Science.gov

Sample records for phage display derived

  1. A Phage Display Screening Derived Peptide with Affinity for the Adeninyl Moiety

    PubMed Central

    Elmlund, Louise; Söderberg, Pernilla; Suriyanarayanan, Subramanian; Nicholls, Ian A.

    2014-01-01

    Phage display screening of a surface-immobilized adenine derivative led to the identification of a heptameric peptide with selectivity for adenine as demonstrated through quartz crystal microbalance (QCM) studies. The peptide demonstrated a concentration dependent affinity for an adeninyl moiety decorated surface (KD of 968 ± 53.3 μM), which highlights the power of piezoelectric sensing in the study of weak interactions. PMID:25587414

  2. Phage Display-Derived Cross-Reactive Neutralizing Antibody against Enterovirus 71 and Coxsackievirus A16.

    PubMed

    Zhang, Xiao; Sun, Chunyun; Xiao, Xiangqian; Pang, Lin; Shen, Sisi; Zhang, Jie; Cen, Shan; Yang, Burton B; Huang, Yuming; Sheng, Wang; Zeng, Yi

    2016-01-01

    Enterovirus 71 (EV71) and coxsackievirus A16 (CVA16) are members of the Picornaviridae family and are considered the main causative agents of hand, foot and mouth disease (HFMD). In recent decades large HFMD outbreaks caused by EV71 and CVA16 have become significant public health concerns in the Asia-Pacific region. Vaccines and antiviral drugs are unavailable to prevent EV71 and CVA16 infection. In the current study, a chimeric antibody targeting a highly conserved peptide in the EV71 VP4 protein was isolated by using a phage display technique. The antibody showed cross-neutralizing capability against EV71 and CVA16 in vitro. The results suggest that this phage display-derived antibody will have great potential as a broad neutralizing antibody against EV71 and CVA16 after affinity maturation and humanization. PMID:26073737

  3. Advance in phage display technology for bioanalysis.

    PubMed

    Tan, Yuyu; Tian, Tian; Liu, Wenli; Zhu, Zhi; J Yang, Chaoyong

    2016-06-01

    Phage display technology has emerged as a powerful tool for target gene expression and target-specific ligand selection. It is widely used to screen peptides, proteins and antibodies with the advantages of simplicity, high efficiency and low cost. A variety of targets, including ions, small molecules, inorganic materials, natural and biological polymers, nanostructures, cells, bacteria, and even tissues, have been demonstrated to generate specific binding ligands by phage display. Phages and target-specific ligands screened by phage display have been widely used as affinity reagents in therapeutics, diagnostics and biosensors. In this review, comparisons of different types of phage display systems are first presented. Particularly, microfluidic-based phage display, which enables screening with high throughput, high efficiency and integration, is highlighted. More importantly, we emphasize the advances in biosensors based on phages or phage-derived probes, including nonlytic phages, lytic phages, peptides or proteins screened by phage display, phage assemblies and phage-nanomaterial complexes. However, more efficient and higher throughput phage display methods are still needed to meet an explosion in demand for bioanalysis. Furthermore, screening of cyclic peptides and functional peptides will be the hotspot in bioanalysis. PMID:27061133

  4. Phage display of proteins.

    PubMed

    Kościelska, K; Kiczak, L; Kasztura, M; Wesołowska, O; Otlewski, J

    1998-01-01

    In recent years the phage display approach has become an increasingly popular method in protein research. This method enables the presentation of large peptide and protein libraries on the surface of phage particles from which molecules of desired functional property(ies) can be rapidly selected. The great advantage of this method is a direct linkage between an observed phenotype and encapsulated genotype, which allows fast determination of selected sequences. The phage display approach is a powerful tool in generating highly potent biomolecules, including: search for specific antibodies, determining enzyme specificity, exploring protein-protein and protein-DNA interactions, minimizing proteins, introducing new functions into different protein scaffolds, and searching sequence space of protein folding. In this article many examples are given to illustrate that this technique can be used in different fields of protein science. The phage display has a potential of the natural evolution and its possibilities are far beyond rational prediction. Assuming that we can design the selection agents and conditions we should be able to engineer any desired protein function or feature. PMID:9918498

  5. Phage and Yeast Display.

    PubMed

    Sheehan, Jared; Marasco, Wayne A

    2015-02-01

    Despite the availability of antimicrobial drugs, the continued development of microbial resistance--established through escape mutations and the emergence of resistant strains--limits their clinical utility. The discovery of novel, therapeutic, monoclonal antibodies (mAbs) offers viable clinical alternatives in the treatment and prophylaxis of infectious diseases. Human mAb-based therapies are typically nontoxic in patients and demonstrate high specificity for the intended microbial target. This specificity prevents negative impacts on the patient microbiome and avoids driving the resistance of nontarget species. The in vitro selection of human antibody fragment libraries displayed on phage or yeast surfaces represents a group of well-established technologies capable of generating human mAbs. The advantage of these forms of microbial display is the large repertoire of human antibody fragments present during a single selection campaign. Furthermore, the in vitro selection environments of microbial surface display allow for the rapid isolation of antibodies--and their encoding genes--against infectious pathogens and their toxins that are impractical within in vivo systems, such as murine hybridomas. This article focuses on the technologies of phage display and yeast display, as these strategies relate to the discovery of human mAbs for the treatment and vaccine development of infectious diseases. PMID:26104550

  6. Selection of Phage Display Peptides Targeting Human Pluripotent Stem Cell-Derived Progenitor Cell Lines.

    PubMed

    Bignone, Paola A; Krupa, Rachel A; West, Michael D; Larocca, David

    2016-01-01

    The ability of human pluripotent stem cells (hPS) to both self-renew and differentiate into virtually any cell type makes them a promising source of cells for cell-based regenerative therapies. However, stem cell identity, purity, and scalability remain formidable challenges that need to be overcome for translation of pluripotent stem cell research into clinical applications. Directed differentiation from hPS cells is inefficient and residual contamination with pluripotent cells that have the potential to form tumors remains problematic. The derivation of scalable (self-renewing) embryonic progenitor stem cell lines offers a solution because they are well defined and clonally pure. Clonally pure progenitor stem cell lines also provide a means for identifying cell surface targeting reagents that are useful for identification, tracking, and repeated derivation of the corresponding progenitor stem cell types from additional hPS cell sources. Such stem cell targeting reagents can then be applied to the manufacture of genetically diverse banks of human embryonic progenitor cell lines for drug screening, disease modeling, and cell therapy. Here we present methods to identify human embryonic progenitor stem cell targeting peptides by selection of phage display libraries on clonal embryonic progenitor cell lines and demonstrate their use for targeting quantum dots (Qdots) for stem cell labeling. PMID:25410289

  7. Discovery and Characterization of Phage Display-Derived Human Monoclonal Antibodies against RSV F Glycoprotein

    PubMed Central

    Tang, Aimin; Callahan, Cheryl; Pristatsky, Pavlo; Swoyer, Ryan; Cejas, Pedro; Nahas, Debbie; Galli, Jennifer; Cosmi, Scott; DiStefano, Daniel; Hoang, Van M.; Bett, Andrew; Casimiro, Danilo

    2016-01-01

    Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract infection in infants, the elderly and in immunosuppressed populations. The vast majority of neutralizing antibodies isolated from human subjects target the RSV fusion (F) glycoprotein, making it an attractive target for the development of vaccines and therapeutic antibodies. Currently, Synagis® (palivizumab) is the only FDA approved antibody drug for the prevention of RSV infection, and there is a great need for more effective vaccines and therapeutics. Phage display is a powerful tool in antibody discovery with the advantage that it does not require samples from immunized subjects. In this study, Morphosys HuCAL GOLD® phage libraries were used for panning against RSV prefusion and postfusion F proteins. Panels of human monoclonal antibodies (mAbs) against RSV F protein were discovered following phage library panning and characterized. Antibodies binding specifically to prefusion or postfusion F proteins and those binding both conformations were identified. 3B1 is a prototypic postfusion F specific antibody while 2E1 is a prototypic prefusion F specific antibody. 2E1 is a potent broadly neutralizing antibody against both RSV A and B strains. Epitope mapping experiments identified a conformational epitope spanning across three discontinuous sections of the RSV F protein, as well as critical residues for antibody interaction. PMID:27258388

  8. Discovery and Characterization of Phage Display-Derived Human Monoclonal Antibodies against RSV F Glycoprotein.

    PubMed

    Chen, Zhifeng; Zhang, Lan; Tang, Aimin; Callahan, Cheryl; Pristatsky, Pavlo; Swoyer, Ryan; Cejas, Pedro; Nahas, Debbie; Galli, Jennifer; Cosmi, Scott; DiStefano, Daniel; Hoang, Van M; Bett, Andrew; Casimiro, Danilo; Vora, Kalpit A

    2016-01-01

    Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract infection in infants, the elderly and in immunosuppressed populations. The vast majority of neutralizing antibodies isolated from human subjects target the RSV fusion (F) glycoprotein, making it an attractive target for the development of vaccines and therapeutic antibodies. Currently, Synagis® (palivizumab) is the only FDA approved antibody drug for the prevention of RSV infection, and there is a great need for more effective vaccines and therapeutics. Phage display is a powerful tool in antibody discovery with the advantage that it does not require samples from immunized subjects. In this study, Morphosys HuCAL GOLD® phage libraries were used for panning against RSV prefusion and postfusion F proteins. Panels of human monoclonal antibodies (mAbs) against RSV F protein were discovered following phage library panning and characterized. Antibodies binding specifically to prefusion or postfusion F proteins and those binding both conformations were identified. 3B1 is a prototypic postfusion F specific antibody while 2E1 is a prototypic prefusion F specific antibody. 2E1 is a potent broadly neutralizing antibody against both RSV A and B strains. Epitope mapping experiments identified a conformational epitope spanning across three discontinuous sections of the RSV F protein, as well as critical residues for antibody interaction. PMID:27258388

  9. Competitive Mirror Image Phage Display Derived Peptide Modulates Amyloid Beta Aggregation and Toxicity

    PubMed Central

    Rudolph, Stephan; Klein, Antonia Nicole; Tusche, Markus; Schlosser, Christine; Elfgen, Anne; Brener, Oleksandr; Teunissen, Charlotte; Gremer, Lothar; Funke, Susanne Aileen; Kutzsche, Janine; Willbold, Dieter

    2016-01-01

    Alzheimer´s disease is the most prominent type of dementia and currently no causative treatment is available. According to recent studies, oligomeric species of the amyloid beta (Aβ) peptide appear to be the most toxic Aβ assemblies. Aβ monomers, however, may be not toxic per se and may even have a neuroprotective role. Here we describe a competitive mirror image phage display procedure that allowed us to identify preferentially Aβ1–42 monomer binding and thereby stabilizing peptides, which destabilize and thereby eliminate toxic oligomer species. One of the peptides, called Mosd1 (monomer specific d-peptide 1), was characterized in more detail. Mosd1 abolished oligomers from a mixture of Aβ1–42 species, reduced Aβ1–42 toxicity in cell culture, and restored the physiological phenotype in neuronal cells stably transfected with the gene coding for human amyloid precursor protein. PMID:26840229

  10. Protein and Antibody Engineering by Phage Display.

    PubMed

    Frei, J C; Lai, J R

    2016-01-01

    Phage display is an in vitro selection technique that allows for the rapid isolation of proteins with desired properties including increased affinity, specificity, stability, and new enzymatic activity. The power of phage display relies on the phenotype-to-genotype linkage of the protein of interest displayed on the phage surface with the encoding DNA packaged within the phage particle, which allows for selective enrichment of library pools and high-throughput screening of resulting clones. As an in vitro method, the conditions of the binding selection can be tightly controlled. Due to the high-throughput nature, rapidity, and ease of use, phage display is an excellent technological platform for engineering antibody or proteins with enhanced properties. Here, we describe methods for synthesis, selection, and screening of phage libraries with particular emphasis on designing humanizing antibody libraries and combinatorial scanning mutagenesis libraries. We conclude with a brief section on troubleshooting for all stages of the phage display process. PMID:27586328

  11. Phage-displayed peptide libraries

    PubMed Central

    Zwick, Michael B; Shen, Juqun; Scott, Jamie K

    2014-01-01

    Over the past year, significant advances have been achieved through the use of phage-displayed peptide libraries. A wide variety of bioactive molecules, including antibodies, receptors and enzymes, have selected high-affinity and/or highly-specific peptide ligands from a number of different types of peptide library. The demonstrated therapeutic potential of some of these peptides, as well as new insights into protein structure and function that peptide ligands have provided, highlight the progress made within this rapidly-expanding field. PMID:9720267

  12. Targeting Leishmania major parasite with peptides derived from a combinatorial phage display library.

    PubMed

    Rhaiem, Rafik Ben; Houimel, Mehdi

    2016-07-01

    Cutaneous leishmaniasis (CL) is a global problem caused by intracellular protozoan pathogens of the genus Leishmania for which there are no suitable vaccine or chemotherapy options. Thus, de novo identification of small molecules binding to the Leishmania parasites by direct screening is a promising and appropriate alternative strategy for the development of new drugs. In this study, we used a random linear hexapeptide library fused to the gene III protein of M13 filamentous bacteriophage to select binding peptides to metacyclic promastigotes from a highly virulent strain of Leishmania major (Zymodeme MON-25; MHOM/TN/94/GLC94). After four rounds of stringent selection and amplification, polyclonal and monoclonal phage-peptides directed against L. major metacyclic promastigotes were assessed by ELISA, and the optimal phage-peptides were grown individually and characterized for binding to L. major by monoclonal phage ELISA. The DNA of 42 phage-peptides clones was amplified by PCR, sequenced, and their amino acid sequences deduced. Six different peptide sequences were obtained with frequencies of occurrence ranging from 2.3% to 85.7%. The biological effect of the peptides was assessed in vitro on human monocytes infected with L. major metacyclic promastigotes, and in vivo on susceptible parasite-infected BALB/c mice. The development of cutaneous lesions in the right hind footpads of infected mice after 13 weeks post-infection showed a protection rate of 81.94% with the injected peptide P2. Moreover, Western blots revealed that the P2 peptide interacted with the major surface protease gp63, a protein of 63kDa molecular weight. Moreover, bioinformatics were used to predict the interaction between peptides and the major surface molecule of the L. major. The molecular docking showed that the P2 peptide has the minimum interaction energy and maximum shape complimentarity with the L. major gp63 active site. Our study demonstrated that the P2 peptide occurs at high frequency

  13. Phage display and Shiga toxin neutralizers.

    PubMed

    Bernedo-Navarro, Robert Alvin; Yano, Tomomasa

    2016-04-01

    The current work presents an overview of the use of phage display technology for the identification and characterization of potential neutralizing agents for Shiga toxins. The last major Shiga toxin-associated disease outbreak, which took place in Germany in 2011, showed the international community that Shiga toxins remain a serious threat to public health. This is also demonstrated by the lack of specific therapies against Shiga toxin-induced Hemolytic Uremic Syndrome (HUS). Since its inception, phage display technology has played a key role in the development of antigen-specific (poly)-peptides or antibody fragments with specific biological properties. Herein, we review the current literature regarding the application of phage display to identify novel neutralizing agents against Shiga toxins. We also briefly highlight reported discoveries of peptides and heavy chain antibodies (VHH fragments or nanobodies) that can neutralize the cellular damage caused by these potent toxins. PMID:26898657

  14. Antibody phage display technology and its applications.

    PubMed

    Hoogenboom, H R; de Bruïne, A P; Hufton, S E; Hoet, R M; Arends, J W; Roovers, R C

    1998-06-01

    In recent years, the use of display vectors and in vitro selection technologies has transformed the way in which we generate ligands, such as antibodies and peptides, for a given target. Using this technology, we are now able to design repertoires of ligands from scratch and use the power of phage selection to select those ligands having the desired (biological) properties. With phage display, tailor-made antibodies may be synthesized and selected to acquire the desired affinity of binding and specificity for in vitro and in vivo diagnosis, or for immunotherapy of human disease. This review addresses recent progress in the construction of, and selection from phage antibody libraries, together with novel approaches for screening phage antibodies. As the quality of large naïve and synthetic antibody repertoires improves and libraries becomes more generally available, new and exciting applications are pioneered such as the identification of novel antigens using differential selection and the generation of receptor a(nta)gonists. A combination of the design and generation of millions to billions of different ligands, together with phage display for the isolation of binding ligands and with functional assays for identifying (and possibly selecting) bio-active ligands, will open even more challenging applications of this inspiring technology, and provide a powerful tool for drug and target discovery well into the next decade. PMID:9661810

  15. Interaction Analysis through Proteomic Phage Display

    PubMed Central

    2014-01-01

    Phage display is a powerful technique for profiling specificities of peptide binding domains. The method is suited for the identification of high-affinity ligands with inhibitor potential when using highly diverse combinatorial peptide phage libraries. Such experiments further provide consensus motifs for genome-wide scanning of ligands of potential biological relevance. A complementary but considerably less explored approach is to display expression products of genomic DNA, cDNA, open reading frames (ORFs), or oligonucleotide libraries designed to encode defined regions of a target proteome on phage particles. One of the main applications of such proteomic libraries has been the elucidation of antibody epitopes. This review is focused on the use of proteomic phage display to uncover protein-protein interactions of potential relevance for cellular function. The method is particularly suited for the discovery of interactions between peptide binding domains and their targets. We discuss the largely unexplored potential of this method in the discovery of domain-motif interactions of potential biological relevance. PMID:25295249

  16. Interaction analysis through proteomic phage display.

    PubMed

    Sundell, Gustav N; Ivarsson, Ylva

    2014-01-01

    Phage display is a powerful technique for profiling specificities of peptide binding domains. The method is suited for the identification of high-affinity ligands with inhibitor potential when using highly diverse combinatorial peptide phage libraries. Such experiments further provide consensus motifs for genome-wide scanning of ligands of potential biological relevance. A complementary but considerably less explored approach is to display expression products of genomic DNA, cDNA, open reading frames (ORFs), or oligonucleotide libraries designed to encode defined regions of a target proteome on phage particles. One of the main applications of such proteomic libraries has been the elucidation of antibody epitopes. This review is focused on the use of proteomic phage display to uncover protein-protein interactions of potential relevance for cellular function. The method is particularly suited for the discovery of interactions between peptide binding domains and their targets. We discuss the largely unexplored potential of this method in the discovery of domain-motif interactions of potential biological relevance. PMID:25295249

  17. Production and Evaluation of Antibodies and Phage Display-Derived Peptide Ligands for Immunomagnetic Separation of Mycobacterium bovis

    PubMed Central

    Stewart, Linda D.; McNair, James; McCallan, Lyanne; Thompson, Suzan; Kulakov, Leonid A.

    2012-01-01

    This study describes the development and optimization of an immunomagnetic separation (IMS) method to isolate Mycobacterium bovis cells from lymph node tissues. Gamma-irradiated whole M. bovis AF2122/97 cells and ethanol-extracted surface antigens of such cells were used to produce M. bovis-specific polyclonal and monoclonal antibodies in rabbits and mice. They were also used to generate M. bovis-specific peptide ligands by phage display biopanning. The various antibodies and peptide ligands obtained were used to coat MyOne tosyl-activated Dynabeads (Life Technologies), singly or in combination, and evaluated for IMS. Initially, M. bovis capture from Middlebrook 7H9 broth suspensions (concentration range, 10 to 105 CFU/ml) was evaluated by IMS combined with an M. bovis-specific touchdown PCR. IMS-PCR results and, subsequently, IMS-culture results indicated that the beads with greatest immunocapture capability for M. bovis in broth were those coated simultaneously with a monoclonal antibody and a biotinylated 12-mer peptide. These dually coated beads exhibited minimal capture (mean of 0.36% recovery) of 12 other Mycobacterium spp. occasionally encountered in veterinary tuberculosis (TB) diagnostic laboratories. When the optimized IMS method was applied to various M. bovis-spiked lymph node matrices, it demonstrated excellent detection sensitivities (50% limits of detection of 3.16 and 57.7 CFU/ml of lymph node tissue homogenate for IMS-PCR and IMS-culture, respectively). The optimized IMS method therefore has the potential to improve isolation of M. bovis from lymph nodes and hence the diagnosis of bovine tuberculosis. PMID:22322353

  18. DeltaPhage--a novel helper phage for high-valence pIX phagemid display.

    PubMed

    Nilssen, Nicolay R; Frigstad, Terje; Pollmann, Sylvie; Roos, Norbert; Bogen, Bjarne; Sandlie, Inger; Løset, Geir Å

    2012-09-01

    Phage display has been instrumental in discovery of novel binding peptides and folded domains for the past two decades. We recently reported a novel pIX phagemid display system that is characterized by a strong preference for phagemid packaging combined with low display levels, two key features that support highly efficient affinity selection. However, high diversity in selected repertoires are intimately coupled to high display levels during initial selection rounds. To incorporate this additional feature into the pIX display system, we have developed a novel helper phage termed DeltaPhage that allows for high-valence display on pIX. This was obtained by inserting two amber mutations close to the pIX start codon, but after the pVII translational stop, conditionally inactivating the helper phage encoded pIX. Until now, the general notion has been that display on pIX is dependent on wild-type complementation, making high-valence display unachievable. However, we found that DeltaPhage does facilitate high-valence pIX display when used with a non-suppressor host. Here, we report a side-by-side comparison with pIII display, and we find that this novel helper phage complements existing pIX phagemid display systems to allow both low and high-valence display, making pIX display a complete and efficient alternative to existing pIII phagemid display systems. PMID:22539265

  19. Phage display creates innovative applications to combat hepatitis B virus

    PubMed Central

    Tan, Wen Siang; Ho, Kok Lian

    2014-01-01

    Hepatitis B virus (HBV) has killed countless lives in human history. The invention of HBV vaccines in the 20th century has reduced significantly the rate of the viral infection. However, currently there is no effective treatment for chronic HBV carriers. Newly emerging vaccine escape mutants and drug resistant strains have complicated the viral eradication program. The entire world is now facing a new threat of HBV and human immunodeficiency virus co-infection. Could phage display provide solutions to these life-threatening problems? This article reviews critically and comprehensively the innovative and potential applications of phage display in the development of vaccines, therapeutic agents, diagnostic reagents, as well as gene and drug delivery systems to combat HBV. The application of phage display in epitope mapping of HBV antigens is also discussed in detail. Although this review mainly focuses on HBV, the innovative applications of phage display could also be extended to other infectious diseases. PMID:25206271

  20. Selective posttranslational modification of phage-displayed polypeptides

    SciTech Connect

    Tsao, Meng-Lin; Tian, Feng; Schultz, Peter

    2013-11-19

    The invention relates to posttranslational modification of phage-displayed polypeptides. These displayed polypeptides comprise at least one unnatural amino acid, e.g., an aryl-azide amino acid such as p-azido-L-phenylalanine, or an alkynyl-amino acid such as para-propargyloxyphenylalanine, which are incorporated into the phage-displayed fusion polypeptide at a selected position by using an in vivo orthogonal translation system comprising a suitable orthogonal aminoacyl-tRNA synthetase and a suitable orthogonal tRNA species. These unnatural amino acids advantageously provide targets for posttranslational modifications such as azide-alkyne [3+2] cycloaddition reactions and Staudinger modifications.

  1. Selective posttranslational modification of phage-displayed polypeptides

    SciTech Connect

    Tsao, Meng-Lin; Tian, Feng; Schultz, Peter

    2013-02-05

    The invention relates to posttranslational modification of phage-displayed polypeptides. These displayed polypeptides comprise at least one unnatural amino acid, e.g., an aryl-azide amino acid such as p-azido-L-phenylalanine, or an alkynyl-amino acid such as para-propargyloxyphenylalanine, which are incorporated into the phage-displayed fusion polypeptide at a selected position by using an in vivo orthogonal translation system comprising a suitable orthogonal aminoacyl-tRNA synthetase and a suitable orthogonal tRNA species. These unnatural amino acids advantageously provide targets for posttranslational modifications such as azide-alkyne [3+2]cycloaddition reactions and Staudinger modifications.

  2. Biochemical functionalization of peptide nanotubes with phage displayed peptides.

    PubMed

    Swaminathan, Swathi; Cui, Yue

    2016-09-01

    The development of a general approach for the biochemical functionalization of peptide nanotubes (PNTs) could open up existing opportunities in both fundamental studies as well as a variety of applications. PNTs are spontaneously assembled organic nanostructures made from peptides. Phage display has emerged as a powerful approach for identifying selective peptide binding motifs. Here, we demonstrate for the first time the biochemical functionalization of PNTs via peptides identified from a phage display peptide library. The phage-displayed peptides are shown to recognize PNTs. These advances further allow for the development of bifunctional peptides for the capture of bacteria and the self-assembly of silver particles onto PNTs. We anticipate that these results could provide significant opportunities for using PNTs in both fundamental studies and practical applications, including sensors and biosensors nanoelectronics, energy storage devices, drug delivery, and tissue engineering. PMID:27479451

  3. Biochemical functionalization of peptide nanotubes with phage displayed peptides

    NASA Astrophysics Data System (ADS)

    Swaminathan, Swathi; Cui, Yue

    2016-09-01

    The development of a general approach for the biochemical functionalization of peptide nanotubes (PNTs) could open up existing opportunities in both fundamental studies as well as a variety of applications. PNTs are spontaneously assembled organic nanostructures made from peptides. Phage display has emerged as a powerful approach for identifying selective peptide binding motifs. Here, we demonstrate for the first time the biochemical functionalization of PNTs via peptides identified from a phage display peptide library. The phage-displayed peptides are shown to recognize PNTs. These advances further allow for the development of bifunctional peptides for the capture of bacteria and the self-assembly of silver particles onto PNTs. We anticipate that these results could provide significant opportunities for using PNTs in both fundamental studies and practical applications, including sensors and biosensors nanoelectronics, energy storage devices, drug delivery, and tissue engineering.

  4. Plasmids and packaging cell lines for use in phage display

    DOEpatents

    Bradbury, Andrew M.

    2012-07-24

    The invention relates to a novel phagemid display system for packaging phagemid DNA into phagemid particles which completely avoids the use of helper phage. The system of the invention incorporates the use of bacterial packaging cell lines which have been transformed with helper plasmids containing all required phage proteins but not the packaging signals. The absence of packaging signals in these helper plasmids prevents their DNA from being packaged in the bacterial cell, which provides a number of significant advantages over the use of both standard and modified helper phage. Packaged phagemids expressing a protein or peptide of interest, in fusion with a phage coat protein such as g3p, are generated simply by transfecting phagemid into the packaging cell line.

  5. Phages and HIV-1: From Display to Interplay

    PubMed Central

    Delhalle, Sylvie; Schmit, Jean-Claude; Chevigné, Andy

    2012-01-01

    The complex hide-and-seek game between HIV-1 and the host immune system has impaired the development of an efficient vaccine. In addition, the high variability of the virus impedes the long-term control of viral replication by small antiviral drugs. For more than 20 years, phage display technology has been intensively used in the field of HIV-1 to explore the epitope landscape recognized by monoclonal and polyclonal HIV-1-specific antibodies, thereby providing precious data about immunodominant and neutralizing epitopes. In parallel, biopanning experiments with various combinatorial or antibody fragment libraries were conducted on viral targets as well as host receptors to identify HIV-1 inhibitors. Besides these applications, phage display technology has been applied to characterize the enzymatic specificity of the HIV-1 protease. Phage particles also represent valuable alternative carriers displaying various HIV-1 antigens to the immune system and eliciting antiviral responses. This review presents and summarizes the different studies conducted with regard to the nature of phage libraries, target display mode and biopanning procedures. PMID:22606007

  6. Identification of Soft Matter Binding Peptide Ligands Using Phage Display.

    PubMed

    Günay, Kemal Arda; Klok, Harm-Anton

    2015-10-21

    Phage display is a powerful tool for the selection of highly affine, short peptide ligands. While originally primarily used for the identification of ligands to proteins, the scope of this technique has significantly expanded over the past two decades. Phage display nowadays is also increasingly applied to identify ligands that selectively bind with high affinity to a broad range of other substrates including natural and biological polymers as well as a variety of low-molecular-weight organic molecules. Such peptides are of interest for various reasons. The ability to selectively and with high affinity bind to the substrate of interest allows the conjugation or immobilization of, e.g., nanoparticles or biomolecules, or generally, facilitates interactions at materials interfaces. On the other hand, presentation of peptide ligands that selectively bind to low-molecular-weight organic materials is of interest for the development of sensor surfaces. The aim of this article is to highlight the opportunities provided by phage display for the identification of peptide ligands that bind to synthetic or natural polymer substrates or to small organic molecules. The article will first provide an overview of the different peptide ligands that have been identified by phage display that bind to these "soft matter" targets. The second part of the article will discuss the different characterization techniques that allow the determination of the affinity of the identified ligands to the respective substrates. PMID:26275106

  7. Development of Anti-Infectives Using Phage Display: Biological Agents against Bacteria, Viruses, and Parasites

    PubMed Central

    Huang, Johnny X.; Bishop-Hurley, Sharon L.

    2012-01-01

    The vast majority of anti-infective therapeutics on the market or in development are small molecules; however, there is now a nascent pipeline of biological agents in development. Until recently, phage display technologies were used mainly to produce monoclonal antibodies (MAbs) targeted against cancer or inflammatory disease targets. Patent disputes impeded broad use of these methods and contributed to the dearth of candidates in the clinic during the 1990s. Today, however, phage display is recognized as a powerful tool for selecting novel peptides and antibodies that can bind to a wide range of antigens, ranging from whole cells to proteins and lipid targets. In this review, we highlight research that exploits phage display technology as a means of discovering novel therapeutics against infectious diseases, with a focus on antimicrobial peptides and antibodies in clinical or preclinical development. We discuss the different strategies and methods used to derive, select, and develop anti-infectives from phage display libraries and then highlight case studies of drug candidates in the process of development and commercialization. Advances in screening, manufacturing, and humanization technologies now mean that phage display can make a significant contribution in the fight against clinically important pathogens. PMID:22664969

  8. Selection and maturation of antibodies by phage display through fusion to pIX.

    PubMed

    Tornetta, Mark; Reddy, Ramachandra; Wheeler, John C

    2012-09-01

    Antibody discovery and optimization by M13 phage display have evolved significantly over the past twenty years. Multiple methods of antibody display and selection have been developed - direct display on pIII or indirect display through a Cysteine disulfide linkage or a coiled-coil adapter protein. Here we describe display of Fab libraries on the smaller pIX protein at the opposite end of the virion and its application to discovery of novel antibodies from naive libraries. Antibody selection based on pIX-mediated display produces results comparable to other in vitro methods and uses an efficient direct infection of antigen-bound phages, eliminating any chemical dissociation step(s). Additionally, some evidence suggests that pIX-mediated display can be more efficient than pIII-mediated display in affinity selections. Functional assessment of phage-derived antibodies can be hindered by insufficient affinities or lack of epitopic diversity. Here we describe an approach to managing primary hits from our Fab phage libraries into epitope bins and subsequent high-throughput maturation of clones to isolate epitope- and sequence-diverse panels of high affinity binders. Use of the Octet biosensor was done to examine Fab binding in a facile label-free method and determine epitope competition groups. A receptor extracellular domain and chemokine were subjected to this method of binning and affinity maturation. Parental clones demonstrated improvement in affinity from 1-100nM to 10-500pM. PMID:22841960

  9. Expanding the Versatility of Phage Display I: Efficient Display of Peptide-Tags on Protein VII of the Filamentous Phage

    PubMed Central

    Løset, Geir Åge; Bogen, Bjarne; Sandlie, Inger

    2011-01-01

    Background Phage display is a platform for selection of specific binding molecules and this is a clear-cut motivation for increasing its performance. Polypeptides are normally displayed as fusions to the major coat protein VIII (pVIII), or the minor coat protein III (pIII). Display on other coat proteins such as pVII allows for display of heterologous peptide sequences on the virions in addition to those displayed on pIII and pVIII. In addition, pVII display is an alternative to pIII or pVIII display. Methodology/Principal Findings Here we demonstrate how standard pIII or pVIII display phagemids are complemented with a helper phage which supports production of virions that are tagged with octa FLAG, HIS6 or AviTag on pVII. The periplasmic signal sequence required for pIII and pVIII display, and which has been added to pVII in earlier studies, is omitted altogether. Conclusions/Significance Tagging on pVII is an important and very useful add-on feature to standard pIII and pVII display. Any phagemid bearing a protein of interest on either pIII or pVIII can be tagged with any of the tags depending simply on choice of helper phage. We show in this paper how such tags may be utilized for immobilization and separation as well as purification and detection of monoclonal and polyclonal phage populations. PMID:21390217

  10. The Isolation of Novel Phage Display-Derived Human Recombinant Antibodies Against CCR5, the Major Co-Receptor of HIV

    PubMed Central

    Shimoni, Moria; Herschhorn, Alon; Britan-Rosich, Yelena; Kotler, Moshe; Benhar, Itai

    2013-01-01

    Abstract Selecting for antibodies against specific cell-surface proteins is a difficult task due to many unrelated proteins that are expressed on the cell surface. Here, we describe a method to screen antibody-presenting phage libraries against native cell-surface proteins. We applied this method to isolate antibodies that selectively recognize CCR5, which is the major co-receptor for HIV entry (consequently, playing a pivotal role in HIV transmission and pathogenesis). We employed a phage screening strategy by using cells that co-express GFP and CCR5, along with an excess of control cells that do not express these proteins (and are otherwise identical to the CCR5-expressing cells). These control cells are intended to remove most of the phages that bind the cells nonspecifically; thus leading to an enrichment of the phages presenting anti-CCR5-specific antibodies. Subsequently, the CCR5-presenting cells were quantitatively sorted by flow cytometry, and the bound phages were eluted, amplified, and used for further successive selection rounds. Several different clones of human single-chain Fv antibodies that interact with CCR5-expressing cells were identified. The most specific monoclonal antibody was converted to a full-length IgG and bound the second extracellular loop of CCR5. The experimental approach presented herein for screening for CCR5-specific antibodies can be applicable to screen antibody-presenting phage libraries against any cell-surface expressed protein of interest. PMID:23941674

  11. The isolation of novel phage display-derived human recombinant antibodies against CCR5, the major co-receptor of HIV.

    PubMed

    Shimoni, Moria; Herschhorn, Alon; Britan-Rosich, Yelena; Kotler, Moshe; Benhar, Itai; Hizi, Amnon

    2013-08-01

    Selecting for antibodies against specific cell-surface proteins is a difficult task due to many unrelated proteins that are expressed on the cell surface. Here, we describe a method to screen antibody-presenting phage libraries against native cell-surface proteins. We applied this method to isolate antibodies that selectively recognize CCR5, which is the major co-receptor for HIV entry (consequently, playing a pivotal role in HIV transmission and pathogenesis). We employed a phage screening strategy by using cells that co-express GFP and CCR5, along with an excess of control cells that do not express these proteins (and are otherwise identical to the CCR5-expressing cells). These control cells are intended to remove most of the phages that bind the cells nonspecifically; thus leading to an enrichment of the phages presenting anti-CCR5-specific antibodies. Subsequently, the CCR5-presenting cells were quantitatively sorted by flow cytometry, and the bound phages were eluted, amplified, and used for further successive selection rounds. Several different clones of human single-chain Fv antibodies that interact with CCR5-expressing cells were identified. The most specific monoclonal antibody was converted to a full-length IgG and bound the second extracellular loop of CCR5. The experimental approach presented herein for screening for CCR5-specific antibodies can be applicable to screen antibody-presenting phage libraries against any cell-surface expressed protein of interest. PMID:23941674

  12. A peptide derived from phage display library exhibits anti-tumor activity by targeting GRP78 in gastric cancer multidrug resistance cells.

    PubMed

    Kang, Jianqin; Zhao, Guohong; Lin, Tao; Tang, Shanhong; Xu, Guanghui; Hu, Sijun; Bi, Qian; Guo, Changcun; Sun, Li; Han, Shuang; Xu, Qian; Nie, Yongzhan; Wang, Biaoluo; Liang, Shuhui; Ding, Jie; Wu, Kaichun

    2013-10-10

    Multidrug resistance (MDR) remains a significant challenge to the clinical treatment of gastric cancer (GC). In the present study, using a phage display approach combined with MTT assays, we screened a specific peptide GMBP1 (Gastric cancer MDR cell-specific binding peptide), ETAPLSTMLSPY, which could bind to the surface of GC MDR cells specifically and reverse their MDR phenotypes. Immunocytochemical staining showed that the potential receptor of GMBP1 was located at the membrane and cytoplasm of MDR cells. In vitro and in vivo drug sensitivity assays, FACS analysis and Western blotting confirmed that GMBP1 was able to re-sensitize MDR cells to chemical drugs. Western blotting and proteomic approaches were used to screen the receptor of GMBP1, and GRP78, a MDR-related protein, was identified as a receptor of GMBP1. This result was further supported by immunofluoresence microscopy and Western blot. Additionally, Western blotting demonstrated that pre-incubation of GMBP1 in MDR cells greatly diminished MDR1, Bcl-2 and GRP78 expression but increased the expression of Bax, whereas downregulation of GRP78, function as a receptor and directly target for GMBP1, only inhibited MDR1 expression. Our findings suggest that GMBP1 could re-sensitize GC MDR cells to a variety of chemotherapeutic agents and this role might be mediated partly through down-regulating GRP78 expression and then inhibiting MDR1 expression. These findings indicate that peptide GMBP1 likely recognizes a novel GRP78 receptor and mediates cellular activities associated with the MDR phenotype, which provides new insight into research on the management of MDR in gastric cancer cells. PMID:23792224

  13. Amyloid-forming peptides selected proteolytically from phage display library.

    PubMed

    Koscielska-Kasprzak, Katarzyna; Otlewski, Jacek

    2003-08-01

    We demonstrated that amyloid-forming peptides could be selected from phage-displayed library via proteolysis-based selection protocol. The library of 28-residue peptides based on a sequence of the second zinc finger domain of Zif268, and computationally designed betabetaalpha peptide, FSD-1, was presented monovalently on the surface of M13 phage. The library coupled the infectivity of phage particles to proteolytic stability of a peptide introduced into the coat protein III linker. It was designed to include variants with a strong potential to fold into betabetaalpha motif of zinc finger domains, as expected from secondary structure propensities, but with no structure stabilization via zinc ion coordination. As our primary goal was to find novel monomeric betabetaalpha peptides, the library was selected for stable domains with the assumption that folded proteins are resistant to proteolysis. After less than four rounds of proteolytic selection with trypsin, chymotrypsin, or proteinase K, we obtained a number of proteolysis-resistant phage clones containing several potential sites for proteolytic attack with the proteinases. Eight peptides showing the highest proteolysis resistance were expressed and purified in a phage-free form. When characterized, the peptides possessed proteolytic resistance largely exceeding that of the second zinc finger domain of Zif268 and FSD-1. Six of the characterized peptides formed fibrils when solubilized at high concentrations. Three of them assembled into amyloids as determined through CD measurements, Congo red and thioflavin T binding, and transmission electron microscopy. PMID:12876317

  14. Identifying reactive peptides from phage-displayed libraries

    PubMed Central

    Eldridge, Glenn M.; Weiss, Gregory A.

    2015-01-01

    Summary Phage display enables the synthesis, selection and screening of large, polypeptide libraries (>1 × 1010). Selections from such libraries can identify binding partners to essentially any desired target (1, 2). Peptide with affinity or reactivity to small molecule probes are attractive for numerous uses including the targeted, site-specific labeling of proteins. Here, we describe selection and screening protocols for the identification of short peptides that can selectively bind to and/or react with small molecules. PMID:25616334

  15. The phage display technique: advantages and recent patents.

    PubMed

    de Almeida, Sintia Silva; Magalhães, Aryane Aparecida C; de Castro Soares, Siomar; Zurita-Turk, Meritxell; Goulart, Luiz Ricardo; Miyoshi, Anderson; Azevedo, Vasco

    2011-08-01

    Phage display technology has advanced considerably since its creation, and the number of research projects using this technique is constantly increasing, generating numerous antibody and antigen libraries. These libraries, besides expediting library screening, improving selection methods and allowing evaluation of novel applications, have great potential for the development of new vaccines, drugs and diagnosis tests. Consequently, patent registries for the protection of these sequences are essential. PMID:21663585

  16. T4 bacteriophage as a phage display platform.

    PubMed

    Gamkrelidze, Mariam; Dąbrowska, Krystyna

    2014-07-01

    Analysis of molecular events in T4-infected Escherichia coli has revealed some of the most important principles of biology, including relationships between structures of genes and their products, virus-induced acquisition of metabolic function, and morphogenesis of complex structures through sequential gene product interaction rather than sequential gene activation. T4 bacteriophages and related strains were applied in the first formulations of many fundamental biological concepts. These include the unambiguous recognition of nucleic acids as the genetic material, the definition of the gene by fine-structure mutation, recombinational and functional analyses, the demonstration that the genetic code is triplet, the discovery of mRNA, the importance of recombination and DNA replications, light-dependent and light-independent DNA repair mechanisms, restriction and modification of DNA, self-splicing of intron/exon arrangement in prokaryotes, translation bypassing and others. Bacteriophage T4 possesses unique features that make it a good tool for a multicomponent vaccine platform. Hoc/Soc-fused antigens can be assembled on the T4 capsid in vitro and in vivo. T4-based phage display combined with affinity chromatography can be applied as a new method for bacteriophage purification. The T4 phage display system can also be used as an attractive approach for cancer therapy. The data show the efficient display of both single and multiple HIV antigens on the phage T4 capsid and offer insights for designing novel particulate HIV or other vaccines that have not been demonstrated by other vector systems. PMID:24828789

  17. Comparative functional genomic analysis of Pasteurellaceae adhesins using phage display.

    PubMed

    Mullen, Lisa M; Nair, Sean P; Ward, John M; Rycroft, Andrew N; Williams, Rachel J; Henderson, Brian

    2007-05-16

    The Pasteurellaceae contain a number of important animal pathogens. Although related, the various members of this family cause a diversity of pathology in a wide variety of organ systems. Adhesion is an important virulence factor in bacterial infections. Surprisingly little is known about the adhesins of the Pasteurellaceae. To attempt to identify the genes coding for adhesins to some key components of the hosts extracellular matrix molecules, phage display libraries of fragmented genomic DNA from Haemophilus influenzae, Actinobacillus pleuropneumoniae, Pasteurella multocida and Aggregatibacter actinomycetemcomitans, were prepared in the phage display vector pG8SAET. The libraries were screened against human or porcine fibronectin, serum albumin or a commercial extracellular matrix containing type IV collagen, laminin and heparin sulphate. Four genes encoding putative adhesins were identified. These genes code for: (i) a 34 kDa human serum albumin binding protein from Haemophilus influenzae; (ii) a 12.8 kDa fibronectin-binding protein from Pasteurella multocida; (iii) a 13.7 kDa fibronectin-binding protein from A. actinomycetemcomitans; (iv) a 9.5 kDa serum albumin-binding protein from A. pleuropneumoniae. None of these genes have previously been proposed to code for adhesins. The applications of phage display with whole bacterial genomes to identify genes encoding novel adhesins in this family of bacteria are discussed. PMID:17258409

  18. Phage display--a powerful technique for immunotherapy: 1. Introduction and potential of therapeutic applications.

    PubMed

    Bazan, Justyna; Całkosiński, Ireneusz; Gamian, Andrzej

    2012-12-01

    One of the most effective molecular diversity techniques is phage display. This technology is based on a direct linkage between phage phenotype and its encapsulated genotype, which leads to presentation of molecule libraries on the phage surface. Phage display is utilized in studying protein-ligand interactions, receptor binding sites and in improving or modifying the affinity of proteins for their binding partners. Generating monoclonal antibodies and improving their affinity, cloning antibodies from unstable hybridoma cells and identifying epitopes, mimotopes and functional or accessible sites from antigens are also important advantages of this technology. Techniques originating from phage display have been applied to transfusion medicine, neurological disorders, mapping vascular addresses and tissue homing of peptides. Phages have been applicable to immunization therapies, which may lead to development of new tools used for treating autoimmune and cancer diseases. This review describes the phage display technology and presents the recent advancements in therapeutic applications of phage display. PMID:22906939

  19. Probing ADAMTS13 Substrate Specificity using Phage Display

    PubMed Central

    Desch, Karl C.; Kretz, Colin; Yee, Andrew; Gildersleeve, Robert; Metzger, Kristin; Agrawal, Nidhi; Cheng, Jane; Ginsburg, David

    2015-01-01

    Von Willebrand factor (VWF) is a large, multimeric protein that regulates hemostasis by tethering platelets to the subendothelial matrix at sites of vascular damage. The procoagulant activity of plasma VWF correlates with the length of VWF multimers, which is proteolytically controlled by the metalloprotease ADAMTS13. To probe ADAMTS13 substrate specificity, we created phage display libraries containing randomly mutated residues of a minimal ADAMTS13 substrate fragment of VWF, termed VWF73. The libraries were screened for phage particles displaying VWF73 mutant peptides that were resistant to proteolysis by ADAMTS13. These peptides exhibited the greatest mutation frequency near the ADAMTS13 scissile residues. Kinetic assays using mutant and wild-type substrates demonstrated excellent agreement between rates of cleavage for mutant phage particles and the corresponding mutant peptides. Cleavage resistance of selected mutations was tested in vivo using hydrodynamic injection of corresponding full-length expression plasmids into VWF-deficient mice. These studies confirmed the resistance to cleavage resulting from select amino acid substitutions and uncovered evidence of alternate cleavage sites and recognition by other proteases in the circulation of ADAMTS13 deficient mice. Taken together, these studies demonstrate the key role of specific amino acids residues including P3-P2’ and P11’, for substrate specificity and emphasize the importance in flowing blood of other ADAMTS13–VWF exosite interactions outside of VWF73. PMID:25849793

  20. Targeting membrane proteins for antibody discovery using phage display.

    PubMed

    Jones, Martina L; Alfaleh, Mohamed A; Kumble, Sumukh; Zhang, Shuo; Osborne, Geoffrey W; Yeh, Michael; Arora, Neetika; Hou, Jeff Jia Cheng; Howard, Christopher B; Chin, David Y; Mahler, Stephen M

    2016-01-01

    A critical factor in the successful isolation of new antibodies by phage display is the presentation of a correctly folded antigen. While this is relatively simple for soluble proteins which can be purified and immobilized onto a plastic surface, membrane proteins offer significant challenges for antibody discovery. Whole cell panning allows presentation of the membrane protein in its native conformation, but is complicated by a low target antigen density, high background of irrelevant antigens and non-specific binding of phage particles to cell surfaces. The method described here uses transient transfection of alternating host cell lines and stringent washing steps to address each of these limitations. The successful isolation of antibodies from a naive scFv library is described for three membrane bound proteins; human CD83, canine CD117 and bat CD11b. PMID:27189586

  1. Targeting membrane proteins for antibody discovery using phage display

    PubMed Central

    Jones, Martina L.; Alfaleh, Mohamed A.; Kumble, Sumukh; Zhang, Shuo; Osborne, Geoffrey W.; Yeh, Michael; Arora, Neetika; Hou, Jeff Jia Cheng; Howard, Christopher B.; Chin, David Y.; Mahler, Stephen M.

    2016-01-01

    A critical factor in the successful isolation of new antibodies by phage display is the presentation of a correctly folded antigen. While this is relatively simple for soluble proteins which can be purified and immobilized onto a plastic surface, membrane proteins offer significant challenges for antibody discovery. Whole cell panning allows presentation of the membrane protein in its native conformation, but is complicated by a low target antigen density, high background of irrelevant antigens and non-specific binding of phage particles to cell surfaces. The method described here uses transient transfection of alternating host cell lines and stringent washing steps to address each of these limitations. The successful isolation of antibodies from a naive scFv library is described for three membrane bound proteins; human CD83, canine CD117 and bat CD11b. PMID:27189586

  2. A Genetically Modified Adenoviral Vector with a Phage Display-Derived Peptide Incorporated into Fiber Fibritin Chimera Prolongs Survival in Experimental Glioma.

    PubMed

    Kim, Julius W; Kane, J Robert; Young, Jacob S; Chang, Alan L; Kanojia, Deepak; Morshed, Ramin A; Miska, Jason; Ahmed, Atique U; Balyasnikova, Irina V; Han, Yu; Zhang, Lingjiao; Curiel, David T; Lesniak, Maciej S

    2015-09-01

    The dismal clinical context of advanced-grade glioma demands the development of novel therapeutic strategies with direct patient impact. Adenovirus-mediated virotherapy represents a potentially effective approach for glioma therapy. In this research, we generated a novel glioma-specific adenovirus by instituting more advanced genetic modifications that can maximize the efficiency and safety of therapeutic adenoviral vectors. In this regard, a glioma-specific targeted fiber was developed through the incorporation of previously published glioma-specific, phage-panned peptide (VWT peptide) on a fiber fibritin-based chimeric fiber, designated as "GliomaFF." We showed that the entry of this virus was highly restricted to glioma cells, supporting the specificity imparted by the phage-panned peptide. In addition, the stability of the targeting moiety presented by fiber fibritin structure permitted greatly enhanced infectivity. Furthermore, the replication of this virus was restricted in glioma cells by controlling expression of the E1 gene under the activity of the tumor-specific survivin promoter. Using this approach, we were able to explore the combinatorial efficacy of various adenoviral modifications that could amplify the specificity, infectivity, and exclusive replication of this therapeutic adenovirus in glioma. Finally, virotherapy with this modified virus resulted in up to 70% extended survival in an in vivo murine glioma model. These data demonstrate that this novel adenoviral vector is a safe and efficient treatment for this difficult malignancy. PMID:26058317

  3. Next-Generation Phage Display: Integrating and Comparing Available Molecular Tools to Enable Cost-Effective High-Throughput Analysis

    PubMed Central

    Dias-Neto, Emmanuel; Nunes, Diana N.; Giordano, Ricardo J.; Sun, Jessica; Botz, Gregory H.; Yang, Kuan; Setubal, João C.; Pasqualini, Renata; Arap, Wadih

    2009-01-01

    Background Combinatorial phage display has been used in the last 20 years in the identification of protein-ligands and protein-protein interactions, uncovering relevant molecular recognition events. Rate-limiting steps of combinatorial phage display library selection are (i) the counting of transducing units and (ii) the sequencing of the encoded displayed ligands. Here, we adapted emerging genomic technologies to minimize such challenges. Methodology/Principal Findings We gained efficiency by applying in tandem real-time PCR for rapid quantification to enable bacteria-free phage display library screening, and added phage DNA next-generation sequencing for large-scale ligand analysis, reporting a fully integrated set of high-throughput quantitative and analytical tools. The approach is far less labor-intensive and allows rigorous quantification; for medical applications, including selections in patients, it also represents an advance for quantitative distribution analysis and ligand identification of hundreds of thousands of targeted particles from patient-derived biopsy or autopsy in a longer timeframe post library administration. Additional advantages over current methods include increased sensitivity, less variability, enhanced linearity, scalability, and accuracy at much lower cost. Sequences obtained by qPhage plus pyrosequencing were similar to a dataset produced from conventional Sanger-sequenced transducing-units (TU), with no biases due to GC content, codon usage, and amino acid or peptide frequency. These tools allow phage display selection and ligand analysis at >1,000-fold faster rate, and reduce costs ∼250-fold for generating 106 ligand sequences. Conclusions/Significance Our analyses demonstrates that whereas this approach correlates with the traditional colony-counting, it is also capable of a much larger sampling, allowing a faster, less expensive, more accurate and consistent analysis of phage enrichment. Overall, qPhage plus pyrosequencing is

  4. Screening E3 Substrates Using a Live Phage Display Library

    PubMed Central

    Li, Huihua; Gao, Youhe

    2013-01-01

    Ubiquitin ligases (E3s) determine specificity of ubiquitination by recognizing target substrates. However, most of their substrates are unknown. Most known substrates have been identified using distinct approaches in different laboratories. We developed a high-throughput strategy using a live phage display library as E3 substrates in in vitro screening. His-ubiquitinated phage, enriched with Ni-beads, could effectively infect E. coli for amplification. Sixteen natural potential substrates and many unnatural potential substrates of E3 MDM2 were identified through 4 independent screenings. Some substrates were identified in different independent experiments. Additionally, 10 of 12 selected candidates were ubiquitinated by MDM2 in vitro, and 3 novel substrates, DDX42, TP53RK and RPL36a were confirmed ex vivo. The whole strategy is rather simple and efficient. Non-degradation substrates can be discovered. This strategy can be extended to any E3s as long as the E3 does not ubiquitinate the empty phage. PMID:24124579

  5. A novel helper phage for HaloTag-mediated co-display of enzyme and substrate on phage.

    PubMed

    Delespaul, Wouter; Peeters, Yves; Herdewijn, Piet; Robben, Johan

    2015-05-01

    Phage display is an established technique for the molecular evolution of peptides and proteins. For the selection of enzymes based on catalytic activity however, simultaneous coupling of an enzyme and its substrate to the phage surface is required. To facilitate this process of co-display, we developed a new helper phage displaying HaloTag, a modified haloalkane dehalogenase that binds specifically and covalently to functionalized haloalkane ligands. The display of functional HaloTag was demonstrated by capture on streptavidin-coated magnetic beads, after coupling a biotinylated haloalkane ligand, or after on-phage extension of a DNA oligonucleotide primer with a biotinylated nucleotide by phi29 DNA polymerase. We also achieved co-display of HaloTag and phi29 DNA polymerase, thereby opening perspectives for the molecular evolution of this enzyme (and others) towards new substrate specificities. PMID:25772618

  6. Identification of gliadin-binding peptides by phage display

    PubMed Central

    2011-01-01

    Background Coeliac disease (CD) is a common and complex disorder of the small intestine caused by intolerance to wheat gluten and related edible cereals like barley and rye. Peptides originating from incomplete gliadin digestion activate the lamina propria infiltrating T cells to release proinflammatory cytokines, which in turn cause profound tissue remodelling of the small intestinal wall. There is no cure for CD except refraining from consuming gluten-containing products. Results Phage from a random oligomer display library were enriched by repeated pannings against immobilised gliadin proteins. Phage from the final panning round were plated, individual plaques picked, incubated with host bacteria, amplified to a population size of 1011 to 1012 and purified. DNA was isolated from 1000 purified phage populations and the region covering the 36 bp oligonucleotide insert from which the displayed peptides were translated, was sequenced. Altogether more than 150 different peptide-encoding sequences were identified, many of which were repeatedly isolated under various experimental conditions. Amplified phage populations, each expressing a single peptide, were tested first in pools and then one by one for their ability to inhibit binding of human anti-gliadin antibodies in ELISA assays. These experiments showed that several of the different peptide-expressing phage tested inhibited the interaction between gliadin and anti-gliadin antibodies. Finally, four different peptide-encoding sequences were selected for further analysis, and the corresponding 12-mer peptides were synthesised in vitro. By ELISA assays it was demonstrated that several of the peptides inhibited the interaction between gliadin molecules and serum anti-gliadin antibodies. Moreover, ELISA competition experiments as well as dot-blot and western blot revealed that the different peptides interacted with different molecular sites of gliadin. Conclusions We believe that several of the isolated and

  7. Intra-domain phage display (ID-PhD) of peptides and protein mini-domains censored from canonical pIII phage display

    PubMed Central

    Tjhung, Katrina F.; Deiss, Frédérique; Tran, Jessica; Chou, Ying; Derda, Ratmir

    2015-01-01

    In this paper, we describe multivalent display of peptide and protein sequences typically censored from traditional N-terminal display on protein pIII of filamentous bacteriophage M13. Using site-directed mutagenesis of commercially available M13KE phage cloning vector, we introduced sites that permit efficient cloning using restriction enzymes between domains N1 and N2 of the pIII protein. As infectivity of phage is directly linked to the integrity of the connection between N1 and N2 domains, intra-domain phage display (ID-PhD) allows for simple quality control of the display and the natural variations in the displayed sequences. Additionally, direct linkage to phage propagation allows efficient monitoring of sequence cleavage, providing a convenient system for selection and evolution of protease-susceptible or protease-resistant sequences. As an example of the benefits of such an ID-PhD system, we displayed a negatively charged FLAG sequence, which is known to be post-translationally excised from pIII when displayed on the N-terminus, as well as positively charged sequences which suppress production of phage when displayed on the N-terminus. ID-PhD of FLAG exhibited sub-nanomolar apparent Kd suggesting multivalent nature of the display. A TEV-protease recognition sequence (TEVrs) co-expressed in tandem with FLAG, allowed us to demonstrate that 99.9997% of the phage displayed the FLAG-TEVrs tandem and can be recognized and cleaved by TEV-protease. The residual 0.0003% consisted of phage clones that have excised the insert from their genome. ID-PhD is also amenable to display of protein mini-domains, such as the 33-residue minimized Z-domain of protein A. We show that it is thus possible to use ID-PhD for multivalent display and selection of mini-domain proteins (Affibodies, scFv, etc.). PMID:25972845

  8. Intra-domain phage display (ID-PhD) of peptides and protein mini-domains censored from canonical pIII phage display.

    PubMed

    Tjhung, Katrina F; Deiss, Frédérique; Tran, Jessica; Chou, Ying; Derda, Ratmir

    2015-01-01

    In this paper, we describe multivalent display of peptide and protein sequences typically censored from traditional N-terminal display on protein pIII of filamentous bacteriophage M13. Using site-directed mutagenesis of commercially available M13KE phage cloning vector, we introduced sites that permit efficient cloning using restriction enzymes between domains N1 and N2 of the pIII protein. As infectivity of phage is directly linked to the integrity of the connection between N1 and N2 domains, intra-domain phage display (ID-PhD) allows for simple quality control of the display and the natural variations in the displayed sequences. Additionally, direct linkage to phage propagation allows efficient monitoring of sequence cleavage, providing a convenient system for selection and evolution of protease-susceptible or protease-resistant sequences. As an example of the benefits of such an ID-PhD system, we displayed a negatively charged FLAG sequence, which is known to be post-translationally excised from pIII when displayed on the N-terminus, as well as positively charged sequences which suppress production of phage when displayed on the N-terminus. ID-PhD of FLAG exhibited sub-nanomolar apparent Kd suggesting multivalent nature of the display. A TEV-protease recognition sequence (TEVrs) co-expressed in tandem with FLAG, allowed us to demonstrate that 99.9997% of the phage displayed the FLAG-TEVrs tandem and can be recognized and cleaved by TEV-protease. The residual 0.0003% consisted of phage clones that have excised the insert from their genome. ID-PhD is also amenable to display of protein mini-domains, such as the 33-residue minimized Z-domain of protein A. We show that it is thus possible to use ID-PhD for multivalent display and selection of mini-domain proteins (Affibodies, scFv, etc.). PMID:25972845

  9. A polystyrene binding target-unrelated peptide isolated in the screening of phage display library.

    PubMed

    Bakhshinejad, Babak; Sadeghizadeh, Majid

    2016-11-01

    Phage display is a powerful methodology for the identification of peptide ligands binding to any desired target. However, the selection of target-unrelated peptides (TUPs) appears as a huge problem in the screening of phage display libraries through biopanning. The phage-displayed peptide TLHPAAD has been isolated both in our laboratory and by another reserach group on completely different screening targets prompting us to hypothesize that it may be a potential TUP. In the current study, we analyzed the binding characteristics and propagation rate of phage clone displaying TLHPAAD peptide (SW-TUP clone). The results of ELISA experiment and phage recovery assay provided strong support for the notion that SW-TUP phage binds to polystyrene with a significantly higher affinity than control phage clones. Furthermore, this polystyrene binding was demonstrated to occur in a concentration- and pH-dependent mode. Characterization of the propagation profile of phage clones within a specified time course revealed no statistically significant difference between the amplification rate of SW-TUP and control phages. Our findings lead us to the conclusion that SW-TUP phage clone with the displayed peptide TLHPAAD is not a true target binder and its selection in biopanning experiments results from its bidning affinity to the polystyrene surface of the solid phase. PMID:27555439

  10. A novel approach for separating bacteriophages from other bacteriophages using affinity chromatography and phage display

    PubMed Central

    Ceglarek, Izabela; Piotrowicz, Agnieszka; Lecion, Dorota; Miernikiewicz, Paulina; Owczarek, Barbara; Hodyra, Katarzyna; Harhala, Marek; Górski, Andrzej; Dąbrowska, Krystyna

    2013-01-01

    Practical applications of bacteriophages in medicine and biotechnology induce a great need for technologies of phage purification. None of the popular methods offer solutions for separation of a phage from another similar phage. We used affinity chromatography combined with competitive phage display (i) to purify T4 bacteriophage from bacterial debris and (ii) to separate T4 from other contaminating bacteriophages. In ‘competitive phage display’ bacterial cells produced both wild types of the proteins (expression from the phage genome) and the protein fusions with affinity tags (expression from the expression vectors). Fusion proteins were competitively incorporated into the phage capsid. It allowed effective separation of T4 from a contaminating phage on standard affinity resins. PMID:24225840

  11. High Throughput Substrate Phage Display for Protease Profiling

    PubMed Central

    Ratnikov, Boris; Cieplak, Piotr; Smith, Jeffrey W.

    2012-01-01

    Summary The interplay between a protease and its substrates is controlled at many different levels, including coexpression, colocalization, binding driven by ancillary contacts, and the presence of natural inhibitors. Here we focus on the most basic parameter that guides substrate recognition by a protease, the recognition specificity at the catalytic cleft. An understanding of this substrate specificity can be used to predict the putative substrates of a protease, to design protease activated imaging agents, and to initiate the design of active site inhibitors. Our group has characterized protease specificities of several matrix metalloproteinases using substrate phage display. Recently, we have adapted this method to a semiautomated platform that includes several high-throughput steps. The semiautomated platform allows one to obtain an order of magnitude more data, thus permitting precise comparisons among related proteases to define their functional distinctions. PMID:19377968

  12. High throughput substrate phage display for protease profiling.

    PubMed

    Ratnikov, Boris; Cieplak, Piotr; Smith, Jeffrey W

    2009-01-01

    The interplay between a protease and its substrates is controlled at many different levels, including coexpression, colocalization, binding driven by ancillary contacts, and the presence of natural inhibitors. Here we focus on the most basic parameter that guides substrate recognition by a protease, the recognition specificity at the catalytic cleft. An understanding of this substrate specificity can be used to predict the putative substrates of a protease, to design protease activated imaging agents, and to initiate the design of active site inhibitors. Our group has characterized protease specificities of several matrix metalloproteinases using substrate phage display. Recently, we have adapted this method to a semiautomated platform that includes several high-throughput steps. The semiautomated platform allows one to obtain an order of magnitude more data, thus permitting precise comparisons among related proteases to define their functional distinctions. PMID:19377968

  13. Characterization and Selection of 3-(1-Naphthoyl)-Indole Derivative-Specific Alpaca VHH Antibodies Using a Phage Display Library.

    PubMed

    Nakayama, Hiroshi; Murakami, Akikazu; Yoshida, Maiko; Muraoka, Jin; Wakai, Junko; Kenjyou, Noriko; Ito, Yuji

    2016-08-01

    A new alpaca VHH antibody library against 3-(1-naphthoyl)-indole derivatives was developed from alpaca immunized with 7-(3-(1-naphthoyl)-1H-indol-1-yl)-heptanoic acid-keyhole limpet hemocyanin (Hep-KLH) protein conjugates as the immunogen. From this library, two 3-(1-naphthoyl)-indole derivative-specific clones, named NN01 and NN02, were isolated using biopanning technology. The binding specificity of these clones was confirmed using a competitive enzyme-linked immunosorbent assay (c-ELISA). Based on the results of c-ELISA, a median inhibitory concentration (IC50) of these two VHH antibodies, NN01 and NN02, in the case of 7-(3-(1-naphthoyl)-1H-indol-1-yl)-heptanoic acid (Hep; one of 3-(1-naphthoyl)-indole derivatives) as an inhibitor exhibited an approximate 3 × 10(-7) M and 6 × 10(-7) M, respectively. Thus, VHH antibodies produced in this study could be considered a useful tool for the detection of 3-(1-naphthoyl)-indole derivatives. PMID:27556911

  14. Next generation phage display by use of pVII and pIX as display scaffolds.

    PubMed

    Løset, Geir Åge; Sandlie, Inger

    2012-09-01

    Phage display technology has evolved to become an extremely versatile and powerful platform for protein engineering. The robustness of the phage particle, its ease of handling and its ability to tolerate a range of different capsid fusions are key features that explain the dominance of phage display in combinatorial engineering. Implementation of new technology is likely to ensure the continuation of its success, but has also revealed important short comings inherent to current phage display systems. This is in particular related to the biology of the two most popular display capsids, namely pIII and pVIII. Recent findings using two alternative capsids, pVII and pIX, located to the phage tip opposite that of pIII, suggest how they may be exploited to alleviate or circumvent many of these short comings. This review addresses important aspects of the current phage display standard and then discusses the use of pVII and pIX. These may both complement current systems and be used as alternative scaffolds for display and selection to further improve phage display as the ultimate combinatorial engineering platform. PMID:22819858

  15. Purification of phage display-modified bacteriophage T4 by affinity chromatography

    PubMed Central

    2011-01-01

    Background Affinity chromatography is one of the most efficient protein purification strategies. This technique comprises a one-step procedure with a purification level in the order of several thousand-fold, adaptable for various proteins, differentiated in their size, shape, charge, and other properties. The aim of this work was to verify the possibility of applying affinity chromatography in bacteriophage purification, with the perspective of therapeutic purposes. T4 is a large, icosahedral phage that may serve as an efficient display platform for foreign peptides or proteins. Here we propose a new method of T4 phage purification by affinity chromatography after its modification with affinity tags (GST and Histag) by in vivo phage display. As any permanent introduction of extraneous DNA into a phage genome is strongly unfavourable for medical purposes, integration of foreign motifs with the phage genome was not applied. The phage was propagated in bacteria expressing fusions of the phage protein Hoc with affinity tags from bacterial plasmids, independently from the phage expression system. Results Elution profiles of phages modified with the specific affinity motifs (compared to non-specific phages) document their binding to the affinity resins and effective elution with standard competitive agents. Non-specific binding was also observed, but was 102-105 times weaker than the specific one. GST-modified bacteriophages were also effectively released from glutathione Sepharose by proteolytic cleavage. The possibility of proteolytic release was designed at the stage of expression vector construction. Decrease in LPS content in phage preparations was dependent on the washing intensity; intensive washing resulted in preparations of 11-40 EU/ml. Conclusions Affinity tags can be successfully incorporated into the T4 phage capsid by the in vivo phage display technique and they strongly elevate bacteriophage affinity to a specific resin. Affinity chromatography can be

  16. Bacteriophages and Phage-Derived Proteins – Application Approaches

    PubMed Central

    Drulis-Kawa, Zuzanna; Majkowska-Skrobek, Grazyna; Maciejewska, Barbara

    2015-01-01

    Currently, the bacterial resistance, especially to most commonly used antibiotics has proved to be a severe therapeutic problem. Nosocomial and community-acquired infections are usually caused by multidrug resistant strains. Therefore, we are forced to develop an alternative or supportive treatment for successful cure of life-threatening infections. The idea of using natural bacterial pathogens such as bacteriophages is already well known. Many papers have been published proving the high antibacterial efficacy of lytic phages tested in animal models as well as in the clinic. Researchers have also investigated the application of non-lytic phages and temperate phages, with promising results. Moreover, the development of molecular biology and novel generation methods of sequencing has opened up new possibilities in the design of engineered phages and recombinant phage-derived proteins. Encouraging performances were noted especially for phage enzymes involved in the first step of viral infection responsible for bacterial envelope degradation, named depolymerases. There are at least five major groups of such enzymes – peptidoglycan hydrolases, endosialidases, endorhamnosidases, alginate lyases and hyaluronate lyases – that have application potential. There is also much interest in proteins encoded by lysis cassette genes (holins, endolysins, spanins) responsible for progeny release during the phage lytic cycle. In this review, we discuss several issues of phage and phage-derived protein application approaches in therapy, diagnostics and biotechnology in general. PMID:25666799

  17. Bacteriophages and phage-derived proteins--application approaches.

    PubMed

    Drulis-Kawa, Zuzanna; Majkowska-Skrobek, Grazyna; Maciejewska, Barbara

    2015-01-01

    Currently, the bacterial resistance, especially to most commonly used antibiotics has proved to be a severe therapeutic problem. Nosocomial and community-acquired infections are usually caused by multidrug resistant strains. Therefore, we are forced to develop an alternative or supportive treatment for successful cure of life-threatening infections. The idea of using natural bacterial pathogens such as bacteriophages is already well known. Many papers have been published proving the high antibacterial efficacy of lytic phages tested in animal models as well as in the clinic. Researchers have also investigated the application of non-lytic phages and temperate phages, with promising results. Moreover, the development of molecular biology and novel generation methods of sequencing has opened up new possibilities in the design of engineered phages and recombinant phage-derived proteins. Encouraging performances were noted especially for phage enzymes involved in the first step of viral infection responsible for bacterial envelope degradation, named depolymerases. There are at least five major groups of such enzymes - peptidoglycan hydrolases, endosialidases, endorhamnosidases, alginate lyases and hyaluronate lyases - that have application potential. There is also much interest in proteins encoded by lysis cassette genes (holins, endolysins, spanins) responsible for progeny release during the phage lytic cycle. In this review, we discuss several issues of phage and phage-derived protein application approaches in therapy, diagnostics and biotechnology in general. PMID:25666799

  18. Efficient identification of phosphatidylserine-binding proteins by ORF phage display

    SciTech Connect

    Caberoy, Nora B.; Zhou, Yixiong; Alvarado, Gabriela; Fan, Xianqun; Li, Wei

    2009-08-14

    To efficiently elucidate the biological roles of phosphatidylserine (PS), we developed open-reading-frame (ORF) phage display to identify PS-binding proteins. The procedure of phage panning was optimized with a phage clone expressing MFG-E8, a well-known PS-binding protein. Three rounds of phage panning with ORF phage display cDNA library resulted in {approx}300-fold enrichment in PS-binding activity. A total of 17 PS-binding phage clones were identified. Unlike phage display with conventional cDNA libraries, all 17 PS-binding clones were ORFs encoding 13 real proteins. Sequence analysis revealed that all identified PS-specific phage clones had dimeric basic amino acid residues. GST fusion proteins were expressed for 3 PS-binding proteins and verified for their binding activity to PS liposomes, but not phosphatidylcholine liposomes. These results elucidated previously unknown PS-binding proteins and demonstrated that ORF phage display is a versatile technology capable of efficiently identifying binding proteins for non-protein molecules like PS.

  19. The use of phage display peptide libraries for basic and translational research.

    PubMed

    Brissette, Renee; Goldstein, Neil I

    2007-01-01

    Phage display is a molecular technique, whereby genes are displayed in a functional form on the outer surfaces of bacteriophages by fusion to viral coat proteins. The gene product is encoded by a plasmid contained within the virus, which can be recovered and sequenced, linking the genetic information to the function of the protein. Phage display offers a powerful tool for the identification of short peptides or single chain antibodies that can bind and regulate the function of target proteins. One major advantage of phage display lies in its ability to rapidly identify target-specific peptides with pharmacological activity as agonists or antagonists. PMID:18217687

  20. Phage Display on the Base of Filamentous Bacteriophages: Application for Recombinant Antibodies Selection

    PubMed Central

    Morozova, V.V.

    2009-01-01

    The display of peptides and proteins on the surface of filamentous bacteriophage is a powerful methodology for selection of peptides and protein domains, including antibodies. An advantage of this methodology is the direct physical link between the phenotype and the genotype, as an analyzed polypeptide and its encoding DNA fragment exist in one phage particle. Development of phage display antibody libraries provides repertoires of phage particles exposing antibody fragments of great diversity. The biopanning procedure facilitates selection of antibodies with high affinity and specificity for almost any target. This review is an introduction to phage display methodology. It presents recombinant antibodies display in more details:, construction of phage libraries of antibody fragments and different strategies for the biopanning procedure. PMID:22649612

  1. Application of peptide displaying phage as a novel diagnostic probe for human lung adenocarcinoma.

    PubMed

    Lee, Kyoung Jin; Lee, Jae Hee; Chung, Hye Kyung; Ju, Eun Jin; Song, Si Yeol; Jeong, Seong-Yun; Choi, Eun Kyung

    2016-04-01

    Despite the increasing lung cancer-associated death rate, its therapy has been constrained by impasse of early diagnosis. To apply non-invasive imaging for potential cancer diagnosis system, we screened human lung adenocarcinoma-specific peptides using the phage display technique. For in vivo phage-displayed peptide screening, M13 phage library displaying 2.9 × 10(9) random peptides was injected through tail vein to lung adenocarcinoma cell-derived xenograft mouse model. Through four rounds of biopanning, a specific peptide sequence (CAKATCPAC) was screened out with the highest frequency and was named as Pep-1, and it was analyzed for its targeting ability as an imaging probe by in vitro competitive assay to test its cell-binding ability, immunohistochemical detection in the tumor tissue, and in vivo NIR fluorescent optical imaging. The specificity of Pep-1 toward lung cancer was ensured by in vivo imaging using xenograft animals of various cancer types. The results suggest that Pep-1 is a promising diagnostic lead molecule for rapid and accurate detection of human lung adenocarcinoma. In addition, it was found that the targeting ability was much enhanced by ionizing radiation in both cell-derived and patient-derived lung adenocarcinoma xenografts, suggesting the possibility of applying Pep-1 for prognostic diagnosis after radiotherapy. Taken together, this study suggests that Pep-1 possesses a specific-targeting ability for human lung adenocarcinoma and that this peptide could be directly used as a clinically applicable imaging probe. PMID:26759016

  2. Selection dynamic of Escherichia coli host in M13 combinatorial peptide phage display libraries.

    PubMed

    Zanconato, Stefano; Minervini, Giovanni; Poli, Irene; De Lucrezia, Davide

    2011-01-01

    Phage display relies on an iterative cycle of selection and amplification of random combinatorial libraries to enrich the initial population of those peptides that satisfy a priori chosen criteria. The effectiveness of any phage display protocol depends directly on library amino acid sequence diversity and the strength of the selection procedure. In this study we monitored the dynamics of the selective pressure exerted by the host organism on a random peptide library in the absence of any additional selection pressure. The results indicate that sequence censorship exerted by Escherichia coli dramatically reduces library diversity and can significantly impair phage display effectiveness. PMID:21512219

  3. SPR Biosensor for the Detection of L. monocytogenes using Phage Displayed Antibody

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whole cells of Listeria monocytogenes were detected with a compact, surface plasmon resonance (SPR) sensor using a phage-displayed scFv antibody to the virulence factor ActA for biorecognition. Phage Lm P4:A8, expressing the scFv antibody fused to the pIII surface protein was immobilized to the se...

  4. Identification and characterization of mutant clones with enhanced propagation rates from phage-displayed peptide libraries.

    PubMed

    Nguyen, Kieu T H; Adamkiewicz, Marta A; Hebert, Lauren E; Zygiel, Emily M; Boyle, Holly R; Martone, Christina M; Meléndez-Ríos, Carola B; Noren, Karen A; Noren, Christopher J; Hall, Marilena Fitzsimons

    2014-10-01

    A target-unrelated peptide (TUP) can arise in phage display selection experiments as a result of a propagation advantage exhibited by the phage clone displaying the peptide. We previously characterized HAIYPRH, from the M13-based Ph.D.-7 phage display library, as a propagation-related TUP resulting from a G→A mutation in the Shine-Dalgarno sequence of gene II. This mutant was shown to propagate in Escherichia coli at a dramatically faster rate than phage bearing the wild-type Shine-Dalgarno sequence. We now report 27 additional fast-propagating clones displaying 24 different peptides and carrying 14 unique mutations. Most of these mutations are found either in or upstream of the gene II Shine-Dalgarno sequence, but still within the mRNA transcript of gene II. All 27 clones propagate at significantly higher rates than normal library phage, most within experimental error of wild-type M13 propagation, suggesting that mutations arise to compensate for the reduced virulence caused by the insertion of a lacZα cassette proximal to the replication origin of the phage used to construct the library. We also describe an efficient and convenient assay to diagnose propagation-related TUPS among peptide sequences selected by phage display. PMID:24952360

  5. Phage display-guided nanocarrier targeting to atheroprone vasculature

    PubMed Central

    Hofmeister, Lucas H.; Lee, Sue H.; Norlander, Allison E.; Montaniel, Kim Ramil C.; Chen, Wei; Harrison, David G.; Sung, Hak-Joon

    2015-01-01

    In regions of the circulation where vessels are straight and unbranched, blood flow is laminar and unidirectional. In contrast, at sites of curvature, branch points and regions distal to stenoses blood flow becomes disturbed. Atherosclerosis preferentially develops in these regions of disturbed blood flow. Current therapies for atherosclerosis are systemic, and may not sufficiently target these atheroprone regions. In this study, we sought to leverage the alterations on the luminal surface of endothelial cells caused by this atheroprone flow for nanocarrier targeting. In vivo phage display was used to discover unique peptides that selectively bind to atheroprone regions in the mouse partial carotid artery ligation model. The peptide GSPREYTSYMPH (PREY) was found to bind 4.5-fold more avidly to the region of disturbed flow, and was used to form targeted liposomes. When administered intravenously, PREY-targeted liposomes preferentially accumulated in endothelial cells in the partially occluded carotid artery and other areas of disturbed flow. Proteomic analysis and immunoblotting indicated that fibronectin and Filamin A were preferentially bound by PREY-nanocarriers in vessels with disturbed flow. In additional experiments, PREY-nanocarriers were used therapeutically to deliver the nitric oxide synthase co-factor tetrahydrobiopterin (BH4), which we have previously shown to be deficient in regions of disturbed flow. This intervention increased vascular BH4 and reduced vascular superoxide in the partially ligated artery in wild-type mice, and reduced plaque burden in the partially ligated left carotid artery of fat fed atheroprone mice (ApoE−/−). Targeting atheroprone sites of the circulation with functionalized nanocarriers provides a new approach for prevention of early atherosclerotic lesion formation. PMID:25768046

  6. Phage display--a powerful technique for immunotherapy: 2. Vaccine delivery.

    PubMed

    Bazan, Justyna; Całkosiński, Ireneusz; Gamian, Andrzej

    2012-12-01

    Phage display is a powerful technique in medical and health biotechnology. This technology has led to formation of antibody libraries and has provided techniques for fast and efficient search of these libraries. The phage display technique has been used in studying the protein-protein or protein-ligand interactions, constructing of the antibody and antibody fragments and improving the affinity of proteins to receptors. Recently phage display has been widely used to study immunization process, develop novel vaccines and investigate allergen-antibody interactions. This technology can provide new tools for protection against viral, fungal and bacterial infections. It may become a valuable tool in cancer therapies, abuse and allergies treatment. This review presents the recent advancements in diagnostic and therapeutic applications of phage display. In particular the applicability of this technology to study the immunization process, construction of new vaccines and development of safer and more efficient delivery strategies has been described. PMID:22906938

  7. Mutations in fd phage major coat protein modulate affinity of the displayed peptide

    PubMed Central

    Kuzmicheva, G.A.; Jayanna, P.K.; Eroshkin, A.M.; Grishina, M.A.; Pereyaslavskaya, E.S.; Potemkin, V.A.; Petrenko, V.A.

    2009-01-01

    Multibillion-clone libraries of phages displaying guest peptides fused to the major coat protein pVIII (landscape libraries) are a rich source of probes for proteinaceous and non-proteinaceous targets. As opposed to the pIII-type fusion phages, which display peptides as independent structural domains, the guest peptides in the pVIII-fusion phages can be structurally and functionally influenced by contiguous subunits. To decipher the impact of the locale of a guest peptide on its affinity characteristics, we constructed a library of phages carrying β-galactosidase-binding peptide ADTFAKSMQ at the N-terminus of the pVIII protein surrounded by random amino acids. It was found that mutagenesis of amino acids 12–19 (domain C) has polar effects on target binding affinity of the displayed peptide. The phages with highest affinity are characterized by: (i) a net electrostatic charge around −1 of domain C of the mutated phages at pH 7.0; (ii) a lower radius of cylinder coaxial to α-helix formed by domain C; (iii) a lower higher occupied molecular orbital (HOMO) of domain C leading to a decreased formation of hydrogen bonds and (iv) positively charged surface and torsion energy of domain C, which may require a conformational transition of N-terminal peptide ADTFAKSMQ for its binding with β-galactosidase. Influence of the guest peptide on the diversity of mutations in the neighboring landscape area was also observed. PMID:19633313

  8. Application of streptavidin mass spectrometric immunoassay tips for immunoaffinity based antibody phage display panning.

    PubMed

    Chin, Chai Fung; Ler, Lian Wee; Choong, Yee Siew; Ong, Eugene Boon Beng; Ismail, Asma; Tye, Gee Jun; Lim, Theam Soon

    2016-01-01

    Antibody phage display panning involves the enrichment of antibodies against specific targets by affinity. In recent years, several new methods for panning have been introduced to accommodate the growing application of antibody phage display. The present work is concerned with the application of streptavidin mass spectrometry immunoassay (MSIA™) Disposable Automation Research Tips (D.A.R.T's®) for antibody phage display. The system was initially designed to isolate antigens by affinity selection for mass spectrometry analysis. The streptavidin MSIA™ D.A.R.T's® system allows for easy attachment of biotinylated target antigens on the solid surface for presentation to the phage library. As proof-of-concept, a domain antibody library was passed through the tips attached with the Hemolysin E antigen. After binding and washing, the bound phages were eluted via standard acid dissociation and the phages were rescued for subsequent panning rounds. Polyclonal enrichment was observed for three rounds of panning with five monoclonal domain antibodies identified. The proposed method allows for a convenient, rapid and semi-automated alternative to conventional antibody panning strategies. PMID:26581498

  9. Exploring the Secretomes of Microbes and Microbial Communities Using Filamentous Phage Display

    PubMed Central

    Gagic, Dragana; Ciric, Milica; Wen, Wesley X.; Ng, Filomena; Rakonjac, Jasna

    2016-01-01

    Microbial surface and secreted proteins (the secretome) contain a large number of proteins that interact with other microbes, host and/or environment. These proteins are exported by the coordinated activities of the protein secretion machinery present in the cell. A group of bacteriophage, called filamentous phage, have the ability to hijack bacterial protein secretion machinery in order to amplify and assemble via a secretion-like process. This ability has been harnessed in the use of filamentous phage of Escherichia coli in biotechnology applications, including screening large libraries of variants for binding to “bait” of interest, from tissues in vivo to pure proteins or even inorganic substrates. In this review we discuss the roles of secretome proteins in pathogenic and non-pathogenic bacteria and corresponding secretion pathways. We describe the basics of phage display technology and its variants applied to discovery of bacterial proteins that are implicated in colonization of host tissues and pathogenesis, as well as vaccine candidates through filamentous phage display library screening. Secretome selection aided by next-generation sequence analysis was successfully applied for selective display of the secretome at a microbial community scale, the latter revealing the richness of secretome functions of interest and surprising versatility in filamentous phage display of secretome proteins from large number of Gram-negative as well as Gram-positive bacteria and archaea. PMID:27092113

  10. Exploring the Secretomes of Microbes and Microbial Communities Using Filamentous Phage Display.

    PubMed

    Gagic, Dragana; Ciric, Milica; Wen, Wesley X; Ng, Filomena; Rakonjac, Jasna

    2016-01-01

    Microbial surface and secreted proteins (the secretome) contain a large number of proteins that interact with other microbes, host and/or environment. These proteins are exported by the coordinated activities of the protein secretion machinery present in the cell. A group of bacteriophage, called filamentous phage, have the ability to hijack bacterial protein secretion machinery in order to amplify and assemble via a secretion-like process. This ability has been harnessed in the use of filamentous phage of Escherichia coli in biotechnology applications, including screening large libraries of variants for binding to "bait" of interest, from tissues in vivo to pure proteins or even inorganic substrates. In this review we discuss the roles of secretome proteins in pathogenic and non-pathogenic bacteria and corresponding secretion pathways. We describe the basics of phage display technology and its variants applied to discovery of bacterial proteins that are implicated in colonization of host tissues and pathogenesis, as well as vaccine candidates through filamentous phage display library screening. Secretome selection aided by next-generation sequence analysis was successfully applied for selective display of the secretome at a microbial community scale, the latter revealing the richness of secretome functions of interest and surprising versatility in filamentous phage display of secretome proteins from large number of Gram-negative as well as Gram-positive bacteria and archaea. PMID:27092113

  11. Neutralizing Human Fab Fragments against Measles Virus Recovered by Phage Display

    PubMed Central

    de Carvalho Nicacio, Cristina; Williamson, R. Anthony; Parren, Paul W. H. I.; Lundkvist, Åke; Burton, Dennis R.; Björling, Ewa

    2002-01-01

    Five human recombinant Fab fragments (Fabs) specific for measles virus (MV) proteins were isolated from three antibody phage display libraries generated from RNAs derived from bone marrow or splenic lymphocytes from three MV-immune individuals. All Fabs reacted in an enzyme-linked immunosorbent assay with MV antigens. In radioimmunoprecipitation assays two of the Fabs, MV12 and MT14, precipitated an ⊘80-kDa protein band corresponding to the hemagglutinin (H) protein from MV-infected Vero cell cultures, while two other Fabs, MT64 and GL29, precipitated an ⊘60-kDa protein corresponding the nucleocapsid (N) protein. In competition studies with MV fusion, H- and N protein-specific monoclonal antibodies (MAbs), the H-specific Fabs predominantly blocked the binding of H-specific MAbs, while the N-specific Fabs blocked MAbs to N. In addition, N-specific Fabs bound to denatured MV N protein in Western blotting. The specificity of the fifth Fab, MV4, could not be determined. By plaque reduction assays, three of the five Fabs, MV4, MV12, and MT14, exhibited neutralizing activity (80% cutoff) against MV (LEC-KI strain) at concentrations ranging between ≈2 and 7 μg ml−1. Neutralization capacity against MV strains Edmonston and Schwarz was also detected, albeit at somewhat higher Fab concentrations. In conclusion, three neutralizing Fabs were isolated, two of them reactive against the H glycoprotein of MV and another reactive against an undefined epitope. This is the first study in which MV-neutralizing human recombinant Fab antibodies have been isolated from phage display libraries. PMID:11739690

  12. Corruption of phage-display libraries by target-unrelated clones: Diagnosis and countermeasures

    PubMed Central

    Thomas, William D.; Golomb, Miriam; Smith, George P.

    2010-01-01

    Phage display is used to discover peptides or proteins with a desired target property—most often, affinity for a target selector molecule. Libraries of phage clones displaying diverse surface peptides are subject to a selection process designed to enrich for the target behavior, and subsequently propagated to restore phage numbers. A recurrent problem is enrichment of clones, called target-unrelated phage (TUPs), that lack the target behavior. Many TUPs are propagation-related; they have mutations conferring a growth advantage, and are enriched during the propagations accompanying selection. Unlike other filamentous phage libraries, fd-tet-based libraries are relatively resistant to propagation-related TUP corruption. Their minus strand origin is disrupted by a large cassette that simultaneously confers resistance to tetracycline and imposes a rate-limiting growth defect that cannot be bypassed with simple mutations. Nonetheless, a new type of propagation-related TUP emerged in the output of in vivo selections from an fd-tet library. The founding clone had a complex rearrangement that restored the minus strand origin while retaining tetracycline resistance. The rearrangement involved two recombination events, one with a contaminant having a wild-type minus strand origin. The founder’s infectivity advantage spread by simple recombination to clones displaying different peptides. We propose measures for minimizing TUP corruption. PMID:20692225

  13. An Electrochemiluminescence Immunosensor Based on Gold-Magnetic Nanoparticles and Phage Displayed Antibodies

    PubMed Central

    Mu, Xihui; Tong, Zhaoyang; Huang, Qibin; Liu, Bing; Liu, Zhiwei; Hao, Lanqun; Dong, Hua; Zhang, Jinping; Gao, Chuan

    2016-01-01

    Using the multiple advantages of the ultra-highly sensitive electrochemiluminescence (ECL) technique, Staphylococcus protein A (SPA) functionalized gold-magnetic nanoparticles and phage displayed antibodies, and using gold-magnetic nanoparticles coated with SPA and coupled with a polyclonal antibody (pcAb) as magnetic capturing probes, and Ru(bpy)32+-labeled phage displayed antibody as a specific luminescence probe, this study reports a new way to detect ricin with a highly sensitive and specific ECL immunosensor and amplify specific detection signals. The linear detection range of the sensor was 0.0001~200 µg/L, and the limit of detection (LOD) was 0.0001 µg/L, which is 2500-fold lower than that of the conventional ELISA technique. The gold-magnetic nanoparticles, SPA and Ru(bpy)32+-labeled phage displayed antibody displayed different amplifying effects in the ECL immunosensor and can decrease LOD 3-fold, 3-fold and 20-fold, respectively, compared with the ECL immunosensors without one of the three effects. The integrated amplifying effect can decrease the LOD 180-fold. The immunosensor integrates the unique advantages of SPA-coated gold-magnetic nanoparticles that improve the activity of the functionalized capturing probe, and the amplifying effect of the Ru(bpy)32+-labeled phage displayed antibodies, so it increases specificity, interference-resistance and decreases LOD. It is proven to be well suited for the analysis of trace amounts of ricin in various environmental samples with high recovery ratios and reproducibility. PMID:26927130

  14. Immunodiagnosis of Canine Visceral Leishmaniasis Using Mimotope Peptides Selected from Phage Displayed Combinatorial Libraries

    PubMed Central

    Toledo-Machado, Christina Monerat; Machado de Avila, Ricardo Andrez; NGuyen, Christophe; Granier, Claude; Bueno, Lilian Lacerda; Carneiro, Claudia Martins; Menezes-Souza, Daniel; Carneiro, Rubens Antonio; Chávez-Olórtegui, Carlos; Fujiwara, Ricardo Toshio

    2015-01-01

    ELISA and RIFI are currently used for serodiagnosis of canine visceral leishmaniasis (CVL). The accuracy of these tests is controversial in endemic areas where canine infections by Trypanosoma cruzi may occur. We evaluated the usefulness of synthetic peptides that were selected through phage display technique in the serodiagnosis of CVL. Peptides were chosen based on their ability to bind to IgGs purified from infected dogs pooled sera. We selected three phage clones that reacted only with those IgGs. Peptides were synthesized, polymerized with glutaraldehyde, and used as antigens in ELISA assays. Each individual peptide or a mix of them was reactive with infected dogs serum. The assay was highly sensitive and specific when compared to soluble Leishmania antigen that showed cross-reactivity with anti-T. cruzi IgGs. Our results demonstrate that phage display technique is useful for selection of peptides that may represent valuable synthetic antigens for an improved serodiagnosis of CVL. PMID:25710003

  15. Engineering phage materials with desired peptide display: rational design sustained through natural selection.

    PubMed

    Merzlyak, Anna; Lee, Seung-Wuk

    2009-12-01

    Genetic engineering of phage provides novel opportunities to build various nanomaterials by displaying functional peptide motifs on its surface coat protein. However, any genetic modifications of phage coat proteins must be able to accommodate their many biological roles in the phage replication process. To express functional but inherently unfavorable peptide motifs on major coat protein pVIII, we devised a novel genetic conjugation method to circumvent bacterial biological censorship. Constraining the designed peptides among the degenerate flanking residues, we obtained a pVIII library of phage that retained the desired sequences yet could navigate through the phage replication process due to the naturally selected flanking residues. Further, we systematically analyzed the biochemical and size-related compensation mechanisms of the pVIII expressed peptides by constructing four chemically diverse (His, Trp, Glu, Lys) partial library series. Described genetic conjugation methodology can serve to improve the design of engineered phage and allow further exploitation of these particles as functional nanobiomaterials for various applications. PMID:19842621

  16. Real-time analysis of dual-display phage immobilization and autoantibody screening using quartz crystal microbalance with dissipation monitoring

    PubMed Central

    Rajaram, Kaushik; Losada-Pérez, Patricia; Vermeeren, Veronique; Hosseinkhani, Baharak; Wagner, Patrick; Somers, Veerle; Michiels, Luc

    2015-01-01

    Over the last three decades, phage display technology has been used for the display of target-specific biomarkers, peptides, antibodies, etc. Phage display-based assays are mostly limited to the phage ELISA, which is notorious for its high background signal and laborious methodology. These problems have been recently overcome by designing a dual-display phage with two different end functionalities, namely, streptavidin (STV)-binding protein at one end and a rheumatoid arthritis-specific autoantigenic target at the other end. Using this dual-display phage, a much higher sensitivity in screening specificities of autoantibodies in complex serum sample has been detected compared to single-display phage system on phage ELISA. Herein, we aimed to develop a novel, rapid, and sensitive dual-display phage to detect autoantibodies presence in serum samples using quartz crystal microbalance with dissipation monitoring as a sensing platform. The vertical functionalization of the phage over the STV-modified surfaces resulted in clear frequency and dissipation shifts revealing a well-defined viscoelastic signature. Screening for autoantibodies using antihuman IgG-modified surfaces and the dual-display phage with STV magnetic bead complexes allowed to isolate the target entities from complex mixtures and to achieve a large response as compared to negative control samples. This novel dual-display strategy can be a potential alternative to the time consuming phage ELISA protocols for the qualitative analysis of serum autoantibodies and can be taken as a departure point to ultimately achieve a point of care diagnostic system. PMID:26316752

  17. Phage Displayed Peptides to Avian H5N1 Virus Distinguished the Virus from Other Viruses

    PubMed Central

    Qin, Chengfeng; Ren, Xiaofeng

    2011-01-01

    The purpose of the current study was to identify potential ligands and develop a novel diagnostic test to highly pathogenic avian influenza A virus (HPAI), subtype H5N1 viruses using phage display technology. The H5N1 viruses were used as an immobilized target in a biopanning process using a 12-mer phage display random peptide library. After five rounds of panning, three phages expressing peptides HAWDPIPARDPF, AAWHLIVALAPN or ATSHLHVRLPSK had a specific binding activity to H5N1 viruses were isolated. Putative binding motifs to H5N1 viruses were identified by DNA sequencing. In terms of the minimum quantity of viruses, the phage-based ELISA was better than antiserum-based ELISA and a manual, semi-quantitative endpoint RT-PCR for detecting H5N1 viruses. More importantly, the selected phages bearing the specific peptides to H5N1 viruses were capable of differentiating this virus from other avian viruses in enzyme-linked immunosorbent assays. PMID:21887228

  18. Phage-displayed peptide targeting on the Puumala hantavirus neutralization site.

    PubMed Central

    Heiskanen, T; Lundkvist, A; Vaheri, A; Lankinen, H

    1997-01-01

    We have selected ligands for Puumala hantavirus, the causative agent of nephropathia epidemica, from a seven-amino-acid peptide library flanked by cysteines and displayed on a filamentous phage. To direct the selection to areas on the virus particle which are essential for infection, phages were competitively eluted with neutralizing monoclonal antibodies specific for the viral glycoproteins. The selected phage populations were specific for the same sites as the antibodies and mimicked their functions. The peptide insert, CHWMFSPWC, when displayed on the phages, completely inhibited Puumala virus infection in cell culture at the same effective concentration as the eluting antibody specific for envelope glycoprotein G2. The binding of the phage clones to the virus and inhibition of infection were not necessarily coincident; Pro-6 was critical for virus inhibition, while consensus residues Trp-2 and Phe-4 were essential for binding. The strategy described can be applied to any virus for production of molecules mimicking the effect of neutralizing antibodies. PMID:9094664

  19. Identification of Novel Single Chain Fragment Variable Antibodies Against TNF-α Using Phage Display Technology

    PubMed Central

    Alizadeh, Ali Akbar; Hamzeh-Mivehroud, Maryam; Dastmalchi, Siavoush

    2015-01-01

    Purpose: Tumor necrosis factor alpha (TNF-α) is an inflammatory cytokine, involved in both physiological and pathological pathways. Because of central role of TNF-α in pathogenesis of inflammatory diseases, in the current study, we aimed to identify novel scFv antibodies against TNF-α using phage display technology. Methods: Using libraries composed of phagemid displaying scFv antibodies, four rounds of biopanning against TNF-α were carried out, which led to identification of scFvs capable of binding to TNF-α. The scFv antibody with appropriate binding affinity towards TNF-α, was amplified and used in ELISA experiment. Results: Titration of phage achieved from different rounds of biopanning showed an enrichment of specific anti-TNF-α phages during biopanning process. Using ELISA experiment, a binding constant (Kd) of 1.11 ± 0.32 nM was determined for the phage displaying J48 scFv antibody. Conclusion: The findings in the current work revealed that the identified novel scFv antibody displayed at the N-terminal of minor coat proteins of phagemid binds TNF-α with suitable affinity. However, the soluble form of the antibody is needed to be produced and evaluated in more details regarding its binding properties to TNF-α. PMID:26793613

  20. Phage displayed peptide recognizing porcine aminopeptidase N is a potent small molecule inhibitor of PEDV entry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three phage-displayed peptides designated H, S and F that recognize porcine aminopeptidase N (pAPN), the cellular receptor of porcine transmissible gastroenteritis virus (TGEV) were able to inhibit cell infection by TGEV. These same peptides had no inhibitory effects on infection of Vero cells by po...

  1. Improved eIF4E Binding Peptides by Phage Display Guided Design: Plasticity of Interacting Surfaces Yield Collective Effects

    PubMed Central

    Verma, Chandra S.; Liu, Yun; Lane, David P.; Brown, Christopher J.

    2012-01-01

    Eukaryotic initiation factor (eIF)4E is over-expressed in many types of cancer such as breast, head and neck, and lung. A consequence of increased levels of eIF4E is the preferential translation of pro-tumorigenic proteins (e.g. c-Myc and vascular endothelial growth factor) and as a result is regarded as a potential therapeutic target. In this work a novel phage display peptide has been isolated against eIF4E. From the phage sequence two amino acids were delineated which improved binding when substituted into the eIF4G1 sequence. Neither of these substitutions were involved in direct interactions with eIF4E and acted either via optimization of the helical capping motif or restricting the conformational flexibility of the peptide. In contrast, substitutions of the remaining phage derived amino acids into the eIF4G1 sequence disrupted binding of the peptide to eIF4E. Interestingly when some of these disruptive substitutions were combined with key mutations from the phage peptide, they lead to improved affinities. Atomistic computer simulations revealed that the phage and the eIF4G1 derivative peptide sequences differ subtly in their interaction sites on eIF4E. This raises the issue, especially in the context of planar interaction sites such as those exhibited by eIF4E, that given the intricate plasticity of protein surfaces, the construction of structure-activity relationships should account for the possibility of significant movement in the spatial positioning of the peptide binding interface, including significant librational motions of the peptide. PMID:23094039

  2. Improvement and efficient display of Bacillus thuringiensis toxins on M13 phages and ribosomes.

    PubMed

    Pacheco, Sabino; Cantón, Emiliano; Zuñiga-Navarrete, Fernando; Pecorari, Frédéric; Bravo, Alejandra; Soberón, Mario

    2015-12-01

    Bacillus thuringiensis (Bt) produces insecticidal proteins that have been used worldwide in the control of insect-pests in crops and vectors of human diseases. However, different insect species are poorly controlled by the available Bt toxins or have evolved resistance to these toxins. Evolution of Bt toxicity could provide novel toxins to control insect pests. To this aim, efficient display systems to select toxins with increased binding to insect membranes or midgut proteins involved in toxicity are likely to be helpful. Here we describe two display systems, phage display and ribosome display, that allow the efficient display of two non-structurally related Bt toxins, Cry1Ac and Cyt1Aa. Improved display of Cry1Ac and Cyt1Aa on M13 phages was achieved by changing the commonly used peptide leader sequence of the coat pIII-fusion protein, that relies on the Sec translocation pathway, for a peptide leader sequence that relies on the signal recognition particle pathway (SRP) and by using a modified M13 helper phage (Phaberge) that has an amber mutation in its pIII genomic sequence and preferentially assembles using the pIII-fusion protein. Also, both Cry1Ac and Cyt1Aa were efficiently displayed on ribosomes, which could allow the construction of large libraries of variants. Furthermore, Cry1Ac or Cyt1Aa displayed on M13 phages or ribosomes were specifically selected from a mixture of both toxins depending on which antigen was immobilized for binding selection. These improved systems may allow the selection of Cry toxin variants with improved insecticidal activities that could counter insect resistances. PMID:26606918

  3. Molecular specialization of breast vasculature: A breast-homing phage-displayed peptide binds to aminopeptidase P in breast vasculature

    NASA Astrophysics Data System (ADS)

    Essler, Markus; Ruoslahti, Erkki

    2002-02-01

    In vivo phage display identifies peptides that selectively home to the vasculature of individual organs, tissues, and tumors. Here we report the identification of a cyclic nonapeptide, CPGPEGAGC, which homes to normal breast tissue with a 100-fold selectivity over nontargeted phage. The homing of the phage is inhibited by its cognate synthetic peptide. Phage localization in tissue sections showed that the breast-homing phage binds to the blood vessels in the breast, but not in other tissues. The phage also bound to the vasculature of hyperplastic and malignant lesions in transgenic breast cancer mice. Expression cloning with a phage-displayed cDNA library yielded a phage that specifically bound to the breast-homing peptide. The cDNA insert was homologous to a fragment of aminopeptidase P. The homing peptide bound aminopeptidase P from malignant breast tissue in affinity chromatography. Antibodies against aminopeptidase P inhibited the in vitro binding of the phage-displayed cDNA to the peptide and the in vivo homing of phage carrying the peptide. These results indicate that aminopeptidase P is the receptor for the breast-homing peptide. This peptide may be useful in designing drugs for the prevention and treatment of breast cancer.

  4. Phage Display Identification of CD100 in Human Atherosclerotic Plaque Macrophages and Foam Cells

    PubMed Central

    Luque, Maria Carolina Aquino; Gutierrez, Paulo Sampaio; Debbas, Victor; Martins, Waleska Kerllen; Puech-Leao, Pedro; Porto, Georgia; Coelho, Verônica; Boumsell, Laurence; Kalil, Jorge; Stolf, Beatriz

    2013-01-01

    Atherosclerosis is a complex disease in which vessels develop plaques comprising dysfunctional endothelium, monocyte derived lipid laden foam cells and activated lymphocytes. Considering that humans and animal models of the disease develop quite distinct plaques, we used human plaques to search for proteins that could be used as markers of human atheromas. Phage display peptide libraries were probed to fresh human carotid plaques, and a bound phage homologous to plexin B1, a high affinity receptor for CD100, was identified. CD100 is a member of the semaphorin family expressed by most hematopoietic cells and particularly by activated T cells. CD100 expression was analyzed in human plaques and normal samples. CD100 mRNA and protein were analyzed in cultured monocytes, macrophages and foam cells. The effects of CD100 in oxLDL-induced foam cell formation and in CD36 mRNA abundance were evaluated. Human atherosclerotic plaques showed strong labeling of CD100/SEMA4D. CD100 expression was further demonstrated in peripheral blood monocytes and in in vitro differentiated macrophages and foam cells, with diminished CD100 transcript along the differentiation of these cells. Incubation of macrophages with CD100 led to a reduction in oxLDL-induced foam cell formation probably through a decrease of CD36 expression, suggesting for the first time an atheroprotective role for CD100 in the human disease. Given its differential expression in the numerous foam cells and macrophages of the plaques and its capacity to decrease oxLDL engulfment by macrophages we propose that CD100 may have a role in atherosclerotic plaque development, and may possibly be employed in targeted treatments of these atheromas. PMID:24098722

  5. Identifying the cellular targets of natural products using T7 phage display.

    PubMed

    Piggott, Andrew M; Karuso, Peter

    2016-05-01

    Covering: up to the end of 2015While Nature continues to deliver a myriad of potent and structurally diverse biologically active small molecules, the cellular targets and modes of action of these natural products are rarely identified, significantly hindering their development as new chemotherapeutic agents. This article provides an introductory tutorial on the use of T7 phage display as a tool to rapidly identify the cellular targets of natural products and is aimed specifically at natural products chemists who may have only limited experience in molecular biology. A brief overview of T7 phage display is provided, including its strengths, weaknesses, and the type of problems that can and cannot be tackled with this technology. Affinity probe construction is reviewed, including linker design and natural product derivatisation strategies. A detailed description of the T7 phage biopanning procedure is provided, with valuable tips for optimising each step in the process, as well as advice for identifying and avoiding the most commonly encountered challenges and pitfalls along the way. Finally, a brief discussion is provided on techniques for validating the cellular targets identified using T7 phage display. PMID:26964751

  6. Evaluation of Phage Display Discovered Peptides as Ligands for Prostate-Specific Membrane Antigen (PSMA)

    PubMed Central

    Edwards, W. Barry

    2013-01-01

    The aim of this study was to identify potential ligands of PSMA suitable for further development as novel PSMA-targeted peptides using phage display technology. The human PSMA protein was immobilized as a target followed by incubation with a 15-mer phage display random peptide library. After one round of prescreening and two rounds of screening, high-stringency screening at the third round of panning was performed to identify the highest affinity binders. Phages which had a specific binding activity to PSMA in human prostate cancer cells were isolated and the DNA corresponding to the 15-mers were sequenced to provide three consensus sequences: GDHSPFT, SHFSVGS and EVPRLSLLAVFL as well as other sequences that did not display consensus. Two of the peptide sequences deduced from DNA sequencing of binding phages, SHSFSVGSGDHSPFT and GRFLTGGTGRLLRIS were labeled with 5-carboxyfluorescein and shown to bind and co-internalize with PSMA on human prostate cancer cells by fluorescence microscopy. The high stringency requirements yielded peptides with affinities KD∼1 µM or greater which are suitable starting points for affinity maturation. While these values were less than anticipated, the high stringency did yield peptide sequences that apparently bound to different surfaces on PSMA. These peptide sequences could be the basis for further development of peptides for prostate cancer tumor imaging and therapy. PMID:23935860

  7. Phage display selection of P1 mutants of BPTI directed against five different serine proteinases.

    PubMed

    Kiczak, L; Koscielska, K; Otlewski, J; Czerwinski, M; Dadlez, M

    1999-01-01

    The P1 position of protein inhibitors and oligopeptide substrates determines, to a large extent, association energy with many serine proteinases. To test the agreement of phage display selection with the existing thermodynamic data, a small library of all 20 P1 mutants of basic pancreatic trypsin inhibitor (BPTI) was created, fused to protein III, and displayed on the surface of M13 phage. The wild type of displayed inhibitor monovalently and strongly inhibited trypsin with an association constant of Ka = 3 x 10(11) M(-1). The library was applied to select BPTI variants active against five serine proteinases of different specificity (bovine trypsin and chymotrypsin, human leukocyte and porcine pancreatic elastases, human azurocidin). The results of enrichment with four proteinases agreed well with the available thermodynamic data. In the case of azurocidin, the phage display selection allowed determination of the P1 specificity of this protein with the following frequencies for selected P1 variants: 43% Lys, 36% Leu, 7% Met, 7% Thr, 7% Gln. PMID:10064144

  8. A novel, stable, helical scaffold as an alternative binder - construction of phage display libraries.

    PubMed

    Cyranka-Czaja, Anna; Otlewski, Jacek

    2012-01-01

    Specific, high affinity binding macromolecules are of great importance for biomedical and biotechnological applications. The most popular classical antibody-based molecules have recently been challenged by alternative scaffolds with desirable biophysical properties. Phage display technology applied to such scaffolds allows generation of potent affinity reagents by in vitro selection. Here, we report identification and characterization of a novel helical polypeptide with advantageous biophysical properties as a template for construction of phage display libraries. A three-helix bundle structure, based on Measles virus phosphoprotein P shows a very favourable stability and solubility profile. We designed, constructed and characterized six different types of phage display libraries based on the proposed template. Their functional size of over 10(9) independent clones, balanced codon bias and decent display level are key parameters attesting to the quality and utility of the libraries. The new libraries are a promising tool for isolation of high affinity binders based on a small helical scaffold which could become a convenient alternative to antibodies. PMID:23032749

  9. Intravenous phage display identifies peptide sequences that target the burn-injured intestine

    PubMed Central

    Costantini, Todd W.; Eliceiri, Brian P.; Putnam, James G.; Bansal, Vishal; Baird, Andrew; Coimbra, Raul

    2015-01-01

    The injured intestine is responsible for significant morbidity and mortality after severe trauma and burn; however, targeting the intestine with therapeutics aimed at decreasing injury has proven difficult. We hypothesized that we could use intravenous phage display technology to identify peptide sequences that target the injured intestinal mucosa in a murine model, and then confirm the cross-reactivity of this peptide sequence with ex vivo human gut. Four hours following 30% TBSA burn we performed an in vivo, intravenous systemic administration of phage library containing 1012 phage in balb/c mice to biopan for gut-targeting peptides. In vivo assessment of the candidate peptide sequences identified after 4 rounds of internalization was performed by injecting 1 × 1012 copies of each selected phage clone into sham or burned animals. Internalization into the gut was assessed using quantitative polymerase chain reaction. We then incubated this gut-targeting peptide sequence with human intestine and visualized fluorescence using confocal microscopy. We identified 3 gut-targeting peptide sequences which caused collapse of the phage library (4–1: SGHQLLLNKMP, 4–5: ILANDLTAPGPR, 4–11: SFKPSGLPAQSL). Sequence 4–5 was internalized into the intestinal mucosa of burned animals 9.3-fold higher than sham animals injected with the same sequence (2.9 × 105 vs. 3.1 × 104 particles per mg tissue). Sequences 4–1 and 4–11 were both internalized into the gut, but did not demonstrate specificity for the injured mucosa. Phage sequence 4–11 demonstrated cross-reactivity with human intestine. In the future, this gut-targeting peptide sequence could serve as a platform for the delivery of biotherapeutics. PMID:22960048

  10. Detection of hepatitis B virus core antigen by phage display mediated TaqMan real-time immuno-PCR.

    PubMed

    Monjezi, Razieh; Tan, Sheau Wei; Tey, Beng Ti; Sieo, Chin Chin; Tan, Wen Siang

    2013-01-01

    The core antigen (HBcAg) of hepatitis B virus (HBV) is one of the markers for the identification of the viral infection. The main purpose of this study was to develop a TaqMan real-time detection assay based on the concept of phage display mediated immuno-PCR (PD-IPCR) for the detection of HBcAg. PD-IPCR combines the advantages of immuno-PCR (IPCR) and phage display technology. IPCR integrates the versatility of enzyme-linked immunosorbent assay (ELISA) with the sensitivity and signal generation power of PCR. Whereas, phage display technology exploits the physical association between the displayed peptide and the encoding DNA within the same phage particle. In this study, a constrained peptide displayed on the surface of an M13 recombinant bacteriophage that interacts tightly with HBcAg was applied as a diagnostic reagent in IPCR. The phage displayed peptide and its encoding DNA can be used to replace monoclonal antibody (mAb) and chemically bound DNA, respectively. This method is able to detect as low as 10ng of HBcAg with 10(8)pfu/ml of the recombinant phage which is about 10,000 times more sensitive than the phage-ELISA. The PD-IPCR provides an alternative means for the detection of HBcAg in human serum samples. PMID:23022731

  11. Nanoparticles and phage display selected peptides for imaging and therapy of cancer.

    PubMed

    Cutler, Cathy S; Chanda, Nripen; Shukla, Ravi; Sisay, Nebiat; Cantorias, Melchor; Zambre, Ajit; McLaughlin, Mark; Kelsey, James; Upenandran, Anandhi; Robertson, Dave; Deutscher, Susan; Kannan, Raghuraman; Katti, Kattesh

    2013-01-01

    Molecular imaging probes are a special class of pharmaceuticals that target specific biochemical signatures associated with disease and allow for noninvasive imaging on the molecular level. Because changes in biochemistry occur before diseases reach an advanced stage, molecular imaging probes make it possible to locate and stage disease, track the effectiveness of drugs, treat disease, monitor response, and select patients to allow for more personalized diagnosis and treatment of disease. Targeting agents radiolabeled with positron emitters are of interest due to their ability to quantitatively measure biodistribution and receptor expression to allow for optimal dose determinations. (68)Ga is a positron emitter, which allows for quantitative imaging through positron emission chromatography (PET). The availability of (68)Ga from a generator and its ability to form stable complexes with a variety of chelates hold promise for expanding PET utilization to facilities unable to afford their own cyclotron. Nanoparticles conjugated with various proteins and peptides derived from phage display that can be selectively targeted are being developed and evaluated for guided imaging and therapy. Herein we highlight some initial efforts in combining the enhanced selectivity of nanoparticles and peptides with (68)Ga for use as molecular imaging probes. PMID:22918758

  12. Structural Guided Scaffold Phage Display Libraries as a Source of Bio-Therapeutics

    PubMed Central

    Vessillier, Sandrine; Mather, Stephen J.; Rowe, Michelle L.; Howard, Mark J.; Marshall, John F.; Nissim, Ahuva

    2013-01-01

    We have developed a structurally-guided scaffold phage display strategy for identification of ligand mimetic bio-therapeutics. As a proof of concept we used the ligand of integrin αvβ6, a tumour cell surface receptor and a major new target for imaging and therapy of many types of solid cancer. NMR structure analysis showed that RGD-helix structures are optimal for αvβ6 ligand-interaction, so we designed novel algorithms to generate human single chain fragment variable (scFv) libraries with synthetic VH-CDR3 encoding RGD-helix hairpins with helices of differing pitch, length and amino acid composition. Study of the lead scFv clones D25scFv and D34scFv and their corresponding VH-CDR3 derived peptides, D25p and D34p, demonstrated: specific binding to recombinant and cellular αvβ6; inhibition of αvβ6-dependent cell and ligand adhesion, αvβ6-dependent cell internalisation; and selective retention by αvβ6-expressing, but not αvβ6-negative, human xenografts. NMR analysis established that both the D25p and D34p retained RGD-helix structures confirming the success of the algorithm. In conclusion, scFv libraries can be engineered based on ligand structural motifs to increase the likelihood of developing powerful bio-therapeutics. PMID:23950939

  13. A high affinity phage-displayed peptide as a recognition probe for the detection of Salmonella Typhimurium.

    PubMed

    Agrawal, Shailaja; Kulabhusan, Prabir Kumar; Joshi, Manali; Bodas, Dhananjay; Paknikar, Kishore M

    2016-08-10

    Salmonellosis is one of the most common and widely distributed foodborne diseases. A sensitive and robust detection method of Salmonella Typhimurium (S. Typhimurium) in food can critically prevent a disease outbreak. In this work, the use of phage displayed peptides was explored for the detection of S. Typhimurium. A phage-displayed random dodecapeptide library was subjected to biopanning against lipopolysaccharide (LPS) of S. Typhimurium. The peptide NFMESLPRLGMH (pep49) derived from biopanning displayed a high affinity (25.8nM) for the LPS of S. Typhimurium and low cross-reactivity with other strains of Salmonella and related Gram-negative bacteria. Molecular insights into the interaction of pep49 with the LPS of S. Typhimurium was gleaned using atomistic molecular dynamics simulations and docking. It was deduced that the specificity of pep49 with S. Typhimurium LPS originated from the interactions of pep49 with abequose that is found only in the O-antigen of S. Typhimurium. Further, pep49 was able to detect S. Typhimurium at a LOD of 10(3) CFU/mL using ELISA, and may be a potential cost efficient alternative to antibodies. PMID:27220907

  14. Large-scale interaction profiling of PDZ domains through proteomic peptide-phage display using human and viral phage peptidomes.

    PubMed

    Ivarsson, Ylva; Arnold, Roland; McLaughlin, Megan; Nim, Satra; Joshi, Rakesh; Ray, Debashish; Liu, Bernard; Teyra, Joan; Pawson, Tony; Moffat, Jason; Li, Shawn Shun-Cheng; Sidhu, Sachdev S; Kim, Philip M

    2014-02-18

    The human proteome contains a plethora of short linear motifs (SLiMs) that serve as binding interfaces for modular protein domains. Such interactions are crucial for signaling and other cellular processes, but are difficult to detect because of their low to moderate affinities. Here we developed a dedicated approach, proteomic peptide-phage display (ProP-PD), to identify domain-SLiM interactions. Specifically, we generated phage libraries containing all human and viral C-terminal peptides using custom oligonucleotide microarrays. With these libraries we screened the nine PSD-95/Dlg/ZO-1 (PDZ) domains of human Densin-180, Erbin, Scribble, and Disks large homolog 1 for peptide ligands. We identified several known and putative interactions potentially relevant to cellular signaling pathways and confirmed interactions between full-length Scribble and the target proteins β-PIX, plakophilin-4, and guanylate cyclase soluble subunit α-2 using colocalization and coimmunoprecipitation experiments. The affinities of recombinant Scribble PDZ domains and the synthetic peptides representing the C termini of these proteins were in the 1- to 40-μM range. Furthermore, we identified several well-established host-virus protein-protein interactions, and confirmed that PDZ domains of Scribble interact with the C terminus of Tax-1 of human T-cell leukemia virus with micromolar affinity. Previously unknown putative viral protein ligands for the PDZ domains of Scribble and Erbin were also identified. Thus, we demonstrate that our ProP-PD libraries are useful tools for probing PDZ domain interactions. The method can be extended to interrogate all potential eukaryotic, bacterial, and viral SLiMs and we suggest it will be a highly valuable approach for studying cellular and pathogen-host protein-protein interactions. PMID:24550280

  15. Inorganic binding peptides designed by phage display techniques for biotechnology applications

    NASA Astrophysics Data System (ADS)

    Liao, Chih-Wei

    Biomacromolecules play an important role in the control of hard tissue structure and function via specific molecular recognition interactions between proteins of the matrix and inorganic species of the biomineral phase. During the construction of the tissue, biomacromolecules are usually folded into a certain comformation, analogous to a "lock" for fitting with other proteins or smaller molecules as a "key". Currently, the rational design of molecular recognition in biomacro-molecules is still hard to accomplish because the protein conformation is too complex to precisely predict based on the existing conformational information of proteins found in biological systems. In the past two decades, the combinatorial approach (e.g. phage display techniques) has been used to select short binding peptides with molecular recognition to an inorganic target material without a prior knowledge of the amino acid sequence required for the specific binding. The technique has been referred to as "biopanning" because bacteriophages are used to "screen" for peptides that exhibit strong binding to a target material of interest. In this study, two diverse applications were chosen to demonstrate the utility of the biopanning approach. In one project, phage display techniques were used to pan for Indium Zinc Oxide (InZnO) binding peptides to serve as linkers between transducer devices and biosensing elements for demonstration of the feasibility of reversibly electro-activated biosensors. The amorphous InZnO, with its homogeneous surface, led to three consensus peptide sequences, AGFPNSTHSSNL, SHAPDSTWFALF, and TNSSSQFVVAIP. In addition, it was demonstrated that some selected phage clones of the InZnO binding peptides were able to be released from the InZnO surface after applying a voltage of 1400 mV on an electro-activated releasing device. In the second project, phage display techniques were used to select phage clones that bind specifically to francolite mineral in order to achieve

  16. Mimotopes of polyreactive anti-DNA antibodies identified using phage-display peptide libraries.

    PubMed

    Sibille, P; Ternynck, T; Nato, F; Buttin, G; Strosberg, D; Avrameas, A

    1997-05-01

    Three monoclonal IgG2a anti-DNA polyreactive autoantibodies, derived from lupus-prone mice (NZB x NZW)F1, were studied by surface plasmon resonance (BIAcore) analysis using three different synthetic double-stranded (ds) oligonucleotides of 25, 30, and 25 base pairs (bp). These monoclonal antibodies (mAb) exhibited dissociation rate constants (k(off)), ranging from 0.0001 (mAb F14.6 and F4.1) to 0.01/s (mAb J20.8) and k(on) ranging from 2 x 10(5) to 2 x 10(6) /M/s. The screening of a constrained random peptide library displayed on M13 bacteriophages on these mAb allowed the determination of the specific consensus motifs (mimotopes) for mAb F14.6 and J20.8, but not for mAb F4.1. No cross-reaction was observed between F14.6- and J20.8-specific peptides (and vice versa). Binding of all phages selected on F14.6 was inhibited with 700 ng/ml soluble DNA. The binding of one group of peptides selected on J20.8 was inhibited by 400 ng/ml soluble DNA, of a second group by 2500 ng/ml, while binding of a third group could not be inhibited. The determined consensus sequences do not match with known sequences. Peptides specific for F14.6 share negative charges and aromatic rings that may mimic a DNA backbone, while peptides selected with J20.8 do not bear any negative charge, implying a different kind of molecular recognition, for example hydrogen or salt bonds. The peptides selected on J20.8 also bind serum antibodies from human patients with systemic lupus erythematosus. In addition, BALB/c mice immunized with some of the selected phages exhibit high serum titers of IgG3 anti-dsDNA antibodies, further supporting the hypothesis that peptide epitopes may mimic an oligonucleotide structure. PMID:9174614

  17. Construction and analysis of a genetically tuneable lytic phage display system.

    PubMed

    Nicastro, Jessica; Sheldon, Katlyn; El-Zarkout, Farah A; Sokolenko, Stanislav; Aucoin, Marc G; Slavcev, Roderick

    2013-09-01

    The Bacteriophage λ capsid protein gpD has been used extensively for fusion polypeptides that can be expressed from plasmids in Escherichia coli and remain soluble. In this study, a genetically controlled dual expression system for the display of enhanced green fluorescent protein (eGFP) was developed and characterized. Wild-type D protein (gpD) expression is encoded by λ Dam15 infecting phage particles, which can only produce a functional gpD protein when translated in amber suppressor strains of E. coli in the absence of complementing gpD from a plasmid. However, the isogenic suppressors vary dramatically in their ability to restore functional packaging to λDam15, imparting the first dimension of decorative control. In combination, the D-fusion protein, gpD::eGFP, was supplied in trans from a multicopy temperature-inducible expression plasmid, influencing D::eGFP expression and hence the availability of gpD::eGFP to complement for the Dam15 mutation and decorate viable phage progeny. Despite being the worst suppressor, maximal incorporation of gpD::eGFP into the λDam15 phage capsid was imparted by the SupD strain, conferring a gpDQ68S substitution, induced for plasmid expression of pD::eGFP. Differences in size, fluorescence and absolute protein decoration between phage preparations could be achieved by varying the temperature of and the suppressor host carrying the pD::eGFP plasmid. The effective preparation with these two variables provides a simple means by which to manage fusion decoration on the surface of phage λ. PMID:23640362

  18. Citrinin detection using phage-displayed anti-idiotypic single-domain antibody for antigen mimicry.

    PubMed

    Xu, Yang; Xiong, Liang; Li, Yanping; Xiong, Yonghua; Tu, Zhui; Fu, Jinheng; Tang, Xiao

    2015-06-15

    Anti-idiotypic antibodies (AIds) can mimic antigen molecules and can thus offer an alternative to conventional antigens in immunoassays. In this study, citrinin (CIT) was chosen as a target analyte, and an anti-idiotypic single-domain antibody (VHH) was selected from a naïve alpaca VHHs library to serve as a surrogate for CIT hapten. The phage-displayed VHH was used as a signal-amplification carrier to develop an indirect competitive phage enzyme-linked immunosorbent assay (P-ELISA) for the sensitive detection of CIT. The half-inhibition concentration (IC50) of P-ELISA was 10.9 μg/kg, which was 9-fold better than that of conventional ELISA (IC50=102.1 μg/kg). Results on P-ELISA analysis of naturally contaminated samples were also consistent with those obtained by conventional ELISA. In conclusion, the proposed P-ELISA demonstrates the potential use of phage-displayed anti-idiotypic VHH as surrogate for small molecules and signal-amplification carrier to improve assay performance for more sensitive analyte detection in food safety monitoring. PMID:25660863

  19. Phage-displayed peptides mimicking the discontinuous neutralization sites of puumala Hantavirus envelope glycoproteins.

    PubMed

    Heiskanen, T; Lundkvist, A; Soliymani, R; Koivunen, E; Vaheri, A; Lankinen, H

    1999-09-30

    We selected peptide ligands mimicking the surface structure of discontinuous binding sites of Puumala hantavirus-neutralizing monoclonal antibodies from a random 18-amino acid peptide library containing a disulfide bridge in a fixed position and displayed on a filamentous phage. The varying of selection conditions, either by shortening of the association time or by competitive elution with antigen, was crucial for the selection of peptide inserts that could be aligned with the primary sequences of the envelope glycoproteins G1 and G2. Correspondingly, when the envelope glycoprotein sequences were synthesized as overlapping peptides as spots on membrane, the same site in primary structure was found as with phage display, which corroborates the use of the two methods in mapping of conformational epitopes. Also, epitopes reactive with early-phase sera from Puumala virus infection were defined with the pepspot assay in the amino-terminal region of G1. Similarities of the selected phage clones to a monoclonal antibody-escape mutant site and to a linear early-phase epitope were found. PMID:10502511

  20. Shotgun phage display of Lactobacillus casei BL23 against collagen and fibronectin.

    PubMed

    Munoz-Provencio, Diego; Monedero, Vicente

    2011-02-01

    Lactobacilli are normal constituents of the intestinal microbiota, and some strains show the capacity to bind to extracellular matrix proteins and components of the mucosal layer, which represents an adaptation to persist in this niche. A shotgun phage-display library of Lactobacillus casei BL23 was constructed and screened for peptides able to bind to fibronectin and collagen. Clones showing binding to these proteins were isolated, which encoded overlapping fragments of a putative transcriptional regulator (LCABL_29260), a hypothetical protein exclusively found in the L. casei/rhamnosus group (LCABL_01820), and a putative phage-related endolysin (LCABL_13470). The construction of different glutathione S-transferase (GST) fusions confirmed the binding activity and demonstrated that the three identified proteins could interact with fibronectin, fibrinogen, and collagen. The results illustrate the utility of phage display for the isolation of putative adhesins in lactobacilli. However, it remains to be determined whether the primary function of these proteins actually is adhesion to mucosal surfaces. PMID:21364304

  1. Engineering RNA phage MS2 virus-like particles for peptide display

    NASA Astrophysics Data System (ADS)

    Jordan, Sheldon Keith

    Phage display is a powerful and versatile technology that enables the selection of novel binding functions from large populations of randomly generated peptide sequences. Random sequences are genetically fused to a viral structural protein to produce complex peptide libraries. From a sufficiently complex library, phage bearing peptides with practically any desired binding activity can be physically isolated by affinity selection, and, since each particle carries in its genome the genetic information for its own replication, the selectants can be amplified by infection of bacteria. For certain applications however, existing phage display platforms have limitations. One such area is in the field of vaccine development, where the goal is to identify relevant epitopes by affinity-selection against an antibody target, and then to utilize them as immunogens to elicit a desired antibody response. Today, affinity selection is usually conducted using display on filamentous phages like M13. This technology provides an efficient means for epitope identification, but, because filamentous phages do not display peptides in the high-density, multivalent arrays the immune system prefers to recognize, they generally make poor immunogens and are typically useless as vaccines. This makes it necessary to confer immunogenicity by conjugating synthetic versions of the peptides to more immunogenic carriers. Unfortunately, when introduced into these new structural environments, the epitopes often fail to elicit relevant antibody responses. Thus, it would be advantageous to combine the epitope selection and immunogen functions into a single platform where the structural constraints present during affinity selection can be preserved during immunization. This dissertation describes efforts to develop a peptide display system based on the virus-like particles (VLPs) of bacteriophage MS2. Phage display technologies rely on (1) the identification of a site in a viral structural protein that is

  2. Blocking peptides against HBV: PreS1 protein selected from a phage display library

    SciTech Connect

    Wang, Wei; Liu, Yang; Zu, Xiangyang; Jin, Rui; Xiao, Gengfu

    2011-09-09

    Highlights: {yields} Successfully selected specific PreS1-interacting peptides by using phage displayed library. {yields} Alignment of the positive phage clones revealed a consensus PreS1 binding motif. {yields} A highly enriched peptide named P7 had a strong binding ability for PreS1. {yields} P7 could block PreS1 attachment. -- Abstract: The PreS1 protein is present on the outermost part of the hepatitis B virus (HBV) surface and has been shown to have a pivotal function in viral infectivity and assembly. The development of reagents with high affinity and specificity for PreS1 is of great significance for early diagnosis and treatment of HBV infection. A phage display library of dodecapeptide was screened for interactions with purified PreS1 protein. Alignment of the positive phage clones revealed a putative consensus PreS1 binding motif of HX{sub n}HX{sub m}HP/R. Moreover, a peptide named P7 (KHMHWHPPALNT) was highly enriched and occurred with a surprisingly high frequency of 72%. A thermodynamic study revealed that P7 has a higher binding affinity to PreS1 than the other peptides. Furthermore, P7 was able to abrogate the binding of HBV virions to the PreS1 antibody, suggesting that P7 covers key functional sites on the native PreS1 protein. This newly isolated peptide may, therefore, be a new therapeutic candidate for the treatment of HBV. The consensus motif could be modified to deliver imaging, diagnostic, and therapeutic agents to tissues affected by HBV.

  3. Identification of small molecule binding sites within proteins using phage display technology.

    SciTech Connect

    Rodi, D. J.; Agoston, G. E.; Manon, R.; Lapcevich, R.; Green, S. J.; Makowski, L.; Biosciences Division; EntreMed Inc.; Florida State Univ.

    2001-11-01

    Affinity selection of peptides displayed on phage particles was used as the basis for mapping molecular contacts between small molecule ligands and their protein targets. Analysis of the crystal structures of complexes between proteins and small molecule ligands revealed that virtually all ligands of molecular weight 300 Da or greater have a continuous binding epitope of 5 residues or more. This observation led to the development of a technique for binding site identification which involves statistical analysis of an affinity-selected set of peptides obtained by screening of libraries of random, phage-displayed peptides against small molecules attached to solid surfaces. A random sample of the selected peptides is sequenced and used as input for a similarity scanning program which calculates cumulative similarity scores along the length of the putative receptor. Regions of the protein sequence exhibiting the highest similarity with the selected peptides proved to have a high probability of being involved in ligand binding. This technique has been employed successfully to map the contact residues in multiple known targets of the anticancer drugs paclitaxel (Taxol), docetaxel (Taxotere) and 2-methoxyestradiol and the glycosaminoglycan hyaluronan, and to identify a novel paclitaxel receptor [1]. These data corroborate the observation that the binding properties of peptides displayed on the surface of phage particles can mimic the binding properties of peptides in naturally occurring proteins. It follows directly that structural context is relatively unimportant for determining the binding properties of these disordered peptides. This technique represents a novel, rapid, high resolution method for identifying potential ligand binding sites in the absence of three-dimensional information and has the potential to greatly enhance the speed of development of novel small molecule pharmaceuticals.

  4. Selection of peptides binding to metallic borides by screening M13 phage display libraries

    PubMed Central

    2014-01-01

    Background Metal borides are a class of inorganic solids that is much less known and investigated than for example metal oxides or intermetallics. At the same time it is a highly versatile and interesting class of compounds in terms of physical and chemical properties, like semiconductivity, ferromagnetism, or catalytic activity. This makes these substances attractive for the generation of new materials. Very little is known about the interaction between organic materials and borides. To generate nanostructured and composite materials which consist of metal borides and organic modifiers it is necessary to develop new synthetic strategies. Phage peptide display libraries are commonly used to select peptides that bind specifically to metals, metal oxides, and semiconductors. Further, these binding peptides can serve as templates to control the nucleation and growth of inorganic nanoparticles. Additionally, the combination of two different binding motifs into a single bifunctional phage could be useful for the generation of new composite materials. Results In this study, we have identified a unique set of sequences that bind to amorphous and crystalline nickel boride (Ni3B) nanoparticles, from a random peptide library using the phage display technique. Using this technique, strong binders were identified that are selective for nickel boride. Sequence analysis of the peptides revealed that the sequences exhibit similar, yet subtle different patterns of amino acid usage. Although a predominant binding motif was not observed, certain charged amino acids emerged as essential in specific binding to both substrates. The 7-mer peptide sequence LGFREKE, isolated on amorphous Ni3B emerged as the best binder for both substrates. Fluorescence microscopy and atomic force microscopy confirmed the specific binding affinity of LGFREKE expressing phage to amorphous and crystalline Ni3B nanoparticles. Conclusions This study is, to our knowledge, the first to identify peptides that

  5. Mapping protein-protein interactions with phage-displayed combinatorial peptide libraries.

    SciTech Connect

    Kay, B. K.; Castagnoli, L.; Biosciences Division; Univ. of Rome

    2003-01-01

    This unit describes the process and analysis of affinity selecting bacteriophage M13 from libraries displaying combinatorial peptides fused to either a minor or major capsid protein. Direct affinity selection uses target protein bound to a microtiter plate followed by purification of selected phage by ELISA. Alternatively, there is a bead-based affinity selection method. These methods allow one to readily isolate peptide ligands that bind to a protein target of interest and use the consensus sequence to search proteomic databases for putative interacting proteins.

  6. Phage display: development of nanocarriers for targeted drug delivery to the brain

    PubMed Central

    Bakhshinejad, Babak; Karimi, Marzieh; Khalaj-Kondori, Mohammad

    2015-01-01

    The blood brain barrier represents a formidable obstacle for the transport of most systematically administered neurodiagnostics and neurotherapeutics to the brain. Phage display is a high throughput screening strategy that can be used for the construction of nanomaterial peptide libraries. These libraries can be screened for finding brain targeting peptide ligands. Surface functionalization of a variety of nanocarriers with these brain homing peptides is a sophisticated way to develop nanobiotechnology-based drug delivery platforms that are able to cross the blood brain barrier. These efficient drug delivery systems raise our hopes for the diagnosis and treatment of various brain disorders in the future. PMID:26199590

  7. Synthesis of tumor necrosis factor α for use as a mirror-image phage display target.

    PubMed

    Petersen, Mark E; Jacobsen, Michael T; Kay, Michael S

    2016-06-21

    Tumor Necrosis Factor alpha (TNFα) is an inflammatory cytokine that plays a central role in the pathogenesis of chronic inflammatory disease. Here we describe the chemical synthesis of l-TNFα along with the mirror-image d-protein for use as a phage display target. The synthetic strategy utilized native chemical ligation and desulfurization to unite three peptide segments, followed by oxidative folding to assemble the 52 kDa homotrimeric protein. This synthesis represents the foundational step for discovering an inhibitory d-peptide with the potential to improve current anti-TNFα therapeutic strategies. PMID:27211891

  8. Antigenic Analysis of Bordetella pertussis Filamentous Hemagglutinin with Phage Display Libraries and Rabbit Anti-Filamentous Hemagglutinin Polyclonal Antibodies

    PubMed Central

    Wilson, Dan R.; Siebers, Annette; Finlay, B. Brett

    1998-01-01

    Although substantial advancements have been made in the development of efficacious acellular vaccines against Bordetella pertussis, continued progress requires better understanding of the antigenic makeup of B. pertussis virulence factors, including filamentous hemagglutinin (FHA). To identify antigenic regions of FHA, phage display libraries constructed by using random fragments of the 10-kbp EcoRI fragment of B. pertussis fhaB were affinity selected with rabbit anti-FHA polyclonal antibodies. Characterization of antibody-reactive clones displaying FHA-derived peptides identified 14 antigenic regions, each containing one or more epitopes. A number of clones mapped within regions containing known or putative FHA adhesin domains and may be relevant for the generation of protective antibodies. The immunogenic potential of the phage-displayed peptides was assessed indirectly by comparing their recognition by antibodies elicited by sodium dodecyl sulfate (SDS)-denatured and native FHA and by measuring the inhibition of this recognition by purified FHA. FHA residues 1929 to 2019 may contain the most dominant linear epitope of FHA. Clones mapping to this region accounted for ca. 20% of clones recovered from the initial library selection and screening procedures. They are strongly recognized by sera against both SDS-denatured and native FHA, and this recognition is readily inhibited by purified FHA. Given also that this region includes a factor X homolog (J. Sandros and E. Tuomanen, Trends Microbiol. 1:192–196, 1993) and that the single FHA epitope (residues 2001 to 2015) was unequivocally defined in a comparable study by E. Leininger et al. (J. Infect. Dis. 175:1423–1431, 1997), peptides derived from residues of 1929 to 2019 of FHA are strong candidates for future protection studies. PMID:9746593

  9. Beyond phage display: non-traditional applications of the filamentous bacteriophage as a vaccine carrier, therapeutic biologic, and bioconjugation scaffold.

    PubMed

    Henry, Kevin A; Arbabi-Ghahroudi, Mehdi; Scott, Jamie K

    2015-01-01

    For the past 25 years, phage display technology has been an invaluable tool for studies of protein-protein interactions. However, the inherent biological, biochemical, and biophysical properties of filamentous bacteriophage, as well as the ease of its genetic manipulation, also make it an attractive platform outside the traditional phage display canon. This review will focus on the unique properties of the filamentous bacteriophage and highlight its diverse applications in current research. Particular emphases are placed on: (i) the advantages of the phage as a vaccine carrier, including its high immunogenicity, relative antigenic simplicity and ability to activate a range of immune responses, (ii) the phage's potential as a prophylactic and therapeutic agent for infectious and chronic diseases, (iii) the regularity of the virion major coat protein lattice, which enables a variety of bioconjugation and surface chemistry applications, particularly in nanomaterials, and (iv) the phage's large population sizes and fast generation times, which make it an excellent model system for directed protein evolution. Despite their ubiquity in the biosphere, metagenomics work is just beginning to explore the ecology of filamentous and non-filamentous phage, and their role in the evolution of bacterial populations. Thus, the filamentous phage represents a robust, inexpensive, and versatile microorganism whose bioengineering applications continue to expand in new directions, although its limitations in some spheres impose obstacles to its widespread adoption and use. PMID:26300850

  10. Screening and Antiviral Analysis of Phages That Display Peptides with an Affinity to Subunit C of Porcine Aminopeptidase

    PubMed Central

    Guo, Donghua; Zhu, Qinghe; Feng, Li

    2013-01-01

    The purified C subunit of the recombinant porcine aminopeptidase N (rpAPN-C) protein was used as an immobilized target to screen potential ligands against rpAPN-C from a 12-mer phage display random peptide library. After five rounds of biopanning, five phage clones showed specific binding affinities to rpAPN-C. In 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assays, the phage clone PM1, which contained the HDAISWTHYHPW peptide sequence, had a protective effect against TGEV infection in swine testis cells. Therefore, the HDAISWTHYHPW peptide sequence has a potential use as a small molecular therapeutic agent against TGEV infection. PMID:24111863

  11. Cost-effective HRMA pre-sequence typing of clone libraries; application to phage display selection

    PubMed Central

    Pepers, Barry A; Schut, Menno H; Vossen, Rolf HAM; van Ommen, Gert-Jan B; den Dunnen, Johan T; van Roon-Mom, Willeke MC

    2009-01-01

    Background Methodologies like phage display selection, in vitro mutagenesis and the determination of allelic expression differences include steps where large numbers of clones need to be compared and characterised. In the current study we show that high-resolution melt curve analysis (HRMA) is a simple, cost-saving tool to quickly study clonal variation without prior nucleotide sequence knowledge. Results HRMA results nicely matched those obtained with ELISA and compared favourably to DNA fingerprinting of restriction digested clone insert-PCR. DNA sequence analysis confirmed that HRMA-clustered clones contained identical inserts. Conclusion Using HRMA, analysis of up to 384 samples can be done simultaneously and will take approximately 30 minutes. Clustering of clones can be largely automated using the system's software within 2 hours. Applied to the analysis of clones obtained after phage display antibody selection, HRMA facilitated a quick overview of the overall success as well as the identification of identical clones. Our approach can be used to characterize any clone set prior to sequencing, thereby reducing sequencing costs significantly. PMID:19463169

  12. Generation of novel recombinant antibodies against nitrotyrosine by antibody phage display.

    PubMed

    Hof, Danielle; Cooksley-Decasper, Seraina; Moergeli, Sandra; von Eckardstein, Arnold

    2011-01-01

    Nitrotyrosine is a posttranslational protein modification that occurs under oxidative and nitrosative stress, and plays an important role in numerous pathological conditions. To analyse nitrotyrosine formation several commercial monoclonal and polyclonal antibodies reacting with 3-nitrotyrosine have been developed which however do not work properly in all required assays. Here, antibody phage display was used to select recombinant antibodies that specifically react with nitrotyrosine in various protein contexts. Nine initial selections were carried out, using synthetic peptides, peroxynitrite-modified proteins and conjugated proteins as antigens. Four antibodies were isolated that each exhibited a characteristic binding reactivity that greatly depended on the antigens that were used for their selections. In general, the selections using small, synthetic and biotinylated peptides were the most successful approach. Subsequently, antibody 11B1 was affinity matured by error prone mutagenesis, resulting in the isolation of two antibodies, designated 47A7 and 47B1. Competition ELISA and immunoblotting after treatment with sodium dithionite further demonstrated the specificity of antibody 47B1 for nitrotyrosine. The results presented here demonstrate that antibody phage display is a useful method to isolate antibodies against posttranslational modifications, which are powerful tools in the proteomic era. PMID:21558620

  13. Unique secreted–surface protein complex of Lactobacillus rhamnosus, identified by phage display

    PubMed Central

    Gagic, Dragana; Wen, Wesley; Collett, Michael A; Rakonjac, Jasna

    2013-01-01

    Proteins are the most diverse structures on bacterial surfaces; hence, they are candidates for species- and strain-specific interactions of bacteria with the host, environment, and other microorganisms. Genomics has decoded thousands of bacterial surface and secreted proteins, yet the function of most cannot be predicted because of the enormous variability and a lack of experimental data that would allow deduction of function through homology. Here, we used phage display to identify a pair of interacting extracellular proteins in the probiotic bacterium Lactobacillus rhamnosus HN001. A secreted protein, SpcA, containing two bacterial immunoglobulin-like domains type 3 (Big-3) and a domain distantly related to plant pathogen response domain 1 (PR-1-like) was identified by screening of an L. rhamnosus HN001 library using HN001 cells as bait. The SpcA-“docking” protein, SpcB, was in turn detected by another phage display library screening, using purified SpcA as bait. SpcB is a 3275-residue cell-surface protein that contains general features of large glycosylated Serine-rich adhesins/fibrils from gram-positive bacteria, including the hallmark signal sequence motif KxYKxGKxW. Both proteins are encoded by genes within a L. rhamnosus-unique gene cluster that distinguishes this species from other lactobacilli. To our knowledge, this is the first example of a secreted-docking protein pair identified in lactobacilli. PMID:23233310

  14. Selection of recombinant anti-SH3 domain antibodies by high-throughput phage display.

    PubMed

    Huang, Haiming; Economopoulos, Nicolas O; Liu, Bernard A; Uetrecht, Andrea; Gu, Jun; Jarvik, Nick; Nadeem, Vincent; Pawson, Tony; Moffat, Jason; Miersch, Shane; Sidhu, Sachdev S

    2015-11-01

    Antibodies are indispensable tools in biochemical research and play an expanding role as therapeutics. While hybridoma technology is the dominant method for antibody production, phage display is an emerging technology. Here, we developed and employed a high-throughput pipeline that enables selection of antibodies against hundreds of antigens in parallel. Binding selections using a phage-displayed synthetic antigen-binding fragment (Fab) library against 110 human SH3 domains yielded hundreds of Fabs targeting 58 antigens. Affinity assays demonstrated that representative Fabs bind tightly and specifically to their targets. Furthermore, we developed an efficient affinity maturation strategy adaptable to high-throughput, which increased affinity dramatically but did not compromise specificity. Finally, we tested Fabs in common cell biology applications and confirmed recognition of the full-length antigen in immunoprecipitation, immunoblotting and immunofluorescence assays. In summary, we have established a rapid and robust high-throughput methodology that can be applied to generate highly functional and renewable antibodies targeting protein domains on a proteome-wide scale. PMID:26332758

  15. Isolation of Llama Antibody Fragments for Prevention of Dandruff by Phage Display in Shampoo

    PubMed Central

    Dolk, Edward; van der Vaart, Marcel; Lutje Hulsik, David; Vriend, Gert; de Haard, Hans; Spinelli, Silvia; Cambillau, Christian; Frenken, Leon; Verrips, Theo

    2005-01-01

    As part of research exploring the feasibility of using antibody fragments to inhibit the growth of organisms implicated in dandruff, we isolated antibody fragments that bind to a cell surface protein of Malassezia furfur in the presence of shampoo. We found that phage display of llama single-domain antibody fragments (VHHs) can be extended to very harsh conditions, such as the presence of shampoo containing nonionic and anionic surfactants. We selected several VHHs that bind to the cell wall protein Malf1 of M. furfur, a fungus implicated in causing dandruff. In addition to high stability in the presence of shampoo, these VHHs are also stable under other denaturing conditions, such as high urea concentrations. Many of the stable VHHs were found to contain arginine at position 44. Replacement of the native amino acid at position 44 with arginine in the most stable VHH that lacked this arginine resulted in a dramatic further increase in the stability. The combination of the unique properties of VHHs together with applied phage display and protein engineering is a powerful method for obtaining highly stable VHHs that can be used in a wide range of applications. PMID:15640220

  16. A novel peptide specifically targeting ovarian cancer identified by in vivo phage display.

    PubMed

    Ma, Chuying; Yin, Guangfu; Yan, Danhong; He, Xueling; Zhang, Li; Wei, Yan; Huang, Zhongbing

    2013-12-01

    Discovery of peptide ligands that can target human ovarian cancer and deliver chemotherapeutics offers new opportunity for cancer therapy. The advent of phage-displayed peptide library facilitated the screening of such peptides. In vivo screening that set in a microanatomic and functional context was applied in our study, and a novel peptide WSGPGVWGASVK targeting ovarian cancer was isolated. The phage clone PC3-1 displaying peptide WSGPGVWGASVK can gain effective access to accumulate in the tumor sites after intravenous injection while reducing its accumulation in normal organs. Positive immunostaining of PC3-1 was located in both sites of tumor cells and tumor blood vessels, which resulted in a diffuse binding pattern through the tumor. In vitro study results confirmed the capability of peptide WSGPGVWGASVK binding to and being internalized by both tumor cells and angiogenic endothelial cells. Flow cytometry analysis revealed that the peptide bound to SKOV3 cells with Kd value of 5.43 ± 0.4 μM. Taken together, it suggested that peptide WSGPGVWGASVK is a lead candidate for delivering therapeutics to penetrate into tumors. PMID:24105738

  17. Peptidic Tumor Targeting Agents: The Road from Phage Display Peptide Selections to Clinical Applications

    PubMed Central

    Brown, Kathlynn C.

    2014-01-01

    Cancer has become the number one cause of death amongst Americans, killing approximately 1,600 people per day. Novel methods for early detection and the development of effective treatments are an eminent priority in medicine. For this reason, isolation of tumor-specific ligands is a growing area of research. Tumor-specific binding agents can be used to probe the tumor cell surface phenotype and customize treatment accordingly by conjugating the appropriate cell-targeting ligand to an anticancer drug. This refines the molecular diagnosis of the tumor and creates guided drugs that can target the tumor while sparing healthy tissues. Additionally, these targeting agents can be used as in vivo imaging agents that allow for earlier detection of tumors and micrometastasis. Phage display is a powerful technique for the isolation of peptides that bind to a particular target with high affinity and specificity. The biopanning of intact cancer cells or tumors in animals can be used to isolate peptides that bind to cancer-specific cell surface biomarkers. Over the past 10 years, unbiased biopanning of phage-displayed peptide libraries has generated a suite of cancer targeting peptidic ligands. This review discusses the recent advances in the isolation of cancer-targeting peptides by unbiased biopanning methods and highlights the use of the isolated peptides in clinical applications. PMID:20030617

  18. Identification of a Novel Lysosomal Trafficking Peptide using Phage Display Biopanning Coupled with Endocytic Selection Pressure

    PubMed Central

    2015-01-01

    Methods to select ligands that accumulate specifically in cancer cells and traffic through a defined endocytic pathway may facilitate rapid pairing of ligands with linkers suitable for drug conjugate therapies. We performed phage display biopanning on cancer cells that are treated with selective inhibitors of a given mechanism of endocytosis. Using chlorpromazine to inhibit clathrin-mediated endocytosis in H1299 nonsmall cell lung cancer cells, we identified two clones, ATEPRKQYATPRVFWTDAPG (15.1) and a novel peptide LQWRRDDNVHNFGVWARYRL (H1299.3). The peptides segregate by mechanism of endocytosis and subsequent location of subcellular accumulation. The H1299.3 peptide primarily utilizes clathrin-mediated endocytosis and colocalizes with Lamp1, a lysosomal marker. Conversely, the 15.1 peptide is clathrin-independent and localizes to a perinuclear region. Thus, this novel phage display scheme allows for selection of peptides that selectively internalize into cells via a known mechanism of endocytosis. These types of selections may allow for better matching of linker with targeting ligand by selecting ligands that internalize and traffic to known subcellular locations. PMID:25188559

  19. Wide Screening of Phage-Displayed Libraries Identifies Immune Targets in Planta

    PubMed Central

    Rioja, Cristina; Van Wees, Saskia C.; Charlton, Keith A.; Pieterse, Corné M. J.; Lorenzo, Oscar; García-Sánchez, Susana

    2013-01-01

    Microbe-Associated Molecular Patterns and virulence effectors are recognized by plants as a first step to mount a defence response against potential pathogens. This recognition involves a large family of extracellular membrane receptors and other immune proteins located in different sub-cellular compartments. We have used phage-display technology to express and select for Arabidopsis proteins able to bind bacterial pathogens. To rapidly identify microbe-bound phage, we developed a monitoring method based on microarrays. This combined strategy allowed for a genome-wide screening of plant proteins involved in pathogen perception. Two phage libraries for high-throughput selection were constructed from cDNA of plants infected with Pseudomonas aeruginosa PA14, or from combined samples of the virulent isolate DC3000 of Pseudomonas syringae pv. tomato and its avirulent variant avrRpt2. These three pathosystems represent different degrees in the specificity of plant-microbe interactions. Libraries cover up to 2×107 different plant transcripts that can be displayed as functional proteins on the surface of T7 bacteriophage. A number of these were selected in a bio-panning assay for binding to Pseudomonas cells. Among the selected clones we isolated the ethylene response factor ATERF-1, which was able to bind the three bacterial strains in competition assays. ATERF-1 was rapidly exported from the nucleus upon infiltration of either alive or heat-killed Pseudomonas. Moreover, aterf-1 mutants exhibited enhanced susceptibility to infection. These findings suggest that ATERF-1 contains a microbe-recognition domain with a role in plant defence. To identify other putative pathogen-binding proteins on a genome-wide scale, the copy number of selected-vs.-total clones was compared by hybridizing phage cDNAs with Arabidopsis microarrays. Microarray analysis revealed a set of 472 candidates with significant fold change. Within this set defence-related genes, including well

  20. Selection of a peptide mimicking neutralization epitope of hepatitis E virus with phage peptide display technology

    PubMed Central

    Gu, Ying; Zhang, Jun; Wang, Ying-Bing; Li, Shao-Wei; Yang, Hai-Jie; Luo, Wen-Xin; Xia, Ning-Shao

    2004-01-01

    AIM: To select the peptide mimicking the neutralization epitope of hepatitis E virus which bound to non-type-specific and conformational monoclonal antibodies (mAbs) 8C11 and 8H3 fromed 7-peptide phage display library, and expressed the peptide recombinant with HBcAg in E.coli, and to observe whether the recombinant HBcAg could still form virus like particle (VLP) and to test the activation of the recombinant polyprotein and chemo-synthesized peptide that was selected by mAb 8H3. METHODS: 8C11 and 8H3 were used to screen for binding peptides through a 7-peptide phage display library. After 4 rounds of panning, monoclonal phages were selected and sequenced. The obtained dominant peptide coding sequences was then synthesized and inserted into amino acid 78 to 83 of hepatitis B core antigen (HBcAg), and then expressed in E.coli. Activity of the recombinant proteins was detected by Western blotting, VLPs of the recombinant polyproteins were tested by transmission electron microscopy and binding activity of the chemo-synthesized peptide was confirmed by BIAcore biosensor. RESULTS: Twenty-one positive monoclonal phages (10 for 8C11, and 11 for 8H3) were selected and the inserted fragments were sequenced. The DNA sequence coding for the obtained dominant peptides 8C11 (N’-His-Pro-Thr-Leu-Leu-Arg-Ile-C’, named 8C11A) and 8H3 (N’-Ser-Ile-Leu-Pro- Tyr-Pro-Tyr-C’, named 8H3A) were then synthesized and cloned to the HBcAg vector, then expressed in E.coli. The recombinant proteins aggregated into homodimer or polymer on SDS-PAGE, and could bind to mAb 8C11 and 8H3 in Western blotting. At the same time, the recombinant polyprotein could form virus like particles (VLPs), which could be visualized on electron micrograph. The dominant peptide 8H3A selected by mAb 8H3 was further chemo-synthesized, and its binding to mAb 8H3 could be detected by BIAcore biosensor. CONCLUSION: These results implicate that conformational neutralizing epitope can be partially modeled by a short

  1. Identification of measles virus epitopes using an ultra-fast method of panning phage-displayed random peptide libraries

    PubMed Central

    Yu, Xiaoli; Barmina, Olga; Burgoon, Mark; Gilden, Don

    2010-01-01

    Phage-displayed random peptide libraries, in which high affinity phage peptides are enriched by repetitive selection (panning) on target antibody, provide a unique tool for identifying antigen specificity. This paper describes a new panning method that enables selection of peptides in 1 day as compared to about 6 days required in traditional panning to identify virus-specific epitopes. The method, termed ultra-fast selection of peptide (UFSP), utilizes phage produced by bacterial infection (phage amplification) directly for subsequent panning. Phage amplified in less than 1 h of infection in Escherichia coli are used for binding to target antibody pre-coated in the same wells of an ELISA plate, obviating the need for traditional large-scale amplification and purification. Importantly, phage elution at 37 °C was superior to that at room temperature, and phage amplification in a 150-μl volume of E. coli cells was superior to that in 250-μl volume. Application of UFSP to two monoclonal antibodies generated from clonally expanded plasma cells in subacute sclerosing panencephalitis (SSPE) brain identified high-affinity measles virus-specific-peptide epitopes. The UFSP panning methodology will expedite identification of peptides reacting with antibodies generated in other diseases of unknown antigenic specificity such as multiple sclerosis (MS), sarcoidosis and Behcet’s disease. PMID:19095007

  2. Identification of measles virus epitopes using an ultra-fast method of panning phage-displayed random peptide libraries.

    PubMed

    Yu, Xiaoli; Barmina, Olga; Burgoon, Mark; Gilden, Don

    2009-03-01

    Phage-displayed random peptide libraries, in which high affinity phage peptides are enriched by repetitive selection (panning) on target antibody, provide a unique tool for identifying antigen specificity. This paper describes a new panning method that enables selection of peptides in 1 day as compared to about 6 days required in traditional panning to identify virus-specific epitopes. The method, termed ultra-fast selection of peptide (UFSP), utilizes phage produced by bacterial infection (phage amplification) directly for subsequent panning. Phage amplified in less than 1h of infection in Escherichia coli are used for binding to target antibody pre-coated in the same wells of an ELISA plate, obviating the need for traditional large-scale amplification and purification. Importantly, phage elution at 37 degrees C was superior to that at room temperature, and phage amplification in a 150-microl volume of E. coli cells was superior to that in 250-microl volume. Application of UFSP to two monoclonal antibodies generated from clonally expanded plasma cells in subacute sclerosing panencephalitis (SSPE) brain identified high-affinity measles virus-specific-peptide epitopes. The UFSP panning methodology will expedite identification of peptides reacting with antibodies generated in other diseases of unknown antigenic specificity such as multiple sclerosis (MS), sarcoidosis and Behcet's disease. PMID:19095007

  3. Injected phage-displayed-VP28 vaccine reduces shrimp Litopenaeus vannamei mortality by white spot syndrome virus infection.

    PubMed

    Solís-Lucero, G; Manoutcharian, K; Hernández-López, J; Ascencio, F

    2016-08-01

    White spot syndrome virus (WSSV) is the most important viral pathogen for the global shrimp industry causing mass mortalities with huge economic losses. Recombinant phages are capable of expressing foreign peptides on viral coat surface and act as antigenic peptide carriers bearing a phage-displayed vaccine. In this study, the full-length VP28 protein of WSSV, widely known as potential vaccine against infection in shrimp, was successfully cloned and expressed on M13 filamentous phage. The functionality and efficacy of this vaccine immunogen was demonstrated through immunoassay and in vivo challenge studies. In ELISA assay phage-displayed VP28 was bind to Litopenaeus vannamei immobilized hemocyte in contrast to wild-type M13 phage. Shrimps were injected with 2 × 10(10) cfu animal(-1) single dose of VP28-M13 and M13 once and 48 h later intramuscularly challenged with WSSV to test the efficacy of the vaccine against the infection. All dead challenged shrimps were PCR WSSV-positive. The accumulative mortality of the vaccinated and challenged shrimp groups was significantly lower (36.67%) than the unvaccinated group (66.67%). Individual phenoloxidase and superoxide dismutase activity was assayed on 8 and 48 h post-vaccination. No significant difference was found in those immunological parameters among groups at any sampled time evaluated. For the first time, phage display technology was used to express a recombinant vaccine for shrimp. The highest percentage of relative survival in vaccinated shrimp (RPS = 44.99%) suggest that the recombinant phage can be used successfully to display and deliver VP28 for farmed marine crustaceans. PMID:27241285

  4. Profiling lethal factor interacting proteins from human stomach using T7 phage display screening.

    PubMed

    Cardona-Correa, Albin; Rios-Velazquez, Carlos

    2016-05-01

    The anthrax lethal factor (LF) is a zinc dependent metalloproteinase that cleaves the majority of mitogen-activated protein kinase kinases and a member of NOD-like receptor proteins, inducing cell apoptosis. Despite efforts to fully understand the Bacillus anthracis toxin components, the gastrointestinal (GI) anthrax mechanisms have not been fully elucidated. Previous studies demonstrated gastric ulceration, and a substantial bacterial growth rate in Peyer's patches. However, the complete molecular pathways of the disease that results in tissue damage by LF proteolytic activity remains unclear. In the present study, to identify the profile of the proteins potentially involved in GI anthrax, protein‑protein interactions were investigated using human stomach T7 phage display (T7PD) cDNA libraries. T7PD is a high throughput technique that allows the expression of cloned DNA sequences as peptides on the phage surface, enabling the selection and identification of protein ligands. A wild type and mutant LF (E687A) were used to differentiate interaction sites. A total of 124 clones were identified from 194 interacting‑phages, at both the DNA and protein level, by in silico analysis. Databases revealed that the selected candidates were proteins from different families including lipase, peptidase‑A1 and cation transport families, among others. Furthermore, individual T7PD candidates were tested against LF in order to detect their specificity to the target molecule, resulting in 10 LF‑interacting peptides. With a minimum concentration of LF for interaction at 1 µg/ml, the T7PD isolated pepsin A3 pre‑protein (PAP) demonstrated affinity to both types of LF. In addition, PAP was isolated in various lengths for the same protein, exhibiting common regions following PRALINE alignment. These findings will help elucidate and improve the understanding of the molecular pathogenesis of GI anthrax, and aid in the development of potential therapeutic agents. PMID

  5. Profiling lethal factor interacting proteins from human stomach using T7 phage display screening

    PubMed Central

    CARDONA-CORREA, ALBIN; RIOS-VELAZQUEZ, CARLOS

    2016-01-01

    The anthrax lethal factor (LF) is a zinc dependent metalloproteinase that cleaves the majority of mitogen-activated protein kinase kinases and a member of NOD-like receptor proteins, inducing cell apoptosis. Despite efforts to fully understand the Bacillus anthracis toxin components, the gastrointestinal (GI) anthrax mechanisms have not been fully elucidated. Previous studies demonstrated gastric ulceration, and a substantial bacterial growth rate in Peyer's patches. However, the complete molecular pathways of the disease that results in tissue damage by LF proteolytic activity remains unclear. In the present study, to identify the profile of the proteins potentially involved in GI anthrax, protein-protein interactions were investigated using human stomach T7 phage display (T7PD) cDNA libraries. T7PD is a high throughput technique that allows the expression of cloned DNA sequences as peptides on the phage surface, enabling the selection and identification of protein ligands. A wild type and mutant LF (E687A) were used to differentiate interaction sites. A total of 124 clones were identified from 194 interacting-phages, at both the DNA and protein level, by in silico analysis. Databases revealed that the selected candidates were proteins from different families including lipase, peptidase-A1 and cation transport families, among others. Furthermore, individual T7PD candidates were tested against LF in order to detect their specificity to the target molecule, resulting in 10 LF-interacting peptides. With a minimum concentration of LF for interaction at 1 μg/ml, the T7PD isolated pepsin A3 pre-protein (PAP) demonstrated affinity to both types of LF. In addition, PAP was isolated in various lengths for the same protein, exhibiting common regions following PRALINE alignment. These findings will help elucidate and improve the understanding of the molecular pathogenesis of GI anthrax, and aid in the development of potential therapeutic agents. PMID:27035230

  6. Phage display of intact domains at high copy number: a system based on SOC, the small outer capsid protein of bacteriophage T4.

    PubMed Central

    Ren, Z. J.; Lewis, G. K.; Wingfield, P. T.; Locke, E. G.; Steven, A. C.; Black, L. W.

    1996-01-01

    Peptides fused to the coat proteins of filamentous phages have found widespread applications in antigen display, the construction of antibody libraries, and biopanning. However, such systems are limited in terms of the size and number of the peptides that may be incorporated without compromising the fusion proteins' capacity to self-assemble. We describe here a system in which the molecules to be displayed are bound to pre-assembled polymers. The polymers are T4 capsids and polyheads (tubular capsid variants) and the display molecules are derivatives of the dispensable capsid protein SOC. In one implementation, SOC and its fusion derivatives are expressed at high levels in Escherichia coli, purified in high yield, and then bound in vitro to separately isolated polyheads. In the other, a positive selection vector forces integration of the modified soc gene into a soc-deleted T4 genome, leading to in vivo binding of the display protein to progeny virions. The system is demonstrated as applied to C-terminal fusions to SOC of (1) a tetrapeptide; (2) the 43-residue V3 loop domain of gp120, the human immunodeficiency virus type-1 (HIV-1) envelope glycoprotein; and (3) poliovirus VP1 capsid protein (312 residues). SOC-V3 displaying phage were highly antigenic in mice and produced antibodies reactive with native gp120. That the fusion protein binds correctly to the surface lattice was attested in averaged electron micrographs of polyheads. The SOC display system is capable of presenting up to approximately 10(3) copies per capsid and > 10(4) copies per polyhead of V3-sized domains. Phage displaying SOC-VP1 were isolated from a 1:10(6) mixture by two cycles of a simple biopanning procedure, indicating that proteins of at least 35 kDa may be accommodated. PMID:8880907

  7. Inhibition of multidrug resistant Listeria monocytogenes by peptides isolated from combinatorial phage display libraries.

    PubMed

    Flachbartova, Z; Pulzova, L; Bencurova, E; Potocnakova, L; Comor, L; Bednarikova, Z; Bhide, M

    2016-01-01

    The aim of the study was to isolate and characterize novel antimicrobial peptides from peptide phage library with antimicrobial activity against multidrug resistant Listeria monocytogenes. Combinatorial phage-display library was used to affinity select peptides binding to the cell surface of multidrug resistant L. monocytogenes. After several rounds of affinity selection followed by sequencing, three peptides were revealed as the most promising candidates. Peptide L2 exhibited features common to antimicrobial peptides (AMPs), and was rich in Asp, His and Lys residues. Peptide L3 (NSWIQAPDTKSI), like peptide L2, inhibited bacterial growth in vitro, without any hemolytic or cytotoxic effects on eukaryotic cells. L1 peptide showed no inhibitory effect on Listeria. Structurally, peptides L2 and L3 formed random coils composed of α-helix and β-sheet units. Peptides L2 and L3 exhibited antimicrobial activity against multidrug resistant isolates of L. monocytogenes with no haemolytic or toxic effects. Both peptides identified in this study have the potential to be beneficial in human and veterinary medicine. PMID:27296960

  8. High-throughput sequencing enhanced phage display enables the identification of patient-specific epitope motifs in serum

    PubMed Central

    Christiansen, Anders; Kringelum, Jens V.; Hansen, Christian S.; Bøgh, Katrine L.; Sullivan, Eric; Patel, Jigar; Rigby, Neil M.; Eiwegger, Thomas; Szépfalusi, Zsolt; Masi, Federico de; Nielsen, Morten; Lund, Ole; Dufva, Martin

    2015-01-01

    Phage display is a prominent screening technique with a multitude of applications including therapeutic antibody development and mapping of antigen epitopes. In this study, phages were selected based on their interaction with patient serum and exhaustively characterised by high-throughput sequencing. A bioinformatics approach was developed in order to identify peptide motifs of interest based on clustering and contrasting to control samples. Comparison of patient and control samples confirmed a major issue in phage display, namely the selection of unspecific peptides. The potential of the bioinformatic approach was demonstrated by identifying epitopes of a prominent peanut allergen, Ara h 1, in sera from patients with severe peanut allergy. The identified epitopes were confirmed by high-density peptide micro-arrays. The present study demonstrates that high-throughput sequencing can empower phage display by (i) enabling the analysis of complex biological samples, (ii) circumventing the traditional laborious picking and functional testing of individual phage clones and (iii) reducing the number of selection rounds. PMID:26246327

  9. Identification of Novel Immunogenic Proteins of Neisseria gonorrhoeae by Phage Display.

    PubMed

    Connor, Daniel O; Zantow, Jonas; Hust, Michael; Bier, Frank F; von Nickisch-Rosenegk, Markus

    2016-01-01

    Neisseria gonorrhoeae is one of the most prevalent sexually transmitted diseases worldwide with more than 100 million new infections per year. A lack of intense research over the last decades and increasing resistances to the recommended antibiotics call for a better understanding of gonococcal infection, fast diagnostics and therapeutic measures against N. gonorrhoeae. Therefore, the aim of this work was to identify novel immunogenic proteins as a first step to advance those unresolved problems. For the identification of immunogenic proteins, pHORF oligopeptide phage display libraries of the entire N. gonorrhoeae genome were constructed. Several immunogenic oligopeptides were identified using polyclonal rabbit antibodies against N. gonorrhoeae. Corresponding full-length proteins of the identified oligopeptides were expressed and their immunogenic character was verified by ELISA. The immunogenic character of six proteins was identified for the first time. Additional 13 proteins were verified as immunogenic proteins in N. gonorrhoeae. PMID:26859666

  10. Selection of specific interactors from phage display library based on sea lamprey variable lymphocyte receptor sequences.

    PubMed

    Wezner-Ptasinska, Magdalena; Otlewski, Jacek

    2015-12-01

    Variable lymphocyte receptors (VLRs) are non-immunoglobulin components of adaptive immunity in jawless vertebrates. These proteins composed of leucine-rich repeat modules offer some advantages over antibodies in target binding and therefore are attractive candidates for biotechnological applications. In this paper we report the design and characterization of a phage display library based on a previously proposed dVLR scaffold containing six LRR modules [Wezner-Ptasinska et al., 2011]. Our library was designed based on a consensus approach in which the randomization scheme reflects the frequencies of amino acids naturally occurring in respective positions responsible for antigen recognition. We demonstrate general applicability of the scaffold by selecting dVLRs specific for lysozyme and S100A7 protein with KD values in the micromolar range. The dVLR library could be used as a convenient alternative to antibodies for effective isolation of high affinity binders. PMID:26391289

  11. Identification of Novel Immunogenic Proteins of Neisseria gonorrhoeae by Phage Display

    PubMed Central

    Connor, Daniel O.; Zantow, Jonas; Hust, Michael; Bier, Frank F.; von Nickisch-Rosenegk, Markus

    2016-01-01

    Neisseria gonorrhoeae is one of the most prevalent sexually transmitted diseases worldwide with more than 100 million new infections per year. A lack of intense research over the last decades and increasing resistances to the recommended antibiotics call for a better understanding of gonococcal infection, fast diagnostics and therapeutic measures against N. gonorrhoeae. Therefore, the aim of this work was to identify novel immunogenic proteins as a first step to advance those unresolved problems. For the identification of immunogenic proteins, pHORF oligopeptide phage display libraries of the entire N. gonorrhoeae genome were constructed. Several immunogenic oligopeptides were identified using polyclonal rabbit antibodies against N. gonorrhoeae. Corresponding full-length proteins of the identified oligopeptides were expressed and their immunogenic character was verified by ELISA. The immunogenic character of six proteins was identified for the first time. Additional 13 proteins were verified as immunogenic proteins in N. gonorrhoeae. PMID:26859666

  12. Selection of Ceratitis capitata (Diptera: Tephritidae) Specific Recombinant Monoclonal Phage Display Antibodies for Prey Detection Analysis

    PubMed Central

    Monzó, César; Urbaneja, Alberto; Ximénez-Embún, Miguel; García-Fernández, Julia; García, José Luis; Castañera, Pedro

    2012-01-01

    Several recombinant antibodies against the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), one of the most important pests in agriculture worldwide, were selected for the first time from a commercial phage display library of human scFv antibodies. The specificity and sensitivity of the selected recombinant antibodies were compared with that of a rabbit polyclonal serum raised in parallel using a wide range of arthropod species as controls. The selected recombinant monoclonal antibodies had a similar or greater specificity when compared with classical monoclonal antibodies. The selected recombinant antibodies were successfully used to detect the target antigen in the gut of predators and the scFv antibodies were sequenced and compared. These results demonstrate the potential for recombinant scFv antibodies to be used as an alternative to the classical monoclonal antibodies or even molecular probes in the post-mortem analysis studies of generalist predators. PMID:23272105

  13. Combining phage display with de novo protein sequencing for reverse engineering of monoclonal antibodies.

    PubMed

    Rickert, Keith W; Grinberg, Luba; Woods, Robert M; Wilson, Susan; Bowen, Michael A; Baca, Manuel

    2016-04-01

    The enormous diversity created by gene recombination and somatic hypermutation makes de novo protein sequencing of monoclonal antibodies a uniquely challenging problem. Modern mass spectrometry-based sequencing will rarely, if ever, provide a single unambiguous sequence for the variable domains. A more likely outcome is computation of an ensemble of highly similar sequences that can satisfy the experimental data. This outcome can result in the need for empirical testing of many candidate sequences, sometimes iteratively, to identity one which can replicate the activity of the parental antibody. Here we describe an improved approach to antibody protein sequencing by using phage display technology to generate a combinatorial library of sequences that satisfy the mass spectrometry data, and selecting for functional candidates that bind antigen. This approach was used to reverse engineer 2 commercially-obtained monoclonal antibodies against murine CD137. Proteomic data enabled us to assign the majority of the variable domain sequences, with the exception of 3-5% of the sequence located within or adjacent to complementarity-determining regions. To efficiently resolve the sequence in these regions, small phage-displayed libraries were generated and subjected to antigen binding selection. Following enrichment of antigen-binding clones, 2 clones were selected for each antibody and recombinantly expressed as antigen-binding fragments (Fabs). In both cases, the reverse-engineered Fabs exhibited identical antigen binding affinity, within error, as Fabs produced from the commercial IgGs. This combination of proteomic and protein engineering techniques provides a useful approach to simplifying the technically challenging process of reverse engineering monoclonal antibodies from protein material. PMID:26852694

  14. Construction of naïve camelids VHH repertoire in phage display-based library.

    PubMed

    Sabir, Jamal S M; Atef, Ahmed; El-Domyati, Fotouh M; Edris, Sherif; Hajrah, Nahid; Alzohairy, Ahmed M; Bahieldin, Ahmed

    2014-04-01

    Camelids have unique antibodies, namely HCAbs (VHH) or commercially named Nanobodies(®) (Nb) that are composed only of a heavy-chain homodimer. As libraries based on immunized camelids are time-consuming, costly and likely redundant for certain antigens, we describe the construction of a naïve camelid VHHs library from blood serum of non-immunized camelids with affinity in the subnanomolar range and suitable for standard immune applications. This approach is rapid and recovers VHH repertoire with the advantages of being more diverse, non-specific and devoid of subpopulations of specific antibodies, which allows the identification of binders for any potential antigen (or pathogen). RNAs from a number of camelids from Saudi Arabia were isolated and cDNAs of the diverse vhh gene were amplified; the resulting amplicons were cloned in the phage display pSEX81 vector. The size of the library was found to be within the required range (10(7)) suitable for subsequent applications in disease diagnosis and treatment. Two hundred clones were randomly selected and the inserted gene library was either estimated for redundancy or sequenced and aligned to the reference camelid vhh gene (acc. No. ADE99145). Results indicated complete non-specificity of this small library in which no single event of redundancy was detected. These results indicate the efficacy of following this approach in order to yield a large and diverse enough gene library to secure the presence of the required version encoding the required antibodies for any target antigen. This work is a first step towards the construction of phage display-based biosensors useful in disease (e.g., TB or tuberculosis) diagnosis and treatment. PMID:24702893

  15. A Highly Functional Synthetic Phage Display Library Containing over 40 Billion Human Antibody Clones

    PubMed Central

    Weber, Marcel; Bujak, Emil; Putelli, Alessia; Villa, Alessandra; Matasci, Mattia; Gualandi, Laura; Hemmerle, Teresa; Wulhfard, Sarah; Neri, Dario

    2014-01-01

    Several synthetic antibody phage display libraries have been created and used for the isolation of human monoclonal antibodies. The performance of antibody libraries, which is usually measured in terms of their ability to yield high-affinity binding specificities against target proteins of interest, depends both on technical aspects (such as library size and quality of cloning) and on design features (which influence the percentage of functional clones in the library and their ability to be used for practical applications). Here, we describe the design, construction and characterization of a combinatorial phage display library, comprising over 40 billion human antibody clones in single-chain fragment variable (scFv) format. The library was designed with the aim to obtain highly stable antibody clones, which can be affinity-purified on protein A supports, even when used in scFv format. The library was found to be highly functional, as >90% of randomly selected clones expressed the corresponding antibody. When selected against more than 15 antigens from various sources, the library always yielded specific and potent binders, at a higher frequency compared to previous antibody libraries. To demonstrate library performance in practical biomedical research projects, we isolated the human antibody G5, which reacts both against human and murine forms of the alternatively spliced BCD segment of tenascin-C, an extracellular matrix component frequently over-expressed in cancer and in chronic inflammation. The new library represents a useful source of binding specificities, both for academic research and for the development of antibody-based therapeutics. PMID:24950200

  16. Directed Selection of Recombinant Human Monoclonal Antibodies to Herpes Simplex Virus Glycoproteins from Phage Display Libraries

    NASA Astrophysics Data System (ADS)

    Sanna, Pietro Paolo; Williamson, R. Anthony; de Logu, Alessandro; Bloom, Floyd E.; Burton, Dennis R.

    1995-07-01

    Human monoclonal antibodies have considerable potential in the prophylaxis and treatment of viral disease. However, only a few such antibodies suitable for clinical use have been produced to date. We have previously shown that large panels of human recombinant monoclonal antibodies against a plethora of infectious agents, including herpes simplex virus types 1 and 2, can be established from phage display libraries. Here we demonstrate that facile cloning of recombinant Fab fragments against specific viral proteins in their native conformation can be accomplished by panning phage display libraries against viral glycoproteins "captured" from infected cell extracts by specific monoclonal antibodies immobilized on ELISA plates. We have tested this strategy by isolating six neutralizing recombinant antibodies specific for herpes simplex glycoprotein gD or gB, some of which are against conformationally sensitive epitopes. By using defined monoclonal antibodies for the antigen-capture step, this method can be used for the isolation of antibodies to specific regions and epitopes within the target viral protein. For instance, monoclonal antibodies to a nonneutralizing epitope can be used in the capture step to clone antibodies to neutralizing epitopes, or antibodies to a neutralizing epitope can be used to clone antibodies to a different neutralizing epitope. Furthermore, by using capturing antibodies to more immunodominant epitopes, one can direct the cloning to less immunogenic ones. This method should be of value in generating antibodies to be used both in the prophylaxis and treatment of viral infections and in the characterization of the mechanisms of antibody protective actions at the molecular level.

  17. Neutralisation of factor VIII inhibitors by anti-idiotypes isolated from phage-displayed libraries.

    PubMed

    Schmidt, Anja; Brettschneider, Kerstin; Kahle, Jörg; Orlowski, Aleksander; Becker-Peters, Karin; Stichel, Diana; Schulze, Jörg; Braner, Markus; Tampé, Robert; Schwabe, Dirk; Königs, Christoph

    2016-07-01

    Following replacement therapy with coagulation factor VIII (FVIII), up to 30 % of haemophilia A patients develop FVIII-specific inhibitory antibodies (FVIII inhibitors). Immune tolerance induction (ITI) is not always successful, resulting in a need for alternative treatments for FVIII inhibitor-positive patients. As tolerance induction in the course of ITI appears to involve the formation of anti-idiotypes specific for anti-FVIII antibodies, such anti-idiotypes might be used to restore haemostasis in haemophilia A patients with FVIII inhibitors. We isolated anti-idiotypic antibody fragments (scFvs) binding to murine FVIII inhibitors 2-76 and 2-77 from phage-displayed libraries. FVIII inhibitor/anti-idiotype interactions were very specific as no cross-reactivity with other FVIII inhibitors or isotype controls was observed. ScFvs blocked binding of FVIII inhibitors to FVIII and neutralised their cognate inhibitors in vitro and a monoclonal mouse model. In addition, scFv JkH5 specific for FVIII inhibitor 2-76 stained 2-76-producing hybridoma cells. JkH5 residues R52 and Y226, located in complementary determining regions, were identified as crucial for the JkH5/2-76 interaction using JkH5 alanine mutants. SPR spectroscopy revealed that JkH5 interacts with FVIII inhibitor 2-76 with nanomolar affinity. Thus, FVIII inhibitor-specific, high-affinity anti-idiotypes can be isolated from phage-displayed libraries and neutralise their respective inhibitors. Furthermore, we show that anti-idiotypic scFvs might be utilised to specifically target inhibitor-specific B cells. Hence, a pool of anti-idiotypes could enable the reestablishment of haemostasis in the presence of FVIII inhibitors in patients or even allow the depletion of inhibitors by targeting inhibitor-specific B cell populations. PMID:27009573

  18. Development of an enzyme-linked immunosorbent assay for thiacloprid in soil and agro-products with phage-displayed peptide.

    PubMed

    Yin, Wei; Hua, Xiude; Liu, Xiaofeng; Shi, Haiyan; Gee, Shirley J; Wang, Minghua; Hammock, Bruce D

    2015-07-15

    A monoclonal antibody (3A5) that can recognize thiacloprid was produced, and a linear 8-residue peptide phage library was constructed. Six phage-displayed peptides were isolated from the linear 8-residue peptide phage library and a cyclic 8-residue peptide phage library. A phage enzyme-linked immunosorbent assay (ELISA) was developed to detect thiacloprid using a phage-displayed peptide. Under the optimal conditions, the half-maximal inhibition concentration (IC50) and the limit of detection (IC10) of the developed phage ELISA were 8.3 and 0.7 μg/L, respectively. Compared with the conventional ELISA, the sensitivity was improved more than 3-fold. The cross-reactivity (CR) was less than 0.08% for the tested structural analogues and was regarded as negligible. The recoveries of thiacloprid ranged from 80.3% to 116.3% in environmental and agricultural samples, which conformed to the requirements for residue detection. The amount of thiacloprid detected by phage ELISA in the samples was significantly correlated with that detected by high-performance liquid chromatography. The current study indicates that isolating phage-displayed peptides from phage display libraries is an alternative method for the development of a sensitive immunoassay and that the developed assay is a potentially useful tool for detecting thiacloprid in environmental and agricultural samples. PMID:25908560

  19. Identification and binding mechanism of phage displayed peptides with specific affinity to acid-alkali treated titanium.

    PubMed

    Sun, Yuhua; Tan, Jing; Wu, Baohua; Wang, Jianxin; Qu, Shuxin; Weng, Jie; Feng, Bo

    2016-10-01

    Acid-alkali treatment is one of means widely used for preparing bioactive titanium surfaces. Peptides with specific affinity to titanium surface modified by acid-alkali two-steps treatment were obtained via phage display technology. Out of the eight new unique peptides, titanium-binding peptide 54 displayed by monoclonal M13 phage at its pIII coat protein (TBP54-M13 phage) was proved to have higher binding affinity to the substrate. The binding interaction occurred at the domain from phenylalanine at position 1 to arginine at position 6 in the sequences of TBP54 (FAETHRGFHFSF) mainly via the reaction of these residues with the Ti surface. Together the coordination and electrostatic interactions controlled the specific binding of the phage to the substrate. The binding affinity was dependent on the surface basic hydroxyl group content. In addition, the phage showed a different interaction way with the Ti surface without acid-alkali treatment along with an impaired affinity. This study could provide more understanding of the interaction mechanism between the selected peptide and its specific substrate, and develop a promising method for the biofunctionalization of titanium. PMID:27371890

  20. Beyond phage display: non-traditional applications of the filamentous bacteriophage as a vaccine carrier, therapeutic biologic, and bioconjugation scaffold

    PubMed Central

    Henry, Kevin A.; Arbabi-Ghahroudi, Mehdi; Scott, Jamie K.

    2015-01-01

    For the past 25 years, phage display technology has been an invaluable tool for studies of protein–protein interactions. However, the inherent biological, biochemical, and biophysical properties of filamentous bacteriophage, as well as the ease of its genetic manipulation, also make it an attractive platform outside the traditional phage display canon. This review will focus on the unique properties of the filamentous bacteriophage and highlight its diverse applications in current research. Particular emphases are placed on: (i) the advantages of the phage as a vaccine carrier, including its high immunogenicity, relative antigenic simplicity and ability to activate a range of immune responses, (ii) the phage’s potential as a prophylactic and therapeutic agent for infectious and chronic diseases, (iii) the regularity of the virion major coat protein lattice, which enables a variety of bioconjugation and surface chemistry applications, particularly in nanomaterials, and (iv) the phage’s large population sizes and fast generation times, which make it an excellent model system for directed protein evolution. Despite their ubiquity in the biosphere, metagenomics work is just beginning to explore the ecology of filamentous and non-filamentous phage, and their role in the evolution of bacterial populations. Thus, the filamentous phage represents a robust, inexpensive, and versatile microorganism whose bioengineering applications continue to expand in new directions, although its limitations in some spheres impose obstacles to its widespread adoption and use. PMID:26300850

  1. Putative phage-display epitopes of the porcine epidemic diarrhea virus S1 protein and their anti-viral activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Porcine epidemic diarrhea virus (PEDV) is a pathogen of swine that causes severe diarrhea and dehydration resulting in substantial morbidity and mortality in newborn piglets. Phage display is a technique with wide application, in particular, the identification of key antigen epitopes for the develop...

  2. [Construction and panning of scFv phage display library against recombinant interleukin 4 receptor].

    PubMed

    Yang, Guangyong; Guo, Haitao; Liu, Ximing; He, Guangzhi; Tian, Weiyi; Cai, Kun; Wang, Ping; Wang, Wenjia

    2016-06-01

    Objective To construct the recombinant human interleukin 4 receptor (rhIL-4R) single-chain Fv (scFv) antibody library by phage display technique to obtain the anti-IL-4R scFv clones selected from the library. Methods Total RNA was extracted from splenocytes of the BALB/c mice immunized with rhIL-4R. Complementary DNA fragments of variable heavy (VH) and variable light (VL) chains of the antibodies were prepared by reverse transcription PCR and assembled into scFv by splice overlap extension PCR (SOE-PCR). Both scFv and the pCANTAB5E vector were respectively double-digested with restriction endonuclease Sfi I and Not I, connected with T4 ligase, and then transformed into the competent cells E.coli TG1; it was cultured in medium to obtain the phage scFv antibody library; after three rounds of enrichment and panning, the specific antigen scFv with high affinity was selected for the sequencing. Results After three rounds of panning, we obtained a diversity of approximately 2×10(8) anti-rhIL-4R scFv antibody library. Sequencing analysis of one positive clone showed that the anti-rhIL-4R scFv was 741 bp and coded 247 amino acids. The analysis of VBASE2 database indicated that VH and VL gene sequences of anti-rhIL-4R protein all had three complementarity determining regions and four backbone areas.Conclusion The anti-rhIL-4R scFv was obtained from the scFv antibody library. PMID:27371853

  3. Scalable High Throughput Selection From Phage-displayed Synthetic Antibody Libraries

    PubMed Central

    Miersch, Shane; Li, Zhijian; Hanna, Rachel; McLaughlin, Megan E.; Hornsby, Michael; Matsuguchi, Tet; Paduch, Marcin; Sääf, Annika; Wells, Jim; Koide, Shohei; Kossiakoff, Anthony; Sidhu, Sachdev S.

    2015-01-01

    The demand for antibodies that fulfill the needs of both basic and clinical research applications is high and will dramatically increase in the future. However, it is apparent that traditional monoclonal technologies are not alone up to this task. This has led to the development of alternate methods to satisfy the demand for high quality and renewable affinity reagents to all accessible elements of the proteome. Toward this end, high throughput methods for conducting selections from phage-displayed synthetic antibody libraries have been devised for applications involving diverse antigens and optimized for rapid throughput and success. Herein, a protocol is described in detail that illustrates with video demonstration the parallel selection of Fab-phage clones from high diversity libraries against hundreds of targets using either a manual 96 channel liquid handler or automated robotics system. Using this protocol, a single user can generate hundreds of antigens, select antibodies to them in parallel and validate antibody binding within 6-8 weeks. Highlighted are: i) a viable antigen format, ii) pre-selection antigen characterization, iii) critical steps that influence the selection of specific and high affinity clones, and iv) ways of monitoring selection effectiveness and early stage antibody clone characterization. With this approach, we have obtained synthetic antibody fragments (Fabs) to many target classes including single-pass membrane receptors, secreted protein hormones, and multi-domain intracellular proteins. These fragments are readily converted to full-length antibodies and have been validated to exhibit high affinity and specificity. Further, they have been demonstrated to be functional in a variety of standard immunoassays including Western blotting, ELISA, cellular immunofluorescence, immunoprecipitation and related assays. This methodology will accelerate antibody discovery and ultimately bring us closer to realizing the goal of generating renewable

  4. Mapping protein-protein interactions with phage-displayed combinatorial peptide libraries and alanine scanning.

    PubMed

    Kokoszka, Malgorzata E; Kay, Brian K

    2015-01-01

    One avenue for inferring the function of a protein is to learn what proteins it may bind to in the cell. Among the various methodologies, one way for doing so is to affinity select peptide ligands from a phage-displayed combinatorial peptide library and then to examine if the proteins that carry such peptide sequences interact with the target protein in the cell. With the protocols described in this chapter, a laboratory with skills in microbiology, molecular biology, and protein biochemistry can readily identify peptides in the library that bind selectively, and with micromolar affinity, to a given target protein on the time scale of 2 months. To illustrate this approach, we use a library of bacteriophage M13 particles, which display 12-mer combinatorial peptides, to affinity select different peptide ligands for two different targets, the SH3 domain of the human Lyn protein tyrosine kinase and a segment of the yeast serine/threonine protein kinase Cbk1. The binding properties of the selected peptide ligands are then dissected by sequence alignment, Kunkel mutagenesis, and alanine scanning. Finally, the peptide ligands can be used to predict cellular interacting proteins and serve as the starting point for drug discovery. PMID:25616333

  5. Chromatographic biopanning for the selection of peptides with high specificity to Pb2+ from phage displayed peptide library.

    PubMed

    Nian, Rui; Kim, Duck Sang; Nguyen, Thuong; Tan, Lihan; Kim, Chan-Wha; Yoo, Ik-Keun; Choe, Woo-Seok

    2010-09-17

    Toxic heavy metal pollution is a global problem occurring in air, soil as well as water. There is a need for a more cost effective, renewable remediation technique, but most importantly, for a recovery method that is selective for one specific metal of concern. Phage display technology has been used as a powerful tool in the discovery of peptides capable of exhibiting specific affinity to various metals or metal ions. However, traditional phage display is mainly conducted in batch mode, resulting in only one equilibrium state hence low-efficiency selection. It is also unable to monitor the selection process in real time mode. In this study, phage display technique was incorporated with chromatography procedure with the use of a monolithic column, facilitating multiple phage-binding equilibrium states and online monitoring of the selection process in search of affinity peptides to Pb2+. In total, 17 candidate peptides were found and their specificity toward Pb2+ was further investigated with bead-based enzyme immunoassay (EIA). A highly specific Pb2+ binding peptide ThrAsnThrLeuSerAsnAsn (TNTLSNN) was obtained. Based on our knowledge, this is the first report on a new chromatographic biopanning method coupled with monolithic column for the selection of metal ion specific binding peptides. It is expected that this monolith-based chromatographic biopanning will provide a promising approach for a high throughput screening of affinity peptides cognitive of a wide range of target species. PMID:20709321

  6. Identification of a peptide specifically targeting ovarian cancer by the screening of a phage display peptide library

    PubMed Central

    WANG, LEDAN; HU, YUE; LI, WENJU; WANG, FAN; LU, XIAOSHENG; HAN, XUEYING; LV, JIEQIANG; CHEN, JIE

    2016-01-01

    Ovarian cancer is the most common cause of cancer-associated mortality in terms of gynecological malignancies, and is difficult to diagnose due to the absence of reliable biomarkers. To identify ovarian cancer-specific biomarkers, the present study used a Ph.D.-7™ Phage Display Peptide Library to screen for ligands that selectively target HO-8910 ovarian cancer cells. Following 5 rounds of biopanning, the phage clone P2 was selected by enzyme-linked immunosorbent assay and DNA sequencing, and its characteristics were additionally validated by immunofluorescence and immunohistochemical assays. The results revealed the positive phage were enriched 92-fold following 5 rounds of biopanning, and the DNA sequence AAC CCG ATG ATT CGC CGC CAG (amino acid sequence, NPMIRRQ) was repeated most frequently (phage clones, P2, P3, P15, P30 and P54). Immunofluorescence and immunohistochemical assays revealed that the phage clone P2 was able to bind to ovarian cancer cells and tissues, and not those of cervical cancer. In conclusion, the peptide NPMIRRQ may be a potential agent for the diagnosis of ovarian cancer.

  7. Dual expression system for assembling phage lambda display particle (LDP) vaccine to porcine Circovirus 2 (PCV2).

    PubMed

    Hayes, Sidney; Gamage, Lakshman N A; Hayes, Connie

    2010-09-24

    The bacteriophage lambda small capsid protein D forms trimers on the phage head. D-fusion polypeptides can be expressed from plasmids in E. coli and remain soluble without aggregation. We report a dual expression system for the display of four immunodominant regions of porcine Circovirus 2 (PCV2) capsid protein (CAP) as D-CAP fusions on lambda display particles (LDP). The LDP-D-CAP preparation proved an effective vaccine in pigs, eliciting both cellular and humoral immune responses and PCV2 neutralizing antibodies. In our dual system wild type D expression was encoded by a heteroimmune infecting phage. The D-fusion protein expression in the infected cells was from an inducible plasmid, enabling the deferral of D-fusion expression until needed. The effective vaccine preparation depended upon the gradient purification of very high concentration, essentially tail-less display particles, not previously described. PMID:20674873

  8. Phage-displayed peptides as capture antigens in an innovative assay for Taenia saginata-infected cattle.

    PubMed

    Fogaça, Rafaela L; Capelli-Peixoto, Janaína; Yamanaka, Isabel B; de Almeida, Rodrigo P M; Muzzi, João Carlos D; Borges, Mariangela; Costa, Alvimar J; Chávez-Olortegui, Carlos; Thomaz-Soccol, Vanete; Alvarenga, Larissa M; de Moura, Juliana

    2014-11-01

    Bovine cysticercosis is detected during the routine post mortem examination of carcasses by visual inspection (knife and eye method). However, the sensitivity of this procedure is several times lower than immunoassays, even when it is performed by qualified professionals. In the present study, a new generation capture antigens were screened from a phage display peptide library using antibodies from Taenia saginata-infected animals. Eight phage clones were selected, and one, Tsag 3 (VHTSIRPRCQPRAITPR), produced similar results to the T. saginata metacestode crude antigen (TsCa) when used as a capture antigen in an ELISA. The phage-displayed peptides competed with TsCa for binding sites, reducing the reactivity by approximately 30 %. Alanine scanning indicated that proline, arginine, and serine are important residues for antibody binding. Tsag 1 (HFYQITWLPNTFPAR), the most frequent affinity-selected clone, and Tsag 6 (YRWPSTPSASRQATL) shared similarity with highly conserved proteins from the Taeniidae family with known immunogenicity. Due to their epitopic or mimotopic properties, these affinity-selected phages could contribute to the rational design of an ante mortem immunodiagnosis method for bovine cysticercosis, as well as an epitope-based vaccine to interrupt the taeniosis/cysticercosis complex. PMID:25081558

  9. ZP-binding peptides identified via phage display stimulate production of sperm antibodies in dogs.

    PubMed

    Samoylova, Tatiana I; Cox, Nancy R; Cochran, Anna M; Samoylov, Alexandre M; Griffin, Brenda; Baker, Henry J

    2010-07-01

    Zona pellucida (ZP) glycoproteins play a central role in sperm-oocyte binding and fertilization. Sperm protein sequences that are involved in sperm-ZP recognition and have an important role in fertilization represent attractive targets for development of contraceptive vaccines, yet are currently unknown. To identify peptide sequences that recognize and bind to ZP proteins, we developed a novel selection procedure from phage display libraries that utilizes intact oocytes surrounded by ZP proteins. The major advantage of this procedure is that ZP proteins remain in their native conformation unlike a selection protocol previously published that utilized solubilized ZP on artificial solid support. Several peptides of 7 and 12 amino acids with binding specificity to canine ZP proteins were identified. Four of them (LNSFLRS, SSWYRGA, YLPIYTIPSMVY, and NNQSPILKLSIH) plus a control ZP-binding peptide (YLPVGGLRRIGG) from the literature were synthesized and tested for antigenic properties in dogs. NNQSPILKLSIH peptide stimulated production of anti-peptide antibodies. These antibodies bind to the acrosomal region of the canine sperm cell, demonstrating ability to act as sperm antibodies. The identified ZP-binding peptides (mimicking sperm cell surface antigens) may be useful in the design of immunocontraceptive agents for dogs. PMID:20434854

  10. Identification of calreticulin as a ligand of GABARAP by phage display screening of a peptide library.

    PubMed

    Mohrlüder, Jeannine; Stangler, Thomas; Hoffmann, Yvonne; Wiesehan, Katja; Mataruga, Anja; Willbold, Dieter

    2007-11-01

    4-Aminobutyrate type A (GABA(A)) receptor-associated protein (GABARAP) is a ubiquitin-like modifier implicated in the intracellular trafficking of GABA(A) receptors, and belongs to a family of proteins involved in intracellular vesicular transport processes, such as autophagy and intra-Golgi transport. In this article, it is demonstrated that calreticulin is a high affinity ligand of GABARAP. Calreticulin, although best known for its functions as a Ca(2+) -dependent chaperone and a Ca(2+) -buffering protein in the endoplasmic reticulum, is also localized to the cytosol and exerts a variety of extra-endoplasmic reticulum functions. By phage display screening of a randomized peptide library, peptides that specifically bind GABARAP were identified. Their amino acid sequences allowed us to identify calreticulin as a potential GABARAP binding protein. GABARAP binding to calreticulin was confirmed by pull-down experiments with brain lysate and colocalization studies in N2a cells. Calreticulin and GABARAP interact with a dissociation constant K(d) = 64 nm and a mean lifetime of the complex of 20 min. Thus, the interaction between GABARAP and calreticulin is the strongest so far reported for each protein. PMID:17916189

  11. Immunodiagnosis of human neurocysticercosis using a synthetic peptide selected by phage-display.

    PubMed

    Hell, R C R; Amim, P; de Andrade, H M; de Avila, R A M; Felicori, L; Oliveira, A G; Oliveira, C A; Nascimento, E; Tavares, C A P; Granier, C; Chávez-Olórtegui, C

    2009-04-01

    The usefulness of a synthetic peptide in the serodiagnosis of Taenia solium human neurocysticercosis (NC) has been evaluated. Phage-displayed peptides were screened with human antibodies to scolex protein antigen from cysticercus cellulosae (SPACc). One clone was found to interact specifically with anti-SPACc IgGs. The corresponding synthetic peptide was found to be recognized in ELISA by NC patient's sera. The study was carried out with sera from 28 confirmed NC patients, 13 control sera and 73 sera from patients suffering from other infectious diseases. A 93% sensibility and a 94.3% specificity was achieved. Figures of 89% and 31.4% of sensibility and specificity were obtained in a SPACc-based ELISA. Immunoblotting of SPACc with anti-peptide antibodies revealed a single band of approximately 45 kDa in 1D and four 45 kDa isoforms in 2D-gel electrophoresis. A strong and specific immunostaining in the fibers beneath the suckers, at the base of the rostellum, and in the tissue surrounding the scolex of cysticerci was observed by immunomicroscopy. Our results show that a peptide-based immunodiagnostic of neurocisticercosis can be envisioned. PMID:19186111

  12. Phage-displayed mimotopes elicit monoclonal antibodies specific for a malaria vaccine candidate.

    PubMed

    Demangel, C; Rouyre, S; Alzari, P M; Nato, F; Longacre, S; Lafaye, P; Mazie, J C

    1998-01-01

    The phage-displayed peptide CGRVCLRC (C15) has been isolated from a random library by affinity screening with the D14-3 monoclonal antibody, which was raised to the 42 kDa C-terminal fragment of the major merozoite surface protein 1 of Plasmodium vivax (Pv42). In order to investigate the use of such mimotopes as possible vaccine components, we studied the antibody response in Biozzi mice immunized with C15. High titers of antibodies cross-reacting with Pv42 were generated and the IC50 of all immune sera were in the 5 x 10(-9) M range. Two monoclonal antibodies that specifically bind the Pv42 fragment were isolated. Although these mAbs had a lower affinity for Pv42 when compared to D14-3, they reproduced the cross-reactivity of D14-3 with the equivalent protein in P. cynomolgi, a close relative of P. vivax. DNA sequence analysis showed similarities between the germline genes and the canonical CDR conformations of all three antibodies, but molecular modeling failed to reveal common structural features of their paratopes that could account for their cross-reacting patterns. These data demonstrate that mimotopes selected from random repertoires do not necessarily represent structural equivalents of the original antigen but provide functional images that could replace it for vaccine development. PMID:9504719

  13. Selective and Sensitive Sensing of Flame Retardant Chemicals Through Phage Display Discovered Recognition Peptide.

    PubMed

    Jin, Hyo-Eon; Zueger, Chris; Chung, Woo-Jae; Wong, Winnie; Lee, Byung Yang; Lee, Seung-Wuk

    2015-11-11

    We report a highly selective and sensitive biosensor for the detection of an environmentally toxic molecule, decabrominated diphenyl ether (DBDE), one of the most common congeners of the polybrominated frame retardants (polybrominated diphenyl ether (PBDE)), using newly discovered DBDE peptide receptors integrated with carbon nanotube field-effect transistors (CNT-FET). The specific DBDE peptide receptor was identified using a high-throughput screening process of phage library display. The resulting binding peptide carries an interesting consensus binding pocket with two Trp-His/Asn-Trp repeats, which binds to the DBDE in a multivalent manner. We integrated the novel DBDE binding peptide onto the CNT-FET using polydiacetylene coating materials linked through cysteine-maleimide click chemistry. The resulting biosensor could detect the desired DBDE selectively with a 1 fM detection limit. Our combined approaches of selective receptor discovery, material nanocoating through click chemistry, and integration onto a sensitive CNT-FET electronic sensor for desired target chemicals will pave the way toward the rapid development of portable and easy-to-use biosensors for desired chemicals to protect our health and environment. PMID:26455834

  14. A phage display-selected peptide inhibitor of Agrobacterium vitis polygalacturonase.

    PubMed

    Warren, Jeremy G; Kasun, George W; Leonard, Takara; Kirkpatrick, Bruce C

    2016-05-01

    Agrobacterium vitis, the causal agent of crown gall of grapevine, is a threat to viticulture worldwide. A major virulence factor of this pathogen is polygalacturonase, an enzyme that degrades pectin components of the xylem cell wall. A single gene encodes for the polygalacturonase gene. Disruption of the polygalacturonase gene results in a mutant that is less pathogenic and produces significantly fewer root lesions on grapevines. Thus, the identification of peptides or proteins that could inhibit the activity of polygalacturonase could be part of a strategy for the protection of plants against this pathogen. A phage-displayed combinatorial peptide library was used to isolate peptides with a high binding affinity to A. vitis polygalacturonase. These peptides showed sequence similarity to regions of Oryza sativa (EMS66324, Japonica) and Triticum urartu (NP_001054402, wild wheat) polygalacturonase-inhibiting proteins (PGIPs). Furthermore, these panning experiments identified a peptide, SVTIHHLGGGS, which was able to reduce A. vitis polygalacturonase activity by 35% in vitro. Truncation studies showed that the IHHL motif alone is sufficient to inhibit A. vitis polygalacturonase activity. PMID:26177065

  15. Anti-idiotypic VHH phage display-mediated immuno-PCR for ultrasensitive determination of mycotoxin zearalenone in cereals.

    PubMed

    Wang, Xianxian; He, Qinghua; Xu, Yang; Liu, Xing; Shu, Mei; Tu, Zhui; Li, Yanping; Wang, Wei; Cao, Dongmei

    2016-01-15

    Immunoassay is frequently used to analyze mycotoxin contamination. However, the introduction of mycotoxins or their conjugates in conventional immunoassay threatens the safety of individuals and the environment. The variable domain of heavy-chain antibodies (VHHs) can be used as alternative compounds to produce anti-idiotypic antibodies, which work as non-toxic surrogate reagents in immunoassay. In this work, anti-zearalenone (ZEN) monoclonal antibody (mAb) was used as the target for biopanning anti-idiotypic VHH from a naïve alpaca VHH phage display library. After four panning cycles, one anti-idiotypic VHH phage clone (Z1) was isolated and the Z1 based phage ELISA for ZEN showed a half inhibitory concentration (IC50) of 0.25±0.02ng/mL, a linear range of 0.11-0.55ng/mL, and a limit of detection (LOD) of 0.08ng/mL. Furthermore, the phage particles of Z1 were also applied to immuno-polymerase chain reaction (PD-IPCR), which supplied both the detection antigens and deoxyribonucleic acid (DNA) templates. Compared with that of phage ELISA, the LOD of Z1 based PD-IPCR was 12-fold improved, with a detection limit of 6.5pg/mL and a linear range of 0.01-100ng/mL. The proposed method was then validated with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Results showed the reliability of PD-IPCR for the determination of ZEN in cereal samples. The use of anti-idiotypic VHH phage as non-toxic surrogate and signal-amplification function of PCR make it a promising method for actual ZEN analysis in cereals. PMID:26592626

  16. Phage display selection of Affibody molecules with specific binding to the extracellular domain of the epidermal growth factor receptor.

    PubMed

    Friedman, M; Nordberg, E; Höidén-Guthenberg, I; Brismar, H; Adams, G P; Nilsson, F Y; Carlsson, J; Ståhl, S

    2007-04-01

    Affibody molecules specific for the epidermal growth factor receptor (EGFR) have been selected by phage display technology from a combinatorial protein library based on the 58-residue, protein A-derived Z domain. EGFR is overexpressed in various malignancies and is frequently associated with poor patient prognosis, and the information provided by targeting this receptor could facilitate both patient diagnostics and treatment. Three selected Affibody variants were shown to selectively bind to the extracellular domain of EGFR (EGFR-ECD). Kinetic biosensor analysis revealed that the three monomeric Affibody molecules bound with similar affinity, ranging from 130 to 185 nM. Head-to-tail dimers of the Affibody molecules were compared for their binding to recombinant EGFR-ECD in biosensor analysis and in human epithelial cancer A431 cells. Although the dimeric Affibody variants were found to bind in a range of 25-50 nM affinities in biosensor analysis, they were found to be low nanomolar binders in the cellular assays. Competition assays using radiolabeled Affibody dimers confirmed specific EGFR-binding and demonstrated that the three Affibody molecules competed for the same epitope. Immunofluorescence microscopy demonstrated that the selected Affibody dimers were initially binding to EGFR at the cell surface of A431, and confocal microscopy analysis showed that the Affibody dimers could thereafter be internalized. The potential use of the described Affibody molecules as targeting agents for radionuclide based imaging applications in various carcinomas is discussed. PMID:17452435

  17. Isolation of soluble scFv antibody fragments specific for small biomarker molecule, L-Carnitine, using phage display.

    PubMed

    Abou El-Magd, Rabab M; Vozza, Nicolas F; Tuszynski, Jack A; Wishart, David S

    2016-01-01

    Isolation of single chain antibody fragment (scFv) clones from naïve Tomlinson I+J phage display libraries that specifically bind a small biomarker molecule, L-Carnitine, was performed using iterative affinity selection procedures. L-Carnitine has been described as a conditionally essential nutrient for humans. Abnormally high concentrations of L-Carnitine in urine are related to many health disorders including diabetes mellitus type 2 and lung cancer. ELISA-based affinity characterization results indicate that selectants preferentially bind to L-Carnitine in the presence of key bioselecting component materials and closely related L-Carnitine derivatives. In addition, the affinity results were confirmed using biophysical fluorescence quenching for tyrosine residues in the V segment. Small-scale production of the soluble fragment yielded 1.3mg/L using immunopure-immobilized protein A affinity column. Circular Dichroism data revealed that the antibody fragment (Ab) represents a folded protein that mainly consists of β-sheets. These novel antibody fragments may find utility as molecular affinity interface receptors in various electrochemical biosensor platforms to provide specific L-Carnitine binding capability with potential applications in metabolomic devices for companion diagnostics and personalized medicine applications. It may also be used in any other biomedical application where detection of the L-Carnitine level is important. PMID:26608419

  18. The T7-Related Pseudomonas putida Phage ϕ15 Displays Virion-Associated Biofilm Degradation Properties

    PubMed Central

    Cornelissen, Anneleen; Ceyssens, Pieter-Jan; T'Syen, Jeroen; Van Praet, Helena; Noben, Jean-Paul; Shaburova, Olga V.; Krylov, Victor N.; Volckaert, Guido; Lavigne, Rob

    2011-01-01

    Formation of a protected biofilm environment is recognized as one of the major causes of the increasing antibiotic resistance development and emphasizes the need to develop alternative antibacterial strategies, like phage therapy. This study investigates the in vitro degradation of single-species Pseudomonas putida biofilms, PpG1 and RD5PR2, by the novel phage ϕ15, a ‘T7-like virus’ with a virion-associated exopolysaccharide (EPS) depolymerase. Phage ϕ15 forms plaques surrounded by growing opaque halo zones, indicative for EPS degradation, on seven out of 53 P. putida strains. The absence of haloes on infection resistant strains suggests that the EPS probably act as a primary bacterial receptor for phage infection. Independent of bacterial strain or biofilm age, a time and dose dependent response of ϕ15-mediated biofilm degradation was observed with generally a maximum biofilm degradation 8 h after addition of the higher phage doses (104 and 106 pfu) and resistance development after 24 h. Biofilm age, an in vivo very variable parameter, reduced markedly phage-mediated degradation of PpG1 biofilms, while degradation of RD5PR2 biofilms and ϕ15 amplification were unaffected. Killing of the planktonic culture occurred in parallel with but was always more pronounced than biofilm degradation, accentuating the need for evaluating phages for therapeutic purposes in biofilm conditions. EPS degrading activity of recombinantly expressed viral tail spike was confirmed by capsule staining. These data suggests that the addition of high initial titers of specifically selected phages with a proper EPS depolymerase are crucial criteria in the development of phage therapy. PMID:21526174

  19. Cyclic peptides identified by phage display are competitive inhibitors of the tRNA-dependent amidotransferase of Helicobacter pylori.

    PubMed

    Pham, Van Hau; Maaroufi, Halim; Levesque, Roger C; Lapointe, Jacques

    2016-05-01

    In Helicobacter pylori, the heterotrimeric tRNA-dependent amidotransferase (GatCAB) is essential for protein biosynthesis because it catalyzes the conversion of misacylated Glu-tRNA(Gln) and Asp-tRNA(Asn) into Gln-tRNA(Gln) and Asn-tRNA(Asn), respectively. In this study, we used a phage library to identify peptide inhibitors of GatCAB. A library displaying loop-constrained heptapeptides was used to screen for phages binding to the purified GatCAB. To optimize the probability of obtaining competitive inhibitors of GatCAB with respect to its substrate Glu-tRNA(Gln), we used that purified substrate in the biopanning process of the phage-display technique to elute phages bound to GatCAB at the third round of the biopanning process. Among the eluted phages, we identified several that encode cyclic peptides rich in Trp and Pro that inhibit H. pylori GatCAB in vitro. Peptides P10 and P9 were shown to be competitive inhibitors of GatCAB with respect to its substrate Glu-tRNA(Gln), with Ki values of 126 and 392μM, respectively. The docking models revealed that the Trp residues of these peptides form π-π stacking interactions with Tyr81 of the synthetase active site, as does the 3'-terminal A76 of tRNA, supporting their competitive behavior with respect to Glu-tRNA(Gln) in the transamidation reaction. These peptides can be used as scaffolds in the search for novel antibiotics against the pathogenic bacteria that require GatCAB for Gln-tRNA(Gln) and/or Asn-tRNA(Asn) formation. PMID:26976271

  20. Next-Generation Sequencing of a Single Domain Antibody Repertoire Reveals Quality of Phage Display Selected Candidates

    PubMed Central

    Turner, Kendrick B.; Naciri, Jennifer; Liu, Jinny L.; Anderson, George P.; Goldman, Ellen R.; Zabetakis, Dan

    2016-01-01

    Next-Generation Sequencing and bioinformatics are powerful tools for analyzing the large number of DNA sequences present in an immune library. In this work, we constructed a cDNA library of single domain antibodies from a llama immunized with staphylococcal enterotoxin B. The resulting library was sequenced, resulting in approximately 8.5 million sequences with 5.4 million representing intact, useful sequences. The sequenced library was interrogated using sequences of known SEB-binding single domain antibodies from the library obtained through phage display panning methods in a previous study. New antibodies were identified, produced, and characterized, and were shown to have affinities and melting temperatures comparable to those obtained by traditional panning methods. This demonstrates the utility of using NGS as a complementary tool to phage-displayed biopanning as a means for rapidly obtaining additional antibodies from an immune library. It also shows that phage display, using a library of high diversity, is able to select high quality antibodies even when they are low in frequency. PMID:26895405

  1. M13 bacteriophage display framework that allows sortase-mediated modification of surface-accessible phage proteins.

    PubMed

    Hess, Gaelen T; Cragnolini, Juan J; Popp, Maximilian W; Allen, Mark A; Dougan, Stephanie K; Spooner, Eric; Ploegh, Hidde L; Belcher, Angela M; Guimaraes, Carla P

    2012-07-18

    We exploit bacterial sortases to attach a variety of moieties to the capsid proteins of M13 bacteriophage. We show that pIII, pIX, and pVIII can be functionalized with entities ranging from small molecules (e.g., fluorophores, biotin) to correctly folded proteins (e.g., GFP, antibodies, streptavidin) in a site-specific manner, and with yields that surpass those of any reported using phage display technology. A case in point is modification of pVIII. While a phage vector limits the size of the insert into pVIII to a few amino acids, a phagemid system limits the number of copies actually displayed at the surface of M13. Using sortase-based reactions, a 100-fold increase in the efficiency of display of GFP onto pVIII is achieved. Taking advantage of orthogonal sortases, we can simultaneously target two distinct capsid proteins in the same phage particle and maintain excellent specificity of labeling. As demonstrated in this work, this is a simple and effective method for creating a variety of structures, thus expanding the use of M13 for materials science applications and as a biological tool. PMID:22759232

  2. DNA immunization combined with scFv phage display identifies antagonistic GCGR specific antibodies and reveals new epitopes on the small extracellular loops.

    PubMed

    van der Woning, Bas; De Boeck, Gitte; Blanchetot, Christophe; Bobkov, Vladimir; Klarenbeek, Alex; Saunders, Michael; Waelbroeck, Magali; Laeremans, Toon; Steyaert, Jan; Hultberg, Anna; De Haard, Hans

    2016-01-01

    The identification of functional monoclonal antibodies directed against G-protein coupled receptors (GPCRs) is challenging because of the membrane-embedded topology of these molecules. Here, we report the successful combination of llama DNA immunization with scFv-phage display and selections using virus-like particles (VLP) and the recombinant extracellular domain of the GPCR glucagon receptor (GCGR), resulting in glucagon receptor-specific antagonistic antibodies. By immunizing outbred llamas with plasmid DNA containing the human GCGR gene, we sought to provoke their immune system, which generated a high IgG1 response. Phage selections on VLPs allowed the identification of mAbs against the extracellular loop regions (ECL) of GCGR, in addition to multiple VH families interacting with the extracellular domain (ECD) of GCGR. Identifying mAbs binding to the ECL regions of GCGR is challenging because the large ECD covers the small ECLs in the energetically most favorable 'closed conformation' of GCGR. Comparison of Fab with scFv-phage display demonstrated that the multivalent nature of scFv display is essential for the identification of GCGR specific clones by selections on VLPs because of avid interaction. Ten different VH families that bound 5 different epitopes on the ECD of GCGR were derived from only 2 DNA-immunized llamas. Seven VH families demonstrated interference with glucagon-mediated cAMP increase. This combination of technologies proved applicable in identifying multiple functional binders in the class B GPCR context, suggesting it is a robust approach for tackling difficult membrane proteins. PMID:27211075

  3. Tetanus Neurotoxin Neutralizing Antibodies Screened from a Human Immune scFv Antibody Phage Display Library.

    PubMed

    Wang, Han; Yu, Rui; Fang, Ting; Yu, Ting; Chi, Xiangyang; Zhang, Xiaopeng; Liu, Shuling; Fu, Ling; Yu, Changming; Chen, Wei

    2016-01-01

    Tetanus neurotoxin (TeNT) produced by Clostridium tetani is one of the most poisonous protein substances. Neutralizing antibodies against TeNT can effectively prevent and cure toxicosis. Using purified Hc fragments of TeNT (TeNT-Hc) as an antigen, three specific neutralizing antibody clones recognizing different epitopes were selected from a human immune scFv antibody phage display library. The three antibodies (2-7G, 2-2D, and S-4-7H) can effectively inhibit the binding between TeNT-Hc and differentiated PC-12 cells in vitro. Moreover, 2-7G inhibited TeNT-Hc binding to the receptor via carbohydrate-binding sites of the W pocket while 2-2D and S-4-7H inhibited binding of the R pocket. Although no single mAb completely protected mice from the toxin, they could both prolong survival when challenged with 20 LD50s (50% of the lethal dose) of TeNT. When used together, the mAbs completely neutralized 1000 LD50s/mg Ab, indicating their high neutralizing potency in vivo. Antibodies recognizing different carbohydrate-binding pockets could have higher synergistic toxin neutralization activities than those that recognize the same pockets. These results could lead to further production of neutralizing antibody drugs against TeNT and indicate that using TeNT-Hc as an antigen for screening human antibodies for TeNT intoxication therapy from human immune antibody library was convenient and effective. PMID:27626445

  4. Phage display selection of tight specific binding variants from a hyperthermostable Sso7d scaffold protein library.

    PubMed

    Zhao, Ning; Schmitt, Margaret A; Fisk, John D

    2016-04-01

    Antibodies, the quintessential biological recognition molecules, are not ideal for many applications because of their large size, complex modifications, and thermal and chemical instability. Identifying alternative scaffolds that may be evolved into tight, specific binding molecules with improved physical properties is of increasing interest, particularly for biomedical applications in resource-limited environments. Hyperthermophilic organisms, such as Sulfolobus solfataricus, are an attractive source of highly stable proteins that may serve as starting points for alternative molecular recognition scaffolds. We describe the first application of phage display to identify binding proteins based on the S. solfataricus protein Sso7d scaffold. Sso7d is a small cysteine-free DNA-binding protein (approximately 7 kDa, 63 amino acids), with a melting temperature of nearly 100 °C. Tight-binding Sso7d variants were selected for a diverse set of protein targets from a 10(10) member library, demonstrating the versatility of the scaffold. These Sso7d variants are able to discriminate among closely related human, bovine and rabbit serum albumins. Equilibrium dissociation constants in the nanomolar to low micromolar range were measured via competitive ELISA. Importantly, the Sso7d variants continue to bind their targets in the absence of the phage context. Furthermore, phage-displayed Sso7d variants retain their binding affinity after exposure to temperatures up to 70 °C. Taken together, our results suggest that the Sso7d scaffold will be a complementary addition to the range of non-antibody scaffold proteins that may be utilized in phage display. Variants of hyperthermostable binding proteins have potential applications in diagnostics and therapeutics for environments with extreme conditions of storage and deployment. PMID:26835881

  5. Selection of binding targets in parasites using phage-display and aptamer libraries in vivo and in vitro

    PubMed Central

    Tonelli, R. R.; Colli, W.; Alves, M. J. M.

    2012-01-01

    Parasite infections are largely dependent on interactions between pathogen and different host cell populations to guarantee a successful infectious process. This is particularly true for obligatory intracellular parasites as Plasmodium, Toxoplasma, and Leishmania, to name a few. Adhesion to and entry into the cell are essential steps requiring specific parasite and host cell molecules. The large amount of possible involved molecules poses additional difficulties for their identification by the classical biochemical approaches. In this respect, the search for alternative techniques should be pursued. Among them two powerful methodologies can be employed, both relying upon the construction of highly diverse combinatorial libraries of peptides or oligonucleotides that randomly bind with high affinity to targets on the cell surface and are selectively displaced by putative ligands. These are, respectively, the peptide-based phage display and the oligonucleotide-based aptamer techniques. The phage display technique has been extensively employed for the identification of novel ligands in vitro and in vivo in different areas such as cancer, vaccine development, and epitope mapping. Particularly, phage display has been employed in the investigation of pathogen–host interactions. Although this methodology has been used for some parasites with encouraging results, in trypanosomatids its use is, as yet, scanty. RNA and DNA aptamers, developed by the SELEX process (Systematic Evolution of Ligands by Exponential Enrichment), were described over two decades ago and since then contributed to a large number of structured nucleic acids for diagnostic or therapeutic purposes or for the understanding of the cell biology. Similarly to the phage display technique scarce use of the SELEX process has been used in the probing of parasite–host interaction. In this review, an overall survey on the use of both phage display and aptamer technologies in different pathogenic organisms will

  6. Isolation of a recombinant antibody specific for a surface marker of the corneal endothelium by phage display.

    PubMed

    Dorfmueller, Simone; Tan, Hwee Ching; Ngoh, Zi Xian; Toh, Kai Yee; Peh, Gary; Ang, Heng-Pei; Seah, Xin-Yi; Chin, Angela; Choo, Andre; Mehta, Jodhbir S; Sun, William

    2016-01-01

    Cell surface antigens are important targets for monoclonal antibodies, but they are often difficult to work with due to their association with the cell membrane. Phage display is a versatile technique that can be applied to generate binders against difficult targets. Here we used antibody phage display to isolate a binder for a rare and specialized cell, the human corneal endothelial cell. The human corneal endothelium is a medically important cell layer; defects in this layer account for about half of all corneal transplants. Despite its importance, no specific antigens have been found to mark this cell type. By panning a phage library directly on human corneal endothelial cells, we isolated an antibody that bound to these cells and not the other types of corneal cells. Subsequently, we identified the antibody's putative target to be CD166 by immunoprecipitation and mass spectrometry. This approach can be used to isolate antibodies against other poorly-characterized cell types, such as stem cells or cancer cells, without any prior knowledge of their discriminating markers. PMID:26902886

  7. Cell adhesion and invasion inhibitory effect of an ovarian cancer targeting peptide selected via phage display in vivo.

    PubMed

    Pu, Ximing; Ma, Chuying; Yin, Guangfu; You, Fei; Wei, Yan

    2014-01-17

    Organ-specific metastasis is of great importance since most of the cancer deaths are caused by spread of the primary cancer to distant sites. Therefore, targeted anti-metastases therapies are needed to prevent cancer cells from metastasizing to different organs. The phage clone pc3-1 displaying peptide WSGPGVWGASVK selected by phage display had been identified which have high binding efficiency and remarkable cell specificity to SK-OV-3 cells. In the present work, the effects of selected cell-binding phage and cognate peptide on the cell adhesion and invasion of targeted cells were investigated. Results showed that the adhesive ability of SK-OV-3 to extracellular matrix was inhibited by pc3-1 and peptide WSGPGVWGASVK, and pc3-1 blocked SK-OV-3 cells attachment more effective than the cognate peptide. The peptide WSGPGVWGASVK suppressed the cell number of SK-OV-3 that attached to HUVECs monolayer up to 24% and could block the spreading of the attaching cells. Forthermore, the cognate peptide could inhibit the invasion of SK-OV-3 significantly. The number of invaded SK-OV-3 cells and invaded SK-OV-3-activated HUVECs pretreated with peptide WSGPGVWGASVK was decreased by 24.3% and 36.6%, respectively. All these results suggested that peptide WSGPGVWGASVK might possess anti-metastasis against SK-OV-3 cells. PMID:24342617

  8. Phage display revisited: Epitope mapping of a monoclonal antibody directed against Neisseria meningitidis adhesin A using the PROFILER technology.

    PubMed

    Cariccio, Veronica Lanza; Domina, Maria; Benfatto, Salvatore; Venza, Mario; Venza, Isabella; Faleri, Agnese; Bruttini, Marco; Bartolini, Erika; Giuliani, Marzia Monica; Santini, Laura; Brunelli, Brunella; Norais, Nathalie; Borgogni, Erica; Midiri, Angelina; Galbo, Roberta; Romeo, Letizia; Biondo, Carmelo; Masignani, Vega; Teti, Giuseppe; Felici, Franco; Beninati, Concetta

    2016-01-01

    There is a strong need for rapid and reliable epitope mapping methods that can keep pace with the isolation of increasingly larger numbers of mAbs. We describe here the identification of a conformational epitope using Phage-based Representation OF ImmunoLigand Epitope Repertoire (PROFILER), a recently developed high-throughput method based on deep sequencing of antigen-specific lambda phage-displayed libraries. A novel bactericidal monoclonal antibody (mAb 9F11) raised against Neisseria meningitidis adhesin A (NadA), an important component of the Bexsero(®) anti-meningococcal vaccine, was used to evaluate the technique in comparison with other epitope mapping methods. The PROFILER technology readily identified NadA fragments that were capable of fully recapitulating the reactivity of the entire antigen against mAb 9F11. Further analysis of these fragments using mutagenesis and hydrogen-deuterium exchange mass-spectrometry allowed us to identify the binding site of mAb 9F11 (A250-D274) and an adjoining sequence (V275-H312) that was also required for the full functional reconstitution of the epitope. These data suggest that, by virtue of its ability to detect a great variety of immunoreactive antigen fragments in phage-displayed libraries, the PROFILER technology can rapidly and reliably identify epitope-containing regions and provide, in addition, useful clues for the functional characterization of conformational mAb epitopes. PMID:26963435

  9. Isolation of a recombinant antibody specific for a surface marker of the corneal endothelium by phage display

    PubMed Central

    Dorfmueller, Simone; Tan, Hwee Ching; Ngoh, Zi Xian; Toh, Kai Yee; Peh, Gary; Ang, Heng-Pei; Seah, Xin-Yi; Chin, Angela; Choo, Andre; Mehta, Jodhbir S.; Sun, William

    2016-01-01

    Cell surface antigens are important targets for monoclonal antibodies, but they are often difficult to work with due to their association with the cell membrane. Phage display is a versatile technique that can be applied to generate binders against difficult targets. Here we used antibody phage display to isolate a binder for a rare and specialized cell, the human corneal endothelial cell. The human corneal endothelium is a medically important cell layer; defects in this layer account for about half of all corneal transplants. Despite its importance, no specific antigens have been found to mark this cell type. By panning a phage library directly on human corneal endothelial cells, we isolated an antibody that bound to these cells and not the other types of corneal cells. Subsequently, we identified the antibody’s putative target to be CD166 by immunoprecipitation and mass spectrometry. This approach can be used to isolate antibodies against other poorly-characterized cell types, such as stem cells or cancer cells, without any prior knowledge of their discriminating markers. PMID:26902886

  10. Uses of Phage Display in Agriculture: A Review of Food-Related Protein-Protein Interactions Discovered by Biopanning over Diverse Baits

    PubMed Central

    Kushwaha, Rekha; Payne, Christina M.; Downie, A. Bruce

    2013-01-01

    This review highlights discoveries made using phage display that impact the use of agricultural products. The contribution phage display made to our fundamental understanding of how various protective molecules serve to safeguard plants and seeds from herbivores and microbes is discussed. The utility of phage display for directed evolution of enzymes with enhanced capacities to degrade the complex polymers of the cell wall into molecules useful for biofuel production is surveyed. Food allergies are often directed against components of seeds; this review emphasizes how phage display has been employed to determine the seed component(s) contributing most to the allergenic reaction and how it has played a central role in novel approaches to mitigate patient response. Finally, an overview of the use of phage display in identifying the mature seed proteome protection and repair mechanisms is provided. The identification of specific classes of proteins preferentially bound by such protection and repair proteins leads to hypotheses concerning the importance of safeguarding the translational apparatus from damage during seed quiescence and environmental perturbations during germination. These examples, it is hoped, will spur the use of phage display in future plant science examining protein-ligand interactions. PMID:23710253

  11. PHASTpep: Analysis Software for Discovery of Cell-Selective Peptides via Phage Display and Next-Generation Sequencing

    PubMed Central

    Dasa, Siva Sai Krishna; Kelly, Kimberly A.

    2016-01-01

    Next-generation sequencing has enhanced the phage display process, allowing for the quantification of millions of sequences resulting from the biopanning process. In response, many valuable analysis programs focused on specificity and finding targeted motifs or consensus sequences were developed. For targeted drug delivery and molecular imaging, it is also necessary to find peptides that are selective—targeting only the cell type or tissue of interest. We present a new analysis strategy and accompanying software, PHage Analysis for Selective Targeted PEPtides (PHASTpep), which identifies highly specific and selective peptides. Using this process, we discovered and validated, both in vitro and in vivo in mice, two sequences (HTTIPKV and APPIMSV) targeted to pancreatic cancer-associated fibroblasts that escaped identification using previously existing software. Our selectivity analysis makes it possible to discover peptides that target a specific cell type and avoid other cell types, enhancing clinical translatability by circumventing complications with systemic use. PMID:27186887

  12. Selection of staphylococcal enterotoxin B (SEB)-binding peptide using phage display technology

    SciTech Connect

    Soykut, Esra Acar; Dudak, Fahriye Ceyda; Boyaci, Ismail Hakki

    2008-05-23

    In this study, peptides were selected to recognize staphylococcal enterotoxin B (SEB) which cause food intoxication and can be used as a biological war agent. By using commercial M13 phage library, single plaque isolation of 38 phages was done and binding affinities were investigated with phage-ELISA. The specificities of the selected phage clones showing high affinity to SEB were checked by using different protein molecules which can be found in food samples. Furthermore, the affinities of three selected phage clones were determined by using surface plasmon resonance (SPR) sensors. Sequence analysis was realized for three peptides showing high binding affinity to SEB and WWRPLTPESPPA, MNLHDYHRLFWY, and QHPQINQTLYRM amino acid sequences were obtained. The peptide sequence with highest affinity to SEB was synthesized with solid phase peptide synthesis technique and thermodynamic constants of the peptide-SEB interaction were determined by using isothermal titration calorimetry (ITC) and compared with those of antibody-SEB interaction. The binding constant of the peptide was determined as 4.2 {+-} 0.7 x 10{sup 5} M{sup -1} which indicates a strong binding close to that of antibody.

  13. Phage display selection of peptides that home to atherosclerotic plaques: IL-4 receptor as a candidate target in atherosclerosis

    PubMed Central

    Hong, Hai-yan; Lee, Hwa Young; Kwak, Wonjung; Yoo, Jeongsoo; Na, Moon-Hee; So, In Seop; Kwon, Tae-Hwan; Park, Heon-Sik; Huh, Seung; Oh, Goo Taeg; Kwon, Ick-Chan; Kim, In-San; Lee, Byung-Heon

    2008-01-01

    Imaging or drug delivery tools for atherosclerosis based on the plaque biology are still insufficient. Here, we attempted to identify peptides that selectively home to atherosclerotic plaques using phage display. A phage library containing random peptides was ex viv screened for binding to human atheroma tissues. After three to four rounds of selection, the DNA inserts of phage clones wer sequenced. A peptide sequence, CRKRLDRNC, was the most frequently occurring one. Intravenously injected phage displaying the CRKRLDRNC peptide was observed to home to atherosclerotic aortic tissues of low-density lipoprotein receptor-deficient (Ldlr−/–) mice at higher levels than to normal aortic tissues of wild-type mice. Moreover, a fluorescein- or radioisotope-conjugated synthetic CRKRLDRNC peptide, but not a control peptide, homed in vivo to atherosclerotic plaques in Ldlr−/– mice, while homing of the peptide to other organs such as brain was minimal. The homing peptide co-localized with endothelial cells, macrophages and smooth muscle cells a mouse and human atherosclerotic plaques. Homology search revealed that the CRKRLDRNC peptide shares a motif of interleukin-receptor (IL-4) that is critical for binding to its receptor. The peptide indeed co-localized with IL-4 receptor (IL-4R) at atherosclerotic plaques. Moreover, the peptide bound to cultured cells expressing IL-4R on the cell surface and the binding was inhibited by the knock-down of IL-4R. These results show that the CRKRLDRNC peptide homes to atherosclerotic plaques through binding to IL-4R as its target and may be a useful tool for selective drug delivery and molecular imaging of atherosclerosis. PMID:19012727

  14. A new non-muscle-invasive bladder tumor-homing peptide identified by phage display in vivo

    PubMed Central

    YANG, XIAOFENG; ZHANG, FAN; LUO, JUNQIAN; PANG, JIANZHI; YAN, SANHUA; LUO, FANG; LIU, JIEHAO; WANG, WEI; CUI, YONGPING; SU, XIXI

    2016-01-01

    Bladder cancer is common and widespread, and its incidence is increasing. Many new diagnostic methods combined with state-of-the-art technology have been introduced in cystoscopy to collect real-time images of the bladder mucosa for diagnosis, but often miss inconspicuous early-stage tumors. Fluorophore-labeled peptides with high sensitivity and specificity for cancer would be a desirable tool for the detection and treatment of tiny or residual bladder tumors. Phage display and the human non-muscle-invasive bladder cancer cell line BIU-87 were used to identify a peptide. The isolated phage display peptide (CSSPIGRHC, named NYZL1) was tested in vitro for its binding specificity and affinity. Accumulation into xenograft tumors in a nude mouse model was analyzed with FITC-labeled NYZL1. NYZL1, with strong tumor-homing ability, was identified by in vivo phage library selection in the bladder cancer model. The NYZL1 phage and synthetic FITC-labeled NYZL1 peptides bound to tumor tissues and cells, but were hardly detected in normal control organs. Notably, accumulation of FITC-NYZL1 in bladder tumor cells was time-dependent. Biodistribution studies of xenografts of BIU-87 cells showed accumulation of injected FITC-NYZL1 in the tumors, and the bound peptide could not be removed by perfusion after 24 h. The mouse model of bladder tumor showed increased fluorescence intensity in the tumor-bearing bladder in comparison with normal bladder tissues after 4–6 h. In conclusion, NYZL1 may represent a lead peptide structure applicable in the development of optical molecular imaging. PMID:27221614

  15. A new non-muscle-invasive bladder tumor-homing peptide identified by phage display in vivo.

    PubMed

    Yang, Xiaofeng; Zhang, Fan; Luo, Junqian; Pang, Jianzhi; Yan, Sanhua; Luo, Fang; Liu, Jiehao; Wang, Wei; Cui, Yongping; Su, Xixi

    2016-07-01

    Bladder cancer is common and widespread, and its incidence is increasing. Many new diagnostic methods combined with state-of-the-art technology have been introduced in cystoscopy to collect real-time images of the bladder mucosa for diagnosis, but often miss inconspicuous early-stage tumors. Fluorophore-labeled peptides with high sensitivity and specificity for cancer would be a desirable tool for the detection and treatment of tiny or residual bladder tumors. Phage display and the human non-muscle-invasive bladder cancer cell line BIU-87 were used to identify a peptide. The isolated phage display peptide (CSSPIGRHC, named NYZL1) was tested in vitro for its binding specificity and affinity. Accumulation into xenograft tumors in a nude mouse model was analyzed with FITC-labeled NYZL1. NYZL1, with strong tumor‑homing ability, was identified by in vivo phage library selection in the bladder cancer model. The NYZL1 phage and synthetic FITC-labeled NYZL1 peptides bound to tumor tissues and cells, but were hardly detected in normal control organs. Notably, accumulation of FITC-NYZL1 in bladder tumor cells was time-dependent. Biodistribution studies of xenografts of BIU-87 cells showed accumulation of injected FITC-NYZL1 in the tumors, and the bound peptide could not be removed by perfusion after 24 h. The mouse model of bladder tumor showed increased fluorescence intensity in the tumor-bearing bladder in comparison with normal bladder tissues after 4-6 h. In conclusion, NYZL1 may represent a lead peptide structure applicable in the development of optical molecular imaging. PMID:27221614

  16. A Protocol for Phage Display and Affinity Selection Using Recombinant Protein Baits

    PubMed Central

    Kushwaha, Rekha; Schäfermeyer, Kim R.; Downie, A. Bruce

    2014-01-01

    Using recombinant phage as a scaffold to present various protein portions encoded by a directionally cloned cDNA library to immobilized bait molecules is an efficient means to discover interactions. The technique has largely been used to discover protein-protein interactions but the bait molecule to be challenged need not be restricted to proteins. The protocol presented here has been optimized to allow a modest number of baits to be screened in replicates to maximize the identification of independent clones presenting the same protein. This permits greater confidence that interacting proteins identified are legitimate interactors of the bait molecule. Monitoring the phage titer after each affinity selection round provides information on how the affinity selection is progressing as well as on the efficacy of negative controls. One means of titering the phage, and how and what to prepare in advance to allow this process to progress as efficiently as possible, is presented. Attributes of amplicons retrieved following isolation of independent plaque are highlighted that can be used to ascertain how well the affinity selection has progressed. Trouble shooting techniques to minimize false positives or to bypass persistently recovered phage are explained. Means of reducing viral contamination flare up are discussed. PMID:24637694

  17. High-content Analysis of Antibody Phage-display Library Selection Outputs Identifies Tumor Selective Macropinocytosis-dependent Rapidly Internalizing Antibodies*

    PubMed Central

    Ha, Kevin D.; Bidlingmaier, Scott M.; Zhang, Yafeng; Su, Yang; Liu, Bin

    2014-01-01

    Many forms of antibody-based targeted therapeutics, including antibody drug conjugates, utilize the internalizing function of the targeting antibody to gain intracellular entry into tumor cells. Ideal antibodies for developing such therapeutics should be capable of both tumor-selective binding and efficient endocytosis. The macropinocytosis pathway is capable of both rapid and bulk endocytosis, and recent studies have demonstrated that it is selectively up-regulated by cancer cells. We hypothesize that receptor-dependent macropinocytosis can be achieved using tumor-targeting antibodies that internalize via the macropinocytosis pathway, improving potency and selectivity of the antibody-based targeted therapeutic. Although phage antibody display libraries have been utilized to find antibodies that bind and internalize to target cells, no methods have been described to screen for antibodies that internalize specifically via macropinocytosis. We hereby describe a novel screening strategy to identify phage antibodies that bind and rapidly enter tumor cells via macropinocytosis. We utilized an automated microscopic imaging-based, High Content Analysis platform to identify novel internalizing phage antibodies that colocalize with macropinocytic markers from antibody libraries that we have generated previously by laser capture microdissection-based selection, which are enriched for internalizing antibodies binding to tumor cells in situ residing in their tissue microenvironment (Ruan, W., Sassoon, A., An, F., Simko, J. P., and Liu, B. (2006) Identification of clinically significant tumor antigens by selecting phage antibody library on tumor cells in situ using laser capture microdissection. Mol. Cell. Proteomics. 5, 2364–2373). Full-length human IgG molecules derived from macropinocytosing phage antibodies retained the ability to internalize via macropinocytosis, validating our screening strategy. The target antigen for a cross-species binding antibody with a highly

  18. Identification of high-affinity VEGFR3-binding peptides through a phage-displayed random peptide library

    PubMed Central

    Wu, Yan; Li, Cai-Yun

    2015-01-01

    Objective Vascular endothelial growth factor (VEGF) interaction with its receptor, VEGFR-3/Flt-4, regulates lymphangiogenesis. VEGFR-3/Flt-4 expression in cancer cells has been correlated with clinical stage, lymph node metastasis, and lymphatic invasion. The objective of this study is to identify a VEGFR-3/Flt-4-interacting peptide that could be used to inhibit VEGFR-3 for ovarian cancer therapy. Methods The extracellular fragment of recombinant human VEGFR-3/Flt-4 (rhVEGFR-3/Flt-4) fused with coat protein pIII was screened against a phage-displayed random peptide library. Using affinity enrichment and enzyme-linked immunosorbent assay (ELISA) screening, positive clones of phages were amplified. Three phage clones were selected after four rounds of biopanning, and the specific binding of the peptides to rhVEGFR-3 was detected by ELISA and compared with that of VEGF-D. Immunohistochemistry and immunofluorescence analyses of ovarian cancer tissue sections was undertaken to demonstrate the specificity of the peptides. Results After four rounds of biopanning, ELISA confirmed the specificity of the enriched bound phage clones for rhVEGFR-3. Sequencing and translation identified three different peptides. Non-competitive ELISA revealed that peptides I, II, and III had binding affinities for VEGFR-3 with Kaff (affinity constant) of 16.4±8.6 µg/mL (n=3), 9.2±2.1 µg/mL (n=3), and 174.8±31.1 µg/mL (n=3), respectively. In ovarian carcinoma tissue sections, peptide III (WHWLPNLRHYAS), which had the greatest binding affinity, also co-localized with VEGFR-3 in endothelial cells lining lymphatic vessels; its labeling of ovarian tumors in vivo was also confirmed. Conclusion These finding showed that peptide III has high specificity and activity and, therefore, may represent a potential therapeutic approach to target VEGF-VEGFR-3 signaling for the treatment or diagnosis of ovarian cancer. PMID:26197772

  19. Development of single chain variable fragment (scFv) antibodies against Xylella fastidiosa subsp. pauca by phage display.

    PubMed

    Yuan, Qing; Jordan, Ramon; Brlansky, Ronald H; Istomina, Olga; Hartung, John

    2015-10-01

    Xylella fastidiosa is a member of the gamma proteobacteria. It is fastidious, insect-vectored and xylem-limited and causes a variety of diseases, some severe, on a wide range of economically important perennial crops, including grape and citrus. Antibody based detection assays are commercially available for X. fastidiosa, and are effective at the species, but not at the subspecies level. We have made a library of scFv antibody fragments directed against X. fastidiosa subsp. pauca strain 9a5c (citrus) by using phage display technology. Antibody gene repertoires were PCR-amplified using 23 primers for the heavy chain variable region (V(H)) and 21 primers for the light chain variable region (V(L)). The V(H) and V(L) were joined by overlap extension PCR, and then the genes of the scFv library were ligated into the phage vector pKM19. The library contained 1.2×10(7) independent clones with full-length scFv inserts. In each of 3cycles of affinity-selection with 9a5c, about 1.0×10(12) phage were used for panning with 4.1×10(6), 7.1×10(6), 2.1×10(7) phage recovered after the first, second and third cycles, respectively. Sixty-six percent of clones from the final library bound X. fastidiosa 9a5c in an ELISA. Some of these scFv antibodies recognized strain 9a5c and did not recognize X. fastidiosa strains that cause Pierce's disease of grapevine. PMID:26232710

  20. Exploration of the HIF-1α/p300 interface using peptide and Adhiron phage display technologies.

    PubMed

    Kyle, Hannah F; Wickson, Kate F; Stott, Jonathan; Burslem, George M; Breeze, Alexander L; Tiede, Christian; Tomlinson, Darren C; Warriner, Stuart L; Nelson, Adam; Wilson, Andrew J; Edwards, Thomas A

    2015-10-01

    The HIF-1α/p300 protein-protein interaction plays a key role in tumor metabolism and thus represents a high value target for anticancer drug-development. Although several studies have identified inhibitor candidates using rationale design, more detailed understanding of the interaction and binding interface is necessary to inform development of superior inhibitors. In this work, we report a detailed biophysical analysis of the native interaction with both peptide and Adhiron phage display experiments to identify novel binding motifs and binding regions of the surface of p300 to inform future inhibitor design. PMID:26135796

  1. Construction, exploitation and evolution of a new peptide library displayed at high density by fusion to the major coat protein of filamentous phage.

    PubMed

    Iannolo, G; Minenkova, O; Gonfloni, S; Castagnoli, L; Cesareni, G

    1997-06-01

    The amino-terminus of the major coat protein (PVIII) of filamentous phage can be extended, up to 6-7 residues, without interfering with the phage life cycle. We have constructed a library of approximately ten millions different phage each displaying a different octapeptide joined to the amino-terminus of the 2700 copies of PVIII. Most of the resulting clones are able to produce infective particles. This molecular repertoire constituted by the periodic regular decoration of the phage filament surface, can be utilized to search elements that bind proteins or relatively small organic molecules like the textile dye Cibacron blue. By sequential growth cycles we have performed a library evolution experiment to select phage clones that have a growth advantage in the absence of any requirement for binding a specific target. The consensus of the best growers reveals a Pro rich sequence with large hydrophobic residues at position 7 and Asn at position 1 of the random peptide insert. We propose that the assembly secretion process is favoured in phages displaying this family of peptides since they fit the groove between two adjacent PVIII subunits by making advantageous molecular contacts on the phage surface. PMID:9224932

  2. Generation of Potent Anti-Vascular Endothelial Growth Factor Neutralizing Antibodies from Mouse Phage Display Library for Cancer Therapy.

    PubMed

    Lai, Yan-Da; Wu, Yen-Yu; Tsai, Yi-Jiue; Tsai, Yi-San; Lin, Yu-Ying; Lai, Szu-Liang; Huang, Chao-Yang; Lok, Ying-Yung; Hu, Chih-Yung; Lai, Jiann-Shiun

    2016-01-01

    Vascular endothelial growth factor (VEGF) is an important stimulator for angiogenesis in solid tumors. Blocking VEGF activity is an effective therapeutic strategy to inhibit tumor growth and metastasis. Avastin, a humanized monoclonal antibody recognizes VEGF, has been approved by the US Food and Drug Administration. To generate potential VEGF-recognizing antibodies with better tumor regression ability than that of Avastin, we have designed a systematic antibody selection plan. From mice immunized with recombinant human VEGF, we generated three phage display libraries, scFv-M13KO7, Fab-M13KO7, and scFv-Hyperphage, in single-chain Fv (scFv) or Fab format, displayed using either M13KO7 helper phage or Hyperphage. Solid-phase and solution-phase selection strategies were then applied to each library, generating six panning combinations. A total of sixty-four antibodies recognizing VEGF were obtained. Based on the results of epitope mapping, binding affinity, and biological functions in tumor inhibition, eight antibodies were chosen to examine their abilities in tumor regression in a mouse xenograft model using human COLO 205 cancer cells. Three of them showed improvement in the inhibition of tumor growth (328%-347% tumor growth ratio (% of Day 0 tumor volume) on Day 21 vs. 435% with Avastin). This finding suggests a potential use of these three antibodies for VEGF-targeted therapy. PMID:26861297

  3. Generation of Potent Anti-Vascular Endothelial Growth Factor Neutralizing Antibodies from Mouse Phage Display Library for Cancer Therapy

    PubMed Central

    Lai, Yan-Da; Wu, Yen-Yu; Tsai, Yi-Jiue; Tsai, Yi-San; Lin, Yu-Ying; Lai, Szu-Liang; Huang, Chao-Yang; Lok, Ying-Yung; Hu, Chih-Yung; Lai, Jiann-Shiun

    2016-01-01

    Vascular endothelial growth factor (VEGF) is an important stimulator for angiogenesis in solid tumors. Blocking VEGF activity is an effective therapeutic strategy to inhibit tumor growth and metastasis. Avastin, a humanized monoclonal antibody recognizes VEGF, has been approved by the US Food and Drug Administration. To generate potential VEGF-recognizing antibodies with better tumor regression ability than that of Avastin, we have designed a systematic antibody selection plan. From mice immunized with recombinant human VEGF, we generated three phage display libraries, scFv-M13KO7, Fab-M13KO7, and scFv-Hyperphage, in single-chain Fv (scFv) or Fab format, displayed using either M13KO7 helper phage or Hyperphage. Solid-phase and solution-phase selection strategies were then applied to each library, generating six panning combinations. A total of sixty-four antibodies recognizing VEGF were obtained. Based on the results of epitope mapping, binding affinity, and biological functions in tumor inhibition, eight antibodies were chosen to examine their abilities in tumor regression in a mouse xenograft model using human COLO 205 cancer cells. Three of them showed improvement in the inhibition of tumor growth (328%–347% tumor growth ratio (% of Day 0 tumor volume) on Day 21 vs. 435% with Avastin). This finding suggests a potential use of these three antibodies for VEGF-targeted therapy. PMID:26861297

  4. Phage display identification of functional binding peptides against 4-acetamidophenol (Paracetamol): an exemplified approach to target low molecular weight organic molecules.

    PubMed

    Smith, Mathew W; Smith, Jonathan W; Harris, Charlotte; Brancale, Andrea; Allender, Christopher J; Gumbleton, Mark

    2007-06-22

    Peptide-phage display has been widely used to explore protein-protein interactions, however, despite the potential range of applications the use of this technology to identify peptides that bind low molecular weight organic molecules has not been explored. In this current study, we identified a phage clone (PARA-061) displaying the cyclic 7-mer peptide sequence N' AC-NPNNLSH-CGGGS C' that binds the low molecular weight organic molecule 4-acetamidophenol (4-AAP; paracetamol). To avoid occupancy of key functional groups on the target 4-AAP molecule our panning strategy was directed against insoluble complexes of 4-AAP rather than against the target linked to a stationary support or bearing an affinity tag. To augment the panning procedure we deleted phage that also bound the 4-AAP isomers, 2-AAP and 3-AAP. The identified PARA-061 peptide-phage clone displayed functional binding properties against 4-AAP in solution, able in a peptide sequence-dependant manner to prevent the in vitro hepatotoxicity of 4-AAP and reduce ( approximately 20%) the permeability of 4-AAP across a semi-permeable membrane. Molecular dynamic simulations generated a stable binding conformation between the PARA-061 peptide sequence and 4-AAP. In conclusion, we show that a phage display library can be used to identify peptide sequence-specific clones able to modulate the functional binding of a low molecular weight organic molecule. Such peptides may be expected to find utility in the next generation of hybrid polymer-based biosensing devices. PMID:17482566

  5. Mapping polyclonal antibody responses to bacterial infection using next generation phage display

    PubMed Central

    Naqid, Ibrahim A.; Owen, Jonathan P.; Maddison, Ben C.; Spiliotopoulos, Anastasios; Emes, Richard D.; Warry, Andrew; Tchórzewska, Monika A.; Martelli, Francesca; Gosling, Rebecca J.; Davies, Robert H.; La Ragione, Roberto M.; Gough, Kevin C.

    2016-01-01

    Mapping polyclonal antibody responses to infectious diseases to identify individual epitopes has the potential to underpin the development of novel serological assays and vaccines. Here, phage-peptide library panning coupled with screening using next generation sequencing was used to map antibody responses to bacterial infections. In the first instance, pigs experimentally infected with Salmonella enterica serovar Typhimurium was investigated. IgG samples from twelve infected pigs were probed in parallel and phage binding compared to that with equivalent IgG from pre-infected animals. Seventy-seven peptide mimotopes were enriched specifically against sera from multiple infected animals. Twenty-seven of these peptides were tested in ELISA and twenty-two were highly discriminatory for sera taken from pigs post-infection (P < 0.05) indicating that these peptides are mimicking epitopes from the bacteria. In order to further test this methodology, it was applied to differentiate antibody responses in poultry to infections with distinct serovars of Salmonella enterica. Twenty-seven peptides were identified as being enriched specifically against IgY from multiple animals infected with S. Enteritidis compared to those infected with S. Hadar. Nine of fifteen peptides tested in ELISA were highly discriminatory for IgY following S. Enteritidis infection (p < 0.05) compared to infections with S. Hadar or S. Typhimurium. PMID:27072017

  6. Mapping polyclonal antibody responses to bacterial infection using next generation phage display.

    PubMed

    Naqid, Ibrahim A; Owen, Jonathan P; Maddison, Ben C; Spiliotopoulos, Anastasios; Emes, Richard D; Warry, Andrew; Tchórzewska, Monika A; Martelli, Francesca; Gosling, Rebecca J; Davies, Robert H; La Ragione, Roberto M; Gough, Kevin C

    2016-01-01

    Mapping polyclonal antibody responses to infectious diseases to identify individual epitopes has the potential to underpin the development of novel serological assays and vaccines. Here, phage-peptide library panning coupled with screening using next generation sequencing was used to map antibody responses to bacterial infections. In the first instance, pigs experimentally infected with Salmonella enterica serovar Typhimurium was investigated. IgG samples from twelve infected pigs were probed in parallel and phage binding compared to that with equivalent IgG from pre-infected animals. Seventy-seven peptide mimotopes were enriched specifically against sera from multiple infected animals. Twenty-seven of these peptides were tested in ELISA and twenty-two were highly discriminatory for sera taken from pigs post-infection (P < 0.05) indicating that these peptides are mimicking epitopes from the bacteria. In order to further test this methodology, it was applied to differentiate antibody responses in poultry to infections with distinct serovars of Salmonella enterica. Twenty-seven peptides were identified as being enriched specifically against IgY from multiple animals infected with S. Enteritidis compared to those infected with S. Hadar. Nine of fifteen peptides tested in ELISA were highly discriminatory for IgY following S. Enteritidis infection (p < 0.05) compared to infections with S. Hadar or S. Typhimurium. PMID:27072017

  7. Functional characterization of a monoclonal antibody epitope using a lambda phage display-deep sequencing platform.

    PubMed

    Domina, Maria; Lanza Cariccio, Veronica; Benfatto, Salvatore; Venza, Mario; Venza, Isabella; Borgogni, Erica; Castellino, Flora; Midiri, Angelina; Galbo, Roberta; Romeo, Letizia; Biondo, Carmelo; Masignani, Vega; Teti, Giuseppe; Felici, Franco; Beninati, Concetta

    2016-01-01

    We have recently described a method, named PROFILER, for the identification of antigenic regions preferentially targeted by polyclonal antibody responses after vaccination. To test the ability of the technique to provide insights into the functional properties of monoclonal antibody (mAb) epitopes, we used here a well-characterized epitope of meningococcal factor H binding protein (fHbp), which is recognized by mAb 12C1. An fHbp library, engineered on a lambda phage vector enabling surface expression of polypeptides of widely different length, was subjected to massive parallel sequencing of the phage inserts after affinity selection with the 12C1 mAb. We detected dozens of unique antibody-selected sequences, the most enriched of which (designated as FrC) could largely recapitulate the ability of fHbp to bind mAb 12C1. Computational analysis of the cumulative enrichment of single amino acids in the antibody-selected fragments identified two overrepresented stretches of residues (H248-K254 and S140-G154), whose presence was subsequently found to be required for binding of FrC to mAb 12C1. Collectively, these results suggest that the PROFILER technology can rapidly and reliably identify, in the context of complex conformational epitopes, discrete "hot spots" with a crucial role in antigen-antibody interactions, thereby providing useful clues for the functional characterization of the epitope. PMID:27530334

  8. Functional characterization of a monoclonal antibody epitope using a lambda phage display-deep sequencing platform

    PubMed Central

    Domina, Maria; Lanza Cariccio, Veronica; Benfatto, Salvatore; Venza, Mario; Venza, Isabella; Borgogni, Erica; Castellino, Flora; Midiri, Angelina; Galbo, Roberta; Romeo, Letizia; Biondo, Carmelo; Masignani, Vega; Teti, Giuseppe; Felici, Franco; Beninati, Concetta

    2016-01-01

    We have recently described a method, named PROFILER, for the identification of antigenic regions preferentially targeted by polyclonal antibody responses after vaccination. To test the ability of the technique to provide insights into the functional properties of monoclonal antibody (mAb) epitopes, we used here a well-characterized epitope of meningococcal factor H binding protein (fHbp), which is recognized by mAb 12C1. An fHbp library, engineered on a lambda phage vector enabling surface expression of polypeptides of widely different length, was subjected to massive parallel sequencing of the phage inserts after affinity selection with the 12C1 mAb. We detected dozens of unique antibody-selected sequences, the most enriched of which (designated as FrC) could largely recapitulate the ability of fHbp to bind mAb 12C1. Computational analysis of the cumulative enrichment of single amino acids in the antibody-selected fragments identified two overrepresented stretches of residues (H248-K254 and S140-G154), whose presence was subsequently found to be required for binding of FrC to mAb 12C1. Collectively, these results suggest that the PROFILER technology can rapidly and reliably identify, in the context of complex conformational epitopes, discrete “hot spots” with a crucial role in antigen-antibody interactions, thereby providing useful clues for the functional characterization of the epitope. PMID:27530334

  9. Identification of a novel peptide ligand targeting visceral adipose tissue via transdermal route by in vivo phage display.

    PubMed

    Lee, Nam Kyung; Kim, Hong Shin; Kim, Kyung Hyun; Kim, Eun-Bae; Cho, Chong Su; Kang, Sang Kee; Choi, Yun Jaie

    2011-11-01

    To find novel peptide ligands targeting visceral adipose tissue (visceral fat) via transdermal route, in vivo phage display screening was conducted by dermal administration of a phage-peptide library to rats and a peptide sequence, CGLHPAFQC (designated as TDA1), was identified as a targeting ligand to visceral adipose tissue through the consecutive transdermal biopannings. Adipocyte-specific affinity and transdermal activity of the TDA1 were validated in vitro and targeting ability of the dermally administered TDA1 to visceral adipose tissue was also confirmed in vivo. TDA1 was effectively translocated into systemic circulation after dermal administration and selectively targeted visceral adipose tissue without any preference to other organs tested. Fluorescent microscopic analysis revealed that the TDA1 could be specifically localized in the hair follicles of the skin, as well as in the visceral adipose tissue. Thus, we inferred that dermally administered TDA1 would first access systemic circulation via hair follicles as its transdermal route and then could target visceral fat effectively. The overall results suggest that the TDA1 peptide could be potentially applied as a homing moiety for delivery of anti-obesity therapeutics to visceral fat through the convenient transdermal pathway. PMID:21999821

  10. Targeting essential Eimeria ninakohlyakimovae sporozoite ligands for caprine host endothelial cell invasion with a phage display peptide library.

    PubMed

    Ruiz, A; Pérez, D; Muñoz, M C; Molina, J M; Taubert, A; Jacobs-Lorena, M; Vega-Rodríguez, J; López, A M; Hermosilla, C

    2015-11-01

    Eimeria ninakohlyakimovae is an important coccidian parasite of goats which causes severe diarrhoea in young animals. Specific molecules that mediate E. ninakohlyakimovae host interactions and molecular mechanisms involved in the pathogenesis are still unknown. Although strong circumstantial evidence indicates that E. ninakohlyakimovae sporozoite interactions with caprine endothelial host cells (ECs) are specific, hardly any information is available about the interacting molecules that confer host cell specificity. In this study, we describe a novel method to identify surface proteins of caprine umbilical vein endothelial cells (CUVEC) using a phage display library. After several panning rounds, we identified a number of peptides that specifically bind to the surface of CUVEC. Importantly, caprine endothelial cell peptide 2 (PCEC2) and PCEC5 selectively reduced the infection rate by E. ninakohlyakimovae sporozoites. These preliminary data give new insight for the molecular identification of ligands involved in the interaction between E. ninakohlyakimovae sporozoites and host ECs. Further studies using this phage approach might be useful to identify new potential target molecules for the development of anti-coccidial drugs or even new vaccine strategies. PMID:26341796

  11. Small regulatory RNAs in lambdoid bacteriophages and phage-derived plasmids: Not only antisense.

    PubMed

    Nejman-Faleńczyk, Bożena; Bloch, Sylwia; Licznerska, Katarzyna; Felczykowska, Agnieszka; Dydecka, Aleksandra; Węgrzyn, Alicja; Węgrzyn, Grzegorz

    2015-03-01

    Until recently, only two small regulatory RNAs encoded by lambdoid bacteriophages were known. These transcripts are derived from paQ and pO promoters. The former one is supposed to act as an antisense RNA for expression of the Q gene, encoding a transcription antitermination protein. The latter transcript, called oop RNA, was initially proposed to have a double role, in establishing expression of the cI gene and in providing a primer for DNA replication. Although the initially proposed mechanisms by which oop RNA could influence the choice between two alternative developmental pathways of the phage and the initiation of phage DNA replication were found not true, the pO promoter has been demonstrated to be important for both regulation of phage development and control of DNA replication. Namely, the pO-derived transcript is an antisense RNA for expression of the cII gene, and pO is a part of a dual promoter system responsible for regulation of initiation of DNA synthesis from the oriλ region. Very recent studies identified a battery of small RNAs encoded by lambdoid bacteriophages existing as prophages in chromosomes of enterohemorrhagic Escherichia coli strains. Some of them have very interesting functions, like anti-small RNAs. PMID:25111672

  12. Construction of Recombinant Single Chain Variable Fragment (ScFv) Antibody Against Superantigen for Immunodetection Using Antibody Phage Display Technology.

    PubMed

    Singh, Pawan Kumar; Agrawal, Ranu; Kamboj, D V; Singh, Lokendra

    2016-01-01

    Superantigens are a class of antigens that bind to the major histocompatibility complex class (MHC) II and T-cell receptor (TCR) and cause the nonspecific activation of T cells, resulting in a massive release of pro-inflammatory mediators. They are produced by the gram-positive organisms Staphylococcus aureus and Streptococcus pyogenes, and by a variety of other microbes such as viruses and mycoplasma, and cause toxic shock syndrome (TSS) and even death in some cases. The immunodetection of superantigens is difficult due to the polyclonal activation of T-cells leading to nonspecific antibody production. The production of recombinant monoclonal antibodies against superantigens can solve this problem and are far better than polyclonal antibodies in terms of detection. Here, we describe the construction of recombinant single chain variable fragments (ScFv) antibodies against superantigens with specific reference to SEB (staphylococcal enterotoxin B) using antibody phage display technology. PMID:26676049

  13. Identification of peroxisomal proteins by using M13 phage protein VI phage display: molecular evidence that mammalian peroxisomes contain a 2,4-dienoyl-CoA reductase.

    PubMed Central

    Fransen, M; Van Veldhoven, P P; Subramani, S

    1999-01-01

    To elucidate unknown mammalian peroxisomal enzymes and functions, we subjected M13 phage expressing fusions between the gene encoding protein VI and a rat liver cDNA library to an immunoaffinity selection process in vitro (biopanning) with the use of antibodies raised against peroxisomal subfractions. In an initial series of biopanning experiments, four different cDNA clones were obtained. These cDNA species encoded two previously identified peroxisomal enzymes, catalase and urate oxidase, and two novel proteins that contained a C-terminal peroxisomal targeting signal (PTS1). A primary structure analysis of these novel proteins revealed that one, ending in the tripeptide AKL, is homologous to the yeast peroxisomal 2,4-dienoyl-CoA reductase (EC 1.3.1.34; DCR), an enzyme required for the degradation of unsaturated fatty acids, and that the other, ending in the tripeptide SRL, is a putative member of the short-chain dehydrogenase/reductase (SDR) family, with three isoforms. Green fluorescent protein (GFP) fusions encoding GFP-DCR-AKL, GFP-DCR, GFP-SDR-SRL and GFP-SDR were expressed in mammalian cells. The analysis of the subcellular location of the recombinant fusion proteins confirmed the peroxisomal localization of GFP-DCR-AKL and GFP-SDR-SRL, as well as the functionality of the PTS1. That the AKL protein is indeed an NADPH-dependent DCR was demonstrated by showing DCR activity of the bacterially expressed protein. These results demonstrate at the molecular level that mammalian peroxisomes do indeed contain a DCR. In addition, the results presented here indicate that the protein VI display system is suitable for the isolation of rare cDNA clones from cDNA libraries and that this technology facilitates the identification of novel peroxisomal proteins. PMID:10333503

  14. Phage display of the serpin alpha-1 proteinase inhibitor randomized at consecutive residues in the reactive centre loop and biopanned with or without thrombin.

    PubMed

    Scott, Benjamin M; Matochko, Wadim L; Gierczak, Richard F; Bhakta, Varsha; Derda, Ratmir; Sheffield, William P

    2014-01-01

    In spite of the power of phage display technology to identify variant proteins with novel properties in large libraries, it has only been previously applied to one member of the serpin superfamily. Here we describe phage display of human alpha-1 proteinase inhibitor (API) in a T7 bacteriophage system. API M358R fused to the C-terminus of T7 capsid protein 10B was directly shown to form denaturation-resistant complexes with thrombin by electrophoresis and immunoblotting following exposure of intact phages to thrombin. We therefore developed a biopanning protocol in which thrombin-reactive phages were selected using biotinylated anti-thrombin antibodies and streptavidin-coated magnetic beads. A library consisting of displayed API randomized at residues 357 and 358 (P2-P1) yielded predominantly Pro-Arg at these positions after five rounds of thrombin selection; in contrast the same degree of mock selection yielded only non-functional variants. A more diverse library of API M358R randomized at residues 352-356 (P7-P3) was also probed, yielding numerous variants fitting a loose consensus of DLTVS as judged by sequencing of the inserts of plaque-purified phages. The thrombin-selected sequences were transferred en masse into bacterial expression plasmids, and lysates from individual colonies were screening for API-thrombin complexing. The most active candidates from this sixth round of screening contained DITMA and AAFVS at P7-P3 and inhibited thrombin 2.1-fold more rapidly than API M358R with no change in reaction stoichiometry. Deep sequencing using the Ion Torrent platform confirmed that over 800 sequences were significantly enriched in the thrombin-panned versus naïve phage display library, including some detected using the combined phage display/bacterial lysate screening approach. Our results show that API joins Plasminogen Activator Inhibitor-1 (PAI-1) as a serpin amenable to phage display and suggest the utility of this approach for the selection of "designer

  15. Phage display allows identification of zona pellucida-binding peptides with species-specific properties: novel approach for development of contraceptive vaccines for wildlife.

    PubMed

    Samoylova, Tatiana I; Cochran, Anna M; Samoylov, Alexandre M; Schemera, Bettina; Breiteneicher, Adam H; Ditchkoff, Stephen S; Petrenko, Valery A; Cox, Nancy R

    2012-12-31

    Multiple phage-peptide constructs, where the peptides mimic sperm epitopes that bind to zona pellucida (ZP) proteins, were generated via selection from a phage display library using a novel approach. Selections were designed to allow for identification of ZP-binding phage clones with potential species-specific properties, an important feature for wildlife oral vaccines as the goal is to control overpopulation of a target species while not affecting non-target species' reproduction. Six phage-peptide antigens were injected intramuscularly into pigs and corresponding immune responses evaluated. Administration of the antigens into pigs stimulated production of anti-peptide antibodies, which were shown to act as anti-sperm antibodies. Potentially, such anti-sperm antibodies could interfere with sperm delivery or function in the male or female genital tract, leading to contraceptive effects. Staining of semen samples collected from different mammalian species, including pig, cat, dog, bull, and mouse, with anti-sera from pigs immunized with ZP-binding phage allowed identification of phage-peptide constructs with different levels of species specificity. Based on the intensity of the immune responses and specificity of these responses in different species, two of the antigens with fusion peptide sequences GEGGYGSHD and GQQGLNGDS were recognized as the most promising candidates for development of contraceptive vaccines for wild pigs. PMID:23079080

  16. Evolution of potent and stable placental-growth-factor-1-targeting CovX-bodies from phage display peptide discovery.

    PubMed

    Bower, Kristen E; Lam, Son N; Oates, Bryan D; Del Rosario, Joselyn R; Corner, Emily; Osothprarop, Trina F; Kinhikar, Arvind G; Hoye, Julie A; Preston, R Ryan; Murphy, Robert E; Campbell, Lioudmila A; Huang, Hanhua; Jimenez, Judith; Cao, Xia; Chen, Gang; Ainekulu, Zemeda W; Datt, Aakash B; Levin, Nancy J; Doppalapudi, Venkata R; Pirie-Shepherd, Steven R; Bradshaw, Curt; Woodnutt, Gary; Lappe, Rodney W

    2011-03-10

    Novel phage-derived peptides are the first reported molecules specifically targeting human placental growth factor 1 (PlGF-1). Phage data enabled peptide modifications that decreased IC(50) values in PlGF-1/VEGFR-1 competition ELISA from 100 to 1 μM. Peptides exhibiting enhanced potency were bioconjugated to the CovX antibody scaffold 1 (CVX-2000), generating bivalent CovX-Bodies with 2 nM K(D) against PlGF-1. In vitro and in vivo peptide cleavage mapping studies enabled the identification of proteolytic hotspots that were subsequently chemically modified. These changes decreased IC(50) to 0.4 nM and increased compound stability from 5% remaining at 6 h after injection to 35% remaining at 24 h with a β phase half-life of 75 h in mice. In cynomolgus monkey, a 78 h β half-life was observed for lead compound 2. The pharmacological properties of 2 are currently being explored. PMID:21280651

  17. Dual-functioning phage-derived peptides encourage human bone marrow cell-specific attachment to mineralized biomaterials.

    PubMed

    Ramaraju, Harsha; Miller, Sharon J; Kohn, David H

    2014-08-01

    Cell instructive mineralized biomaterials are a promising alternative to conventional auto-, allo-, and xenograft therapies for the reconstruction of critical sized defects. Extracellular matrix proteins, peptide domains, and functional motifs demonstrating cell and mineral binding activity have been used to improve cell attachment. However, these strategies vary in their tissue regeneration outcomes due to lack of specificity to both regenerative cell populations and the material substrates. In order to mediate cell-specific interactions on apatite surfaces, we identified peptide sequences with high affinity towards apatite (VTKHLNQISQSY, VTK) and clonally derived human bone marrow stromal cells (DPIYALSWSGMA, DPI) using phage display. The primary aims of this study were to measure apatite binding affinity, human bone marrow stromal cell (hBMSC) adhesion strength, and peptide specificity to hBMSCs when the apatite and cell-specific peptides are combined into a dual-functioning peptide. To assess binding affinity to hydroxyapatite (HA), binding isotherms were constructed and peptide binding affinity (K1) determined. HBMSC, MC3T3 and mouse dermal fibroblast (MDF) adhesion strength on biomimetic apatite functionalized with single- and dual-functioning peptide sequences were evaluated using a centrifugation assay. DPI-VTK had the highest binding strength towards hBMSCs (p < 0.01). DPI-VTK, while promoting strong initial attachment to hBMSCs, did not encourage strong adhesions to MC3T3s or fibroblasts (p < 0.01). Taken together, phage display is a promising strategy to identify preferential cell and material binding peptide sequences that can tether specific cell populations onto specific biomaterial chemistries. PMID:25158203

  18. An anti-tumor protein produced by Trichinella spiralis and identified by screening a T7 phage display library, induces apoptosis in human hepatoma H7402 cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trichinella spiralis infection confers effective resistance to tumor cell expansion. In this study, a T7 phage cDNA display library was constructed to express genes encoded by T. spiralis. Organic phase multi-cell screening was used to sort through candidate proteins in a transfected human chronic m...

  19. Phage-displayed peptide that mimics aflatoxins and its application in immunoassay.

    PubMed

    Wang, Yanru; Wang, Hong; Li, Peiwu; Zhang, Qi; Kim, Hee Joo; Gee, Shirley J; Hammock, Bruce D

    2013-03-13

    To search for an alternative to using protein conjugated aflatoxin as a coating antigen in aflatoxin detection by an ELISA method, a random-8-peptide library was constructed and used as a source of peptides that mimic aflatoxins (termed as mimotopes). Five mimotope peptides were obtained by panning-elution from the library and were successfully used in an indirect competitive ELISA for analyzing total aflatoxin concentration. The assay exhibited an IC50 value of 14 μg/kg in samples (with 1 in 7 dilution of sample extract) for aflatoxins. The linear range is 4-24 μg/kg. Further validation indicated relatively good recovery (60-120%) in peanut, rice and corn. Natural contaminated samples (peanut and feedstuff) were analyzed for aflatoxin concentration by both conventional ELISA and phage ELISA. The results showed good correlation. It can be concluded that the mimotope preparation is an effective substitute for the aflatoxin based coating antigen in ELISA and can be used in real sample analysis. PMID:23394544

  20. Phage-Displayed Peptides that Mimic Aflatoxins and its Application in Immunoassay

    PubMed Central

    Wang, Yanru; Wang, Hong; Li, Peiwu; Zhang, Qi; Kim, Hee Joo; Gee, Shirley J.; Hammock, Bruce D.

    2013-01-01

    To search for an alternative to using protein conjugated aflatoxin as a coating antigen in aflatoxin detection by an ELISA method, a random-8-peptide library was constructed and used as a source of peptides that mimic aflatoxins (termed as mimotopes). Five mimotope peptides were obtained by panning-elution from the library and were successfully used in an indirect competitive ELISA for analyzing total aflatoxin concentration. The assay exhibited an IC50 value of 14 µg/kg in samples (with 1 in 7 dilution of sample extract) for aflatoxins. The linear range is 4–24 µg/kg. Further validation indicated relatively good recovery (60–120%) in peanut, rice and corn. Natural contaminated samples (peanut and feedstuff) were analyzed for aflatoxin concentration by both conventional ELISA and phage ELISA. The results showed good correlation. It can be concluded that the mimotope preparation is an effective substitute for the aflatoxin based coating antigen in ELISA and can be used in real sample analysis. PMID:23394544

  1. Effective Optimization of Antibody Affinity by Phage Display Integrated with High-Throughput DNA Synthesis and Sequencing Technologies

    PubMed Central

    Hu, Dongmei; Hu, Siyi; Wan, Wen; Xu, Man; Du, Ruikai; Zhao, Wei; Gao, Xiaolian; Liu, Jing; Liu, Haiyan; Hong, Jiong

    2015-01-01

    Phage display technology has been widely used for antibody affinity maturation for decades. The limited library sequence diversity together with excessive redundancy and labour-consuming procedure for candidate identification are two major obstacles to widespread adoption of this technology. We hereby describe a novel library generation and screening approach to address the problems. The approach started with the targeted diversification of multiple complementarity determining regions (CDRs) of a humanized anti-ErbB2 antibody, HuA21, with a small perturbation mutagenesis strategy. A combination of three degenerate codons, NWG, NWC, and NSG, were chosen for amino acid saturation mutagenesis without introducing cysteine and stop residues. In total, 7,749 degenerate oligonucleotides were synthesized on two microchips and released to construct five single-chain antibody fragment (scFv) gene libraries with 4 x 106 DNA sequences. Deep sequencing of the unselected and selected phage libraries using the Illumina platform allowed for an in-depth evaluation of the enrichment landscapes in CDR sequences and amino acid substitutions. Potent candidates were identified according to their high frequencies using NGS analysis, by-passing the need for the primary screening of target-binding clones. Furthermore, a subsequent library by recombination of the 10 most abundant variants from four CDRs was constructed and screened, and a mutant with 158-fold increased affinity (Kd = 25.5 pM) was obtained. These results suggest the potential application of the developed methodology for optimizing the binding properties of other antibodies and biomolecules. PMID:26046845

  2. Human antibody fragments specific for the epidermal growth factor receptor selected from large non-immunised phage display libraries.

    PubMed

    Souriau, Christelle; Rothacker, Julie; Hoogenboom, Hennie R; Nice, Edouard

    2004-09-01

    Antibodies to EGFR have been shown to display anti-tumour effects mediated in part by inhibition of cellular proliferation and angiogenesis, and by enhancement of apoptosis. Humanised antibodies are preferred for clinical use to reduce complications with HAMA and HAHA responses frequently seen with murine and chimaeric antibodies. We have used depletion and subtractive selection strategies on cells expressing the EGFR to sample two large antibody fragment phage display libraries for the presence of human antibodies which are specific for the EGFR. Four Fab fragments and six scFv fragments were identified, with affinities of up to 2.2nM as determined by BIAcore analysis using global fitting of the binding curves to obtain the individual rate constants (ka and kd). This overall approach offers a generic screening method for the identification of growth factor specific antibodies and antibody fragments from large expression libraries and has potential for the rapid development of new therapeutic and diagnostic reagents. PMID:15518242

  3. Glycoarrays with engineered phages displaying structurally diverse oligosaccharides enable high-throughput detection of glycan-protein interactions

    PubMed Central

    Çelik, Eda; Ollis, Anne A.; Lasanajak, Yi; Fisher, Adam C.; Gür, Göksu; Smith, David F.; DeLisa, Matthew P.

    2014-01-01

    Glycan microarrays have become a powerful platform to investigate the interactions of carbohydrates with a variety of biomolecules. However, the number and diversity of glycans available for use in such arrays represents a key bottleneck in glycan array fabrication. To address this challenge, we describe a novel glycan array platform based on surface patterning of engineered glycophages that display unique carbohydrate epitopes. Specifically, we show that glycophages are compatible with surface immobilization procedures and that phage-displayed oligosaccharides retain the ability to be recognized by different glycan-binding proteins (e.g., antibodies, lectins) after immobilization. A key advantage of glycophage arrays is that large quantities of glycophages can be produced biosynthetically from recombinant bacteria and isolated directly from bacterial supernatants without laborious purification steps. Taken together, the glycophage array technology described here should help to expand the diversity of glycan libraries and provide a complement to the existing toolkit for high-throughput analysis of glycan-protein interactions. PMID:25263089

  4. Deoxynivalenol-mimic nanobody isolated from a naïve phage display nanobody library and its application in immunoassay.

    PubMed

    Qiu, Yu-Lou; He, Qing-Hua; Xu, Yang; Bhunia, Arun K; Tu, Zhui; Chen, Bo; Liu, Yuan-Yuan

    2015-08-01

    In this study, using mycotoxin deoxynivalenol (DON) as a model hapten, we developed a nanobody-based environmental friendly immunoassay for sensitive detection of DON. Two nanobodies (N-28 and N-31) which bind to anti-DON monoclonal antibody (MAb) were isolated from a naive phage display library. These nanobodies are clonable, thermally stable and mycotoxin-free products and can be served as coating antigen mimetics in heterologous immunoassay. The half inhibition concentration (IC50) of the immunoassay developed with N-28 and N-31 was 8.77 ± 0.41 ng mL(-1) and 19.97 ± 0.84 ng mL(-1), respectively, which were 18- and 8-fold more sensitive than the conventional coating antigen (DON-BSA) based immunoassay. In order to better understand the molecular mechanism of antigen mimicry by nanobody, the 3D structure of "nanobody (N-28) - anti-DON MAb" complex was presented and verified by molecular modeling and alanine-scanning mutagenesis. The results showed that hydrogen bond and hydrophobic interaction formed between Thr 102 - Ser 106 of N-28 and CDR H3 residues of anti-DON antibody may contribute to their binding. This novel concept of enhancing sensitivity of immunoassay for DON based on nanobody may provide potential applications in a general method for immunoassay of various food chemical contaminants. PMID:26320803

  5. The Phage Lytic Proteins from the Staphylococcus aureus Bacteriophage vB_SauS-phiIPLA88 Display Multiple Active Catalytic Domains and Do Not Trigger Staphylococcal Resistance

    PubMed Central

    Rodríguez-Rubio, Lorena; Martínez, Beatriz; Rodríguez, Ana; Donovan, David M.; Götz, Friedrich; García, Pilar

    2013-01-01

    The increase in antibiotic resistance world-wide revitalized the interest in the use of phage lysins to combat pathogenic bacteria. In this work, we analyzed the specific cleavage sites on the staphylococcal peptidoglycan produced by three phage lytic proteins. The investigated cell wall lytic enzymes were the endolysin LysH5 derived from the S. aureus bacteriophage vB_SauS-phi-IPLA88 (phi-IPLA88) and two fusion proteins between lysostaphin and the virion-associated peptidoglycan hydrolase HydH5 (HydH5SH3b and HydH5Lyso). We determined that all catalytic domains present in these proteins were active. Additionally, we tested for the emergence of resistant Staphylococcus aureus to any of the three phage lytic proteins constructs. Resistant S. aureus could not be identified after 10 cycles of bacterial exposure to phage lytic proteins either in liquid or plate cultures. However, a quick increase in lysostaphin resistance (up to 1000-fold in liquid culture) was observed. The lack of resistant development supports the use of phage lytic proteins as future therapeutics to treat staphylococcal infections. PMID:23724076

  6. Yeast surface display is a novel tool for the rapid immunological characterization of plant-derived food allergens.

    PubMed

    Popovic, Milica; Prodanovic, Radivoje; Ostafe, Raluca; Schillberg, Stefan; Fischer, Rainer; Gavrovic-Jankulovic, Marija

    2015-03-01

    High-throughput characterization of allergens relies often on phage display technique which is subject to the limitations of a prokaryotic expression system. Substituting the phage display platform with a yeast surface display could lead to fast immunological characterization of allergens with complex structures. Our objective was to evaluate the potential of yeast surface display for characterization of plant-derived food allergens. The coding sequence of mature actinidin (Act d 1) was cloned into pCTCON2 surface display vector. Flow cytometry was used to confirm localization of recombinant Act d 1 on the surface of yeast cells using rabbit polyclonal antisera IgG and IgE from sera of kiwifruit-allergic individuals. Immunological (dot blot, immunoblot ELISA and ELISA inhibition), biochemical (enzymatic activity in gel) and biological (basophil activation) characterization of Act d 1 after solubilization from the yeast cell confirmed that recombinant Act d 1 produced on the surface of yeast cell is similar to its natural counterpart isolated from green kiwifruit. Yeast surface display is a potent technique that enables fast immunochemical characterization of allergens in situ without the need for protein purification and offers an alternative that could lead to improvement of standard immunodiagnostic and immunotherapeutic approaches. PMID:25537533

  7. Uses of Phage Display in Agriculture: Sequence Analysis and Comparative Modeling of Late Embryogenesis Abundant Client Proteins Suggest Protein-Nucleic Acid Binding Functionality

    PubMed Central

    Kushwaha, Rekha; Downie, A. Bruce; Payne, Christina M.

    2013-01-01

    A group of intrinsically disordered, hydrophilic proteins—Late Embryogenesis Abundant (LEA) proteins—has been linked to survival in plants and animals in periods of stress, putatively through safeguarding enzymatic function and prevention of aggregation in times of dehydration/heat. Yet despite decades of effort, the molecular-level mechanisms defining this protective function remain unknown. A recent effort to understand LEA functionality began with the unique application of phage display, wherein phage display and biopanning over recombinant Seed Maturation Protein homologs from Arabidopsis thaliana and Glycine max were used to retrieve client proteins at two different temperatures, with one intended to represent heat stress. From this previous study, we identified 21 client proteins for which clones were recovered, sometimes repeatedly. Here, we use sequence analysis and homology modeling of the client proteins to ascertain common sequence and structural properties that may contribute to binding affinity with the protective LEA protein. Our methods uncover what appears to be a predilection for protein-nucleic acid interactions among LEA client proteins, which is suggestive of subcellular residence. The results from this initial computational study will guide future efforts to uncover the protein protective mechanisms during heat stress, potentially leading to phage-display-directed evolution of synthetic LEA molecules. PMID:23956788

  8. Purification of polyclonal anti-conformational antibodies for use in affinity selection from random peptide phage display libraries: A study using the hydatid vaccine EG95

    PubMed Central

    Read, A.J.; Gauci, C.G.; Lightowlers, M.W.

    2009-01-01

    The use of polyclonal antibodies to screen random peptide phage display libraries often results in the recognition of a large number of peptides that mimic linear epitopes on various proteins. There appears to be a bias in the use of this technology toward the selection of peptides that mimic linear epitopes. In many circumstances the correct folding of a protein immunogen is required for conferring protection. The use of random peptide phage display libraries to identify peptide mimics of conformational epitopes in these cases requires a strategy for overcoming this bias. Conformational epitopes on the hydatid vaccine EG95 have been shown to result in protective immunity in sheep, whereas linear epitopes are not protective. In this paper we describe a strategy that results in the purification of polyclonal antibodies directed against conformational epitopes while eliminating antibodies directed against linear epitopes. These affinity purified antibodies were then used to select a peptide from a random peptide phage display library that has the capacity to mimic conformational epitopes on EG95. This peptide was subsequently used to affinity purify monospecific antibodies against EG95. PMID:19349218

  9. Selection of recombinant antibodies by phage display technology and application for detection of allergenic Brazil nut (Bertholletia excelsa) in processed foods.

    PubMed

    de la Cruz, Silvia; López-Calleja, Inés María; Alcocer, Marcos; González, Isabel; Martín, Rosario; García, Teresa

    2013-10-30

    Current immunological methods for detection of Brazil nut allergens in foods are based on polyclonal antibodies raised in animals. Phage display technology allows the procurement of high-affinity antibodies avoiding animal immunization steps and therefore attaining the principle of replacement supported by animal welfare guidelines. In this study, we screened Tomlinson I and J libraries for specific binders against Brazil nut by employing a Brazil nut protein extract and a purified Brazil nut 2S globulin, and we successfully isolated a phage single chain variable fragment (named BE95) that specifically recognizes Brazil nut proteins. The selected phage scFv was further used as affinity probe to develop an indirect phage-ELISA for detection of Brazil nut in experimental binary mixtures and in commercial food products, with a limit of detection of 5 mg g(-1). This study describes for the first time the isolation of recombinant antibody fragments specific for an allergenic tree nut protein from a naïve library and paves the way to develop new immunoassays for food analysis based on probes that can be produced in vitro when required and do not rely on animal immunization. PMID:24090075

  10. Designer and natural peptide toxin blockers of the KcsA potassium channel identified by phage display.

    PubMed

    Zhao, Ruiming; Dai, Hui; Mendelman, Netanel; Cuello, Luis G; Chill, Jordan H; Goldstein, Steve A N

    2015-12-15

    Peptide neurotoxins are powerful tools for research, diagnosis, and treatment of disease. Limiting broader use, most receptors lack an identified toxin that binds with high affinity and specificity. This paper describes isolation of toxins for one such orphan target, KcsA, a potassium channel that has been fundamental to delineating the structural basis for ion channel function. A phage-display strategy is presented whereby ∼1.5 million novel and natural peptides are fabricated on the scaffold present in ShK, a sea anemone type I (SAK1) toxin stabilized by three disulfide bonds. We describe two toxins selected by sorting on purified KcsA, one novel (Hui1, 34 residues) and one natural (HmK, 35 residues). Hui1 is potent, blocking single KcsA channels in planar lipid bilayers half-maximally (Ki) at 1 nM. Hui1 is also specific, inhibiting KcsA-Shaker channels in Xenopus oocytes with a Ki of 0.5 nM whereas Shaker, Kv1.2, and Kv1.3 channels are blocked over 200-fold less well. HmK is potent but promiscuous, blocking KcsA-Shaker, Shaker, Kv1.2, and Kv1.3 channels with Ki of 1-4 nM. As anticipated, one Hui1 blocks the KcsA pore and two conserved toxin residues, Lys21 and Tyr22, are essential for high-affinity binding. Unexpectedly, potassium ions traversing the channel from the inside confer voltage sensitivity to the Hui1 off-rate via Arg23, indicating that Lys21 is not in the pore. The 3D structure of Hui1 reveals a SAK1 fold, rationalizes KcsA inhibition, and validates the scaffold-based approach for isolation of high-affinity toxins for orphan receptors. PMID:26627718

  11. Designer and natural peptide toxin blockers of the KcsA potassium channel identified by phage display

    PubMed Central

    Zhao, Ruiming; Dai, Hui; Mendelman, Netanel; Cuello, Luis G.; Chill, Jordan H.; Goldstein, Steve A. N.

    2015-01-01

    Peptide neurotoxins are powerful tools for research, diagnosis, and treatment of disease. Limiting broader use, most receptors lack an identified toxin that binds with high affinity and specificity. This paper describes isolation of toxins for one such orphan target, KcsA, a potassium channel that has been fundamental to delineating the structural basis for ion channel function. A phage-display strategy is presented whereby ∼1.5 million novel and natural peptides are fabricated on the scaffold present in ShK, a sea anemone type I (SAK1) toxin stabilized by three disulfide bonds. We describe two toxins selected by sorting on purified KcsA, one novel (Hui1, 34 residues) and one natural (HmK, 35 residues). Hui1 is potent, blocking single KcsA channels in planar lipid bilayers half-maximally (Ki) at 1 nM. Hui1 is also specific, inhibiting KcsA-Shaker channels in Xenopus oocytes with a Ki of 0.5 nM whereas Shaker, Kv1.2, and Kv1.3 channels are blocked over 200-fold less well. HmK is potent but promiscuous, blocking KcsA-Shaker, Shaker, Kv1.2, and Kv1.3 channels with Ki of 1–4 nM. As anticipated, one Hui1 blocks the KcsA pore and two conserved toxin residues, Lys21 and Tyr22, are essential for high-affinity binding. Unexpectedly, potassium ions traversing the channel from the inside confer voltage sensitivity to the Hui1 off-rate via Arg23, indicating that Lys21 is not in the pore. The 3D structure of Hui1 reveals a SAK1 fold, rationalizes KcsA inhibition, and validates the scaffold-based approach for isolation of high-affinity toxins for orphan receptors. PMID:26627718

  12. Phage display-based on-slide selection of tumor-specific antibodies on formalin-fixed paraffin-embedded human tissue biopsies.

    PubMed

    Ten Haaf, Andre; Pscherer, Sibylle; Fries, Katharina; Barth, Stefan; Gattenlöhner, Stefan; Tur, Mehmet Kemal

    2015-08-01

    Phage display is an effective method for the generation of target-specific human antibodies. Standard phage display panning use purified proteins, antigen-transfected cells or tumor cell lines as target structure to generate specific antibodies. However, recombinant proteins can be difficult to express and purify in their native conformation and suitable cell lines are not always available. Additionally the antigen expression profile may change during cultivation and thus differ from the malignant cells in patient. Here we describe a method for the selection of specific antibodies from phage display libraries by panning against formalin-fixed paraffin-embedded (FFPE) tissue biopsies immobilized on glass slides, using small cell lung cancer (SCLC) as a case study. The human Tomlinson single-chain variable fragment (scFv) phage libraries I and J were panned against SCLC FFPE tissue slides for positive selection and healthy lung tissue for subtraction. The specificity of the selected scFv antibodies was confirmed in vitro by ELISA on immobilized SCLC cell membranes, by flow cytometry using the SCLC cell lines NCI-H69, NCI-H82 and DMS 273, and ex vivo against tissue microarrays containing 35 different SCLC samples and 20 types of normal organs. We monitored the internalization of three selected scFv antibodies and fused them with Pseudomonas exotoxin A (ETA') to produce immunotoxins whose cytotoxicity was confirmed by cell viability and apoptosis assays on different SCLC cell lines, achieving IC50 values of up to 23nM. The selection of SCLC-specific scFv antibodies by panning against FFPE tissue slides circumvents the challenges of using purified antigens or cell lines for antibody selection. PMID:26045318

  13. Prevention of passively transferred experimental autoimmune myasthenia gravis by a phage library-derived cyclic peptide

    PubMed Central

    Venkatesh, Natarajan; Im, Sin-Heyog; Balass, Moshe; Fuchs, Sara; Katchalski-Katzir, Ephraim

    2000-01-01

    Many pathogenic antibodies in myasthenia gravis (MG) and its animal model, experimental autoimmune MG (EAMG), are directed against the main immunogenic region (MIR) of the acetylcholine receptor (AcChoR). These antibodies are highly conformation dependent; hence, linear peptides derived from native receptor sequences are poor candidates for their immunoneutralization. We employed a phage-epitope library to identify peptide-mimotopes capable of preventing the pathogenicity of the anti-MIR mAb 198. We identified a 15-mer peptide (PMTLPENYFSERPYH) that binds specifically to mAb 198 and inhibits its binding to AcChoR. A 10-fold increase in the affinity of this peptide was achieved by incorporating flanking amino acid residues from the coat protein as present in the original phage library. This extended peptide (AEPMTLPENYFSERPYHPPPP) was constrained by the addition of cysteine residues on both ends of the peptide, thus generating a cyclic peptide that inhibited the binding of mAb 198 to AcChoR with a potency that is three orders of magnitude higher when compared with the parent library peptide. This cyclic peptide inhibited the in vitro binding of mAb 198 to AcChoR and prevented the antigenic modulation of AcChoR caused by mAb 198 in human muscle cell cultures. The cyclic peptide also reacted with several other anti-MIR mAbs and the sera of EAMG rats. In addition, this peptide blocked the ability of mAb 198 to passively transfer EAMG in rats. Further derivatization of the cyclic peptide may aid in the design of suitable synthetic mimotopes for modulation of MG. PMID:10639153

  14. Identification of genes coding for B cell antigens of Mycoplasma mycoides subsp. mycoides Small Colony (MmmSC) by using phage display

    PubMed Central

    2009-01-01

    Background Contagious bovine pleuropneumonia (CBPP) is a mycoplasmal disease caused by Mycoplasma mycoides subsp. mycoides SC (MmmSC). Since the disease is a serious problem that can affect cattle production in parts of Africa, there is a need for an effective and economical vaccine. Identifying which of the causative agent's proteins trigger potentially protective immune responses is an important step towards developing a subunit vaccine. Accordingly, the purpose of this study was to determine whether phage display combined with bioinformatics could be used to narrow the search for genes that code for potentially immunogenic proteins of MmmSC. Since the production of IgG2 and IgA are associated with a Th1 cellular immune response which is implicated in protection against CBPP, antigens which elicit these immunoglobulin subclasses may be useful in developing a subunit vaccine. Results A filamentous phage library displaying a repertoire of peptides expressed by fragments of the genome of MmmSC was constructed. It was subjected to selection using antibodies from naturally- and experimentally-infected cattle. Mycoplasmal genes were identified by matching the nucleotide sequences of DNA from immunoselected phage particles with the mycoplasmal genome. This allowed a catalogue of genes coding for the proteins that elicited an immune response to be compiled. Using this method together with computer algorithms designed to score parameters that influence surface accessibility and hence potential antigenicity, five genes (abc, gapN, glpO, lppB and ptsG) were chosen to be expressed in Escherichia coli. After appropriate site-directed mutagenesis, polypeptides representing portions of each of these proteins were tested for immunoreactivity. Of these five, polypeptides representing expression products of abc and lppB were recognised on immunoblots by sera obtained from cattle during a natural outbreak of the disease. Conclusion Since phage display physically couples phenotype

  15. Phage displayed peptides and anti-idiotype antibodies recognised by a monoclonal antibody directed against a diagnostic antigen of Mycoplasma capricolum subsp. capripneumoniae.

    PubMed

    Bengurić, D R; Dungu, B; Thiaucourt, F; du Plessis, D H

    2001-07-26

    A monoclonal antibody (Mab 4.52) raised against Mycoplasma capricolum subsp. capripneumoniae (Mccp) cell lysate was used as a template to obtain substitute antigens recognised by its paratope. Two approaches were investigated: a 17-mer random peptide library displayed on the surface of a filamentous phage was screened by panning on the immobilised Mab 4.52 and anti-idiotype antibodies were generated by immunising a chicken with the F(ab')(2) fragments of the antibody. Analysis of the peptide sequences displayed by the isolated phages identified two peptides. Both contained two cysteine residues and had identical or similar amino acids in positions 5 (P), 8 (I/L) and 13 (L). The fusion phages were also recognised by Mab 4.52 in enzyme-linked immunosorbent assay (ELISA) and binding was shown by surface plasmon resonance. One of the peptides was a markedly better inhibitor (67%) of the binding of Mab 4.52 to its original antigen than the other (20%) at 1mg/ml. After absorption, to remove isotypic and allotypic reactivities, the anti-idiotype IgY was specifically recognised by Mab 4.52 in ELISA and was able to inhibit its binding to the original antigen, whereas anti-idiotype antibodies raised against a bluetongue virus-specific antibody had no effect. In spite of unequivocal binding of the anti-idiotype antibodies and the fusion phages to the paratope of Mab 4.52, goat antisera appeared not to react with either of the surrogate antigens. In contrast, the test sera bound to the original antigen suggesting that Mab 4.52 does not recognise exactly the same antigenic site as antibodies in the goat antisera. PMID:11376960

  16. A conformational epitope mapped in the bovine herpesvirus type 1 envelope glycoprotein B by phage display and the HSV-1 3D structure.

    PubMed

    Almeida, Greyciele R; Goulart, Luiz Ricardo; Cunha-Junior, Jair P; Bataus, Luiz A M; Japolla, Greice; Brito, Wilia M E D; Campos, Ivan T N; Ribeiro, Cristina; Souza, Guilherme R L

    2015-08-01

    The selected dodecapeptide (1)DRALYGPTVIDH(12) from a phage-displayed peptide library and the crystal structure of the envelope glycoprotein B (Env gB) from Herpes Simplex Virus type 1 (HSV-1) led us to the identification of a new discontinuous epitope on the Bovine herpesvirus type 1 (BoHV-1) Env gB. In silico analysis revealed a short BoHV-1 gB motif ((338)YKRD(341)) within a epitope region, with a high similarity to the motifs shared by the dodecapeptide N-terminal region ((5)YxARD(1)) and HSV-1 Env gB ((326)YARD(329)), in which the (328)Arg residue is described to be a neutralizing antibody target. Besides the characterization of an antibody-binding site of the BoHV-1 Env gB, we have demonstrated that the phage-fused peptide has the potential to be used as a reagent for virus diagnosis by phage-ELISA assay, which discriminated BoHV-1 infected serum samples from negative ones. PMID:26267086

  17. A novel Streptomyces spp. integration vector derived from the S. venezuelae phage, SV1

    PubMed Central

    2014-01-01

    Background Integrating vectors based on the int/attP loci of temperate phages are convenient and used widely, particularly for cloning genes in Streptomyces spp. Results We have constructed and tested a novel integrating vector based on g27, encoding integrase, and attP site from the phage, SV1. This plasmid, pBF3 integrates efficiently in S. coelicolor and S. lividans but surprisingly fails to generate stable integrants in S. venezuelae, the natural host for phage SV1. Conclusion pBF3 promises to be a useful addition to the range of integrating vectors currently available for Streptomyces molecular genetics. PMID:24885867

  18. Effects of an amyloid-beta 1-42 oligomers antibody screened from a phage display library in APP/PS1 transgenic mice

    PubMed Central

    Wang, Jianping; Li, Nan; Ma, Jun; Gu, Zhiqiang; Yu, Lie; Fu, Xiaojie; Liu, Xi; Wang, Jian

    2016-01-01

    We screened anti-Aβ1-42 antibodies from a human Alzheimer’s disease (AD) specific single chain variable fragment (scFv) phage display library and assessed their effects in APP/PS1 transgenic mice. Reverse transcription-PCR was used to construct the scFv phage display library, and screening identified 11A5 as an anti-Aβ1-42 antibody. We mixed 11A5 and the monoclonal antibody 6E10 with Aβ1-42 and administered the mixture to Sprague-Dawley rats via intracerebroventricular injection. After 30 days, rats injected with the antibody/ Aβ1-42 mixture and those injected with Aβ1-42 alone were tested on the Morris water maze. We also injected 11A5 and 6E10 into APP/PS1 transgenic mice and assessed the concentrations of Aβ in brain and peripheral blood by ELISA at 1-month intervals for 3 months. Finally we evaluated behavior changes in the Morris water maze. Rats injected with Aβ1-42 and mixed antibodies showed better performance in the Morris water maze than did rats injected with Aβ1-42 alone. In APP/PS1 transgenic mice, Aβ concentration was lower in the brains of the antibody-treated group than in the control group, but higher in the peripheral blood. The antibody-treated mice also exhibited improved behavioral performance in the Morris water maze. In conclusion, anti-Aβ1-42 antibodies (11A5) screened from the human scFv antibody phage display library promoted the efflux or clearance of Aβ1-42 and effectively decreased the cerebral Aβ burden in an AD mouse model. PMID:26820640

  19. Selection of scFv Antibody Fragments Binding to Human Blood versus Lymphatic Endothelial Surface Antigens by Direct Cell Phage Display

    PubMed Central

    Keller, Thomas; Kalt, Romana; Raab, Ingrid; Schachner, Helga; Mayrhofer, Corina; Kerjaschki, Dontscho; Hantusch, Brigitte

    2015-01-01

    The identification of marker molecules specific for blood and lymphatic endothelium may provide new diagnostic tools and identify new targets for therapy of immune, microvascular and cancerous diseases. Here, we used a phage display library expressing human randomized single-chain Fv (scFv) antibodies for direct panning against live cultures of blood (BECs) and lymphatic (LECs) endothelial cells in solution. After six panning rounds, out of 944 sequenced antibody clones, we retrieved 166 unique/diverse scFv fragments, as indicated by the V-region sequences. Specificities of these phage clone antibodies for respective compartments were individually tested by direct cell ELISA, indicating that mainly pan-endothelial cell (EC) binders had been selected, but also revealing a subset of BEC-specific scFv antibodies. The specific staining pattern was recapitulated by twelve phage-independently expressed scFv antibodies. Binding capacity to BECs and LECs and differential staining of BEC versus LEC by a subset of eight scFv antibodies was confirmed by immunofluorescence staining. As one antigen, CD146 was identified by immunoprecipitation with phage-independent scFv fragment. This antibody, B6-11, specifically bound to recombinant CD146, and to native CD146 expressed by BECs, melanoma cells and blood vessels. Further, binding capacity of B6-11 to CD146 was fully retained after fusion to a mouse Fc portion, which enabled eukaryotic cell expression. Beyond visualization and diagnosis, this antibody might be used as a functional tool. Overall, our approach provided a method to select antibodies specific for endothelial surface determinants in their native configuration. We successfully selected antibodies that bind to antigens expressed on the human endothelial cell surfaces in situ, showing that BECs and LECs share a majority of surface antigens, which is complemented by cell-type specific, unique markers. PMID:25993332

  20. Identification of a novel aFGF-binding peptide with anti-tumor effect on breast cancer from phage display library

    SciTech Connect

    Dai, Xiaoyong; Cai, Cuizan; Xiao, Fei; Xiong, Yaoling; Huang, Yadong; Zhang, Qihao; Xiang, Qi; Lou, Guofeng; Lian, Mengyang; Su, Zhijian; Zheng, Qing

    2014-03-21

    Highlights: • A specific aFGF-binding peptide AP8 was identified from a phage display library. • AP8 could inhibit aFGF-stimulated cell proliferation in a dose-dependent manner. • AP8 arrested the cell cycle at the G0/G1 phase by suppressing Cyclin D1. • AP8 could block the activation of Erk1/2 and Akt kinase. • AP8 counteracted proliferation and cell cycle via influencing PA2G4 and PCNA. - Abstract: It has been reported that acidic fibroblast growth factor (aFGF) is expressed in breast cancer and via interactions with fibroblast growth factor receptors (FGFRs) to promote the stage and grade of the disease. Thus, aFGF/FGFRs have been considered essential targets in breast cancer therapy. We identified a specific aFGF-binding peptide (AGNWTPI, named AP8) from a phage display heptapeptide library with aFGF after four rounds of biopanning. The peptide AP8 contained two (TP) amino acids identical and showed high homology to the peptides of the 182–188 (GTPNPTL) site of high-affinity aFGF receptor FGFR1. Functional analyses indicated that AP8 specifically competed with the corresponding phage clone A8 for binding to aFGF. In addition, AP8 could inhibit aFGF-stimulated cell proliferation, arrested the cell cycle at the G0/G1 phase by increasing PA2G4 and suppressing Cyclin D1 and PCNA, and blocked the aFGF-induced activation of Erk1/2 and Akt kinase in both breast cancer cells and vascular endothelial cells. Therefore, these results indicate that peptide AP8, acting as an aFGF antagonist, is a promising therapeutic agent for the treatment of breast cancer.

  1. Phage-Displayed T-Cell Epitope Grafted into Immunoglobulin Heavy-Chain Complementarity-Determining Regions: an Effective Vaccine Design Tested in Murine Cysticercosis

    PubMed Central

    Manoutcharian, Karen; Terrazas, Luis Ignacio; Gevorkian, Goar; Acero, Gonzalo; Petrossian, Pavel; Rodriguez, Miriam; Govezensky, Tzipe

    1999-01-01

    A new type of immunogenic molecule was engineered by replacing all three complementarity-determining-region (CDR) loops of the human immunoglobulin (Ig) heavy-chain variable (VH) domain with the Taenia crassiceps epitope PT1 (PPPVDYLYQT) and by displaying this construct on the surfaces of M13 bacteriophage. When BALB/c mice were immunized with such phage particles (PIgphage), a strong protection against challenge infection in very susceptible female hosts was obtained. When specifically stimulated, the in vivo-primed CD4+ and CD8+ T cells isolated from mice immunized with PT1, both as a free peptide and as the PIgphage construct, proliferated in vitro, indicating efficient epitope presentation by both major histocompatibility complex class II and class I molecules in the specifically antigen-pulsed macrophages used as antigen-presenting cells. These data demonstrate the immunogenic potential of recombinant phage particles displaying CDR epitope-grafted Ig VH domains and establish an alternative approach to the design of an effective subunit vaccine for prevention of cysticercosis. The key advantage of this type of immunogen is that no adjuvant is required for its application. The proposed strategy for immunogen construction is potentially suitable for use in any host-pathogen interaction. PMID:10456929

  2. Masked Selection: A Straightforward and Flexible Approach for the Selection of Binders Against Specific Epitopes and Differentially Expressed Proteins by Phage Display*

    PubMed Central

    Even-Desrumeaux, Klervi; Nevoltris, Damien; Lavaut, Marie Noelle; Alim, Karima; Borg, Jean-Paul; Audebert, Stéphane; Kerfelec, Brigitte; Baty, Daniel; Chames, Patrick

    2014-01-01

    Phage display is a well-established procedure to isolate binders against a wide variety of antigens that can be performed on purified antigens, but also on intact cells. As selection steps are performed in vitro, it is possible to focus the outcome of the selection on relevant epitopes by performing some additional steps, such as depletion or competitive elutions. However in practice, the efficiency of these steps is often limited and can lead to inconsistent results. We have designed a new selection method named masked selection, based on the blockade of unwanted epitopes to favor the targeting of relevant ones. We demonstrate the efficiency and flexibility of this method by selecting single-domain antibodies against a specific portion of a fusion protein, by selecting binders against several members of the seven transmembrane receptor family using transfected HEK cells, or by selecting binders against unknown breast cancer markers not expressed on normal samples. The relevance of this approach for antibody-based therapies was further validated by the identification of four of these markers, Epithelial cell adhesion molecule, Transferrin receptor 1, Metastasis cell adhesion molecule, and Sushi containing domain 2, using immunoprecipitation and mass spectrometry. This new phage display strategy can be applied to any type of antibody fragments or alternative scaffolds, and is especially suited for the rapid discovery and identification of cell surface markers. PMID:24361863

  3. Masked selection: a straightforward and flexible approach for the selection of binders against specific epitopes and differentially expressed proteins by phage display.

    PubMed

    Even-Desrumeaux, Klervi; Nevoltris, Damien; Lavaut, Marie Noelle; Alim, Karima; Borg, Jean-Paul; Audebert, Stéphane; Kerfelec, Brigitte; Baty, Daniel; Chames, Patrick

    2014-02-01

    Phage display is a well-established procedure to isolate binders against a wide variety of antigens that can be performed on purified antigens, but also on intact cells. As selection steps are performed in vitro, it is possible to focus the outcome of the selection on relevant epitopes by performing some additional steps, such as depletion or competitive elutions. However in practice, the efficiency of these steps is often limited and can lead to inconsistent results. We have designed a new selection method named masked selection, based on the blockade of unwanted epitopes to favor the targeting of relevant ones. We demonstrate the efficiency and flexibility of this method by selecting single-domain antibodies against a specific portion of a fusion protein, by selecting binders against several members of the seven transmembrane receptor family using transfected HEK cells, or by selecting binders against unknown breast cancer markers not expressed on normal samples. The relevance of this approach for antibody-based therapies was further validated by the identification of four of these markers, Epithelial cell adhesion molecule, Transferrin receptor 1, Metastasis cell adhesion molecule, and Sushi containing domain 2, using immunoprecipitation and mass spectrometry. This new phage display strategy can be applied to any type of antibody fragments or alternative scaffolds, and is especially suited for the rapid discovery and identification of cell surface markers. PMID:24361863

  4. Identification of rabies virus mimotopes screened from a phage display peptide library with purified dog anti-rabies virus serum IgG.

    PubMed

    Yang, Limin; Cen, Junyu; Xue, Qinghua; Li, Jing; Bi, Yuhai; Sun, Lei; Liu, Wenjun

    2013-06-01

    The rabies virus glycoprotein (G) is a key protein for both virus infectivity and eliciting protective immunity as an antigen. What is more, the nucleoprotein (N) is also a significant rabies virus antigen. In this study, purified anti-rabies virus IgG from dogs immunized with the standard CVS-11 strain was used to screen the Ph.D.-12™ Phage Display Peptide Library for peptides that correspond to or mimic native G and N epitopes. In contrast to previous reports that use monoclonal antibodies or human anti-rabies virus serum, this study describes the first use of dog serum to screen for epitopes. After three rounds of biopanning, selected phage clones were identified by plaque screening, western blotting (WB), and ELISA. Positive phage clones were sequenced, and their amino acid sequences were deduced. Alignment of the peptide sequences to G and N indicated that the epitope peptides matched well with G amino acids at positions 34-42, 198-200, 226-264, 296-371, and 330-343, as well as to N amino acids at positions 22-168 (N-terminal) and 262-450 (C-terminal), confirming that the sequences were indeed mimicking epitopes. Thirty percent of the selected clones matched reported antigenic regions located at sites II and III of the glycoprotein. Two sequences, LEPKGRYDDPWT and ATRYDDIWASTA, that have no homology to the known antigenic sites of either the G or N exhibited a common RYDD-W-T motif that is highly homologous to the amino acid residues at positions 126-141 of the G. This finding indicates that this motif may be a new potential RABV G B cell epitope. Amino acids 126-141 containing the RYDD-W-T motif may become a novel key epitope region and allow the development of a rabies vaccine or diagnostic reagents for the treatment of rabies. PMID:23499997

  5. Identification of a Conserved Linear B-Cell Epitope of Streptococcus dysgalactiae GapC Protein by Screening Phage-Displayed Random Peptide Library

    PubMed Central

    Fan, Ziyao; Zhou, Xue; Yu, Liquan; Sun, Hunan; Wu, Zhijun; Yu, Yongzhong; Song, Baifen; Ma, Jinzhu; Tong, Chunyu; Wang, Xintong; Zhu, Zhanbo; Cui, Yudong

    2015-01-01

    The GapC of Streptococcus dysgalactiae (S. dysgalactiae) is a highly conserved surface protein that can induce protective humoral immune response in animals. However, B-cell epitopes on the S. dysgalactiae GapC have not been well identified. In this study, a monoclonal antibody (mAb5B7) against the GapC1-150 protein was prepared. After passive transfer, mAb5B7 could partially protect mice against S. dysgalactiae infection. Eleven positive phage clones recognized by mAb5B7 were identified by screening phage-displayed random 12-peptide library, most of which matched the consensus motif DTTQGRFD. The motif sequence exactly matches amino acids 48-55 of the S. dysgalactiae GapC protein. In addition, the motif 48DTTQGRFD55 shows high homology among various streptococcus species. Site-directed mutagenic analysis further confirmed that residues D48, T50, Q51, G52 and F54 formed the core motif of 48DTTQGRFD55. This motif was the minimal determinant of the B-cell epitope recognized by the mAb5B7. As expected, epitope-peptide evoked protective immune response against S. dysgalactiae infection in immunized mice. Taken together, this identified conserved B-cell epitope within S. dysgalactiae GapC could provide very valuable insights for vaccine design against S. dysgalactiae infection. PMID:26121648

  6. Mapping a disordered portion of the Brz2001-binding site on a plant monooxygenase, DWARF4, using a quartz-crystal microbalance biosensor-based T7 phage display.

    PubMed

    Takakusagi, Yoichi; Manita, Daisuke; Kusayanagi, Tomoe; Izaguirre-Carbonell, Jesus; Takakusagi, Kaori; Kuramochi, Kouji; Iwabata, Kazuki; Kanai, Yoshihiro; Sakaguchi, Kengo; Sugawara, Fumio

    2013-04-01

    In small-molecule/protein interaction studies, technical difficulties such as low solubility of small molecules or low abundance of protein samples often restrict the progress of research. Here, we describe a quartz-crystal microbalance (QCM) biosensor-based T7 phage display in combination use with a receptor-ligand contacts (RELIC) bioinformatics server for application in a plant Brz2001/DWARF4 system. Brz2001 is a brassinosteroid biosynthesis inhibitor in the less-soluble triazole series of compounds that targets DWARF4, a cytochrome P450 (Cyp450) monooxygenase containing heme and iron. Using a Brz2001 derivative that has higher solubility in 70% EtOH and forms a self-assembled monolayer on gold electrode, we selected 34 Brz2001-recognizing peptides from a 15-mer T7 phage-displayed random peptide library using a total of four sets of one-cycle biopanning. The RELIC/MOTIF program revealed continuous and discontinuous short motifs conserved within the 34 Brz2001-selected 15-mer peptide sequences, indicating the increase of information content for Brz2001 recognition. Furthermore, an analysis of similarity between the 34 peptides and the amino-acid sequence of DWARF4 using the RELIC/MATCH program generated a similarity plot and a cluster diagram of the amino-acid sequence. Both of these data highlighted an internally located disordered portion of a catalytic site on DWARF4, indicating that this portion is essential for Brz2001 recognition. A similar trend was also noted by an analysis using another 26 Brz2001-selected peptides, and not observed using the 27 gold electrode-recognizing control peptides, demonstrating the reproducibility and specificity of this method. Thus, this affinity-based strategy enables high-throughput detection of the small-molecule-recognizing portion on the target protein, which overcomes technical difficulties such as sample solubility or preparation that occur when conventional methods are used. PMID:23514038

  7. Targeted gene delivery to human airway epithelial cells with synthetic vectors incorporating novel targeting peptides selected by phage display.

    PubMed

    Writer, Michele J; Marshall, Barry; Pilkington-Miksa, Michael A; Barker, Susie E; Jacobsen, Marianne; Kritz, Angelika; Bell, Paul C; Lester, Douglas H; Tabor, Alethea B; Hailes, Helen C; Klein, Nigel; Hart, Stephen L

    2004-05-01

    Human airway epithelial cell targeting peptides were identified by biopanning on 1HAEo-cells, a well characterised epithelial cell line. Bound phage were recovered after three rounds of binding, high stringency washing and elution, leading to the production of an enriched phage peptide population. DNA sequencing of 56 clones revealed 14 unique sequences. Subsequent binding analysis revealed that 13 of these peptides bound 1HAEo-cells with high affinity. Three peptides, SERSMNF, YGLPHKF and PSGAARA were represented at high frequency. Three clearly defined families of peptide were identified on the basis of sequence motifs including (R/K)SM, L(P/Q)HK and PSG(A/T)ARA. Two peptides, LPHKSMP and LQHKSMP contained two motifs. Further detailed sequence analysis by comparison of peptide sequences with the SWISSPROT protein database revealed that some of the peptides closely resembled the cell binding proteins of viral and bacterial pathogens including Herpes Simplex Virus, rotavirus, Mycoplasma pneumoniae and rhinovirus, the latter two being respiratory pathogens, as well as peptide YGLPHKF having similarity to a protein of unknown function from the respiratory pathogen Legionella pneumophila. Peptides were incorporated into gene delivery formulations with the cationic lipid Lipofectin and plasmid DNA and shown to confer a high degree of transfection efficiency and specificity in 1HAEo-cells. Improved transfection efficiency and specificity was also observed in human endothelial cells, fibroblasts and keratinocytes. Therefore, on the basis of clone frequency after biopanning, cell binding affinity, peptide sequence conservation and pathogenic similarity, we have identified 3 novel peptide families and 5 specific peptides that have the potential for gene transfer to respiratory epithelium in vivo as well as providing useful in vitro transfection reagents for primary human cell types of scientific and commercial interest. PMID:15506167

  8. Serotype- and serogroup-specific detection of African horsesickness virus using phage displayed chicken scFvs for indirect double antibody sandwich ELISAs.

    PubMed

    van Wyngaardt, Wouter; Mashau, Cordelia; Wright, Isabel; Fehrsen, Jeanni

    2013-01-01

    There is an ongoing need for standardized, easily renewable immunoreagents for detecting African horsesickness virus (AHSV). Two phage displayed single-chain variable fragment (scFv) antibodies, selected from a semi-synthetic chicken antibody library, were used to develop double antibody sandwich enzyme-linked immunosorbent assays (DAS-ELISAs) to detect AHSV. In the DAS-ELISAs, the scFv previously selected with directly immobilized AHSV-3 functioned as a serotype-specific reagent that recognized only AHSV-3. In contrast, the one selected with AHSV-8 captured by IgG against AHSV-3 recognized all nine AHSV serotypes but not the Bryanston strain of equine encephalosis virus. Serving as evidence for its serogroup-specificity. These two scFvs can help to rapidly confirm the presence of AHSV while additional serotype-specific scFvs may simplify AHSV serotyping. PMID:23388433

  9. One-Step Recovery of scFv Clones from High-Throughput Sequencing-Based Screening of Phage Display Libraries Challenged to Cells Expressing Native Claudin-1

    PubMed Central

    Sasso, Emanuele; Paciello, Rolando; D'Auria, Francesco; Riccio, Gennaro; Froechlich, Guendalina; Cortese, Riccardo; Nicosia, Alfredo; De Lorenzo, Claudia; Zambrano, Nicola

    2015-01-01

    Expanding the availability of monoclonal antibodies interfering with hepatitis C virus infection of hepatocytes is an active field of investigation within medical biotechnologies, to prevent graft reinfection in patients subjected to liver transplantation and to overcome resistances elicited by novel antiviral drugs. In this paper, we describe a complete pipeline for screening of phage display libraries of human scFvs against native Claudin-1, a tight-junction protein involved in hepatitis C virus infection, expressed on the cell surface of human hepatocytes. To this aim, we implemented a high-throughput sequencing approach for library screening, followed by a simple and effective strategy to recover active binder clones from enriched sublibraries. The recovered clones were successfully converted to active immunoglobulins, thus demonstrating the effectiveness of the whole procedure. This novel approach can guarantee rapid and cheap isolation of antibodies for virtually any native antigen involved in human diseases, for therapeutic and/or diagnostic applications. PMID:26649313

  10. A Conserved Epitope Mapped with a Monoclonal Antibody against the VP3 Protein of Goose Parvovirus by Using Peptide Screening and Phage Display Approaches

    PubMed Central

    Li, Chenxi; Liu, Hongyu; Li, Jinzhe; Liu, Dafei; Meng, Runze; Zhang, Qingshan; Shaozhou, Wulin; Bai, Xiaofei; Zhang, Tingting; Liu, Ming; Zhang, Yun

    2016-01-01

    Background Waterfowl parvovirus (WPV) infection causes high mortality and morbidity in both geese (Anser anser) and Muscovy ducks (Cairina moschata), resulting in significant losses to the waterfowl industries. The VP3 protein of WPV is a major structural protein that induces neutralizing antibodies in the waterfowl. However, B-cell epitopes on the VP3 protein of WPV have not been characterized. Methods and Results To understand the antigenic determinants of the VP3 protein, we used the monoclonal antibody (mAb) 4A6 to screen a set of eight partially expressed overlapping peptides spanning VP3. Using western blotting and an enzyme-linked immunosorbent assay (ELISA), we localized the VP3 epitope between amino acids (aa) 57 and 112. To identify the essential epitope residues, a phage library displaying 12-mer random peptides was screened with mAb 4A6. Phage clone peptides displayed a consensus sequence of YxRFHxH that mimicked the sequence 82Y/FNRFHCH88, which corresponded to amino acid residues 82 to 88 of VP3 protein of WPVs. mAb 4A6 binding to biotinylated fragments corresponding to amino acid residues 82 to 88 of the VP3 protein verified that the 82FxRFHxH88 was the VP3 epitope and that amino acids 82F is necessary to retain maximal binding to mAb 4A6. Parvovirus-positive goose and duck sera reacted with the epitope peptide by dot blotting assay, revealing the importance of these amino acids of the epitope in antibody-epitope binding reactivity. Conclusions and Significance We identified the motif FxRFHxH as a VP3-specific B-cell epitope that is recognized by the neutralizing mAb 4A6. This finding might be valuable in understanding of the antigenic topology of VP3 of WPV. PMID:27191594

  11. Synergetic Targeted Delivery of Sleeping-Beauty Transposon System to Mesenchymal Stem Cells Using LPD Nanoparticles Modified with a Phage-Displayed Targeting Peptide.

    PubMed

    Ma, Kun; Wang, Dong-Dong; Lin, Yiyang; Wang, Jianglin; Petrenko, Valery; Mao, Chuanbin

    2013-03-01

    An important criterion for effective gene therapy is sufficient chromosomal integration activity. The Sleeping Beauty (SB) transposon system is a plasmid system allowing efficient insertion of transgenes into the host genome. However, such efficient insertion occurs only after the system is delivered to nuclei. Since transposons do not have the transducing abilities of viral vectors, efficient delivery of this system first into cells and then into cell nuclei is still a challenge. Here, a phage display technique using a major coat displayed phage library is employed to identify a peptide (VTAMEPGQ) that can home to rat mesenchymal stem cells (rMSCs). A nanoparticle, called liposome protamine/DNA lipoplex (LPD), is electrostatically assembled from cationic liposomes and an anionic complex of protamine, DNA and targeting peptides. Various peptides are enveloped inside the LPD to improve its targeting capability for rMSCs and nuclei. The rMSC-targeting peptide and nuclear localization signal (NLS) peptide can execute the synergetic effect to promote transfection action of LPD. The homing peptide directs the LPD to target the MSCs, whereas the NLS peptide directs transposon to accumulate into nuclei once LPD is internalized inside the cells, leading to increased gene expression. This suggests that rMSC-targeting peptide and NLS peptide within LPD can target to rMSCs and then guide transposon into nuclei. After entering the nuclei, SB transposon increase the insertion rates into cellular chromosomes. The targeting LPD does not show obvious cell toxicity and influence on the differentiation potential of rMSCs. Therefore, the integration of SB transposon and LPD system is a promising nonviral gene delivery vector in stem cell therapy. PMID:23885226

  12. A human and a mouse anti-idiotypic antibody specific for human T14(+) anti-DNA antibodies reconstructed by phage display.

    PubMed

    Leung, D T; Yam, N W; Chui, Y L; Wong, K C; Lim, P L

    2000-09-19

    Little is known about human anti-idiotypic antibodies. Phage display methodology was used to reconstruct these antibodies from lupus patients, which recognize a subset (T14(+)) of anti-DNA antibodies. Antigen-specific B cells were isolated from the blood using a peptide based on a complementarity determining region (V(H)CDR3) of the prototypic T14(+) antibody. cDNA fragments of the V(H) and V(L) genes prepared from the cells were expressed as phage displayed single chain Fv (scFv) fragments using the pCANTAB-5E phagemid vector. From a reactive clone obtained, the Ig genes used were identified to be V(H)3, D5-D3, J(H)4b, V(kappa)I and J(kappa)2. The heavy chain was highly mutated, especially in CDR3, which bears mutations mostly of the replacement type; this region is also unusual in being extremely long due to a D-D fusion. In contrast, a mouse hybridoma antibody, made to the same T14(+) peptide and transformed as a scFv fragment, uses a short V(H)CDR3 comprising five amino acids, three of which are tyrosines. Tyrosines may be important for antigen binding because two of these also exist in the human V(H)CDR3. The light chains of both antibodies may also contribute to the specificity of the protein, because their V(L) segments, including the CDRs, are highly homologous to each other. PMID:11024298

  13. Specific determination of influenza H7N2 virus based on biotinylated single-domain antibody from a phage-displayed library.

    PubMed

    Gong, Xue; Zhu, Min; Li, Guanghui; Lu, Xiaoling; Wan, Yakun

    2016-05-01

    The unpredicted spread of avian influenza virus subtype H7N2 in the world is threatening animals and humans. Specific and effective diagnosis and supervision are required to control the influenza. However, the existing detecting methods are laborious, are time-consuming, and require appropriate laboratory facilities. To tackle this problem, we isolated VHH antibodies against the H7N2 avian influenza virus (AIV) and performed an enzyme-linked immunosorbent assay (ELISA) to detect the H7N2 virus. To obtain VHH antibodies with high affinity and specificity, a camel was immunized. A VHH antibody library was constructed in a phage display vector pMECS with diversity of 2.8 × 10(9). Based on phage display technology and periplasmic extraction ELISA, H7N2-specific VHH antibodies were successfully isolated. According to a pairing test, two VHH antibodies (Nb79 and Nb95) with good thermal stability and specificity can recognize different epitopes of H7N2 virus. The capture antibody (Nb79) was biotinylated in vivo, and the detection antibody (Nb95) was coupled with horseradish peroxidase (HRP). Based on biotin-streptavidin interaction, a novel sandwich immune ELISA was performed to detect H7N2. The immunoassay exhibited a linear range from 5 to 100 ng/ml. Given the above, the newly developed VHH antibody-based double sandwich ELISA (DAS-ELISA) offers an attractive alternative to other diagnostic approaches for the specific detection of H7N2 virus. PMID:26450565

  14. Discovery of Hapten-Specific scFv from a Phage Display Library and Applications for HER2-Positive Tumor Imaging

    PubMed Central

    2015-01-01

    In this study, an anti-hapten antibody (single chain Fv, scFv) against a hapten probe was developed as a unique reporter system for molecular imaging or therapy. The hapten peptide (histamine-succinyl-GSYK, Him) was synthesized for phage displayed scFv affinity selection and for conjugation with cypate (Cy-Him) for in vivo near-infrared (NIR) optical imaging. Hapten-specific scFvs were affinity selected from the human single fold phage display scFv libraries (Tomlinson I + J) with high specificity and affinity. Utilizing HER2 targeting as a model system, the highest affinity scFv (clone J42) was recombinantly fused to an anti-HER2 affibody (scFv-L-Aff) with no loss of affinity of either protein. The functionality of the hapten-scFv reporter system was tested in vitro with a HER2-positive human breast cancer cell line, SK-BR3, and in vivo with SK-BR3 xenografts. ScFv-L-Aff mediated the binding of the hapten to HER2 on SK-BR3 cells and from tissue from the SK-BR3 xenograft; however, scFv-L-Aff did not mediate uptake of the hapten in the SK-BR3 xenografted tumors, presumably due to rapid internalization of the HER2/scFv-L-Aff complex. Our results suggest that this hapten-peptide and anti-hapten scFv can be a universal reporter system in a wide range of imaging and therapeutic applications. PMID:24898150

  15. Screening a phage display library for a novel FGF8b-binding peptide with anti-tumor effect on prostate cancer

    SciTech Connect

    Wang, Wenhui; Chen, Xilei; Li, Tao; Li, Yanmei; Wang, Ruixue; He, Dan; Luo, Wu; Li, Xiaokun; Wu, Xiaoping

    2013-05-01

    Fibroblast growth factor 8b (FGF8b) is the major isoform of FGF8 expressed in prostate cancer and it correlates with the stage and grade of the disease. FGF8b has been considered as a potential target for prostate cancer therapy. Here we isolated 12 specific FGF8b-binding phage clones by screening a phage display heptapeptide library with FGF8b. The peptide (HSQAAVP, named as P12) corresponding to one of these clones showed high homology to the immunoglobulin-like (Ig-like) domain II(D2) of high-affinity FGF8b receptor (FGFR3c), contained 3 identical amino acids (AVP) to the authentic FGFR3 D2 sequence aa 163–169 (LLAVPAA) directly participating in ligand binding, carried the same charges as its corresponding motif (aa163–169) in FGFR3c, suggesting that P12 may have a greater potential to interrupt FGF8b binding to its receptors than other identified heptapeptides do. Functional analysis indicated that synthetic P12 peptides mediate significant inhibition of FGF8b-induced cell proliferation, arrest cell cycle at the G0/G1 phase via suppression of Cyclin D1 and PCNA, and blockade of the activations of Erk1/2 and Akt cascades in both prostate cancer cells and vascular endothelial cells. The results demonstrated that the P12 peptide acting as an FGF8b antagonist may have therapeutic potential in prostate cancer. - Highlights: ► A novel FGF8b-binding peptide P12 was isolated from a phage display library. ► The mechanisms for P12 peptide inhibiting cell proliferation were proposed. ► P12 caused cell cycle arrest at G0/G1 phase via suppression of Cyclin D1 and PCNA. ► P12 suppressed FGF8b-induced activations of Akt and MAP kinases. ► P12 acting as an FGF8b antagonist may have therapeutic potential in prostate cancer.

  16. OVCAR-3 Spheroid-Derived Cells Display Distinct Metabolic Profiles

    PubMed Central

    Vermeersch, Kathleen A.; Wang, Lijuan; Mezencev, Roman; McDonald, John F.; Styczynski, Mark P.

    2015-01-01

    Introduction Recently, multicellular spheroids were isolated from a well-established epithelial ovarian cancer cell line, OVCAR-3, and were propagated in vitro. These spheroid-derived cells displayed numerous hallmarks of cancer stem cells, which are chemo- and radioresistant cells thought to be a significant cause of cancer recurrence and resultant mortality. Gene set enrichment analysis of expression data from the OVCAR-3 cells and the spheroid-derived putative cancer stem cells identified several metabolic pathways enriched in differentially expressed genes. Before this, there had been little previous knowledge or investigation of systems-scale metabolic differences between cancer cells and cancer stem cells, and no knowledge of such differences in ovarian cancer stem cells. Methods To determine if there were substantial metabolic changes corresponding with these transcriptional differences, we used two-dimensional gas chromatography coupled to mass spectrometry to measure the metabolite profiles of the two cell lines. Results These two cell lines exhibited significant metabolic differences in both intracellular and extracellular metabolite measurements. Principal components analysis, an unsupervised dimensional reduction technique, showed complete separation between the two cell types based on their metabolite profiles. Pathway analysis of intracellular metabolomics data revealed close overlap with metabolic pathways identified from gene expression data, with four out of six pathways found enriched in gene-level analysis also enriched in metabolite-level analysis. Some of those pathways contained multiple metabolites that were individually statistically significantly different between the two cell lines, with one of the most broadly and consistently different pathways, arginine and proline metabolism, suggesting an interesting hypothesis about cancerous and stem-like metabolic phenotypes in this pair of cell lines. Conclusions Overall, we demonstrate for the

  17. Identification and characterization of epitopes on Plasmodium knowlesi merozoite surface protein-142 (MSP-142) using synthetic peptide library and phage display library.

    PubMed

    Cheong, Fei Wen; Fong, Mun Yik; Lau, Yee Ling

    2016-02-01

    Plasmodium knowlesi can cause potentially life threatening human malaria. The Plasmodium merozoite surface protein-142 (MSP-142) is a potential target for malaria blood stage vaccine, and for diagnosis of malaria. Two epitope mapping techniques were used to identify the potential epitopes within P. knowlesi MSP-142. Nine and 14 potential epitopes were identified using overlapping synthetic peptide library and phage display library, respectively. Two regions on P. knowlesi MSP-142 (amino acid residues 37-95 and residues 240-289) were identified to be the potential dominant epitope regions. Two of the prominent epitopes, P10 (TAKDGMEYYNKMGELYKQ) and P31 (RCLLGFKEVGGKCVPASI), were evaluated using mouse model. P10- and P31-immunized mouse sera reacted with recombinant P. knowlesi MSP-142, with the IgG isotype distribution of IgG2b>IgG1>IgG2a>IgG3. Significant higher level of cytokines interferon-gamma and interleukin-2 was detected in P31-immunized mice. Both P10 and P31 could be the suitable epitope candidates to be used in malaria vaccine designs and immunodiagnostic assays, provided further evaluation is needed to validate the potential uses of these epitopes. PMID:26624919

  18. High throughput cytotoxicity screening of anti-HER2 immunotoxins conjugated with antibody fragments from phage-displayed synthetic antibody libraries

    PubMed Central

    Hou, Shin-Chen; Chen, Hong-Sen; Lin, Hung-Wei; Chao, Wei-Ting; Chen, Yao-Sheng; Fu, Chi-Yu; Yu, Chung-Ming; Huang, Kai-Fa; Wang, Andrew H.-J.; Yang, An-Suei

    2016-01-01

    Immunotoxins are an important class of antibody-based therapeutics. The potency of the immunotoxins depends on the antibody fragments as the guiding modules targeting designated molecules on cell surfaces. Phage-displayed synthetic antibody scFv libraries provide abundant antibody fragment candidates as targeting modules for the immunoconjugates, but the discovery of optimally functional immunoconjugates is limited by the scFv-payload conjugation procedure. In this work, cytotoxicity screening of non-covalently assembled immunotoxins was developed in high throughput format to discover highly functional synthetic antibody fragments for delivering toxin payloads. The principles governing the efficiency of the antibodies as targeting modules have been elucidated from large volume of cytotoxicity data: (a) epitope and paratope of the antibody-based targeting module are major determinants for the potency of the immunotoxins; (b) immunotoxins with bivalent antibody-based targeting modules are generally superior in cytotoxic potency to those with corresponding monovalent targeting module; and (c) the potency of the immunotoxins is positively correlated with the densities of the cell surface antigen. These findings suggest that screening against the target cells with a large pool of antibodies from synthetic antibody libraries without the limitations of natural antibody responses can lead to optimal potency and minimal off-target toxicity of the immunoconjugates. PMID:27550798

  19. High throughput cytotoxicity screening of anti-HER2 immunotoxins conjugated with antibody fragments from phage-displayed synthetic antibody libraries.

    PubMed

    Hou, Shin-Chen; Chen, Hong-Sen; Lin, Hung-Wei; Chao, Wei-Ting; Chen, Yao-Sheng; Fu, Chi-Yu; Yu, Chung-Ming; Huang, Kai-Fa; Wang, Andrew H-J; Yang, An-Suei

    2016-01-01

    Immunotoxins are an important class of antibody-based therapeutics. The potency of the immunotoxins depends on the antibody fragments as the guiding modules targeting designated molecules on cell surfaces. Phage-displayed synthetic antibody scFv libraries provide abundant antibody fragment candidates as targeting modules for the immunoconjugates, but the discovery of optimally functional immunoconjugates is limited by the scFv-payload conjugation procedure. In this work, cytotoxicity screening of non-covalently assembled immunotoxins was developed in high throughput format to discover highly functional synthetic antibody fragments for delivering toxin payloads. The principles governing the efficiency of the antibodies as targeting modules have been elucidated from large volume of cytotoxicity data: (a) epitope and paratope of the antibody-based targeting module are major determinants for the potency of the immunotoxins; (b) immunotoxins with bivalent antibody-based targeting modules are generally superior in cytotoxic potency to those with corresponding monovalent targeting module; and (c) the potency of the immunotoxins is positively correlated with the densities of the cell surface antigen. These findings suggest that screening against the target cells with a large pool of antibodies from synthetic antibody libraries without the limitations of natural antibody responses can lead to optimal potency and minimal off-target toxicity of the immunoconjugates. PMID:27550798

  20. A phage display selected 7-mer peptide inhibitor of the Tannerella forsythia metalloprotease-like enzyme Karilysin can be truncated to Ser-Trp-Phe-Pro.

    PubMed

    Skottrup, Peter Durand; Sørensen, Grete; Ksiazek, Miroslaw; Potempa, Jan; Riise, Erik

    2012-01-01

    Tannerella forsythia is a gram-negative bacteria, which is strongly associated with the development of periodontal disease. Karilysin is a newly identified metalloprotease-like enzyme, that is secreted from T. forsythia. Karilysin modulates the host immune response and is therefore considered a likely drug target. In this study peptides were selected towards the catalytic domain from Karilysin (Kly18) by phage display. The peptides were linear with low micromolar binding affinities. The two best binders (peptide14 and peptide15), shared the consensus sequence XWFPXXXGGG. A peptide15 fusion with Maltose Binding protein (MBP) was produced with peptide15 fused to the N-terminus of MBP. The peptide15-MBP was expressed in E. coli and the purified fusion-protein was used to verify Kly18 specific binding. Chemically synthesised peptide15 (SWFPLRSGGG) could inhibit the enzymatic activity of both Kly18 and intact Karilysin (Kly48). Furthermore, peptide15 could slow down the autoprocessing of intact Kly48 to Kly18. The WFP motif was important for inhibition and a truncation study further demonstrated that the N-terminal serine was also essential for Kly18 inhibition. The SWFP peptide had a Ki value in the low micromolar range, which was similar to the intact peptide15. In conclusion SWFP is the first reported inhibitor of Karilysin and can be used as a valuable tool in structure-function studies of Karilysin. PMID:23119051

  1. Discovering neutralizing antibodies targeting the stem epitope of H1N1 influenza hemagglutinin with synthetic phage-displayed antibody libraries

    PubMed Central

    Tung, Chao-Ping; Chen, Ing-Chien; Yu, Chung-Ming; Peng, Hung-Pin; Jian, Jhih-Wei; Ma, Shiou-Hwa; Lee, Yu-Ching; Jan, Jia-Tsrong; Yang, An-Suei

    2015-01-01

    Broadly neutralizing antibodies developed from the IGHV1–69 germline gene are known to bind to the stem region of hemagglutinin in diverse influenza viruses but the sequence determinants for the antigen recognition, including neutralization potency and binding affinity, are not clearly understood. Such understanding could inform designs of synthetic antibody libraries targeting the stem epitope on hemagglutinin, leading to artificially designed antibodies that are functionally advantageous over antibodies from natural antibody repertoires. In this work, the sequence space of the complementarity determining regions of a broadly neutralizing antibody (F10) targeting the stem epitope on the hemagglutinin of a strain of H1N1 influenza virus was systematically explored; the elucidated antibody-hemagglutinin recognition principles were used to design a phage-displayed antibody library, which was then used to discover neutralizing antibodies against another strain of H1N1 virus. More than 1000 functional antibody candidates were selected from the antibody library and were shown to neutralize the corresponding strain of influenza virus with up to 7 folds higher potency comparing with the parent F10 antibody. The antibody library could be used to discover functionally effective antibodies against other H1N1 influenza viruses, supporting the notion that target-specific antibody libraries can be designed and constructed with systematic sequence-function information. PMID:26456860

  2. A Phage Display Selected 7-mer Peptide Inhibitor of the Tannerella forsythia Metalloprotease-Like Enzyme Karilysin can be Truncated to Ser-Trp-Phe-Pro

    PubMed Central

    Skottrup, Peter Durand; Sørensen, Grete; Ksiazek, Miroslaw; Potempa, Jan; Riise, Erik

    2012-01-01

    Tannerella forsythia is a gram-negative bacteria, which is strongly associated with the development of periodontal disease. Karilysin is a newly identified metalloprotease-like enzyme, that is secreted from T. forsythia. Karilysin modulates the host immune response and is therefore considered a likely drug target. In this study peptides were selected towards the catalytic domain from Karilysin (Kly18) by phage display. The peptides were linear with low micromolar binding affinities. The two best binders (peptide14 and peptide15), shared the consensus sequence XWFPXXXGGG. A peptide15 fusion with Maltose Binding protein (MBP) was produced with peptide15 fused to the N-terminus of MBP. The peptide15-MBP was expressed in E. coli and the purified fusion-protein was used to verify Kly18 specific binding. Chemically synthesised peptide15 (SWFPLRSGGG) could inhibit the enzymatic activity of both Kly18 and intact Karilysin (Kly48). Furthermore, peptide15 could slow down the autoprocessing of intact Kly48 to Kly18. The WFP motif was important for inhibition and a truncation study further demonstrated that the N-terminal serine was also essential for Kly18 inhibition. The SWFP peptide had a Ki value in the low micromolar range, which was similar to the intact peptide15. In conclusion SWFP is the first reported inhibitor of Karilysin and can be used as a valuable tool in structure-function studies of Karilysin. PMID:23119051

  3. Comprehensive mapping of functional epitopes on dengue virus glycoprotein E DIII for binding to broadly neutralizing antibodies 4E11 and 4E5A by phage display.

    PubMed

    Frei, Julia C; Kielian, Margaret; Lai, Jonathan R

    2015-11-01

    Here we investigated the binding of Dengue virus envelope glycoprotein domain III (DIII) by two broadly neutralizing antibodies (bNAbs), 4E11 and 4E5A. There are four serotypes of Dengue virus (DENV-1 to -4), whose DIII sequences vary by up to 49%. We used combinatorial alanine scanning mutagenesis, a phage display approach, to map functional epitopes (those residues that contribute most significantly to the energetics of antibody-antigen interaction) on these four serotypes. Our results showed that 4E11, which binds strongly to DENV-1, -2, and -3, and moderately to DENV-4, recognized a common conserved core functional epitope involving DIII residues K310, L/I387, L389, and W391. There were also unique recognition features for each serotype, suggesting that 4E11 has flexible recognition requirements. Similar scanning studies for the related bNAb 4E5A, which binds more tightly to DENV-4, identified broader functional epitopes on DENV-1. These results provide useful information for immunogen and therapeutic antibody design. PMID:26339794

  4. Novel Strategy for Selection of Monoclonal Antibodies Against Highly Conserved Antigens: Phage Library Panning Against Ephrin-B2 Displayed on Yeast

    PubMed Central

    Kaushik, Tanwi; Hwang, Chang-Il; Hu, Xuebo; Nikitin, Alexander Y.; Jin, Moonsoo M.

    2012-01-01

    Ephrin-B2 is predominately expressed in endothelium of arterial origin, involved in developmental angiogenesis and neovasculature formation through its interaction with EphB4. Despite its importance in physiology and pathological conditions, it has been challenging to produce monoclonal antibodies against ephrin-B2 due to its high conservation in sequence throughout human and rodents. Using a novel approach for antibody selection by panning a phage library of human antibody against antigens displayed in yeast, we have isolated high affinity antibodies against ephrin-B2. The function of one high affinity binder (named as ‘EC8’) was manifested in its ability to inhibit ephrin-B2 interaction with EphB4, to cross-react with murine ephrin-B2, and to induce internalization into ephrin-B2 expressing cells. EC8 was also compatible with immunoprecipitation and detection of ephrin-B2 expression in the tissue after standard chemical fixation procedure. Consistent with previous reports on ephrin-B2 induction in some epithelial tumors and tumor-associated vasculatures, EC8 specifically detected ephrin-B2 in tumors as well as the vasculature within and outside of the tumors. We envision that monoclonal antibody developed in this study may be used as a reagent to probe ephrin-B2 distribution in normal as well as in pathological conditions and to antagonize ephrin-B2 interaction with EphB4 for basic science and therapeutic applications. PMID:22292016

  5. A phage-displayed chicken single-chain antibody fused to alkaline phosphatase detects Fusarium pathogens and their presence in cereal grains.

    PubMed

    Hu, Zu-Quan; Li, He-Ping; Zhang, Jing-Bo; Huang, Tao; Liu, Jin-Long; Xue, Sheng; Wu, Ai-Bo; Liao, Yu-Cai

    2013-02-18

    Fusarium and its poisonous mycotoxins are distributed worldwide and are of particular interest in agriculture and food safety. A simple analytical method to detect pathogens is essential for forecasting diseases and controlling mycotoxins. This article describes a proposed method for convenient and sensitive detection of Fusarium pathogens that uses the fusion of single-chain variable fragment (scFv) and alkaline phosphatase (AP). A highly reactive scFv antibody specific to soluble cell wall-bound proteins (SCWPs) of F. verticillioides was selected from an immunized chicken phagemid library by phage display. The antibody was verified to bind on the surface of ungerminated conidiospores and mycelia of F. verticillioides. The scFv-AP fusion was constructed, and soluble expression in bacteria was confirmed. Both the antibody properties and enzymatic activity were retained, and the antigen-binding capacity of the fusion was enhanced by the addition of a linker. Surface plasmon resonance measurements confirmed that the fusion displayed 4-fold higher affinity compared with the fusion's parental scFv antibody. Immunoblot analyses showed that the fusion had good binding capacity to the components from SCWPs of F. verticillioides, and enzyme-linked immunosorbent assays revealed that the detection limit of the fungus was below 10(-2) μg mL(-1), superior to the scFv antibody. The fusion protein was able to detect fungal concentrations as low as 10(-3) mg g(-1) of maize grains in both naturally and artificially contaminated samples. Thus, the fusion can be applied in rapid and simple diagnosis of Fusarium contamination in field and stored grain or in food. PMID:23374219

  6. Biopanning and characterization of peptides with Fe3O4 nanoparticles-binding capability via phage display random peptide library technique.

    PubMed

    You, Fei; Yin, Guangfu; Pu, Ximing; Li, Yucan; Hu, Yang; Huang, Zhongbin; Liao, Xiaoming; Yao, Yadong; Chen, Xianchun

    2016-05-01

    Functionalization of inorganic nanoparticles (NPs) play an important role in biomedical applications. A proper functionalization of NPs can improve biocompatibility, avoid a loss of bioactivity, and further endow NPs with unique performances. Modification with vairous specific binding biomolecules from random biological libraries has been explored. In this work, two 7-mer peptides with sequences of HYIDFRW and TVNFKLY were selected from a phage display random peptide library by using ferromagnetic NPs as targets, and were verified to display strong binding affinity to Fe3O4 NPs. Fourier transform infrared spectrometry, fluorescence microscopy, thermal analysis and X-ray photoelectron spectroscopy confirmed the presence of peptides on the surface of Fe3O4 NPs. Sequence analyses revealed that the probable binding mechanism between the peptide and Fe3O4 NPs might be driven by Pearson hard acid-hard base specific interaction and hydrogen bonds, accompanied with hydrophilic interactions and non-specific electrostatic attractions. The cell viability assay indicated a good cytocompatibility of peptide-bound Fe3O4 NPs. Furthermore, TVNFKLY peptide and an ovarian tumor cell A2780 specific binding peptide (QQTNWSL) were conjugated to afford a liner 14-mer peptide (QQTNWSLTVNFKLY). The binding and targeting studies showed that 14-mer peptide was able to retain both the strong binding ability to Fe3O4 NPs and the specific binding ability to A2780 cells. The results suggested that the Fe3O4-binding peptides would be of great potential in the functionalization of Fe3O4 NPs for the tumor-targeted drug delivery and magnetic hyperthermia. PMID:26896661

  7. NOVEL AMYLOID-BETA SPECIFIC scFv and VH ANTIBODY FRAGMENTS FROM HUMAN AND MOUSE PHAGE DISPLAY ANTIBODY LIBRARIES

    PubMed Central

    Medecigo, M.; Manoutcharian, K.; Vasilevko, V.; Govezensky, T.; Munguia, M. E.; Becerril, B.; Luz-Madrigal, A.; Vaca, L.; Cribbs, D. H.; Gevorkian, G.

    2010-01-01

    Anti-amyloid immunotherapy has been proposed as an appropriate therapeutic approach for Alzheimer’s disease (AD). Significant efforts have been made towards the generation and assessment of antibody-based reagents capable of preventing and clearing amyloid aggregates as well as preventing their synaptotoxic effects. In this study, we selected a novel set of human anti-amyloid-beta peptide 1-42 (Aβ1-42) recombinant monoclonal antibodies in a single chain fragment variable (scFv) and a single domain (VH) formats. We demonstrated that these antibody fragments recognize in a specific manner amyloid beta deposits in APP/Tg mouse brains, inhibit toxicity of oligomeric Aβ1-42 in neuroblastoma cell cultures in a concentration-dependently manner and reduced amyloid deposits in APP/Tg2576 mice after intracranial administration. These antibody fragments recognize epitopes in the middle/C-terminus region of Aβ, which makes them strong therapeutic candidates due to the fact that most of the Aβ species found in the brains of AD patients display extensive N-terminus truncations/modifications. PMID:20451261

  8. Phage Transduction.

    PubMed

    Goh, Shan

    2016-01-01

    Bacteriophages mediate horizontal gene transfer through a mechanism known as transduction. Phage transduction carried out in the laboratory involves a bacterial donor and a recipient, both of which are susceptible to infection by the phage of interest. Phage is propagated in the donor, concentrated, and exposed transiently to recipient at different multiplicity of infection ratios. Transductants are selected for the desired phenotype by culture on selective medium. Here we describe transduction of ermB conferring resistance to erythromycin by the C. difficile phage ϕC2. PMID:27507341

  9. Molecular Dissection of the Homotrimeric Sliding Clamp of T4 Phage: Two Domains of a Subunit Display Asymmetric Characteristics.

    PubMed

    Singh, Manika Indrajit; Jain, Vikas

    2016-01-26

    Sliding clamp proteins are circular dimers or trimers that encircle DNA and serve as processivity factors during DNA replication. Their presence in all the three domains of life and in bacteriophages clearly indicates their high level of significance. T4 gp45, besides functioning as the DNA polymerase processivity factor, also moonlights as the late promoter transcription determinant. Here we report a detailed biophysical analysis of gp45. The chemical denaturation of gp45 probed by circular dichroism spectroscopy, tryptophan fluorescence anisotropy, and blue-native polyacrylamide gel electrophoresis suggests that the protein follows a three-state denaturation profile and displays an intermediate molten globule-like state. The three-state transition was found to be the result of the sequential unfolding of the two domains, the N-terminal domain (NTD) and the C-terminal domain (CTD), of gp45. The experiments involving Trp fluorescence quenching by acrylamide demonstrate that the CTD undergoes substantial changes in conformation during formation of the intermediate state. Further biophysical dissection of the individual domain reveals contrasting properties of the two domains. The NTD unfolds at low urea concentrations and is also susceptible to protease cleavage, whereas the CTD resists urea-mediated denaturation and is not amenable to protease digestion even at higher urea concentrations. These experiments allow us to conclude that the two domains of gp45 differ in their dynamics. While the CTD shows stability and rigidity, we find that the NTD is unstable and flexible. We believe that the asymmetric characteristics of the two domains and the interface they form hold significance in gp45 structure and function. PMID:26735934

  10. Synthetic peptide-targeted selection of phage display mimotopes highlights immunogenic features of α-helical vs non-helical epitopes of Taenia solium paramyosin: implications for parasite- and host-protective roles of the protein.

    PubMed

    Gazarian, Karlen G; Solis, Carlos F; Gazarian, Tatiana G; Rowley, Merrill; Laclette, Juan P

    2012-03-01

    Paramyosin of the pig-human parasite Taenia solium (TPmy) is a α-helical protein located on the worm surface that is suggested to fulfill an immunomodulatory role protecting the parasite against host immune system. Besides, in challenging experiments the protein shows a vaccine potential. These observations imply that TPmy harbors antigenic determinants for each of these contrasting actions. However the suggestion was not given a support from experimental data because respective epitopes have not been described thus far. To circumvent this difficulty, we use synthetic peptides with sequences of regions composed of α-helical or linear structure to induce rabbit antibody responses for phage-display mapping of epitope core amino-acid sets. Antibodies to α-helical regions were weak binders and M13 phage-displayed peptides selected by them from two different libraries exhibited no amino-acid similarities with the original protein site. In contrast, the antibodies produced in response to non-helical segment within α-helical structure were better binders and selectors of perfect structural mimics of the protein site. This first phage display epitope analysis of TPmy supports the notion that the rod-like α-helix, which encompasses over 90% of the total amino acids, may serve as an immunomodulatory shield that protects the parasite. Further, the seven non-helical segments of the TPmy molecule may represent the only anti-parasite discrete immunogenic epitopes whose representative mimotopes can be utilized in development of pure epitope vaccines. PMID:22015270