Sample records for phagocytosis requires triacylglycerol

  1. Stimulation of phagocytosis by sulforaphane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suganuma, Hiroyuki, E-mail: hsuganu1@jhmi.edu; Fahey, Jed W., E-mail: jfahey@jhmi.edu; Bryan, Kelley E., E-mail: kbryanm1@jhmi.edu

    2011-02-04

    Research highlights: {yields} Sulforaphane stimulates the phagocytosis of RAW 264.7 macrophages under conditions of serum deprivation. {yields} This effect does not require Nrf2-dependent induction of phase 2 genes. {yields} Inactivation of macrophage migration inhibitory factor (MIF) by sulforaphane may be involved in stimulation of phagocytosis by sulforaphane. -- Abstract: Sulforaphane, a major isothiocyanate derived from cruciferous vegetables, protects living systems against electrophile toxicity, oxidative stress, inflammation, and radiation. A major protective mechanism is the induction of a network of endogenous cytoprotective (phase 2) genes that are regulated by transcription factor Nrf2. To obtain a more detailed understanding of the anti-inflammatorymore » and immunomodulatory effects of sulforaphane, we evaluated its effect on the phagocytosis activity of RAW 264.7 murine macrophage-like cells by measuring the uptake of 2-{mu}m diameter polystyrene beads. Sulforaphane raised the phagocytosis activity of RAW 264.7 cells but only in the absence or presence of low concentrations (1%) of fetal bovine serum. Higher serum concentrations depressed phagocytosis and abolished its stimulation by sulforaphane. This stimulation did not depend on the induction of Nrf2-regulated genes since it occurred in peritoneal macrophages of nrf2{sup -/-} mice. Moreover, a potent triterpenoid inducer of Nrf2-dependent genes did not stimulate phagocytosis, whereas sulforaphane and another isothiocyanate (benzyl isothiocyanate) had comparable inducer potencies. It has been shown recently that sulforaphane is a potent and direct inactivator of macrophage migration inhibitory factor (MIF), an inflammatory cytokine. Moreover, the addition of recombinant MIF to RAW 264.7 cells attenuated phagocytosis, but sulforaphane-inactivated MIF did not affect phagocytosis. The inactivation of MIF may therefore be involved in the phagocytosis-enhancing activity of sulforaphane.« less

  2. Outer segment phagocytosis by cultured retinal pigment epithelial cells requires Gas6.

    PubMed

    Hall, M O; Prieto, A L; Obin, M S; Abrams, T A; Burgess, B L; Heeb, M J; Agnew, B J

    2001-10-01

    The function and viability of vertebrate photoreceptors requires the daily phagocytosis of photoreceptor outer segments (OS) by the adjacent retinal pigment epithelium (RPE). We demonstrate here a critical role in this process for Gas6 and by implication one of its receptor protein tyrosine kinases (RTKs), Mertk (Mer). Gas6 specifically and selectively stimulates the phagocytosis of OS by normal cultured rat RPE cells. The magnitude of the response is dose-dependent and shows an absolute requirement for calcium. By contrast the Royal College of Surgeons (RCS) rat RPE cells, in which a mutation in the gene Mertk results in the expression of a truncated, non-functional receptor, does not respond to Gas6. These data strongly suggest that activation of Mertk by its ligand, Gas6, is the specific signaling pathway responsible for initiating the ingestion of shed OS. Moreover, photoreceptor degeneration in the RCS rat retina, which lacks Mertk, and in humans with a mutation in Mertk, strongly suggests that the Gas6/Mertk signaling pathway is essential for photoreceptor viability. We believe that this is the first demonstration of a specific function for Gas6 in the eye. Copyright 2001 Academic Press.

  3. Phagocytosis depends on TRPV2-mediated calcium influx and requires TRPV2 in lipids rafts: alteration in macrophages from patients with cystic fibrosis.

    PubMed

    Lévêque, Manuella; Penna, Aubin; Le Trionnaire, Sophie; Belleguic, Chantal; Desrues, Benoît; Brinchault, Graziella; Jouneau, Stéphane; Lagadic-Gossmann, Dominique; Martin-Chouly, Corinne

    2018-03-09

    Whereas many phagocytosis steps involve ionic fluxes, the underlying ion channels remain poorly defined. As reported in mice, the calcium conducting TRPV2 channel impacts the phagocytic process. Macrophage phagocytosis is critical for defense against pathogens. In cystic fibrosis (CF), macrophages have lost their capacity to act as suppressor cells and thus play a significant role in the initiating stages leading to chronic inflammation/infection. In a previous study, we demonstrated that impaired function of CF macrophages is due to a deficient phagocytosis. The aim of the present study was to investigate TRPV2 role in the phagocytosis capacity of healthy primary human macrophage by studying its activity, its membrane localization and its recruitment in lipid rafts. In primary human macrophages, we showed that P. aeruginosa recruits TRPV2 channels at the cell surface and induced a calcium influx required for bacterial phagocytosis. We presently demonstrate that to be functional and play a role in phagocytosis, TRPV2 might require a preferential localization in lipid rafts. Furthermore, CF macrophage displays a perturbed calcium homeostasis due to a defect in TRPV2. In this context, deregulated TRPV2-signaling in CF macrophages could explain their defective phagocytosis capacity that contribute to the maintenance of chronic infection.

  4. Plasminogen promotes macrophage phagocytosis in mice

    PubMed Central

    Ganapathy, Swetha; Settle, Megan; Plow, Edward F.

    2014-01-01

    The phagocytic function of macrophages plays a pivotal role in eliminating apoptotic cells and invading pathogens. Evidence implicating plasminogen (Plg), the zymogen of plasmin, in phagocytosis is extremely limited with the most recent in vitro study showing that plasmin acts on prey cells rather than on macrophages. Here, we use apoptotic thymocytes and immunoglobulin opsonized bodies to show that Plg exerts a profound effect on macrophage-mediated phagocytosis in vitro and in vivo. Plg enhanced the uptake of these prey by J774A.1 macrophage-like cells by 3.5- to fivefold Plg receptors and plasmin proteolytic activity were required for phagocytosis of both preys. Compared with Plg+/+ mice, Plg−/− mice exhibited a 60% delay in clearance of apoptotic thymocytes by spleen and an 85% reduction in uptake by peritoneal macrophages. Phagocytosis of antibody-mediated erythrocyte clearance by liver Kupffer cells was reduced by 90% in Plg−/− mice compared with Plg+/+ mice. A gene array of splenic and hepatic tissues from Plg−/− and Plg+/+ mice showed downregulation of numerous genes in Plg−/− mice involved in phagocytosis and regulation of phagocytic gene expression was confirmed in macrophage-like cells. Thus, Plg may play an important role in innate immunity by changing expression of genes that contribute to phagocytosis. PMID:24876560

  5. Phagocytosis: Hungry, Hungry Cells.

    PubMed

    Gray, Matthew; Botelho, Roberto J

    2017-01-01

    Phagocytosis is the cellular internalization and sequestration of particulate matter into a `phagosome, which then matures into a phagolysosome. The phagolysosome then offers a specialized acidic and hydrolytic milieu that ultimately degrades the engulfed particle. In multicellular organisms, phagocytosis and phagosome maturation play two key physiological roles. First, phagocytic cells have an important function in tissue remodeling and homeostasis by eliminating apoptotic bodies, senescent cells and cell fragments. Second, phagocytosis is a critical weapon of the immune system, whereby cells like macrophages and neutrophils hunt and engulf a variety of pathogens and foreign particles. Not surprisingly, pathogens have evolved mechanisms to either block or alter phagocytosis and phagosome maturation, ultimately usurping the cellular machinery for their own survival. Here, we review past and recent discoveries that highlight how phagocytes recognize target particles, key signals that emanate after phagocyte-particle engagement, and how these signals help modulate actin-dependent remodeling of the plasma membrane that culminates in the release of the phagosome. We then explore processes related to early and late stages of phagosome maturation, which requires fusion with endosomes and lysosomes. We end this review by acknowledging that little is known about phagosome fission and even less is known about how phagosomes are resolved after particle digestion.

  6. Insulin signalling mechanisms for triacylglycerol storage.

    PubMed

    Czech, M P; Tencerova, M; Pedersen, D J; Aouadi, M

    2013-05-01

    Insulin signalling is uniquely required for storing energy as fat in humans. While de novo synthesis of fatty acids and triacylglycerol occurs mostly in liver, adipose tissue is the primary site for triacylglycerol storage. Insulin signalling mechanisms in adipose tissue that stimulate hydrolysis of circulating triacylglycerol, uptake of the released fatty acids and their conversion to triacylglycerol are poorly understood. New findings include (1) activation of DNA-dependent protein kinase to stimulate upstream stimulatory factor (USF)1/USF2 heterodimers, enhancing the lipogenic transcription factor sterol regulatory element binding protein 1c (SREBP1c); (2) stimulation of fatty acid synthase through AMP kinase modulation; (3) mobilisation of lipid droplet proteins to promote retention of triacylglycerol; and (4) upregulation of a novel carbohydrate response element binding protein β isoform that potently stimulates transcription of lipogenic enzymes. Additionally, insulin signalling through mammalian target of rapamycin to activate transcription and processing of SREBP1c described in liver may apply to adipose tissue. Paradoxically, insulin resistance in obesity and type 2 diabetes is associated with increased triacylglycerol synthesis in liver, while it is decreased in adipose tissue. This and other mysteries about insulin signalling and insulin resistance in adipose tissue make this topic especially fertile for future research.

  7. The nuclear factor kappa B (NF-κB) activation is required for phagocytosis of staphylococcus aureus by RAW 264.7 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Fei, E-mail: zhufei@zju.edu.cn; Yue, Wanfu; Wang, Yongxia

    Nuclear factor kappa B (NF-κB) is a ubiquitous transcription factor which controls the expression of various genes involved in immune responses. However, it is not clear whether NF-κB activation is critical for phagocytosis when Staphylococcus aureus is the pathogen. Using oligonucleotide microarrays, we investigated whether NF-κB cascade genes are altered in a mouse leukemic monocyte macrophage cell line (RAW 264.7) when the cells were stimulated to activate a host innate immune response against live S. aureus or heat-inactivated S. aureus (HISA). NF-κB cascade genes such as Nfκb1, Nfκbiz, Nfκbie, Rel, Traf1 and Tnfaip3 were up-regulated by all treatments at onemore » hour after incubation. NF-κB play an important role in activating phagocytosis in RAW 264.7 cells infected with S. aureus. Inhibition of NF-κB significantly blocked phagocytosis of fluorescently labeled S. aureus and decreased the expression of NFκB1, IL1α, IL1β and TLR2 in this cell line. Our results demonstrate that S. aureus may activate the NF-κB pathway and that NF-κB activation is required for phagocytosis of S. aureus by macrophages. - Highlights: • NF-κB cascade genes such as Nfκb1 and Traf1 were up-regulated by heat-inactivated S. aureus. • Inhibition of NF-κB significantly blocked phagocytosis of fluorescently labeled S. aureus. • NF-κB activation is required for phagocytosis of S. aureus by macrophages.« less

  8. Quantitative Phagocytosis.

    ERIC Educational Resources Information Center

    McCallister, Zane Gary; McCallister, Gary Loren

    1996-01-01

    Presents a model experiment for quantifying phagocytosis using earthworm coelomocytes and determining the optimum length of time necessary to obtain maximum phagocytosis. Involves incubating coelomocytes from invertebrates with an antigen, staining the cells, counting the number of antigen particles ingested, and measuring the effect of different…

  9. Allograft tolerance induced by donor apoptotic lymphocytes requires phagocytosis in the recipient

    NASA Technical Reports Server (NTRS)

    Sun, E.; Gao, Y.; Chen, J.; Roberts, A. I.; Wang, X.; Chen, Z.; Shi, Y.

    2004-01-01

    Cell death through apoptosis plays a critical role in regulating cellular homeostasis. Whether the disposal of apoptotic cells through phagocytosis can actively induce immune tolerance in vivo, however, remains controversial. Here, we report in a rat model that without using immunosuppressants, transfusion of apoptotic splenocytes from the donor strain prior to transplant dramatically prolonged survival of heart allografts. Histological analysis verified that rejection signs were significantly ameliorated. Splenocytes from rats transfused with donor apoptotic cells showed a dramatically decreased response to donor lymphocyte stimulation. Most importantly, blockade of phagocytosis in vivo, either with gadolinium chloride to disrupt phagocyte function or with annexin V to block binding of exposed phosphotidylserine to its receptor on phagocytes, abolished the beneficial effect of transfused apoptotic cells on heart allograft survival. Our results demonstrate that donor apoptotic cells promote specific allograft acceptance and that phagocytosis of apoptotic cells in vivo plays a crucial role in maintaining immune tolerance.

  10. Entamoeba histolytica. Phagocytosis as a virulence factor

    PubMed Central

    1983-01-01

    In this paper, we attempted to define the role of phagocytosis in the virulence of Entamoeba histolytica. We have isolated, from a highly phagocytic and virulent strain, a clone deficient in phagocytosis. Trophozoites of wild-type strain HM1:IMSS were fed with Escherichia coli strain CR34-Thy- grown on 5-bromo,2'-deoxyuridine. The trophozoites that had incorporated the base analog through phagocytosis of the bacteria were killed by irradiation with 310 nm light. The survivors, presumably trophozoites defective in phagocytosis, were grown until log phase and submitted two more times to the selection procedure. Clone L-6, isolated from a subpopulation resulting from this selection procedure, showed 75-85% less erythrophagocytic activity than the wild-type strain. The virulence of clone L-6 and strain HM1:IMSS was measured. The inoculum required to induce liver abscesses in 50% of the newborn hamsters inoculated (AD50) of HM1:IMSS was 1.5 X 10(4) trophozoites. Clone L-6 trophozoites failed to induce liver abscesses in newborn hamsters even with inocula of 5 X 10(5) trophozoites. Virulence revertants were obtained by successive passage of L-6 trophozoites through the liver of young hamsters. The trophozoites that recovered the ability to produce liver abscesses simultaneously recuperate high erythrophagocytic rates. These results show that phagocytosis is involved in the aggressive mechanisms of E. histolytica. PMID:6313842

  11. Stimulation of phagocytosis by sulforaphane.

    PubMed

    Suganuma, Hiroyuki; Fahey, Jed W; Bryan, Kelley E; Healy, Zachary R; Talalay, Paul

    2011-02-04

    Sulforaphane, a major isothiocyanate derived from cruciferous vegetables, protects living systems against electrophile toxicity, oxidative stress, inflammation, and radiation. A major protective mechanism is the induction of a network of endogenous cytoprotective (phase 2) genes that are regulated by transcription factor Nrf2. To obtain a more detailed understanding of the anti-inflammatory and immunomodulatory effects of sulforaphane, we evaluated its effect on the phagocytosis activity of RAW 264.7 murine macrophage-like cells by measuring the uptake of 2-μm diameter polystyrene beads. Sulforaphane raised the phagocytosis activity of RAW 264.7 cells but only in the absence or presence of low concentrations (1%) of fetal bovine serum. Higher serum concentrations depressed phagocytosis and abolished its stimulation by sulforaphane. This stimulation did not depend on the induction of Nrf2-regulated genes since it occurred in peritoneal macrophages of nrf2(-/-) mice. Moreover, a potent triterpenoid inducer of Nrf2-dependent genes did not stimulate phagocytosis, whereas sulforaphane and another isothiocyanate (benzyl isothiocyanate) had comparable inducer potencies. It has been shown recently that sulforaphane is a potent and direct inactivator of macrophage migration inhibitory factor (MIF), an inflammatory cytokine. Moreover, the addition of recombinant MIF to RAW 264.7 cells attenuated phagocytosis, but sulforaphane-inactivated MIF did not affect phagocytosis. The inactivation of MIF may therefore be involved in the phagocytosis-enhancing activity of sulforaphane. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. The zipper mechanism in phagocytosis: energetic requirements and variability in phagocytic cup shape

    PubMed Central

    2010-01-01

    Background Phagocytosis is the fundamental cellular process by which eukaryotic cells bind and engulf particles by their cell membrane. Particle engulfment involves particle recognition by cell-surface receptors, signaling and remodeling of the actin cytoskeleton to guide the membrane around the particle in a zipper-like fashion. Despite the signaling complexity, phagocytosis also depends strongly on biophysical parameters, such as particle shape, and the need for actin-driven force generation remains poorly understood. Results Here, we propose a novel, three-dimensional and stochastic biophysical model of phagocytosis, and study the engulfment of particles of various sizes and shapes, including spiral and rod-shaped particles reminiscent of bacteria. Highly curved shapes are not taken up, in line with recent experimental results. Furthermore, we surprisingly find that even without actin-driven force generation, engulfment proceeds in a large regime of parameter values, albeit more slowly and with highly variable phagocytic cups. We experimentally confirm these predictions using fibroblasts, transfected with immunoreceptor FcγRIIa for engulfment of immunoglobulin G-opsonized particles. Specifically, we compare the wild-type receptor with a mutant receptor, unable to signal to the actin cytoskeleton. Based on the reconstruction of phagocytic cups from imaging data, we indeed show that cells are able to engulf small particles even without support from biological actin-driven processes. Conclusions This suggests that biochemical pathways render the evolutionary ancient process of phagocytic highly robust, allowing cells to engulf even very large particles. The particle-shape dependence of phagocytosis makes a systematic investigation of host-pathogen interactions and an efficient design of a vehicle for drug delivery possible. PMID:21059234

  13. Liver triacylglycerol content and gestational diabetes: effects of moderate energy restriction.

    PubMed

    Hodson, Kenneth; Dalla Man, Chiara; Smith, Fiona E; Barnes, Alison; McParlin, Catherine; Cobelli, Claudio; Robson, Stephen C; Araújo-Soares, Vera; Taylor, Roy

    2017-02-01

    Women with a history of gestational diabetes mellitus (GDM) have raised liver triacylglycerol. Restriction of energy intake in type 2 diabetes can normalise glucose control and liver triacylglycerol concentration but it is not known whether similar benefits could be achieved in GDM. The aim of this work was to examine liver triacylglycerol accumulation in women with GDM and the effect of modest energy restriction. Sixteen women with GDM followed a 4 week diet (5 MJ [1200 kcal]/day). Liver triacylglycerol, before and after diet and postpartum, was measured by magnetic resonance. Insulin secretion and sensitivity were assessed before and after diet. Twenty-six women who underwent standard antenatal care for GDM (matched for age, BMI, parity and ethnicity) were used as a comparator group. Fourteen women, who completed the study, achieved a weight loss of 1.6 ± 1.7 kg over the 4 week dietary period. Mean weight change was -0.4 kg/week in the study group vs +0.3 kg/week in the comparator group (p = 0.002). Liver triacylglycerol level was normal but decreased following diet (3.7% [interquartile range, IQR 1.2-6.1%] vs 1.8% [IQR 0.7-3.1%], p = 0.004). There was no change in insulin sensitivity or production. Insulin was required in six comparator women vs none in the study group (eight vs two required metformin). Blood glucose control was similar for both groups. The hypo-energetic diet was well accepted. Liver triacylglycerol in women with GDM was not elevated, unlike observations in non-pregnant women with a history of GDM. A 4 week hypo-energetic diet resulted in weight loss, reduced liver triacylglycerol and minimised pharmacotherapy. The underlying pathophysiology of glucose metabolism appeared unchanged.

  14. DGAT enzymes are required for triacylglycerol synthesis and lipid droplets in adipocytes.

    PubMed

    Harris, Charles A; Haas, Joel T; Streeper, Ryan S; Stone, Scot J; Kumari, Manju; Yang, Kui; Han, Xianlin; Brownell, Nicholas; Gross, Richard W; Zechner, Rudolf; Farese, Robert V

    2011-04-01

    The total contribution of the acyl CoA:diacylglycerol acyltransferase (DGAT) enzymes, DGAT1 and DGAT2, to mammalian triacylglycerol (TG) synthesis has not been determined. Similarly, whether DGAT enzymes are required for lipid droplet (LD) formation is unknown. In this study, we examined the requirement for DGAT enzymes in TG synthesis and LDs in differentiated adipocytes with genetic deletions of DGAT1 and DGAT2. Adipocytes with a single deletion of either enzyme were capable of TG synthesis and LD formation. In contrast, adipocytes with deletions of both DGATs were severely lacking in TG and did not have LDs, indicating that DGAT1 and DGAT2 account for nearly all TG synthesis in adipocytes and appear to be required for LD formation during adipogenesis. DGAT enzymes were not absolutely required for LD formation in mammalian cells, however; macrophages deficient in both DGAT enzymes were able to form LDs when incubated with cholesterol-rich lipoproteins. Although adipocytes lacking both DGATs had no TG or LDs, they were fully differentiated by multiple criteria. Our findings show that DGAT1 and DGAT2 account for the vast majority of TG synthesis in mice, and DGAT function is required for LDs in adipocytes, but not in all cell types.

  15. Dictyostelium discoideum mutants with conditional defects in phagocytosis

    PubMed Central

    1994-01-01

    We have isolated and characterized Dictyostelium discoideum mutants with conditional defects in phagocytosis. Under suspension conditions, the mutants exhibited dramatic reductions in the uptake of bacteria and polystyrene latex beads. The initial binding of these ligands was unaffected, however, indicating that the defect was not in a plasma membrane receptor: Because of the phagocytosis defect, the mutants were unable to grow when cultured in suspensions of heat-killed bacteria. The mutants exhibited normal capacities for fluid phase endocytosis and grew as rapidly as parental (AX4) cells in axenic medium. Both the defects in phagocytosis and growth on bacteria were corrected when the mutant Dictyostelium cells were cultured on solid substrates. Reversion and genetic complementation analysis suggested that the mutant phenotypes were caused by single gene defects. While the precise site of action of the mutations was not established, the mutations are likely to affect an early signaling event because the binding of bacteria to mutant cells in suspension was unable to trigger the localized polymerization of actin filaments required for ingestion; other aspects of actin function appeared normal. This class of conditional phagocytosis mutant should prove to be useful for the expression cloning of the affected gene(s). PMID:7519624

  16. Syk-dependent tyrosine phosphorylation of 3BP2 is required for optimal FcRγ-mediated phagocytosis and chemokine expression in U937 cells.

    PubMed

    Chihara, Kazuyasu; Kato, Yuji; Yoshiki, Hatsumi; Takeuchi, Kenji; Fujieda, Shigeharu; Sada, Kiyonao

    2017-09-13

    The adaptor protein c-Abl SH3 domain binding protein-2 (3BP2) is tyrosine phosphorylated by Syk in response to cross-linking of antigen receptors, which in turn activates various immune responses. Recently, a study using the mouse model of cherubism, a dominant inherited disorder caused by mutations in the gene encoding 3BP2, showed that 3BP2 is involved in the regulation of phagocytosis mediated by Fc receptor for IgG (FcγR) in macrophages. However, the molecular mechanisms underlying 3BP2-mediated regulation of phagocytosis and the physiological relevance of 3BP2 tyrosine phosphorylation remains elusive. In this study, we established various gene knockout U937 cell lines using the CRISPR/Cas9 system and found that 3BP2 is rapidly tyrosine phosphorylated by Syk in response to cross-linking of FcγRI. Depletion of 3BP2 caused significant reduction in the Fc receptor γ chain (FcRγ)-mediated phagocytosis in addition to the FcγRI-mediated induction of chemokine mRNA for IL-8, CCL3L3 and CCL4L2. Syk-dependent tyrosine phosphorylation of 3BP2 was required for overcoming these defects. Finally, we found that the PH and SH2 domains play important roles on FcγRI-mediated tyrosine phosphorylation of 3BP2 in HL-60 cells. Taken together, these results indicate that Syk-dependent tyrosine phosphorylation of 3BP2 is required for optimal FcRγ-mediated phagocytosis and chemokine expression.

  17. Lysosomal Degradation Is Required for Sustained Phagocytosis of Bacteria by Macrophages.

    PubMed

    Wong, Ching-On; Gregory, Steven; Hu, Hongxiang; Chao, Yufang; Sepúlveda, Victoria E; He, Yuchun; Li-Kroeger, David; Goldman, William E; Bellen, Hugo J; Venkatachalam, Kartik

    2017-06-14

    Clearance of bacteria by macrophages involves internalization of the microorganisms into phagosomes, which are then delivered to endolysosomes for enzymatic degradation. These spatiotemporally segregated processes are not known to be functionally coupled. Here, we show that lysosomal degradation of bacteria sustains phagocytic uptake. In Drosophila and mammalian macrophages, lysosomal dysfunction due to loss of the endolysosomal Cl - transporter ClC-b/CLCN7 delayed degradation of internalized bacteria. Unexpectedly, defective lysosomal degradation of bacteria also attenuated further phagocytosis, resulting in elevated bacterial load. Exogenous application of bacterial peptidoglycans restored phagocytic uptake in the lysosomal degradation-defective mutants via a pathway requiring cytosolic pattern recognition receptors and NF-κB. Mammalian macrophages that are unable to degrade internalized bacteria also exhibit compromised NF-κB activation. Our findings reveal a role for phagolysosomal degradation in activating an evolutionarily conserved signaling cascade, which ensures that continuous uptake of bacteria is preceded by lysosomal degradation of microbes. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Triacylglycerol-based fuels: An evaluation

    USDA-ARS?s Scientific Manuscript database

    A variety of feedstocks exist and several processes have been developed to produce alternative diesel fuels from triacylglycerol-based materials, such as plant and algal oils as well as animal fats and used cooking oils. Biodiesel is obtained by transesterifying a triacylglycerol feedstock with an a...

  19. DGAT enzymes are required for triacylglycerol synthesis and lipid droplets in adipocytes[S

    PubMed Central

    Harris, Charles A.; Haas, Joel T.; Streeper, Ryan S.; Stone, Scot J.; Kumari, Manju; Yang, Kui; Han, Xianlin; Brownell, Nicholas; Gross, Richard W.; Zechner, Rudolf; Farese, Robert V.

    2011-01-01

    The total contribution of the acyl CoA:diacylglycerol acyltransferase (DGAT) enzymes, DGAT1 and DGAT2, to mammalian triacylglycerol (TG) synthesis has not been determined. Similarly, whether DGAT enzymes are required for lipid droplet (LD) formation is unknown. In this study, we examined the requirement for DGAT enzymes in TG synthesis and LDs in differentiated adipocytes with genetic deletions of DGAT1 and DGAT2. Adipocytes with a single deletion of either enzyme were capable of TG synthesis and LD formation. In contrast, adipocytes with deletions of both DGATs were severely lacking in TG and did not have LDs, indicating that DGAT1 and DGAT2 account for nearly all TG synthesis in adipocytes and appear to be required for LD formation during adipogenesis. DGAT enzymes were not absolutely required for LD formation in mammalian cells, however; macrophages deficient in both DGAT enzymes were able to form LDs when incubated with cholesterol-rich lipoproteins. Although adipocytes lacking both DGATs had no TG or LDs, they were fully differentiated by multiple criteria. Our findings show that DGAT1 and DGAT2 account for the vast majority of TG synthesis in mice, and DGAT function is required for LDs in adipocytes, but not in all cell types. PMID:21317108

  20. Src is required for migration, phagocytosis, and interferon beta production in Toll-like receptor-engaged macrophages.

    PubMed

    Maa, Ming-Chei; Leu, Tzeng-Horng

    2016-06-01

    As an evolutionarily conserved mechanism, innate immunity controls self-nonself discrimination to protect a host from invasive pathogens. Macrophages are major participants of the innate immune system. Through the activation of diverse Toll-like receptors (TLRs), macrophages are triggered to initiate a variety of functions including locomotion, phagocytosis, and secretion of cytokines that requires the participation of tyrosine kinases. Fgr, Hck, and Lyn are myeloid-specific Src family kinases. Despite their constitutively high expression in macrophages, their absence does not impair LPS responsiveness. In contrast, Src, a barely detectable tyrosine kinase in resting macrophages, becomes greatly inducible in response to TLR engagement, implicating its role in macrophage activation. Indeed, silencing Src suppresses the activated TLR-mediated migration, phagocytosis, and interferon-beta (IFN-β) secretion in macrophages. And these physiological defects can be restored by the introduction of siRNA-resistant Src. Notably, the elevated expression and activity of Src is inducible nitric oxide synthase (iNOS)-dependent. Due to (1) iNOS being a NF-κB target, which can be induced by various TLR ligands, (2) Src can mediate NF-κB activation, therefore, there ought to exist a loop of signal amplification that regulates macrophage physiology in response to the engagement of TLRs.

  1. Rho is Required for the Initiation of Calcium Signaling and Phagocytosis by Fcγ Receptors in Macrophages

    PubMed Central

    Hackam, David J.; Rotstein, Ori D.; Schreiber, Alan; Zhang, Wei-jian; Grinstein, Sergio

    1997-01-01

    Phagocytosis of bacteria by macrophages and neutrophils is an essential component of host defense against infection. The mechanism whereby the interaction of opsonized particles with Fcγ receptors triggers the engulfment of opsonized particles remains incompletely understood, although activation of tyrosine kinases has been recognized as an early step. Recent studies in other systems have demonstrated that tyrosine kinases can in turn signal the activation of small GTPases of the ras superfamily. We therefore investigated the possible role of Rho in Fc receptor–mediated phagocytosis. To this end we microinjected J774 macrophages with C3 exotoxin from Clostridium botulinum, which ADP-ribosylates and inactivates Rho. C3 exotoxin induced the retraction of filopodia, the disappearance of focal complexes, and a global decrease in the F-actin content of J774 cells. In addition, these cells exhibited increased spreading and the formation of vacuolar structures. Importantly, inactivation of Rho resulted in the complete abrogation of phagocytosis. Inhibition of Fcγ receptor–mediated phagocytosis by C3 exotoxin was confirmed in COS cells, which become phagocytic upon transfection of the FcγRIIA receptor. Rho was found to be essential for the accumulation of phosphotyrosine and of F-actin around phagocytic cups and for Fcγ receptor–mediated Ca2+ signaling. The clustering of receptors in response to opsonin, an essential step in Fcγ-induced signaling, was the earliest event shown to be inhibited by C3 exotoxin. The effect of the toxin was specific, since clustering and internalization of transferrin receptors were unaffected by microinjection of C3. These data identify a role for small GTPases in Fcγ receptor–mediated phagocytosis by leukocytes. PMID:9294149

  2. 76 FR 55264 - Lipase, Triacylglycerol; Exemption From the Requirement of a Tolerance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-07

    ... aqueous solutions. Like other enzymes, triacylglycerol lipase is a protein that acts as a catalyst to... treatment groups of rats. Each group contained 24 males and 24 females and received diets containing 0, 0.5, 1.5 or 5.0% of the test material by weight in the diet (equivalent to 0, 500, 1,500 or 5,000...

  3. Rapamycin-based inducible translocation systems for studying phagocytosis.

    PubMed

    Bohdanowicz, Michal; Fairn, Gregory D

    2011-01-01

    Phagocytosis is an immune receptor-mediated process whereby cells engulf large particles. The process is dynamic and requires several localized factors acting in concert with and sequentially after the engagement of immune receptors to envelope the particle. Once the particle is internalized, the nascent -phagosome undergoes a series of events leading to its maturation to the microbicidal phagolysosome. Investigating these dynamic and temporally controlled series of events in live cells requires noninvasive methods. The ability to rapidly recruit the proteins of interest to the sites of phagocytosis or to nascent phagosomes would help dissect the regulatory mechanisms involved during phagocytosis. Here, we describe a general approach to express in RAW264.7 murine macrophages, a genetically encoded rapamycin--induced heterodimerization system. In the presence of rapamycin, tight association between FK506-binding protein (FKBP) and FKBP rapamycin-binding protein (FRB) is observed. Based on this principle, a synthetic system consisting of a targeting domain attached to FKBP can recruit a protein of interest fused to FRB upon the addition of rapamycin. Previously, this technique has been used to target lipid-modifying enzymes and small GTPases to the phagosome or plasma membrane. The recruitment of the FRB module can be monitored by fluorescent microscopy if a fluorescent protein is fused to the FRB sequence. While the focus of this chapter is on phagocytic events, this method can be employed to study any organelle of interest when the appropriate targeting sequence is used.

  4. Phagocytosis imprints heterogeneity in tissue-resident macrophages

    PubMed Central

    A-Gonzalez, Noelia; Quintana, Juan A.; Mazariegos, Marina; González de la Aleja, Arturo; Nicolás-Ávila, José A.; Crainiciuc, Georgiana; Rothlin, Carla V.; Peinado, Héctor; Castrillo, Antonio

    2017-01-01

    Tissue-resident macrophages display varying phenotypic and functional properties that are largely specified by their local environment. One of these functions, phagocytosis, mediates the natural disposal of billions of cells, but its mechanisms and consequences within living tissues are poorly defined. Using a parabiosis-based strategy, we identified and isolated macrophages from multiple tissues as they phagocytosed blood-borne cellular material. Phagocytosis was circadianally regulated and mediated by distinct repertoires of receptors, opsonins, and transcription factors in macrophages from each tissue. Although the tissue of residence defined the core signature of macrophages, phagocytosis imprinted a distinct antiinflammatory profile. Phagocytic macrophages expressed CD206, displayed blunted expression of Il1b, and supported tissue homeostasis. Thus, phagocytosis is a source of macrophage heterogeneity that acts together with tissue-derived factors to preserve homeostasis. PMID:28432199

  5. A novel real time imaging platform to quantify macrophage phagocytosis.

    PubMed

    Kapellos, Theodore S; Taylor, Lewis; Lee, Heyne; Cowley, Sally A; James, William S; Iqbal, Asif J; Greaves, David R

    2016-09-15

    Phagocytosis of pathogens, apoptotic cells and debris is a key feature of macrophage function in host defense and tissue homeostasis. Quantification of macrophage phagocytosis in vitro has traditionally been technically challenging. Here we report the optimization and validation of the IncuCyte ZOOM® real time imaging platform for macrophage phagocytosis based on pHrodo® pathogen bioparticles, which only fluoresce when localized in the acidic environment of the phagolysosome. Image analysis and fluorescence quantification were performed with the automated IncuCyte™ Basic Software. Titration of the bioparticle number showed that the system is more sensitive than a spectrofluorometer, as it can detect phagocytosis when using 20× less E. coli bioparticles. We exemplified the power of this real time imaging platform by studying phagocytosis of murine alveolar, bone marrow and peritoneal macrophages. We further demonstrate the ability of this platform to study modulation of the phagocytic process, as pharmacological inhibitors of phagocytosis suppressed bioparticle uptake in a concentration-dependent manner, whereas opsonins augmented phagocytosis. We also investigated the effects of macrophage polarization on E. coli phagocytosis. Bone marrow-derived macrophage (BMDM) priming with M2 stimuli, such as IL-4 and IL-10 resulted in higher engulfment of bioparticles in comparison with M1 polarization. Moreover, we demonstrated that tolerization of BMDMs with lipopolysaccharide (LPS) results in impaired E. coli bioparticle phagocytosis. This novel real time assay will enable researchers to quantify macrophage phagocytosis with a higher degree of accuracy and sensitivity and will allow investigation of limited populations of primary phagocytes in vitro. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. Improved triacylglycerol production in Acinetobacter baylyi ADP1 by metabolic engineering.

    PubMed

    Santala, Suvi; Efimova, Elena; Kivinen, Virpi; Larjo, Antti; Aho, Tommi; Karp, Matti; Santala, Ville

    2011-05-18

    Triacylglycerols are used in various purposes including food applications, cosmetics, oleochemicals and biofuels. Currently the main sources for triacylglycerol are vegetable oils, and microbial triacylglycerol has been suggested as an alternative for these. Due to the low production rates and yields of microbial processes, the role of metabolic engineering has become more significant. As a robust model organism for genetic and metabolic studies, and for the natural capability to produce triacylglycerol, Acinetobacter baylyi ADP1 serves as an excellent organism for modelling the effects of metabolic engineering for energy molecule biosynthesis. Beneficial gene deletions regarding triacylglycerol production were screened by computational means exploiting the metabolic model of ADP1. Four deletions, acr1, poxB, dgkA, and a triacylglycerol lipase were chosen to be studied experimentally both separately and concurrently by constructing a knock-out strain (MT) with three of the deletions. Improvements in triacylglycerol production were observed: the strain MT produced 5.6 fold more triacylglycerol (mg/g cell dry weight) compared to the wild type strain, and the proportion of triacylglycerol in total lipids was increased by 8-fold. In silico predictions of beneficial gene deletions were verified experimentally. The chosen single and multiple gene deletions affected beneficially the natural triacylglycerol metabolism of A. baylyi ADP1. This study demonstrates the importance of single gene deletions in triacylglycerol metabolism, and proposes Acinetobacter sp. ADP1 as a model system for bioenergetic studies regarding metabolic engineering.

  7. Integrins and small GTPases as modulators of phagocytosis.

    PubMed

    Sayedyahossein, Samar; Dagnino, Lina

    2013-01-01

    Phagocytosis is the mechanism whereby cells engulf large particles. This process has long been recognized as a critical component of the innate immune response, which constitutes the organism's defense against microorganisms. In addition, phagocytic internalization of apoptotic cells or cell fragments plays important roles in tissue homeostasis and remodeling. Phagocytosis requires target interactions with receptors on the plasma membrane of the phagocytic cell. Integrins have been identified as important mediators of particle clearance, in addition to their well-established roles in cell adhesion, migration and mechanotransduction. Indeed, these ubiquitously expressed proteins impart phagocytic capacity to epithelial, endothelial and mesenchymal cell types. The importance of integrins in particle internalization is emphasized by the ability of microbial and viral pathogens to exploit their signaling pathways to invade host cells, and by the wide variety of disorders that arise from abnormalities in integrin-dependent phagocytic uptake. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Coiling Phagocytosis of Trypanosomatids and Fungal Cells

    PubMed Central

    Rittig, M. G.; Schröppel, K.; Seack, K.-H.; Sander, U.; N’Diaye, E.-N.; Maridonneau-Parini, I.; Solbach, W.; Bogdan, C.

    1998-01-01

    Coiling phagocytosis has previously been studied only with the bacteria Legionella pneumophila and Borrelia burgdorferi, and the results were inconsistent. To learn more about this unconventional phagocytic mechanism, the uptake of various eukaryotic microorganisms by human monocytes, murine macrophages, and murine dendritic cells was investigated in vitro by video and electron microscopy. Unconventional phagocytosis of Leishmania spp. promastigotes, Trypanosoma cruzi trypomastigotes, Candida albicans hyphae, and zymosan particles from Saccharomyces cerevisiae differed in (i) morphology (rotating unilateral pseudopods with the trypanosomatids, overlapping bilateral pseudopods with the fungi), (ii) frequency (high with Leishmania; occasional with the fungi; rare with T. cruzi), (iii) duration (rapid with zymosan; moderate with the trypanosomatids; slow with C. albicans), (iv) localization along the promastigotes (flagellum of Leishmania major and L. aethiopica; flagellum or posterior pole of L. donovani), and (v) dependence on complement (strong with L. major and L. donovani; moderate with the fungi; none with L. aethiopica). All of these various types of unconventional phagocytosis gave rise to similar pseudopod stacks which eventually transformed to a regular phagosome. Further video microscopic studies with L. major provided evidence for a cytosolic localization, synchronized replication, and exocytic release of the parasites, extending traditional concepts about leishmanial infection of host cells. It is concluded that coiling phagocytosis comprises phenotypically similar consequences of various disturbances in conventional phagocytosis rather than representing a single separate mechanism. PMID:9712785

  9. Prostaglandins may play a signal-coupling role during phagocytosis in Amoeba proteus.

    PubMed

    Prusch, R D; Goette, S M; Haberman, P

    1989-03-01

    Phagocytosis in Amoeba proteus can be induced with prostaglandins (PG). In addition, arachidonic acid (the fatty acid precursor to the PG-2 series) also induces phagocytosis. The induction of phagocytosis with arachidonic acid can be partially inhibited by the cyclooxygenase inhibitor indomethacin. Phagocytosis in the amoeba can also be induced with the chemotactic peptide N-formylmethionyl-leucylphenylalanine (NFMLP). The peptide presumably induces phagocytosis by interacting with receptors on the amoeba surface, which may initiate the release of arachidonic acid from membrane lipids. NFMLP-induced phagocytosis can also be partially inhibited by indomethacin. It is suggested that PG's or biochemically related substances may play a signal-coupling role during phagocytosis in the amoeba.

  10. Triacylglycerol Metabolism, Function, and Accumulation in Plant Vegetative Tissues.

    PubMed

    Xu, Changcheng; Shanklin, John

    2016-04-29

    Oils in the form of triacylglycerols are the most abundant energy-dense storage compounds in eukaryotes, and their metabolism plays a key role in cellular energy balance, lipid homeostasis, growth, and maintenance. Plants accumulate oils primarily in seeds and fruits. Plant oils are used for food and feed and, increasingly, as feedstocks for biodiesel and industrial chemicals. Although plant vegetative tissues do not accumulate significant levels of triacylglycerols, they possess a high capacity for their synthesis, storage, and metabolism. The development of plants that accumulate oil in vegetative tissues presents an opportunity for expanded production of triacylglycerols as a renewable and sustainable bioenergy source. Here, we review recent progress in the understanding of triacylglycerol synthesis, turnover, storage, and function in leaves and discuss emerging genetic engineering strategies targeted at enhancing triacylglycerol accumulation in biomass crops. Such plants could potentially be modified to produce oleochemical feedstocks or nutraceuticals.

  11. High tocopherol and triacylglycerol contents in Pinus pinea L. seeds.

    PubMed

    Nasri, Nizar; Tlili, Nizar; Ben Ammar, Kamel; Khaldi, Abdelhamid; Fady, Bruno; Triki, Saida

    2009-01-01

    Oleaginous seeds are among the functional foods most recognized for their tocopherols and triacylglycerols because of their role in lipid metabolism. In this paper, the tocopherol and triacylglycerol contents in seeds of several Pinus pinea L. populations around the Mediterranean Basin were investigated. Lipids were extracted from fully ripen seeds with petroleum ether. The tocopherol (alpha-tocopherol, gamma-tocopherol, and delta-tocopherol) contents were, respectively, 15.34+/-3.75 ppm, 1,681.75+/-404.03 ppm and 41.87+/-9.79 ppm. Lipids (mainly triacylglycerols) in P. pinea seeds averaged 48% on a dry weight basis. Triacylglycerols with an equivalent carbon number of 44 (32.27%) and of 46 (30.91%) were dominant. The major triacylglycerol was LLO (24.06%). Tocopherols and triacylglycerols were present at remarkably high levels, thus making P. pinea oil a valuable source of antioxidants and unsaturated fatty acids with varying levels across the geographical range of P. pinea.

  12. Titan Cells Confer Protection from Phagocytosis in Cryptococcus neoformans Infections

    PubMed Central

    Okagaki, Laura H.

    2012-01-01

    The human fungal pathogen Cryptococcus neoformans produces an enlarged “titan” cell morphology when exposed to the host pulmonary environment. Titan cells exhibit traits that promote survival in the host. Previous studies showed that titan cells are not phagocytosed and that increased titan cell production in the lungs results in reduced phagocytosis of cryptococcal cells by host immune cells. Here, the effect of titan cell production on host-pathogen interactions during early stages of pulmonary cryptococcosis was explored. The relationship between titan cell production and phagocytosis was found to be nonlinear; moderate increases in titan cell production resulted in profound decreases in phagocytosis, with significant differences occurring within the first 24 h of the infection. Not only were titan cells themselves protected from phagocytosis, but titan cell formation also conferred protection from phagocytosis to normal-size cryptococcal cells. Large particles introduced into the lungs were not phagocytosed, suggesting the large size of titan cells protects against phagocytosis. The presence of large particles was unable to protect smaller particles from phagocytosis, revealing that titan cell size alone is not sufficient to provide the observed cross-protection of normal-size cryptococcal cells. These data suggest that titan cells play a critical role in establishment of the pulmonary infection by promoting the survival of the entire population of cryptococcal cells. PMID:22544904

  13. Titan cells confer protection from phagocytosis in Cryptococcus neoformans infections.

    PubMed

    Okagaki, Laura H; Nielsen, Kirsten

    2012-06-01

    The human fungal pathogen Cryptococcus neoformans produces an enlarged "titan" cell morphology when exposed to the host pulmonary environment. Titan cells exhibit traits that promote survival in the host. Previous studies showed that titan cells are not phagocytosed and that increased titan cell production in the lungs results in reduced phagocytosis of cryptococcal cells by host immune cells. Here, the effect of titan cell production on host-pathogen interactions during early stages of pulmonary cryptococcosis was explored. The relationship between titan cell production and phagocytosis was found to be nonlinear; moderate increases in titan cell production resulted in profound decreases in phagocytosis, with significant differences occurring within the first 24 h of the infection. Not only were titan cells themselves protected from phagocytosis, but titan cell formation also conferred protection from phagocytosis to normal-size cryptococcal cells. Large particles introduced into the lungs were not phagocytosed, suggesting the large size of titan cells protects against phagocytosis. The presence of large particles was unable to protect smaller particles from phagocytosis, revealing that titan cell size alone is not sufficient to provide the observed cross-protection of normal-size cryptococcal cells. These data suggest that titan cells play a critical role in establishment of the pulmonary infection by promoting the survival of the entire population of cryptococcal cells.

  14. In vitro phagocytosis of several Candida berkhout species by murine leukocytes.

    PubMed

    Fontenla de Petrino, S E; Bibas Bonet de Jorrat, M E; Sirena, A

    1985-03-01

    In vitro phagocytosis of thirteen Candida berkhout species by rat leukocytes was studied to assess a possible correlation between pathogenicity and phagocytosis Yeast-leukocyte suspensions were mixed up for 3 h and phagocytic index, germ-tube formation and leukocyte candidacidal activity were evaluated. Highest values for phagocytosis were reached in all cases at the end of the first hour. Leukocyte candidacidal activity was absent. Only C. albicans produced germ-tubes. The various phagocytosis indices were determined depending on the Candida species assayed. Under these conditions, the more pathogenic species presented the lower indices of phagocytosis. It is determined that the in vitro phagocytic index may bear a close relationship with the pathogenicity of the Candida berkhout.

  15. Essential role of integrin-linked kinase in regulation of phagocytosis in keratinocytes.

    PubMed

    Sayedyahossein, Samar; Nini, Lylia; Irvine, Timothy S; Dagnino, Lina

    2012-10-01

    Phagocytic melanosome uptake by epidermal keratinocytes is a central protective mechanism against damage induced by ultraviolet radiation. Phagocytosis requires formation of pseudopodia via actin cytoskeleton rearrangements. Integrin-linked kinase (ILK) is an important modulator of actin cytoskeletal dynamics. We have examined the role of ILK in regulation of phagocytosis, using epidermal keratinocytes isolated from mice with epidermis-restricted Ilk gene inactivation. ILK-deficient cells exhibited severely impaired capacity to engulf fluorescent microspheres in response to stimulation of the keratinocyte growth factor (KGF) receptor or the protease-activated receptor-2. KGF induced ERK phosphorylation in ILK-expressing and ILK-deficient cells, suggesting that ILK is not essential for KGF receptor signaling. In contrast, KGF promoted activation of Rac1 and formation of pseudopodia in ILK-expressing, but not in ILK-deficient cells. Rac1-deficient keratinocytes also showed substantially impaired phagocytic ability, underlining the importance of ILK-dependent Rac1 function for particle engulfment. Finally, cross-modulation of KGF receptors by integrins may be another important element, as integrin β1-deficient keratinocytes also fail to show significant phagocytosis in response to KGF. Thus, we have identified a novel signaling pathway essential for phagocytosis in keratinocytes, which involves ILK-dependent activation of Rac1 in response to KGF, resulting in the formation of pseudopodia and particle uptake.

  16. Modifications of the metabolic pathways of lipid and triacylglycerol production in microalgae

    PubMed Central

    2011-01-01

    Microalgae have presented themselves as a strong candidate to replace diminishing oil reserves as a source of lipids for biofuels. Here we describe successful modifications of terrestrial plant lipid content which increase overall lipid production or shift the balance of lipid production towards lipid varieties more useful for biofuel production. Our discussion ranges from the biosynthetic pathways and rate limiting steps of triacylglycerol formation to enzymes required for the formation of triacylglycerol containing exotic lipids. Secondarily, we discuss techniques for genetic engineering and modification of various microalgae which can be combined with insights gained from research in higher plants to aid in the creation of production strains of microalgae. PMID:22047615

  17. Steady-state kinetic analysis of triacylglycerol delivery into mesenteric lymph

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mansbach, C.M. II; Arnold, A.

    1986-08-01

    The output of triacylglycerol in chylomicrons can be increased 60% by prefeeding rats with a 20% fat diet or 110% by including phosphatidylcholine in a lipid infusion. The present study was designed to determine whether the increment was due to an expansion of the chylomicron triacylglycerol precursor pool or an increase in its fractional turnover rate. A steady-state kinetic model was established in rats receiving 135 mol glyceryl trioleate/h. The decay in specific activity of triacylglycerol after removal of radiolabeled glyceryl trioleate from the duodenal infusate was followed for 4 h and analyzed by the SAAM 23 program. It wasmore » found that the fractional turnover rate of the chylomicron precursor pool remained the same in each experimental condition. However, the pool was found to expand in direct proportion to the chylomicron triacylglycerol output. Functionally the infused (TH)glyceride-glycerol and tri( UC)oleate behaved the same in lymph chylomicrons and was 90% of infusate specific activity. In summary, these data suggest that increases in chylomicron triacylglycerol output are dependent on the size of the mucosal precursor pool and the monoacylglycerol acyltransferase synthetic pathway for its triacylglycerol.« less

  18. Induction of triacylglycerol production in Chlamydomonas reinhardtii: comparative analysis of different element regimes.

    PubMed

    Çakmak, Zeynep E; Ölmez, Tolga T; Çakmak, Turgay; Menemen, Yusuf; Tekinay, Turgay

    2014-03-01

    In this study, impacts of different element absence (nitrogen, sulfur, phosphorus and magnesium) and supplementation (nitrogen and zinc) on element uptake and triacylglycerol production was followed in wild type Chlamydomonas reinhardtii CC-124 strain. Macro- and microelement composition of C. reinhardtii greatly differed under element regimes studied. In particular, heavy metal quotas of the microalgae increased strikingly under zinc supplementation. Growth was suppressed, cell biovolume, carbohydrate, total neutral lipid and triacylglycerol levels increased when microalgae were incubated under these element regimes. Most of the intracellular space was occupied by lipid bodies under all nutrient starvations, as observed by confocal microscopy and transmission electron micrographs. Results suggest that sulfur, magnesium and phosphorus deprivations are superior to nitrogen deprivation for the induction triacylglycerol production in C. reinhardtii. On the other hand, FAME profiles of the nitrogen, sulfur and phosphorus deprived cells were found to meet the requirements of international standards for biodiesel. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  19. Cellular Organization of Triacylglycerol Biosynthesis in Microalgae.

    PubMed

    Xu, Changcheng; Andre, Carl; Fan, Jilian; Shanklin, John

    2016-01-01

    Eukaryotic cells are characterized by compartmentalization and specialization of metabolism within membrane-bound organelles. Nevertheless, many fundamental processes extend across multiple subcellular compartments. Here, we describe and assess the pathways and cellular organization of triacylglycerol biosynthesis in microalgae. In particular, we emphases the dynamic interplay among the endoplasmic reticulum, lipid droplets and chloroplasts in acyl remodeling and triacylglycerol accumulation under nitrogen starvation in the model alga Chlamydomonas reinhardtii.

  20. Air-drying of cells, the novel conditions for stimulated synthesis of triacylglycerol in a Green Alga, Chlorella kessleri.

    PubMed

    Shiratake, Takuma; Sato, Atsushi; Minoda, Ayumi; Tsuzuki, Mikio; Sato, Norihiro

    2013-01-01

    Triacylglycerol is used for the production of commodities including food oils and biodiesel fuel. Microalgae can accumulate triacylglycerol under adverse environmental conditions such as nitrogen-starvation. This study explored the possibility of air-drying of green algal cells as a novel and simple protocol for enhancement of their triacylglycerol content. Chlorella kessleri cells were fixed on the surface of a glass fibre filter and then subjected to air-drying with light illumination. The dry cell weight, on a filter, increased by 2.7-fold in 96 h, the corresponding chlorophyll content ranging from 1.0 to 1.3-fold the initial one. Concomitantly, the triacylglycerol content remarkably increased to 70.3 mole% of fatty acids and 15.9% (w/w), relative to total fatty acids and dry cell weight, respectively, like in cells starved of nitrogen. Reduction of the stress of air-drying by placing the glass filter on a filter paper soaked in H2O lowered the fatty acid content of triacylglycerol to 26.4 mole% as to total fatty acids. Moreover, replacement of the H2O with culture medium further decreased the fatty acid content of triacylglycerol to 12.2 mole%. It thus seemed that severe dehydration is required for full induction of triacylglycerol synthesis, and that nutritional depletion as well as dehydration are crucial environmental factors. Meanwhile, air-drying of Chlamydomonas reinhardtii cells increased the triacylglycerol content to only 37.9 mole% of fatty acids and 4.8% (w/w), relative to total fatty acids and dry cell weight, respectively, and a marked decrease in the chlorophyll content, on a filter, of 33%. Air-drying thus has an impact on triacylglycerol synthesis in C. reinhardtii also, however, the effect is considerably limited, owing probably to instability of the photosynthetic machinery. This air-drying protocol could be useful for the development of a system for industrial production of triacylglycerol with appropriate selection of the algal species.

  1. Influence of apolipoprotein A-V on the metabolic fate of triacylglycerol.

    PubMed

    Sharma, Vineeta; Forte, Trudy M; Ryan, Robert O

    2013-04-01

    Apolipoprotein (apo) A-V functions to modulate intracellular and extracellular triacylglycerol metabolism. The present review addresses molecular mechanisms underlying these effects. The relevance of apoA-V to human disease conditions is illustrated by the strong correlation between single nucleotide polymorphisms in APOA5, elevated plasma triacylglycerol and dyslipidemic disease. Despite undergoing processing for secretion from hepatocytes, a portion of apoA-V escapes this destiny and accumulates as a component of cytosolic lipid droplets. Expression of recombinant apoA-V in hepatocarcinoma cells results in increased lipid droplet size and number at the expense of triacylglycerol secretion.ApoA-V modulates atherosclerosis in hypercholesterolemic apoE null mice. ApoE null/human apoA-V transgenic mice had reduced levels of triacylglycerol and cholesterol in plasma along with decreased aortic lesion size. ApoA-V modulates triacylglycerol metabolic fate. Following its synthesis, apoA-V enters the endoplasmic reticulum and associates with membrane defects created by triacylglycerol accumulation. Association of apoA-V with endoplasmic reticulum membrane defects promotes nascent lipid droplets budding toward the cytosol. Despite its low concentration in plasma (∼150 ng/ml), apoA-V modulates lipoprotein metabolism by binding to glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1. This interaction effectively localizes triacylglycerol-rich lipoproteins in the vicinity of glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein1's other ligand, lipoprotein lipase.

  2. Simple method to detect triacylglycerol biosynthesis in a yeast-based recombinant system

    USDA-ARS?s Scientific Manuscript database

    Standard methods to quantify the activity of triacylglycerol (TAG) synthesizing enzymes DGAT and PDAT (TAG-SE) require a sensitive but rather arduous laboratory assay based on radio-labeled substrates. Here we describe two straightforward methods to detect TAG production in baker’s yeast Saccharomyc...

  3. Phagocytosis of gram-negative bacteria by a unique CD14-dependent mechanism.

    PubMed

    Schiff, D E; Kline, L; Soldau, K; Lee, J D; Pugin, J; Tobias, P S; Ulevitch, R J

    1997-12-01

    THP-1-derived cell lines were stably transfected with constructs encoding glycophosphatidylinositol (GPI)-anchored or transmembrane forms of human CD14. CD14 expression was associated with enhanced phagocytosis of serum (heat-inactivated)-opsonized Escherichia coli (opEc). Both the GPI-anchored and transmembrane forms of CD14 supported phagocytosis of opEc equally well. Lipopolysaccharide-binding protein (LBP) played a role in CD14-dependent phagocytosis as evidenced by inhibition of CD14-dependent phagocytosis of opEc with anti-LBP monoclonal antibody (mAb) and by enhanced phagocytosis of E. coli opsonized with purified LBP. CD14-dependent phagocytosis was inhibited by a phosphatidylinositol (PI) 3-kinase inhibitor (wortmannin) and a protein tyrosine kinase inhibitor (tyrphostin 23) but not a protein kinase C inhibitor (bisindolyl-maleimide) or a divalent cation chelator (ethylenediaminetetraacetate). Anti-LBP mAb 18G4 and anti-CD14 mAb 18E12 were used to differentiate between the pathways involved in CD14-dependent phagocytosis and CD14-dependent cell activation. F(ab')2 fragments of 18G4, a mAb to LBP that does not block cell activation, inhibited ingestion of opEc by THP1-wtCD14 cells. 18E12 (an anti-CD14 mAb that does not block LPS binding to CD14 but does inhibit CD14-dependent cell activation) did not inhibit phagocytosis of LBP-opEc by THP1-wtCD14 cells. Furthermore, CD14-dependent phagocytosis was not inhibited by anti-CD18 (CR3 and CR4 beta-chain) or anti-Fcgamma receptor mAb.

  4. Triacylglycerol Metabolism, Function, and Accumulation in Plant Vegetative Tissues

    DOE PAGES

    Xu, Changcheng; Shanklin, John

    2016-02-03

    One of the most abundant energy-dense storage compounds in eukaryotes are oils in the form of triacylglycerols , and their metabolism plays a key role in cellular energy balance, lipid homeostasis, growth, and maintenance. Plants accumulate oils primarily in seeds and fruits. Moreover, plant oils are used for food and feed and, increasingly, as feedstocks for biodiesel and industrial chemicals. Although plant vegetative tissues do not accumulate significant levels of triacylglycerols, they possess a high capacity for their synthesis, storage, and metabolism. The development of plants that accumulate oil in vegetative tissues presents an opportunity for expanded production of triacylglycerolsmore » as a renewable and sustainable bioenergy source. We review recent progress in the understanding of triacylglycerol synthesis, turnover, storage, and function in leaves and discuss emerging genetic engineering strategies targeted at enhancing triacylglycerol accumulation in biomass crops. Such plants could potentially be modified to produce oleochemical feedstocks or nutraceuticals.« less

  5. Phagocytosis of Candida albicans Inhibits Autophagic Flux in Macrophages.

    PubMed

    Duan, Zhimin; Chen, Qing; Du, Leilei; Tong, Jianbo; Xu, Song; Zeng, Rong; Ma, Yuting; Chen, Xu; Li, Min

    2018-01-01

    Autophagy machinery has roles in the defense against microorganisms such as Candida albicans . Lipidated LC3, the marker protein of autophagy, participates in the elimination of C. albicans by forming a single-membrane phagosome; this process is called LC3-associated phagocytosis (LAP). However, the influence of C. albicans on autophagic flux is not clear. In this study, we found that C. albicans inhibited LC3 turnover in macrophages. After the phagocytosis of C. albicans in macrophages, we observed fewer acridine orange-positive vacuoles and RFP-GFP-LC3 puncta without colocalization with phagocytized C. albicans . However, phagocytosis of C. albicans led to LC3 recruitment, but p62 and ATG9A did not colocalize with LC3 or C. albicans . These effects are due to an MTOR-independent pathway. Nevertheless, we found that the C. albicans pattern-associated molecular pattern β -glucan increased LC3 turnover. In addition, phagocytosis of C. albicans caused a decrease in BrdU incorporation. Blocking autophagic flux aggravated this effect. Our findings suggest that phagocytosis of C. albicans decreases autophagic flux but induces LAP in an MTOR-independent manner in macrophages. Occupation of LC3 by recruiting engulfed C. albicans might contribute to the inhibition of autophagic flux. Our study highlights the coordinated machinery between canonical autophagy and LAP that defends against C. albicans challenge.

  6. Neutralization of B. anthracis toxins during ex vivo phagocytosis.

    PubMed

    Tarasenko, Olga; Scott, Ashley; Jones, April; Soderberg, Lee; Alusta, Pierre

    2013-07-01

    Glycoconjugates (GCs) are recognized as stimulation and signaling agents, affecting cell adhesion, activation, and growth of living organisms. Among GC targets, macrophages are considered ideal since they play a central role in inflammation and immune responses against foreign agents. In this context, we studied the effects of highly selective GCs in neutralizing toxin factors produced by B. anthracis during phagocytosis using murine macrophages. The effects of GCs were studied under three conditions: A) prior to, B) during, and C) following exposure of macrophages to B. anthracis individual toxin (protective antigen [PA], edema factor [EF], lethal factor [LF] or toxin complexes (PA-EF-LF, PA-EF, and PA-LF). We employed ex vivo phagocytosis and post-phagocytosis analysis including direct microscopic observation of macrophage viability, and macrophage activation. Our results demonstrated that macrophages are more prone to adhere to GC-altered PA-EF-LF, PA-EF, and PA-LF toxin complexes. This adhesion results in a higher phagocytosis rate and toxin complex neutralization during phagocytosis. In addition, GCs enhance macrophage viability, activate macrophages, and stimulate nitric oxide (NO) production. The present study may be helpful in identifying GC ligands with toxin-neutralizing and/or immunomodulating properties. In addition, our study could suggest GCs as new targets for existing vaccines and the prospective development of vaccines and immunomodulators used to combat the effects of B. anthracis.

  7. Aliphatic alcohols in spirits inhibit phagocytosis by human monocytes.

    PubMed

    Pál, László; Árnyas, Ervin M; Bujdosó, Orsolya; Baranyi, Gergő; Rácz, Gábor; Ádány, Róza; McKee, Martin; Szűcs, Sándor

    2015-04-01

    A large volume of alcoholic beverages containing aliphatic alcohols is consumed worldwide. Previous studies have confirmed the presence of ethanol-induced immunosuppression in heavy drinkers, thereby increasing susceptibility to infectious diseases. However, the aliphatic alcohols contained in alcoholic beverages might also impair immune cell function, thereby contributing to a further decrease in microbicidal activity. Previous research has shown that aliphatic alcohols inhibit phagocytosis by granulocytes but their effect on human monocytes has not been studied. This is important as they play a crucial role in engulfment and killing of pathogenic microorganisms and a decrease in their phagocytic activity could lead to impaired antimicrobial defence in heavy drinkers. The aim of this study was to measure monocyte phagocytosis following their treatment with those aliphatic alcohols detected in alcoholic beverages. Monocytes were separated from human peripheral blood and phagocytosis of opsonized zymosan particles by monocytes treated with ethanol and aliphatic alcohols individually and in combination was determined. It was shown that these alcohols could suppress the phagocytic activity of monocytes in a concentration-dependent manner and when combined with ethanol, they caused a further decrease in phagocytosis. Due to their additive effects, it is possible that they may inhibit phagocytosis in a clinically meaningful way in alcoholics and episodic heavy drinkers thereby contribute to their increased susceptibility to infectious diseases. However, further research is needed to address this question.

  8. Influence of apolipoprotein A-V on the metabolic fate of triacylglycerol

    PubMed Central

    Sharma, Vineeta; Forte, Trudy M.; Ryan, Robert O.

    2013-01-01

    Purpose of review Apolipoprotein (apo) A-V functions to modulate intracellular and extracellular triacylglycerol metabolism. The present review addresses molecular mechanisms underlying these effects. The relevance of apoA-V to human disease conditions is illustrated by the strong correlation between single nucleotide polymorphisms in APOA5, elevated plasma triacylglycerol and dyslipidemic disease. Recent findings Despite undergoing processing for secretion from hepatocytes, a portion of apoA-V escapes this destiny and accumulates as a component of cytosolic lipid droplets. Expression of recombinant apoA-V in hepatocarcinoma cells results in increased lipid droplet size and number at the expense of triacylglycerol secretion. ApoA-V modulates atherosclerosis in hypercholesterolemic apoE null mice. ApoE null/human apoA-V transgenic mice had reduced levels of triacylglycerol and cholesterol in plasma along with decreased aortic lesion size. Summary ApoA-V modulates triacylglycerol metabolic fate. Following its synthesis, apoA-V enters the endoplasmic reticulum and associates with membrane defects created by triacylglycerol accumulation. Association of apoA-V with endoplasmic reticulum membrane defects promotes nascent lipid droplets budding toward the cytosol. Despite its low concentration in plasma (~150 ng/ml), apoA-V modulates lipoprotein metabolism by binding to glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1. This interaction effectively localizes triacylglycerol-rich lipoproteins in the vicinity of glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1’s other ligand, lipoprotein lipase. PMID:23241513

  9. Fc-receptor-mediated phagocytosis is regulated by mechanical properties of the target

    NASA Technical Reports Server (NTRS)

    Beningo, Karen A.; Wang, Yu-li

    2002-01-01

    Phagocytosis is an actin-based process used by macrophages to clear particles greater than 0.5 microm in diameter. In addition to its role in immunological responses, phagocytosis is also necessary for tissue remodeling and repair. To prevent catastrophic autoimmune reactions, phagocytosis must be tightly regulated. It is commonly assumed that the recognition/selection of phagocytic targets is based solely upon receptor-ligand binding. Here we report an important new criterion, that mechanical parameters of the target can dramatically affect the efficiency of phagocytosis. When presented with particles of identical chemical properties but different rigidity, macrophages showed a strong preference to engulf rigid objects. Furthermore, phagocytosis of soft particles can be stimulated with the microinjection of constitutively active Rac1 but not RhoA, and with lysophosphatidic acid, an agent known to activate the small GTP-binding proteins of the Rho family. These data suggest a Rac1-dependent mechanosensory mechanism for phagocytosis, which probably plays an important role in a number of physiological and pathological processes from embryonic development to autoimmune diseases.

  10. Postprandial serum triacylglycerols and oxidative stress in mice after consumption of fish oil, soy oil or olive oil: possible role for paraoxonase-1 triacylglycerol lipase-like activity.

    PubMed

    Fuhrman, Bianca; Volkova, Nina; Aviram, Michael

    2006-09-01

    Postprandial triacylglycerols and oxidative stress responses are influenced by the type of fat consumed. We investigated the effect of individual unsaturated fatty acids or oils (fish, soy, or olive) on postprandial triglyceridemia response in association with serum resistance to oxidation and paraoxonase-1 (PON1) activity. Balb/C mice were supplemented with phosphate buffered saline (control), docosahexaenoic acid (omega-3), linoleic acid (omega-6), or oleic acid (omega-9; 500 microg/300 microL of phosphate buffered saline) and with fish, soy, or olive oil (300 microL); blood samples were collected 2 h after feeding. Serum triacylglycerol and oxidative stress responses increased after intake of all unsaturated fatty acids and oil supplements. However, ingestion of fish oil or its major fatty acid, docosahexaenoic acid, induced the most remarkable increase in postprandial serum triacylglycerols and in the susceptibility of serum to in vitro oxidation. Serum PON1 activity was decreased by 24% after fish oil ingestion. The increase in postprandial serum susceptibility to oxidation was lower after soy oil supplementation to PON1-transgenic mice in comparison with Balb/C mice, showing that PON1 attenuates the postprandial serum oxidative response. In parallel, in PON1-transgenic mice, a decreased postprandial triacylglycerol response was noted, suggesting PON1 involvement in triacylglycerol metabolism. PON1 exhibited a triacylglycerol lipase-like activity on chylomicrons. PON1 attenuates the postprandial oxidative stress response, and this could have resulted from PON1 lipase-like activity on chylomicron triacylglycerols.

  11. Phagocytosis and phagosome acidification are required for pathogen processing and MyD88-dependent responses to Staphylococcus aureus

    PubMed Central

    Ip, WK Eddie; Sokolovska, Anna; Charriere, Guillaume M; Boyer, Laurent; Dejardin, Stephanie; Cappillino, Michael P; Yantosca, L Michael; Takahashi, Kazue; Moore, Kathryn J; Lacy-Hulbert, Adam; Stuart, Lynda M

    2010-01-01

    Innate immunity is vital for protection from microbes and is mediated by both humoral effectors, such as cytokines, and cellular immune defenses, including phagocytic cells such as macrophages. After internalization by phagocytes, microbes are delivered into a phagosome, a complex intracellular organelle with a well-established and important role in microbial killing. However, the role of this organelle in cytokine responses and microbial sensing is less well defined. Here we assess the role of the phagosome in innate immune sensing and demonstrate the critical interdependence of phagocytosis and pattern recognition receptor signaling during response to the Gram-positive bacteria Staphylococcus aureus. We show that phagocytosis is essential to initiate optimal MyD88-dependent response to Staphylococcus aureus. Prior to TLR-dependent cytokine production bacteria must not only be engulfed but also delivered into acidic phagosomes. Here acid-activated host enzymes digest the internalized bacteria to liberate otherwise cryptic bacterial-derived ligands that initiate responses from the vacuole. Importantly, in macrophages in which phagosome acidification is perturbed, the impaired response to Staphylococcus aureus can be rescued by addition of lysostaphin, a bacterial endopeptidase active at neutral pH that can substitute for the acid-activated host enzymes. Together these observations delineate the inter-dependence of phagocytosis with pattern recognition receptor signaling and suggest that therapeutics to augment functions and signaling from the vacuole may be useful strategies to increase host responses to Staphylococcus aureus. PMID:20483752

  12. Triacylglycerol mobilization is suppressed by brefeldin A in Chlamydomonas reinhardtii

    PubMed Central

    Kato, Naohiro; Dong, Trung; Bailey, Michael; Lum, Tony; Ingram, Drury

    2013-01-01

    Brefeldin A suppresses vesicle trafficking by inhibiting exchange of GDP for GTP in ADP-ribosylation factor. We report that brefeldin A suppresses mobilization of triacylglycerols in Chlamydomonas reinhardtii, a model organism of green microalgae. Analyses revealed that brefeldin A causes Chlamydomonas to form lipid droplets in which triacylglycerols accumulate in a dose-dependent manner. Pulse labeling experiment using fluorescent fatty acids suggested that brefeldin A inhibits the cells from degrading fatty acids. The experiment also revealed that the cells transiently form novel compartments that accumulate exogenously added fatty acids in the cytoplasm, designated fatty acid-induced microbodies (FAIMs). Brefeldin A up-regulates the formation of FAIMs, whereas nitrogen deprivation that up-regulates triacylglycerol synthesis in Chlamydomonas does not cause the cells to form FAIMs. These results underscore the role of the vesicle trafficking machinery in triacylglycerol metabolism in green microalgae. PMID:23872273

  13. Progranulin increases phagocytosis by retinal pigment epithelial cells in culture.

    PubMed

    Murase, Hiromi; Tsuruma, Kazuhiro; Kuse, Yoshiki; Shimazawa, Masamitsu; Hara, Hideaki

    2017-12-01

    Retinal pigment epithelium (RPE) cells take part in retinal preservation, such as phagocytizing the shed photoreceptor outer segments (POS), every day. The incomplete phagocytic function accelerates RPE degeneration and formation of the toxic by-product lipofuscin. Excessive lipofuscin accumulation is characteristic of various blinding diseases in the human eye. Progranulin is a cysteine-rich protein that has multiple biological activities, and it has a high presence in the retina. Progranulin has been recognized to be involved in macrophage phagocytosis in the brain. The purpose of this study is to determine whether progranulin influences phagocytosis by RPE cells. All experiments were performed on primary human RPE (hRPE) cells in culture. pHrodo was used to label the isolated porcine POS, and quantification of pHrodo fluorescence was used to determine the degree of phagocytosis. Western blotting and immunohistochemistry of key proteins involved in phagocytosis were used to clarify the mechanism of progranulin. Progranulin increased RPE phagocytosis in hydrogen peroxide-treated and nontreated RPE cells. The phosphorylated form of Mer tyrosine kinase, which is important for POS internalization, was significantly increased in the progranulin-exposed cells. This increase was attenuated by SU11274, an inhibitor of hepatic growth factor receptor. Under the oxidative stress condition, exposure to progranulin led to an approximately twofold increase in integrin alpha-v, which is associated with the first step in recognition of POS by RPE cells. These results suggest that progranulin could be an effective stimulator for RPE phagocytosis and could repair RPE function. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. The skeletal and heart muscle triacylglycerol lipolysis revisited.

    PubMed

    Knapp, M; Gorski, J

    2017-02-01

    For 40 years, the enzyme hormone sensitive lipase was considered to hydrolyze the first ester bond of the triacylglycerol moiety and thus initiate hydrolysis. However, 12 years ago a new lipolytic enzyme, termed adipose triglyceride lipase was discovered. It was further shown that the process of lipolysis of triacylglycerol to diacylglycerol and fatty acid is initiated by adipose triglyceride lipase and not by hormone sensitive lipase, responsible for hydrolysis of diacylglycerol to monoacyglycerol and fatty acid. Adipose triglyceride lipase is present in all types of cells containing neutral fat. The enzyme is activated by a protein called comparative gene identification-58 and inhibited by a protein called G0/G1 switch protein 2. It has also been discovered that perilipins, the main proteins coating lipid droplets in the cells, are involved in the process of triacylglycerol lipolysis. Five perilipins (1-5) were identified, however, up to now their role has been poorly assessed. In skeletal muscles, exercise and training affect the mRNA expression and protein content of adipose triglyceride lipase, comparative gene identification-58, G0/G1 switch protein 2, perilipin 2 and 5. The effect of exercise/training depends on exercise intensity and type of muscle fiber. An interaction between comparative gene identification-58 and adipose triglyceride lipase seems to be responsible for the enzyme activation during contractile activity. Adipose triglyceride lipase is also responsible for the activation of the first step of triacylglycerol lipolysis in the heart. There is substantial evidence that cardiac triacylglycerol metabolism affects the function of the heart. ATGL gene mutations leads to the development of neutral lipid storage diseases.

  15. Lipopolysaccharide O-Antigen Prevents Phagocytosis of Vibrio anguillarum by Rainbow Trout (Oncorhynchus mykiss) Skin Epithelial Cells

    PubMed Central

    Lindell, Kristoffer; Fahlgren, Anna; Hjerde, Erik; Willassen, Nils-Peder; Fällman, Maria; Milton, Debra L.

    2012-01-01

    Colonization of host tissues is a first step taken by many pathogens during the initial stages of infection. Despite the impact of bacterial disease on wild and farmed fish, only a few direct studies have characterized bacterial factors required for colonization of fish tissues. In this study, using live-cell and confocal microscopy, rainbow trout skin epithelial cells, the main structural component of the skin epidermis, were demonstrated to phagocytize bacteria. Mutant analyses showed that the fish pathogen Vibrio anguillarum required the lipopolysaccharide O-antigen to evade phagocytosis and that O-antigen transport required the putative wzm-wzt-wbhA operon, which encodes two ABC polysaccharide transporter proteins and a methyltransferase. Pretreatment of the epithelial cells with mannose prevented phagocytosis of V. anguillarum suggesting that a mannose receptor is involved in the uptake process. In addition, the O-antigen transport mutants could not colonize the skin but they did colonize the intestines of rainbow trout. The O-antigen polysaccharides were also shown to aid resistance to the antimicrobial factors, lysozyme and polymyxin B. In summary, rainbow trout skin epithelial cells play a role in the fish innate immunity by clearing bacteria from the skin epidermis. In defense, V. anguillarum utilizes O-antigen polysaccharides to evade phagocytosis by the epithelial cells allowing it to colonize rapidly fish skin tissues. PMID:22662189

  16. YALI0E32769g (DGA1) and YALI0E16797g (LRO1) encode major triacylglycerol synthases of the oleaginous yeast Yarrowia lipolytica.

    PubMed

    Athenstaedt, Karin

    2011-10-01

    The oleaginous yeast Yarrowia lipolytica has an outstanding capacity to produce and store triacylglycerols resembling adipocytes of higher eukaryotes. Here, the identification of two genes YALI0E32769g (DGA1) and YALI0E16797g (LRO1) encoding major triacylglycerol synthases of Yarrowia lipolytica is reported. Heterologous expression of either DGA1 or LRO1 in a mutant of the budding yeast Saccharomyces cerevisiae defective in triacylglycerol synthesis restores the formation of this neutral lipid. Whereas Dga1p requires acyl-CoA as a substrate for acylation of diacylglycerol, Lro1p is an acyl-CoA independent triacylglycerol synthase using phospholipids as acyl-donor. Growth of Yarrowia lipolytica strains deleted of DGA1 and/or LRO1 on glucose containing medium significantly decreases triacylglycerol accumulation. Most interestingly, when oleic acid serves as the carbon source the ratio of triacylglycerol accumulation in mutants to wild-type is significantly increased in strains defective in DGA1 but not in lro1Δ. In vitro experiments revealed that under these conditions an additional acyl-CoA dependent triacylglycerol synthase contributes to triacylglycerol synthesis in the respective mutants. Taken together, evidence is provided that Yarrowia lipolytica contains at least four triacylglycerol synthases, namely Lro1p, Dga1p and two additional triacylglycerol synthases whereof one is acyl-CoA dependent and specifically induced upon growth on oleic acid. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. The lipolysis/esterification cycle of hepatic triacylglycerol. Its role in the secretion of very-low-density lipoprotein and its response to hormones and sulphonylureas.

    PubMed Central

    Wiggins, D; Gibbons, G F

    1992-01-01

    In hepatocyte cultures maintained in the absence of extracellular fatty acids, at least 70% of the secreted very-low-density lipoprotein (VLDL) triacylglycerol was derived via lipolysis of intracellular triacylglycerol. This proportion was unchanged when the cells were exposed for 24 h to insulin or glucagon, hormones which decreased the overall secretion of intracellular triacylglycerol, or to chloroquine or tolbutamide, agents which inhibit lysosomal lipolysis. The rate of intracellular lipolysis was 2-3-fold greater than that required to maintain the observed rate of triacylglycerol secretion. Most of the fatty acids released were returned to the intracellular pool. Neither insulin nor glucagon had any significant effect on the overall lipolysis and re-esterification of intracellular triacylglycerol. In these cases a greater proportion of the released fatty acids re-entered the cellular pool, rather than being recruited for VLDL assembly. Tolbutamide inhibited intracellular lipolysis, but suppressed VLDL secretion to a greater extent. 3,5-Dimethylpyrazole did not affect lipolysis or VLDL secretion. The increased secretion of VLDL triacylglycerol observed after exposure of cells to insulin for 3 days was not accompanied by an increased rate of intracellular lipolysis. However, a larger proportion of the triacylglycerol secreted under these conditions may not have undergone prior lipolysis. PMID:1599431

  18. The protease-activated receptor-2 upregulates keratinocyte phagocytosis.

    PubMed

    Sharlow, E R; Paine, C S; Babiarz, L; Eisinger, M; Shapiro, S; Seiberg, M

    2000-09-01

    The protease-activated receptor-2 (PAR-2) belongs to the family of seven transmembrane domain receptors, which are activated by the specific enzymatic cleavage of their extracellular amino termini. Synthetic peptides corresponding to the tethered ligand domain (SLIGRL in mouse, SLIGKV in human) can activate PAR-2 without the need for receptor cleavage. PAR-2 activation is involved in cell growth, differentiation and inflammatory processes, and was shown to affect melanin and melanosome ingestion by human keratinocytes. Data presented here suggest that PAR-2 activation may regulate human keratinocyte phagocytosis. PAR-2 activation by trypsin, SLIGRL or SLIGKV increased the ability of keratinocytes to ingest fluorescently labeled microspheres or E. coli K-12 bioparticles. This PAR-2 mediated increase in keratinocyte phagocytic capability correlated with an increase in actin polymerization and *-actinin reorganization, cell surface morphological changes and increased soluble protease activity. Moreover, addition of serine protease inhibitors downmodulated both the constitutive and the PAR-2 mediated increases in phagocytosis, suggesting that serine proteases mediate this functional activity in keratinocytes. PAR-2 involvement in keratinocyte phagocytosis is a novel function for this receptor.

  19. Triacylglycerol phase and 'intermediate' seed storage physiology: a study of Cuphea carthagenensis.

    PubMed

    Crane, Jennifer; Kovach, David; Gardner, Candice; Walters, Christina

    2006-04-01

    Seeds with 'intermediate' storage physiology store poorly under cold and dry conditions. We tested whether the poor shelf life can be attributed to triacylglycerol phase changes using Cuphea carthagenensis (Jacq.) seeds. Viability remained high when seeds were stored at 25 degrees C, but was lost quickly when seeds were stored at 5 degrees C. Deterioration was fastest in seeds with high (>or=0.10 g g(-1)) and low (0.01 g g(-1)) water contents (g H(2)O g dry mass(-1)), and slowest in seeds containing 0.04 g g(-1). A 45 degrees C treatment before imbibition restored germination of dry seeds by melting crystallized triacylglycerols. Here, we show that the rate of deterioration in C. carthagenensis seeds stored at 5 degrees C correlated with the rate that triacylglycerols crystallized within the seeds. Lipid crystallization, measured using differential scanning calorimetry, occurred at 6 degrees C for this species and was fastest for seeds stored at 5 degrees C that had high and very low water contents, and slowest for seeds containing 0.04 g g(-1). Germination decreased to 50% (P50) when between 16 and 38% of the triacylglycerols crystallized; complete crystallization took from 10 to over 200 days depending on water content. Our results demonstrate interactions between water and triacylglycerols in seeds: (1) water content affects the propensity of triacylglycerols to crystallize and (2) hydration of seed containing crystallized triacylglycerols is lethal. We suggest that these interactions form the basis of the syndrome of damage experienced when seeds with intermediate storage physiologies are placed in long-term storage.

  20. Immunocompetence of bivalve hemocytes as evaluated by a miniaturized phagocytosis assay.

    PubMed

    Blaise, C; Trottier, S; Gagné, F; Lallement, C; Hansen, P-D

    2002-01-01

    Immune function in bivalves can be adversely affected by long-term exposure to environmental contaminants. Investigating alterations in immunity can therefore yield relevant information about the relationship between exposure to environmental contaminants and susceptibility to infectious diseases. We have developed a rapid, cost-effective, and miniaturized immunocompetence assay to evaluate the phagocytic activity, viability, and concentration of hemocytes in freshwater and marine bivalves. Preliminary experiments were performed to optimize various aspects of the assay including 1) the time required for adherence of hemocytes to polystyrene microplate wells, 2) the time required for internalization of fluorescent bacteria, 3) the ratio of hemocytes to fluorescent bacteria in relation to phagocytosis, 4) hemolymph plasma requirements, and 5) the elimination of fluorescence from (noninternalized) bacteria adhering to the external surface of hemocytes. The results of these experiments showed the optimal adherence time for hemocytes in microplate wells to be 1 h, that phagocytosis required at least 2 h of contact with fluorescently labeled E. coli cells, that the number of fluorescent E. coli cells had a positive effect on phagocytic activity, that at least 2.5 million cells/mL were required to measure a significant intake, and that a linear increase in uptake of bacteria (R = 0.91; p < 0.01) could be obtained with concentrations of up to 1.3 x 10(6) hemocytes/mL. Afterward, the assay was used in two field studies to identify sites having the potential to affect the immunocompetence of bivalves. The first study was conducted on Mya arenaria clams collected at selected contaminated sites in the Saguenay River (Quebec, Canada), and the second examined Elliptio complanata freshwater bivalves that had been exposed to a municipal effluent plume in the St. Lawrence River (Quebec, Canada). In the Saguenay River field study a significant increase in phagocytosis was observed

  1. TRPV2 has a pivotal role in macrophage particle binding and phagocytosis.

    PubMed

    Link, Tiffany M; Park, Una; Vonakis, Becky M; Raben, Daniel M; Soloski, Mark J; Caterina, Michael J

    2010-03-01

    Macrophage phagocytosis is critical for defense against pathogens. Whereas many steps of phagocytosis involve ionic flux, the underlying ion channels remain ill defined. Here we show that zymosan-, immunoglobulin G (IgG)- and complement-mediated particle binding and phagocytosis were impaired in macrophages lacking the cation channel TRPV2. TRPV2 was recruited to the nascent phagosome and depolarized the plasma membrane. Depolarization increased the synthesis of phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P(2)), which triggered the partial actin depolymerization necessary for occupancy-elicited phagocytic receptor clustering. TRPV2-deficient macrophages were also defective in chemoattractant-elicited motility. Consequently, TRPV2-deficient mice showed accelerated mortality and greater organ bacterial load when challenged with Listeria monocytogenes. Our data demonstrate the participation of TRPV2 in early phagocytosis and its fundamental importance in innate immunity.

  2. Downstream components of RhoA required for signal pathway of superoxide formation during phagocytosis of serum opsonized zymosans in macrophages.

    PubMed

    Kim, Jun Sub; Kim, Jae Gyu; Jeon, Chan Young; Won, Ha Young; Moon, Mi Young; Seo, Ji Yeon; Kim, Jong Il; Kim, Jaebong; Lee, Jae Yong; Choi, Soo Young; Park, Jinseu; Yoon Park, Jung Han; Ha, Kwon Soo; Kim, Pyeung Hyeun; Park, Jae Bong

    2005-12-31

    Rac1 and Rac2 are essential for the control of oxidative burst catalyzed by NADPH oxidase. It was also documented that Rho is associated with the superoxide burst reaction during phagocytosis of serum- (SOZ) and IgG-opsonized zymosan particles (IOZ). In this study, we attempted to reveal the signal pathway components in the superoxide formation regulated by Rho GTPase. Tat-C3 blocked superoxide production, suggesting that RhoA is essentially involved in superoxide formation during phagocytosis of SOZ. Conversely SOZ activated both RhoA and Rac1/2. Inhibition of RhoA-activated kinase (ROCK), an important downstream effector of RhoA, by Y27632 and myosin light chain kinase (MLCK) by ML-7 abrogated superoxide production by SOZ. Extracellular signaling-regulated kinase (ERK)1/2 and p38 mitogen-activated protein kinase (MAPK) were activated during phagocytosis of SOZ, and Tat-C3 and SB203580 reduced ERK1/2 and p38 MAPK activation, suggesting that RhoA and p38 MAPK may be upstream regulators of ERK1/2. Inhibition of ERK1/2, p38 MAPK, phosphatidyl inositol 3-kinase did not block translocation of RhoA to membranes, suggesting that RhoA is upstream to these kinases. Inhibition of RhoA by Tat-C3 blocked phosphorylation of p47(PHOX). Taken together, RhoA, ROCK, p38MAPK, ERK1/2, and p47(PHOX) may be subsequently activated, leading to activation of NADPH oxidase to produce superoxide.

  3. Mechanism for the increase in plasma triacylglycerol concentrations after consumption of short-term, high-carbohydrate diets.

    PubMed

    Mittendorfer, B; Sidossis, L S

    2001-05-01

    High-carbohydrate (HC) diets are recommended for lowering the risk of coronary heart disease because they decrease plasma LDL-cholesterol concentrations. However, an unfavorable effect of HC diets is an increase in plasma triacylglycerol concentrations. The underlying mechanisms of this effect are still unclear. We examined the effect of diet composition on VLDL-triacylglycerol metabolism using in vivo isotopically labeled VLDL-triacylglycerol tracers. Six healthy subjects were studied on 2 occasions: after 2 wk of an HC diet (75% carbohydrates, 10% fat, and 15% protein) and after 2 wk of an isoenergetic high-fat (HF) diet (30% carbohydrates, 55% fat, and 15% protein). The plasma VLDL-triacylglycerol concentration was higher after the HC diet than after the HF diet (690 +/- 186 compared with 287 +/- 104 micromol/L; P < 0.05) because of higher rates of VLDL-triacylglycerol production (0.76 +/- 0.12 compared with 0.45 +/- 0.15 micromol x kg(-1) x min(-1); P < 0.05) rather than diminished VLDL-triacylglycerol clearance (1.5 +/- 0.5 compared with 1.7 +/- 0.5 mL x kg(-1) x min(-1) after the HC diet than after the HF diet, respectively). The increase in VLDL-triacylglycerol production was probably mediated by a decrease in hepatic fatty acid oxidation after the HC diet (0.13 +/- 0.02 compared with 0.69 +/- 0.24 micromol x kg(-1) x min(-1); P < 0.05), which presumably increased hepatic fatty acid availability for triacylglycerol synthesis. The increase in fasting plasma triacylglycerol concentrations in response to short-term HC diets is due to accelerated VLDL-triacylglycerol secretion. Increased hepatic fatty acid availability, resulting from reduced hepatic fatty acid oxidation, is most likely responsible for the observed increase in VLDL-triacylglycerol secretion.

  4. Treponema denticola Outer Membrane Enhances the Phagocytosis of Collagen-Coated Beads by Gingival Fibroblasts

    PubMed Central

    Battikhi, Tulin; Lee, Wilson; McCulloch, Christopher A. G.; Ellen, Richard P.

    1999-01-01

    Human gingival fibroblasts (HGFs) degrade collagen fibrils in physiological processes by phagocytosis. Since Treponema denticola outer membrane (OM) extract perturbs actin filaments, important structures in phagocytosis, we determined whether the OM affects collagen phagocytosis in vitro by HGFs. Phagocytosis was measured by flow cytometric assessment of internalized collagen-coated fluorescent latex beads. Confluent HGFs pretreated with T. denticola ATCC 35405 OM exhibited an increase in the percentage of collagen phagocytic cells (phagocytosis index [PI]) and in the number of beads per phagocytosing cell (phagocytic capacity [PC]) compared with untreated controls. The enhancement was swift (within 15 min) and was still evident after 1 day. PI and PC of HGFs for bovine serum albumin (BSA)-coated beads were also increased, indicating a global increase in phagocytic processes. These results contrasted those for control OM from Veillonella atypica ATCC 17744, which decreased phagocytosis. The T. denticola OM-induced increase in bead uptake was eliminated by heating the OM and by depolymerization of actin filaments by cytochalasin D treatment of HGFs. Fluid-phase accumulation of lucifer yellow was enhanced in a saturable, concentration-dependent, transient manner by the T. denticola OM. Our findings were not due to HGF detachment or cytotoxicity in response to the T. denticola OM treatment since the HGFs exhibited minimal detachment from the substratum; they did not take up propidium iodide; and there was no change in their size, granularity, or content of sub-G1 DNA. We conclude that a heat-sensitive component(s) in T. denticola OM extract stimulates collagen phagocytosis and other endocytic processes such as nonspecific phagocytosis and pinocytosis by HGFs. PMID:10024564

  5. Safety evaluation of a medium- and long-chain triacylglycerol oil produced from medium-chain triacylglycerols and edible vegetable oil.

    PubMed

    Matulka, R A; Noguchi, O; Nosaka, N

    2006-09-01

    To reduce the incorporation of dietary lipids into adipose tissue, modified fats and oils have been developed, such as medium-chain triacylglycerols (MCT). Typical dietary lipids from vegetable oils, termed long-chain triacylglycerols (LCT), are degraded by salivary, intestinal and pancreatic lipases into two fatty acids and a monoacyl glycerol; whereas, MCT are degraded by the same enzymes into three fatty acids and the simple glycerol backbone. Medium-chain fatty acids (MCFA) are readily absorbed from the small intestine directly into the bloodstream and transported to the liver for hepatic metabolism, while long-chain fatty acids (LCFA) are incorporated into chylomicrons and enter the lymphatic system. MCFA are readily broken down to carbon dioxide and two-carbon fragments, while LCFA are re-esterified to triacylglycerols and either metabolized for energy or stored in adipose tissue. Therefore, consumption of MCT decreases the incorporation of fatty acids into adipose tissue. However, MCT have technological disadvantages precluding their use in many food applications. A possible resolution is the manufacture and use of a triacylglycerol containing both LCT and MCT, termed medium- and long-chain triacylglycerol (MLCT). This manuscript describes studies performed for the safety evaluation of a MLCT oil enzymatically produced from MCT and edible vegetable oil (containing LCT), by a transesterification process. The approximate fatty acid composition of this MLCT consists of caprylic acid (9.7%), capric acid (3.3%), palmitic acid (3.8%), stearic acid (1.7%), oleic acid (51.2%), linoleic acid (18.4%), linolenic acid (9.0%), and other fatty acids (2.9%). The approximate percentages of long (L) and medium (M) fatty acids in the triacylglyerols are as follows: L, L, L (55.1%), L, L, M (35.2%), L, M, M (9.1%), and M, M, M (0.6%). The studies included: (1) acute study in rats (LD50>5000 mg/kg); (2) 6 week repeat-dose safety study via dietary administration to rats (NOAEL

  6. MiR-146a activates WAVE2 expression and enhances phagocytosis in lipopolysaccharide-stimulated RAW264.7 macrophages

    PubMed Central

    Cao, Zhongwei; Yao, Qunyan; Zhang, Shuncai

    2015-01-01

    MiR-146a has been shown to play a critical role in cell immunity and phagocytosis, processes that require rearrangement of the cytoskeleton. However, the detailed mechanism by which miR-146a regulates these events remains elusive. Here, we used luciferase reporter and protein assays to show that the cytoskeleton-regulatingprotein verprolin-homologous protein 2 (WAVE2), is a direct target of miR-146a. MiR-146a overexpression resulted in a decrease in WAVE2 protein expression under endotoxin-free culture conditions. Unexpectedly, however, miR-146a activated rather than repressed the expression of WAVE2 in macrophage RAW264.7 cells when cultured continuously in the presence of endotoxin. Furthermore, we demonstrated that miR-146a induced WAVE2 expression and enhanced phagocytosis in lipopolysaccharide-stimulated RAW264.7 macrophages. Our study suggests that lipopolysaccharide- induced miR146a indirectly activates WAVE2 expression; thus, facilitating cytoskeletal reorganization and phagocytosis in lipopolysaccharide-stimulated macrophages. PMID:26396677

  7. MiR-146a activates WAVE2 expression and enhances phagocytosis in lipopolysaccharide-stimulated RAW264.7 macrophages.

    PubMed

    Cao, Zhongwei; Yao, Qunyan; Zhang, Shuncai

    2015-01-01

    MiR-146a has been shown to play a critical role in cell immunity and phagocytosis, processes that require rearrangement of the cytoskeleton. However, the detailed mechanism by which miR-146a regulates these events remains elusive. Here, we used luciferase reporter and protein assays to show that the cytoskeleton-regulatingprotein verprolin-homologous protein 2 (WAVE2), is a direct target of miR-146a. MiR-146a overexpression resulted in a decrease in WAVE2 protein expression under endotoxin-free culture conditions. Unexpectedly, however, miR-146a activated rather than repressed the expression of WAVE2 in macrophage RAW264.7 cells when cultured continuously in the presence of endotoxin. Furthermore, we demonstrated that miR-146a induced WAVE2 expression and enhanced phagocytosis in lipopolysaccharide-stimulated RAW264.7 macrophages. Our study suggests that lipopolysaccharide- induced miR146a indirectly activates WAVE2 expression; thus, facilitating cytoskeletal reorganization and phagocytosis in lipopolysaccharide-stimulated macrophages.

  8. Phagocytosis Escape by a Staphylococcus aureus Protein That Connects Complement and Coagulation Proteins at the Bacterial Surface

    PubMed Central

    Medina, Eva; van Rooijen, Willemien J.; Spaan, András N.; van Kessel, Kok P. M.; Höök, Magnus; Rooijakkers, Suzan H. M.

    2013-01-01

    Upon contact with human plasma, bacteria are rapidly recognized by the complement system that labels their surface for uptake and clearance by phagocytic cells. Staphylococcus aureus secretes the 16 kD Extracellular fibrinogen binding protein (Efb) that binds two different plasma proteins using separate domains: the Efb N-terminus binds to fibrinogen, while the C-terminus binds complement C3. In this study, we show that Efb blocks phagocytosis of S. aureus by human neutrophils. In vitro, we demonstrate that Efb blocks phagocytosis in plasma and in human whole blood. Using a mouse peritonitis model we show that Efb effectively blocks phagocytosis in vivo, either as a purified protein or when produced endogenously by S. aureus. Mutational analysis revealed that Efb requires both its fibrinogen and complement binding residues for phagocytic escape. Using confocal and transmission electron microscopy we show that Efb attracts fibrinogen to the surface of complement-labeled S. aureus generating a ‘capsule’-like shield. This thick layer of fibrinogen shields both surface-bound C3b and antibodies from recognition by phagocytic receptors. This information is critical for future vaccination attempts, since opsonizing antibodies may not function in the presence of Efb. Altogether we discover that Efb from S. aureus uniquely escapes phagocytosis by forming a bridge between a complement and coagulation protein. PMID:24348255

  9. The Haemophilus ducreyi LspA1 protein inhibits phagocytosis by using a new mechanism involving activation of C-terminal Src kinase.

    PubMed

    Dodd, Dana A; Worth, Randall G; Rosen, Michael K; Grinstein, Sergio; van Oers, Nicolai S C; Hansen, Eric J

    2014-05-20

    Haemophilus ducreyi causes chancroid, a sexually transmitted infection. A primary means by which this pathogen causes disease involves eluding phagocytosis; however, the molecular basis for this escape mechanism has been poorly understood. Here, we report that the LspA virulence factors of H. ducreyi inhibit phagocytosis by stimulating the catalytic activity of C-terminal Src kinase (Csk), which itself inhibits Src family protein tyrosine kinases (SFKs) that promote phagocytosis. Inhibitory activity could be localized to a 37-kDa domain (designated YL2) of the 456-kDa LspA1 protein. The YL2 domain impaired ingestion of IgG-opsonized targets and decreased levels of active SFKs when expressed in mammalian cells. YL2 contains tyrosine residues in two EPIYG motifs that are phosphorylated in mammalian cells. These tyrosine residues were essential for YL2-based inhibition of phagocytosis. Csk was identified as the predominant mammalian protein interacting with YL2, and a dominant-negative Csk rescued phagocytosis in the presence of YL2. Purified Csk phosphorylated the tyrosines in the YL2 EPIYG motifs. Phosphorylated YL2 increased Csk catalytic activity, resulting in positive feedback, such that YL2 can be phosphorylated by the same kinase that it activates. Finally, we found that the Helicobacter pylori CagA protein also inhibited phagocytosis in a Csk-dependent manner, raising the possibility that this may be a general mechanism among diverse bacteria. Harnessing Csk to subvert the Fcγ receptor (FcγR)-mediated phagocytic pathway represents a new bacterial mechanism for circumventing a crucial component of the innate immune response and may potentially affect other SFK-involved cellular pathways. Phagocytosis is a critical component of the immune system that enables pathogens to be contained and cleared. A number of bacterial pathogens have developed specific strategies to either physically evade phagocytosis or block the intracellular signaling required for

  10. Development of a macrophage-targeting and phagocytosis-inducing bio-nanocapsule-based nanocarrier for drug delivery.

    PubMed

    Li, Hao; Tatematsu, Kenji; Somiya, Masaharu; Iijima, Masumi; Kuroda, Shun'ichi

    2018-06-01

    Macrophage hyperfunction or dysfunction is tightly associated with various diseases, such as osteoporosis, inflammatory disorder, and cancers. However, nearly all conventional drug delivery system (DDS) nanocarriers utilize endocytosis for entering target cells; thus, the development of macrophage-targeting and phagocytosis-inducing DDS nanocarriers for treating these diseases is required. In this study, we developed a hepatitis B virus (HBV) envelope L particle (i.e., bio-nanocapsule (BNC)) outwardly displaying a tandem form of protein G-derived IgG Fc-binding domain and protein L-derived IgG Fab-binding domain (GL-BNC). When conjugated with the macrophage-targeting ligand, mouse IgG2a (mIgG2a), the GL-BNC itself, and the liposome-fused GL-BNC (i.e., GL-virosome) spontaneously initiated aggregation by bridging between the Fc-binding domain and Fab-binding domain with mIgG2a. The aggregates were efficiently taken up by macrophages, whereas this was inhibited by latrunculin B, a phagocytosis-specific inhibitor. The mIgG2a-GL-virosome containing doxorubicin exhibited higher cytotoxicity toward macrophages than conventional liposomes and other BNC-based virosomes. Thus, GL-BNCs and GL-virosomes may constitute promising macrophage-targeting and phagocytosis-inducing DDS nanocarriers. We have developed a novel macrophage-targeting and phagocytosis-inducing bio-nanocapsule (BNC)-based nanocarrier named GL-BNC, which comprises a hepatitis B virus envelope L particle outwardly displaying protein G-derived IgG Fc- and protein L-derived IgG Fab-binding domains in tandem. The GL-BNC alone or liposome-fused form (GL-virosomes) could spontaneously aggregate when conjugated with macrophage-targeting IgGs, inducing phagocytosis by the interaction between IgG Fc of aggregates and FcγR on phagocytes. Thereby these aggregates were efficiently taken up by macrophages. GL-virosomes containing doxorubicin exhibited higher cytotoxicity towards macrophages than ZZ-virosomes and

  11. Alveolar macrophage phagocytosis is enhanced after blunt chest trauma and alters the posttraumatic mediator release.

    PubMed

    Seitz, Daniel H; Palmer, Annette; Niesler, Ulrike; Fröba, Janine S; Heidemann, Vera; Rittlinger, Anne; Braumüller, Sonja T; Zhou, Shaoxia; Gebhard, Florian; Knöferl, Markus W

    2011-12-01

    Blunt chest trauma is known to induce a pulmonary invasion of short-lived polymorphonuclear neutrophils and apoptosis of alveolar epithelial type 2 (AT2) cells. Apoptotic cells are removed by alveolar macrophages (AMΦ). We hypothesized that chest trauma alters the phagocytic response of AMΦ as well as the mediator release of AMΦ during phagocytosis. To study this, male Sprague-Dawley rats were subjected to blunt chest trauma. Phagocytosis assays were performed in AMΦ isolated 2 or 24 h after trauma with apoptotic cells or opsonized beads. Phagocytosis of apoptotic AT2 cells by unstimulated AMΦ was significantly increased 2 h after trauma. At 24 h, AMΦ from traumatized animals, stimulated with phorbol-12-myristate-13-acetate, ingested significantly more apoptotic polymorphonuclear neutrophils than AMΦ from sham animals. Alveolar macrophages after trauma released significantly higher levels of tumor necrosis factor α, macrophage inflammatory protein 1α, and cytokine-induced neutrophil chemoattractant 1 when they incorporated latex beads, but significantly lower levels of interleukin 1β and macrophage inflammatory protein 1α when they ingested apoptotic cells. In vivo, phagocytosis of intratracheally instilled latex beads was decreased in traumatized rats. The bronchoalveolar lavage concentrations of the phagocytosis-supporting surfactant proteins A and D after blunt chest trauma were slightly decreased, whereas surfactant protein D mRNA expression in AT2 cells was significantly increased after 2 h. These findings indicate that chest trauma augments the phagocytosis of apoptotic cells by AMΦ. Phagocytosis of opsonized beads enhances and ingestion of apoptotic cells downregulates the immunologic response following lung contusion. Our data emphasize the important role of phagocytosis during posttraumatic inflammation after lung contusion.

  12. Temperature dependence of production of structured triacylglycerols in the alga Trachydiscus minutus.

    PubMed

    Řezanka, Tomáš; Lukavský, Jaromír; Sigler, Karel; Nedbalová, Linda; Vítová, Milada

    2015-02-01

    This study describes the identification of regioisomers and enantiomers of triacylglycerols of C20 polyunsaturated fatty acids (PUFAs) in the alga Trachydiscus minutus cultivated at different temperatures using reversed- and chiral-phase liquid chromatography-mass spectrometry. The use of the two different phases contributes to ready identification, both qualitative and semiquantitative, of regioisomers and enantiomers of triacylglycerols containing eicosapentaenoic and arachidonic in the molecule. The ratio of regioisomers and enantiomers of triacylglycerols (TAG) depends on the temperature of cultivation; with lowering temperature the proportion of the achiral TAG increases and the enantiomer ratio diverges from 1:1. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Identification of Arabidopsis GPAT9 (At5g60620) as an essential gene involved in Triacylglycerol Biosynthesis

    USDA-ARS?s Scientific Manuscript database

    The first step in the biosynthesis of nearly all plant membrane phospholipids and storage triacylglycerols is catalyzed by a glycerol-3-phosphate acyltransferase (GPAT). The requirement for an endoplasmic reticulum (ER) localized GPAT for both of these critical metabolic pathways was recognized more...

  14. Combining chromatography and chemometrics for the characterization and authentication of fats and oils from triacylglycerol compositional data--a review.

    PubMed

    Bosque-Sendra, Juan M; Cuadros-Rodríguez, Luis; Ruiz-Samblás, Cristina; de la Mata, A Paulina

    2012-04-29

    The characterization and authentication of fats and oils is a subject of great importance for market and health aspects. Identification and quantification of triacylglycerols in fats and oils can be excellent tools for detecting changes in their composition due to the mixtures of these products. Most of the triacylglycerol species present in either fats or oils could be analyzed and identified by chromatographic methods. However, the natural variability of these samples and the possible presence of adulterants require the application of chemometric pattern recognition methods to facilitate the interpretation of the obtained data. In view of the growing interest in this topic, this paper reviews the literature of the application of exploratory and unsupervised/supervised chemometric methods on chromatographic data, using triacylglycerol composition for the characterization and authentication of several foodstuffs such as olive oil, vegetable oils, animal fats, fish oils, milk and dairy products, cocoa and coffee. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Cannabidiol enhances microglial phagocytosis via transient receptor potential (TRP) channel activation

    PubMed Central

    Hassan, Samia; Eldeeb, Khalil; Millns, Paul J; Bennett, Andrew J; Alexander, Stephen P H; Kendall, David A

    2014-01-01

    Background and Purpose Microglial cells are important mediators of the immune response in the CNS. The phytocannabinoid, cannabidiol (CBD), has been shown to have central anti-inflammatory properties, and the purpose of the present study was to investigate the effects of CBD and other phytocannabinoids on microglial phagocytosis. Experimental Approach Phagocytosis was assessed by measuring ingestion of fluorescently labelled latex beads by cultured microglial cells. Drug effects were probed using single-cell Ca2+ imaging and expression of mediator proteins by immunoblotting and immunocytochemistry. Key Results CBD (10 μM) enhanced bead phagocytosis to 175 ± 7% control. Other phytocannabinoids, synthetic and endogenous cannabinoids were without effect. The enhancement was dependent upon Ca2+ influx and was abolished in the presence of EGTA, the Ca2+ channel inhibitor SKF96365, the transient receptor potential (TRP) channel blocker ruthenium red, and the TRPV1 antagonists capsazepine and AMG9810. CBD produced a sustained increase in intracellular Ca2+ concentration in BV-2 microglia and this was abolished by ruthenium red. CBD rapidly increased the expression of TRPV2 and TRPV1 proteins and caused a translocation of TRPV2 to the cell membrane. Wortmannin blocked CBD enhancement of BV-2 cell phagocytosis, suggesting that it is mediated by PI3K signalling downstream of the Ca2+ influx. Conclusions and Implications The TRPV-dependent phagocytosis-enhancing effect of CBD suggests that pharmacological modification of TRPV channel activity could be a rational approach to treating neuroinflammatory disorders involving changes in microglial function and that CBD is a potential starting point for future development of novel therapeutics acting on the TRPV receptor family. PMID:24641282

  16. The influence of uraemia and haemodialysis on neutrophil phagocytosis and antimicrobial killing.

    PubMed

    Anding, Kirsten; Gross, Peter; Rost, Jan M; Allgaier, Dirk; Jacobs, Enno

    2003-10-01

    Neutrophil functions in haemodialysis (HD) patients are altered by uraemia and by HD procedure. We investigated details of the neutrophil dysfunction as its nature and origin is not well understood. This is reflected by conflicting results about neutrophil phagocytosis activity and by scarce data on the neutrophil killing capability in HD patients. Using a flow-cytometric test system we have measured simultaneously phagocytosis and the production of reactive oxygen species (ROS) of neutrophils and in parallel antimicrobial killing of yeast by neutrophils. 117 whole-blood samples of healthy controls and 50 pre- and 50 post-dialysis samples of HD patients, half of them with diabetes mellitus (DM), have been evaluated. We have constructed a model to account for the dependence on the stimulus-to-cell ratio and obtain means for phagocytosis and killing at different incubation times. (i) HD patients have significantly lower neutrophil killing (20%) than healthy controls. (ii) Dialysis improves the killing capability by 10-15%, after dialysis the killing activity remains significantly (10%) below that of the controls. (iii) The percentage of neutrophils, which exhibit phagocytosis and produce ROS, does not differ significantly between HD patients and healthy controls. (iv) Age has no significant influence on phagocytosis and killing. The neutrophil killing capability is reduced in HD patients while the amount of neutrophils that phagocyte and produce ROS remains unchanged. Functional impairment of uraemic neutrophils is therefore mainly a result of their reduced capability to kill microorganisms intracellularly.

  17. Nimrod, a putative phagocytosis receptor with EGF repeats in Drosophila plasmatocytes.

    PubMed

    Kurucz, Eva; Márkus, Róbert; Zsámboki, János; Folkl-Medzihradszky, Katalin; Darula, Zsuzsanna; Vilmos, Péter; Udvardy, Andor; Krausz, Ildikó; Lukacsovich, Tamás; Gateff, Elisabeth; Zettervall, Carl-Johan; Hultmark, Dan; Andó, István

    2007-04-03

    The hemocytes, the blood cells of Drosophila, participate in the humoral and cellular immune defense reactions against microbes and parasites [1-8]. The plasmatocytes, one class of hemocytes, are phagocytically active and play an important role in immunity and development by removing microorganisms as well as apoptotic cells. On the surface of circulating and sessile plasmatocytes, we have now identified a protein, Nimrod C1 (NimC1), which is involved in the phagocytosis of bacteria. Suppression of NimC1 expression in plasmatocytes inhibited the phagocytosis of Staphylococcus aureus. Conversely, overexpression of NimC1 in S2 cells stimulated the phagocytosis of both S. aureus and Escherichia coli. NimC1 is a 90-100 kDa single-pass transmembrane protein with ten characteristic EGF-like repeats (NIM repeats). The nimC1 gene is part of a cluster of ten related nimrod genes at 34E on chromosome 2, and similar clusters of nimrod-like genes are conserved in other insects such as Anopheles and Apis. The Nimrod proteins are related to other putative phagocytosis receptors such as Eater and Draper from D. melanogaster and CED-1 from C. elegans. Together, they form a superfamily that also includes proteins that are encoded in the human genome.

  18. Modulation of hepatic reticuloendothelial system phagocytosis by pancreatic hormones.

    PubMed

    Cornell, R P; McClellan, C C

    1982-12-01

    Experiments were conducted to determine the influence of the pancreatic hormones insulin, glucagon, and somatostatin on reticuloendothelial system (RES) phagocytosis both in vivo and in the isolated perfused livers of rats. Chronic pancreatic hormonal treatment consisted of twice daily injections SC of NPH insulin with doses ranging from 0.75 U on day 1 to 9.0 U on day 13 and unchanged doses of glucagon (200 micrograms) and somatostatin (50 micrograms). Chronic treatment with insulin significantly depressed by 48% intravascular phagocytosis of colloidal carbon administered IV at a dose of 8 mg/100 g, while glucagon and somatostatin stimulated macrophage endocytic function by 32% and 26%, respectively, compared to the control value. Acute treatment with the three pancreatic hormones at 30 min prior to carbon administration similarly produced insulin depression as well as glucagon and somatostatin stimulation of RES phagocytosis. Addition of the three hormones at near physiologic concentrations (20 ng/ml for insulin, 10 ng/ml for glucagon, and 5 ng/ml for somatostatin) to the recirculating perfusate of isolated perfused rat livers simultaneous with 24 mg of colloidal carbon likewise resulted in phagocytic reduction after insulin and enhancement after glucagon and somatostatin. Experiments involving insulin in vitro with isolated perfused livers as well as glucose replacement therapy concomitant with insulin in vivo demonstrated that hypoglycemia is not necessary for phagocytic depression by insulin while severe hypoglycemia in the perfusion medium is sufficient to depress carbon uptake by isolated perfused livers independent of insulin. Both pancreatic hormones and the level of glycemia seem to be important in modulating hepatic reticuloendothelial system phagocytosis.

  19. Massive cellular disruption occurs during early imbibition of Cuphea seeds containing crystallized triacylglycerols.

    PubMed

    Volk, Gayle M; Crane, Jennifer; Caspersen, Ann M; Hill, Lisa M; Gardner, Candice; Walters, Christina

    2006-11-01

    The transition from anhydrobiotic to hydrated state occurs during early imbibition of seeds and is lethal if lipid reserves in seeds are crystalline. Low temperatures crystallize lipids during seed storage. We examine the nature of cellular damage observed in seeds of Cuphea wrightii and C. lanceolata that differ in triacylglycerol composition and phase behavior. Intracellular structure, observed using transmission electron microscopy, is profoundly and irreversibly perturbed if seeds with crystalline triacylglycerols are imbibed briefly. A brief heat treatment that melts triacylglycerols before imbibition prevents the loss of cell integrity; however, residual effects of cold treatments in C. wrightii cells are reflected by the apparent coalescence of protein and oil bodies. The timing and temperature dependence of cellular changes suggest that damage arises via a physical mechanism, perhaps as a result of shifts in hydrophobic and hydrophilic interactions when triacylglycerols undergo phase changes. Stabilizers of oil body structure such as oleosins that rely on a balance of physical forces may become ineffective when triacylglycerols crystallize. Recent observations linking poor oil body stability and poor seed storage behavior are potentially explained by the phase behavior of the storage lipids. These findings directly impact the feasibility of preserving genetic resources from some tropical and subtropical species.

  20. Second-Hand Cigarette Smoke Impairs Bacterial Phagocytosis in Macrophages by Modulating CFTR Dependent Lipid-Rafts

    PubMed Central

    Ni, Inzer; Ji, Changhoon; Vij, Neeraj

    2015-01-01

    Introduction First/Second-hand cigarette-smoke (FHS/SHS) exposure weakens immune defenses inducing chronic obstructive pulmonary disease (COPD) but the underlying mechanisms are not fully understood. Hence, we evaluated if SHS induced changes in membrane/lipid-raft (m-/r)-CFTR (cystic fibrosis transmembrane conductance regulator) expression/activity is a potential mechanism for impaired bacterial phagocytosis in COPD. Methods RAW264.7 murine macrophages were exposed to freshly prepared CS-extract (CSE) containing culture media and/or Pseudomonas-aeruginosa-PA01-GFP for phagocytosis (fluorescence-microscopy), bacterial survival (colony-forming-units-CFU), and immunoblotting assays. The CFTR-expression/activity and lipid-rafts were modulated by transient-transfection or inhibitors/inducers. Next, mice were exposed to acute/sub-chronic-SHS or room-air (5-days/3-weeks) and infected with PA01-GFP, followed by quantification of bacterial survival by CFU-assay. Results We investigated the effect of CSE treatment on RAW264.7 cells infected by PA01-GFP and observed that CSE treatment significantly (p<0.01) inhibits PA01-GFP phagocytosis as compared to the controls. We also verified this in murine model, exposed to acute/sub-chronic-SHS and found significant (p<0.05, p<0.02) increase in bacterial survival in the SHS-exposed lungs as compared to the room-air controls. Next, we examined the effect of impaired CFTR ion-channel-activity on PA01-GFP infection of RAW264.7 cells using CFTR172-inhibitor and found no significant change in phagocytosis. We also similarly evaluated the effect of a CFTR corrector-potentiator compound, VRT-532, and observed no significant rescue of CSE impaired PA01-GFP phagocytosis although it significantly (p<0.05) decreases CSE induced bacterial survival. Moreover, induction of CFTR expression in macrophages significantly (p<0.03) improves CSE impaired PA01-GFP phagocytosis as compared to the control. Next, we verified the link between m

  1. Screening for hydrolytic enzymes reveals Ayr1p as a novel triacylglycerol lipase in Saccharomyces cerevisiae.

    PubMed

    Ploier, Birgit; Scharwey, Melanie; Koch, Barbara; Schmidt, Claudia; Schatte, Jessica; Rechberger, Gerald; Kollroser, Manfred; Hermetter, Albin; Daum, Günther

    2013-12-13

    Saccharomyces cerevisiae, as well as other eukaryotes, preserves fatty acids and sterols in a biologically inert form, as triacylglycerols and steryl esters. The major triacylglycerol lipases of the yeast S. cerevisiae identified so far are Tgl3p, Tgl4p, and Tgl5p (Athenstaedt, K., and Daum, G. (2003) YMR313c/TGL3 encodes a novel triacylglycerol lipase located in lipid particles of Saccharomyces cerevisiae. J. Biol. Chem. 278, 23317-23323; Athenstaedt, K., and Daum, G. (2005) Tgl4p and Tgl5p, two triacylglycerol lipases of the yeast Saccharomyces cerevisiae, are localized to lipid particles. J. Biol. Chem. 280, 37301-37309). We observed that upon cultivation on oleic acid, triacylglycerol mobilization did not come to a halt in a yeast strain deficient in all currently known triacylglycerol lipases, indicating the presence of additional not yet characterized lipases/esterases. Functional proteome analysis using lipase and esterase inhibitors revealed a subset of candidate genes for yet unknown hydrolytic enzymes on peroxisomes and lipid droplets. Based on the conserved GXSXG lipase motif, putative functions, and subcellular localizations, a selected number of candidates were characterized by enzyme assays in vitro, gene expression analysis, non-polar lipid analysis, and in vivo triacylglycerol mobilization assays. These investigations led to the identification of Ayr1p as a novel triacylglycerol lipase of yeast lipid droplets and confirmed the hydrolytic potential of the peroxisomal Lpx1p in vivo. Based on these results, we discuss a possible link between lipid storage, lipid mobilization, and peroxisomal utilization of fatty acids as a carbon source.

  2. Roles of Acyl-CoA:Diacylglycerol Acyltransferases 1 and 2 in Triacylglycerol Synthesis and Secretion in Primary Hepatocytes.

    PubMed

    Li, Chen; Li, Lena; Lian, Jihong; Watts, Russell; Nelson, Randal; Goodwin, Bryan; Lehner, Richard

    2015-05-01

    Very low-density lipoprotein assembly and secretion are regulated by the availability of triacylglycerol. Although compelling evidence indicates that the majority of triacylglycerol in very low-density lipoprotein is derived from re-esterification of lipolytic products released by endoplasmic reticulum-associated lipases, little is known about roles of acyl-CoA:diacylglycerol acyltransferases (DGATs) in this process. We aimed to investigate the contribution of DGAT1 and DGAT2 in lipid metabolism and lipoprotein secretion in primary mouse and human hepatocytes. We used highly selective small-molecule inhibitors of DGAT1 and DGAT2, and we tracked storage and secretion of lipids synthesized de novo from [(3)H]acetic acid and from exogenously supplied [(3)H]oleic acid. Inactivation of individual DGAT activity did not affect incorporation of either radiolabeled precursor into intracellular triacylglycerol, whereas combined inactivation of both DGATs severely attenuated triacylglycerol synthesis. However, inhibition of DGAT2 augmented fatty acid oxidation, whereas inhibition of DGAT1 increased triacylglycerol secretion, suggesting preferential channeling of separate DGAT-derived triacylglycerol pools to distinct metabolic pathways. Inactivation of DGAT2 impaired cytosolic lipid droplet expansion, whereas DGAT1 inactivation promoted large lipid droplet formation. Moreover, inactivation of DGAT2 attenuated expression of lipogenic genes. Finally, triacylglycerol secretion was significantly reduced on DGAT2 inhibition without altering extracellular apolipoprotein B levels. Our data suggest that DGAT1 and DGAT2 can compensate for each other to synthesize triacylglycerol, but triacylglycerol synthesized by DGAT1 is preferentially channeled to oxidation, whereas DGAT2 synthesizes triacylglycerol destined for very low-density lipoprotein assembly. © 2015 American Heart Association, Inc.

  3. PHO4 transcription factor regulates triacylglycerol metabolism under low-phosphate conditions in Saccharomyces cerevisiae.

    PubMed

    Yadav, Kamlesh Kumar; Singh, Neelima; Rajasekharan, Ram

    2015-10-01

    In Saccharomyces cerevisiae, PHM8 encodes a phosphatase that catalyses the dephosphorylation of lysophosphatidic acids to monoacylglycerol and nucleotide monophosphate to nucleoside and releases free phosphate. In this report, we investigated the role of PHM8 in triacylglycerol metabolism and its transcriptional regulation by a phosphate responsive transcription factor Pho4p under low-phosphate conditions. We found that the wild-type (BY4741) cells accumulate triacylglycerol and the expression of PHM8 was high under low-phosphate conditions. Overexpression of PHM8 in the wild-type, phm8Δ and quadruple phosphatase mutant (pah1Δdpp1Δlpp1Δapp1Δ) caused an increase in the triacylglycerol levels. However, the introduction of the PHM8 deletion into the quadruple phosphatase mutant resulted in a reduction in triacylglycerol levels and LPA phosphatase activity. The transcriptional activator Pho4p binds to the PHM8 promoter under low-phosphate conditions, activating PHM8 expression, which leads to the formation of monoacylglycerol from LPA. The synthesized monoacylglycerol is acylated to diacylglycerol by Dga1p, which is further acylated to triacylglycerol by the same enzyme. © 2015 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.

  4. Antibiotic-Enhanced Phagocytosis of ’Borrelia recurrentis’ by Blood Polymorphonuclear Leukocytes.

    DTIC Science & Technology

    1979-11-30

    hours after Butler 7 institution of antibiotic treatment. Polymorphonuclear leukocytes are known to release endogenous pyrogen after phagocytosis of...other bacteria (6), and endogenous pyrogen may be one of the mediators of the rigor and temperature rise in the Jarisch-Herxheimer reaction (2). Release...the pathogenesis of fever. XII. The effect of phagocytosis on the release of endogenous pyrogen by polymorphonuclear leukocytes. J. Exp. Med. 119:715

  5. Screening for Hydrolytic Enzymes Reveals Ayr1p as a Novel Triacylglycerol Lipase in Saccharomyces cerevisiae*

    PubMed Central

    Ploier, Birgit; Scharwey, Melanie; Koch, Barbara; Schmidt, Claudia; Schatte, Jessica; Rechberger, Gerald; Kollroser, Manfred; Hermetter, Albin; Daum, Günther

    2013-01-01

    Saccharomyces cerevisiae, as well as other eukaryotes, preserves fatty acids and sterols in a biologically inert form, as triacylglycerols and steryl esters. The major triacylglycerol lipases of the yeast S. cerevisiae identified so far are Tgl3p, Tgl4p, and Tgl5p (Athenstaedt, K., and Daum, G. (2003) YMR313c/TGL3 encodes a novel triacylglycerol lipase located in lipid particles of Saccharomyces cerevisiae. J. Biol. Chem. 278, 23317–23323; Athenstaedt, K., and Daum, G. (2005) Tgl4p and Tgl5p, two triacylglycerol lipases of the yeast Saccharomyces cerevisiae, are localized to lipid particles. J. Biol. Chem. 280, 37301–37309). We observed that upon cultivation on oleic acid, triacylglycerol mobilization did not come to a halt in a yeast strain deficient in all currently known triacylglycerol lipases, indicating the presence of additional not yet characterized lipases/esterases. Functional proteome analysis using lipase and esterase inhibitors revealed a subset of candidate genes for yet unknown hydrolytic enzymes on peroxisomes and lipid droplets. Based on the conserved GXSXG lipase motif, putative functions, and subcellular localizations, a selected number of candidates were characterized by enzyme assays in vitro, gene expression analysis, non-polar lipid analysis, and in vivo triacylglycerol mobilization assays. These investigations led to the identification of Ayr1p as a novel triacylglycerol lipase of yeast lipid droplets and confirmed the hydrolytic potential of the peroxisomal Lpx1p in vivo. Based on these results, we discuss a possible link between lipid storage, lipid mobilization, and peroxisomal utilization of fatty acids as a carbon source. PMID:24187129

  6. Hemocyte-mediated phagocytosis differs between honey bee (Apis mellifera) worker castes

    PubMed Central

    Salmela, Heli; Amdam, Gro Vang; Münch, Daniel

    2017-01-01

    Honey bees as other insects rely on the innate immune system for protection against diseases. The innate immune system includes the circulating hemocytes (immune cells) that clear pathogens from hemolymph (blood) by phagocytosis, nodulation or encapsulation. Honey bee hemocyte numbers have been linked to hemolymph levels of vitellogenin. Vitellogenin is a multifunctional protein with immune-supportive functions identified in a range of species, including the honey bee. Hemocyte numbers can increase via mitosis, and this recruitment process can be important for immune system function and maintenance. Here, we tested if hemocyte mediated phagocytosis differs among the physiologically different honey bee worker castes (nurses, foragers and winter bees), and study possible interactions with vitellogenin and hemocyte recruitment. To this end, we adapted phagocytosis assays, which—together with confocal microscopy and flow cytometry—allow qualitative and quantitative assessment of hemocyte performance. We found that nurses are more efficient in phagocytic uptake than both foragers and winter bees. We detected vitellogenin within the hemocytes, and found that winter bees have the highest numbers of vitellogenin-positive hemocytes. Connections between phagocytosis, hemocyte-vitellogenin and mitosis were worker caste dependent. Our results demonstrate that the phagocytic performance of immune cells differs significantly between honey bee worker castes, and support increased immune competence in nurses as compared to forager bees. Our data, moreover, provides support for roles of vitellogenin in hemocyte activity. PMID:28877227

  7. Hemocyte-mediated phagocytosis differs between honey bee (Apis mellifera) worker castes.

    PubMed

    Hystad, Eva Marit; Salmela, Heli; Amdam, Gro Vang; Münch, Daniel

    2017-01-01

    Honey bees as other insects rely on the innate immune system for protection against diseases. The innate immune system includes the circulating hemocytes (immune cells) that clear pathogens from hemolymph (blood) by phagocytosis, nodulation or encapsulation. Honey bee hemocyte numbers have been linked to hemolymph levels of vitellogenin. Vitellogenin is a multifunctional protein with immune-supportive functions identified in a range of species, including the honey bee. Hemocyte numbers can increase via mitosis, and this recruitment process can be important for immune system function and maintenance. Here, we tested if hemocyte mediated phagocytosis differs among the physiologically different honey bee worker castes (nurses, foragers and winter bees), and study possible interactions with vitellogenin and hemocyte recruitment. To this end, we adapted phagocytosis assays, which-together with confocal microscopy and flow cytometry-allow qualitative and quantitative assessment of hemocyte performance. We found that nurses are more efficient in phagocytic uptake than both foragers and winter bees. We detected vitellogenin within the hemocytes, and found that winter bees have the highest numbers of vitellogenin-positive hemocytes. Connections between phagocytosis, hemocyte-vitellogenin and mitosis were worker caste dependent. Our results demonstrate that the phagocytic performance of immune cells differs significantly between honey bee worker castes, and support increased immune competence in nurses as compared to forager bees. Our data, moreover, provides support for roles of vitellogenin in hemocyte activity.

  8. The Physiology of Phagocytosis in the Context of Mitochondrial Origin

    PubMed Central

    Tielens, Aloysius G. M.; Mentel, Marek

    2017-01-01

    SUMMARY How mitochondria came to reside within the cytosol of their host has been debated for 50 years. Though current data indicate that the last eukaryote common ancestor possessed mitochondria and was a complex cell, whether mitochondria or complexity came first in eukaryotic evolution is still discussed. In autogenous models (complexity first), the origin of phagocytosis poses the limiting step at eukaryote origin, with mitochondria coming late as an undigested growth substrate. In symbiosis-based models (mitochondria first), the host was an archaeon, and the origin of mitochondria was the limiting step at eukaryote origin, with mitochondria providing bacterial genes, ATP synthesis on internalized bioenergetic membranes, and mitochondrion-derived vesicles as the seed of the eukaryote endomembrane system. Metagenomic studies are uncovering new host-related archaeal lineages that are reported as complex or phagocytosing, although images of such cells are lacking. Here we review the physiology and components of phagocytosis in eukaryotes, critically inspecting the concept of a phagotrophic host. From ATP supply and demand, a mitochondrion-lacking phagotrophic archaeal fermenter would have to ingest about 34 times its body weight in prokaryotic prey to obtain enough ATP to support one cell division. It would lack chemiosmotic ATP synthesis at the plasma membrane, because phagocytosis and chemiosmosis in the same membrane are incompatible. It would have lived from amino acid fermentations, because prokaryotes are mainly protein. Its ATP yield would have been impaired relative to typical archaeal amino acid fermentations, which involve chemiosmosis. In contrast, phagocytosis would have had great physiological benefit for a mitochondrion-bearing cell. PMID:28615286

  9. How cells engulf: a review of theoretical approaches to phagocytosis

    NASA Astrophysics Data System (ADS)

    Richards, David M.; Endres, Robert G.

    2017-12-01

    Phagocytosis is a fascinating process whereby a cell surrounds and engulfs particles such as bacteria and dead cells. This is crucial both for single-cell organisms (as a way of acquiring nutrients) and as part of the immune system (to destroy foreign invaders). This whole process is hugely complex and involves multiple coordinated events such as membrane remodelling, receptor motion, cytoskeleton reorganisation and intracellular signalling. Because of this, phagocytosis is an excellent system for theoretical study, benefiting from biophysical approaches combined with mathematical modelling. Here, we review these theoretical approaches and discuss the recent mathematical and computational models, including models based on receptors, models focusing on the forces involved, and models employing energetic considerations. Along the way, we highlight a beautiful connection to the physics of phase transitions, consider the role of stochasticity, and examine links between phagocytosis and other types of endocytosis. We cover the recently discovered multistage nature of phagocytosis, showing that the size of the phagocytic cup grows in distinct stages, with an initial slow stage followed by a much quicker second stage starting around half engulfment. We also address the issue of target shape dependence, which is relevant to both pathogen infection and drug delivery, covering both one-dimensional and two-dimensional results. Throughout, we pay particular attention to recent experimental techniques that continue to inform the theoretical studies and provide a means to test model predictions. Finally, we discuss population models, connections to other biological processes, and how physics and modelling will continue to play a key role in future work in this area.

  10. Dietary saturated triacylglycerols suppress hepatic low density lipoprotein receptor activity in the hamster.

    PubMed

    Spady, D K; Dietschy, J M

    1985-07-01

    The liver plays a key role in the regulation of circulating levels of low density lipoproteins (LDL) because it is both the site for the production of and the major organ for the degradation of this class of lipoproteins. In this study, the effects of feeding polyunsaturated or saturated triacylglycerols on receptor-dependent and receptor-independent hepatic LDL uptake were measured in vivo in the hamster. In control animals, receptor-dependent LDL transport manifested an apparent Km value of 85 mg/dl (plasma LDL-cholesterol concentration) and reached a maximum transport velocity of 131 micrograms of LDL-cholesterol/hr per g, whereas receptor-independent uptake increased as a linear function of plasma LDL levels. Thus, at normal plasma LDL-cholesterol concentrations, the hepatic clearance rate of LDL equaled 120 and 9 microliter/hr per g by receptor-dependent and receptor-independent mechanisms, respectively. As the plasma LDL-cholesterol was increased, the receptor-dependent (but not the receptor-independent) component declined. When cholesterol (0.12%) alone or in combination with polyunsaturated triacylglycerols was fed for 30 days, receptor-dependent clearance was reduced to 36-42 microliter/hr per g, whereas feeding of cholesterol plus saturated triacylglycerols essentially abolished receptor-dependent LDL uptake (5 microliter/hr per g). When compared to the appropriate kinetic curves, these findings indicated that receptor-mediated LDL transport was suppressed approximately equal to 30% by cholesterol feeding alone and this was unaffected by the addition of polyunsaturated triacylglycerols to the diet. In contrast, receptor-dependent uptake was suppressed approximately equal to 90% by the intake of saturated triacylglycerols. As compared to polyunsaturated triacylglycerols, the intake of saturated lipids was also associated with significantly higher plasma LDL-cholesterol concentrations and lower levels of cholesteryl esters in the liver.

  11. Isolation and characterization of a mucosal triacylglycerol pool undergoing hydrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tipton AD IV; Frase, S.; Mansbach, C.M. II

    1989-12-01

    Absorbed and processed mucosal neutral lipid has been shown to be composed of at least two pools of triacylglycerol. One is likely to subserve chylomicron formation, and the other appears to be transported from the intestine via a nonlymphatic route. In the present study, 50 +/- 5% of the mucosal lipid pellets was centrifuged at 75,000 g.min (low-speed pellet (LSP)). Discontinuous sucrose density gradient centrifugation of LSP showed that 61 +/- 7% of the lipid banded at the 0.25-0.86 M sucrose interface. Neutral lipid analysis showed that this subfraction was only 58% triacylglycerol, suggesting it was undergoing hydrolysis. Active lipolyticmore » activity in vitro was found on incubation. The lipase had an alkaline pH optimum (pH 8.5) and persisted despite pancreatic ductular diversion. Lipolysis in vivo in a LSP fraction was shown by infusing (14C)glyceryltrioleate for 3.5 h followed by (3H)glyceryltrioleate for 30 min. Discontinuous sucrose density centrifugation of the LSP followed by an analysis of the lipids at the 0.25-0.86 M sucrose interface showed that 14C-neutral lipids were only 70 +/- 6% triacylglycerol, whereas 3H-neutral lipids were 88 +/- 2% triacylglycerol. 3H entered LSP slowly compared with the floating lipid in the same centrifuge tube. These studies suggest both in vivo and in vitro mucosal lipolysis by a specific, alkaline-active lipase. The turnover rate of LSP is likely to be slow by comparison with neutral lipid floating to the top of the centrifuge tube.« less

  12. Phospholipase D¿ enhances diacylglycerol flux into triacylglycerol

    USDA-ARS?s Scientific Manuscript database

    Plant seeds are the primary source of triacylglycerols (TAG) for food, feed, fuel, and industrial applications. As TAG is produced from diacylglycerol (DAG) successful engineering strategies to enhance TAG levels have focused on the conversion of DAG to TAG. However, the production of TAG can be lim...

  13. [The Enhanceing effect of IL-12 on phagocytosis and killing of Mycobacterium tuberculosis by neutrophils in tuberculosis patients].

    PubMed

    Jiang, Li-na; Yao, Chun-yan; Jin, Qi-li; He, Wen-xin; Li, Bai-qing

    2011-11-01

    To explore the effects of IL-12 on phagocytosis and killing of Mycobacterium tuberculosis by neutrophils or polymorphonuclear cells (PMNs) in tuberculosis patients. The fresh peripheral blood samples from TB patients and healthy adults were incubated with M.tb labeled with FITC, and the percentages of phagocytosis of M.tb by PMNs was measured by flow cytometry (FCM). The fresh peripheral blood samples were incubated with DCFH-DA, and with or without M.tb for different times, the percentage of activation and the ROS production of PMNs were measured by FCM. Whole blood samples were pretreated with IL-12, the changes of phagocytosis, activation and ROS production of PMNs were measured by FCM. The percentages of phagocytosis by PMNs, activation and ROS production of PMNs in both TB patients and healthy adults increased dependent on the time of incubation with M.tb. Only the phagocytosis of M.tb by PMNs at 5 min in TB patients of tuberculosis patients (51.82±6.93)% was obviously higher than that in healthy adults (47.20±4.26)%, (P<0.05). Pretreatment of whole blood with IL-12 before incubation with M.tb, the percentages of phagocytosis, activation and ROS production of PMNs in both TB patients and healthy adults increased in dose dependent manner, but no significant difference was found between both groups. The results indicated that the phagocytosis of M.tb and ROS production by PMNs in TB patients were almost the same as that in healthy controls, except for phagocytosis is higher at early stage. Furthermore, IL-12 can enhance the responsiveness to the phagocytosis and ROS production of PMNs.

  14. Dietary triacylglycerol structure and saturated fat alter plasma and tissue fatty acids in piglets.

    PubMed

    Innis, S M; Dyer, R; Quinlan, P T; Diersen-Schade, D

    1996-05-01

    Human and pig milk triacylglycerols contain a large proportion of palmitic acid (16:0) which is predominately esterified in the 2-position. Other dietary fats contain variable amounts of 16:0, with unsaturated fatty acids predominantly esterified in the 2-position. These studies determined if the amount or position of 16:0 in dietary fat influences the composition or distribution of liver, adipose tissue, lung, or plasma fatty acids in developing piglets. Piglets were fed to 18 d with sow milk or formula with saturated fat from medium-chain triglyceride (MCT), coconut or palm oil, or synthesized triacylglycerols (synthesized to specifically direct 16:0 to the 2-position) with, in total fatty acids, 30.7, 4.3, 6.5, 27.0, and 29.6% 16:0, and in 2-position fatty acids, 55.3, 0.4, 1.3, 4.4, and 69.9% 16:0, respectively. The percentage of 16:0 in the 2-position of adipose fat from piglets fed sow milk, palm oil, and synthesized triacylglycerols were similar and higher than in piglets fed MCT or coconut oil. Thus, the amount, not the position, of dietary 16:0 determines piglet adipose tissue 16:0 content. The effects of the diets on the plasma and liver triacylglycerols were similar, with significantly lower 16:0 in total and 2-position fatty acids of the MCT and coconut oil groups, and significantly higher 16:0 in the plasma and liver triacylglycerol 2-position of piglets fed the synthesized triacylglycerols rather than sow milk or palm oil. The lung phospholipid total and 2-position 16:0 was significantly lower in the MCT, coconut, and palm oil groups, but similar in the synthesized triacylglycerol group and sow milk group. The lung phospholipid total and 2-position percentage of arachidonic acid (20:4n-6) was significantly lower in all of the formula-fed piglets than in milk-fed piglets. The physiological significance of this is not known.

  15. Serotonin modulates insect hemocyte phagocytosis via two different serotonin receptors

    PubMed Central

    Qi, Yi-xiang; Huang, Jia; Li, Meng-qi; Wu, Ya-su; Xia, Ren-ying; Ye, Gong-yin

    2016-01-01

    Serotonin (5-HT) modulates both neural and immune responses in vertebrates, but its role in insect immunity remains uncertain. We report that hemocytes in the caterpillar, Pieris rapae are able to synthesize 5-HT following activation by lipopolysaccharide. The inhibition of a serotonin-generating enzyme with either pharmacological blockade or RNAi knock-down impaired hemocyte phagocytosis. Biochemical and functional experiments showed that naive hemocytes primarily express 5-HT1B and 5-HT2B receptors. The blockade of 5-HT1B significantly reduced phagocytic ability; however, the blockade of 5-HT2B increased hemocyte phagocytosis. The 5-HT1B-null Drosophila melanogaster mutants showed higher mortality than controls when infected with bacteria, due to their decreased phagocytotic ability. Flies expressing 5-HT1B or 5-HT2B RNAi in hemocytes also showed similar sensitivity to infection. Combined, these data demonstrate that 5-HT mediates hemocyte phagocytosis through 5-HT1B and 5-HT2B receptors and serotonergic signaling performs critical modulatory functions in immune systems of animals separated by 500 million years of evolution. DOI: http://dx.doi.org/10.7554/eLife.12241.001 PMID:26974346

  16. Simultaneous flow cytometric measurement of antigen attachment to phagocytes and phagocytosis.

    PubMed

    Laopajon, Witida; Takheaw, Nuchjira; Kasinrerk, Watchara; Pata, Supansa

    2016-01-01

    The current available assays cannot differentiate the stages of phagocytosis. We, therefore, established methods for concurrent detection of antigen attachment and engulfment by phagocyte using latex beads coated with lipopolysaccharide, rabbit IgG, and carboxyfluorescein diacetate succinimidyl ester. The generated beads were incubated with whole blood at 37°C for 1 hr and stained with PE-Cy5.5 anti-rabbit IgG antibody. By flow cytometry, attachment and phagocytic processes could be detected, simultaneously. The established method is a valuable tool for diagnosis of phagocytic disorder and study of molecules involved in phagocytosis.

  17. PKC-ε pseudosubstrate and catalytic activity are necessary for membrane delivery during IgG-mediated phagocytosis

    PubMed Central

    Wood, Tiffany R.; Chow, Rachel Y.; Hanes, Cheryl M.; Zhang, Xuexin; Kashiwagi, Kaori; Shirai, Yasuhito; Trebak, Mohamed; Loegering, Daniel J.; Saito, Naoaki; Lennartz, Michelle R.

    2013-01-01

    In RAW 264.7 cells [1], PKC-ε regulates FcγR-mediated phagocytosis. BMDM behave similarly; PKC-ε concentrates at phagosomes and internalization are reduced in PKC-ε−/− cells. Two questions were asked: what is the role of PKC-ε? and what domains are necessary for PKC-ε concentration? Function was studied using BMDM and frustrated phagocytosis. On IgG surfaces, PKC-ε−/− macrophages spread less than WT. Patch-clamping revealed that the spreading defect is a result of the failure of PKC-ε−/− macrophages to add membrane. The defect is specific for FcγR ligation and can be reversed by expression of full-length (but not the isolated RD) PKC-ε in PKC-ε−/− BMDM. Thus, PKC-ε function in phagocytosis requires translocation to phagosomes and the catalytic domain. The expression of chimeric PKC molecules in RAW cells identified the εPS as necessary for PKC-ε targeting. When placed into (nonlocalizing) PKC-δ, εPS was sufficient for concentration, albeit to a lesser degree than intact PKC-ε. In contrast, translocation of δ(εPSC1B) resembled that of WT PKC-ε. Thus, εPS and εC1B cooperate for optimal phagosome targeting. Finally, cells expressing εK437W were significantly less phagocytic than their PKC-ε-expressing counterparts, blocked at the pseudopod-extension phase. In summary, we have shown that εPS and εC1B are necessary and sufficient for targeting PKC-ε to phagosomes, where its catalytic activity is required for membrane delivery and pseudopod extension. PMID:23670290

  18. Involvement of myosin VI immunoanalog in pinocytosis and phagocytosis in Amoeba proteus.

    PubMed

    Sobczak, Magdalena; Wasik, Anna; Kłopocka, Wanda; Redowicz, Maria Jolanta

    2008-12-01

    Recently, we found a 130-kDa myosin VI immunoanalog in amoeba, which bound to actin in an ATP-sensitive manner and in migrating amoebae colocalized to filamentous actin and dynamin II-containing vesicular structures. To further characterize this protein, we assessed its involvement in amoeba pinocytosis and phagocytosis. Confocal immunofluorescence microscopy and electron microscopy of immunogold-stained cells revealed that, in pinocytotic and phagocytotic amoebae, the myosin VI immunoanalog was visible throughout the cells, including pinocytotic channels and pinocytotic vesicles as well as phagosomes and emerging phagocytic cups. Blocking endogenous protein with anti-porcine myosin VI antibody (introduced into cells by means of microinjection) caused severe defects in pinocytosis and phagocytosis. In comparison with control cells, the treated amoebae formed ~75% less pinocytotic channels and phagocytosed ~65% less Tetrahymena cells. These data indicate that the myosin VI immunoanalog has an important role in pinocytosis and phagocytosis in Amoeba proteus (Pal.).

  19. Spreading and contraction in phagocytosis: The role of actin organization and curvature

    NASA Astrophysics Data System (ADS)

    Curtis, Jennifer E.

    Phagocytosis is the process used by immune cells to engulf and remove foreign objects from the body. The engulfment is realized by the formation of an actin-driven `phagocytic cup' of the cell membrane, which quickly crawls up and then surrounds the object via constriction. In this study, we resolve the paradox of how actin-driven protrusion of the plasma membrane can co-exist with a contractile actin belt proposed to mechanically-drive the closure of the phagocytic cup. To do this we quantitatively assessed macrophage phagocytic behavior in a planar geometry, a process known as frustrated phagocytosis. Our results reveal that phagocytosis occurs in a binary manner, such that once it is initiated, frustrated phagocytosis proceeds at a prescribed rate, resulting in peak contact areas that correspond to a roughly 225% increase in apparent cell surface area. Upon reaching their maximum area, the majority of macrophages enter a period of late-stage contraction. During the contraction phase, cells exert significant stress on the underlying substrate. Contraction also corresponds with dramatic reorganization of the F-actin cytoskeleton, in particular the formation of a bundled contractile belt around the cell perimeter. In contrast to other studies of phagocytosis, our work definitively illustrates that whatever signals trigger late-stage phagocytic contraction must be independent of particle size and curvature. Mounting evidence suggests that membrane tension is involved in late-stage signaling. The idea that tension is linked to late-stage contraction is reinforced by our finding that the peak-contact area roughly corresponds to the area threshold that results in increased cortical tension, as measured by Lam et al., and that reducing tension through hypertonic buffer shock enables the cells to spread further before the onset of contraction. Supported by NSF Grants #PHYS-0848797 and SRN-POLS 1205878.

  20. Red palm oil-supplemented and biofortified gari on the carotenoid and retinyl palmitate concentrations of triacylglycerol-rich plasma of women

    USDA-ARS?s Scientific Manuscript database

    Boiled biofortified cassava containing ß-carotene (BC) can increase retinyl palmitate (RP) in triacylglycerol (TAG)-rich plasma. Thus, it might alleviate vitamin A deficiency. Cassava requires extensive preparation to decrease its level of cyanogenic glucosides, which can be fatal. Garification ...

  1. Coordinated response of photosynthesis, carbon assimilation, and triacylglycerol accumulation to nitrogen starvation in the marine microalgae Isochrysis zhangjiangensis (Haptophyta).

    PubMed

    Wang, Hai-Tao; Meng, Ying-Ying; Cao, Xu-Peng; Ai, Jiang-Ning; Zhou, Jian-Nan; Xue, Song; Wang, Wei-liang

    2015-02-01

    The photosynthetic performance, carbon assimilation, and triacylglycerol accumulation of Isochrysis zhangjiangensis under nitrogen-deplete conditions were studied to understand the intrinsic correlations between them. The nitrogen-deplete period was divided into two stages based on the photosynthetic parameters. During the first stage, carbon assimilation was not reduced compared with that under favorable conditions. The marked increase in triacylglycerols and the variation in the fatty acid profile suggested that triacylglycerols were mainly derived from de novo synthesized acyl groups. In the second stage, the triacylglycerol content continued increasing while the carbohydrate content decreased from 44.0% to 26.3%. These results indicated that the intracellular conversion of carbohydrates to triacylglycerols occurred. Thus, we propose that sustainable carbon assimilation and incremental triacylglycerol production can be achieved by supplying appropriate amounts of nitrogen in medium to protect the photosynthetic process from severe damage using the photosynthetic parameters as indicators. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Geometry of carbon nanotubes and mechanisms of phagocytosis and toxic effects.

    PubMed

    Harik, Vasyl Michael

    2017-05-05

    A review of in vivo and in vitro toxicological studies of the potential toxic effects of carbon nanotubes is presented along with the analysis of experimental data and a hypothesis about the nanotube-asbestos similarity. Developments of the structure-activity paradigm have been reviewed along with the size effects and the classification of carbon nanotubes into eleven distinct classes (e.g., the high aspect ratio nanotubes, thick multi-wall nanotubes and short nanotubes). Scaling analysis of similarities between different classes of carbon nanotubes and asbestos fibers in the context of their potential toxicity and the efficiency of phagocytosis has been reviewed. The potential toxic effects of carbon nanotubes have been characterized by their normalized length, their aspect ratio and other parameters related to their inhalability, engulfment by macrophages and the effectiveness of phagocytosis. Geometric scaling parameters and the classification of carbon nanotubes are used to develop an updated parametric map for the extrapolation of the potential toxic effects resulting from the inhalation of long and short carbon nanotubes. An updated parametric map has been applied to the evaluation of the efficiency of phagocytosis involving distinct classes of carbon nanotubes. A critical value of an important nondimensional parameter characterizing the efficiency of phagocytosis for different nanotubes is presented along with its macrophage-based normalization. The present evaluation of the potential toxicological effects of the high aspect ratio carbon nanotubes is found to be in the agreement with other available studies and earlier scaling analyses. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Phagocytosis in pup and adult harbour, grey and harp seals.

    PubMed

    Frouin, Héloïse; Lebeuf, Michel; Hammill, Mike; Fournier, Michel

    2010-04-15

    Knowledge on pinniped immunology is still in its infancy. For instance, age-related and developmental aspects of the immune system in pinnipeds need to be better described. The present study examined the phagocytic activity and efficiency of harbour, grey and harp seal leukocytes. In the first part of the study, peripheral blood was collected from captive female harbour seals of various ages. Data showed an age-related decrease in phagocytosis in female harbour seals from sub-adult to adulthood. In the second part of the study, changes in phagocytosis were quantified during lactation in wild newborn harbour, grey and harp seals and in their mothers (harp and grey seals). In newborns of the same age, leukocytes of harbour and harp seals phagocytosed less than those of grey seal pups. The phagocytic activity and efficiency increased significantly from early to mid-lactation in newborn harbour seals, and from early to late lactation in newborn grey seals, which could suggest that the transfer of phagocytosis-promoting factor(s) in colostrum is an important feature of temporary protection for pups. In contrast, no changes in phagocytic activity and efficiency were observed in lactating females of the two seal species, harp and grey, examined. At late lactation, phagocytic activity in both grey and harp seal pups and phagocytic efficiency in grey seal pups were significantly higher than in their mothers. These results could reflect either the capacity of phagocytes of the newborn harp and grey seals to respond to pathogens. Results from this study suggest that the phagocytosis of the seal species examined is not fully developed at birth as it generally increases in pups during lactation. Thereafter, the phagocytic activity of seals appears to decrease throughout adulthood. Copyright 2009 Elsevier B.V. All rights reserved.

  4. Integrin alpha 3 beta 1 participates in the phagocytosis of extracellular matrix molecules by human breast cancer cells.

    PubMed

    Coopman, P J; Thomas, D M; Gehlsen, K R; Mueller, S C

    1996-11-01

    The mechanisms and receptors involved in phagocytosis by nonhematopoietic cells are not well understood. The involvement of the alpha 3 beta 1 integrin in phagocytosis of the extracellular matrix by human breast cancer cells was studied. The possible role of this integrin was suggested since alpha 3 and beta 1 but not alpha 2 subunits are concentrated at membrane sites where local degradation of fluorescently labeled gelatin occurs. Strikingly, anti-alpha 3 integrin monoclonal antibodies (mAbs) stimulate the phagocytosis of fluorescently labeled gelatin films, gelatin beads, and Matrigel films in a quantitative phagocytosis assay. Stimulation of the gelatin uptake by the anti-alpha 3 mAb is dose responsive, saturable, and time dependent. Antibodies against other integrin subunits have a lower stimulatory effect (anti-beta 1) or no significant effect (anti-alpha 2, -alpha 5, -alpha 6, and -alpha v) on gelatin phagocytosis. The synthetic HGD-6 human laminin peptide that binds specifically the alpha 3 beta 1 integrin, but not the scrambled HSGD-6 control peptide, also markedly stimulates gelatin uptake in a dose-responsive way. Furthermore, the stimulatory effects of the HGD-6 peptide and the anti-alpha 3 mAb are additive, suggesting that they might promote phagocytosis in different ways. Other laminin (YIGSR, IKVAV) and fibronectin (GRGDS) peptides have no effect on gelatin phagocytosis. Immunofluorescence shows that the alpha 3 and the beta 1, but not the alpha 2 integrin subunit, concentrate into patches on the cell surface after treatment with their respective mAbs. And, both gelatin and the alpha 3 beta 1 but not the alpha 2 beta 1 integrin are cointernalized and routed to acidic vesicles such as lysosomes. In conclusion, we demonstrate that human breast cancer cells locally degrade and phagocytose the extracellular matrix and show for the first time that the alpha 3 beta 1 integrin participates in this phagocytosis. We hypothesize that the anti-alpha 3

  5. Characterization of myosin light chain in shrimp hemocytic phagocytosis.

    PubMed

    Han, Fang; Wang, Zhiyong; Wang, Xiaoqing

    2010-11-01

    Myosin light chain, a well-known cytoskeleton gene, regulates multiple processes that are involved in material transport, muscle shrink and cell division. However, its function in phagocytosis against invading pathogens in crustacean remains unknown. In this investigation, a myosin light chain gene was obtained from Marsupenaeus japonicus shrimp. The full-length cDNA of this gene was of 766 bp and an open reading frame (ORF) of 462 bp encoding a polypeptide of 153 amino acids. The myosin light chain protein was expressed in Escherichia coli and purified. Subsequently the specific antibody was raised using the purified GST fusion protein. As revealed by immuno-electron microscopy, the myosin light chain protein was only expressed in the dark bands of muscle. In the present study, the myosin light chain gene was up-regulated in the WSSV-resistant shrimp as revealed by real-time PCR and western blot. And the phagocytic percentage and phagocytic index using FITC-labeled Vibrio parahemolyticus were remarkably increased in the WSSV-resistant shrimp, suggesting that the myosin light chain protein was essential in hemocytic phagocytosis. On the other hand, RNAi assays indicated that the phagocytic percentage and phagocytic index were significantly decreased when the myosin light chain gene was silenced by sequence-specific siRNA. These findings suggested that myosin light chain protein was involved in the regulation of hemocytic phagocytosis of shrimp. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. Regulation of phagocytosis by TAM receptors and their ligands

    PubMed Central

    Lu, Qingxian; Li, Qiutang; Lu, Qingjun

    2010-01-01

    The TAM family of receptors is preferentially expressed by professional and non-professional phagocytes, including macrophages, dendritic cells and natural killer cells in the immune system, osteoclasts in bone, Sertoli cells in testis, and retinal pigmental epithelium cells in the retina. Mutations in the Mertk single gene or in different combinations of the double or triple gene mutations in the same cell cause complete or partial impairment in phagocytosis of their preys; and as a result, either the normal apoptotic cells cannot be efficiently removed or the tissue neighbor cells die by apoptosis. This scenario of TAM regulation represents a widely adapted model system used by phagocytes in all different tissues. The present review will summarize current known functional roles of TAM receptors and their ligands, Gas 6 and protein S, in the regulation of phagocytosis. PMID:21057587

  7. Mechanism of phagocytosis in dictyostelium discoideum: phagocytosis is mediated by different recognition sites as disclosed by mutants with altered phagocytotic properties

    PubMed Central

    Vogel, G; Thilo, L; Schwarz, H; Steinhart, R

    1980-01-01

    The recognition step in the phagocytotic process of the unicellular amoeba dictyostelium discoideum was examined by analysis of mutants defective in phagocytosis, Reliable and simple assays were developed to measure endocytotic uptake. For pinocytosis, FITC-dextran was found to be a suitable fluid-phase marker; FITC-bacteria, latex beads, and erythrocytes were used as phagocytotic substrates. Ingested material was isolated in one step by centrifuging through highly viscous poly(ethyleneglycol) solutions and was analyzed optically. A selection procedure for isolating mutants defective in phagocytosis was devised using tungsten beads as particulate prey. Nonphagocytosing cells were isolated on the basis of their lower density. Three mutant strains were found exhibiting a clear-cut phenotype directly related to the phagocytotic event. In contrast to the situation in wild-type cells, uptake of E. coli B/r by mutant cells is specifically and competitively inhibited by glucose. Mutant amoeba phagocytose latex beads normally but not protein-coated latex, nonglucosylated bacteria, or erythrocytes. Cohesive properties of mutant cells are altered: they do not form EDTA-sensitive aggregates, and adhesiveness to glass or plastic surfaces is greatly reduced. Based upon these findings, a model for recognition in phagocytosis is proposed: (a) A lectin-type receptor specifically mediates binding of particles containing terminal glucose (E. coli B/r). (b) A second class of "nonspecific" receptors mediate binding of a variety of particles by hydrophobic interaction. Nonspecific binding is affected by mutation in such a way that only strongly hydrophobic (latex) but not more hydrophilic particles (e.g., protein-coated latex, bacteria, erythrocytes) can be phagocytosed by mutant amoebae. PMID:6995464

  8. Granulocyte phagocytosis and killing virulent and avirulent serotypes of Streptococcus pneumoniae.

    PubMed

    Braconier, J H; Odeberg, H

    1982-08-01

    Five commonly isolated Streptococcus pneumoniae serotypes (3, 6, 14, 19, and 23) and five rarely found serotypes (31, 35, 36, 42, and 43) were compared to elucidate whether increased resistance against granulocyte phagocytosis and killing could explain the restricted number of pneumococcal serotypes found in infections. There was a great variation in sensitivity among the serotypes to granulocyte killing. No consistent pattern was found when pathogenicity and resistance to granulocytes were compared. The results do not indicate that the increased tendency of pathogenic pneumococcal serotypes to cause infections is due to increased resistance to granulocytes. Monocyte killing of some pneumococal serotypes (6, 19, 23, 35, and 43) was also studied and found very similar to granulocyte killing. Defective granulocyte kiling of encapsulated pneumococci was due to impaired phagocytosis. Moreover, no correlation was found between the sensitivity of the serotypes to isolated intragranulocytic microbial systems (i.e., MPO, hydrogen peroxide, or CCP) and the sensitivity to killing by intact granulocytes or pathogenicity. The significance of both the classical and alternative complement pathways for pneumococcal opsonization was indicated by reduced, the residual phagocytosis in C2-deficient and MgEGTA-chelated serum.

  9. Suppressive effect of delta 9-tetrahydrocannabinol in vitro on phagocytosis by murine macrophages.

    PubMed

    Friedman, M; Cepero, M L; Klein, T; Friedman, H

    1986-06-01

    Incubation of normal mouse peritoneal cells consisting of over 90% phagocytizing macrophages with delta 9-tetrahydrocannabinol (THC) resulted in a inhibition of phagocytic function. The THC in a dose-related manner suppressed the percentage of macrophages per culture which ingested yeast and the average number of yeast particles ingested by the phagocytizing macrophages. The vehicle used to suspend the THC in vitro, i.e., DMSO, had no detectable effect on macrophage function. Suppression of phagocytosis with no effects on viability or cell number occurred with doses of 10 micrograms or less THC per milliliter culture medium. Measurable suppression also occurred after 24- to 48-hr treatment of the macrophages with the THC. This compound had little if any detectable effect on phagocytosis when added directly to the cultures shortly before testing for phagocytosis. Further studies concerning the effects of THC on macrophage function appear warranted.

  10. Orexin Impairs the Phagocytosis and Degradation of Amyloid-β Fibrils by Microglial Cells.

    PubMed

    An, Hoyoung; Cho, Mi-Hyang; Kim, Dong-Hou; Chung, Seockhoon; Yoon, Seung-Yong

    2017-01-01

    Intracranial accumulation of amyloid-β (Aβ) is a characteristic finding of Alzheimer's disease (AD). It is thought to be the result of Aβ overproduction by neurons and impaired clearance by several systems, including degradation by microglia. Sleep disturbance is now considered a risk factor for AD, but studies focusing on how sleep modulates microglial handling of Aβ have been scarce. To determine whether phagocytosis and degradation of extracellular Aβ fibrils by BV2 microglial cells were impaired by treatment with orexin-A/B, a major modulator of the sleep-wake cycle, which may mimic sleep deprivation conditions. BV2 cells were treated with orexin and Aβ for various durations and phagocytic and autophagic processes for degradation of extracellular Aβ were examined. After treatment with orexin, the formation of actin filaments around Aβ fibrils, which is needed for phagocytosis, was impaired, and phagocytosis regulating molecules such as PI3K, Akt, and p38-MAPK were downregulated in BV2 cells. Orexin also suppressed autophagic flux, through disruption of the autophagosome-lysosome fusion process, resulting in impaired Aβ degradation in BV2 cells. Our results demonstrate that orexin can hinder clearance of Aβ through the suppression of phagocytosis and autophagic flux in microglia. This is a novel mechanism linking AD and sleep, and suggests that attenuated microglial function, due to sleep deprivation, may increase Aβ accumulation in the brain.

  11. The inositol phosphatase SHIP-2 down-regulates FcγR-mediated phagocytosis in murine macrophages independently of SHIP-1

    PubMed Central

    Ai, Jing; Maturu, Amita; Johnson, Wesley; Wang, Yijie; Marsh, Clay B.; Tridandapani, Susheela

    2006-01-01

    FcγR-mediated phagocytosis of IgG-coated particles is a complex process involving the activation of multiple signaling enzymes and is regulated by the inositol phosphatases PTEN (phosphatase and tensin homolog deleted on chromosome 10) and SHIP-1 (Src homology [SH2] domain-containing inositol phosphatase). In a recent study we have demonstrated that SHIP-2, an inositol phosphatase with high-level homology to SHIP-1, is involved in FcγR signaling. However, it is not known whether SHIP-2 plays a role in modulating phagocytosis. In this study we have analyzed the role of SHIP-2 in FcγR-mediated phagocytosis using independent cell models that allow for manipulation of SHIP-2 function without influencing the highly homologous SHIP-1. We present evidence that SHIP-2 translocates to the site of phagocytosis and down-regulates FcγR-mediated phagocytosis. Our data indicate that SHIP-2 must contain both the N-terminal SH2 domain and the C-terminal proline-rich domain to mediate its inhibitory effect. The effect of SHIP-2 is independent of SHIP-1, as overexpression of dominant-negative SHIP-2 in SHIP-1-deficient primary macrophages resulted in enhanced phagocytic efficiency. Likewise, specific knockdown of SHIP-2 expression using siRNA resulted in enhanced phagocytosis. Finally, analysis of the molecular mechanism of SHIP-2 down-regulation of phagocytosis revealed that SHIP-2 down-regulates upstream activation of Rac. Thus, we conclude that SHIP-2 is a novel negative regulator of FcγR-mediated phagocytosis independent of SHIP-1. (Blood. 2006;107:813-820) PMID:16179375

  12. Overload training inhibits phagocytosis and ROS generation of peritoneal macrophages: role of IGF-1 and MGF.

    PubMed

    Xiao, Weihua; Chen, Peijie; Wang, Ru; Dong, Jingmei

    2013-01-01

    We tested the hypothesis that overload training inhibits the phagocytosis and the reactive oxygen species (ROS) generation of peritoneal macrophages (Mϕs), and that insulin-like growth factor-1(IGF-1) and mechano-growth factor (MGF) produced by macrophages may contribute to this process. Rats were randomized to two groups, sedentary control group (n = 10) and overload training group (n = 10). The rats of overload training group were subjected to 11 weeks of experimental training protocol. Blood sample was used to determine the content of hemoglobin, testosterone, and corticosterone. The phagocytosis and the ROS generation of Mϕs were measured by the uptake of neutral red and the flow cytometry, respectively. IGF-1 and MGF mRNA levels in Mϕs were determined by real-time PCR. In addition, we evaluated the effects of IGF-1 and MGF peptide on phagocytosis and ROS generation of Mϕs in vitro. The data showed that overload training significantly decreased the body weight (19.3 %, P < 0.01), the hemoglobin (13.5 %, P < 0.01), the testosterone (55.3 %, P < 0.01) and the corticosterone (40.6 %, P < 0.01) in blood. Moreover, overload training significantly decreased the phagocytosis (27 %, P < 0.05) and the ROS generation (35 %, P < 0.01) of Mϕs. IGF-1 and MGF mRNA levels in Mϕs from overload training group increased significantly compared with the control group (21-fold and 92-fold, respectively; P < 0.01). In vitro experiments showed that IGF-1 had no significant effect on the phagocytosis and the ROS generation of Mϕs. Unlike IGF-1, MGF peptide impaired the phagocytosis of Mϕs in dose-independent manner. In addition, MGF peptide of some concentrations (i.e., 1, 10, 50, 100 ng/ml) significantly inhibited the ROS generation of Mϕs. These results suggest that overload training inhibits the phagocytosis and the ROS generation of peritoneal macrophages, and that MGF produced by macrophages may play a key role in this process. This may represent a novel mechanism of

  13. Mitochondrial Glycerol-3-Phosphate Acyltransferase-Deficient Mice Have Reduced Weight and Liver Triacylglycerol Content and Altered Glycerolipid Fatty Acid Composition

    PubMed Central

    Hammond, Linda E.; Gallagher, Patricia A.; Wang, Shuli; Hiller, Sylvia; Kluckman, Kimberly D.; Posey-Marcos, Eugenia L.; Maeda, Nobuyo; Coleman, Rosalind A.

    2002-01-01

    Microsomal and mitochondrial isoforms of glycerol-3-phosphate acyltransferase (GPAT; E.C. 2.3.1.15) catalyze the committed step in glycerolipid synthesis. The mitochondrial isoform, mtGPAT, was believed to control the positioning of saturated fatty acids at the sn-1 position of phospholipids, and nutritional, hormonal, and overexpression studies suggested that mtGPAT activity is important for the synthesis of triacylglycerol. To determine whether these purported functions were true, we constructed mice deficient in mtGPAT. mtGPAT−/− mice weighed less than controls and had reduced gonadal fat pad weights and lower hepatic triacylglycerol content, plasma triacylglycerol, and very low density lipoprotein triacylglycerol secretion. As predicted, in mtGPAT−/− liver, the palmitate content was lower in triacylglycerol, phosphatidylcholine, and phosphatidylethanolamine. Positional analysis revealed that mtGPAT−/− liver phosphatidylethanolamine and phosphatidylcholine had about 21% less palmitate in the sn-1 position and 36 and 40%, respectively, more arachidonate in the sn-2 position. These data confirm the important role of mtGPAT in the synthesis of triacylglycerol, in the fatty acid content of triacylglycerol and cholesterol esters, and in the positioning of specific fatty acids, particularly palmitate and arachidonate, in phospholipids. The increase in arachidonate may be functionally significant in terms of eicosanoid production. PMID:12417724

  14. Hyperosmosis and its combination with nutrient-limitation are novel environmental stressors for induction of triacylglycerol accumulation in cells of Chlorella kessleri.

    PubMed

    Hirai, Kazuho; Hayashi, Taihei; Hasegawa, Yuri; Sato, Atsushi; Tsuzuki, Mikio; Sato, Norihiro

    2016-05-17

    Triacylglycerols of oleaginous algae are promising for production of food oils and biodiesel fuel. Air-drying of cells induces triacylglycerol accumulation in a freshwater green alga, Chlorella kessleri, therefore, it seems that dehydration, i.e., intracellular hyperosmosis, and/or nutrient-limitation are key stressors. We explored this possibility in liquid-culturing C. kessleri cells. Strong hyperosmosis with 0.9 M sorbitol or 0.45 M NaCl for two days caused cells to increase the triacylglycerol content in total lipids from 1.5 to 48.5 and 75.3 mol%, respectively, on a fatty acid basis, whereas nutrient-limitation caused its accumulation to 41.4 mol%. Even weak hyperosmosis with 0.3 M sorbitol or 0.15 M NaCl, when nutrient-limitation was simultaneously imposed, induced triacylglycerol accumulation to 61.9 and 65.7 mol%, respectively. Furthermore, culturing in three-fold diluted seawater, the chemical composition of which resembled that of the medium for the combinatory stress, enabled the cells to accumulate triacylglycerol up to 24.7 weight% of dry cells in only three days. Consequently, it was found that hyperosmosis is a novel stressor for triacylglycerol accumulation, and that weak hyperosmosis, together with nutrient-limitation, exerts a strong stimulating effect on triacylglycerol accumulation. A similar combinatory stress would contribute to the triacylglycerol accumulation in air-dried C. kessleri cells.

  15. Cryptococcus neoformans is internalized by receptor-mediated or 'triggered' phagocytosis, dependent on actin recruitment.

    PubMed

    Guerra, Caroline Rezende; Seabra, Sergio Henrique; de Souza, Wanderley; Rozental, Sonia

    2014-01-01

    Cryptococcosis by the encapsulated yeast Cryptococcus neoformans affects mostly immunocompromised individuals and is a frequent neurological complication in AIDS patients. Recent studies support the idea that intracellular survival of Cryptococcus yeast cells is important for the pathogenesis of cryptococcosis. However, the initial steps of Cryptococcus internalization by host cells remain poorly understood. Here, we investigate the mechanism of Cryptococcus neoformans phagocytosis by peritoneal macrophages using confocal and electron microscopy techniques, as well as flow cytometry quantification, evaluating the importance of fungal capsule production and of host cell cytoskeletal elements for fungal phagocytosis. Electron microscopy analyses revealed that capsular and acapsular strains of C. neoformans are internalized by macrophages via both 'zipper' (receptor-mediated) and 'trigger' (membrane ruffle-dependent) phagocytosis mechanisms. Actin filaments surrounded phagosomes of capsular and acapsular yeasts, and the actin depolymerizing drugs cytochalasin D and latrunculin B inhibited yeast internalization and actin recruitment to the phagosome area. In contrast, nocodazole and paclitaxel, inhibitors of microtubule dynamics decreased internalization but did not prevent actin recruitment to the site of phagocytosis. Our results show that different uptake mechanisms, dependent on both actin and tubulin dynamics occur during yeast internalization by macrophages, and that capsule production does not affect the mode of Cryptococcus uptake by host cells.

  16. Development of novel fluorescent particles applicable for phagocytosis assays with human macrophages.

    PubMed

    Sóñora, Cecilia; Arbildi, Paula; Miraballes-Martínez, Iris; Hernández, Ana

    2018-01-01

    Phagocytosis is a fundamental process for removal of pathogens and for clearance of apoptotic cells. The objective of this work was the preparation of fluorescent microspheres by a simple method and the evaluation of its applicability in phagocytosis assays by using different human derived cells, differentiated THP-1 cell line and blood monocytes, with flow cytometry measurements for functionality assays. Our results show that microparticles are efficiently internalised in a non-opsonised form and in dose-dependent manner by both cellular types. Concerning mechanism we determined that tTG-β3 integrin signaling could be involved in the uptake of these particles.

  17. Influence of particle geometry and PEGylation on phagocytosis of particulate carriers.

    PubMed

    Mathaes, Roman; Winter, Gerhard; Besheer, Ahmed; Engert, Julia

    2014-04-25

    Particle geometry of micro- and nanoparticles has been identified as an important design parameter to influence the interaction with cells such as macrophages. A head to head comparison of elongated, non-spherical and spherical micro- and nanoparticles with and without PEGylation was carried out to benchmark two phagocytosis inhibiting techniques. J774.A1 macrophages were incubated with fluorescently labeled PLGA micro- and nanoparticles and analyzed by confocal laser scanning microscope (CLSM) and flow cytometry (FACS). Particle uptake into macrophages was significantly reduced upon PEGylation or elongated particle geometry. A combination of both, an elongated shape and PEGylation, had the strongest phagocytosis inhibiting effect for nanoparticles. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Synthesis of structured triacylglycerols containing caproic acid by lipase-catalyzed acidolysis: optimization by response surface methodology.

    PubMed

    Zhou, D; Xu, X; Mu, H; Høy, C E; Adler-Nissen, J

    2001-12-01

    Production in a batch reactor with a solvent-free system of structured triacylglycerols containing short-chain fatty acids by Lipozyme RM IM-catalyzed acidolysis between rapeseed oil and caproic acid was optimized using response surface methodology (RSM). Reaction time (t(r)), substrate ratio (S(r)), enzyme load (E(l), based on substrate), water content (W(c), based on enzyme), and reaction temperature (T(e)), the five most important parameters for the reaction, were chosen for the optimization. The range of each parameter was selected as follows: t(r) = 5-17 h; E(l) = 6-14 wt %; T(e) = 45-65 degrees C; S(r) = 2-6 mol/mol; and W(c) = 2-12 wt %. The biocatalyst was Lipozyme RM IM, in which Rhizomucor miehei lipase is immobilized on a resin. The incorporation of caproic acid into rapeseed oil was the main monitoring response. In addition, the contents of mono-incorporated structured triacylglycerols and di-incorporated structured triacylglycerols were also evaluated. The optimal reaction conditions for the incorporation of caproic acid and the content of di-incorporated structured triacylglycerols were as follows: t(r) = 17 h; S(r) = 5; E(l) = 14 wt %; W(c) = 10 wt %; T(e) = 65 degrees C. At these conditions, products with 55 mol % incorporation of caproic acid and 55 mol % di-incorporated structured triacylglycerols were obtained.

  19. Feasibility of use of fatty acid and triacylglycerol profiles for the authentication of commercial labelling in Iberian dry-cured sausages.

    PubMed

    Horcada, Alberto; Fernández-Cabanás, Víctor M; Polvillo, Oliva; Botella, Baltasar; Cubiles, M Dolores; Pino, Rafael; Narváez-Rivas, Mónica; León-Camacho, Manuel; Acuña, Rafael Rodríguez

    2013-12-15

    In the present study, fatty acid and triacylglycerol profiles were used to evaluate the possibility of authenticating Iberian dry-cured sausages according to their label specifications. 42 Commercial brand 'chorizo' and 39 commercial brand 'salchichón' sausages from Iberian pigs were purchased. 36 Samples were labelled Bellota and 45 bore the generic Ibérico label. In the market, Bellota is considered to be a better class than the generic Ibérico since products with the Bellota label are manufactured with high quality fat obtained from extensively reared pigs fed on acorns and pasture. Analyses of fatty acids and triacylglycerols were carried out by gas chromatography and a flame ion detector. A CP-SIL 88 column (highly substituted cyanopropyl phase; 50 m × 0.25 mm i.d., 0.2 µm film thickness) (Varian, Palo Alto, USA) was used for fatty acid analysis and a fused silica capillary DB-17HT column (50% phenyl-50% methylpolysiloxane; 30 m × 0.25 mm i.d., 0.15 µm film thickness) was used for triacylglycerols. Twelve fatty acids and 16 triacylglycerols were identified. Various discriminant models (linear quadratic discriminant analyses, logistic regression and support vector machines) were trained to predict the sample class (Bellota or Ibérico). These models included fatty acids and triacylglycerols separately and combined fatty acid and triacylglycerol profiles. The number of correctly classified samples according to discriminant analyses can be considered low (lower than 65%). The greatest discriminant rate was obtained when triacylglycerol profiles were included in the model, whilst using a combination of fatty acid and triacylglycerol profiles did not improve the rate of correct assignation. The values that represent the reliability of prediction of the samples according to the label specification were higher for the Ibérico class than for the Bellota class. In fact, quadratic and Support Vector Machine discriminate analyses were not able to assign the

  20. Regulation of Hepatic Triacylglycerol Metabolism by CGI-58 Does Not Require ATGL Co-activation.

    PubMed

    Lord, Caleb C; Ferguson, Daniel; Thomas, Gwynneth; Brown, Amanda L; Schugar, Rebecca C; Burrows, Amy; Gromovsky, Anthony D; Betters, Jenna; Neumann, Chase; Sacks, Jessica; Marshall, Stephanie; Watts, Russell; Schweiger, Martina; Lee, Richard G; Crooke, Rosanne M; Graham, Mark J; Lathia, Justin D; Sakaguchi, Takuya F; Lehner, Richard; Haemmerle, Guenter; Zechner, Rudolf; Brown, J Mark

    2016-07-26

    Adipose triglyceride lipase (ATGL) and comparative gene identification 58 (CGI-58) are critical regulators of triacylglycerol (TAG) turnover. CGI-58 is thought to regulate TAG mobilization by stimulating the enzymatic activity of ATGL. However, it is not known whether this coactivation function of CGI-58 occurs in vivo. Moreover, the phenotype of human CGI-58 mutations suggests ATGL-independent functions. Through direct comparison of mice with single or double deficiency of CGI-58 and ATGL, we show here that CGI-58 knockdown causes hepatic steatosis in both the presence and absence of ATGL. CGI-58 also regulates hepatic diacylglycerol (DAG) and inflammation in an ATGL-independent manner. Interestingly, ATGL deficiency, but not CGI-58 deficiency, results in suppression of the hepatic and adipose de novo lipogenic program. Collectively, these findings show that CGI-58 regulates hepatic neutral lipid storage and inflammation in the genetic absence of ATGL, demonstrating that mechanisms driving TAG lipolysis in hepatocytes differ significantly from those in adipocytes. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  1. A Central Role for Triacylglycerol in Membrane Lipid Breakdown, Fatty Acid β -Oxidation, and Plant Survival under Extended Darkness

    DOE PAGES

    Fan, Jilian; Yu, Linhui; Xu, Changcheng

    2017-06-01

    Triacylglycerol is a key intermediate in membrane lipid breakdown and fatty acid β-oxidation, and blocking triacylglycerol hydrolysis reduces oxidative stress and enhances plant survival under extended darkness.

  2. PUFAs acutely affect triacylglycerol-derived skeletal muscle fatty acid uptake and increase postprandial insulin sensitivity.

    PubMed

    Jans, Anneke; Konings, Ellen; Goossens, Gijs H; Bouwman, Freek G; Moors, Chantalle C; Boekschoten, Mark V; Afman, Lydia A; Müller, Michael; Mariman, Edwin C; Blaak, Ellen E

    2012-04-01

    Dietary fat quality may influence skeletal muscle lipid processing and fat accumulation, thereby modulating insulin sensitivity. The objective was to examine the acute effects of meals with various fatty acid (FA) compositions on skeletal muscle FA processing and postprandial insulin sensitivity in obese, insulin-resistant men. In a single-blind, randomized, crossover study, 10 insulin-resistant men consumed 3 high-fat mixed meals (2.6 MJ), which were high in SFAs, MUFAs, or PUFAs. Fasting and postprandial skeletal muscle FA processing was examined by measuring differences in arteriovenous concentrations across the forearm muscle. [²H₂]Palmitate was infused intravenously to label endogenous triacylglycerol and FFAs in the circulation, and [U-¹³C]palmitate was added to the meal to label chylomicron-triacylglycerol. Skeletal muscle biopsy samples were taken to assess intramuscular lipid metabolism and gene expression. Insulin and glucose responses (AUC) after the SFA meal were significantly higher than those after the PUFA meal (P = 0.006 and 0.033, respectively). Uptake of triacylglycerol-derived FAs was lower in the postprandial phase after the PUFA meal than after the other meals (AUC₆₀₋₂₄₀; P = 0.02). The fractional synthetic rate of the triacylglycerol, diacylglycerol, and phospholipid pool was higher after the MUFA meal than after the SFA meal. PUFA induced less transcriptional downregulation of oxidative pathways than did the other meals. PUFAs reduced triacylglycerol-derived skeletal muscle FA uptake, which was accompanied by higher postprandial insulin sensitivity, a more transcriptional oxidative phenotype, and altered intramyocellular lipid partitioning and may therefore be protective against the development of insulin resistance.

  3. Obesity induced during sexual maturation is linked to LDL-triacylglycerols in Yucatan miniature swine.

    PubMed

    Sébert, Sylvain P; Lecannu, Gérard; Sené, Sandrine; Hucteau, Séverine; Chetiveaux, Maud; Ouguerram, Khadija; Champ, Martine M-J

    2005-08-01

    The incidence of childhood obesity is rising dramatically throughout industrialised countries. To evaluate and study the impact of childhood obesity on lipoprotein metabolism, we developed a new animal model of premature obesity. Yucatan mini-pigs aged 4 months were studied over a 12-month period from childhood to adulthood. Animals were divided into two groups: the first group were overfed a Western misbalanced diet; the second group were normally fed a recommended human-type diet. Cholesterol and triacylglycerol concentrations in VLDL-, LDL- and HDL-lipoproteins were followed from baseline to adulthood by fast protein liquid chromatography. At 10 (the end of sexual maturation) and 16 months old (adulthood), liver, visceral and subcutaneous adipose tissues were sampled. Real-time RT-PCR was performed in order to compare apo AI, apo B, apo C-III, PPAR-alpha, insulin receptor and lipoprotein lipase gene expression between groups and ages. Differences between groups were observed only after sexual maturity. Adult overfed mini-pigs had a higher LDL-cholesterol:HDL-cholesterol ratio (P < 0.05; 0.55 (SE 0.06) for overfed v. 0.42 (SE 0.04) for normally fed pigs at the tenth month of the study). In both groups, VLDL-triacylglycerol decreased (P < 0.05). VLDL-triacylglycerol evolution in the overfed group was associated with an increase in LDL-triacylglycerol plasma concentrations (P < 0.05) after sexual maturation. LDL-triacylglycerol concentration in overfed mini-pigs went from an average of 0.28 mmol/l before sexual maturation to reach an average concentration of 0.56 mmol/l afterwards. This phenomenon has never been observed in similar studies when obesity is induced in adult mini-pigs and may represent a specific hallmark of an obesity induced during sexual maturity.

  4. The proteinase-activated receptor-2 mediates phagocytosis in a Rho-dependent manner in human keratinocytes.

    PubMed

    Scott, Glynis; Leopardi, Sonya; Parker, Lorelle; Babiarz, Laura; Seiberg, Miri; Han, Rujiing

    2003-09-01

    Recent work shows that the G-protein-coupled receptor proteinase activated receptor-2 activates signals that stimulate melanosome uptake in keratinocytes in vivo and in vitro. The Rho family of GTP-binding proteins is involved in cytoskeletal remodeling during phagocytosis. We show that proteinase-activated receptor-2 mediated phagocytosis in human keratinocytes is Rho dependent and that proteinase-activated receptor-2 signals to activate Rho. In contrast, Rho activity did not affect either proteinase-activated receptor-2 activity or mRNA and protein levels. We explored the signaling mechanisms of proteinase-activated receptor-2 mediated Rho activation in human keratinocytes and show that activation of proteinase-activated receptor-2, either through specific proteinase-activated receptor-2 activating peptides or through trypsinization, elevates cAMP in keratinocytes. Proteinase-activated receptor-2 mediated Rho activation was pertussis toxin insensitive and independent of the protein kinase A signaling pathway. These data are the first to show that proteinase-activated receptor-2 mediated phagocytosis is Rho dependent and that proteinase-activated receptor-2 signals to Rho and cAMP in keratinocytes. Because phagocytosis of melanosomes is recognized as an important mechanism for melanosome transfer to keratinocytes, these results suggest that Rho is a critical signaling intermediate in melanosome uptake in keratinocytes.

  5. Cryptococcus neoformans Is Internalized by Receptor-Mediated or ‘Triggered’ Phagocytosis, Dependent on Actin Recruitment

    PubMed Central

    Guerra, Caroline Rezende; Seabra, Sergio Henrique; de Souza, Wanderley; Rozental, Sonia

    2014-01-01

    Cryptococcosis by the encapsulated yeast Cryptococcus neoformans affects mostly immunocompromised individuals and is a frequent neurological complication in AIDS patients. Recent studies support the idea that intracellular survival of Cryptococcus yeast cells is important for the pathogenesis of cryptococcosis. However, the initial steps of Cryptococcus internalization by host cells remain poorly understood. Here, we investigate the mechanism of Cryptococcus neoformans phagocytosis by peritoneal macrophages using confocal and electron microscopy techniques, as well as flow cytometry quantification, evaluating the importance of fungal capsule production and of host cell cytoskeletal elements for fungal phagocytosis. Electron microscopy analyses revealed that capsular and acapsular strains of C. neoformans are internalized by macrophages via both ‘zipper’ (receptor-mediated) and ‘trigger’ (membrane ruffle-dependent) phagocytosis mechanisms. Actin filaments surrounded phagosomes of capsular and acapsular yeasts, and the actin depolymerizing drugs cytochalasin D and latrunculin B inhibited yeast internalization and actin recruitment to the phagosome area. In contrast, nocodazole and paclitaxel, inhibitors of microtubule dynamics decreased internalization but did not prevent actin recruitment to the site of phagocytosis. Our results show that different uptake mechanisms, dependent on both actin and tubulin dynamics occur during yeast internalization by macrophages, and that capsule production does not affect the mode of Cryptococcus uptake by host cells. PMID:24586631

  6. Quantitation of triacylglycerols in edible oils by off-line comprehensive two-dimensional liquid chromatography-atmospheric pressure chemical ionization mass spectrometry using a single column.

    PubMed

    Wei, Fang; Hu, Na; Lv, Xin; Dong, Xu-Yan; Chen, Hong

    2015-07-24

    In this investigation, off-line comprehensive two-dimensional liquid chromatography-atmospheric pressure chemical ionization mass spectrometry using a single column has been applied for the identification and quantification of triacylglycerols in edible oils. A novel mixed-mode phenyl-hexyl chromatographic column was employed in this off-line two-dimensional separation system. The phenyl-hexyl column combined the features of traditional C18 and silver-ion columns, which could provide hydrophobic interactions with triacylglycerols under acetonitrile conditions and can offer π-π interactions with triacylglycerols under methanol conditions. When compared with traditional off-line comprehensive two-dimensional liquid chromatography employing two different chromatographic columns (C18 and silver-ion column) and using elution solvents comprised of two phases (reversed-phase/normal-phase) for triacylglycerols separation, the novel off-line comprehensive two-dimensional liquid chromatography using a single column can be achieved by simply altering the mobile phase between acetonitrile and methanol, which exhibited a much higher selectivity for the separation of triacylglycerols with great efficiency and rapid speed. In addition, an approach based on the use of response factor with atmospheric pressure chemical ionization mass spectrometry has been developed for triacylglycerols quantification. Due to the differences between saturated and unsaturated acyl chains, the use of response factors significantly improves the quantitation of triacylglycerols. This two-dimensional liquid chromatography-mass spectrometry system was successfully applied for the profiling of triacylglycerols in soybean oils, peanut oils and lord oils. A total of 68 triacylglycerols including 40 triacylglycerols in soybean oils, 50 triacylglycerols in peanut oils and 44 triacylglycerols in lord oils have been identified and quantified. The liquid chromatography-mass spectrometry data were analyzed

  7. Effect of repeated sprints on postprandial endothelial function and triacylglycerol concentrations in adolescent boys.

    PubMed

    Sedgwick, Matthew J; Morris, John G; Nevill, Mary E; Barrett, Laura A

    2015-01-01

    This study investigated whether repeated, very short duration sprints influenced endothelial function (indicated by flow-mediated dilation) and triacylglycerol concentrations following the ingestion of high-fat meals in adolescent boys. Nine adolescent boys completed two, 2-day main trials (control and exercise), in a counter-balanced, cross-over design. Participants were inactive on day 1 of the control trial but completed 40 × 6 s maximal cycle sprints on day 1 of the exercise trial. On day 2, capillary blood samples were collected and flow-mediated dilation measured prior to, and following, ingestion of a high-fat breakfast and lunch. Fasting flow-mediated dilation and plasma triacylglycerol concentration were similar in the control and exercise trial (P > 0.05). In the control trial, flow-mediated dilation was reduced by 20% and 27% following the high-fat breakfast and lunch; following exercise these reductions were negated (main effect trial, P < 0.05; interaction effect trial × time, P < 0.05). The total area under the plasma triacylglycerol concentration versus time curve was 13% lower on day 2 in the exercise trial compared to the control trial (8.65 (0.97) vs. 9.92 (1.16) mmol · l(-1) · 6.5 h, P < 0.05). These results demonstrate that repeated 6 s maximal cycle sprints can have beneficial effects on postprandial endothelial function and triacylglycerol concentrations in adolescent boys.

  8. The metabolism of structured triacylglycerols.

    PubMed

    Mu, Huiling; Porsgaard, Trine

    2005-11-01

    The triacylglycerol (TAG) structure in addition to the overall fatty acid profile is of importance when considering the nutritional effect of a dietary fat. This review aims at summarizing our current knowledge of the digestion, absorption, uptake, and transport of structured TAGs, with particular emphasis on the following aspects: gastric emptying, specificity of pancreatic lipase, lymphatic transport and clearance of chylomicrons, effects of lipid structure on tissue lipid compositions and the fecal loss of fats. So an overview will be provided for how the structure and fatty acid composition of TAGs affect their absorption and the distribution of the fatty acids in the body following digestion and absorption.

  9. Multigene Engineering of Triacylglycerol Metabolism Boosts Seed Oil Content in Arabidopsis1[W][OPEN

    PubMed Central

    van Erp, Harrie; Kelly, Amélie A.; Menard, Guillaume; Eastmond, Peter J.

    2014-01-01

    Increasing the yield of oilseed crops is an important objective for biotechnologists. A number of individual genes involved in triacylglycerol metabolism have previously been reported to enhance the oil content of seeds when their expression is altered. However, it has yet to be established whether specific combinations of these genes can be used to achieve an additive effect and whether this leads to enhanced yield. Using Arabidopsis (Arabidopsis thaliana) as an experimental system, we show that seed-specific overexpression of WRINKLED1 (a transcriptional regulator of glycolysis and fatty acid synthesis) and DIACYLGLYCEROL ACYLTRANSFERASE1 (a triacylglycerol biosynthetic enzyme) combined with suppression of the triacylglycerol lipase SUGAR-DEPENDENT1 results in a higher percentage seed oil content and greater seed mass than manipulation of each gene individually. Analysis of total seed yield per plant suggests that, despite a reduction in seed number, the total yield of oil is also increased. PMID:24696520

  10. ACTIVATED NEUTROPHILS INHIBIT PHAGOCYTOSIS BY HUMAN MONOCYTE CELLS IN VITRO

    EPA Science Inventory

    We have previously reported the correlation of decreased phagocytosis of opsonized zymosan by sputum monocytic cells with the increase in sputum neutrophils in volunteers 6h after inhalation of endotoxin (20,000 EU) (Alexis, et al. JACI, 2003;112:353). To define whether an intrin...

  11. Contribution of extracellular ATP on the cell-surface F1F0-ATP synthase-mediated intracellular triacylglycerol accumulation.

    PubMed

    Kita, Toshiyuki; Arakaki, Naokatu

    2015-01-01

    Cell-surface F1F0-ATP synthase was involved in the cell signaling mediating various biological functions. Recently, we found that cell-surface F1F0-ATP synthase plays a role on intracellular triacylglycerol accumulation in adipocytes, and yet, the underlying mechanisms remained largely unknown. In this study, we investigated the role of extracellular ATP on the intracellular triacylglycerol accumulation. We demonstrated that significant amounts of ATP were produced extracellularly by cultured 3T3-L1 adipocytes and that the antibodies against α and β subunits of F1F0-ATP synthase inhibited the extracellular ATP production. Piceatannol, a F1F0-ATP synthase inhibitor, and apyrase, an enzyme which degrades extracellular ATP, suppressed triacylglycerol accumulation. The selective P2Y1 receptor antagonist MRS2500 significantly inhibited triacylglycerol accumulation, whereas the selective P2X receptor antagonist NF279 has less effect. The present results indicate that cell-surface F1F0-ATP synthase on adipocytes is functional in extracellular ATP production and that the extracellular ATP produced contributes, at least in part, to the cell-surface F1F0-ATP synthase-mediated intracellular triacylglycerol accumulation in adipocytes through P2Y1 receptor.

  12. Na+/H+ exchange activity during phagocytosis in human neutrophils: role of Fcgamma receptors and tyrosine kinases

    PubMed Central

    1996-01-01

    required for NHE-1 activation because neither removal of extracellular Ca2+ nor buffering of changes in [Ca2+]i inhibited alkalinization after OpZ or Fc-gammaR cross-linking. In summary, Fc-gammaRs and beta2 integrins cooperate in activation of NHE- 1 in neutrophils during phagocytosis by a signaling pathway involving tyrosine phosphorylation. PMID:8601583

  13. Critical ratios for structural analysis of triacylglycerols using mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    Recent developments have finally allowed fragment behaviors using APCI-MS to be elucidated after twenty years of literature reports. Critical Ratios have been defined that correspond to various aspects of triacylglycerol (TAG) analysis, from overall degree of unsaturation to localization of fatty ac...

  14. Collagen remodeling by phagocytosis is determined by collagen substrate topology and calcium-dependent interactions of gelsolin with nonmuscle myosin IIA in cell adhesions

    PubMed Central

    Arora, P. D.; Wang, Y.; Bresnick, A.; Dawson, J.; Janmey, P. A.; McCulloch, C. A.

    2013-01-01

    We examine how collagen substrate topography, free intracellular calcium ion concentration ([Ca2+]i, and the association of gelsolin with nonmuscle myosin IIA (NMMIIA) at collagen adhesions are regulated to enable collagen phagocytosis. Fibroblasts plated on planar, collagen-coated substrates show minimal increase of [Ca2+]i, minimal colocalization of gelsolin and NMMIIA in focal adhesions, and minimal intracellular collagen degradation. In fibroblasts plated on collagen-coated latex beads there are large increases of [Ca2+]i, time- and Ca2+-dependent enrichment of NMMIIA and gelsolin at collagen adhesions, and abundant intracellular collagen degradation. NMMIIA knockdown retards gelsolin recruitment to adhesions and blocks collagen phagocytosis. Gelsolin exhibits tight, Ca2+-dependent binding to full-length NMMIIA. Gelsolin domains G4–G6 selectively require Ca2+ to interact with NMMIIA, which is restricted to residues 1339–1899 of NMMIIA. We conclude that cell adhesion to collagen presented on beads activates Ca2+ entry and promotes the formation of phagosomes enriched with NMMIIA and gelsolin. The Ca2+ -dependent interaction of gelsolin and NMMIIA in turn enables actin remodeling and enhances collagen degradation by phagocytosis. PMID:23325791

  15. Cyclic GMP-dependent protein kinase II is necessary for macrophage M1 polarization and phagocytosis via toll-like receptor 2.

    PubMed

    Liao, Wei-Ting; You, Huey-Ling; Li, Changgui; Chang, Jan-Gowth; Chang, Shun-Jen; Chen, Chung-Jen

    2015-05-01

    Cyclic GMP-dependent protein kinase II (cGKII; PRKG2) phosphorylates a variety of biological targets and has been identified as a gout-susceptible gene. However, the regulatory role of cGKII in triggering gout disease has yet to be clarified. Thus, we plan to explore the specific function of cGKII in macrophages related to gout disease. By using cGKII gene knockdown method, we detected macrophage M1/M2 polarization, phagocytosis, and their responses to stimulation by monosodium urate (MSU). cGKII was highly expressed in M1 phenotype, but not in M2, and cGKII knockdown significantly inhibited macrophage M1 polarization by decreasing M1 chemokine markers (CXCL10 and CCL2) and downregulating phagocytosis function. We further identified that cGKII-associated phagocytosis was mediated by upregulating toll-like receptor 2 (TLR2) expression, but not by TLR4. Mimicking gout condition by MSU treatments, we found that MSU alone induced cGKII and TLR2 expression with increased M1 polarization markers and phagocytosis activity. It means that cGKII knockdown significantly inhibited this MSU-induced cGKII-TLR2-phagocytosis axis. Our study showed that cGKII plays a key role in M1 polarization, especially in TLR2-mediated phagocytosis under MSU exposure. The findings provide evidence for the possible role of cGKII as an inflammation exciter in gout disease. Gout-susceptible gene cGKII is necessary for macrophage M1 polarization. cGKII regulates M1 phagocytosis function via TLR2. Monosodium urate treatments increase cGKII expression and related function. This study reveals the role of cGKII in enhancing gouty inflammatory responses.

  16. Phagocytosis and Inflammation: Exploring the effects of the components of E-cigarette vapor on macrophages.

    PubMed

    Ween, Miranda P; Whittall, Jonathan J; Hamon, Rhys; Reynolds, Paul N; Hodge, Sandra J

    2017-08-01

    E-cigarettes are perceived as harmless; however, evidence of their safety is lacking. New data suggests E-cigarettes discharge a range of compounds capable of physiological damage to users. We previously established that cigarette smoke caused defective alveolar macrophage phagocytosis. The present study compared the effect E-cigarette of components; E-liquid flavors, nicotine, vegetable glycerine, and propylene glycol on phagocytosis, proinflammatory cytokine secretion, and phagocytic recognition molecule expression using differentiated THP-1 macrophages. Similar to CSE, phagocytosis of NTHi bacteria was significantly decreased by E-liquid flavoring (11.65-15.75%) versus control (27.01%). Nicotine also decreased phagocytosis (15.26%). E-liquid, nicotine, and E-liquid+ nicotine reduced phagocytic recognition molecules; SR-A1 and TLR-2. IL-8 secretion increased with flavor and nicotine, while TNF α , IL-1 β , IL-6, MIP-1 α , MIP-1 β , and MCP-1 decreased after exposure to most flavors and nicotine. PG, VG, or PG:VG mix also induced a decrease in MIP-1 α and MIP-1 β We conclude that E-cigarettes can cause macrophage phagocytic dysfunction, expression of phagocytic recognition receptors and cytokine secretion pathways. As such, E-cigarettes should be treated with caution by users, especially those who are nonsmokers. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  17. Sensing of triacylglycerol in the gut: different mechanisms for fatty acids and 2-monoacylglycerol

    PubMed Central

    Kleberg, Karen; Jacobsen, Anne Katrine; Ferreira, Jozelia G; Windeløv, Johanne Agerlin; Rehfeld, Jens F; Holst, Jens Juul; de Araujo, Ivan E; Hansen, Harald S

    2015-01-01

    Sensing of dietary triacylglycerol in the proximal small intestine results in physiological, hormonal and behavioural responses. However, the exact physiological pathways linking intestinal fat sensing to food intake and the activation of brain circuits remain to be identified. In this study we examined the role of triacylglycerol digestion for intestinal fat sensing, and compared the effects of the triacylglycerol digestion products, fatty acids and 2-monoacylglycerol, on behavioural, hormonal and dopaminergic responses in behaving mice. Using an operant task in which mice are trained to self-administer lipid emulsions directly into the stomach, we show that inhibiting triacylglycerol digestion disrupts normal behaviour of self-administration in mice, indicating that fat sensing is conditional to digestion. When administered separately, both digestion products, 2-monoacylglycerol and fatty acids, were sensed by the mice, and self-administration patterns of fatty acids were affected by the fatty acid chain length. Peripheral plasma concentrations of the gut hormones GLP-1, GIP, PYY, CCK and insulin did not offer an explanation of the differing behavioural effects produced by 2-monoacylglycerol and fatty acids. However, combined with behavioural responses, striatal dopamine effluxes induced by gut infusions of oleic acid were significantly greater than those produced by equivalent infusions of 2-oleoylglycerol. Our data demonstrate recruitment of different signalling pathways by fatty acids and 2-monoacylglycerol, and suggest that the structural properties of fat rather than total caloric value determine intestinal sensing and the assignment of reward value to lipids. PMID:25639597

  18. Chemical synthesis and NMR characterization of structured polyunsaturated triacylglycerols.

    PubMed

    Fauconnot, Laëtitia; Robert, Fabien; Villard, Renaud; Dionisi, Fabiola

    2006-02-01

    The chemical synthesis of pure triacylglycerol (TAG) regioisomers, that contain long chain polyunsaturated fatty acids, such as arachidonic acid (AA) or docosahexaenoic acid (DHA), and saturated fatty acids, such as lauric acid (La) or palmitic acid (P), at defined positions, is described. A single step methodology using (benzotriazol-1-yloxy)-tripyrrolidinophosphonium hexafluorophosphate (PyBOP), an activator of carboxyl group commonly used in peptide synthesis and occasionally used in carboxylic acid esterification, has been developed for structured TAG synthesis. Identification of the fatty acyl chains for each TAG species was confirmed by atmospheric pressure chemical ionisation mass spectrometry (APCI-MS) and fatty acid positional distribution was determined by (1)H and (13)C NMR spectra. The generic described procedures can be applied to a large variety of substrates and was used for the production of specific triacylglycerols of defined molecular structures, with high regioisomeric purity. Combination of MS and NMR was shown to be an efficient tool for structural analysis of TAG. In particular, some NMR signals were demonstrated to be regioisomer specific, allowing rapid positional analysis of LC-PUFA containing TAG.

  19. Involvement of triacylglycerol in the metabolism of fatty acids by cultured neuroblastoma and glioma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, H.W.; Clarke, J.T.; Spence, M.W.

    1982-12-01

    The metabolism (chain elongation, desaturation, and incorporation into complex lipids) of thirteen different radiolabeled fatty acids and acetate was examined in N1E-115 neuroblastoma and C-6 glioma cell lines in culture. During 6-hr incubations, all fatty acids were extensively (14-80%) esterified to complex lipids, mainly choline phosphoglycerides and triacylglycerol. With trienoic and tetraenoic substrates, inositol and ethanolamine phosphoglycerides also contained up to 30% of the labeled fatty acids; plasmalogen contained up to half of the label in the ethanolamine phosphoglyceride fraction of neuroblastoma cells. Chain elongation and delta 9, delta 6, and delta 5 desaturation occurred in both cell lines; deltamore » 4 desaturation was not observed. Seemingly anomalous utilization of arachidic acid and some selectivity based on the geometric configuration of double bonds was observed. These studies indicate that these cell lines are capable of modulating cellular membrane composition by a combination of selective exclusion and removal of inappropriate acyl chains and of modification of other acyl chains by desaturation and chain elongation. The time courses and patterns of modification and incorporation of exogenous substrates into phospholipids and triacylglycerol suggest that exogenous unsaturated fatty acid may be incorporated into triacylglycerol and later released for further metabolism and incorporation into phospholipids. This supports a role for triacylglycerol in the synthesis of membrane complex lipids in cell lines derived from neural tissue.« less

  20. Redundant roles of the phosphatidate phosphatase family in triacylglycerol synthesis in human adipocytes.

    PubMed

    Temprano, Ana; Sembongi, Hiroshi; Han, Gil-Soo; Sebastián, David; Capellades, Jordi; Moreno, Cristóbal; Guardiola, Juan; Wabitsch, Martin; Richart, Cristóbal; Yanes, Oscar; Zorzano, Antonio; Carman, George M; Siniossoglou, Symeon; Miranda, Merce

    2016-09-01

    In mammals, the evolutionary conserved family of Mg(2+)-dependent phosphatidate phosphatases (PAP1), involved in phospholipid and triacylglycerol synthesis, consists of lipin-1, lipin-2 and lipin-3. While mutations in the murine Lpin1 gene cause lipodystrophy and its knockdown in mouse 3T3-L1 cells impairs adipogenesis, deleterious mutations of human LPIN1 do not affect adipose tissue distribution. However, reduced LPIN1 and PAP1 activity has been described in participants with type 2 diabetes. We aimed to characterise the roles of all lipin family members in human adipose tissue and adipogenesis. The expression of the lipin family was analysed in adipose tissue in a cross-sectional study. Moreover, the effects of lipin small interfering RNA (siRNA)-mediated depletion on in vitro human adipogenesis were assessed. Adipose tissue gene expression of the lipin family is altered in type 2 diabetes. Depletion of every lipin family member in a human Simpson-Golabi-Behmel syndrome (SGBS) pre-adipocyte cell line, alters expression levels of adipogenic transcription factors and lipid biosynthesis genes in early stages of differentiation. Lipin-1 knockdown alone causes a 95% depletion of PAP1 activity. Despite the reduced PAP1 activity and alterations in early adipogenesis, lipin-silenced cells differentiate and accumulate neutral lipids. Even combinatorial knockdown of lipins shows mild effects on triacylglycerol accumulation in mature adipocytes. Overall, our data support the hypothesis of alternative pathways for triacylglycerol synthesis in human adipocytes under conditions of repressed lipin expression. We propose that induction of alternative lipid phosphate phosphatases, along with the inhibition of lipid hydrolysis, contributes to the maintenance of triacylglycerol content to near normal levels.

  1. The effect of short-duration sprint interval exercise on plasma postprandial triacylglycerol levels in young men.

    PubMed

    Allen, Edward; Gray, Partick; Kollias-Pearson, Angeliki; Oag, Erlend; Pratt, Katrina; Henderson, Jennifer; Gray, Stuart Robert

    2014-01-01

    It is well established that regular exercise can reduce the risk of cardiovascular disease, although the most time-efficient exercise protocol to confer benefits has yet to be established. The aim of the current study was to determine the effects of short-duration sprint interval exercise on postprandial triacylglycerol. Fifteen healthy male participants completed two 2 day trials. On day 1, participants rested (control) or carried out twenty 6 s sprints, interspersed with 24 s recovery (sprint interval exercise--14 min for total exercise session). On day 2, participants consumed a high-fat meal for breakfast with blood samples collected at baseline, 2 h and 4 h. Gas exchange was also measured at these time points. On day 2 of control and sprint interval exercise trials, there were no differences (P < 0.05) between trials in plasma glucose, triacylglycerol, insulin or respiratory exchange ratio (RER). The area under the curve for plasma triacylglycerol was 7.67 ± 2.37 mmol · l(-1) x 4 h(-1) in the control trial and 7.26 ± 2.49 mmol · l(-1) x 4 h(-1) in the sprint interval exercise trial. Although the sprint exercise protocol employed had no significant effect on postprandial triacylglycerol, there was a clear variability in responses that warrants further investigation.

  2. 'Obesity' is healthy for cetaceans? Evidence from pervasive positive selection in genes related to triacylglycerol metabolism.

    PubMed

    Wang, Zhengfei; Chen, Zhuo; Xu, Shixia; Ren, Wenhua; Zhou, Kaiya; Yang, Guang

    2015-09-18

    Cetaceans are a group of secondarily adapted marine mammals with an enigmatic history of transition from terrestrial to fully aquatic habitat and subsequent adaptive radiation in waters around the world. Numerous physiological and morphological cetacean characteristics have been acquired in response to this drastic habitat transition; for example, the thickened blubber is one of the most striking changes that increases their buoyancy, supports locomotion, and provides thermal insulation. However, the genetic basis underlying the blubber thickening in cetaceans remains poorly explored. Here, 88 candidate genes associated with triacylglycerol metabolism were investigated in representative cetaceans and other mammals to test whether the thickened blubber matched adaptive evolution of triacylglycerol metabolism-related genes. Positive selection was detected in 41 of the 88 candidate genes, and functional characterization of these genes indicated that these are involved mainly in triacylglycerol synthesis and lipolysis processes. In addition, some essential regulatory genes underwent significant positive selection in cetacean-specific lineages, whereas no selection signal was detected in the counterpart terrestrial mammals. The extensive occurrence of positive selection in triacylglycerol metabolism-related genes is suggestive of their essential role in secondary adaptation to an aquatic life, and further implying that 'obesity' might be an indicator of good health for cetaceans.

  3. [Update views on the theory of phagocytosis].

    PubMed

    Freĭdlin, I S

    2008-01-01

    Developer of the phagocytosis theory I.I Mechnikov forecasted the most fruitful directions of its development. Macrophages express on the plasma membranes broad spectrum of receptors, which mediate their interaction with altered organism's own components as well as with exogenous agents, including various microorganisms. Recognition leads to changes of expression of surface molecules, enhancement of phagocytic activity as well as production and secretion of cytokines, presentation functions, signaling and genes expression. This reflected on maintenance of homeostasis, as well as on host defense effectiveness, including mechanisms of innate and adaptive immunity.

  4. The Role of CD38 in Fcγ Receptor (FcγR)-mediated Phagocytosis in Murine Macrophages*

    PubMed Central

    Kang, John; Park, Kwang-Hyun; Kim, Jwa-Jin; Jo, Eun-Kyeong; Han, Myung-Kwan; Kim, Uh-Hyun

    2012-01-01

    Phagocytosis is a crucial event in the immune system that allows cells to engulf and eliminate pathogens. This is mediated through the action of immunoglobulin (IgG)-opsonized microbes acting on Fcγ receptors (FcγR) on macrophages, which results in sustained levels of intracellular Ca2+ through the mobilization of Ca2+ second messengers. It is known that the ADP-ribosyl cyclase is responsible for the rise in Ca2+ levels after FcγR activation. However, it is unclear whether and how CD38 is involved in FcγR-mediated phagocytosis. Here we show that CD38 is recruited to the forming phagosomes during phagocytosis of IgG-opsonized particles and produces cyclic-ADP-ribose, which acts on ER Ca2+ stores, thus allowing an increase in FcγR activation-mediated phagocytosis. Ca2+ data show that pretreatment of J774A.1 macrophages with 8-bromo-cADPR, ryanodine, blebbistatin, and various store-operated Ca2+ inhibitors prevented the long-lasting Ca2+ signal, which significantly reduced the number of ingested opsonized particles. Ex vivo data with macrophages extracted from CD38−/− mice also shows a reduced Ca2+ signaling and phagocytic index. Furthermore, a significantly reduced phagocytic index of Mycobacterium bovis BCG was shown in macrophages from CD38−/− mice in vivo. This study suggests a crucial role of CD38 in FcγR-mediated phagocytosis through its recruitment to the phagosome and mobilization of cADPR-induced intracellular Ca2+ and store-operated extracellular Ca2+ influx. PMID:22396532

  5. [Effect of glucidic and fat total parenteral nutrition on macrophage phagocytosis in rats].

    PubMed

    Cukier, C; Waitzberg, D L; Soares, S R; Logullo, A F; Bacchi, C E; Travassos, V H; Saldiva, P H; Torrinhas, R S; de Oliveira, T S

    1997-01-01

    Fat lipid emulsions in Total Parenteral Nutrition (TPN) have been associated to Mononuclear Phagocytary System (MPS) changes. Intravenous lipid emulsions may alter macrophage membrane composition but there are controversies about their effects on MPS function. The aim of the present investigation was to assess the influence of fat free TPN and fat emulsions TPN on the macrophage phagocytosis. Wistar rats (70) with external jugular vein canulation were divided in seven groups. The rats received, intravenously (i.v.) different isocaloric (1.16 kcal/mL), isonitrogenous (1.5 g/mL), and isolipidic (30 to 32% of non-proteic caloric value) TPN regimens or oral diet: 1) Group OS: oral diet with i.v. infusion of saline; 2) Group GLU: fat-free TPN; 3) Group LCT: TPN with 10% long chain triglecide emulsion (TCL); 6) Group MCT: TPN with 10% lipid emulsion with medium chain triglycerides (TCM-50%) and TCL (50%). After 96 hours of TPN or saline infusion, colloidal carbon was i.v. injected at 1.0 mL/kg body weight. The rats were sacrificed after three hours. Liver, spleen and lung were weighted and studied by immunohistochemistry by the avidine-biotine method. Under light microscopy the total macrophage number (MT) and colloidal carbon phagocytic macrophages number (MF) were established. Phagocytic index was MT/MF x 100. The results were statistically analysed (p < 0.05). The group under oral diet (OS) was the only one to gain weight. There were no differences in organ weight in any group. There were changes in MT, MF and phagocytic index in all TPN groups. Fat free TPN inhibited liver, spleen and lung macrophage phagocytosis. Fat TPN with TCL inhibited liver and lung macrophage phagocytosis. At conclusion fat free TPN or with long chain tryglicerides may inhibit MPS phagocytosis. Further studies are necessary to estabilish the effect of TPN on other MPS function.

  6. Identification of Arabidopsis GPAT9 (At5g60620) as an Essential Gene Involved in Triacylglycerol Biosynthesis.

    PubMed

    Shockey, Jay; Regmi, Anushobha; Cotton, Kimberly; Adhikari, Neil; Browse, John; Bates, Philip D

    2016-01-01

    The first step in the biosynthesis of nearly all plant membrane phospholipids and storage triacylglycerols is catalyzed by a glycerol-3-phosphate acyltransferase (GPAT). The requirement for an endoplasmic reticulum (ER)-localized GPAT for both of these critical metabolic pathways was recognized more than 60 years ago. However, identification of the gene(s) encoding this GPAT activity has remained elusive. Here, we present the results of a series of in vivo, in vitro, and in silico experiments in Arabidopsis (Arabidopsis thaliana) designed to assign this essential function to AtGPAT9. This gene has been highly conserved throughout evolution and is largely present as a single copy in most plants, features consistent with essential housekeeping functions. A knockout mutant of AtGPAT9 demonstrates both male and female gametophytic lethality phenotypes, consistent with the role in essential membrane lipid synthesis. Significant expression of developing seed AtGPAT9 is required for wild-type levels of triacylglycerol accumulation, and the transcript level is directly correlated to the level of microsomal GPAT enzymatic activity in seeds. Finally, the AtGPAT9 protein interacts with other enzymes involved in ER glycerolipid biosynthesis, suggesting the possibility of ER-localized lipid biosynthetic complexes. Together, these results suggest that GPAT9 is the ER-localized GPAT enzyme responsible for plant membrane lipid and oil biosynthesis. © 2016 American Society of Plant Biologists. All Rights Reserved.

  7. EhVps32 Is a Vacuole-Associated Protein Involved in Pinocytosis and Phagocytosis of Entamoeaba histolytica

    PubMed Central

    Avalos-Padilla, Yunuen; Betanzos, Abigail; Javier-Reyna, Rosario; García-Rivera, Guillermina; Chávez-Munguía, Bibiana; Lagunes-Guillén, Anel; Ortega, Jaime; Orozco, Esther

    2015-01-01

    Here, we investigated the role of EhVps32 protein (a member of the endosomal-sorting complex required for transport) in endocytosis of Entamoeba histolytica, a professional phagocyte. Confocal microscopy, TEM and cell fractionation revealed EhVps32 in cytoplasmic vesicles and also located adjacent to the plasma membrane. Between 5 to 30 min of phagocytosis, EhVps32 was detected on some erythrocytes-containing phagosomes of acidic nature, and at 60 min it returned to cytoplasmic vesicles and also appeared adjacent to the plasma membrane. TEM images revealed it in membranous structures in the vicinity of ingested erythrocytes. EhVps32, EhADH (an ALIX family member), Gal/GalNac lectin and actin co-localized in the phagocytic cup and in some erythrocytes-containing phagosomes, but EhVps32 was scarcely detected in late phagosomes. During dextran uptake, EhVps32, EhADH and Gal/GalNac lectin, but not actin, co-localized in pinosomes. EhVps32 recombinant protein formed oligomers composed by rings and filaments. Antibodies against EhVps32 monomers stained cytoplasmic vesicles but not erythrocytes-containing phagosomes, suggesting that in vivo oligomers are formed on phagosome membranes. The involvement of EhVps32 in phagocytosis was further study in pNeoEhvps32-HA-transfected trophozoites, which augmented almost twice their rate of erythrophagocytosis as well as the membranous concentric arrays built by filaments, spirals and tunnel-like structures. Some of these structures apparently connected phagosomes with the phagocytic cup. In concordance, the EhVps32-silenced G3 trophozoites ingested 80% less erythrocytes than the G3 strain. Our results suggest that EhVps32 participates in E. histolytica phagocytosis and pinocytosis. It forms oligomers on erythrocytes-containing phagosomes, probably as a part of the scission machinery involved in membrane invagination and intraluminal vesicles formation. PMID:26230715

  8. Sensing of triacylglycerol in the gut: different mechanisms for fatty acids and 2-monoacylglycerol.

    PubMed

    Kleberg, Karen; Jacobsen, Anne Katrine; Ferreira, Jozelia G; Windeløv, Johanne Agerlin; Rehfeld, Jens F; Holst, Jens Juul; de Araujo, Ivan E; Hansen, Harald S

    2015-04-15

    Sensing of dietary triacylglycerol in the proximal small intestine results in physiological, hormonal and behavioural responses. However, the exact physiological pathways linking intestinal fat sensing to food intake and the activation of brain circuits remain to be identified. In this study we examined the role of triacylglycerol digestion for intestinal fat sensing, and compared the effects of the triacylglycerol digestion products, fatty acids and 2-monoacylglycerol, on behavioural, hormonal and dopaminergic responses in behaving mice. Using an operant task in which mice are trained to self-administer lipid emulsions directly into the stomach, we show that inhibiting triacylglycerol digestion disrupts normal behaviour of self-administration in mice, indicating that fat sensing is conditional to digestion. When administered separately, both digestion products, 2-monoacylglycerol and fatty acids, were sensed by the mice, and self-administration patterns of fatty acids were affected by the fatty acid chain length. Peripheral plasma concentrations of the gut hormones GLP-1, GIP, PYY, CCK and insulin did not offer an explanation of the differing behavioural effects produced by 2-monoacylglycerol and fatty acids. However, combined with behavioural responses, striatal dopamine effluxes induced by gut infusions of oleic acid were significantly greater than those produced by equivalent infusions of 2-oleoylglycerol. Our data demonstrate recruitment of different signalling pathways by fatty acids and 2-monoacylglycerol, and suggest that the structural properties of fat rather than total caloric value determine intestinal sensing and the assignment of reward value to lipids. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  9. Triacylglycerol estolides, a new class of mammalian lipids, in the paracloacal gland of the brushtail possum (Trichosurus vulpecula).

    PubMed

    McLean, Stuart; Davies, Noel W; Nichols, David S; Mcleod, Bernie J

    2015-06-01

    The paracloacal glands are the most prevalent scent glands in marsupials, and previous investigation of their secretions in the brushtail possum (Trichosurus vulpecula) has identified many odorous compounds together with large amounts of neutral lipids. We have examined the lipids by LC-MS, generating ammonium adducts of acylglycerols by electrospray ionisation. Chromatograms showed a complex mixture of coeluting acylglycerols, with m/z from about 404 to 1048. Plots of single [M + NH4](+) ions showed three groups of lipids clearly separated by retention time. MS-MS enabled triacylglycerols and diacylglycerol ethers to be identified from neutral losses and formation of diacylglycerols and other product ions. The earliest-eluting lipids were found to be triacylglycerol estolides, in which a fourth fatty acid forms an ester link with a hydroxy fatty acid attached to the glycerol chain. This is the first report of triacylglycerol estolides in animals. They form a complex mixture with the triacylglycerols and diacylglycerol ethers of lipids with short- and long-chain fatty acids with varying degrees of unsaturation. This complexity suggests a functional role, possibly in social communication.

  10. Live-cell Video Microscopy of Fungal Pathogen Phagocytosis

    PubMed Central

    Lewis, Leanne E.; Bain, Judith M.; Okai, Blessing; Gow, Neil A.R.; Erwig, Lars Peter

    2013-01-01

    Phagocytic clearance of fungal pathogens, and microorganisms more generally, may be considered to consist of four distinct stages: (i) migration of phagocytes to the site where pathogens are located; (ii) recognition of pathogen-associated molecular patterns (PAMPs) through pattern recognition receptors (PRRs); (iii) engulfment of microorganisms bound to the phagocyte cell membrane, and (iv) processing of engulfed cells within maturing phagosomes and digestion of the ingested particle. Studies that assess phagocytosis in its entirety are informative1, 2, 3, 4, 5 but are limited in that they do not normally break the process down into migration, engulfment and phagosome maturation, which may be affected differentially. Furthermore, such studies assess uptake as a single event, rather than as a continuous dynamic process. We have recently developed advanced live-cell imaging technologies, and have combined these with genetic functional analysis of both pathogen and host cells to create a cross-disciplinary platform for the analysis of innate immune cell function and fungal pathogenesis. These studies have revealed novel aspects of phagocytosis that could only be observed using systematic temporal analysis of the molecular and cellular interactions between human phagocytes and fungal pathogens and infectious microorganisms more generally. For example, we have begun to define the following: (a) the components of the cell surface required for each stage of the process of recognition, engulfment and killing of fungal cells1, 6, 7, 8; (b) how surface geometry influences the efficiency of macrophage uptake and killing of yeast and hyphal cells7; and (c) how engulfment leads to alteration of the cell cycle and behavior of macrophages 9, 10. In contrast to single time point snapshots, live-cell video microscopy enables a wide variety of host cells and pathogens to be studied as continuous sequences over lengthy time periods, providing spatial and temporal information on a

  11. Simulation of triacylglycerol ion profiles: bioinformatics for interpretation of triacylglycerol biosynthesis[S

    PubMed Central

    Han, Rowland H.; Wang, Miao; Fang, Xiaoling; Han, Xianlin

    2013-01-01

    Although the synthesis pathways of intracellular triacylglycerol (TAG) species have been well elucidated, assessment of the contribution of an individual pathway to TAG pools in different mammalian organs, particularly under pathophysiological conditions, is difficult, although not impossible. Herein, we developed and validated a novel bioinformatic approach to assess the differential contributions of the known pathways to TAG pools through simulation of TAG ion profiles determined by shotgun lipidomics. This powerful approach was applied to determine such contributions in mouse heart, liver, and skeletal muscle and to examine the changes of these pathways in mouse liver induced after treatment with a high-fat diet. It was clearly demonstrated that assessment of the altered TAG biosynthesis pathways under pathophysiological conditions can be readily achieved through simulation of lipidomics data. Collectively, this new development should greatly facilitate our understanding of the biochemical mechanisms underpinning TAG accumulation at the states of obesity and lipotoxicity. PMID:23365150

  12. BIODEGRADATION KINETICS AND TOXICITY OF VEGETABLE OIL TRIACYLGLYCEROLS UNDER AEROBIC CONDITIONS

    EPA Science Inventory

    The aerobic biodegradation of five triacylglycerols (TAGs), three liquids [triolein (OOO), trilinolein (LLL), and trilinolenin (LnLnLn)] and two solids [tripalmitin (PPP) and tristearin (SSS)] was studied in water. Respirometry tests were designed and conducted to determine the b...

  13. Increase in cellular triacylglycerol content and emergence of large ER-associated lipid droplets in the absence of CDP-DG synthase function

    PubMed Central

    He, Yue; Yam, Candice; Pomraning, Kyle; Chin, Jacqueline S. R.; Yew, Joanne Y.; Freitag, Michael; Oliferenko, Snezhana

    2014-01-01

    Excess fatty acids and sterols are stored as triacylglycerols and sterol esters in specialized cellular organelles, called lipid droplets. Understanding what determines the cellular amount of neutral lipids and their packaging into lipid droplets is of fundamental and applied interest. Using two species of fission yeast, we show that cycling cells deficient in the function of the ER-resident CDP-DG synthase Cds1 exhibit markedly increased triacylglycerol content and assemble large lipid droplets closely associated with the ER membranes. We demonstrate that these unusual structures recruit the triacylglycerol synthesis machinery and grow by expansion rather than by fusion. Our results suggest that interfering with the CDP-DG route of phosphatidic acid utilization rewires cellular metabolism to adopt a triacylglycerol-rich lifestyle reliant on the Kennedy pathway. PMID:25318672

  14. Fc-receptor induced cell spreading during frustrated phagocytosis in J774A.1 macrophages

    NASA Astrophysics Data System (ADS)

    Kovari, Daniel; Curtis, Jennifer; Wei, Wenbin

    2014-03-01

    Phagocytosis is the process where by cells engulf foreign particles. It is the primary mechanism through which macrophages and neutrophils (white blood cells) eliminate pathogens and debris from the body. The behavior is the result of a cascade of chemical and mechanical cues, which result in the actin-driven expansion of the cell's membrane around its target. For macrophages undergoing Fc-mediated phagocytosis, we show that above a minimum threshold the spreading rate and maximum cell-target contact area are independent of the target's opsonin density. Qualitatively, macrophage phagocytic spreading is similar to the spreading of other cell types (e.g. fibroblasts, lymphocytes, and Dict.d.). Early spreading is most likely the result of ``passive'' alignment of the cell to the target surface. This is followed by an active expansion period driven by actin. Finally upon reaching a maximum contact area, typically 2-3 times the size of ``non-activated'' cells, macrophages often undergo a period of rapid contraction not reported in other cell types. We hypothesize that this, as yet unexplained, transition may be specific to the chemical and mechanical machinery associated with phagocytosis. This work was funded by NSF grant PHYS 0848797 and NSF grant DMR 0820382.

  15. Weight Loss Decreases Excess Pancreatic Triacylglycerol Specifically in Type 2 Diabetes.

    PubMed

    Steven, Sarah; Hollingsworth, Kieren G; Small, Peter K; Woodcock, Sean A; Pucci, Andrea; Aribisala, Benjamin; Al-Mrabeh, Ahmad; Daly, Ann K; Batterham, Rachel L; Taylor, Roy

    2016-01-01

    This study determined whether the decrease in pancreatic triacylglycerol during weight loss in type 2 diabetes mellitus (T2DM) is simply reflective of whole-body fat or specific to diabetes and associated with the simultaneous recovery of insulin secretory function. Individuals listed for gastric bypass surgery who had T2DM or normal glucose tolerance (NGT) matched for age, weight, and sex were studied before and 8 weeks after surgery. Pancreas and liver triacylglycerol were quantified using in-phase, out-of-phase MRI. Also measured were the first-phase insulin response to a stepped intravenous glucose infusion, hepatic insulin sensitivity, and glycemic and incretin responses to a semisolid test meal. Weight loss after surgery was similar (NGT: 12.8 ± 0.8% and T2DM: 13.6 ± 0.7%) as was the change in fat mass (56.7 ± 3.3 to 45.4 ± 2.3 vs. 56.6 ± 2.4 to 43.0 ± 2.4 kg). Pancreatic triacylglycerol did not change in NGT (5.1 ± 0.2 to 5.5 ± 0.4%) but decreased in the group with T2DM (6.6 ± 0.5 to 5.4 ± 0.4%; P = 0.007). First-phase insulin response to a stepped intravenous glucose infusion did not change in NGT (0.24 [0.13-0.46] to 0.23 [0.19-0.37] nmol ⋅ min(-1) ⋅ m(-2)) but normalized in T2DM (0.08 [-0.01 to -0.10] to 0.22 [0.07-0.30]) nmol ⋅ min(-1) ⋅ m(-2) at week 8 (P = 0.005). No differential effect of incretin secretion was observed after gastric bypass, with more rapid glucose absorption bringing about equivalently enhanced glucagon-like peptide 1 secretion in the two groups. The fall in intrapancreatic triacylglycerol in T2DM, which occurs during weight loss, is associated with the condition itself rather than decreased total body fat. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  16. Algal dual-specificity tyrosine phosphorylation-regulated kinase, triacylglycerol accumulation regulator1, regulates accumulation of triacylglycerol in nitrogen or sulfur deficiency.

    PubMed

    Kajikawa, Masataka; Sawaragi, Yuri; Shinkawa, Haruka; Yamano, Takashi; Ando, Akira; Kato, Misako; Hirono, Masafumi; Sato, Naoki; Fukuzawa, Hideya

    2015-06-01

    Although microalgae accumulate triacylglycerol (TAG) and starch in response to nutrient-deficient conditions, the regulatory mechanisms are poorly understood. We report here the identification and characterization of a kinase, triacylglycerol accumulation regulator1 (TAR1), that is a member of the yeast (Saccharomyces cerevisiae) Yet another kinase1 (Yak1) subfamily in the dual-specificity tyrosine phosphorylation-regulated kinase family in a green alga (Chlamydomonas reinhardtii). The kinase domain of TAR1 showed auto- and transphosphorylation activities. A TAR1-defective mutant, tar1-1, accumulated TAG to levels 0.5- and 0.1-fold of those of a wild-type strain in sulfur (S)- and nitrogen (N)-deficient conditions, respectively. In N-deficient conditions, tar1-1 showed more pronounced arrest of cell division than the wild type, had increased cell size and cell dry weight, and maintained chlorophyll and photosynthetic activity, which were not observed in S-deficient conditions. In N-deficient conditions, global changes in expression levels of N deficiency-responsive genes in N assimilation and tetrapyrrole metabolism were noted between tar1-1 and wild-type cells. These results indicated that TAR1 is a regulator of TAG accumulation in S- and N-deficient conditions, and it functions in cell growth and repression of photosynthesis in conditions of N deficiency. © 2015 American Society of Plant Biologists. All Rights Reserved.

  17. Phagocytosis of microparticles by alveolar macrophages during acute lung injury requires MerTK.

    PubMed

    Mohning, Michael P; Thomas, Stacey M; Barthel, Lea; Mould, Kara J; McCubbrey, Alexandria L; Frasch, S Courtney; Bratton, Donna L; Henson, Peter M; Janssen, William J

    2018-01-01

    Microparticles are a newly recognized class of mediators in the pathophysiology of lung inflammation and injury, but little is known about the factors that regulate their accumulation and clearance. The primary objective of our study was to determine whether alveolar macrophages engulf microparticles and to elucidate the mechanisms by which this occurs. Alveolar microparticles were quantified in bronchoalveolar fluid of mice with lung injury induced by LPS and hydrochloric acid. Microparticle numbers were greatest at the peak of inflammation and declined as inflammation resolved. Isolated, fluorescently labeled particles were placed in culture with macrophages to evaluate ingestion in the presence of endocytosis inhibitors. Ingestion was blocked with cytochalasin D and wortmannin, consistent with a phagocytic process. In separate experiments, mice were treated intratracheally with labeled microparticles, and their uptake was assessed though microscopy and flow cytometry. Resident alveolar macrophages, not recruited macrophages, were the primary cell-ingesting microparticles in the alveolus during lung injury. In vitro, microparticles promoted inflammatory signaling in LPS primed epithelial cells, signifying the importance of microparticle clearance in resolving lung injury. Microparticles were found to have phosphatidylserine exposed on their surfaces. Accordingly, we measured expression of phosphatidylserine receptors on macrophages and found high expression of MerTK and Axl in the resident macrophage population. Endocytosis of microparticles was markedly reduced in MerTK-deficient macrophages in vitro and in vivo. In conclusion, microparticles are released during acute lung injury and peak in number at the height of inflammation. Resident alveolar macrophages efficiently clear these microparticles through MerTK-mediated phagocytosis.

  18. ‘Obesity’ is healthy for cetaceans? Evidence from pervasive positive selection in genes related to triacylglycerol metabolism

    PubMed Central

    Wang, Zhengfei; Chen, Zhuo; Xu, Shixia; Ren, Wenhua; Zhou, Kaiya; Yang, Guang

    2015-01-01

    Cetaceans are a group of secondarily adapted marine mammals with an enigmatic history of transition from terrestrial to fully aquatic habitat and subsequent adaptive radiation in waters around the world. Numerous physiological and morphological cetacean characteristics have been acquired in response to this drastic habitat transition; for example, the thickened blubber is one of the most striking changes that increases their buoyancy, supports locomotion, and provides thermal insulation. However, the genetic basis underlying the blubber thickening in cetaceans remains poorly explored. Here, 88 candidate genes associated with triacylglycerol metabolism were investigated in representative cetaceans and other mammals to test whether the thickened blubber matched adaptive evolution of triacylglycerol metabolism-related genes. Positive selection was detected in 41 of the 88 candidate genes, and functional characterization of these genes indicated that these are involved mainly in triacylglycerol synthesis and lipolysis processes. In addition, some essential regulatory genes underwent significant positive selection in cetacean-specific lineages, whereas no selection signal was detected in the counterpart terrestrial mammals. The extensive occurrence of positive selection in triacylglycerol metabolism-related genes is suggestive of their essential role in secondary adaptation to an aquatic life, and further implying that ‘obesity’ might be an indicator of good health for cetaceans. PMID:26381091

  19. An acyl-CoA synthetase in Mycobacterium tuberculosis involved in triacylglycerol accumulation during dormancy.

    PubMed

    Daniel, Jaiyanth; Sirakova, Tatiana; Kolattukudy, Pappachan

    2014-01-01

    Latent infection with dormant Mycobacterium tuberculosis is one of the major reasons behind the emergence of drug-resistant strains of the pathogen worldwide. In its dormant state, the pathogen accumulates lipid droplets containing triacylglycerol synthesized from fatty acids derived from host lipids. In this study, we show that Rv1206 (FACL6), which is annotated as an acyl-CoA synthetase and resembles eukaryotic fatty acid transport proteins, is able to stimulate fatty acid uptake in E. coli cells. We show that purified FACL6 displays acyl-coenzyme A synthetase activity with a preference towards oleic acid, which is one of the predominant fatty acids in host lipids. Our results indicate that the expression of FACL6 protein in Mycobacterium tuberculosis is significantly increased during in vitro dormancy. The facl6-deficient Mycobacterium tuberculosis mutant displayed a diminished ability to synthesize acyl-coenzyme A in cell-free extracts. Furthermore, during in vitro dormancy, the mutant synthesized lower levels of intracellular triacylglycerol from exogenous fatty acids. Complementation partially restored the lost function. Our results suggest that FACL6 modulates triacylglycerol accumulation as the pathogen enters dormancy by activating fatty acids.

  20. Association between glucokinase regulatory protein (GCKR) and apolipoprotein A5 (APOA5) gene polymorphisms and triacylglycerol concentrations in fasting, postprandial, and fenofibrate-treated states.

    PubMed

    Perez-Martinez, Pablo; Corella, Dolores; Shen, Jian; Arnett, Donna K; Yiannakouris, Nikos; Tai, E Syong; Orho-Melander, Marju; Tucker, Katherine L; Tsai, Michael; Straka, Robert J; Province, Michael; Kai, Chew Suok; Perez-Jimenez, Francisco; Lai, Chao-Qiang; Lopez-Miranda, Jose; Guillen, Marisa; Parnell, Laurence D; Borecki, Ingrid; Kathiresan, Sekar; Ordovas, Jose M

    2009-01-01

    Hypertriglyceridemia is a risk factor for cardiovascular disease. Variation in the apolipoprotein A5 (APOA5) and glucokinase regulatory protein (GCKR) genes has been associated with fasting plasma triacylglycerol. We investigated the combined effects of the GCKR rs780094C-->T, APOA5 -1131T-->C, and APOA5 56C-->G single nucleotide polymorphisms (SNPs) on fasting triacylglycerol in several independent populations and the response to a high-fat meal and fenofibrate interventions. We used a cross-sectional design to investigate the association with fasting triacylglycerol in 8 populations from America, Asia, and Europe (n = 7,730 men and women) and 2 intervention studies in US whites (n = 1,061) to examine postprandial triacylglycerol after a high-fat meal and the response to fenofibrate. We defined 3 combined genotype groups: 1) protective (homozygous for the wild-type allele for all 3 SNPs); 2) intermediate (any mixed genotype not included in groups 1 and 3); and 3) risk (carriers of the variant alleles at both genes). Subjects within the risk group had significantly higher fasting triacylglycerol and a higher prevalence of hypertriglyceridemia than did subjects in the protective group across all populations. Moreover, subjects in the risk group had a greater postprandial triacylglycerol response to a high-fat meal and greater fenofibrate-induced reduction of fasting triacylglycerol than did the other groups, especially among persons with hypertriglyceridemia. Subjects with the intermediate genotype had intermediate values (P for trend <0.001). SNPs in GCKR and APOA5 have an additive effect on both fasting and postprandial triacylglycerol and contribute to the interindividual variability in response to fenofibrate treatment.

  1. Triacylglycerol compositions of sunflower, corn and soybean oils examined with supercritical CO2 ultra-performance convergence chromatography combined with quadrupole time-of-flight mass spectrometry.

    PubMed

    Gao, Boyan; Luo, Yinghua; Lu, Weiying; Liu, Jie; Zhang, Yaqiong; Yu, Liangli Lucy

    2017-03-01

    A supercritical CO 2 ultra-performance convergence chromatography (UPC 2 ) system was utilized with a quadrupole time-of-flight mass spectrometry (Q-TOF MS) to examine the triacylglycerol compositions of sunflower, corn and soybean oils. UPC 2 provided an excellent resolution and separation for the triacylglycerols, while the high performance Q-TOF MS system was able to provide the molecular weight and fragment ions information for triacylglycerol compound characterization. A total of 33 triacylglycerols were identified based on their elementary compositions and MS 2 fragment ion profiles, and their levels in the three oils were estimated. The combination of UPC 2 and Q-TOF MS may determine triacylglycerol compositions for oils and fats, and provide sn-position information for fatty acids, which may be important for food nutritional value and stability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Two-Stage Enzymatic Preparation of Eicosapentaenoic Acid (EPA) And Docosahexaenoic Acid (DHA) Enriched Fish Oil Triacylglycerols.

    PubMed

    Zhang, Zhen; Liu, Fang; Ma, Xiang; Huang, Huihua; Wang, Yong

    2018-01-10

    Fish oil products in the form of triacylglycerols generally have relatively low contents of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and so it is of potential research and industrial interest to enrich the related contents in commercial products. Thereby an economical and efficient two-stage preparation of EPA and DHA enriched fish oil triacylglycerols is proposed in this study. The first stage was the partial hydrolysis of fish oil by only 0.2 wt.‰ AY "Amano" 400SD which led to increases of EPA and DHA contents in acylglycerols from 19.30 and 13.09 wt % to 25.95 and 22.06 wt %, respectively. Subsequently, products of the first stage were subjected to transesterification with EPA and DHA enriched fatty acid ethyl esters (EDEE) as the second stage to afford EPA and DHA enriched fish oil triacylglycerols by using as low as 2 wt % Novozyme 435. EDEEs prepared from fish oil ethyl ester, and recycled DHA and EPA, respectively, were applied in this stage. Final products prepared with two different sources of EDEEs were composed of 97.62 and 95.92 wt % of triacylglycerols, respectively, with EPA and DHA contents of 28.20 and 21.41 wt % for the former and 25.61 and 17.40 wt % for the latter. Results not only demonstrate this two-stage process's capability and industrial value for enriching EPA and DHA in fish oil products, but also offer new opportunities for the development of fortified fish oil products.

  3. Homochiral Asymmetric Triacylglycerol Isomers in Egg Yolk.

    PubMed

    Nagai, Toshiharu; Ishikawa, Keiko; Yoshinaga, Kazuaki; Yoshida, Akihiko; Beppu, Fumiaki; Gotoh, Naohiro

    2017-12-01

    The composition of triacylglycerol (TAG) positional isomer (-PI) and enantiomer (-E) in immature chicken egg yolk, mature chicken yolk, and chicken meat was examined. POO (consisting of one palmitic acid (P) and two oleic acids (Os)), PPO (consisting of two Ps and one O), and PPL (consisting of two Ps and one linoleic acid (L)) were treated as representative TAG molecular species in all the analytical samples because P, O, and L were the major fatty acids comprising egg and chicken meat. sn-POO (binding P at sn-1 position) was predominant in egg yolks, while sn-OOP and sn-OPO were present in chicken meat. This difference was ascribed to the different roles of these isomers as nutrients, because TAG in egg yolk is important for new born organisms and TAG in chicken meat is used for fat accumulation. The compositions of the TAG isomers in PPO and PPL in egg yolk were similar, and O and L did not bind at the sn-1 position. In contrast, all the isomers of PPO and PPL were found in chicken meat. These results imply that the TAG structure could be modified so that the nutrient requirement is fulfilled in egg yolk and chicken meat.

  4. Synthesis of structured triacylglycerols enriched in n-3 fatty acids by immobilized microbial lipase.

    PubMed

    Araújo, Maria Elisa Melo Branco de; Campos, Paula Renata Bueno; Alberto, Thiago Grando; Contesini, Fabiano Jares; Carvalho, Patrícia de Oliveira

    The search for new biocatalysts has aroused great interest due to the variety of micro-organisms and their role as enzyme producers. Native lipases from Aspergillus niger and Rhizopus javanicus were used to enrich the n-3 long-chain polyunsaturated fatty acids content in the triacylglycerols of soybean oil by acidolysis with free fatty acids from sardine oil in solvent-free media. For the immobilization process, the best lipase/support ratios were 1:3 (w/w) for Aspergillus niger lipase and 1:5 (w/w) for Rhizopus javanicus lipase using Amberlite MB-1. Both lipases maintained constant activity for 6 months at 4°C. Reaction time, sardine-free fatty acids:soybean oil mole ratio and initial water content of the lipase were investigated to determine their effects on n-3 long-chain polyunsaturated fatty acids incorporation into soybean oil. Structured triacylglycerols with 11.7 and 7.2% of eicosapentaenoic acid+docosahexaenoic acid were obtained using Aspergillus niger lipase and Rhizopus javanicus lipase, decreasing the n-6/n-3 fatty acids ratio of soybean oil (11:1 to 3.5:1 and 4.7:1, respectively). The best reaction conditions were: initial water content of lipase of 0.86% (w/w), sardine-free faty acids:soybean oil mole ratio of 3:1 and reaction time of 36h, at 40°C. The significant factors for the acidolysis reaction were the sardine-free fatty acids:soybean oil mole ratio and reaction time. The characterization of structured triacylglycerols was obtained using easy ambient sonic-spray ionization mass spectrometry. The enzymatic reaction led to the formation of many structured triacylglycerols containing eicosapentaenoic acid, docosahexaenoic acid or both polyunsaturated fatty acids. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  5. Effect of triacylglycerols containing medium- and long-chain fatty acids on serum triacylglycerol levels and body fat in college athletes.

    PubMed

    Takeuchi, Hiroyuki; Kasai, Michio; Taguchi, Nobuo; Tsuji, Hiroaki; Suzuki, Masashige

    2002-04-01

    Triacylglycerols containing medium- and long-chain fatty acids (TML) have medium- and long-chain fatty acids in the same molecule. The effects of dietary TML on serum lipid levels and body fat were studied in six young men belonging to a university rowing club. A double-blind crossover study was performed in which for 3 wk the subjects ingested a liquid diet containing 20 g/d of soybean oil or TML in addition to their regular diets. Throughout the study, they were asked to keep their usual lifestyle, including diet and physical activity. The body composition of the subjects was measured weekly. Blood samples were taken at 0, 2, and 3 wk of each treatment period. There was no significant difference in energy intake between the soybean oil diet period and the TML diet period. The rate of variation of serum triacylglycerol concentration was significantly lower after a consumption of the TML liquid diet for 3 wk compared with the soybean oil liquid diet. The rate of variation of body fat mass was also significantly lower after a consumption of the TML liquid diet for 3 wk compared with the soybean oil liquid diet. However, the serum cholesterol concentration did not change significantly during either dietary treatment. These results suggest that TML, compared with soybean oil, may have the potential to prevent hypertriglyceridemia and obesity caused by consumption of a high-fat diet.

  6. Association between glucokinase regulatory protein (GCKR) and apolipoprotein A5 (APOA5) gene polymorphisms and triacylglycerol concentrations in fasting, postprandial, and fenofibrate-treated states123

    PubMed Central

    Perez-Martinez, Pablo; Corella, Dolores; Shen, Jian; Arnett, Donna K; Yiannakouris, Nikos; Tai, E Syong; Orho-Melander, Marju; Tucker, Katherine L; Tsai, Michael; Straka, Robert J; Province, Michael; Kai, Chew Suok; Perez-Jimenez, Francisco; Lai, Chao-Qiang; Lopez-Miranda, Jose; Guillen, Marisa; Parnell, Laurence D; Borecki, Ingrid; Kathiresan, Sekar; Ordovas, Jose M

    2009-01-01

    Background: Hypertriglyceridemia is a risk factor for cardiovascular disease. Variation in the apolipoprotein A5 (APOA5) and glucokinase regulatory protein (GCKR) genes has been associated with fasting plasma triacylglycerol. Objective: We investigated the combined effects of the GCKR rs780094C→T, APOA5 −1131T→C, and APOA5 56C→G single nucleotide polymorphisms (SNPs) on fasting triacylglycerol in several independent populations and the response to a high-fat meal and fenofibrate interventions. Design: We used a cross-sectional design to investigate the association with fasting triacylglycerol in 8 populations from America, Asia, and Europe (n = 7730 men and women) and 2 intervention studies in US whites (n = 1061) to examine postprandial triacylglycerol after a high-fat meal and the response to fenofibrate. We defined 3 combined genotype groups: 1) protective (homozygous for the wild-type allele for all 3 SNPs); 2) intermediate (any mixed genotype not included in groups 1 and 3); and 3) risk (carriers of the variant alleles at both genes). Results: Subjects within the risk group had significantly higher fasting triacylglycerol and a higher prevalence of hypertriglyceridemia than did subjects in the protective group across all populations. Moreover, subjects in the risk group had a greater postprandial triacylglycerol response to a high-fat meal and greater fenofibrate-induced reduction of fasting triacylglycerol than did the other groups, especially among persons with hypertriglyceridemia. Subjects with the intermediate genotype had intermediate values (P for trend <0.001). Conclusions: SNPs in GCKR and APOA5 have an additive effect on both fasting and postprandial triacylglycerol and contribute to the interindividual variability in response to fenofibrate treatment. PMID:19056598

  7. Phagocytosis as a biomarker for stress responses

    NASA Astrophysics Data System (ADS)

    Huber, K.; Krotz-Fahning, M.; Hock, B.

    2005-08-01

    An in vitro test has been developed for the detection of immunotoxic events. It will be used within the project "TRIPLE LUX" on the International Space Station to investigate the effects of single and combined space flight conditions on mammalian phagocytes. The intensity of the respiratory burst during phagocytosis can be followed by the luminol-based chemiluminescence response after stimulation with zymosan. We adapted this test system for polymorphonuclear leukocytes, purified from sheep blood and stored by cryoconservation. In this report we show the immunostimulating effect of hydrocortisone and the immunosuppressive impact of cadmium as an example for alterations that can be detected by this test.

  8. Human immunodeficiency virus type 1 Tat binds to Candida albicans, inducing hyphae but augmenting phagocytosis in vitro

    PubMed Central

    Gruber, Andreas; Lell, Claudia P; Speth, Cornelia; Stoiber, Heribert; Lass-Flörl, Cornelia; Sonneborn, Anja; Ernst, Joachim F; Dierich, Manfred P; Würzner, Reinhard

    2001-01-01

    Tat, the human immunodeficiency virus type 1 (HIV-1) transactivating protein, binds through its RGD-motif to human integrin receptors. Candida albicans, the commonest cause of mucosal candidiasis in subjects infected with HIV-1, also possesses RGD-binding capacity. The present study reveals that Tat binds to C. albicans but not to C. tropicalis. Tat binding was markedly reduced by laminin and to a lesser extent by a complement C3 peptide containing the RGD motif, but not by a control peptide. The outgrowth of C. albicans was accelerated following binding of Tat, but phagocytosis of opsonized C. albicans was also increased after Tat binding. Thus, Tat binding promotes fungal virulence by inducing hyphae but may also reduce it by augmenting phagocytosis. The net effect of Tat in vivo is difficult to judge but in view of the many disease-promoting effects of Tat we propose that accelerating the formation of hyphae dominates over the augmentation of phagocytosis. PMID:11899432

  9. Triacylglycerols determine the unusual storage physiology of Cuphea seed.

    PubMed

    Crane, Jennifer; Miller, Annette L; van Roekel, J William; Walters, Christina

    2003-09-01

    Many species within the genus Cuphea (Lythraceae) produce seed with high levels of medium-chain fatty acids. Seeds of some Cuphea species lose viability when placed into storage at -18 degrees C. These species tolerate significant drying to 0.05 g/g and may, therefore, be intermediate in their storage characteristics. The thermal properties of seed lipids were observed using differential scanning calorimetry. Species with peak lipid melting temperatures >/=27 degrees C were found to be sensitive to -18 degrees C exposure while those with melting temperatures <27 degrees C were able to tolerate low-temperature exposure. This relationship was determined by the triacylglycerol composition of the individual species. Sensitive species have high concentrations of lauric acid (C(12)) and/or myristic acid (C(14)). Species with high concentrations of capric (C(8)) or caprylic acid (C(10)) or with high concentrations of unsaturated fatty acids tolerate low temperature exposure. Potential damage caused by low temperature exposure can be avoided by exposing seeds to a brief heat pulse of 45 degrees C to melt solidified lipids prior to imbibition. The relationship between the behavior of triacylglycerols in vivo, seed storage behavior and sensitivity to imbibitional damage is previously unreported and may apply to other species with physiologies that make them difficult to store.

  10. Lowering effect of firefly squid powder on triacylglycerol content and glucose-6-phosphate dehydrogenase activity in rat liver.

    PubMed

    Takeuchi, Hiroyuki; Morita, Ritsuko; Shirai, Yoko; Nakagawa, Yoshihisa; Terashima, Teruya; Ushikubo, Shun; Matsuo, Tatsuhiro

    2014-01-01

    Effects of dietary firefly squid on serum and liver lipid levels were investigated. Male Wistar rats were fed a diet containing 5% freeze-dried firefly squid or Japanese flying squid for 2 weeks. There was no significant difference in the liver triacylglycerol level between the control and Japanese flying squid groups, but the rats fed the firefly squid diet had a significantly lower liver triacylglycerol content than those fed the control diet. No significant difference was observed in serum triacylglycerol levels between the control and firefly squid groups. The rats fed the firefly squid had a significantly lower activity of liver glucose-6-phosphate dehydrogenase compared to the rats fed the control diet. There was no significant difference in liver fatty acid synthetase activity among the three groups. Hepatic gene expression and lipogenic enzyme activity were investigated; a DNA microarray showed that the significantly enriched gene ontology category of down-regulated genes in the firefly squid group was "lipid metabolic process". The firefly squid group had lower mRNA level of glucose-6-phosphate dehydrogenase compared to the controls. These results suggest that an intake of firefly squid decreases hepatic triacylglycerol in rats, and the reduction of mRNA level and enzyme activity of glucose-6-phosphate dehydrogenase might be related to the mechanisms.

  11. Autophagic flux is required for the synthesis of triacylglycerols and ribosomal protein turnover in Chlamydomonas.

    PubMed

    Couso, Inmaculada; Pérez-Pérez, María Esther; Martínez-Force, Enrique; Kim, Hee-Sik; He, Yonghua; Umen, James G; Crespo, José L

    2018-03-14

    Autophagy is an intracellular catabolic process that allows cells to recycle unneeded or damaged material to maintain cellular homeostasis. This highly dynamic process is characterized by the formation of double-membrane vesicles called autophagosomes, which engulf and deliver the cargo to the vacuole. Flow of material through the autophagy pathway and its degradation in the vacuole is known as autophagic flux, and reflects the autophagic degradation activity. A number of assays have been developed to determine autophagic flux in yeasts, mammals, and plants, but it has not been examined yet in algae. Here we analyzed autophagic flux in the model green alga Chlamydomonas reinhardtii. By monitoring specific autophagy markers such as ATG8 lipidation and using immunofluorescence and electron microscopy techniques, we show that concanamycin A, a vacuolar ATPase inhibitor, blocks autophagic flux in Chlamydomonas. Our results revealed that vacuolar lytic function is needed for the synthesis of triacylglycerols and the formation of lipid bodies in nitrogen- or phosphate-starved cells. Moreover, we found that concanamycin A treatment prevented the degradation of ribosomal proteins RPS6 and RPL37 under nitrogen or phosphate deprivation. These results indicate that autophagy might play an important role in the regulation of lipid metabolism and the recycling of ribosomal proteins under nutrient limitation in Chlamydomonas.

  12. Identification of Arabidopsis GPAT9 (At5g60620) as an Essential Gene Involved in Triacylglycerol Biosynthesis1[OPEN

    PubMed Central

    Browse, John

    2016-01-01

    The first step in the biosynthesis of nearly all plant membrane phospholipids and storage triacylglycerols is catalyzed by a glycerol-3-phosphate acyltransferase (GPAT). The requirement for an endoplasmic reticulum (ER)-localized GPAT for both of these critical metabolic pathways was recognized more than 60 years ago. However, identification of the gene(s) encoding this GPAT activity has remained elusive. Here, we present the results of a series of in vivo, in vitro, and in silico experiments in Arabidopsis (Arabidopsis thaliana) designed to assign this essential function to AtGPAT9. This gene has been highly conserved throughout evolution and is largely present as a single copy in most plants, features consistent with essential housekeeping functions. A knockout mutant of AtGPAT9 demonstrates both male and female gametophytic lethality phenotypes, consistent with the role in essential membrane lipid synthesis. Significant expression of developing seed AtGPAT9 is required for wild-type levels of triacylglycerol accumulation, and the transcript level is directly correlated to the level of microsomal GPAT enzymatic activity in seeds. Finally, the AtGPAT9 protein interacts with other enzymes involved in ER glycerolipid biosynthesis, suggesting the possibility of ER-localized lipid biosynthetic complexes. Together, these results suggest that GPAT9 is the ER-localized GPAT enzyme responsible for plant membrane lipid and oil biosynthesis. PMID:26586834

  13. Defective photoreceptor phagocytosis in a mouse model of enhanced S-cone syndrome causes progressive retinal degeneration

    PubMed Central

    Mustafi, Debarshi; Kevany, Brian M.; Genoud, Christel; Okano, Kiichiro; Cideciyan, Artur V.; Sumaroka, Alexander; Roman, Alejandro J.; Jacobson, Samuel G.; Engel, Andreas; Adams, Mark D.; Palczewski, Krzysztof

    2011-01-01

    Enhanced S-cone syndrome (ESCS), featuring an excess number of S cones, manifests as a progressive retinal degeneration that leads to blindness. Here, through optical imaging, we identified an abnormal interface between photoreceptors and the retinal pigment epithelium (RPE) in 9 patients with ESCS. The neural retina leucine zipper transcription factor-knockout (Nrl−/−) mouse model demonstrates many phenotypic features of human ESCS, including unstable S-cone-positive photoreceptors. Using massively parallel RNA sequencing, we identified 6203 differentially expressed transcripts between wild-type (Wt) and Nrl−/− mouse retinas, with 6 highly significant differentially expressed genes of the Pax, Notch, and Wnt canonical pathways. Changes were also obvious in expression of 30 genes involved in the visual cycle and 3 key genes in photoreceptor phagocytosis. Novel high-resolution (100 nm) imaging and reconstruction of Nrl−/− retinas revealed an abnormal packing of photoreceptors that contributed to buildup of photoreceptor deposits. Furthermore, lack of phagosomes in the RPE layer of Nrl−/− retina revealed impairment in phagocytosis. Cultured RPE cells from Wt and Nrl−/− mice illustrated that the phagocytotic defect was attributable to the aberrant interface between ESCS photoreceptors and the RPE. Overcoming the retinal phagocytosis defect could arrest the progressive degenerative component of this disease.—Mustafi, D., Kevany, B. M., Genoud, C., Okano, K., Cideciyan, A. V., Sumaroka, A., Roman, A. J., Jacobson, S. G. Engel, A., Adams, M. D., Palczewski, K. Defective photoreceptor phagocytosis in a mouse model of enhanced S-cone syndrome causes progressive retinal degeneration. PMID:21659555

  14. Trypanosoma cruzi: sequence of phagocytosis and cytotoxicity by human polymorphonuclear leucocytes.

    PubMed Central

    Rimoldi, M T; Cardoni, R L; Olabuenaga, S E; de Bracco, M M

    1981-01-01

    We have studied the relationship between phagocytosis and cytotoxicity of human polymorphonuclear leucocytes (PMN) to sensitized Trypanosoma cruzi. Assays were done simultaneously using [3H]-uridine labelled epimastigotes as target cells. Phagocytosis was evaluated by the uptake and cytotoxicity by the release of parasite associated [3H]-uridine. Both reactions reached maximum levels at the same effector- to target-cell ratio and antibody concentration. Uptake of epimastigotes by PMN was highest at 30 min and intracellular disruption and release of parasite debris took place later. In conditions that precluded repeated uptake of sensitized radiolabelled T. cruzi, the release profile of [3H]-uridine from PMN that contained intracellular parasites was similar to that of the standard cytotoxic assay. However, as the ingestion phase was separated from the release step, no lag in the onset of the reaction was observed. Although we cannot rule out extracellular killing, the results of this study demonstrate that the bulk of damaged T. cruzi epimastigotes had been previously internalized by the PMN. PMID:7016743

  15. Seasonal changes in critical enzymes of lipogenesis and triacylglycerol synthesis in the marmot (Marmota flaviventris).

    PubMed

    Mostafa, N; Everett, D C; Chou, S C; Kong, P A; Florant, G L; Coleman, R A

    1993-01-01

    Fatty acid metabolism and triacylglycerol synthesis are critical processes for the survival of hibernating mammals that undergo a prolonged fasting period. Fatty acid synthase, fatty-acid-CoA ligase, diacylglycerol acyltransferase, and monoacylglycerol acyltransferase activities were measured in liver and in white and brown adipose tissue, in order to determine whether enzymes of lipogenesis and triacylglycerol synthesis vary seasonally during hibernation in the yellow-bellied marmot (Marmota flaviventris). Compared with mid-winter hibernation, fatty acid synthase activity was higher in all three tissues during early spring when marmots emerged from hibernation and in mid-summer when they were feeding, consistent with the synthesis of fatty acids from the carbohydrate-rich summer diet. Fatty-acid-CoA ligase and diacylglycerol acyltransferase activities were highest in summer in white adipose tissue when triacylglycerol synthesis would be expected to be high; diacylglycerol acyltransferase activity was also high in brown adipose tissue during spring and summer. In liver, however, diacylglycerol acyltransferase specific activity was highest during hibernation, suggesting that triacylglycerol synthesis may be prominent in liver in winter. Monoacylglycerol acyltransferase activity, which may aid in the retention of essential fatty-acids, was 80-fold higher in liver than in white or brown adipose tissue, but did not vary seasonally. Its dependence on palmitoyl-CoA suggests that a divalent cation might play a role in enzyme activation. The high hepatic diacylglycerol acyltransferase activity during hibernation suggests that the metabolism of very low density lipoprotein may be important in the movement of adipose fatty acids to brown adipose tissue and muscle during the rewarming that occurs periodically during hibernation.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Primary porcine Kupffer cell phagocytosis of human platelets involves the CD18 receptor.

    PubMed

    Chihara, Ray K; Paris, Leela L; Reyes, Luz M; Sidner, Richard A; Estrada, Jose L; Downey, Susan M; Wang, Zheng-Yu; Tector, A Joseph; Burlak, Christopher

    2011-10-15

    Hepatic failure has been treated successfully with clinical extracorporeal perfusions of porcine livers. However, dog-to-pig and pig-to-baboon liver xenotransplant models have resulted in severe bleeding secondary to liver xenograft-induced thrombocytopenia. Kupffer cells (KC) are abundant phagocytic cells in the liver. KC express the CD11b/CD18 receptor, which has been implicated in chilled platelet binding and phagocytosis through interaction with platelet surface proteins and carbohydrates. We sought to identify the role of KC CD18 in liver xenograft-induced thrombocytopenia. Primary pig KC were characterized by flow cytometry, immunoblots, and quantitative polymerase chain reaction. Pig KC were used in inhibition assays with fluorescently labeled human platelets. The CD18 receptor was targeted for siRNA knockdown. Domestic and α1,3-galactosyltransferase double knockout porcine KC cultures were approximately 92% positive for CD18 as detected by quantitative polymerase chain reaction and flow cytometry. Use of CD18 blocking antibodies resulted in reduction of human platelet binding and phagocytosis. Additionally, asialofetuin, not fetuin, inhibited platelet phagocytosis suggesting the involvement of an oligosaccharide-binding site. Furthermore, reduced CD18 expression by siRNA resulted in decreased human platelet binding. Our data suggest that primary pig KC bind and phagocytose human platelets with involvement of CD18. Further understanding and modification of CD18 expression in pigs may result in a liver xenograft with reduced thrombocytopenic effects, which could be used as a bridge to allogeneic liver transplantation.

  17. Differential Kinetics of Aspergillus nidulans and Aspergillus fumigatus Phagocytosis.

    PubMed

    Gresnigt, Mark S; Becker, Katharina L; Leenders, Floris; Alonso, M Fernanda; Wang, Xiaowen; Meis, Jacques F; Bain, Judith M; Erwig, Lars P; van de Veerdonk, Frank L

    2018-01-01

    Invasive aspergillosis mainly occurs in immunocompromised patients and is commonly caused by Aspergillus fumigatus, while A.nidulans is rarely the causative agent. However, in chronic granulomatous disease (CGD) patients, A. nidulans is a frequent cause of invasive aspergillosis and is associated with higher mortality. Immune recognition of A. nidulans was compared to A. fumigatus to offer an insight into why A. nidulans infections are prevalent in CGD. Live cell imaging with J774A.1 macrophage-like cells and LC3-GFP-mCherry bone marrow-derived macrophages (BMDMs) revealed that phagocytosis of A. nidulans was slower compared to A. fumigatus. This difference could be attributed to slower migration of J774A.1 cells and a lower percentage of migrating BMDMs. In addition, delayed phagosome acidification and LC3-associated phagocytosis was observed with A. nidulans. Cytokine and oxidative burst measurements in human peripheral blood mononuclear cells revealed a lower oxidative burst upon challenge with A. nidulans. In contrast, A. nidulans induced significantly higher concentrations of cytokines. Collectively, our data demonstrate that A. nidulans is phagocytosed and processed at a slower rate compared to A. fumigatus, resulting in reduced fungal killing and increased germination of conidia. This slower rate of A. nidulans clearance may be permissive for overgrowth within certain immune settings. The Author(s). Published by S. Karger AG, Basel.

  18. Autophagy proteins are not universally required for phagosome maturation.

    PubMed

    Cemma, Marija; Grinstein, Sergio; Brumell, John H

    2016-09-01

    Phagocytosis plays a central role in immunity and tissue homeostasis. After internalization of cargo into single-membrane phagosomes, these compartments undergo a maturation sequences that terminates in lysosome fusion and cargo degradation. Components of the autophagy pathway have recently been linked to phagosome maturation in a process called LC3-associated phagocytosis (LAP). In this process, autophagy machinery is thought to conjugate LC3 directly onto the phagosomal membrane to promote lysosome fusion. However, a recent study has suggested that ATG proteins may in fact impair phagosome maturation to promote antigen presentation. Here, we examined the impact of ATG proteins on phagosome maturation in murine cells using FCGR2A/FcγR-dependent phagocytosis as a model. We show that phagosome maturation is not affected in Atg5-deficient mouse embryonic fibroblasts, or in Atg5- or Atg7-deficient bone marrow-derived macrophages using standard assays of phagosome maturation. We propose that ATG proteins may be required for phagosome maturation under some conditions, but are not universally required for this process.

  19. Enhanced bioavailability of EPA from emulsified fish oil preparations versus capsular triacylglycerol

    USDA-ARS?s Scientific Manuscript database

    Pre-emulsified fish oil supplements, an alternative to capsular triacylglycerol, may enhance the uptake of LCn3 fatty acids it contains. A randomized, Latin-square crossover design was used to compare the effects of four fish oil supplement preparations on phospholipid (PLFA) and chylomicron fatty ...

  20. Solubilisation of poorly water-soluble drugs during in vitro lipolysis of medium- and long-chain triacylglycerols.

    PubMed

    Christensen, Janne Ørskov; Schultz, Kirsten; Mollgaard, Birgitte; Kristensen, Henning Gjelstrup; Mullertz, Anette

    2004-11-01

    The partitioning of poorly soluble drugs into an aqueous micellar phase was exploited using an in vitro lipid digestion model, simulating the events taking place during digestion of acylglycerols in the duodenum. The aqueous micellar phase was isolated after ultracentrifugation of samples obtained at different degrees of triacylglycerol hydrolysis. Flupentixol, 1'-[4-[1-(4-fluorophenyl)-1-H-indol-3-yl]-1-butyl]spiro[iso-benzofuran-1(3H), 4' piperidine] (LU 28-179) and probucol were studied. The effect of the alkyl chain length of the triacylglycerol was studied using a medium-chain triacylglycerol (MCT) and a long-chain triacylglycerol (LCT), respectively. In general, an oil solution was used as the lipid source in the model. Samples were analysed in regard to micellar size, lipid composition and drug concentration. During lipolysis, the content of lipolytic products in the aqueous micellar phase increased. The micellar size (R(H) approximately 3 nm) only increased when long-chain lipolytic products were incorporated in the mixed micelles (R(H) approximately 7.8 nm). Flupentixol was quickly transferred to the mixed micelles due to high solubility in this phase (100% released). A tendency towards higher solubilisation of LU 28-179, when it was administered in the LCT (approximately 24% released) compared to when it was administered in the MCT (approximately 15% released) at 70% hydrolysis, and a lagphase was observed. There was no difference in the solubilisation of probucol using MCT or LCT ( approximately 20% released), respectively. Differences in the physicochemical properties of the drugs resulted in differences in their distribution between the phases arising during lipolysis.

  1. Lymphatic recovery of exogenous oleic acid in rats on long chain or specific structured triacylglycerol diets.

    PubMed

    Vistisen, Bodil; Mu, Huiling; Høy, Carl-Erik

    2006-09-01

    Specific structured triacylglycerols, MLM (M = medium-chain fatty acid, L = long-chain fatty acid), rapidly deliver energy and long-chain fatty acids to the body and are used for longer periods in human enteral feeding. In the present study rats were fed diets of 10 wt% MLM or LLL (L = oleic acid [18:1 n-9], M = caprylic acid [8:01) for 2 wk. Then lymph was collected 24 h following administration of a single bolus of 13C-labeled MLM or LLL. The total lymphatic recovery of exogenous 18:1 n-9 24 h after administration of a single bolus of MLM or LLL was similar in rats on the LLL diet (43% and 45%, respectively). However, the recovery of exogenous 18:1 n-9 was higher after a single bolus of MLM compared with a bolus of LLL in rats on the MLM diet (40% and 24%, respectively, P = 0.009). The recovery of lymphatic 18:1 n-9 of the LLL bolus tended to depend on the diet triacylglycerol structure and composition (P= 0.07). This study demonstrated that with a diet containing specific structured triacylglycerol, the lymphatic recovery of 18:1 n-9 after a single bolus of fat was dependent on the triacylglycerol structure of the bolus. This indicates that the lymphatic recovery of long-chain fatty acids from a single meal depends on the overall long-chain fatty acid composition of the habitual diet. This could have implications for enteral feeding for longer periods.

  2. n-3 PUFA esterified to glycerol or as ethyl esters reduce non-fasting plasma triacylglycerol in subjects with hypertriglyceridemia: a randomized trial.

    PubMed

    Hedengran, Anne; Szecsi, Pal B; Dyerberg, Jørn; Harris, William S; Stender, Steen

    2015-02-01

    To date, treatment of hypertriglyceridemia with long-chain n-3 polyunsaturated fatty acids (n-3 PUFA) has been investigated solely in fasting and postprandial subjects. However, non-fasting triacylglycerols are more strongly associated with risk of cardiovascular disease. The objective of this study was to investigate the effect of long-chain n-3 PUFA on non-fasting triacylglycerol levels and to compare the effects of n-3 PUFA formulated as acylglycerol (AG-PUFA) or ethyl esters (EE-PUFA). The study was a double-blinded randomized placebo-controlled interventional trial, and included 120 subjects with non-fasting plasma triacylglycerol levels of 1.7-5.65 mmol/L (150-500 mg/dL). The participants received approximately 3 g/day of AG-PUFA, EE-PUFA, or placebo for a period of eight weeks. The levels of non-fasting plasma triacylglycerols decreased 28% in the AG-PUFA group and 22% in the EE-PUFA group (P < 0.001 vs. placebo), with no significant difference between the two groups. The triacylglycerol lowering effect was evident after four weeks, and was inversely correlated with the omega-3 index (EPA + DHA content in erythrocyte membranes). The omega-3 index increased 63.2% in the AG-PUFA group and 58.5% in the EE-PUFA group (P < 0.001). Overall, the heart rate in the AG-PUFA group decreased by three beats per minute (P = 0.045). High-density lipoprotein (HDL) cholesterol increased in the AG-PUFA group (P < 0.001). Neither total nor non-HDL cholesterol changed in any group. Lipoprotein-associated phospholipase A2 (LpPLA2) decreased in the EE-PUFA group (P = 0.001). No serious adverse events were observed. Supplementation with long-chain n-3 PUFA lowered non-fasting triacylglycerol levels, suggestive of a reduction in cardiovascular risk. Regardless of the different effects on heart rate, HDL, and LpPLA2 that were observed, compared to placebo, AG-PUFA, and EE-PUFA are equally effective in reducing non-fasting triacylglycerol levels.

  3. Increase in cellular triacylglycerol content and emergence of large ER-associated lipid droplets in the absence of CDP-DG synthase function.

    PubMed

    He, Yue; Yam, Candice; Pomraning, Kyle; Chin, Jacqueline S R; Yew, Joanne Y; Freitag, Michael; Oliferenko, Snezhana

    2014-12-15

    Excess fatty acids and sterols are stored as triacylglycerols and sterol esters in specialized cellular organelles, called lipid droplets. Understanding what determines the cellular amount of neutral lipids and their packaging into lipid droplets is of fundamental and applied interest. Using two species of fission yeast, we show that cycling cells deficient in the function of the ER-resident CDP-DG synthase Cds1 exhibit markedly increased triacylglycerol content and assemble large lipid droplets closely associated with the ER membranes. We demonstrate that these unusual structures recruit the triacylglycerol synthesis machinery and grow by expansion rather than by fusion. Our results suggest that interfering with the CDP-DG route of phosphatidic acid utilization rewires cellular metabolism to adopt a triacylglycerol-rich lifestyle reliant on the Kennedy pathway. © 2014 He, Yam, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  4. Macrophages redirect phagocytosis by non-professional phagocytes and influence inflammation.

    PubMed

    Han, Claudia Z; Juncadella, Ignacio J; Kinchen, Jason M; Buckley, Monica W; Klibanov, Alexander L; Dryden, Kelly; Onengut-Gumuscu, Suna; Erdbrügger, Uta; Turner, Stephen D; Shim, Yun M; Tung, Kenneth S; Ravichandran, Kodi S

    2016-11-24

    Professional phagocytes (such as macrophages) and non-professional phagocytes (such as epithelial cells) clear billions of apoptotic cells and particles on a daily basis. Although professional and non-professional macrophages reside in proximity in most tissues, whether they communicate with each other during cell clearance, and how this might affect inflammation, is not known. Here we show that macrophages, through the release of a soluble growth factor and microvesicles, alter the type of particles engulfed by non-professional phagocytes and influence their inflammatory response. During phagocytosis of apoptotic cells or in response to inflammation-associated cytokines, macrophages released insulin-like growth factor 1 (IGF-1). The binding of IGF-1 to its receptor on non-professional phagocytes redirected their phagocytosis, such that uptake of larger apoptotic cells was reduced whereas engulfment of microvesicles was increased. IGF-1 did not alter engulfment by macrophages. Macrophages also released microvesicles, whose uptake by epithelial cells was enhanced by IGF-1 and led to decreased inflammatory responses by epithelial cells. Consistent with these observations, deletion of IGF-1 receptor in airway epithelial cells led to exacerbated lung inflammation after allergen exposure. These genetic and functional studies reveal that IGF-1- and microvesicle-dependent communication between macrophages and epithelial cells can critically influence the magnitude of tissue inflammation in vivo.

  5. SUCROSE TRANSPORTER 5 supplies Arabidopsis embryos with biotin and affects triacylglycerol accumulation

    PubMed Central

    Pommerrenig, Benjamin; Popko, Jennifer; Heilmann, Mareike; Schulmeister, Sylwia; Dietel, Katharina; Schmitt, Bianca; Stadler, Ruth; Feussner, Ivo; Sauer, Norbert

    2013-01-01

    The Arabidopsis SUC5 protein represents a classical sucrose/H+ symporter. Functional analyses previously revealed that SUC5 also transports biotin, an essential co-factor for fatty acid synthesis. However, evidence for a dual role in transport of the structurally unrelated compounds sucrose and biotin in plants was lacking. Here we show that SUC5 localizes to the plasma membrane, and that the SUC5 gene is expressed in developing embryos, confirming the role of the SUC5 protein as substrate carrier across apoplastic barriers in seeds. We show that transport of biotin but not of sucrose across these barriers is impaired in suc5 mutant embryos. In addition, we show that SUC5 is essential for the delivery of biotin into the embryo of biotin biosynthesis-defective mutants (bio1 and bio2). We compared embryo and seedling development as well as triacylglycerol accumulation and fatty acid composition in seeds of single mutants (suc5, bio1 or bio2), double mutants (suc5 bio1 and suc5 bio2) and wild-type plants. Although suc5 mutants were like the wild-type, bio1 and bio2 mutants showed developmental defects and reduced triacylglycerol contents. In suc5 bio1 and suc5 bio2 double mutants, developmental defects were severely increased and the triacylglycerol content was reduced to a greater extent in comparison to the single mutants. Supplementation with externally applied biotin helped to reduce symptoms in both single and double mutants, but the efficacy of supplementation was significantly lower in double than in single mutants, showing that transport of biotin into the embryo is lower in the absence of SUC5. PMID:23031218

  6. A Simple Microscopy Assay to Teach the Processes of Phagocytosis and Exocytosis

    ERIC Educational Resources Information Center

    Gray, Ross; Gray, Andrew; Fite, Jessica L.; Jordan, Renee; Stark, Sarah; Naylor, Kari

    2012-01-01

    Phagocytosis and exocytosis are two cellular processes involving membrane dynamics. While it is easy to understand the purpose of these processes, it can be extremely difficult for students to comprehend the actual mechanisms. As membrane dynamics play a significant role in many cellular processes ranging from cell signaling to cell division to…

  7. A Regulatory Role for Src Homology 2 Domain–Containing Inositol 5′-Phosphatase (Ship) in Phagocytosis Mediated by Fcγ Receptors and Complement Receptor 3 (αMβ2; Cd11b/Cd18)

    PubMed Central

    Cox, Dianne; Dale, Benjamin M.; Kashiwada, Masaki; Helgason, Cheryl D.; Greenberg, Steven

    2001-01-01

    The Src homology 2 domain–containing inositol 5′-phosphatase (SHIP) is recruited to immunoreceptor tyrosine-based inhibition motif (ITIM)–containing proteins, thereby suppressing phosphatidylinositol 3-kinase (PI 3-kinase)–dependent pathways. The role of SHIP in phagocytosis, a PI 3-kinase–dependent pathway, is unknown. Overexpression of SHIP in macrophages led to an inhibition of phagocytosis mediated by receptors for the Fc portion of IgG (FcγRs). In contrast, macrophages expressing catalytically inactive SHIP or lacking SHIP expression demonstrated enhanced phagocytosis. To determine whether SHIP regulates phagocytosis mediated by receptors that are not known to recruit ITIMs, we determined the effect of SHIP expression on complement receptor 3 (CR3; CD11b/CD18; αMβ2)–dependent phagocytosis. Macrophages overexpressing SHIP demonstrated impaired CR3-mediated phagocytosis, whereas macrophages expressing catalytically inactive SHIP demonstrated enhanced phagocytosis. CR3-mediated phagocytosis in macrophages derived from SHIP−/− mice was up to 2.5 times as efficient as that observed in macrophages derived from littermate controls. SHIP was localized to FcγR- and CR3-containing phagocytic cups and was recruited to the cytoskeleton upon clustering of CR3. In a transfected COS cell model of activation-independent CR3-mediated phagocytosis, catalytically active but not inactive SHIP also inhibited phagocytosis. We conclude that PI 3-kinase(s) and SHIP regulate multiple forms of phagocytosis and that endogenous SHIP plays a role in modulating β2 integrin outside-in signaling. PMID:11136821

  8. High Sucrose Intake Ameliorates the Accumulation of Hepatic Triacylglycerol Promoted by Restraint Stress in Young Rats.

    PubMed

    Corona-Pérez, Adriana; Díaz-Muñoz, Mauricio; Rodríguez, Ida Soto; Cuevas, Estela; Martínez-Gómez, Margarita; Castelán, Francisco; Rodríguez-Antolín, Jorge; Nicolás-Toledo, Leticia

    2015-11-01

    Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder. Stress promotes the onset of the NAFLD with a concomitant increment in the activity of the hepatic 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD-1). However, the interaction between the stress and a carbohydrate-enriched diet for the development of NAFLD in young animals is unknown. In the present study, we evaluated the impact of chronic stress on the hepatic triacylglycerol level of young rats fed or not with a high sucrose-diet. For doing this, 21-day old male Wistar rats were allocated into 4 groups: control (C), chronic restraint stress (St), high-sucrose diet (S30), and chronic restraint stress plus a 30 % sucrose diet (St + S30). Chronic restraint stress consisted of 1-hour daily session, 5 days per week and for 4 weeks. Rats were fed with a standard chow and tap water (C group) or 30 % sucrose diluted in water (S30 group). The St + S30 groups consumed less solid food but had an elevated visceral fat accumulation in comparison with the St group. The St group showed a high level of serum corticosterone and a high activity of the hepatic 11β-HSD-1 concomitantly to the augmentation of hepatic steatosis signs, a high hepatic triacylglycerol content, and hepatic oxidative stress. Conversely, the high-sucrose intake in stressed rats (St + S30 group) reduced the hepatic 11β-HSD-1 activity, the level of serum corticosterone, and the hepatic triacylglycerol content. Present findings show that a high-sucrose diet ameliorates the triacylglycerol accumulation in liver promoted by the restraint stress in young male rats.

  9. Use of a fluorescent radiolabeled triacylglycerol as a substrate for lipoprotein lipase and hepatic triglyceride lipase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dousset, N.; Negre, A.; Salvayre, R.

    1988-06-01

    A fluorescent radiolabeled triacylglycerol has been synthesized by using a fluorescent fatty acid (pyrene decanoic acid) and a radiolabeled oleic acid. This analog of the natural substrate, 1(3)pyrene decanoic-2,3 (1,2)-dioleoyl-sn-glycerol, has been tested as substrate for determining lipoprotein lipase and hepatic triacylglycerol lipase activities in post-heparin plasma. Optimal conditions for the determination of the two post-heparin plasma lipases were similar to those using radiolabeled triolein. Using this substrate, both post-heparin lipases exhibited their characteristic properties (pH optimum and effect of inhibitors) and attacked external ester bonds (1 or 3) containing pyrene decanoic and oleic acids at a similar rate.

  10. DGAT enzymes and triacylglycerol biosynthesis

    PubMed Central

    Yen, Chi-Liang Eric; Stone, Scot J.; Koliwad, Suneil; Harris, Charles; Farese, Robert V.

    2008-01-01

    Triacylglycerols (triglycerides) (TGs) are the major storage molecules of metabolic energy and FAs in most living organisms. Excessive accumulation of TGs, however, is associated with human diseases, such as obesity, diabetes mellitus, and steatohepatitis. The final and the only committed step in the biosynthesis of TGs is catalyzed by acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes. The genes encoding two DGAT enzymes, DGAT1 and DGAT2, were identified in the past decade, and the use of molecular tools, including mice deficient in either enzyme, has shed light on their functions. Although DGAT enzymes are involved in TG synthesis, they have distinct protein sequences and differ in their biochemical, cellular, and physiological functions. Both enzymes may be useful as therapeutic targets for diseases. Here we review the current knowledge of DGAT enzymes, focusing on new advances since the cloning of their genes, including possible roles in human health and diseases. PMID:18757836

  11. Buoyant triacylglycerol-filled green algae and methods therefor

    DOEpatents

    Goodenough, Ursula; Goodson, Carrie

    2015-04-14

    Cultures of Chlamydomonas are disclosed comprising greater than 340 mg/l triacylglycerols (TAG). The cultures can include buoyant Chlamydomonas. Methods of forming the cultures are also disclosed. In some embodiments, these methods comprise providing Chlamydomonas growing in log phase in a first culture medium comprising a nitrogen source and acetate, replacing the first culture medium with a second medium comprising acetate but no nitrogen source, and subsequently supplementing the second medium with additional acetate. In some embodiments, a culture can comprise at least 1,300 mg/l triacyglycerols. In some embodiments, cultures can be used to produce a biofuel such as biodiesel.

  12. Data supporting attempted caveolae-mediated phagocytosis of surface-fixed micro-pillars by human osteoblasts.

    PubMed

    Moerke, Caroline; Mueller, Petra; Nebe, Barbara

    2016-06-01

    The provided data contains the phagocytic interaction of human MG-63 osteoblasts with micro-particles 6 µm in size as well as geometric micro-pillared topography with micro-pillar sizes 5 µm of length, width, height and spacing respectively related to the research article entitled "Attempted caveolae-mediated phagocytosis of surface-fixed micro-pillars by human osteoblasts" in the Biomaterials journal. [1] Micro-particle treatment was used as positive control triggering phagocytosis by the osteoblasts. Caveolin-1 (Cav-1) as major structural component of caveolae [2] plays an important role in the phagocytic process of micro-particles and -pillars. Data related to the experiments in [1] with siRNA-mediated knockdown are presented here as well as micro-particle control experiments, tubulin analysis on the micro-pillared topography and initial cell interaction with the micro-pillars.

  13. Phagocytosis and Respiratory Burst Activity in Lumpsucker (Cyclopterus lumpus L.) Leucocytes Analysed by Flow Cytometry

    PubMed Central

    Haugland, Gyri T.; Jakobsen, Ragnhild Aakre; Vestvik, Nils; Ulven, Kristian; Stokka, Lene; Wergeland, Heidrun I.

    2012-01-01

    In the present study, we have isolated leucocytes from peripheral blood, head kidney and spleen from lumpsucker (Cyclopterus lumpus L.), and performed functional studies like phagocytosis and respiratory burst, as well as morphological and cytochemical analyses. Different leucocytes were identified, such as lymphocytes, monocytes/macrophages and polymorphonuclear cells with bean shaped or bilobed nuclei. In addition, cells with similar morphology as described for dendritic cells in trout were abundant among the isolated leucocytes. Flow cytometry was successfully used for measuring phagocytosis and respiratory burst activity. The phagocytic capacity and ability were very high, and cells with different morphology in all three leucocyte preparations phagocytised beads rapidly. Due to lack of available cell markers, the identity of the phagocytic cells could not be determined. The potent non-specific phagocytosis was in accordance with a high number of cells positive for myeloperoxidase, an enzyme involved in oxygen-dependent killing mechanism present in phagocytic cells. Further, high respiratory burst activity was present in the leucocytes samples, verifying a potent oxygen- dependent degradation. At present, the specific antibody immune response could not be measured, as immunoglobulin or B-cells have not yet been isolated. Therefore, analyses of the specific immune response in this fish species await further clarification. The present study presents the first analyses of lumpsucker immunity and also the first within the order Scopaeniformes. PMID:23112870

  14. [Phagocytosis and intracellular proliferation of Nocardia asteroides (strain Weipheld) in cell structures in vitro. 2. Peritoneal macrophages of guinea-pigs (author's transl)].

    PubMed

    Splino, M; Mĕrka, V; Kyntera, F

    1976-08-01

    The study deals with the phagocytosis of Nocardia asteroides (strain Weipheld) and the subsequent intracellular proliferation in peritoneal macrophage cells. Normal, two-stage-immunized and long-term cortison-treated guinea-pig (28 mg cortison / kg weight / day during 30 days) macrophages were used. Further, the cytotoxic effect of Nocardia upon the cells in the peritoneal washing liquid in vitro and the influence of the normal, immune and antimacrophage serum upon the phagocytosis and the intracellular proliferation were studied. Among the cells obtained from the peritoneal washing liquid macrophages were most frequently subject to phagocytosis, leukocytes to a lesser degree. The normal macrophages phagocytized in 14.56% (Fig. 1), macrophages of two-stage-immunized guinea-pigs in 18.21% (Fig. 2) and macrophages from cortison treated guinea-pigs in 12.48% of cases. Intracellular observation showed phagocytized germs after 3 min. of exposure. The course of the intracellular proliferation of Nocardia can be seen in Fig. 3. The phagocytosis index increases slowly in all three groups of macrophages; least so in the immunized macrophages (1.30-after 8 hours). The highest values were obtained in the macrophages of cortison treated guinea-pigs (2.02-after 8 hours). Within 8 hours of exposure the filaments of Nocardia grew through the cell membrane of phagocytizing cells (Figs. 4 A, 4 B). Fig. 5 shows the course of the cytopathogenic effect of Nocardia upon the cells. After 1 hr. the number of dead cells increased from 0.30% to 1.9-3.8%; after 4 hrs. it reached 8.15-9.80%; after 8 hrs. 10.1-14.80%. The highest values were observed in cells from cortison treated guinea-pigs (14.80%). After addition of normal serum (time of phagocytosis 60 min.) normal peritoneal macrophages phagocytized in 13.30% of cases; immune serum stimulated phagocytosis (16.21%); antimacrophage serum significantly reduced phagocytosis (4.10%). The phagocytosis index in peritoneal macrophages with

  15. Physalin B inhibits Rhodnius prolixus hemocyte phagocytosis and microaggregation by the activation of endogenous PAF-acetyl hydrolase activities.

    PubMed

    Castro, D P; Figueiredo, M B; Genta, F A; Ribeiro, I M; Tomassini, T C B; Azambuja, P; Garcia, E S

    2009-06-01

    The effects of physalin B (a natural secosteroidal chemical from Physalis angulata, Solanaceae) on phagocytosis and microaggregation by hemocytes of 5th-instar larvae of Rhodnius prolixus were investigated. In this insect, hemocyte phagocytosis and microaggregation are known to be induced by the platelet-activating factor (PAF) or arachidonic acid (AA) and regulated by phospholipase A(2) (PLA(2)) and PAF-acetyl hydrolase (PAF-AH) activities. Phagocytic activity and formation of hemocyte microaggregates by Rhodnius hemocytes were strongly blocked by oral treatment of this insect with physalin B (1mug/mL of blood meal). The inhibition induced by physalin B was reversed for both phagocytosis and microaggregation by exogenous arachidonic acid (10microg/insect) or PAF (1microg/insect) applied by hemocelic injection. Following treatment with physalin B there were no significant alterations in PLA(2) activities, but a significant enhancement of PAF-AH was observed. These results show that physalin B inhibits hemocytic activity by depressing insect PAF analogous (iPAF) levels in hemolymph and confirm the role of PAF-AH in the cellular immune reactions in R. prolixus.

  16. CD300b regulates the phagocytosis of apoptotic cells via phosphatidylserine recognition

    PubMed Central

    Murakami, Y; Tian, L; Voss, O H; Margulies, D H; Krzewski, K; Coligan, J E

    2014-01-01

    The CD300 receptor family members are a group of molecules that modulate a variety of immune cell processes. We show that mouse CD300b (CLM7/LMIR5), expressed on myeloid cells, recognizes outer membrane-exposed phosphatidylserine (PS) and does not, as previously reported, directly recognize TIM1 or TIM4. CD300b accumulates in phagocytic cups along with F-actin at apoptotic cell contacts, thereby facilitating their engulfment. The CD300b-mediated activation signal is conveyed through CD300b association with the adaptor molecule DAP12, and requires a functional DAP12 ITAM motif. Binding of apoptotic cells promotes the activation of the PI3K-Akt kinase pathway in macrophages, while silencing of CD300b expression diminishes PI3K-Akt kinase activation and impairs efferocytosis. Collectively, our data show that CD300b recognizes PS as a ligand, and regulates the phagocytosis of apoptotic cells via the DAP12 signaling pathway. PMID:25034781

  17. HlSRB, a Class B Scavenger Receptor, Is Key to the Granulocyte-Mediated Microbial Phagocytosis in Ticks

    PubMed Central

    Aung, Kyaw Min; Boldbaatar, Damdinsuren; Umemiya-Shirafuji, Rika; Liao, Min; Tsuji, Naotoshi; Xuenan, Xuan; Suzuki, Hiroshi; Kume, Aiko; Galay, Remil Linggatong; Tanaka, Tetsuya; Fujisaki, Kozo

    2012-01-01

    Ixodid ticks transmit various pathogens of deadly diseases to humans and animals. However, the specific molecule that functions in the recognition and control of pathogens inside ticks is not yet to be identified. Class B scavenger receptor CD36 (SRB) participates in internalization of apoptotic cells, certain bacterial and fungal pathogens, and modified low-density lipoproteins. Recently, we have reported on recombinant HlSRB, a 50-kDa protein with one hydrophobic SRB domain from the hard tick, Haemaphysalis longicornis. Here, we show that HlSRB plays vital roles in granulocyte-mediated phagocytosis to invading Escherichia coli and contributes to the first-line host defense against various pathogens. Data clearly revealed that granulocytes that up-regulated the expression of cell surface HlSRB are almost exclusively involved in hemocyte-mediated phagocytosis for E. coli in ticks, and post-transcriptional silencing of the HlSRB-specific gene ablated the granulocytes' ability to phagocytose E. coli and resulted in the mortality of ticks due to high bacteremia. This is the first report demonstrating that a scavenger receptor molecule contributes to hemocyte-mediated phagocytosis against exogenous pathogens, isolated and characterized from hematophagous arthropods. PMID:22479406

  18. Corynebacterium accolens Releases Antipneumococcal Free Fatty Acids from Human Nostril and Skin Surface Triacylglycerols.

    PubMed

    Bomar, Lindsey; Brugger, Silvio D; Yost, Brian H; Davies, Sean S; Lemon, Katherine P

    2016-01-05

    Bacterial interspecies interactions play clinically important roles in shaping microbial community composition. We observed that Corynebacterium spp. are overrepresented in children free of Streptococcus pneumoniae (pneumococcus), a common pediatric nasal colonizer and an important infectious agent. Corynebacterium accolens, a benign lipid-requiring species, inhibits pneumococcal growth during in vitro cocultivation on medium supplemented with human skin surface triacylglycerols (TAGs) that are likely present in the nostrils. This inhibition depends on LipS1, a TAG lipase necessary for C. accolens growth on TAGs such as triolein. We determined that C. accolens hydrolysis of triolein releases oleic acid, which inhibits pneumococcus, as do other free fatty acids (FFAs) that might be released by LipS1 from human skin surface TAGs. Our results support a model in which C. accolens hydrolyzes skin surface TAGS in vivo releasing antipneumococcal FFAs. These data indicate that C. accolens may play a beneficial role in sculpting the human microbiome. Little is known about how harmless Corynebacterium species that colonize the human nose and skin might impact pathogen colonization and proliferation at these sites. We show that Corynebacterium accolens, a common benign nasal bacterium, modifies its local habitat in vitro as it inhibits growth of Streptococcus pneumoniae by releasing antibacterial free fatty acids from host skin surface triacylglycerols. We further identify the primary C. accolens lipase required for this activity. We postulate a model in which higher numbers of C. accolens cells deter/limit S. pneumoniae nostril colonization, which might partly explain why children without S. pneumoniae colonization have higher levels of nasal Corynebacterium. This work narrows the gap between descriptive studies and the needed in-depth understanding of the molecular mechanisms of microbe-microbe interactions that help shape the human microbiome. It also lays the

  19. Analysis of triacylglycerols on porous graphitic carbon by high temperature liquid chromatography.

    PubMed

    Merelli, Bérangère; De Person, Marine; Favetta, Patrick; Lafosse, Michel

    2007-07-20

    The retention behaviour of several triacylglycerols (TAGs) and fats on Hypercarb, a porous graphitic carbon column (PGC), was investigated in liquid chromatography (LC) under isocratic elution mode with an evaporative light scattering detector (ELSD). Mixtures of chloroform/isopropanol were selected as mobile phase for a suitable retention time to study the influence of temperature. The retention was different between PGC and non-aqueous reversed phase liquid chromatography (NARP-LC) on octadecyl phase. The retention of TAGs was investigated in the interval 30-70 degrees C. Retention was greatly affected by temperature: it decreases as the column temperature increases. Selectivity of TAGs was also slightly influenced by the temperature. Moreover, this chromatographic method is compatible with a mass spectrometer (MS) detector by using atmospheric pressure chemical ionisation (APCI): same fingerprints of cocoa butter and shea butter were obtained with LC-ELSD and LC-APCI-MS. These preliminary results showed that the PGC column could be suitable to separate quickly triacylglycerols in high temperature conditions coupled with ELSD or MS detector.

  20. O-Glycosylation in Cell Wall Proteins in Scedosporium prolificans Is Critical for Phagocytosis and Inflammatory Cytokines Production by Macrophages

    PubMed Central

    Xisto, Mariana I. D. S.; Bittencourt, Vera C. B.; Liporagi-Lopes, Livia Cristina; Haido, Rosa M. T.; Mendonça, Morena S. A.; Sassaki, Guilherme; Figueiredo, Rodrigo T.; Romanos, Maria Teresa V.; Barreto-Bergter, Eliana

    2015-01-01

    In this study, we analyze the importance of O-linked oligosaccharides present in peptidorhamnomannan (PRM) from the cell wall of the fungus Scedosporium prolificans for recognition and phagocytosis of conidia by macrophages. Adding PRM led to a dose-dependent inhibition of conidia phagocytosis, whereas de-O-glycosylated PRM did not show any effect. PRM induced the release of macrophage-derived antimicrobial compounds. However, O-linked oligosaccharides do not appear to be required for such induction. The effect of PRM on conidia-induced macrophage killing was examined using latex beads coated with PRM or de-O-glycosylated PRM. A decrease in macrophage viability similar to that caused by conidia was detected. However, macrophage killing was unaffected when beads coated with de-O-glycosylated PRM were used, indicating the toxic effect of O-linked oligosaccharides on macrophages. In addition, PRM triggered TNF-α release by macrophages. Chemical removal of O-linked oligosaccharides from PRM abolished cytokine induction, suggesting that the O-linked oligosaccharidic chains are important moieties involved in inflammatory responses through the induction of TNF-α secretion. In summary, we show that O-glycosylation plays a role in the recognition and uptake of S. prolificans by macrophages, killing of macrophages and production of pro- inflammatory cytokines. PMID:25875427

  1. Production of structured triacylglycerols from microalgae.

    PubMed

    Řezanka, Tomáš; Lukavský, Jaromír; Nedbalová, Linda; Sigler, Karel

    2014-08-01

    Structured triacylglycerols (TAGs) were isolated from nine cultivated strains of microalgae belonging to different taxonomic groups, i.e. Audouinella eugena, Balbiania investiens, Myrmecia bisecta, Nannochloropsis limnetica, Palmodictyon varium, Phaeodactylum tricornutum, Pseudochantransia sp., Thorea ramosissima, and Trachydiscus minutus. They were separated and isolated by means of NARP-LC/MS-APCI and chiral LC and the positional isomers and enantiomers of TAGs with two polyunsaturated, i.e. arachidonic (A) and eicosapentaenoic (E) acids and one saturated, i.e. palmitic acid (P) were identified. Algae that produce eicosapentaenoic acid were found to biosynthesize more asymmetrical TAGs, i.e. PPE or PEE, whereas algae which produced arachidonic acid give rise to symmetrical TAGs, i.e. PAP or APA, irrespective of their taxonomical classification. Nitrogen and phosphorus starvation consistently reversed the ratio of asymmetrical and symmetrical TAGs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. A computational search for lipases that can preferentially hydrolyze long-chain omega-3 fatty acids from fish oil triacylglycerols.

    PubMed

    Kamal, Md Zahid; Barrow, Colin J; Rao, Nalam Madhusudhana

    2015-04-15

    Consumption of long-chain omega-3 fatty acids is known to decrease the risk of major cardiovascular events. Lipases, a class of triacylglycerol hydrolases, have been extensively tested to concentrate omega-3 fatty acids from fish oils, under mild enzymatic conditions. However, no lipases with preference for omega-3 fatty acids selectivity have yet been discovered or developed. In this study we performed an exhaustive computational study of substrate-lipase interactions by docking, both covalent and non-covalent, for 38 lipases with a large number of structured triacylglycerols containing omega-3 fatty acids. We identified some lipases that have potential to preferentially hydrolyze omega-3 fatty acids from structured triacylglycerols. However omega-3 fatty acid preferences were found to be modest. Our study provides an explanation for absence of reports of lipases with omega-3 fatty acid hydrolyzing ability and suggests methods for developing these selective lipases. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Red palm oil-supplemented and biofortified cassava gari increase the carotenoid and retinyl palmitate concentrations of triacylglycerol-rich plasma in women

    PubMed Central

    Zhu, Chenghao; Cai, Yimeng; Gertz, Erik R.; La Frano, Michael R.; Burnett, Dustin J.; Burri, Betty J.

    2016-01-01

    Boiled biofortified cassava containing β-carotene can increase retinyl palmitate in triacylglycerol-rich plasma. Thus, it might alleviate vitamin A deficiency. Cassava requires extensive preparation to decrease its level of cyanogenic glucosides, which can be fatal. Garification is a popular method of preparing cassava that removes cyanogen glucosides. Our objective was to compare the effectiveness of biofortified gari to gari prepared with red palm oil. The study was a randomized cross-over trial in 8 American women. Three gari preparations separated by 2 wk washout periods were consumed. Treatments (containing 200 – 225.9 g gari) were: biofortified gari (containing 1 mg β-carotene); red palm oil-fortified gari (1 mg β-carotene), and unfortified gari with a 0.3 mg retinyl palmitate reference dose. Blood was collected six times from −0.5 – 9.5 h post-ingestion. Triacylglycerol-rich plasma was separated by ultracentrifugation and analyzed by HPLC with diode array detection. Area under the curve for β-carotene, α-carotene, and retinyl palmitate increased after the fortified meals were fed (P < 0.05), though the retinyl palmitate increase induced by the red palm oil treatment was greater than that induced by the biofortified treatment (p<0.05). Vitamin A conversion was 2.4 ± 0.3 and 4.2 ± 1.5 μg pro-vitamin A carotenoid:1 μg retinol (means ± SEM) for red palm oil and biofortified gari, respectively. These results show that both treatments increased β-carotene, α-carotene, and retinyl palmitate in triacylglycerol-rich plasma concentrations in healthy well- nourished adult women, supporting our hypothesis that both interventions could support efforts to alleviate vitamin A deficiency. PMID:26319612

  4. Effects of ascorbate on leucocytes: Part II. Effects of ascorbic acid and calcium and sodium ascorbate on neutrophil phagocytosis and post-phagocytic metabolic activity.

    PubMed

    Anderson, R

    1979-09-01

    The effects of ascorbic acid and calcium and sodium ascorbate at a concentration range of 10(-6)M - 10(-1)M on polymorphonuclear leucocyte (PMN) phagocytosis of Candida albicans and post-phagocytic nitroblue tetrazolium (NBT) reduction, hexose monophosphate shunt (HMS) activity and myeloperoxidase-mediated iodination of ingested protein were investigated. Phagocytosis of C. albicans was unaffected by ascorbate concentrations of 10(-6)M - 10(-2)M; however, progressive inhibition was observed at concentrations of 10(-2)M upwards. Enhancement of resting and stimulated HMS activity and NBT reduction was evident at ascorbate concentrations of 10(-5) M - 10(-2)M. The stimulations of HMS activity and NBT reduction was independent of myeloperoxidase iodination of ingested protein and this latter function was strongly inhibited by ascorbate. Concentrations of ascorbic acid and calcium and sodium ascorbate which caused inhibition of phagocytosis and HMS activity were the same as those which mediated stimulation of cell motility, indicating that independent cellular mechanisms may govern motility and phagocytosis.

  5. Development of a fluorescence-based in vivo phagocytosis assay to measure mononuclear phagocyte system function in the rat.

    PubMed

    Tartaro, Karrie; VanVolkenburg, Maria; Wilkie, Dean; Coskran, Timothy M; Kreeger, John M; Kawabata, Thomas T; Casinghino, Sandra

    2015-01-01

    The mononuclear phagocyte system (MPS) which provides protection against infection is made up of phagocytic cells that engulf and digest bacteria or other foreign substances. Suppression of the MPS may lead to decreased clearance of pathogenic microbes. Drug delivery systems and immunomodulatory therapeutics that target phagocytes have a potential to inhibit MPS function. Available methods to measure inhibition of MPS function use uptake of radioactively-labeled cells or labor-intensive semi-quantitative histologic techniques. The objective of this work was to develop a non-radioactive quantitative method to measure MPS function in vivo by administering heat-killed E. coli conjugated to a pH-sensitive fluorescent dye (Bioparticles(®)). Fluorescence of the Bioparticles(®) is increased at low pH when they are in phagocytic lysosomes. The amount of Bioparticles(®) phagocytosed by MPS organs in rats was determined by measuring fluorescence intensity in livers and spleens ex vivo using an IVIS(®) Spectrum Pre-clinical In Vivo Imaging System. Phagocytosis of the particles by peripheral blood neutrophils was measured by flow cytometry. To assess method sensitivity, compounds likely to suppress the MPS [clodronate-containing liposomes, carboxylate-modified latex particles, maleic vinyl ether (MVE) polymer] were administered to rats prior to injection of the Bioparticles(®). The E. coli particles consistently co-localized with macrophage markers in the liver but not in the spleen. All of the compounds tested decreased phagocytosis in the liver, but had no consistent effects on phagocytic activity in the spleen. In addition, administration of clodronate liposomes and MVE polymer increased the percentage of peripheral blood neutrophils that phagocytosed the Bioparticles(®). In conclusion, an in vivo rat model was developed that measures phagocytosis of E. coli particles in the liver and may be used to assess the impact of test compounds on MPS function. Still, the

  6. Effects of stearidonic acid on serum triacylglycerol concentrations in overweight and obese subjects: a randomized controlled trial.

    PubMed

    Pieters, D J M; Mensink, R P

    2015-01-01

    Eicosapentaenoic acid (EPA), which may reduce the risk for coronary heart disease (CHD), can be synthesized at low rates from α-linolenic acid (ALA). The rate-limiting step for this conversion is the Δ6-desaturation of ALA into stearidonic acid (SDA). Thus providing oils rich in SDA may increase endogenous synthesis of EPA, which may subsequently lower serum triacylglycerol concentrations, an effect frequently observed after EPA supplementation. We therefore studied the effects of Echium oil on serum triacylglycerol concentrations and the omega-3 index, which correlate negatively with the risk for CHD. A randomized, double-blind, placebo-controlled crossover trial was conducted, in which 36 healthy overweight and slightly obese subjects daily received 10 g of Echium oil (providing 1.2 g of SDA) or a high oleic acid sunflower oil (HOSO) as control for 6 weeks, with a washout period of at least 14 days. Four subjects dropped out. Differences between periods were tested for statistical significance (P<0.05) using a paired t-test. Serum triacylglycerol and other lipid concentrations were not significantly affected by consumption of Echium oil compared with HOSO. Echium oil significantly increased percentage of EPA in red blood cell (RBC) membranes with 0.14 ± 0.25% (mean ± s.d.) compared with HOSO (P=0.02). No significant effects on docosahexaenoic acid in RBC membranes or on the omega-3 index were found. In healthy overweight and slightly obese subjects, an increased intake of SDA from Echium oil does not lower serum triacylglycerol concentrations. Despite an increase in the percentage of EPA in RBC membranes, the omega-3 index was not changed.

  7. Temperature effect on triacylglycerol species in seed oil from high stearic sunflower lines with different genetic backgrounds.

    PubMed

    Izquierdo, Natalia G; Martínez-Force, Enrique; Garcés, Rafael; Aguirrezábal, Luis An; Zambelli, Andrés; Reid, Roberto

    2016-10-01

    This study characterized the influence of temperature during grain filling on the saturated fatty acid distribution in triacylglycerol molecules from high stearic sunflower lines with different genetic backgrounds. Two growth chamber experiments were conducted with day/night temperatures of 16/16, 26/16, 26/26 and 32/26 °C. In all genotypes, independently of the genetic background, higher temperatures increased palmitic and oleic acid and reduced linoleic acid concentrations. Increasing night temperature produced an increase in saturated-unsaturated-saturated species, indicating a more symmetrical distribution of saturated fatty acids. The solid fat index was more affected by temperature during grain filling in lines with high linoleic than high oleic background. Higher variations in symmetry among night temperatures were observed in lines with high oleic background, which are more stable in fatty acid composition. The effect of temperature on triacylglycerol composition is not completely explained by its effect on fatty acid composition. Thus night temperature affects oil properties via its effects on fatty acid synthesis and on the distribution of fatty acids in the triacylglycerol molecules. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  8. Protein C Inhibitor (PCI) Binds to Phosphatidylserine Exposing Cells with Implications in the Phagocytosis of Apoptotic Cells and Activated Platelets

    PubMed Central

    Rieger, Daniela; Assinger, Alice; Einfinger, Katrin; Sokolikova, Barbora; Geiger, Margarethe

    2014-01-01

    Protein C Inhibitor (PCI) is a secreted serine protease inhibitor, belonging to the family of serpins. In addition to activated protein C PCI inactivates several other proteases of the coagulation and fibrinolytic systems, suggesting a regulatory role in hemostasis. Glycosaminoglycans and certain negatively charged phospholipids, like phosphatidylserine, bind to PCI and modulate its activity. Phosphatidylerine (PS) is exposed on the surface of apoptotic cells and known as a phagocytosis marker. We hypothesized that PCI might bind to PS exposed on apoptotic cells and thereby influence their removal by phagocytosis. Using Jurkat T-lymphocytes and U937 myeloid cells, we show here that PCI binds to apoptotic cells to a similar extent at the same sites as Annexin V, but in a different manner as compared to live cells (defined spots on ∼10–30% of cells). PCI dose dependently decreased phagocytosis of apoptotic Jurkat cells by U937 macrophages. Moreover, the phagocytosis of PS exposing, activated platelets by human blood derived monocytes declined in the presence of PCI. In U937 cells the expression of PCI as well as the surface binding of PCI increased with time of phorbol ester treatment/macrophage differentiation. The results of this study suggest a role of PCI not only for the function and/or maturation of macrophages, but also as a negative regulator of apoptotic cell and activated platelets removal. PMID:25000564

  9. Dietary medium-chain triacylglycerols versus long-chain triacylglycerols for body composition in adults: systematic review and meta-analysis of randomized controlled trials.

    PubMed

    Bueno, Nassib B; de Melo, Ingrid V; Florêncio, Telma T; Sawaya, Ana L

    2015-01-01

    To assess the effect of replacing dietary long-chain triacylglycerols (LCTs) with medium-chain triacylglycerols (MCTs) on body composition in adults. We conducted a meta-analysis of randomized controlled trials (RCTs), to determine whether individuals assigned to replace at least 5 g of dietary LCTs with MCTs for a minimum of 4 weeks show positive modifications on body composition. We systematically searched, through July 2013, the CENTRAL, EMBASE, LILACS, and MEDLINE databases for RCTs that investigated the effects of MCT intake on body composition in adults. Two authors independently extracted data and assessed risk of bias. Weighted mean differences (WMDs) were calculated for net changes in the outcomes. We assessed heterogeneity by the Cochran Q test and I(2) statistic and publication bias with the Egger's test. Prespecified sensitivity analyses were performed. In total, 11 trials were included, from which 5 presented low risk of bias. In the overall analysis, including all studies, individuals who replaced dietary LCT with MCT showed significantly reduced body weight (WMD, -0.69 kg; 95% confidence interval [CI], -1.1 to -0.28; p = 0.001); body fat (-0.89 kg; 95% CI, -1.27 to -0.51; p < 0.001), and WC (-1.78 cm; 95% CI, -2.4 to -1.1; p < 0.001). The overall quality of the evidence was low to moderate. Trials with a crossover design were responsible for the heterogeneity. Despite statistically significant results, the recommendation to replace dietary LCTs with MCTs must be cautiously taken, because the available evidence is not of the highest quality.

  10. Determination of Active Phagocytosis of Unopsonized Porphyromonas gingivalis by Macrophages and Neutrophils Using the pH-Sensitive Fluorescent Dye pHrodo

    PubMed Central

    Lenzo, Jason C.; O'Brien-Simpson, Neil M.; Cecil, Jessica; Holden, James A.

    2016-01-01

    Phagocytosis of pathogens is an important component of the innate immune system that is responsible for the removal and degradation of bacteria as well as their presentation via the major histocompatibility complexes to the adaptive immune system. The periodontal pathogen Porphyromonas gingivalis exhibits strain heterogeneity, which may affect a phagocyte's ability to recognize and phagocytose the bacterium. In addition, P. gingivalis is reported to avoid phagocytosis by antibody and complement degradation and by invading phagocytic cells. Previous studies examining phagocytosis have been confounded by both the techniques employed and the potential of the bacteria to invade the cells. In this study, we used a novel, pH-sensitive dye, pHrodo, to label live P. gingivalis strains and examine unopsonized phagocytosis by murine macrophages and neutrophils and human monocytic cells. All host cells examined were able to recognize and phagocytose unopsonized P. gingivalis strains. Macrophages had a preference to phagocytose P. gingivalis strain ATCC 33277 over other strains and clinical isolates in the study, whereas neutrophils favored P. gingivalis W50, ATCC 33277, and one clinical isolate over the other strains. This study revealed that all P. gingivalis strains were capable of being phagocytosed without prior opsonization with antibody or complement. PMID:27021243

  11. DEVELOPMENTAL EXPOSURE TO A THYROID DISRUPTING CHEMICAL STIMULATES PHAGOCYTOSIS IN JUVENILE SPRAGUE-DAWLEY RATS

    EPA Science Inventory

    Developmental Exposure to a Thyroid Disrupting Chemical Stimulates Phagocytosis in Juvenile Sprague-Dawley Rats.
    AA Rooney1, R Matulka2, and R Luebke3. 1NCSU/US EPA CVM, Department of Anatomy, Physiological Sciences and Radiology, Raleigh, NC;2UNC Department of Toxicology, Cha...

  12. Physics of phagocytosis of foreign versus self-tolerance

    NASA Astrophysics Data System (ADS)

    Tsai, Richard; Rodriguez, Pia; Discher, Dennis

    2009-03-01

    The first cells to `attack' an implanted or injected foreign material or microbe are phagocytic cells of the innate immune system. These cells actively and rapidly phagocytose foreign cells, surfaces, or particles, but the process that is inefficient when faced with ``self'' cells. We have examined the biochemistry and some of the physics of this decision to eat or not eat. One particular protein on all animal cell membranes, called CD47, seems to engage phagocytic cell couter-receptors, and deactivate the force-generating myosin machinery that otherwise makes phagocytosis efficient. We will map the phagocytic synapse between phagocytes and particles or cells and describe the physicochemical dynamics that mediate this key decision in compatability.

  13. Enhancement of phagocytosis and cytotoxicity in macrophages by tumor-derived IL-18 stimulation

    PubMed Central

    Henan, Xu; Toyota, Naoka; Yanjiang, Xing; Fujita, Yuuki; Zhijun, Huang; Touma, Maki; Qiong, Wu; Sugimoto, Kenkichi

    2014-01-01

    Inoculation of mice with the murine NFSA cell line caused the formation of large tumors with necrotic tumor cores. FACS analysis revealed accumulations of CD11b+ cells in the tumors. Microarray analysis indicated that the NFSA cells expressed a high level of the pro-inflammatory factor interleukin-18 (il-18), which is known to play a critical role in macrophages. However, little is known about the physiological function of IL-18-stimulated macrophages. Here, we provide direct evidence that IL-18 enhances the phagocytosis of RAW264 cells and peritoneal macrophages, accompanied by the increased expression of tumor necrosis factor (tnf-α), interleukin-6 (il-6) and inducible nitric oxide synthase (Nos2). IL-18-stimulated RAW264 cells showed an enhanced cytotoxicity to endothelial F-2 cells via direct cell-to-cell interaction and the secretion of soluble mediators. Taken together, our results demonstrate that tumor-derived IL-18 plays an important role in the phagocytosis of macrophages and that IL-18-stimulated macrophages may damage tumor endothelial cells. [BMB Reports 2014; 47(5): 286-291] PMID:24286318

  14. Phagocytosis of sperm by follicle cells of the carnivorous sponge Asbestopluma occidentalis (Porifera, Demospongiae).

    PubMed

    Riesgo, Ana

    2010-06-01

    During spermatogenesis of the carnivorous sponge Asbestopluma occidentalis, follicle cells that lined the spermatocysts phagocytosed unreleased mature sperm. Such follicle cells are part of the complex envelope that limits spermatocysts of A. occidentalis, which is also comprised of a collagen layer, a thick layer of intertwined cells, and spicules. Follicle cells showed vesicles containing single phagocytosed spermatozoa within their cytoplasm. Additionally, lipids and other inclusions were observed within the cytoplasm of follicle cells. It is likely that follicle cells recapture nutrients by phagocytosing spermatozoa and use them to form lipids and other inclusions. Such sperm phagocytosis is usually performed in higher invertebrates and vertebrates by Sertoli cells that are located in the testis wall. While Sertoli cells develop a wide range of functions such as creating a blood-testis barrier, providing crucial factors to ensure correct progression of spermatogenesis, and phagocytosis of aberrant, degenerating, and unreleased sperm cells, sponge follicle cells may only display phagocytotic activity on spermatogenic cells. Copyright 2010 Elsevier Ltd. All rights reserved.

  15. Metabolic regulation of triacylglycerol accumulation in the green algae: identification of potential targets for engineering to improve oil yield.

    PubMed

    Goncalves, Elton C; Wilkie, Ann C; Kirst, Matias; Rathinasabapathi, Bala

    2016-08-01

    The great need for more sustainable alternatives to fossil fuels has increased our research interests in algal biofuels. Microalgal cells, characterized by high photosynthetic efficiency and rapid cell division, are an excellent source of neutral lipids as potential fuel stocks. Various stress factors, especially nutrient-starvation conditions, induce an increased formation of lipid bodies filled with triacylglycerol in these cells. Here we review our knowledge base on glycerolipid synthesis in the green algae with an emphasis on recent studies on carbon flux, redistribution of lipids under nutrient-limiting conditions and its regulation. We discuss the contributions and limitations of classical and novel approaches used to elucidate the algal triacylglycerol biosynthetic pathway and its regulatory network in green algae. Also discussed are gaps in knowledge and suggestions for much needed research both on the biology of triacylglycerol accumulation and possible avenues to engineer improved algal strains. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  16. Greater enrichment of triacylglycerol-rich lipoproteins with apolipoproteins E and C-III after meals rich in saturated fatty acids than after meals rich in unsaturated fatty acids.

    PubMed

    Jackson, Kim G; Wolstencroft, Emma J; Bateman, Paul A; Yaqoob, Parveen; Williams, Christine M

    2005-01-01

    Although there is considerable interest in the postprandial events involved in the absorption of dietary fats and the subsequent metabolism of diet-derived triacylglycerol-rich lipoproteins, little is known about the effects of meal fatty acids on the composition of these particles. We examined the effect of meal fatty acids on the lipid and apolipoprotein contents of triacylglycerol-rich lipoproteins. Ten normolipidemic men received in random order a mixed meal containing 50 g of a mixture of palm oil and cocoa butter [rich in saturated fatty acids (SFAs)], safflower oil [n-6 polyunsaturated fatty acids (PUFAs)], or olive oil [monounsaturated fatty acids (MUFAs)] on 3 occasions. Fasting and postprandial apolipoproteins B-48, B-100, E, C-II, and C-III and lipids (triacylglycerol and cholesterol) were measured in plasma fractions with Svedberg flotation rates (S(f)) >400, S(f) 60-400, and S(f) 20-60. Calculation of the composition of the triacylglycerol-rich lipoproteins (expressed per mole of apolipoprotein B) showed notable differences in the lipid and apolipoprotein contents of the SFA-enriched particles in the S(f) > 400 and S(f) 60-400 fractions. After the SFA meal, triacylglycerol-rich lipoproteins in these fractions showed significantly greater amounts of triacylglycerol and of apolipoproteins C-II (S(f) 60-400 fraction only), C-III, and E than were found after the MUFA meal (P < 0.02) and more cholesterol, apolipoprotein C-III (S(f) > 400 fraction only), and apolipoprotein E than after the PUFA meal (P < 0.02). Differences in the composition of S(f) > 400 and S(f) 60-400 triacylglycerol-rich lipoproteins formed after saturated compared with unsaturated fatty acid-rich meals may explain differences in the metabolic handling of dietary fats.

  17. Red palm oil-supplemented and biofortified cassava gari increase the carotenoid and retinyl palmitate concentrations of triacylglycerol-rich plasma in women.

    PubMed

    Zhu, Chenghao; Cai, Yimeng; Gertz, Erik R; La Frano, Michael R; Burnett, Dustin J; Burri, Betty J

    2015-11-01

    Boiled biofortified cassava containing β-carotene can increase retinyl palmitate in triacylglycerol-rich plasma. Thus, it might alleviate vitamin A deficiency. Cassava requires extensive preparation to decrease its level of cyanogenic glucosides, which can be fatal. Garification is a popular method of preparing cassava that removes cyanogen glucosides. Our objective was to compare the effectiveness of biofortified gari to gari prepared with red palm oil. The study was a randomized crossover trial in 8 American women. Three gari preparations separated by 2-week washout periods were consumed. Treatments (containing 200-225.9 g gari) were as follows: biofortified gari (containing 1 mg β-carotene), red palm oil-fortified gari (1 mg β-carotene), and unfortified gari with a 0.3-mg retinyl palmitate reference dose. Blood was collected 6 times from -0.5 to 9.5 hours after ingestion. Triacylglycerol-rich plasma was separated by ultracentrifugation and analyzed by high-performance liquid chromatography (HPLC) with diode array detection. Area under the curve for β-carotene, α-carotene, and retinyl palmitate increased after the fortified meals were fed (P < .05), although the retinyl palmitate increase induced by the red palm oil treatment was greater than that induced by the biofortified treatment (P < .05). Vitamin A conversion was 2.4 ± 0.3 and 4.2 ± 1.5 μg pro-vitamin A carotenoid/1 μg retinol (means ± SEM) for red palm oil and biofortified gari, respectively. These results show that both treatments increased β-carotene, α-carotene, and retinyl palmitate in triacylglycerol-rich plasma concentrations in healthy well-nourished adult women, supporting our hypothesis that both interventions could support efforts to alleviate vitamin A deficiency. Published by Elsevier Inc.

  18. Inducible CYP2J2 and its product 11,12-EET promotes bacterial phagocytosis: a role for CYP2J2 deficiency in the pathogenesis of Crohn's disease?

    PubMed

    Bystrom, Jonas; Thomson, Scott J; Johansson, Jörgen; Edin, Matthew L; Zeldin, Darryl C; Gilroy, Derek W; Smith, Andrew M; Bishop-Bailey, David

    2013-01-01

    The epoxygenase CYP2J2 has an emerging role in inflammation and vascular biology. The role of CYP2J2 in phagocytosis is not known and its regulation in human inflammatory diseases is poorly understood. Here we investigated the role of CYP2J2 in bacterial phagocytosis and its expression in monocytes from healthy controls and Crohns disease patients. CYP2J2 is anti-inflammatory in human peripheral blood monocytes. Bacterial LPS induced CYP2J2 mRNA and protein. The CYP2J2 arachidonic acid products 11,12-EET and 14,15-EET inhibited LPS induced TNFα release. THP-1 monocytes were transformed into macrophages by 48h incubation with phorbol 12-myristate 13-acetate. Epoxygenase inhibition using a non-selective inhibitor SKF525A or a selective CYP2J2 inhibitor Compound 4, inhibited E. coli particle phagocytosis, which could be specifically reversed by 11,12-EET. Moreover, epoxygenase inhibition reduced the expression of phagocytosis receptors CD11b and CD68. CD11b also mediates L. monocytogenes phagocytosis. Similar, to E. coli bioparticle phagocytosis, epoxygenase inhibition also reduced intracellular levels of L. monocytogenes, which could be reversed by co-incubation with 11,12-EET. Disrupted bacterial clearance is a hallmark of Crohn's disease. Unlike macrophages from control donors, macrophages from Crohn's disease patients showed no induction of CYP2J2 in response to E. coli. These results demonstrate that CYP2J2 mediates bacterial phagocytosis in macrophages, and implicates a defect in the CYP2J2 pathway may regulate bacterial clearance in Crohn's disease.

  19. SOA genes encode proteins controlling lipase expression in response to triacylglycerol utilization in the yeast Yarrowia lipolytica.

    PubMed

    Desfougères, Thomas; Haddouche, Ramdane; Fudalej, Franck; Neuvéglise, Cécile; Nicaud, Jean-Marc

    2010-02-01

    The oleaginous yeast Yarrowia lipolytica efficiently metabolizes hydrophobic substrates such as alkanes, fatty acids or triacylglycerol. This yeast has been identified in oil-polluted water and in lipid-rich food. The enzymes involved in lipid breakdown, for use as a carbon source, are known, but the molecular mechanisms controlling the expression of the genes encoding these enzymes are still poorly understood. The study of mRNAs obtained from cells grown on oleic acid identified a new group of genes called SOA genes (specific for oleic acid). SOA1 and SOA2 are two small genes coding for proteins with no known homologs. Single- and double-disrupted strains were constructed. Wild-type and mutant strains were grown on dextrose, oleic acid and triacylglycerols. The double mutant presents a clear phenotype consisting of a growth defect on tributyrin and triolein, but not on dextrose or oleic acid media. Lipase activity was 50-fold lower in this mutant than in the wild-type strain. The impact of SOA deletion on the expression of the main extracellular lipase gene (LIP2) was monitored using a LIP2-beta-galactosidase promoter fusion protein. These data suggest that Soa proteins are components of a molecular mechanism controlling lipase gene expression in response to extracellular triacylglycerol.

  20. Tripterygium regelii decreases the biosynthesis of triacylglycerol and cholesterol in HepG2 cells.

    PubMed

    Kang, Myung-Ji; Kwon, Eun-Bin; Yuk, Heung Joo; Ryu, Hyung Won; Kim, Soo-Yeon; Lee, Mi-Kyeong; Moon, Dong-Oh; Lee, Su Ui; Oh, Sei-Ryang; Lee, Hyun-Sun; Kim, Mun-Ock

    2017-12-01

    In the course of screening to find a plant material decreasing the activity of triacylglycerol and cholesterol, we identified Tripterygium regelii (TR). The methanol extract of TR leaves (TR-LM) was shown to reduce the intracellular lipid contents consisting of triacylglycerol (TG) and cholesterol in HepG2 cells. TR-LM also downregulated the mRNA and protein expression of the lipogenic genes such as SREBP-1 and its target enzymes. Consequently, TR-LM reduced the TG biosynthesis in HepG2 cells. In addition, TR-LM decreased SREBP2 and its target enzyme HMG-CoA reductase, which is involved in cholesterol synthesis. In this study, we evaluated that TR-LM attenuated cellular lipid contents through the suppression of de novo TG and cholesterol biosynthesis in HepG2 cells. All these taken together, TR-LM could be beneficial in regulating lipid metabolism and useful preventing the hyperlipidemia and its complications, in that liver is a crucial tissue for the secretion of serum lipids.

  1. Regulation of the yeast triacylglycerol lipases Tgl4p and Tgl5p by the presence/absence of nonpolar lipids

    PubMed Central

    Klein, Isabella; Klug, Lisa; Schmidt, Claudia; Zandl, Martina; Korber, Martina; Daum, Günther; Athenstaedt, Karin

    2016-01-01

    Tgl3p, Tgl4p, and Tgl5p are the major triacylglycerol lipases of the yeast Saccharomyces cerevisiae. Recently we demonstrated that properties of Tgl3p are regulated by the formation of nonpolar lipids. The present study extends these investigations to the two other yeast triacylglycerol lipases, Tgl4p and Tgl5p. We show that Tgl4p and Tgl5p, which are localized to lipid droplets in wild type, are partially retained in the endoplasmic reticulum in cells lacking triacylglycerols and localize exclusively to the endoplasmic reticulum in a mutant devoid of lipid droplets. In cells lacking steryl esters, the subcellular distribution of Tgl4p and Tgl5p is unaffected, but Tgl5p becomes unstable, whereas the stability of Tgl4p increases. In cells lacking nonpolar lipids, Tgl4p and Tgl5p lose their lipolytic activity but retain their side activity as lysophospholipid acyltransferases. To investigate the regulatory network of yeast triacylglycerol lipases in more detail, we also examined properties of Tgl3p, Tgl4p, and Tgl5p, respectively, in the absence of the other lipases. Surprisingly, lack of two lipases did not affect expression, localization, and stability of the remaining Tgl protein. These results suggest that Tgl3p, Tgl4p, and Tgl5p, although they exhibit similar functions, act as independent entities. PMID:27170177

  2. Exogenous l-Valine Promotes Phagocytosis to Kill Multidrug-Resistant Bacterial Pathogens

    PubMed Central

    Chen, Xin-hai; Liu, Shi-rao; Peng, Bo; Li, Dan; Cheng, Zhi-xue; Zhu, Jia-xin; Zhang, Song; Peng, Yu-ming; Li, Hui; Zhang, Tian-tuo; Peng, Xuan-xian

    2017-01-01

    The emergence of multidrug-resistant bacteria presents a severe threat to public health and causes extensive losses in livestock husbandry and aquaculture. Effective strategies to control such infections are in high demand. Enhancing host immunity is an ideal strategy with fewer side effects than antibiotics. To explore metabolite candidates, we applied a metabolomics approach to investigate the metabolic profiles of mice after Klebsiella pneumoniae infection. Compared with the mice that died from K. pneumoniae infection, mice that survived the infection displayed elevated levels of l-valine. Our analysis showed that l-valine increased macrophage phagocytosis, thereby reducing the load of pathogens; this effect was not only limited to K. pneumoniae but also included Escherichia coli clinical isolates in infected tissues. Two mechanisms are involved in this process: l-valine activating the PI3K/Akt1 pathway and promoting NO production through the inhibition of arginase activity. The NO precursor l-arginine is necessary for l-valine-stimulated macrophage phagocytosis. The valine-arginine combination therapy effectively killed K. pneumoniae and exerted similar effects in other Gram-negative (E. coli and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus) bacteria. Our study extends the role of metabolism in innate immunity and develops the possibility of employing the metabolic modulator-mediated innate immunity as a therapy for bacterial infections. PMID:28321214

  3. In vitro assessment of the effects of temperature on phagocytosis, reactive oxygen species production and apoptosis in bovine polymorphonuclear cells.

    PubMed

    Lecchi, Cristina; Rota, Nicola; Vitali, Andrea; Ceciliani, Fabrizio; Lacetera, Nicola

    2016-12-01

    Heat stress exerts a direct negative effect on farm animal health, triggering physiological responses. Environmental high temperature induces immunosuppression in dairy cows, increasing the risk of mastitis and milk somatic cell counts. The influence of heat stress on leukocytes activities has not been fully elucidated. The present in vitro study was aimed at assessing whether the exposure to temperature simulating conditions of severe whole body hyperthermia affects defensive functions of bovine blood polymorphonuclear cells. Blood was collected from seven clinically healthy, multiparous, late lactating Holstein cows. After isolation, PMN were incubated at either 39 or 41°C. Phagocytosis, respiratory burst and apoptosis were then investigated. The selected temperatures of 39°C or 41°C mimicked conditions of normothermia or severe heat stress, respectively. Phagocytosis assay was carried out by measuring the fluorescence of phagocyted fluorescein-labelled E. coli bioparticles. The modulation of oxidative burst activity was studied by the cytochrome C reduction method. Apoptosis was determined by measuring the activities of two enzymes that play an effector role in the process, namely Caspase-3 and Caspase-7. Statistical analyses were performed using SPSS 22.0. A Student t-test for paired samples and a Generalised Estimating Equation were used based on data distribution. The phagocytosis rate was reduced (-37%, P<0.01) when PMN were incubated for 2h at 41°C, when compared to phagocytosis rate measured at 39°C. The oxidative burst, as determined by extracellular production of reactive oxygen species (ROS), was also reduced by the exposure of cells to 41°C compared to 39°C. Such reduction ranged between -2 and -21% (P<0.05). Apoptosis rate was not affected by different temperatures. The results reported in this study suggest that phagocytosis and ROS production in PMN exposed to severe high temperature are impaired, partially explaining the higher occurrence of

  4. Polysaccharides from Ganoderma lucidum attenuate microglia-mediated neuroinflammation and modulate microglial phagocytosis and behavioural response.

    PubMed

    Cai, Qing; Li, Yuanyuan; Pei, Gang

    2017-03-24

    Ganoderma lucidum (GL) has been widely used in Asian countries for hundreds of years to promote health and longevity. The pharmacological functions of which had been classified, including the activation of innate immune responses, suppression of tumour and modulation of cell proliferations. Effective fractions of Ganoderma lucidum polysaccharides (GLP) had already been reported to regulate the immune system. Nevertheless, the role of GLP in the microglia-mediated neuroinflammation has not been sufficiently elucidated. Further, GLP effect on microglial behavioural modulations in correlation with the inflammatory responses remains to be unravelled. The aim of this work was to quantitatively analyse the contributions of GLP on microglia. The BV2 microglia and primary mouse microglia were stimulated by lipopolysaccharides (LPS) and amyloid beta 42 (Aβ 42 ) oligomer, respectively. Investigation on the effect of GLP was carried by quantitative determination of the microglial pro- and anti-inflammatory cytokine expressions and behavioural modulations including migration, morphology and phagocytosis. Analysis of microglial morphology and phagocytosis modulations was confirmed in the zebrafish brain. Quantitative results revealed that GLP down-regulates LPS- or Aβ-induced pro-inflammatory cytokines and promotes anti-inflammatory cytokine expressions in BV-2 and primary microglia. In addition, GLP attenuates inflammation-related microglial migration, morphological alterations and phagocytosis probabilities. We also showed that modulations of microglial behavioural responses were associated with MCP-1 and C1q expressions. Overall, our study provides an insight into the GLP regulation of LPS- and Aβ-induced neuroinflammation and serves an implication that the neuroprotective function of GLP might be achieved through modulation of microglial inflammatory and behavioural responses.

  5. Aspergillus Cell Wall Melanin Blocks LC3-Associated Phagocytosis to Promote Pathogenicity.

    PubMed

    Akoumianaki, Tonia; Kyrmizi, Irene; Valsecchi, Isabel; Gresnigt, Mark S; Samonis, George; Drakos, Elias; Boumpas, Dimitrios; Muszkieta, Laetitia; Prevost, Marie-Christine; Kontoyiannis, Dimitrios P; Chavakis, Triantafyllos; Netea, Mihai G; van de Veerdonk, Frank L; Brakhage, Axel A; El-Benna, Jamel; Beauvais, Anne; Latge, Jean-Paul; Chamilos, Georgios

    2016-01-13

    Concealing pathogen-associated molecular patterns (PAMPs) is a principal strategy used by fungi to avoid immune recognition. Surface exposure of PAMPs during germination can leave the pathogen vulnerable. Accordingly, β-glucan surface exposure during Aspergillus fumigatus germination activates an Atg5-dependent autophagy pathway termed LC3-associated phagocytosis (LAP), which promotes fungal killing. We found that LAP activation also requires the genetic, biochemical or biological (germination) removal of A. fumigatus cell wall melanin. The attenuated virulence of melanin-deficient A. fumigatus is restored in Atg5-deficient macrophages and in mice upon conditional inactivation of Atg5 in hematopoietic cells. Mechanistically, Aspergillus melanin inhibits NADPH oxidase-dependent activation of LAP by excluding the p22phox subunit from the phagosome. Thus, two events that occur concomitantly during germination of airborne fungi, surface exposure of PAMPs and melanin removal, are necessary for LAP activation and fungal killing. LAP blockade is a general property of melanin pigments, a finding with broad physiological implications. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Signal Regulatory Protein α Negatively Regulates β2 Integrin-Mediated Monocyte Adhesion, Transendothelial Migration and Phagocytosis

    PubMed Central

    Liu, Dan-Qing; Li, Li-Min; Guo, Ya-Lan; Bai, Rui; Wang, Chen; Bian, Zhen; Zhang, Chen-Yu; Zen, Ke

    2008-01-01

    Background Signal regulate protein α (SIRPα) is involved in many functional aspects of monocytes. Here we investigate the role of SIRPα in regulating β2 integrin-mediated monocyte adhesion, transendothelial migration (TEM) and phagocytosis. Methodology/Principal Findings THP-1 monocytes/macropahges treated with advanced glycation end products (AGEs) resulted in a decrease of SIRPα expression but an increase of β2 integrin cell surface expression and β2 integrin-mediated adhesion to tumor necrosis factor-α (TNFα)–stimulated human microvascular endothelial cell (HMEC-1) monolayers. In contrast, SIRPα overexpression in THP-1 cells showed a significant less monocyte chemotactic protein-1 (MCP-1)–triggered cell surface expression of β2 integrins, in particular CD11b/CD18. SIRPα overexpression reduced β2 integrin-mediated firm adhesion of THP-1 cells to either TNFα–stimulated HMEC-1 monolayers or to immobilized intercellular adhesion molecule-1 (ICAM-1). SIRPα overexpression also reduced MCP-1–initiated migration of THP-1 cells across TNFα–stimulated HMEC-1 monolayers. Furthermore, β2 integrin-mediated THP-1 cell spreading and actin polymerization in response to MCP-1, and phagocytosis of bacteria were both inhibited by SIRPα overexpression. Conclusions/Significance SIRPα negatively regulates β2 integrin-mediated monocyte adhesion, transendothelial migration and phagocytosis, thus may serve as a critical molecule in preventing excessive activation and accumulation of monocytes in the arterial wall during early stage of atherosclerosis. PMID:18820737

  7. Quantitative analysis of the role of fiber length on phagocytosis and inflammatory response by alveolar macrophages

    PubMed Central

    Padmore, Trudy; Stark, Carahline; Turkevich, Leonid A.; Champion, Julie A.

    2017-01-01

    Background In the lung, macrophages attempt to engulf inhaled high aspect ratio pathogenic materials, secreting inflammatory molecules in the process. The inability of macrophages to remove these materials leads to chronic inflammation and disease. How the biophysical and biochemical mechanisms of these effects are influenced by fiber length remains undetermined. This study evaluates the role of fiber length on phagocytosis and molecular inflammatory responses to non-cytotoxic fibers, enabling development of quantitative length-based models. Methods Murine alveolar macrophages were exposed to long and short populations of JM-100 glass fibers, produced by successive sedimentation and repeated crushing, respectively. Interactions between fibers and macrophages were observed using time-lapse video microscopy, and quantified by flow cytometry. Inflammatory biomolecules (TNF-α, IL-1 α, COX-2, PGE2) were measured. Results Uptake of short fibers occurred more readily than for long, but long fibers were more potent stimulators of inflammatory molecules. Stimulation resulted in dose-dependent secretion of inflammatory biomolecules but no cytotoxicity or strong ROS production. Linear cytokine dose-response curves evaluated with length-dependent potency models, using measured fiber length distributions, resulted in identification of critical fiber lengths that cause frustrated phagocytosis and increased inflammatory biomolecule production. Conclusion Short fibers played a minor role in the inflammatory response compared to long fibers. The critical lengths at which frustrated phagocytosis occurs can be quantified by fitting dose-response curves to fiber distribution data. PMID:27784615

  8. Stereospecific analysis of triacylglycerols as a useful means to evaluate genuineness of pumpkin seed oils: lesson from virgin olive oil analyses.

    PubMed

    Butinar, Bojan; Bucar-Miklavcic, Milena; Valencic, Vasilij; Raspor, Peter

    2010-05-12

    In Slovenia two superb vegetable oils with high added nutritional value are produced: "Ekstra devisko oljcno olje Slovenske Istre (extra virgin olive oil from Slovene Istra)" and "Stajersko prekmursko bucno olje (pumpkin seed oil from Slovenia)". Their quality and genuineness must be monitored as adulteration can easily be undertaken. Olive oil genuineness determination experiences can show how analyses following an experience data-driven decision tree gathering several chemical determinations (fatty acids, (E)-isomers of fatty acids, sterol and tocopherol determinations) may be helpful in assessing the pumpkin seed oil from Slovenia genuineness. In the present work a set of HPLC triacylglycerol determinations was performed, based on the nine main triacylglycerols (LLLn, LLL, PLL, LOO, PLO, OOO, POO, SPL, and SLS) on a limited number of different pumpkin seed oils from northeastern Slovenia. The performed determinations showed that stereospecific analyses of triacylglycerols together with other chemical determinations can be useful in building a protocol for the evaluation of the genuineness of pumpkin seed oil from Slovenia.

  9. Inducible CYP2J2 and Its Product 11,12-EET Promotes Bacterial Phagocytosis: A Role for CYP2J2 Deficiency in the Pathogenesis of Crohn’s Disease?

    PubMed Central

    Bystrom, Jonas; Thomson, Scott J.; Johansson, Jörgen; Edin, Matthew L.; Zeldin, Darryl C.; Gilroy, Derek W.; Smith, Andrew M.; Bishop-Bailey, David

    2013-01-01

    The epoxygenase CYP2J2 has an emerging role in inflammation and vascular biology. The role of CYP2J2 in phagocytosis is not known and its regulation in human inflammatory diseases is poorly understood. Here we investigated the role of CYP2J2 in bacterial phagocytosis and its expression in monocytes from healthy controls and Crohns disease patients. CYP2J2 is anti-inflammatory in human peripheral blood monocytes. Bacterial LPS induced CYP2J2 mRNA and protein. The CYP2J2 arachidonic acid products 11,12-EET and 14,15-EET inhibited LPS induced TNFα release. THP-1 monocytes were transformed into macrophages by 48h incubation with phorbol 12-myristate 13-acetate. Epoxygenase inhibition using a non-selective inhibitor SKF525A or a selective CYP2J2 inhibitor Compound 4, inhibited E. coli particle phagocytosis, which could be specifically reversed by 11,12-EET. Moreover, epoxygenase inhibition reduced the expression of phagocytosis receptors CD11b and CD68. CD11b also mediates L. monocytogenes phagocytosis. Similar, to E. coli bioparticle phagocytosis, epoxygenase inhibition also reduced intracellular levels of L. monocytogenes, which could be reversed by co-incubation with 11,12-EET. Disrupted bacterial clearance is a hallmark of Crohn’s disease. Unlike macrophages from control donors, macrophages from Crohn’s disease patients showed no induction of CYP2J2 in response to E. coli. These results demonstrate that CYP2J2 mediates bacterial phagocytosis in macrophages, and implicates a defect in the CYP2J2 pathway may regulate bacterial clearance in Crohn’s disease. PMID:24058654

  10. Insight into phagocytosis of mature sexual (gametocyte) stages of Plasmodium falciparum using a human monocyte cell line.

    PubMed

    Bansal, Geetha P; Weinstein, Corey S; Kumar, Nirbhay

    2016-05-01

    During natural infection malaria parasites are injected into the bloodstream of a human host by the bite of an infected female Anopheles mosquito. Both asexual and mature sexual stages of Plasmodium circulate in the blood. Asexual forms are responsible for clinical malaria while sexual stages are responsible for continued transmission via the mosquitoes. Immune responses generated against various life cycle stages of the parasite have important roles in resistance to malaria and in reducing malaria transmission. Phagocytosis of free merozoites and erythrocytic asexual stages has been well studied, but very little is known about similar phagocytic clearance of mature sexual stages, which are critical for transmission. We evaluated phagocytic uptake of mature sexual (gametocyte) stage parasites by a human monocyte cell line in the absence of immune sera. We found that intact mature stages do not undergo phagocytosis, unless they are either killed or freed from erythrocytes. In view of this observation, we propose that the inability of mature gametocytes to be phagocytized may actually result in malaria transmission advantage. On the other hand, mature gametocytes that are not transmitted to mosquitoes during infection will eventually die and undergo phagocytosis, initiating immune responses that may have transmission blocking potential. A better understanding of early phagocytic clearance and immune responses to gametocytes may identify additional targets for transmission blocking strategies. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Interferon-γ promotes phagocytosis of Cryptococcus neoformans but not Cryptococcus gattii by murine macrophages.

    PubMed

    Ikeda-Dantsuji, Yurika; Ohno, Hideaki; Tanabe, Koichi; Umeyama, Takashi; Ueno, Keigo; Nagi, Minoru; Yamagoe, Satoshi; Kinjo, Yuki; Miyazaki, Yoshitsugu

    2015-12-01

    Among invasive fungal infections, cryptococcosis caused by inhalation of Cryptococcus neoformans or Cryptococcus gattii is particularly dangerous because it can disseminate to the central nervous system and cause life-threatening meningitis or meningoencephalitis. Previous reports described significant differences in the histopathological features of C. neoformans and C. gattii infection, such as greater pathogen proliferation and a limited macrophage response in mouse lung infected by C. gattii. To elucidate the difference in pathogenicity of these two Cryptococcus species, we investigated the interaction of C. neoformans and C. gattii with murine macrophages, the first line of host defense, by confocal laser microscopy. Only thin-capsulated, and not thick-capsulated C. neoformans and C. gattii were phagocytosed by macrophages. Preactivation with interferon-γ increased the phagocytic rate of thin-capsulated C. neoformans up to two-fold, but did not promote phagocytosis of thin-capsulated C. gattii. Lipopolysaccharide preactivation or Aspergillus fumigatus conidia co-incubation had no effect on internalization of thin-capsulated C. neoformans or C. gattii by macrophages. Phagocytosis of live thin-capsulated C. neoformans, but not that of live thin-capsulated C. gattii, induced interleukin-12 release from macrophages. However, phagocytosis of heat-killed or paraformaldehyde-fixed thin-capsulated C. neoformans did not increase IL-12 release, showing that the internalization of live yeast is important for initiating the immune response during C. neoformans-macrophage interactions. Our data suggest that macrophage response to C. gattii is limited compared with that to C. neoformans and that these results may partially explain the limited immune response and the greater pathogenicity of C. gattii. Copyright © 2015 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  12. Quadruple parallel mass Spectrometry for analysis of vitamin D and triacylglycerols in a dietary supplement

    USDA-ARS?s Scientific Manuscript database

    A ‘dilute-and-shoot’ method for vitamin D and triacylglycerols is demonstrated that employed four mass spectrometers, operating in different ionization modes, for a ‘quadruple parallel mass spectrometry’ analysis, plus three other detectors, for seven detectors overall. Sets of five samples of diet...

  13. Rapid cellular enrichment of eicosapentaenoate after a single intravenous injection of a novel medium-chain triacylglycerol:fish-oil emulsion in humans123

    PubMed Central

    Carpentier, Yvon A; Hacquebard, Mirjam; Portois, Laurence; Dupont, Isabelle E; Deckelbaum, Richard J

    2010-01-01

    Background: Dietary deficiency in n−3 (omega-3) polyunsaturated fatty acids (PUFAs) prevails in Western populations and potentially results in adverse health outcomes. To circumvent the slow n−3 PUFA incorporation in phospholipids of key cells after oral supplementation, a new preparation for intravenous bolus injection was developed with 20 g triacylglycerols/100 mL of a mixture of 80% medium-chain triacylglycerols (MCTs) and 20% fish oil (FO) (wt:wt), and 0.4 g α-tocopherol/100 mL of the same mixture. Objective: Our objective was to document the enrichment of n−3 PUFAs in leukocyte and platelet phospholipids after a bolus intravenous injection of MCT:FO in men. Design: Twelve healthy male subjects received injections over a 5-min period of 50 mL of either MCT:FO or a control MCT:long-chain triacylglycerol (MCT:LCT) emulsion containing 20 g triacylglycerols/100 mL with equal amounts (wt:wt) of MCT and soybean triacylglycerols (LCT) and containing 0.02 g α-tocopherol/100 mL; after an 8-wk interval, the subjects received injections of the other preparation. Results: Clinical and biological variables that assessed tolerance and safety remained unchanged. Plasma elimination was faster for MCT:FO than for MCT:LCT (half-life: 24.5 ± 3.5 min compared with 32.9 ± 3.0 min; P < 0.025). This was associated with a greater increase in the plasma nonesterified fatty acid concentration. The content of n−3 PUFAs, specifically eicosapentaenoic acid (20:5n−3), increased in leukocyte and platelet phospholipids within 60 min and ≥24 h after MCT:FO injection. Conclusion: Bolus intravenous injection of a novel MCT:FO emulsion allows rapid enrichment of cells with n−3 PUFAs. PMID:20147473

  14. Natural honey and cardiovascular risk factors; effects on blood glucose, cholesterol, triacylglycerole, CRP, and body weight compared with sucrose.

    PubMed

    Yaghoobi, N; Al-Waili, Noori; Ghayour-Mobarhan, M; Parizadeh, S M R; Abasalti, Z; Yaghoobi, Z; Yaghoobi, F; Esmaeili, H; Kazemi-Bajestani, S M R; Aghasizadeh, R; Saloom, Khelod Y; Ferns, G A A

    2008-04-20

    It has been found that honey ameliorates cardiovascular risk factors in healthy individuals and in patients with elevated risk factors. The present study investigated the effect of natural honey on total cholesterol, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triacylglycerole, C-reactive protein (CRP), fasting blood glucose (FBG), and body weight in overweight individuals. There were 55 patients, overweight or obese, who were randomly recruited into the study and assigned into two groups: control group (17 subjects) and experimental group (38 subjects). Patients in the control group received 70 g of sucrose daily for a maximum of 30 days and patients in the experimental group received 70 g of natural honey for the same period. In the control and experimental groups, body weight, body mass index, body fat weight, total cholesterol, LDL-C, HDL-C, triacylglycerole, FBG, and CRP were measured before treatment and at day 31 after the commencement of treatment. Results showed that honey caused a mild reduction in body weight (1.3%) and body fat (1.1%). Honey reduced total cholesterol (3%), LDL-C (5.8), triacylglycerole (11%), FBG (4.2%), and CRP (3.2%), and increased HDL-C (3.3%) in subjects with normal values, while in patients with elevated variables, honey caused reduction in total cholesterol by 3.3%, LDL-C by 4.3%, triacylglycerole by 19%, and CRP by 3.3% (p < 0.05). It is our conclusion that consumption of natural honey reduces cardiovascular risk factors, particularly in subjects with elevated risk factors, and it does not increase body weight in overweight or obese subjects.

  15. Phagocytosis of antibody‐opsonized tumor cells leads to the formation of a discrete vacuolar compartment in macrophages

    PubMed Central

    Velmurugan, Ramraj; Ramakrishnan, Sreevidhya; Kim, Mingin

    2018-01-01

    Despite the rapidly expanding use of antibody‐based therapeutics to treat cancer, knowledge of the cellular processes following phagocytosis of antibody‐opsonized tumor cells is limited. Here we report the formation of a phagosome‐associated vacuole that is observed in macrophages as these degradative compartments mature following phagocytosis of HER2‐positive cancer cells in the presence of the HER2‐specific antibody, trastuzumab. We demonstrate that this vacuole is a distinct organelle that is closely apposed to the phagosome. Furthermore, the size of the phagosome‐associated vacuole is increased by inhibition of the mTOR pathway. Collectively, the identification of this vacuolar compartment has implications for understanding the subcellular trafficking processes leading to the destruction of phagocytosed, antibody‐opsonized cancer cells by macrophages. PMID:29437282

  16. Ultrasound-assisted extraction (UAE) and solvent extraction of papaya seed oil: yield, fatty acid composition and triacylglycerol profile.

    PubMed

    Samaram, Shadi; Mirhosseini, Hamed; Tan, Chin Ping; Ghazali, Hasanah Mohd

    2013-10-10

    The main objective of the current work was to evaluate the suitability of ultrasound-assisted extraction (UAE) for the recovery of oil from papaya seed as compared to conventional extraction techniques (i.e., Soxhlet extraction (SXE) and solvent extraction (SE)). In the present study, the recovery yield, fatty acid composition and triacylglycerol profile of papaya seed oil obtained from different extraction methods and conditions were compared. Results indicated that both solvent extraction (SE, 12 h/25 °C) and ultrasound-assisted extraction (UAE) methods recovered relatively high yields (79.1% and 76.1% of total oil content, respectively). Analysis of fatty acid composition revealed that the predominant fatty acids in papaya seed oil were oleic (18:1, 70.5%-74.7%), palmitic (16:0, 14.9%-17.9%), stearic (18:0, 4.50%-5.25%), and linoleic acid (18:2, 3.63%-4.6%). Moreover, the most abundant triacylglycerols of papaya seed oil were triolein (OOO), palmitoyl diolein (POO) and stearoyl oleoyl linolein (SOL). In this study, ultrasound-assisted extraction (UAE) significantly (p < 0.05) influenced the triacylglycerol profile of papaya seed oil, but no significant differences were observed in the fatty acid composition of papaya seed oil extracted by different extraction methods (SXE, SE and UAE) and conditions.

  17. The Antiphagocytic Activity of SeM of Streptococcus equi Requires Capsule.

    PubMed

    Timoney, John F; Suther, Pranav; Velineni, Sridhar; Artiushin, Sergey C

    2014-01-01

    Resistance to phagocytosis is a crucial virulence property of Streptococcus equi (Streptococcus equi subsp. equi; Se), the cause of equine strangles. The contribution and interdependence of capsule and SeM to killing in equine blood and neutrophils were investigated in naturally occurring strains of Se. Strains CF32, SF463 were capsule and SeM positive, strains Lex90, Lex93 were capsule negative and SeM positive and strains Se19, Se1-8 were capsule positive and SeM deficient. Phagocytosis and killing of Se19, Se1-8, Lex90 and Lex93 in equine blood and by neutrophils suspended in serum were significantly (P ≤ 0.02) greater compared to CF32 and SF463. The results indicate capsule and SeM are both required for resistance to phagocytosis and killing and that the anti-phagocytic property of SeM is greatly reduced in the absence of capsule.

  18. Diffusion Barriers, Mechanical Forces, and the Biophysics of Phagocytosis.

    PubMed

    Ostrowski, Philip P; Grinstein, Sergio; Freeman, Spencer A

    2016-07-25

    Phagocytes recognize and eliminate pathogens, alert other tissues of impending threats, and provide a link between innate and adaptive immunity. They also maintain tissue homeostasis, consuming dead cells without causing alarm. The receptor engagement, signal transduction, and cytoskeletal rearrangements underlying phagocytosis are paradigmatic of other immune responses and bear similarities to macropinocytosis and cell migration. We discuss how the glycocalyx restricts access to phagocytic receptors, the processes that enable receptor engagement and clustering, and the remodeling of the actin cytoskeleton that controls the mobility of membrane proteins and lipids and provides the mechanical force propelling the phagocyte membrane toward and around the phagocytic prey. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Fast comprehensive analysis of vitamin D and triacylglycerols in dietary supplements using multiple parallel mass spectrometers

    USDA-ARS?s Scientific Manuscript database

    New, faster methods have been developed for analysis of vitamin D and triacylglycerols that eliminate hours of wet chemistry and preparative chromatography, while providing more information than classical methods for analysis. Unprecedented detail is provided by combining liquid chromatography with ...

  20. Use of back-scatter electron signals to visualise cell/nanowires interactions in vitro and in vivo; frustrated phagocytosis of long fibres in macrophages and compartmentalisation in mesothelial cells in vivo

    PubMed Central

    2012-01-01

    Background Frustrated phagocytosis has been stated as an important factor in the initiation of an inflammatory response after fibre exposure. The length of fibrous structures has been linked to the potential of fibres to induce adverse health effects for at least 40 years. However, we only recently reported for the first time the threshold length for fibre-induced inflammation in the pleural space and we implicated frustrated phagocytosis in the pro-inflammatory effects of long fibres. This study extends the examination of the threshold value for frustrated phagocytosis using well-defined length classes of silver nanowires (AgNW) ranging from 3–28 μm and describes in detail the morphology of frustrated phagocytosis using a novel technique and also describes compartmentalisation of fibres in the pleural space. Methods A novel technique, backscatter scanning electron microscopy (BSE) was used to study frustrated phagocytosis since it provides high-contrast detection of nanowires, allowing clear discrimination between the nanofibres and other cellular features. A human monocyte-derived macrophage cell line THP-1 was used to investigate cell-nanowire interaction in vitro and the parietal pleura, the site of fibre retention after inhalation exposure was chosen to visualise the cell- fibre interaction in vivo after direct pleural installation of AgNWs. Results The length cut-off value for frustrated phagocytosis differs in vitro and in vivo. While in vitro frustrated phagocytosis could be observed with fibres ≥14 μm, in vivo studies showed incomplete uptake at a fibre length of ≥10 μm. Recently we showed that inflammation in the pleural space after intrapleural injection of the same nanofibre panel occurs at a length of ≥5 μm. This onset of inflammation does not correlate with the onset of frustrated phagocytosis as shown in this study, leading to the conclusion that intermediate length fibres fully enclosed within macrophages as well as frustrated

  1. A Sequential Model of Host Cell Killing and Phagocytosis by Entamoeba histolytica

    PubMed Central

    Sateriale, Adam; Huston, Christopher D.

    2011-01-01

    The protozoan parasite Entamoeba histolytica is responsible for invasive intestinal and extraintestinal amebiasis. The virulence of Entamoeba histolytica is strongly correlated with the parasite's capacity to effectively kill and phagocytose host cells. The process by which host cells are killed and phagocytosed follows a sequential model of adherence, cell killing, initiation of phagocytosis, and engulfment. This paper presents recent advances in the cytolytic and phagocytic processes of Entamoeba histolytica in context of the sequential model. PMID:21331284

  2. Coordinate changes in gene expression and triacylglycerol composition in the developing seeds of oilseed rape (Brassica napus) and turnip rape (Brassica rapa).

    PubMed

    Vuorinen, Anssi L; Kalpio, Marika; Linderborg, Kaisa M; Kortesniemi, Maaria; Lehto, Kirsi; Niemi, Jarmo; Yang, Baoru; Kallio, Heikki P

    2014-02-15

    Crop production for vegetable oil in the northern latitudes utilises oilseed rape (Brassica napus subsp. oleifera) and turnip rape (B. rapa subsp. oleifera), having similar oil compositions. The oil consists mostly of triacylglycerols, which are synthesised during seed development. In this study, we characterised the oil composition and the expression levels of genes involved in triacylglycerol biosynthesis in the developing seeds in optimal, low temperature (15 °C) and short day (12-h day length) conditions. Gene expression levels of several genes were altered during seed development. Low temperature and short day treatments increased the level of 9,12,15-octadecatrienoic acid (18:3n-3) in turnip rape and short day treatment decreased the total oil content in both species. This study gives a novel view on seed oil biosynthesis under different growth conditions, bringing together gene expression levels of the triacylglycerol biosynthesis pathway and oil composition over a time series in two related oilseed species. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. TTI-621 (SIRPαFc), a CD47-blocking cancer immunotherapeutic, triggers phagocytosis of lymphoma cells by multiple polarized macrophage subsets.

    PubMed

    Lin, Gloria H Y; Chai, Vien; Lee, Vivian; Dodge, Karen; Truong, Tran; Wong, Mark; Johnson, Lisa D; Linderoth, Emma; Pang, Xinli; Winston, Jeff; Petrova, Penka S; Uger, Robert A; Viller, Natasja N

    2017-01-01

    Tumor-associated macrophages (TAMs) are heterogeneous and can adopt a spectrum of activation states between pro-inflammatory and pro-tumorigenic in response to the microenvironment. We have previously shown that TTI-621, a soluble SIRPαFc fusion protein that blocks the CD47 "do-not-eat" signal, promotes tumor cell phagocytosis by IFN-γ-primed macrophages. To assess the impact of CD47 blockade on diverse types of macrophages that are found within the tumor microenvironment, six different polarized human macrophage subsets (M(-), M(IFN-γ), M(IFN-γ+LPS), M(IL-4), M(HAGG+IL-1β), M(IL-10 + TGFβ)) with distinct cell surface markers and cytokine profiles were generated. Blockade of CD47 using TTI-621 significantly increased phagocytosis of lymphoma cells by all macrophage subsets, with M(IFN-γ), M(IFN-γ+LPS) and M(IL-10 + TGFβ) macrophages having the highest phagocytic response. TTI-621-mediated phagocytosis involves macrophage expression of both the low- and high-affinity Fcγ receptors II (CD32) and I (CD64), respectively. Moreover, macrophages with lower phagocytic capabilities (M(-), M(IL-4), M(HAGG+IL-1β)) could readily be re-polarized into highly phagocytic macrophages using various cytokines or TLR agonists. In line with the in vitro study, we further demonstrate that TTI-621 can trigger phagocytosis of tumor cells by diverse subsets of isolated mouse TAMs ex vivo. These data suggest that TTI-621 may be efficacious in triggering the destruction of cancer cells by a diverse population of TAMs found in vivo and support possible combination approaches to augment the activity of CD47 blockade.

  4. TTI-621 (SIRPαFc), a CD47-blocking cancer immunotherapeutic, triggers phagocytosis of lymphoma cells by multiple polarized macrophage subsets

    PubMed Central

    Chai, Vien; Lee, Vivian; Dodge, Karen; Truong, Tran; Wong, Mark; Johnson, Lisa D.; Linderoth, Emma; Pang, Xinli; Winston, Jeff; Petrova, Penka S.; Viller, Natasja N.

    2017-01-01

    Tumor-associated macrophages (TAMs) are heterogeneous and can adopt a spectrum of activation states between pro-inflammatory and pro-tumorigenic in response to the microenvironment. We have previously shown that TTI-621, a soluble SIRPαFc fusion protein that blocks the CD47 “do-not-eat” signal, promotes tumor cell phagocytosis by IFN-γ-primed macrophages. To assess the impact of CD47 blockade on diverse types of macrophages that are found within the tumor microenvironment, six different polarized human macrophage subsets (M(-), M(IFN-γ), M(IFN-γ+LPS), M(IL-4), M(HAGG+IL-1β), M(IL-10 + TGFβ)) with distinct cell surface markers and cytokine profiles were generated. Blockade of CD47 using TTI-621 significantly increased phagocytosis of lymphoma cells by all macrophage subsets, with M(IFN-γ), M(IFN-γ+LPS) and M(IL-10 + TGFβ) macrophages having the highest phagocytic response. TTI-621-mediated phagocytosis involves macrophage expression of both the low- and high-affinity Fcγ receptors II (CD32) and I (CD64), respectively. Moreover, macrophages with lower phagocytic capabilities (M(-), M(IL-4), M(HAGG+IL-1β)) could readily be re-polarized into highly phagocytic macrophages using various cytokines or TLR agonists. In line with the in vitro study, we further demonstrate that TTI-621 can trigger phagocytosis of tumor cells by diverse subsets of isolated mouse TAMs ex vivo. These data suggest that TTI-621 may be efficacious in triggering the destruction of cancer cells by a diverse population of TAMs found in vivo and support possible combination approaches to augment the activity of CD47 blockade. PMID:29084248

  5. Effect of a 2.45-GHz radiofrequency electromagnetic field on neutrophil chemotaxis and phagocytosis in differentiated human HL-60 cells.

    PubMed

    Koyama, Shin; Narita, Eijiro; Suzuki, Yoshihisa; Taki, Masao; Shinohara, Naoki; Miyakoshi, Junji

    2015-01-01

    The potential public health risks of radiofrequency (RF) fields have been discussed at length, especially with the use of mobile phones spreading extensively throughout the world. In order to investigate the properties of RF fields, we examined the effect of 2.45-GHz RF fields at the specific absorption rate (SAR) of 2 and 10 W/kg for 4 and 24 h on neutrophil chemotaxis and phagocytosis in differentiated human HL-60 cells. Neutrophil chemotaxis was not affected by RF-field exposure, and subsequent phagocytosis was not affected either compared with that under sham exposure conditions. These studies demonstrated an initial immune response in the human body exposed to 2.45-GHz RF fields at the SAR of 2 W/kg, which is the maximum value recommended by the International Commission for Non-Ionizing Radiation Protection (ICNIRP) guidelines. The results of our experiments for RF-field exposure at an SAR under 10 W/kg showed very little or no effects on either chemotaxis or phagocytosis in neutrophil-like human HL-60 cells. © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  6. Nanocage-Therapeutics Prevailing Phagocytosis and Immunogenic Cell Death Awakens Immunity against Cancer.

    PubMed

    Lee, Eun Jung; Nam, Gi-Hoon; Lee, Na Kyeong; Kih, Minwoo; Koh, Eunee; Kim, Yoon Kyoung; Hong, Yeonsun; Kim, Soyoun; Park, Seung-Yoon; Jeong, Cherlhyun; Yang, Yoosoo; Kim, In-San

    2018-03-01

    A growing appreciation of the relationship between the immune system and the tumorigenesis has led to the development of strategies aimed at "re-editing" the immune system to kill tumors. Here, a novel tactic is reported for overcoming the activation-energy threshold of the immunosuppressive tumor microenvironment and mediating the delivery and presentation of tumor neoantigens to the host's immune system. This nature-derived nanocage not only efficiently presents ligands that enhance cancer cell phagocytosis, but also delivers drugs that induce immunogenic cancer cell death. The designed nanocage-therapeutics induce the release of neoantigens and danger signals in dying tumor cells, and leads to enhancement of tumor cell phagocytosis and cross-priming of tumor specific T cells by neoantigen peptide-loaded antigen-presenting cells. Potent inhibition of tumor growth and complete eradication of tumors is observed through systemic tumor-specific T cell responses in tumor draining lymph nodes and the spleen and further, infiltration of CD8+ T cells into the tumor site. Remarkably, after removal of the primary tumor, all mice treated with this nanocage-therapeutics are protected against subsequent challenge with the same tumor cells, suggesting development of lasting, tumor-specific responses. This designed nanocage-therapeutics "awakens" the host's immune system and provokes a durable systemic immune response against cancer. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Phagocytosis, bacterial killing, and cytokine activation of circulating blood neutrophils in horses with severe equine asthma and control horses.

    PubMed

    Vanderstock, Johanne M; Lecours, Marie-Pier; Lavoie-Lamoureux, Annouck; Gottschalk, Marcelo; Segura, Mariela; Lavoie, Jean-Pierre; Jean, Daniel

    2018-04-01

    OBJECTIVE To evaluate in vitro phagocytosis and bactericidal activity of circulating blood neutrophils in horses with severe equine asthma and control horses and to determine whether circulating blood neutrophils in horses with severe equine asthma have an increase in expression of the proinflammatory cytokine tumor necrosis factor (TNF)-α and the chemokine interleukin (IL)-8 and a decrease in expression of the anti-inflammatory cytokine IL-10 in response to bacteria. ANIMALS 6 horses with severe equine asthma and 6 control horses. PROCEDURES Circulating blood neutrophils were isolated from horses with severe equine asthma and control horses. Phagocytosis was evaluated by use of flow cytometry. Bactericidal activity of circulating blood neutrophils was assessed by use of Streptococcus equi and Streptococcus zooepidemicus as targets, whereas the cytokine mRNA response was assessed by use of a quantitative PCR assay. RESULTS Circulating blood neutrophils from horses with severe equine asthma had significantly lower bactericidal activity toward S zooepidemicus but not toward S equi, compared with results for control horses. Phagocytosis and mRNA expression of TNF-α, IL-8, and IL-10 were not different between groups. CONCLUSIONS AND CLINCAL RELEVANCE Impairment of bactericidal activity of circulating blood neutrophils in horses with severe equine asthma could contribute to an increased susceptibility to infections.

  8. Sustained rise in triacylglycerol synthesis and increased epididymal fat mass when rats cease voluntary wheel running

    PubMed Central

    Kump, David S; Booth, Frank W

    2005-01-01

    Four-week-old, Fischer–Brown Norway F1-generation male rats were given access to voluntary running wheels for 21 days, and then the wheels were locked for 5 (WL5), 10 (WL10), 29 (WL29), or 53 (WL53) hours. Two other groups (SED5 and SED10) had no access to voluntary running wheels and were killed at the same time as WL5 and WL10, respectively. Absolute and relative epididymal fat mass, mean cell volume, and amount of lipid per cell increased in WL53 relative to all other groups, with no change in cell number. C/EBPα protein levels in epididymal fat were 30% greater in SED5 than in WL5. The rate of triacylglycerol synthesis in epididymal fat was 4.2-fold greater in SED5 than in WL5, increased 14-fold between WLS and WL10, and was 79% lower in SED10 than in WL10. Triacylglycerol synthesis remained at this elevated level (at least 3.5-fold greater than SED5) through WL53. Thus, the rapid increase in epididymal fat mass with the cessation of voluntary wheel running is associated with a prolonged overshoot in epididymal fat triacylglycerol synthesis. Moreover, rats without running wheels had a 9.4% lower body mass after 21 days than those with running wheels. The individual mass of seven different muscles from the hindlimb, upper forelimb, and back were each lower in animals without running wheels, suggesting that physical activity in rapidly growing rats may be requisite for optimal muscle development. PMID:15774517

  9. Effects of dexamethasone and insulin on the synthesis of triacylglycerols and phosphatidylcholine and the secretion of very-low-density lipoproteins and lysophosphatidylcholine by monolayer cultures of rat hepatocytes.

    PubMed Central

    Mangiapane, E H; Brindley, D N

    1986-01-01

    Rat hepatocytes in monolayer culture were preincubated for 19 h with 1 microM-dexamethasone, and the incubation was continued for a further 23 h with [14C]oleate, [3H]glycerol and 1 microM-dexamethasone. Dexamethasone increased the secretion of triacylglycerol into the medium in particles that had the properties of very-low-density lipoproteins. The increased secretion was matched by a decrease in the triacylglycerol and phosphatidylcholine that remained in the hepatocytes. Preincubating the hepatocytes for the total 42 h period with 36 nM-insulin decreased the amount of triacylglycerol in the medium and in the cells after the final incubation for 23 h with radioactive substrates. However, insulin had no significant effect on the triacylglycerol content of the cell and medium when it was present only in the final 23 h incubation. Insulin antagonized the effects of dexamethasone in stimulating the secretion of triacylglycerol from the hepatocytes, especially when it was present throughout the total 42 h period. The labelling of lysophosphatidylcholine in the medium when hepatocytes were incubated with [14C]oleate and [3H]glycerol was greater than that of phosphatidylcholine. The appearance of this lipid in the medium, unlike that of triacylglycerol and phosphatidylcholine, was not stimulated by dexamethasone, or inhibited by colchicine. However, the presence of lysophosphatidylcholine in the medium was decreased when the hepatocytes were incubated with both dexamethasone and insulin. These findings are discussed in relation to the control of the synthesis of glycerolipids and the secretion of very-low-density lipoproteins and lysophosphatidylcholine by the liver, particularly in relation to the interactions of glucocorticoids and insulin. PMID:3513755

  10. Corynebacterium accolens Releases Antipneumococcal Free Fatty Acids from Human Nostril and Skin Surface Triacylglycerols

    PubMed Central

    Bomar, Lindsey; Brugger, Silvio D.; Yost, Brian H.; Davies, Sean S.

    2016-01-01

    ABSTRACT Bacterial interspecies interactions play clinically important roles in shaping microbial community composition. We observed that Corynebacterium spp. are overrepresented in children free of Streptococcus pneumoniae (pneumococcus), a common pediatric nasal colonizer and an important infectious agent. Corynebacterium accolens, a benign lipid-requiring species, inhibits pneumococcal growth during in vitro cocultivation on medium supplemented with human skin surface triacylglycerols (TAGs) that are likely present in the nostrils. This inhibition depends on LipS1, a TAG lipase necessary for C. accolens growth on TAGs such as triolein. We determined that C. accolens hydrolysis of triolein releases oleic acid, which inhibits pneumococcus, as do other free fatty acids (FFAs) that might be released by LipS1 from human skin surface TAGs. Our results support a model in which C. accolens hydrolyzes skin surface TAGS in vivo releasing antipneumococcal FFAs. These data indicate that C. accolens may play a beneficial role in sculpting the human microbiome. PMID:26733066

  11. Ratios of the molecular species of triacylglycerols in lesquerella (Physaria fendleri) oil estimated by mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    The ratios of regioisomers of 72 molecular species of triacylglycerols (TAG) in lesquerella oil were estimated using the electrospray ionization mass spectrometry of the lithium adducts of TAG in the HPLC fractions of lesquerella oil. The ratios of ion signal intensities (or relative abundances) of ...

  12. Seasonal changes in enzymes of lipogenesis and triacylglycerol synthesis in the golden-mantled ground squirrel (Spermophilus lateralis).

    PubMed

    Wang, P; Walter, R D; Bhat, B G; Florant, G L; Coleman, R A

    1997-10-01

    In order to determine whether critical enzyme activities of glycerolipid synthesis change seasonally in the golden-mantled ground squirrel (Spermophilus lateralis), we collected summer and winter samples of liver, brown adipose tissue (BAT), and white adipose tissue (WAT). Compared with fatty acid synthase activity during hibernation, summer activities were 2.5- to 8-fold higher in adipose tissue and liver. Diacylglycerol acyltransferase (DGAT) activity was 2.6-fold higher in WAT during the summer, consistent with increased seasonal triacylglycerol storage, but the activity did not change in liver or BAT, suggesting that in these tissues, triacylglycerol synthesis is equally active in summer and winter. Lack of change in acyl-CoA synthetase in liver and BAT may reflect high synthetic rates for acyl-CoAs that are destined in the summer for glycerolipid synthesis and in the winter for beta-oxidation. Monoacylglycerol acyltransferase (MGAT) activity increased significantly in both liver and WAT during the summer but decreased in BAT. Although the changes were consistent with active year-round triacylglycerol synthesis, the higher summer MGAT activity observed in the squirrel liver and WAT suggest that MGATs function may not be limited to conserving essential fatty acids during physiological states of lipolysis. Seasonal changes observed in the ground squirrel were similar to those previously reported in the yellow-bellied marmot (Marmota flaviventris), confirming that important adjustments occur in energy metabolism necessitated by long seasonal hibernation.

  13. Antibody-mediated platelet phagocytosis by human macrophages is inhibited by siRNA specific for sequences in the SH2 tyrosine kinase, Syk.

    PubMed

    Lu, Ying; Wang, Weiming; Mao, Huiming; Hu, Hai; Wu, Yanling; Chen, Bing-Guan; Liu, Zhongmin

    2011-01-01

    Immune thrombocytopenia depends upon Fc receptor-mediated phagocytosis that involves signaling through the SH2 tyrosine kinase, Syk. We designed small interfering (siRNA) sequences complementary to Syk coding regions to decrease the expression of Syk in the human macrophage cell line, THP-1. To evaluate the functional effect of siRNA on phagocytosis, we developed a new in vitro assay for antibody-mediated platelet ingestion by THP-1 cells. Incubation of THP-1 cells at 37°C with fluorescence-labeled platelets and anti-platelet antibody promoted ingestion of platelets that could be quantitated by flow cytometry. Transfection of THP-1 cells with Syk-specific siRNA resulted in a reduction in the amount of FcγRII-associated Syk protein. Coincident with decreased Syk expression, we observed inhibition of antibody-mediated platelet ingestion. These results confirm a key role for Syk in antibody-mediated phagocytosis and suggest Syk-specific siRNA as a possible therapeutic candidate for immune thrombocytopenia. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Scavenger Receptor C Mediates Phagocytosis of White Spot Syndrome Virus and Restricts Virus Proliferation in Shrimp

    PubMed Central

    Yang, Ming-Chong; Shi, Xiu-Zhen; Yang, Hui-Ting; Sun, Jie-Jie; Xu, Ling; Wang, Xian-Wei; Zhao, Xiao-Fan

    2016-01-01

    Scavenger receptors are an important class of pattern recognition receptors that play several important roles in host defense against pathogens. The class C scavenger receptors (SRCs) have only been identified in a few invertebrates, and their role in the immune response against viruses is seldom studied. In this study, we firstly identified an SRC from kuruma shrimp, Marsupenaeus japonicus, designated MjSRC, which was significantly upregulated after white spot syndrome virus (WSSV) challenge at the mRNA and protein levels in hemocytes. The quantity of WSSV increased in shrimp after knockdown of MjSRC, compared with the controls. Furthermore, overexpression of MjSRC led to enhanced WSSV elimination via phagocytosis by hemocytes. Pull-down and co-immunoprecipitation assays demonstrated the interaction between MjSRC and the WSSV envelope protein. Electron microscopy observation indicated that the colloidal gold-labeled extracellular domain of MjSRC was located on the outer surface of WSSV. MjSRC formed a trimer and was internalized into the cytoplasm after WSSV challenge, and the internalization was strongly inhibited after knockdown of Mjβ-arrestin2. Further studies found that Mjβ-arrestin2 interacted with the intracellular domain of MjSRC and induced the internalization of WSSV in a clathrin-dependent manner. WSSV were co-localized with lysosomes in hemocytes and the WSSV quantity in shrimp increased after injection of lysosome inhibitor, chloroquine. Collectively, this study demonstrated that MjSRC recognized WSSV via its extracellular domain and invoked hemocyte phagocytosis to restrict WSSV systemic infection. This is the first study to report an SRC as a pattern recognition receptor promoting phagocytosis of a virus. PMID:28027319

  15. Emergence of anti-red blood cell antibodies triggers red cell phagocytosis by activated macrophages in a rabbit model of Epstein-Barr virus-associated hemophagocytic syndrome.

    PubMed

    Hsieh, Wen-Chuan; Chang, Yao; Hsu, Mei-Chi; Lan, Bau-Shin; Hsiao, Guan-Chung; Chuang, Huai-Chia; Su, Ih-Jen

    2007-05-01

    Hemophagocytic syndrome (HPS) is a fatal complication frequently associated with viral infections. In childhood HPS, Epstein-Barr virus (EBV) is the major causative agent, and red blood cells (RBCs) are predominantly phagocytosed by macrophages. To investigate the mechanism of RBC phagocytosis triggered by EBV infection, we adopted a rabbit model of EBV-associated HPS previously established by using Herpesvirus papio (HVP). The kinetics of virus-host interaction was studied. Using flow cytometry, we detected the emergence of antibody-coated RBCs, as well as anti-platelet antibodies, at peak virus load period at weeks 3 to 4 after HVP injection, and the titers increased thereafter. The presence of anti-RBCs preceded RBC phagocytosis in tissues and predicted the full-blown development of HPS. The anti-RBC antibodies showed cross-reactivity with Paul-Bunnell heterophile antibodies. Preabsorption of the HVP-infected serum with control RBCs removed the majority of anti-RBC activities and remarkably reduced RBC phagocytosis. The RBC phagocytosis was specifically mediated via an Fc fragment of antibodies in the presence of macrophage activation. Therefore, the emergence of anti-RBC antibodies and the presence of macrophage activation are both essential in the development of HPS. Our observations in this animal model provide a potential mechanism for hemophagocytosis in EBV infection.

  16. Emergence of Anti-Red Blood Cell Antibodies Triggers Red Cell Phagocytosis by Activated Macrophages in a Rabbit Model of Epstein-Barr Virus-Associated Hemophagocytic Syndrome

    PubMed Central

    Hsieh, Wen-Chuan; Chang, Yao; Hsu, Mei-Chi; Lan, Bau-Shin; Hsiao, Guan-Chung; Chuang, Huai-Chia; Su, Ih-Jen

    2007-01-01

    Hemophagocytic syndrome (HPS) is a fatal complication frequently associated with viral infections. In childhood HPS, Epstein-Barr virus (EBV) is the major causative agent, and red blood cells (RBCs) are predominantly phagocytosed by macrophages. To investigate the mechanism of RBC phagocytosis triggered by EBV infection, we adopted a rabbit model of EBV-associated HPS previously established by using Herpesvirus papio (HVP). The kinetics of virus-host interaction was studied. Using flow cytometry, we detected the emergence of antibody-coated RBCs, as well as anti-platelet antibodies, at peak virus load period at weeks 3 to 4 after HVP injection, and the titers increased thereafter. The presence of anti-RBCs preceded RBC phagocytosis in tissues and predicted the full-blown development of HPS. The anti-RBC antibodies showed cross-reactivity with Paul-Bunnell heterophile antibodies. Preabsorption of the HVP-infected serum with control RBCs removed the majority of anti-RBC activities and remarkably reduced RBC phagocytosis. The RBC phagocytosis was specifically mediated via an Fc fragment of antibodies in the presence of macrophage activation. Therefore, the emergence of anti-RBC antibodies and the presence of macrophage activation are both essential in the development of HPS. Our observations in this animal model provide a potential mechanism for hemophagocytosis in EBV infection. PMID:17456768

  17. Examination of Triacylglycerol Biosynthetic Pathways via De Novo Transcriptomic and Proteomic Analyses in an Unsequenced Microalga

    PubMed Central

    Guarnieri, Michael T.; Nag, Ambarish; Smolinski, Sharon L.; Darzins, Al; Seibert, Michael; Pienkos, Philip T.

    2011-01-01

    Biofuels derived from algal lipids represent an opportunity to dramatically impact the global energy demand for transportation fuels. Systems biology analyses of oleaginous algae could greatly accelerate the commercialization of algal-derived biofuels by elucidating the key components involved in lipid productivity and leading to the initiation of hypothesis-driven strain-improvement strategies. However, higher-level systems biology analyses, such as transcriptomics and proteomics, are highly dependent upon available genomic sequence data, and the lack of these data has hindered the pursuit of such analyses for many oleaginous microalgae. In order to examine the triacylglycerol biosynthetic pathway in the unsequenced oleaginous microalga, Chlorella vulgaris, we have established a strategy with which to bypass the necessity for genomic sequence information by using the transcriptome as a guide. Our results indicate an upregulation of both fatty acid and triacylglycerol biosynthetic machinery under oil-accumulating conditions, and demonstrate the utility of a de novo assembled transcriptome as a search model for proteomic analysis of an unsequenced microalga. PMID:22043295

  18. Response of a phagocyte cell system to products of macrophage breakdown as a probable mechanism of alveolar phagocytosis adaptation to deposition of particles of different cytotoxicity.

    PubMed

    Privalova, L I; Katsnelson, B A; Osipenko, A B; Yushkov, B N; Babushkina, L G

    1980-04-01

    The adaptation of the alveolar phagocytosis response to the quantitative and qualitative features of dust deposited during inhalation consists not only in enhanced recruitment of alveolar macrophages (AM), but also in adding a more or less pronounced neutrophil leukocyte (NL) recruitment as an auxiliary participant of particle clearance. The NL contribution to clearance is especially typical for response to cytotoxic particles (quartz, in particular). An important feature of the adaptation considered is the limitation of the number of AM and NL recruited when an efficient clearance can be achieved by a lesser number of cells due to increased AM reistance to the damaging actin of phagocytized particles. The main mechanism providing the adequacy of the alveolar phagocytosis response is its self-regulation thrugh the products of macrophage breakdown (PMB). In a series of experiments with intraperitoneal and intratracheal injections of syngenetic PMB into rats and mice, it was shown that these products stimulate respiration and migration of phagocytic cells, their dose-dependent attraction to the site of PMB formation with the predominant NL contribution, increasing with the increase of amount of PMB, the AM and NL precursor cells recruitment from reserve pools, and the replenishment of these reserves in the process of hemopoiesis. At least some of the above effects are connected with the action of the lipid components of PMB. The action of specialized regulative systems of the organism can modify the response to PMB, judging by the results obtained by hydrocortisone injection. Autocontrol of alveolar phagocytosis requires great care in attempts at artificial stimulation of this process, as an excessive cell recruitment may promote the retention of particles in lungs.

  19. Response of a phagocyte cell system to products of macrophage breakdown as a probable mechanism of alveolar phagocytosis adaptation to deposition of particles of different cytotoxicity.

    PubMed Central

    Privalova, L I; Katsnelson, B A; Osipenko, A B; Yushkov, B N; Babushkina, L G

    1980-01-01

    The adaptation of the alveolar phagocytosis response to the quantitative and qualitative features of dust deposited during inhalation consists not only in enhanced recruitment of alveolar macrophages (AM), but also in adding a more or less pronounced neutrophil leukocyte (NL) recruitment as an auxiliary participant of particle clearance. The NL contribution to clearance is especially typical for response to cytotoxic particles (quartz, in particular). An important feature of the adaptation considered is the limitation of the number of AM and NL recruited when an efficient clearance can be achieved by a lesser number of cells due to increased AM reistance to the damaging actin of phagocytized particles. The main mechanism providing the adequacy of the alveolar phagocytosis response is its self-regulation thrugh the products of macrophage breakdown (PMB). In a series of experiments with intraperitoneal and intratracheal injections of syngenetic PMB into rats and mice, it was shown that these products stimulate respiration and migration of phagocytic cells, their dose-dependent attraction to the site of PMB formation with the predominant NL contribution, increasing with the increase of amount of PMB, the AM and NL precursor cells recruitment from reserve pools, and the replenishment of these reserves in the process of hemopoiesis. At least some of the above effects are connected with the action of the lipid components of PMB. The action of specialized regulative systems of the organism can modify the response to PMB, judging by the results obtained by hydrocortisone injection. Autocontrol of alveolar phagocytosis requires great care in attempts at artificial stimulation of this process, as an excessive cell recruitment may promote the retention of particles in lungs. PMID:6997028

  20. Developmental co-expression of small molecular weight apolipoprotein B synthesis and triacylglycerol secretion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, R.A.; Haynes, E.B.; Sand, T.M.

    1987-05-01

    The development of the liver's ability to coordinately express the synthesis and secretion of the two major components of very low density lipoproteins (VLDL): triacylglycerol (TG) and apolipoprotein B (apo B) was examined in cultured hepatocytes obtained from fetal, suckling and adult rats. Hepatocytes from fetal and suckling rats synthesized and secreted TG at rates lower than that displayed by adult cells. When TG synthesis was equalized by adding oleic acid to the culture medium, fetal cells still secreted only 39% as much TG as did adult cells. To determine the basis for the apparent defect in VLDL assembly/secretion displayedmore » by fetal cells, the synthesis and secretion of (TVS)methionine-labeled apo B was quantified by immunoprecipitation. Although adult and fetal cells synthesized and secreted large molecular weight apo B at similar rates, the synthesis and secretion of small molecular weight apo B was 2-fold greater in adult cells. These data suggest that the ability to assemble/secrete VLDL triacylglycerol varies in parallel with the developmental expression of small molecular weight apo B. Furthermore, these studies show the usefulness of the cultured rat hepatocyte model for examining the ontogeny and regulation of VLDL assembly/secretion.« less

  1. Altered dynamics of Candida albicans phagocytosis by macrophages and PMNs when both phagocyte subsets are present.

    PubMed

    Rudkin, Fiona M; Bain, Judith M; Walls, Catriona; Lewis, Leanne E; Gow, Neil A R; Erwig, Lars P

    2013-10-29

    An important first line of defense against Candida albicans infections is the killing of fungal cells by professional phagocytes of the innate immune system, such as polymorphonuclear cells (PMNs) and macrophages. In this study, we employed live-cell video microscopy coupled with dynamic image analysis tools to provide insights into the complexity of C. albicans phagocytosis when macrophages and PMNs were incubated with C. albicans alone and when both phagocyte subsets were present. When C. albicans cells were incubated with only one phagocyte subtype, PMNs had a lower overall phagocytic capacity than macrophages, despite engulfing fungal cells at a higher rate once fungal cells were bound to the phagocyte surface. PMNs were more susceptible to C. albicans-mediated killing than macrophages, irrespective of the number of C. albicans cells ingested. In contrast, when both phagocyte subsets were studied in coculture, the two cell types phagocytosed and cleared C. albicans at equal rates and were equally susceptible to killing by the fungus. The increase in macrophage susceptibility to C. albicans-mediated killing was a consequence of macrophages taking up a higher proportion of hyphal cells under these conditions. In the presence of both PMNs and macrophages, C. albicans yeast cells were predominantly cleared by PMNs, which migrated at a greater speed toward fungal cells and engulfed bound cells more rapidly. These observations demonstrate that the phagocytosis of fungal pathogens depends on, and is modified by, the specific phagocyte subsets present at the site of infection. Extensive work investigating fungal cell phagocytosis by macrophages and PMNs of the innate immune system has been carried out. These studies have been informative but have examined this phenomenon only when one phagocyte subset is present. The current study employed live-cell video microscopy to break down C. albicans phagocytosis into its component parts and examine the effect of a single

  2. Adaptation of enterocytic Caco-2 cells to glucose modulates triacylglycerol-rich lipoprotein secretion through triacylglycerol targeting into the endoplasmic reticulum lumen

    PubMed Central

    Pauquai, Thomas; Bouchoux, Julien; Chateau, Danielle; Vidal, Romain; Rousset, Monique; Chambaz, Jean; Demignot, Sylvie

    2006-01-01

    Enterocytes are responsible for the absorption of dietary lipids, which involves TRL [TG (triacylglycerol)-rich lipoprotein] assembly and secretion. In the present study, we analysed the effect on TRL secretion of Caco-2 enterocyte adaptation to a differential glucose supply. We showed that TG secretion in cells adapted to a low glucose supply for 2 weeks after confluence was double that of control cells maintained in high-glucose-containing medium, whereas the level of TG synthesis remained similar in both conditions. This increased secretion resulted mainly from an enlargement of the mean size of the secreted TRL. The increased TG availability for TRL assembly and secretion was not due to an increase in the MTP (microsomal TG transfer protein) activity that is required for lipid droplet biogenesis in the ER (endoplasmic reticulum) lumen, or to the channelling of absorbed fatty acids towards the monoacylglycerol pathway for TG synthesis. Interestingly, by electron microscopy and subcellular fractionation studies, we observed, in the low glucose condition, an increase in the TG content available for lipoprotein assembly in the ER lumen, with the cytosolic/microsomal TG levels being verapamil-sensitive. Overall, we demonstrate that Caco-2 enterocytes modulate TRL secretion through TG partitioning between the cytosol and the ER lumen according to the glucose supply. Our model will help in identifying the proteins involved in the control of the balance between TRL assembly and cytosolic lipid storage. This mechanism may be a way for enterocytes to regulate TRL secretion after a meal, and thus impact on our understanding of post-prandial hypertriglyceridaemia. PMID:16393142

  3. Regulation of the yeast triacylglycerol lipases Tgl4p and Tgl5p by the presence/absence of nonpolar lipids.

    PubMed

    Klein, Isabella; Klug, Lisa; Schmidt, Claudia; Zandl, Martina; Korber, Martina; Daum, Günther; Athenstaedt, Karin

    2016-07-01

    Tgl3p, Tgl4p, and Tgl5p are the major triacylglycerol lipases of the yeast Saccharomyces cerevisiae Recently we demonstrated that properties of Tgl3p are regulated by the formation of nonpolar lipids. The present study extends these investigations to the two other yeast triacylglycerol lipases, Tgl4p and Tgl5p. We show that Tgl4p and Tgl5p, which are localized to lipid droplets in wild type, are partially retained in the endoplasmic reticulum in cells lacking triacylglycerols and localize exclusively to the endoplasmic reticulum in a mutant devoid of lipid droplets. In cells lacking steryl esters, the subcellular distribution of Tgl4p and Tgl5p is unaffected, but Tgl5p becomes unstable, whereas the stability of Tgl4p increases. In cells lacking nonpolar lipids, Tgl4p and Tgl5p lose their lipolytic activity but retain their side activity as lysophospholipid acyltransferases. To investigate the regulatory network of yeast triacylglycerol lipases in more detail, we also examined properties of Tgl3p, Tgl4p, and Tgl5p, respectively, in the absence of the other lipases. Surprisingly, lack of two lipases did not affect expression, localization, and stability of the remaining Tgl protein. These results suggest that Tgl3p, Tgl4p, and Tgl5p, although they exhibit similar functions, act as independent entities. © 2016 Klein, Klug, Schmidt, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  4. CLA supplementation and aerobic exercise lower blood triacylglycerol, but have no effect on peak oxygen uptake or cardiorespiratory fatigue thresholds.

    PubMed

    Jenkins, Nathaniel D M; Buckner, Samuel L; Cochrane, Kristen C; Bergstrom, Haley C; Goldsmith, Jacob A; Weir, Joseph P; Housh, Terry J; Cramer, Joel T

    2014-09-01

    This study examined the effects of 6 weeks of conjugated linoleic acid (CLA) supplementation and moderate aerobic exercise on peak oxygen uptake (VO2 peak), the gas exchange threshold (GET), the respiratory compensation point (RCP), and serum concentrations of cholesterol, triacylglycerol, and glucose in humans. Thirty-four untrained to moderately trained men (mean ± SD; age = 21.5 ± 2.8 years; mass = 77.2 ± 9.5 kg) completed this double-blind, placebo controlled study and were randomly assigned to either a CLA (Clarinol A-80; n = 18) or placebo (PLA; sunflower oil; n = 16) group. Prior to and following 6 weeks of aerobic training (50% VO2 peak for 30 min, twice per week) and supplementation (5.63 g of total CLA isomers [of which 2.67 g was c9, t11 and 2.67 g was t10, c12] or 7.35 g high oleic sunflower oil per day), each participant completed an incremental cycle ergometer test to exhaustion to determine their [Formula: see text] peak, GET, and RCP and fasted blood draws were performed to measure serum concentrations of cholesterol, triacylglycerol, and glucose. Serum triacylglycerol concentrations were lower (p < 0.05) in the CLA than the PLA group. For VO2 peak and glucose, there were group × time interactions (p < 0.05), however, post hoc statistical tests did not reveal any differences (p > 0.05) between the CLA and PLA groups. GET and RCP increased (p < 0.05) from pre- to post-training for both the CLA and PLA groups. Overall, these data suggested that CLA and aerobic exercise may have synergistic, blood triacylglycerol lowering effects, although CLA may be ineffective for enhancing aerobic exercise performance in conjunction with a 6-week aerobic exercise training program in college-age men.

  5. Attempted caveolae-mediated phagocytosis of surface-fixed micro-pillars by human osteoblasts.

    PubMed

    Moerke, Caroline; Mueller, Petra; Nebe, Barbara

    2016-01-01

    Cells are sensitive to their underlying micro- and nano-topography, but the complex interplay is not completely understood especially if sharp edges and ridges of stochastically modified surfaces interfere with an attached cell body. Micro-topography offers cues that evoke a large range of cell responses e.g. altered adhesion behavior and integrin expression resulting in disturbed cell functions. In this study, we analyzed why osteoblastic cells mimic the underlying geometrical micro-pillar structure (5 × 5 × 5 μm, spacing of 5 μm) with their actin cytoskeleton. Interestingly, we discovered an attempted caveolae-mediated phagocytosis of each micro-pillar beneath the cells, which was accompanied by increased intracellular reactive oxygen species (ROS) production and reduced intracellular ATP levels. This energy consuming process hampered the cells in their function as osteoblasts at the interface. The raft-dependent/caveolae-mediated phagocytic pathway is regulated by diverse cellular components including caveolin-1 (Cav-1), cholesterol, actin cytoskeleton as well as actin-binding proteins like annexin A2 (AnxA2). Our results show a new aspect of osteoblast-material interaction and give insight into how cells behave on extraordinary micro-structures. We conclude that stochastically structured implants used in orthopedic surgery should avoid any topographical heights which induce phagocytosis to prevent their successful ingrowth. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. The adaptor molecule Nck localizes the WAVE complex to promote actin polymerization during CEACAM3-mediated phagocytosis of bacteria.

    PubMed

    Pils, Stefan; Kopp, Kathrin; Peterson, Lisa; Delgado Tascón, Julia; Nyffenegger-Jann, Naja J; Hauck, Christof R

    2012-01-01

    CEACAM3 is a granulocyte receptor mediating the opsonin-independent recognition and phagocytosis of human-restricted CEACAM-binding bacteria. CEACAM3 function depends on an intracellular immunoreceptor tyrosine-based activation motif (ITAM)-like sequence that is tyrosine phosphorylated by Src family kinases upon receptor engagement. The phosphorylated ITAM-like sequence triggers GTP-loading of Rac by directly associating with the guanine nucleotide exchange factor (GEF) Vav. Rac stimulation in turn is critical for actin cytoskeleton rearrangements that generate lamellipodial protrusions and lead to bacterial uptake. In our present study we provide biochemical and microscopic evidence that the adaptor proteins Nck1 and Nck2, but not CrkL, Grb2 or SLP-76, bind to tyrosine phosphorylated CEACAM3. The association is phosphorylation-dependent and requires the Nck SH2 domain. Overexpression of the isolated Nck1 SH2 domain, RNAi-mediated knock-down of Nck1, or genetic deletion of Nck1 and Nck2 interfere with CEACAM3-mediated bacterial internalization and with the formation of lamellipodial protrusions. Nck is constitutively associated with WAVE2 and directs the actin nucleation promoting WAVE complex to tyrosine phosphorylated CEACAM3. In turn, dominant-negative WAVE2 as well as shRNA-mediated knock-down of WAVE2 or the WAVE-complex component Nap1 reduce internalization of bacteria. Our results provide novel mechanistic insight into CEACAM3-initiated phagocytosis. We suggest that the CEACAM3 ITAM-like sequence is optimized to co-ordinate a minimal set of cellular factors needed to efficiently trigger actin-based lamellipodial protrusions and rapid pathogen engulfment.

  7. Oxidatively modified phosphatidylserines on the surface of apoptotic cells are essential phagocytic ‘eat-me' signals: cleavage and inhibition of phagocytosis by Lp-PLA2

    PubMed Central

    Tyurin, V A; Balasubramanian, K; Winnica, D; Tyurina, Y Y; Vikulina, A S; He, R R; Kapralov, A A; Macphee, C H; Kagan, V E

    2014-01-01

    Diversified anionic phospholipids, phosphatidylserines (PS), externalized to the surface of apoptotic cells are universal phagocytic signals. However, the role of major PS metabolites, such as peroxidized species of PS (PSox) and lyso-PS, in the clearance of apoptotic cells has not been rigorously evaluated. Here, we demonstrate that H2O2 was equally effective in inducing apoptosis and externalization of PS in naive HL60 cells and in cells enriched with oxidizable polyunsaturated species of PS (supplemented with linoleic acid (LA)). Despite this, the uptake of LA-supplemented cells by RAW264.7 and THP-1 macrophages was more than an order of magnitude more effective than that of naive cells. A similar stimulation of phagocytosis was observed with LA-enriched HL60 cells and Jurkat cells triggered to apoptosis with staurosporine. This was due to the presence of PSox on the surface of apoptotic LA-supplemented cells (but not of naive cells). This enhanced phagocytosis was dependent on activation of the intrinsic apoptotic pathway, as no stimulation of phagocytosis occurred in LA-enriched cells challenged with Fas antibody. Incubation of apoptotic cells with lipoprotein-associated phospholipase A2 (Lp-PLA2), a secreted enzyme with high specificity towards PSox, hydrolyzed peroxidized PS species in LA-supplemented cells resulting in the suppression of phagocytosis to the levels observed for naive cells. This suppression of phagocytosis by Lp-PLA2 was blocked by a selective inhibitor of Lp-PLA2, SB-435495. Screening of possible receptor candidates revealed the ability of several PS receptors and bridging proteins to recognize both PS and PSox, albeit with diverse selectivity. We conclude that PSox is an effective phagocytic ‘eat-me' signal that participates in the engulfment of cells undergoing intrinsic apoptosis. PMID:24464221

  8. Triacylglycerol synthesis in goat mammary gland. The effect of ATP, Mg2+ and glycerol 3-phosphate on the esterification of fatty acids synthesized de novo.

    PubMed Central

    Hansen, H O; Grunnet, I; Knudsen, J

    1984-01-01

    Goat mammary-gland microsomal fraction by itself induces synthesis of medium-chain-length fatty acids by goat mammary fatty acid synthetase and incorporates short- and medium-chain fatty acids into triacylglycerol. Addition of ATP in the absence or presence of Mg2+ totally inhibits triacylglycerol synthesis from short- and medium-chain fatty acids, and severely inhibits synthesis de novo of medium-chain fatty acids. The inhibition by ATP of fatty acid synthesis and triacylglycerol synthesis de novo can be relieved by glycerol 3-phosphate. The effect of ATP could not be mimicked by the non-hydrolysable ATP analogue, adenosine 5'-[beta,gamma-methylene]triphosphate and could not be shown to be caused by inhibition of the diacylglycerol acyltransferase by a phosphorylation reaction. Possible explanations for the mechanism of the inhibition by ATP are discussed, and a hypothetical model for its action is outlined. PMID:6547605

  9. Lipoic acid improves hypertriglyceridemia by stimulating triacylglycerol clearance and downregulating liver triacylglycerol secretion

    PubMed Central

    Butler, Judy A.; Hagen, Tory M.; Moreau, Régis

    2009-01-01

    Elevated blood triacylglycerol (TG) is a significant contributing factor to the current epidemic of obesity-related health disorders, including type-2 diabetes, nonalcoholic fatty liver disease, and cardiovascular disease. The observation that mice lacking the enzyme sn-glycerol-3-phosphate acyltransferase are protected from insulin resistance suggests the possibility that the regulation of TG synthesis be a target for therapy. Five-week old Zucker Diabetic Fatty (ZDF) rats were fed a diet containing (R)-α-lipoic acid (LA, ~200 mg/kg body weight per day) for 5 weeks. LA offset the rise in blood and liver TG by inhibiting liver lipogenic gene expression (e.g. sn-glycerol-3-phosphate acyltransferase-1 and diacylglycerol O-acyltransferase-2), lowering hepatic TG secretion, and stimulating clearance of TG-rich lipoproteins. LA-induced TG lowering was not due to the anorectic properties of LA, as pair-fed rats developed hypertriglyceridemia. Livers from LA-treated rats exhibited elevated glycogen content, suggesting dietary carbohydrates were stored as glycogen rather than becoming lipogenic substrate. Although AMP-activated protein kinase (AMPK) reportedly mediates the metabolic effects of LA in rodents, no change in AMPK activity was observed, suggesting LA acted independently of this kinase. The hepatic expression of peroxisome proliferator activated receptor α (PPARα) target genes involved in fatty acid β-oxidation was either unchanged or decreased with LA, indicating a different mode of action than for fibrate drugs. Given its strong safety record, LA may have potential clinical applications for the treatment or prevention of hypertriglyceridemia and diabetic dyslipidemia. PMID:19232511

  10. Phagocytosis of Apoptotic Trophoblast Cells by Human Endometrial Endothelial Cells Induces Proinflammatory Cytokine Production

    PubMed Central

    Peng, Bing; Koga, Kaori; Cardenas, Ingrid; Aldo, Paulomi; Mor, Gil

    2011-01-01

    Problem Apoptosis is a normal constituent of trophoblast turnover in the placenta; however in some cases, this process is related to pregnancy complications such as preeclampsia. Recognition and engulfment of these apoptotic trophoblast cells is important for clearance of dying cells. The aim of this study was to show the cross talk between human endometrial endothelial cells (HEECs) and apoptotic trophoblast cells in an in vitro coculture model and its effect on cytokine production by HEECs. Method of study Fluorescent-labeled HEECs were cocultured with fluorescent-labeled apoptotic human trophoblast cells. Confocal microscopy and flowcytometry were used to show the interaction between these two types of cells. Cytokine profiles were determined using multiplex analysis. Results HEECs are capable to phagocytose apoptotic trophoblasts. This activity is inhibited by the phagocytosis inhibitor cytochalasin B. Phagocytosis of apoptotic trophoblast cells induced the secretion of the proinflammatory cytokines interleukin-6 and monocyte chemoattractant protein-1 by HEECs. Conclusion This study provides the first evidence that HEECs have an ability to phagocytose apoptotic trophoblasts. Furthermore, we demonstrated an inflammatory response of HEECs after phagocytosing the apoptotic trophoblast cells. This event may contribute to the inflammatory response in both normal pregnancy and pathologic pregnancy such as preeclampsia. PMID:20219062

  11. Characterization of the Hemocytes in Larvae of Protaetia brevitarsis seulensis: Involvement of Granulocyte-Mediated Phagocytosis

    PubMed Central

    Cho, Saeyoull

    2014-01-01

    Hemocytes are key players in the immune response against pathogens in insects. However, the hemocyte types and their functions in the white-spotted flower chafers, Protaetia brevitarsis seulensis (Kolbe), are not known. In this study, we used various microscopes, molecular probes, and flow cytometric analyses to characterize the hemocytes in P. brevitarsis seulensis. The circulating hemocytes were classified based on their size, morphology, and dye-staining properties into six types, including granulocytes, plasmatocytes, oenocytoids, spherulocytes, prohemocytes, and adipohemocytes. The percentages of circulating hemocyte types were as follows: 13% granulocytes, 20% plasmatocytes, 1% oenocytoids, 5% spherulocytes, 17% prohemocytes, and 44% adipohemocytes. Next, we identified the professional phagocytes, granulocytes, which mediate encapsulation and phagocytosis of pathogens. The granulocytes were immunologically or morphologically activated and phagocytosed potentially hazardous substances in vivo. In addition, we showed that the phagocytosis by granulocytes is associated with autophagy, and that the activation of autophagy could be an efficient way to eliminate pathogens in this system. We also observed a high accumulation of autophagic vacuoles in activated granulocytes, which altered their shape and led to autophagic cell death. Finally, the granulocytes underwent mitotic division thus maintaining their number in vivo. PMID:25083702

  12. Toll-like receptor prestimulation increases phagocytosis of Escherichia coli DH5alpha and Escherichia coli K1 strains by murine microglial cells.

    PubMed

    Ribes, Sandra; Ebert, Sandra; Czesnik, Dirk; Regen, Tommy; Zeug, Andre; Bukowski, Stephanie; Mildner, Alexander; Eiffert, Helmut; Hanisch, Uwe-Karsten; Hammerschmidt, Sven; Nau, Roland

    2009-01-01

    Meningitis and meningoencephalitis caused by Escherichia coli are associated with high rates of mortality. When an infection occurs, Toll-like receptors (TLRs) expressed by microglial cells can recognize pathogen-associated molecular patterns and activate multiple steps in the inflammatory response that coordinate the brain's local defense, such as phagocytosis of invading pathogens. An upregulation of the phagocytic ability of reactive microglia could improve the host defense in immunocompromised patients against pathogens such as E. coli. Here, murine microglial cultures were stimulated with the TLR agonists Pam(3)CSK(4) (TLR1/TLR2), lipopolysaccharide (TLR4), and CpG oligodeoxynucleotide (TLR9) for 24 h. Upon stimulation, levels of tumor necrosis factor alpha and the neutrophil chemoattractant CXCL1 were increased, indicating microglial activation. Phagocytic activity was studied after adding either E. coli DH5alpha or E. coli K1 strains. After 60 and 90 min of bacterial exposure, the number of ingested bacteria was significantly higher in cells prestimulated with TLR agonists than in unstimulated controls (P < 0.01). Addition of cytochalasin D, an inhibitor of actin polymerization, blocked >90% of phagocytosis. We also analyzed the ability of microglia to kill the ingested E. coli strains. Intracellularly surviving bacteria were quantified at different time points (90, 150, 240, and 360 min) after 90 min of phagocytosis. The number of bacteria killed intracellularly after 6 h was higher in cells primed with the different TLR agonists than in unstimulated microglia. Our data suggest that microglial stimulation by the TLR system can increase bacterial phagocytosis and killing. This approach could improve central nervous system resistance to infections in immunocompromised patients.

  13. Isolation and characterization of triacylglycerol-accumulating microorganisms which can utilize wood polysaccharide

    NASA Astrophysics Data System (ADS)

    Susanto, S. A.

    2017-05-01

    Triacylglycerol is an ester which is made of glycerol and three fatty acids. This compound is an important feedstock for biodiesel production. In this study, several strains of oleaginous bacteria were isolated from environmental sample based on their ability to grow in mineral salts medium supplemented with wood-derived sugars such as cellulose, arabinose, xylose, mannose, and galactose. The lipid accumulating bacteria were selected based on fluorescent signal from hydrophobic inclusion in the cytoplasm after incubation in selective medium containing lipophilic dye 0.5 % (w/v) nile red. The lipid content was analyzed using thin layer chromatography (TLC) and gas chromatography-mass spectrometry (GC-MS). In this study, three bacterial isolates 2HPCS1R4, 1LPCS2R2, and 1LPCS2R14 were selected among several candidates. TLC analysis of hydrophobic substance from 1LPCS2R2 and 1LPCS2R14 showed two overlapped discrete bands corresponded to triacylglycerol reference band. While 2HPCS1R4 displayed a faint band located above the reference band. GC-MS analysis confirmed that the bands consisted of fatty acid methyl esters with alkyl length varied from C12 to C17. Kinetic study showed that the fastest growing strain was 1LPCS2R2 had the highest growth rates and when grown in glucose (µ = 0.29 h-1) and xylose (µ = 0.16 h-1). In conclusion, this study has identified of prospective bacterial isolates for commercial biodiesel production.

  14. Role of serotype-specific polysaccharide in the resistance of Streptococcus mutans to phagocytosis by human polymorphonuclear leukocytes.

    PubMed

    Tsuda, H; Yamashita, Y; Toyoshima, K; Yamaguchi, N; Oho, T; Nakano, Y; Nagata, K; Koga, T

    2000-02-01

    To clarify the role of cell surface components of Streptococcus mutans in resistance to phagocytosis by human polymorphonuclear leukocytes (PMNs), several isogenic mutants of S. mutans defective in cell surface components were studied with a luminol-enhanced chemiluminescence (CL) assay, a killing assay, and a transmission electron microscope. The CL responses of human PMNs to mutant Xc11 defective in a major cell surface antigen, PAc, and mutant Xc16 defective in two surface glucosyltransferases (GTF-I and GTF-SI) were the same as the response to the wild-type strain, Xc. In contrast, mutant Xc24R, which was defective in serotype c-specific polysaccharide, induced a markedly higher CL response than the other strains. The killing assay showed that human PMNs killed more Xc24R than the parent strain and the other mutants. The transmission electron microscopic observation indicated that Xc24R cells were more internalized by human PMNs than the parental strain Xc. These results may be reflected by the fact that strain Xc24R was more phagocytosed than strain Xc. The CL response of human PMNs to a mutant defective in polysaccharide serotype e or f was similar to the response to Xc24R. Furthermore, mutants defective in serotype-specific polysaccharide were markedly more hydrophobic than the wild-type strains and the other mutants, suggesting that the hydrophilic nature of polysaccharides may protect the bacterium from phagocytosis. We conclude that the serotype-specific polysaccharide, but not the cell surface proteins on the cell surface of S. mutans, may play an important role in the resistance to phagocytosis.

  15. Role of Serotype-Specific Polysaccharide in the Resistance of Streptococcus mutans to Phagocytosis by Human Polymorphonuclear Leukocytes

    PubMed Central

    Tsuda, Hiromasa; Yamashita, Yoshihisa; Toyoshima, Kuniaki; Yamaguchi, Noboru; Oho, Takahiko; Nakano, Yoshio; Nagata, Kengo; Koga, Toshihiko

    2000-01-01

    To clarify the role of cell surface components of Streptococcus mutans in resistance to phagocytosis by human polymorphonuclear leukocytes (PMNs), several isogenic mutants of S. mutans defective in cell surface components were studied with a luminol-enhanced chemiluminescence (CL) assay, a killing assay, and a transmission electron microscope. The CL responses of human PMNs to mutant Xc11 defective in a major cell surface antigen, PAc, and mutant Xc16 defective in two surface glucosyltransferases (GTF-I and GTF-SI) were the same as the response to the wild-type strain, Xc. In contrast, mutant Xc24R, which was defective in serotype c-specific polysaccharide, induced a markedly higher CL response than the other strains. The killing assay showed that human PMNs killed more Xc24R than the parent strain and the other mutants. The transmission electron microscopic observation indicated that Xc24R cells were more internalized by human PMNs than the parental strain Xc. These results may be reflected by the fact that strain Xc24R was more phagocytosed than strain Xc. The CL response of human PMNs to a mutant defective in polysaccharide serotype e or f was similar to the response to Xc24R. Furthermore, mutants defective in serotype-specific polysaccharide were markedly more hydrophobic than the wild-type strains and the other mutants, suggesting that the hydrophilic nature of polysaccharides may protect the bacterium from phagocytosis. We conclude that the serotype-specific polysaccharide, but not the cell surface proteins on the cell surface of S. mutans, may play an important role in the resistance to phagocytosis. PMID:10639428

  16. Heparin inhibits melanosome uptake and inflammatory response coupled with phagocytosis through blocking PI3k/Akt and MEK/ERK signaling pathways in human epidermal keratinocytes.

    PubMed

    Makino-Okamura, Chieko; Niki, Yoko; Takeuchi, Seiji; Nishigori, Chikako; Declercq, Lieve; Yaroch, Daniel B; Saito, Naoaki

    2014-11-01

    To gain insight for the role of mast cell-produced heparin in the regulation of epidermal homeostasis and skin pigmentation, we have investigated the effect of heparin on melanosome uptake and proinflammatory responses in normal human epidermal keratinocytes (NHEKs). We quantified phagocytic activity of NHEKs with uptake of melanosomes or fluorescent microspheres. Heparin exhibited the inhibitory effect on keratinocyte phagocytosis through blocking PI3k/Akt and MEK/ERK signaling pathways. In fact, the heparin-treated NHEKs showed impaired activation of Akt and ERK during phagocytosis, whereas PI3k and MEK inhibitors significantly suppressed melanosome uptake by NHEKs. In addition, the inflammation marker cycloxygenase-2 (COX-2) expression and prostaglandin E2 (PGE2 ) production were induced during phagocytosis, while these effects were downregulated in the presence of heparin. Our observations suggest that heparin may play an antiphagocytic and anti-inflammation role in epidermis of human skin. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Pseudomonas aeruginosa evasion of phagocytosis is mediated by loss of swimming motility and is independent of flagellum expression.

    PubMed

    Amiel, Eyal; Lovewell, Rustin R; O'Toole, George A; Hogan, Deborah A; Berwin, Brent

    2010-07-01

    Pseudomonas aeruginosa is a pathogenic Gram-negative bacterium that causes severe opportunistic infections in immunocompromised individuals; in particular, severity of infection with P. aeruginosa positively correlates with poor prognosis in cystic fibrosis (CF) patients. Establishment of chronic infection by this pathogen is associated with downregulation of flagellar expression and of other genes that regulate P. aeruginosa motility. The current paradigm is that loss of flagellar expression enables immune evasion by the bacteria due to loss of engagement by phagocytic receptors that recognize flagellar components and loss of immune activation through flagellin-mediated Toll-like receptor (TLR) signaling. In this work, we employ bacterial and mammalian genetic approaches to demonstrate that loss of motility, not the loss of the flagellum per se, is the critical factor in the development of resistance to phagocytosis by P. aeruginosa. We demonstrate that isogenic P. aeruginosa mutants deficient in flagellar function, but retaining an intact flagellum, are highly resistant to phagocytosis by both murine and human phagocytic cells at levels comparable to those of flagellum-deficient mutants. Furthermore, we show that loss of MyD88 signaling in murine phagocytes does not recapitulate the phagocytic deficit observed for either flagellum-deficient or motility-deficient P. aeruginosa mutants. Our data demonstrate that loss of bacterial motility confers a dramatic resistance to phagocytosis that is independent of both flagellar expression and TLR signaling. These findings provide an explanation for the well-documented observation of nonmotility in clinical P. aeruginosa isolates and for how this phenotype confers upon the bacteria an advantage in the context of immune evasion.

  18. Comparison of diet-induced thermogenesis of foods containing medium- versus long-chain triacylglycerols.

    PubMed

    Kasai, Michio; Nosaka, Naohisa; Maki, Hideaki; Suzuki, Yoshie; Takeuchi, Hiroyuki; Aoyama, Toshiaki; Ohra, Atsushi; Harada, Youji; Okazaki, Mitsuko; Kondo, Kazuo

    2002-12-01

    The purpose of this study was to investigate the effect of 5-10 g of medium-chain triacylglycerols (MCT) on diet-induced thermogenesis in healthy humans. The study compared diet-induced thermogenesis after ingestion of test foods containing MCT and long-chain triacylglycerols (LCT), using a double-blind, crossover design. Eight male and eight female subjects participated in study 1 and study 2, respectively. In both studies, the LCT was a blend of rapeseed oil and soybean oil. In study 1, the liquid meals contained 10 g MCT (10M), a mixture of 5 g MCT and 5 g LCT (5M5L), and 10 g LCT (10L). In study 2, the subjects were given a meal (sandwich and clear soup) with the mayonnaise or margarine containing 5 g of MCT or LCT. Postprandial energy expenditure was measured by indirect calorimetry before and during the 6 h after ingestion of the test meals. Diet-induced thermogenesis was significantly greater after 5M5L and 10M Ingestion as compared to 10L ingestion. Ingestion of the mayonnaise or margarine containing 5 g MCT caused significantly larger diet-induced thermogenesis as compared to that of LCT. These results suggest that, in healthy humans, the intake of 5-10 g of MCT causes larger diet-induced thermogenesis than that of LCT, irrespective of the form of meal containing the MCT.

  19. Medium-chain versus long-chain triacylglycerol emulsion hydrolysis by lipoprotein lipase and hepatic lipase: Implications for the mechanisms of lipase action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deckelbaum, R.J.; Hamilton, J.A.; Butbul, E.

    1990-02-06

    To explore how enzyme affinities and enzyme activities regulate hydrolysis of water-insoluble substrates, the authors compared hydrolysis of phospholipid-stabilized emulsions of medium-chain (MCT) versus long-chain triacylglycerols (LCT). Because substrate solubility at the emulsion surface might modulate rates of hydrolysis, the ability of egg yolk phosphatidylcholine to solubilize MCT was examined by NMR spectroscopy. Chemical shift measurements showed that 11 mol % of ({sup 13}C)carbonyl enriched trioctanoin was incorporated into phospholipid vesicles as a surface component. Line widths of trioctanoin surface peaks were half that of LCT, and relaxation times, T{sub 1}, were also shorter for trioctanoin, showing greater mobility formore » MCT in phospholipid. In assessing the effects of these differences in solubility on lipolysis, they found that both purified bovine milk lipoprotein lipase and human hepatic lipase hydrolyzed MCT at rates at least 2-fold higher than for LCT. Differences in affinity were also demonstrated in mixed incubations where increasing amounts of LCT emulsion resulted in decreased hydrolysis of MCT emulsions. These results suggest that despite lower enzyme affinity for MCT emulsions, shorter chain triacylglycerols are more readily hydrolyzed by lipoprotein and hepatic lipases than long-chain triacylglycerols because of greater MCT solubility and mobility at the emulsion-water interface.« less

  20. Replacement of Retinyl Esters by Polyunsaturated Triacylglycerol Species in Lipid Droplets of Hepatic Stellate Cells during Activation

    PubMed Central

    Testerink, Nicole; Ajat, Mokrish; Houweling, Martin; Brouwers, Jos F.; Pully, Vishnu V.; van Manen, Henk-Jan; Otto, Cees; Helms, J. Bernd; Vaandrager, Arie B.

    2012-01-01

    Activation of hepatic stellate cells has been recognized as one of the first steps in liver injury and repair. During activation, hepatic stellate cells transform into myofibroblasts with concomitant loss of their lipid droplets (LDs) and production of excessive extracellular matrix. Here we aimed to obtain more insight in the dynamics and mechanism of LD loss. We have investigated the LD degradation processes in rat hepatic stellate cells in vitro with a combined approach of confocal Raman microspectroscopy and mass spectrometric analysis of lipids (lipidomics). Upon activation of the hepatic stellate cells, LDs reduce in size, but increase in number during the first 7 days, but the total volume of neutral lipids did not decrease. The LDs also migrate to cellular extensions in the first 7 days, before they disappear. In individual hepatic stellate cells. all LDs have a similar Raman spectrum, suggesting a similar lipid profile. However, Raman studies also showed that the retinyl esters are degraded more rapidly than the triacylglycerols upon activation. Lipidomic analyses confirmed that after 7 days in culture hepatic stellate cells have lost most of their retinyl esters, but not their triacylglycerols and cholesterol esters. Furthermore, we specifically observed a large increase in triacylglycerol-species containing polyunsaturated fatty acids, partly caused by an enhanced incorporation of exogenous arachidonic acid. These results reveal that lipid droplet degradation in activated hepatic stellate cells is a highly dynamic and regulated process. The rapid replacement of retinyl esters by polyunsaturated fatty acids in LDs suggests a role for both lipids or their derivatives like eicosanoids during hepatic stellate cell activation. PMID:22536341

  1. Differentiation and Glucocorticoid Regulated Apopto-Phagocytic Gene Expression Patterns in Human Macrophages. Role of Mertk in Enhanced Phagocytosis

    PubMed Central

    Zahuczky, Gábor; Kristóf, Endre; Majai, Gyöngyike; Fésüs, László

    2011-01-01

    The daily clearance of physiologically dying cells is performed safely mainly by cells in the mononuclear phagocyte system. They can recognize and engulf dying cells utilizing several cooperative mechanisms. In our study we show that the expression of a broad range of apopto-phagocytic genes is strongly up-regulated during differentiation of human monocytes to macrophages with different donor variability. The glucocorticoid dexamethasone has a profound effect on this process by selectively up-regulating six genes and down-regulating several others. The key role of the up-regulated mer tyrosine kinase (Mertk) in dexamethasone induced enhancement of phagocytosis could be demonstrated in human monocyte derived macrophages by gene silencing as well as blocking antibodies, and also in a monocyte-macrophage like cell line. However, the additional role of other glucocorticoid induced elements must be also considered since the presence of autologous serum during phagocytosis could almost completely compensate for the blocked function of Mertk. PMID:21731712

  2. Chitosan but Not Chitin Activates the Inflammasome by a Mechanism Dependent upon Phagocytosis*

    PubMed Central

    Bueter, Chelsea L.; Lee, Chrono K.; Rathinam, Vijay A. K.; Healy, Gloria J.; Taron, Christopher H.; Specht, Charles A.; Levitz, Stuart M.

    2011-01-01

    Chitin is an abundant polysaccharide found in fungal cell walls, crustacean shells, and insect exoskeletons. The immunological properties of both chitin and its deacetylated derivative chitosan are of relevance because of frequent natural exposure and their use in medical applications. Depending on the preparation studied and the end point measured, these compounds have been reported to induce allergic responses, inflammatory responses, or no response at all. We prepared highly purified chitosan and chitin and examined the capacity of these glycans to stimulate murine macrophages to release the inflammasome-associated cytokine IL-1β. We found that although chitosan was a potent NLRP3 inflammasome activator, acetylation of the chitosan to chitin resulted in a near total loss of activity. The size of the chitosan particles played an important role, with small particles eliciting the greatest activity. An inverse relationship between size and stimulatory activity was demonstrated using chitosan passed through size exclusion filters as well as with chitosan-coated beads of defined size. Partial digestion of chitosan with pepsin resulted in a larger fraction of small phagocytosable particles and more potent inflammasome activity. Inhibition of phagocytosis with cytochalasin D abolished the IL-1β stimulatory activity of chitosan, offering an explanation for why the largest particles were nearly devoid of activity. Thus, the deacetylated polysaccharide chitosan potently activates the NLRP3 inflammasome in a phagocytosis-dependent manner. In contrast, chitin is relatively inert. PMID:21862582

  3. Chitosan but not chitin activates the inflammasome by a mechanism dependent upon phagocytosis.

    PubMed

    Bueter, Chelsea L; Lee, Chrono K; Rathinam, Vijay A K; Healy, Gloria J; Taron, Christopher H; Specht, Charles A; Levitz, Stuart M

    2011-10-14

    Chitin is an abundant polysaccharide found in fungal cell walls, crustacean shells, and insect exoskeletons. The immunological properties of both chitin and its deacetylated derivative chitosan are of relevance because of frequent natural exposure and their use in medical applications. Depending on the preparation studied and the end point measured, these compounds have been reported to induce allergic responses, inflammatory responses, or no response at all. We prepared highly purified chitosan and chitin and examined the capacity of these glycans to stimulate murine macrophages to release the inflammasome-associated cytokine IL-1β. We found that although chitosan was a potent NLRP3 inflammasome activator, acetylation of the chitosan to chitin resulted in a near total loss of activity. The size of the chitosan particles played an important role, with small particles eliciting the greatest activity. An inverse relationship between size and stimulatory activity was demonstrated using chitosan passed through size exclusion filters as well as with chitosan-coated beads of defined size. Partial digestion of chitosan with pepsin resulted in a larger fraction of small phagocytosable particles and more potent inflammasome activity. Inhibition of phagocytosis with cytochalasin D abolished the IL-1β stimulatory activity of chitosan, offering an explanation for why the largest particles were nearly devoid of activity. Thus, the deacetylated polysaccharide chitosan potently activates the NLRP3 inflammasome in a phagocytosis-dependent manner. In contrast, chitin is relatively inert.

  4. The Adaptor Molecule Nck Localizes the WAVE Complex to Promote Actin Polymerization during CEACAM3-Mediated Phagocytosis of Bacteria

    PubMed Central

    Delgado Tascón, Julia; Nyffenegger-Jann, Naja J.; Hauck, Christof R.

    2012-01-01

    Background CEACAM3 is a granulocyte receptor mediating the opsonin-independent recognition and phagocytosis of human-restricted CEACAM-binding bacteria. CEACAM3 function depends on an intracellular immunoreceptor tyrosine-based activation motif (ITAM)-like sequence that is tyrosine phosphorylated by Src family kinases upon receptor engagement. The phosphorylated ITAM-like sequence triggers GTP-loading of Rac by directly associating with the guanine nucleotide exchange factor (GEF) Vav. Rac stimulation in turn is critical for actin cytoskeleton rearrangements that generate lamellipodial protrusions and lead to bacterial uptake. Principal Findings In our present study we provide biochemical and microscopic evidence that the adaptor proteins Nck1 and Nck2, but not CrkL, Grb2 or SLP-76, bind to tyrosine phosphorylated CEACAM3. The association is phosphorylation-dependent and requires the Nck SH2 domain. Overexpression of the isolated Nck1 SH2 domain, RNAi-mediated knock-down of Nck1, or genetic deletion of Nck1 and Nck2 interfere with CEACAM3-mediated bacterial internalization and with the formation of lamellipodial protrusions. Nck is constitutively associated with WAVE2 and directs the actin nucleation promoting WAVE complex to tyrosine phosphorylated CEACAM3. In turn, dominant-negative WAVE2 as well as shRNA-mediated knock-down of WAVE2 or the WAVE-complex component Nap1 reduce internalization of bacteria. Conclusions Our results provide novel mechanistic insight into CEACAM3-initiated phagocytosis. We suggest that the CEACAM3 ITAM-like sequence is optimized to co-ordinate a minimal set of cellular factors needed to efficiently trigger actin-based lamellipodial protrusions and rapid pathogen engulfment. PMID:22448228

  5. Regulation of triacylglycerol biosynthesis in embryos and microsomal preparations from the developing seeds of Cuphea lanceolata.

    PubMed

    Bafor, M; Jonsson, L; Stobart, A K; Stymne, S

    1990-11-15

    Embryos of Cuphea lanceolata have more than 80 mol% of decanoic acid ('capric acid') in their triacylglycerols, while this fatty acid is virtually absent in phosphatidylcholine (PtdCho). Seed development was complete 25-27 days after pollination, with rapid triacylglycerol deposition occurring between 9 and 24 days. PtdCho amounts increased until day 15 after pollination. Analysis of embryo lipids showed that the diacylglycerol (DAG) pool consisted of mainly long-chain molecular species, with a very small amount of mixed medium-chain/long-chain glycerols. Almost 100% of the fatty acid at position sn-2 in triacylglycerols (TAG) was decanoic acid. When equimolar mixtures of [14C]decanoic and [14C]oleic acid were fed to whole detached embryos, over half of the radioactivity in the DAG resided in [14C]oleate, whereas [14C]decanoic acid accounted for 93% of the label in the TAG. Microsomal preparations from developing embryos at the mid-stage of TAG accumulation catalysed the acylation of [14C]glycerol 3-phosphate with either decanoyl-CoA or oleoyl-CoA, resulting in the formation of phosphatidic acid (PtdOH), DAG and TAG. Very little [14C]glycerol entered PtdCho. In combined incubations, with an equimolar supply of [14C]oleoyl-CoA and [14C]decanoyl-CoA in the presence of glycerol 3-phosphate, the synthesized PtdCho species consisted to 95% of didecanoic and dioleic species. The didecanoyl-glycerols were very selectively utilized over the dioleoylglycerols in the production of TAG. Substantial amounts of [14C]oleate, but not [14C]decanoate, entered PtdCho. The microsomal preparations of developing embryos were used to assess the acyl specificities of the acyl-CoA:sn-glycerol-3-phosphate acyltransferase (GPAT, EC 2.3.1.15) and the acyl-CoA:sn-1-acyl-glycerol-3-phosphate acyltransferase (LPAAT, EC 2.3.1.51) in Cuphea lanceolata embryos. The efficiency of acyl-CoA utilization by the GPAT was in the order decanoyl = dodecanoyl greater than linoleoyl greater than myristoyl

  6. Regulation of triacylglycerol biosynthesis in embryos and microsomal preparations from the developing seeds of Cuphea lanceolata.

    PubMed Central

    Bafor, M; Jonsson, L; Stobart, A K; Stymne, S

    1990-01-01

    Embryos of Cuphea lanceolata have more than 80 mol% of decanoic acid ('capric acid') in their triacylglycerols, while this fatty acid is virtually absent in phosphatidylcholine (PtdCho). Seed development was complete 25-27 days after pollination, with rapid triacylglycerol deposition occurring between 9 and 24 days. PtdCho amounts increased until day 15 after pollination. Analysis of embryo lipids showed that the diacylglycerol (DAG) pool consisted of mainly long-chain molecular species, with a very small amount of mixed medium-chain/long-chain glycerols. Almost 100% of the fatty acid at position sn-2 in triacylglycerols (TAG) was decanoic acid. When equimolar mixtures of [14C]decanoic and [14C]oleic acid were fed to whole detached embryos, over half of the radioactivity in the DAG resided in [14C]oleate, whereas [14C]decanoic acid accounted for 93% of the label in the TAG. Microsomal preparations from developing embryos at the mid-stage of TAG accumulation catalysed the acylation of [14C]glycerol 3-phosphate with either decanoyl-CoA or oleoyl-CoA, resulting in the formation of phosphatidic acid (PtdOH), DAG and TAG. Very little [14C]glycerol entered PtdCho. In combined incubations, with an equimolar supply of [14C]oleoyl-CoA and [14C]decanoyl-CoA in the presence of glycerol 3-phosphate, the synthesized PtdCho species consisted to 95% of didecanoic and dioleic species. The didecanoyl-glycerols were very selectively utilized over the dioleoylglycerols in the production of TAG. Substantial amounts of [14C]oleate, but not [14C]decanoate, entered PtdCho. The microsomal preparations of developing embryos were used to assess the acyl specificities of the acyl-CoA:sn-glycerol-3-phosphate acyltransferase (GPAT, EC 2.3.1.15) and the acyl-CoA:sn-1-acyl-glycerol-3-phosphate acyltransferase (LPAAT, EC 2.3.1.51) in Cuphea lanceolata embryos. The efficiency of acyl-CoA utilization by the GPAT was in the order decanoyl = dodecanoyl greater than linoleoyl greater than myristoyl

  7. Target of rapamycin (TOR) plays a critical role in triacylglycerol accumulation in microalgae.

    PubMed

    Imamura, Sousuke; Kawase, Yasuko; Kobayashi, Ikki; Sone, Toshiyuki; Era, Atsuko; Miyagishima, Shin-Ya; Shimojima, Mie; Ohta, Hiroyuki; Tanaka, Kan

    2015-10-01

    Most microalgae produce triacylglycerol (TAG) under stress conditions such as nitrogen depletion, but the underlying molecular mechanism remains unclear. In this study, we focused on the role of target of rapamycin (TOR) in TAG accumulation. TOR is a serine/threonine protein kinase that is highly conserved and plays pivotal roles in nitrogen and other signaling pathways in eukaryotes. We previously constructed a rapamycin-susceptible Cyanidioschyzon merolae, a unicellular red alga, by expressing yeast FKBP12 protein to evaluate the results of TOR inhibition (Imamura et al. in Biochem Biophys Res Commun 439:264-269, 2013). By using this strain, we here report that rapamycin-induced TOR inhibition results in accumulation of cytoplasmic lipid droplets containing TAG. Transcripts for TAG synthesis-related genes, such as glycerol-3-phosphate acyltransferase and acyl-CoA:diacylglycerol acyltransferase (DGAT), were increased by rapamycin treatment. We also found that fatty acid synthase-dependent de novo fatty acid synthesis was required for the accumulation of lipid droplets. Induction of TAG and up-regulation of DGAT gene expression by rapamycin were similarly observed in the unicellular green alga, Chlamydomonas reinhardtii. These results suggest the general involvement of TOR signaling in TAG accumulation in divergent microalgae.

  8. Regulation of CRIg Expression and Phagocytosis in Human Macrophages by Arachidonate, Dexamethasone, and Cytokines

    PubMed Central

    Gorgani, Nick N.; Thathaisong, Umaporn; Mukaro, Violet R.S.; Poungpair, Ornnuthchar; Tirimacco, Amanda; Hii, Charles S.T.; Ferrante, Antonio

    2011-01-01

    Although the importance of the macrophage complement receptor immunoglobulin (CRIg) in the phagocytosis of complement opsonized bacteria and in inflammation has been established, the regulation of CRIg expression remains undefined. Because cellular activation during inflammation leads to the release of arachidonate, a stimulator of leukocyte function, we sought to determine whether arachidonate regulates CRIg expression. Adding arachidonate to maturing human macrophages and to prematured CRIg+ macrophages caused a significant decrease in the expression of cell-surface CRIg and CRIg mRNA. This effect was independent of the metabolism of arachidonate via the cyclooxygenase and lipoxygenase pathways, because it was not inhibited by the nonsteroidal anti-inflammatory drugs indomethacin and nordihydroguaiaretic acid. Studies with specific pharmacological inhibitors of arachidonate-mediated signaling pathways showed that protein kinase C was involved. Administration of dexamethasone to macrophages caused an increase in CRIg expression. Studies with proinflammatory and immunosuppressive cytokines showed that IL-10 increased, but interferon-γ, IL-4, and transforming growth factor-β1 decreased CRIg expression on macrophages. This down- and up-regulation of CRIg expression was reflected in a decrease and increase, respectively, in the phagocytosis of complement opsonized Candida albicans. These data suggest that a unique inflammatory mediator network regulates CRIg expression and point to a mechanism by which arachidonate and dexamethasone have reciprocal effects on inflammation. PMID:21741936

  9. Ratios of regioisomers of the molecular species of triacylglycerols in lesquerella (Physaria fendleri) oil estimated by mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    The ratios of regioisomers of 74 molecular species of triacylglycerols (TAG) in lesquerella oil were estimated using HPLC and the electrospray ionization mass spectrometry of the lithium adducts of TAG in the HPLC fractions of lequerella oil. The ratios of relative abundances of the fragment ions fr...

  10. Macrophage phagocytosis alters the MRI signal of ferumoxytol-labeled mesenchymal stromal cells in cartilage defects

    NASA Astrophysics Data System (ADS)

    Nejadnik, Hossein; Lenkov, Olga; Gassert, Florian; Fretwell, Deborah; Lam, Isaac; Daldrup-Link, Heike E.

    2016-05-01

    Human mesenchymal stem cells (hMSCs) are a promising tool for cartilage regeneration in arthritic joints. hMSC labeling with iron oxide nanoparticles enables non-invasive in vivo monitoring of transplanted cells in cartilage defects with MR imaging. Since graft failure leads to macrophage phagocytosis of apoptotic cells, we evaluated in vitro and in vivo whether nanoparticle-labeled hMSCs show distinct MR signal characteristics before and after phagocytosis by macrophages. We found that apoptotic nanoparticle-labeled hMSCs were phagocytosed by macrophages while viable nanoparticle-labeled hMSCs were not. Serial MRI scans of hMSC transplants in arthritic joints of recipient rats showed that the iron signal of apoptotic, nanoparticle-labeled hMSCs engulfed by macrophages disappeared faster compared to viable hMSCs. This corresponded to poor cartilage repair outcomes of the apoptotic hMSC transplants. Therefore, rapid decline of iron MRI signal at the transplant site can indicate cell death and predict incomplete defect repair weeks later. Currently, hMSC graft failure can be only diagnosed by lack of cartilage defect repair several months after cell transplantation. The described imaging signs can diagnose hMSC transplant failure more readily, which could enable timely re-interventions and avoid unnecessary follow up studies of lost transplants.

  11. Macrophage phagocytosis alters the MRI signal of ferumoxytol-labeled mesenchymal stromal cells in cartilage defects.

    PubMed

    Nejadnik, Hossein; Lenkov, Olga; Gassert, Florian; Fretwell, Deborah; Lam, Isaac; Daldrup-Link, Heike E

    2016-05-13

    Human mesenchymal stem cells (hMSCs) are a promising tool for cartilage regeneration in arthritic joints. hMSC labeling with iron oxide nanoparticles enables non-invasive in vivo monitoring of transplanted cells in cartilage defects with MR imaging. Since graft failure leads to macrophage phagocytosis of apoptotic cells, we evaluated in vitro and in vivo whether nanoparticle-labeled hMSCs show distinct MR signal characteristics before and after phagocytosis by macrophages. We found that apoptotic nanoparticle-labeled hMSCs were phagocytosed by macrophages while viable nanoparticle-labeled hMSCs were not. Serial MRI scans of hMSC transplants in arthritic joints of recipient rats showed that the iron signal of apoptotic, nanoparticle-labeled hMSCs engulfed by macrophages disappeared faster compared to viable hMSCs. This corresponded to poor cartilage repair outcomes of the apoptotic hMSC transplants. Therefore, rapid decline of iron MRI signal at the transplant site can indicate cell death and predict incomplete defect repair weeks later. Currently, hMSC graft failure can be only diagnosed by lack of cartilage defect repair several months after cell transplantation. The described imaging signs can diagnose hMSC transplant failure more readily, which could enable timely re-interventions and avoid unnecessary follow up studies of lost transplants.

  12. Pseudomonas aeruginosa Evasion of Phagocytosis Is Mediated by Loss of Swimming Motility and Is Independent of Flagellum Expression▿ †

    PubMed Central

    Amiel, Eyal; Lovewell, Rustin R.; O'Toole, George A.; Hogan, Deborah A.; Berwin, Brent

    2010-01-01

    Pseudomonas aeruginosa is a pathogenic Gram-negative bacterium that causes severe opportunistic infections in immunocompromised individuals; in particular, severity of infection with P. aeruginosa positively correlates with poor prognosis in cystic fibrosis (CF) patients. Establishment of chronic infection by this pathogen is associated with downregulation of flagellar expression and of other genes that regulate P. aeruginosa motility. The current paradigm is that loss of flagellar expression enables immune evasion by the bacteria due to loss of engagement by phagocytic receptors that recognize flagellar components and loss of immune activation through flagellin-mediated Toll-like receptor (TLR) signaling. In this work, we employ bacterial and mammalian genetic approaches to demonstrate that loss of motility, not the loss of the flagellum per se, is the critical factor in the development of resistance to phagocytosis by P. aeruginosa. We demonstrate that isogenic P. aeruginosa mutants deficient in flagellar function, but retaining an intact flagellum, are highly resistant to phagocytosis by both murine and human phagocytic cells at levels comparable to those of flagellum-deficient mutants. Furthermore, we show that loss of MyD88 signaling in murine phagocytes does not recapitulate the phagocytic deficit observed for either flagellum-deficient or motility-deficient P. aeruginosa mutants. Our data demonstrate that loss of bacterial motility confers a dramatic resistance to phagocytosis that is independent of both flagellar expression and TLR signaling. These findings provide an explanation for the well-documented observation of nonmotility in clinical P. aeruginosa isolates and for how this phenotype confers upon the bacteria an advantage in the context of immune evasion. PMID:20457788

  13. Quantification of the molecular species of diacylglycerols,triacylglycerols and tetraacylglycerols in lesquerella (Physaria fendleri) oil by HPLC and MS

    USDA-ARS?s Scientific Manuscript database

    Ten diacylglycerols (DAG), 74 triacylglycerols (TAG) and 13 tetraacylglycerols in the seed oil of Physaria fendleri were recently identified by HPLC and MS. These acylglycerols (AG) were quantified by HPLC with evaporative light scattering detector and electrospray ionization mass spectrometry of th...

  14. LC3-associated phagocytosis initiated by integrin ITGAM-ITGB2/Mac-1 enhances immunity to Listeria monocytogenes.

    PubMed

    Herb, Marc; Gluschko, Alexander; Schramm, Michael

    2018-06-20

    The macroautophagic/autophagic machinery cannot only target cell-endogenous components but also intracellular pathogenic bacteria such as Listeria monocytogenes. Listeria are targeted both by canonical autophagy and by a noncanonical form of autophagy referred to as LC3-associated phagocytosis (LAP). The molecular mechanisms involved and whether these processes contribute to anti-listerial immunity or rather provide Listeria with a replicative niche for persistent infection, however, remained unknown. Recently, using an in vivo mouse infection model, we have been able to demonstrate that Listeria in tissue macrophages are targeted exclusively by LAP. Furthermore, our data show that LAP is required for killing of Listeria by macrophages and thereby contributes to anti-listerial immunity of mice, whereas canonical autophagy is completely dispensable. Moreover, we have elucidated the molecular mechanisms that trigger LAP of Listeria and identified the integrin ITGAM-ITGB2/Mac-1/CR3/integrin α M ß 2 as the receptor that initiates LAP in response to Listeria infection.

  15. Thematic review series: glycerolipids. DGAT enzymes and triacylglycerol biosynthesis.

    PubMed

    Yen, Chi-Liang Eric; Stone, Scot J; Koliwad, Suneil; Harris, Charles; Farese, Robert V

    2008-11-01

    Triacylglycerols (triglycerides) (TGs) are the major storage molecules of metabolic energy and FAs in most living organisms. Excessive accumulation of TGs, however, is associated with human diseases, such as obesity, diabetes mellitus, and steatohepatitis. The final and the only committed step in the biosynthesis of TGs is catalyzed by acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes. The genes encoding two DGAT enzymes, DGAT1 and DGAT2, were identified in the past decade, and the use of molecular tools, including mice deficient in either enzyme, has shed light on their functions. Although DGAT enzymes are involved in TG synthesis, they have distinct protein sequences and differ in their biochemical, cellular, and physiological functions. Both enzymes may be useful as therapeutic targets for diseases. Here we review the current knowledge of DGAT enzymes, focusing on new advances since the cloning of their genes, including possible roles in human health and diseases.

  16. An Energy-Independent Pro-longevity Function of Triacylglycerol in Yeast

    PubMed Central

    Hall, Kevin W.; Deng, Xiexiong; Li, Pan; Benning, Christoph; Williams, Barry L.; Kuo, Min-Hao

    2016-01-01

    Intracellular triacylglycerol (TAG) is a ubiquitous energy storage lipid also involved in lipid homeostasis and signaling. Comparatively, little is known about TAG’s role in other cellular functions. Here we show a pro-longevity function of TAG in the budding yeast Saccharomyces cerevisiae. In yeast strains derived from natural and laboratory environments a correlation between high levels of TAG and longer chronological lifespan was observed. Increased TAG abundance through the deletion of TAG lipases prolonged chronological lifespan of laboratory strains, while diminishing TAG biosynthesis shortened lifespan without apparently affecting vegetative growth. TAG-mediated lifespan extension was independent of several other known stress response factors involved in chronological aging. Because both lifespan regulation and TAG metabolism are conserved, this cellular pro-longevity function of TAG may extend to other organisms. PMID:26907989

  17. Phagocytosis-inspired behaviour in synthetic protocell communities of compartmentalized colloidal objects

    NASA Astrophysics Data System (ADS)

    Rodríguez-Arco, Laura; Li, Mei; Mann, Stephen

    2017-08-01

    The spontaneous assembly of micro-compartmentalized colloidal objects capable of controlled interactions offers a step towards rudimentary forms of collective behaviour in communities of artificial cell-like entities (synthetic protocells). Here we report a primitive form of artificial phagocytosis in a binary community of synthetic protocells in which multiple silica colloidosomes are selectively ingested by self-propelled magnetic Pickering emulsion (MPE) droplets comprising particle-free fatty acid-stabilized apertures. Engulfment of the colloidosomes enables selective delivery and release of water-soluble payloads, and can be coupled to enzyme activity within the MPE droplets. Our results highlight opportunities for the development of new materials based on consortia of colloidal objects, and provide a novel microscale engineering approach to inducing higher-order behaviour in mixed populations of synthetic protocells.

  18. Correlation of Increased Metabolic Activity, Resistance to Infection, Enhanced Phagocytosis, and Inhibition of Bacterial Growth by Macrophages from Listeria- and BCG-Infected Mice

    PubMed Central

    Ratzan, Kenneth R.; Musher, Daniel M.; Keusch, Gerald T.; Weinstein, Louis

    1972-01-01

    Macrophages from mice infected with facultative intracellular organisms such as Listeria monocytogenes and BCG have been shown to resist infection by antigenically unrelated intracellular bacterial parasites. This study compares phagocytosis, bacterial growth inhibition, and oxidation of glucose by macrophages from normal mice, mice infected with listeria or BCG, or mice immunized with killed listeria in incomplete Freund's adjuvant. Macrophages from listeria- and BCG-infected mice ingested more listeria; 67 and 57%, respectively, had three or more cell-associated bacteria versus 22% of controls (P < 0.001). Peritoneal macrophages from listeria- and BCG-infected animals significantly (P < 0.001 covariance analysis) inhibited growth of listeria in suspension, whereas control macrophages had no such inhibitory effect. The rate of oxidation of glucose-1-14C was higher in macrophages from listeria- and BCG-infected mice than from either uninfected animals or those immunized with killed listeria. During phagocytosis of killed or live bacteria, or latex particles, the rate of glucose oxidation was increased (P < 0.01). These data suggest that the cellular immunity after infection by an intracellular organism is associated with an increase in metabolic activity of macrophages, namely, an increase in the rate of glucose oxidation resulting in enhancement of phagocytosis and killing. PMID:4629124

  19. Role of glycerol 3-phosphate and glycerophosphate acyltransferase in the nutritional control of hepatic triacylglycerol synthesis

    PubMed Central

    Declercq, Peter E.; Debeer, Luc J.; Mannaerts, Guy P.

    1982-01-01

    1. Glycerol 3-phosphate content of isolated hepatocytes from starved rats and of glycogen-depleted hepatocytes from fed rats was low and severely limited triacylglycerol synthesis. 2. Raising the glycerol 3-phosphate content by addition of precursors to the cells resulted in a hyperbolic-like relationship between triacylglycerol synthesis and cellular glycerol 3-phosphate content. Statistical analysis of the curves showed no significant differences between the nutritional states either at saturating or at subsaturating glycerol 3-phosphate content. 3. Vmax. of glycerophosphate acyltransferase measured in homogenized hepatocytes was decreased by 30–40% in starvation. There was no change in apparent Km for glycerol 3-phosphate. Since at saturating glycerol 3-phosphate content esterification rates in hepatocytes of both nutritional states were identical, the enzyme is not limiting esterification under this condition. 4. At subsaturating glycerol 3-phosphate content the flux through glycerophosphate acyltransferase necessarily limits esterification. Therefore one would expect a decrease in esterification in starvation under this condition. This was the case when triacylglycerol synthesis was plotted against intracellular glycerol 3-phosphate concentration, calculated from the cellular glycerol 3-phosphate content and the intracellular water space, which was smaller in hepatocytes from starved rats. 5. The data obtained in hepatocytes were extrapolated to the intact liver by using the number of parenchymal cells per g of liver as determined from marker-enzyme analysis and the liver weight per 100g body weight. The extrapolation suggested that glycerol 3-phosphate is limiting esterification in vivo for contents below 0.3–0.4 and 0.5–0.65μmol/g for livers from fed and starved animals respectively. Also for a given fatty acid load and a glycerol 3-phosphate content below 0.3μmol/g the liver may esterify less in the starved state. However, at the glycerol 3

  20. Flow cytometric quantitation of phagocytosis in heparinized complete blood with latex particles and Candida albicans.

    PubMed

    Egido, J M; Viñuelas, J

    1997-01-01

    We report a rapid method for the flow cytometric quantitation of phagocytosis in heparinized complete peripheral blood (HCPB), using commercially available phycoerythrin-conjugated latex particles of 1 micron diameter. The method is faster and shows greater reproducibility than Bjerknes' (1984) standard technique using propidium iodide-stained Candida albicans, conventionally applied to the leukocytic layer of peripheral blood but here modified for HCPB. We also report a modification of Bjerknes' Intracellular Killing Test to allow its application to HCPB.

  1. Dietary carbohydrates and triacylglycerol metabolism.

    PubMed

    Roche, H M

    1999-02-01

    There is a growing body of scientific evidence which demonstrates that plasma triacylglycerol (TAG) concentration, especially in the postprandial state, is an important risk factor in relation to the development of CHD. Postprandial hypertriacylglycerolaemia is associated with a number of adverse metabolic risk factors, including the preponderance of small dense LDL, low HDL-cholesterol concentrations and elevated factor VII activity. Traditionally, a low-fat high-carbohydrate diet was used to prevent CHD because it effectively reduces plasma cholesterol concentrations, but this dietary regimen increases plasma TAG concentrations and reduces HDL-cholesterol concentrations. There is substantial epidemiological evidence which demonstrates that high plasma TAG and low plasma HDL concentrations are associated with an increased risk of CHD. Thus, there is reason for concern that the adverse effects of low-fat high-carbohydrate diets on TAG and HDL may counteract or negate the beneficial effect of reducing LDL-cholesterol concentrations. Although there have been no prospective studies to investigate whether reduced fat intake has an adverse effect on CHD, there is strong epidemiological evidence that reducing total fat intake is not protective against CHD. On the other hand, high-fat diets predispose to obesity, and central obesity adversely affects TAG metabolism. There is substantial evidence that in free-living situations low-fat high-carbohydrate diets lead to weight loss, which in turn will correct insulin resistance and plasma TAG metabolism. Clearly there is a need for prospective studies to resolve the issue as to whether low-fat high-carbohydrate diets play an adverse or beneficial role in relation to the development of CHD.

  2. Using an improved phagocytosis assay to evaluate the effect of HIV on specific antibodies to pregnancy-associated malaria.

    PubMed

    Ataíde, Ricardo; Hasang, Wina; Wilson, Danny W; Beeson, James G; Mwapasa, Victor; Molyneux, Malcolm E; Meshnick, Steven R; Rogerson, Stephen J

    2010-05-25

    Pregnant women residing in malaria endemic areas are highly susceptible to Plasmodium falciparum malaria, particularly during their first pregnancy, resulting in low birth weight babies and maternal anaemia. This susceptibility is associated with placental sequestration of parasitised red blood cells expressing pregnancy-specific variant surface antigens. Acquisition of antibodies against these variant surface antigens may protect women and their offspring. Functions of such antibodies may include prevention of placental sequestration or opsonisation of parasitised cells for phagocytic clearance. Here we report the development and optimisation of a new high-throughput flow cytometry-based phagocytosis assay using undifferentiated Thp-1 cells to quantitate the amount of opsonizing antibody in patient sera, and apply this assay to measure the impact of HIV on the levels of antibodies to a pregnancy malaria-associated parasite line in a cohort of Malawian primigravid women. The assay showed high reproducibility, with inter-experimental correlation of r(2) = 0.99. In primigravid women, concurrent malaria infection was associated with significantly increased antibodies, whereas HIV decreased the ability to acquire opsonising antibodies (Mann-Whitney ranksum: p = 0.013). This decrease was correlated with HIV-induced immunosuppression, with women with less than 350 x 10(6) CD4+ T- cells/L having less opsonising antibodies (coef: -11.95,P = 0.002). Levels of antibodies were not associated with protection from low birth weight or anaemia. This flow cytometry-based phagocytosis assay proved to be efficient and accurate for the measurement of Fc-receptor mediated phagocytosis-inducing antibodies in large cohorts. HIV was found to affect mainly the acquisition of antibodies to pregnancy-specific malaria in primigravidae. Further studies of the relationship between opsonising antibodies to malaria in pregnancy and HIV are indicated.

  3. Identification of a putative triacylglycerol lipase from papaya latex by functional proteomics.

    PubMed

    Dhouib, R; Laroche-Traineau, J; Shaha, R; Lapaillerie, D; Solier, E; Rualès, J; Pina, M; Villeneuve, P; Carrière, F; Bonneu, M; Arondel, V

    2011-01-01

    Latex from Caricaceae has been known since 1925 to contain strong lipase activity. However, attempts to purify and identify the enzyme were not successful, mainly because of the lack of solubility of the enzyme. Here, we describe the characterization of lipase activity of the latex of Vasconcellea heilbornii and the identification of a putative homologous lipase from Carica papaya. Triacylglycerol lipase activity was enriched 74-fold from crude latex of Vasconcellea heilbornii to a specific activity (SA) of 57 μmol·min(-1)·mg(-1) on long-chain triacylglycerol (olive oil). The extract was also active on trioctanoin (SA = 655 μmol·min(-1)·mg(-1) ), tributyrin (SA = 1107 μmol·min(-1)·mg(-1) ) and phosphatidylcholine (SA = 923 μmol·min(-1)·mg(-1) ). The optimum pH ranged from 8.0 to 9.0. The protein content of the insoluble fraction of latex was analyzed by electrophoresis followed by mass spectrometry, and 28 different proteins were identified. The protein fraction was incubated with the lipase inhibitor [(14) C]tetrahydrolipstatin, and a 45 kDa protein radiolabeled by the inhibitor was identified as being a putative lipase. A C. papaya cDNA encoding a 55 kDa protein was further cloned, and its deduced sequence had 83.7% similarity with peptides from the 45 kDa protein, with a coverage of 25.6%. The protein encoded by this cDNA had 35% sequence identity and 51% similarity to castor bean acid lipase, suggesting that it is the lipase responsible for the important lipolytic activities detected in papaya latex. © 2010 The Authors Journal compilation © 2010 FEBS.

  4. Rapid Quantification of Low-Viscosity Acetyl-Triacylglycerols Using Electrospray Ionization Mass Spectrometry.

    PubMed

    Bansal, Sunil; Durrett, Timothy P

    2016-09-01

    Acetyl-triacylglycerols (acetyl-TAG) possess an sn-3 acetate group, which confers useful chemical and physical properties to these unusual triacylglycerols (TAG). Current methods for quantification of acetyl-TAG are time consuming and do not provide any information on the molecular species profile. Electrospray ionization mass spectrometry (ESI-MS)-based methods can overcome these drawbacks. However, the ESI-MS signal intensity for TAG depends on the aliphatic chain length and unsaturation index of the molecule. Therefore response factors for different molecular species need to be determined before any quantification. The effects of the chain length and the number of double-bonds of the sn-1/2 acyl groups on the signal intensity for the neutral loss of short chain length sn-3 groups were quantified using a series of synthesized sn-3 specific structured TAG. The signal intensity for the neutral loss of the sn-3 acyl group was found to negatively correlated with the aliphatic chain length and unsaturation index of the sn-1/2 acyl groups. The signal intensity of the neutral loss of the sn-3 acyl group was also negatively correlated with the size of that chain. Further, the position of the group undergoing neutral loss was also important, with the signal from an sn-2 acyl group much lower than that from one located at sn-3. Response factors obtained from these analyses were used to develop a method for the absolute quantification of acetyl-TAG. The increased sensitivity of this ESI-MS-based approach allowed successful quantification of acetyl-TAG in various biological settings, including the products of in vitro enzyme activity assays.

  5. Cross-talk between miR-471-5p and autophagy component proteins regulates LC3-associated phagocytosis (LAP) of apoptotic germ cells.

    PubMed

    Panneerdoss, Subbarayalu; Viswanadhapalli, Suryavathi; Abdelfattah, Nourhan; Onyeagucha, Benjamin C; Timilsina, Santosh; Mohammad, Tabrez A; Chen, Yidong; Drake, Michael; Vuori, Kristiina; Kumar, T Rajendra; Rao, Manjeet K

    2017-09-19

    Phagocytic clearance of apoptotic germ cells by Sertoli cells is vital for germ cell development and differentiation. Here, using a tissue-specific miRNA transgenic mouse model, we show that interaction between miR-471-5p and autophagy member proteins regulates clearance of apoptotic germ cells via LC3-associated phagocytosis (LAP). Transgenic mice expressing miR-471-5p in Sertoli cells show increased germ cell apoptosis and compromised male fertility. Those effects are due to defective engulfment and impaired LAP-mediated clearance of apoptotic germ cells as miR-471-5p transgenic mice show lower levels of Dock180, LC3, Atg12, Becn1, Rab5 and Rubicon in Sertoli cells. Our results reveal that Dock180 interacts with autophagy member proteins to constitute a functional LC3-dependent phagocytic complex. We find that androgen regulates Sertoli cell phagocytosis by controlling expression of miR-471-5p and its target proteins. These findings suggest that recruitment of autophagy machinery is essential for efficient clearance of apoptotic germ cells by Sertoli cells using LAP.Although phagocytic clearance of apoptotic germ cells by Sertoli cells is essential for spermatogenesis, little of the mechanism is known. Here the authors show that Sertoli cells employ LC3-associated phagocytosis (LAP) by recruiting autophagy member proteins to clear apoptotic germ cells.

  6. Effect of sex and dietary fat intake on the fatty acid composition of phospholipids and triacylglycerol in rat heart

    PubMed Central

    Slater-Jefferies, Joanne L.; Hoile, Samuel P.; Lillycrop, Karen A.; Townsend, Paul A.; Hanson, Mark A.; Burdge, Graham C.

    2010-01-01

    Variations in the fatty acid composition of lipids in the heart alter its function and susceptibility to ischaemic injury. We investigated the effect of sex and dietary fat intake on the fatty acid composition of phospholipids and triacylglycerol in rat heart. Rats were fed either 40 or 100 g/kg fat (9:1 lard:soybean oil) from weaning until day 105. There were significant interactive effects of sex and fat intake on the proportions of fatty acids in heart phospholipids, dependent on phospholipid classes. 20:4n-6, but not 22:6n-3, was higher in phospholipids in females than males fed a low, but not a high, fat diet. There was no effect of sex on the composition of triacylglycerol. These findings suggest that sex is an important factor in determining the incorporation of dietary fatty acids into cardiac lipids. This may have implications for sex differences in susceptibility to heart disease. PMID:20719489

  7. Production of Structured Triacylglycerols Containing Palmitic Acids at sn-2 Position and Docosahexaenoic Acids at sn-1, 3 Positions.

    PubMed

    Liu, Yanjun; Guo, Yongli; Sun, Zhaomin; Jie, Xu; Li, Zhaojie; Wang, Jingfeng; Wang, Yuming; Xue, Changhu

    2015-01-01

    Docosahexaenoic acid supplementation has been shown well-established health benefits that justify their use as functional ingredients in healthy foods and nutraceutical products. Structured triacylglycerols rich in 1,3-docosahexenoyl-2-palmitoyl-sn-glycerol were produced from algal oil (Schizochytrium sp) which was prepared by a two-step process. Novozym 435 lipase was used to produce tripalmitin. Tripalmitin was then used to produce the final structured triacylglycerol (STAG) through interesterification reactions using Lipozyme RM IM. The optimum conditions for the enzymatic reaction were a mole ratio of tripalmitin/fatty acid ethyl esters 1:9, 60°C, 10% enzyme load (wt % of substrates), 10 h; the enzymatic product contained 51.6% palmitic acid (PA), 30.13% docosahexaenoic acid (DHA, C22:6 n-3) and 5.33% docosapentanoic acid (DPA, C22:5 n-3), 12.15% oleic acid (OLA). This STAG can be used as a functional ingredient in dietary supplementation to provide the benefits of DHA.

  8. A novel assay of DGAT activity based on high temperature GC/MS of triacylglycerol.

    PubMed

    Greer, Michael S; Zhou, Ting; Weselake, Randall J

    2014-08-01

    Diacylglycerol acyltransferase (DGAT) catalyzes the final step in the acyl-CoA-dependent biosynthesis of triacylglycerol (TAG), a high-energy compound composed of three fatty acids esterified to a glycerol backbone. In vitro DGAT assays, which are usually conducted with radiolabeled substrate using microsomal fractions, have been useful in identifying compounds and genetic modifications that affect DGAT activity. Here, we describe a high-temperature gas chromatography (GC)/mass spectrometry (MS)-based method for monitoring molecular species of TAG produced by the catalytic action of microsomal DGAT. This method circumvents the need for radiolabeled or modified substrates, and only requires a simple lipid extraction prior to GC. The utility of the method is demonstrated using a recombinant type-1 Brassica napus DGAT produced in a strain of Saccharomyces cerevisae that is deficient in TAG synthesis. The GC/MS-based assay of DGAT activity was strongly correlated with the typical in vitro assay of the enzyme using [1-(14)C] acyl-CoA as an acyl donor. In addition to determining DGAT activity, the method is also useful for determining substrate specificity and selectivity properties of the enzyme.

  9. Effect of Penicillium mycotoxins on the cytokine gene expression, reactive oxygen species production, and phagocytosis of bovine macrophage (BoMacs) function.

    PubMed

    Oh, Se-Young; Mead, Philip J; Sharma, Bhawani S; Quinton, V Margaret; Boermans, Herman J; Smith, Trevor K; Swamy, H V L N; Karrow, Niel A

    2015-12-25

    Bovine macrophages (BoMacs) were exposed to the following Penicillium mycotoxins (PM): citrinin (CIT), ochratoxin A (OTA), patulin (PAT), mycophenolic acid (MPA) and penicillic acid (PA). PM exposure at the concentration that inhibits proliferation by 25% (IC25) differentially for 24h altered the gene expression of various cytokines. OTA significantly induced IL-1α expression (p<0.05), while the expression of IL-6 was suppressed (p<0.01). MPA significantly induced the expression of IL-1α (p<0.05) and reduced the expression of IL-12α (p<0.01) and IL-10 (p<0.01). PAT significantly suppressed the expression of IL-23 (p<0.01), IL-10 (p<0.05) and TGF-β (p<0.05). Some PMs also affected reactive oxygen species (ROS) and phagocytosis of Mycobacterium avium ssp. Paratuberculosis (MAP) at higher concentrations. PAT and PA for example, significantly decreased the percent phagocytosis of MAP at 5.0 (p<0.01) and 15.6 μM (p<0.01), respectively, but only PA significantly suppressed PAM-3-stimulated ROS production at 62.5 (p<0.05) and 250.0 μM (p<0.01). OTA significantly increased the percent phagocytosis of MAP at 6.3 (p<0.05) and 12.5 μM (p<0.01). These findings suggest that exposure to sub-lethal concentrations of PMs can affect macrophage function, which could affect immunoregulation and innate disease resistance to pathogens. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Structured triacylglycerol containing behenic and oleic acids suppresses triacylglycerol absorption and prevents obesity in rats.

    PubMed

    Kojima, Makiko; Tachibana, Nobuhiko; Yamahira, Takashi; Seino, Satoshi; Izumisawa, Ayako; Sagi, Nobuo; Arishima, Toshiharu; Kohno, Mitsutaka; Takamatsu, Kiyoharu; Hirotsuka, Motohiko; Ikeda, Ikuo

    2010-07-24

    Dietary 1(3)-behenoyl-2,3(1)-dioleoyl-rac-glycerol (BOO) has been reported to inhibit pancreatic lipase activity in vitro and suppress postprandial hypertriacylglycerolemia in humans. In the present study, the anti-obesity activities of BOO and its inhibitory effects on lymphatic triacylglycerol (TAG) absorption were investigated in rats. In Experiment 1, rats were fed either BOO or soybean oil (SO) diet for 6 weeks. In the BOO diet, 20% of SO was replaced with an experimental oil rich in BOO. In Experiments 2 and 3, rats cannulated in the thoracic duct were administered an emulsions containing trioleoylglycerol (OOO) or an oil mixture (OOO:BOO, 9:1). Tri[1-14C]oleoylglycerol (14C-OOO) was added to the emulsions administered in Experiment 3. No observable differences were detected in food intake or body weight gain between the BOO and SO groups in Experiment 1. Plasma and liver TAG concentrations and visceral fat weights were significantly lower in the BOO group than in the SO group. The apparent absorption rate of fat was significantly lower in the BOO group than in the SO group. In Experiment 2, the lymphatic recovery of oleic and behenic acids was significantly lower at 5 and 6 h after BOO administration than after OOO administration. In Experiment 3, the lymphatic recovery of 14C-OOO was significantly lower at 5 and 6 h after BOO administration than after OOO administration. These results suggest that BOO prevents deposition of visceral fat and hepatic TAG by lowering and delaying intestinal absorption of TAG.

  11. Cromolyn Reduces Levels of the Alzheimer's Disease-Associated Amyloid β-Protein by Promoting Microglial Phagocytosis.

    PubMed

    Zhang, Can; Griciuc, Ana; Hudry, Eloise; Wan, Yu; Quinti, Luisa; Ward, Joseph; Forte, Angela M; Shen, Xunuo; Ran, ChongZhao; Elmaleh, David R; Tanzi, Rudolph E

    2018-01-18

    Amyloid-beta protein (Aβ) deposition is a pathological hallmark of Alzheimer's disease (AD). Aβ deposition triggers both pro-neuroinflammatory microglial activation and neurofibrillary tangle formation. Cromolyn sodium is an asthma therapeutic agent previously shown to reduce Aβ levels in transgenic AD mouse brains after one-week of treatment. Here, we further explored these effects as well as the mechanism of action of cromolyn, alone, and in combination with ibuprofen in APP Swedish -expressing Tg2576 mice. Mice were treated for 3 months starting at 5 months of age, when the earliest stages of β-amyloid deposition begin. Cromolyn, alone, or in combination with ibuprofen, almost completely abolished longer insoluble Aβ species, i.e. Aβ40 and Aβ42, but increased insoluble Aβ38 levels. In addition to its anti-aggregation effects on Aβ, cromolyn, alone, or plus ibuprofen, but not ibuprofen alone, increased microglial recruitment to, and phagocytosis of β-amyloid deposits in AD mice. Cromolyn also promoted Aβ42 uptake in microglial cell-based assays. Collectively, our data reveal robust effects of cromolyn, alone, or in combination with ibuprofen, in reducing aggregation-prone Aβ levels and inducing a neuroprotective microglial activation state favoring Aβ phagocytosis versus a pro-neuroinflammatory state. These findings support the use of cromolyn, alone, or with ibuprofen, as a potential AD therapeutic.

  12. On the biogenesis of lipid bodies in ancient eukaryotes: synthesis of triacylglycerols by a Toxoplasma DGAT1-related enzyme.

    PubMed

    Quittnat, Friederike; Nishikawa, Yoshifumi; Stedman, Timothy T; Voelker, Dennis R; Choi, Jae-Yeon; Zahn, Matthew M; Murphy, Robert C; Barkley, Robert M; Pypaert, Marc; Joiner, Keith A; Coppens, Isabelle

    2004-11-01

    In mammalian cells, the main stored neutral lipids are triacylglycerol and cholesteryl esters, which are produced by two related enzymes, acyl-CoA:diacylglycerol acyltransferase (DGAT) and acyl-CoA:cholesterol acyltransferase (ACAT), respectively. Very little is known about the metabolism, intracellular storage and function of neutral lipids in many pathogenic lower eukaryotes. In this paper, we have characterized the activity of an important triacylglycerol synthetic enzyme in the protozoan Toxoplasma gondii. A full-length cDNA and gene encoding a T. gondii DGAT1-related enzyme were identified and designated TgDGAT1. The gene is composed of 15 exons and 14 introns, and encodes a protein with a predicted M(r) 63.5kDa, containing signature motifs characteristic of the DGAT1 family. The native protein migrates at 44kDa under reducing conditions. TgDGAT1 is an integral membrane protein localized to the parasite cortical and perinuclear endoplasmic reticulum, with the C-terminus oriented to the lumen of the organelle. When a Saccharomyces cerevisiae mutant strain lacking neutral lipid production is transformed with TgDGAT1 cDNA, a significant DGAT activity is reconstituted, resulting in triacylglycerol synthesis and biogenesis of cytosolic lipid inclusions, resembling lipid bodies in T. gondii. No production of steryl esters is observed upon TgDGAT1 expression in yeast. In contrast to human DGAT1 lacking fatty acid specificity, TgDGAT1 preferentially incorporates palmitate. Our results indicate that parasitic protozoa are also neutral lipid accumulators and illustrate the first example of the existence of a functional DGAT gene in an ancient eukaryote, demonstrating that diacylglycerol esterification is evolutionarily conserved.

  13. DGK1-encoded Diacylglycerol Kinase Activity Is Required for Phospholipid Synthesis during Growth Resumption from Stationary Phase in Saccharomyces cerevisiae*

    PubMed Central

    Fakas, Stylianos; Konstantinou, Chrysanthos; Carman, George M.

    2011-01-01

    In the yeast Saccharomyces cerevisiae, triacylglycerol mobilization for phospholipid synthesis occurs during growth resumption from stationary phase, and this metabolism is essential in the absence of de novo fatty acid synthesis. In this work, we provide evidence that DGK1-encoded diacylglycerol kinase activity is required to convert triacylglycerol-derived diacylglycerol to phosphatidate for phospholipid synthesis. Cells lacking diacylglycerol kinase activity (e.g. dgk1Δ mutation) failed to resume growth in the presence of the fatty acid synthesis inhibitor cerulenin. Lipid analysis data showed that dgk1Δ mutant cells did not mobilize triacylglycerol for membrane phospholipid synthesis and accumulated diacylglycerol. The dgk1Δ phenotypes were partially complemented by preventing the formation of diacylglycerol by the PAH1-encoded phosphatidate phosphatase and by channeling diacylglycerol to phosphatidylcholine via the Kennedy pathway. These observations, coupled to an inhibitory effect of dioctanoyl-diacylglycerol on the growth of wild type cells, indicated that diacylglycerol kinase also functions to alleviate diacylglycerol toxicity. PMID:21071438

  14. Distribution of fatty acids from dietary oils into phospholipid classes of triacylglycerol-rich lipoproteins in healthy subjects.

    PubMed

    Abia, Rocio; Pacheco, Yolanda M; Montero, Emilio; Ruiz-Gutierrez, Valentina; Muriana, Francisco J G

    2003-02-21

    Several studies have suggested that lipoprotein metabolism can be affected by lipoprotein phospholipid composition. We investigated the effect of virgin olive oil (VOO) and high-oleic sunflower oil (HOSO) intake on the distribution of fatty acids in triacylglycerols (TG), cholesteryl esters (CE) and phospholipid (PL) classes of triacylglycerol-rich lipoproteins (TRL) from normolipidemic males throughout a 7 h postprandial metabolism. Particularly, changes in oleic acid (18:1n-9) concentration of PL were used as a marker of in vivo hydrolysis of TRL external monolayer. Both oils equally promoted the incorporation of oleic acid into the TG and CE of postprandial TRL. However, PL was enriched in oleic acid (18:1n-9) and n-3 polyunsaturated fatty acids (PUFA) after VOO meal, whereas in stearic (18:0) and linoleic (18:2n-6) acids after HOSO meal. We also found that VOO produced TRL which PL 18:1n-9 content was dramatically reduced along the postprandial period. We conclude that the fatty acid composition of PL can be a crucial determinant for the clearance of TRL during the postprandial metabolism of fats.

  15. Plasma Phosphatidylethanolamine and Triacylglycerol Fatty Acid Concentrations are Altered in Major Depressive Disorder Patients with Seasonal Pattern.

    PubMed

    Otoki, Yurika; Hennebelle, Marie; Levitt, Anthony J; Nakagawa, Kiyotaka; Swardfager, Walter; Taha, Ameer Y

    2017-06-01

    Disturbances in peripheral and brain lipid metabolism, including the omega-3 fatty acid docosahexaenoic acid (DHA), have been reported in major depressive disorder (MDD). However, these changes have yet to be confirmed in MDD with seasonal pattern (MDD-s), a subtype of recurrent MDD. The present exploratory study quantified plasma plasmalogen and diacyl-phospholipid species, and fatty acids within total phospholipids, cholesteryl esters, triacylglycerols and free fatty acids in non-medicated MDD-s participants (n = 9) during euthymia in summer or fall, and during depression in winter in order to screen for potential high sensitivity lipid biomarkers. Triacylglycerol alpha-linolenic acid concentration was significantly decreased, and myristoleic acid concentration was significantly increased, during winter depression compared to summer-fall euthymia. 1-stearyl-2-docosahexaenoyl-sn-glycero-3-phosphoethanolamine, a diacyl-phospholipid containing stearic acid and DHA, was significantly decreased in winter depression. Concentrations of cholesteryl ester oleic acid and several polyunsaturated fatty acids between summer/fall and winter increased in proportion to the increase in depressive symptoms. The observed changes in lipid metabolic pathways in winter-type MDD-s offer new promise for lipid biomarker development.

  16. The Nimrod transmembrane receptor Eater is required for hemocyte attachment to the sessile compartment in Drosophila melanogaster

    PubMed Central

    Bretscher, Andrew J.; Honti, Viktor; Binggeli, Olivier; Burri, Olivier; Poidevin, Mickael; Kurucz, Éva; Zsámboki, János; Andó, István; Lemaitre, Bruno

    2015-01-01

    ABSTRACT Eater is an EGF-like repeat transmembrane receptor of the Nimrod family and is expressed in Drosophila hemocytes. Eater was initially identified for its role in phagocytosis of both Gram-positive and Gram-negative bacteria. We have deleted eater and show that it appears to be required for efficient phagocytosis of Gram-positive but not Gram-negative bacteria. However, the most striking phenotype of eater deficient larvae is the near absence of sessile hemocytes, both plasmatocyte and crystal cell types. The eater deletion is the first loss of function mutation identified that causes absence of the sessile hemocyte state. Our study shows that Eater is required cell-autonomously in plasmatocytes for sessility. However, the presence of crystal cells in the sessile compartment requires Eater in plasmatocytes. We also show that eater deficient hemocytes exhibit a cell adhesion defect. Collectively, our data uncovers a new requirement of Eater in enabling hemocyte attachment at the sessile compartment and points to a possible role of Nimrod family members in hemocyte adhesion. PMID:25681394

  17. The Nimrod transmembrane receptor Eater is required for hemocyte attachment to the sessile compartment in Drosophila melanogaster.

    PubMed

    Bretscher, Andrew J; Honti, Viktor; Binggeli, Olivier; Burri, Olivier; Poidevin, Mickael; Kurucz, Éva; Zsámboki, János; Andó, István; Lemaitre, Bruno

    2015-02-13

    Eater is an EGF-like repeat transmembrane receptor of the Nimrod family and is expressed in Drosophila hemocytes. Eater was initially identified for its role in phagocytosis of both Gram-positive and Gram-negative bacteria. We have deleted eater and show that it appears to be required for efficient phagocytosis of Gram-positive but not Gram-negative bacteria. However, the most striking phenotype of eater deficient larvae is the near absence of sessile hemocytes, both plasmatocyte and crystal cell types. The eater deletion is the first loss of function mutation identified that causes absence of the sessile hemocyte state. Our study shows that Eater is required cell-autonomously in plasmatocytes for sessility. However, the presence of crystal cells in the sessile compartment requires Eater in plasmatocytes. We also show that eater deficient hemocytes exhibit a cell adhesion defect. Collectively, our data uncovers a new requirement of Eater in enabling hemocyte attachment at the sessile compartment and points to a possible role of Nimrod family members in hemocyte adhesion. © 2015. Published by The Company of Biologists Ltd.

  18. Overall glycemic index and glycemic load of vegan diets in relation to plasma lipoproteins and triacylglycerols.

    PubMed

    Waldmann, Annika; Ströhle, Alexander; Koschizke, Jochen W; Leitzmann, Claus; Hahn, Andreas

    2007-01-01

    To investigate the overall glycemic index (GI), glycemic load (GL), and intake of dietary fiber, and to examine the associations between these factors and plasma lipoproteins and triacylglycerols in adult vegans in the German Vegan Study (GVS). Cross-sectional study, Germany. Healthy men (n = 67) and women (n = 87), who fulfilled the study criteria (vegan diet for >or=1 year prior to study start; minimum age of 18 years; no pregnancy/childbirth during the last 12 months) and who participated in all study segments. The average dietary GL of the GVS population was 144, and the average GI was 51.4. The adjusted geometric mean total, HDL, and LDL cholesterol concentrations decreased across the increasing quartiles of GL, carbohydrate and dietary fiber intake. The associations between total cholesterol, HDL cholesterol, LDL cholesterol and GL density and GI were inconsistent. Also, associations between GI, GL, the intake of carbohydrates, and triacylglycerol concentration were not observed. Fiber-rich vegan diets are characterized by a low GI and a low to moderate GL. The data do not support the hypothesis that a carbohydrate-rich diet per se is associated with unfavorable effects on triaclyglycerols that would be predicted to increase the risk of coronary heart disease. Copyright (c) 2007 S. Karger AG, Basel.

  19. STUDIES ON THE PATHOGENESIS OF FEVER. 13. THE EFFECT OF PHAGOCYTOSIS ON THE RELEASE OF ENDOGENOUS PYROGEN BY POLYMORPHONUCLEAR LEUKOCYTES.

    PubMed

    BERLIN, R D; WOOD, W B

    1964-05-01

    1. Phagocytosis promotes the release of endogenous pyrogen from polymorphonuclear leucocytes. 2. The release of pyrogen, though initiated by the phagocytic event, is not synchronous with it. 3. The postphagocytic release mechanism is not inhibited by sodium fluoride and, therefore, appears not to require continued production of energy by the cell. 4. The release process, on the other hand, is inhibited by arsenite, suggesting the participation of one or more sulfhydryl-dependent enzymes in the over-all reaction. 5. Particle for particle, the ingestion of heat-killed rough pneumococci causes the release of approximately 100 times as much pyrogen as the ingestion of polystyrene beads of the same size. 6. The pyrogen release mechanism of polymorphonuclear leucocytes separated directly from blood, unlike that of granulocytes in acute inflammatory exudates, is not readily activated by incubation of the cells in K-free saline. Despite this difference, both blood and exudate leucocytes following phagocytosis release large amounts of pyrogen, even in the presence of K(+). The fact that the postphagocytic reaction is uninhibited by the concentrations of K(+) which are present in plasma and extracellular fluids, suggests that this mechanism of pyrogen release may well operate in vivo. 7. As might be expected from the foregoing observations, the intravenous injection of a sufficiently large number of heat-killed pneumococci causes fever in the intact host. Intravenously injected polystyrene beads, on the other hand, are significantly less pyrogenic. Evidence is presented to support the conclusion that the fever in both instances is caused by pyrogen released from the circulating leucocytes which have phagocyted the injected particles. 8. The possible relationships of these findings to the pathogenesis of fevers caused by acute bacterial infections are discussed.

  20. EFFECT OF INHALED ENDOTOXIN ON AIRWAY AND CIRCULATING INFLAMMATORY CELL PHAGOCYTOSIS AND CD11B EXPRESSION IN ATOPIC ASTHMATIC SUBJECTS

    EPA Science Inventory

    Effect of inhaled endotoxin on airway and circulating inflammatory cell phagocytosis and CD11b expression in atopic asthmatic subjects

    Neil E. Alexis, PhD, Marlowe W. Eldridge, MD, David B. Peden, MD, MS

    Chapel Hill and Research Triangle Park, NC

    Backgrou...

  1. Advances in silver ion chromatography for the analysis of fatty acids and triacylglycerols-2001 to 2011.

    PubMed

    Momchilova, Svetlana M; Nikolova-Damyanova, Boryana M

    2012-01-01

    An effort is made to critically present the achievements in silver ion chromatography during the last decade. Novelties in columns, mobile-phase compositions and detectors are described. Recent applications of silver ion chromatography in the analysis of fatty acids and triacylglycerols are presented while stressing novel analytical strategies or new objects. The tendencies in the application of the method in complementary ways with reversed-phase chromatography, chiral chromatography and, especially, mass detection are outlined.

  2. Cytokine production of the neutrophils and macrophages in time of phagocytosis under influence of infrared low-level laser irradiation

    NASA Astrophysics Data System (ADS)

    Rudik, Dmitry V.; Tikhomirova, Elena I.; Tuchina, Elena S.

    2006-08-01

    Influence of infrared low-level laser irradiation (LLLI) on induction of synthesis of some cytokines such as interleykin-1 (Il-1), tumor necrosis factor-α (TNF-α), interferon-γ (INF-γ), interleykin-8 (Il-8) and interleykin-4 (Il-4) by the neutrophils and macrophages in time of bacterial cells phagocytosis that was searched. As the object of analysis we used peritoneal macrophages from white mice and neutrophils from peripheral blood of healthy donors. We used the laser diod with spectrum maximum of 850 nm with doses 300, 900 and 1500 mJ (exposition -60, 180 and 300 s respectively; capacity - 5 mW). We carried out the Enzyme-Linked Immunospot Assay (ELISA) to determine cytokine content during phagocytosis after 3 h and 6 h. We found dynamics in production of the cytokines, which was different for the neutrophils and macrophages. We showed that the infrared LLLI has significant stimulating activity on the proinflammatory cytokines production by neutrophils and macrophages. Moreover we revealed dynamics changing in the Il-8 and Il-4 production.

  3. Ocean Acidification Affects the Cytoskeleton, Lysozymes, and Nitric Oxide of Hemocytes: A Possible Explanation for the Hampered Phagocytosis in Blood Clams, Tegillarca granosa.

    PubMed

    Su, Wenhao; Rong, Jiahuan; Zha, Shanjie; Yan, Maocang; Fang, Jun; Liu, Guangxu

    2018-01-01

    An enormous amount of anthropogenic carbon dioxide (CO 2 ) has been dissolved into the ocean, leading to a lower pH and changes in the chemical properties of seawater, which has been termed ocean acidification (OA). The impacts of p CO 2 -driven acidification on immunity have been revealed recently in various marine organisms. However, the mechanism causing the reduction in phagocytosis still remains unclear. Therefore, the impacts of p CO 2 -driven OA at present and near-future levels (pH values of 8.1, 7.8, and 7.4) on the rate of phagocytosis, the abundance of cytoskeleton components, the levels of nitric oxide (NO), and the concentration and activity of lysozymes (LZM) of hemocytes were investigated in a commercial bivalve species, the blood clam ( Tegillarca granosa ). In addition, the effects of OA on the expression of genes regulating actin skeleton and nitric oxide synthesis 2 ( NOS2 ) were also analyzed. The results obtained showed that the phagocytic rate, cytoskeleton component abundance, concentration and activity of LZM of hemocytes were all significantly reduced after a 2-week exposure to the future OA scenario of a pH of 7.4. On the contrary, a remarkable increase in the concentration of NO compared to that of the control was detected in clams exposed to OA. Furthermore, the expression of genes regulating the actin cytoskeleton and NOS were significantly up-regulated after OA exposure. Though the mechanism causing phagocytosis seemed to be complicated based on the results obtained in the present study and those reported previously, our results suggested that OA may reduce the phagocytosis of hemocytes by (1) decreasing the abundance of cytoskeleton components and therefore hampering the cytoskeleton-mediated process of engulfment, (2) reducing the concentration and activity of LZM and therefore constraining the degradation of the engulfed pathogen through an oxygen-independent pathway, and (3) inducing the production of NO, which may negatively

  4. Histologic and cytologic bone marrow findings in dogs with suspected precursor-targeted immune-mediated anemia and associated phagocytosis of erythroid precursors.

    PubMed

    Lucidi, Cynthia de A; de Rezende, Christian L E; Jutkowitz, L Ari; Scott, Michael A

    2017-09-01

    Precursor-targeted immune-mediated anemia (PIMA) has been suspected in dogs with nonregenerative anemia and bone marrow findings varying from erythroid hyperplasia to pure red cell aplasia. Phagocytosis of erythroid precursors/rubriphagocytosis (RP) reported in some affected dogs suggests a destructive component to the pathogenesis of PIMA. The purpose of the study was to characterize laboratory and clinical findings in dogs with suspected PIMA and RP, with emphasis on cytologic and histologic bone marrow findings. Dogs with PIMA and RP were identified by review of paired bone marrow aspirate and core biopsy slides collected over a 4-year period. Samples were systematically assessed and characterized along with other pertinent laboratory data and clinical findings. Twenty-five dogs met criteria for PIMA and had RP that was relatively stage-selective. Erythropoiesis was expanded to the stage of erythroid precursors undergoing most prominent phagocytosis, yielding patterns characterized by a hypo-, normo-, or hypercellular erythroid lineage. A 4 th pattern involved severe collagen myelofibrosis, and there was a spectrum of mild to severe collagen myelofibrosis overall. Evidence of immune-mediated hemolysis was rare. Immunosuppressive therapy was associated with remission in 77% of dogs treated for at least the median response time of 2 months. Bone marrow patterns in dogs fulfilling criteria for PIMA were aligned with stage-selective phagocytosis of erythroid precursors and the development of collagen myelofibrosis, common in dogs with PIMA. Recognition of these patterns and detection of RP facilitates diagnosis of PIMA, and slow response to immunosuppressive therapy warrants further investigation into its pathogenesis. © 2017 American Society for Veterinary Clinical Pathology.

  5. Shrimp miR-12 Suppresses White Spot Syndrome Virus Infection by Synchronously Triggering Antiviral Phagocytosis and Apoptosis Pathways

    PubMed Central

    Shu, Le; Zhang, Xiaobo

    2017-01-01

    Growing evidence has indicated that the innate immune system can be regulated by microRNAs (miRNAs). However, the mechanism underlying miRNA-mediated simultaneous activation of multiple immune pathways remains unknown. To address this issue, the role of host miR-12 in shrimp (Marsupenaeus japonicus) antiviral immune responses was characterized in the present study. The results indicated that miR-12 participated in virus infection, host phagocytosis, and apoptosis in defense against white spot syndrome virus invasion. miR-12 could simultaneously trigger phagocytosis, apoptosis, and antiviral immunity through the synchronous downregulation of the expression of shrimp genes [PTEN (phosphatase and tensin homolog) and BI-1(transmembrane BAX inhibitor motif containing 6)] and the viral gene (wsv024). Further analysis showed that miR-12 could synchronously mediate the 5′–3′ exonucleolytic degradation of its target mRNAs, and this degradation terminated in the vicinity of the 3′ untranslated region sequence complementary to the seed sequence of miR-12. Therefore, the present study showed novel aspects of the miRNA-mediated simultaneous regulation of multiple immune pathways. PMID:28824612

  6. The Staphylococcus aureus polysaccharide capsule and Efb-dependent fibrinogen shield act in concert to protect against phagocytosis

    PubMed Central

    Kuipers, Annemarie; Stapels, Daphne A. C.; Weerwind, Lleroy T.; Ko, Ya-Ping; Ruyken, Maartje; Lee, Jean C.; van Kessel, Kok P. M.

    2016-01-01

    Staphylococcus aureus has developed many mechanisms to escape from human immune responses. To resist phagocytic clearance, S. aureus expresses a polysaccharide capsule, which effectively masks the bacterial surface and surface-associated proteins, such as opsonins, from recognition by phagocytic cells. Additionally, secretion of the extracellular fibrinogen binding protein (Efb) potently blocks phagocytic uptake of the pathogen. Efb creates a fibrinogen shield surrounding the bacteria by simultaneously binding complement C3b and fibrinogen at the bacterial surface. By means of neutrophil phagocytosis assays with fluorescently labelled encapsulated serotype 5 (CP5) and serotype 8 (CP8) strains we compare the immune-modulating function of these shielding mechanisms. The data indicate that, in highly encapsulated S. aureus strains, the polysaccharide capsule is able to prevent phagocytic uptake at plasma concentrations <10 %, but loses its protective ability at higher concentrations of plasma. Interestingly, Efb shows a strong inhibitory effect on both capsule-negative and encapsulated strains at all tested plasma concentrations. Furthermore, the results suggest that both shielding mechanisms can exist simultaneously and collaborate to provide optimal protection against phagocytosis at a broad range of plasma concentrations. As opsonizing antibodies will be shielded from recognition by either mechanism, incorporating both capsular polysaccharides and Efb in future vaccines could be of great importance. PMID:27112346

  7. The Staphylococcus aureus polysaccharide capsule and Efb-dependent fibrinogen shield act in concert to protect against phagocytosis.

    PubMed

    Kuipers, Annemarie; Stapels, Daphne A C; Weerwind, Lleroy T; Ko, Ya-Ping; Ruyken, Maartje; Lee, Jean C; van Kessel, Kok P M; Rooijakkers, Suzan H M

    2016-07-01

    Staphylococcus aureus has developed many mechanisms to escape from human immune responses. To resist phagocytic clearance, S. aureus expresses a polysaccharide capsule, which effectively masks the bacterial surface and surface-associated proteins, such as opsonins, from recognition by phagocytic cells. Additionally, secretion of the extracellular fibrinogen binding protein (Efb) potently blocks phagocytic uptake of the pathogen. Efb creates a fibrinogen shield surrounding the bacteria by simultaneously binding complement C3b and fibrinogen at the bacterial surface. By means of neutrophil phagocytosis assays with fluorescently labelled encapsulated serotype 5 (CP5) and serotype 8 (CP8) strains we compare the immune-modulating function of these shielding mechanisms. The data indicate that, in highly encapsulated S. aureus strains, the polysaccharide capsule is able to prevent phagocytic uptake at plasma concentrations <10 %, but loses its protective ability at higher concentrations of plasma. Interestingly, Efb shows a strong inhibitory effect on both capsule-negative and encapsulated strains at all tested plasma concentrations. Furthermore, the results suggest that both shielding mechanisms can exist simultaneously and collaborate to provide optimal protection against phagocytosis at a broad range of plasma concentrations. As opsonizing antibodies will be shielded from recognition by either mechanism, incorporating both capsular polysaccharides and Efb in future vaccines could be of great importance.

  8. Streptococcus suis capsular polysaccharide inhibits phagocytosis through destabilization of lipid microdomains and prevents lactosylceramide-dependent recognition.

    PubMed

    Houde, Mathieu; Gottschalk, Marcelo; Gagnon, Fleur; Van Calsteren, Marie-Rose; Segura, Mariela

    2012-02-01

    Streptococcus suis type 2 is a major swine pathogen and a zoonotic agent, causing meningitis in both swine and humans. S. suis infects the host through the respiratory route, reaches the bloodstream, and persists until breaching into the central nervous system. The capsular polysaccharide (CPS) of S. suis type 2 is considered a key virulence factor of the bacteria. Though CPS allows S. suis to adhere to the membrane of cells of the immune system, it provides protection against phagocytosis. In fact, nonencapsulated mutants are easily internalized and killed by macrophages and dendritic cells. The objective of this work was to study the molecular mechanisms by which the CPS of S. suis prevents phagocytosis. By using latex beads covalently linked with purified CPS, it was shown that CPS itself was sufficient to inhibit entry of both latex beads and bystander fluorescent beads into macrophages. Upon contact with macrophages, encapsulated S. suis was shown to destabilize lipid microdomains at the cell surface, to block nitric oxide (NO) production during infection, and to prevent lactosylceramide accumulation at the phagocytic cup during infection. In contrast, the nonencapsulated mutant was easily internalized via lipid rafts, in a filipin-sensitive manner, leading to lactosylceramide recruitment and strong NO production. This is the first report to identify a role for CPS in lipid microdomain stability and to recognize an interaction between S. suis and lactosylceramide in phagocytes.

  9. Complement activation by carbon nanotubes and its influence on the phagocytosis and cytokine response by macrophages.

    PubMed

    Pondman, Kirsten M; Sobik, Martin; Nayak, Annapurna; Tsolaki, Anthony G; Jäkel, Anne; Flahaut, Emmanuel; Hampel, Silke; Ten Haken, Bennie; Sim, Robert B; Kishore, Uday

    2014-08-01

    Carbon nanotubes (CNTs) have promised a range of applications in biomedicine. Although influenced by the dispersants used, CNTs are recognized by the innate immune system, predominantly by the classical pathway of the complement system. Here, we confirm that complement activation by the CNT used continues up to C3 and C5, indicating that the entire complement system is activated including the formation of membrane-attack complexes. Using recombinant forms of the globular regions of human C1q (gC1q) as inhibitors of CNT-mediated classical pathway activation, we show that C1q, the first recognition subcomponent of the classical pathway, binds CNTs via the gC1q domain. Complement opsonisation of CNTs significantly enhances their uptake by U937 cells, with concomitant downregulation of pro-inflammatory cytokines and up-regulation of anti-inflammatory cytokines in both U937 cells and human monocytes. We propose that CNT-mediated complement activation may cause recruitment of cellular infiltration, followed by phagocytosis without inducing a pro-inflammatory immune response. This study highlights the importance of the complement system in response to carbon nanontube administration, suggesting that the ensuing complement activation may cause recruitment of cellular infiltration, followed by phagocytosis without inducing a pro-inflammatory immune response. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Conjugated linoleic acid-rich soy oil triacylglycerol identification.

    PubMed

    Lall, Rahul K; Proctor, Andrew; Jain, Vishal P; Lay, Jackson O

    2009-03-11

    Conjugated linoleic acid (CLA)-rich soy oil has been produced by soy oil linoleic acid (LA) photoisomerization, but CLA-rich oil triacylglycerol (TAG) characterization was not described. Therefore, the objectives were to identify and quantify new TAG fractions in CLA-rich oil by nonaqueous reversed-phase high-performance liquid chromatography (NARP-HPLC). Analytical NARP-HPLC with an acetonitrile/dichloromethane (ACN/DCM) gradient and an evaporating light scattering detector/ultraviolet (ELSD/UV) detector was used. New TAG peaks from LA-containing TAGs were observed. The LnLL, LLL, LLO, and LLP (Ln, linolenic; L, linoleic; O, oleic; and P, palmitic) peaks reduced after isomerization with an increase in adjacent peaks that coeluted with LnLnO, LnLO, LnOO, and LnPP. The newly formed peaks were wider than those of the original oil and absorbed at 233 nm, suggesting the possibility of various CLA containing TAGs. The HPLC profile showed five fractions of mixed TAGs, and fatty acid analysis showed that CLA isomers were found predominately in fractions 2 and 3, which originally contained most LA. The CLA isomers were 70-80% trans,trans and 20-30% cis,trans and trans,cis.

  11. Evaluation of Oxidative Metabolism in Leukocytes during Phagocytosis of Escherichia coli Carrying Genetic Constructs soxS::lux or katG::lux.

    PubMed

    Karimov, I F; Deryabin, D G; Karimova, D N; Subbotina, T Yu; Manukhov, I V

    2016-06-01

    We studied ROS generation by human peripheral blood monocytes and granulocytes during phagocytosis of Escherichia coli soxS::lux or katG::lux responding by luminescence (bioluminescence) to the development of oxidative stress. Initially high sensitivity of the bioluminescent reaction of E. coli katG::lux strain to the effects of model ROS (KO2 and H2O2) and pronounced induction of luminescence upon contact with granulocytes, whereas E. coli soxS::lux demonstrated less pronounced reaction to chemical oxidants and bioluminescence was observed primarily upon contact with monocytes. A correlation was found between quantitative characteristics of E. coli katG::lux bioluminescence and luminol-dependent chemiluminescence of leukocytes in some patients, but no dependence of this kind was noted for E. coli soxS::lux. The results can provide experimental substantiation of a new approach for evaluation of ROS production by leukocytes during phagocytosis and choosing the optimal object for these studies.

  12. [Agglutination and phagocytosis of foreign abiotic particles by hemocytes of the blowely, Calliphora vicina in vivo. I. Dynamics of hemocyte activity during larval development].

    PubMed

    Kind, T V

    2005-01-01

    Three types of Calliphora larval hemocytes have been revealed to be involved in phagocytosis of abiotic foreign particles: thrombocytoids, larval plasmatocytes and plasmatocytes I. Thrombocytoids are the quickest to respond to the appearance of invaders. The onset of test particle entrapment by thrombocytoid cytoplasmic fragments was observed, depending on the larval age within 0.5-5.0 min after injection. Separated fragments were fused, forming strands or roundish agglutinates. Phagocytosis of carbon, carmine or Indian ink particles by larval plasmatocytes occurs far more lately, and no earlier than 20-30 min after injection. Plasmatocytes I are capable of foreign particles adhesion on their surface, with a subsequent morule formation, and of engulfing these particles. These two events start in different time periods: adhesion occurs in 5-10 min, while phagocytosis is observed in 1--3 h. The rate of test particle entrapment and stability of agglutinales clearly depends on the larval age. The most pronounced reaction of hemocytes to foreign particles may be observed by the end of feeding and crop emptying. The second, somewhat less expressed rise of activity occurs in mature larvae not long before the onset of pupariation. Diapause induction is accompanied by reducing activities of both plasmatocytes and thrompocytoids. The importance of different hemocyte types in cellular immune reaction of Calliphora vicina larvae, and co-ordination between plasmatocytes and thrombocytoids are discussed.

  13. The recovery of 13C-labeled oleic acid in rat lymph after administration of long chain triacylglycerols or specific structured triacylglycerols.

    PubMed

    Vistisen, Bodil; Mu, Huiling; Høy, Carl-Erik

    2006-09-01

    Consumption of specific structured triacylglycerols, MLM (M = medium chain fatty acid, L = long chain fatty acid), delivers fast energy and long chain fatty acids to the organism. The purpose of the present study was to compare lymphatic absorption of (13)C-labeled MLM and (13)C-labeled LLL in rats. Stable isotope labeling enables the separation of the endogenous and exogenous fatty acids. Lymph was collected during 24 h following administration of MLM or LLL. Lymph fatty acid composition and (13)C-enrichment were determined and quantified by gas chromatography combustion isotope ratio mass spectrometry. The recovery of 18:1n-9 was higher after administration of LLL compared with MLM (58.1% +/- 7.4% and 29.1% +/- 3.9%, respectively, P < 0.001). This may be due to a higher chylomicron formation stimulated by a higher amount of long chain fatty acids in the intestine after LLL compared with MLM administration. This was confirmed by the tendencies of higher lymphatic transport of endogenous fatty acids. The study revealed a higher lymphatic recovery of the administered long chain fatty acids after LLL compared with MLM consumption.

  14. Preventive Effects of the Dietary Intake of Medium-chain Triacylglycerols on Immobilization-induced Muscle Atrophy in Rats.

    PubMed

    Nishimura, Shuhei; Inai, Makoto; Takagi, Tetsuo; Nonaka, Yudai; Urashima, Shogo; Honda, Kazumitsu; Aoyama, Toshiaki; Terada, Shin

    2017-08-01

    Previous studies have shown that medium-chain triacylglycerols (MCTs) exert favorable effects on protein metabolism. This study evaluated the effects of the dietary intake of MCTs on rat skeletal muscle mass and total protein content during casting-induced hindlimb immobilization, which causes substantial protein degradation and muscle atrophy. Rats were fed a standard diet containing long-chain triacylglycerols (LCTs) or MCTs for 3 days and then a unilateral hindlimb was immobilized while they received the same diet. After immobilization for 3, 7, and 14 days, muscle mass and total protein content in immobilized soleus muscle in the LCT-fed rats had markedly decreased compared to the contralateral muscle; however, these losses were partially suppressed in MCT-fed rats. Autophagosomal membrane proteins (LC-I and -II), which are biomarkers of autophagy-lysosome activity, did not differ significantly between the LCT- and MCT-fed rats. In contrast, the immobilization-induced increase in muscle-specific E3 ubiquitin ligase MuRF-1 protein expression in immobilized soleus muscle relative to contralateral muscle was completely blocked in the MCT-fed rats and was significantly lower than that observed in the LCT-fed rats. Collectively, these results indicate that the dietary intake of MCTs at least partly alleviates immobilization-induced muscle atrophy by inhibiting the ubiquitin-proteasome pathway.

  15. Characterisation of various grape seed oils by volatile compounds, triacylglycerol composition, total phenols and antioxidant capacity.

    PubMed

    Bail, Stefanie; Stuebiger, Gerald; Krist, Sabine; Unterweger, Heidrun; Buchbauer, Gerhard

    2008-06-01

    Grape seed oil (Oleum vitis viniferae) representing a promising plant fat, mainly used for culinary and pharmaceutical purposes as well as for various technical applications, was subject of the present investigation. HS-SPME-GC-MS was applied to study volatile compounds in several seed oil samples from different grape oils. The triacylglycerol (TAG) composition of these oils was analyzed by MALDI-TOF-MS/MS. In addition the total phenol content and the antioxidant capacity (using TEAC) of these oils were determined. The headspace of virgin grape oils from white and red grapes was dominated by ethyl octanoate (up to 27.5% related to the total level of volatiles), ethylacetate (up to 25.0%), ethanol (up to 22.7%), acetic acid (up to 17.2%), ethyl hexanoate (up to 17.4%) and 3-methylbutanol (up to 11.0%). Triacylglycerol composition was found to be dominated by LLL (up to 41.8%), LLP (up to 24.3%), LLO (up to 16.3%) and LOO (up to 11.7%), followed by LOP (up to 9.3%) and LOS/OOO (up to 4.3%). Total phenol content ranged between 59μg/g and 115.5μg/g GAE. Antioxidant capacity (TEAC) was analyzed to range between 0.09μg/g and 1.16μg/g. Copyright © 2007 Elsevier Ltd. All rights reserved.

  16. Fatty acid fragmentation of triacylglycerol isolated from crude nyamplung oil

    NASA Astrophysics Data System (ADS)

    Aparamarta, Hakun Wirawasista; Anggraini, Desy; Istianingsih, Della; Susanto, David Febrilliant; Widjaja, Arief; Ju, Yi-Hsu; Gunawan, Setiyo

    2017-05-01

    Nyamplung (Calophylluminophyllum) has many benefits ranging from roots, stems, leaves, until seeds. In this seed, C. inophyllum contained significantly high amount of crude oil (70.4%). C. inophyllum oil is known as non edible. Therefore Indonesian people generally only know that seeds can produce oil that can be used for biodiesel. In this work, the fragmentation of fatty acid in triacylglycerols (TAG) was studied. The isolation process was started with separation of non polar lipid fraction (NPLF) from crude C. inophyllum oil via batchwise multistage liquid extraction. TAG was obtained in high purity (99%) and was analyzed by Thin Layer Chromatography (TLC) and Gas Chromatography - Mass Spectrometry (GCMS). It was found that fatty acids of TAG are palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1c), linoleic acid (C18:2c), and linolenic acid (C18:3c). Moreover, TAG isolated from C. inophyllum oil was promising as edible oil.

  17. [Agglutination and phagocytosis of foreign abiotic particles by bluebottle Calliphora vicina haemocytes in vivo. II. Influence of the previous septic immune induction on haemocytic activity].

    PubMed

    Kind, T V

    2010-01-01

    The rate of Calliphora vicina haemocytic defense reaction to foreign particles injection depends on the larval age and on the previous bacterial immunization. Immunization of crop-empting larvae induces an evident increase in particles phagocytosis by juvenile plasmatocytes in 24 h after injection. Both the hemogram and the pattern of cellular defense reaction change significantly after crop-empting. Immunized larvae start intensive adhesion of foreign particles to plasmatocytes surface and formation of great aggregations of plasmatocytes (morules) no longer than in 34 min after injection. The period of particle-haemocyte adhesion is short-termed and no more than after 30 min cell aggregates dissociate and adhered charcoal particles pass to thrombocydoidal agglutinates. Unimmunized control larvae of the same age have shown no adhesion and morules formation. In immunized wadering and diapausing larvae, formation of capsules consisting of central thrombocydoidal agglutinate filled with alien particles and adherent plasmatocytes I is intensified. In contrast to moru-les, this capsule formation is not accompanied by charcoal particles adhesion to plasmatocytes. Immunization of mature larvae of C. vicina shown no prominent influence on both the rate of phagocytosis and the hyaline cells differentiation. It might be supposed that the receptors system is complex and the immunization both the mechanisms of foreigners recognition (adhesion, morulation and incapsulation) and the far more lately occurring phagocytosis.

  18. Dynamics of Increasing IFN-γ Exposure on Murine MH-S Cell-Line Alveolar Macrophage Phagocytosis of Streptococcus pneumoniae

    PubMed Central

    Brown, Lou Ann S.; Klugman, Keith P.

    2015-01-01

    Previous investigations have demonstrated that activation with the type II interferon, IFN-γ, downregulates alveolar macrophage (AM) phagocytosis of Streptococcus pneumoniae. While these studies have shown clear effects at discrete time points, the kinetics of the macrophage response to IFN-γ over time, with respect to pneumococcal phagocytosis, have not been shown. Here, we describe these kinetics in the murine MH-S AM cell-line, a well-established model useful for investigations of AM phenotype and function. We measure binding and internalizing rates of S. pneumoniae following exposure to increasing durations of physiologic levels of IFN-γ. When MH-S murine alveolar macrophage (mAM) were exposed to IFN-γ for increasing durations of time, from 0 to 6 days before inoculation with the type II S. pneumoniae, D39, exposure for 6 h transiently reduced bacterial binding by 50%, which was temporarily restored at 2 and 3 days of exposure. Bacterial internalization was also reduced shortly following initial exposure, however, internalization continued to fall to less than 5% that of IFN-γ naïve controls after 6 days of exposure. These data may help explain otherwise contradictory reports from the literature regarding timing between infections and reductions in macrophage function. PMID:25713979

  19. Dynamics of Increasing IFN-γ Exposure on Murine MH-S Cell-Line Alveolar Macrophage Phagocytosis of Streptococcus pneumoniae.

    PubMed

    Mina, Michael J; Brown, Lou Ann S; Klugman, Keith P

    2015-06-01

    Previous investigations have demonstrated that activation with the type II interferon, IFN-γ, downregulates alveolar macrophage (AM) phagocytosis of Streptococcus pneumoniae. While these studies have shown clear effects at discrete time points, the kinetics of the macrophage response to IFN-γ over time, with respect to pneumococcal phagocytosis, have not been shown. Here, we describe these kinetics in the murine MH-S AM cell-line, a well-established model useful for investigations of AM phenotype and function. We measure binding and internalizing rates of S. pneumoniae following exposure to increasing durations of physiologic levels of IFN-γ. When MH-S murine alveolar macrophage (mAM) were exposed to IFN-γ for increasing durations of time, from 0 to 6 days before inoculation with the type II S. pneumoniae, D39, exposure for 6 h transiently reduced bacterial binding by 50%, which was temporarily restored at 2 and 3 days of exposure. Bacterial internalization was also reduced shortly following initial exposure, however, internalization continued to fall to less than 5% that of IFN-γ naïve controls after 6 days of exposure. These data may help explain otherwise contradictory reports from the literature regarding timing between infections and reductions in macrophage function.

  20. Effects of high temperature and exposure to air on mussel (Mytilus galloprovincialis, Lmk 1819) hemocyte phagocytosis: modulation of spreading and oxidative response.

    PubMed

    Mosca, Francesco; Narcisi, Valeria; Calzetta, Angela; Gioia, Luisa; Finoia, Maria G; Latini, Mario; Tiscar, Pietro G

    2013-06-01

    Hemocytes are a critical component of the mussel defense system and the present study aims at investigating their spreading and oxidative properties during phagocytosis under in vivo experimental stress conditions. The spreading ability was measured by an automated cell analyzer on the basis of the circularity, a parameter corresponding to the hemocyte roundness. The oxidative activity was investigated by micromethod assay, measuring the respiratory burst as expression of the fluorescence generated by the oxidation of specific probe. Following the application of high temperature and exposure to air, there was evidence of negative modulation of spreading and oxidative response, as revealed by a cell roundness increase and fluorescence generation decrease. Therefore, the fall of respiratory burst appeared as matched with the inhibition of hemocyte morphological activation, suggesting a potential depression of the phagocytosis process and confirming the application of the circularity parameter as potential stress marker, both in experimental and field studies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Inhaled corticosteroid treatment for 6 months was not sufficient to normalize phagocytosis in asthmatic children.

    PubMed

    da Silva-Martins, Carmen Lívia Faria; Couto, Shirley Claudino; Muniz-Junqueira, Maria Imaculada

    2013-08-30

    Corticosteroids are the first-line therapy for asthma; however, the effect of corticosteroids on the innate immune system remains unclear. This study's objective was to evaluate the effect of inhaled corticosteroid therapy (ICT) on phagocytic functions. To evaluate the impact of ICT, the phagocytosis of Saccharomyces cerevisiae by blood monocytes and neutrophils and the production of superoxide anions were assessed before and after three and six months of ICT treatment in 58 children with persistent asthma and 21 healthy controls. We showed that the phagocytic capacity of monocytes and neutrophils that occurred via pattern recognition receptors or was mediated by complement and immunoglobulin receptors in asthmatic children before treatment was significantly lower than in healthy controls (p<0.05, Mann-Whitney test) and was not influenced by the severity of the clinical form of the disease. Although there was clinical improvement with treatment, ICT for 6 months was not sufficient to normalize phagocytosis by the phagocytes. Superoxide anion production was also decreased in the asthmatic children before treatment, and ICT normalized the O- production only for children with mild persistent asthma when assessed at baseline but caused this function to decrease after stimulation (p<0.05, Kruskal-Wallis test). Our data suggest that an immunodeficiency in phagocytes remained even after treatment. However, this immunodeficiency does not appear to correspond with the clinical evolution of asthma because an improvement in clinical parameters occurred.

  2. Streptococcus suis Capsular Polysaccharide Inhibits Phagocytosis through Destabilization of Lipid Microdomains and Prevents Lactosylceramide-Dependent Recognition

    PubMed Central

    Houde, Mathieu; Gottschalk, Marcelo; Gagnon, Fleur; Van Calsteren, Marie-Rose

    2012-01-01

    Streptococcus suis type 2 is a major swine pathogen and a zoonotic agent, causing meningitis in both swine and humans. S. suis infects the host through the respiratory route, reaches the bloodstream, and persists until breaching into the central nervous system. The capsular polysaccharide (CPS) of S. suis type 2 is considered a key virulence factor of the bacteria. Though CPS allows S. suis to adhere to the membrane of cells of the immune system, it provides protection against phagocytosis. In fact, nonencapsulated mutants are easily internalized and killed by macrophages and dendritic cells. The objective of this work was to study the molecular mechanisms by which the CPS of S. suis prevents phagocytosis. By using latex beads covalently linked with purified CPS, it was shown that CPS itself was sufficient to inhibit entry of both latex beads and bystander fluorescent beads into macrophages. Upon contact with macrophages, encapsulated S. suis was shown to destabilize lipid microdomains at the cell surface, to block nitric oxide (NO) production during infection, and to prevent lactosylceramide accumulation at the phagocytic cup during infection. In contrast, the nonencapsulated mutant was easily internalized via lipid rafts, in a filipin-sensitive manner, leading to lactosylceramide recruitment and strong NO production. This is the first report to identify a role for CPS in lipid microdomain stability and to recognize an interaction between S. suis and lactosylceramide in phagocytes. PMID:22124659

  3. Altered Dynamics of Candida albicans Phagocytosis by Macrophages and PMNs When Both Phagocyte Subsets Are Present

    PubMed Central

    Rudkin, Fiona M.; Bain, Judith M.; Walls, Catriona; Lewis, Leanne E.; Gow, Neil A. R.; Erwig, Lars P.

    2013-01-01

    ABSTRACT An important first line of defense against Candida albicans infections is the killing of fungal cells by professional phagocytes of the innate immune system, such as polymorphonuclear cells (PMNs) and macrophages. In this study, we employed live-cell video microscopy coupled with dynamic image analysis tools to provide insights into the complexity of C. albicans phagocytosis when macrophages and PMNs were incubated with C. albicans alone and when both phagocyte subsets were present. When C. albicans cells were incubated with only one phagocyte subtype, PMNs had a lower overall phagocytic capacity than macrophages, despite engulfing fungal cells at a higher rate once fungal cells were bound to the phagocyte surface. PMNs were more susceptible to C. albicans-mediated killing than macrophages, irrespective of the number of C. albicans cells ingested. In contrast, when both phagocyte subsets were studied in coculture, the two cell types phagocytosed and cleared C. albicans at equal rates and were equally susceptible to killing by the fungus. The increase in macrophage susceptibility to C. albicans-mediated killing was a consequence of macrophages taking up a higher proportion of hyphal cells under these conditions. In the presence of both PMNs and macrophages, C. albicans yeast cells were predominantly cleared by PMNs, which migrated at a greater speed toward fungal cells and engulfed bound cells more rapidly. These observations demonstrate that the phagocytosis of fungal pathogens depends on, and is modified by, the specific phagocyte subsets present at the site of infection. PMID:24169578

  4. Characterization of a cDNA of peroxiredoxin II responding to hydrogen peroxide and phagocytosis in Amoeba proteus.

    PubMed

    Park, Miey; Shin, Hae J; Lee, Soo Y; Ahn, Tae I

    2005-01-01

    Phagocytic cells have defense systems against reactive oxygen species generated as the first non-specific defense mechanism against invading pathogens or microorganisms. We cloned a cDNA encoding a 21.69-kDa protein in Amoeba proteus homologous to 2-Cys peroxiredoxin (Prx-Ap). In the disk inhibition assay using H2O2 as an oxidizing agent, Escherichia coli overproducing Prx-Ap showed better viability than did E. coli transformed with pBluescript II SK for control. Monoclonal antibodies (mAb) produced against Prx-Ap reacted with a 22.5-kDa protein and several minor proteins. In Western blot analysis, levels of the 22.5-kDa protein in amoebae treated with 2-mM H2O2 for 1 h increased about 2-fold over those in control cells. Immunofluorescence scattered throughout the cytoplasm also increased after H2O2 treatment. In Northern blot analysis using the cDNA as a probe, the level of transcripts also changed with H2O2 treatment. When amoebae were fed with Tetrahymena, the intensity of immunofluorescence increased from 15 min and persisted until 2 h after phagocytosis. These results suggest that the 22.5-kDa protein of A. proteus is a Prx protein and that it has an antioxidant property responding to phagocytosis.

  5. Participation of 14-3-3ε and 14-3-3ζ proteins in the phagocytosis, component of cellular immune response, in Aedes mosquito cell lines.

    PubMed

    Trujillo-Ocampo, Abel; Cázares-Raga, Febe Elena; Del Angel, Rosa María; Medina-Ramírez, Fernando; Santos-Argumedo, Leopoldo; Rodríguez, Mario H; Hernández-Hernández, Fidel de la Cruz

    2017-08-01

    Better knowledge of the innate immune system of insects will improve our understanding of mosquitoes as potential vectors of diverse pathogens. The ubiquitously expressed 14-3-3 protein family is evolutionarily conserved from yeast to mammals, and at least two isoforms of 14-3-3, the ε and ζ, have been identified in insects. These proteins have been shown to participate in both humoral and cellular immune responses in Drosophila. As mosquitoes of the genus Aedes are the primary vectors for arboviruses, causing several diseases such as dengue fever, yellow fever, Zika and chikungunya fevers, cell lines derived from these mosquitoes, Aag-2 from Aedes aegypti and C6/36 HT from Aedes albopictus, are currently used to study the insect immune system. Here, we investigated the role of 14-3-3 proteins (ε and ζ isoform) in phagocytosis, the main cellular immune responses executed by the insects, using Aedes spp. cell lines. We evaluated the mRNA and protein expression of 14-3-3ε and 14-3-3ζ in C6/36 HT and Aag-2 cells, and demonstrated that both proteins were localised in the cytoplasm. Further, in C6/36 HT cells treated with a 14-3-3 specific inhibitor we observed a notable modification of cell morphology with filopodia-like structure caused through cytoskeleton reorganisation (co-localization of 14-3-3 proteins with F-actin), more importantly the decrease in Salmonella typhimurium, Staphylococcus aureus and E. coli phagocytosis and reduction in phagolysosome formation. Additionally, silencing of 14-3-3ε and 14-3-3ζ expression by mean of specific DsiRNA confirmed the decreased phagocytosis and phagolysosome formation of pHrodo labelled E. coli and S. aureus bacteria by Aag-2 cells. The 14-3-3ε and 14-3-3ζ proteins modulate cytoskeletal remodelling, and are essential for phagocytosis of Gram-positive and Gram-negative bacteria in Aedes spp. cell lines.

  6. CD14(hi)CD16+ monocytes phagocytose antibody-opsonised Plasmodium falciparum infected erythrocytes more efficiently than other monocyte subsets, and require CD16 and complement to do so.

    PubMed

    Zhou, Jingling; Feng, Gaoqian; Beeson, James; Hogarth, P Mark; Rogerson, Stephen J; Yan, Yan; Jaworowski, Anthony

    2015-07-07

    With more than 600,000 deaths from malaria, mainly of children under five years old and caused by infection with Plasmodium falciparum, comes an urgent need for an effective anti-malaria vaccine. Limited details on the mechanisms of protective immunity are a barrier to vaccine development. Antibodies play an important role in immunity to malaria and monocytes are key effectors in antibody-mediated protection by phagocytosing antibody-opsonised infected erythrocytes (IE). Eliciting antibodies that enhance phagocytosis of IE is therefore an important potential component of an effective vaccine, requiring robust assays to determine the ability of elicited antibodies to stimulate this in vivo. The mechanisms by which monocytes ingest IE and the nature of the monocytes which do so are unknown. Purified trophozoite-stage P. falciparum IE were stained with ethidium bromide, opsonised with anti-erythrocyte antibodies and incubated with fresh whole blood. Phagocytosis of IE and TNF production by individual monocyte subsets was measured by flow cytometry. Ingestion of IE was confirmed by imaging flow cytometry. CD14(hi)CD16+ monocytes phagocytosed antibody-opsonised IE and produced TNF more efficiently than CD14(hi)CD16- and CD14(lo)CD16+ monocytes. Blocking experiments showed that Fcγ receptor IIIa (CD16) but not Fcγ receptor IIa (CD32a) or Fcγ receptor I (CD64) was necessary for phagocytosis. CD14(hi)CD16+ monocytes ingested antibody-opsonised IE when peripheral blood mononuclear cells were reconstituted with autologous serum but not heat-inactivated autologous serum. Antibody-opsonised IE were rapidly opsonised with complement component C3 in serum (t1/2 = 2-3 minutes) and phagocytosis of antibody-opsonised IE was inhibited in a dose-dependent manner by an inhibitor of C3 activation, compstatin. Compared to other monocyte subsets, CD14(hi)CD16+ monocytes expressed the highest levels of complement receptor 4 (CD11c) and activated complement receptor 3 (CD11b) subunits

  7. Considerations on comprehensive and off-line supercritical fluid chromatography x reversed-phase liquid chromatography for the analysis of triacylglycerols in fish oil.

    PubMed

    François, Isabelle; Pereira, Alberto dos Santos; Sandra, Pat

    2010-06-01

    The separation of the triacylglycerols in fish oil was performed by comprehensive and off-line supercritical fluid chromatography combined with RP-LC. The first dimension consisted of two serially coupled silver-ion (SI)-loaded columns operated with a supercritical mobile phase (supercritical fluid chromatography, SFC) in both the cases, whereas the second dimension was performed in non-aqueous RP mode (NARP-LC) on a 10-cm monolithic octadecyl silica (ODS) or a 45-cm long ODS column packed with 1.8 microm particles for the comprehensive and off-line separations, respectively. Despite the outstanding performance of the SI-SFC x NARP-LC interface, the high complexity of the sample rendered the online separation far from complete. The off-line approach gave much better separation mainly because of the higher peak capacity of the second-dimension column, but even in this case, the use of MS was mandatory to elucidate the different triacylglycerols in fish oil. The disadvantage of the off-line procedure was the long analysis time.

  8. Quantification of Triacylglycerol Positional Isomers in Rat Milk.

    PubMed

    Watanabe, Natsuko; Nagai, Toshiharu; Mizobe, Hoyo; Yoshinaga, Kazuaki; Yoshida, Akihiko; Kitamura, Yohei; Shimizu, Takashi; Beppu, Fumiaki; Gotoh, Naohiro

    2016-12-01

    The absolute amount of triacylglycerol (TAG) positional isomers was analyzed in rat milk fat, a representative of non-ruminant milk fat, using a HPLC-UV-atmospheric pressure chemical ionization-MS/MS system equipped with an octacosyl silylation column or polymeric ODS column. TAGs consisting of two oleic acids (O) and one palmitic acid (P) were the most abundant. In particular, β-OPO, a TAG binding P at the β-position (sn-2) and two Os at the α-positions (sn-1/3), was prominent. The β-OPO content decreased over time, while a TAG consisting of two Ps and one capric acid, a medium-chain fatty acid, increased. TAGs consisting of two Ps and one docosahexaenoic acid were present in small amounts and decreased with time. These results indicated that the recombination of fatty acids in TAGs in milk fat occurs in the mother, and is thought to depend on the infant's stage of growth, in response to their nutritional needs. It was also demonstrated that medium-chain fatty acids were mainly located at the α-position (sn-3), while Ps were mainly located at the β-position (sn-2). Therefore, the combination and binding positions of fatty acids of TAG are considered very important in infant nutrition.

  9. A strategy for simultaneous determination of fatty acid composition, fatty acid position, and position-specific isotope contents in triacylglycerol matrices by 13C-NMR.

    PubMed

    Merchak, Noelle; Silvestre, Virginie; Loquet, Denis; Rizk, Toufic; Akoka, Serge; Bejjani, Joseph

    2017-01-01

    Triacylglycerols, which are quasi-universal components of food matrices, consist of complex mixtures of molecules. Their site-specific 13 C content, their fatty acid profile, and their position on the glycerol moiety may significantly vary with the geographical, botanical, or animal origin of the sample. Such variables are valuable tracers for food authentication issues. The main objective of this work was to develop a new method based on a rapid and precise 13 C-NMR spectroscopy (using a polarization transfer technique) coupled with multivariate linear regression analyses in order to quantify the whole set of individual fatty acids within triacylglycerols. In this respect, olive oil samples were analyzed by means of both adiabatic 13 C-INEPT sequence and gas chromatography (GC). For each fatty acid within the studied matrix and for squalene as well, a multivariate prediction model was constructed using the deconvoluted peak areas of 13 C-INEPT spectra as predictors, and the data obtained by GC as response variables. This 13 C-NMR-based strategy, tested on olive oil, could serve as an alternative to the gas chromatographic quantification of individual fatty acids in other matrices, while providing additional compositional and isotopic information. Graphical abstract A strategy based on the multivariate linear regression of variables obtained by a rapid 13 C-NMR technique was developed for the quantification of individual fatty acids within triacylglycerol matrices. The conceived strategy was tested on olive oil.

  10. Dietary Lipid Levels Influence Lipid Deposition in the Liver of Large Yellow Croaker (Larimichthys crocea) by Regulating Lipoprotein Receptors, Fatty Acid Uptake and Triacylglycerol Synthesis and Catabolism at the Transcriptional Level.

    PubMed

    Yan, Jing; Liao, Kai; Wang, Tianjiao; Mai, Kangsen; Xu, Wei; Ai, Qinghui

    2015-01-01

    Ectopic lipid accumulation has been observed in fish fed a high-lipid diet. However, no information is available on the mechanism by which dietary lipid levels comprehensively regulate lipid transport, uptake, synthesis and catabolism in fish. Therefore, the present study aimed to gain further insight into how dietary lipids affect lipid deposition in the liver of large yellow croaker(Larimichthys crocea). Fish (150.00±4.95 g) were fed a diet with a low (6%), moderate (12%, the control diet) or high (18%) crude lipid content for 10 weeks. Growth performance, plasma biochemical indexes, lipid contents and gene expression related to lipid deposition, including lipoprotein assembly and clearance, fatty acid uptake and triacylglycerol synthesis and catabolism, were assessed. Growth performance was not significantly affected. However, the hepato-somatic and viscera-somatic indexes as well as plasma triacylglycerol, non-esterified fatty acids and LDL-cholesterol levels were significantly increased in fish fed the high-lipid diet. In the livers of fish fed the high-lipid diet, the expression of genes related to lipoprotein clearance (LDLR) and fatty acid uptake (FABP11) was significantly up-regulated, whereas the expression of genes involved in lipoprotein assembly (apoB100), triacylglycerol synthesis and catabolism (DGAT2, CPT I) was significantly down-regulated compared with fish fed the control diet, and hepatic lipid deposition increased. In fish fed the low-lipid diet, the expression of genes associated with lipoprotein assembly and clearance (apoB100, LDLR, LRP-1), fatty acid uptake (CD36, FATP1, FABP3) and triacylglycerol synthesis (FAS) was significantly increased, whereas the expression of triacylglycerol catabolism related genes (ATGL, CPT I) was reduced compared with fish fed the control diet. However, hepatic lipid content in fish fed the low-lipid diet decreased mainly due to low dietary lipid intake. In summary, findings of this study provide molecular

  11. Dietary Lipid Levels Influence Lipid Deposition in the Liver of Large Yellow Croaker (Larimichthys crocea) by Regulating Lipoprotein Receptors, Fatty Acid Uptake and Triacylglycerol Synthesis and Catabolism at the Transcriptional Level

    PubMed Central

    Yan, Jing; Liao, Kai; Wang, Tianjiao; Mai, Kangsen; Xu, Wei; Ai, Qinghui

    2015-01-01

    Ectopic lipid accumulation has been observed in fish fed a high-lipid diet. However, no information is available on the mechanism by which dietary lipid levels comprehensively regulate lipid transport, uptake, synthesis and catabolism in fish. Therefore, the present study aimed to gain further insight into how dietary lipids affect lipid deposition in the liver of large yellow croaker(Larimichthys crocea). Fish (150.00±4.95 g) were fed a diet with a low (6%), moderate (12%, the control diet) or high (18%) crude lipid content for 10 weeks. Growth performance, plasma biochemical indexes, lipid contents and gene expression related to lipid deposition, including lipoprotein assembly and clearance, fatty acid uptake and triacylglycerol synthesis and catabolism, were assessed. Growth performance was not significantly affected. However, the hepato-somatic and viscera-somatic indexes as well as plasma triacylglycerol, non-esterified fatty acids and LDL-cholesterol levels were significantly increased in fish fed the high-lipid diet. In the livers of fish fed the high-lipid diet, the expression of genes related to lipoprotein clearance (LDLR) and fatty acid uptake (FABP11) was significantly up-regulated, whereas the expression of genes involved in lipoprotein assembly (apoB100), triacylglycerol synthesis and catabolism (DGAT2, CPT I) was significantly down-regulated compared with fish fed the control diet, and hepatic lipid deposition increased. In fish fed the low-lipid diet, the expression of genes associated with lipoprotein assembly and clearance (apoB100, LDLR, LRP-1), fatty acid uptake (CD36, FATP1, FABP3) and triacylglycerol synthesis (FAS) was significantly increased, whereas the expression of triacylglycerol catabolism related genes (ATGL, CPT I) was reduced compared with fish fed the control diet. However, hepatic lipid content in fish fed the low-lipid diet decreased mainly due to low dietary lipid intake. In summary, findings of this study provide molecular

  12. Characterization of medium-chain triacylglycerol (MCT)-enriched seed oil from Cinnamomum camphora (Lauraceae) and its oxidative stability.

    PubMed

    Hu, Jiang-Ning; Zhang, Bing; Zhu, Xue-Mei; Li, Jing; Fan, Ya-Wei; Liu, Rong; Tang, Liang; Lee, Ki-Teak; Deng, Ze-Yuan

    2011-05-11

    Medium-chain triacylglycerol (MCT)-enriched oil was extracted by supercritical fluid extraction of carbon dioxide (SFE-CO(2)) from Cinnamomum camphora seeds. The SFE-CO(2) process was optimized using the Box-Behnken design (BBD). The maximum oil yield (42.82%) was obtained under the optimal SFE-CO(2) conditions: extraction pressure, 21.16 MPa; extraction temperature, 45.67 °C; and extraction time, 2.38 h. Subsequently, the physicochemical characteristics, fatty acid composition, triacylglycerol (TAG) composition, tocopherol content, and DSC profile as well as oxidative stabilities of C. camphora seed oil (CCSO) were studied. Results showed that CCSO contained two major medium-chain fatty acids, capric acid (53.27%) and lauric acid (39.93%). The predominant TAG species in CCSO was LaCC/CLaC (ECN 32, 79.29%). Meanwhile, it can be found that CCSO had much higher oxidative stabilities than coconut oil due to the higher content of tocopherols in CCSO (α-tocopherol, 8.67 ± 0.51 mg/100 g; γ-tocopherol, 22.6 ± 1.02 mg/100 g; δ-tocopherol, 8.38 ± 0.47 mg/100 g). Conclusively, CCSO with such a high level of MCTs and high oxidative stabilities could be potentially applied in special food for specific persons such as weak patients and overweight persons because oils enriched in MCTs can be rapidly absorbed into body to provide energy without fat accumulation.

  13. CD40 ligation and phagocytosis differently affect the differentiation of monocytes into dendritic cells.

    PubMed

    Rosenzwajg, Michelle; Jourquin, Frédéric; Tailleux, Ludovic; Gluckman, Jean Claude

    2002-12-01

    That monocytes can differentiate into macrophages or dendritic cells (DCs) makes them an essential link between innate and adaptive immunity. However, little is known about how interactions with pathogens or T cells influence monocyte engagement toward DCs. We approached this point in cultures where granulocyte macrophage-colony stimulating factor (GM-CSF) and interleukin (IL)-4 induced monocytes to differentiate into immature DCs. Activating monocytes with soluble CD40 ligand (CD40L) led to accelerated differentiation toward mature CD83(+) DCs with up-regulated human leukocyte antigen-DR, costimulatory molecules and CD116 (GM-CSF receptor), and down-regulation of molecules involved in antigen capture. Monocytes primed by phagocytosis of antibody-opsonized, killed Escherichia coli differentiated into DCs with an immature phenotype, whereas Zymosan priming yielded active DCs with an intermediate phenotype. Accordingly, DCs obtained from cultures with CD40L or after Zymosan priming had a decreased capacity to endocytose dextran, but only DCs cultured with CD40L had increased capacity to stimulate allogeneic T cells. DCs obtained after E. coli or Zymosan priming of monocytes produced high levels of proinflammatory tumor necrosis factor alpha and IL-6 as well as of regulatory IL-10, but they produced IL-12p70 only after secondary CD40 ligation. Thus, CD40 ligation on monocytes accelerates the maturation of DCs in the presence of GM-CSF/IL-4, whereas phagocytosis of different microorganisms does not alter and even facilitates their potential to differentiate into immature or active DCs, the maturation of which can be completed upon CD40 ligation. In vivo, such differences may correspond to DCs with different trafficking and T helper cell-stimulating capacities that could differently affect induction of adaptive immune responses to infections.

  14. Kinetic model of 1,3-specific triacylglycerols alcoholysis catalyzed by lipases.

    PubMed

    Pilarek, Maciej; Szewczyk, Krzysztof W

    2007-01-20

    A new model of enzymatic 1,3-specific alcoholysis of triacylglycerols has been developed. The irreversibility of the acyl bounds cleavage in glycerides, a reversible monoglycerides isomerization and an irreversible enzyme deactivation have been assumed. The Ping Pong Bi Bi mechanism with competitive inhibition by alcohol has been applied to describe rates of acyl bonds cleavage. The enzymatic propanolysis and iso-propanolysis of triacetin and tricaprylin catalyzed by immobilized lipase B from Candida antarctica (Novozym 435) have been investigated to verify the model. Good agreement between experimental data and calculations has been obtained. It was shown that the rate of tricaprylin alcoholysis is higher than the triacetin alcoholysis and that the rate of iso-propanolysis reactions are higher than propanolysis. The irreversible enzyme deactivation affects the conversion of glycerides whereas the competitive alcohol inhibition may be neglected. Empirical correlations of rates for monoglycerides isomerization and enzyme deactivation have been proposed.

  15. Identification of Human Cathelicidin Peptide LL-37 as a Ligand for Macrophage Integrin αMβ2 (Mac-1, CD11b/CD18) that Promotes Phagocytosis by Opsonizing Bacteria

    PubMed Central

    Lishko, Valeryi K.; Moreno, Benjamin; Podolnikova, Nataly P.; Ugarova, Tatiana P.

    2016-01-01

    LL-37, a cationic antimicrobial peptide, has numerous immune-modulating effects. However, the identity of a receptor(s) mediating the responses in immune cells remains uncertain. We have recently demonstrated that LL-37 interacts with the αMI-domain of integrin αMβ2 (Mac-1), a major receptor on the surface of myeloid cells, and induces a migratory response in Mac-1-expressing monocyte/macrophages as well as activation of Mac-1 on neutrophils. Here, we show that LL-37 and its C-terminal derivative supported strong adhesion of various Mac-1-expressing cells, including HEK293 cells stably transfected with Mac-1, human U937 monocytic cells and murine IC-21 macrophages. The cell adhesion to LL-37 was partially inhibited by specific Mac-1 antagonists, including mAb against the αM integrin subunit and neutrophil inhibitory factor, and completely blocked when anti-Mac-1 antibodies were combined with heparin, suggesting that cell surface heparan sulfate proteoglycans act cooperatively with integrin Mac-1. Coating both Gram-negative and Gram-positive bacteria with LL-37 significantly potentiated their phagocytosis by macrophages, and this process was blocked by a combination of anti-Mac-1 mAb and heparin. Furthermore, phagocytosis by wild-type murine peritoneal macrophages of LL-37-coated latex beads, a model of foreign surfaces, was several fold higher than that of untreated beads. By contrast, LL-37 failed to augment phagocytosis of beads by Mac-1-deficient macrophages. These results identify LL-37 as a novel ligand for integrin Mac-1 and demonstrate that the interaction between Mac-1 on macrophages and bacteria-bound LL-37 promotes phagocytosis. PMID:27990411

  16. PNPLA3 mediates hepatocyte triacylglycerol remodeling.

    PubMed

    Ruhanen, Hanna; Perttilä, Julia; Hölttä-Vuori, Maarit; Zhou, You; Yki-Järvinen, Hannele; Ikonen, Elina; Käkelä, Reijo; Olkkonen, Vesa M

    2014-04-01

    The I148M substitution in patatin-like phospholipase domain containing 3 (PNPLA3(I148M)) determines a genetic form of nonalcoholic fatty liver disease. To elucidate the mode of PNPLA3 action in human hepatocytes, we studied effects of WT PNPLA3 (PNPLA3(WT)) and PNPLA3(I148M) on HuH7 cell lipidome after [(13)C]glycerol labeling, cellular turnover of oleic acid labeled with 17 deuterium atoms ([D17]oleic acid) in triacylglycerols (TAGs), and subcellular distribution of the protein variants. PNPLA3(I148M) induced a net accumulation of unlabeled TAGs, but not newly synthesized total [(13)C]TAGs. Principal component analysis (PCA) revealed that both PNPLA3(WT) and PNPLA3(I148M) induced a relative enrichment of TAGs with saturated FAs or MUFAs, with concurrent enrichment of polyunsaturated phosphatidylcholines. PNPLA3(WT) associated in PCA with newly synthesized [(13)C]TAGs, particularly 52:1 and 50:1, while PNPLA3(I148M) associated with similar preexisting TAGs. PNPLA3(WT) overexpression resulted in increased [D17]oleic acid labeling of TAGs during 24 h, and after longer incubations their turnover was accelerated, effects not detected with PNPLA3(I148M). PNPLA3(I148M) localized more extensively to lipid droplets (LDs) than PNPLA3(WT), suggesting that the substitution alters distribution of PNPLA3 between LDs and endoplasmic reticulum/cytosol. This study reveals a function of PNPLA3 in FA-selective TAG remodeling, resulting in increased TAG saturation. A defect in TAG remodeling activity likely contributes to the TAG accumulation observed in cells expressing PNPLA3(I148M).

  17. Determination of phagocytosis of /sup 32/P-labeled Staphylococcus aureus by bovine polymorphonuclear leukocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dulin, A.M.; Paape, M.J.; Weinland, B.T.

    1984-04-01

    A procedure for the measurement of phagocytosis by bovine polymorphonuclear leukocytes (PMN) of /sup 32/P-labeled Staphylococcus aureus was modified so that a larger number of samples could be compared in a single run, and smaller volumes of sample, PMN, and /sup 32/P-labeled S aureus could be used. Results were highly reproducible, with a coefficient of variation between duplicate determinations of less than or equal to 2%. Lysostaphin was prepared from the supernatant of S staphylolyticus and was compared with a commercially available preparation. Effects of lysostaphin on PMN and influence of incubation media on release of /sup 32/P from /supmore » 32/P-labeled S aureus by lysostaphin were examined.« less

  18. Activin A increases phagocytosis of Escherichia coli K1 by primary murine microglial cells activated by toll-like receptor agonists.

    PubMed

    Diesselberg, Catharina; Ribes, Sandra; Seele, Jana; Kaufmann, Annika; Redlich, Sandra; Bunkowski, Stephanie; Hanisch, Uwe-Karsten; Michel, Uwe; Nau, Roland; Schütze, Sandra

    2018-06-07

    Bacterial meningitis is associated with high mortality and long-term neurological sequelae. Increasing the phagocytic activity of microglia could improve the resistance of the CNS against infections. We studied the influence of activin A, a member of the TGF-β family with known immunoregulatory and neuroprotective effects, on the functions of microglial cells in vitro. Primary murine microglial cells were treated with activin A (0.13 ng/ml-13 μg/ml) alone or in combination with agonists of TLR2, 4, and 9. Phagocytosis of Escherichia coli K1 as well as release of TNF-α, IL-6, CXCL1, and NO was assessed. Activin A dose-dependently enhanced the phagocytosis of Escherichia coli K1 by microglial cells activated by agonists of TLR2, 4, and 9 without further increasing NO and proinflammatory cytokine release. Cell viability of microglial cells was not affected by activin A. Priming of microglial cells with activin A could increase the elimination of bacteria in bacterial CNS infections. This preventive strategy could improve the resistance of the brain to infections, particularly in elderly and immunocompromised patients.

  19. Opsonization of Toxoplasma gondii tachyzoites with nonspecific immunoglobulins promotes their phagocytosis by macrophages and inhibits their proliferation in nonphagocytic cells in tissue culture.

    PubMed

    Vercammen, M; Scorza, T; El Bouhdidi, A; Van Beeck, K; Carlier, Y; Dubremetz, J F; Verschueren, H

    1999-11-01

    We have recently shown that Toxoplasma gondii tachyzoites grown in in vitro culture can bind unspecific immunoglobulin (Ig) through their Fc moiety. We show now that Fc receptors are also present on T. gondii within the host animal, and that intraperitoneal parasites in immunocompetent mice are saturated with unspecific Ig. We have also investigated the effect of the parasite's Fc receptor on the interaction of tachyzoites with mammalian cells, using the Vero cell line as a model for nonphagocytic host cells and murine peritoneal macrophages in primary culture as a model for phagocytic cells. Coating of tachyzoites with parasite-unrelated Ig did not enhance their invasive capacity in either target cell type, but slightly decreased the parasite proliferation. Moreover, phagocytosis by macrophages was increased by approximately 50% when parasites were coated with unspecific Ig. These results indicate that the Fc receptor on T. gondii affects the balance between invasion and phagocytosis in a way that is detrimental to the parasites.

  20. Resveratrol increases phagocytosis and lipopolysaccharide-induced interleukin-1β production, but decreases surface expression of Toll-like receptor 2 in THP-1 monocytes.

    PubMed

    Zunino, Susan J; Hwang, Daniel H; Huang, Shurong; Storms, David H

    2018-02-01

    THP-1 monocytes were used to evaluate the effects of physiological levels of resveratrol aglycone, resveratrol-3-O-glucuronide, resveratrol-4'-O-glucuronide, and resveratrol-3-O-sulfate on phagocytosis, IL-1β, IL-1α, and IL-18 production, viability, and TLR2 and TLR4 expression. THP-1 cells were treated with 1, 5, 10, and 15μM resveratrol or metabolites. Resveratrol-3-O-glucuronide, resveratrol-4'-O-glucuronide, and resveratrol-3-O-sulfate had no effect on the functional parameters tested. Resveratrol aglycone increased phagocytosis at concentrations of 5, 10, and 15μM and LPS-induced IL-1β production at concentrations of 10 and 15μM. Expression of TLR4 increased slightly after resveratrol treatment, but surface expression of TLR2 was reduced as resveratrol concentrations increased. Our data suggest that resveratrol may be effective in modulating monocyte function in an environment where there is direct exposure to the aglycone, such as at the gut epithelium. Published by Elsevier Ltd.

  1. Role of Yersinia pestis Toxin Complex Family Proteins in Resistance to Phagocytosis by Polymorphonuclear Leukocytes

    PubMed Central

    Carmody, Aaron B.; Jarrett, Clayton O.; Hinnebusch, B. Joseph

    2013-01-01

    Yersinia pestis carries homologues of the toxin complex (Tc) family proteins, which were first identified in other Gram-negative bacteria as having potent insecticidal activity. The Y. pestis Tc proteins are neither toxic to fleas nor essential for survival of the bacterium in the flea, even though tc gene expression is highly upregulated and much more of the Tc proteins YitA and YipA are produced in the flea than when Y. pestis is grown in vitro. We show that Tc+ and Tc− Y. pestis strains are transmitted equivalently from coinfected fleas, further demonstrating that the Tc proteins have no discernible role, either positive or negative, in transmission by the flea vector. Tc proteins did, however, confer Y. pestis with increased resistance to killing by polymorphonuclear leukocytes (PMNs). Resistance to killing was not the result of decreased PMN viability or increased intracellular survival but instead correlated with a Tc protein-dependent resistance to phagocytosis that was independent of the type III secretion system (T3SS). Correspondingly, we did not detect T3SS-dependent secretion of the native Tc proteins YitA and YipA or the translocation of YitA– or YipA–β-lactamase fusion proteins into CHO-K1 (CHO) cells or human PMNs. Thus, although highly produced by Y. pestis within the flea and related to insecticidal toxins, the Tc proteins do not affect interaction with the flea or transmission. Rather, the Y. pestis Tc proteins inhibit phagocytosis by mouse PMNs, independent of the T3SS, and may be important for subverting the mammalian innate immune response immediately following transmission from the flea. PMID:23959716

  2. Triacylglycerols profiling in plant oils important in food industry, dietetics and cosmetics using high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Lísa, Miroslav; Holcapek, Michal

    2008-07-11

    Optimized non-aqueous reversed-phase high-performance liquid chromatography method using acetonitrile-2-propanol gradient elution and the column coupling in the total length of 45 cm has been applied for the high resolution separation of plant oils important in food industry, dietetics and cosmetics. Positive-ion atmospheric pressure chemical ionization mass spectrometry is used for the unambiguous identification and also the reliable quantitation with the response factors approach. Based on the precise determination of individual triacyglycerol concentrations, the calculation of average parameters important in the nutrition is performed, i.e. average carbon number, average double bond number, relative concentrations of essential, saturated, monounsaturated and polyunsaturated fatty acids. Results are reported in the form of both chromatographic fingerprints and tables containing relative concentrations for all triacylglycerols and fatty acids in individual samples. In total, 264 triacylglycerols consisting of 28 fatty acids with the alkyl chain length from 6 to 26 carbon atoms and 0 to 4 double bonds have been identified in 26 industrial important plant oils.

  3. The Response of Nannochloropsis gaditana to Nitrogen Starvation Includes De Novo Biosynthesis of Triacylglycerols, a Decrease of Chloroplast Galactolipids, and Reorganization of the Photosynthetic Apparatus

    PubMed Central

    Simionato, Diana; Block, Maryse A.; La Rocca, Nicoletta; Jouhet, Juliette; Maréchal, Eric

    2013-01-01

    Microalgae of the genus Nannochloropsis are capable of accumulating triacylglycerols (TAGs) when exposed to nutrient limitation (in particular, nitrogen [N]) and are therefore considered promising organisms for biodiesel production. Here, after nitrogen removal from the medium, Nannochloropsis gaditana cells showed extensive triacylglycerol accumulation (38% TAG on a dry weight basis). Triacylglycerols accumulated during N deprivation harbored signatures, indicating that they mainly stemmed from freshly synthesized fatty acids, with a small proportion originating from a recycling of membrane glycerolipids. The amount of chloroplast galactoglycerolipids, which are essential for the integrity of thylakoids, decreased, while their fatty acid composition appeared to be unaltered. In starved cells, galactolipids were kept at a level sufficient to maintain chloroplast integrity, as confirmed by electron microscopy. Consistently, N-starved Nannochloropsis cells contained less photosynthetic membranes but were still efficiently performing photosynthesis. N starvation led to a modification of the photosynthetic apparatus with a change in pigment composition and a decrease in the content of all the major electron flow complexes, including photosystem II, photosystem I, and the cytochrome b6f complex. The photosystem II content was particularly affected, leading to the inhibition of linear electron flow from water to CO2. Such a reduction, however, was partially compensated for by activation of alternative electron pathways, such as cyclic electron transport. Overall, these changes allowed cells to modify their energetic metabolism in order to maintain photosynthetic growth. PMID:23457191

  4. Bruton's Tyrosine Kinase (BTK) and Vav1 Contribute to Dectin1-Dependent Phagocytosis of Candida albicans in Macrophages

    PubMed Central

    Strijbis, Karin; Tafesse, Fikadu G.; Fairn, Gregory D.; Witte, Martin D.; Dougan, Stephanie K.; Watson, Nicki; Spooner, Eric; Esteban, Alexandre; Vyas, Valmik K.; Fink, Gerald R.; Grinstein, Sergio; Ploegh, Hidde L.

    2013-01-01

    Phagocytosis of the opportunistic fungal pathogen Candida albicans by cells of the innate immune system is vital to prevent infection. Dectin-1 is the major phagocytic receptor involved in anti-fungal immunity. We identify two new interacting proteins of Dectin-1 in macrophages, Bruton's Tyrosine Kinase (BTK) and Vav1. BTK and Vav1 are recruited to phagocytic cups containing C. albicans yeasts or hyphae but are absent from mature phagosomes. BTK and Vav1 localize to cuff regions surrounding the hyphae, while Dectin-1 lines the full length of the phagosome. BTK and Vav1 colocalize with the lipid PI(3,4,5)P3 and F-actin at the phagocytic cup, but not with diacylglycerol (DAG) which marks more mature phagosomal membranes. Using a selective BTK inhibitor, we show that BTK contributes to DAG synthesis at the phagocytic cup and the subsequent recruitment of PKCε. BTK- or Vav1-deficient peritoneal macrophages display a defect in both zymosan and C. albicans phagocytosis. Bone marrow-derived macrophages that lack BTK or Vav1 show reduced uptake of C. albicans, comparable to Dectin1-deficient cells. BTK- or Vav1-deficient mice are more susceptible to systemic C. albicans infection than wild type mice. This work identifies an important role for BTK and Vav1 in immune responses against C. albicans. PMID:23825946

  5. Bruton's Tyrosine Kinase (BTK) and Vav1 contribute to Dectin1-dependent phagocytosis of Candida albicans in macrophages.

    PubMed

    Strijbis, Karin; Tafesse, Fikadu G; Fairn, Gregory D; Witte, Martin D; Dougan, Stephanie K; Watson, Nicki; Spooner, Eric; Esteban, Alexandre; Vyas, Valmik K; Fink, Gerald R; Grinstein, Sergio; Ploegh, Hidde L

    2013-01-01

    Phagocytosis of the opportunistic fungal pathogen Candida albicans by cells of the innate immune system is vital to prevent infection. Dectin-1 is the major phagocytic receptor involved in anti-fungal immunity. We identify two new interacting proteins of Dectin-1 in macrophages, Bruton's Tyrosine Kinase (BTK) and Vav1. BTK and Vav1 are recruited to phagocytic cups containing C. albicans yeasts or hyphae but are absent from mature phagosomes. BTK and Vav1 localize to cuff regions surrounding the hyphae, while Dectin-1 lines the full length of the phagosome. BTK and Vav1 colocalize with the lipid PI(3,4,5)P3 and F-actin at the phagocytic cup, but not with diacylglycerol (DAG) which marks more mature phagosomal membranes. Using a selective BTK inhibitor, we show that BTK contributes to DAG synthesis at the phagocytic cup and the subsequent recruitment of PKCε. BTK- or Vav1-deficient peritoneal macrophages display a defect in both zymosan and C. albicans phagocytosis. Bone marrow-derived macrophages that lack BTK or Vav1 show reduced uptake of C. albicans, comparable to Dectin1-deficient cells. BTK- or Vav1-deficient mice are more susceptible to systemic C. albicans infection than wild type mice. This work identifies an important role for BTK and Vav1 in immune responses against C. albicans.

  6. Origin of the phagocytic respiratory burst and its role in gut epithelial phagocytosis in a basal chordate.

    PubMed

    Yang, Ping; Huang, Shengfeng; Yan, Xinyu; Huang, Guangrui; Dong, Xiangru; Zheng, Tingting; Yuan, Dongjuan; Wang, Ruihua; Li, Rui; Tan, Ying; Xu, Anlong

    2014-05-01

    The vertebrate phagocytic respiratory burst (PRB) is a highly specific and efficient mechanism for reactive oxygen species (ROS) production. This mechanism is mediated by NADPH oxidase 2 (NOX2) and used by vertebrate phagocytic leukocytes to destroy internalized microbes. Here we demonstrate the presence of the PRB in a basal chordate, the amphioxus Branchiostoma belcheri tsingtauense (bbt). We show that using the antioxidant NAC to scavenge the production of ROS significantly decreased the survival rates of infected amphioxus, indicating that ROS are indispensable for efficient antibacterial responses. Amphioxus NOX enzymes and cytosolic factors were found to colocalize in the epithelial cells of the gill, intestine, and hepatic cecum and could be upregulated after exposure to microbial pathogens. The ROS production in epithelial cell lysates could be reconstructed by supplementing recombinant cytosolic factors, including bbt-p47phox, bbt-p67phox, bbt-p47phox, and bbt-Rac; the restored ROS production could be inhibited by anti-bbt-NOX2 and anti-bbt-p67phox antibodies. We also reveal that the gut epithelial lining cells of the amphioxus are competent at bacterial phagocytosis, and there is evidence that the PRB machinery could participate in the initiation of this phagocytic process. In conclusion, we report the presence of the classical PRB machinery in nonvertebrates and provide the first evidence for the possible role of PRB in epithelial cell immunity and phagocytosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Binary Phase Behavior of Saturated-Unsaturated Mixed-Acid Triacylglycerols-A Review.

    PubMed

    Zhang, Lu; Ueno, Satoru; Sato, Kiyotaka

    2018-06-01

    Most natural lipids contain a complex mixture of individual triacylglycerols (TAGs). An in-depth knowledge of the mixing behavior of TAGs is necessary for the rational design and engineering of food materials. The binary phase diagram of TAGs is a simplified model that can be explored to help foster an understanding of the phase behavior of complex fats and oils. This article reviews recent research on the binary phase behavior of saturated-unsaturated mixed-acid TAGs, with special emphasis on the stearicunsaturated and palmitic-unsaturated diacid TAGs. The occurrence of polymorphic forms and mutual solubility of TAG mixtures are strongly related to the glycerol conformation of the saturated-oleic diacid TAGs; it appears to be most influenced by the chain-length mismatch in saturated-elaidic diacid TAGs. In addition, the polymorphism of pure enantiomers and racemic mixture of chiral TAGs was also reviewed, while the effect of chirality on mixing behavior was discussed.

  8. Fat in the heart: The enzymatic machinery regulating cardiac triacylglycerol metabolism.

    PubMed

    Heier, Christoph; Haemmerle, Guenter

    2016-10-01

    The heart predominantly utilizes fatty acids (FAs) as energy substrate. FAs that enter cardiomyocytes can be activated and directly oxidized within mitochondria (and peroxisomes) or they can be esterified and intracellularly deposited as triacylglycerol (TAG) often simply referred to as fat. An increase in cardiac TAG can be a signature of the diseased heart and may implicate a minor role of TAG synthesis and breakdown in normal cardiac energy metabolism. Often overlooked, the heart has an extremely high TAG turnover and the transient deposition of FAs within the cardiac TAG pool critically determines the availability of FAs as energy substrate and signaling molecules. We herein review the recent literature regarding the enzymes and co-regulators involved in cardiomyocyte TAG synthesis and catabolism and discuss the interconnection of these metabolic pathways in the normal and diseased heart. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Characterization of key triacylglycerol biosynthesis processes in rhodococci

    DOE PAGES

    Amara, Sawsan; Seghezzi, Nicolas; Otani, Hiroshi; ...

    2016-04-29

    In this study, oleaginous microorganisms have considerable potential for biofuel and commodity chemical production. Under nitrogen-limitation, Rhodococcus jostii RHA1 grown on benzoate, an analog of lignin depolymerization products, accumulated triacylglycerols (TAGs) to 55% of its dry weight during transition to stationary phase, with the predominant fatty acids being C16:0 and C17:0. Transcriptomic analyses of RHA1 grown under conditions of N-limitation and N-excess revealed 1,826 dysregulated genes. Genes whose transcripts were more abundant under N-limitation included those involved in ammonium assimilation, benzoate catabolism, fatty acid biosynthesis and the methylmalonyl-CoA pathway. Of the 16 atf genes potentially encoding diacylglycerol O-acyltransferases, atf8 transcriptsmore » were the most abundant during N-limitation (~50-fold more abundant than during N-excess). Consistent with Atf8 being a physiological determinant of TAG accumulation, a Δ atf8 mutant accumulated 70% less TAG than wild-type RHA1 while atf8 overexpression increased TAG accumulation 20%. Genes encoding type-2 phosphatidic acid phosphatases were not significantly expressed. By contrast, three genes potentially encoding phosphatases of the haloacid dehalogenase superfamily and that cluster with, or are fused with other Kennedy pathway genes were dysregulated. Overall, these findings advance our understanding of TAG metabolism in mycolic acid-containing bacteria and provide a framework to engineer strains for increased TAG production.« less

  10. Characterization of key triacylglycerol biosynthesis processes in rhodococci

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amara, Sawsan; Seghezzi, Nicolas; Otani, Hiroshi

    In this study, oleaginous microorganisms have considerable potential for biofuel and commodity chemical production. Under nitrogen-limitation, Rhodococcus jostii RHA1 grown on benzoate, an analog of lignin depolymerization products, accumulated triacylglycerols (TAGs) to 55% of its dry weight during transition to stationary phase, with the predominant fatty acids being C16:0 and C17:0. Transcriptomic analyses of RHA1 grown under conditions of N-limitation and N-excess revealed 1,826 dysregulated genes. Genes whose transcripts were more abundant under N-limitation included those involved in ammonium assimilation, benzoate catabolism, fatty acid biosynthesis and the methylmalonyl-CoA pathway. Of the 16 atf genes potentially encoding diacylglycerol O-acyltransferases, atf8 transcriptsmore » were the most abundant during N-limitation (~50-fold more abundant than during N-excess). Consistent with Atf8 being a physiological determinant of TAG accumulation, a Δ atf8 mutant accumulated 70% less TAG than wild-type RHA1 while atf8 overexpression increased TAG accumulation 20%. Genes encoding type-2 phosphatidic acid phosphatases were not significantly expressed. By contrast, three genes potentially encoding phosphatases of the haloacid dehalogenase superfamily and that cluster with, or are fused with other Kennedy pathway genes were dysregulated. Overall, these findings advance our understanding of TAG metabolism in mycolic acid-containing bacteria and provide a framework to engineer strains for increased TAG production.« less

  11. Analysis and optimization of triacylglycerol synthesis in novel oleaginous Rhodococcus and Streptomyces strains isolated from desert soil.

    PubMed

    Röttig, Annika; Hauschild, Philippa; Madkour, Mohamed H; Al-Ansari, Ahmed M; Almakishah, Naief H; Steinbüchel, Alexander

    2016-05-10

    As oleaginous microorganisms represent an upcoming novel feedstock for the biotechnological production of lipids or lipid-derived biofuels, we searched for novel, lipid-producing strains in desert soil. This was encouraged by the hypothesis that neutral lipids represent an ideal storage compound, especially under arid conditions, as several animals are known to outlast long periods in absence of drinking water by metabolizing their body fat. Ten lipid-accumulating bacterial strains, affiliated to the genera Bacillus, Cupriavidus, Nocardia, Rhodococcus and Streptomyces, were isolated from arid desert soil due to their ability to synthesize poly(β-hydroxybutyrate), triacylglycerols or wax esters. Particularly two Streptomyces sp. strains and one Rhodococcus sp. strain accumulate significant amounts of TAG under storage conditions under optimized cultivation conditions. Rhodococcus sp. A27 and Streptomyces sp. G49 synthesized approx. 30% (w/w) fatty acids from fructose or cellobiose, respectively, while Streptomyces isolate G25 reached a cellular fatty acid content of nearly 50% (w/w) when cultivated with cellobiose. The stored triacylglycerols were composed of 30-40% branched fatty acids, such as anteiso-pentadecanoic or iso-hexadecanoic acid. To date, this represents by far the highest lipid content described for streptomycetes. A biotechnological production of such lipids using (hemi)cellulose-derived raw material could be used to obtain sustainable biodiesel with a high proportion of branched-chain fatty acids to improve its cold-flow properties and oxidative stability. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Over-Expression of the Mycobacterial Trehalose-Phosphate Phosphatase OtsB2 Results in a Defect in Macrophage Phagocytosis Associated with Increased Mycobacterial-Macrophage Adhesion

    PubMed Central

    Li, Hao; Wu, Mei; Shi, Yan; Javid, Babak

    2016-01-01

    Trehalose-6-phosphate phosphatase (OtsB2) is involved in the OtsAB trehalose synthesis pathway to produce free trehalose and is strictly essential for mycobacterial growth. We wished to determine the effects of OtsB2 expression on mycobacterial phenotypes such as growth, phagocytosis and survival in macrophages. Mycobacterium bovis-bacillus calmette-guerin (BCG) over-expressing OtsB2 were able to better survive in stationary phase. Over-expression of OtsB2 led to a decrease in phagocytosis but not survival in THP-1 macrophage-like cells, and this was not due to a decrease in general macrophage phagocytic activity. Surprisingly, when we investigated macrophage–mycobacterial interactions by flow cytometry and atomic force microscopy, we discovered that BCG over-expressing OtsB2 have stronger binding to THP-1 cells than wild-type BCG. These results suggest that altering OtsB2 expression has implications for mycobacterial host–pathogen interactions. Macrophage–mycobacteria phagocytic interactions are complex and merit further study. PMID:27867377

  13. Precise and rapid isotopomic analysis by (1)H-(13)C 2D NMR: Application to triacylglycerol matrices.

    PubMed

    Merchak, Noelle; Silvestre, Virginie; Rouger, Laetitia; Giraudeau, Patrick; Rizk, Toufic; Bejjani, Joseph; Akoka, Serge

    2016-08-15

    An optimized HSQC sequence was tested and applied to triacylglycerol matrices to determine their isotopic and metabolomic profiles. Spectral aliasing and non-uniform sampling approaches were used to decrease the experimental time and to improve the resolution, respectively. An excellent long-term repeatability of signal integrals was achieved enabling to perform isotopic measurements. Thirty-two commercial vegetable oils were analyzed by this methodology. The results show that this method can be used to classify oil samples according to their geographical and botanical origins. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. In situ alcoholysis of triacylglycerols by application of switchable-polarity solvents. A new derivatization procedure for the gas-chromatographic analysis of vegetable oils.

    PubMed

    Saliu, Francesco; Orlandi, Marco

    2013-10-01

    We describe a new use of switchable-polarity solvents for the simultaneous derivatization and extraction of triacylglycerols from vegetable oils before gas-chromatographic analysis. Different equimolecular mixtures of the commercially available amidine 1,8-diazabicyclo[5.4.0]undec-7-ene and n-alkyl alcohols were tested. Triolein was used as a model compound. Very good results were achieved by using butanol (recovery of butyl oleate was 89 ± 4%). The procedure was applied for the characterization of the fatty acid profile of different vegetable oils. No statistically significant differences from the results obtained with the application of two traditional methods were evidenced. Moreover, the use of switchable-polarity solvents showed many advantages: owing to the basicity of the amidines, no catalyst was required; the transterification reaction was conducted under mild conditions, one step and in situ; no particular matrix interferences were evidenced; the solvent was recovered.

  15. Effects of banding or burdizzo castration of bulls on neutrophil phagocytosis and respiratory burst, CD62-L expression, and serum interleukin-8 concentration.

    PubMed

    Pang, W Y; Earley, B; Sweeney, T; Pirani, S; Gath, V; Crowe, M A

    2009-10-01

    The objective was to investigate measures of neutrophil function in response to banding or burdizzo castration of bulls. Thirty-two Holstein-Friesian bulls (14 mo old, 505 +/- 7.8 kg of BW) were assigned to 1 of 4 treatment groups: 1) sham-handled control (CON); 2) banding castration alone (BAND); 3) burdizzo castration alone (BURD); or 4) cortisol infusion (CORT) as a further control group. For each group on d -14, 8 animals (2 animals/treatment) were tied up in tie stalls (day of treatment = d 0). At -2, 2, 6, 12, 24, 48, 72, and 144 h relative to treatment time, blood samples were collected for analyses of neutrophil phagocytosis and respiratory burst, neutrophil CD62-L expression, and serum IL-8 concentration. Leukocyte counts, phagocytosis activity, and CD62-L expression were similar (P > 0.05) among the 4 treatment groups. The BURD castrates had greater burst activity compared with BAND castrates (P = 0.048) and CON (P = 0.01) at 72 h posttreatment. The BURD castrates had a greater percentage of granulocyte positive leukocytes (Gr%; P < 0.01) at 2 h posttreatment compared with CON and CORT bulls. The BURD castrates had greater (P < 0.05) Gr% compared with BAND, CON, and CORT animals at 24, 48, and 72 h posttreatment. The BURD and BAND castrates had greater Gr% (P < 0.05) compared with CORT bulls at 144 h posttreatment. In general, BAND, BURD, and CORT did not affect serum IL-8 concentration. Banding castration, BURD, and CORT did not induce leukocytosis, whereas BURD induced a modest neutrophilia. Neutrophil functioning in terms of phagocytosis and respiratory burst and serum IL-8 concentration were not compromised by BAND, BURD, and CORT. These findings indicate nonsurgical castration is unlikely to induce a severe acute systemic inflammatory response in terms of neutrophil function.

  16. Enhancing Cardiac Triacylglycerol Metabolism Improves Recovery From Ischemic Stress

    PubMed Central

    Liu, Li; Goldberg, Ira J.

    2015-01-01

    Elevated cardiac triacylglycerol (TAG) content is traditionally equated with cardiolipotoxicity and suggested to be a culprit in cardiac dysfunction. However, previous work demonstrated that myosin heavy-chain–mediated cardiac-specific overexpression of diacylglycerol transferase 1 (MHC-DGAT1), the primary enzyme for TAG synthesis, preserved cardiac function in two lipotoxic mouse models despite maintaining high TAG content. Therefore, we examined whether increased cardiomyocyte TAG levels due to DGAT1 overexpression led to changes in cardiac TAG turnover rates under normoxia and ischemia-reperfusion conditions. MHC-DGAT1 mice had elevated TAG content and synthesis rates, which did not alter cardiac function, substrate oxidation, or myocardial energetics. MHC-DGAT1 hearts had ischemia-induced lipolysis; however, when a physiologic mixture of long-chain fatty acids was provided, enhanced TAG turnover rates were associated with improved functional recovery from low-flow ischemia. Conversely, exogenous supply of palmitate during reperfusion suppressed elevated TAG turnover rates and impaired recovery from ischemia in MHC-DGAT1 hearts. Collectively, this study shows that elevated TAG content, accompanied by enhanced turnover, does not adversely affect cardiac function and, in fact, provides cardioprotection from ischemic stress. In addition, the results highlight the importance of exogenous supply of fatty acids when assessing cardiac lipid metabolism and its relationship with cardiac function. PMID:25858561

  17. Interferon-γ acts as a regulator in the trade-off between phagocytosis and production performance in dwarf chickens.

    PubMed

    Yuan, Yitong; Liu, Shunqi; Zhao, Yue; Lian, Ling; Lian, Zhengxing

    2018-01-01

    Interferon-γ (IFN-γ) is critical for innate and adaptive immunity against viral and bacterial infections. IFN-γ reportedly affects the phagocytic ability of monocytes and macrophages as well as regulates pituitary function in humans and mice. The present study analyzed the impact of IFN-γ on monocyte and macrophage phagocytosis, production performance, and pituitary function in vivo and in vitro (in dwarf chickens). IFN-γ was injected into dwarf chickens through a vein, and then, the laying rate, average egg weight, and levels of follicle-stimulating hormone (FSH) and IFN-γ were measured in treatment and control groups. For the in vitro experiment, the pituitary tissues were supplemented with IFN-γ, and the mRNA expression levels of follicle-stimulating hormone beta subunit ( FSH-β ), interferon gamma receptor 1 ( IFNGR 1), and interferon gamma receptor 2 ( IFNGR 2) in the pituitary were assessed. Monocyte and macrophage phagocytosis product (PP) was decreased by IFN-γ treatment in a dose-dependent manner in vitro. In the in vivo experiment, the level of IFN-γ in the treatment group was higher than that in the control group at 7 d ( P  < 0.05), 14 d ( P  < 0.01), and 21 d ( P  < 0.01) post-injection. Compared with the control group, monocyte and macrophage PP was lower in the treatment group after injection ( P  < 0.01). The laying rate was higher in the treatment group than in the control group at 2 and 3 wk post-injection ( P  < 0.05). There was a significant difference between the treatment and control groups in the levels of FSH at 1, 3, 7, and 14 d post-injection ( P  < 0.01). In the in vitro experiment, increased mRNA expression levels of FSH-β , IFNGR 1, and IFNGR 2 were observed in the treatment group after stimulation with 100 U/mL IFN-γ for 24 h compared to those in the control group ( P  < 0.05). IFN-γ inhibited the phagocytosis of monocytes and macrophages; up-regulated the mRNA expression levels of the FSH

  18. Virulent and Vaccine Strains of Streptococcus equi ssp. zooepidemicus Have Different Influences on Phagocytosis and Cytokine Secretion of Macrophages.

    PubMed

    Jie, Peng; Zhe, Ma; Chengwei, Hua; Huixing, Lin; Hui, Zhang; Chengping, Lu; Hongjie, Fan

    2017-01-06

    Swine streptococcosis is a significant threat to the Chinese pig industry, and Streptococcus equi ssp. zooepidemicus (SEZ) is one of the major pathogens. SEZ ATCC35246 is a classical virulent strain, while SEZ ST171 is a Chinese attenuated vaccine strain. In this study, we employed stable isotope labeling by amino acids in cell culture and liquid chromatography-mass spectrometry (LC-MS) to determine the differential response of macrophages to infection by these two strains. Eighty-seven upregulated proteins and 135 downregulated proteins were identified. The proteomic results were verified by real-time polymerase chain reaction for 10 chosen genes and Western blotting for three proteins. All differentially abundant proteins were analyzed for their Gene Ontology and Kyoto Encyclopedia of Genes and Genomes annotations. Certain downregulated proteins were associated with immunity functions, and the upregulated proteins were related to cytomembrane and cytoskeleton regulation. The phagocytosis rate and cytokine genes transcription in Raw264.7 cells during SEZ ATCC35246 and ST171 infection were detected to confirm the bioinformatics results. These results showed that different effects on macrophage phagocytosis and cytokine expression might explain the different phenotypes of SEZ ATCC35246 and ST171 infection. This research provided clues to the mechanisms of host immunity responses to SEZ ST171and SEZ ATCC35246, which could identify potential therapy and vaccine development targets.

  19. Identification and characterization of a triacylglycerol lipase in Arabidopsis homologous to mammalian acid lipases.

    PubMed

    El-Kouhen, Karim; Blangy, Stéphanie; Ortiz, Emilia; Gardies, Anne-Marie; Ferté, Natalie; Arondel, Vincent

    2005-11-07

    Triacylglycerol (TAG) lipases have been thoroughly characterized in mammals and microorganisms. By contrast, very little is known on plant TAG lipases. An Arabidopsis cDNA called AtLip1 (At2g15230), which exhibits strong homology to lysosomal acid lipase, was found to drive the synthesis of an active TAG lipase when expressed in the baculovirus system. The lipase had a maximal activity at pH 6 and the specific activity was estimated to be about 45 micromol min(-1) mg(-1) protein using triolein as a substrate. Knock-out mutant analysis showed no phenotype during germination indicating that this enzyme is fully dispensable for TAG storage breakdown during germination. Northern blot analyses indicated that the transcript is present in all tissues tested.

  20. Structural identification of triacylglycerol isomers using electron impact excitation of ions from organics (EIEIO).

    PubMed

    Baba, Takashi; Campbell, J Larry; Le Blanc, J C Yves; Baker, Paul R S

    2016-11-01

    Electron-induced dissociation or electron impact excitation of ions from organics (EIEIO) was applied to triacylglycerols (TAGs) for in-depth molecular structure analysis using MS. In EIEIO, energetic electrons (∼10 eV) fragmented TAG ions to allow for regioisomeric assignment of identified acyl groups at the sn-2 or sn-1/3 positions of the glycerol backbone. In addition, carbon-carbon double bond locations within the acyl chains could also be assigned by EIEIO. Beyond the analysis of lipid standards, this technique was applied to edible oils and natural lipid extracts to demonstrate the power of this method to provide in-depth structural elucidation of TAG molecular species. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  1. The transport of DDT from chylomicrons to adipocytes does not mimic triacylglycerol transport

    PubMed Central

    Kohan, Alison B.; Vandersall, Abbey E.; Yang, Qing; Xu, Min; Jandacek, Ronald J.; Tso, Patrick

    2012-01-01

    Despite being banned in the U.S., organochlorine toxins such as DDT are frequently detected in human adipose tissue. The main route of exposure is through the consumption of contaminated foods and subsequent intestinal packaging of DDT into chylomicrons. These chylomicrons, which also contain dietary triacylglycerol (TG), are delivered directly to peripheral tissues without first being metabolized by the liver. The physiological process by which these compounds are delivered from chylomicrons to adipose is not well understood, but is clinically relevant since it bypasses first-pass metabolism. Based on its highly lipophilic nature, it has been assumed that DDT is transferred to peripheral tissues similar to TG; however, this has not been measured. Here, we use the lymph fistula rat to isolate chylomicrons containing both DDT and TG. These chylomicrons are the in vivo DDT delivery vehicle. Using 3T3-L1 adipocytes, we investigated the rate at which DDT transfers from chylomicrons to adipocytes, and mediators of this process. This novel approach closely approximates the in vivo DDT exposure route. We show that: 1) DDT repartitions from chylomicrons to adipocytes, 2) this transport does not require hydrolysis of TG within the chylomicron, and is stimulated by the inhibition of LPL, 3) albumin does not inhibit DDT uptake, 4) DDT dissolved in DMSO does not appropriately mimic in vivo DDT transport; and most importantly, 5) DDT uptake from chylomicrons does not mimic the uptake of TG from the same particles. Understanding these factors is important for designing interventions for human populations exposed to DDT. PMID:22885168

  2. The phagocytosis and toxicity of amorphous silica.

    PubMed

    Costantini, Lindsey M; Gilberti, Renée M; Knecht, David A

    2011-02-02

    between FcγRIIA receptor-mediated and non-opsonized silica particle phagocytosis.

  3. Synthesis of medium-chain fatty acids and their incorporation into triacylglycerols by cell-free fractions from Cuphea embryos.

    PubMed

    Deerberg, S; von Twickel, J; Förster, H H; Cole, T; Fuhrmann, J; Heise, K P

    1990-02-01

    During their rapid maturation period, seeds of Cuphea wrightii A. Gray mainly accumulate medium-chain fatty acids (C8 to C14) in their storage lipids. The rate of lipid deposition (40-50 mg·d(-1)·(g fresh weight)(-1)) is fourfold higher than in seeds of Cuphea racemosa (L. f.) Spreng, which accumulate long-chain fatty acids (C16 to C18). Measurements of the key enzymes of fatty-acid synthesis in cell-free extracts of seeds of different maturities from Cuphea wrightii show that malonyl-CoA synthesis may be a triggering factor for the observed high capacity for fatty-acid synthesis. Experiments on the incorporation of [1-(14)C]acetate into fatty acids by purified plastid preparations from embryos of Cuphea wrightii have demonstrated that the biosynthesis of medium-chain fatty acids (C8 to C14) is localized in the plastid. Thus, in the presence of cofactors for lipid synthesis (ATP, NADPH, NADH, acyl carrier protein, and sn-glycerol-3-phosphate), purified plastid fractions predominantly synthesized free fatty acids, 30% of which were of medium chain length. Transesterification of the freshly synthesized fatty acids to coenzyme A and recombination with the microsomal fraction of the embryo homogenate induced triacylglycerol synthesis. It also stimulated fatty-acid synthesis by a factor 2-3 and increased the relative amount of medium-chain fatty acids bound to triacylglycerols, which corresponded to about 60-80% in this lipid fraction.

  4. Phospholipase Dζ Enhances Diacylglycerol Flux into Triacylglycerol

    DOE PAGES

    Yang, Wenyu; Wang, Geliang; Li, Jia; ...

    2017-03-21

    Plant seeds are the primary source of triacylglycerols (TAG) for food, feed, fuel, and industrial applications. As TAG is produced from diacylglycerol (DAG), successful engineering strategies to enhance TAG levels have focused on the conversion of DAG to TAG. However, the production of TAG can be limited by flux through the enzymatic reactions that supply DAG. In this study, two Arabidopsis phospholipase Dζ genes (AtPLDζ 1 and AtPLDζ 2) were coexpressed in Camelina sativa to test whether the conversion of phosphatidylcholine to DAG impacts TAG levels in seeds. The resulting transgenic plants produced 2% to 3% more TAG as amore » component of total seed biomass and had increased 18:3 and 20:1 fatty acid levels relative to wild type. Increased DAG and decreased PC levels were examined through the kinetics of lipid assembly by [ 14C]acetate and [ 14C]glycerol incorporation into glycerolipids. [ 14C]acetate was rapidly incorporated into TAG in both wild-type and overexpression lines, indicating a significant flux of nascent and elongated acyl-CoAs into the sn-3 position of TAG. Stereochemical analysis revealed that newly synthesized fatty acids were preferentially incorporated into the sn-2 position of PC, but the sn-1 position of de novo DAG and indicated similar rates of nascent acyl groups into the Kennedy pathway and acyl editing. [ 14C]glycerol studies demonstrated PC-derived DAG is the major source of DAG for TAG synthesis in both tissues. The results emphasize that the interconversions of DAG and PC pools can impact oil production and composition.« less

  5. Phospholipase Dζ Enhances Diacylglycerol Flux into Triacylglycerol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Wenyu; Wang, Geliang; Li, Jia

    Plant seeds are the primary source of triacylglycerols (TAG) for food, feed, fuel, and industrial applications. As TAG is produced from diacylglycerol (DAG), successful engineering strategies to enhance TAG levels have focused on the conversion of DAG to TAG. However, the production of TAG can be limited by flux through the enzymatic reactions that supply DAG. In this study, two Arabidopsis phospholipase Dζ genes (AtPLDζ 1 and AtPLDζ 2) were coexpressed in Camelina sativa to test whether the conversion of phosphatidylcholine to DAG impacts TAG levels in seeds. The resulting transgenic plants produced 2% to 3% more TAG as amore » component of total seed biomass and had increased 18:3 and 20:1 fatty acid levels relative to wild type. Increased DAG and decreased PC levels were examined through the kinetics of lipid assembly by [ 14C]acetate and [ 14C]glycerol incorporation into glycerolipids. [ 14C]acetate was rapidly incorporated into TAG in both wild-type and overexpression lines, indicating a significant flux of nascent and elongated acyl-CoAs into the sn-3 position of TAG. Stereochemical analysis revealed that newly synthesized fatty acids were preferentially incorporated into the sn-2 position of PC, but the sn-1 position of de novo DAG and indicated similar rates of nascent acyl groups into the Kennedy pathway and acyl editing. [ 14C]glycerol studies demonstrated PC-derived DAG is the major source of DAG for TAG synthesis in both tissues. The results emphasize that the interconversions of DAG and PC pools can impact oil production and composition.« less

  6. Phagocytosis (cannibalism) of apoptotic neutrophils by tumor cells in gastric micropapillary carcinomas.

    PubMed

    Barresi, Valeria; Branca, Giovanni; Ieni, Antonio; Rigoli, Luciana; Tuccari, Giovanni; Caruso, Rosario Alberto

    2015-05-14

    cytoplasmic vacuoles of tumor cells. These data suggest phagocytosis (cannibalism) of apoptotic neutrophils by micropapillary tumor cells. Tumor cell cannibalism is usually found in aggressive tumors with anaplastic morphology. Our data extend these observations to gastric micropapillary carcinoma: a tumor histotype analogously characterized by aggressive behavior and poor prognosis. The results are of interest because they raise the intriguing possibility that neutrophil cannibalism by tumor cells may be one of the mechanisms favoring tumor growth in gastric micropapillary carcinomas. This is the first study showing phagocytosis (cannibalism) of apoptotic neutrophils by tumor cells in gastric micropapillary carcinomas.

  7. Glycerol-3-Phosphate Acyltransferase Contributes to Triacylglycerol Biosynthesis, Lipid Droplet Formation, and Host Invasion in Metarhizium robertsii

    PubMed Central

    Gao, Qiang; Shang, Yanfang; Huang, Wei

    2013-01-01

    Enzymes involved in the triacylglycerol (TAG) biosynthesis have been well studied in the model organisms of yeasts and animals. Among these, the isoforms of glycerol-3-phosphate acyltransferase (GPAT) redundantly catalyze the first and rate-limiting step in glycerolipid synthesis. Here, we report the functions of mrGAT, a GPAT ortholog, in an insect-pathogenic fungus, Metarhizium robertsii. Unlike in yeasts and animals, a single copy of the mrGAT gene is present in the fungal genome and the gene deletion mutant is viable. Compared to the wild type and the gene-rescued mutant, the ΔmrGAT mutant demonstrated reduced abilities to produce conidia and synthesize TAG, glycerol, and total lipids. More importantly, we found that mrGAT is localized to the endoplasmic reticulum and directly linked to the formation of lipid droplets (LDs) in fungal cells. Insect bioassay results showed that mrGAT is required for full fungal virulence by aiding fungal penetration of host cuticles. Data from this study not only advance our understanding of GPAT functions in fungi but also suggest that filamentous fungi such as M. robertsii can serve as a good model to elucidate the role of the glycerol phosphate pathway in fungal physiology, particularly to determine the mechanistic connection of GPAT to LD formation. PMID:24077712

  8. Involvement of phosphatidate phosphatase in the biosynthesis of triacylglycerols in Chlamydomonas reinhardtii * #

    PubMed Central

    Deng, Xiao-dong; Cai, Jia-jia; Fei, Xiao-wen

    2013-01-01

    Lipid biosynthesis is essential for eukaryotic cells, but the mechanisms of the process in microalgae remain poorly understood. Phosphatidic acid phosphohydrolase or 3-sn-phosphatidate phosphohydrolase (PAP) catalyzes the dephosphorylation of phosphatidic acid to form diacylglycerols and inorganic orthophosphates. This reaction is integral in the synthesis of triacylglycerols. In this study, the mRNA level of the PAP isoform CrPAP2 in a species of Chlamydomonas was found to increase in nitrogen-free conditions. Silencing of the CrPAP2 gene using RNA interference resulted in the decline of lipid content by 2.4%–17.4%. By contrast, over-expression of the CrPAP2 gene resulted in an increase in lipid content by 7.5%–21.8%. These observations indicate that regulation of the CrPAP2 gene can control the lipid content of the algal cells. In vitro CrPAP2 enzyme activity assay indicated that the cloned CrPAP2 gene exhibited biological activities. PMID:24302712

  9. Enantioselective chromatography in analysis of triacylglycerols common in edible fats and oils.

    PubMed

    Kalpio, Marika; Nylund, Matts; Linderborg, Kaisa M; Yang, Baoru; Kristinsson, Björn; Haraldsson, Gudmundur G; Kallio, Heikki

    2015-04-01

    Enantiomers of racemic triacylglycerol (TAG) mixtures were separated using two chiral HPLC columns with a sample recycling system and a UV detector. A closed system without sample derivatisation enabled separation and identification by using enantiopure reference compounds of eleven racemic TAGs with C12-C22 fatty acids with 0-2 double bonds. The prolonged separation time was compensated for by fewer pretreatment steps. Presence of one saturated and one unsaturated fatty acid in the asymmetric TAG favoured the separation. Enantiomeric resolution, at the same time with stronger retention of TAGs, increased with increasing fatty acid chain length in the sn-1(3) position. Triunsaturated TAGs containing oleic, linoleic or palmitoleic acids did not separate. The elution order of enantiomers was determined by chemoenzymatically synthesised enantiopure TAGs with a co-injection method. The method is applicable to many natural fats and oils of low unsaturation level assisting advanced investigation of lipid synthesis and metabolism. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Mild pressure induces rapid accumulation of neutral lipid (triacylglycerol) in Chlorella spp.

    PubMed

    Praveenkumar, Ramasamy; Kim, Bohwa; Lee, Jiye; Vijayan, Durairaj; Lee, Kyubock; Nam, Bora; Jeon, Sang Goo; Kim, Dong-Myung; Oh, You-Kwan

    2016-11-01

    Effective enhancement of neutral lipid (especially triacylglycerol, TAG) content in microalgae is an important issue for commercialization of microalgal biorefineries. Pressure is a key physical factor affecting the morphological, physiological, and biochemical behaviors of organisms. In this paper, we report a new stress-based method for induction of TAG accumulation in microalgae (specifically, Chlorella sp. KR-1 and Ch. sp. AG20150) by very-short-duration application of mild pressure. Pressure treatments of 10-15bar for 2h resulted in a considerable, ∼55% improvement of the 10-100g/Lcells' TAG contents compared with the untreated control. The post-pressure-treatment increase of cytoplasmic TAG granules was further confirmed by transmission electron microscopy (TEM). Notwithstanding the increased TAG content, the total lipid content was not changed by pressurization, implying that pressure stress possibly induces rapid remodeling/transformation of algal lipids rather than de novo biosynthesis of TAG. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Live Imaging of LysoTracker-Labelled Phagolysosomes Tracks Diurnal Phagocytosis of Photoreceptor Outer Segment Fragments in Rat RPE Tissue Ex Vivo.

    PubMed

    Mao, Yingyu; Finnemann, Silvia C

    2016-01-01

    Renewal of rod photoreceptor outer segments in the mammalian eye involves synchronized diurnal shedding after light onset of spent distal outer segment fragments (POS) linked to swift clearance of shed POS from the subretinal space by the adjacent retinal pigment epithelium (RPE). Engulfed POS phagosomes in RPE cells mature to acidified phagolysosomes, which accomplish enzymatic degradation of POS macromolecules. Here, we used an acidophilic fluorophore LysoTracker to label acidic organelles in freshly dissected, live rat RPE tissue flat mounts. We observed that all RPE cells imaged contained numerous acidified POS phagolysosomes whose abundance per cell was dramatically increased 2 h after light onset as compared to either 1 h before or 4 h after light onset. Lack of organelles of similar diameter (of 1-2 μm) in phagocytosis-defective mutant RCS rat RPE confirmed that LysoTracker live imaging detected POS phagolysosomes. Lack of increase in lysosomal membrane protein LAMP-1 in RPE/choroid during the diurnal phagocytic burst suggests that formation of POS phagolysosomes in RPE in situ may not involve extra lysosome membrane biogenesis. Taken together, we report a new imaging approach that directly detects POS phagosome acidification and allows rapid tracking and quantification of POS phagocytosis by live RPE -tissue ex situ.

  12. Discovery of a new mechanism for regulation of plant triacylglycerol metabolism: The peanut diacylglycerol acyltransferase-1 gene family transcriptome is highly enriched in alternative splicing variants

    USDA-ARS?s Scientific Manuscript database

    Triacylglycerols (TAGs) are the most important energy storage form in oilseed crops. Diacylglycerol acyltransferase (DGAT) catalyzes the rate-limiting step of the Kennedy pathway of TAG biosynthesis. To date, little is known about the regulation of DGAT activity in peanut (Arachis hypogaea), an agr...

  13. Phosphatidylserine externalization, “necroptotic bodies” release, and phagocytosis during necroptosis

    PubMed Central

    Erlich, Ziv; Hourizadeh, Aria; Ofir-Birin, Yifat; Croker, Ben A.; Regev-Rudzki, Neta; Edry-Botzer, Liat

    2017-01-01

    Necroptosis is a regulated, nonapoptotic form of cell death initiated by receptor-interacting protein kinase-3 (RIPK3) and mixed lineage kinase domain-like (MLKL) proteins. It is considered to be a form of regulated necrosis, and, by lacking the “find me” and “eat me” signals that are a feature of apoptosis, necroptosis is considered to be inflammatory. One such “eat me” signal observed during apoptosis is the exposure of phosphatidylserine (PS) on the outer plasma membrane. Here, we demonstrate that necroptotic cells also expose PS after phosphorylated mixed lineage kinase-like (pMLKL) translocation to the membrane. Necroptotic cells that expose PS release extracellular vesicles containing proteins and pMLKL to their surroundings. Furthermore, inhibition of pMLKL after PS exposure can reverse the process of necroptosis and restore cell viability. Finally, externalization of PS by necroptotic cells drives recognition and phagocytosis, and this may limit the inflammatory response to this nonapoptotic form of cell death. The exposure of PS to the outer membrane and to extracellular vesicles is therefore a feature of necroptotic cell death and may serve to provide an immunologically-silent window by generating specific “find me” and “eat me” signals. PMID:28650960

  14. Effects of Medium- and Long-Chain Triacylglycerols on Lipid Metabolism and Gut Microbiota Composition in C57BL/6J Mice.

    PubMed

    Zhou, Shengmin; Wang, Yueqiang; Jacoby, Jörg J; Jiang, Yuanrong; Zhang, Yaqiong; Yu, Liangli Lucy

    2017-08-09

    Obesity is related to an increasing risk of chronic diseases. Medium- and long-chain triacylglycerols (MLCT) have been recognized as a promising choice to reduce body weight. In this study, three MLCT with different contents of medium-chain fatty acids (MCFA) (10-30%, w/w) were prepared, and their effects on lipid metabolism and fecal gut microbiota composition of C57BL/6J mice were systematically investigated. MLCT with 30% (w/w) MCFA showed the best performance in decreasing body weight gain as well as optimizing serum lipid parameters and liver triacylglycerol content. The expression levels of genes encoding enzymes for fatty acid degradation increased markedly and expression levels of genes encoding enzymes for de novo fatty acid biosynthesis decreased significantly in the liver of mice treated with MLCT containing 30% (w/w) MCFA. Interestingly, the dietary intake of a high fat diet containing MLCT did significantly decrease the ratio of Firmicutes to Bacteroidetes and down-regulate the relative abundance of Proteobacteria that may attribute to weight loss. Furthermore, we found a notable increase in the total short-chain fatty acid (SCFA) content in feces of mice on a MLCT containing diet. All these results may be concomitantly responsible for the antiobesity effect of MLCT with relatively high contents of MCFA.

  15. Melanin targets LC3-associated phagocytosis (LAP): A novel pathogenetic mechanism in fungal disease.

    PubMed

    Chamilos, Georgios; Akoumianaki, Tonia; Kyrmizi, Irene; Brakhage, Axel; Beauvais, Anne; Latge, Jean-Paul

    2016-05-03

    Intracellular swelling of conidia of the major human airborne fungal pathogen Aspergillus fumigatus results in surface exposure of immunostimulatory pathogen-associated molecular patterns (PAMPs) and triggers activation of a specialized autophagy pathway called LC3-associated phagocytosis (LAP) to promote fungal killing. We have recently discovered that, apart from PAMPs exposure, cell wall melanin removal during germination of A. fumigatus is a prerequisite for activation of LAP. Importantly, melanin promotes fungal pathogenicity via targeting LAP, as a melanin-deficient A. fumigatus mutant restores its virulence upon conditional inactivation of Atg5 in hematopoietic cells of mice. Mechanistically, fungal cell wall melanin selectively excludes the CYBA/p22phox subunit of NADPH oxidase from the phagosome to inhibit LAP, without interfering with signaling regulating cytokine responses. Notably, inhibition of LAP is a general property of melanin pigments, a finding with broad physiological implications.

  16. Effect of yogurt and bifidus yogurt fortified with skim milk powder, condensed whey and lactose-hydrolysed condensed whey on serum cholesterol and triacylglycerol levels in rats.

    PubMed

    Beena, A; Prasad, V

    1997-08-01

    The possible hypocholesterolaemic properties of milk and fermented milk products have been investigated in groups of albino rats given a basal diet, basal diet plus cholesterol, and basal diet plus cholesterol together with whole milk or standard or bifidus yogurt. The yogurts were fortified with skim milk powder, condensed whey or lactose-hydrolysed condensed whey. After 30 d, triacylglycerols, total cholesterol, HDL-cholesterol and LDL-cholesterol were measured in serum. Whole milk and ordinary yogurt had no hypocholesterolaemic effect, but standard yogurt containing lactose-hydrolysed condensed whey and all bifidus yogurts lowered serum cholesterol. In general, yogurts changed HDL-cholesterol little, but tended to raise triacylglycerols. There was marked lowering of LDL-cholesterol in rats given either type of yogurt fortified with whey proteins. This study has demonstrated in a rat model that bifidus yogurts and yogurts fortified with whey proteins can reduce total and LDL-cholesterol, and suggests that if they have the same effect in human subjects they have potential value in cholesterol-lowering diets.

  17. Dietary antioxidants and behavioral enrichment enhance neutrophil phagocytosis in geriatric Beagles.

    PubMed

    Hall, Jean A; Picton, Rebecca A; Finneran, Phyllis S; Bird, Karyn E; Skinner, Monica M; Jewell, Dennis E; Zicker, Steven

    2006-09-15

    The study objective was to determine the effects of feeding food enriched in antioxidants and a program of environmental/cognitive enrichment on selected ex vivo assays of inflammatory and immune cells in healthy geriatric Beagle dogs (n=21). Four groups of dogs were tested using a 2 x 2 factorial design. The 2-year longitudinal study included both nutritional (control food or antioxidant-fortified food) and behavioral (normal level or cognitive enrichment) interventions. Behavior enrichment included increased exercise, environmental enrichment, and a series of learning tasks. Phagocytosis of opsonized latex-coated beads by peripheral blood neutrophils was measured by flow cytometry and found to be significantly increased in dogs receiving both dietary antioxidants and cognitive enrichment. Simultaneous stimulation of cells with Con A and suppression with Dex resulted in decreased lymphocyte proliferation in dogs receiving both dietary antioxidants and cognitive enrichment, compared to dogs receiving dietary antioxidants or cognitive enrichment alone. There were no significant differences between the groups of dogs for percentages of CD4 and CD8 T-lymphocyte subpopulations before or after lymphocyte stimulation with Con A. These results support our hypothesis that both dietary antioxidants and behavioral enrichment enhance host defense mechanisms.

  18. Influence of dichloromethylene bisphosphonate on the in vitro phagocytosis of hydroxyapatite particles by rat peritoneal exudate cells: an electron microscopic and chemiluminescence study.

    PubMed Central

    Hyvönen, P M; Kowolik, M J

    1992-01-01

    Transmission electron microscopy and standard chemiluminescence assays were used to investigate the in vivo effect of dichloromethylene bisphosphonate (clodronate) on the phagocytosis of pure hydroxyapatite particles by rat peritoneal macrophages and the production of chemiluminescence by the peritoneal exudate cells. Hydroxyapatite (control) and a hydroxyapatite/clodronate suspension (28 mumol clodronate per gram of hydroxyapatite, experimental) were injected into the peritoneum of rats, the clodronate dose being 10 micrograms/kg. Macrophages were harvested at 12, 24, 48, and 96 hours after injection and the particle phagocytosis was assessed by transmission electron microscopy. Hydroxyapatite alone was completely phagocytosed by 24 hours and hydroxyapatite reacted with clodronate was completely phagocytosed by 48 hours. From 48 hours onwards hydroxyapatite particle dissolution was observed in the phagosomes of cells in the two groups. At 48 hours the chemiluminescence produced by the peritoneal exudate cells was also measured. Clodronate and clodronate/hydroxyapatite enhanced cell activity on subsequent challenge with phorbol myristate acetate or zymosan. Clodronate seemed to exhibit an inhibitory effect on the phagocytic activity and an enhancement of the chemiluminescence production by the cells in this model, indicating that it was modifying the inflammatory cell response. Images PMID:1532298

  19. The relationship of detergent-solubilization plasma-membrane components of rabbit alveolar macrophages to an isolated inhibitor of phagocytosis.

    PubMed Central

    Pratt, R S; Cook, G M

    1979-01-01

    1. A plasma-membrane fraction prepared from rabbit alveolar macrophages by hyposmotic borate lysis is described. 2. Rabbit lung lavages, containing a glycoprotein inhibitor of phagocytosis, may be fractionated by preparative isoelectric focusing in the presence of Triton X-100. 3. Chemical analysis indicates that the glycoproteins of the lung lavage contain sialic acid, fucose, mannose, galactose, hexosamine and appreciable quantities of glucose. 4. The relationship of macrophage membrane glycoproteins, solubilized with Triton X-100 in the presence of borate, to the lung lavage glycoproteins is demonstrated immunoelectrophoretically. Images PLATE 1 Fig. 1. Fig. 2. PMID:486083

  20. The pleiotropic transcriptional regulator NlpR contributes to the modulation of nitrogen metabolism, lipogenesis and triacylglycerol accumulation in oleaginous rhodococci.

    PubMed

    Hernández, Martín A; Lara, Julia; Gago, Gabriela; Gramajo, Hugo; Alvarez, Héctor M

    2017-01-01

    The regulatory mechanisms involved in lipogenesis and triacylglycerol (TAG) accumulation are largely unknown in oleaginous rhodococci. In this study a regulatory protein (here called NlpR: Nitrogen lipid Regulator), which contributes to the modulation of nitrogen metabolism, lipogenesis and triacylglycerol accumulation in oleaginous rhodococci was identified. Under nitrogen deprivation conditions, in which TAG accumulation is stimulated, the nlpR gene was significantly upregulated, whereas a significant decrease of its expression and TAG accumulation occurred when cerulenin was added. The nlpR disruption negatively affected the nitrate/nitrite reduction as well as lipid biosynthesis under nitrogen-limiting conditions. In contrast, its overexpression increased TAG production during cultivation of cells in nitrogen-rich media. A putative 'NlpR-binding motif' upstream of several genes related to nitrogen and lipid metabolisms was found. The nlpR disruption in RHA1 strain led to a reduced transcription of genes involved in nitrate/nitrite assimilation, as well as in fatty acid and TAG biosynthesis. Purified NlpR was able to bind to narK, nirD, fasI, plsC and atf3 promoter regions. It was suggested that NlpR acts as a pleiotropic transcriptional regulator by activating of nitrate/nitrite assimilation genes and others genes involved in fatty acid and TAG biosynthesis, in response to nitrogen deprivation. © 2016 John Wiley & Sons Ltd.

  1. Protein and energy metabolism of young male Wistar rats fed conjugated linoleic acid as structured triacylglycerol.

    PubMed

    Jørgensen, Henry; Hansen, Christina Hørup; Mu, Huiling; Jakobsen, Kirsten

    2010-08-01

    Twelve 4-week-old male Wistar rats weighing 100 g were fed diets semi-ad libitum for 22 d containing either 1.5% conjugated linoleic acid (CLA-diet) or high oleic sunflower oil (Control-diet). The CLA was structured triacylglycerol with predominantly cis-9, trans-11 and trans-10, cis-12 fatty acid isomers in the inner position and oleic acid in the other positions of the glycerol molecule. The rats were kept individually in metabolic cages. From days 8-16 energy, nitrogen (N) and carbon (C) balances as well as gas exchange measurements in open-air circuit respiration chambers were performed. CLA had no significant influence on feed intake, daily gain in weight or feed conversion efficiency, but the digestibility of nutrients and energy was significantly reduced (except for fat). CLA did not affect N-balance, but reduced the level of daily retained fat (RQ-method: 0.107 vs. 0.417 g/d, p < 0.01) and consequently energy retention in fat. This was explained by increased heat production (HP, RQ-method: 224.6 vs. 214.6 kJ/d, p < 0.001) caused by a higher fat oxidation (28.9% vs. 22.3%, p < 0.001) at the expense of oxidation of carbohydrates (65.6% vs. 71.4%, p < 0.001), while there was no significant effect on the oxidation of protein (5.5% vs. 6.3%). Consequently, the non-protein respiratory quotient (RQnp) was lower in the rats fed the CLA-diet than in the rats fed the Control-diet (0.907 vs. 0.928, p < 0.001). Plasma total lipids of the CLA-fed rats had higher concentrations of the cis-9, trans-11 than the trans-10, cis-12 CLA-isomer. This study shows that young male Wistar rats respond to CLA fed as structured triacylglycerol.

  2. Does triacylglycerol (TAG) serve a photoprotective function in plant leaves? An examination of leaf lipids under shading and drought.

    PubMed

    Marchin, Renée M; Turnbull, Tarryn L; Deheinzelin, Audrey I; Adams, Mark A

    2017-11-01

    Plant survival in many ecosystems requires tolerance of large radiation loads, unreliable water supply and suboptimal soil fertility. We hypothesized that increased production of neutral lipids (triacylglycerols, TAGs) in plant leaves is a mechanism for dissipating excess radiation energy. In a greenhouse experiment, we combined drought and shade treatments and examined responses among four species differing in life form, habitat, and drought- and shade-tolerance. We also present a lipid extraction protocol suitable for sclerophyllous leaves of native Australian trees (e.g. Acacia, Eucalyptus). Fluorescence measurements indicated that plants exposed to full sunlight experienced mild photoinhibition during our experiment. Accumulation of TAGs did not follow photosynthetic capacity, but instead, TAG concentration increased with non-photochemical quenching. This suggests that plants under oxidative stress may increase biosynthesis of TAGs. Moderate drought stress resulted in a 60% reduction in TAG concentration in wheat (Triticum aestivum). Shading had no effect on TAGs, but increased concentrations of polar lipids in leaves; for example, acclimation to shade in Austrodanthonia spp., a native Australian grass, resulted in a 60% increase in associated polar lipids and higher foliar chlorophyll concentrations. Shading also reduced the digalactosyldiacylglycerol:monogalactosyldiacylglycerol (DGDG:MGDG) ratio in leaves, with a corresponding increase in the degree of unsaturation and thus fluidity of thylakoid membranes of chloroplasts. Our results suggest that prevention of photodamage may be coordinated with accumulation of TAGs, although further research is required to determine if TAGs serve a photoprotective function in plant leaves. © 2017 Scandinavian Plant Physiology Society.

  3. Triacylglycerol stereospecific analysis and linear discriminant analysis for milk speciation.

    PubMed

    Blasi, Francesca; Lombardi, Germana; Damiani, Pietro; Simonetti, Maria Stella; Giua, Laura; Cossignani, Lina

    2013-05-01

    Product authenticity is an important topic in dairy sector. Dairy products sold for public consumption must be accurately labelled in accordance with the contained milk species. Linear discriminant analysis (LDA), a common chemometric procedure, has been applied to fatty acid% composition to classify pure milk samples (cow, ewe, buffalo, donkey, goat). All original grouped cases were correctly classified, while 90% of cross-validated grouped cases were correctly classified. Another objective of this research was the characterisation of cow-ewe milk mixtures in order to reveal a common fraud in dairy field, that is the addition of cow to ewe milk. Stereospecific analysis of triacylglycerols (TAG), a method based on chemical-enzymatic procedures coupled with chromatographic techniques, has been carried out to detect fraudulent milk additions, in particular 1, 3, 5% cow milk added to ewe milk. When only TAG composition data were used for the elaboration, 75% of original grouped cases were correctly classified, while totally correct classified samples were obtained when both total and intrapositional TAG data were used. Also the results of cross validation were better when TAG stereospecific analysis data were considered as LDA variables. In particular, 100% of cross-validated grouped cases were obtained when 5% cow milk mixtures were considered.

  4. Conversion of Monogalactosyldiacylglycerols to Triacylglycerols in Ozone-Fumigated Spinach Leaves

    PubMed Central

    Sakaki, Takeshi; Saito, Kazuki; Kawaguchi, Akihiko; Kondo, Noriaki; Yamada, Mitsuhiro

    1990-01-01

    Molecular species and fatty acid distribution of triacylglycerol (TG) accumulated in spinach (Spinacia oleracea L.) leaves fumigated with ozone (0.5 microliter per liter) were compared with those of monogalactosyldiacylglycerol (MGDG). Analysis of positional distribution of the fatty acids in MGDG and the accumulated TG by the enzymatic digestion method showed that hexadecatrienoate (16:3) was restricted to sn-2 position of the glycerol backbone in both MGDG and TG, whereas α-linolenate (18:3) was preferentially located at sn-1 position in MGDG, and sn-1 and/or sn-3 positions in TG, suggesting that 1,2-diacylglycerol moieties of MGDG are the direct precursor of TG in ozonefumigated leaves. Further analysis of TG molecular species by argentation chromatography and mass spectrometry showed that TG increased with ozone fumigation consisted of approximately an equal molar ratio of sn-1,3-18:3-2-16:3 and sn-1,2,3-18:3. Because the molecular species of MGDG in spinach leaves is composed of a similar molar ratio of sn-1-18:3-2-16:3 and sn-1,2-18:3, we concluded that MGDG was converted to 1,2-diacylglycerol and acylated with 18:3 to TG in ozone-fumigated spinach leaves. Images Figure 1 PMID:16667777

  5. Intestinal triacylglycerol synthesis in fat absorption and systemic energy metabolism

    PubMed Central

    Yen, Chi-Liang Eric; Nelson, David W.; Yen, Mei-I

    2015-01-01

    The intestine plays a prominent role in the biosynthesis of triacylglycerol (triglyceride; TAG). Digested dietary TAG is repackaged in the intestine to form the hydrophobic core of chylomicrons, which deliver metabolic fuels, essential fatty acids, and other lipid-soluble nutrients to the peripheral tissues. By controlling the flux of dietary fat into the circulation, intestinal TAG synthesis can greatly impact systemic metabolism. Genes encoding many of the enzymes involved in TAG synthesis have been identified. Among TAG synthesis enzymes, acyl-CoA:monoacylglycerol acyltransferase 2 and acyl-CoA:diacylglycerol acyltransferase (DGAT)1 are highly expressed in the intestine. Their physiological functions have been examined in the context of whole organisms using genetically engineered mice and, in the case of DGAT1, specific inhibitors. An emerging theme from recent findings is that limiting the rate of TAG synthesis in the intestine can modulate gut hormone secretion, lipid metabolism, and systemic energy balance. The underlying mechanisms and their implications for humans are yet to be explored. Pharmacological inhibition of TAG hydrolysis in the intestinal lumen has been employed to combat obesity and associated disorders with modest efficacy and unwanted side effects. The therapeutic potential of inhibiting specific enzymes involved in intestinal TAG synthesis warrants further investigation. PMID:25231105

  6. Characterization of non-endcapped polymeric ODS column for the separation of triacylglycerol positional isomers.

    PubMed

    Gotoh, Naohiro; Matsumoto, Yumiko; Yuji, Hiromi; Nagai, Toshiharu; Mizobe, Hoyo; Ichioka, Kenji; Kuroda, Ikuma; Noguchi, Noriko; Wada, Shun

    2010-01-01

    The characteristics of a non-endcapped polymeric ODS column for the resolution of triacylglycerol positional isomers (TAG-PI) were examined using a recycle HPLC-atmospheric pressure chemical ionization/mass spectrometry system. A pair of TAG-PI containing saturated fatty acids at least 12 carbons was separated. Except for TAG-PI containing elaidic acid, pairs of TAG-PI containing three unsaturated fatty acids were not separated, even by recycle runs. These results indicate that the resolution of TAG-PI on a non-endcapped polymeric ODS stationary phase is realized by the recognition of the linear structure of the fatty acid and the binding position of the saturated fatty acid in TAG-PI. Chain length was also an important factor for resolution. This method may be a useful and simple for measuring the abundance ratio of TAG-PI containing saturated fatty acids in natural oils.

  7. M-CSF increases proliferation and phagocytosis while modulating receptor and transcription factor expression in adult human microglia

    PubMed Central

    2013-01-01

    Background Microglia are the primary immune cells of the brain whose phenotype largely depends on their surrounding micro-environment. Microglia respond to a multitude of soluble molecules produced by a variety of brain cells. Macrophage colony-stimulating factor (M-CSF) is a cytokine found in the brain whose receptor is expressed by microglia. Previous studies suggest a critical role for M-CSF in brain development and normal functioning as well as in several disease processes involving neuroinflammation. Methods Using biopsy tissue from patients with intractable temporal epilepsy and autopsy tissue, we cultured primary adult human microglia to investigate their response to M-CSF. Mixed glial cultures were treated with 25 ng/ml M-CSF for 96 hours. Proliferation and phagocytosis assays, and high through-put immunocytochemistry, microscopy and image analysis were performed to investigate microglial phenotype and function. Results We found that the phenotype of primary adult human microglia was markedly changed following exposure to M-CSF. A greater number of microglia were present in the M-CSF- treated cultures as the percentage of proliferating (BrdU and Ki67-positive) microglia was greatly increased. A number of changes in protein expression occurred following M-CSF treatment, including increased transcription factors PU.1 and C/EBPβ, increased DAP12 adaptor protein, increased M-CSF receptor (CSF-1R) and IGF-1 receptor, and reduced HLA-DP, DQ, DR antigen presentation protein. Furthermore, a distinct morphological change was observed with elongation of microglial processes. These changes in phenotype were accompanied by a functional increase in phagocytosis of Aβ1-42 peptide. Conclusions We show here that the cytokine M-CSF dramatically influences the phenotype of adult human microglia. These results pave the way for future investigation of M-CSF-related targets for human therapeutic benefit. PMID:23866312

  8. Effect of calcium carbonate particle shape on phagocytosis and pro-inflammatory response in differentiated THP-1 macrophages.

    PubMed

    Tabei, Yosuke; Sugino, Sakiko; Eguchi, Kenichiro; Tajika, Masahiko; Abe, Hiroko; Nakajima, Yoshihiro; Horie, Masanori

    2017-08-19

    Phagocytosis is a physiological process used by immune cells such as macrophages to actively ingest and destroy foreign pathogens and particles. It is the cellular process that leads to the failure of drug delivery carriers because the drug carriers are cleared by immune cells before reaching their target. Therefore, clarifying the mechanism of particle phagocytosis would have a significant implication for both fundamental understanding and biomedical engineering. As far as we know, the effect of particle shape on biological response has not been fully investigated. In the present study, we investigated the particle shape-dependent cellular uptake and biological response of differentiated THP-1 macrophages by using calcium carbonate (CaCO 3 )-based particles as a model. Transmission electron microscopy analysis revealed that the high uptake of needle-shaped CaCO 3 particles by THP-1 macrophages because of their high phagocytic activity. In addition, the THP-1 macrophages exposed to needle-shaped CaCO 3 accumulated a large amount of calcium in the intracellular matrix. The enhanced release of interleukin-8 (IL-8) and tumor necrosis factor-alpha (TNF-α) by the THP-1 macrophages suggested that the needle-shaped CaCO 3 particles trigger a pro-inflammatory response. In contrast, no pro-inflammatory response was induced in undifferentiated THP-1 monocytes exposed to either needle- or cuboidal-shaped CaCO 3 particles, probably because of their low phagocytic activity. We also found that phosphate-coated particles efficiently repressed cellular uptake and the resulting pro-inflammatory response in both THP-1 macrophages and primary peritoneal macrophages. Our results indicate that the pro-inflammatory response of macrophages upon exposure to CaCO 3 particles is shape- and surface property-dependent, and is mediated by the intracellular accumulation of calcium ions released from phagocytosed CaCO 3 particles. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Effects of Plant Oil Interesterified Triacylglycerols on Lipemia and Human Health

    PubMed Central

    Alfieri, Andreina; Vitucci, Daniela; Orrù, Stefania; Buono, Pasqualina; Mancini, Annamaria

    2017-01-01

    The position of the fatty acids (sn-1, sn-2 and sn-3) (stereospecific numbering (sn)) in triacylglycerol (TAG) molecules produces a characteristic stereospecificity that defines the physical properties of the fats and influences their absorption, metabolism and uptake into tissues. Fat interesterification is a process that implies a positional distribution of fatty acids (FAs) within the TAG molecules, generating new TAG species, without affecting the FA cis-trans natural balance. The interesterified (IE) fats, frequently used in the food industry comprise fats that are rich in long-chain saturated FAs, such as palmitic acid (16:0) and stearic acid (18:0). Within the interesterified fats, a critical role is played by FA occupying the sn-2 position; in fact, the presence of an unsaturated FA in this specific position influences early metabolic processing and postprandial clearance that in turn could induce atherogenesis and thrombogenesis events. Here, we provide an overview on the role of TAG structures and interesterified palmitic and stearic acid-rich fats on fasting and postprandial lipemia, focusing our attention on their physical properties and their effects on human health. PMID:29301208

  10. Impact of triacylglycerol composition on shear-induced textural changes in highly saturated fats.

    PubMed

    Gregersen, Sandra B; Andersen, Morten D; Hammershøj, Marianne; Wiking, Lars

    2017-01-15

    This study demonstrates a strong interaction between triacylglycerol (TAG) composition and effects of shear rate on the microstructure and texture of fats. Cocoa butter alternatives with similar saturated fat content, but different major TAGs (PPO-, PSO-, SSO-, POP- and SOS-rich blends) were evaluated. Results show how shear can create a harder texture in fat blends based on symmetric monounsaturated TAGs (up to ∼200%), primarily due to reduction in crystal size, whereas shear has little effect on hardness of asymmetric monounsaturated TAGs. Such differences could not be ascribed to differences in the degree of supercooling, but was found to be a consequence of differences in the crystallisation behaviour of different TAGs. The fractal dimension was evaluated by dimensional detrended fluctuation analysis and Fourier transformation of microscopy images. However, the concept of fractal patterns was found to be insufficient to describe microstructural changes of fat blends with high solid fat content. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. A chloroplast pathway for the de novo biosynthesis of triacylglycerol in Chlamydomonas reinhardtii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, J.; Xu, C.; Andre, C.

    2011-06-23

    Neutral lipid metabolism has been extensively studied in yeast, plants and mammals. In contrast, little information is available regarding the biochemical pathway, enzymes and regulatory factors involved in the biosynthesis of triacylglycerol (TAG) in microalgae. In the conventional TAG biosynthetic pathway widely accepted for yeast, plants and mammals, TAG is assembled in the endoplasmic reticulum (ER) from its immediate precursor diacylglycerol (DAG) made by ER-specific acyltransferases, and is deposited exclusively in lipid droplets in the cytosol. Here, we demonstrated that the unicellular microalga Chlamydomonas reinhardtii employs a distinct pathway that uses DAG derived almost exclusively from the chloroplast to producemore » TAG. This unique TAG biosynthesis pathway is largely dependent on de novo fatty acid synthesis, and the TAG formed in this pathway is stored in lipid droplets in both the chloroplast and the cytosol. These findings have wide implications for understanding TAG biosynthesis and storage and other areas of lipid metabolism in microalgae and other organisms.« less

  12. In silico identification of potent pancreatic triacylglycerol lipase inhibitors from traditional Chinese medicine.

    PubMed

    Chen, Kuan-Yu; Chang, Su-Sen; Chen, Calvin Yu-Chian

    2012-01-01

    Pancreatic triacylglycerol lipase (PNLIP) are primary lipases that are critical for triacylglyceride digestion in human. Since reduced metabolism of triacylglyceride might be a plausible concept for weight loss, we screened for potential PNLIP inhibitors from traditional Chinese medicine (TCM) with the aim to identify weight loss candidate compounds. TCM candidates Aurantiamide, Cnidiadin, and 2-hexadecenoic acid exhibited higher Dock Scores than the commercial drug Orlistat, and were also predicted to have inhibitory characteristics against PNLIP using constructed MLR (R(2) = 0.8664) and SVM (R(2) = 0.9030) models. Molecular dynamics indicated that the TCM-PNLIP complexes formed were stable. We identified that the PNLIP binding site has several residues that can serve as anchors, and a hydrophobic corridor that provides additional stability to the complex. Aurantiamide, Cnidiadin, and 2-hexadecenoic acid all have features that correspond to these binding site features, indicating their potential as candidates for PNLIP inhibitors. The information presented in this study may provide helpful insights to designing novel weight-control drugs.

  13. From microalgae oil to produce novel structured triacylglycerols enriched with unsaturated fatty acids.

    PubMed

    Wang, Jun; Wang, Xu-Dong; Zhao, Xing-Yu; Liu, Xi; Dong, Tao; Wu, Fu-An

    2015-05-01

    Novel structured triacylglycerols (STAGs) enriched with unsaturated fatty acids (UFAs) and low palmitic acid (PA) content were firstly synthesized from Schizochytrium sp. oil and oleic acid (OA) via solvent-free acidolysis catalyzed by Lipozyme RM IM. The results indicated that, the PA content decreased from 24.49% to 6.95%, while the UFAs content increased from 70.20% to 90.9% at the sn-1,3 positions in the STAGs under the optimal condition (i.e., lipase load of 7%, molar ratio of microalgae oil TAGs to OA of 1:3, and temperature of 65 °C). The lipase Lipozyme RM IM could be reused 16 times without significant loss of activity. The improved plastic and storage ranges of STAGs are useful for infant formula formulations, by which a possible method is blending of this product and 1,3-dioleoyl-2-palmitoylglycerol enriched fats and minor lipids based on the corresponding chemical compositions of human milk fat. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. The Phagocytosis and Toxicity of Amorphous Silica

    PubMed Central

    Costantini, Lindsey M.; Gilberti, Renée M.; Knecht, David A.

    2011-01-01

    cases. However, the result suggests a mechanistic difference between FcγRIIA receptor-mediated and non-opsonized silica particle phagocytosis. PMID:21311600

  15. HIV-1 Promotes Intake of Leishmania Parasites by Enhancing Phosphatidylserine-Mediated, CD91/LRP-1-Dependent Phagocytosis in Human Macrophages

    PubMed Central

    Lodge, Robert; Ouellet, Michel; Barat, Corinne; Andreani, Guadalupe; Kumar, Pranav; Tremblay, Michel J.

    2012-01-01

    Over the past decade, the number of reported human immunodeficiency virus type-1 (HIV-1)/Leishmania co-infections has risen dramatically, particularly in regions where both diseases are endemic. Although it is known that HIV-1 infection leads to an increase in susceptibility to Leishmania infection and leishmaniasis relapse, little remains known on how HIV-1 contributes to Leishmania parasitaemia. Both pathogens infect human macrophages, and the intracellular growth of Leishmania is increased by HIV-1 in co-infected cultures. We now report that uninfected bystander cells, not macrophages productively infected with HIV-1, account for enhanced phagocytosis and higher multiplication of Leishmania parasites. This effect can be driven by HIV-1 Tat protein and transforming growth factor-beta (TGF-β). Furthermore, we show for the first time that HIV-1 infection increases surface expression of phosphatidylserine receptor CD91/LRP-1 on human macrophages, thereby leading to a Leishmania uptake by uninfected bystander cells in HIV-1-infected macrophage populations. The more important internalization of parasites is due to interactions between the scavenger receptor CD91/LRP-1 and phosphatidylserine residues exposed at the surface of Leishmania. We determined also that enhanced CD91/LRP-1 surface expression occurs rapidly following HIV-1 infection, and is triggered by the activation of extracellular TGF-β. Thus, these results establish an intricate link between HIV-1 infection, Tat, surface CD91/LRP-1, TGF-β, and enhanced Leishmania phosphatidylserine-mediated phagocytosis. PMID:22412921

  16. Studying longterm effects of micro gravity on basic immune functions - The development of an application based on the measuring of phagocytosis activity of Blue Mussel hemocytes

    NASA Astrophysics Data System (ADS)

    Unruh, Eckehardt

    The immunsystem of astronauts exposed to microgravity is declining. Whether this effect is caused by microgravity or in combination with cosmic radiation is so far not clear. The immune system of vertebrates has several defence strategies but the basic immune response (Phagocytosis) is present as well in invertebrates. Phagocytotic cells are drawn by chemotaxis to the origin of an infection. By adhesion, ingestion and phagosome formation foreign particles, bacteria etc are transported inside of a cell were they are destroyed by native powerful biocides. Related to this biocide production is the formation of Reactive Oxygen Species (ROS). ROS can be measured by luminescence. The effects of microgravity will be simultaneously tested by exposure of phagocytotic hemocytes on orbit under microgravity, artificial gravity and, on ground under natural gravity. To address this purpose defined pools of Blue Mussel (Mytilus edulis) hemocytes will be launched frozen to the ISS. References for all batches will stay on ground. Shortly after arrival and then in three-month intervals batches of the same pool will be thawed and reconstituted. The phagocytosis related production of ROS will be stimulated with opsonized Zymosan. Luminescence will be measured and the data will be sent to ground. The experiment is scheduled for the Columbus Biolab early 2009. In preparation of this flight experiments the following procedures were investigated and the results will be presented: - a protocol for the cryoconservation and reconstituton of blue mussel hemocytes. - preliminary results of phagocytosis activity by reconstituted hemocytes after cryo-conservation and hemocytes without cryo-conservation treatment. The TRIPLELUX-B Experiment contributes to risk assessment concerning longterm immunotoxicity under space flight conditions. The immune system of invertebrates has not been studied so far in space. The choice of the phagocytes from invertebrates is justified by the claim to study the

  17. p85α recruitment by the CD300f phosphatidylserine receptor mediates apoptotic cell clearance required for autoimmunity suppression

    NASA Astrophysics Data System (ADS)

    Tian, Linjie; Choi, Seung-Chul; Murakami, Yousuke; Allen, Joselyn; Morse, Herbert C., III; Qi, Chen-Feng; Krzewski, Konrad; Coligan, John E.

    2014-01-01

    Apoptotic cell (AC) clearance is essential for immune homeostasis. Here we show that mouse CD300f (CLM-1) recognizes outer membrane-exposed phosphatidylserine, and regulates the phagocytosis of ACs. CD300f accumulates in phagocytic cups at AC contact sites. Phosphorylation within CD300f cytoplasmic tail tyrosine-based motifs initiates signals that positively or negatively regulate AC phagocytosis. Y276 phosphorylation is necessary for enhanced CD300f-mediated phagocytosis through the recruitment of the p85α regulatory subunit of phosphatidylinositol-3-kinase (PI3K). CD300f-PI3K association leads to activation of downstream Rac/Cdc42 GTPase and mediates changes of F-actin that drive AC engulfment. Importantly, primary macrophages from CD300f-deficient mice have impaired phagocytosis of ACs. The biological consequence of CD300f deficiency is predisposition to autoimmune disease development, as FcγRIIB-deficient mice develop a systemic lupus erythematosus-like disease at a markedly accelerated rate if CD300f is absent. In this report we identify the mechanism and role of CD300f in AC phagocytosis and maintenance of immune homeostasis.

  18. A Central Role for Triacylglycerol in Membrane Lipid Breakdown, Fatty Acid β-Oxidation, and Plant Survival under Extended Darkness.

    PubMed

    Fan, Jilian; Yu, Linhui; Xu, Changcheng

    2017-07-01

    Neutral lipid metabolism is a key aspect of intracellular homeostasis and energy balance and plays a vital role in cell survival under adverse conditions, including nutrient deprivation in yeast and mammals, but the role of triacylglycerol (TAG) metabolism in plant stress response remains largely unknown. By thoroughly characterizing mutants defective in SUGAR-DEPENDENT1 (SDP1) triacylglycerol lipase or PEROXISOMAL ABC TRANSPORTER 1 (PXA1), here we show that TAG is a key intermediate in the mobilization of fatty acids from membrane lipids for peroxisomal β-oxidation under prolonged dark treatment. Disruption of SDP1 increased TAG accumulation in cytosolic lipid droplets and markedly enhanced plant tolerance to extended darkness. We demonstrate that blocking TAG hydrolysis enhances plant tolerance to dark treatment via two distinct mechanisms. In pxa1 mutants, in which free fatty acids accumulated rapidly under extended darkness, SDP1 disruption resulted in a marked decrease in levels of cytotoxic lipid intermediates such as free fatty acids and phosphatidic acid, suggesting a buffer function of TAG accumulation against lipotoxicity under fatty acid overload. In the wild type, in which free fatty acids remained low and unchanged under dark treatment, disruption of SDP1 caused a decrease in reactive oxygen species production and hence the level of lipid peroxidation, indicating a role of TAG in protection against oxidative damage. Overall, our findings reveal a crucial role for TAG metabolism in membrane lipid breakdown, fatty acid turnover, and plant survival under extended darkness. © 2017 American Society of Plant Biologists. All Rights Reserved.

  19. Comparative Characterization of Phosphatidic Acid Sensors and Their Localization during Frustrated Phagocytosis.

    PubMed

    Kassas, Nawal; Tanguy, Emeline; Thahouly, Tamou; Fouillen, Laetitia; Heintz, Dimitri; Chasserot-Golaz, Sylvette; Bader, Marie-France; Grant, Nancy J; Vitale, Nicolas

    2017-03-10

    Phosphatidic acid (PA) is the simplest phospholipid naturally existing in living organisms, but it constitutes only a minor fraction of total cell lipids. PA has attracted considerable attention because it is a phospholipid precursor, a lipid second messenger, and a modulator of membrane shape, and it has thus been proposed to play key cellular functions. The dynamics of PA in cells and in subcellular compartments, however, remains an open question. The recent generation of fluorescent probes for PA, by fusing GFP to PA-binding domains, has provided direct evidence for PA dynamics in different intracellular compartments. Here, three PA sensors were characterized in vitro, and their preferences for different PA species in particular lipidic environments were compared. In addition, the localization of PA in macrophages during frustrated phagocytosis was examined using these PA sensors and was combined with a lipidomic analysis of PA in intracellular compartments. The results indicate that the PA sensors display some preferences for specific PA species, depending on the lipid environment, and the localization study in macrophages revealed the complexity of intracellular PA dynamics. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Roles of phagocytosis activating protein (PAP) in Aeromonas hydrophila infected Cyprinus carpio.

    PubMed

    Wonglapsuwan, Monwadee; Kongmee, Pataraporn; Suanyuk, Naraid; Chotigeat, Wilaiwan

    2016-06-01

    Cyprinus carpio (koi) is one of the most popular ornamental fish. A major problem for C. carpio farming is bacterial infections especially by Aeromonas hydrophila. Previously studies had shown that the Phagocytosis Activating Protein (PAP) gene was involved in the innate immune response of animals. Therefore, we attempted to identify a role for the PAP gene in the immunology of C. carpio. The expression of the PAP was found in C. carpio whole blood and increased when the fish were stimulated by inactivated A. hydrophila. In addition, PAP-phMGFP DNA was injected as an immunostimulant. The survival rate and the phagocytic index were significantly increased in the A. hydrophila infected fish that received the PAP-phMGFP DNA immunostimulant. A chitosan-PAP-phMGFP nanoparticle was then developed and feeded into fish which infected with A. hydrophila. These fish had a significantly lower mortality rate than the control. Therefore, this research confirmed a key role for PAP in protection fish from bacterial infection and the chitosan-PAP-phMGFP nanoparticle could be a good prototype for fish immunostimulant in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Intestinal triacylglycerol synthesis in fat absorption and systemic energy metabolism.

    PubMed

    Yen, Chi-Liang Eric; Nelson, David W; Yen, Mei-I

    2015-03-01

    The intestine plays a prominent role in the biosynthesis of triacylglycerol (triglyceride; TAG). Digested dietary TAG is repackaged in the intestine to form the hydrophobic core of chylomicrons, which deliver metabolic fuels, essential fatty acids, and other lipid-soluble nutrients to the peripheral tissues. By controlling the flux of dietary fat into the circulation, intestinal TAG synthesis can greatly impact systemic metabolism. Genes encoding many of the enzymes involved in TAG synthesis have been identified. Among TAG synthesis enzymes, acyl-CoA:monoacylglycerol acyltransferase 2 and acyl-CoA:diacylglycerol acyltransferase (DGAT)1 are highly expressed in the intestine. Their physiological functions have been examined in the context of whole organisms using genetically engineered mice and, in the case of DGAT1, specific inhibitors. An emerging theme from recent findings is that limiting the rate of TAG synthesis in the intestine can modulate gut hormone secretion, lipid metabolism, and systemic energy balance. The underlying mechanisms and their implications for humans are yet to be explored. Pharmacological inhibition of TAG hydrolysis in the intestinal lumen has been employed to combat obesity and associated disorders with modest efficacy and unwanted side effects. The therapeutic potential of inhibiting specific enzymes involved in intestinal TAG synthesis warrants further investigation. Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.

  2. C-type lectin B (SpCTL-B) regulates the expression of antimicrobial peptides and promotes phagocytosis in mud crab Scylla paramamosain.

    PubMed

    Wei, Xiaoyuan; Wang, Limin; Sun, Wanwei; Zhang, Ming; Ma, Hongyu; Zhang, Yueling; Zhang, Xinxu; Li, Shengkang

    2018-07-01

    RNA transcriptional level and protein translational level in mud crab. Meantime, the phagocytosis rate and the expression of three phagocytosis related genes were declined after RNAi of SpCTL-B in hemocytes in mud crab. Collectively, our results suggest that SpCTL-B might play its roles as a pattern recognition receptor (PRR) in immune response towards pathogens infection through influencing the expression of AMPs and the phagocytosis of hemocytes in mud crab S. paramamosain. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Schwann cells use TAM receptor-mediated phagocytosis in addition to autophagy to clear myelin in a mouse model of nerve injury.

    PubMed

    Brosius Lutz, Amanda; Chung, Won-Suk; Sloan, Steven A; Carson, Glenn A; Zhou, Lu; Lovelett, Emilie; Posada, Sean; Zuchero, J Bradley; Barres, Ben A

    2017-09-19

    Ineffective myelin debris clearance is a major factor contributing to the poor regenerative ability of the central nervous system. In stark contrast, rapid clearance of myelin debris from the injured peripheral nervous system (PNS) is one of the keys to this system's remarkable regenerative capacity, but the molecular mechanisms driving PNS myelin clearance are incompletely understood. We set out to discover new pathways of PNS myelin clearance to identify novel strategies for activating myelin clearance in the injured central nervous system, where myelin debris is not cleared efficiently. Here we show that Schwann cells, the myelinating glia of the PNS, collaborate with hematogenous macrophages to clear myelin debris using TAM (Tyro3, Axl, Mer) receptor-mediated phagocytosis as well as autophagy. In a mouse model of PNS nerve crush injury, Schwann cells up-regulate TAM phagocytic receptors Axl and Mertk following PNS injury, and Schwann cells lacking both of these phagocytic receptors exhibit significantly impaired myelin phagocytosis both in vitro and in vivo. Autophagy-deficient Schwann cells also display reductions in myelin clearance after mouse nerve crush injury, as has been recently shown following nerve transection. These findings add a mechanism, Axl/Mertk-mediated myelin clearance, to the repertoire of cellular machinery used to clear myelin in the injured PNS. Given recent evidence that astrocytes express Axl and Mertk and have previously unrecognized phagocytic potential, this pathway may be a promising avenue for activating myelin clearance after CNS injury.

  4. The Klebsiella pneumoniae YfgL (BamB) lipoprotein contributes to outer membrane protein biogenesis, type-1 fimbriae expression, anti-phagocytosis, and in vivo virulence

    PubMed Central

    Hsieh, Pei-Fang; Hsu, Chun-Ru; Chen, Chun-Tang; Lin, Tzu-Lung; Wang, Jin-Town

    2016-01-01

    ABSTRACT Klebsiella pneumoniae is an opportunistic pathogen that causes several kinds of infections, including pneumonia, bacteremia, urinary tract infection and community-acquired pyogenic liver abscess (PLA). Adhesion is the critical first step in the infection process. Our previous work demonstrated that the transcellular translocation is exploited by K. pneumoniae strains to migrate from the gut flora into other tissues, resulting in systemic infections. However, the initial stages of K. pneumoniae infection remain unclear. In this study, we demonstrated that a K. pneumoniae strain deleted for yfgL (bamB) exhibited reduced adherence to and invasion of host cells; changed biogenesis of major β-barrel outer membrane proteins; decreased transcriptional expression of type-1 fimbriae; and increased susceptibility to vancomycin and erythromycin. The yfgL deletion mutant also had reduced ability to against neutrophil phagocytosis; exhibited decreased induction of host IL-6 production; and was profoundly attenuated for virulence in a K. pneumoniae model of bacteremia. Thus, the K. pneumoniae YfgL lipoprotein mediates in outer membrane proteins biogenesis and is crucial for anti-phagocytosis and survival in vivo. These data provide a new insight for K. pneumoniae attachment and such knowledge could facilitate preventive therapies or alternative therapies against K. pneumoniae. PMID:27029012

  5. Metabolic engineering of Saccharomyces cerevisiae for overproduction of triacylglycerols.

    PubMed

    Ferreira, Raphael; Teixeira, Paulo Gonçalves; Gossing, Michael; David, Florian; Siewers, Verena; Nielsen, Jens

    2018-06-01

    Triacylglycerols (TAGs) are valuable versatile compounds that can be used as metabolites for nutrition and health, as well as feedstocks for biofuel production. Although Saccharomyces cerevisiae is the favored microbial cell factory for industrial production of biochemicals, it does not produce large amounts of lipids and TAGs comprise only ~1% of its cell dry weight. Here, we engineered S. cerevisiae to reorient its metabolism for overproduction of TAGs, by regulating lipid droplet associated-proteins involved in TAG synthesis and hydrolysis. We implemented a push-and-pull strategy by overexpressing genes encoding a deregulated acetyl-CoA carboxylase, ACC1 S659A/S1157A (ACC1**) , as well as the last two steps of TAG formation: phosphatidic phosphatase ( PAH1 ) and diacylglycerol acyltransferase ( DGA1 ), ultimately leading to 129 mg∙gCDW -1 of TAGs. Disruption of TAG lipase genes TGL3 , TGL4 , TGL5 and sterol acyltransferase gene ARE1 increased the TAG content to 218 mg∙gCDW -1 . Further disruption of the beta-oxidation by deletion of POX1 , as well as glycerol-3-phosphate utilization through deletion of GUT2 , did not affect TAGs levels. Finally, disruption of the peroxisomal fatty acyl-CoA transporter PXA1 led to accumulation of 254 mg∙gCDW -1 . The TAG levels achieved here are the highest titer reported in S. cerevisiae , reaching 27.4% of the maximum theoretical yield in minimal medium with 2% glucose. This work shows the potential of using an industrially established and robust yeast species for high level lipid production.

  6. A Central Role for Triacylglycerol in Membrane Lipid Breakdown, Fatty Acid β-Oxidation, and Plant Survival under Extended Darkness1[OPEN

    PubMed Central

    2017-01-01

    Neutral lipid metabolism is a key aspect of intracellular homeostasis and energy balance and plays a vital role in cell survival under adverse conditions, including nutrient deprivation in yeast and mammals, but the role of triacylglycerol (TAG) metabolism in plant stress response remains largely unknown. By thoroughly characterizing mutants defective in SUGAR-DEPENDENT1 (SDP1) triacylglycerol lipase or PEROXISOMAL ABC TRANSPORTER 1 (PXA1), here we show that TAG is a key intermediate in the mobilization of fatty acids from membrane lipids for peroxisomal β-oxidation under prolonged dark treatment. Disruption of SDP1 increased TAG accumulation in cytosolic lipid droplets and markedly enhanced plant tolerance to extended darkness. We demonstrate that blocking TAG hydrolysis enhances plant tolerance to dark treatment via two distinct mechanisms. In pxa1 mutants, in which free fatty acids accumulated rapidly under extended darkness, SDP1 disruption resulted in a marked decrease in levels of cytotoxic lipid intermediates such as free fatty acids and phosphatidic acid, suggesting a buffer function of TAG accumulation against lipotoxicity under fatty acid overload. In the wild type, in which free fatty acids remained low and unchanged under dark treatment, disruption of SDP1 caused a decrease in reactive oxygen species production and hence the level of lipid peroxidation, indicating a role of TAG in protection against oxidative damage. Overall, our findings reveal a crucial role for TAG metabolism in membrane lipid breakdown, fatty acid turnover, and plant survival under extended darkness. PMID:28572457

  7. Differences in the Triacylglycerol and Fatty Acid Compositions of Human Colostrum and Mature Milk.

    PubMed

    Zhao, Pu; Zhang, Shuwen; Liu, Lu; Pang, Xiaoyang; Yang, Yang; Lu, Jing; Lv, Jiaping

    2018-05-02

    Human colostrum is important for immune system development and plays a protective role for infants. However, the comprehensive exploration of lipids, which account for 3-5% of milk, and their biological functions in human colostrum was limited. In present study, the triacylglycerol (TAG) and fatty acid (FA) compositions of human colostrum and mature milk were analyzed and compared. Variations were observed in both the TAG and FA compositions. The concentrations of 18:1/18:1/16:0 TAG, high-molecular-weight and unsaturated TAGs were significantly higher in colostrum, whereas mature milk contained more low/medium-molecular-weight TAGs and medium-chain FAs. Furthermore, there were also specific TAGs in both colostrum and mature milk. Our data highlighted targets for further investigation to elucidate the biological function of lipids in colostrum milk. In addition, the comprehensive analysis of TAGs in Chinese colostrum might help in designing infant formula for Chinese babies, especially the preterm ones.

  8. Sugar Potentiation of Fatty Acid and Triacylglycerol Accumulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Zhiyang; Liu, Hui; Xu, Changcheng

    Photosynthetically derived sugar provides carbon skeletons for lipid biosynthesis. We used mutants of Arabidopsis (Arabidopsis thaliana) and the expression of oleogenic factors to investigate relationships among sugar availability, lipid synthesis, and the accumulation of triacylglycerol (TAG) in leaf tissue. The adg1 mutation disables the small subunit of ADP-glucose pyrophosphorylase, the first step in starch synthesis, and the suc2 mutation disables a sucrose/proton symporter that facilitates sucrose loading from leaves into phloem. The adg1suc2 double mutant increases glucose plus sucrose content in leaves 80-fold relative to the wild type, total fatty acid (FA) content 1.8-fold to 8.3% dry weight, and TAGmore » more than 10-fold to 1.2% dry weight. The WRINKLED1 transcription factor also accumulates to higher levels in these leaves, and the rate of FA synthesis increases by 58%. Adding tt4, which disables chalcone synthase, had little effect, but adding the tgd1 mutation, which disables an importer of lipids into plastids to create adg1suc2tt4tgd1, increased total leaf FA to 13.5% dry weight and TAG to 3.8% dry weight, demonstrating a synergistic effect upon combining these mutations. Combining adg1suc2 with the sdp1 mutation, deficient in the predominant TAG lipase, had little effect on total FA content but increased the TAG accumulation by 66% to 2% dry weight. Expression of the WRINKLED1 transcription factor, along with DIACYLGLYCEROL ACYLTRANSFERASE1 and the OLEOSIN1 oil body-associated protein, in the adg1suc2 mutant doubled leaf FA content and increased TAG content to 2.3% dry weight, a level 4.6-fold higher than that resulting from expression of the same factors in the wild type.« less

  9. Sugar Potentiation of Fatty Acid and Triacylglycerol Accumulation

    DOE PAGES

    Zhai, Zhiyang; Liu, Hui; Xu, Changcheng; ...

    2017-10-01

    Photosynthetically derived sugar provides carbon skeletons for lipid biosynthesis. We used mutants of Arabidopsis (Arabidopsis thaliana) and the expression of oleogenic factors to investigate relationships among sugar availability, lipid synthesis, and the accumulation of triacylglycerol (TAG) in leaf tissue. The adg1 mutation disables the small subunit of ADP-glucose pyrophosphorylase, the first step in starch synthesis, and the suc2 mutation disables a sucrose/proton symporter that facilitates sucrose loading from leaves into phloem. The adg1suc2 double mutant increases glucose plus sucrose content in leaves 80-fold relative to the wild type, total fatty acid (FA) content 1.8-fold to 8.3% dry weight, and TAGmore » more than 10-fold to 1.2% dry weight. The WRINKLED1 transcription factor also accumulates to higher levels in these leaves, and the rate of FA synthesis increases by 58%. Adding tt4, which disables chalcone synthase, had little effect, but adding the tgd1 mutation, which disables an importer of lipids into plastids to create adg1suc2tt4tgd1, increased total leaf FA to 13.5% dry weight and TAG to 3.8% dry weight, demonstrating a synergistic effect upon combining these mutations. Combining adg1suc2 with the sdp1 mutation, deficient in the predominant TAG lipase, had little effect on total FA content but increased the TAG accumulation by 66% to 2% dry weight. Expression of the WRINKLED1 transcription factor, along with DIACYLGLYCEROL ACYLTRANSFERASE1 and the OLEOSIN1 oil body-associated protein, in the adg1suc2 mutant doubled leaf FA content and increased TAG content to 2.3% dry weight, a level 4.6-fold higher than that resulting from expression of the same factors in the wild type.« less

  10. Tracking synthesis and turnover of triacylglycerol in leaves

    PubMed Central

    Tjellström, Henrik; Strawsine, Merissa; Ohlrogge, John B.

    2015-01-01

    Triacylglycerol (TAG), typically represents <1% of leaf glycerolipids but can accumulate under stress and other conditions or if leaves are supplied with fatty acids, or in plants transformed with regulators or enzymes of lipid metabolism. To better understand the metabolism of TAG in leaves, pulse–chase radiolabelling experiments were designed to probe its synthesis and turnover. When Arabidopsis leaves were incubated with [14C]lauric acid (12:0), a major initial product was [14C]TAG. Thus, despite low steady-state levels, leaves possess substantial TAG biosynthetic capacity. The contributions of diacylglycerol acyltransferase1 and phospholipid:diacylglycerol acyltransferase1 to leaf TAG synthesis were examined by labelling of dgat1 and pdat1 mutants. The dgat1 mutant displayed a major (76%) reduction in [14C]TAG accumulation whereas pdat1 TAG labelling was only slightly reduced. Thus, DGAT1 has a principal role in TAG biosynthesis in young leaves. During a 4h chase period, radioactivity in TAG declined 70%, whereas the turnover of [14C]acyl chains of phosphatidylcholine (PC) and other polar lipids was much lower. Sixty percent of [14C]12:0 was directly incorporated into glycerolipids without modification, whereas 40% was elongated and desaturated to 16:0 and 18:1 by plastids. The unmodified [14C]12:0 and the plastid products of [14C]12:0 metabolism entered different pathways. Although plastid-modified 14C-labelled products accumulated in monogalactosyldiacylglycerol, PC, phosphatidylethanolamine, and diacylglcerol (DAG), there was almost no accumulation of [14C]16:0 and [14C]18:1 in TAG. Because DAG and acyl-CoA are direct precursors of TAG, the differential labelling of polar glycerolipids and TAG by [14C]12:0 and its plastid-modified products provides evidence for multiple subcellular pools of both acyl-CoA and DAG. PMID:25609824

  11. Tracking synthesis and turnover of triacylglycerol in leaves

    DOE PAGES

    Tjellstrom, Henrik; Strawsine, Merissa; Ohlrogge, John B.

    2015-01-21

    Triacylglycerol (TAG), typically represents <1% of leaf glycerolipids but can accumulate under stress and other conditions or if leaves are supplied with fatty acids, or in plants transformed with regulators or enzymes of lipid metabolism. To better understand the metabolism of TAG in leaves, pulse-chase radiolabelling experiments were designed to probe its synthesis and turnover. When Arabidopsis leaves were incubated with [ 14C]lauric acid (12:0), a major initial product was [ 14C]TAG. Thus, despite low steady-state levels, leaves possess substantial TAG biosynthetic capacity. The contributions of diacylglycerol acyltransferase1 and phospholipid:diacylglycerol acyltransferase1 to leaf TAG synthesis were examined by labelling ofmore » dgat1 and pdat1 mutants. The dgat1 mutant displayed a major (76%) reduction in [ 14C]TAG accumulation whereas pdat1 TAG labelling was only slightly reduced. Thus, DGAT1 has a principal role in TAG biosynthesis in young leaves. During a 4h chase period, radioactivity in TAG declined 70%, whereas the turnover of [ 14C]acyl chains of phosphatidylcholine (PC) and other polar lipids was much lower. Sixty percent of [ 14C]12:0 was directly incorporated into glycerolipids without modification, whereas 40% was elongated and desaturated to 16:0 and 18:1 by plastids. The unmodified [ 14C]12:0 and the plastid products of [ 14C]12:0 metabolism entered different pathways. Although plastid-modified 14C-labelled products accumulated in monogalactosyldiacylglycerol, PC, phosphatidylethanolamine, and diacylglcerol (DAG), there was almost no accumulation of [ 14C]16:0 and [ 14C]18:1 in TAG. Lastly, because DAG and acyl-CoA are direct precursors of TAG, the differential labelling of polar glycerolipids and TAG by [ 14C]12:0 and its plastid-modified products provides evidence for multiple subcellular pools of both acyl-CoA and DAG.« less

  12. Triacylglycerol and triterpene ester composition of shea nuts from seven African countries.

    PubMed

    Akihisa, Toshihiro; Kojima, Nobuo; Katoh, Naoko; Kikuchi, Takashi; Fukatsu, Makoto; Shimizu, Naoto; Masters, Eliot T

    2011-01-01

    The compositions of the triacylglycerol (TAG) and triterpene ester (TE) fractions of the kernel fats (n-hexane extracts; shea butter) of the shea tree (Vitellaria paradoxa; Sapotaceae) were determined for 36 samples from seven sub-Saharan countries, i.e., Cote d' Ivoire, Ghana, Nigeria, Cameroun, Chad, Sudan, and Uganda. The principal TAGs are stearic-oleic-stearic (SOS; mean 31.2%), SOO (27.7%), and OOO (10.8%). The TE fractions contents are in the range of 0.5-6.5%, and contain α-amyrin cinnamate (1c; mean 29.3%) as the predominant TE followed by butyrospermol cinnamate (4c; 14.8%), α-amyrin acetate (1a; 14.1%), lupeol cinnamate (3c; 9.0%), β-amyrin cinnamate (2c; 7.6%), lupeol acetate (3a; 7.2%), butyrospermol acetate (4a; 5.8%), and β-amyrin acetate (2a; 4.9%). Shea kernel fats from West African provenances contained, in general, higher levels of high-melting TAGs such as SOS, and higher amount of TEs than those from East African provenances. No striking regional difference in the composition of the TE fractions was observed. Copyright © 2011 by Japan Oil Chemists' Society

  13. New features of triacylglycerol biosynthetic pathways of peanut seeds in early developmental stages.

    PubMed

    Yu, Mingli; Liu, Fengzhen; Zhu, Weiwei; Sun, Meihong; Liu, Jiang; Li, Xinzheng

    2015-11-01

    The peanut (Arachis hypogaea L.) is one of the three most important oil crops in the world due to its high average oil content (50 %). To reveal the biosynthetic pathways of seed oil in the early developmental stages of peanut pods with the goal of improving the oil quality, we presented a method combining deep sequencing analysis of the peanut pod transcriptome and quantitative real-time PCR (RT-PCR) verification of seed oil-related genes. From the sequencing data, approximately 1500 lipid metabolism-associated Unigenes were identified. The RT-PCR results quantified the different expression patterns of these triacylglycerol (TAG) synthesis-related genes in the early developmental stages of peanut pods. Based on these results and analysis, we proposed a novel construct of the metabolic pathways involved in the biosynthesis of TAG, including the Kennedy pathway, acyl-CoA-independent pathway and proposed monoacylglycerol pathway. It showed that the biosynthetic pathways of TAG in the early developmental stages of peanut pods were much more complicated than a simple, unidirectional, linear pathway.

  14. Synthesis of α-linolenic acid-rich triacylglycerol using a newly prepared immobilized lipase.

    PubMed

    Kim, Heejin; Choi, Nakyung; Oh, Se-Wook; Kim, Yangha; Hee Kim, Byung; Kim, In-Hwan

    2017-12-15

    An α-linolenic acid (ALA)-rich triacylglycerol (TAG) was synthesized from an ALA-rich fatty acid (FA) from perilla oil and glycerol, using a newly prepared immobilized lipase under vacuum. The ALA-rich FA (purity >90wt%) used as the substrate was prepared by urea complexation from perilla oil FAs. Liquid Lipozyme TL 100L lipase from Thermomyces lanuginosus was used for immobilization. Nine different hydrophilic and hydrophobic carriers for immobilization were tested, and Duolite A568, which is a hydrophilic resin, was selected as the best carrier. This immobilized lipase was used to synthesize TAG by direct esterification under vacuum. The parameters investigated were temperature, enzyme loading, and vacuum level. The optimum reaction conditions were a temperature of 60°C, an enzyme loading of 15% (based on the total weight of the substrate), and a vacuum of 0.7kPa, respectively. The maximum conversion to TAG of ca. 88wt% was obtained in 12h under the optimum conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. In Silico Identification of Potent Pancreatic Triacylglycerol Lipase Inhibitors from Traditional Chinese Medicine

    PubMed Central

    Chen, Kuan-Yu; Chang, Su-Sen; Chen, Calvin Yu-Chian

    2012-01-01

    Pancreatic triacylglycerol lipase (PNLIP) are primary lipases that are critical for triacylglyceride digestion in human. Since reduced metabolism of triacylglyceride might be a plausible concept for weight loss, we screened for potential PNLIP inhibitors from traditional Chinese medicine (TCM) with the aim to identify weight loss candidate compounds. TCM candidates Aurantiamide, Cnidiadin, and 2-hexadecenoic acid exhibited higher Dock Scores than the commercial drug Orlistat, and were also predicted to have inhibitory characteristics against PNLIP using constructed MLR (R2 = 0.8664) and SVM (R2 = 0.9030) models. Molecular dynamics indicated that the TCM-PNLIP complexes formed were stable. We identified that the PNLIP binding site has several residues that can serve as anchors, and a hydrophobic corridor that provides additional stability to the complex. Aurantiamide, Cnidiadin, and 2-hexadecenoic acid all have features that correspond to these binding site features, indicating their potential as candidates for PNLIP inhibitors. The information presented in this study may provide helpful insights to designing novel weight-control drugs. PMID:22970152

  16. The m6A methyltransferase Ime4 epitranscriptionally regulates triacylglycerol metabolism and vacuolar morphology in haploid yeast cells.

    PubMed

    Yadav, Pradeep Kumar; Rajasekharan, Ram

    2017-08-18

    N 6 -Methyladenosine (m 6 A) is among the most common modifications in eukaryotic mRNA. The role of yeast m 6 A methyltransferase, Ime4, in meiosis and sporulation in diploid strains is very well studied, but its role in haploid strains has remained unknown. Here, with the help of an immunoblotting strategy and Ime4-GFP protein localization studies, we establish the physiological role of Ime4 in haploid cells. Our data showed that Ime4 epitranscriptionally regulates triacylglycerol metabolism and vacuolar morphology through the long-chain fatty acyl-CoA synthetase Faa1, independently of the RNA methylation complex (MIS complex). The MIS complex consists of the Ime4, Mum2, and Slz1 proteins. Our affinity enrichment strategy (methylated RNA immunoprecipitation assays) using m 6 A polyclonal antibodies coupled with mRNA isolation, quantitative real-time PCR, and standard PCR analyses confirmed the presence of m 6 A-modified FAA1 transcripts in haploid yeast cells. The term "epitranscriptional regulation" encompasses the RNA modification-mediated regulation of genes. Moreover, we demonstrate that the Aft2 transcription factor up-regulates FAA1 expression. Because the m 6 A methylation machinery is fundamentally conserved throughout eukaryotes, our findings will help advance the rapidly emerging field of RNA epitranscriptomics. The metabolic link identified here between m 6 A methylation and triacylglycerol metabolism via the Ime4 protein provides new insights into lipid metabolism and the pathophysiology of lipid-related metabolic disorders, such as obesity. Because the yeast vacuole is an analogue of the mammalian lysosome, our findings pave the way to better understand the role of m 6 A methylation in lysosome-related functions and diseases. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Metabolic profiling reveals that PNPLA3 induces widespread effects on metabolism beyond triacylglycerol remodeling in Huh-7 hepatoma cells

    PubMed Central

    Min, Hae-Ki; Sookoian, Silvia; Pirola, Carlos J.; Cheng, Jianfeng; Mirshahi, Faridoddin

    2014-01-01

    PNPLA3 was recently associated with the susceptibility to nonalcoholic fatty liver disease, a common cause of chronic liver disease characterized by abnormal triglyceride accumulation. Although it is established that PNPLA3 has both triacylglycerol lipase and acylglycerol O-acyltransferase activities, is still unknown whether the gene has any additional role in the modulation of the human liver metabolome. To uncover the functional role of PNPLA3 on liver metabolism, we performed high-throughput metabolic profiling of PNPLA3 siRNA-silencing and overexpression of wild-type and mutant Ile148Met variants (isoleucine/methionine substitution at codon 148) in Huh-7 cells. Metabolomic analysis was performed by using GC/MS and LC/MS platforms. Silencing of PNPLA3 was associated with a global perturbation of Huh-7 hepatoma cells that resembled a catabolic response associated with protein breakdown. A significant decrease in amino- and γ-glutamyl-amino acids and dipeptides and a significant increase in cysteine sulfinic acid, myo-inositol, lysolipids, sphingolipids, and polyunsaturated fatty acids were observed. Overexpression of the PNPLA3 Met148 variant mirrored many of the metabolic changes observed during gene silencing, but in the opposite direction. These findings were replicated by the exploration of canonical pathways associated with PNPLA3 silencing and Met148 overexpression. Overexpression of the PNPLA3 Met148 variant was associated with a 1.75-fold increase in lactic acid, suggesting a shift to anaerobic metabolism and mitochondrial dysfunction. Together, these results suggest a critical role of PNPLA3 in the modulation of liver metabolism beyond its classical participation in triacylglycerol remodeling. PMID:24763554

  18. Metabolic profiling reveals that PNPLA3 induces widespread effects on metabolism beyond triacylglycerol remodeling in Huh-7 hepatoma cells.

    PubMed

    Min, Hae-Ki; Sookoian, Silvia; Pirola, Carlos J; Cheng, Jianfeng; Mirshahi, Faridoddin; Sanyal, Arun J

    2014-07-01

    PNPLA3 was recently associated with the susceptibility to nonalcoholic fatty liver disease, a common cause of chronic liver disease characterized by abnormal triglyceride accumulation. Although it is established that PNPLA3 has both triacylglycerol lipase and acylglycerol O-acyltransferase activities, is still unknown whether the gene has any additional role in the modulation of the human liver metabolome. To uncover the functional role of PNPLA3 on liver metabolism, we performed high-throughput metabolic profiling of PNPLA3 siRNA-silencing and overexpression of wild-type and mutant Ile148Met variants (isoleucine/methionine substitution at codon 148) in Huh-7 cells. Metabolomic analysis was performed by using GC/MS and LC/MS platforms. Silencing of PNPLA3 was associated with a global perturbation of Huh-7 hepatoma cells that resembled a catabolic response associated with protein breakdown. A significant decrease in amino- and γ-glutamyl-amino acids and dipeptides and a significant increase in cysteine sulfinic acid, myo-inositol, lysolipids, sphingolipids, and polyunsaturated fatty acids were observed. Overexpression of the PNPLA3 Met148 variant mirrored many of the metabolic changes observed during gene silencing, but in the opposite direction. These findings were replicated by the exploration of canonical pathways associated with PNPLA3 silencing and Met148 overexpression. Overexpression of the PNPLA3 Met148 variant was associated with a 1.75-fold increase in lactic acid, suggesting a shift to anaerobic metabolism and mitochondrial dysfunction. Together, these results suggest a critical role of PNPLA3 in the modulation of liver metabolism beyond its classical participation in triacylglycerol remodeling. Copyright © 2014 the American Physiological Society.

  19. Kinetics of killing Listeria monocytogenes by macrophages: rapid killing accompanying phagocytosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davies, W.A.

    1983-08-01

    The kinetics of bactericidal activity of activated macrophages can be precisely described by a mathematical model in which phagocytosis, killing, digestion, and release of degraded bacterial material are considered to occur continuously. To gain a better understanding of these events, I have determined the period of time between first contact of bacteria with macrophages and the onset of killing. Activated rat peritoneal macrophages were incubated for various times up to 15 min with Listeria monocytogenes previously labeled with /sup 3/H-thymidine and the unassociated bacteria removed by two centrifugations through a density interface. Both cell-associated radioactivity and cell-associated viable bacteria, determinedmore » as colony forming units after sonication of the cell pellet, increased with time of incubation. However, the specific viability of these bacteria, expressed as the ratio of number of viable bacteria per unit radioactivity declined with time, as an approximate inverse exponential, after a lag period of 2.9 +/- 0.8 min. Evidence is given that other possible causes for this decline in specific viability, other than death of the bacteria, such as preferential ingestion of dead Listeria, clumping of bacteria, variations in autolytic activity, or release of Listericidins are unlikely. I conclude therefore that activated macrophages kill Listeria approximately 3 min after the cell and the bacterium first make contact.« less

  20. The core structure of ginsenan PA, a phagocytosis-activating polysaccharide from the root of Panax ginseng.

    PubMed

    Tomoda, M; Hirabayashi, K; Shimizu, N; Gonda, R; Ohara, N

    1994-09-01

    Controlled Smith degradation and limited hydrolysis of ginsenan PA, the main phagocytosis-activating polysaccharide isolated from the root of Panax ginseng C. A. Meyer, were performed. The reticuloendothelial system-potentiating and anti-complementary activities of the degradation products were investigated. Methylation analysis of the primary and secondary Smith degradation products indicated that the core structural features of ginsenan PA include a backbone chain mainly composed of beta-1,3-linked D-galactose. Almost half of the galactose units in the backbone carry side-chains composed of beta-1,6-linked D-galactosyl residues at position 6. Further 3,6-branching of D-galactose units was observed in a part of the side-chains. alpha-L-Arabinose units are connected mainly to the core galactose moieties via position 6. Removal of most of the arabinose units had a considerable effect on immunological activity.

  1. Lipid Droplet-Associated Proteins (LDAPs) Are Required for the Dynamic Regulation of Neutral Lipid Compartmentation in Plant Cells1

    PubMed Central

    Park, Sunjung; Wu, Peng

    2016-01-01

    Eukaryotic cells compartmentalize neutral lipids into organelles called lipid droplets (LDs), and while much is known about the role of LDs in storing triacylglycerols in seeds, their biogenesis and function in nonseed tissues are poorly understood. Recently, we identified a class of plant-specific, lipid droplet-associated proteins (LDAPs) that are abundant components of LDs in nonseed cell types. Here, we characterized the three LDAPs in Arabidopsis (Arabidopsis thaliana) to gain insight to their targeting, assembly, and influence on LD function and dynamics. While all three LDAPs targeted specifically to the LD surface, truncation analysis of LDAP3 revealed that essentially the entire protein was required for LD localization. The association of LDAP3 with LDs was detergent sensitive, but the protein bound with similar affinity to synthetic liposomes of various phospholipid compositions, suggesting that other factors contributed to targeting specificity. Investigation of LD dynamics in leaves revealed that LD abundance was modulated during the diurnal cycle, and characterization of LDAP misexpression mutants indicated that all three LDAPs were important for this process. LD abundance was increased significantly during abiotic stress, and characterization of mutant lines revealed that LDAP1 and LDAP3 were required for the proper induction of LDs during heat and cold temperature stress, respectively. Furthermore, LDAP1 was required for proper neutral lipid compartmentalization and triacylglycerol degradation during postgerminative growth. Taken together, these studies reveal that LDAPs are required for the maintenance and regulation of LDs in plant cells and perform nonredundant functions in various physiological contexts, including stress response and postgerminative growth. PMID:26896396

  2. Triacylglycerol kinetics in endotoxic rats with suppressed lipoprotein lipase activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagby, G.J.; Corll, C.B.; Martinez, R.R.

    1987-07-01

    Hypertriglyceridemia observed in animals after bacterial endotoxin administration and some forms of sepsis can result from increased hepatic triacylglycerol (TG) output or decreased TG clearance by extrahepatic tissues. To differentiate between these two possibilities, TG and free fatty acid (FFA) kinetics were determined in control and endotoxin-injected rats 18 h after treatment. Plasma TG and FFA kinetics were assessed by a constant intravenous infusion with (9,10-/sup 3/H)palmitate-labeled very low-density lipoprotein and (1-/sup 14/C)palmitate bound to albumin, respectively. In addition, lipoprotein lipase (LPL) activity was determined in heart, skeletal muscle, and adipose tissue as well as in postheparin plasma of functionallymore » hepatectomized, adrenalectomized, and gonadectomized rats. Plasma FFA acid concentrations were slightly increased in endotoxin-treated rats but their turnover did not differ from control. Endotoxin-treated rats had a threefold increase in plasma TG concentrations and decreased heart, skeletal muscle, and post-heparin plasma LPL activity. Plasma TG turnover was decreased, indicating that hypertriglyceridemia was not due to an increased TG output by the liver. Instead, the endotoxin-induced increase in plasma TG concentration was consequence of the 80% reduction in TG metabolic clearance rate. Thus, suppression of LPL activity in endotoxic animals impairs TG clearance resulting in hypertriglyceridemia. Furthermore, endotoxin administration reduced the delivery of TG-FFA to extrahepatic tissues because hepatic synthesis and secretion of TG from plasma FFA was decreased and LPL activity was suppressed.« less

  3. The in vitro biocompatibility and macrophage phagocytosis of Mg17Al12 phase in Mg-Al-Zn alloys.

    PubMed

    Liu, Chen; He, Peng; Wan, Peng; Li, Mei; Wang, Kehong; Tan, Lili; Zhang, Yu; Yang, Ke

    2015-07-01

    Mg alloys are gaining interest for applications as biodegradable medical implant, including Mg-Al-Zn series alloys with good combination of mechanical properties and reasonable corrosion resistance. However, whether the existence of second phase particles in the alloys exerts influence on the biocompatibility is still not clear. A deeper understanding of how the particles regulate specific biological responses is becoming a crucial requirement for their subsequent biomedical application. In this work, the in vitro biocompatibility of Mg17Al12 as a common second phase in biodegradable Mg-Al-Zn alloys was investigated via hemolysis, cytotoxicity, cell proliferation, and cell adhesion tests. Moreover, osteogenic differentiation was evaluated by the extracellular matrix mineralization assay. The Mg17Al12 particles were also prepared to simulate the real situation of second phase in the in vivo environment in order to estimate the cellular response in macrophages to the Mg17Al12 particles. The experimental results indicated that no hemolysis was found and an excellent cytocompatibility was also proved for the Mg17Al12 second phase when co-cultured with L929 cells, MC3T3-E1 cells and BMSCs. Macrophage phagocytosis co-culture test revealed that Mg17Al12 particles exerted no harmful effect on RAW264.7 macrophages and could be phagocytized by the RAW264.7 cells. Furthermore, the possible inflammatory reaction and metabolic way for Mg17Al12 phase were also discussed in detail. © 2014 Wiley Periodicals, Inc.

  4. New isochaetochromin, an inhibitor of triacylglycerol synthesis in mammalian cells, produced by Penicillium sp. FKI-4942: I. Taxonomy, fermentation, isolation and biological properties.

    PubMed

    Ugaki, Narihiro; Matsuda, Daisuke; Yamazaki, Hiroyuki; Nonaka, Kenichi; Masuma, Rokuro; Omura, Satoshi; Tomoda, Hiroshi

    2012-01-01

    A new bis-naphtho-γ-pyrone isomer named isochaetochromin A(1) was isolated along with known isochaetochromins B(1) and B(2) from the culture broth of Penicillium sp. FKI-4942 by solvent extraction, silica gel column chromatography and HPLC. Among them, isochaetochromin B(1) showed the most potent inhibitory activity of triacylglycerol synthesis with an IC(50) value of 5.6 μM, followed by isochaetochromins B(2) (IC(50), 11 μM) and A(1) (33 μM).

  5. Effects of β-glucans from Coriolus versicolor on macrophage phagocytosis are related to the Akt and CK2/Ikaros.

    PubMed

    Kang, Se Chan; Koo, Hyun Jung; Park, Sulkyung; Lim, Jung Dae; Kim, Ye-Jin; Kim, Taeseong; Namkoong, Seung; Jang, Ki-Hyo; Pyo, Suhkneung; Jang, Seon-A; Sohn, Eun-Hwa

    2013-06-01

    Coriolus versicolor has been known to be an immune stimulator effects. For further understanding of the phagocytic activity and the intracellular mechanisms of β-glucan from C. versicolor (CVG), we examined the phagocytic activity, phosphorylation of Akt and CK2, nucleus translocation of p65 and Ikaros activity in β-glucan-treated macrophages using RT-PCR, western blotting, and IP assay. The role of Ikaros in regulating phagocytic effects of CVG was also determined using Ikaros dominant negative isoform cells. This study suggests that CK2/Ikaros are positive regulators and novel signaling pathway involved in phagocytosis and contributes to elucidating the mechanism underlying phagocytic activity induced by β-glucan. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Structural difference of palm based Medium- and Long-Chain Triacylglycerol (MLCT) further reduces body fat accumulation in DIO C57BL/6J mice when consumed in low fat diet for a mid-term period.

    PubMed

    Lee, Yee-Ying; Tang, Teck-Kim; Phuah, Eng-Tong; Karim, Nur Azwani Abdul; Alitheen, Noorjahan Banu Mohamed; Tan, Chin-Ping; Razak, Intan Shameha Abdul; Lai, Oi-Ming

    2018-01-01

    Medium-and-Long Chain Triacylglycerol (MLCT) is a type of structured lipid that is made up of medium chain, MCFA (C8-C12) and long chain, LCFA (C16-C22) fatty acid. Studies claimed that consumption of MLCT has the potential in reducing visceral fat accumulation as compared to long chain triacylglycerol, LCT. This is mainly attributed to the rapid metabolism of MCFA as compared to LCFA. Our study was designed to compare the anti-obesity effects of a enzymatically interesterified MLCT (E-MLCT) with physical blend of palm kernel and palm oil (B-PKOPO) having similar fatty acid composition and a commercial MLCT (C-MLCT) made of rapeseed/soybean oil on Diet Induced Obesity (DIO) C57BL/6J mice for a period of four months in low fat, LF (7%) and high fat, HF (30%) diet. The main aim was to determine if the anti-obesity effect of MLCT was contributed solely by its triacylglycerol structure alone or its fatty acid composition or both. Out of the three types of MLCT, mice fed with Low Fat, LF (7%) E-MLCT had significantly (P<0.05) lower body weight gain (by ~30%), body fat accumulation (by ~37%) and hormone leptin level as compared to both the LF B-PKOPO and LF C-MLCT. Histological examination further revealed that dietary intake of E-MLCT inhibited hepatic lipid accumulation. Besides, analysis of serum profile also demonstrated that consumption of E-MLCT was better in regulating blood glucose compared to B-PKOPO and C-MLCT. Nevertheless, both B-PKO-PO and E-MLCT which contained higher level of myristic acid was found to be hypercholesterolemic compared to C-MLCT. In summary, our finding showed that triacylglycerol structure, fatty acid composition and fat dosage play a pivotal role in regulating visceral fat accumulation. Consumption of E-MLCT in low fat diet led to a significantly lesser body fat accumulation. It was postulated that the MLM/MLL/LMM/MML/LLM types of triacylglycerol and C8-C12 medium chain fatty acids were the main factors that contributed to the visceral

  7. Crystal structure of a triacylglycerol lipase from Penicillium expansum at 1.3 A determined by sulfur SAD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bian, Chuanbing; Yuan, Cai; Chen, Liqing

    2010-04-05

    Triacylglycerol lipases (EC 3.1.1.3) are present in many different organisms including animals, plants, and microbes. Lipases catalyze the hydrolysis of long-chain triglycerides into fatty acids and glycerol at the interface between the water insoluble substrate and the aqueous phase. Lipases can also catalyze the reverse esterification reaction to form glycerides under certain conditions. Lipases of microbial origin are of considerable commercial interest for wide variety of biotechnological applications in industries, including detergent, food, cosmetic, pharmaceutical, fine chemicals, and biodiesel. Nowadays, microbial lipases have become one of the most important industrial enzymes. PEL (Penicillium expansum lipase) is a fungal lipase frommore » Penicillium expansum strain PF898 isolated from Chinese soil that has been subjected to several generations of mutagenesis to increase its enzymatic activity. PEL belongs to the triacylglycerol lipases family, and its catalytic characteristics have been studied. The enzyme has been used in Chinese laundry detergent industry for several years (http://www.leveking.com). However, the poor thermal stability of the enzyme limits its application. To further study and improve this enzyme, PEL was cloned and sequenced. Furthermore, it was overexpressed in Pichia pastoris. PEL contains GHSLG sequence, which is the lipase consensus sequence Gly-X1-Ser-X2-Gly, but has a low amino acid sequence identities to other lipases. The most similar lipases are Rhizomucor miehei (PML) and Rhizopus niveus (PNL) with a 21% and 20% sequence identities to PEL, respectively. Interestingly, the similarity of PEL with the known esterases is somewhat higher with 24% sequence identity to feruloyl esterase A. Here, we report the 1.3 {angstrom} resolution crystal structure of PEL determined by sulfur SAD phasing. This structure not only presents a new lipase structure at high resolution, but also provides a structural platform to analyze the

  8. PROTEASOME INHIBITOR TREATMENT REDUCED FATTY ACID, TRIACYLGLYCEROL AND CHOLESTEROL SYNTHESIS

    PubMed Central

    Oliva, Joan; French, Samuel W.; Li, Jun; Bardag-Gorce, Fawzia

    2014-01-01

    In the present study, the beneficial effects of proteasome inhibitor treatment in reducing ethanol-induced steatosis were investigated. A microarray analysis was performed on the liver of rats injected with PS-341 (Bortezomib, Velcade®), and the results showed that proteasome inhibitor treatment significantly reduced the mRNA expression of SREBP-1c, and the downstream lipogenic enzymes, such as fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC), which catalyzes the carboxylation of acetyl-CoA to malonyl-CoA, the rate-limiting step in fatty acid synthesis. ELOVL6, which is responsible for fatty acids long chain elongation, was also significantly down regulated by proteasome inhibitor treatment. Moreover, PS-341 administration significantly reduced the expression of acyl-glycerol-3-phosphate acyltransferase (AGPAT), and diacylglycerol acyltransferase (DGAT), enzyme involved in triacylglycerol (TAG) synthesis. Finally, PS-341 was found to down regulate the enzymes 3-hydroxy-3-methylglutaryl-CoenzymeA synthase (HMG-CoA synthase) that is responsible for cholesterol synthesis. Proteasome inhibitor was also found to play a role in intestinal lipid adsorption because apolipoproteins A (apoA-I, apoAII, apoA-IV and ApoCIII) were down regulated by proteasome inhibitor treatment, especially ApoA-II that is known to be a marker of alcohol consumption. Proteasome inhibitor treatment also decreased apobec-1 complementation factor (ACF) leading to lower level of editing and production of ApoB protein. Moreover apolipoprotein C-III, a major component of chylomicrons was significantly down regulated. However, lipoprotein lipase (Lpl) and High density lipoprotein binding protein (Hdlbp) mRNA levels were increased by proteasome inhibitor treatment. These results suggested that proteasome inhibitor treatment could be used to reduce the alcohol-enhanced lipogenesis and alcohol-induced liver steatosis. A morphologic analysis, performed on the liver of rats fed ethanol for one

  9. Effects of medium-chain triacylglycerols on Maillard reaction in bread baking.

    PubMed

    Toyosaki, Toshiyuki

    2018-06-01

    To investigate the relationship between the fatty acid composition of medium-chain triacylglycerols (MCTs) and the Maillard reaction induced during bread baking, a comparison with various fatty acids was conducted. Saturated fatty acids had a remarkable inhibitory effect on the amount of advanced glycation end products (AGEs) generated from the Maillard reaction in bread baking compared to unsaturated fatty acids. The amount of AGEs produced by each fatty acid (mg kg -1 ) was as follows: C18:0, 18.7; C12:0, 35.2; C16:0, 21.4; C18:0, 38.2; C18:1, 68.7; C18:2, 80.1; C20:4, 80.8; C22:4, 89.8. Saturated fatty acids were possibly involved in the Maillard reaction and, as a result, acted to inhibit it. In the case of unsaturated fatty acids, amounts of AGEs during the Maillard reaction in baking tended to increase as the degree of unsaturation increased. In other words, there was a positive correlation between the degree of unsaturation and the amount of AGEs. It was also confirmed that the air pore distribution in baked bread was closely related to AGEs. These results led us to conclude that the fatty acid composition of the added lipids also influences properties that determine the tastiness of bread. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. Mycobacterium tuberculosis Uses Host Triacylglycerol to Accumulate Lipid Droplets and Acquires a Dormancy-Like Phenotype in Lipid-Loaded Macrophages

    PubMed Central

    Daniel, Jaiyanth; Sirakova, Tatiana D.; Kolattukudy, Pappachan E.

    2011-01-01

    Two billion people are latently infected with Mycobacterium tuberculosis (Mtb). Mtb-infected macrophages are likely to be sequestered inside the hypoxic environments of the granuloma and differentiate into lipid-loaded macrophages that contain triacylglycerol (TAG)-filled lipid droplets which may provide a fatty acid-rich host environment for Mtb. We report here that human peripheral blood monocyte-derived macrophages and THP-1 derived macrophages incubated under hypoxia accumulate Oil Red O-staining lipid droplets containing TAG. Inside such hypoxic, lipid-loaded macrophages, nearly half the Mtb population developed phenotypic tolerance to isoniazid, lost acid-fast staining and accumulated intracellular lipid droplets. Dual-isotope labeling of macrophage TAG revealed that Mtb inside the lipid-loaded macrophages imports fatty acids derived from host TAG and incorporates them intact into Mtb TAG. The fatty acid composition of host and Mtb TAG were nearly identical suggesting that Mtb utilizes host TAG to accumulate intracellular TAG. Utilization of host TAG by Mtb for lipid droplet synthesis was confirmed when fluorescent fatty acid-labeled host TAG was utilized to accumulate fluorescent lipid droplets inside the pathogen. Deletion of the Mtb triacylglycerol synthase 1 (tgs1) gene resulted in a drastic decrease but not a complete loss in both radiolabeled and fluorescent TAG accumulation by Mtb suggesting that the TAG that accumulates within Mtb is generated mainly by the incorporation of fatty acids released from host TAG. We show direct evidence for the utilization of the fatty acids from host TAG for lipid metabolism inside Mtb. Taqman real-time PCR measurements revealed that the mycobacterial genes dosR, hspX, icl1, tgs1 and lipY were up-regulated in Mtb within hypoxic lipid loaded macrophages along with other Mtb genes known to be associated with dormancy and lipid metabolism. PMID:21731490

  11. Leishmania donovani Utilize Sialic Acids for Binding and Phagocytosis in the Macrophages through Selective Utilization of Siglecs and Impair the Innate Immune Arm.

    PubMed

    Roy, Saptarshi; Mandal, Chitra

    2016-08-01

    Leishmania donovani, belonging to a unicellular protozoan parasite, display the differential level of linkage-specific sialic acids on their surface. Sialic acids binding immunoglobulin-like lectins (siglecs) are a class of membrane-bound receptors present in the haematopoetic cell lineages interact with the linkage-specific sialic acids. Here we aimed to explore the utilization of sialic acids by Leishmania donovani for siglec-mediated binding, phagocytosis, modulation of innate immune response and signaling pathways for establishment of successful infection in the host. We have found enhanced binding of high sialic acids containing virulent strains (AG83+Sias) with siglec-1 and siglec-5 present on macrophages compared to sialidase treated AG83+Sias (AG83-Sias) and low sialic acids-containing avirulent strain (UR6) by flow cytometry. This specific receptor-ligand interaction between sialic acids and siglecs were further confirmed by confocal microscopy. Sialic acids-siglec-1-mediated interaction of AG83+Sias with macrophages induced enhanced phagocytosis. Additionally, sialic acids-siglec-5 interaction demonstrated reduced ROS, NO generation and Th2 dominant cytokine response upon infection with AG83+Sias in contrast to AG83-Sias and UR6. Sialic acids-siglecs binding also facilitated multiplication of intracellular amastigotes. Moreover, AG83+Sias induced sialic acids-siglec-5-mediated upregulation of host phosphatase SHP-1. Such sialic acids-siglec interaction was responsible for further downregulation of MAPKs (p38, ERK and JNK) and PI3K/Akt pathways followed by the reduced translocation of p65 subunit of NF-κβ to the nucleus from cytosol in the downstream signaling pathways. This sequence of events was reversed in AG83-Sias and UR6-infected macrophages. Besides, siglec-knockdown macrophages also showed the reversal of AG83+Sias infection-induced effector functions and downstream signaling events. Taken together, this study demonstrated that virulent parasite

  12. Scanning electron microscopy study of neutrophil membrane tubulovesicular extensions (cytonemes) and their role in anchoring, aggregation and phagocytosis. The effect of nitric oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galkina, Svetlana I.; Molotkovsky, Julian G.; Ullrich, Volker

    2005-04-01

    We have shown that human neutrophils develop dynamic thin and very long tubulovesicular extensions (cytonemes) upon adhesion to fibronectin, if cell spreading was blocked by Na{sup +}-free medium or by 4-bromophenacyl bromide, N-ethylmaleimide, 7-chloro-4-nitrobenz-2-oxa-1,3-diazole and cytochalasin D (S. I. Galkina, G. F. Sud'ina and V. Ullrich (2001). Exp. Cell Res. 266, 222-228). In the present work we found that similar in size and behavior tubulovesicular extensions were formed on the neutrophil cell bodies upon adhesion to fibronectin-coated substrata in the presence of the nitric oxide donor diethylamine NONOate. In the presence of the nitric oxide synthase inhibitor N-{omega}-nitro-L-arginine methyl ester,more » neutrophils were well spread and had no microextensions. Using scanning electron microscopy, we demonstrated that tubulovesicular extensions of neutrophils executed long-range adhesion and binding objects for phagocytosis, such as serum-opsonized zymosan particles and erythrocytes. Tubulovesicular extensions anchored neutrophils to substrata in a {beta}1 and {beta}2 integrin-independent, but L-selectin-dependent manner. BODIPY-sphingomyelin impaired development of tubulovesicular extension, and heparitinase 1 played a role in their destruction. Membrane tubulovesicular extensions are supposed to represent protrusions of an intracellular exocytotic traffic and serve as cellular sensory and adhesive organelles. Nitric oxide seems to play a role in regulation of tubulovesicular extensions formation, thus affecting neutrophil adhesive interactions and phagocytosis.« less

  13. The position of rumenic acid on triacylglycerols alters its bioavailability in rats.

    PubMed

    Chardigny, J M; Masson, E; Sergiel, J P; Darbois, M; Loreau, O; Noël, J P; Sébédio, J-L

    2003-12-01

    The metabolic fate of rumenic acid (9cis,11trans-octadecenoic acid) related to its position on the glycerol moiety has not yet been studied. In the present work, synthetic triacylglycerols (TAG) esterified with oleic and rumenic acids were prepared. Rats were force-fed synthetic dioleyl monorumenyl glycerol with (14)C labeled rumenic acid in the internal (sn-2) or in the external position (sn-1 or sn-3). Rats were then placed in metabolic cages for 16 h. At the end of the experiment, the radioactivity in tissues, carcass and expired CO(2) was measured. Rumenic acid that was esterified at the external positions on the TAG was better absorbed and oxidized to a greater extent than when esterified at the internal position. The fatty acid from the 2-TAG form was also better incorporated into the rat carcass. In the liver, rumenic acid appeared mainly in TAG (50%) and to a lesser extent in phospholipids (33%) whatever its dietary form. Moreover, analyses of lipids from Camembert cheese and butter revealed that rumenic acid was located mainly on the sn-1 or sn-3 positions (74%). Taken together, these data suggest that rumenic acid from dairy fat may be well absorbed and used extensively for energy production.

  14. The engulfment receptor Draper is required for autophagy during cell death.

    PubMed

    McPhee, Christina K; Baehrecke, Eric H

    2010-11-01

    Autophagy is a process to degrade and recycle cytoplasmic contents. Autophagy is required for survival in response to starvation, but has also been associated with cell death. How autophagy functions during cell survival in some contexts and cell death in others is unknown. Drosophila larval salivary glands undergo programmed cell death requiring autophagy genes, and are cleared in the absence of known phagocytosis. Recently, we demonstrated that Draper (Drpr), the Drosophila homolog of C. elegans engulfment receptor CED-1, is required for autophagy induction: during cell death, but not during cell survival. drpr mutants fail to clear salivary glands. drpr knockdown in salivary glands prevents the induction of autophagy, and Atg1 misexpression in drpr null mutants suppresses salivary gland persistence. Surprisingly, drpr knockdown cell-autonomously prevents autophagy induction in dying salivary gland cells, but not in larval fat body cells following starvation. This is the first engulfment factor shown to function in cellular self-clearance, and the first report of a cell-death-specific autophagy regulator.

  15. Development of monoclonal antibodies against IgM of sea bass (Lateolabrax japonicus) and analysis of phagocytosis by mIgM+ lymphocytes.

    PubMed

    Yang, Shun; Tang, Xiaoqian; Sheng, Xiuzhen; Xing, Jing; Zhan, Wenbin

    2018-07-01

    B cells in some fish were recently found to have potent phagocytic activities. Sea bass (Lateolabrax japonicus) as an important economical marine fish species, it could be used as an appropriate model to study the functions of B cells in phagocytosis. In the paper, three positive hybridomas designated as 1E11, 2H4 and 3F3 secreting monoclonal antibodies (MAbs) against sea bass immunoglobulin M (IgM) were produced and used as research tools. Indirect enzyme-linked immunosorbent assay showed that all the three MAbs had a high binding capacity with sea bass serum IgM. Western blotting analysis showed that all the three MAbs were specific for the heavy chain of sea bass IgM. Indirect immunofluorescence assay (IFA) analysis suggested that both MAbs 1E11 and 2H4 could recognize membrane-bound IgM (mIgM) molecule of sea bass. Specificity analysis showed that three MAbs had no cross-reactions with other six teleosts IgMs. Flow cytometric analysis exhibited that the percentages of sea bass mIgM + lymphocytes in peripheral blood, spleen and pronephros were 25.6%, 21.1%, and 17.5%, respectively. Moreover, we found that the mIgM + lymphocytes of sea bass could phagocytose fluorescence microspheres and Lactococcus lactis, but lower phagocytosis rates of L. lactis was observed. These results demonstrated that the MAbs produced in this paper could be used as tools to study secretory IgM and mIgM + lymphocytes of sea bass, and mIgM + lymphocytes might also play an important role in innate immunity of sea bass. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Tracking synthesis and turnover of triacylglycerol in leaves.

    PubMed

    Tjellström, Henrik; Strawsine, Merissa; Ohlrogge, John B

    2015-03-01

    Triacylglycerol (TAG), typically represents <1% of leaf glycerolipids but can accumulate under stress and other conditions or if leaves are supplied with fatty acids, or in plants transformed with regulators or enzymes of lipid metabolism. To better understand the metabolism of TAG in leaves, pulse-chase radiolabelling experiments were designed to probe its synthesis and turnover. When Arabidopsis leaves were incubated with [(14)C]lauric acid (12:0), a major initial product was [(14)C]TAG. Thus, despite low steady-state levels, leaves possess substantial TAG biosynthetic capacity. The contributions of diacylglycerol acyltransferase1 and phospholipid:diacylglycerol acyltransferase1 to leaf TAG synthesis were examined by labelling of dgat1 and pdat1 mutants. The dgat1 mutant displayed a major (76%) reduction in [(14)C]TAG accumulation whereas pdat1 TAG labelling was only slightly reduced. Thus, DGAT1 has a principal role in TAG biosynthesis in young leaves. During a 4h chase period, radioactivity in TAG declined 70%, whereas the turnover of [(14)C]acyl chains of phosphatidylcholine (PC) and other polar lipids was much lower. Sixty percent of [(14)C]12:0 was directly incorporated into glycerolipids without modification, whereas 40% was elongated and desaturated to 16:0 and 18:1 by plastids. The unmodified [(14)C]12:0 and the plastid products of [(14)C]12:0 metabolism entered different pathways. Although plastid-modified (14)C-labelled products accumulated in monogalactosyldiacylglycerol, PC, phosphatidylethanolamine, and diacylglcerol (DAG), there was almost no accumulation of [(14)C]16:0 and [(14)C]18:1 in TAG. Because DAG and acyl-CoA are direct precursors of TAG, the differential labelling of polar glycerolipids and TAG by [(14)C]12:0 and its plastid-modified products provides evidence for multiple subcellular pools of both acyl-CoA and DAG. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  17. Expression of Cyanobacterial Acyl-ACP Reductase Elevates the Triacylglycerol Level in the Red Alga Cyanidioschyzon merolae.

    PubMed

    Sumiya, Nobuko; Kawase, Yasuko; Hayakawa, Jumpei; Matsuda, Mami; Nakamura, Mami; Era, Atsuko; Tanaka, Kan; Kondo, Akihiko; Hasunuma, Tomohisa; Imamura, Sousuke; Miyagishima, Shin-ya

    2015-10-01

    Nitrogen starvation is known to induce the accumulation of triacylglycerol (TAG) in many microalgae, and potential use of microalgae as a source of biofuel has been explored. However, nitrogen starvation also stops cellular growth. The expression of cyanobacterial acyl-acyl carrier protein (ACP) reductase in the unicellular red alga Cyanidioschyzon merolae chloroplasts resulted in an accumulation of TAG, which led to an increase in the number and size of lipid droplets while maintaining cellular growth. Transcriptome and metabolome analyses showed that the expression of acyl-ACP reductase altered the activities of several metabolic pathways. The activities of enzymes involved in fatty acid synthesis in chloroplasts, such as acetyl-CoA carboxylase and pyruvate dehydrogenase, were up-regulated, while pyruvate decarboxylation in mitochondria and the subsequent consumption of acetyl-CoA by the tricarboxylic acid (TCA) cycle were down-regulated. Aldehyde dehydrogenase, which oxidizes fatty aldehydes to fatty acids, was also up-regulated in the acyl-ACP reductase expresser. This activation was required for the lipid droplet accumulation and metabolic changes observed in the acyl-ACP reductase expresser. Nitrogen starvation also resulted in lipid droplet accumulation in C. merolae, while cell growth ceased as in the case of other algal species. The metabolic changes that occur upon the expression of acyl-ACP reductase are quite different from those caused by nitrogen starvation. Therefore, there should be a method for further increasing the storage lipid level while still maintaining cell growth that is different from the metabolic response to nitrogen starvation. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Comparison of Molecular Species Distribution of DHA-Containing Triacylglycerols in Milk and Different Infant Formulas by Liquid Chromatography-Mass Spectrometry.

    PubMed

    Liu, Zhiqian; Cocks, Benjamin G; Rochfort, Simone

    2016-03-16

    Long-chain polyunsaturated fatty acids (LC-PUFA) are an important nutritional lipid and have potential in being able to promote human health. Docosahexaenoic acid (DHA, C22:6ω3) is often added in infant formulas to meet the nutritional requirement of formula-fed infants. A comprehensive survey on DHA-containing triacylglycerol (DHA-TAG) molecular species has been conducted for seven infant formulas (IFs) sourced from Australia, Europe, and the USA as well as bovine milk and human milk. Using LC-triple quadrupole MS and LC-LTQ-orbitrap MS we were able to identify and quantify 56 DHA-TAG species in these samples; the fatty acid structure of these species was assigned using their MS(2) spectra. The species composition of DHA-TAG was found to be different between bovine milk, human milk, and IFs and also between different brands of IFs. Bovine milk and human milk contain DHA-TAG of smaller molecular size (728-952 Da), whereas five out of the seven IF samples contain species of broader mass range (from 728 to 1035 Da). Our study indicates that two types of DHA were used in the seven IF products surveyed and that there is very large difference in molecular species distribution in different IF products that may influence the fine nutritional profile and biological functions of IF products.

  19. PD-1 expression by tumor-associated macrophages inhibits phagocytosis and tumor immunity

    PubMed Central

    Gordon, Sydney R.; Maute, Roy L.; Dulken, Ben W.; Hutter, Gregor; George, Benson M.; McCracken, Melissa N.; Gupta, Rohit; Tsai, Jonathan M.; Sinha, Rahul; Corey, Daniel; Ring, Aaron M.; Connolly, Andrew J.; Weissman, Irving L.

    2017-01-01

    Programmed cell death protein 1 (PD-1) is an immune checkpoint receptor that is upregulated on activated T cells to induce immune tolerance.1,2 Tumor cells frequently overexpress the ligand for PD-1, programmed cell death ligand 1 (PD-L1), facilitating escape from the immune system.3,4 Monoclonal antibodies blocking PD-1/PD-L1 have shown remarkable clinical efficacy in patients with a variety of cancers, including melanoma, colorectal cancer, non-small cell lung cancer, and Hodgkin’s lymphoma.5–9 Although it is well-established that PD-1/PD-L1 blockade activates T cells, little is known about the role that this pathway may have on tumor-associated macrophages (TAMs). Here we show that both mouse and human TAMs express PD-1. TAM PD-1 expression increases over time in mouse models, and with increasing disease stage in primary human cancers. TAM PD-1 expression negatively correlates with phagocytic potency against tumor cells, and blockade of PD-1/PD-L1 in vivo increases macrophage phagocytosis, reduces tumor growth, and lengthens survival in mouse models of cancer in a macrophage-dependent fashion. Our results suggest that PD-1/PD-L1 therapies may also function through a direct effect on macrophages, with significant implications for treatment with these agents. PMID:28514441

  20. Polyreactive Antibodies Plus Complement Enhance the Phagocytosis of Cells Made Apoptotic by UV-Light or HIV

    PubMed Central

    Zhou, Zhao-hua; Wild, Teresa; Xiong, Ying; Sylvers, Peter; Zhang, Yahong; Zhang, Luxia; Wahl, Larry; Wahl, Sharon M.; Kozlowski, Steven; Notkins, Abner L.

    2013-01-01

    Polyreactive antibodies are a major component of the natural antibody repertoire and are capable of binding a variety of structurally unrelated antigens. Many of the properties attributed to natural antibodies, in fact, are turning out to be due to polyreactive antibodies. In humans, each day, billions of cells undergo apoptosis. In the present experiments, we show by ImageStream technology that although polyreactive antibodies do not bind to live T cells they bind to both the plasma membrane and cytoplasm of late apoptotic cells, fix complement, generate the anaphylatoxin C5a and increase by as much as 5 fold complement-mediated phagocytosis by macrophages. Of particular importance, T cells undergoing apoptosis following infection with HIV also bind polyreactive antibodies and are phagocytosed. We conclude that the polyreactive antibodies in the natural antibody repertoire contribute in a major way to the clearance of cells made apoptotic by a variety of natural and infectious processes. PMID:23881356

  1. The intramolecular position of docosahexaenoic acid in the triacylglycerol sources used for pediatric nutrition has a minimal effect on its metabolic use.

    PubMed

    Sala-Vila, Aleix; Castellote, Ana I; López-Sabater, M Carmen

    2008-03-01

    Docosahexaenoic acid (DHA) plays an important role in normal development of the brain and retina in the human. In utero, DHA is incorporated in the fetus, and its accretion continues throughout early postnatal life. Although human breast milk contains this fatty acid, several organizations recommend supplementing infant formulas with DHA for infants and premature infants. Traditionally, certain types of fish oil have been used for fortifying some infant formulas, but with the decline in world fisheries, the search for alternative sources of DHA continues. Among the viable ingredient sources of DHA is oil derived from single-cell organisms (marine microorganisms); however, these oil sources display different positional specificity of DHA in the glycerol lipids compared with that found in human breast milk lipids. In the latter, the DHA is mainly esterified in the central position of the glycerol backbone. Because of these differences in human milk and oils derived from single-cell organisms, recent research in biotechnology has focused on developing new structured triacylglycerols with an intramolecular structure resembling that found in human milk lipids. This research is justified by the potential differences in metabolism of DHA based on the hypothetical bioavailability and benefits in DHA found in human milk lipids. Presented herein is a review of the published research on the metabolism of DHA from different triacylglycerol sources including in vitro studies and animal studies. Despite small differences observed in digestion, the current data reveal a minimal effect on the parameters of development studied for the intramolecular position in which DHA is esterified.

  2. Synergistic antioxidant activity of milk sphingomyeline and its sphingoid base with α-tocopherol on fish oil triacylglycerol.

    PubMed

    Shimajiri, Junki; Shiota, Makoto; Hosokawa, Masashi; Miyashita, Kazuo

    2013-08-21

    The effects of milk phospholipids (PLs), sphingolipids (SLs), and their sphingoid backbone on the oxidation of fish oil triacylglycerol (TAG) were examined with or without α-tocopherol. All compounds had little effect on the TAG oxidation in the absence of α-tocopherol. On the other hand, they could act synergistically with α-tocopherol. The highest synergistic activity was shown by sphingoid bases, followed by sphingomyelin (SPM) and other amine-containing PLs and SLs. This result showed that the synergistic activity increased with an increasing concentration of amine group of PLs, SLs, or sphingoid bases in the reaction mixture. The comparison of changes in α-tocopherol content in fish oil TAG and tricaprylin suggested that antioxidant compounds would be formed from the amine group and the lipid oxidation products in a mild oxidation condition controlled by α-tocopherol.

  3. HIV-1-Specific IgA Monoclonal Antibodies from an HIV-1 Vaccinee Mediate Galactosylceramide Blocking and Phagocytosis

    PubMed Central

    2018-01-01

    ABSTRACT Vaccine-elicited humoral immune responses comprise an array of antibody forms and specificities, with only a fraction contributing to protective host immunity. Elucidation of antibody effector functions responsible for protective immunity against human immunodeficiency virus type 1 (HIV-1) acquisition is a major goal for the HIV-1 vaccine field. Immunoglobulin A (IgA) is an important part of the host defense against pathogens; however, little is known about the role of vaccine-elicited IgA and its capacity to mediate antiviral functions. To identify the antiviral functions of HIV-1-specific IgA elicited by vaccination, we cloned HIV-1 envelope-specific IgA monoclonal antibodies (MAbs) by memory B cell cultures from peripheral blood mononuclear cells from an RV144 vaccinee and produced two IgA clonal cell lines (HG129 and HG130) producing native, nonrecombinant IgA MAbs. The HG129 and HG130 MAbs mediated phagocytosis by monocytes, and HG129 blocked HIV-1 Env glycoprotein binding to galactosylceramide, an alternative HIV-1 receptor. These findings elucidate potential antiviral functions of vaccine-elicited HIV-1 envelope-specific IgA that may act to block HIV-1 acquisition at the portal of entry by preventing HIV-1 binding to galactosylceramide and mediating antibody Fc receptor-mediated virion phagocytosis. Furthermore, these findings highlight the complex and diverse interactions of vaccine-elicited IgA with pathogens that depend on IgA fine specificity and form (e.g., multimeric or monomeric) in the systemic circulation and mucosal compartments. IMPORTANCE Host-pathogen interactions in vivo involve numerous immune mechanisms that can lead to pathogen clearance. Understanding the nature of antiviral immune mechanisms can inform the design of efficacious HIV-1 vaccine strategies. Evidence suggests that both neutralizing and nonneutralizing antibodies can mediate some protection against HIV in animal models. Although numerous studies have characterized the

  4. A rich medium-chain triacylglycerol diet benefits adiposity but has adverse effects on the markers of hepatic lipogenesis and beta-oxidation.

    PubMed

    Chamma, Carolina Maria de Oliveira; Bargut, Thereza Cristina Lonzetti; Mandarim-de-Lacerda, Carlos Alberto; Aguila, Marcia Barbosa

    2017-02-22

    We investigated the increasing amounts of medium-chain triacylglycerol (MCT) in the diet on hepatic lipid metabolism. Mature C57BL/6 male mice were randomly divided into five groups (n = 10/group). The animals received their diet for 12 weeks, as a control (C group, 10% of energy from lipids); high-fat lard (HF group, isoenergetic diet, 50% of energy from lipids with lard); a mixture of lard and MCT oil (with a gradual replacement of lard by MCT: HF-MCT25%, HF-MCT75%, and HF-MCT100% groups). At euthanasia, we collected blood and dissected the liver for analyses (glucose, insulin, HOMA-IR, QUICK index, and triacylglycerol, light microscopy, western blotting, and RT-qPCR). The HF diet groups showed a greater body mass gain compared to the C group, but the HF-MCT100% group showed diminished adiposity and amelioration of insulin resistance. All the HF groups also showed a clear increase in hepatic lipid accumulation, increased lipogenesis and decreased PPAR-alpha expression, although HF-MCT groups showed improved local insulin signaling. Lastly, the HF-MCT100% group had raised markers of beta-oxidation (UCP3 and MCAD) and mitochondrial biogenesis (PGC1-alpha and NRF1). In conclusion, the findings demonstrated that a high amount of MCT (HF-MCT100% group) added to an HF diet reduces the body fat accumulation and insulin resistance. However, the lipid accumulation as well as the lipid metabolism is altered in the liver of animals fed with a very high MCT diet, indicating that higher doses of MCT may be harmful in a long-term.

  5. miRNA-133 augments coelomocyte phagocytosis in bacteria-challenged Apostichopus japonicus via targeting the TLR component of IRAK-1 in vitro and in vivo

    PubMed Central

    Lu, Meng; Zhang, Peng-Juan; Li, Cheng-Hua; Lv, Zhi-Meng; Zhang, Wei-Wei; Jin, Chun-Hua

    2015-01-01

    In this study, we explored the potential roles of miRNA-133 in regulating TLR pathways in the sea cucumber Apostichopus japonicus. Target screening of RNA-Seq data successfully identified interleukin-1 receptor-associated kinase (AjIRAK−1) as a putative target of miR-133. This result was further validated by negative expression profiles in Vibrio splendidus-challenged coelomocytes and lipopolysaccharide (LPS)-exposed cell cultures. HEK-293T cells transfected with a dual-luciferase reporter fused to the 3′UTR of wild-type or mutant AjIRAK-1 exhibited a 52.9% reduction in luciferase activity (p < 0.01) compared to controls. Co-infection with a miR-133 mimics or a specific siRNA targeting AjIRAK-1 significantly repressed the mRNA and protein expression levels of AjIRAK-1 and its downstream molecules, such as AjTRAF6 and Ajp105, in primary coelomocytes. In contrast, a miR-133 inhibitor significantly increased the expression of these TLR pathway members. The injection of miR-133 agomir or AjIRAK-1 siRNA into sea cucumbers not only decreased the expression of AjIRAK-1 and its downstream molecules but also significantly increased V. splendidus coelomocyte phagocytosis. All of the present data provide direct evidence that miR-133 is involved in TLR cascade modulation through AjIRAK-1 targeting to promote V. splendidus coelomocyte phagocytosis in these non-model invertebrates. PMID:26223836

  6. miRNA-133 augments coelomocyte phagocytosis in bacteria-challenged Apostichopus japonicus via targeting the TLR component of IRAK-1 in vitro and in vivo.

    PubMed

    Lu, Meng; Zhang, Peng-Juan; Li, Cheng-Hua; Lv, Zhi-Meng; Zhang, Wei-Wei; Jin, Chun-Hua

    2015-07-30

    In this study, we explored the potential roles of miRNA-133 in regulating TLR pathways in the sea cucumber Apostichopus japonicus. Target screening of RNA-Seq data successfully identified interleukin-1 receptor-associated kinase (AjIRAK-1) as a putative target of miR-133. This result was further validated by negative expression profiles in Vibrio splendidus-challenged coelomocytes and lipopolysaccharide (LPS)-exposed cell cultures. HEK-293T cells transfected with a dual-luciferase reporter fused to the 3'UTR of wild-type or mutant AjIRAK-1 exhibited a 52.9% reduction in luciferase activity (p < 0.01) compared to controls. Co-infection with a miR-133 mimics or a specific siRNA targeting AjIRAK-1 significantly repressed the mRNA and protein expression levels of AjIRAK-1 and its downstream molecules, such as AjTRAF6 and Ajp105, in primary coelomocytes. In contrast, a miR-133 inhibitor significantly increased the expression of these TLR pathway members. The injection of miR-133 agomir or AjIRAK-1 siRNA into sea cucumbers not only decreased the expression of AjIRAK-1 and its downstream molecules but also significantly increased V. splendidus coelomocyte phagocytosis. All of the present data provide direct evidence that miR-133 is involved in TLR cascade modulation through AjIRAK-1 targeting to promote V. splendidus coelomocyte phagocytosis in these non-model invertebrates.

  7. Yeast MRX deletions have short chronological life span and more triacylglycerols.

    PubMed

    Kanagavijayan, Dhanabalan; Rajasekharan, Ram; Srinivasan, Malathi

    2016-02-01

    Saccharomyces cerevisiae is an excellent model organism for lipid research. Here, we have used yeast haploid RAdiation Damage (RAD) deletion strains to study life span and lipid storage patterns. RAD genes are mainly involved in DNA repair mechanism and hence, their deletions have resulted in shorter life span. Viable RAD mutants were screened for non-polar lipid content, and some of the mutants showed significantly high amounts of triacylglycerol (TAG) and steryl ester, besides short chronological life span. Among these, RAD50, MRE11 and XRS2 form a complex, MRX that is involved in homologous recombination that showed an increase in the amount of TAG. Microarray data of single MRX deletions revealed that besides DNA damage signature genes, lipid metabolism genes are also differentially expressed. Lipid biosynthetic genes (LPP1, SLC1) were upregulated and lipid hydrolytic gene (TGL3) was downregulated. We observed that rad50Δ, mre11Δ, xrs2Δ and mrxΔ strains have high number of lipid droplets (LDs) with fragmented mitochondria. These mutants have a short chronological life span compared to wild type. Aged wild-type cells also accumulated TAG with LDs of ∼2.0 μm in diameter. These results suggest that TAG accumulation and big size LDs could be possible markers for premature or normal aging. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Deficiency of glycerol-3-phosphate acyltransferase 1 decreases triacylglycerol storage and induces fatty acid oxidation in insect fat body.

    PubMed

    Alves-Bezerra, Michele; Ramos, Isabela B; De Paula, Iron F; Maya-Monteiro, Clarissa M; Klett, Eric L; Coleman, Rosalind A; Gondim, Katia C

    2017-03-01

    Glycerol-3-phosphate acyltransferases (GPAT) catalyze the initial and rate-limiting step for the de novo synthesis of triacylglycerol (TAG). Four mammalian GPAT isoforms have been identified: the mitochondria-associated GPAT1 and 2, and the endoplasmic reticulum (ER)-associated GPAT3 and 4. In the insect Rhodnius prolixus, a vector of Chagas' disease, we previously predicted a mitochondrial-like isoform (RhoprGPAT1) from genomic data. In the current study, we clone the RhoprGPAT1 coding sequence and identify an ER-associated GPAT (RhoprGPAT4) as the second isoform in the insect. RhoprGPAT1 contributes 15% of the total GPAT activity in anterior midgut, 50% in posterior midgut and fat body, and 70% in the ovary. The RhoprGpat1 gene is the predominant transcript in the midgut and fat body. To evaluate the physiological relevance of RhoprGPAT1, we generate RhoprGPAT1-deficient insects. The knockdown of RhoprGpat1 results in 50% and 65% decrease in TAG content in the posterior midgut and fat body, respectively. RhoprGpat1-deficient insects also exhibits impaired lipid droplet expansion and a 2-fold increase in fatty acid β-oxidation rates in the fat body. We propose that the RhoprGPAT1 mitochondrial-like isoform is required to channel fatty acyl chains towards TAG synthesis and away from β-oxidation. Such a process is crucial for the insect lipid homeostasis. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. A simple liquid extraction protocol for overcoming the ion suppression of triacylglycerols by phospholipids in liquid chromatography mass spectrometry studies.

    PubMed

    Araujo, Pedro; Tilahun, Ephrem; Breivik, Joar Fjørtoft; Abdulkader, Bashir M; Frøyland, Livar; Zeng, Yingxu

    2016-02-01

    It is well-known that triacylglycerol (TAG) ions are suppressed by phospholipid (PL) ions in regiospecific analysis of TAG by mass spectrometry (MS). Hence, it is essential to remove the PL during sample preparation prior to MS analysis. The present article proposes a cost-effective liquid-liquid extraction (LLE) method to remove PL from TAG in different kinds of biological samples by using methanol, hexane and water. High performance thin layer chromatography confirmed the lack of PL in krill oil and salmon liver samples, submitted to the proposed LLE protocol, and liquid chromatography tandem MS confirmed that the identified TAG ions were highly enhanced after implementing the LLE procedure. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Selective delivery of laser energy to ester bonds of triacylglycerol in lipid droplets of adipocyte using a quantum cascade laser

    PubMed Central

    Masaki, Noritaka; Okazaki, Shigetoshi

    2018-01-01

    The recent development of quantum cascade lasers (QCLs) has facilitated the irradiation of a mid-infrared laser beam that is specifically absorbed by a target molecular bond. Aiming for a selective delivery of laser energy to a specific absorption at 1,738 cm−1 by the ester bonds of triacylglycerol (TAG), a QCL beam with a wavenumber of 1,710 cm−1 was irradiated to 3T3–L1 adipocytes and preadipocytes. Neutral red staining, and FITC-labeled annexin V and ethidium homodimer-III assays revealed the occurrence of adipocyte-specific cell death 24 h after QCL irradiation. The selective delivery of laser energy to endogenous molecules can affect biological processes in a living organism. PMID:29760972

  11. Selective delivery of laser energy to ester bonds of triacylglycerol in lipid droplets of adipocyte using a quantum cascade laser.

    PubMed

    Masaki, Noritaka; Okazaki, Shigetoshi

    2018-05-01

    The recent development of quantum cascade lasers (QCLs) has facilitated the irradiation of a mid-infrared laser beam that is specifically absorbed by a target molecular bond. Aiming for a selective delivery of laser energy to a specific absorption at 1,738 cm -1 by the ester bonds of triacylglycerol (TAG), a QCL beam with a wavenumber of 1,710 cm -1 was irradiated to 3T3-L1 adipocytes and preadipocytes. Neutral red staining, and FITC-labeled annexin V and ethidium homodimer-III assays revealed the occurrence of adipocyte-specific cell death 24 h after QCL irradiation. The selective delivery of laser energy to endogenous molecules can affect biological processes in a living organism.

  12. Effects of CO2 plant extracts on triacylglycerol oxidation in Atlantic salmon during cooking and storage.

    PubMed

    Tarvainen, Marko; Nuora, Anu; Quirin, Karl-Werner; Kallio, Heikki; Yang, Baoru

    2015-04-15

    Increasing concern of consumers on the safety of synthetic food additives has created high interest in natural preservatives in food industry. Plant extracts produced by supercritical CO2 technology from rosemary (R), oregano (O) and an antimicrobial blend (AB) consisting of seven different plants were studied for their effects on lipid oxidation in Atlantic salmon (Salmo salar). Fish pieces were marinated with rapeseed oil containing 0, 1, 2 or 4 g of plant extracts/kg of fish. After cooking the pieces were stored in refrigerator for 26 days. Peroxide values (PVs) were determined and oxidised triacylglycerols (TAGs) measured by UHPLC-ESI/MS at 0, 7, 14 and 26 days of storage. During the first two weeks of storage, AB delayed oxidation by at least one week compared to control samples as shown by PVs (<10 meq. O2) and by the oxidised TAGs. Oregano and rosemary showed also some antioxidative potential. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Factor H binds to the hypervariable region of many Streptococcus pyogenes M proteins but does not promote phagocytosis resistance or acute virulence.

    PubMed

    Gustafsson, Mattias C U; Lannergård, Jonas; Nilsson, O Rickard; Kristensen, Bodil M; Olsen, John E; Harris, Claire L; Ufret-Vincenty, Rafael L; Stålhammar-Carlemalm, Margaretha; Lindahl, Gunnar

    2013-01-01

    Many pathogens express a surface protein that binds the human complement regulator factor H (FH), as first described for Streptococcus pyogenes and the antiphagocytic M6 protein. It is commonly assumed that FH recruited to an M protein enhances virulence by protecting the bacteria against complement deposition and phagocytosis, but the role of FH-binding in S. pyogenes pathogenesis has remained unclear and controversial. Here, we studied seven purified M proteins for ability to bind FH and found that FH binds to the M5, M6 and M18 proteins but not the M1, M3, M4 and M22 proteins. Extensive immunochemical analysis indicated that FH binds solely to the hypervariable region (HVR) of an M protein, suggesting that selection has favored the ability of certain HVRs to bind FH. These FH-binding HVRs could be studied as isolated polypeptides that retain ability to bind FH, implying that an FH-binding HVR represents a distinct ligand-binding domain. The isolated HVRs specifically interacted with FH among all human serum proteins, interacted with the same region in FH and showed species specificity, but exhibited little or no antigenic cross-reactivity. Although these findings suggested that FH recruited to an M protein promotes virulence, studies in transgenic mice did not demonstrate a role for bound FH during acute infection. Moreover, phagocytosis tests indicated that ability to bind FH is neither sufficient nor necessary for S. pyogenes to resist killing in whole human blood. While these data shed new light on the HVR of M proteins, they suggest that FH-binding may affect S. pyogenes virulence by mechanisms not assessed in currently used model systems.

  14. Factor H Binds to the Hypervariable Region of Many Streptococcus pyogenes M Proteins but Does Not Promote Phagocytosis Resistance or Acute Virulence

    PubMed Central

    Kristensen, Bodil M.; Olsen, John E.; Harris, Claire L.; Ufret-Vincenty, Rafael L.; Stålhammar-Carlemalm, Margaretha; Lindahl, Gunnar

    2013-01-01

    Many pathogens express a surface protein that binds the human complement regulator factor H (FH), as first described for Streptococcus pyogenes and the antiphagocytic M6 protein. It is commonly assumed that FH recruited to an M protein enhances virulence by protecting the bacteria against complement deposition and phagocytosis, but the role of FH-binding in S. pyogenes pathogenesis has remained unclear and controversial. Here, we studied seven purified M proteins for ability to bind FH and found that FH binds to the M5, M6 and M18 proteins but not the M1, M3, M4 and M22 proteins. Extensive immunochemical analysis indicated that FH binds solely to the hypervariable region (HVR) of an M protein, suggesting that selection has favored the ability of certain HVRs to bind FH. These FH-binding HVRs could be studied as isolated polypeptides that retain ability to bind FH, implying that an FH-binding HVR represents a distinct ligand-binding domain. The isolated HVRs specifically interacted with FH among all human serum proteins, interacted with the same region in FH and showed species specificity, but exhibited little or no antigenic cross-reactivity. Although these findings suggested that FH recruited to an M protein promotes virulence, studies in transgenic mice did not demonstrate a role for bound FH during acute infection. Moreover, phagocytosis tests indicated that ability to bind FH is neither sufficient nor necessary for S. pyogenes to resist killing in whole human blood. While these data shed new light on the HVR of M proteins, they suggest that FH-binding may affect S. pyogenes virulence by mechanisms not assessed in currently used model systems. PMID:23637608

  15. Reduction of serum triacylglycerol-rich lipoprotein concentrations in cows with hepatic lipidosis.

    PubMed

    Herdt, T H; Liesman, J S; Gerloff, B J; Emery, R S

    1983-02-01

    The hepatic and serum lipid concentrations in 49 dairy cows with displaced abomasum, 7 postpartum cows fasted for 6 days, and 14 healthy postpartum cows were studied. The cows with displaced abomasums were retrospectively allotted to 2 groups: those with greater than 15% liver fat (DAHF) and those with less than 15% liver fat (DALF). Liver total lipid concentrations were high in the DAHF group, exceeding these values in the fasted cows by 30% and in the healthy and DALF cows by 63% on the average. In contrast, the liver phospholipid concentrations were low in the DAHF group, intermediate in the fasted and DALF groups and high in the healthy group. On a group basis, an inverse relationship was observed between serum and liver lipid concentrations. The serum concentrations of both total and dextran-sulfate-precipitable (DSP) lipids were high in the fasted cows and were less in the DALF and healthy cows and in the DAHF cows (lowest). The between-group differences in serum total and serum DSP concentrations of triacylglycerol, cholesterol, and phospholipid followed the same quantitative pattern as the total lipids. However, the relative difference between groups was greater for each of the DSP lipid fractions. These results support the hypothesis that severe hepatic lipidosis in cattle occurs due to impaired hepatic lipoprotein synthesis and secretion.

  16. Triacylglycerol secretion in rats: validation of a tracer method employing radioactive glycerol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bird, M.; Williams, M.A.; Baker, N.

    1984-10-01

    A two-compartment model was developed to analyze the temporal changes in plasma triacylglycerol (TG)-specific radioactivity after injection of (2-/sup 3/H)glycerol into rats. The analysis, which yielded fractional rate constants of TG secretion, was tested in rats fed diets either adequate or deficient in essential fatty acids (EFA) and containing either glucose, fructose or sucrose as the dietary carbohydrate. The method of analysis appeared valid, first, because of a close agreement between experimental and computer-fitted TG-specific radioactivity curves, and second, because the fractional rate constants obtained were quite similar to fractional rate constants determined previously by the Triton WR-1339 technique inmore » rats maintained on identical diets. The results show that EFA deficiency increased the fractional rate constant of TG secretion 1.7-, 1.8- and 3.3-fold and the rate of TG secretion 1.8-, 1.6- and 1.4-fold when the dietary carbohydrate was glucose, sucrose and fructose, respectively, in comparison with control rats fed diets supplying these same carbohydrates but adequate in EFA. In the latter groups, the rates of plasma TG secretion were in the range of 0.14-0.17 mg/min per 100 g body weight, and the rate of secretion in the fructose-fed rats was only 20% higher than in the glucose-fed rats.« less

  17. Identification of FadAB Complexes Involved in Fatty Acid β-Oxidation in Streptomyces coelicolor and Construction of a Triacylglycerol Overproducing strain

    PubMed Central

    Menendez-Bravo, Simón; Paganini, Julián; Avignone-Rossa, Claudio; Gramajo, Hugo; Arabolaza, Ana

    2017-01-01

    Oleaginous microorganisms represent possible platforms for the sustainable production of oleochemicals and biofuels due to their metabolic robustness and the possibility to be engineered. Streptomyces coelicolor is among the narrow group of prokaryotes capable of accumulating triacylglycerol (TAG) as carbon and energy reserve. Although the pathways for TAG biosynthesis in this organism have been widely addressed, the set of genes required for their breakdown have remained elusive so far. Here, we identified and characterized three gene clusters involved in the β-oxidation of fatty acids (FA). The role of each of the three different S. coelicolor FadAB proteins in FA catabolism was confirmed by complementation of an Escherichia coliΔfadBA mutant strain deficient in β-oxidation. In S. coelicolor, the expression profile of the three gene clusters showed variation related with the stage of growth and the presence of FA in media. Flux balance analyses using a corrected version of the current S. coelicolor metabolic model containing detailed TAG biosynthesis reactions suggested the relevance of the identified fadAB genes in the accumulation of TAG. Thus, through the construction and analysis of fadAB knockout mutant strains, we obtained an S. coelicolor mutant that showed a 4.3-fold increase in the TAG content compared to the wild type strain grown under the same culture conditions. PMID:28824562

  18. Analysis of co-crystallized free phytosterols with triacylglycerols as a functional food ingredient.

    PubMed

    Acevedo, Nuria C; Franchetti, Danielle

    2016-07-01

    This research focuses on the analysis of mixtures of free phytosterols (FPSs) with fully hydrogenated soybean oil (FHSO):soybean oil (SO) mixtures as a potential zero-trans substitute for various types of shortenings. Oil binding capacity as well as the thermal, rheological and structural properties of FHSO:SO blends containing 0, 20 and 25wt.% β-sitosterol or stigmasterol were investigated in this study. Differential interference contrast (DIC) microscopy and wide angle X-ray diffraction (WAXRD) revealed that co-crystallization of FPSs with FHSO:SO blends occurred. Polymorphic forms were characterized as a mixture of β' and β for all samples. The addition of FPSs decreased oil loss (OL) of FHSO:SO samples. Melting profiles of the prepared FPS-TAG (triacylglycerol) blends were extended to higher temperatures compared to a commercial shortening. Rheological properties were comparable to those of commercial puff pastry shortening suggesting that FPS-TAG blends may be acceptable for bakery applications. FPSs co-crystallized with FHSO and SO may be a suitable trans-fat free substitute for a number of types of shortening, including puff pastry shortening. The manufacturing of co-crystallized /FPS-TAG matrices will possibly bring large economic benefits as their functionalization can potentially be achieved by using existing simple shear processing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Short term and dosage influences of palm based medium- and long-chain triacylglycerols on body fat and blood parameters in C57BL/6J mice.

    PubMed

    Lee, Yee-Ying; Tang, Teck-Kim; Ab Karim, Nur Azwani; Alitheen, Noorjahan Banu Mohamed; Lai, Oi-Ming

    2014-01-01

    Structured lipid medium- and long-chain triacylglycerols (MLCT) are claimed to be able to manage obesity. The present study investigated the body fat influence of enzymatically interesterifed palm-based medium- and long-chain triacylglycerols (P-MLCT) on diet-induced obesity (DIO) C57BL/6J mice compared with commercial MLCT oil (C-MLCT) and a control, which was the non enzymatically modified palm kernel and palm oil blend (PKO-PO blend). It also investigated the low fat and high fat effects of P-MLCT. DIO C57BL/6J mice were fed ad libitum with low fat (7%) and high fat (30%) experimental diets for 8 weeks before being sacrificed to obtain blood serum for analysis. From the results, there is a trend that P-MLCT fed mice were found to have the lowest body weight, body weight gain, total fat pad accumulation (perirenal, retroperitoneal, epididymal and mesenteric), total triglyceride levels and efficiency in controlling blood glucose level, compared with C-MLCT and the PKO-PO blend in both low fat and high fat diets. Nevertheless, the PKO-PO blend and P-MLCT caused significantly (P < 0.05) higher total cholesterol levels compared to C-MLCT. P-MLCT present in low fat and high fat dosage were shown to be able to suppress body fat accumulation. This effect is more prominent with the low fat dosage.

  20. Sialoglycoproteins in morphological distinct stages of Mucor polymorphosporus and their influence on phagocytosis by human blood phagocytes.

    PubMed

    Almeida, Catia Amancio; de Campos-Takaki, Galba Maria; Portela, Maristela Barbosa; Travassos, Luiz R; Alviano, Celuta Sales; Alviano, Daniela Sales

    2013-10-01

    The possible role of sialic acids in host cells-fungi interaction and their association with glycoproteins were evaluated using a clinical isolate of the dimorphic fungus Mucor polymorphosporus. Lectin-binding assays with spores and yeast cells denoted the presence of surface sialoglycoconjugates containing 2,3- and 2,6-linked sialylglycosyl groups. Western blotting with peroxidase-labeled Limulus polyphemus agglutinin revealed the occurrence of different sialoglycoprotein types in both cell lysates and cell wall protein extracts of mycelia, spores, and yeasts of M. polymorphosporus. Sialic acids contributed to the surface negative charge of spores and yeast forms as evaluated by adherence to a cationic substrate. Sialidase-treated spores were less resistant to phagocytosis by human neutrophils and monocytes from healthy individuals than control (untreated) fungal suspensions. The results suggest that sialic acids are terminal units of various glycoproteins of M. polymorphosporus, contributing to negative charge of yeasts and spore cells and protecting infectious propagules from destruction by host cells.

  1. A conserved tryptophan within the WRDPLVDID domain of yeast Pah1 phosphatidate phosphatase is required for its in vivo function in lipid metabolism.

    PubMed

    Park, Yeonhee; Han, Gil-Soo; Carman, George M

    2017-12-01

    PAH1 -encoded phosphatidate phosphatase, which catalyzes the dephosphorylation of phosphatidate to produce diacylglycerol at the endoplasmic reticulum membrane, plays a major role in controlling the utilization of phosphatidate for the synthesis of triacylglycerol or membrane phospholipids. The conserved N-LIP and haloacid dehalogenase-like domains of Pah1 are required for phosphatidate phosphatase activity and the in vivo function of the enzyme. Its non-conserved regions, which are located between the conserved domains and at the C terminus, contain sites for phosphorylation by multiple protein kinases. Truncation analyses of the non-conserved regions showed that they are not essential for the catalytic activity of Pah1 and its physiological functions ( e.g. triacylglycerol synthesis). This analysis also revealed that the C-terminal region contains a previously unrecognized WRDPLVDID domain (residues 637-645) that is conserved in yeast, mice, and humans. The deletion of this domain had no effect on the catalytic activity of Pah1 but caused the loss of its in vivo function. Site-specific mutational analyses of the conserved residues within WRDPLVDID indicated that Trp-637 plays a crucial role in Pah1 function. This work also demonstrated that the catalytic activity of Pah1 is required but is not sufficient for its in vivo functions. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Preventive effects of a fermented dairy product against Alzheimer's disease and identification of a novel oleamide with enhanced microglial phagocytosis and anti-inflammatory activity.

    PubMed

    Ano, Yasuhisa; Ozawa, Makiko; Kutsukake, Toshiko; Sugiyama, Shinya; Uchida, Kazuyuki; Yoshida, Aruto; Nakayama, Hiroyuki

    2015-01-01

    Despite the ever-increasing number of patients with dementia worldwide, fundamental therapeutic approaches to this condition have not been established. Epidemiological studies suggest that intake of fermented dairy products prevents cognitive decline in the elderly. However, the active compounds responsible for the effect remain to be elucidated. The present study aims to elucidate the preventive effects of dairy products on Alzheimer's disease and to identify the responsible component. Here, in a mouse model of Alzheimer's disease (5xFAD), intake of a dairy product fermented with Penicillium candidum had preventive effects on the disease by reducing the accumulation of amyloid β (Aβ) and hippocampal inflammation (TNF-α and MIP-1α production), and enhancing hippocampal neurotrophic factors (BDNF and GDNF). A search for preventive substances in the fermented dairy product identified oleamide as a novel dual-active component that enhanced microglial Aβ phagocytosis and anti-inflammatory activity towards LPS stimulation in vitro and in vivo. During the fermentation, oleamide was synthesized from oleic acid, which is an abundant component of general dairy products owing to lipase enzymatic amidation. The present study has demonstrated the preventive effect of dairy products on Alzheimer's disease, which was previously reported only epidemiologically. Moreover, oleamide has been identified as an active component of dairy products that is considered to reduce Aβ accumulation via enhanced microglial phagocytosis, and to suppress microglial inflammation after Aβ deposition. Because fermented dairy products such as camembert cheese are easy to ingest safely as a daily meal, their consumption might represent a preventive strategy for dementia.

  3. Impaired phagocytosis of apoptotic cell material in serologically active clinically quiescent patients with systemic lupus erythematosis.

    PubMed

    Huang, Wen-Nan; Tso, Tim K; Wu, Hsiao-Chih; Yang, Hsiu-Fen; Tsay, Gregory J

    2016-12-01

    Serologically active clinically quiescent (SACQ) patients with systemic lupus erythematosus (SLE) account for 8-12% of all patients with SLE, but there is disagreement about whether such patients are indeed clinically stable. Patients with clinically active SLE have decreased macrophage function, although the status of SACQ patients with SLE is unclear. This study compared 18 patients who met the diagnostic criteria for SACQ SLE with 18 healthy volunteers with regard to the capability of macrophages to clear apoptotic bodies by use of a modified serum-free phagocytosis test. Macrophages that naturally differentiated from monocytes were used to engulf apoptotic cells developed from polymorphonuclear neutrophils. The results showed that macrophages from SACQ patients with SLE had less phagocytotic capability than those from healthy controls. The significant reduction of macrophage phagocytotic capability in these patients suggests the potential for disease recurrence. The use of a serum-free method confirmed the presence of intrinsic factors that modulate the decrease of macrophage function in SLE. © 2015 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  4. Metabolic similarities between fertilization and phagocytosis. Conservation of a peroxidatic mechanism

    PubMed Central

    1979-01-01

    At the time of fertilization, sea urchin eggs release a peroxidase which, together with H2O2 generated by a respiratory burst, is responsible for hardening of the fertilization membrane. We demonstrate here that the ovoperoxidase of unfertilized eggs is located in cortical granules and, after fertilization, is concentrated in the fertilization membrane. Fertilization of sea urchin eggs or their parthenogenetic activation with the ionophor A23187 also results in (a) the conversion of iodide to a trichloroacetic acid-precipitable form (iodination), (b) the deiodination of eggs exogenously labeled with myeloperoxidase and H2O2, (c) the degradation of thyroxine as measured by the recovery of the released radioiodine at the origin and in the inorganic iodide spot on paper chromatography, and (d) the conversion of estradiol to an alcohol-precipitable form (estrogen binding). The iodination reaction and the binding of estradio occurs predominantly in the fertilization membrane where the ovoperoxidase is concentrated. From the estimation of the kinetics of incorporation of iodine, we determine that the peroxidative system is active for 30 min after fertilization, long after hardening of the fertilization membrane is complete. Most of the bound iodine is lost during the hatching process. Iodination of albumin is catalyzed by the material released from the egg during fertilization, when combined with H2O2 and iodide. Iodination, thyroxine degradation, and estradiol binding are inhibited by azide, cyanide, aminotriazole, methimazole, ascorbic acid and ergothioneine, all of which can inhibit peroxidase-catalyzed reactions. These responses of the sea urchin egg to fertilization are strikingly similar to the changes induced in polymorphonuclear leukocytes by phagocytosis and, in both instances, a peroxidative mechanism may be involved. PMID:372484

  5. Calcium sequestration by fungal melanin inhibits calcium-calmodulin signalling to prevent LC3-associated phagocytosis.

    PubMed

    Kyrmizi, Irene; Ferreira, Helena; Carvalho, Agostinho; Figueroa, Julio Alberto Landero; Zarmpas, Pavlos; Cunha, Cristina; Akoumianaki, Tonia; Stylianou, Kostas; Deepe, George S; Samonis, George; Lacerda, João F; Campos, António; Kontoyiannis, Dimitrios P; Mihalopoulos, Nikolaos; Kwon-Chung, Kyung J; El-Benna, Jamel; Valsecchi, Isabel; Beauvais, Anne; Brakhage, Axel A; Neves, Nuno M; Latge, Jean-Paul; Chamilos, Georgios

    2018-05-30

    LC3-associated phagocytosis (LAP) is a non-canonical autophagy pathway regulated by Rubicon, with an emerging role in immune homeostasis and antifungal host defence. Aspergillus cell wall melanin protects conidia (spores) from killing by phagocytes and promotes pathogenicity through blocking nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-dependent activation of LAP. However, the signalling regulating LAP upstream of Rubicon and the mechanism of melanin-induced inhibition of this pathway remain incompletely understood. Herein, we identify a Ca 2+ signalling pathway that depends on intracellular Ca 2+ sources from endoplasmic reticulum, endoplasmic reticulum-phagosome communication, Ca 2+ release from phagosome lumen and calmodulin (CaM) recruitment, as a master regulator of Rubicon, the phagocyte NADPH oxidase NOX2 and other molecular components of LAP. Furthermore, we provide genetic evidence for the physiological importance of Ca 2+ -CaM signalling in aspergillosis. Finally, we demonstrate that Ca 2+ sequestration by Aspergillus melanin inside the phagosome abrogates activation of Ca 2+ -CaM signalling to inhibit LAP. These findings reveal the important role of Ca 2+ -CaM signalling in antifungal immunity and identify an immunological function of Ca 2+ binding by melanin pigments with broad physiological implications beyond fungal disease pathogenesis.

  6. Extract of Pelargonium sidoides (EPs 7630) improves phagocytosis, oxidative burst, and intracellular killing of human peripheral blood phagocytes in vitro.

    PubMed

    Conrad, Andreas; Hansmann, Cathrin; Engels, Inge; Daschner, Franz D; Frank, Uwe

    2007-01-01

    Clinical data show that EPs 7630, an aqueous ethanolic extract from the roots of Pelargonium sidoides, can be used for the treatment of upper respiratory tract infections (URTI). The biological effects of the preparation have not been fully investigated. The objective of this study was to examine the impact of EPs 7630 on the activity of human peripheral blood phagocytes (PBP). A whole blood-based, flow cytometric assay was used to simultaneously assess phagocytosis and oxidative burst. Calcein-AM stained Candida albicans (DSM 1386) were used as target organisms. Oxidative burst was measured by addition of dihydroethidium (DHE). Target organisms and whole blood were co-incubated and analyzed after 0, 2, 4, 6, 10, and 30 min. Intracellular killing of the target organisms was evaluated by determining the number of surviving yeast cells after co-incubation of C. albicans and human whole blood. EPs 7630 was applied in therapeutically relevant concentrations between 0 and 30 microg/ml. Compared with controls EPs 7630 increased the number of phagocytosing PBP during the observed time points between 2 and 10 min in a concentration-dependent manner, with a maximum enhancement of 56% at 2 min (p=0.002). The application of EPs 7630 also led to a significant increase in the number of burst-active PBP for all time points observed beyond 2 min (p<0.001). The maximum augmentation was 120% after application of 30 microg/ml EPs 7630 at 4 min. Using a microbiological assay, intracellular killing was also enhanced by EPs 7630. This was expressed by a significant reduction in the number of surviving target organisms (p<0.001). The maximum reduction in viable yeast cells (-31%) was observed after co-incubation for 120 min with the highest concentration of EPs 7630 (30 microg/ml). In conclusion, the positive effects of EPs 7630 on phagocytosis, oxidative burst, and intracellular killing of yeast cells as test organisms are important components of the compound's biological activity. Our

  7. Simultaneous Production of Triacylglycerol and High-Value Carotenoids by the Astaxanthin-Producing Oleaginous Green Microalga Chlorella zofingiensis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jin; Mao, Xuemei; Zhou, Wenguang

    The production of lipids and astaxanthin, a high-value carotenoid, by Chlorella zofingiensis was investigated under different culture conditions. Comparative analysis revealed a good correlation between triacylglycerol (TAG) and astaxanthin accumulation in C. zofingiensis. Stress conditions promoted cell size and weight and induced the accumulation of neutral lipids, especially TAG and astaxanthin, with a concomitant decrease in membrane lipids. The highest contents of TAG and astaxanthin achieved were 387 and 4.89 mg g-1 dry weight, respectively. A semi-continuous culture strategy was developed to optimize the TAG and astaxanthin productivities, which reached 297 and 3.3 mg L-1 day-1, respectively. Additionally, astaxanthin accumulationmore » was enhanced by inhibiting de novo fatty acid biosynthesis. In summary, our study represents a pioneering work of utilizing Chlorella for the integrated production of lipids and high-value products and C. zofingiensis has great potential to be a promising production strain and serve as an emerging oleaginous model alga.« less

  8. Fostering triacylglycerol accumulation in novel oleaginous yeast Cryptococcus psychrotolerans IITRFD utilizing groundnut shell for improved biodiesel production.

    PubMed

    Deeba, Farha; Pruthi, Vikas; Negi, Yuvraj S

    2017-10-01

    The investigation was carried out to examine the potential of triacylglycerol (TAG) accumulation by novel oleaginous yeast isolate Cryptococcus psychrotolerans IITRFD on utilizing groundnut shell acid hydrolysate (GSH) as cost-effective medium. The maximum biomass productivity and lipid productivity of 0.095±0.008g/L/h and 0.044±0.005g/L/h, respectively with lipid content 46% was recorded on GSH. Fatty acid methyl ester (FAME) profile obtained by GC-MS analysis revealed oleic acid (37.8%), palmitic (29.4%) and linoleic (32.8%) as major fatty acids representing balance between oxidative stability (OS) and cold flow filter properties (CFFP) for improved biodiesel quality. The biodiesel property calculated were correlated well with the fuel standards limits of ASTM D6751, EN 14214 and IS 15607. The present findings raise the possibility of using agricultural waste groundnut shell as a substrate for production of biodiesel by novel oleaginous yeast isolate C. psychrotolerans IITRFD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Simultaneous production of triacylglycerol and high-value carotenoids by the astaxanthin-producing oleaginous green microalga Chlorella zofingiensis.

    PubMed

    Liu, Jin; Mao, Xuemei; Zhou, Wenguang; Guarnieri, Michael T

    2016-08-01

    The production of lipids and astaxanthin, a high-value carotenoid, by Chlorella zofingiensis was investigated under different culture conditions. Comparative analysis revealed a good correlation between triacylglycerol (TAG) and astaxanthin accumulation in C. zofingiensis. Stress conditions promoted cell size and weight and induced the accumulation of neutral lipids, especially TAG and astaxanthin, with a concomitant decrease in membrane lipids. The highest contents of TAG and astaxanthin achieved were 387 and 4.89mgg(-1) dry weight, respectively. A semi-continuous culture strategy was developed to optimize the TAG and astaxanthin productivities, which reached 297 and 3.3mgL(-1)day(-1), respectively. Additionally, astaxanthin accumulation was enhanced by inhibiting de novo fatty acid biosynthesis. In summary, our study represents a pioneering work of utilizing Chlorella for the integrated production of lipids and high-value products and C. zofingiensis has great potential to be a promising production strain and serve as an emerging oleaginous model alga. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Triacylglycerol mimetics regulate membrane interactions of glycogen branching enzyme: implications for therapy.

    PubMed

    Alvarez, Rafael; Casas, Jesús; López, David J; Ibarguren, Maitane; Suari-Rivera, Ariadna; Terés, Silvia; Guardiola-Serrano, Francisca; Lossos, Alexander; Busquets, Xavier; Kakhlon, Or; Escribá, Pablo V

    2017-08-01

    Adult polyglucosan body disease (APBD) is a neurological disorder characterized by adult-onset neurogenic bladder, spasticity, weakness, and sensory loss. The disease is caused by aberrant glycogen branching enzyme (GBE) (GBE1Y329S) yielding less branched, globular, and soluble glycogen, which tends to aggregate. We explore here whether, despite being a soluble enzyme, GBE1 activity is regulated by protein-membrane interactions. Because soluble proteins can contact a wide variety of cell membranes, we investigated the interactions of purified WT and GBE1Y329S proteins with different types of model membranes (liposomes). Interestingly, both triheptanoin and some triacylglycerol mimetics (TGMs) we have designed (TGM0 and TGM5) markedly enhance GBE1Y329S activity, possibly enough for reversing APBD symptoms. We show that the GBE1Y329S mutation exposes a hydrophobic amino acid stretch, which can either stabilize and enhance or alternatively, reduce the enzyme activity via alteration of protein-membrane interactions. Additionally, we found that WT, but not Y329S, GBE1 activity is modulated by Ca 2+ and phosphatidylserine, probably associated with GBE1-mediated regulation of energy consumption and storage. The thermal stabilization and increase in GBE1Y329S activity induced by TGM5 and its omega-3 oil structure suggest that this molecule has a considerable therapeutic potential for treating APBD. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  11. Aggregation in complex triacylglycerol oils: coarse-grained models, nanophase separation, and predicted x-ray intensities

    NASA Astrophysics Data System (ADS)

    Quinn, Bonnie; Peyronel, Fernanda; Gordon, Tyler; Marangoni, Alejandro; Hanna, Charles B.; Pink, David A.

    2014-11-01

    Triacylglycerols (TAGs) are biologically important molecules which form crystalline nanoplatelets (CNPs) and, ultimately, fat crystal networks in edible oils. Characterizing the self-assembled hierarchies of these networks is important to understanding their functionality and oil binding capacity. We have modelled CNPs in multicomponent oils and studied their aggregation. The oil comprises (a) a liquid componentt, and (b) components which phase separately on a nano-scale (nano-phase separation) to coat the surfaces of the CNPs impenetrably, either isotropically or anisotropically, with either liquid-like coatings or crystallites, forming a coating of thickness Δ. We modelled three cases: (i) liquid-liquid nano-phase separation, (ii) solid-liquid nano-phase separation, with CNPs coated isotropically, and (iii) CNPs coated anisotropically. The models were applied to mixes of tristearin and triolein with fully hydrogenated canola oil, shea butter with high oleic sunflower oil, and cotton seed oil. We performed Monte Carlo simulations, computed structure functions and concluded: (1) three regimes arose: (a) thin coating regime, Δ \\lt 0.0701 u (b) transition regime, 0.0701 u≤slant Δ ≤slant 0.0916 u and (c) thick coating regime, Δ \\gt 0.0916 u . (arbitrary units, u) (2) The thin coating regime exhibits 1D TAGwoods, which aggregate, via DLCA/RLCA, into fractal structures which are uniformly distributed in space. (3) In the thick coating regime, for an isotropic coating, TAGwoods are not formed and coated CNPs will not aggregate but will be uniformly distributed in space. For anisotropic coating, TAGwoods can be formed and might form 1D strings but will not form DLCA/RLCA clusters. (4) The regimes are, approximately: thin coating, 0\\lt Δ \\lt 7.0 \\text{nm} transition regime, 7.0\\ltΔ \\lt 9.2 \\text{nm} and thick coating, Δ \\gt 9.2 \\text{nm} (5) The minimum minority TAG concentration required to undergo nano-phase separation is, approximately, 0.29% (thin

  12. Aggregation in complex triacylglycerol oils: coarse-grained models, nanophase separation, and predicted x-ray intensities.

    PubMed

    Quinn, Bonnie; Peyronel, Fernanda; Gordon, Tyler; Marangoni, Alejandro; Hanna, Charles B; Pink, David A

    2014-11-19

    Triacylglycerols (TAGs) are biologically important molecules which form crystalline nanoplatelets (CNPs) and, ultimately, fat crystal networks in edible oils. Characterizing the self-assembled hierarchies of these networks is important to understanding their functionality and oil binding capacity. We have modelled CNPs in multicomponent oils and studied their aggregation. The oil comprises (a) a liquid component, and (b) components which phase separately on a nano-scale (nano-phase separation) to coat the surfaces of the CNPs impenetrably, either isotropically or anisotropically, with either liquid-like coatings or crystallites, forming a coating of thickness ?. We modelled three cases: (i) liquid?liquid nano-phase separation, (ii) solid?liquid nano-phase separation, with CNPs coated isotropically, and (iii) CNPs coated anisotropically. The models were applied to mixes of tristearin and triolein with fully hydrogenated canola oil, shea butter with high oleic sunflower oil, and cotton seed oil. We performed Monte Carlo simulations, computed structure functions and concluded: (1) three regimes arose: (a) thin coating regime, Δ < 0.0701 u (b) transition regime, 0.0701 u ≤ Δ ≤ 0.0916 u and (c) thick coating regime, Δ > 0.0916 u. (arbitrary units, u) (2) The thin coating regime exhibits 1D TAGwoods, which aggregate, via DLCA/RLCA, into fractal structures which are uniformly distributed in space. (3) In the thick coating regime, for an isotropic coating, TAGwoods are not formed and coated CNPs will not aggregate but will be uniformly distributed in space. For anisotropic coating, TAGwoods can be formed and might form 1D strings but will not form DLCA/RLCA clusters. (4) The regimes are, approximately: thin coating, 0 < Δ < 7.0 nm transition regime, 7.0 < Δ < 9.2 nm and thick coating, Δ > 9.2 nm (5) The minimum minority TAG concentration required to undergo nano-phase separation is, approximately, 0.29% (thin coatings) and 0.94% (thick coatings). Minority

  13. Triacylglycerol regioisomers in human milk resolved with an algorithmic novel electrospray ionization tandem mass spectrometry method.

    PubMed

    Kallio, Heikki; Nylund, Matts; Boström, Pontus; Yang, Baoru

    2017-10-15

    A highly sensitive mass spectrometric (MS) method was developed and validated to analyze ratios of regioisomeric triacylglycerols (TAGs) in fats and oils. UPLC resolution of lithiated TAGs followed by daughter scan MS/MS of positive ions revealed several indicative ions for quantitative analysis. Reference TAGs containing C14-C20 fatty acids (FAs) showed good linear response. Analysis of Finnish and Chinese pooled human milk samples revealed hundreds of regioisomeric TAGs. At least 64mol% of the TAGs were quantified with relative standard deviation <17%. When present in the same TAG molecule together with C18 FAs, palmitic acid was typically in the sn-2 position. When together with FAs 10:0, 12:0, 14:0, 20:1 and 20:2, the sn-2 preference of 16:0 was less clear. Oleic acid occupied typically the sn-1/sn-3 positions but when together with FAs 20:1, 20:2, 18:2, 14:1, 12:0 or 10:0 the positioning of 18:1 did not follow these rules. Copyright © 2017. Published by Elsevier Ltd.

  14. Effect of 50 Hz electric field in diacylglycerol acyltransferase mRNA expression level and plasma concentration of triacylglycerol, free fatty acid, phospholipid and total cholesterol

    PubMed Central

    2012-01-01

    Background The effects of exposure to a 50 Hz electric field (EF) on plasma level of triacylglycerol, free fatty acids, total cholesterol and phospholipid and mRNA expression level of diacylglycerol acyltransferase (DGAT) 1 and 2 in liver and intestines from C57BL/6 J mice were studied. Methods The test was based on comparison between mice post treated with 50 Hz EF of 45 kV/m intensity for 30 min per day for 11 days or without EF. DGATs mRNA expression was analyzed by real-time quantitative polymerase chain reaction. Results There was no difference in the gene expression level of DGAT1 in liver and intestines. The DGAT2 gene expression level in liver derived from mice treated with EF was significantly lower than those in the control (P < 0.001). Both plasma total cholesterol (P < 0.01) and phospholipid (P < 0.05) in the group exposed to EF were lower than those in the control, but there was no difference in triacylglycerol or free fatty acid levels. Conclusion Exposure to 50 Hz EF decrease the plasma levels of total cholesterol and phospholipids, and downregulated DGAT2 mRNA expression in liver. The mechanisms for the effects of EF on lipid metabolism are not well understand yet, but altered DGAT2 activity may be involved. PMID:22676350

  15. Increasing the Triacylglycerol Content in Dunaliella tertiolecta through Isolation of Starch-Deficient Mutants.

    PubMed

    Sirikhachornkit, Anchalee; Vuttipongchaikij, Supachai; Suttangkakul, Anongpat; Yokthongwattana, Kittisak; Juntawong, Piyada; Pokethitiyook, Prayad; Kangvansaichol, Kunn; Meetam, Metha

    2016-05-28

    The production cost of biodiesel from microalgae is still not competitive, compared with that of petroleum fuels. The genetic improvement of microalgal strains to increase triacylglycerol (TAG) accumulation is one way to reduce production costs. One of the most promising approaches is the isolation of starch-deficient mutants, which have been reported to successfully increase TAG yields. To date, such a stable mutant is not available in an oleaginous marine microalga, despite several advantages of using marine species for biodiesel production. Algae in the genus Dunaliella are known to tolerate high salt concentration and other environmental stresses. In addition, the cultivation processes for large-scale outdoor commercialization have been well established for this genus. In this study, Dunaliella tertiolecta was used to screen for starch-deficient mutants, using an iodine vapor-staining method. Four out of 20,016 UV-mutagenized strains showed a substantial reduction of starch content. A significantly higher TAG content, up to 3-fold of the wild-type level, was observed in three of the mutants upon induction by nitrogen depletion. The carotenoid production and growth characteristics of these mutants, under both normal and oxidative stress conditions, were not compromised, suggesting that these processes are not necessarily affected by starch deficiency. The results from this work open up new possibilities for exploring Dunaliella for biodiesel production.

  16. Identification of triacylglycerol using automated annotation of high resolution multistage mass spectral trees.

    PubMed

    Wang, Xiupin; Peng, Qingzhi; Li, Peiwu; Zhang, Qi; Ding, Xiaoxia; Zhang, Wen; Zhang, Liangxiao

    2016-10-12

    High complexity of identification for non-target triacylglycerols (TAGs) is a major challenge in lipidomics analysis. To identify non-target TAGs, a powerful tool named accurate MS(n) spectrometry generating so-called ion trees is used. In this paper, we presented a technique for efficient structural elucidation of TAGs on MS(n) spectral trees produced by LTQ Orbitrap MS(n), which was implemented as an open source software package, or TIT. The TIT software was used to support automatic annotation of non-target TAGs on MS(n) ion trees from a self-built fragment ion database. This database includes 19108 simulate TAG molecules from a random combination of fatty acids and corresponding 500582 self-built multistage fragment ions (MS ≤ 3). Our software can identify TAGs using a "stage-by-stage elimination" strategy. By utilizing the MS(1) accurate mass and referenced RKMD, the TIT software can discriminate unique elemental composition candidates. The regiospecific isomers of fatty acyl chains will be distinguished using MS(2) and MS(3) fragment spectra. We applied the algorithm to the selection of 45 TAG standards and demonstrated that the molecular ions could be 100% correctly assigned. Therefore, the TIT software could be applied to TAG identification in complex biological samples such as mouse plasma extracts. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Preventive Effects of a Fermented Dairy Product against Alzheimer’s Disease and Identification of a Novel Oleamide with Enhanced Microglial Phagocytosis and Anti-Inflammatory Activity

    PubMed Central

    Ano, Yasuhisa; Ozawa, Makiko; Kutsukake, Toshiko; Sugiyama, Shinya; Uchida, Kazuyuki; Yoshida, Aruto; Nakayama, Hiroyuki

    2015-01-01

    Despite the ever-increasing number of patients with dementia worldwide, fundamental therapeutic approaches to this condition have not been established. Epidemiological studies suggest that intake of fermented dairy products prevents cognitive decline in the elderly. However, the active compounds responsible for the effect remain to be elucidated. The present study aims to elucidate the preventive effects of dairy products on Alzheimer’s disease and to identify the responsible component. Here, in a mouse model of Alzheimer’s disease (5xFAD), intake of a dairy product fermented with Penicillium candidum had preventive effects on the disease by reducing the accumulation of amyloid β (Aβ) and hippocampal inflammation (TNF-α and MIP-1α production), and enhancing hippocampal neurotrophic factors (BDNF and GDNF). A search for preventive substances in the fermented dairy product identified oleamide as a novel dual-active component that enhanced microglial Aβ phagocytosis and anti-inflammatory activity towards LPS stimulation in vitro and in vivo. During the fermentation, oleamide was synthesized from oleic acid, which is an abundant component of general dairy products owing to lipase enzymatic amidation. The present study has demonstrated the preventive effect of dairy products on Alzheimer’s disease, which was previously reported only epidemiologically. Moreover, oleamide has been identified as an active component of dairy products that is considered to reduce Aβ accumulation via enhanced microglial phagocytosis, and to suppress microglial inflammation after Aβ deposition. Because fermented dairy products such as camembert cheese are easy to ingest safely as a daily meal, their consumption might represent a preventive strategy for dementia. PMID:25760987

  18. Determination and comparison of seed oil triacylglycerol composition of various soybeans (Glycine max (L.)) using ¹H-NMR spectroscopy.

    PubMed

    Kim, Won Woo; Rho, Ho Sik; Hong, Yong Deog; Yeom, Myung Hun; Shin, Song Seok; Yi, Jun Gon; Lee, Min-Seuk; Park, Hye Yoon; Cho, Dong Ha

    2013-11-21

    Seed oil triacylglycerol (TAG) composition of 32 soybean varieties were determined and compared using ¹H-NMR. The contents of linolenic (Ln), linoleic (L), and oleic (O) ranged from 10.7% to 19.3%, 37.4%-50.1%, and 15.7%-34.1%, respectively. As is evident, linoleic acid was the major fatty acid of soybean oil. Compositional differences among the varieties were observed. Natural oils containing unsaturated groups have been regarded as important nutrient and cosmetic ingredients because of their various biological activities. The TAG profiles of the soy bean oils could be useful for distinguishing the origin of seeds and controlling the quality of soybean oils. To the best of our knowledge, this is the first study in which the TAG composition of various soybean oils has been analyzed using the ¹H-NMR method.

  19. Emerging roles for the BAI1 protein family in the regulation of phagocytosis, synaptogenesis, neurovasculature, and tumor development

    PubMed Central

    Cork, Sarah M.

    2011-01-01

    While G-protein-coupled receptors (GPCRs) have received considerable attention for their biological activity in a diversity of physiological functions and have become targets for therapeutic intervention in many diseases, the function of the cell adhesion subfamily of GPCRs remains poorly understood. Within this group, the family of brain angiogenesis inhibitor molecules (BAI1-3) has become increasingly appreciated for their diverse roles in biology and disease. In particular, recent findings suggest emerging roles for BAI1 in the regulation of phenomena including phagocytosis, synaptogenesis, and the inhibition of tumor growth and angiogenesis via the processing of its extracellular domain into secreted vasculostatins. Here we summarize the known biological features of the BAI proteins, including their structure, proteolysis events, and interacting partners, and their recently identified ability to regulate certain signaling pathways. Finally, we discuss the potential of the BAIs as therapeutics or targets for diseases as varied as cancer, stroke, and schizophrenia. PMID:21509575

  20. A soluble diacylglycerol acyltransferase is involved in triacylglycerol biosynthesis in the oleaginous yeast Rhodotorula glutinis.

    PubMed

    Rani, Sapa Hima; Saha, Saikat; Rajasekharan, Ram

    2013-01-01

    The biosynthesis of triacylglycerol (TAG) occurs in the microsomal membranes of eukaryotes. Here, we report the identification and functional characterization of diacylglycerol acyltransferase (DGAT), a member of the 10 S cytosolic TAG biosynthetic complex (TBC) in Rhodotorula glutinis. Both a full-length and an N-terminally truncated cDNA clone of a single gene were isolated from R. glutinis. The DGAT activity of the protein encoded by RgDGAT was confirmed in vivo by the heterologous expression of cDNA in a Saccharomyces cerevisiae quadruple mutant (H1246) that is defective in TAG synthesis. RgDGAT overexpression in yeast was found to be capable of acylating diacylglycerol (DAG) in an acyl-CoA-dependent manner. Quadruple mutant yeast cells exhibit growth defects in the presence of oleic acid, but wild-type yeast cells do not. In an in vivo fatty acid supplementation experiment, RgDGAT expression rescued quadruple mutant growth in an oleate-containing medium. We describe a soluble acyl-CoA-dependent DAG acyltransferase from R. glutinis that belongs to the DGAT3 class of enzymes. The study highlights the importance of an alternative TAG biosynthetic pathway in oleaginous yeasts.