primary HDL apolipoprotein, has an acute anti-inflammatory role in ischemic heart disease, we induced myocardial infarction via direct left anterior descending coronary artery ligation in apoA1 null (apoA1(-/-)) and apoA1 heterozygous (apoA1(+/-)) mice. We observed that apoA1(+/-) and apoA1(-/-) mice had a 52% and 125% increase in infarct size as a percentage of area at risk, respectively, compared with wild-type (WT) C57BL/6 mice. Mitochondrial oxidation contributes to tissue damage in ischemia-reperfusion injury. A substantial defect was present at baseline in the electron transport chain of cardiac myocytes from apoA1(-/-) mice localized to the coenzyme Q (CoQ) pool with impaired electron transfer (67% decrease) from complex II to complex III. Administration of coenzyme Q10 (CoQ10) to apoA1 null mice normalized the cardiac mitochondrial CoQ pool and reduced infarct size to that observed in WT mice. CoQ10 administration did not significantly alter infarct size in WT mice. These data identify CoQ pool content leading to impaired mitochondrial function as major contributors to infarct size in the setting of low HDL/apoA1. These data suggest a previously unappreciated mechanism for myocardial stunning, cardiac dysfunction, and muscle pain associated with low HDL and low apoA1 concentrations that can be corrected by CoQ10 supplementation and suggest populations of patients that may benefit particularly from CoQ10 supplementation. PMID:24759932

  5. Differential substrate specificity and kinetic behavior of Escherichia coli YfdW and Oxalobacter formigenes formyl coenzyme A transferase.

    PubMed

    Toyota, Cory G; Berthold, Catrine L; Gruez, Arnaud; Jónsson, Stefán; Lindqvist, Ylva; Cambillau, Christian; Richards, Nigel G J

    2008-04-01

    The yfdXWUVE operon appears to encode proteins that enhance the ability of Escherichia coli MG1655 to survive under acidic conditions. Although the molecular mechanisms underlying this phenotypic behavior remain to be elucidated, findings from structural genomic studies have shown that the structure of YfdW, the protein encoded by the yfdW gene, is homologous to that of the enzyme that mediates oxalate catabolism in the obligate anaerobe Oxalobacter formigenes, O. formigenes formyl coenzyme A transferase (FRC). We now report the first detailed examination of the steady-state kinetic behavior and substrate specificity of recombinant, wild-type YfdW. Our studies confirm that YfdW is a formyl coenzyme A (formyl-CoA) transferase, and YfdW appears to be more stringent than the corresponding enzyme (FRC) in Oxalobacter in employing formyl-CoA and oxalate as substrates. We also report the effects of replacing Trp-48 in the FRC active site with the glutamine residue that occupies an equivalent position in the E. coli protein. The results of these experiments show that Trp-48 precludes oxalate binding to a site that mediates substrate inhibition for YfdW. In addition, the replacement of Trp-48 by Gln-48 yields an FRC variant for which oxalate-dependent substrate inhibition is modified to resemble that seen for YfdW. Our findings illustrate the utility of structural homology in assigning enzyme function and raise the question of whether oxalate catabolism takes place in E. coli upon the up-regulation of the yfdXWUVE operon under acidic conditions. PMID:18245280

  6. Transformation of chlorinated hydrocarbons using aquocobalamin or coenzyme F{sub 430} in combination with zero-valent iron

    SciTech Connect

    Morra, M.J.; Borek, V.; Koolpe, J.

    2000-06-01

    More effective methods are necessary for the remediation of soils, sediments, and ground waters contaminated with halogenated organic compounds. The authors objective was to determine the feasibility and utility of using a tetrapyrrole-Fe(0) mixture for reductive dehalogenation of synthetic organic contaminants. Aquocobalamin or coenzyme F{sub 430} was combined with Fe(0) in aqueous systems containing either a single chlorinated compound or mixtures of chlorinated compounds, and substrate disappearance was monitored using gas chromatography-mass spectrometry (GC-MS). Zero-valent iron effectively dehalogenated CCl{sub 4} at low to neutral pH values, while increases in CCl{sub 4} dehalogenation resulting from inclusion of tetrapyrrole catalysts along with Fe(0) occurred only at basic pH values. Rates of CCl{sub 4} disappearance increased with additional aquocobalamin, but reached a maximum and decreased at higher aquocobalamin concentrations. overall dehalogenation rates may thus be a function of Fe(0)'s limited reactive surface area. There was a trend for both tetrapyrrole catalysts to promote the disappearance of halogenated compounds in a mixed substrate containing 20 compounds. Studies with five individual substrates likewise showed trends for increased substrate removal with F{sub 430} beyond that for Fe(0) alone. This increase is most important for compounds such as 1,2-dichloroethane and 1,4-dichlorobenzene that are not readily dehalogenated by Fe(0). Chloride concentrations in the reaction mixtures indicated that reductive dehalogenation was the dominant process responsible for substrate disappearance. Use of a combination of aquocobalamin or coenzyme F{sub 430} and Fe(0) may effectively promote dehalogenation, thus producing fewer products and more complete dehalogenation of the target substrates than can be achieved using only one of the abiotic reductants alone.

  7. Activity of coenzyme Q 10 (Q-Ter multicomposite) on recovery time in noise-induced hearing loss.

    PubMed

    Staffa, Paola; Cambi, Jacopo; Mezzedimi, Chiara; Passali, Desiderio; Bellussi, Luisa

    2014-01-01

    A potential consequence of exposure to noise is a temporary reduction in auditory sensitivity known as temporary threshold shift (TTS), which mainly depends on the intensity and duration of exposure to the noise. Recovery time is related to the amount of initial hearing loss, and the most recovery takes place during the first 15 min following exposure. This study evaluated the efficacy in otoprotection against noise-induced hearing loss of an orally administrated food supplement containing coenzyme Q 10 -Ter. This water-soluble formulation of coenzyme Q 10 shows better bioavailability than the native form and has been found to have a protective effect on outer hair cells after exposure to noise in animal models. Thirty volunteers were enrolled, and the right ear of each subject was exposed to a narrow-band noise centered at 3 kHz for 10 min at the intensity of 90 dB HL. In the 30 subjects enrolled, TTS was evaluated after 2, 15, and 30 min and the recovery time was recorded in each subject. The longest recovery time was 45 min. Among the 18 subjects who underwent a second test after treatment with Q-Ter, the mean recovery time was 31.43 min. The results of the present study show that 30 days' treatment with Q-Ter can aid faster recovery after exposure to noise (P < 0.0001). The reduction in the recovery time following treatment can be explained by Q-Ter-mediated improvement of the outer hair cells' response to oxidative stress. PMID:25209035

  8. The analysis of the zero-order and the second derivative spectra of retinol acetate, tocopherol acetate and coenzyme Q 10 and estimation of their analytical usefulness for their simultaneous determination in synthetic mixtures and pharmaceuticals

    NASA Astrophysics Data System (ADS)

    Karpińska, Joanna; Mularczyk, Beata

    2004-08-01

    The aim of the present work was to develop a simple and rapid method of retinol acetate, tocopherol acetate and coenzyme Q 10 determination in pharmaceuticals without involving any preparation operations like separation or masking. The values of second derivative amplitude at 212 nm for tocopherol, 351 nm for retinol and 222 nm for coenzyme were used for construction of calibration graphs. Beer's law is obeyed in the concentration range 0.5-20, 0.5-7.5 and 0.5-30 μg ml -1 for retinol acetate, tocopherol acetate and coenzyme, respectively. The elaborated procedures were successfully applied to the simultaneous determination of studied compounds in their binary synthetic mixtures and in commercial preparations with high reliability and repeatability. Spectral properties of retinol acetate allows to determine its contents in ternary mixture which includes Vitamin E and coenzyme Q 10.

  9. Metabolism and drug interactions of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors in transplant patients: are the statins mechanistically similar?

    PubMed

    Christians, U; Jacobsen, W; Floren, L C

    1998-10-01

    3-Hydroxy-3-methylglutaryl coenzyme A reductase (EC 1.1.1.88) inhibitors are the most effective drugs to lower cholesterol in transplant patients. However, immunosuppressants and several other drugs used after organ transplantation are cytochrome P4503A (CYP3A, EC 1.14.14.1) substrates. Pharmacokinetic interaction with some of the 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, specifically lovastatin and simvastatin, leads to an increased incidence of muscle skeletal toxicity in transplant patients. It is our objective to review the role of drug metabolism and drug interactions of lovastatin, simvastatin, pravastatin, fluvastatin, atorvastatin, and cerivastatin. In the treatment of transplant patients, from a drug interaction perspective, pravastatin, which is not significantly metabolized by CYP enzymes, and fluvastatin, presumably a CYP2C9 substrate, compare favorably with the other statins for which the major metabolic pathways are catalyzed by CYP3A. PMID:9804052

  10. Physiological importance of the heterodisulfide of coenzyme M and 7-mercaptoheptanoylthreonine phosphate in the reduction of carbon dioxide to methane in Methanobacterium

    SciTech Connect

    Bobik, T.A.; Wolfe, R.S.

    1988-01-01

    The heterodisulfide of the two coenzymes 2-mercaptoethanesulfonic acid (coenzyme M, HS-CoM) and N-(7-mercaptoheptanoyl)threonine O/sup 3/-phosphate (HS-HTP) increased the rate of CO/sub 2/ reduction to methane by cell extracts 42-fold. The stimulation resulted from activation of the initial step of methanogenesis, the production of formylmethanofuran from methanofuran and CO/sub 2/. These results establish a role for this heterodisulfide (CoM-S-S-HTP) in the reduction of CO/sub 2/ to formylmethanofuran. Evidence indicates that CoM-S-S-HTP is the labile intermediate that accounts for the coupling of the reduction of 2-(methylthio)ethanesulfonic acid by the methylreductase to formylmethanofuran biosynthesis, the RPG effect. The heterodisulfide was found to be labile in cell extracts due to enzyme-catalyzed reduction and possibly thiol-disulfide exchange.

  11. Reduced mitochondrial coenzyme Q10 levels in HepG2 cells treated with high-dose simvastatin: A possible role in statin-induced hepatotoxicity?

    SciTech Connect

    Tavintharan, S. Ong, C.N.; Jeyaseelan, K.; Sivakumar, M.; Lim, S.C.; Sum, C.F.

    2007-09-01

    Lowering of low-density lipoprotein cholesterol is well achieved by 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors (statins). Statins inhibit the conversion of HMG-CoA to mevalonate, a precursor for cholesterol and coenzyme Q10 (CoQ{sub 10}). In HepG2 cells, simvastatin decreased mitochondrial CoQ{sub 10} levels, and at higher concentrations was associated with a moderately higher degree of cell death, increased DNA oxidative damage and a reduction in ATP synthesis. Supplementation of CoQ{sub 10}, reduced cell death and DNA oxidative stress, and increased ATP synthesis. It is suggested that CoQ{sub 10} deficiency plays an important role in statin-induced hepatopathy, and that CoQ{sub 10} supplementation protects HepG2 cells from this complication.

  12. Characterization of rates of ring-flipping in trimethoprim in its ternary complexes with Lactobacillus casei dihydrofolate reductase and coenzyme analogues.

    PubMed

    Polshakov, V I; Birdsall, B; Feeney, J

    1999-11-30

    NMR measurements have been used to investigate rates of ring-flipping and the activation parameters for the trimethoxybenzyl ring of the antibacterial drug trimethoprim (TMP) bound to Lactobacillus casei dihydrofolate reductase (DHFR) for a series of ternary complexes formed with analogues of the coenzyme NADPH. Rates were obtained at several temperatures from line shape analyses ((13)C-edited HSQC (1)H spectra) and transfer of magnetization measurements (zz-HSQC) on complexes containing 3'-O-[(13)C]trimethoprim. Examination of the structures of the complexes indicates that ring-flipping can only be achieved following major conformational changes and transient fluctuations of the protein and coenzyme structure around the trimethoxybenzyl ring. There is no simple correlation between rates of ring-flipping and binding constants. The presence of the coenzyme nicotinamide ring (in either its reduced or its oxidized forms) in the binding site close to the trimethoxybenzyl ring moiety is the major factor reducing the ring-flipping on coenzyme binding. Thus, the ternary complex with NADPH shows the largest reduction in the rate of ring-flipping (11 +/- 3 s(-)(1) at 298 K) as compared with the binary complex (793 +/- 80 s(-)(1) at 298 K). Complexes with NADPH analogues that either have no nicotinamide ring or are known to have their nicotinamide rings removed from the binding site show the smallest reductions. For the DHFR.TMP.NADP(+) complex where there are two conformations present, very different rates of ring-flipping were observed for the two forms. The activation parameters (DeltaH() and DeltaS()) for the ring-flipping in all the complexes are discussed in terms of the protein-ligand interactions and the possible constraints on the pathway through the transition state. PMID:10625463

  13. Isolation of the facA (acetyl-coenzyme A synthetase) and acuE (malate synthase) genes of Aspergillus nidulans.

    PubMed

    Sandeman, R A; Hynes, M J

    1989-07-01

    Acetate inducible genes of Aspergillus nidulans were cloned via differential hybridization to cDNA probes. Using transformation of mutant strains the genes were identified as facA (acetyl-Coenzyme A synthetase) and acuE (malate synthase). The levels of RNA encoded by these genes were shown to be acetate inducible and subject to carbon catabolite repression. Induction is abolished in a facB mutant and carbon catabolite repression is relieved in a creA mutant. PMID:2571070

  14. Engineering acetyl coenzyme A supply: functional expression of a bacterial pyruvate dehydrogenase complex in the cytosol of Saccharomyces cerevisiae.

    PubMed

    Kozak, Barbara U; van Rossum, Harmen M; Luttik, Marijke A H; Akeroyd, Michiel; Benjamin, Kirsten R; Wu, Liang; de Vries, Simon; Daran, Jean-Marc; Pronk, Jack T; van Maris, Antonius J A

    2014-01-01

    The energetic (ATP) cost of biochemical pathways critically determines the maximum yield of metabolites of vital or commercial relevance. Cytosolic acetyl coenzyme A (acetyl-CoA) is a key precursor for biosynthesis in eukaryotes and for many industrially relevant product pathways that have been introduced into Saccharomyces cerevisiae, such as isoprenoids or lipids. In this yeast, synthesis of cytosolic acetyl-CoA via acetyl-CoA synthetase (ACS) involves hydrolysis of ATP to AMP and pyrophosphate. Here, we demonstrate that expression and assembly in the yeast cytosol of an ATP-independent pyruvate dehydrogenase complex (PDH) from Enterococcus faecalis can fully replace the ACS-dependent pathway for cytosolic acetyl-CoA synthesis. In vivo activity of E. faecalis PDH required simultaneous expression of E. faecalis genes encoding its E1α, E1β, E2, and E3 subunits, as well as genes involved in lipoylation of E2, and addition of lipoate to growth media. A strain lacking ACS that expressed these E. faecalis genes grew at near-wild-type rates on glucose synthetic medium supplemented with lipoate, under aerobic and anaerobic conditions. A physiological comparison of the engineered strain and an isogenic Acs(+) reference strain showed small differences in biomass yields and metabolic fluxes. Cellular fractionation and gel filtration studies revealed that the E. faecalis PDH subunits were assembled in the yeast cytosol, with a subunit ratio and enzyme activity similar to values reported for PDH purified from E. faecalis. This study indicates that cytosolic expression and assembly of PDH in eukaryotic industrial microorganisms is a promising option for minimizing the energy costs of precursor supply in acetyl-CoA-dependent product pathways. Importance: Genetically engineered microorganisms are intensively investigated and applied for production of biofuels and chemicals from renewable sugars. To make such processes economically and environmentally sustainable, the energy

  15. Microbial metabolism of amino alcohols. Purification and properties of coenzyme B12-dependent ethanolamine ammonia-lysae of Escherichia coli

    PubMed Central

    Blackwell, Carol M.; Turner, John M.

    1978-01-01

    1. The 120-fold purification of ethanolamine ammonia-lyase from Escherichia coli extracts, to apparent homogeneity, is described. Ethanolamine, dithiothreitol, glycerol and KCl protected the apoenzyme from inactivation. 2. At the optimum pH7.5, Km values for ethanolamine and coenzyme B12 were 44μm and 0.42μm respectively. The Km for ethanolamine was markedly affected by pH, transitions occurring at pH7.0 and 8.35. 3. The enzyme was specific for ethanolamine as substrate, none of the 18 analogues tested being active. l-2-Aminopropan-l-ol (Ki 0.86μm), dl-1-aminopropan-2-ol (Ki 2.2μm) and dl-1,3-diaminopropan-2-ol (Ki 88.0μm) inhibited competitively. 4. Enzyme activity was inhibited, irreversibly and non-competitively, by the coenzyme analogues methylcobalamin (Ki 1.4nm), hydroxocobalamin (Ki 2.1nm) and cyanocobalamin (Ki 4.8nm). 5. Iodoacetamide inhibited in the absence of ethanolamine, but only slightly in its presence. p-Hydroxymercuribenzoate inhibited markedly even in the presence of ethanolamine. Dithiothreitol and 2-mercaptoethanol (less effectively) restored activity to the enzyme dialysed against buffer containing ethanolamine. 6. Although K+ ions stabilized the enzyme during dialysis or storage, they were not necessary for activity. 7. Gel filtration showed the enzyme to be of high molecular weight, ultracentrifugal studies giving s20,w of 16.4 and an estimated mol.wt. 560400. The isoelectric point for the apoenzyme was approx. pH5.0. inhibited enzyme activity at concentrations above 1m (95% inhibition at 3m) and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis indicated protein subunits of mol.wt. 61400. 8. Immunological studies showed that the E.coli enzyme was closely related to those of other enterobacteria, but only distantly to that of Clostridium sp. A double precipitin band suggested that the apoenzyme may be made up of two protein components. PMID:33657

  16. Synthesis and characterization of molecularly imprinted polymer nanoparticles for coenzyme Q10 dispersive micro solid phase extraction.

    PubMed

    Contin, Mario; Bonelli, Pablo; Lucangioli, Silvia; Cukierman, Ana; Tripodi, Valeria

    2016-07-22

    Molecularly imprinted polymer nanoparticles (MIPNPs) with the ability to recognize coenzyme Q10 (CoQ10) were synthesised in order to be employed as sorbent in a dispersive micro-solid phase extraction (DMSPE) for the determination of CoQ10 in a liver extract. CoQ10 is a redox-active, lipophilic substance integrated in the mitochondrial respiratory chain which acts as an electron carrier, shuttling electrons from complex I (NADH-ubiquinone oxidoreductase) and II (succinate-ubiquinone oxidoreductase) to complex III (ubiquinol-cytochrome c reductase), for the production of cellular energy. The MIPNPs were synthesised by precipitation polymerization using coenzyme Q0 as the dummy template, methacrylic acid as the functional monomer, an acetonitrile: water mixture as the porogen, ethylene glycol dimethacrylate as the crosslinker and potassium persulfate as initiator. The nanoparticles were characterized by microscopy, capillary electrophoresis, dynamic light scattering, N2 adsorption-desorption isotherms, and infrared spectroscopy. The MIPNPs demonstrated the presence of selective cavities complementary to the quinone nucleus of CoQ10, leading to a specific recognition of CoQ10 compared with related compounds. In the liver extract the relative CoQ10 peak area (CoQ10 area/total peak area) increased from 4.6% to 25.4% after the DMSPE procedure. The recovery percentage of CoQ10 from the liver matrix was between 70.5% and 83.7% quantified against CoQ10 standard processed under the same conditions. The DMSPE procedure allows the elution of almost all the CoQ10 retained (99.4%) in a small volume (200μL), allowing the sample to be concentrated 2.5 times (LOD: 1.1μgg(-1) and LOQ: 3.7μgg(-1) of tissue). The resulted clean up of the sample, the improvement in peak shape and baseline and the reduction of interferences, evidence that the MIPNPs could potentially be applied as sorbent in a DMSPE with satisfactory results and with a minimum amount of sorbent (1mg). PMID:27317007

  17. Regulation of carbon and electron flow in Propionispira arboris: Relationship of catabolic enzyme levels to carbon substrates fermented during propionate formation via the methylmalony coenzyme a pathway

    SciTech Connect

    Thompson, T.E. ); Zeikus, J.G. )

    1988-09-01

    A detailed study of the glucose fermentation pathway and the modulation of catabolic oxidoreductase activities by energy sources (i.e., glucose versus lactate of fumarate) in Propionispira arboris was performed. {sup 14}C radiotracer data show the CO{sub 2} produced from pyruvate oxidation comes exclusively from the C-3 and C-4 positions of glucose. Significant specific activities of glyceraldehyde-3-phosphate dehydrogenase and fructose-1,6-bisphosphate aldolase were detected, which substantiates the utilization of the Embden-Meyerhoff-Parnas path for glucose metabolism. The methylmalonyl coenzyme A pathway for pyruvate reduction to propionate was established by detection of significant activities of methylmalonyl coenzyme A transcarboxylase, malate dehydrogenase, and fumarate reductase in cell-free extracts and by {sup 13}C nuclear magnetic resonance spectroscpic demonstation of randomization of label from (2-{sup 13}C)pyruvate into positions 2 and 3 of propionate. The specific activity of pyruvate-ferredoxin oxidoreductase, malate dehydrogenase, fumarate reductase, and transcarboxylase varied significantly in cells grown on different energy sources. D-Lactate dehydrogenase (non-NADH linked) was present in cells of P. arboris grown on lactate but not in cells grown on glucose or fumarate. These results indicate that growth substrates regulate synthesis of enzymes specific for the methylmalonyl coenzyme A path initial substrate transformation.

  18. Coenzyme Q10 and α-lipoic acid: antioxidant and pro-oxidant effects in plasma and peripheral blood lymphocytes of supplemented subjects

    PubMed Central

    Silvestri, Sonia; Orlando, Patrick; Armeni, Tatiana; Padella, Lucia; Brugè, Francesca; Seddaiu, Giovanna; Littarru, Gian Paolo; Tiano, Luca

    2015-01-01

    Reactive oxygen species not only cause damage but also have a physiological role in the protection against pathogens and in cell signalling. Mitochondrial nutrients, such as coenzyme Q10 and α-lipoic acid, beside their acknowledged antioxidant activities, show interesting features in relation to their redox state and consequent biological activity. In this study, we tested whether oral supplementation with 200 mg/day of coenzyme Q10 alone or in association with 200 mg/die of α-lipoic acid for 15 days on 16 healthy subjects was able to modulate the oxidative status into different compartments (plasma and cells), in basal condition and following an oxidative insult in peripheral blood lymphocytes exposed in vitro to H2O2. Data have shown that tested compounds produced antioxidant and bioenergetic effects improving oxidative status of the lipid compartment and mitochondrial functionality in peripheral blood lymphocytes. Simultaneously, an increased intracellular reactive oxygen species level was observed, although they did not lead to enhanced DNA oxidative damage. Coenzyme Q10 and α-lipoic acid produced beneficial effects also steering intracellular redox poise toward a pro-oxidant environment. In contrast with other antioxidant molecules, pro-oxidant activities of tested mitochondrial nutrients and consequent oxidant mediated signalling, could have important implications in promoting adaptive response to oxidative stress. PMID:26236096

  19. The glossyhead1 Allele of ACC1 Reveals a Principal Role for Multidomain Acetyl-Coenzyme A Carboxylase in the Biosynthesis of Cuticular Waxes by Arabidopsis

    SciTech Connect

    Lu, S.; Xu, C.; Zhao, H.; Parsons, E. P.; Kosma, D. K.; Xu, X.; Chao, D.; Lohrey, G.; Bangarusamy, D. K.; Wang, G.; Bressan, R. A.; Jenks, M. A.

    2011-11-01

    A novel mutant of Arabidopsis (Arabidopsis thaliana), having highly glossy inflorescence stems, postgenital fusion in floral organs, and reduced fertility, was isolated from an ethyl methanesulfonate-mutagenized population and designated glossyhead1 (gsd1). The gsd1 locus was mapped to chromosome 1, and the causal gene was identified as a new allele of Acetyl-Coenzyme A Carboxylase1 (ACC1), a gene encoding the main enzyme in cytosolic malonyl-coenzyme A synthesis. This, to our knowledge, is the first mutant allele of ACC1 that does not cause lethality at the seed or early germination stage, allowing for the first time a detailed analysis of ACC1 function in mature tissues. Broad lipid profiling of mature gsd1 organs revealed a primary role for ACC1 in the biosynthesis of the very-long-chain fatty acids (C{sub 20:0} or longer) associated with cuticular waxes and triacylglycerols. Unexpectedly, transcriptome analysis revealed that gsd1 has limited impact on any lipid metabolic networks but instead has a large effect on environmental stress-responsive pathways, especially senescence and ethylene synthesis determinants, indicating a possible role for the cytosolic malonyl-coenzyme A-derived lipids in stress response signaling.

  20. Topical treatment with coenzyme Q10‐containing formulas improves skin's Q10 level and provides antioxidative effects

    PubMed Central

    Achterberg, Volker; Smuda, Christoph; Mielke, Heiko; Sperling, Gabi; Dunckelmann, Katja; Vogelsang, Alexandra; Krüger, Andrea; Schwengler, Helge; Behtash, Mojgan; Kristof, Sonja; Diekmann, Heike; Eisenberg, Tanya; Berroth, Andreas; Hildebrand, Janosch; Siegner, Ralf; Winnefeld, Marc; Teuber, Frank; Fey, Sven; Möbius, Janne; Retzer, Dana; Burkhardt, Thorsten; Lüttke, Juliane; Blatt, Thomas

    2015-01-01

    Abstract Ubiquinone (coenzyme Q10, Q10) represents an endogenously synthesized lipid‐soluble antioxidant which is crucial for cellular energy production but is diminished with age and under the influence of external stress factors in human skin. Here, it is shown that topical Q10 treatment is beneficial with regard to effective Q10 replenishment, augmentation of cellular energy metabolism, and antioxidant effects. Application of Q10‐containing formulas significantly increased the levels of this quinone on the skin surface. In the deeper layers of the epidermis the ubiquinone level was significantly augmented indicating effective supplementation. Concurrent elevation of ubiquinol levels suggested metabolic transformation of ubiquinone resulting from increased energy metabolism. Incubation of cultured human keratinocytes with Q10 concentrations equivalent to treated skin showed a significant augmentation of energy metabolism. Moreover, the results demonstrated that stressed skin benefits from the topical Q10 treatment by reduction of free radicals and an increase in antioxidant capacity. © 2015 BioFactors, 41(6):383–390, 2015 PMID:26648450

  1. Dimerization of the Bacterial Biotin Carboxylase Subunit Is Required for Acetyl Coenzyme A Carboxylase Activity In Vivo

    PubMed Central

    Smith, Alexander C.

    2012-01-01

    Acetyl coenzyme A (acteyl-CoA) carboxylase (ACC) is the first committed enzyme of the fatty acid synthesis pathway. Escherichia coli ACC is composed of four different proteins. The first enzymatic activity of the ACC complex, biotin carboxylase (BC), catalyzes the carboxylation of the protein-bound biotin moiety of another subunit with bicarbonate in an ATP-dependent reaction. Although BC is found as a dimer in cell extracts and the carboxylase activities of the two subunits of the dimer are interdependent, mutant BC proteins deficient in dimerization are reported to retain appreciable activity in vitro (Y. Shen, C. Y. Chou, G. G. Chang, and L. Tong, Mol. Cell 22:807–818, 2006). However, in vivo BC must interact with the other proteins of the complex, and thus studies of the isolated BC may not reflect the intracellular function of the enzyme. We have tested the abilities of three BC mutant proteins deficient in dimerization to support growth and report that the two BC proteins most deficient in dimerization fail to support growth unless expressed at high levels. In contrast, the wild-type protein supports growth at low expression levels. We conclude that BC must be dimeric to fulfill its physiological function. PMID:22037404

  2. The ubiquitin-proteasome pathway mediates the regulated degradation of mammalian 3-hydroxy-3-methylglutaryl-coenzyme A reductase.

    PubMed

    Ravid, T; Doolman, R; Avner, R; Harats, D; Roitelman, J

    2000-11-17

    3-Hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR), the key regulatory enzyme in the mevalonate (MVA) pathway, is rapidly degraded in mammalian cells supplemented with sterols or MVA. This accelerated turnover was blocked by N-acetyl-leucyl-leucyl-norleucinal (ALLN), MG-132, and lactacystin, and to a lesser extent by N-acetyl-leucyl-leucyl-methional (ALLM), indicating the involvement of the 26 S proteasome. Proteasome inhibition led to enhanced accumulation of high molecular weight polyubiquitin conjugates of HMGR and of HMGal, a chimera between the membrane domain of HMGR and beta-galactosidase. Importantly, increased amounts of polyubiquitinated HMGR and HMGal were observed upon treating cells with sterols or MVA. Cycloheximide inhibited the sterol-stimulated degradation of HMGR concomitantly with a marked reduction in polyubiquitination of the enzyme. Inhibition of squalene synthase with zaragozic acid blocked the MVA- but not sterol-stimulated ubiquitination and degradation of HMGR. Thus, similar to yeast, the ubiquitin-proteasome pathway is involved in the metabolically regulated turnover of mammalian HMGR. Yet, the data indicate divergence between yeast and mammals and suggest distinct roles for sterol and nonsterol metabolic signals in the regulated ubiquitination and degradation of mammalian HMGR. PMID:10964918

  3. Coenzyme Q10-containing composition (Immugen) protects against occupational and environmental stress in workers of the gas and oil industry.

    PubMed

    Korkina, Ludmila; Deeva, Irina; Ibragimova, Galina; Shakula, Alexander; Luci, Antonio; De Luca, Chiara

    2003-01-01

    The manual workers of the gas-and-oil extraction industry are exposed to hostile environmental and occupational conditions, resulting in elevated mortality and disability, due to chronic neurological and cardiovascular diseases. We evaluated the degree of oxidative stress, often associated with these pathological features, in the blood of manual and office employees of Russian Siberian extraction plants, and their psycho-physiological conditions. Results showed increased levels of spontaneous (p < 0.05) and PMA-activated (p < 0.01) luminol-dependent chemiluminescence (LDCL) in the white blood cells (WBC), and decreased peroxynitrite levels (p < 0.05) in the group of manual workers, and less markedly in the clerks and technicians working on spot, vs. a control group of city clerks. Superoxide release by WBC, and plasma/WBC membrane ubiquinol levels did not display major differences in the three groups. A relevant percentage of manual/office workers of extraction platforms presented impaired cardiovascular and neurological functions. The short term administration of a nutraceutical formulation based on coenzyme10, vitamin E, selenium, methionine and phospholipids led to significant improvement of cardiovascular parameters and psycho-emotional status, consistent with the normalization of LDCL and peroxynitrite production by WBC, with a good compliance to treatment confirmed by the increased blood levels of ubiquinol. PMID:14695940

  4. Oral coenzyme Q10 supplementation improves clinical symptoms and recovers pathologic alterations in blood mononuclear cells in a fibromyalgia patient.

    PubMed

    Cordero, Mario D; Cotán, David; del-Pozo-Martín, Yaiza; Carrión, Angel M; de Miguel, Manuel; Bullón, Pedro; Sánchez-Alcazar, José Antonio

    2012-01-01

    Fibromyalgia (FM) is a chronic pain syndrome with unknown etiology. Recent studies have shown evidence demonstrating that mitochondrial dysfunction and oxidative stress may have a role in the pathophysiology of FM. Coenzyme Q10 (CoQ10) is an essential electron carrier in the mitochondrial respiratory chain and a strong antioxidant. Low CoQ10 levels have been detected in patients with FM, and a significant decrease of clinical symptoms has been reported after oral CoQ10 supplementation. In this report, we show the effect of CoQ10 treatment on clinical symptoms, blood mononuclear cells, and mitochondrial and oxidative stress markers from a woman with FM. After CoQ10 treatment, the patient reported a significant improvement of clinical symptoms. At the cellular level, CoQ10 treatment restored mitochondrial dysfunction and the mtDNA copy number, decreased oxidative stress, and increased mitochondrial biogenesis. Our results suggest that CoQ10 could be an alternative therapeutic approach for FM. PMID:22898267

  5. Crystal structures of malonyl-coenzyme A decarboxylase provide insights into its catalytic mechanism and disease-causing mutations.

    PubMed

    Froese, D Sean; Forouhar, Farhad; Tran, Timothy H; Vollmar, Melanie; Kim, Yi Seul; Lew, Scott; Neely, Helen; Seetharaman, Jayaraman; Shen, Yang; Xiao, Rong; Acton, Thomas B; Everett, John K; Cannone, Giuseppe; Puranik, Sriharsha; Savitsky, Pavel; Krojer, Tobias; Pilka, Ewa S; Kiyani, Wasim; Lee, Wen Hwa; Marsden, Brian D; von Delft, Frank; Allerston, Charles K; Spagnolo, Laura; Gileadi, Opher; Montelione, Gaetano T; Oppermann, Udo; Yue, Wyatt W; Tong, Liang

    2013-07-01

    Malonyl-coenzyme A decarboxylase (MCD) is found from bacteria to humans, has important roles in regulating fatty acid metabolism and food intake, and is an attractive target for drug discovery. We report here four crystal structures of MCD from human, Rhodopseudomonas palustris, Agrobacterium vitis, and Cupriavidus metallidurans at up to 2.3 Å resolution. The MCD monomer contains an N-terminal helical domain involved in oligomerization and a C-terminal catalytic domain. The four structures exhibit substantial differences in the organization of the helical domains and, consequently, the oligomeric states and intersubunit interfaces. Unexpectedly, the MCD catalytic domain is structurally homologous to those of the GCN5-related N-acetyltransferase superfamily, especially the curacin A polyketide synthase catalytic module, with a conserved His-Ser/Thr dyad important for catalysis. Our structures, along with mutagenesis and kinetic studies, provide a molecular basis for understanding pathogenic mutations and catalysis, as well as a template for structure-based drug design. PMID:23791943

  6. Batch production of coenzyme Q10 by recombinant Escherichia coli containing the decaprenyl diphosphate synthase gene from Sphingomonas baekryungensis.

    PubMed

    Martínez, Irene; Méndez, Claudia; Berríos, Julio; Altamirano, Claudia; Díaz-Barrera, Alvaro

    2015-09-01

    Coenzyme Q10 (CoQ10) is an important antioxidant used in medicine, dietary supplements, and cosmetic applications. In the present work, the production of CoQ10 using a recombinant Escherichia coli strain containing the decaprenyl diphosphate synthase from Sphingomonas baekryungensis was investigated, wherein the effects of culture medium, temperature, and agitation rate on the production process were assessed. It was found that Luria-Bertani (LB) medium was superior to M9 with glucose medium. Higher temperature (37 °C) and higher agitation rate (900 rpm) improved the specific CoQ10 content significantly in LB medium; on the contrary, the use of M9 medium with glucose showed similar values. Specifically, in LB medium, an increase from 300 to 900 rpm in the agitation rate resulted in increases of 55 and 197 % in the specific CoQ10 content and COQ10 productivity, respectively. Therefore, the results obtained in the present work are a valuable contribution for the optimization of CoQ10 production processes using recombinant E. coli strains. PMID:26186907

  7. Knockdown of the coenzyme Q synthesis gene Smed-dlp1 affects planarian regeneration and tissue homeostasis

    PubMed Central

    Shiobara, Yumiko; Harada, Chiaki; Shiota, Takeshi; Sakamoto, Kimitoshi; Kita, Kiyoshi; Tanaka, Saeko; Tabata, Kenta; Sekie, Kiyoteru; Yamamoto, Yorihiro; Sugiyama, Tomoyasu

    2015-01-01

    The freshwater planarian is a model organism used to study tissue regeneration that occupies an important position among multicellular organisms. Planarian genomic databases have led to the identification of genes that are required for regeneration, with implications for their roles in its underlying mechanism. Coenzyme Q (CoQ) is a fundamental lipophilic molecule that is synthesized and expressed in every cell of every organism. Furthermore, CoQ levels affect development, life span, disease and aging in nematodes and mice. Because CoQ can be ingested in food, it has been used in preventive nutrition. In this study, we investigated the role of CoQ in planarian regeneration. Planarians synthesize both CoQ9 and rhodoquinone 9 (RQ9). Knockdown of Smed-dlp1, a trans-prenyltransferase gene that encodes an enzyme that synthesizes the CoQ side chain, led to a decrease in CoQ9 and RQ9 levels. However, ATP levels did not consistently decrease in these animals. Knockdown animals exhibited tissue regression and curling. The number of mitotic cells decreased in Smed-dlp1 (RNAi) animals. These results suggested a failure in physiological cell turnover and stem cell function. Accordingly, regenerating planarians died from lysis or exhibited delayed regeneration. Interestingly, the observed phenotypes were partially rescued by ingesting food supplemented with α-tocopherol. Taken together, our results suggest that oxidative stress induced by reduced CoQ9 levels affects planarian regeneration and tissue homeostasis. PMID:26516985

  8. Knockdown of the coenzyme Q synthesis gene Smed-dlp1 affects planarian regeneration and tissue homeostasis.

    PubMed

    Shiobara, Yumiko; Harada, Chiaki; Shiota, Takeshi; Sakamoto, Kimitoshi; Kita, Kiyoshi; Tanaka, Saeko; Tabata, Kenta; Sekie, Kiyoteru; Yamamoto, Yorihiro; Sugiyama, Tomoyasu

    2015-12-01

    The freshwater planarian is a model organism used to study tissue regeneration that occupies an important position among multicellular organisms. Planarian genomic databases have led to the identification of genes that are required for regeneration, with implications for their roles in its underlying mechanism. Coenzyme Q (CoQ) is a fundamental lipophilic molecule that is synthesized and expressed in every cell of every organism. Furthermore, CoQ levels affect development, life span, disease and aging in nematodes and mice. Because CoQ can be ingested in food, it has been used in preventive nutrition. In this study, we investigated the role of CoQ in planarian regeneration. Planarians synthesize both CoQ9 and rhodoquinone 9 (RQ9). Knockdown of Smed-dlp1, a trans-prenyltransferase gene that encodes an enzyme that synthesizes the CoQ side chain, led to a decrease in CoQ9 and RQ9 levels. However, ATP levels did not consistently decrease in these animals. Knockdown animals exhibited tissue regression and curling. The number of mitotic cells decreased in Smed-dlp1 (RNAi) animals. These results suggested a failure in physiological cell turnover and stem cell function. Accordingly, regenerating planarians died from lysis or exhibited delayed regeneration. Interestingly, the observed phenotypes were partially rescued by ingesting food supplemented with α-tocopherol. Taken together, our results suggest that oxidative stress induced by reduced CoQ9 levels affects planarian regeneration and tissue homeostasis. PMID:26516985

  9. Acetyl Coenzyme A Carboxylase Activity in Developing Seedlings and Chloroplasts of Barley and Its Virescens Mutant 1

    PubMed Central

    Thomson, Lawrence W.; Zalik, Saul

    1981-01-01

    Acetyl coenzyme A (CoA) carboxylase activity of whole tissue homogenates and chloroplast preparations was analyzed as the acetyl-CoA-dependent incorporation of [14C]bicarbonate into an acid-stable product. The absolute requirement for ATP and MgCl2, the complete inhibition with avidin, and end-product analysis were consistent with the presence of acetyl-CoA carboxylase activity. Little difference was found between the mutant and normal tissue homogenates from the 1- to 3-day growth stages, during which period both showed a 3-fold increase. However, by 4 days, the activity of the mutant exceeded that of the normal. Fractionation studies showed that the enzyme was a soluble protein present in the stromal fraction of chloroplasts. The biotin content was also highest in the stroma, although it was found in the lamellar fraction as well. For both the mutant and the normal, the highest acetyl-CoA carboxylase activities were obtained in the stromal preparations from 4-day seedlings (54 and 31 nmoles per milligram protein per minute for the mutant and the normal, respectively) with a progressive decline by 6 and 8 days. The difference between the mutant and the normal was not due to the accumulation of an inhibitor in the normal. PMID:16661731

  10. Antioxidant and Anti-Inflammatory Effects of Coenzyme Q10 on L-Arginine-Induced Acute Pancreatitis in Rat

    PubMed Central

    Mirmalek, Seyed Abbas; Gholamrezaei Boushehrinejad, Ala; Yavari, Hassan; Kardeh, Bahareh; Parsa, Yekta; Salimi-Tabatabaee, Seyed Alireza; Yadollah-Damavandi, Soheila; Parsa, Tina; Shahverdi, Ehsan

    2016-01-01

    This study was aimed at evaluating the protective effect of coenzyme Q10 on L-arginine-induced acute pancreatitis in rats regarding biomarkers and morphologic changes. Thirty-two male Sprague-Dawley rats were divided into 4 equal groups. Control group received intraperitoneal normal saline, while in sham and experimental groups 1 and 2 pancreatitis was induced with L-arginine. E1 and E2 groups were treated with a single dose of 100 and 200 mg/kg Q10, respectively. Serum lipase and amylase, along with pancreas IL-10, IL-1β, and TNF-α, were measured. For evaluation of oxidative stress, pancreatic superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA), and myeloperoxidase (MPO) were assessed. Histopathological examination for morphologic investigation was conducted. Serum amylase and lipase, as well as TNF-α and IL-1β cytokines, reverted with administration of Q10 in consistence with dosage. In contrast, Q10 assisted in boosting of IL-10 with higher dosage (200 mg/kg). A similar pattern for oxidative stress markers was noticed. Both MDA and MPO levels declined with increased dosage, contrary to elevation of SOD and GSH. Histopathology was in favor of protective effects of Q10. Our findings proved the amelioration of pancreatic injury by Q10, which suggest the anti-inflammatory and antioxidant property of Q10 and its potential therapeutic role. PMID:27190575

  11. Methanol:coenzyme M methyltransferase from Methanosarcina barkeri. Purification, properties and encoding genes of the corrinoid protein MT1.

    PubMed

    Sauer, K; Harms, U; Thauer, R K

    1997-02-01

    In Methanosarcina barkeri, methanogenesis from methanol is initiated by the formation of methylcoenzyme M from methanol and coenzyme M. This methyl transfer reaction is catalyzed by two enzymes, designated MT1 and MT2. Transferase MT1 is a corrinoid protein. The purification, catalytic properties and encoding genes of MT2 (MtaA) have been described previously [Harms, U. and Thauer, R.K. (1996) Eur. J. Biochem. 235, 653-659]. We report here on the corresponding analysis of MT1. The corrinoid protein MT1 was purified to apparent homogeneity and showed a specific activity of 750 mumol min-1 mg-1. The enzyme catalyzed the methylation of its bound corrinoid in the cob(I)amide oxidation state by methanol. In addition to this automethylation, the purified enzyme was found to catalyze the methylation of free cob(I)alamin to methylcob(III)alamin. It was composed of two different subunits designated MtaB and MtaC, with apparent molecular masses of 49 kDa and 24 kDa, respectively. The subunit MtaC was shown to harbour the corrinoid prosthetic group. The genes mtaB and mtaC were cloned and sequenced. They were found to be juxtapositioned and to form a transcription unit mtaCB. The corrinoid-harbouring subunit MtaC exhibits 35% sequence similarity to the cobalamin-binding domain of methionine synthase from Escherichia coli. PMID:9057830

  12. Identification of Coq11, a New Coenzyme Q Biosynthetic Protein in the CoQ-Synthome in Saccharomyces cerevisiae*

    PubMed Central

    Allan, Christopher M.; Awad, Agape M.; Johnson, Jarrett S.; Shirasaki, Dyna I.; Wang, Charles; Blaby-Haas, Crysten E.; Merchant, Sabeeha S.; Loo, Joseph A.; Clarke, Catherine F.

    2015-01-01

    Coenzyme Q (Q or ubiquinone) is a redox active lipid composed of a fully substituted benzoquinone ring and a polyisoprenoid tail and is required for mitochondrial electron transport. In the yeast Saccharomyces cerevisiae, Q is synthesized by the products of 11 known genes, COQ1–COQ9, YAH1, and ARH1. The function of some of the Coq proteins remains unknown, and several steps in the Q biosynthetic pathway are not fully characterized. Several of the Coq proteins are associated in a macromolecular complex on the matrix face of the inner mitochondrial membrane, and this complex is required for efficient Q synthesis. Here, we further characterize this complex via immunoblotting and proteomic analysis of tandem affinity-purified tagged Coq proteins. We show that Coq8, a putative kinase required for the stability of the Q biosynthetic complex, is associated with a Coq6-containing complex. Additionally Q6 and late stage Q biosynthetic intermediates were also found to co-purify with the complex. A mitochondrial protein of unknown function, encoded by the YLR290C open reading frame, is also identified as a constituent of the complex and is shown to be required for efficient de novo Q biosynthesis. Given its effect on Q synthesis and its association with the biosynthetic complex, we propose that the open reading frame YLR290C be designated COQ11. PMID:25631044

  13. Mevinolin: a highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent.

    PubMed Central

    Alberts, A W; Chen, J; Kuron, G; Hunt, V; Huff, J; Hoffman, C; Rothrock, J; Lopez, M; Joshua, H; Harris, E; Patchett, A; Monaghan, R; Currie, S; Stapley, E; Albers-Schonberg, G; Hensens, O; Hirshfield, J; Hoogsteen, K; Liesch, J; Springer, J

    1980-01-01

    Mevinolin, a fungal metabolite, was isolated from cultures of Aspergillus terreus. The structure and absolute configuration of mevinolini and its open acid form, mevinolinic acid, were determined by a combination of physical techniques. Mevinolin was shown to be 1,2,6,7,8,8a-hexahydro-beta, delta-dihydroxy-2,6-dimethyl-8-(2-methyl-1-oxobutoxy)-1-naphthalene-hepatanoic acid delta-lactone. Mevinolin in the hydroxy-acid form, mevinolinic acid, is a potent competitive inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A reductase [mevalonate: NADP+ oxidoreductase (CoA-acylating), EC 1.1.1.34]; its Ki of 0.6 nM can be compared to 1.4 nM for the hydroxy acid form of the previously described related inhibitor, ML-236B (compactin, 6-demethylmevinolin). In the rat, orally administered sodium mevinolinate was an active inhibitor of cholesterol synthesis in an acute assay (50% inhibitory dose = 46 microgram/kg). Furthermore, it was shown that mevinolin was an orally active cholesterol-lowering agent in the dog. Treatment of dogs for 3 weeks with mevinolin at 8 mg/kg per day resulted in a 29.3 +/- 2.5% lowering of plasma cholesterol. PMID:6933445

  14. Structure-guided expansion of the substrate range of methylmalonyl coenzyme A synthetase (MatB) of Rhodopseudomonas palustris.

    PubMed

    Crosby, Heidi A; Rank, Katherine C; Rayment, Ivan; Escalante-Semerena, Jorge C

    2012-09-01

    Malonyl coenzyme A (malonyl-CoA) and methylmalonyl-CoA are two of the most commonly used extender units for polyketide biosynthesis and are utilized to synthesize a vast array of pharmaceutically relevant products with antibacterial, antiparasitic, anticholesterol, anticancer, antifungal, and immunosuppressive properties. Heterologous hosts used for polyketide production such as Escherichia coli often do not produce significant amounts of methylmalonyl-CoA, however, requiring the introduction of other pathways for the generation of this important building block. Recently, the bacterial malonyl-CoA synthetase class of enzymes has been utilized to generate malonyl-CoA and methylmalonyl-CoA directly from malonate and methylmalonate. We demonstrate that in the purple photosynthetic bacterium Rhodopseudomonas palustris, MatB (RpMatB) acts as a methylmalonyl-CoA synthetase and is required for growth on methylmalonate. We report the apo (1.7-Å resolution) and ATP-bound (2.0-Å resolution) structure and kinetic analysis of RpMatB, which shows similar activities for both malonate and methylmalonate, making it an ideal enzyme for heterologous polyketide biosynthesis. Additionally, rational, structure-based mutagenesis of the active site of RpMatB led to substantially higher activity with ethylmalonate and butylmalonate, demonstrating that this enzyme is a prime target for expanded substrate specificity. PMID:22773649

  15. Malonyl coenzyme A and the regulation of functional carnitine palmitoyltransferase-1 activity and fat oxidation in human skeletal muscle

    PubMed Central

    Rasmussen, Blake B.; Holmbäck, Ulf C.; Volpi, Elena; Morio-Liondore, Beatrice; Paddon-Jones, Douglas; Wolfe, Robert R.

    2002-01-01

    Physiological hyperglycemia with hyperinsulinemia reduces fat oxidation in skeletal muscle. The mechanism responsible for this decrease in fat oxidation in human muscle is not known and may contribute to the development of insulin resistance. We hypothesized that the transfer of long-chain fatty acids (LCFAs) into the mitochondria via carnitine palmitoyltransferase-1 (CPT-1) is inhibited by increased malonyl coenzyme A (malonyl-CoA) (a known potent inhibitor of CPT-1) in human muscle during hyperglycemia with hyperinsulinemia. We studied six healthy subjects after an overnight fast and during an induced 5-hour period of hyperglycemia with hyperinsulinemia. Muscle fatty acid oxidation was calculated using stable isotope methodology combined with blood sampling from the femoral artery and vein of one leg. Muscle functional CPT-1 activity was assessed by concurrently infusing an LCFA tracer and a CPT-independent medium-chain fatty acid tracer. Muscle biopsies were obtained from the vastus lateralis after the periods of fasting and hyperglycemia with hyperinsulinemia. Hyperglycemia with hyperinsulinemia decreased LCFA oxidation, but had no effect on LCFA uptake or medium-chain fatty acid oxidation across the leg. Malonyl-CoA concentration significantly increased from 0.13 ± 0.01 to 0.35 ± 0.07 nmol/g during hyperglycemia with hyperinsulinemia. We conclude that hyperglycemia with hyperinsulinemia increases malonyl-CoA, inhibits functional CPT-1 activity, and shunts LCFA away from oxidation and toward storage in human muscle. PMID:12464674

  16. Crystal structure of AibC, a reductase involved in alternative de novo isovaleryl coenzyme A biosynthesis in Myxococcus xanthus.

    PubMed

    Bock, Tobias; Müller, Rolf; Blankenfeldt, Wulf

    2016-08-01

    Isovaleryl coenzyme A (IV-CoA) performs a crucial role during development and fruiting-body formation in myxobacteria, which is reflected in the existence of a de novo biosynthetic pathway that is highly upregulated when leucine, the common precursor of IV-CoA, is limited. The final step in de novo IV-CoA biosynthesis is catalyzed by AibC, a medium-chain dehydrogenase/reductase. Here, the crystal structure of AibC from Myxococcus xanthus refined to 2.55 Å resolution is presented. The protein adopts two different conformations in the crystal lattice, which is a consequence of partial interaction with the purification tag. Based on this structure, it is suggested that AibC most probably uses a Zn(2+)-supported catalytic mechanism in which NADPH is preferred over NADH. Taken together, this study reveals structural details of the alternative IV-CoA-producing pathway in myxobacteria, which may serve as a base for further biotechnological research and biofuel production. PMID:27487931

  17. Coenzyme Q10, copper, zinc, and lipid peroxidation levels in serum of patients with chronic obstructive pulmonary disease.

    PubMed

    Tanrikulu, Abdullah Cetin; Abakay, Abdurrahman; Evliyaoglu, Osman; Palanci, Yilmaz

    2011-11-01

    Severity of chronic obstructive pulmonary disease (COPD) exacerbation is associated with increased level of copper (Cu), zinc (Zn), and lipid peroxidation (malodialdehyde, MDA). The aim of this study was to investigate the levels of lipid peroxidation, Coenzyme Q10 (CoQ10), Zn, and Cu in the COPD exacerbations. Forty-five patients with COPD acute exacerbation and 45 healthy smokers as control group were used in the study. Forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) were lower in exacerbation group than in control. C- reactive protein levels, white blood cell count, and sedimentation rate were significantly (p<0.001) higher in patients than in control. CoQ10 level and Cu/Zn ratio was significantly (p<0.05) lower in patients than in control, although MDA, Cu, and Zn levels were significantly (p<0.05) higher in patients than in control. Negative correlations were found among MDA, Cu, Zn, FEV1, and FVC values in exacerbation and control subjects (p<0.05). In conclusion, we observed that oxidative stress in the exacerbation period of COPD patients was increased. The decrease in CoQ10 level and Cu/Zn ratio and elevation in Cu and Zn levels observed in the patients probably result from the defense response of organism and are mediated by inflammatory-like substances. PMID:21080098

  18. Carbon source-dependent regulation of the acetyl-coenzyme A synthetase-encoding gene ACS1 from Saccharomyces cerevisiae.

    PubMed

    Kratzer, S; Schüller, H J

    1995-08-01

    The yeast ACS1 gene, encoding acetyl-coenzyme A synthetase (ACS), was cloned using colony hybridization and a facA probe from Aspergillus nidulans. The complete sequence of 1.5 kb of the ACS1 upstream region was determined. Northern hybridization revealed a strong depression of ACS1 transcripts in a strain grown on the nonfermentable carbon sources, acetate or ethanol. In contrast to a previous report, delta acs1 null mutants did not exhibit a growth defect on acetate medium. Indeed, enzyme assays showed the presence of an additional constitutively expressed ACS activity in delta acs1 mutants. The carbon source-dependent expression was further investigated by the use of an ACS1::lacZ fusion gene, showing complete repression on easily fermentable sugars such as glucose, maltose, sucrose or galactose. Binding sites for the yeast general regulatory factors, Abf1p and Reb1p, together with a sequence reminiscent of the recently identified carbon source-responsive element (CSRE), could be detected in the ACS1 upstream region, presumably mediating the observed regulatory phenotype of this ACS isoenzyme. PMID:7642141

  19. Fatty Acid Export from the Chloroplast. Molecular Characterization of a Major Plastidial Acyl-Coenzyme A Synthetase from Arabidopsis1

    PubMed Central

    Schnurr, Judy A.; Shockey, Jay M.; de Boer, Gert-Jan; Browse, John A.

    2002-01-01

    Acyl-coenzyme A (CoA) synthetases (ACSs, EC 6.2.1.3) catalyze the formation of fatty acyl-CoAs from free fatty acid, ATP, and CoA. Essentially all de novo fatty acid synthesis occurs in the plastid. Fatty acids destined for membrane glycerolipid and triacylglycerol synthesis in the endoplasmic reticulum must be first activated to acyl-CoAs via an ACS. Within a family of nine ACS genes from Arabidopsis, we identified a chloroplast isoform, LACS9. LACS9 is highly expressed in developing seeds and young rosette leaves. Both in vitro chloroplast import assays and transient expression of a green fluorescent protein fusion indicated that the LACS9 protein is localized in the plastid envelope. A T-DNA knockout mutant (lacs9-1) was identified by reverse genetics and these mutant plants were indistinguishable from wild type in growth and appearance. Analysis of leaf lipids provided no evidence for compromised export of acyl groups from chloroplasts. However, direct assays demonstrated that lacs9-1 plants contained only 10% of the chloroplast long-chain ACS activity found for wild type. The residual long-chain ACS activity in mutant chloroplasts was comparable with calculated rates of fatty acid synthesis. Although another isozyme contributes to the activation of fatty acids during their export from the chloroplast, LACS9 is a major chloroplast ACS. PMID:12177483

  20. Coenzyme Q10, α-Tocopherol, and Oxidative Stress Could Be Important Metabolic Biomarkers of Male Infertility

    PubMed Central

    Kucharská, Jarmila; Dubravicky, Jozef; Mojto, Viliam; Singh, Ram B.

    2015-01-01

    Oxidative stress, decreased antioxidant capacity, and impaired sperm mitochondrial function are the main factors contributing to male infertility. The goal of the present study was to assess the effect of the per os treatment with Carni-Q-Nol (440 mg L-carnitine fumarate + 30 mg ubiquinol + 75 IU vitamin E + 12 mg vitamin C in each softsule) in infertile men on sperm parameters, concentration of antioxidants (coenzyme Q10,  CoQ10-TOTAL, γ, and α-tocopherols), and oxidative stress in blood plasma and seminal fluid. Forty infertile men were supplemented daily with two or three Carni-Q-Nol softsules. After 3 and 6 months of treatment, improved sperm density was observed (by 48.9% and 80.9%, resp.) and after 3-month treatment the sperm pathology decreased by 25.8%. Concentrations of CoQ10-TOTAL (ubiquinone + ubiquinol) and α-tocopherol were significantly increased and the oxidative stress was decreased. In conclusion, the effect of supplementary therapy with Carni-Q-Nol showed benefits on sperm function in men, resulting in 45% pregnancies of their women. We assume that assessment of oxidative stress, CoQ10-TOTAL, and α-tocopherol in blood plasma and seminal fluid could be important metabolic biomarkers in both diagnosis and treatment of male infertility. PMID:25810566

  1. AMP-Forming Acetyl Coenzyme A Synthetase in the Outermost Membrane of the Hyperthermophilic Crenarchaeon Ignicoccus hospitalis

    PubMed Central

    Mayer, Florian; Küper, Ulf; Meyer, Carolin; Daxer, Stefanie; Müller, Volker; Rachel, Reinhard

    2012-01-01

    Ignicoccus hospitalis, a hyperthermophilic, chemolithoautotrophic crenarchaeon was found to possess a new CO2 fixation pathway, the dicarboxylate/4-hydroxybutyrate cycle. The primary acceptor molecule for this pathway is acetyl coenzyme A (acetyl-CoA), which is regenerated in the cycle via the characteristic intermediate 4-hydroxybutyrate. In the presence of acetate, acetyl-CoA can alternatively be formed in a one-step mechanism via an AMP-forming acetyl-CoA synthetase (ACS). This enzyme was identified after membrane preparation by two-dimensional native PAGE/SDS-PAGE, followed by matrix-assisted laser desorption ionization–time of flight tandem mass spectrometry and N-terminal sequencing. The ACS of I. hospitalis exhibits a molecular mass of ∼690 kDa with a monomeric molecular mass of 77 kDa. Activity tests on isolated membranes and bioinformatic analyses indicated that the ACS is a constitutive membrane-associated (but not an integral) protein complex. Unexpectedly, immunolabeling on cells of I. hospitalis and other described Ignicoccus species revealed that the ACS is localized at the outermost membrane. This perfectly coincides with recent results that the ATP synthase and the H2:sulfur oxidoreductase complexes are also located in the outermost membrane of I. hospitalis. These results imply that the intermembrane compartment of I. hospitalis is not only the site of ATP synthesis but may also be involved in the primary steps of CO2 fixation. PMID:22247508

  2. Thermodynamic and Structure Guided Design of Statin Based Inhibitors of 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase

    SciTech Connect

    Sarver, Ronald W.; Bills, Elizabeth; Bolton, Gary; Bratton, Larry D.; Caspers, Nicole L.; Dunbar, James B.; Harris, Melissa S.; Hutchings, Richard H.; Kennedy, Robert M.; Larsen, Scott D.; Pavlovsky, Alexander; Pfefferkorn, Jeffrey A.; Bainbridge, Graeme

    2008-10-02

    Clinical studies have demonstrated that statins, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) inhibitors, are effective at lowering mortality levels associated with cardiovascular disease; however, 2--7% of patients may experience statin-induced myalgia that limits compliance with a treatment regimen. High resolution crystal structures, thermodynamic binding parameters, and biochemical data were used to design statin inhibitors with improved HMGR affinity and therapeutic index relative to statin-induced myalgia. These studies facilitated the identification of imidazole 1 as a potent (IC{sub 50} = 7.9 nM) inhibitor with excellent hepatoselectivity (>1000-fold) and good in vivo efficacy. The binding of 1 to HMGR was found to be enthalpically driven with a {Delta}H of -17.7 kcal/M. Additionally, a second novel series of bicyclic pyrrole-based inhibitors was identified that induced order in a protein flap of HMGR. Similar ordering was detected in a substrate complex, but has not been reported in previous statin inhibitor complexes with HMGR.

  3. Evolution of Coenzyme B(12) Synthesis among Enteric Bacteria: Evidence for Loss and Reacquisition of a Multigene Complex

    PubMed Central

    Lawrence, J. G.; Roth, J. R.

    1996-01-01

    We have examined the distribution of cobalamin (coenzyme B(12)) synthetic ability and cobalamin-dependent metabolism among enteric bacteria. Most species of enteric bacteria tested synthesize cobalamin under both aerobic and anaerobic conditions and ferment glycerol in a cobalamin-dependent fashion. The group of species including Escherichia coli and Salmonella typhimurium cannot ferment glycerol. E. coli strains cannot synthesize cobalamin de novo, and Salmonella spp. synthesize cobalamin only under anaerobic conditions. In addition, the cobalamin synthetic genes of Salmonella spp. (cob) show a regulatory pattern different from that of other enteric taxa tested. We propose that the cobalamin synthetic genes, as well as genes providing cobalamin-dependent diol dehydratase, were lost by a common ancestor of E. coli and Salmonella spp. and were reintroduced as a single fragment into the Salmonella lineage from an exogenous source. Consistent with this hypothesis, the S. typhimurium cob genes do not hybridize with the genomes of other enteric species. The Salmonella cob operon may represent a class of genes characterized by periodic loss and reacquisition by host genomes. This process may be an important aspect of bacterial population genetics and evolution. PMID:8770581

  4. The clinical heterogeneity of coenzyme Q10 deficiency results from genotypic differences in the Coq9 gene.

    PubMed

    Luna-Sánchez, Marta; Díaz-Casado, Elena; Barca, Emanuele; Tejada, Miguel Ángel; Montilla-García, Ángeles; Cobos, Enrique Javier; Escames, Germaine; Acuña-Castroviejo, Dario; Quinzii, Catarina M; López, Luis Carlos

    2015-05-01

    Primary coenzyme Q10 (CoQ10) deficiency is due to mutations in genes involved in CoQ biosynthesis. The disease has been associated with five major phenotypes, but a genotype-phenotype correlation is unclear. Here, we compare two mouse models with a genetic modification in Coq9 gene (Coq9(Q95X) and Coq9(R239X)), and their responses to 2,4-dihydroxybenzoic acid (2,4-diHB). Coq9(R239X) mice manifest severe widespread CoQ deficiency associated with fatal encephalomyopathy and respond to 2,4-diHB increasing CoQ levels. In contrast, Coq9(Q95X) mice exhibit mild CoQ deficiency manifesting with reduction in CI+III activity and mitochondrial respiration in skeletal muscle, and late-onset mild mitochondrial myopathy, which does not respond to 2,4-diHB. We show that these differences are due to the levels of COQ biosynthetic proteins, suggesting that the presence of a truncated version of COQ9 protein in Coq9(R239X) mice destabilizes the CoQ multiprotein complex. Our study points out the importance of the multiprotein complex for CoQ biosynthesis in mammals, which may provide new insights to understand the genotype-phenotype heterogeneity associated with human CoQ deficiency and may have a potential impact on the treatment of this mitochondrial disorder. PMID:25802402

  5. Impaired coenzyme A synthesis in fission yeast causes defective mitosis, quiescence-exit failure, histone hypoacetylation and fragile DNA

    PubMed Central

    Nakamura, Takahiro; Pluskal, Tomáš; Nakaseko, Yukinobu; Yanagida, Mitsuhiro

    2012-01-01

    Biosynthesis of coenzyme A (CoA) requires a five-step process using pantothenate and cysteine in the fission yeast Schizosaccharomyces pombe. CoA contains a thiol (SH) group, which reacts with carboxylic acid to form thioesters, giving rise to acyl-activated CoAs such as acetyl-CoA. Acetyl-CoA is essential for energy metabolism and protein acetylation, and, in higher eukaryotes, for the production of neurotransmitters. We isolated a novel S. pombe temperature-sensitive strain ppc1-537 mutated in the catalytic region of phosphopantothenoylcysteine synthetase (designated Ppc1), which is essential for CoA synthesis. The mutant becomes auxotrophic to pantothenate at permissive temperature, displaying greatly decreased levels of CoA, acetyl-CoA and histone acetylation. Moreover, ppc1-537 mutant cells failed to restore proliferation from quiescence. Ppc1 is thus the product of a super-housekeeping gene. The ppc1-537 mutant showed combined synthetic lethal defects with five of six histone deacetylase mutants, whereas sir2 deletion exceptionally rescued the ppc1-537 phenotype. In synchronous cultures, ppc1-537 cells can proceed to the S phase, but lose viability during mitosis failing in sister centromere/kinetochore segregation and nuclear division. Additionally, double-strand break repair is defective in the ppc1-537 mutant, producing fragile broken DNA, probably owing to diminished histone acetylation. The CoA-supported metabolism thus controls the state of chromosome DNA. PMID:23091701

  6. Coenzyme Q10 attenuates beta-amyloid pathology in the aged transgenic mice with Alzheimer presenilin 1 mutation.

    PubMed

    Yang, Xifei; Yang, Ying; Li, Geng; Wang, Jianzhi; Yang, Edward S

    2008-02-01

    One of the neuropathological features of Alzheimer's disease (AD) is the deposition of senile plaques containing beta-amyloid (A beta). There is limited evidence for the treatment to arrest A beta pathology of AD. In our present study, we tested the effect of coenzyme Q10 (CoQ10), an endogenous antioxidant and a powerful free radical scavenger, on A beta in the aged transgenic mice overexpressing Alzheimer presenilin 1-L235P (leucine-to-proline mutation at codon 235, 16-17 months old). The treatment by feeding the transgenic mice with CoQ10 for 60 days (1,200 mg kg(-1) day(-1)) partially attenuated A beta overproduction and intracellular A beta deposit in the cortex of the transgenic mice compared with the age-matched untreated transgenic mice. Meanwhile, an increased oxidative stress reaction was detected as evidenced by elevated level of malondialdehyde (MDA) and decreased activity of superoxide dismutase (SOD) in the transgenic mice relative to the wild-type mice, and supplementation of CoQ10 partially decreased MDA level and upregulated the activity of SOD. The results indicate that oxidative stress is enhanced in the brain of the transgenic mice, that this enhancement may further promote A beta 42 overproduction in a vicious formation, and that CoQ10 would be beneficial for the therapy of AD. PMID:18181031

  7. Coenzyme Q regulates the expression of essential genes of the pathogen- and xenobiotic-associated defense pathway in C. elegans

    PubMed Central

    Fischer, Alexandra; Niklowitz, Petra; Menke, Thomas; Döring, Frank

    2015-01-01

    Coenzyme Q (CoQ) is necessary for mitochondrial energy production and modulates the expression of genes that are important for inflammatory processes, growth and detoxification reactions. A cellular surveillance-activated detoxification and defenses (cSADDs) pathway has been recently identified in C. elegans. The down-regulation of the components of the cSADDs pathway initiates an aversion behavior of the nematode. Here we hypothesized that CoQ regulates genes of the cSADDs pathway. To verify this we generated CoQ-deficient worms (“CoQ-free”) and performed whole-genome expression profiling. We found about 30% (120 genes) of the cSADDs pathway genes were differentially regulated under CoQ-deficient condition. Remarkably, 83% of these genes were down-regulated. The majority of the CoQ-sensitive cSADDs pathway genes encode for proteins involved in larval development (enrichment score (ES) = 38.0, p = 5.0E−37), aminoacyl-tRNA biosynthesis, proteasome function (ES 8.2, p = 5.9E−31) and mitochondria function (ES 3.4, p = 1.7E−5). 67% (80 genes) of these genes are categorized as lethal. Thus it is shown for the first time that CoQ regulates a substantial number of essential genes that function in the evolutionary conserved cellular surveillance-activated detoxification and defenses pathway in C. elegans. PMID:26566301

  8. Coenzyme Q regulates the expression of essential genes of the pathogen- and xenobiotic-associated defense pathway in C. elegans.

    PubMed

    Fischer, Alexandra; Niklowitz, Petra; Menke, Thomas; Döring, Frank

    2015-11-01

    Coenzyme Q (CoQ) is necessary for mitochondrial energy production and modulates the expression of genes that are important for inflammatory processes, growth and detoxification reactions. A cellular surveillance-activated detoxification and defenses (cSADDs) pathway has been recently identified in C. elegans. The down-regulation of the components of the cSADDs pathway initiates an aversion behavior of the nematode. Here we hypothesized that CoQ regulates genes of the cSADDs pathway. To verify this we generated CoQ-deficient worms ("CoQ-free") and performed whole-genome expression profiling. We found about 30% (120 genes) of the cSADDs pathway genes were differentially regulated under CoQ-deficient condition. Remarkably, 83% of these genes were down-regulated. The majority of the CoQ-sensitive cSADDs pathway genes encode for proteins involved in larval development (enrichment score (ES) = 38.0, p = 5.0E(-37)), aminoacyl-tRNA biosynthesis, proteasome function (ES 8.2, p = 5.9E(-31)) and mitochondria function (ES 3.4, p = 1.7E(-5)). 67% (80 genes) of these genes are categorized as lethal. Thus it is shown for the first time that CoQ regulates a substantial number of essential genes that function in the evolutionary conserved cellular surveillance-activated detoxification and defenses pathway in C. elegans. PMID:26566301

  9. Coenzyme Q₁₀, α-tocopherol, and oxidative stress could be important metabolic biomarkers of male infertility.

    PubMed

    Gvozdjáková, Anna; Kucharská, Jarmila; Dubravicky, Jozef; Mojto, Viliam; Singh, Ram B

    2015-01-01

    Oxidative stress, decreased antioxidant capacity, and impaired sperm mitochondrial function are the main factors contributing to male infertility. The goal of the present study was to assess the effect of the per os treatment with Carni-Q-Nol (440 mg L-carnitine fumarate + 30 mg ubiquinol + 75 IU vitamin E + 12 mg vitamin C in each softsule) in infertile men on sperm parameters, concentration of antioxidants (coenzyme Q10,  CoQ(10-TOTAL), γ, and α-tocopherols), and oxidative stress in blood plasma and seminal fluid. Forty infertile men were supplemented daily with two or three Carni-Q-Nol softsules. After 3 and 6 months of treatment, improved sperm density was observed (by 48.9% and 80.9%, resp.) and after 3-month treatment the sperm pathology decreased by 25.8%. Concentrations of CoQ(10-TOTAL) (ubiquinone + ubiquinol) and α-tocopherol were significantly increased and the oxidative stress was decreased. In conclusion, the effect of supplementary therapy with Carni-Q-Nol showed benefits on sperm function in men, resulting in 45% pregnancies of their women. We assume that assessment of oxidative stress, CoQ(10-TOTAL), and α-tocopherol in blood plasma and seminal fluid could be important metabolic biomarkers in both diagnosis and treatment of male infertility. PMID:25810566

  10. Identification of Coq11, a new coenzyme Q biosynthetic protein in the CoQ-synthome in Saccharomyces cerevisiae.

    PubMed

    Allan, Christopher M; Awad, Agape M; Johnson, Jarrett S; Shirasaki, Dyna I; Wang, Charles; Blaby-Haas, Crysten E; Merchant, Sabeeha S; Loo, Joseph A; Clarke, Catherine F

    2015-03-20

    Coenzyme Q (Q or ubiquinone) is a redox active lipid composed of a fully substituted benzoquinone ring and a polyisoprenoid tail and is required for mitochondrial electron transport. In the yeast Saccharomyces cerevisiae, Q is synthesized by the products of 11 known genes, COQ1-COQ9, YAH1, and ARH1. The function of some of the Coq proteins remains unknown, and several steps in the Q biosynthetic pathway are not fully characterized. Several of the Coq proteins are associated in a macromolecular complex on the matrix face of the inner mitochondrial membrane, and this complex is required for efficient Q synthesis. Here, we further characterize this complex via immunoblotting and proteomic analysis of tandem affinity-purified tagged Coq proteins. We show that Coq8, a putative kinase required for the stability of the Q biosynthetic complex, is associated with a Coq6-containing complex. Additionally Q6 and late stage Q biosynthetic intermediates were also found to co-purify with the complex. A mitochondrial protein of unknown function, encoded by the YLR290C open reading frame, is also identified as a constituent of the complex and is shown to be required for efficient de novo Q biosynthesis. Given its effect on Q synthesis and its association with the biosynthetic complex, we propose that the open reading frame YLR290C be designated COQ11. PMID:25631044

  11. Dietary restriction decreases coenzyme Q and ubiquinol potentially via changes in gene expression in the model organism C. elegans.

    PubMed

    Fischer, Alexandra; Klapper, Maja; Onur, Simone; Menke, Thomas; Niklowitz, Petra; Döring, Frank

    2015-05-01

    Dietary restriction (DR) is a robust intervention that extends both health span and life span in many organisms. Ubiquinol and ubiquinone represent the reduced and oxidized forms of coenzyme Q (CoQ). CoQ plays a central role in energy metabolism and functions in several cellular processes including gene expression. Here we used the model organism Caenorhabditis elegans to determine level and redox state of CoQ and expression of genes in response to DR. We found that DR down-regulates the steady-state expression levels of several evolutionary conserved genes (i.e. coq-1) that encode key enzymes of the mevalonate and CoQ-synthesizing pathways. In line with this, DR decreases the levels of total CoQ and ubiquinol. This CoQ-reducing effect of DR is obvious in adult worms but not in L4 larvae and is also evident in the eat-2 mutant, a genetic model of DR. In conclusion, we propose that DR reduces the level of CoQ and ubiquinol via gene expression in the model organism C. elegans. PMID:25939481

  12. Coenzyme Q10 Supplementation Prevents Iron Overload While Improving Glycaemic Control and Antioxidant Protection in Insulin-Resistant Psammomys obesus.

    PubMed

    Lazourgui, Mohamed Amine; El-Aoufi, Salima; Labsi, Moussa; Maouche, Boubekeur

    2016-09-01

    This study investigated the anti-diabetic preventive activity of coenzyme Q10 (CoQ10) in a murine model of diet-induced insulin resistance (IR), Psammomys obesus (Po). IR was induced by feeding a standard laboratory diet (SD). CoQ10 oil suspension was orally administered at 10 mg/kg body weight (BW)/day along with SD for 9 months. Anthropometric parameters, namely, total body weight gain (BWG) and the relative weight of white adipose tissue (WAT) were determined. Blood glucose, insulin, quantitative insulin sensitivity check index (QUICKI), total antioxidant status (TAS), iron, malondialdehyde (MDA) and nitrite (NO2 (-)) were evaluated. NO2 (-) level was also assessed in peripheral blood mononuclear cells (PBMCs) culture supernatants. Our results show that CoQ10 supplementation significantly improved blood glucose, insulin, QUICKI, TAS, iron and MDA, but influenced neither NO2 (-) levels nor the anthropometric parameters. These findings support the hypothesis that CoQ10 would exert an anti-diabetic activity by improving both glycaemic control and antioxidant protection. The most marked effect of CoQ10 observed in this study concerns the regulation of iron levels, which may carry significant preventive importance. PMID:26779622

  13. Reversal of oxidative stress-induced apoptosis in T and B lymphocytes by Coenzyme Q10 (CoQ10)

    PubMed Central

    Gollapudi, Sastry; Gupta, Sudhir

    2016-01-01

    Coenzyme Q10, (CoQ10) an electron transporter and an antioxidant, protects a variety of cell types against oxidative stress and apoptosis. However, protective effect of CoQ10 on oxidative stress-induced apoptosis in lymphocytes has not been studied in detail. In this study, we investigated the effect of CoQ10 on oxidative stress-induced apoptosis in lymphocytes. An exposure of peripheral blood lymphocytes to oxidative stressors, rotenone or hydrogen peroxide, lead to apoptosis. Pre-treatment of lymphocytes with CoQ10 resulted in a significantly reduced level of oxidative stress-induced apoptosis, which was associated with decreased reactive oxygen species production, an inhibition of mitochondrial membrane depolarization, and inhibition of activation of caspase-9 and caspase-3. Furthermore, CoQ10 inhibited oxidative stress induced apoptosis in both CD4+ T, and CD8+ T, and CD19+ B cells. Our findings suggest that CoQ10 may provide new therapeutic strategies for preventing oxidative stress-induced cell death and dysfunction in lymphocytes and lymphocyte subsets. PMID:27168954

  14. Crystal structures of S-HPCDH reveal determinants of stereospecificity for R- and S-hydroxypropyl-coenzyme M dehydrogenases.

    PubMed

    Bakelar, Jeremy W; Sliwa, Dariusz A; Johnson, Sean J

    2013-05-01

    (R)- and (S)-hydroxypropyl-coenzyme M dehydrogenases (R- and S-HPCDH) are stereospecific enzymes that are central to the metabolism of propylene and epoxide in Xanthobacter autotrophicus. The bacterium produces R- and S-HPCDH simultaneously to facilitate transformation of R- and S-enantiomers of epoxypropane to a common achiral product 2-ketopropyl-CoM (2-KPC). Both R- and S-HPCDH are highly specific for their respective substrates as each enzyme displays less than 0.5% activity with the opposite substrate isomer. In order to elucidate the structural basis for stereospecificity displayed by R- and S-HPCDH we have determined substrate bound crystal structures of S-HPCDH to 1.6Å resolution. Comparisons to the previously reported product-bound structure of R-HPCDH reveal that although the placement of catalytic residues within the active site of each enzyme is nearly identical, structural differences in the surrounding area provide each enzyme with a distinct substrate binding pocket. These structures demonstrate how chiral discrimination by R- and S-HPCDH results from alternative binding of the distal end of substrates within each substrate binding pocket. PMID:23474457

  15. Introduction of the exogenous NADH coenzyme regeneration system and its influence on intracellular metabolic flux of Paenibacillus polymyxa.

    PubMed

    Zhang, Li; Xu, Youyong; Gao, Jian; Xu, Hong; Cao, Can; Xue, Feng; Ding, Ge; Peng, Yingyun

    2016-02-01

    The NAD(+)-dependent formate dehydrogenase (FDH) gene from Candida boidinii was introduced into Paenibacillus polymyxa ZJ-9. The effects of this exogenous gene on the growth of the recombinant strain P. polymyxa XG-1, FDH activity, intracellular NADH and NAD(+) level and the synthesis of R,R-2,3-butanediol (R,R-2,3-BD) were determined. Results from the fermentation in the 7.5L bioreactor showed that the exogenous FDH was highly expressed in the recombinant strain. The titers of NADH, lactic acid, ethanol, NADH/NAD(+), and CO2 excretion rate (CER) of the recombinant strain increased considerably, while acetoin and formic acid decreased significantly. The highest titers of R,R-2,3-BD by the recombinant strain in batch and fed-batch fermentation were 36.8g/L and 51.3g/L, increased 10.2% and 8.0% compared with the parent strain, respectively. This study confirmed that coenzyme regeneration system can manipulate substance metabolism in bacteria, and is an efficient way for promoting the synthesis of NADH-dependent products. PMID:26687492

  16. Dominant mutations causing alterations in acetyl-coenzyme A carboxylase confer tolerance to cyclohexanedione and aryloxyphenoxypropionate herbicides in maize.

    PubMed Central

    Parker, W B; Marshall, L C; Burton, J D; Somers, D A; Wyse, D L; Gronwald, J W; Gengenbach, B G

    1990-01-01

    A partially dominant mutation exhibiting increased tolerance to cyclohexanedione and aryloxyphenoxypropionate herbicides was isolated by exposing susceptible maize (Zea mays) tissue cultures to increasingly inhibitory concentrations of sethoxydim (a cyclohexanedione). The selected tissue culture (S2) was greater than 40-fold more tolerant to sethoxydim and 20-fold more tolerant to haloxyfop (an aryloxyphenoxypropionate) than the nonselected wild-type tissue culture. Regenerated S2 plants were heterozygous for the mutant allele and exhibited a high-level, but not complete, tolerance to both herbicides. Homozygous mutant families derived by self-pollinating the regenerated S2 plants exhibited no injury after treatment with 0.8 kg of sethoxydim per ha, which was greater than 16-fold the rate lethal to wild-type plants. Acetyl-coenzyme A carboxylase (ACCase; EC 6.4.1.2) is the target enzyme of cyclohexanedione and aryloxyphenoxypropionate herbicides. ACCase activities of the nonselected wild-type and homozygous mutant seedlings were similar in the absence of herbicide. ACCase activity from homozygous tolerant plants required greater than 100-fold more sethoxydim and 16-fold more haloxyfop for 50% inhibition than ACCase from wild-type plants. These results indicate that tolerance to sethoxydim and haloxyfop is controlled by a partially dominant nuclear mutation encoding a herbicide-insensitive alteration in maize ACCase. Images PMID:1976254

  17. Dual Targeting of 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase and Histone Deacetylase as a Therapy for Colorectal Cancer.

    PubMed

    Wei, Tzu-Tang; Lin, Yi-Ting; Chen, Wen-Shu; Luo, Ping; Lin, Yu-Chin; Shun, Chia-Tung; Lin, Yi-Hsin; Chen, Jhih-Bin; Chen, Nai-Wei; Fang, Jim-Min; Wu, Ming-Shiang; Yang, Kai-Chien; Chang, Li-Chun; Tai, Kang-Yu; Liang, Jin-Tung; Chen, Ching-Chow

    2016-08-01

    Statins are 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (HMGR) inhibitors decreasing serum cholesterol and have shown promise in cancer prevention. In this study, we demonstrated the oncogenic role of HMGR in colorectal cancer (CRC) by disclosing increased HMGR activity in CRC patients and its enhancement of anti-apoptosis and stemness. Our previous studies showed that statins containing carboxylic acid chains possessed activity against histone deacetylases (HDACs), and strengthened their anti-HDAC activity through designing HMGR-HDAC dual inhibitors, JMF compounds. These compounds exerted anti-cancer effect in CRC cells as well as in AOM-DSS and Apc(Min/+) CRC mouse models. JMF mostly regulated the genes related to apoptosis and inflammation through genome-wide ChIP-on-chip analysis, and Ingenuity Pathways Analysis (IPA) predicted their respective regulation by NR3C1 and NF-κB. Furthermore, JMF inhibited metastasis, angiogenesis and cancer stemness, and potentiated the effect of oxaliplatin in CRC mouse models. Dual HMGR-HDAC inhibitor could be a potential treatment for CRC. PMID:27448759

  18. Characterization and pharmacokinetics of coenzyme Q10 nanoparticles prepared by a rapid expansion of supercritical solution process.

    PubMed

    Meng, Xiangdong; Zu, Yuangang; Zhao, Xiuhua; Li, Qingyong; Jiang, Shougang; Sang, Mei

    2012-02-01

    Coenzyme Q10 (CoQ10) has been found to be effective in cardiovascular diseases and neurodegenerative diseases. However, the extremely poor solubility of CoQ10 in water is hampering its bioavailability as a therapeutic agent. To overcome solubility problem, we micronized the CoQ10 powder to the nanometer level by the supercritical solution (RESS) process, which does not employ any toxic organic solvent. The obtained CoQ10 nanoparticles were 147.9 +/- 27.3nm in diameter and their physicochemical properties were characterized by scanning electron microscopy (SEM), dynamic light scattering (DLS), liquid chromatography-mass spectrometry (LC-MS), X-ray diffractometry (XRD) and differential scanning calorimetry (DSC) analyzes. Moreover, the pharmacokinetics of the CoQ10 nanoparticles, in comparison with the unprocessed CoQ10 powder, were investigated in rats. From the results of physicochemical and pharmacokinetic studies, the CoQ10 nanoparticles had high solubility in water and possessed less crystalline structure, which can enhance the bioavailability of CoQ10, and provide a water-soluble solid dosage form of CoQ10. PMID:22512087

  19. Alteration of mitochondrial DNA and RNA level in human fibroblasts with impaired vitamin B12 coenzyme synthesis.

    PubMed

    Cantatore, P; Petruzzella, V; Nicoletti, C; Papadia, F; Fracasso, F; Rustin, P; Gadaleta, M N

    1998-08-01

    Alterations of mitochondrial (mt) nucleic acid metabolism in methylmalonic aciduria (MMA) were studied in two cell lines from skin fibroblasts of patients with mitochondrial (GM00595) or cytosolic (GM10011) defects in the biosynthesis pathways of cobalamin coenzymes. The mtDNA level increased two-fold in GM00595 cells, which carry a mt defect in the adenosylcobalamin synthesis, whereas no appreciable change was found in GM10011 cells. The content of the two rRNAs 16S and 12S mtRNAs, normalized for the mtDNA copy number, decreased by 70% and 50% in GM00595 and GM10011, respectively. The normalized content of ND1, ND2 and CO I mRNAs decreased in GM00595, but was unchanged in GM10011. Respiratory chain complex activities measured in these two cell lines were not different from control activities. These data suggest that the maintenance of the mt function is due to doubling of mtDNA and that this compensatory response takes place only in those cells in which the greater reduction of the level of rRNA might have brought the content of these transcripts below the threshold value for optimal expression of the mt genome. PMID:9720919

  20. Crystal Structures of Malonyl-Coenzyme A Decarboxylase Provide Insights into Its Catalytic Mechanism and Disease-Causing Mutations

    PubMed Central

    Froese, D. Sean; Forouhar, Farhad; Tran, Timothy H.; Vollmar, Melanie; Kim, Yi Seul; Lew, Scott; Neely, Helen; Seetharaman, Jayaraman; Shen, Yang; Xiao, Rong; Acton, Thomas B.; Everett, John K.; Cannone, Giuseppe; Puranik, Sriharsha; Savitsky, Pavel; Krojer, Tobias; Pilka, Ewa S.; Kiyani, Wasim; Lee, Wen Hwa; Marsden, Brian D.; von Delft, Frank; Allerston, Charles K.; Spagnolo, Laura; Gileadi, Opher; Montelione, Gaetano T.; Oppermann, Udo; Yue, Wyatt W.; Tong, Liang

    2013-01-01

    Summary Malonyl-coenzyme A decarboxylase (MCD) is found from bacteria to humans, has important roles in regulating fatty acid metabolism and food intake, and is an attractive target for drug discovery. We report here four crystal structures of MCD from human, Rhodopseudomonas palustris, Agrobacterium vitis, and Cupriavidus metallidurans at up to 2.3 Å resolution. The MCD monomer contains an N-terminal helical domain involved in oligomerization and a C-terminal catalytic domain. The four structures exhibit substantial differences in the organization of the helical domains and, consequently, the oligomeric states and intersubunit interfaces. Unexpectedly, the MCD catalytic domain is structurally homologous to those of the GCN5-related N-acetyltransferase superfamily, especially the curacin A polyketide synthase catalytic module, with a conserved His-Ser/Thr dyad important for catalysis. Our structures, along with mutagenesis and kinetic studies, provide a molecular basis for understanding pathogenic mutations and catalysis, as well as a template for structure-based drug design. PMID:23791943

  1. Purification of Pseudomonas putida acyl coenzyme A ligase active with a range of aliphatic and aromatic substrates.

    PubMed Central

    Fernández-Valverde, M; Reglero, A; Martinez-Blanco, H; Luengo, J M

    1993-01-01

    Acyl coenzyme A (acyl-CoA) ligase (acyl-CoA synthetase [ACoAS]) from Pseudomonas putida U was purified to homogeneity (252-fold) after this bacterium was grown in a chemically defined medium containing octanoic acid as the sole carbon source. The enzyme, which has a mass of 67 kDa, showed maximal activity at 40 degrees C in 10 mM K2PO4H-NaPO4H2 buffer (pH 7.0) containing 20% (wt/vol) glycerol. Under these conditions, ACoAS showed hyperbolic behavior against acetate, CoA, and ATP; the Kms calculated for these substrates were 4.0, 0.7, and 5.2 mM, respectively. Acyl-CoA ligase recognizes several aliphatic molecules (acetic, propionic, butyric, valeric, hexanoic, heptanoic, and octanoic acids) as substrates, as well as some aromatic compounds (phenylacetic and phenoxyacetic acids). The broad substrate specificity of ACoAS from P. putida was confirmed by coupling it with acyl-CoA:6-aminopenicillanic acid acyltransferase from Penicillium chrysogenum to study the formation of several penicillins. Images PMID:8476289

  2. The clinical heterogeneity of coenzyme Q10 deficiency results from genotypic differences in the Coq9 gene

    PubMed Central

    Luna-Sánchez, Marta; Díaz-Casado, Elena; Barca, Emanuele; Tejada, Miguel Ángel; Montilla-García, Ángeles; Cobos, Enrique Javier; Escames, Germaine; Acuña-Castroviejo, Dario; Quinzii, Catarina M; López, Luis Carlos

    2015-01-01

    Primary coenzyme Q10 (CoQ10) deficiency is due to mutations in genes involved in CoQ biosynthesis. The disease has been associated with five major phenotypes, but a genotype–phenotype correlation is unclear. Here, we compare two mouse models with a genetic modification in Coq9 gene (Coq9Q95X and Coq9R239X), and their responses to 2,4-dihydroxybenzoic acid (2,4-diHB). Coq9R239X mice manifest severe widespread CoQ deficiency associated with fatal encephalomyopathy and respond to 2,4-diHB increasing CoQ levels. In contrast, Coq9Q95X mice exhibit mild CoQ deficiency manifesting with reduction in CI+III activity and mitochondrial respiration in skeletal muscle, and late-onset mild mitochondrial myopathy, which does not respond to 2,4-diHB. We show that these differences are due to the levels of COQ biosynthetic proteins, suggesting that the presence of a truncated version of COQ9 protein in Coq9R239X mice destabilizes the CoQ multiprotein complex. Our study points out the importance of the multiprotein complex for CoQ biosynthesis in mammals, which may provide new insights to understand the genotype–phenotype heterogeneity associated with human CoQ deficiency and may have a potential impact on the treatment of this mitochondrial disorder. PMID:25802402

  3. Synthesis of the coenzymes adenosine diphosphate glucose, guanosine diphosphate glucose, and cytidine diphosphoethanolamine under primitive Earth conditions

    NASA Technical Reports Server (NTRS)

    Mar, A.; Oro, J.

    1991-01-01

    The nonenzymatic synthesis of the coenzymes adenosine diphosphate glucose (ADPG), guanosine diphosphate glucose (GDPG), and cytidine diphosphoethanolamine (CDP-ethanolamine) has been carried out under conditions considered to have been prevalent on the early Earth. The production of these compounds was performed by allowing simple precursor molecules to react under aqueous solutions, at moderate temperatures and short periods of time, with mediation by cyanamide or urea. These two condensing agents are considered to have been present in significant amounts on the primitive Earth and have been previously used in the nonenzymatic synthesis of several other important biochemical compounds. In our experiments, ADPG was obtained by heating glucose-1-phosphate (G1P) and ATP in the presence of cyanamide for 24 h at 70 degrees C. The reaction of G1P and GTP under the same conditions yielded GDPG. The cyanamide-mediated production of CDP-ethanolamine was carried out by reacting a mixture of ethanolamine phosphate and CTP for 24 h at 70 degrees C. The separation and identification of the reaction products was carried out by paper chromatography, thin-layer chromatography, high performance thin-layer chromatography, high performance liquid chromatography, both normal and reverse-phase, UV spectroscopy, enzymatic assays, and acid hydrolysis. Due to the mild conditions employed, and to the relative ease of these reactions, these studies offer a simple attractive system for the nonenzymatic synthesis of phosphorylated high-energy metabolic intermediates under conditions considered to have been prevalent on the ancient Earth.

  4. Differential activation of potato 3-hydroxy-3-methylglutaryl coenzyme A reductase genes by wounding and pathogen challenge.

    PubMed Central

    Yang, Z; Park, H; Lacy, G H; Cramer, C L

    1991-01-01

    Potato genes encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) were expressed in response to pathogen, elicitor, and wounding. HMGR catalyzes the rate-limiting step in isoprenoid biosynthesis leading to accumulation of phytoalexins and steroid glycoalkaloids. Wounding caused increases in HMGR mRNA levels. A rapid and transient peak occurred 30 minutes after wounding, followed by a slower peak at 14 hours; both were correlated with increased enzyme activity. Induction of HMGR mRNA by the soft rot pathogen Erwinia carotovora subsp carotovora or arachidonic acid began 8 hours after challenge and continued through 22 hours. Potato HMGR is encoded by a gene family. An HMGR gene-specific probe was used to demonstrate that one isogene of the HMGR family is pathogen activated and is distinct from isogene(s) that are wound activated. This provides evidence that defense-related increases in HMGR activity are due to mRNA level increases and that HMGR isogenes are activated differentially by wounding or pathogen challenge. PMID:1840919

  5. Engineering of a novel carbonyl reductase with coenzyme regeneration in E. coli for efficient biosynthesis of enantiopure chiral alcohols.

    PubMed

    Wei, Ping; Gao, Jia-Xin; Zheng, Gao-Wei; Wu, Hong; Zong, Min-Hua; Lou, Wen-Yong

    2016-07-20

    The novel anti-Prelog stereospecific carbonyl reductase from Acetobacter sp. CCTCC M209061 was successfully expressed in E. coli combined with glucose dehydrogenase (GDH) to construct an efficient whole-cell biocatalyst with coenzyme NADH regeneration. The enzymatic activity of GAcCR (AcCR with a GST tag) reached 304.9U/g-dcw, even 9 folds higher than that of wild strain, and the activity of GDH for NADH regeneration recorded 46.0U/mg-protein in the recombinant E. coli. As a whole-cell biocatalyst, the recombinant E. coli BL21(DE3)pLysS (pETDuet-gaccr-gdh) possessed a broad substrate spectrum for kinds of carbonyl compounds with encouraging yield and stereoselectivity. Besides, the asymmetric reduction of ethyl 4-chloroacetoacetate (COBE) to optically pure ethyl 4-chloro-3-hydroxybutyrate (CHBE) catalyzed by the whole-cell biocatalyst was systematically investigated. Under the optimal reaction conditions, the optical purity of CHBE was over 99% e.e. for (S)-enantiomer, and the initial rate and product yield reached 8.04μmol/min and 99.4%, respectively. Moreover, the space-time yield was almost 20 folds higher than that catalyzed by the wild strain. Therefore, a new, high efficiency biocatalyst for asymmetric reductions was constructed successfully, and the enantioselective reduction of prochiral compounds using the biocatalyst was a promising approach for obtaining enantiopure chiral alcohols. PMID:27211999

  6. Acetyl Coenzyme A Stimulates RNA Polymerase II Transcription and Promoter Binding by Transcription Factor IID in the Absence of Histones

    PubMed Central

    Galasinski, Shelly K.; Lively, Tricia N.; Grebe de Barron, Alexandra; Goodrich, James A.

    2000-01-01

    Protein acetylation has emerged as a means of controlling levels of mRNA synthesis in eukaryotic cells. Here we report that acetyl coenzyme A (acetyl-CoA) stimulates RNA polymerase II transcription in vitro in the absence of histones. The effect of acetyl-CoA on basal and activated transcription was studied in a human RNA polymerase II transcription system reconstituted from recombinant and highly purified transcription factors. Both basal and activated transcription were stimulated by the addition of acetyl-CoA to transcription reaction mixtures. By varying the concentrations of general transcription factors in the reaction mixtures, we found that acetyl-CoA decreased the concentration of TFIID required to observe transcription. Electrophoretic mobility shift assays and DNase I footprinting revealed that acetyl-CoA increased the affinity of the general transcription factor TFIID for promoter DNA in a TBP-associated factor (TAF)-dependent manner. Interestingly, acetyl-CoA also caused a conformational change in the TFIID-TFIIA-promoter complex as assessed by DNase I footprinting. These results show that acetyl-CoA alters the DNA binding activity of TFIID and indicate that this biologically important cofactor functions at multiple levels to control gene expression. PMID:10688640

  7. Interaction between reactive oxygen species and coenzyme Q10 in an aprotic medium: a cyclic voltammetry study.

    PubMed

    Ferri, E; Gattavecchia, E; Feroci, G; Battino, M

    1994-01-01

    The involvement of coenzyme Q (CoQ) as an antioxidant agent in several oxidative processes both in vitro and in vivo is nowadays pointed out by several biochemical and clinical studies, but the chemical mechanisms of this action are not yet unequivocally established. Electrochemistry provides very useful techniques for the analysis of the kinetics and thermodynamics, and mechanisms of chemical phenomena involving electron transfers, e.g. in the case of radical reactions. In the present study we used cyclic voltammetry to investigate the interactions between oxygen radicals and ubiquinone in aprotic medium, a condition similar to that existing in the biological membranes. The results obtained showed that ubiquinone is more easily reduced than oxygen, ruling out the possibility of an electron transfer from semiquinone to oxygen to produce superoxide radicals. On the contrary, it was demonstrated that fully reduced quinone is able to scavenge the superoxide radical, by reduction to peroxide ion, lowering actually the oxidative potential in the medium. PMID:7752848

  8. Enhanced production of coenzyme Q10 by self-regulating the engineered MEP pathway in Rhodobacter sphaeroides.

    PubMed

    Lu, Wenqiang; Ye, Lidan; Xu, Haoming; Xie, Wenping; Gu, Jiali; Yu, Hongwei

    2014-04-01

    Fine-tuning the expression level of an engineered pathway is crucial for the metabolic engineering of a host toward a desired phenotype. However, most engineered hosts suffer from nonfunctional protein expression, metabolic imbalance, cellular burden or toxicity from intermediates when an engineered pathway is first introduced, which can decrease production of the desired product. To circumvent these obstacles, we developed a self-regulation system utilizing the trc/tac promoter, LacI(q) protein and ribosomal binding sites (RBS). With the purpose of improving coenzyme Q10 (CoQ10 ) production by increasing the decaprenyl diphosphate supplement, enzymes DXS, DXR, IDI, and IspD were constitutively overexpressed under the control of the trc promoter in Rhodobacter sphaeroides. Then, a self-regulation system combining a set of RBSs for adjusting the expression of the LacI(q) protein was applied to tune the expression of the four genes, resulting in improved CoQ10 production. Finally, another copy of the tac promoter with the UbiG gene (involved in the ubiquinone pathway of CoQ10 biosynthesis) was introduced into the engineered pathway. By optimizing the expression level of both the upstream and downstream pathway, CoQ10 production in the mutants was improved up to 93.34 mg/L (7.16 mg/g DCW), about twofold of the wild-type (48.25 mg/L, 3.24 mg/g DCW). PMID:24122603

  9. Structure and Function of the Unusual Tungsten Enzymes Acetylene Hydratase and Class II Benzoyl-Coenzyme A Reductase.

    PubMed

    Boll, Matthias; Einsle, Oliver; Ermler, Ulrich; Kroneck, Peter M H; Ullmann, G Matthias

    2016-01-01

    In biology, tungsten (W) is exclusively found in microbial enzymes bound to a bis-pyranopterin cofactor (bis-WPT). Previously known W enzymes catalyze redox oxo/hydroxyl transfer reactions by directly coordinating their substrates or products to the metal. They comprise the W-containing formate/formylmethanofuran dehydrogenases belonging to the dimethyl sulfoxide reductase (DMSOR) family and the aldehyde:ferredoxin oxidoreductase (AOR) families, which form a separate enzyme family within the Mo/W enzymes. In the last decade, initial insights into the structure and function of two unprecedented W enzymes were obtained: the acetaldehyde forming acetylene hydratase (ACH) belongs to the DMSOR and the class II benzoyl-coenzyme A (CoA) reductase (BCR) to the AOR family. The latter catalyzes the reductive dearomatization of benzoyl-CoA to a cyclic diene. Both are key enzymes in the degradation of acetylene (ACH) or aromatic compounds (BCR) in strictly anaerobic bacteria. They are unusual in either catalyzing a nonredox reaction (ACH) or a redox reaction without coordinating the substrate or product to the metal (BCR). In organic chemical synthesis, analogous reactions require totally nonphysiological conditions depending on Hg2+ (acetylene hydration) or alkali metals (benzene ring reduction). The structural insights obtained pave the way for biological or biomimetic approaches to basic reactions in organic chemistry. PMID:26959374

  10. Encapsulation of coenzyme Q10 in a simple emulsion-based nutraceutical formulation and application in cheese manufacturing.

    PubMed

    Stratulat, Iulia; Britten, Michel; Salmieri, Stéphane; St-Gelais, Daniel; Champagne, Claude P; Fustier, Patrick; Lacroix, Monique

    2013-12-01

    Coenzyme Q10 (CoQ10) was encapsulated successfully in a nutraceutical formulation composed of calcium caseinate, flaxseed oil and lecithin. The effect of CoQ10 on the physico-chemical stability of emulsions was compared to emulsions without CoQ10. According to ATR-FTIR analysis, emulsions were found to be more stable in the presence of CoQ10. The emulsion with CoQ10 was used as a functional cream in the cheese making process. The retention rate of CoQ10, composition and cheese yield were also determined. Quantification of CoQ10 by HPLC showed that the retention of this lipophilic agent into cheese matrix was 93% and equivalent to the total lipid retention. Protein retention and cheese yield were not affected by the addition of the functional cream. For the first time, CoQ10 has been encapsulated in a cheese matrix, hence demonstrating that CoQ10 could be used in the development of functional cheeses. PMID:23871014

  11. The Role of Pyruvate Dehydrogenase and Acetyl-Coenzyme A Synthetase in Fatty Acid Synthesis in Developing Arabidopsis Seeds1

    PubMed Central

    Ke, Jinshan; Behal, Robert H.; Back, Stephanie L.; Nikolau, Basil J.; Wurtele, Eve Syrkin; Oliver, David J.

    2000-01-01

    Acetyl-coenzyme A (acetyl-CoA) formed within the plastid is the precursor for the biosynthesis of fatty acids and, through them, a range of important biomolecules. The source of acetyl-CoA in the plastid is not known, but two enzymes are thought to be involved: acetyl-CoA synthetase and plastidic pyruvate dehydrogenase. To determine the importance of these two enzymes in synthesizing acetyl-CoA during lipid accumulation in developing Arabidopsis seeds, we isolated cDNA clones for acetyl-CoA synthetase and for the ptE1α- and ptE1β-subunits of plastidic pyruvate dehydrogenase. To our knowledge, this is the first reported acetyl-CoA synthetase sequence from a plant source. The Arabidopsis acetyl-CoA synthetase preprotein has a calculated mass of 76,678 D, an apparent plastid targeting sequence, and the mature protein is a monomer of 70 to 72 kD. During silique development, the spatial and temporal patterns of the ptE1β mRNA level are very similar to those of the mRNAs for the plastidic heteromeric acetyl-CoA carboxylase subunits. The pattern of ptE1β mRNA accumulation strongly correlates with the formation of lipid within the developing embryo. In contrast, the level of mRNA for acetyl-CoA synthetase does not correlate in time and space with lipid accumulation. The highest level of accumulation of the mRNA for acetyl-CoA synthetase during silique development is within the funiculus. These mRNA data suggest a predominant role for plastidic pyruvate dehydrogenase in acetyl-CoA formation during lipid synthesis in seeds. PMID:10859180

  12. Fatty Acid Elongation Is Independent of Acyl-Coenzyme A Synthetase Activities in Leek and Brassica napus1

    PubMed Central

    Hlousek-Radojcic, Alenka; Evenson, Kimberly J.; Jaworski, Jan G.; Post-Beittenmiller, Dusty

    1998-01-01

    In both animal and plant acyl elongation systems, it has been proposed that fatty acids are first activated to acyl-coenzyme A (CoA) before their elongation, and that the ATP dependence of fatty acid elongation is evidence of acyl-CoA synthetase involvement. However, because CoA is not supplied in standard fatty acid elongation assays, it is not clear if CoA-dependent acyl-CoA synthetase activity can provide levels of acyl-CoAs necessary to support typical rates of fatty acid elongation. Therefore, we examined the role of acyl-CoA synthetase in providing the primer for acyl elongation in leek (Allium porrum L.) epidermal microsomes and Brassica napus L. cv Reston oil bodies. As presented here, fatty acid elongation was independent of CoA and proceeded at maximum rates with CoA-free preparations of malonyl-CoA. We also showed that stearic acid ([1-14C]18:0)-CoA was synthesized from [1-14C]18:0 in the presence of CoA-free malonyl-CoA or acetyl-CoA, and that [1-14C]18:0-CoA synthesis under these conditions was ATP dependent. Furthermore, the appearance of [1-14C]18:0 in the acyl-CoA fraction was simultaneous with its appearance in phosphatidylcholine. These data, together with the s of a previous study (A. Hlousek-Radojcic, H. Imai, J.G. Jaworski [1995] Plant J 8: 803–809) showing that exogenous [14C]acyl-CoAs are diluted by a relatively large endogenous pool before they are elongated, strongly indicated that acyl-CoA synthetase did not play a direct role in fatty acid elongation, and that phosphatidylcholine or another glycerolipid was a more likely source of elongation primers than acyl-CoAs.

  13. Coenzyme Q10 remarkably improves the bio-energetic function of rat liver mitochondria treated with statins.

    PubMed

    Mohammadi-Bardbori, Afshin; Najibi, Asma; Amirzadegan, Najmeh; Gharibi, Raziyeh; Dashti, Ayat; Omidi, Mahmoud; Saeedi, Arastoo; Ghafarian-Bahreman, Ali; Niknahad, Hossein

    2015-09-01

    CoQ10 shares a biosynthetic pathway with cholesterol therefore it can be a potential target of the widely available lipid-lowering agents such as statins. Statins are the most widely prescribed cholesterol-lowering drugs with the ability to inhibit HMG-CoA (3-hydroxy-3-methylglutaryl-coenzyme A) reductase. Preclinical and clinical safety data have shown that statins do not cause serious adverse effects in humans. However, their long-term administration is associated with a variety of myopatic complaints. The aim of this study was to investigate whether CoQ10 supplementation of animals under high fat diet (HFD) treated with statins is able to bypass the mitochondrial metabolic defects or not? Animals were divided into 7 groups and fed with either regular (RD) or HFD during experiments. The first group considered as regular control and fed with a RD. Groups 2-7 including HFD control, CoQ10 (10mg/kg), simvastatin (30mg/kg), atorvastatin (30mg/kg), simvastatin+CoQ10 or atorvastatin+CoQ10 treated orally for 30 days and fed with HFD. At the end of treatments, the animals were killed and blood samples were collected for biochemical examinations. The rat liver mitochondria were isolated and several mitochondrial indices including succinate dehydrogenase activity (SDA), ATP levels, mitochondrial membrane potential (MMP) and mitochondrial permeability transition pore (MPP) were determined. We found that triglyceride (Tg), cholesterol (Chol) and low-density lipoprotein (LDL) were augmented with HFD compared to RD and treatment with statins remarkably lowered the Tg, Chol and LDL levels. Mitochondrial parameters including, SDA, ATP levels, MMP and MPP were reduced with statin treatment and improved by co-administration with CoQ10. PMID:26007644

  14. Structure of YciA from Haemophilus influenzae (HI0827), a Hexameric Broad Specificity Acyl-Coenzyme A Thioesterase

    SciTech Connect

    Willis, Mark A.; Zhuang, Zhihao; Song, Feng; Howard, Andrew; Dunaway-Mariano, Debra; Herzberg, Osnat

    2008-04-02

    The crystal structure of HI0827 from Haemophilus influenzae Rd KW20, initially annotated 'hypothetical protein' in sequence databases, exhibits an acyl-coenzyme A (acyl-CoA) thioesterase 'hot dog' fold with a trimer of dimers oligomeric association, a novel assembly for this enzyme family. In studies described in the preceding paper [Zhuang, Z., Song, F., Zhao, H., Li, L., Cao, J., Eisenstein, E., Herzberg, O., and Dunaway-Mariano, D. (2008) Biochemistry 47, 2789-2796], HI0827 is shown to be an acyl-CoA thioesterase that acts on a wide range of acyl-CoA compounds. Two substrate binding sites are located across the dimer interface. The binding sites are occupied by two CoA molecules, one with full occupancy and the second only partially occupied. The CoA molecules, acquired from HI0827-expressing Escherichia coli cells, remained tightly bound to the enzyme through the protein purification steps. The difference in CoA occupancies indicates a different substrate affinity for each of the binding sites, which in turn implies that the enzyme might be subject to allosteric regulation. Mutagenesis studies have shown that the replacement of the putative catalytic carboxylate Asp44 with an alanine residue abolishes activity. The impact of this mutation is seen in the crystal structure of D44A HI0827. Whereas the overall fold and assembly of the mutant protein are the same as those of the wild-type enzyme, the CoA ligands are absent. The dimer interface is perturbed, and the channel that accommodates the thioester acyl chain is more open and wider than that observed in the wild-type enzyme. A model of intact substrate bound to wild-type HI0827 provides a structural rationale for the broad substrate range.

  15. Cloning and functional analysis of human acyl coenzyme A: Cholesterol acyltransferase1 gene P1 promoter.

    PubMed

    Ge, Jing; Cheng, Bei; Qi, Benling; Peng, Wen; Wen, Hui; Bai, Lijuan; Liu, Yun; Zhai, Wei

    2016-07-01

    Acyl-coenzyme A: cholesterol acyltransferase 1 (ACAT1) catalyzes the conversion of free cholesterol (FC) to cholesterol ester. The human ACAT1 gene P1 promoter has been cloned. However, the activity and specificity of the ACAT1 gene P1 promoter in diverse cell types remains unclear. The P1 promoter fragment was digested with KpnI/XhoI from a P1 promoter cloning vector, and was subcloned into the multiple cloning site of the Firefly luciferase vector pGL3‑Enhancer to obtain the construct P1E‑1. According to the analysis of biological information, the P1E‑1 plasmid was used to generate deletions of the ACAT1 gene P1 promoter with varying 5' ends and an identical 3' end at +65 by polymerase chain reaction (PCR). All the 5'‑deletion constructs of the P1 promoter were identified by PCR, restriction enzyme digestion mapping and DNA sequencing. The transcriptional activity of each construct was detected after transient transfection into THP‑1, HepG2, HEK293 and Hela cells using DEAE‑dextran and Lipofectamine 2000 liposome transfection reagent. Results showed that the transcriptional activity of the ACAT1 gene P1 promoter and deletions of P1 promoter in THP‑1 and HepG2 cells was higher than that in HEK293 and HeLa cells. Moreover, the transcriptional activity of P1E‑9 was higher compared with those of other deletions in THP‑1, HepG2, HEK293 and HeLa cells. These findings indicate that the transcriptional activity of the P1 promoter and the effects of deletions vary with different cell lines. Thus, the P1 promoter may drive ACAT1 gene expression with cell‑type specificity. In addition, the core sequence of ACAT1 gene P1 promoter was suggested to be between -125 and +65 bp. PMID:27220725

  16. Identification of methyl coenzyme M reductase A(mcrA) genes associated with methane-oxidizing archaea

    SciTech Connect

    Hallam, Steven J.; Girguis, Peter R.; Preston, Christina M.; Richardson, Paul M.; DeLong, Edward F.

    2003-09-01

    Phylogenetic and stable-isotope analyses implicated two methanogen-like archaeal groups, ANME-1 and ANME-2, as key participants in the process of anaerobic methane oxidation. Although nothing is known about anaerobic methane oxidation at the molecular level, the evolutionary relationship between methane-oxidizing archaea (MOA) and methanogenic archaea raises the possibility that MOA have co-opted key elements of the methanogenic pathway, reversing many of its steps to oxidize methane anaerobically. In order to explore this hypothesis, the existence and genomic conservation of methyl coenzyme M reductase (MCR), the enzyme catalyzing the terminal step in methanogenesis, was studied in ANME-1 and ANME-2 archaea isolated from various marine environments. Clone libraries targeting a conserved region of the alpha subunit of MCR (mcrA) were generated and compared from environmental samples, laboratory-incubated microcosms, and fosmid libraries. Four out of five novel mcrA types identified from these sources were associated with ANME-1 orANME-2 group members. Assignment of mcrA types to specific phylogenetic groups was based on environmental clone recoveries, selective enrichment of specific MOA and mcrA types in a microcosm, phylogenetic congruence between mcrA and small-subunit rRNA tree topologies, and genomic context derived from fosmid sequences. Analysis of the ANME-1 and ANME-2 mcrA sequences suggested the potential for catalytic activity based on conservation of active-site amino acids. These results provide a basis for identifying methanotrophic archaea with mcrA sequences and define a functional genomic link between methanogenic and methanotrophic archaea.

  17. Focal segmental glomerulosclerosis is associated with a PDSS2 haplotype and, independently, with a decreased content of coenzyme Q10

    PubMed Central

    Winkler, Cheryl A.; Peng, Min; An, Ping; McKenzie, Louise M.; Kirk, Gregory D.; Shi, Yuchen; Xie, Letian X.; Marbois, Beth N.; Clarke, Catherine F.; Kopp, Jeffrey B.

    2013-01-01

    Focal segmental glomerulosclerosis (FSGS) and collapsing glomerulopathy are common causes of nephrotic syndrome. Variants in >20 genes, including genes critical for mitochondrial function, have been associated with these podocyte diseases. One such gene, PDSS2, is required for synthesis of the decaprenyl tail of coenzyme Q10 (Q10) in humans. The mouse gene Pdss2 is mutated in the kd/kd mouse model of collapsing glomerulopathy. We examined the hypothesis that human PDSS2 polymorphisms are associated with podocyte diseases. We genotyped 377 patients with primary FSGS or collapsing glomerulopathy, together with 900 controls, for 9 single-nucleotide polymorphisms in the PDSS2 gene in a case-control study. Subjects included 247 African American (AA) and 130 European American (EA) patients and 641 AA and 259 EA controls. Among EAs, a pair of proxy SNPs was significantly associated with podocyte disease, and patients homozygous for one PDSS2 haplotype had a strongly increased risk for podocyte disease. By contrast, the distribution of PDSS2 genotypes and haplotypes was similar in AA patients and controls. Thus a PDSS2 haplotype, which has a frequency of 13% in the EA control population and a homozygote frequency of 1.2%, is associated with a significantly increased risk for FSGS and collapsing glomerulopathy in EAs. Lymphoblastoid cell lines from FSGS patients had significantly less Q10 than cell lines from controls; contrary to expectation, this finding was independent of PDSS2 haplotype. These results suggest that FSGS patients have Q10 deficiency and that this deficiency is manifested in patient-derived lymphoblastoid cell lines. PMID:23926186

  18. The effect of dietary glutathione and coenzyme Q10 on the prevention and treatment of inflammatory bowel disease in mice.

    PubMed

    Liu, Chun; Russell, Robert M; Smith, Donald E; Bronson, Roderick T; Milbury, Paul E; Furukawa, Satoru; Wang, Xiang-Dong; Blumberg, Jeffrey B

    2004-01-01

    Because reactive oxygen species have been implicated as mediators of inflammatory bowel disease (IBD), we evaluated the potential preventive and therapeutic effects of two dietary antioxidants, glutathione (GSH) and coenzyme Q10 (CoQ10) on dextran sulfate sodium (DSS)-induced colitis in mice. Fifty female 8-wk old Swiss-Webster mice were randomly assigned to 4 groups for a pre-treatment "prevention" study: (1) GSH (1% of diet); (2) CoQ10 (200 mg/kg/d); (3) DSS only (3% of drinking water); (4) control (no treatment). The mice in groups 1 and 2 were fed with GSH or CoQ10 for 21 wks, and the mice in groups 1, 2 and 3 were provided DSS from wk 7 for 4 cycles (1 cycle = 1 wk DSS followed by 2-wk water). Another 50 mice were randomly assigned to 4 groups for a 21-wk "treatment" study where the mice in groups 1, 2, and 3 were administered DSS for 6 cycles (18 wks) to induce colitis. GSH and CoQ10 were added from wk 7 until the completion of the protocol. Loose stools and hemocult positivity were modestly but significantly reduced with GSH or CoQ10 at several periods during the intervention in both the prevention and treatment studies. In contrast, histological evaluation revealed increases in colonic dysplasia and ulceration with GSH or CoQ10. Thus, in this mouse model, GSH and CoQ10 appear to have a beneficial effect on acute signs of IBD, but may have an adverse impact on the chronic pathophysiology of the disease. Further studies using additional animal models are required to determine whether GSH or CoQ10 provide a favorable or unfavorable benefit:risk ratio in the prevention or treatment of IBD. PMID:15060903

  19. Design and Evaluation of Multi-functional Nanocarriers for Selective Delivery of Coenzyme Q10 to Mitochondria

    PubMed Central

    Sharma, Anjali; Soliman, Ghareb M.; Al-Hajaj, Noura; Sharma, Rishi; Maysinger, Dusica; Kakkar, Ashok

    2016-01-01

    Impairments of mitochondrial functions have been associated with failure of cellular functions in different tissues leading to various pathologies. We report here a mitochondria–targeted nanodelivery system for coenzyme Q10 (CoQ10) which can reach mitochondria, and deliver CoQ10 in adequate quantities. Multifunctional nanocarriers based on ABC miktoarm polymers (A= PEG, B = polycaprolactone (PCL) and C = triphenylphosphonium bromide (TPPBr)) were synthesized using a combination of click chemistry with ring opening polymerization, self-assembled into nano-sized micelles, and were employed for CoQ10-loading. Drug loading capacity (60 weight%), micelle size (25–60 nm) and stability were determined using a variety of techniques. The micelles had a small critical association concentration, and were colloidally stable in solution for more than 3 months. The extraordinarily high CoQ10 loading capacity in the micelles is attributed to good compatibility between CoQ10 and PCL, as indicated by low Flory-Huggins interaction parameter. Confocal microscopy studies of fluorescently labeled polymer analog together with the mitochondria-specific vital dye label, indicated that the carrier did indeed reach mitochondria. The high CoQ10 loading efficiency allowed testing of micelles within a broad concentration range, and provided evidence for CoQ10 effectiveness in two different experimental paradigms: oxidative stress and inflammation. Combined results from chemical, analytical and biological experiments suggest that the new miktoarm-based carrier provides a suitable means of CoQ10 delivery to mitochondria without loss of drug effectiveness. The versatility of the click chemistry used to prepare this new mitochondria-targeting nanocarrier offers a widely applicable, simple and easily reproducible procedure to deliver drugs to mitochondria or other intracellular organelles. PMID:22148549

  20. Integrated Electroosmotic Perfusion of Tissue with Online Microfluidic Analysis to Track the Metabolism of Cystamine, Pantethine and Coenzyme A

    PubMed Central

    Wu, Juanfang; Sandberg, Mats; Weber, Stephen G.

    2014-01-01

    We have developed an approach that integrates electroosmotic perfusion of tissue with a substrate-containing solution and online microfluidic analysis of products, in this case thiols. Using this approach we have tracked the metabolism of cystamine, pantethine and CoA in the extracellular space of organotypic hippocampal slice cultures (OHSCs). Currently, little is known about coenzyme A (CoA) biodegradation and even less is known about the regulation and kinetic characteristics for this sequential multi-enzyme reaction. We found that the steady state percentage yields of cysteamine from cystamine and pantethine during the transit through OHSCs were 91% ± 4% (SEM) and 0.01%–0.03%, respectively. The large difference in the yields of cysteamine can be used to explain the drugs’ different toxicities and clinical effectiveness against cystinosis. The kinetic parameters of the enzyme reaction catalyzed by the ectoenzyme pantetheinase are KM,C/α = 4.4 ± 1.1 mM and Vmax,C = 29 ± 3 nM/s, where α is the percentage yield of pantethine to pantetheine through disulfide exchange. We estimate that the percentage yield of pantethine to pantetheine through disulfide exchange is approximately 0.5%. Based on the formation rate of cysteamine in the OHSCs, we obtained the overall apparent Michaelis constant and maximum reaction rate for sequential, extracellular CoA degradation in an in situ environment, which are K′M = 16 ± 4 μM, V′max = 7.1 ± 0.5 nM/s. Kinetic parameters obtained in situ, although difficult to measure, are better representations of the biochemical flux in the living organism than those from isolated enzymes in vitro. PMID:24215585

  1. Cloning of a caffeoyl-coenzyme A O-methyltransferase from Camellia sinensis and analysis of its catalytic activity.

    PubMed

    Zhang, Yue; Lv, Hai-peng; Ma, Cheng-ying; Guo, Li; Tan, Jun-feng; Peng, Qun-hua; Lin, Zhi

    2015-02-01

    Epigallocatechin-3-O-(3-O-methyl) gallate (EGCG3"Me) present in leaves of Camellia sinensis has many beneficial biological activities for human health. However, EGCG3"Me occurs naturally in tea leaves in extremely limited quantities. Finding an enzyme from C. sinensis to catalyze the synthesis of EGCG3"Me is an alternative method to make up for the scarcity of EGCG3"Me in natural situations. In the present study, a complementary DNA (cDNA) encoding region and genomic DNA of the caffeoyl-coenzyme A O-methyltransferase (CCoAOMT) gene were isolated from C. sinensis (designated CsCCoAOMT). Nucleotide sequence analysis of CsCCoAOMT revealed an open reading frame of 738 bp that encodes a polypeptide with a predicted molecular weight of 28 kDa, which correlated well with the results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The full-length DNA sequence (2678 bp) contained five exons and four introns. The deduced amino acid sequence of CsCCoAOMT shared 92% identity with CCoAOMTs from Codonopsis lanceolata and Betula luminifera. The catalytic activity of CsCCoAOMT was analyzed. Three monomethylated epigallocatechin-3-O-gallate (EGCG) compounds (EGCG4"Me, EGCG3"Me, and EGCG3'Me) were produced by CsCCoAOMT with K(m) in the micromolar range. Real-time polymerase chain reaction (RT-PCR) experiments indicated that the CsCCoAOMT transcript was present at low levels during the early stages of leaf maturity (the first leaf and bud on a shoot) but the relative expression was augmented at advanced stages of leaf maturity (the third or fourth leaf on a shoot), which accorded well with changes in EGCG3"Me content in fresh leaves. Hence, we concluded that CsCCoAOMT catalyzes the syntheses of methylated EGCGs. PMID:25644465

  2. Electrochemical Investigation of Coenzyme Q10 on Silver Electrode in Ethanol Aqueous Solution and Its Determination Using Differential Pulse Voltammetry.

    PubMed

    Li, Dan; Deng, Wei; Xu, Hu; Sun, Yinxing; Wang, Yuhong; Chen, Shouhui; Ding, Xianting

    2016-08-01

    The electrochemistry reduction of coenzyme Q10 (CoQ10) on silver electrodes has been investigated in mixed solvent containing 95 vol. % ethanol and 5 vol. % water. A combination of cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) is employed to explore the mechanism of redox processes of CoQ10 in the presence and absence of oxygen, respectively. It has been proved that the redox reaction of CoQ10 is highly dependent on the oxygen in the solution compared with that of CoQ0, which may be attributed to the isoprenoid side chain effect of CoQ10 Moreover, the effects of experimental variables such as electrolyte component, pH, temperature, and sonication time on the amperometric and potentiometric responses of CoQ10 are presented. The differential pulse voltammetry method has been developed for the quantification of the CoQ10 in the complex samples. Under the optimum conditions, the method is linear over the concentration range of 1.00 × 10(-7) to 1.00 × 10(-3) mol/L (8.63 × 10(-2) to 8.63 × 10(2) mg/kg). The limit of detection (3σ/k) is 3.33 × 10(-8) mol/L (2.88 × 10(-2) mg/kg). The recoveries of the spiked samples are between 91% and 108%. The presented method can be applied to the analysis of CoQ10 in real samples without any pretreatment. PMID:27094091

  3. Acrylyl-coenzyme A reductase, an enzyme involved in the assimilation of 3-hydroxypropionate by Rhodobacter sphaeroides.

    PubMed

    Asao, Marie; Alber, Birgit E

    2013-10-01

    The anoxygenic phototroph Rhodobacter sphaeroides uses 3-hydroxypropionate as a sole carbon source for growth. Previously, we showed that the gene (RSP_1434) known as acuI, which encodes a protein of the medium-chain dehydrogenase/reductase (MDR) superfamily, was involved in 3-hydroxypropionate assimilation via the reductive conversion to propionyl-coenzyme A (CoA). Based on these results, we speculated that acuI encoded acrylyl-CoA reductase. In this work, we characterize the in vitro enzyme activity of purified, recombinant AcuI using a coupled spectrophotometric assay. AcuI from R. sphaeroides catalyzes the NADPH-dependent acrylyl-CoA reduction to produce propionyl-CoA. Two other members of the MDR012 family within the MDR superfamily, the products of SPO_1914 from Ruegeria pomeroyi and yhdH from Escherichia coli, were shown to also be part of this new class of NADPH-dependent acrylyl-CoA reductases. The activities of the three enzymes were characterized by an extremely low Km for acrylyl-CoA (<3 μM) and turnover numbers of 45 to 80 s(-1). These homodimeric enzymes were highly specific for NADPH (Km = 18 to 33 μM), with catalytic efficiencies of more than 10-fold higher for NADPH than for NADH. The introduction of codon-optimized SPO_1914 or yhdH into a ΔacuI::kan mutant of R. sphaeroides on a plasmid complemented 3-hydroxypropionate-dependent growth. However, in their native hosts, SPO_1914 and yhdH are believed to function in the metabolism of substrates other than 3-hydroxypropionate, where acrylyl-CoA is an intermediate. Complementation of the ΔacuI::kan mutant phenotype by crotonyl-CoA carboxylase/reductase from R. sphaeroides was attributed to the fact that the enzyme also uses acrylyl-CoA as a substrate. PMID:23955006

  4. ATP-Citrate Lyase Is Required for Production of Cytosolic Acetyl Coenzyme A and Development in Aspergillus nidulans▿

    PubMed Central

    Hynes, Michael J.; Murray, Sandra L.

    2010-01-01

    Acetyl coenzyme A (CoA) is a central metabolite in carbon and energy metabolism and in the biosynthesis of cellular molecules. A source of cytoplasmic acetyl-CoA is essential for the production of fatty acids and sterols and for protein acetylation, including histone acetylation in the nucleus. In Saccharomyces cerevisiae and Candida albicans acetyl-CoA is produced from acetate by cytoplasmic acetyl-CoA synthetase, while in plants and animals acetyl-CoA is derived from citrate via ATP-citrate lyase. In the filamentous ascomycete Aspergillus nidulans, tandem divergently transcribed genes (aclA and aclB) encode the subunits of ATP-citrate lyase, and we have deleted these genes. Growth is greatly diminished on carbon sources that do not result in cytoplasmic acetyl-CoA, such as glucose and proline, while growth is not affected on carbon sources that result in the production of cytoplasmic acetyl-CoA, such as acetate and ethanol. Addition of acetate restores growth on glucose or proline, and this is dependent on facA, which encodes cytoplasmic acetyl-CoA synthetase, but not on the regulatory gene facB. Transcription of aclA and aclB is repressed by growth on acetate or ethanol. Loss of ATP-citrate lyase results in severe developmental effects, with the production of asexual spores (conidia) being greatly reduced and a complete absence of sexual development. This is in contrast to Sordaria macrospora, in which fruiting body formation is initiated but maturation is defective in an ATP-citrate lyase mutant. Addition of acetate does not repair these defects, indicating a specific requirement for high levels of cytoplasmic acetyl-CoA during differentiation. Complementation in heterokaryons between aclA and aclB deletions for all phenotypes indicates that the tandem gene arrangement is not essential. PMID:20495057

  5. ATP-citrate lyase is required for production of cytosolic acetyl coenzyme A and development in Aspergillus nidulans.

    PubMed

    Hynes, Michael J; Murray, Sandra L

    2010-07-01

    Acetyl coenzyme A (CoA) is a central metabolite in carbon and energy metabolism and in the biosynthesis of cellular molecules. A source of cytoplasmic acetyl-CoA is essential for the production of fatty acids and sterols and for protein acetylation, including histone acetylation in the nucleus. In Saccharomyces cerevisiae and Candida albicans acetyl-CoA is produced from acetate by cytoplasmic acetyl-CoA synthetase, while in plants and animals acetyl-CoA is derived from citrate via ATP-citrate lyase. In the filamentous ascomycete Aspergillus nidulans, tandem divergently transcribed genes (aclA and aclB) encode the subunits of ATP-citrate lyase, and we have deleted these genes. Growth is greatly diminished on carbon sources that do not result in cytoplasmic acetyl-CoA, such as glucose and proline, while growth is not affected on carbon sources that result in the production of cytoplasmic acetyl-CoA, such as acetate and ethanol. Addition of acetate restores growth on glucose or proline, and this is dependent on facA, which encodes cytoplasmic acetyl-CoA synthetase, but not on the regulatory gene facB. Transcription of aclA and aclB is repressed by growth on acetate or ethanol. Loss of ATP-citrate lyase results in severe developmental effects, with the production of asexual spores (conidia) being greatly reduced and a complete absence of sexual development. This is in contrast to Sordaria macrospora, in which fruiting body formation is initiated but maturation is defective in an ATP-citrate lyase mutant. Addition of acetate does not repair these defects, indicating a specific requirement for high levels of cytoplasmic acetyl-CoA during differentiation. Complementation in heterokaryons between aclA and aclB deletions for all phenotypes indicates that the tandem gene arrangement is not essential. PMID:20495057

  6. Inhibition of erythromycin synthesis by disruption of malonyl-coenzyme A decarboxylase gene eryM in Saccharopolyspora erythraea.

    PubMed Central

    Hsieh, Y J; Kolattukudy, P E

    1994-01-01

    Malonyl-coenzyme A (malonyl-CoA) decarboxylase is widely distributed in prokaryotes and eukaryotes. However, the biological function of this enzyme has not been established in any organism. To elucidate the structure and function of this enzyme, the malonyl-CoA decarboxylase gene from Saccharopolyspora erythraea (formerly Streptomyces erythreaus) was cloned and sequenced. This gene would encode a polypeptide of 417 amino acids. The deduced amino acid sequence matched the experimentally determined amino acid sequences of 25 N-terminal residues each of the enzyme and of an internal peptide obtained by proteolysis of the purified enzyme. This decarboxylase showed homology with aminoglycoside N6'-acetyltransferases of Pseudomonas aeruginosa, Serratia marcescens, and Klebsiella pneumoniae. Northern (RNA) blot analysis revealed a single transcript. The transcription initiation site was 220 bp upstream of the start codon. When expressed in Escherichia coli, the S. erythraea malonyl-CoA decarboxylase gene yielded a protein that cross-reacted with antiserum prepared against S. erythraea malonyl-CoA decarboxylase and catalyzed decarboxylation of [3-14C]malonyl-CoA to acetyl-CoA and 14CO2. The S. erythraea malonyl-CoA decarboxylase gene was disrupted by homologous recombination using an integrating vector pWHM3. The gene-disrupted transformant did not produce immunologically cross-reacting 45-kDa decarboxylase, lacked malonyl-CoA decarboxylase activity, and could not produce erythromycin. Exogenous propionate restored the ability to produce erythromycin. These results strongly suggest that the decarboxylase provides propionyl-CoA for erythromycin synthesis probably via decarboxylation of methylmalonyl-CoA derived from succinyl-CoA, and therefore the malonyl-CoA decarboxylase gene is designated eryM. The gene disrupted mutants also did not produce pigments. Images PMID:8300527

  7. RNA-binding proteins regulate cell respiration and coenzyme Q biosynthesis by post-transcriptional regulation of COQ7.

    PubMed

    Cascajo, María V; Abdelmohsen, Kotb; Noh, Ji Heon; Fernández-Ayala, Daniel J M; Willers, Imke M; Brea, Gloria; López-Lluch, Guillermo; Valenzuela-Villatoro, Marina; Cuezva, José M; Gorospe, Myriam; Siendones, Emilio; Navas, Plácido

    2016-07-01

    Coenzyme Q (CoQ) is a key component of the mitochondrial respiratory chain carrying electrons from complexes I and II to complex III and it is an intrinsic component of the respirasome. CoQ concentration is highly regulated in cells in order to adapt the metabolism of the cell to challenges of nutrient availability and stress stimuli. At least 10 proteins have been shown to be required for CoQ biosynthesis in a multi-peptide complex and COQ7 is a central regulatory factor of this pathway. We found that the first 765 bp of the 3'-untranslated region (UTR) of COQ7 mRNA contains cis-acting elements of interaction with RNA-binding proteins (RBPs) HuR and hnRNP C1/C2. Binding of hnRNP C1/C2 to COQ7 mRNA was found to require the presence of HuR, and hnRNP C1/C2 silencing appeared to stabilize COQ7 mRNA modestly. By contrast, lowering HuR levels by silencing or depriving cells of serum destabilized and reduced the half-life of COQ7 mRNA, thereby reducing COQ7 protein and CoQ biosynthesis rate. Accordingly, HuR knockdown decreased oxygen consumption rate and mitochondrial production of ATP, and increased lactate levels. Taken together, our results indicate that a reduction in COQ7 mRNA levels by HuR depletion causes mitochondrial dysfunction and a switch toward an enhanced aerobic glycolysis, the characteristic phenotype exhibited by primary deficiency of CoQ10. Thus HuR contributes to efficient oxidative phosphorylation by regulating of CoQ10 biosynthesis. PMID:26690054

  8. Host Coenzyme Q Redox State Is an Early Biomarker of Thermal Stress in the Coral Acropora millepora

    PubMed Central

    Motti, Cherie A.; Miller, David J.; van Oppen, Madeleine J. H.

    2015-01-01

    Bleaching episodes caused by increasing seawater temperatures may induce mass coral mortality and are regarded as one of the biggest threats to coral reef ecosystems worldwide. The current consensus is that this phenomenon results from enhanced production of harmful reactive oxygen species (ROS) that disrupt the symbiosis between corals and their endosymbiotic dinoflagellates, Symbiodinium. Here, the responses of two important antioxidant defence components, the host coenzyme Q (CoQ) and symbiont plastoquinone (PQ) pools, are investigated for the first time in colonies of the scleractinian coral, Acropora millepora, during experimentally-induced bleaching under ecologically relevant conditions. Liquid chromatography-mass spectrometry (LC-MS) was used to quantify the states of these two pools, together with physiological parameters assessing the general state of the symbiosis (including photosystem II photochemical efficiency, chlorophyll concentration and Symbiodinium cell densities). The results show that the responses of the two antioxidant systems occur on different timescales: (i) the redox state of the Symbiodinium PQ pool remained stable until twelve days into the experiment, after which there was an abrupt oxidative shift; (ii) by contrast, an oxidative shift of approximately 10% had occurred in the host CoQ pool after 6 days of thermal stress, prior to significant changes in any other physiological parameter measured. Host CoQ pool oxidation is thus an early biomarker of thermal stress in corals, and this antioxidant pool is likely to play a key role in quenching thermally-induced ROS in the coral-algal symbiosis. This study adds to a growing body of work that indicates host cellular responses may precede the bleaching process and symbiont dysfunction. PMID:26426118

  9. Mitochondrial COQ9 is a lipid-binding protein that associates with COQ7 to enable coenzyme Q biosynthesis.

    PubMed

    Lohman, Danielle C; Forouhar, Farhad; Beebe, Emily T; Stefely, Matthew S; Minogue, Catherine E; Ulbrich, Arne; Stefely, Jonathan A; Sukumar, Shravan; Luna-Sánchez, Marta; Jochem, Adam; Lew, Scott; Seetharaman, Jayaraman; Xiao, Rong; Wang, Huang; Westphall, Michael S; Wrobel, Russell L; Everett, John K; Mitchell, Julie C; López, Luis C; Coon, Joshua J; Tong, Liang; Pagliarini, David J

    2014-11-01

    Coenzyme Q (CoQ) is an isoprenylated quinone that is essential for cellular respiration and is synthesized in mitochondria by the combined action of at least nine proteins (COQ1-9). Although most COQ proteins are known to catalyze modifications to CoQ precursors, the biochemical role of COQ9 remains unclear. Here, we report that a disease-related COQ9 mutation leads to extensive disruption of the CoQ protein biosynthetic complex in a mouse model, and that COQ9 specifically interacts with COQ7 through a series of conserved residues. Toward understanding how COQ9 can perform these functions, we solved the crystal structure of Homo sapiens COQ9 at 2.4 Å. Unexpectedly, our structure reveals that COQ9 has structural homology to the TFR family of bacterial transcriptional regulators, but that it adopts an atypical TFR dimer orientation and is not predicted to bind DNA. Our structure also reveals a lipid-binding site, and mass spectrometry-based analyses of purified COQ9 demonstrate that it associates with multiple lipid species, including CoQ itself. The conserved COQ9 residues necessary for its interaction with COQ7 comprise a surface patch around the lipid-binding site, suggesting that COQ9 might serve to present its bound lipid to COQ7. Collectively, our data define COQ9 as the first, to our knowledge, mammalian TFR structural homolog and suggest that its lipid-binding capacity and association with COQ7 are key features for enabling CoQ biosynthesis. PMID:25339443

  10. Coenzyme Q10 serum concentration and redox status in European adults: influence of age, sex, and lipoprotein concentration

    PubMed Central

    Niklowitz, Petra; Onur, Simone; Fischer, Alexandra; Laudes, Matthias; Palussen, Michael; Menke, Thomas; Döring, Frank

    2016-01-01

    Coenzyme Q10 (CoQ10) is synthesized in almost all human tissues and presumably involved in age-related alterations and diseases. Here, we examined the impact of aging and sex on the serum CoQ10 status in 860 European adults ranging in age from 18 to 82 years. We identified an inverse U-shaped relationship between CoQ10 concentration and age. Women showed lower cholesterol-adjusted CoQ10 levels than men, irrespective of age. As observed in both sexes, the decrease in CoQ10 concentration in older subjects was accompanied by a shift in the redox status in favour of the oxidized form. A strong positive correlation was found for total CoQ10 and cholesterol concentrations (Spearman’s, p≤1E-74). We found strong negative correlations between total (Spearman’s, p≤1E-07) and between cholesterol-adjusted CoQ10 concentration (Spearman’s, p≤1E-14) and the proportion of the oxidized form of CoQ10. These correlations were not dependent on age and sex and were attenuated by supplementation with 150 mg/day reduced CoQ10 for 14 days. Overall, our results are useful to define risk groups with critical CoQ10 status in humans. In particular, older subjects were characterized by impaired CoQ10 status due to their lowered serum CoQ10 concentration and concomitant decrease of CoQ10 redox capacity. PMID:27257350

  11. Pyrophosphate-Dependent ATP Formation from Acetyl Coenzyme A in Syntrophus aciditrophicus, a New Twist on ATP Formation

    PubMed Central

    James, Kimberly L.; Ríos-Hernández, Luis A.; Wofford, Neil Q.; Mouttaki, Housna; Sieber, Jessica R.; Sheik, Cody S.; Nguyen, Hong H.; Yang, Yanan; Xie, Yongming; Erde, Jonathan; Rohlin, Lars; Karr, Elizabeth A.; Loo, Joseph A.; Ogorzalek Loo, Rachel R.; Hurst, Gregory B.; Gunsalus, Robert P.; Szweda, Luke I.

    2016-01-01

    ABSTRACT Syntrophus aciditrophicus is a model syntrophic bacterium that degrades key intermediates in anaerobic decomposition, such as benzoate, cyclohexane-1-carboxylate, and certain fatty acids, to acetate when grown with hydrogen-/formate-consuming microorganisms. ATP formation coupled to acetate production is the main source for energy conservation by S. aciditrophicus. However, the absence of homologs for phosphate acetyltransferase and acetate kinase in the genome of S. aciditrophicus leaves it unclear as to how ATP is formed, as most fermentative bacteria rely on these two enzymes to synthesize ATP from acetyl coenzyme A (CoA) and phosphate. Here, we combine transcriptomic, proteomic, metabolite, and enzymatic approaches to show that S. aciditrophicus uses AMP-forming, acetyl-CoA synthetase (Acs1) for ATP synthesis from acetyl-CoA. acs1 mRNA and Acs1 were abundant in transcriptomes and proteomes, respectively, of S. aciditrophicus grown in pure culture and coculture. Cell extracts of S. aciditrophicus had low or undetectable acetate kinase and phosphate acetyltransferase activities but had high acetyl-CoA synthetase activity under all growth conditions tested. Both Acs1 purified from S. aciditrophicus and recombinantly produced Acs1 catalyzed ATP and acetate formation from acetyl-CoA, AMP, and pyrophosphate. High pyrophosphate levels and a high AMP-to-ATP ratio (5.9 ± 1.4) in S. aciditrophicus cells support the operation of Acs1 in the acetate-forming direction. Thus, S. aciditrophicus has a unique approach to conserve energy involving pyrophosphate, AMP, acetyl-CoA, and an AMP-forming, acetyl-CoA synthetase. PMID:27531911

  12. Engineering Acetyl Coenzyme A Supply: Functional Expression of a Bacterial Pyruvate Dehydrogenase Complex in the Cytosol of Saccharomyces cerevisiae

    PubMed Central

    Kozak, Barbara U.; van Rossum, Harmen M.; Luttik, Marijke A. H.; Akeroyd, Michiel; Benjamin, Kirsten R.; Wu, Liang; de Vries, Simon; Daran, Jean-Marc; Pronk, Jack T.

    2014-01-01

    ABSTRACT The energetic (ATP) cost of biochemical pathways critically determines the maximum yield of metabolites of vital or commercial relevance. Cytosolic acetyl coenzyme A (acetyl-CoA) is a key precursor for biosynthesis in eukaryotes and for many industrially relevant product pathways that have been introduced into Saccharomyces cerevisiae, such as isoprenoids or lipids. In this yeast, synthesis of cytosolic acetyl-CoA via acetyl-CoA synthetase (ACS) involves hydrolysis of ATP to AMP and pyrophosphate. Here, we demonstrate that expression and assembly in the yeast cytosol of an ATP-independent pyruvate dehydrogenase complex (PDH) from Enterococcus faecalis can fully replace the ACS-dependent pathway for cytosolic acetyl-CoA synthesis. In vivo activity of E. faecalis PDH required simultaneous expression of E. faecalis genes encoding its E1α, E1β, E2, and E3 subunits, as well as genes involved in lipoylation of E2, and addition of lipoate to growth media. A strain lacking ACS that expressed these E. faecalis genes grew at near-wild-type rates on glucose synthetic medium supplemented with lipoate, under aerobic and anaerobic conditions. A physiological comparison of the engineered strain and an isogenic Acs+ reference strain showed small differences in biomass yields and metabolic fluxes. Cellular fractionation and gel filtration studies revealed that the E. faecalis PDH subunits were assembled in the yeast cytosol, with a subunit ratio and enzyme activity similar to values reported for PDH purified from E. faecalis. This study indicates that cytosolic expression and assembly of PDH in eukaryotic industrial microorganisms is a promising option for minimizing the energy costs of precursor supply in acetyl-CoA-dependent product pathways. PMID:25336454

  13. Integrated electroosmotic perfusion of tissue with online microfluidic analysis to track the metabolism of cystamine, pantethine, and coenzyme A.

    PubMed

    Wu, Juanfang; Sandberg, Mats; Weber, Stephen G

    2013-12-17

    We have developed an approach that integrates electroosmotic perfusion of tissue with a substrate-containing solution and online microfluidic analysis of products, in this case thiols. Using this approach we have tracked the metabolism of cystamine, pantethine and CoA in the extracellular space of organotypic hippocampal slice cultures (OHSCs). Currently, little is known about coenzyme A (CoA) biodegradation and even less is known about the regulation and kinetic characteristics for this sequential multienzyme reaction. We found that the steady state percentage yields of cysteamine from cystamine and pantethine during the transit through OHSCs were 91% ± 4% (SEM) and 0.01%-0.03%, respectively. The large difference in the yields of cysteamine can be used to explain the drugs' different toxicities and clinical effectiveness against cystinosis. The kinetic parameters of the enzyme reaction catalyzed by the ectoenzyme pantetheinase are KM,C/α = 4.4 ± 1.1 mM and Vmax,C = 29 ± 3 nM/s, where α is the percentage yield of pantethine to pantetheine through disulfide exchange. We estimate that the percentage yield of pantethine to pantetheine through disulfide exchange is approximately 0.5%. Based on the formation rate of cysteamine in the OHSCs, we obtained the overall apparent Michaelis constant and maximum reaction rate for sequential, extracellular CoA degradation in an in situ environment, which are K'M = 16 ± 4 μM, V'max = 7.1 ± 0.5 nM/s. Kinetic parameters obtained in situ, although difficult to measure, are better representations of the biochemical flux in the living organism than those from isolated enzymes in vitro. PMID:24215585

  14. Host Coenzyme Q Redox State Is an Early Biomarker of Thermal Stress in the Coral Acropora millepora.

    PubMed

    Lutz, Adrian; Raina, Jean-Baptiste; Motti, Cherie A; Miller, David J; van Oppen, Madeleine J H

    2015-01-01

    Bleaching episodes caused by increasing seawater temperatures may induce mass coral mortality and are regarded as one of the biggest threats to coral reef ecosystems worldwide. The current consensus is that this phenomenon results from enhanced production of harmful reactive oxygen species (ROS) that disrupt the symbiosis between corals and their endosymbiotic dinoflagellates, Symbiodinium. Here, the responses of two important antioxidant defence components, the host coenzyme Q (CoQ) and symbiont plastoquinone (PQ) pools, are investigated for the first time in colonies of the scleractinian coral, Acropora millepora, during experimentally-induced bleaching under ecologically relevant conditions. Liquid chromatography-mass spectrometry (LC-MS) was used to quantify the states of these two pools, together with physiological parameters assessing the general state of the symbiosis (including photosystem II photochemical efficiency, chlorophyll concentration and Symbiodinium cell densities). The results show that the responses of the two antioxidant systems occur on different timescales: (i) the redox state of the Symbiodinium PQ pool remained stable until twelve days into the experiment, after which there was an abrupt oxidative shift; (ii) by contrast, an oxidative shift of approximately 10% had occurred in the host CoQ pool after 6 days of thermal stress, prior to significant changes in any other physiological parameter measured. Host CoQ pool oxidation is thus an early biomarker of thermal stress in corals, and this antioxidant pool is likely to play a key role in quenching thermally-induced ROS in the coral-algal symbiosis. This study adds to a growing body of work that indicates host cellular responses may precede the bleaching process and symbiont dysfunction. PMID:26426118

  15. Glutaredoxin mediated redox effects of coenzyme Q10 treatment in type 1 and type 2 diabetes patients.

    PubMed

    Montano, Sergio J; Grünler, Jacob; Nair, Deepika; Tekle, Michael; Fernandes, Aristi P; Hua, Xiang; Holmgren, Arne; Brismar, Kerstin; Ungerstedt, Johanna S

    2015-12-01

    The possible beneficial effects of coenzyme Q10 (CoQ10) supplementation on disease progression and oxidant status in diabetes remains debated. In the present study, patients with type 1 and type 2 diabetes were treated with oral CoQ10, 100 mg twice daily for 12 weeks. We assessed total antioxidant capacity, intra- and extracellular levels of the redox regulating protein glutaredoxin 1 (Grx1), CoQ10, oxidized LDL-cholesterol, lipid profile and HbA1c. We have previously shown that extracellular Grx1 is increased in patients with type 2 diabetes compared to healthy subjects. In the present study, CoQ10 treatment significantly decreased serum Grx1 activity as well as total antioxidant capacity independent of type of diabetes, indicating an improvement to a less oxidized extracellular environment. The effect on serum Grx1 activity was more prominent in patients not on statin treatment. Conversely, intracellular Grx1 activity as well as mRNA levels increased independent of statin treatment. There was a significant improvement in oxidized LDL-cholesterol and lipid profile, with a tendency to improved metabolic control (HbA1c). Additionally, we describe for the first time that CoQ10 is a direct substrate for glutathione, and that Grx1 catalyzes this reaction, thus presenting a novel mechanism for CoQ10 reduction which could explain our findings of an increased intracellular Grx1. In conclusion, 12 weeks CoQ10 treatment significantly improved the extracellular redox balance and lipid profile, indicating that prolonged treatment may have beneficial effects also on clinical outcome in diabetes. PMID:26966682

  16. Levels of acyl-coenzyme A synthetase 5 in urothelial cells and corresponding neoplasias reflect cellular differentiation.

    PubMed

    Gaisa, Nadine T; Reinartz, Andrea; Schneider, Ursula; Klaus, Christina; Heidenreich, Axel; Jakse, Gerhard; Kaemmerer, Elke; Klinkhammer, Barbara Mara; Knuechel, Ruth; Gassler, Nikolaus

    2013-03-01

    Metabolic components like fatty acids and acyl-Coenzyme A (acyl-CoA) thioesters have been implicated in the pathogenesis of various tumours. The activation of fatty acids to acyl-CoAs is catalysed by long chain acyl-CoA synthetases (ACSLs), and impairment of ACSL expression levels has been associated with tumourigenesis and progression. Since ACSLs have never been investigated in bladder tissues, the study aims to characterize ACSL expression and acyl-CoA synthesis in normal and neoplastic bladder tissues, as well as cell lines. ACSL isoforms 1, 3, 4 and 5 and synthesis of acyl-CoAs were analysed using qRT-PCR, western blot analysis, immunohistochemistry and lipid mass spectrometry. In normal urothelium, expression of ACSL1, 3, 4 and 5, with highest levels of ACSL isoform 5 was found. However, ACSL5 expression was reduced in corresponding neoplastic tissues and urothelial cell lines depending on the grade of cellular differentiation. Anti-ACSL5 immunostainings showed expression in normal urothelium and a gradual loss of ACSL5 protein via pre-invasive lesions to invasive carcinomas. High expression of ACSL5 correlated with increased α-galactosidase activity and positive Uroplakin III staining in tumours. In contrast, synthesis of acyl-CoAs was enhanced in neoplastic bladder tissues compared to normal urothelium, and reflected an increase with respect to cellular differentiation. These results confirm an expression of ACSLs, especially isoform 5, in human urothelium, prove enzymatic/lipidomic changes in bladder cancer tissues, and suggest an involvement of ACSL5 in cellular maturation and/or senescence with possible effects onto induction of tumour formation or progression. Further work may identify responsible pathway alterations, and attempting to re-balance the metabolic equilibrium of the urothelium may offer a further opportunity for tumour treatment and prevention. PMID:23348389

  17. Cloning of a caffeoyl-coenzyme A O-methyltransferase from Camellia sinensis and analysis of its catalytic activity*

    PubMed Central

    Zhang, Yue; Lv, Hai-peng; Ma, Cheng-ying; Guo, Li; Tan, Jun-feng; Peng, Qun-hua; Lin, Zhi

    2015-01-01

    Epigallocatechin-3-O-(3-O-methyl) gallate (EGCG3"Me) present in leaves of Camellia sinensis has many beneficial biological activities for human health. However, EGCG3"Me occurs naturally in tea leaves in extremely limited quantities. Finding an enzyme from C. sinensis to catalyze the synthesis of EGCG3"Me is an alternative method to make up for the scarcity of EGCG3"Me in natural situations. In the present study, a complementary DNA (cDNA) encoding region and genomic DNA of the caffeoyl-coenzyme A O-methyltransferase (CCoAOMT) gene were isolated from C. sinensis (designated CsCCoAOMT). Nucleotide sequence analysis of CsCCoAOMT revealed an open reading frame of 738 bp that encodes a polypeptide with a predicted molecular weight of 28 kDa, which correlated well with the results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The full-length DNA sequence (2678 bp) contained five exons and four introns. The deduced amino acid sequence of CsCCoAOMT shared 92% identity with CCoAOMTs from Codonopsis lanceolata and Betula luminifera. The catalytic activity of CsCCoAOMT was analyzed. Three monomethylated epigallocatechin-3-O-gallate (EGCG) compounds (EGCG4"Me, EGCG3"Me, and EGCG3'Me) were produced by CsCCoAOMT with K m in the micromolar range. Real-time polymerase chain reaction (RT-PCR) experiments indicated that the CsCCoAOMT transcript was present at low levels during the early stages of leaf maturity (the first leaf and bud on a shoot) but the relative expression was augmented at advanced stages of leaf maturity (the third or fourth leaf on a shoot), which accorded well with changes in EGCG3"Me content in fresh leaves. Hence, we concluded that CsCCoAOMT catalyzes the syntheses of methylated EGCGs. PMID:25644465

  18. A caffeyl-coenzyme A synthetase initiates caffeate activation prior to caffeate reduction in the acetogenic bacterium Acetobacterium woodii.

    PubMed

    Hess, Verena; Vitt, Stella; Müller, Volker

    2011-02-01

    The anaerobic acetogenic bacterium Acetobacterium woodii couples the reduction of caffeate with electrons derived from hydrogen to the synthesis of ATP by a chemiosmotic mechanism using sodium ions as coupling ions, but the enzymes involved remain to be established. Previously, the electron transfer flavoproteins EtfA and EtfB were found to be involved in caffeate respiration. By inverse PCR, we identified three genes upstream of etfA and etfB: carA, carB, and carC. carA encodes a potential coenzyme A (CoA) transferase, carB an acyl-CoA synthetase, and carC an acyl-CoA dehydrogenase. carA, -B, and -C are located together with etfA/carE and etfB/carD on one polycistronic message, indicating that CarA, CarB, and CarC are also part of the caffeate respiration pathway. The genetic data suggest an initial ATP-dependent activation of caffeate by CarB. To prove the proposed function of CarB, the protein was overproduced in Escherichia coli, and the recombinant protein was purified. Purified CarB activates caffeate to caffeyl-CoA in an ATP- and CoA-dependent reaction. The enzyme has broad pH and temperature optima and requires K(+) for activity. In addition to caffeate, it can use ρ-coumarate, ferulate, and cinnamate as substrates, with 50, 15, and 9%, respectively, of the activity obtained with caffeate. Expression of the car operon is induced not only by caffeate, ρ-coumarate, ferulate, and cinnamate but also by sinapate. There is no induction by ρ-hydroxybenzoate or syringate. PMID:21131487

  19. Caffeate respiration in the acetogenic bacterium Acetobacterium woodii: a coenzyme A loop saves energy for caffeate activation.

    PubMed

    Hess, Verena; González, José M; Parthasarathy, Anutthaman; Buckel, Wolfgang; Müller, Volker

    2013-03-01

    The anaerobic acetogenic bacterium Acetobacterium woodii couples reduction of caffeate with electrons derived from molecular hydrogen to the synthesis of ATP by a chemiosmotic mechanism with sodium ions as coupling ions. Caffeate is activated to caffeyl coenzyme A (caffeyl-CoA) prior to its reduction, and the caffeate reduction operon encodes an ATP-dependent caffeyl-CoA synthetase that is thought to catalyze the initial caffeate activation. The operon also encodes a potential CoA transferase, the product of carA, which was thought to be involved in subsequent ATP-independent caffeate activation. To prove the proposed function of carA, we overproduced its protein in Escherichia coli and then purified it. Purified CarA drives the formation of caffeyl-CoA from caffeate with hydrocaffeyl-CoA as the CoA donor. The dependence of the reaction on caffeate and hydrocaffeyl-CoA followed Michaelis-Menten kinetics, with apparent K(m) values of 75 ± 5 μM for caffeate and 8 ± 2 μM for hydrocaffeyl-CoA. The enzyme activity had broad ranges of pH and temperature optima. In addition to being able to use caffeate, CarA could use p-coumarate and ferulate but not cinnamate, sinapate, or p-hydroxybenzoate as a CoA acceptor. Neither acetyl-CoA nor butyryl-CoA served as the CoA donor for CarA. The enzyme uses a ping-pong mechanism for CoA transfer and is the first classified member of a new subclass of family I CoA transferases that has two catalytic domains on one polypeptide chain. Apparently, CarA catalyzes an energy-saving CoA loop for caffeate activation in the steady state of caffeate respiration. PMID:23315745

  20. Coenzyme Q10 Protects Astrocytes from ROS-Induced Damage through Inhibition of Mitochondria-Mediated Cell Death Pathway

    PubMed Central

    Jing, Li; He, Mao-Tao; Chang, Yue; Mehta, Suresh L.; He, Qing-Ping; Zhang, Jian-Zhong; Li, P. Andy

    2015-01-01

    Coenzyme Q10 (CoQ10) acts by scavenging reactive oxygen species to protect neuronal cells against oxidative stress in neurodegenerative diseases. The present study was designed to examine whether CoQ10 was capable of protecting astrocytes from reactive oxygen species (ROS) mediated damage. For this purpose, ultraviolet B (UVB) irradiation was used as a tool to induce ROS stress to cultured astrocytes. The cells were treated with 10 and 25 μg/ml of CoQ10 for 3 or 24 h prior to the cells being exposed to UVB irradiation and maintained for 24 h post UVB exposure. Cell viability was assessed by MTT conversion assay. Mitochondrial respiration was assessed by respirometer. While superoxide production and mitochondrial membrane potential were measured using fluorescent probes, levels of cytochrome C (cyto-c), cleaved caspase-9, and caspase-8 were detected using Western blotting and/or immunocytochemistry. The results showed that UVB irradiation decreased cell viability and this damaging effect was associated with superoxide accumulation, mitochondrial membrane potential hyperpolarization, mitochondrial respiration suppression, cyto-c release, and the activation of both caspase-9 and -8. Treatment with CoQ10 at two different concentrations started 24 h before UVB exposure significantly increased the cell viability. The protective effect of CoQ10 was associated with reduction in superoxide, normalization of mitochondrial membrane potential, improvement of mitochondrial respiration, inhibition of cyto-c release, suppression of caspase-9. Furthermore, CoQ10 enhanced mitochondrial biogenesis. It is concluded that CoQ10 may protect astrocytes through suppression of oxidative stress, prevention of mitochondrial dysfunction, blockade of mitochondria-mediated cell death pathway, and enhancement of mitochondrial biogenesis. PMID:25552930

  1. Host Acyl Coenzyme A Binding Protein Regulates Replication Complex Assembly and Activity of a Positive-Strand RNA Virus

    PubMed Central

    Zhang, Jiantao; Diaz, Arturo; Mao, Lan; Ahlquist, Paul

    2012-01-01

    All positive-strand RNA viruses reorganize host intracellular membranes to assemble their replication complexes. Similarly, brome mosaic virus (BMV) induces two alternate forms of membrane-bound RNA replication complexes: vesicular spherules and stacks of appressed double-membrane layers. The mechanisms by which these membrane rearrangements are induced, however, remain unclear. We report here that host ACB1-encoded acyl coenzyme A (acyl-CoA) binding protein (ACBP) is required for the assembly and activity of both BMV RNA replication complexes. ACBP is highly conserved among eukaryotes, specifically binds to long-chain fatty acyl-CoA, and promotes general lipid synthesis. Deleting ACB1 inhibited BMV RNA replication up to 30-fold and resulted in formation of spherules that were ∼50% smaller but ∼4-fold more abundant than those in wild-type (wt) cells, consistent with the idea that BMV 1a invaginates and maintains viral spherules by coating the inner spherule membrane. Furthermore, smaller and more frequent spherules were preferentially formed under conditions that induce layer formation in wt cells. Conversely, cellular karmella structures, which are arrays of endoplasmic reticulum (ER) membranes formed upon overexpression of certain cellular ER membrane proteins, were formed normally, indicating a selective inhibition of 1a-induced membrane rearrangements. Restoring altered lipid composition largely complemented the BMV RNA replication defect, suggesting that ACBP was required for maintaining lipid homeostasis. Smaller and more frequent spherules are also induced by 1a mutants with specific substitutions in a membrane-anchoring amphipathic α-helix, implying that the 1a-lipid interactions play critical roles in viral replication complex assembly. PMID:22345450

  2. Oxalyl-Coenzyme A Reduction to Glyoxylate Is the Preferred Route of Oxalate Assimilation in Methylobacterium extorquens AM1

    PubMed Central

    Schneider, Kathrin; Skovran, Elizabeth

    2012-01-01

    Oxalate catabolism is conducted by phylogenetically diverse organisms, including Methylobacterium extorquens AM1. Here, we investigate the central metabolism of this alphaproteobacterium during growth on oxalate by using proteomics, mutant characterization, and 13C-labeling experiments. Our results confirm that energy conservation proceeds as previously described for M. extorquens AM1 and other characterized oxalotrophic bacteria via oxalyl-coenzyme A (oxalyl-CoA) decarboxylase and formyl-CoA transferase and subsequent oxidation to carbon dioxide via formate dehydrogenase. However, in contrast to other oxalate-degrading organisms, the assimilation of this carbon compound in M. extorquens AM1 occurs via the operation of a variant of the serine cycle as follows: oxalyl-CoA reduction to glyoxylate and conversion to glycine and its condensation with methylene-tetrahydrofolate derived from formate, resulting in the formation of C3 units. The recently discovered ethylmalonyl-CoA pathway operates during growth on oxalate but is nevertheless dispensable, indicating that oxalyl-CoA reductase is sufficient to provide the glyoxylate required for biosynthesis. Analysis of an oxalyl-CoA synthetase- and oxalyl-CoA-reductase-deficient double mutant revealed an alternative, although less efficient, strategy for oxalate assimilation via one-carbon intermediates. The alternative process consists of formate assimilation via the tetrahydrofolate pathway to fuel the serine cycle, and the ethylmalonyl-CoA pathway is used for glyoxylate regeneration. Our results support the notion that M. extorquens AM1 has a plastic central metabolism featuring multiple assimilation routes for C1 and C2 substrates, which may contribute to the rapid adaptation of this organism to new substrates and the eventual coconsumption of substrates under environmental conditions. PMID:22493020

  3. Alcohol depletes coenzyme-Q(10) associated with increased TNF-alpha secretion to induce cytotoxicity in HepG2 cells.

    PubMed

    Vidyashankar, Satyakumar; Nandakumar, Krishna S; Patki, Pralhad S

    2012-12-01

    Alcohol consumption has been implicated to cause severe hepatic steatosis which is mediated by alcohol dehydrogenase (ADH) activity and CYP(450) 2E1 expression. In this context, the effect of ethanol was studied for its influence on lipogenesis in HepG2 cell which is deficient of ADH and does not express CYP(450) 2E1. The results showed that ethanol at 100mM concentration caused 40% cytotoxicity at 72h as determined by MTT assay. The incorporation of labeled [2-(14)C] acetate into triacylglycerol and phospholipid was increased by 40% and 26% respectively upon 24h incubation, whereas incorporation of labeled [2-(14)C] acetate into cholesterol was not significantly increased. Further, ethanol inhibited HMG-CoA reductase which is a rate-limiting enzyme in the cholesterol biosynthesis. It was observed that, HMG-CoA reductase inhibition was brought about by ethanol as a consequence of decreased cell viability, since incubation of HepG2 cells with mevalonate could not increase the cholesterol content and increase the cell viability. Addition of ethanol significantly increased TNF-alpha secretion and depleted mitochondrial coenzyme-Q(10) which is detrimental for cell viability. But vitamin E (10mM) could partially restore coenzyme-Q(10) and glutathione content with decreased TNF-alpha secretion in ethanol treated cells. Further, lipid peroxidation, glutathione peroxidase and superoxide dismutase enzyme activities remained unaffected. Ethanol decreased glutathione content while, GSH/GSSG ratio was significantly higher compared to other groups showing cellular pro-oxidant and antioxidant balance remained intact. Alanine amino transferase activity was increased by 4.85 folds in cells treated with ethanol confirming hepatocyte damage. Hence, it is inferred that ethanol induced cytotoxicity in HepG2 cells due to coenzyme-Q(10) depletion and increased TNF-alpha secretion. PMID:22841563

  4. Inhibition of mitochondrial complex I by various non-steroidal anti-inflammatory drugs and its protection by quercetin via a coenzyme Q-like action.

    PubMed

    Sandoval-Acuña, Cristian; Lopez-Alarcón, Camilo; Aliaga, Margarita E; Speisky, Hernán

    2012-07-30

    Mitochondrial dysfunction plays a major role in the development of oxidative stress and cytotoxicity induced by non-steroidal anti-inflammatory drugs (NSAIDs). A major objective of the present study was to investigate whether in vitro the NSAIDs, aspirin, indomethacin, diclofenac, piroxicam and ibuprofen, which feature different chemical structures, are able to inhibit mitochondrial complex I. All NSAIDs were effective inhibitors when added both, directly to mitochondria isolated from rat duodenum epithelium (50 μM) or to Caco-2 cells (250 μM). In the former system, complex I inhibition was concentration-dependent and susceptible to competition and reversion by the addition of coenzyme Q (32.5-520 μM). Based on reports suggesting a potential gastro-protective activity of quercetin, the ability of this flavonoid to protect isolated mitochondria against NSAIDs-induced complex I inhibition was evaluated. Low micromolar concentrations of quercetin (1-20 μM) protected against such inhibition, in a concentration dependent manner. In the case of aspirin, quercetin (5 μM) increased the IC50 by 10-fold. In addition, the present study shows that quercetin (5-10 μM) can behave as a "coenzyme Q-mimetic" molecule, allowing a normal electron flow along the whole electron transporting chain (complexes I, II, III and IV). The exposed findings reveal that complex I inhibition is a common deleterious effect of NSAIDs at the mitochondrial level, and that such effect is, for all tested agents, susceptible to be prevented by quercetin. Data provided here supports the contention that the protective action of quercetin resides on its, here for first time-shown, ability to behave as a coenzyme Q-like molecule. PMID:22652335

  5. Comparative evaluation of co-enzyme Q10 and Melaleuca alternifolia as antioxidant gels in treatment of chronic periodontitis: A clinical study

    PubMed Central

    Raut, Chetan Purushottam; Sethi, Kunal S.

    2016-01-01

    Background: Conventional nonsurgical periodontal therapy has been proven to be an effective treatment for patients with chronic periodontitis. Coenzyme Q10 and tea tree oil (TTO) are known to have potential therapeutic benefits in chronic periodontitis. Aims: The aim of the study is to compare the efficacy of Coenzyme Q10 (Perio Q®) and tea tree oil (Melaleuca alternifolia) gel as an adjunct to scaling and root planing in the treatment of chronic periodontitis. Materials and Methods: Patients were divided equally into three groups: Group I (Control group): those receiving placebo gel + SRP, Group II (Test group I): those receiving Perio QTM gel + SRP, and Group III (Test group II): those receiving tea tree oil gel + SRP. A total of 15 patients with 45 sites were enrolled in the study. Clinical parameters evaluated were plaque index (PI), gingival bleeding index (GI), probing pocket depth (PPD), and clinical attachment level (CAL). Statistical Analysis Used: Paired t-test was applied using SPSS software. Results: Mean PPD reduction for Group I, Group II, and Group III was 0.50 ± 0.2, 2.95 ± 0.20, and 2.09 ± 0.15, respectively. Mean CAL reduction for Group I, Group II, and Group III was 0.45 ± 0.22, 2.33 ± 0.04, and 2.28 ± 0.09, respectively. Changes in mean PI scores for Group I, Group II, and Group III were 0.67 ± 017, 1.00 ± 0.11, and 1.08 ± 0.05 and GBI scores were 0.92 ± 0.29, 1.08 ± 0.13, and 0.88 ± 0.28, respectively. Conclusions: Coenzyme Q10 and tea tree oil gel proved to be effective in the treatment of chronic periodontitis.

  6. Coenzyme Q10 supplementation improves metabolic parameters, liver function and mitochondrial respiration in rats with high doses of atorvastatin and a cholesterol-rich diet

    PubMed Central

    2014-01-01

    Background The aim of this study was to evaluate the actions of coenzyme Q10 (CoQ10) on rats with a cholesterol-rich diet (HD) and high doses of atorvastatin (ATV, 0.2, 0.56 or 1.42 mg/day). Methods Two experiments were done, the first one without coenzyme Q10 supplementation. On the second experiment all groups received coenzyme Q10 0.57 mg/day as supplement. After a 6-week treatment animals were sacrificed, blood and liver were analyzed and liver mitochondria were isolated and its oxygen consumption was evaluated in state 3 (phosphorylating state) and state 4 (resting state) in order to calculate the respiratory control (RC). Results HD increased serum and hepatic cholesterol levels in rats with or without CoQ10. ATV reduced these values but CoQ10 improved even more serum and liver cholesterol. Triacylglycerols (TAG) were also lower in blood and liver of rats with ATV + CoQ10. HDL-C decreased in HD rats. Treatment with ATV maintained HDL-C levels. However, these values were lower in HD + CoQ10 compared to control diet (CD) + CoQ10. RC was lessened in liver mitochondria of HD. The administration of ATV increased RC. All groups supplemented with CoQ10 showed an increment in RC. In conclusion, the combined administration of ATV and CoQ10 improved biochemical parameters, liver function and mitochondrial respiration in hypercholesterolemic rats. Conclusions Our results suggest a potential beneficial effect of CoQ10 supplementation in hypercholesterolemic rats that also receive atorvastatin. This beneficial effect of CoQ10 must be combined with statin treatment in patient with high levels of cholesterol. PMID:24460631

  7. Structure of NADP+-dependent glutamate dehydrogenase from Escherichia coli - reflections on the basis of coenzyme specificity in the family of glutamate dehydrogenases

    SciTech Connect

    Sharkey, Michael A.; Oliveira, Tânia F.; Engel, Paul C.; Khan, Amir R.

    2013-09-05

    Glutamate dehydrogenases catalyse the oxidative deamination of L-glutamate to α-ketoglutarate, using NAD+ and/or NADP+ as a cofactor. Subunits of homo-hexameric bacterial enzymes comprise a substrate-binding domain I followed by a nucleotide-binding domain II. The reaction occurs in a catalytic cleft between the two domains. Although conserved residues in the nucleotide-binding domains of various dehydrogenases have been linked to cofactor preferences, the structural basis for specificity in the GDH family remains poorly understood. Here, the refined crystal structure of Escherichia coli GDH in the absence of reactants is described at 2.5-Å resolution. Modelling of NADP+ in domain II reveals the potential contribution of positively charged residues from a neighbouring α-helical hairpin to phosphate recognition. In addition, a serine that follows the P7 aspartate is presumed to form a hydrogen bond with the 2'-phosphate. Mutagenesis and kinetic analysis confirms the importance of these residues in NADP+ recognition. Surprisingly, one of the positively charged residues is conserved in all sequences of NAD+-dependent enzymes, but the conformations adopted by the corresponding regions in proteins whose structure has been solved preclude their contribution to the coordination of the 2'-ribose phosphate of NADP+. These studies clarify the sequence–structure relationships in bacterial GDHs, revealing that identical residues may specify different coenzyme preferences, depending on the structural context. Primary sequence alone is therefore not a reliable guide for predicting coenzyme specificity. We also consider how it is possible for a single sequence to accommodate both coenzymes in the dual-specificity GDHs of animals.

  8. Potency of pre–post treatment of coenzyme Q10 and melatonin supplement in ameliorating the impaired fatty acid profile in rodent model of autism

    PubMed Central

    El-Ansary, Afaf; Al-Ghamdi, Mashael; Bhat, Ramesa Shafi; Al-daihan, Sooad; Al-Ayadhi, Laila

    2016-01-01

    Background Abnormalities in fatty acid metabolism and membrane fatty acid composition play a part in a wide range of neurodevelopmental and psychiatric disorders. Altered fatty acid homeostasis as a result of insufficient dietary supplementation, genetic defects, the function of enzymes involved in their metabolism, or mitochondrial dysfunction contributes to the development of autism. Objective This study evaluates the association of altered brain lipid composition and neurotoxicity related to autism spectrum disorders in propionic acid (PA)–treated rats. Design Forty-eight young male western albino rats were used in this study. They were grouped into six equal groups with eight rats in each. The first group received only phosphate buffered saline (control group). The second group received a neurotoxic dose of buffered PA (250 mg/kg body weight/day for 3 consecutive days). The third and fourth groups were intoxicated with PA as described above followed by treatment with either coenzyme Q (4.5 mg/kg body weight) or melatonin (10 mg/kg body weight) for 1 week (therapeutically treated groups). The fifth and sixth groups were administered both compounds for 1 week prior to PA (protected groups). Methyl esters of fatty acid were extracted with hexane, and the fatty acid composition of the extract was analyzed on a gas chromatography. Results The obtained data proved that fatty acids are altered in brain tissue of PA-treated rats. All saturated fatty acids were increased while all unsaturated fatty acids were significantly decreased in the PA-treated group and relatively ameliorated in the pre–post melatonin and coenzyme Q groups. Conclusions Melatonin and coenzyme Q were effective in restoring normal level of most of the impaired fatty acids in PA-intoxicated rats which could help suggest both as supplements to ameliorate the autistic features induced in rat pups. PMID:26945230

  9. The reductive acetyl coenzyme A pathway: sequence and heterologous expression of active methyltetrahydrofolate:corrinoid/iron-sulfur protein methyltransferase from Clostridium thermoaceticum.

    PubMed Central

    Roberts, D L; Zhao, S; Doukov, T; Ragsdale, S W

    1994-01-01

    The methyltransferase (MeTr) from Clostridium thermoaceticum transfers the N5-methyl group of (6S)-methyltetrahydrofolate to the cobalt center of a corrinoid/iron-sulfur protein in the acetyl coenzyme A pathway. MeTr was purified to homogeneity and shown to lack metals. The acsE gene encoding MeTr was sequenced and actively expressed in Escherichia coli at a level of 9% of cell protein. Regions in the sequence of MeTr and the E. coli cobalamin-dependent methionine synthase were found to share significant homology, suggesting that they may represent tetrahydrofolate-binding domains. PMID:7928975

  10. Mevalonic acid-dependent degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase in vivo and in vitro.

    PubMed

    Correll, C C; Edwards, P A

    1994-01-01

    The microsomal enzyme 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase is subject to rapid degradation when cells are incubated with sterols or mevalonic acid (MVA). It has been shown that this rapid degradation is dependent upon both a sterol and another MVA-derived metabolite (Nakanishi, M., Goldstein, J. L., and Brown, M. S. (1988) J. Biol. Chem. 258, 8929-8937). In the current study, inhibitors of the isoprene biosynthetic pathway were used to define further this mevalonic acid derivative involved in the accelerated degradation of HMG-CoA reductase. The accelerated degradation of HMG-CoA reductase in met-18b-2 cells, which is induced by the addition of MVA, was inhibited by the presence of the squalene synthase inhibitor, zaragozic acid/squalestatin, or the squalene epoxidase inhibitor, NB-598. Accelerated degradation of HMG-CoA reductase was observed when NB-598-treated cells were incubated with both MVA and sterols. In contrast, the addition of MVA and sterols to zaragozic acid/squalestatin-treated cells did not result in rapid enzyme degradation. This MVA- and sterol-dependent degradation of HMG-CoA reductase persisted in cells permeabilized with reduced streptolysin O. Finally, the selective degradation of HMG-CoA reductase was also observed in rat hepatic microsomes incubated in vitro in the absence of ATP and cytosol. We conclude that the MVA-derived component that is required for the accelerated degradation of HMG-CoA reductase is derived from farnesyl disphosphate and/or squalene in the isoprenoid biosynthetic pathway. We propose that this component has a permissive effect and does not, by itself, induce the degradation of HMG-CoA reductase. We also conclude that the degradation of HMG-CoA occurs in the endoplasmic reticulum, and, once the degradation of HMG-CoA reductase has been initiated by MVA and sterols, all necessary components for the continued degradation of HMG-CoA reductase reside in the endoplasmic reticulum. PMID:8276863

  11. Acyl Coenzyme A Synthetase from Pseudomonas fragi Catalyzes the Synthesis of Adenosine 5′-Polyphosphates and Dinucleoside Polyphosphates†

    PubMed Central

    Fontes, Rui; Günther Sillero, Maria A.; Sillero, Antonio

    1998-01-01

    Acyl coenzyme A (CoA) synthetase (EC 6.2.1.8) from Pseudomonas fragi catalyzes the synthesis of adenosine 5′-tetraphosphate (p4A) and adenosine 5′-pentaphosphate (p5A) from ATP and tri- or tetrapolyphosphate, respectively. dATP, adenosine-5′-O-[γ-thiotriphosphate] (ATPγS), adenosine(5′)tetraphospho(5′)adenosine (Ap4A), and adenosine(5′)pentaphospho(5′)adenosine (Ap5A) are also substrates of the reaction yielding p4(d)A in the presence of tripolyphosphate (P3). UTP, CTP, and AMP are not substrates of the reaction. The Km values for ATP and P3 are 0.015 and 1.3 mM, respectively. Maximum velocity was obtained in the presence of MgCl2 or CoCl2 equimolecular with the sum of ATP and P3. The relative rates of synthesis of p4A with divalent cations were Mg = Co > Mn = Zn >> Ca. In the pH range used, maximum and minimum activities were measured at pH values of 5.5 and 8.2, respectively; the opposite was observed for the synthesis of palmitoyl-CoA, with maximum activity in the alkaline range. The relative rates of synthesis of palmitoyl-CoA and p4A are around 10 (at pH 5.5) and around 200 (at pH 8.2). The synthesis of p4A is inhibited by CoA, and the inhibitory effect of CoA can be counteracted by fatty acids. To a lesser extent, the enzyme catalyzes the synthesis also of Ap4A (from ATP), Ap5A (from p4A), and adenosine(5′)tetraphospho(5′)nucleoside (Ap4N) from adequate adenylyl donors (ATP, ATPγS, or octanoyl-AMP) and adequate adenylyl acceptors (nucleoside triphosphates). PMID:9620965

  12. Pyrophosphate-Dependent ATP Formation from Acetyl Coenzyme A in Syntrophus aciditrophicus , a New Twist on ATP Formation

    DOE PAGESBeta

    James, Kimberly L.; Ríos-Hernández, Luis A.; Wofford, Neil Q.; Mouttaki, Housna; Sieber, Jessica R.; Sheik, Cody S.; Nguyen, Hong H.; Yang, Yanan; Xie, Yongming; Erde, Jonathan; et al

    2016-08-16

    Syntrophus aciditrophicusis a model syntrophic bacterium that degrades key intermediates in anaerobic decomposition, such as benzoate, cyclohexane-1-carboxylate, and certain fatty acids, to acetate when grown with hydrogen-/formate-consuming microorganisms. ATP formation coupled to acetate production is the main source for energy conservation byS. aciditrophicus. However, the absence of homologs for phosphate acetyltransferase and acetate kinase in the genome ofS. aciditrophicusleaves it unclear as to how ATP is formed, as most fermentative bacteria rely on these two enzymes to synthesize ATP from acetyl coenzyme A (CoA) and phosphate. Here, we combine transcriptomic, proteomic, metabolite, and enzymatic approaches to show thatS. aciditrophicususes AMP-forming, acetyl-CoA synthetase (Acs1)more » for ATP synthesis from acetyl-CoA.acs1mRNA and Acs1 were abundant in transcriptomes and proteomes, respectively, ofS. aciditrophicusgrown in pure culture and coculture. Cell extracts ofS. aciditrophicushad low or undetectable acetate kinase and phosphate acetyltransferase activities but had high acetyl-CoA synthetase activity under all growth conditions tested. Both Acs1 purified fromS. aciditrophicusand recombinantly produced Acs1 catalyzed ATP and acetate formation from acetyl-CoA, AMP, and pyrophosphate. High pyrophosphate levels and a high AMP-to-ATP ratio (5.9 ± 1.4) inS. aciditrophicuscells support the operation of Acs1 in the acetate-forming direction. Thus,S. aciditrophicushas a unique approach to conserve energy involving pyrophosphate, AMP, acetyl-CoA, and an AMP-forming, acetyl-CoA synthetase. We find bacteria use two enzymes, phosphate acetyltransferase and acetate kinase, to make ATP from acetyl-CoA, while acetate-forming archaea use a single enzyme, an ADP-forming, acetyl-CoA synthetase, to synthesize ATP and acetate from acetyl-CoA.Syntrophus aciditrophicusapparently relies on a different approach to conserve energy during acetyl-CoA metabolism, as

  13. Expression of the Acyl-Coenzyme A: Cholesterol Acyltransferase GFP Fusion Protein in Sf21 Insect Cells

    NASA Technical Reports Server (NTRS)

    Mahtani, H. K.; Richmond, R. C.; Chang, T. Y.; Chang, C. C. Y.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    The enzyme acyl-coenzyme A:cholesterol acyltransferase (ACAT) is an important contributor to the pathological expression of plaque leading to artherosclerosis n a major health problem. Adequate knowledge of the structure of this protein will enable pharmaceutical companies to design drugs specific to the enzyme. ACAT is a membrane protein located in the endoplasmic reticulum.t The protein has never been purified to homogeneity.T.Y. Chang's laboratory at Dartmouth College provided a 4-kb cDNA clone (K1) coding for a structural gene of the protein. We have modified the gene sequence and inserted the cDNA into the BioGreen His Baculovirus transfer vector. This was successfully expressed in Sf2l insect cells as a GFP-labeled ACAT protein. The advantage to this ACAT-GFP fusion protein (abbreviated GCAT) is that one can easily monitor its expression as a function of GFP excitation at 395 nm and emission at 509 nm. Moreover, the fusion protein GCAT can be detected on Western blots with the use of commercially available GFP antibodies. Antibodies against ACAT are not readily available. The presence of the 6xHis tag in the transfer vector facilitates purification of the recombinant protein since 6xHis fusion proteins bind with high affinity to Ni-NTA agarose. Obtaining highly pure protein in large quantities is essential for subsequent crystallization. The purified GCAT fusion protein can readily be cleaved into distinct GFP and ACAT proteins in the presence of thrombin. Thrombin digests the 6xHis tag linking the two protein sequences. Preliminary experiments have indicated that both GCAT and ACAT are expressed as functional proteins. The ultimate aim is to obtain large quantities of the ACAT protein in pure and functional form appropriate for protein crystal growth. Determining protein structure is the key to the design and development of effective drugs. X-ray analysis requires large homogeneous crystals that are difficult to obtain in the gravity environment of earth

  14. Effects of dietary L-carnitine and coenzyme Q10 supplementation on performance and ascites mortality of broilers.

    PubMed

    Geng, Ailian; Guo, Yuming; Yuan, Jianmin

    2004-12-01

    The study was conducted to determine the effects of dietary L-carnitine and coenzyme Q10 (CoQ10) supplementation on growth performance and ascites mortality of broilers. A 3 x 3 factorial arrangement was employed with three levels (0, 75 and 150 mg/kg) of L-carnitine and three levels of CoQ10 (0, 20 and 40 mg/kg) supplementation during the experiment. Five hundred and forty one-day-old Arbor Acre male broiler chicks were randomly allocated into nine groups with six replicates each. All birds were fed with the basal diets from day 1 to 7 and changed to the experimental diets from day 8. During day 15 to 21 all the birds were exposed to low ambient temperature (15-18 degrees C) to induce ascites. The results showed that under this condition, growth performance of broilers were not significantly affected by CoQ10 or L-carnitine + CoQ10 supplementation during week 0-3 and 0-6, but body weight gain (BWG) of broilers was significantly reduced by 150 mg/ kg L-carnitine during week 0-6. Packed cell volume (PCV) of broilers was significantly decreased by L-carnitine and L-carnitine + CoQ10 supplementation (P < 0.05). Erythrocyte osmotic fragility (EOF), ascites heart index (AHI) and ascites mortality of broilers were significantly decreased by L-carnitine, CoQ10 and L-carnitine + CoQ10 supplementation. Though no significant changes were observed in total antioxidative capability (T-AOC), total superoxide dismutase (T-SOD) was increased by L-carnitine, CoQ10 and L-carnitine + CoQ10 supplementation (P < 0.05). Malonaldehyde (MDA) content was significantly decreased by CoQ10 and L-carnitine + CoQ10 supplementation. The results indicate that dietary L-carnitine and CoQ10 supplementation reduce ascites mortality of broilers; the reason may be partially associated with their antioxidative effects. PMID:15732580

  15. Improving production of malonyl coenzyme A-derived metabolites by abolishing Snf1-dependent regulation of Acc1.

    PubMed

    Shi, Shuobo; Chen, Yun; Siewers, Verena; Nielsen, Jens

    2014-01-01

    ABSTRACT Acetyl coenzyme A (acetyl-CoA) carboxylase (ACCase) plays a central role in carbon metabolism and has been the site of action for the development of therapeutics or herbicides, as its product, malonyl-CoA, is a precursor for production of fatty acids and other compounds. Control of Acc1 activity in the yeast Saccharomyces cerevisiae occurs mainly at two levels, i.e., regulation of transcription and repression by Snf1 protein kinase at the protein level. Here, we demonstrate a strategy for improving the activity of ACCase in S. cerevisiae by abolishing posttranslational regulation of Acc1 via site-directed mutagenesis. It was found that introduction of two site mutations in Acc1, Ser659 and Ser1157, resulted in an enhanced activity of Acc1 and increased total fatty acid content. As Snf1 regulation of Acc1 is particularly active under glucose-limited conditions, we evaluated the effect of the two site mutations in chemostat cultures. Finally, we showed that our modifications of Acc1 could enhance the supply of malonyl-CoA and therefore successfully increase the production of two industrially important products derived from malonyl-CoA, fatty acid ethyl esters and 3-hydroxypropionic acid. IMPORTANCE ACCase is responsible for carboxylation of acetyl-CoA to produce malonyl-CoA, which is a crucial step in the control of fatty acid metabolism. ACCase opened the door for pharmaceutical treatments of obesity and diabetes as well as the development of new herbicides. ACCase is also recognized as a promising target for developing cell factories, as its malonyl-CoA product serves as a universal precursor for a variety of high-value compounds in white biotechnology. Yeast ACCase is a good model in understanding the enzyme's catalysis, regulation, and inhibition. The present study describes the importance of protein phosphorylation in regulation of yeast ACCase and identifies potential regulation sites. This study led to the generation of a more efficient ACCase, which

  16. Efficacy of Statin Monotherapy or in Combination With Coenzyme A Capsule in Patients With Metabolic Syndrome and Mixed Dyslipidemia

    PubMed Central

    Lai, Jiangtao; Wu, Bifeng; Xuan, Tianming; Xia, Shudong; Liu, Zhong; Chen, Junzhu

    2015-01-01

    Background Patients with metabolic syndrome are at increased risk for cardiovascular disease. Combination lipid-lowering therapy is often needed in patients with metabolic syndrome and mixed dyslipidemia. The aim of this study was to compare the effect of statin combined with a new hypolipidemic agent, coenzyme A (CoA) with moderate-dose statin monotherapy in subjects with metabolic syndrome and mixed dyslipidemia by evaluating data from a subgroup of patients with metabolic syndrome and mixed dyslipidemia from a previously conducted randomized study. Methods In the present post hoc analysis, 212 patients were included, receiving statin monotherapy (n = 94) or statin combined with CoA 400 U/day (n = 118) for 8 weeks. The lipoprotein profile was determined at baseline and week 8 visits. Attainment of low-density lipoprotein-cholesterol (LDL-C) < 100 mg/dL, non-high-density lipoprotein-cholesterol (HDL-C) < 130 mg/dL, and the combined goal of these two parameters was also evaluated. Results The mean percent change was more prominent with CoA plus statin compared with placebo plus statin in triglyceride (TG) (-32.5% vs. -8.7%, respectively; P = 0.0002), total cholesterol (-9.6% vs. -3.6%, P = 0.013), LDL-C (-7.5% vs. 2.1%, P = 0.033), and non-HDL-C (-14.3% vs. -6.4%, P = 0.011). Treatment with CoA plus statin resulted in larger percentages of participants attaining lipid goals for LDL-C (70.3% vs. 56.4%, P = 0.044), non-HDL-C (60.2% vs. 45.7%, P = 0.039), and the combined goal of LDL-C and non-HDL-C (57.6% vs. 42.6%, P = 0.038) than statin monotherapy. Conclusion These results demonstrate that CoA plus statin therapy was more effective in improving lipoprotein parameters than statin alone in patients with metabolic syndrome and mixed hyperlipidemia. PMID:25883708

  17. Kolliphor® HS 15 Micelles for the Delivery of Coenzyme Q10: Preparation, Characterization, and Stability.

    PubMed

    Liu, Li; Mao, Kai; Wang, Wenting; Pan, Hongchun; Wang, Fen; Yang, Min; Liu, Hong

    2016-06-01

    To enhance the stability of coenzyme Q10 (CoQ10), Kolliphor® HS 15 (HS15) was employed as a carrier to build up a stable CoQ10-loaded micelle delivery system. The impact of micellar compositions, the preparation condition, and the preparation method on size characteristics, the solubilization efficiency, and micellar stability were investigated. The optimal preparation conditions were 1:6, 4, 0.2%, 118°C, and 25 min for CoQ10/HS15 mass ratio, pH value, the concentration of glucose, and the sterilization conditions. Upon these conditions, the particle size, polydispersity index (PDI), zeta potential, the entrapment efficiency, drug loading, and the critical micelle concentration (CMC) of CoQ10-loaded micelles were 19.76 nm, 0.112, -3.405 mV, 99.39%, 13.77%, and 5.623 × 10(-4) g/mL, respectively. Differential scanning calorimetry (DSC) analysis collectively corroborated that CoQ10 was entrapped into the micelles in amorphous form. The release pattern of drug was analyzed and proved to follow the first order. Additionally, the samples were exposed to the temperatures of 30°C for 6 months with more significant impact on their stabilities as compared to 4 and 25°C based on particle size and PDI. Under constant humidity with light protection long-term (25 ± 2°C, relative humidity (RH) 60 ± 10%, 18 months) conditions, there was no variation except minor changes of CoQ10 content of the samples. The shelf life of the micellar samples could be predicted as 24 months based on the stability results. Consequently, the CoQ10-loaded micelles showed excellent stabilities below 25°C as a potential drug candidate for further clinical applications. PMID:26340950

  18. Identification of 3-sulfinopropionyl coenzyme A (CoA) desulfinases within the Acyl-CoA dehydrogenase superfamily.

    PubMed

    Schürmann, Marc; Demming, Rebecca Michaela; Krewing, Marco; Rose, Judith; Wübbeler, Jan Hendrik; Steinbüchel, Alexander

    2014-02-01

    In a previous study, the essential role of 3-sulfinopropionyl coenzyme A (3SP-CoA) desulfinase acyl-CoA dehydrogenase (Acd) in Advenella mimigardefordensis strain DPN7(T) (AcdDPN7) during degradation of 3,3'-dithiodipropionic acid (DTDP) was elucidated. DTDP is a sulfur-containing precursor substrate for biosynthesis of polythioesters (PTEs). AcdDPN7 showed high amino acid sequence similarity to acyl-CoA dehydrogenases but was unable to catalyze a dehydrogenation reaction. Hence, it was investigated in the present study whether 3SP-CoA desulfinase activity is an uncommon or a widespread property within the acyl-CoA dehydrogenase superfamily. Therefore, proteins of the acyl-CoA dehydrogenase superfamily from Advenella kashmirensis WT001, Bacillus cereus DSM31, Cupriavidus necator N-1, Escherichia coli BL21, Pseudomonas putida KT2440, Burkholderia xenovorans LB400, Ralstonia eutropha H16, Variovorax paradoxus B4, Variovorax paradoxus S110, and Variovorax paradoxus TBEA6 were expressed in E. coli strains. All purified acyl-CoA dehydrogenases appeared as homotetramers, as revealed by size exclusion chromatography. AcdS110, AcdB4, AcdH16, and AcdKT2440 were able to dehydrogenate isobutyryl-CoA. AcdKT2440 additionally dehydrogenated butyryl-CoA and valeryl-CoA, whereas AcdDSM31 dehydrogenated only butyryl-CoA and valeryl-CoA. No dehydrogenation reactions were observed with propionyl-CoA, isovaleryl-CoA, succinyl-CoA, and glutaryl-CoA for any of the investigated acyl-CoA dehydrogenases. Only AcdTBEA6, AcdN-1, and AcdLB400 desulfinated 3SP-CoA and were thus identified as 3SP-CoA desulfinases within the acyl-CoA dehydrogenase family, although none of these three Acds dehydrogenated any of the tested acyl-CoA thioesters. No appropriate substrates were identified for AcdBL21 and AcdWT001. Spectrophotometric assays provided apparent Km and Vmax values for active substrates and indicated the applicability of phylogenetic analyses to predict the substrate range of

  19. Protective Effect of L-Carnitine and Coenzyme Q10 on CCl4-Induced Liver Injury in Rats

    PubMed Central

    Ali, Sanaa Ahmed; Faddah, Lilla; Abdel-Baky, Ateff; Bayoumi, Asmaa

    2010-01-01

    This study provides an information about the mechanisms of liver injury induced by CCl4, and determines the influence of administration of L-carnitine or/and CoQ10 as prophylactic agents against CCl4 deteriorative effect. The study was carried out on 80 adult male albino rats divided into eight groups, 10 animals each, as follows: four normal groups (control, treated with L-carnitine, treated with CoQ10, and treated with a combination of Lcarnitine and CoQ10) and four liver injury groups treated with CCl4 (control, treated with L-carnitine, treated with CoQ10, and treated with a combination of L-carnitine and CoQ10). Liver injury was induced by s.c. injection of a single dose of CCl4 (1 ml/kg). L-carnitine (50 mg/kg/day) was given i.p. for four successive days 24 hours before CCl4 injection, and CoQ10 (200 mg/kg) was given as a single i.p. dose 24 hours before CCl4 injection. Animals were sacrificed 24 hours after CCl4 injection, blood samples were withdrawn and liver tissue samples were homogenized. The levels of the following parameters were determined: hepatic reduced glutathione, serum ALT and AST, hepatic lipid peroxides, hepatic vitamin C, hepatic and serum total protein, serum albumin, serum sialic acid, serum nitrite, and serum and hepatic total LDH activities and LDH isoenzymes. The obtained data revealed that CCl4 injection produced a significant decrease in reduced glutathione content, vitamin C, total protein and albumin levels. However, there was a significant increase in serum ALT and AST activities, lipid peroxides, sialic acid, nitric oxide, serum and hepatic total LDH activities. On the other hand, groups treated with L-carnitine or/and CoQ10 prior to CCl4 injection showed an improvement in most parameters when compared with cirrhotic control group. It has been concluded that L-carnitine and coenzyme Q10 have a pronounced prophylactic effect against liver damage induced by halogenated alkanes such as carbon tetrachloride. PMID:21179323

  20. Purification of a Jojoba Embryo Fatty Acyl-Coenzyme A Reductase and Expression of Its cDNA in High Erucic Acid Rapeseed

    PubMed Central

    Metz, James G.; Pollard, Michael R.; Anderson, Lana; Hayes, Thomas R.; Lassner, Michael W.

    2000-01-01

    The jojoba (Simmondsia chinensis) plant produces esters of long-chain alcohols and fatty acids (waxes) as a seed lipid energy reserve. This is in contrast to the triglycerides found in seeds of other plants. We purified an alcohol-forming fatty acyl-coenzyme A reductase (FAR) from developing embryos and cloned the cDNA encoding the enzyme. Expression of a cDNA in Escherichia coli confers FAR activity upon those cells and results in the accumulation of fatty alcohols. The FAR sequence shows significant homology to an Arabidopsis protein of unknown function that is essential for pollen development. When the jojoba FAR cDNA is expressed in embryos of Brassica napus, long-chain alcohols can be detected in transmethylated seed oils. Resynthesis of the gene to reduce its A plus T content resulted in increased levels of alcohol production. In addition to free alcohols, novel wax esters were detected in the transgenic seed oils. In vitro assays revealed that B. napus embryos have an endogenous fatty acyl-coenzyme A: fatty alcohol acyl-transferase activity that could account for this wax synthesis. Thus, introduction of a single cDNA into B. napus results in a redirection of a portion of seed oil synthesis from triglycerides to waxes. PMID:10712526

  1. Sunflower Oil but Not Fish Oil Resembles Positive Effects of Virgin Olive Oil on Aged Pancreas after Life-Long Coenzyme Q Addition.

    PubMed

    González-Alonso, Adrián; Ramírez-Tortosa, César L; Varela-López, Alfonso; Roche, Enrique; Arribas, María I; Ramírez-Tortosa, M Carmen; Giampieri, Francesca; Ochoa, Julio J; Quiles, José L

    2015-01-01

    An adequate pancreatic structure is necessary for optimal organ function. Structural changes are critical in the development of age-related pancreatic disorders. In this context, it has been reported that different pancreatic compartments from rats were affected according to the fat composition consumed. Since there is a close relationship between mitochondria, oxidative stress and aging, an experimental approach has been developed to gain more insight into this process in the pancreas. A low dosage of coenzyme Q was administered life-long in rats in order to try to prevent pancreatic aging-related alterations associated to some dietary fat sources. According to that, three groups of rats were fed normocaloric diets containing Coenzyme Q (CoQ) for two years, where virgin olive, sunflower, or fish oil was included as unique fat source. Pancreatic samples for microscopy and blood samples were collected at the moment of euthanasia. The main finding is that CoQ supplementation gives different results according to fat used in diet. When sunflower oil was the main fat in the diet, CoQ supplementation seems to improve endocrine pancreas structure and in particular β-cell mass resembling positive effects of virgin olive oil. Conversely, CoQ intake does not seem to improve the structural alterations of exocrine compartment previously observed in fish oil fed rats. Therefore CoQ may improve pancreatic alterations associated to the chronic intake of some dietary fat sources. PMID:26426013

  2. Sunflower Oil but Not Fish Oil Resembles Positive Effects of Virgin Olive Oil on Aged Pancreas after Life-Long Coenzyme Q Addition

    PubMed Central

    González-Alonso, Adrián; Ramírez-Tortosa, César L.; Varela-López, Alfonso; Roche, Enrique; Arribas, María I.; Ramírez-Tortosa, M. Carmen; Giampieri, Francesca; Ochoa, Julio J.; Quiles, José L.

    2015-01-01

    An adequate pancreatic structure is necessary for optimal organ function. Structural changes are critical in the development of age-related pancreatic disorders. In this context, it has been reported that different pancreatic compartments from rats were affected according to the fat composition consumed. Since there is a close relationship between mitochondria, oxidative stress and aging, an experimental approach has been developed to gain more insight into this process in the pancreas. A low dosage of coenzyme Q was administered life-long in rats in order to try to prevent pancreatic aging-related alterations associated to some dietary fat sources. According to that, three groups of rats were fed normocaloric diets containing Coenzyme Q (CoQ) for two years, where virgin olive, sunflower, or fish oil was included as unique fat source. Pancreatic samples for microscopy and blood samples were collected at the moment of euthanasia. The main finding is that CoQ supplementation gives different results according to fat used in diet. When sunflower oil was the main fat in the diet, CoQ supplementation seems to improve endocrine pancreas structure and in particular β-cell mass resembling positive effects of virgin olive oil. Conversely, CoQ intake does not seem to improve the structural alterations of exocrine compartment previously observed in fish oil fed rats. Therefore CoQ may improve pancreatic alterations associated to the chronic intake of some dietary fat sources. PMID:26426013

  3. Methanol:coenzyme M methyltransferase from Methanosarcina barkeri. Zinc dependence and thermodynamics of the methanol:cob(I)alamin methyltransferase reaction.

    PubMed

    Sauer, K; Thauer, R K

    1997-10-01

    In Methanosarcina barkeri, methanogenesis from methanol is initiated by the formation of methyl-coenzyme M from methanol and coenzyme M. This methyl transfer reaction is catalyzed by two enzymes, designated methyltransferases 1 (MT1) and 2 (MT2). Transferase MT1, which is composed of a 50-kDa subunit, MtaB, and a 27-kDa corrinoid-harbouring subunit, MtaC, has been shown recently to catalyze the methylation of free cob(I)alamin with methanol [Sauer, K., Harms, U. & Thauer, R. K. (1997) Eur. J. Biochem. 243, 670-677]. We report here that this reaction is catalyzed by subunit MtaB overproduced in Escherichia coli. MtaB also catalyzed the formation of methanol from methylcobalamin and H2O, the hydrolysis being associated with a free-energy change deltaG(o)' of approximately +7.0 kJ/mol. MtaB was found to contain 1 mol zinc, and its activity to be zinc dependent (pK(Zn2+) = 9.3). The zinc dependence of the MT2 (MtaA)-catalyzed reaction is also described (pK(Zn2+) = 9.6). PMID:9363780

  4. Preparation of the Crystal Complex of Phosphopantetheine Adenylyltransferase from Mycobacterium tuberculosis with Coenzyme A and Investigation of Its Three-Dimensional Structure at 2.1-A Resolution

    SciTech Connect

    Timofeev, V. I.; Smirnova, E. A.; Chupova, L. A.; Esipov, R. S.; Kuranova, I. P.

    2010-11-15

    Recombinant phosphopantetheine adenylyltransferase from Mycobacterium tuberculosis (PPAT Mt), which was produced by a high-producing strain and purified to 99%, was used for the crystal growth of the complex of the enzyme with coenzyme A (CoA). Crystals suitable for X-ray diffraction study were obtained by cocrystallization. The crystals belong to sp. gr. R32 and have the unit-cell parameters a = b = 98.840 A, c = 112.880 A, {alpha} = {beta} = 90.00{sup o}, and {gamma} = 120.00{sup o}. The three-dimensional structure of the complex was determined based on X-ray diffraction data collected from the crystals to 2.1 A resolution and refined to Rf = 22.7% and Rfree = 25.93%. Active-site bound coenzyme A was found, and its nearest environment was described. The conformational changes of the enzyme due to ligand binding were revealed. The binding of CoA by tuberculosis phosphopantetheine adenylyltransferase was characterized by comparing the structures of the title complex to a similar complex of PPAT from E. coli (PPAT Ec).

  5. Preparation of the Crystal Complex of Phosphopantetheine Adenylyltransferase from Mycobacterium tuberculosis with Coenzyme A and Investigation of Its Three-Dimensional Structure at 2.1-Å Resolution

    NASA Astrophysics Data System (ADS)

    Timofeev, V. I.; Smirnova, E. A.; Chupova, L. A.; Esipov, R. S.; Kuranova, I. P.

    2010-11-01

    Recombinant phosphopantetheine adenylyltransferase from Mycobacterium tuberculosis (PPAT Mt), which was produced by a high-producing strain and purified to 99%, was used for the crystal growth of the complex of the enzyme with coenzyme A (CoA). Crystals suitable for X-ray diffraction study were obtained by cocrystallization. The crystals belong to sp. gr. R32 and have the unit-cell parameters a = b = 98.840 Å, c = 112.880 Å, α = β = 90.00°, and γ = 120.00°. The three-dimensional structure of the complex was determined based on X-ray diffraction data collected from the crystals to 2.1 Å resolution and refined to Rf = 22.7% and Rfree = 25.93%. Active-site bound coenzyme A was found, and its nearest environment was described. The conformational changes of the enzyme due to ligand binding were revealed. The binding of CoA by tuberculosis phosphopantetheine adenylyltransferase was characterized by comparing the structures of the title complex to a similar complex of PPAT from E. coli (PPAT Ec).

  6. Structural Characterization of a Human-Type Corrinoid Adenosyltransferase Confirms That Coenzyme B[subscript 12] Is Synthesized through a Four-Coordinate Intermediate

    SciTech Connect

    St. Maurice, Martin; Mera, Paola; Park, Kiyoung; Brunold, Thomas C.; Escalante-Semerena, Jorge C.; Rayment, Ivan

    2008-11-18

    ATP:cob(I)alamin adenosyltransferases (ACAs) catalyze the transfer of the 5{prime}-deoxyadenosyl moiety from ATP to the upper axial ligand position of cobalamin in the synthesis of coenzyme B{sub 12}. For the ACA-catalyzed reaction to proceed, cob(II)alamin must be reduced to cob(I)alamin in the enzyme active site. This reduction is facilitated through the generation of a four-coordinate cob(II)alamin intermediate on the enzyme. We have determined the high-resolution crystal structure of a human-type ACA from Lactobacillus reuteri with a four-coordinate cob(II)alamin bound in the enzyme active site and with the product, adenosylcobalamin, partially occupied in the active site. The assembled structures represent snapshots of the steps in the ACA-catalyzed formation of the cobalt-carbon bond of coenzyme B{sub 12}. The structures define the corrinoid binding site and provide visual evidence for a base-off, four-coordinate cob(II)alamin intermediate. The complete structural description of ACA-mediated catalysis reveals the molecular features of four-coordinate cob(II)alamin stabilization and provides additional insights into the molecular basis for dysfunction in human patients suffering from methylmalonic aciduria.

  7. Improved Xylitol Production from D-Arabitol by Enhancing the Coenzyme Regeneration Efficiency of the Pentose Phosphate Pathway in Gluconobacter oxydans.

    PubMed

    Li, Sha; Zhang, Jinliang; Xu, Hong; Feng, Xiaohai

    2016-02-10

    Gluconobacter oxydans is used to produce xylitol from D-arabitol. This study aims to improve xylitol production by increasing the coenzyme regeneration efficiency of the pentose phosphate pathway in G. oxydans. Glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) were overexpressed in G. oxydans. Real-time PCR and enzyme activity assays revealed that G6PDH/6PGDH activity and coenzyme regeneration efficiency increased in the recombinant G. oxydans strains. Approximately 29.3 g/L xylitol was obtained, with a yield of 73.2%, from 40 g/L d-arabitol in the batch biotransformation with the G. oxydans PZ strain. Moreover, the xylitol productivity (0.62 g/L/h) was 3.26-fold of the wild type strain (0.19 g/L/h). In repetitive batch biotransformation, the G. oxydans PZ cells were used for five cycles without incurring a significant loss in productivity. These results indicate that the recombinant G. oxydans PZ strain is economically feasible for xylitol production in industrial bioconversion. PMID:26727541

  8. Mild clinical manifestation and unusual recovery upon coenzyme Q₁₀ treatment in the first Chinese Leigh syndrome pedigree with mutation m.10197 G>A.

    PubMed

    Chen, Zhiting; Zhao, Zhenhua; Ye, Qinyong; Chen, Ying; Pan, Xiaodong; Sun, Bin; Huang, Huapin; Zheng, An

    2015-03-01

    The Leigh syndrome (LS), characterized by psychomotor retardation, seizures, nystagmus, ophthalmoparesis, optic atrophy, ataxia, dystonia, or respiratory failure, is one of the most severe mitochondrial diseases. In the majority of cases, the disease is fatal and patients die before age 5. Mutation m.10197 G>A was found to relate to the severe phenotype of the Leigh syndrome. Here, we describe the first Chinese Leigh syndrome pedigree with this mutation. The proband had the characteristic brain lesions of the Leigh syndrome and presented a decrease in exercise tolerance and mild face paralysis. Sequencing the NADH dehydrogenase, subunit 3 (ND3) gene in the pedigree, revealed that the proband, as well as her unaffected brother, have a high mutant load in the ND3 gene, compared to their mother. Following one‑year treatment with the coenzyme Q10, an obvious improvement in clinical features was observed by magnetic resonance imaging (MRI) in the proband. Our study and previous reports highlight the variability of phenotypic expression of the m.10197 G>A mutation, and suggest that pathogenesis of the syndrome may be affected by a number of factors. This is the first report on successful treatment of an LS patient carrying the mutation m.10197 G>A with the coenzyme Q10, indicating that Q10 may attenuate the mitochondrial dysfunctions caused by the m.10197 G>A mutation. PMID:25384404

  9. Reverse reaction of malic enzyme for HCO3- fixation into pyruvic acid to synthesize L-malic acid with enzymatic coenzyme regeneration.

    PubMed

    Ohno, Yoko; Nakamori, Toshihiko; Zheng, Haitao; Suye, Shin-ichiro

    2008-05-01

    Malic enzyme [L-malate: NAD(P)(+) oxidoreductase (EC 1.1.1.39)] catalyzes the oxidative decarboxylation of L-malic acid to produce pyruvic acid using the oxidized form of NAD(P) (NAD(P)(+)). We used a reverse reaction of the malic enzyme of Pseudomonas diminuta IFO 13182 for HCO(3)(-) fixation into pyruvic acid to produce L-malic acid with coenzyme (NADH) generation. Glucose-6-phosphate dehydrogenase (EC1.1.1.49) of Leuconostoc mesenteroides was suitable for coenzyme regeneration. Optimum conditions for the carboxylation of pyruvic acid were examined, including pyruvic acid, NAD(+), and both malic enzyme and glucose-6-phosphate dehydrogenase concentrations. Under optimal conditions, the ratio of HCO(3)(-) and pyruvic acid to malic acid was about 38% after 24 h of incubation at 30 degrees C, and the concentration of the accumulated L-malic acid in the reaction mixture was 38 mM. The malic enzyme reverse reaction was also carried out by the conjugated redox enzyme reaction with water-soluble polymer-bound NAD(+). PMID:18460807

  10. Structural Characterization of Modified Lignin in Transgenic Tobacco Plants in Which the Activity of 4-Coumarate:Coenzyme A Ligase Is Depressed.

    PubMed

    Kajita, S.; Hishiyama, S.; Tomimura, Y.; Katayama, Y.; Omori, S.

    1997-07-01

    Transgenic tobacco (Nicotiana tabacum L.) plants in which the activity of 4-coumarate:coenzyme A ligase is very low contain a novel lignin in their xylem. Details of changes in hydroxycinnamic acids bound to cell walls and in the structure of the novel lignin were identified by base hydrolysis, alkaline nitrobenzene oxidation, pyrolysis-gas chromatography, and 13C-nuclear magnetic resonance analysis. In the brownish tissue of the transgenic plants, the levels of three hydroxycinnamic acids, p-coumaric, ferulic, and sinapic, which were bound to cell walls, were apparently increased as a result of down-regulation of the expression of the gene for 4-coumarate:coenzyme A ligase. Some of these hydroxycinnamic acids were linked to cell walls via ester and ether linkages. The accumulation of hydroxycinnamic acids also induced an increase in the level of condensed units in the novel lignin of the brownish tissue. Our data indicate that the behavior of some of the incorporated hydroxycinnamic acids resembles lignin monomers in the brownish tissue, and their accumulation results in dramatic changes in the biosynthesis of lignin in transgenic plants. PMID:12223748

  11. LsrF, a coenzyme A-dependent thiolase, catalyzes the terminal step in processing the quorum sensing signal autoinducer-2

    PubMed Central

    Marques, João C.; Oh, Il Kyu; Ly, Daniel C.; Lamosa, Pedro; Ventura, M. Rita; Miller, Stephen T.; Xavier, Karina B.

    2014-01-01

    The quorum sensing signal autoinducer-2 (AI-2) regulates important bacterial behaviors, including biofilm formation and the production of virulence factors. Some bacteria, such as Escherichia coli, can quench the AI-2 signal produced by a variety of species present in the environment, and thus can influence AI-2–dependent bacterial behaviors. This process involves uptake of AI-2 via the Lsr transporter, followed by phosphorylation and consequent intracellular sequestration. Here we determine the metabolic fate of intracellular AI-2 by characterizing LsrF, the terminal protein in the Lsr AI-2 processing pathway. We identify the substrates of LsrF as 3-hydroxy-2,4-pentadione-5-phosphate (P-HPD, an isomer of AI-2-phosphate) and coenzyme A, determine the crystal structure of an LsrF catalytic mutant bound to P-HPD, and identify the reaction products. We show that LsrF catalyzes the transfer of an acetyl group from P-HPD to coenzyme A yielding dihydroxyacetone phosphate and acetyl-CoA, two key central metabolites. We further propose that LsrF, despite strong structural homology to aldolases, acts as a thiolase, an activity previously undescribed for this family of enzymes. With this work, we have fully characterized the biological pathway for AI-2 processing in E. coli, a pathway that can be used to quench AI-2 and control quorum-sensing–regulated bacterial behaviors. PMID:25225400

  12. Cholesterol, oxysterol, triglyceride, and coenzyme Q homeostasis in ALS. Evidence against the hypothesis that elevated 27-hydroxycholesterol is a pathogenic factor.

    PubMed

    Wuolikainen, Anna; Acimovic, Jure; Lövgren-Sandblom, Anita; Parini, Paolo; Andersen, Peter M; Björkhem, Ingemar

    2014-01-01

    High plasma levels of cholesterol have been suggested to be neuroprotective for the degenerative disease amyotrophic lateral sclerosis (ALS) and to be associated with increased survival time. The gene encoding cholesterol 27-hydroxylase, CYP27A1, was recently identified as a susceptibility gene for sporadic ALS. A product of this enzyme is 27-hydroxycholesterol. We investigated plasma samples from 52 ALS patients and 40 control subjects (spouses) regarding cholesterol homeostasis, lipid profiles, and coenzyme Q. Eleven of the patients carried mutations in C9orf72 and seven in SOD1. Plasma levels of 27-hydroxycholesterol were significantly lower in male patients with ALS than in controls. It was not possible to link the reduced levels to any specific mutation, and there was no significant correlation between 27-hydroxycholesterol and survival. With normalization for diet using the spouses, a correlation was found between survival and total cholesterol, very low density lipoprotein cholesterol, low density lipoprotein cholesterol, and coenzyme Q. We conclude that cholesterol, 24S-hydroxycholesterol, 25-hydroxycholesterol, 27-hydroxycholesterol and lipid profiles in plasma are of limited prognostic value in individual ALS patients. PMID:25415378

  13. Acinetobacter calcoaceticus genes involved in biosynthesis of the coenzyme pyrrolo-quinoline-quinone: nucleotide sequence and expression in Escherichia coli K-12.

    PubMed Central

    Goosen, N; Horsman, H P; Huinen, R G; van de Putte, P

    1989-01-01

    Synthesis of the coenzyme pyrrolo-quinoline-quinone (PQQ) from Acinetobacter calcoaceticus requires the products of at least four different genes. In this paper we present the nucleotide sequence of a 5,085-base-pair DNA fragment containing these four genes. Within the DNA fragment three reading frames are present, coding for proteins of Mr 10,800, 29,700, and 43,600 and corresponding to three of the PQQ genes. In the DNA region where the fourth PQQ gene was mapped the largest possible reading frame encodes for a polypeptide of only 24 amino acids. Still, the expression of this region is essential for the biosynthesis of PQQ. A possible role for this DNA region is discussed. Sandwiched between two PQQ genes an additional reading frame is present, coding for a protein of Mr 33,600. This gene, which is probably transcribed in the same operon as three of the PQQ genes, seems not required for PQQ synthesis. Expression of the PQQ genes in Acinetobacter lwoffi and Escherichia coli K-12 led to the synthesis of the coenzyme in these organisms. Images PMID:2536663

  14. An open, pilot study to evaluate the potential benefits of coenzyme Q10 combined with Ginkgo biloba extract in fibromyalgia syndrome.

    PubMed

    Lister, R E

    2002-01-01

    An open, uncontrolled study was undertaken to measure the subjective effects of coenzyme Q10 combined with a Ginkgo biloba extract in volunteer subjects with clinically diagnosed fibromyalgia syndrome. Anecdotal reports from patients with fibromyalgia syndrome have claimed benefits from the use of these supplements. The aim of this study was to determine if these reports could be substantiated in a pilot clinical trial. Patient questioning had determined that poor quality of life was a major factor in the condition and a quality-of-life questionnaire was used to measure potential benefit. Subjects were given oral doses of 200 mg coenzyme Q10 and 200 mg Ginkgo biloba extract daily for 84 days. Quality of life was measured, using the well-validated Dartmouth Primary Care Cooperative Information Project/World Organization of Family Doctors (COOP/WONCA) questionnaire that measures seven different subjective responses, at 0-, 4-, 8-, and 12-week intervals. The subjects were asked for an overall self-rating at the end of the study. A progressive improvement in the quality-of-life scores was observed over the study period and at the end, the scores showed a significant difference from those at the start. This was matched by an improvement in self-rating with 64% claiming to be better and only 9% claiming to feel worse. Adverse effects were minor. A controlled study is now planned. PMID:12025528

  15. Ataxia with oculomotor apraxia type1 (AOA1): novel and recurrent aprataxin mutations, coenzyme Q10 analyses, and clinical findings in Italian patients.

    PubMed

    Castellotti, Barbara; Mariotti, Caterina; Rimoldi, Marco; Fancellu, Roberto; Plumari, Massimo; Caimi, Sara; Uziel, Graziella; Nardocci, Nardo; Moroni, Isabella; Zorzi, Giovanna; Pareyson, Davide; Di Bella, Daniela; Di Donato, Stefano; Taroni, Franco; Gellera, Cinzia

    2011-08-01

    Ataxia with oculomotor apraxia type1 (AOA1, MIM 208920) is a rare autosomal recessive disease caused by mutations in the APTX gene. We screened a cohort of 204 patients with cerebellar ataxia and 52 patients with early-onset isolated chorea. APTX gene mutations were found in 13 ataxic patients (6%). Eleven patients were homozygous for the known p.W279X, p.W279R, and p.P206L mutations. Three novel APTX mutations were identified: c.477delC (p.I159fsX171), c.C541T (p.Q181X), and c.C916T (p.R306X). Expression of mutated proteins in lymphocytes from these patients was greatly decreased. No mutations were identified in subjects with isolated chorea. Two heterozygous APTX sequence variants (p.L248M and p.D185E) were found in six families with ataxic phenotype. Analyses of coenzyme Q10 in muscle, fibroblasts, and plasma demonstrated normal levels of coenzyme in five of six mutated subjects. The clinical phenotype was homogeneous, irrespectively of the type and location of the APTX mutation, and it was mainly characterized by early-onset cerebellar signs, sensory neuropathy, cognitive decline, and oculomotor deficits. Three cases had slightly raised alpha-fetoprotein. Our survey describes one of the largest series of AOA1 patients and contributes in defining clinical, molecular, and biochemical characteristics of this rare hereditary neurological condition. PMID:21465257

  16. LsrF, a coenzyme A-dependent thiolase, catalyzes the terminal step in processing the quorum sensing signal autoinducer-2.

    PubMed

    Marques, João C; Oh, Il Kyu; Ly, Daniel C; Lamosa, Pedro; Ventura, M Rita; Miller, Stephen T; Xavier, Karina B

    2014-09-30

    The quorum sensing signal autoinducer-2 (AI-2) regulates important bacterial behaviors, including biofilm formation and the production of virulence factors. Some bacteria, such as Escherichia coli, can quench the AI-2 signal produced by a variety of species present in the environment, and thus can influence AI-2-dependent bacterial behaviors. This process involves uptake of AI-2 via the Lsr transporter, followed by phosphorylation and consequent intracellular sequestration. Here we determine the metabolic fate of intracellular AI-2 by characterizing LsrF, the terminal protein in the Lsr AI-2 processing pathway. We identify the substrates of LsrF as 3-hydroxy-2,4-pentadione-5-phosphate (P-HPD, an isomer of AI-2-phosphate) and coenzyme A, determine the crystal structure of an LsrF catalytic mutant bound to P-HPD, and identify the reaction products. We show that LsrF catalyzes the transfer of an acetyl group from P-HPD to coenzyme A yielding dihydroxyacetone phosphate and acetyl-CoA, two key central metabolites. We further propose that LsrF, despite strong structural homology to aldolases, acts as a thiolase, an activity previously undescribed for this family of enzymes. With this work, we have fully characterized the biological pathway for AI-2 processing in E. coli, a pathway that can be used to quench AI-2 and control quorum-sensing-regulated bacterial behaviors. PMID:25225400

  17. Coenzyme Q10 (PDQ)

    MedlinePlus

    ... and use of CoQ10 as a complementary or alternative treatment for cancer? CoQ10 was first identified in 1957. Its chemical ... of CAM therapies originally considered to be purely alternative approaches are finding a place in cancer treatment—not as cures, but as complementary therapies that ...

  18. Coenzyme Q10 (PDQ)

    MedlinePlus

    ... something else. Most of the trials were not randomized or controlled . Randomized controlled trials give the highest level of evidence: In randomized trials, volunteers are assigned randomly (by chance) to ...

  19. Identification of an arginine residue in the dual coenzyme-specific glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides that plays a key role in binding NADP+ but not NAD+.

    PubMed

    Levy, H R; Vought, V E; Yin, X; Adams, M J

    1996-02-01

    Glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides can utilize either NADP or NAD as coenzyme. The enzyme's three-dimensional structure has been solved (Rowland et al., 1994, Structure 2, 1073-1087) and shown to contain a conventional nucleotide binding domain. NADP+ was modeled into the structure by superimposing the beta alpha beta domain and that of coenzyme-bound 6-phosphogluconate dehydrogenase (Adams et al., 1994, Structure 2, 651-658), enabling us to identify Arg-46 as a potentially important residue for NADP+ binding. Using site-directed mutagenesis, we constructed mutant enzymes in which Arg-46 was replaced by glutamine (R46Q) and alanine (R46A) and examined their kinetic properties. The principal effects in these mutant enzymes were that the Km and Ki values for NADP+ increased by 2 to 3 orders of magnitude over those of the wild-type enzyme. No other kinetic constant was altered more than 6.5-fold. Changing this single amino acid leads to mutant glucose-6-phosphate dehydrogenases with coenzyme specificities that favor NAD+, whereas the wild-type enzyme prefers NADP+ as coenzyme. These results confirm that Arg-46 plays a key role in NADP+ binding by contributing a positively charged planar residue that interacts primarily with the 2'-adenosine phosphate. The Arg residue corresponding to Arg-46 in L. mesenteroides glucose-6-phosphate dehydrogenase is conserved in all glucose-6-phosphate dehydrogenases and, presumably, plays the same role in all these enzymes. PMID:8579362

  20. Methanol:coenzyme M methyltransferase from Methanosarcina barkeri--identification of the active-site histidine in the corrinoid-harboring subunit MtaC by site-directed mutagenesis.

    PubMed

    Sauer, K; Thauer, R K

    1998-05-01

    The enzyme system catalyzing the formation of methyl-coenzyme M from methanol and coenzyme M in Methanosarcina barkeri is composed of the three different polypeptides MtaA, MtaB and MtaC of which MtaC harbors a corrinoid prosthetic group. The heterologous expression of mtaA and mtaB in Escherichia coli has been described previously. We report here on the overproduction of the apoprotein of MtaC in E. coli, on its reconstitution to the active holoprotein with either cob(II)alamin or methyl-cob(III)alamin, and on the properties of the reconstituted corrinoid protein. Reconstituted MtaC was found to contain 1 mol bound cobamide/mol. EPR spectroscopic evidence is presented for a His residue as an axial ligand to Co2+ of the bound corrinoid. This active-site His was identified by site-directed mutagenesis as His136 in the MtaC sequence that contains four His residues. The reconstituted MtaC, in the cob(I)amide oxidation state, was methylated with methanol in the presence of MtaB and demethylated with coenzyme M in the presence of MtaA. In the presence of both MtaB and MtaA, methyl-coenzyme M was formed from methanol and coenzyme M at specific rates comparable to those determined for the enzyme system purified from M. barkeri. M. barkeri contains an isoenzyme of MtaA designated MtbA. The isoenzyme reacted with MtaC with only 2.5% of the activity of MtaA. PMID:9654068

  1. Coenzyme Q0 from Antrodia cinnamomea in Submerged Cultures Induces Reactive Oxygen Species-Mediated Apoptosis in A549 Human Lung Cancer Cells

    PubMed Central

    Chung, Cheng-Han; Lee, Kung-Ta

    2014-01-01

    We investigated the anticancer effects of Antrodia cinnamomea, a medicinal mushroom from Taiwan, on A549 human lung cancer cells using the ethyl acetate extract from submerged culture filtrates. Our results showed that 2,3-dimethoxy-5-methyl-1,4-benzoquinone (coenzyme Q0; CoQ0) derived from A. cinnamomea submerged culture filtrates has anticancer activity. CoQ0 treatment reduced the viability of A549, HepG2, and SW480 cancer cell lines. Furthermore, CoQ0 induced reactive oxygen species (ROS) generation and apoptosis in A549 cells, which was inhibited by the antioxidant ascorbic acid. To our knowledge, these data demonstrate for the first time that CoQ0 derived from A. cinnamomea submerged culture filtrates exerts its anticancer effect through the induction of ROS-mediated apoptosis in A549 human lung cancer cells. PMID:25431605

  2. Flavin-dependent alcohol oxidase from the yeast Pichia pinus. Spatial localization of the coenzyme FAD in the protein structure: hot-tritium bombardment and ESR experiments.

    PubMed Central

    Averbakh, A Z; Pekel, N D; Seredenko, V I; Kulikov, A V; Gvozdev, R I; Rudakova, I P

    1995-01-01

    The spatial localization of the coenzyme FAD in the quaternary structure of the alcohol oxidase from the yeast Pichia pinus was studied by tritium planigraphy and ESR methods. In the present paper we measured the specific radioactivity of FAD labelled as a part of the alcohol oxidase complex. The specific-radioactivity ratio for two FAD portions (FMN and AMP) was calculated. ESR experiments show 4 A (0.4 nm) to be the depth of immersion of paramagnetic isoalloxazines into alcohol oxidase octamer molecules. It is suggested that FAD molecules are bound to the surface of the octamer, rather than to the subunit interfaces. The orientation of the prosthetic group FAD in the alcohol oxidase protein is discussed. PMID:7654201

  3. Effect of a 5-mo nutritional intervention on nutritional status and quality of life for patient with 3-hydroxyisobutyryl-coenzyme A hydrolase deficiency: A case report.

    PubMed

    Li, Chun-Wei; Yu, Kang; Xu, Yan; Sun, Xia-Yuan; Li, Rong-Rong; Wang, Fang

    2015-01-01

    3-Hydroxy-isobutyryl-coenzyme A (CoA) hydrolase (HBICH) deficiency is a rare cerebral organic aciduria caused by disturbance of valine catabolism that leads to the accumulation of toxic metabolites, methacrylyl-CoA. The major feature exhibited by a patient with HBICH deficiency includes multiple congenital malformations and abnormal neurologic findings. However, the pathophysiology of this disease remains unknown. The major treatment for HBICH deficiency involves a low-protein diet, especially restricting valine, supplemented with micronutrients and carnitine. To our knowledge, only four patients with HBICH deficiency have been reported. These patients were boys and presented with different clinical, biochemical, and genetic features than our patient. In this report, we described what was to our knowledge the first genetically confirmed girl with HBICH deficiency in China. A 5-mo nutritional intervention was given to the patient by a nutritional support team. On this regimen, the patient's symptoms were alleviated and her quality of life was improved. PMID:26001807

  4. Redesign of coenzyme B(12) dependent diol dehydratase to be resistant to the mechanism-based inactivation by glycerol and act on longer chain 1,2-diols.

    PubMed

    Yamanishi, Mamoru; Kinoshita, Koichiro; Fukuoka, Masaki; Saito, Takuya; Tanokuchi, Aya; Ikeda, Yuuki; Obayashi, Hirokazu; Mori, Koichi; Shibata, Naoki; Tobimatsu, Takamasa; Toraya, Tetsuo

    2012-03-01

    Coenzyme B(12) dependent diol dehydratase undergoes mechanism-based inactivation by glycerol, accompanying the irreversible cleavage of the coenzyme Co-C bond. Bachovchin et al. [Biochemistry16, 1082-1092 (1977)] reported that glycerol bound in the G(S) conformation, in which the pro-S-CH(2) OH group is oriented to the hydrogen-abstracting site, primarily contributes to the inactivation reaction. To understand the mechanism of inactivation by glycerol, we analyzed the X-ray structure of diol dehydratase complexed with cyanocobalamin and glycerol. Glycerol is bound to the active site preferentially in the same conformation as that of (S)-1,2-propanediol, i.e. in the G(S) conformation, with its 3-OH group hydrogen bonded to Serα301, but not to nearby Glnα336. k(inact) of the Sα301A, Qα336A and Sα301A/Qα336A mutants with glycerol was much smaller than that of the wild-type enzyme. k(cat) /k(inact) showed that the Sα301A and Qα336A mutants are substantially more resistant to glycerol inactivation than the wild-type enzyme, suggesting that Serα301 and Glnα336 are directly or indirectly involved in the inactivation. The degree of preference for (S)-1,2-propanediol decreased on these mutations. The substrate activities towards longer chain 1,2-diols significantly increased on the Sα301A/Qα336A double mutation, probably because these amino acid substitutions yield more space for accommodating a longer alkyl group on C3 of 1,2-diols. Database Structural data are available in the Protein Data Bank under the accession number 3AUJ. Structured digital abstract • Diol dehydrase gamma subunit, Diol dehydrase beta subunit and Diol dehydrase alpha subunit physically interact by X-ray crystallography (View interaction). PMID:22221669

  5. Transcriptional and Functional Analysis of Oxalyl-Coenzyme A (CoA) Decarboxylase and Formyl-CoA Transferase Genes from Lactobacillus acidophilus

    PubMed Central

    Azcarate-Peril, M. Andrea; Bruno-Bárcena, Jose M.; Hassan, Hosni M.; Klaenhammer, Todd R.

    2006-01-01

    Oxalic acid is found in dietary sources (such as coffee, tea, and chocolate) or is produced by the intestinal microflora from metabolic precursors, like ascorbic acid. In the human intestine, oxalate may combine with calcium, sodium, magnesium, or potassium to form less soluble salts, which can cause pathological disorders such as hyperoxaluria, urolithiasis, and renal failure in humans. In this study, an operon containing genes homologous to a formyl coenzyme A transferase gene (frc) and an oxalyl coenzyme A decarboxylase gene (oxc) was identified in the genome of the probiotic bacterium Lactobacillus acidophilus. Physiological analysis of a mutant harboring a deleted version of the frc gene confirmed that frc expression specifically improves survival in the presence of oxalic acid at pH 3.5 compared with the survival of the wild-type strain. Moreover, the frc mutant was unable to degrade oxalate. These genes, which have not previously been described in lactobacilli, appear to be responsible for oxalate degradation in this organism. Transcriptional analysis using cDNA microarrays and reverse transcription-quantitative PCR revealed that mildly acidic conditions were a prerequisite for frc and oxc transcription. As a consequence, oxalate-dependent induction of these genes occurred only in cells first adapted to subinhibitory concentrations of oxalate and then exposed to pH 5.5. Where genome information was available, other lactic acid bacteria were screened for frc and oxc genes. With the exception of Lactobacillus gasseri and Bifidobacterium lactis, none of the other strains harbored genes for oxalate utilization. PMID:16517636

  6. Production of stable isotope-labeled acyl-coenzyme A thioesters by yeast stable isotope labeling by essential nutrients in cell culture

    PubMed Central

    Snyder, Nathaniel W.; Tombline, Gregory; Worth, Andrew J.; Parry, Robert C.; Silvers, Jacob A.; Gillespie, Kevin P.; Basu, Sankha S.; Millen, Jonathan; Goldfarb, David S.; Blair, Ian A.

    2015-01-01

    Acyl-coenzyme A (CoA) thioesters are key metabolites in numerous anabolic and catabolic pathways, including fatty acid biosynthesis and β-oxidation, the Krebs cycle, and cholesterol and isoprenoid biosynthesis. Stable isotope dilution-based methodology is the gold standard for quantitative analyses by mass spectrometry. However, chemical synthesis of families of stable isotope labeled metabolites such as acyl-coenzyme A thioesters is impractical. Previously, we biosynthetically generated a library of stable isotope internal standard analogs of acyl-CoA thioesters by exploiting the essential requirement in mammals and insects for pantothenic acid (vitamin B5) as a metabolic precursor for the CoA backbone. By replacing pantothenic acid in the cell media with commercially available [13C3 15N1]-pantothenic acid, mammalian cells exclusively incorporated [13C3 15N1]-pantothenate into the biosynthesis of acyl-CoA and acyl-CoA thioesters. We have now developed a much more efficient method for generating stable isotope labeled CoA and acyl-CoAs from [13C3 15N1]-pantothenate using Stable Isotope Labeling by Essential nutrients in Cell culture (SILEC) in Pan6 deficient yeast cells. Efficiency and consistency of labeling were also increased, likely due to the stringently defined and reproducible conditions used for yeast culture. The yeast SILEC method greatly enhances the ease of use and accessibility of labeled CoA thioesters and also provides proof-of-concept for generating other labeled metabolites in yeast mutants. PMID:25572876

  7. Structure of the Type III Pantothenate Kinase from Bacillus Anthracis at 2.0 A Resolution: Implications for Coenzyme A-Dependent Redox Biology

    SciTech Connect

    Nicely,N.; Parsonage, D.; Paige, C.; Newton, G.; Fahey, R.; Leonardi, R.; Jackowski, S.; Mallett, T.; Claiborne, A.

    2007-01-01

    Coenzyme A (CoASH) is the major low-molecular weight thiol in Staphylococcus aureus and a number of other bacteria; the crystal structure of the S. aureus coenzyme A-disulfide reductase (CoADR), which maintains the reduced intracellular state of CoASH, has recently been reported [Mallett, T.C., Wallen, J.R., Karplus, P.A., Sakai, H., Tsukihara, T., and Claiborne, A. (2006) Biochemistry 45, 11278-89]. In this report we demonstrate that CoASH is the major thiol in Bacillus anthracis; a bioinformatics analysis indicates that three of the four proteins responsible for the conversion of pantothenate (Pan) to CoASH in Escherichia coli are conserved in B. anthracis. In contrast, a novel type III pantothenate kinase (PanK) catalyzes the first committed step in the biosynthetic pathway in B. anthracis; unlike the E. coli type I PanK, this enzyme is not subject to feedback inhibition by CoASH. The crystal structure of B. anthracis PanK (BaPanK), solved using multiwavelength anomalous dispersion data and refined at a resolution of 2.0 {angstrom}, demonstrates that BaPanK is a new member of the Acetate and Sugar Kinase/Hsc70/Actin (ASKHA) superfamily. The Pan and ATP substrates have been modeled into the active-site cleft; in addition to providing a clear rationale for the absence of CoASH inhibition, analysis of the Pan-binding pocket has led to the development of two new structure-based motifs (the PAN and INTERFACE motifs). Our analyses also suggest that the type III PanK in the spore-forming B. anthracis plays an essential role in the novel thiol/disulfide redox biology of this category A biodefense pathogen.

  8. The effect of coenzyme Q10 included by γ-cyclodextrin on the growth of fission yeast studied by microscope Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Nishida, Tatsuro; Kaino, Tomohiro; Ikarashi, Ryo; Nakata, Daisuke; Terao, Keiji; Ando, Masahiro; Hamaguchi, Hiro-o.; Kawamukai, Makoto; Yamamoto, Tatsuyuki

    2013-09-01

    The inclusion complex of coenzyme Q10 (CoQ10) by γ-cyclodextrin (γ-CD), CoQ10-CD complex, was recently developed. The addition of the CoQ10-CD complex recovered the growth of a fission yeast mutant strain, Δdps1, which otherwise cannot grow well due to the lack of coenzyme Q producing ability. However, the oxygen consumption rate of this strain was not restored by the addition of the CoQ10-CD complex. The addition of two other anti-oxidative reagents, glutathione and ascorbic acid, also recovered the growth of the Δdps1 strain as well. These results indicated that the recovery of the growth of Δdps1 was brought about by the anti-oxidative property of CoQ10. The intensity of Raman spectra of Δdps1 at 1602 cm-1, which is prominently observed for the wild type of the fission yeast, was compared between before and after addition of the CoQ10-CD complex. The signal was very weakly observed for Δdps1 and did not increase in intensity by the addition of the CoQ10-CD complex. These results suggested the recovery of the growth of Δdps1 was brought about not by the restoration of respiration function of Δdps1 but by the anti-oxidative property of CoQ10 to result in the decrease in the oxidative stress.

  9. Incorporation of coenzyme Q10 into bovine oocytes improves mitochondrial features and alleviates the effects of summer thermal stress on developmental competence.

    PubMed

    Gendelman, Mirit; Roth, Zvi

    2012-11-01

    Environmental stress-induced alterations in oocyte mitochondria are suggested to deleteriously affect developmental competence of the ovarian pool of oocytes. We examined the association between seasonal effects on oocyte developmental competence and mitochondrial distribution, polarization, mitochondrial DNA (mtDNA) content, and RNA expression, and whether the incorporation of coenzyme Q10 (CoQ10) might improve these effects. Bovine oocytes were collected during the summer (June-August), fall (September-November), and winter (December-May), matured in vitro with or without 50 μM CoQ10, fertilized, and cultured for 8 days. The proportion of developed blastocysts was highest in the winter, intermediate in the fall, and lowest in the summer. Matured oocytes were classified into categories I-IV according to their mitochondrial distribution pattern (MitoTracker green). The proportion of high- and low-polarized mitochondria (JC-1 assay) differed between oocyte categories but was not affected by season. On the other hand, oocyte distribution into categories differed between seasons and was affected by CoQ10, with an increased proportion of category I oocytes in the fall. Oocyte mtDNA did not differ between seasons, but expression of mitochondrion-associated genes involved in the respiratory chain (ND2, SDHD, CYTB, COXII, ATP5B, and TFAM) did. Coenzyme Q10 increased the expression of CYTB, COXII, and ATP5B and the proportions of blastocysts developed in the fall. In summary, season-induced alterations in mitochondrial functions might explain, in part, the reduced oocyte developmental competence. It seems that in the fall, under modest harm, CoQ10 incorporation can alleviate these deleterious effects somewhat. PMID:23018185

  10. Analysis and prediction of the physiological effects of altered coenzyme specificity in xylose reductase and xylitol dehydrogenase during xylose fermentation by Saccharomyces cerevisiae

    PubMed Central

    Krahulec, Stefan; Klimacek, Mario; Nidetzky, Bernd

    2012-01-01

    An advanced strategy of Saccharomyces cerevisiae strain development for fermentation of xylose applies tailored enzymes in the process of metabolic engineering. The coenzyme specificities of the NADPH-preferring xylose reductase (XR) and the NAD+-dependent xylitol dehydrogenase (XDH) have been targeted in previous studies by protein design or evolution with the aim of improving the recycling of NADH or NADPH in their two-step pathway, converting xylose to xylulose. Yeast strains expressing variant pairs of XR and XDH that according to in vitro kinetic data were suggested to be much better matched in coenzyme usage than the corresponding pair of wild-type enzymes, exhibit widely varying capabilities for xylose fermentation. To achieve coherence between enzyme properties and the observed strain performance during fermentation, we explored the published kinetic parameters for wild-type and engineered forms of XR and XDH as possible predictors of xylitol by-product formation (Yxylitol) in yeast physiology. We found that the ratio of enzymatic reaction rates using NADP(H) and NAD(H) that was calculated by applying intracellular reactant concentrations to rate equations derived from bi-substrate kinetic analysis, succeeded in giving a statistically reliable forecast of the trend effect on Yxylitol. Prediction based solely on catalytic efficiencies with or without binding affinities for NADP(H) and NAD(H) were not dependable, and we define a minimum demand on the enzyme kinetic characterization to be performed for this purpose. An immediate explanation is provided for the typically lower Yxylitol in the current strains harboring XR engineered for utilization of NADH as compared to strains harboring XDH engineered for utilization of NADP+. The known XDH enzymes all exhibit a relatively high Km for NADP+ so that physiological boundary conditions are somewhat unfavorable for xylitol oxidation by NADP+. A criterion of physiological fitness is developed for engineered XR

  11. The effect of production system and age on levels of iron, taurine, carnosine, coenzyme Q(10), and creatine in beef muscles and liver.

    PubMed

    Purchas, R W; Busboom, J R

    2005-08-01

    Samples of longissimus (LL) and triceps brachii (TB) muscles from Angus-cross heifers finished either on a high-concentrate ration in Washington, USA, (US cattle, n=15) or on pasture in New Zealand (NZ cattle, n=16) were assessed for composition characteristics. Half of the NZ cattle were of a similar age to the US cattle (NZAge) and half were of a similar weight (NZWt). Iron concentration was higher in TB (20.9 vs. 17.5μgg(-1); P<0.001) and was higher for the NZWt group than the NZAge group or the US cattle. The proportion of iron as haem iron was highest for the NZWt group (87.3%; P<0.01), but the proportion as soluble haem iron was highest for the US cattle. For a sub-group of 10 pasture-finished cattle, iron levels in cheek muscle were higher than for LL or TB, and liver levels were 66% higher than cheek muscle. The proportion of haem iron, however, was lowest in liver (55.3%) and was lower in cheek muscle (78.4%) than LL or TB. Relative to LL, TB had higher levels of taurine and coenzyme Q(10), but lower levels of carnosine, creatine and creatinine, as expected for a muscle with a more aerobic metabolism. These differences were magnified for the even more aerobic cheek muscle. Differences between the two NZ groups were small, but muscles from the US cattle contained less taurine, carnosine, coenzyme Q(10), and creatinine. Reasons for these differences in various meat components for similar cattle from different production systems are not clear. PMID:22063884

  12. Less increase of copeptin and MR-proADM due to intervention with selenium and coenzyme Q10 combined: Results from a 4-year prospective randomized double-blind placebo-controlled trial among elderly Swedish citizens.

    PubMed

    Alehagen, Urban; Aaseth, Jan; Johansson, Peter

    2015-01-01

    Intervention with selenium and coenzyme Q10 have recently been found to reduce mortality and increase cardiac function. The mechanisms behind these effects are unclear. As selenium and coenzyme Q10 is involved in the anti-oxidative defence, the present study aimed to evaluate effects of selenium and coenzyme Q10 on copeptin and adrenomedullin as oxidative stress biomarkers. Therefore 437 elderly individuals were included and given intervention for 4 years. Clinical examination and blood samples were undertaken at start and after 18 and 48 months. Evaluations of copeptin and MR-proADM changes were performed using repeated measures of variance. Cardiovascular mortality was evaluated using a 10-year-period of follow-up, and presented in Kaplan-Meier plots. A significant increase in copeptin level could be seen in the placebo group during the intervention period (from 9.4 pmol/L to 15.3 pmol/L), compared to the active treatment group. The difference between the groups was confirmed in the repeated measurement of variance analyses (P = 0.031) with less copeptin increase in the active treatment group. Furthermore, active treatment appeared to protect against cardiovascular death both in those with high and with low copeptin levels at inclusion. Less increase of MR-proADM could also be seen during the intervention in the active treatment group compared to controls (P = 0.026). Both in those having an MR-proADM level above or below median level, significantly less cardiovascular mortality could be seen in the active treatment group (P = 0.0001, and P = 0.04 respectively). In conclusion supplementation with selenium and coenzyme Q10 during four years resulted in less concentration of both copeptin and MR-proADM. A cardioprotective effect of the supplementation was registered, irrespective of the initial levels of these biomarkers, and this protection was recognized also after 10 years of observation. PMID:26662217

  13. [Changes in the content of the thiol form of the acetylation coenzyme in the liver during administration of vitamin B3-active compounds to intact and locally irradiated animals].

    PubMed

    Rozanov, V A

    1984-01-01

    A local exposure of mouse head to gamma-rays caused phase changes in CoASH content of the liver. The administration of D-pantothenate-Ca and D-pantethine increased the level of CoASH in the liver of exposed animals; calcium D-homopantothenate did not influence the co-enzyme content. It is suggested that pantothenate and pantethine act like vitamins while the influence of homopantothenate is associated with the effects of calcium ions. PMID:6739738

  14. Contribution of the Distal Pocket Residue to the Acyl-Chain-Length Specificity of (R)-Specific Enoyl-Coenzyme A Hydratases from Pseudomonas spp.

    PubMed Central

    Sato, Shun; Hiroe, Ayaka; Ishizuka, Koya; Kanazawa, Hiromi; Shiro, Yoshitsugu

    2015-01-01

    (R)-Specific enoyl-coenzyme A (enoyl-CoA) hydratases (PhaJs) are capable of supplying monomers from fatty acid β-oxidation to polyhydroxyalkanoate (PHA) biosynthesis. PhaJ1Pp from Pseudomonas putida showed broader substrate specificity than did PhaJ1Pa from Pseudomonas aeruginosa, despite sharing 67% amino acid sequence identity. In this study, the substrate specificity characteristics of two Pseudomonas PhaJ1 enzymes were investigated by site-directed mutagenesis, chimeragenesis, X-ray crystallographic analysis, and homology modeling. In PhaJ1Pp, the replacement of valine with isoleucine at position 72 resulted in an increased preference for enoyl-coenzyme A (CoA) elements with shorter chain lengths. Conversely, at the same position in PhaJ1Pa, the replacement of isoleucine with valine resulted in an increased preference for enoyl-CoAs with longer chain lengths. These changes suggest a narrowing and broadening in the substrate specificity range of the PhaJ1Pp and PhaJ1Pa mutants, respectively. However, the substrate specificity remains broader in PhaJ1Pp than in PhaJ1Pa. Additionally, three chimeric PhaJ1 enzymes, composed from PhaJ1Pp and PhaJ1Pa, all showed significant hydratase activity, and their substrate preferences were within the range exhibited by the parental PhaJ1 enzymes. The crystal structure of PhaJ1Pa was determined at a resolution of 1.7 Å, and subsequent homology modeling of PhaJ1Pp revealed that in the acyl-chain binding pocket, the amino acid at position 72 was the only difference between the two structures. These results indicate that the chain-length specificity of PhaJ1 is determined mainly by the bulkiness of the amino acid residue at position 72, but that other factors, such as structural fluctuations, also affect specificity. PMID:26386053

  15. cDNA Cloning, Heterologous Expressions, and Functional Characterization of Malonyl-Coenzyme A:Anthocyanidin 3-O-Glucoside-6"-O-Malonyltransferase from Dahlia Flowers1

    PubMed Central

    Suzuki, Hirokazu; Nakayama, Toru; Yonekura-Sakakibara, Keiko; Fukui, Yuko; Nakamura, Noriko; Yamaguchi, Masa-atsu; Tanaka, Yoshikazu; Kusumi, Takaaki; Nishino, Tokuzo

    2002-01-01

    In the flowers of important ornamental Compositae plants, anthocyanins generally carry malonyl group(s) at their 3-glucosyl moiety. In this study, for the first time to our knowledge, we have identified a cDNA coding for this 3-glucoside-specific malonyltransferase for anthocyanins, i.e. malonyl-coenzyme A:anthocyanidin 3-O-glucoside-6"-O-malonyltransferase, from dahlia (Dahlia variabilis) flowers. We isolated a full-length cDNA (Dv3MaT) on the basis of amino acid sequences specifically conserved among anthocyanin acyltransferases of the versatile plant acyltransferase family. Dv3MaT coded for a protein of 460 amino acids. Quantitative real-time PCR analyses of Dv3MaT showed that the transcript was present in accordance with the distribution of 3MaT activities and the anthocyanin accumulation pattern in the dahlia plant. The Dv3MaT cDNA was expressed in Escherichia coli, and the recombinant enzyme was purified to homogeneity and characterized. The recombinant Dv3MaT catalyzed the regiospecific transfer of the malonyl group from malonyl-coenzyme A (Km, 18.8 μm) to pelargonidin 3-O-glucoside (Km, 46.7 μm) to produce pelargonidin 3-O-6"-O-malonylglucoside with a kcat value of 7.3 s−1. The other enzymatic profiles of the recombinant Dv3MaT were closely related to those of native anthocyanin malonyltransferase activity in the extracts of dahlia flowers. Dv3MaT cDNA was introduced into petunia (Petunia hybrida) plants whose red floral color is exclusively provided by cyanidin 3-O-glucoside and 3,5-O-diglucoside. Thirteen transgenic lines of petunia were found to produce malonylated products of these anthocyanins (11–63 mol % of total anthocyanins in the flower). The spectral stability of cyanidin 3-O-6"-O-malonylglucoside at the pHs of intracellular milieus of flowers was significantly higher than that of cyanidin 3-O-glucoside. Moreover, 6"-O-malonylation of cyanidin 3-O-glucoside effectively prevented the anthocyanin from attack of β-glucosidase. These results

  16. Role of fatty acyl coenzyme A oxidase in the efflux of oxidized glutathione from perfused livers of rats treated with the peroxisome proliferator nafenopin.

    PubMed

    Conway, J G; Neptun, D A; Garvey, L K; Popp, J A

    1987-09-15

    The diffusion of H2O2 into the cytoplasm from peroxisomes during high rates of peroxisomal beta oxidation of fatty acids was studied in perfused livers from rats treated with the hepatocarcinogenic peroxisome proliferator, nafenopin. Efflux of oxidized glutathione (GSSG) into the bile was used as a measure of increased H2O2 supply for cytoplasmic glutathione peroxidase. Male F-344 rats were given methylcellulose vehicle or nafenopin (80 mg/kg/day) by gavage for 5-8 days and livers perfused in situ with Krebs-Henseleit buffer containing 50 microM taurocholate and 0.75 g/100 ml albumin. In livers from fed, vehicle-treated or fed, nafenopin-treated rats basal rates of GSSG efflux were about 60 nmol/g/h. Subsequent infusion of 350 microM lauric acid, an excellent substrate for peroxisomal beta-oxidation, had no effect on GSSG efflux. To maximize fatty acid oxidation rats were fasted 16-20 h. In livers from fasted, nafenopin-treated rats the basal rate of GSSG efflux was 384 +/- 85 (SE) nmol/g/h (n = 8). Subsequent infusion of lauric acid increased the rate to 940 +/- 138 nmol/g/h. In livers from fasted, vehicle-treated rats lauric acid caused GSSG efflux to increase slightly from 104 +/- 14 to 286 +/- 37 nmol/g/h (n = 9). Efflux of reduced glutathione in bile was similar in livers from fasted, vehicle-treated (163 +/- 15 nmol/g/h) and fasted, nafenopin-treated rats (135 +/- 17 nmol/g/h) and decreased about 30% with lauric acid infusion. N-Octanoyl and oleoyl coenzyme A were excellent substrates for cyanide-insensitive NAD+ reduction in liver homogenates from fasted, nafenopin-treated rats whereas n-butyl, linoleoyl, and arachidonyl coenzyme A were poor substrates. Infusion of octanoate and oleate caused large increases in GSSG efflux from perfused livers from fasted, nafenopin-treated rats. In contrast, butyrate, linoleate, and arachidonate had no effect on GSSG efflux from livers from fasted, nafenopin-treated rats. Octanoate, oleate, linoleate, butyrate, and

  17. The glossyhead1 Allele of ACC1 Reveals a Principal Role for Multidomain Acetyl-Coenzyme A Carboxylase in the Biosynthesis of Cuticular Waxes by Arabidopsis[C][W][OA

    PubMed Central

    Lü, Shiyou; Zhao, Huayan; Parsons, Eugene P.; Xu, Changcheng; Kosma, Dylan K.; Xu, Xiaojing; Chao, Daiyin; Lohrey, Gregory; Bangarusamy, Dhinoth K.; Wang, Guangchao; Bressan, Ray A.; Jenks, Matthew A.

    2011-01-01

    A novel mutant of Arabidopsis (Arabidopsis thaliana), having highly glossy inflorescence stems, postgenital fusion in floral organs, and reduced fertility, was isolated from an ethyl methanesulfonate-mutagenized population and designated glossyhead1 (gsd1). The gsd1 locus was mapped to chromosome 1, and the causal gene was identified as a new allele of Acetyl-Coenzyme A Carboxylase1 (ACC1), a gene encoding the main enzyme in cytosolic malonyl-coenzyme A synthesis. This, to our knowledge, is the first mutant allele of ACC1 that does not cause lethality at the seed or early germination stage, allowing for the first time a detailed analysis of ACC1 function in mature tissues. Broad lipid profiling of mature gsd1 organs revealed a primary role for ACC1 in the biosynthesis of the very-long-chain fatty acids (C20:0 or longer) associated with cuticular waxes and triacylglycerols. Unexpectedly, transcriptome analysis revealed that gsd1 has limited impact on any lipid metabolic networks but instead has a large effect on environmental stress-responsive pathways, especially senescence and ethylene synthesis determinants, indicating a possible role for the cytosolic malonyl-coenzyme A-derived lipids in stress response signaling. PMID:21949210

  18. Production of L-malic acid with fixation of HCO3(-) by malic enzyme-catalyzed reaction based on regeneration of coenzyme on electrode modified by layer-by-layer self-assembly method.

    PubMed

    Zheng, Haitao; Ohno, Yoko; Nakamori, Toshihiko; Suye, Shin-Ichiro

    2009-01-01

    Malic enzyme prepared and purified from Brevundimonas diminuta IFO13182 catalyzed the decarboxylation reaction of malate to pyruvate and CO2 using NAD+ as the coenzyme, and the reverse reaction was used in the present study for L-malic acid production with fixation of HCO3(-) as a model compound for carbon source. The L-malic acid production was based on electrochemical regeneration of NADH on a carbon plate electrode modified by layer-by-layer adsorption of polymer-bound mediator (Alginic acid bound viologen derivative, Alg-V), polymer-bound coenzyme (Alginic acid bound NAD+, Alg-NAD+), and lipoamide dehydrogenase (LipDH). Electrochemical reduction of immobilized NAD+ catalyzed by LipDH in a multilayer film was achieved, and the L-malic acid production with HCO3(-) fixation system with layer-by-layer immobilization of Alg-V/LipDH/Alg-NAD+/malic enzyme multilayer film on the electrode gave an L-malic acid production of nearly 11.9 mmol and an HCO3(-) fixation rate of nearly 47.4% in a buffer containing only KHCO3 and pyruvic acid potassium salt, using a cation exchange membrane. The total turnover number of NADH within 48 h was about 19,000, which suggests that efficient NADH regeneration and fast electron transfer were achieved within the multilayer film, and that the modified electrode is a potential method for the fixation of HCO3(-) without addition of free coenzyme. PMID:19147103

  19. Effects of acid and lactone forms of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors on the induction of MDR1 expression and function in LS180 cells.

    PubMed

    Yamasaki, Daisuke; Nakamura, Tsutomu; Okamura, Noboru; Kokudai, Makiko; Inui, Naoki; Takeuchi, Kazuhiko; Watanabe, Hiroshi; Hirai, Midori; Okumura, Katsuhiko; Sakaeda, Toshiyuki

    2009-05-12

    In the present study, the ability of inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), also known as statins, to regulate the gene expression and function of multidrug resistance protein 1 (MDR1/P-glycoprotein) and differences between their acid and lactone forms were examined in human intestinal epithelial LS180 cells. Some statins had the potential to induce the expression of mRNAs for MDR1 and/or CYP3A in either form. The change in the mRNA expression of MDR1 was accompanied by a change in the CsA-dependent intracellular accumulation of rhodamine 123. Simvastatin lactone, but not the acid form, exhibited a strong inductive effect on the mRNA expression of MDR1 and CYP3A in a dose-dependent manner. Sulforaphane significantly suppressed the expression of MDR1 and CYP3A mRNAs induced by atorvastatin lactone, lovastatin acid, and lovastatin lactone, comparable to the control level, and moderately inhibited that by cerivastatin acid, fluvastatin acid and simvastatin lactone. In the case of pitavastatin acid, sulforaphane had no significant effect on the expression of MDR1 mRNA.These results suggested that some statins could induce MDR1 and CYP3A gene expression and these inductive effects differed between the lactone and active hydroxy acid forms, and that PXR-mediated regulation was rarely associated with the mRNA inducibility by pitavastatin acid, unlike that by other statins. PMID:19429419

  20. 3-Hydroxy-3-methylglutaryl coenzyme A reductase in rainbow trout: effects of fasting and statin drugs on activities and mRNA transcripts.

    PubMed

    Estey, Chelsie; Chen, Xi; Moon, Thomas W

    2008-04-01

    Human pharmaceuticals including statin drugs are found in effluents post-waste water treatment plant. In order to establish whether statin drugs could affect an aquatic species, we initially characterized in the rainbow trout the enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase or HMGCoAR which is the mammalian target of statin drugs. Two HMGCoAR transcripts (-1 and -2) were isolated to trout tissues and given their prevalence in liver and brain, these two tissues were used in activity assays. HMGCoAR activities were 87.2 and 66.0 pmol/min/mg protein for liver microsomes and whole brain homogenates. Liver activities were affected by conditions promoting phosphorylation but not by a 14 day fast; brain activities were differentially altered by fasting and re-feeding. Even though activities were altered by fasting, HMGCoAR-1 (but not -2) mRNA was reduced by fasting in both the liver and hypothalamus/pituitary. Both statin drugs (cerivastatin and atorvastatin) significantly decreased HMGCoAR activities in vitro and cerivastatin when injected significantly decreased hepatic but not brain activities; some changes in mRNA levels were noted. These studies demonstrate that at the concentrations of statins used in this study, effects on HMGCoAR activities and transcripts occur. Such changes could affect cholesterol content and may alter cholesterol dynamics in this species. PMID:18280795

  1. The 3-hydroxy-3-methylglutaryl coenzyme-A reductases from fungi: a proposal as a therapeutic target and as a study model.

    PubMed

    Andrade-Pavón, Dulce; Sánchez-Sandoval, Eugenia; Rosales-Acosta, Blanca; Ibarra, José Antonio; Tamariz, Joaquín; Hernández-Rodríguez, César; Villa-Tanaca, Lourdes

    2014-01-01

    The enzyme 3-hydroxy-3-methylglutaryl coenzyme-A reductase (HMGR) catalyzes the conversion of HMG-Co-A into mevalonate. This step is the limiting point for the synthesis of cholesterol in mammals and ergosterol in fungi. We describe in this article the genome organization of HMGR coding genes and those deduced from different fungi, recount the evidence showing statins as HMGR inhibitors for ergosterol synthesis and its effect in yeast viability, and propose fungal HMGR (HMGRf) as a model to study the use of pharmaceutical compounds to inhibit cholesterol and ergosterol synthesis. Bibliographical search and bioinformatic analyses were performed and discussed. HMGRfs belong to the class I with a high homology in the catalytic region. The sterol biosynthetic pathway in humans and fungi share many enzymes in the initial steps (such as the HMGR enzyme), but in the last steps enzymes are different rendering the two final products: cholesterol in mammals and ergosterol in fungi. With regards to inhibitors such as statins and other compounds, these affect also fungal viability. Since HMGR from Schizosaccharomyces pombe and Ustilago maydis are very similar to the human HMGR in the catalytic regions, we propose that fungal enzymes can be used to test inhibitors for a potential use in humans. We consider that HMGRf is a good therapeutic target to design and test new antifungal compounds. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). PMID:24270073

  2. Flavonoids from the buds of Rosa damascena inhibit the activity of 3-hydroxy-3-methylglutaryl-coenzyme a reductase and angiotensin I-converting enzyme.

    PubMed

    Kwon, Eun-Kyung; Lee, Dae-Young; Lee, Hyungjae; Kim, Dae-Ok; Baek, Nam-In; Kim, Young-Eon; Kim, Hae-Yeong

    2010-01-27

    Rosa damascena has been manufactured as various food products, including tea, in Korea. A new flavonoid glycoside, kaempferol-3-O-beta-D-glucopyranosyl(1-->4)-beta-D-xylopyranoside, named roxyloside A was isolated from the buds of this plant, along with four known compounds, isoquercitrin, afzelin, cyanidin-3-O-beta-glucoside, and quercetin gentiobioside. The chemical structures of these compounds were determined by spectroscopic analyses, including FAB-MS, UV, IR, (1)H and (13)C NMR, DEPT, and 2D NMR (COSY, HSQC, and HMBC). All the isolated compounds except cyanidin-3-O-beta-glucoside exhibited high levels of inhibitory activity against 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase with IC(50) values ranging from 47.1 to 80.6 microM. Cyanidin-3-O-beta-glucoside significantly suppressed angiotensin I-converting enzyme (ACE) activity, with an IC(50) value of 138.8 microM, while the other four compounds were ineffective. These results indicate that R. damascena and its flavonoids may be effective to improve the cardiovascular system. PMID:20038104

  3. Effect of coenzyme Q10 evaluated by 1990 and 2010 ACR Diagnostic Criteria for Fibromyalgia and SCL-90-R: four case reports and literature review.

    PubMed

    Alcocer-Gómez, Elísabet; Cano-García, Francisco Javier; Cordero, Mario D

    2013-01-01

    Recently, Coenzyme Q10 (CoQ10) defic