Science.gov

Sample records for phase equilibria modification

  1. PHASE EQUILIBRIA MODIFICATION BY ELECTRIC FIELDS

    EPA Science Inventory

    The primary focus of this program is to obtain a fundamental understanding of the effects of electric fields on polar and nonpolar mixtures in gas and liquid phases, with the ultimate goal of using this understanding in devising novel means to dramatically improve existing enviro...

  2. Phase equilibria modification by electric fields. 1997 annual progress report

    SciTech Connect

    Tsouris, C.; Shah, V.M.

    1997-09-01

    'In this research program, Oak Ridge National Laboratory is investigating the modification of phase equilibria and interface transport enhancement-caused by electric fields. The majority of environmental and waste treatment processes involve complex chemical separations and reactions. The treatment efficiency in such processes is governed by thermodynamic equilibria and transport. The objective of this project is to use electric fields to favorably manipulate the thermodynamic and transport properties of mixtures so that higher separation efficiencies can be achieved. An understanding of the mechanisms of the underlying phenomena of molecular and fluid interactions with electric fields will lead to the development of efficient remediation methods for contaminated natural environments and wastes. Research Statement The main focus of this project is to understand and quantify the influence of electric fields on thermodynamic equilibria and transport properties of fluid mixtures and to determine the conditions and properties of the systems for which this influence is of practical significance. The specific objectives of the project are discussed.'

  3. Phase equilibria modification by electric fields. 1998 annual progress report

    SciTech Connect

    Tsouris, C.

    1998-06-01

    'The objective of this project is to use electric fields to favorably manipulate the thermodynamic and transport properties of mixtures so that higher separation efficiencies can be achieved. The main focus is to understand and quantify the influence of electric fields on vapor-liquid, liquid-liquid, and solid-liquid systems. It is expected that this program will lead to greater separation efficiency in a wide range of environmental treatment processes, including solvent extraction, sorption, distillation, and stripping. Such processes are widely used by DOE for treatment of wastes and sites contaminated with heavy metals, radionuclides, and organic solvents. Particular examples of applications of vapor-liquid- equilibria modification can be found in the separation of volatile organic compounds by either stripping or distillation. Improvements can also be made in liquid-liquid-extraction processes of TRU, Sr, Tc, and Cs by both thermodynamic and transport enhancements.'

  4. Phase Equilibria Diagrams Database

    National Institute of Standards and Technology Data Gateway

    SRD 31 NIST/ACerS Phase Equilibria Diagrams Database (PC database for purchase)   The Phase Equilibria Diagrams Database contains commentaries and more than 21,000 diagrams for non-organic systems, including those published in all 21 hard-copy volumes produced as part of the ACerS-NIST Phase Equilibria Diagrams Program (formerly titled Phase Diagrams for Ceramists): Volumes I through XIV (blue books); Annuals 91, 92, 93; High Tc Superconductors I & II; Zirconium & Zirconia Systems; and Electronic Ceramics I. Materials covered include oxides as well as non-oxide systems such as chalcogenides and pnictides, phosphates, salt systems, and mixed systems of these classes.

  5. Phase Equilibria and Crystallography of Ceramic Oxides

    PubMed Central

    Wong-Ng, W.; Roth, R. S.; Vanderah, T. A.; McMurdie, H. F.

    2001-01-01

    Research in phase equilibria and crystallography has been a tradition in the Ceramics Division at National Bureau of Standards/National Institute of Standatrds and Technology (NBS/NIST) since the early thirties. In the early years, effort was concentrated in areas of Portland cement, ceramic glazes and glasses, instrument bearings, and battery materials. In the past 40 years, a large portion of the work was related to electronic materials, including ferroelectrics, piezoelectrics, ionic conductors, dielectrics, microwave dielectrics, and high-temperature superconductors. As a result of the phase equilibria studies, many new compounds have been discovered. Some of these discoveries have had a significant impact on US industry. Structure determinations of these new phases have often been carried out as a joint effort among NBS/NIST colleagues and also with outside collaborators using both single crystal and neutron and x-ray powder diffraction techniques. All phase equilibria diagrams were included in Phase Diagrams for Ceramists, which are collaborative publications between The American Ceramic Society (ACerS) and NBS/NIST. All x-ray powder diffraction patterns have been included in the Powder Diffraction File (PDF). This article gives a brief account of the history of the development of the phase equilibria and crystallographic research on ceramic oxides in the Ceramics Division. Represented systems, particularly electronic materials, are highlighted. PMID:27500068

  6. Multicomponent three-phase equilibria

    SciTech Connect

    Ho, C.K.

    1995-06-01

    This paper presents the relations that describe thermodynamic equilibrium in a three-phase system. Multiple components, including air, water, and oil components, are considered in three phases: (1) aqueous, (2) oil, and (3) gas. Primary variables are specified for each of seven possible phase combinations. These primary variables are then used to determine the necessary secondary variables to completely describe the system. Criteria are also developed to check the stability of each phase configuration and determine possible transitions from one phase configuration to another phase configuration via phase appearances and disappearances.

  7. Phase equilibria for complex fluid mixtures

    SciTech Connect

    Prausnitz, J.M.

    1983-04-01

    After defining complex mixtures, attention is given to the canonical procedure used for the thermodynamics of fluid mixtures: first, we establish a suitable, idealized reference system and then we establish a perturbation (or excess function) which corrects the idealized system for real behavior. For complex mixtures containing identified components (e.g. alcohols, ketones, water) discussion is directed at possible techniques for extending to complex mixtures our conventional experience with reference systems and perturbations for simple mixtures. Possible extensions include generalization of the quasi-chemical approximation (local compositions) and superposition of chemical equilibria (association and solvation) on a physical equation of state. For complex mixtures containing unidentified components (e.g. coal-derived fluids), a possible experimental method is suggested for characterization; conventional procedures can then be used to calculate phase equilibria using the concept of pseudocomponents whose properties are given by the characterization data. Finally, as an alternative to the pseudocomponent method, a brief introduction is given to phase-equilibrium calculations using continuous thermodynamics.

  8. State-of-the-art review of phase equilibria

    SciTech Connect

    Prausnitz, J.M.

    1980-03-01

    High-pressure phase-equilibrium calculations using an equation of state are more sensitive to the mixing rules than to details in the effect of density or temperature on pressure. Attention must be given to the problem of how to extend equations of state to mixtures. One possible technique is provided by perturbation theory; another by superposition of chemical equilibria. At low or moderate pressures, vapor-phase corrections are often important. When specific intermolecular forces produce formation of molecular aggregates, strong deviations from ideal-gas behavior can be significant even at pressures well below 1 bar. When vapor-liquid equilibrium data are reduced using conventional expressions for the excess Gibbs energy, the resulting binary parameters tend to be partially correlated, it difficult, but no impossible, to calculate ternary liquid-liquid equilibria using binary parameters only. New models for calculating properties of liquid-phase mixtures mist allow for changes in free volume to give consideration to the effect of mixing on changes in rotational and vibrational degrees of freedom. Liquid-phase volumetric effects are also important in describing the solubilities of gases in solvent mixtures. Therefore, future liquid-phase models should incorporate a liquid-phase equation of state, either of the van der Waals type or, perhaps, as given by the direct-correlation function theory of liquids.

  9. Phosphorus Equilibria Among Mafic Silicate Phases

    NASA Technical Reports Server (NTRS)

    Berlin, Jana; Xirouchakis, Dimitris

    2002-01-01

    Phosphorus incorporation in major rock-forming silicate minerals has the following implications: (1) Reactions between phosphorus-hosting major silicates and accessory phosphates, which are also major trace element carriers, may control the stability of the latter and thus may affect the amount of phosphorus and other trace elements released to the coexisting melt or fluid phase. (2) Less of a phosphate mineral is needed to account for the bulk phosphorus of planetaty mantles. (3) During partial melting of mantle mineral assemblages or equilibrium fractional crystallization of basaltic magmas, and in the absence or prior to saturation with a phosphate mineral, silicate melts may become enriched in phosphorus, especially in the geochemically important low melt fraction regime, Although the small differences in the ionic radii of IVp5+, IVSi4+, and IV Al3+ makes phosphoms incorporation into crystalline silicates perhaps unsurprising, isostructural silicate and phosphate crystalline solids do not readily form solutions, e.g., (Fe, Mg)2SiO4 vs. LiMgPO4, SiO)2 VS. AlPO4. Nonetheless, there are reports of, poorly characterized silico-phosphate phases in angrites , 2-4 wt% P2O5 in olivine and pyroxene grains in pallasites and reduced terestrial basalts which are little understood but potentially useful, and up to 17 wt% P2O5 in olivine from ancient slags. However, such enrichments are rare and only underscore the likelihood of phosphoms incorporation in silicate minerals. The mechanisms that allow phosphorus to enter major rock-forming silicate minerals (e.g., Oliv, Px, Gt) remain little understood and the relevant data base is limited. Nonetheless, old and new high-pressure (5-10 GPa) experimental data suggest that P2O5 wt% decreases from silica-poor to silica-rich compositions or from orthosilicate to chain silicate structures (garnet > olivine > orthopyroxene) which implies that phosphorus incorporation in silicates is perhaps more structure-than site-specific. The

  10. Electronic structure and phase equilibria in ternary substitutional alloys

    SciTech Connect

    Traiber, A.J.S.; Allen, S.M.; Turchi, P.E.A.; Waterstrat, R.M.

    1996-04-26

    A reliable, consistent scheme to study phase equilibria in ternary substitutional alloys based on the tight-binding approximation is presented. With electronic parameters from linear muffin-tin orbital calculations, the computed density of states and band structures compare well with those from more accurate {ital ab}{ital initio} calculations. Disordered alloys are studied within the tight-binding coherent-potential approximation extended to alloys; energetics of ordered systems are obtained through effective pair interactions computed with the general perturbation method; and partially ordered alloys are studied with a novel simplification of the molecular coherent-potential approximation combined with the general perturbation method. The formalism is applied to bcc-based Zr-Ru-Pd alloys which are promising candidates for medical implant devices. Using energetics obtained from the above scheme, we apply the cluster- variation method to study phase equilibria for particular pseudo- binary alloys and show that results are consistent with observed behavior of electronic specific heat coefficient with composition for Zr{sub 0.5}(Ru, Pd){sub 0.5}.

  11. Modeling phase equilibria in mixtures containing hydrogen fluoride and halocarbons

    SciTech Connect

    Lencka, M. ); Anderko, A. Polish Academy of Sciences, Warszawa )

    1993-03-01

    Recently, much attention has been focused on the production of environmentally acceptable refrigerants, which not only offer desirable physico-chemical properties, but do not deplete the ozone layer and do not cause the greenhouse effect. The production of such refrigerants involves the separation of multicomponent mixtures containing hydrogen fluoride, hydrogen chloride, and various chlorinated and fluorinated hydrocarbons. Therefore, it is indispensable to know the phase behavior of these mixtures. While the phase behavior of refrigerant mixtures can be adequately modeled in the absence of HF using standard thermodynamic techniques, drastically increases the complexity of the mixture because of its unusually strong association. The association of HF manifests itself in its significantly reduced gas-phase compressibility factor and the strong nonideality of mixtures containing HF and hydrocarbons or halocarbons. In this work, the authors develop an accurate, yet simple, association model for HF and compare it with simulation data. The model is combined with a simple equation of state to yield a closed-form expression that is applicable to both pure fluids and mixtures. In addition to representing the pure-component data for HF, the theory accurately predicts phase equilibria in HF + halocarbon systems.

  12. Metamorphism and partial melting of ordinary chondrites: Calculated phase equilibria

    NASA Astrophysics Data System (ADS)

    Johnson, T. E.; Benedix, G. K.; Bland, P. A.

    2016-01-01

    Constraining the metamorphic pressures (P) and temperatures (T) recorded by meteorites is key to understanding the size and thermal history of their asteroid parent bodies. New thermodynamic models calibrated to very low P for minerals and melt in terrestrial mantle peridotite permit quantitative investigation of high-T metamorphism in ordinary chondrites using phase equilibria modelling. Isochemical P-T phase diagrams based on the average composition of H, L and LL chondrite falls and contoured for the composition and abundance of olivine, ortho- and clinopyroxene, plagioclase and chromite provide a good match with values measured in so-called equilibrated (petrologic type 4-6) samples. Some compositional variables, in particular Al in orthopyroxene and Na in clinopyroxene, exhibit a strong pressure dependence when considered over a range of several kilobars, providing a means of recognising meteorites derived from the cores of asteroids with radii of several hundred kilometres, if such bodies existed at that time. At the low pressures (<1 kbar) that typify thermal metamorphism, several compositional variables are good thermometers. Although those based on Fe-Mg exchange are likely to have been reset during slow cooling, those based on coupled substitution, in particular Ca and Al in orthopyroxene and Na in clinopyroxene, are less susceptible to retrograde diffusion and are potentially more faithful recorders of peak conditions. The intersection of isopleths of these variables may allow pressures to be quantified, even at low P, permitting constraints on the minimum size of parent asteroid bodies. The phase diagrams predict the onset of partial melting at 1050-1100 °C by incongruent reactions consuming plagioclase, clinopyroxene and orthopyroxene, whose compositions change abruptly as melting proceeds. These predictions match natural observations well and support the view that type 7 chondrites represent a suprasolidus continuation of the established petrologic

  13. Phase equilibria in the La-Ba-Co-O system

    SciTech Connect

    Cherepanov, V.A.; Gavrilova, L.Y.; Filonova, E.A.; Trifonova, M.V.; Voronin, V.I.

    1999-04-01

    Phase equilibria in the La-Ba-Co-O system were studied at 1,100 C in air. The existence of oxide phases LaCoO{sub 3}, BaCoO{sub 3{minus}y}, Ba{sub 2}CoO{sub 4}, and La{sub 2}BaO{sub 4} in quasibinary systems in air at 1,100 C was found, in agreement with previous data. Two types of solid solutions were found in the quasiternary system: La{sub 1{minus}x}Ba{sub x}CoO{sub 3{minus}{delta}} and (La{sub 1{minus}z}Ba{sub z}){sub x}CoO{sub 4}. The homogeneity range of La{sub 1{minus}x}Ba{sub x}CoO{sub 3{minus}{delta}} was found to be 0 {le} x {le} 0.8. As the content of alkali-earth metal (x) increased, a rhombohedral distortion of La{sub 1{minus}x}Ba{sub x}CoO{sub 3{minus}{delta}} decreased; La{sub 0.55}Ba{sub 0.45}CoO{sub 3{minus}{delta}} had an ideal cubic structure. The composition of single phase samples of (La{sub 1{minus}z}Ba{sub z}){sub 2}CoO{sub 4} composition was obtained for z = 0.300, 0.325, 0.350, and 0.375. These samples had the tetragonal K{sub 2}NiF{sub 4}-type structure.

  14. Correlation of three-liquid-phase equilibria involving ionic liquids.

    PubMed

    Rodríguez-Escontrela, I; Arce, A; Soto, A; Marcilla, A; Olaya, M M; Reyes-Labarta, J A

    2016-08-01

    The difficulty in achieving a good thermodynamic description of phase equilibria is finding a model that can be extended to a large variety of chemical families and conditions. This problem worsens in the case of systems containing more than two phases or involving complex compounds such as ionic liquids. However, there are interesting applications that involve multiphasic systems, and the promising features of ionic liquids suggest that they will play an important role in many future processes. In this work, for the first time, the simultaneous correlation of liquid-liquid and liquid-liquid-liquid equilibrium data for ternary systems involving ionic liquids has been carried out. To that end, the phase diagram of the water + [P6 6 6 14][DCA] + hexane system has been determined at 298.15 K and 323.15 K and atmospheric pressure. The importance of this system lies in the possibility of using the surface active ionic liquid to improve surfactant enhanced oil recovery methods. With those and previous measurements, thirteen sets of equilibrium data for water + ionic liquid + oil ternary systems have been correlated. The isoactivity equilibrium condition, using the NRTL model, and some pivotal strategies are proposed to correlate these complex systems. Good agreement has been found between experimental and calculated data in all the regions (one triphasic and two biphasic) of the diagrams. The geometric aspects related to the Gibbs energy of mixing function obtained using the model, together with the minor common tangent plane equilibrium condition, are valuable tools to check the consistency of the obtained correlation results. PMID:27427420

  15. Phase Equilibria and Compressibility of bastnaesite-(La)

    NASA Astrophysics Data System (ADS)

    Rowland, R. L., II; Burnley, P. C.

    2015-12-01

    Bastnaesite (Ce,La,Y)CO3(F,OH) is a rare earth element (REE) bearing ore mineral. REEs are more common in the Earth's crust than precious metals like gold or platinum, but are not commonly concentrated in economically viable ore deposits. For over a decade, China has been the world's leading supplier of REEs. Recent export restrictions from China have necessitated the search for new deposits. Determining basic material properties such as phase equilibria and the equation of state for bastnaesite helps in understanding the processes that form REE ore deposits and thereby assist in locating new deposits. For this study we focus on the lanthanum-fluoride variant of bastnaesite (LaCO3F) since it can be easily synthesized in the laboratory. Previous work by others determined that in both open and closed systems at atmospheric pressure bastnaesite decomposes to lanthanum oxyfluoride and carbon dioxide (LaOF + CO2) above 325°C; at 100 MPa bastnaesite decomposes above 860°C (Hsu, 1992). Using a Griggs-type modified piston cylinder apparatus, we pressurized samples of synthetic bastnaesite-(La) to conditions ranging from 250 MPa to 1.2 GPa, and then subjected each sample to constant temperatures ranging from 700°C to 1050°C for a minimum of five hours. We then analyzed the samples with X-ray powder diffraction to identify phases present and determined that bastnaesite-(La) is stable at 250 MPa up to approximately 800°C and at 1.0 GPa up to approximately 900°C. Reversal experiments are underway. In order to develop an equation of state for bastnaesite-(La), we studied single crystals via monochromatic synchrotron X-ray diffraction in the diamond anvil cell at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne National Laboratory. Measurements were made at pressures ranging from ambient to nearly 4 GPa. From these diffraction patterns, we determine the structure of bastnaesite-(La), and the change in unit cell volume as a function of pressure can be fit to a Birch

  16. New investigation of phase equilibria in the system Al–Cu–Si

    PubMed Central

    Ponweiser, Norbert; Richter, Klaus W.

    2012-01-01

    The phase equilibria and invariant reactions in the system Al–Cu–Si were investigated by a combination of optical microscopy, powder X-ray diffraction (XRD), differential thermal analysis (DTA) and electron probe micro analysis (EPMA). Isothermal phase equilibria were investigated within two isothermal sections. The isothermal section at 500 °C covers the whole ternary composition range and largely confirms the findings of previous phase diagram investigations. The isothermal section at 700 °C describes phase equilibria only in the complex Cu-rich part of the phase diagram. A new ternary compound τ was found in the region between (Al,Cu)-γ1 and (Cu,Si)-γ and its solubility range was determined. The solubility of Al in κ-CuSi was found to be extremely high at 700 °C. In contrast, no ternary solubility in the β-phase of Cu–Al was found, although this phase is supposed to form a complete solid solution according to previous phase diagram assessments. Two isopleths, at 10 and 40 at.% Si, were investigated by means of DTA and a partial ternary reaction scheme (Scheil diagram) was constructed, based on the current work and the latest findings in the binary systems Al–Cu and Cu–Si. The current study shows that the high temperature equilibria in the Cu-rich corner are still poorly understood and additional studies in this area would be favorable. PMID:22287828

  17. The Representation of Highly Non-Ideal Phase Equilibria Using Computer Graphics.

    ERIC Educational Resources Information Center

    Charos, Georgios N.; And Others

    1986-01-01

    Previous work focused on use of computer graphics in teaching thermodynamic phase equilibria for classes I and II. Extends this work to include the considerably more non-ideal phase behavior shown by classes III, IV, and V. Student and instructor response has been overwhelmingly positive about the approach. (JN)

  18. Phase equilibria in the neodymium–cadmium binary system

    PubMed Central

    Skołyszewska-Kühberger, Barbara; Reichmann, Thomas L.; Ipser, Herbert

    2014-01-01

    The equilibrium phase diagram of the neodymium–cadmium system has been established by thermal, metallographic and X-ray analysis based on a study of 70 alloys. The system contains three congruently melting intermetallic compounds, i.e. NdCd (1040 °C), NdCd2 (995 °C), Nd11Cd45 (855 °C), and four incongruently melting compounds NdCd3 (860 °C), Nd13Cd58 (740 °C), NdCd6 (655 °C) and NdCd11 (520 °C). Four eutectic reactions are found in this binary system, i.e. at ∼25 at.% Cd and 770 °C, at 58 at.% Cd and 955 °C, at 79 at.% Cd and 850 °C, and very close to pure Cd at 318 °C, as well as one eutectoid reaction at ∼15 at.% Cd and 500 °C. The solid solubility of Nd in Cd is negligible. Dilatometric curves were recorded for three Nd–Cd compositions up to 4 at.% Cd, to accurately determine phase transitions between the solid solutions of Cd in the low- and high-temperature modification of Nd. PMID:25197164

  19. Phase and chemical equilibria in the transesterification reaction of vegetable oils with supercritical lower alcohols

    NASA Astrophysics Data System (ADS)

    Anikeev, V. I.; Stepanov, D. A.; Ermakova, A.

    2011-08-01

    Calculations of thermodynamic data are performed for fatty acid triglycerides, free fatty acids, and fatty acid methyl esters, participants of the transesterification reaction of vegetable oils that occurs in methanol. Using the obtained thermodynamic parameters, the phase diagrams for the reaction mixture are constructed, and the chemical equilibria of the esterification reaction of free fatty acids and the transesterification reaction of fatty acid triglycerides attained upon treatment with supercritical methanol are determined. Relying on our analysis of the obtained equilibria for the esterification reaction of fatty acids and the transesterification reaction of triglycerides attained upon treatment with lower alcohols, we select the optimum conditions for performing the reaction in practice.

  20. Experimental investigation of the phase equilibria in the carbon dioxide-propane-3 M MDEA system

    SciTech Connect

    Jou, F.Y.; Mather, A.E.; Otto, F.D.; Carroll, J.J.

    1995-07-01

    The treating of liquefied petroleum gas (LPG) to remove carbon dioxide and hydrogen sulfide using aqueous alkanolamine solutions is an important aspect of gas processing. One of the amines used in the natural gas industry is methyldiethanolamine (MDEA). Measurements of the phase equilibria in the carbon dioxide-propane-3 M MDEA system have been made at 25 and 40 C at pressures up to 15.5 MPa. Vapor-liquid, liquid-liquid, and vapor-liquid-liquid equilibria were determined. The vapor-liquid equilibrium data were compared with the model of Deshmukh and Mather.

  1. Transport and Phase Equilibria Properties for Steam Flooding of Heavy Oils

    SciTech Connect

    Gabitto, Jorge; Barrufet, Maria

    2001-12-18

    The objectives of this research included experimental determination and rigorous modeling and computation of phase equilibria, volumetric, and transport properties of hydrocarbon/CO2/water mixtures at pressures and temperatures typical of steam injection processes for thermal recovery of heavy oils.

  2. TOWARD A THEORY OF SUSTAINABLE SYSTEMS. FLUID PHASE EQUILIBRIA: JOURNAL ARTICLE

    EPA Science Inventory

    NRMRL/STD JOURNAL NRMRL-CIN-1364 Cabezas*, H., and Fath**, B.D. Toward a Theory of Sustainable Systems. Fluid Phase Equilibria (Nakanishi, K., Yasukiko, A., Miyano, Y. (Ed.), Elsevier Science B.V.) 194-197:3-14 (2002). EPA/600/J-02/186, www.elsevier.com/locate/fluid. 03/2...

  3. Phase transitions and connectivity in three-dimensional vortex equilibria

    SciTech Connect

    Akao, J.H.

    1994-05-01

    The statistical mechanics of collections of closed self avoiding vortex loops on a lattice are studied. The system is related to the vortex form of the three dimensional XY model and to lattice vortex equilibrium models of turbulence. The system exhibits vortex connectivity and screening effects, and models in vorticity variables the superfluid transition. The equilibrium states of the system are simulated by a grand canonical Monte Carlo method. A set of geometric transformations for self-avoiding loops is developed. The numerical method employs histogram sampling techniques and utilizes a modification to the Metropolis flow which enhances efficiency. Results are given for a region in the temperature-chemical potential plane, where the chemical potential is related to the vortex fugacity. A line of second order transitions is identified at low temperature. The transition is shown to be a percolation threshold at which connected vortex loops of infinite size appear in the system. The nature of the transition supports the assumption that the lambda transition in bulk superfluid helium is driven by vortices. An asymptotic analysis is performed for the energy and entropy scaling of the system as functions of the system size and the lattice spacing. These estimates indicate that the infinite temperature line is a phase boundary between small scale fractal vortices and large scale smooth vortices. A suggestion is made that quantum vortices have uniform structure on the scale of the lattice spacing and lie in the positive temperature regime, while classical vortices have uniform structure on the scale of the domain and lie in the negative temperature regime.

  4. Fast Method for Computing Chemical Potentials and Liquid-Liquid Phase Equilibria of Macromolecular Solutions.

    PubMed

    Qin, Sanbo; Zhou, Huan-Xiang

    2016-08-25

    Chemical potential is a fundamental property for determining thermodynamic equilibria involving exchange of molecules, such as between two phases of molecular systems. Previously, we developed the fast Fourier transform (FFT)-based method for Modeling Atomistic Protein-crowder interactions (FMAP) to calculate excess chemical potentials according to the Widom insertion. Intermolecular interaction energies were expressed as correlation functions and evaluated via FFT. Here, we extend this method to calculate liquid-liquid phase equilibria of macromolecular solutions. Chemical potentials are calculated by FMAP over a wide range of molecular densities, and the condition for coexistence of low- and high-density phases is determined by the Maxwell equal-area rule. When benchmarked on Lennard-Jones fluids, our method produces an accurate phase diagram at 18% of the computational cost of the current best method. Importantly, the gain in computational speed increases dramatically as the molecules become more complex, leading to many orders of magnitude in speed up for atomistically represented proteins. We demonstrate the power of FMAP by reporting the first results for the liquid-liquid coexistence curve of γII-crystallin represented at the all-atom level. Our method may thus open the door to accurate determination of phase equilibria for macromolecular mixtures such as protein-protein mixtures and protein-RNA mixtures, that are known to undergo liquid-liquid phase separation, both in vitro and in vivo. PMID:27327881

  5. Thermodynamic calculations in the system CH4-H2O and methane hydrate phase equilibria

    USGS Publications Warehouse

    Circone, S.; Kirby, S.H.; Stern, L.A.

    2006-01-01

    Using the Gibbs function of reaction, equilibrium pressure, temperature conditions for the formation of methane clathrate hydrate have been calculated from the thermodynamic properties of phases in the system CH4-H 2O. The thermodynamic model accurately reproduces the published phase-equilibria data to within ??2 K of the observed equilibrium boundaries in the range 0.08-117 MPa and 190-307 K. The model also provides an estimate of the third-law entropy of methane hydrate at 273.15 K, 0.1 MPa of 56.2 J mol-1 K-1 for 1/n CH4??H 2O, where n is the hydrate number. Agreement between the calculated and published phase-equilibria data is optimized when the hydrate composition is fixed and independent of the pressure and temperature for the conditions modeled. ?? 2006 American Chemical Society.

  6. Effects of gravity reduction on phase equilibria. Part 1: Unary and binary isostructural solids

    NASA Technical Reports Server (NTRS)

    Larson, D. J., Jr.

    1975-01-01

    Analysis of the Skylab II M553 Experiment samples resulted in the hypothesis that the reduced gravity environment was altering the melting and solidification reactions. A theoretical study was conducted to define the conditions under which such alteration of phase relations is feasible, determine whether it is restricted to space processing, and, if so, ascertain which alloy systems or phase reactions are most likely to demonstrate such effects. Phase equilibria of unary and binary systems with a single solid phase (unary and isomorphous) were considered.

  7. Phase Equilibria in DOPC/DPPC-d62/Cholesterol Mixtures

    PubMed Central

    Davis, James H.; Clair, Jesse James; Juhasz, Janos

    2009-01-01

    Abstract There is broad interest in the question of fluid-fluid phase coexistence in membranes, in particular, whether evidence for liquid-disordered (ld)-liquid-ordered (lo) two-phase regions or membrane “rafts” can be found in natural membranes. In model membrane systems, such phase behavior is observed, and we have used deuterium nuclear magnetic resonance spectroscopy to map the phase boundaries of ternary mixtures containing 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), chain-perdeuterated 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC-d62), and cholesterol. For both this ternary model system and the binary DPPC-d62/cholesterol sytem, we present clear evidence for ld-lo two-phase coexistence. We have selected sample compositions to focus on this region of fluid-fluid phase coexistence and to determine its temperature and composition ranges. The deuterium nuclear magnetic resonance spectra for compositions near the ld-lo phase boundary at high cholesterol concentrations show evidence of exchange broadening or critical fluctuations in composition, similar to that reported by Vist and Davis. There appears to be a line of critical compositions ranging from 48°C for a DOPC/DPPC-d62/cholesterol composition of 0:75:25, to ∼−8°C for the composition 57:14:29. At temperatures below this two-phase region, there is a region of three-phase coexistence (ld-lo-gel). These results are collected and presented in terms of a partial ternary phase diagram that is consistent with previously reported results of Vist and Davis. PMID:19167302

  8. Phase equilibria in a system of 'breathing' molecules

    SciTech Connect

    Wu, Jianzhong; Prausnitz, John

    2001-09-30

    It is now well known that details in the intermolecular potential can significantly affect the qualitative features of a phase diagram where temperature is plotted against density for the coexistence curves among fluid and solid phases. While previous calculations of phase diagrams have assumed a time-invariant potential function, this report concerns the phase diagram for ''breathing'' molecules, i.e., molecules whose strength of intermolecular attraction fluctuates in time. Such fluctuations can occur in biomacromolecules where an active site can switch between ''on'' and ''off'' positions. Phase-equilibrium calculations were performed for molecules that have a periodic (breathing) attractive force in addition to the conventional intermolecular forces. The phase diagram for such molecules is as expected when the ''breathing'' properties are independent of density. However, when (more realistically), the ''breathing'' properties are density dependent, the phase diagram exhibits dramatic changes. These calculations may be useful for interpreting experimental data for protein precipitation, for plaque formation in blood vessels and for scaffold-supported tissue formation.

  9. Phase equilibria and crystal chemistry of rubidium niobates and rubidium tantalates

    NASA Technical Reports Server (NTRS)

    Minor, D. B.; Roth, R. S.; Parker, H. S.; Brower, W. S.

    1977-01-01

    The phase equilibria relations and crystal chemistry of portions of the Rb2O-Nb2O5 and Rb2O-Ta2O5 systems were investigated for structures potentially useful as ionic conductors. A hexagonal tungsten bronze-type (HTB) structure was found in both systems as well as three hexagonal phases with mixed HTB-pyrochlore type structures. Ion exchange experiments between various alkali ions are described for several phases. Unit cell dimensions and X-ray diffraction powder patterns are reported.

  10. Phase equilibria and modeling of pyridinium-based ionic liquid solutions.

    PubMed

    Domańska, Urszula; Królikowski, Marek; Ramjugernath, Deresh; Letcher, Trevor M; Tumba, Kaniki

    2010-11-25

    The phase diagrams of the ionic liquid (IL) N-butyl-4-methylpyridinium bis{(trifluoromethyl)sulfonyl}imide ([BM(4)Py][NTf(2)]) with water, an alcohol (1-butanol, 1-hexanol, 1-octanol, 1-decanol), an aromatic hydrocarbon (benzene, toluene, ethylbenzene, n-propylbenzene), an alkane (n-hexane, n-heptane, n-octane), or cyclohexane have been measured at atmospheric pressure using a dynamic method. This work includes the characterization of the synthesized compound by water content and also by differential scanning calorimetry. Phase diagrams for the binary systems of [BM(4)Py][NTf(2)] with all solvents reveal eutectic systems with regards to (solid-liquid) phase equilibria and show immiscibility in the liquid phase region with an upper critical solution temperature (UCST) in most of the mixtures. The phase equilibria (solid, or liquid-liquid) for the binary systems containing aliphatic hydrocarbons reported here exhibit the lowest solubility and the highest immiscibility gap, a trend which has been observed for all ILs. The reduction of experimental data has been carried out using the nonrandom two-liquid (NRTL) correlation equation. The phase diagrams reported here have been compared with analogous phase diagrams reported previously for systems containing the IL N-butyl-4-methylpyridinium tosylate and other pyridinium-based ILs. The influence of the anion of the IL on the phase behavior has been discussed. PMID:20964426

  11. Thermodynamic properties and phase equilibria of selected Heusler compounds

    NASA Astrophysics Data System (ADS)

    Yin, Ming

    Heusler compounds are ternary intermetallics with many promising properties such as spin polarization and magnetic shape memory effect. A better understanding of their thermodynamic properties facilitates future design and development. Therefore, standard enthalpies of formation and heat capacities from room temperature to 1500 K of selected Heusler compounds X2YZ (X = Co, Fe, Ni, Pd, Rh, Ru; Y = Co, Cu, Fe, Hf, Mn, Ni, Ti, V, Zr; Z = Al, Ga, In, Si, Ge, Sn) and half-Heusler compounds XYSn (X = Au, Co, Fe, Ir, Ni, Pd, Pt, Rh; Y = Hf, Mn, Ti, Zr) were measured using high temperature direct reaction calorimetry. The measured standard enthalpies of formation were compared with those predicted from ab initio calculations and the extended semi-empirical Miedema's model. Trends in standard enthalpy of formation with respect to the periodic classification of elements were discussed. The effect of a fourth element (Co, Cu, Fe, Pd; Ti, V; Al, Ga, In, Si, Ge) on the standard enthalpy of formation of Ni2MnSn was also investigated. Lattice parameters of the compounds with an L21 structure were determined using X-ray powder diffraction analysis. Differential scanning calorimetry was used to determine melting points and phase transformation temperatures. Phase relationships were investigated using scanning electron microscopy with an energy dispersive spectrometer. The isothermal section of the Fe-Sn-Ti ternary system at 873 K was established using equilibrated alloys. Three ternary compounds including the Heusler compound Fe2SnTi were observed. A new ternary compound Fe5Sn9Ti 6 was reported and the crystal structure of FeSnTi2 was determined for the first time.

  12. Phase equilibria of H2SO4, HNO3, and HCl hydrates and the composition of polar stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Wooldridge, Paul J.; Zhang, Renyi; Molina, Mario J.

    1995-01-01

    Thermodynamic properties and phase equilibria behavior for the hydrates and coexisting pairs of hydrates of common acids which exist in the stratosphere are assembled from new laboratory measurements and standard literature data. The analysis focuses upon solid-vapor and solid-solid-vapor equilibria at temperatures around 200 K and includes new calorimetric and vapor pressure data. Calculated partial pressures versus 1/T slopes for the hydrates and coexisting hydrates agree well with experimental data where available.

  13. Phase Equilibria of H2SO4, HNO3, and HCl Hydrates and the Composition of Polar Stratospheric Clouds

    NASA Technical Reports Server (NTRS)

    Wooldridge, Paul J.; Zhang, Renyi; Molina, Mario J.

    1995-01-01

    Thermodynamic properties and phase equilibria behavior for the hydrates and coexisting pairs of hydrates of common acids which exist in the stratosphere are assembled from new laboratory measurements and standard literature data. The analysis focuses upon solid-vapor and solid-solid-vapor equilibria at temperatures around 200 K and includes new calorimetric and vapor pressure data. Calculated partial pressures versus 1/T slopes for the hydrates and coexisting hydrates agree well with experimental data where available.

  14. Experimental technique for studying high-temperature phase equilibria in reactive molten metal based systems

    NASA Astrophysics Data System (ADS)

    Ermoline, Alexandre

    The general objective of this work is to develop an experimental technique for studying the high-temperature phase compositions and phase equilibria in molten metal-based binary and ternary systems, such as Zr-O-N, B-N-O, Al-O, and others. A specific material system of Zr-O-N was selected for studying and testing this technique. The information about the high-temperature phase equilibria in reactive metal-based systems is scarce and their studying is difficult because of chemical reactions occurring between samples and essentially any container materials, and causing contamination of the system. Containerless microgravity experiments for studying equilibria in molten metal-gas systems were designed to be conducted onboard of a NASA KC-135 aircraft flying parabolic trajectories. A uniaxial apparatus suitable for acoustic levitation, laser heating, and splat quenching of small samples was developed and equipped with computer-based controller and optical diagnostics. Normal-gravity tests were conducted to determine the most suitable operating parameters of the levitator by direct observations of the levitated samples, as opposed to more traditional pressure mapping of the acoustic field. The size range of samples that could be reliably heated and quenched in this setup was determined to be on the order of 1--3 mm. In microgravity experiments, small spherical specimens (1--2 mm diameter), prepared as pressed, premixed solid components, ZrO2, ZrN, and Zr powders, were acoustically levitated inside an argon-filled chamber at one atmosphere and heated by a CO2 laser. The levitating samples could be continuously laser heated for about 1 sec, resulting in local sample melting. The sample stability in the vertical direction was undisturbed by simultaneous laser heating. Oscillations of the levitating sample in the horizontal direction increased while it was heated, which eventually resulted in the movement of the sample away from its stable levitation position and the laser

  15. Diffusion, phase equilibria and partitioning experiments in the Ni-Fe-Ru system

    NASA Technical Reports Server (NTRS)

    Blum, Joel D.; Wasserburg, G. J.; Hutcheon, I. D.; Beckett, J. R.; Stolper, E. M.

    1989-01-01

    Results are presented on thin-film diffusion experiments designed to investigate phase equilibria in systems containing high concentrations of Pt-group elements, such as Ni-Fe-Ru-rich systems containing Pt, at temperatures of 1273, 1073, and 873 K. The rate of Ru diffusion in Ni was determined as a function of temperature, and, in addition, the degree of Pt and Ir partitioning between phases in a Ni-Fe-Ru-rich system and of V between phases in a Ni-Fe-O-rich system at 873 were determined. It was found that Pt preferentially partitions into the (gamma)Ni-Fe phase, whereas Ir prefers the (epsilon)Ru-Fe phase. V partitions strongly into Fe oxides relative to (gamma)Ni-Fe. These results have direct application to the origin and thermal history of the alloys rich in Pt-group elements in meteorites.

  16. Phases, phase equilibria, and phase rules in low-dimensional systems

    SciTech Connect

    Frolov, T.; Mishin, Y.

    2015-07-28

    We present a unified approach to thermodynamic description of one, two, and three dimensional phases and phase transformations among them. The approach is based on a rigorous definition of a phase applicable to thermodynamic systems of any dimensionality. Within this approach, the same thermodynamic formalism can be applied for the description of phase transformations in bulk systems, interfaces, and line defects separating interface phases. For both lines and interfaces, we rigorously derive an adsorption equation, the phase coexistence equations, and other thermodynamic relations expressed in terms of generalized line and interface excess quantities. As a generalization of the Gibbs phase rule for bulk phases, we derive phase rules for lines and interfaces and predict the maximum number of phases than may coexist in systems of the respective dimensionality.

  17. Phases, phase equilibria, and phase rules in low-dimensional systems.

    PubMed

    Frolov, T; Mishin, Y

    2015-07-28

    We present a unified approach to thermodynamic description of one, two, and three dimensional phases and phase transformations among them. The approach is based on a rigorous definition of a phase applicable to thermodynamic systems of any dimensionality. Within this approach, the same thermodynamic formalism can be applied for the description of phase transformations in bulk systems, interfaces, and line defects separating interface phases. For both lines and interfaces, we rigorously derive an adsorption equation, the phase coexistence equations, and other thermodynamic relations expressed in terms of generalized line and interface excess quantities. As a generalization of the Gibbs phase rule for bulk phases, we derive phase rules for lines and interfaces and predict the maximum number of phases than may coexist in systems of the respective dimensionality. PMID:26233156

  18. Phase equilibria in the condensed system n-docosane-cyclododecane- n-decane

    NASA Astrophysics Data System (ADS)

    Shamitov, A. A.; Garkushin, I. K.; Kolyado, A. V.

    2016-07-01

    Phase equilibria in the system n-docosane-cyclododecane-n-decane are studied by means of differential thermal analysis. It is found that the system is of the eutectic type. The temperature of eutectic melting is found to be-34.9°C, the n-docosane content is 3.5 wt %, the n-decane content is 86.5 wt %, and the cyclododecane content is 10.0 wt %. It is concluded that the results can be used to create new optimal heatstorage materials.

  19. Phase equilibria in a three-component water-soap-alcohol system. A thermodynamic model

    SciTech Connect

    Joensson, B.; Wennerstroem, H.

    1987-01-15

    A thermodynamic model is presented for ternary systems consisting of ionic surfactant-long-chain alcohol-water. The important contributions to the model free energy are (i) an electrostatic term; (ii) a free energy term; (iii) four entropy terms; (iv) constraints imposed by molecular packing restrictions; and (v) a hydration force. The free energy expressions are developed for (spherical) micellar solutions, normal hexagonal liquid crystals, lamellar liquid crystals, reversed hexagonal liquid crystals, and inverted (spherical) micellar solutions. For all these types of phases the aggregate geometries are optimized and the relative stabilities are determined. The phase equilibria are determined by deriving explicit expressions for the chemical potentials of the three components and using the criterion that they should be equal for phases in equilibrium. The model gives a nearly quantitative description of the equilibria in the test system potassium decanoate-octanol-water. The general conclusions are (i) at high ratios of ionic surfactant to alcohol the dominating factor is the electrostatics, with an additional effect from the fact that the alcohol decreases the free energy of the polar-apolar interface; (ii) the stability of the inverted micellar system is greatly influenced by the entropy of mixing between the palisade layer and the bulk alcohol medium; (iii) at low water contents one has to invoke the occurrence of a hydration force.

  20. Landau resonant modification of multiple kink mode contributions to 3D tokamak equilibria

    SciTech Connect

    King, J. D.; Strait, E. J.; Ferraro, N. M.; Hanson, J. M.; Haskey, S. R.; Lanctot, M. J.; Liu, Y. Q.; Logan, N.; Paz-Soldan, C.; Shiraki, D.; Turnbull, A. D.

    2015-12-17

    Detailed measurements of the plasma's response to applied magnetic perturbations provide experimental evidence that the form of three-dimensional (3D) tokamak equilibria, with toroidal mode number n = 1, is determined by multiple stable kink modes at high-pressure. For pressures greater than the ideal magnetohydrodynamic (MHD) stability limit, as calculated without a stabilizing wall, the 3D structure transitions in a way that is qualitatively predicted by an extended MHD model that includes kinetic wave-particle interactions. These changes in poloidal mode structure are correlated with the proximity of rotation profiles to thermal ion bounce and the precession drift frequencies suggesting that these kinetic resonances are modifying the relative amplitudes of the stable modes. These results imply that each kink may eventually be independently controlled.

  1. Landau resonant modification of multiple kink mode contributions to 3D tokamak equilibria

    DOE PAGESBeta

    King, J. D.; Strait, E. J.; Ferraro, N. M.; Hanson, J. M.; Haskey, S. R.; Lanctot, M. J.; Liu, Y. Q.; Logan, N.; Paz-Soldan, C.; Shiraki, D.; et al

    2015-12-17

    Detailed measurements of the plasma's response to applied magnetic perturbations provide experimental evidence that the form of three-dimensional (3D) tokamak equilibria, with toroidal mode number n = 1, is determined by multiple stable kink modes at high-pressure. For pressures greater than the ideal magnetohydrodynamic (MHD) stability limit, as calculated without a stabilizing wall, the 3D structure transitions in a way that is qualitatively predicted by an extended MHD model that includes kinetic wave-particle interactions. These changes in poloidal mode structure are correlated with the proximity of rotation profiles to thermal ion bounce and the precession drift frequencies suggesting that thesemore » kinetic resonances are modifying the relative amplitudes of the stable modes. These results imply that each kink may eventually be independently controlled.« less

  2. On the question of phase equilibria in the succinonitrile-(D)camphor system

    NASA Astrophysics Data System (ADS)

    Witusiewicz, V. T.; Hecht, U.; Rex, S.

    2013-07-01

    Alloys from the succinonitrile-(D)camphor (SCN-DC) system are widely used as model alloys for the in situ investigation of solidification using light optical microscopy, but literature on the binary phase diagram is contradictory with respect to the solubility limit of DC in (SCN). Phase equilibria of the system were therefore revisited experimentally and critically assessed in the present work. The results prove that the maximum solubility of DC in the succinonitrile solid solution (SCN) is far less 1 wt% and the volume fraction of the (DC) phase in the eutectic solid is 23.3%. On this basis and on recently reported experimental data the CALPHAD description of the SCN-DC system was re-optimized.

  3. Phase equilibria of carbon dioxide hydrate system in the presence of sucrose, glucose, and fructose

    SciTech Connect

    Chun, M.K.; Lee, H.

    1999-09-01

    The three-phase (H-L{sub w}-V) equilibria of the carbon dioxide hydrate formation system in aqueous solutions containing sucrose, glucose, and fructose were experimentally determined at pressures ranging from 1.580 to 4.355 MPa and at temperatures between 273.6 and 281.7 K. The upper quadruple points (H-L{sub w}-L{sub CO{sub 2}}-V) were also measured at concentrations of 10, 20, and 30 mass % sucrose, glucose, and fructose. The addition of carbohydrates exhibited a similar inhibition effect as that observed for electrolytes and alcohols. A thermodynamic model predicting the three- and four-phase hydrate equilibria while accounting for the inhibition effect of carbohydrates was developed on the basis of the van der Waals-Platteeuw model and the Redlich-Kwong-Soave equation of state with a modified version of the Huron-Vidal mixing rule. The calculated results were found to be in good agreement with the experimental data.

  4. Liquid-vapor phase equilibria and the thermodynamic properties of 2-methylpropanol- n-alkyl propanoate solutions

    NASA Astrophysics Data System (ADS)

    Suntsov, Yu. K.; Goryunov, V. A.; Chuikov, A. M.; Meshcheryakov, A. V.

    2016-08-01

    The boiling points of solutions of five binary systems are measured via ebulliometry in the pressure range of 2.05-103.3 kPa. Equilibrium vapor phase compositions, the values of the excess Gibbs energies, enthalpies, and entropies of solution of these systems are calculated. Patterns in the changes of phase equilibria and thermodynamic properties of solutions are established, depending on the compositions and temperatures of the systems. Liquid-vapor equilibria in the systems are described using the equations of Wilson and the NRTL (Non-Random Two-Liquid Model).

  5. Gaseous phase coal surface modification

    SciTech Connect

    Okoh, J.M.; Pinion, J.; Thiensatit, S.

    1992-05-07

    In this report, we present an improved, feasible and potentially cost effective method of cleaning and beneficiating ultrafine coal. Increased mechanization of mining methods and the need towards depyritization, and demineralization have led to an increase in the quantity of coal fines generated in recent times. For example, the amount of {minus}100 mesh coal occurring in coal preparation plant feeds now typically varies from 5 to 25% of the total feed. Environmental constraints coupled with the greatly increased cost of coal have made it increasingly important to recover more of these fines. Our method chemically modifies the surface of such coals by a series of gaseous phase treatments employing Friedel-Crafts reactions. By using olefins (ethene, propene and butene) and hydrogen chloride catalyst at elevated temperature, the surface hydrophobicity of coal is enhanced. This increased hydrophobicity is manifest in surface phenomena which reflect conditions at the solid/liquid interphase (zeta potential) and those which reflect conditions at the solid/liquid/gas interphases (contact angle, wettability and floatability).

  6. Exact calculations of phase and membrane equilibria for complex fluids by Monte Carlo simulation

    SciTech Connect

    Panagiotopoulos, A.Z.

    1990-08-28

    The general objective of this project is the investigation of phase equilibria for complex fluids using a novel methodology, Monte Carlo simulation in the Gibbs ensemble. The methodology enables the direct determination of the properties of two coexisting fluid phases (e.g. a liquid at equilibrium with its vapor) from a single computer experiment, and is applicable to multicomponent systems with arbitrary equilibrium constraints imposed. The specific goals of this work are to adapt the Gibbs technique to (a) highly asymmetric mixtures with large differences in size and potential energies of interaction (b) chain molecules and (c) ionic systems. Significant progress has been made in all three areas. In this paper, we will briefly describe the progress made in each area, using the same numbering scheme for the tasks as in the original proposal.

  7. Planetary phase equilibria - Application to formation of earth, Venus and Mercury

    NASA Technical Reports Server (NTRS)

    Saxena, S. K.

    1981-01-01

    Calculations of phase equilibria in a solar mixture with variable hydrogen abundance show that the major element chemical composition of the earth and Venus can be simply explained by their formation in equilibrium at 800 and 1000 K, respectively, at a pressure of 0.001 atm, provided that there is an iron loss from the region of proto-Venus relative to the solar nebula. The calculated mineralogical chemical compositions of the two planets are in excellent agreement with the available chemical and physical data. Phase equilibrium calculations at 1500 K and 0.001 atm show that nearly 96% of the silicates and 81% of metal must have been lost from the region of proto-Mercury.

  8. Planetary phase equilibria - Application to formation of earth, Venus and Mercury

    NASA Astrophysics Data System (ADS)

    Saxena, S. K.

    1981-06-01

    Calculations of phase equilibria in a solar mixture with variable hydrogen abundance show that the major element chemical composition of the earth and Venus can be simply explained by their formation in equilibrium at 800 and 1000 K, respectively, at a pressure of 0.001 atm, provided that there is an iron loss from the region of proto-Venus relative to the solar nebula. The calculated mineralogical chemical compositions of the two planets are in excellent agreement with the available chemical and physical data. Phase equilibrium calculations at 1500 K and 0.001 atm show that nearly 96% of the silicates and 81% of metal must have been lost from the region of proto-Mercury.

  9. Phase equilibria of the magnesium sulfate-water system to 4 kbars

    NASA Technical Reports Server (NTRS)

    Hogenboom, D. L.; Kargel, J. S.; Ganasan, J. P.; Lee, L.

    1993-01-01

    Magnesium sulfate is the most abundant salt in carbonaceous chondrites, and it may be important in the low-temperature igneous evolution and aqueous differentiation of icy satellites and large chondritic asteroids. Accordingly, we are investigating high-pressure phase equilibria in MgSO4-H2O solutions under pressures up to four kbars. An initial report was presented two years ago. This abstract summarizes our results to date including studies of solutions containing 15.3 percent, 17 percent, and 22 percent MgSO4. Briefly, these results demonstrate that increasing pressure causes the eutectic and peritectic compositions to shift to much lower concentrations of magnesium sulfate, and the existence of a new low-density phase of magnesium sulfate hydrate.

  10. Phase liquid-vapor equilibria and thermodynamic properties of solutions of n-propanol-aliphatic ketones

    NASA Astrophysics Data System (ADS)

    Suntsov, Yu. K.; Vlasov, M. V.; Chuikov, A. M.

    2015-06-01

    The boiling points of solutions of five binary systems are measured using the ebulliometric method in the pressure range of 4.4-101.3 kPa. Compositions of the equilibrium vapor phases of systems are calculated, based on the constructed pressure isotherms of saturated vapor. The values of excess Gibbs energy and the enthalpy and entropy of solutions are calculated from the data on the liquid-vapor equilibrium. The patterns of change in the phase equilibria and thermodynamic properties of the solutions are established, based on the composition and temperature of the systems. The liquid-vapor equilibrium of systems is described using the equations of Wilson and the NRTL (Non-Random Two-Liquid model).

  11. Water under-saturated phase equilibria of basaltic andesites from Westdahl volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Rader, E. L.; Larsen, J.

    2008-12-01

    The two most abundant gases released from magmatic systems are typically H2O and CO2, however, most phase equilibria studies examining crystallization applied to natural magmatic systems over the past 200 years have relied on H2O-saturated conditions. We will present the results of new phase equilibria experiments run using natural basaltic andesite starting materials from the 1991-1992 eruption of Westdahl volcano, Alaska, examining both H2O-saturated and undersaturated conditions, using a fixed ratio of XH2O ~0.7 and XCO2 ~0.3 in the total volatile budget. The experiments were conducted at total pressures (PTotal) of 0-200 MPa and 900-1050 °C, and fO2 set to the Ni-NiO buffer. Experiments were loaded into gold and Au75Pd25 capsules, and run in a TZM alloy pressure vessel for 48 hours before rapid quenching while still at pressure. After quenching, samples were polished and examined by microprobe and reflective microscopy. Identified mineral phases include plagioclase, clinopyroxene, Fe-Ti oxides, and minor orthopyroxene in both water-saturated and under- saturated experiments. A ~25 to 50 °C shift in temperature, at similar pressures is observed in the plagioclase and pyroxene stability curves when CO2 is added. Solubility models predict relatively low amounts of CO2 dissolved in the melt at similar conditions. Thus, our experiments indicate a significant effect of CO2 on the crystallization of mafic magmas at crustal pressures in volcanic arcs.

  12. Solid state phase equilibria and intermetallic compounds of the Al-Cr-Ho system

    SciTech Connect

    Pang, Mingjun; Zhan, Yongzhong; Du, Yong

    2013-02-15

    The solid state phase equilibria of the Al-Cr-Ho ternary system at 500 Degree-Sign C were experimentally investigated. The phase relations at 500 Degree-Sign C are governed by 14 three-phase regions, 29 two-phase regions and 15 single-phase regions. The existences of 10 binary compounds and 2 ternary phases have been confirmed. Al{sub 11}Cr{sub 2}, Al{sub 11}Cr{sub 4} and Al{sub 17}Ho{sub 2} were not found at 500 Degree-Sign C. Crystal structures of Al{sub 9}Cr{sub 4} and Al{sub 8}Cr{sub 4}Ho were determined by the Rietveld X-ray powder data refinement. Al{sub 9}Cr{sub 4} was found to exhibit cubic structure with space group I4-bar 3m (no. 217) and lattice parameters a=0.9107(5) nm. Al{sub 8}Cr{sub 4}Ho crystallizes in ThMn{sub 12} structure type with space group I4/mmm (no. 139) and lattice parameters a=0.8909(4) nm, c=0.5120(5) nm. It is concluded that the obtained Al{sub 4}Cr phase in this work should be {mu}-Al{sub 4}Cr by comparing with XRD pattern of the hexagonal {mu}-Al{sub 4}Mn compound. - Graphical abstract: The solid state phase equilibria of the Al-Cr-Ho ternary system at 500 Degree-Sign C. Highlights: Black-Right-Pointing-Pointer Al-Cr-Ho system has been investigated. Black-Right-Pointing-Pointer Al{sub 9}Cr{sub 4} has cubic structure with space group I4-bar 3m. Black-Right-Pointing-Pointer Al{sub 8}Cr{sub 4}Ho crystallizes in ThMn{sub 12} type with space group I4/mmm. Black-Right-Pointing-Pointer Al{sub 4}Cr phase is {mu}-type at 500 Degree-Sign C.

  13. The systems Sr-Zn-{l_brace}Si,Ge{r_brace}: Phase equilibria and crystal structure of ternary phases

    SciTech Connect

    Romaka, V.V.; Falmbigl, M.; Grytsiv, A.; Rogl, P.

    2012-02-15

    Phase relations have been established by electron probe microanalysis (EPMA) and X-ray powder diffraction (XPD) for the Sr-poor part of the ternary systems Sr-Zn-Si at 800 Degree-Sign C and Sr-Zn-Ge at 700 Degree-Sign C. In the Sr-Zn-Si system one new ternary compound SrZn{sub 2+x}Si{sub 2-x} (0{<=}x{<=}0.45) with CeAl{sub 2}Ga{sub 2} structure and a statistical mixture of Zn/Si in the 4e site was found. Neither a type-I nor a type-IX clathrate phase was encountered. This system is characterized by formation of two further phases, i.e. SrZn{sub 1-x}Si{sub 1+x} with ZrBeSi-type (0.16{<=}x{<=}0.22) and SrZn{sub 1-x}Si{sub 1+x} with AlB{sub 2}-type (0.35{<=}x{<=}0.65) with a random distribution of Zn/Si atoms in the 2c site. For the Sr-Zn-Ge system, the homogeneity regions of the isotypic phases SrZn{sub 1-x}Ge{sub 1+x} with ZrBeSi-type (0{<=}x{<=}0.17) and AlB{sub 2}-type (0.32{<=}x{<=}0.56), respectively, have been determined. Whereas the germanide SrZn{sub 2+x}Ge{sub 2-x} (CeAl{sub 2}Ga{sub 2}-type) is characterized by a homogeneity region (0{<=}x{<=}0.5), the clathrate type-I phase Sr{sub 8}Zn{sub 8}Ge{sub 38} shows a point composition. - Graphical abstract: Phase equilibria of ternary compounds in the Sr-Zn-Si-system at 800 Degree-Sign C. Highlights: Black-Right-Pointing-Pointer Phase equilibria in the Sr-Zn-Si-system are established at 800 Degree-Sign C. Black-Right-Pointing-Pointer Phase equilibria in the Sr-Zn-Ge-system are established at 700 Degree-Sign C. Black-Right-Pointing-Pointer Crystal structures of the ternary compounds were confirmed by X-ray powder diffraction. Black-Right-Pointing-Pointer All ternary compounds except the clathrate-I in the Ge-system are characterized by a homogeneity region.

  14. Exploring fluctuations and phase equilibria in fluid mixtures via Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Denton, Alan R.; Schmidt, Michael P.

    2013-03-01

    Monte Carlo simulation provides a powerful tool for understanding and exploring thermodynamic phase equilibria in many-particle interacting systems. Among the most physically intuitive simulation methods is Gibbs ensemble Monte Carlo (GEMC), which allows direct computation of phase coexistence curves of model fluids by assigning each phase to its own simulation cell. When one or both of the phases can be modelled virtually via an analytic free energy function (Mehta and Kofke 1993 Mol. Phys. 79 39), the GEMC method takes on new pedagogical significance as an efficient means of analysing fluctuations and illuminating the statistical foundation of phase behaviour in finite systems. Here we extend this virtual GEMC method to binary fluid mixtures and demonstrate its implementation and instructional value with two applications: (1) a lattice model of simple mixtures and polymer blends and (2) a free-volume model of a complex mixture of colloids and polymers. We present algorithms for performing Monte Carlo trial moves in the virtual Gibbs ensemble, validate the method by computing fluid demixing phase diagrams, and analyse the dependence of fluctuations on system size. Our open-source simulation programs, coded in the platform-independent Java language, are suitable for use in classroom, tutorial, or computational laboratory settings.

  15. Evaluation of phase equilibria in the Nb-rich portion of Nb-B system

    SciTech Connect

    Tang, Zhihong; Kramer, M.; Akinc, M.

    2007-12-19

    The phase equilibria in the Nb-rich portion of Nb-B system have been evaluated experimentally using metallographic analysis, differential thermal analysis (DTA) and X-ray diffraction. It showed that Nb{sub ss} (solid solution) and NbB are the only two primary phases in the 0-40 at.% B composition range, and the eutectic reaction L{leftrightarrow}Nb{sub ss}+NbB exists, instead of the generally accepted reaction L{leftrightarrow}Nb{sub ss}+Nb{sub 3}B{sub 2}, as indicated in the Nb-B phase diagram. The Nb{sub 3}B{sub 2} phase, however, forms by the peritectoid reaction Nb{sub ss}+NbB{leftrightarrow}Nb{sub 3}B{sub 2}. DTA tests were conducted on annealed Nb-14B, Nb-16B, Nb-18B and Nb-40B alloys, and temperature and heat of phase transition were determined. The eutectic reaction (L{leftrightarrow}Nb{sub ss}+NbB) temperature was determined to be 2104 {+-} 5 C, and the heat of phase transition was estimated as 22-30 kJ/mol, depending on the method of calibration used. The thermal event associated with peritectoid reactions was not observed in DTA curves due to sluggish solid state transformation, but the thermal annealing experiments show that peritectoid temperature is above 1900 C.

  16. Phase and extraction equilibria in water-polyethyleneglycol ethers of monoethanolamides of synthetic fatty acid-ammonium chloride systems

    NASA Astrophysics Data System (ADS)

    Lesnov, A. E.; Golovkina, A. V.; Kudryashova, O. S.; Denisova, S. A.

    2016-08-01

    Phase equilibria in layering systems of water, polyethyleneglycol ethers of monoethanolamides of synthetic fatty acids (SFAs) (synthamide-5), and ammonium chloride are studied. The possibility of using such systems for the liquid extraction of metal ions is evaluated. The effect the nature of salting-out agents has on the processes of segregation of the systems has been considered.

  17. Extension of the transferable potentials for phase equilibria force field to dimethylmethyl phosphonate, sarin, and soman.

    PubMed

    Sokkalingam, Nandhini; Kamath, Ganesh; Coscione, Maria; Potoff, Jeffrey J

    2009-07-30

    The transferable potentials for phase equilibria force field is extended to dimethylmethylphosphonate (DMMP), sarin, and soman by introducing a new interaction site representing the phosphorus atom. Parameters for the phosphorus atom are optimized to reproduce the liquid densities at 303 and 373 K and the normal boiling point of DMMP. Calculations for sarin and soman are performed in predictive mode, without further parameter optimization. Vapor-liquid coexistence curves, critical properties, vapor pressures and heats of vaporization are predicted over a wide range of temperatures with histogram reweighting Monte Carlo simulations in the grand canonical ensemble. Excellent agreement with experiment is achieved for all compounds, with unsigned errors of less than 1% for vapor pressures and normal boiling points and under 5% for heats of vaporization and liquid densities at ambient conditions. PMID:19719285

  18. Planet Alsioff - A problem set for students of phase equilibria or metamorphic petrology

    NASA Technical Reports Server (NTRS)

    Burt, Donald M.

    1988-01-01

    This paper presents a problem set that contains questions for students of phase equilibria or metamorphic petrology concerning a hypothetical planet Alsioff, for which incomplete data are given. On this panet, the SiF4 is the major volatile and Al, Si, O, and F are the only elements present. Progressive metamorphism on Alsioff mainly involves devolatilization of fluid SiF4. The problem set includes ten questions. Some of these are concerned with possible chemical reactions that should affect water, wollastonite, or Ca-SiO3 exposed to the atmosphere of Alsioff; the mechanism of controls of the O2 and F2 contents of the Alsioffian atmosphere; and the devolatilization reactions involving SiF4 with progressive thermal metamorphism.

  19. Phase equilibria constraints on the chemistry of hot spring fluids at mid-ocean ridges

    SciTech Connect

    Seyfried, W.E. Jr.; Ding, K.; Berndt, M.E. )

    1991-12-01

    Recent advances in experimental and theoretical geochemistry have made it possible to assess both homogeneous and heterogeneous equilibria involving a wide range of aqueous species at temperatures and pressures appropriate to model hydrothermal alteration processes at mid-ocean ridges. The authors have combined selected aspects of the chemistry of hot spring fluids with constraints imposed by a geologically reasonable assemblage of minerals in the system Na{sub 2}O-K{sub 2}O-CaO-MgO-FeO-Fe{sub 2}O{sub 3}-Al{sub 2}O{sub 3}-SiO{sub 2}-H{sub 2}O-HCl-H{sub 2}S to assess the effect of temperature on the composition of the aqueous phase and the activities of mineral components in plagioclase and epidote solid solutions. Assuming fO{sub 2(g)} and fS{sub 2(g)} controlled by pyrite-pyrrhotite-magnetite equilibria, a constant dissolved Ca concentration, and a dissolved Cl concentration equivalent to that of seawater, increasing temperature from 250 to 400C at 500 bars results in systematic changes in the composition of mineral phases, which in turn constrain pH and the distribution of aqueous species. The model predicts that dissolved concentrations of Fe, SiO{sub 2}, K, H{sub 2}S, and H{sub 2} increase, while Na and pH{sub (25C)} decrease with increasing temperature. That many hot springs vent fluids are characterized by variable degrees of conductive heat loss renders measured temperatures unreliable as indicators of the maximum temperature of subseafloor hydrothermal alteration processes. The implications of this are significant for hot spring fluids which reveal large Cl variations relative to seawater, since likely mechanisms to account for such variability typically require temperatures in excess of those inferred for subseafloor reaction zones by simply correcting measured temperatures for the effects of adiabatic cooling.

  20. Ternary compounds and phase equilibria in Ti-Ge-C and Ti-Ge-B

    SciTech Connect

    Kephart, J.S.; Carim, A.H.

    1998-09-01

    Bulk samples of nearly single-phase Ti{sub 2}GeC and Ti{sub 3}GeC{sub 2} were fabricated using a synthesis process similar to one developed to produce bulk Ti{sub 3}SiC{sub 2}. Elemental powders were stored and mixed under argon and 2 g pellets were uniaxially pressed and encapsulated in quartz under vacuum for annealing. Additional samples were synthesized to establish the isothermal section of the ternary Ti-Ge-C phase diagram at 1200 C. The only ternary compounds present were Ti{sub 3}GeC{sub 2} and Ti{sub 2}GeC, and the equilibria between these and other phases in the system were established for the first time. Attempts at substituting boron for carbon in Ti{sub 3}GeC{sub 2} and Ti{sub 2}GeC by the same technique proved unsuccessful. The phase distributions in Ti-Ge-B samples at 1200 C were consistent with a previously established ternary diagram at 700 C which indicated that no ternary phases of this or any other type are present at equilibrium in the Ti-Ge-B system.

  1. Phase Equilibria of the Fe-Ni-Sn Ternary System at 270°C

    NASA Astrophysics Data System (ADS)

    Huang, Tzu-Ting; Lin, Shih-Wei; Chen, Chih-Ming; Chen, Pei Yu; Yen, Yee-Wen

    2016-07-01

    The Fe-42 wt.% Ni alloy, also known as a 42 invar alloy (Alloy 42), is used as a lead-frame material because its thermal expansion coefficient is much closer to Si substrate than Cu or Ni substrates. In order to enhance the wettability between the substrate and solder, the Sn layer was commonly electroplated onto the Alloy 42 surface. A clear understanding of the phase equilibria of the Fe-Ni-Sn ternary system is necessary to ensure solder-joint reliability between Sn and Fe-Ni alloys. To determine the isothermal section of the Fe-Ni-Sn ternary system at 270°C, 26 Fe-Ni-Sn alloys with different compositions were prepared. The experimental results confirmed the presence of the Fe3Ni and FeNi phases at 270°C. Meanwhile, it observed that the isothermal section of the Fe-Ni-Sn ternary system was composed of 11 single-phase regions, 19 two-phase regions and nine tie-triangles. Moreover, no ternary compounds were found in the Fe-Ni-Sn system at 270°C.

  2. The heat-capacity of ilmenite and phase equilibria in the system Fe-T-O

    USGS Publications Warehouse

    Anovitz, Lawrence M.; Treiman, A.H.; Essene, E.J.; Hemingway, B.S.; Westrum, E.F., Jr.; Wall, V.J.; Burriel, R.; Bohlen, S.R.

    1985-01-01

    Low temperature adiabatic calorimetry and high temperature differential scanning calorimetry have been used to measure the heat-capacity of ilmenite (FeTiO3) from 5 to 1000 K. These measurements yield S2980 = 108.9 J/(mol ?? K). Calculations from published experimental data on the reduction of ilmenite yield ??2980(I1) = -1153.9 kJ/(mol ?? K). These new data, combined with available experimental and thermodynamic data for other phases, have been used to calculate phase equilibria in the system Fe-Ti-O. Calculations for the subsystem Ti-O show that extremely low values of f{hook}O2 are necessary to stabilize TiO, the mineral hongquiite reported from the Tao district in China. This mineral may not be TiO, and it should be re-examined for substitution of other elements such as N or C. Consideration of solid-solution models for phases in the system Fe-Ti-O allows derivation of a new thermometer/oxybarometer for assemblages of ferropseudobrookite-pseudobrookitess and hematite-ilmenitess. Preliminary application of this new thermometer/oxybarometer to lunar and terrestrial lavas gives reasonable estimates of oxygen fugacities, but generally yields subsolidus temperatures, suggesting re-equilibration of one or more phases during cooling. ?? 1985.

  3. The heat-capacity of ilmenite and phase equilibria in the system Fe-T-O

    NASA Astrophysics Data System (ADS)

    Anovitz, Lawrence M.; Treiman, Allan H.; Essene, Eric J.; Hemingway, Bruce S.; Westrum, Edgar F., Jr.; Wall, Victor J.; Burriel, Ramón; Bohlen, Steven R.

    1985-10-01

    Low temperature adiabatic calorimetry and high temperature differential scanning calorimetry have been used to measure the heat-capacity of ilmenite (FeTiO 3) from 5 to 1000 K. These measurements yield S2980 = 108.9 J/( mol · K). Calculations from published experimental data on the reduction of ilmenite yield Δ2980( I1) = -1153.9 kJ/( mol · K). These new data, combined with available experimental and thermodynamic data for other phases, have been used to calculate phase equilibria in the system Fe-Ti-O. Calculations for the subsystem Ti-O show that extremely low values of ƒO 2 are necessary to stabilize TiO, the mineral hongquiite reported from the Tao district in China. This mineral may not be TiO, and it should be re-examined for substitution of other elements such as N or C. Consideration of solid-solution models for phases in the system Fe-Ti-O allows derivation of a new thermometer/oxybarometer for assemblages of ferropseudobrookite-pseudobrookite ss and hematite-ilmenite ss. Preliminary application of this new thermometer/oxybarometer to lunar and terrestrial lavas gives reasonable estimates of oxygen fugacities, but generally yields subsolidus temperatures, suggesting re-equilibration of one or more phases during cooling.

  4. Phase Equilibria Studies in the SiO2-K2O-CaO System

    NASA Astrophysics Data System (ADS)

    Chen, Mao; Hou, Xinmei; Chen, Junhong; Zhao, Baojun

    2016-06-01

    Phase equilibria in the SiO2-K2O-CaO system have been experimentally investigated in the SiO2-rich area. High-temperature equilibration, rapid quenching, and electron probe X-ray microanalysis (EPMA) techniques have been used in this study. K2O may vaporize during EPMA measurements causing significant uncertainties. In the present study, optimum EPMA operating conditions have been determined in order to accurately measure K2O concentrations in the quenched samples. The compositions of all phases present in the quenched sample were measured using EPMA with optimum operating parameters. The following primary phase fields were identified in the composition range investigated: SiO2, CaO·SiO2, 2CaO·SiO2, K2O·2CaO·2SiO2, and K2O·6CaO·4SiO2. The isotherms between 1273 K and 1473 K (1000 °C and 1200 °C) in these primary phase fields have been determined. The presence of the compounds K2O·2CaO·2SiO2 and K2O·6CaO·4SiO2 has been confirmed.

  5. Calculation of liquid water-hydrate-methane vapor phase equilibria from molecular simulations.

    PubMed

    Jensen, Lars; Thomsen, Kaj; von Solms, Nicolas; Wierzchowski, Scott; Walsh, Matthew R; Koh, Carolyn A; Sloan, E Dendy; Wu, David T; Sum, Amadeu K

    2010-05-01

    Monte Carlo simulation methods for determining fluid- and crystal-phase chemical potentials are used for the first time to calculate liquid water-methane hydrate-methane vapor phase equilibria from knowledge of atomistic interaction potentials alone. The water and methane molecules are modeled using the TIP4P/ice potential and a united-atom Lennard-Jones potential, respectively. The equilibrium calculation method for this system has three components, (i) thermodynamic integration from a supercritical ideal gas to obtain the fluid-phase chemical potentials, (ii) calculation of the chemical potential of the zero-occupancy hydrate system using thermodynamic integration from an Einstein crystal reference state, and (iii) thermodynamic integration to obtain the water and guest molecules' chemical potentials as a function of the hydrate occupancy. The three-phase equilibrium curve is calculated for pressures ranging from 20 to 500 bar and is shown to follow the Clapeyron behavior, in agreement with experiment; coexistence temperatures differ from the latter by 4-16 K in the pressure range studied. The enthalpy of dissociation extracted from the calculated P-T curve is within 2% of the experimental value at corresponding conditions. While computationally intensive, simulations such as these are essential to map the thermodynamically stable conditions for hydrate systems. PMID:20392117

  6. Phase equilibria and liquid phase epitaxy growth of PbSnSeTe lattice matched to PbSe

    NASA Technical Reports Server (NTRS)

    Mccann, Patrick J.; Fonstad, Clifton G.; Fuchs, Jacob; Feit, Ze'ev

    1987-01-01

    The necessary phase diagram data for growing lattice-matched layers of PbSnSeTe on PbSe are presented. Solid compounds of Pb(1-x)Sn(x)Se(1-y)Te(y) lattice-matched to PbSe were grown from liquid melts consisting of (Pb/1-x/Sn/x/)(1-z)(Se/1-y/Te/y/)(z); phase equilibria data were determined together with liquidus data for values of x(liquid) from 0 to 40 percent and y(liquid) from 0 to 40 percent for temperatures between 450 and 540 C. It was found that relatively large amounts of Te must be added to the melt to achieve lattice matching because of its low segregation coefficient relative to Se. A significant lattice-pulling effect was discovered for the 5-percent Sn case, and a similar effect is expected for the 10- and 20-percent Sn cases.

  7. Direct molecular dynamics simulation of liquid-solid phase equilibria for a three-component plasma.

    PubMed

    Hughto, J; Horowitz, C J; Schneider, A S; Medin, Zach; Cumming, Andrew; Berry, D K

    2012-12-01

    The neutron-rich isotope ²²Ne may be a significant impurity in carbon and oxygen white dwarfs and could impact how the stars freeze. We perform molecular dynamics simulations to determine the influence of ²²Ne in carbon-oxygen-neon systems on liquid-solid phase equilibria. Both liquid and solid phases are present simultaneously in our simulation volumes. We identify liquid, solid, and interface regions in our simulations using a bond angle metric. In general we find good agreement for the composition of liquid and solid phases between our MD simulations and the semianalytic model of Medin and Cumming. The trace presence of a third component, neon, does not appear to strongly impact the chemical separation found previously for two-component carbon and oxygen systems. This suggests that small amounts of ²²Ne may not qualitatively change how the material in white dwarf stars freezes. However, we do find systematically lower melting temperatures (higher Γ) in our MD simulations compared to the semianalytic model. This difference seems to grow with impurity parameter Q_{imp} and suggests a problem with simple corrections to the linear mixing rule for the free energy of multicomponent solid mixtures that is used in the semianalytic model. PMID:23368065

  8. Direct molecular dynamics simulation of liquid-solid phase equilibria for a three-component plasma

    NASA Astrophysics Data System (ADS)

    Hughto, J.; Horowitz, C. J.; Schneider, A. S.; Medin, Zach; Cumming, Andrew; Berry, D. K.

    2012-12-01

    The neutron-rich isotope 22Ne may be a significant impurity in carbon and oxygen white dwarfs and could impact how the stars freeze. We perform molecular dynamics simulations to determine the influence of 22Ne in carbon-oxygen-neon systems on liquid-solid phase equilibria. Both liquid and solid phases are present simultaneously in our simulation volumes. We identify liquid, solid, and interface regions in our simulations using a bond angle metric. In general we find good agreement for the composition of liquid and solid phases between our MD simulations and the semianalytic model of Medin and Cumming. The trace presence of a third component, neon, does not appear to strongly impact the chemical separation found previously for two-component carbon and oxygen systems. This suggests that small amounts of 22Ne may not qualitatively change how the material in white dwarf stars freezes. However, we do find systematically lower melting temperatures (higher Γ) in our MD simulations compared to the semianalytic model. This difference seems to grow with impurity parameter Qimp and suggests a problem with simple corrections to the linear mixing rule for the free energy of multicomponent solid mixtures that is used in the semianalytic model.

  9. Interpretation of trace element and isotope features of basalts: relevance of field relations, petrology, major element data, phase equilibria, and magma chamber modeling in basalt petrogenesis

    NASA Astrophysics Data System (ADS)

    O'Hara, M. J.; Herzberg, C.

    2002-06-01

    explain the chemical variation between fertile and residual peridotite in natural ultramafic rock suites. The subtleties of magma chamber partial crystallization processes can produce an astounding array of "pseudospidergrams," a small selection of which have been explored here. Major modification of the trace element geochemistry and trace element ratios, even those of the highly incompatible elements, must always be entertained whenever the evidence suggests the possibility of partial crystallization. At one extreme, periodically recharged, periodically tapped magma chambers might undergo partial crystallization by ˜95% consolidation of a succession of small packets of the magma. Refluxing of the 5% residual melts from such a process into the main body of melt would lead to eventual discrimination between highly incompatible elements in that residual liquid comparable with that otherwise achieved by 0.1 to 0.3% liquid extraction in equilibrium partial melting. Great caution needs to be exercised in attempting the reconstruction of more primitive compositions by addition of troctolite, gabbro, and olivine to apparently primitive lava compositions. Special attention is focussed on the phase equilibria involving olivine, plagioclase (i.e., troctolite), and liquid because a high proportion of erupted basalts carry these two phases as phenocrysts, yet the equilibria are restricted to crustal pressures and are only encountered by wide ranges of basaltic compositions at pressures less than 0.5 GPa. The mere presence of plagioclase phenocrysts may be sufficient to disqualify candidate primitive magmas. Determination of the actual contributions of crustal processes to petrogenesis requires a return to detailed field, experimental, and forensic petrologic studies of individual erupted basalt flows; of a multitude of cumulate gabbros and their contacts; and of upper-mantle outcrops.

  10. Postperovskite phase equilibria in the MgSiO3-Al2O3 system.

    PubMed

    Tsuchiya, Jun; Tsuchiya, Taku

    2008-12-01

    We investigate high-P,T phase equilibria of the MgSiO(3)-Al(2)O(3) system by means of the density functional ab initio computation methods with multiconfiguration sampling. Being different from earlier studies based on the static substitution properties with no consideration of Rh(2)O(3)(II) phase, present calculations demonstrate that (i) dissolving Al(2)O(3) tends to decrease the postperovskite transition pressure of MgSiO(3) but the effect is not significant ( approximately -0.2 GPa/mol% Al(2)O(3)); (ii) Al(2)O(3) produces the narrow perovskite+postperovskite coexisting P,T area (approximately 1 GPa) for the pyrolitic concentration (x(Al2O3) approximately 6 mol%), which is sufficiently responsible to the deep-mantle D'' seismic discontinuity; (iii) the transition would be smeared (approximately 4 GPa) for the basaltic Al-rich composition (x(Al2O3) approximately 20 mol%), which is still seismically visible unless iron has significant effects; and last (iv) the perovskite structure spontaneously changes to the Rh(2)O(3)(II) with increasing the Al concentration involving small displacements of the Mg-site cations. PMID:19036928

  11. Phase equilibria and modeling of ammonium ionic liquid, C2NTf2, solutions.

    PubMed

    Domańska, Urszula; Marciniak, Andrzej; Królikowski, Marek

    2008-01-31

    Novel quaternary ammonium ionic liquid, ethyl(2-hydroxyethyl)dimethylammonium bis(trifluomethylsulfonyl)imide (C2NTf2), has been prepared from N,N-dimethylethanolamine as a substrate. The paper includes a specific basic characterization of the synthesized compound by NMR and the basic thermophysical properties: the melting point, enthalpy of fusion, enthalpy of solid-solid phase transition, glass transition determined by the differential scanning calorimetry (DSC), temperature of decomposition, and water content. The density of the new compound was measured. The solid-liquid or liquid-liquid phase equilibria of binary mixtures containing {C2NTf2+water or an alcohol (propan-1-ol, butan-1-ol, hexan-1-ol, octan-1-ol, decan-1-ol), aromatic hydrocarbons (benzene, toluene), aliphatic hydrocarbons (n-hexane, n-octane), dimethylsulfoxide (DMSO), or tetrahydrofuran (THF)} have been measured by a dynamic method in a wide range of temperatures from 230 to 430 K. These data were correlated by means of the nonrandom two-liquid (NRTL) equation utilizing temperature-dependent parameters derived from the solid-liquid or liquid-liquid equilibrium. From the solubility results, the negative value of the partition coefficient of ionic liquid in binary system octan-1-ol/water (log P) at 298.15 K has been calculated. PMID:18179194

  12. Phase equilibria constraints on the chemical and physical evolution of the campanian ignimbrite

    USGS Publications Warehouse

    Fowler, S.J.; Spera, F.J.; Bohrson, W.A.; Belkin, H.E.; de Vivo, B.

    2007-01-01

    The Campanian Ignimbrite is a > 200 km3 trachyte-phonolite pyroclastic deposit that erupted at 39.3 ?? 0.1 ka within the Campi Flegrei west of Naples, Italy. Here we test the hypothesis that Campanian Ignimbrite magma was derived by isobaric crystal fractionation of a parental basaltic trachyandesitic melt that reacted and came into local equilibrium with small amounts (5-10 wt%) of crustal rock (skarns and foid-syenites) during crystallization. Comparison of observed crystal and magma compositions with results of phase equilibria assimilation-fractionation simulations (MELTS) is generally very good. Oxygen fugacity was approximately buffered along QFM+1 (where QFM is the quartz-fayalite-magnetite buffer) during isobaric fractionation at 0.15 GPa (???6 km depth). The parental melt, reconstructed from melt inclusion and host clinopyroxene compositions, is found to be basaltic trachyandesite liquid (51.1 wt% SiO2, 9.3 wt% MgO, 3 wt% H2O). A significant feature of phase equilibria simulations is the existence of a pseudo-invariant temperature, ???883??C, at which the fraction of melt remaining in the system decreases abruptly from ???0.5 to < 0.1. Crystallization at the pseudo-invariant point leads to abrupt changes in the composition, properties (density, dissolved water content), and physical state (viscosity, volume fraction fluid) of melt and magma. A dramatic decrease in melt viscosity (from 1700 Pa s to ???200 Pa s), coupled with a change in the volume fraction of water in magma (from ??? 0.1 to 0.8) and a dramatic decrease in melt and magma density acted as a destabilizing eruption trigger. Thermal models suggest a timescale of ??? 200 kyr from the beginning of fractionation until eruption, leading to an apparent rate of evolved magma generation of about 10-3 km3/year. In situ crystallization and crystal settling in density-stratified regions, as well as in convectively mixed, less evolved subjacent magma, operate rapidly enough to match this apparent

  13. Phase equilibria in fullerene-containing systems as a basis for development of manufacture and application processes for nanocarbon materials

    NASA Astrophysics Data System (ADS)

    Semenov, K. N.; Charykov, N. A.; Postnov, V. N.; Sharoyko, V. V.; Murin, I. V.

    2016-01-01

    This review is the first attempt to integrate the available data on all types of phase equilibria (solubility, extraction and sorption) in systems containing light fullerenes (C60 and C70). In the case of solubility diagrams, the following types of phase equilibria are considered: individual fullerene (C60 or C70)–solvent under polythermal and polybaric conditions; C60–C70–solvent, individual fullerene–solvent(1)–solvent(2), as well as multicomponent systems comprising a single fullerene or an industrial mixture of fullerenes and vegetable oils, animal fats or essential oils under polythermal conditions. All published experimental data on the extraction equilibria in C60–C70–liquid phase(1)–liquid phase(2) systems are described systematically and the sorption characteristics of various materials towards light fullerenes are estimated. The possibility of application of these experimental data for development of pre-chromatographic and chromatographic methods for separation of fullerene mixtures and application of fullerenes as nanomodifiers are described. The bibliography includes 87 references.

  14. Phase equilibria in fullerene-containing systems as a basis for development of manufacture and application processes for nanocarbon materials

    NASA Astrophysics Data System (ADS)

    Semenov, K. N.; Charykov, N. A.; Postnov, V. N.; Sharoyko, V. V.; Murin, I. V.

    2016-01-01

    This review is the first attempt to integrate the available data on all types of phase equilibria (solubility, extraction and sorption) in systems containing light fullerenes (C60 and C70). In the case of solubility diagrams, the following types of phase equilibria are considered: individual fullerene (C60 or C70)-solvent under polythermal and polybaric conditions; C60-C70-solvent, individual fullerene-solvent(1)-solvent(2), as well as multicomponent systems comprising a single fullerene or an industrial mixture of fullerenes and vegetable oils, animal fats or essential oils under polythermal conditions. All published experimental data on the extraction equilibria in C60-C70-liquid phase(1)-liquid phase(2) systems are described systematically and the sorption characteristics of various materials towards light fullerenes are estimated. The possibility of application of these experimental data for development of pre-chromatographic and chromatographic methods for separation of fullerene mixtures and application of fullerenes as nanomodifiers are described. The bibliography includes 87 references.

  15. Integrating crystallographic data and phase equilibria to quantify P-T-X evolution during reaction texture formation

    NASA Astrophysics Data System (ADS)

    Goergen, E. T.

    2008-12-01

    Coronal symplectitic reaction textures occur as a result of changes in intensive variables. This variation can arise as a result of changes in pressure and/or temperature or result from modification of bulk composition due to an influx of fluids. These processes lead to development of chemical potential gradients that drive diffusion and are responsible for the vermicular nature of symplectitic reaction textures. Deducing the P-T conditions of reaction and the P-T-X path responsible for texture formation is a difficult but critical step in interpreting the crystallization history of symplectites as well as providing appropriate boundary conditions for modeling texture development. Symplectite textures in gedrite-cordierite rocks from Thor-Odin gneiss dome in British Columbia, Canada preserve spl+crd, an+crd, and crn+crd two-phase assemblages after sillimanite porphyroblasts. These two-phase assemblages are not present as a consistent progression of layers as in other examples of symplectitic textures, but occur in a variety of locations with respect to the central sillimanite porphyroblast that are also unrelated to adjacent matrix mineral assemblages. This suggests that the chemical potential gradients responsible for symplectite formation are not consistent around the texture. The two-phase symplectitic assemblages are encased by a rim of polygonal cordierite. These inconsistent relationships make proper interpretation of the relative timing of symplectite and cordierite rim growth, as well as establishing the P-T-X conditions and kinetics of reaction difficult using traditional methods. The integration of mineral chemistry, phase-equilibria, crystallographic analysis and image analysis has provided a method of determining the P-T conditions at which symplectite formation began as well as providing information on how the size and nature of the chemical system evolved during reaction and growth. EBSD data from cordierite rims and the sillimanite porphyroblasts

  16. An efficient and general approach for implementing thermodynamic phase equilibria information in geophysical and geodynamic studies

    NASA Astrophysics Data System (ADS)

    Afonso, Juan Carlos; Zlotnik, Sergio; Díez, Pedro

    2015-10-01

    We present a flexible, general, and efficient approach for implementing thermodynamic phase equilibria information (in the form of sets of physical parameters) into geophysical and geodynamic studies. The approach is based on Tensor Rank Decomposition methods, which transform the original multidimensional discrete information into a separated representation that contains significantly fewer terms, thus drastically reducing the amount of information to be stored in memory during a numerical simulation or geophysical inversion. Accordingly, the amount and resolution of the thermodynamic information that can be used in a simulation or inversion increases substantially. In addition, the method is independent of the actual software used to obtain the primary thermodynamic information, and therefore, it can be used in conjunction with any thermodynamic modeling program and/or database. Also, the errors associated with the decomposition procedure are readily controlled by the user, depending on her/his actual needs (e.g., preliminary runs versus full resolution runs). We illustrate the benefits, generality, and applicability of our approach with several examples of practical interest for both geodynamic modeling and geophysical inversion/modeling. Our results demonstrate that the proposed method is a competitive and attractive candidate for implementing thermodynamic constraints into a broad range of geophysical and geodynamic studies. MATLAB implementations of the method and examples are provided as supporting information and can be downloaded from the journal's website.

  17. Clathrate formation and phase equilibria in the thiourea-bromoform system

    NASA Astrophysics Data System (ADS)

    Chekhova, G. N.; Shubin, Yu. V.; Pinakov, D. V.; Alferova, N. I.

    2008-07-01

    Phase equilibria in the thiourea (host)-bromoform (guest) binary system were studied by physicochemical analysis methods over the temperature range 270 455 K. The stoichiometry and stability region were determined for the channel-type compound CHBr3 · 2.40(2)(NH2)2CS; the compound was observed for the first time. When heated, the clathrate incongruently decomposed at 424.0 ± 0.8 K to rhombic thiourea and the guest component. The solubility isotherm of the thiourea-bromoform-acetic acid system was studied to find that the compound was thermodynamically stable at 293 K over the range of guest component concentrations 100 35 wt %. A decrease in its content in an equilibrium mother liquor resulted in the appearance of X-ray diffraction reflections of the initial host α polymorph. Rhombohedral cell parameters were determined (space group R-3 c, a = 15.89(1) Å, c = 12.40(1) Å, V = 2711(6) Å3, d calcd = 2.000 g/cm3, and d expt = 1.98(2) g/cm3). The mode of packing of bromoform molecules was compared with the organization of the guest subsystem in inclusion compounds formed by the substances studied.

  18. Hydration energies of sodiated amino acids from gas-phase equilibria determinations.

    PubMed

    Wincel, Henryk

    2007-07-01

    The sequential hydration of a number of sodiated amino acids is investigated using a high-pressure mass spectrometer. Ions produced continuously by electrospray are injected into the reaction chamber in the pulsed mode where the hydration equilibria, AANa+(H2O)n-1+H2O=AANa+(H2O)n (AA=Val, Pro, Met, Phe, and Gln), and the temperature dependence of the equilibrium constants are measured in the gas phase at 10 mbar (N2 bath gas and known pressure of H2O). The thermochemical properties, DeltaH degrees n, DeltaS degrees n, and DeltaG degrees n, for the hydrated systems are determined and discussed in conjunction with the structural forms. The results show that the binding energies of water to the AANa+ complexes decrease with the increasing number of water molecules. The present results from equilibrium measurements are compared to those from earlier studies obtained by other techniques. A correlation between the free energy changes for the addition of the first and second water molecules to AANa+, and the corresponding sodium ion affinities, is observed. Generally, the hydration free energy becomes weaker as the AA-Na+ bond strength increases. PMID:17559201

  19. Visual investigation of solid-liquid phase equilibria for nonflammable mixed refrigerant

    NASA Astrophysics Data System (ADS)

    Lee, C.; Yoo, J.; Park, I.; Park, J.; Cha, J.; Jeong, S.

    2015-12-01

    Non-flammable mixed refrigerant (NF-MR) Joule Thomson (J-T) refrigerators have desirable characteristics and wide cooling temperature range compared to those of pure J-T refrigerators. However, the operating challenge due to freezing is a critical issue to construct this refrigerator. In this paper, the solid-liquid phase equilibria (i.e. freezing point) of the NF-MR which is composed of Argon, R14 (CF4), and R218 (C3F8), has been experimentally investigated by a visualized apparatus. Argon, R14 and R218 mixtures are selected to be effectively capable of reaching 100 K in the MR J-T refrigerator system. Freezing points of the mixtures have been measured with the molar compositions from 0.1 to 0.8 for each component. Each test result is simultaneously acquired by a camcorder for visual inspection and temperature measurement during a warming process. Experimental results show that the certain mole fraction of Argon, R14, and R218 mixture can achieve remarkably low freezing temperature even below 77 K. This unusual freezing point depression characteristic of the MR can be a useful information for designing a cryogenic MR J-T refrigerator to reach further down to 77 K.

  20. Putting Phase Equilibria into Geodynamic Models: An Equation of State Approach (Invited)

    NASA Astrophysics Data System (ADS)

    Connolly, J.

    2009-12-01

    temperature and pressure. Although this formulation is straightforward, the computation of phase equilibria as a function of entropy and volume is challenging because the equations of state for individual phases are usually expressed as a function of temperature and pressure. This challenge can be met by an algorithm in which continuous equations of state are approximated by a series of discrete states; a representation that reduces the phase equilibrium problem to a linear optimization problem that is independent of the functional form used for the equations of state of individual phases and readily solved by successive linear programming. Regardless of the way free energy minimization is implemented and the choice of independent variables, a consistent definition of pressure, and the coupling of equilibrium kinetics to deformation, is only possible if the continuity equation accounts for dilational strain.

  1. High temperature phase equilibria studies in the Bi-Sr-Ca-Cu-O-Ag system

    SciTech Connect

    Margulies, Lawrence

    1999-11-08

    A variety of experimental techniques were utilized to examine the high temperature phase equilibria in the Bi-Sr-Ca-Cu-O-Ag system. Quenching studies were used to determine the liquid solubility of Ag in the Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} (Bi2212) melt and the details of the peritectic decomposition pathway of Bi2212 as a function on Ag content and oxygen partial pressure (PO{sub 2}). A liquid immiscibility region between oxide and Ag liquids in the 8--98 at% range was found above 900 C. Two eutectics were found in the Bi2212-Ag pseudobinary. On the oxide rich side, a eutectic exists at approximately 4 at% Ag. On the Ag rich side, a eutectic exists at approximately 98 at% Ag at a temperature of 15 C below the melting point of pure Ag. Six distinct solid phases were found to be in equilibrium with the partial melt within the Ag content and PO{sub 2} range studied. The stability of these solid phases were found to be highly sensitive to PO{sub 2}, and to a much lesser extent Ag content. High temperature x-ray diffraction (HTXRD) studies of this system are in conflict with these results. It is suggested that these discrepancies are due to experimental artifacts caused by the significant thermal gradients and lack of full bulk sampling which is inherent in conventional HTXRD designs. In part 2, a new furnace design compatible with synchrotron radiation sources is introduced to address these problems. This design allows for full bulk sampling in a low thermal gradient environment using Debye-Scherrer transmission geometry. Sample spinning is also introduced in the design to eliminate preferred orientation and incomplete powder averaging and allow for quantitative phase analysis and structural refinement. Studies on model systems are presented to demonstrate the capabilities for high resolution structural studies (Al{sub 2}O{sub 3}) and time resolved phase transformation studies (SrCO{sub 3}). Finally, the Bi2212 system is examined to confirm the quenching results

  2. Experimental Investigation and Thermodynamic Calculation of the Phase Equilibria in the Mg-Gd-Mn Ternary System

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Hu, Biao; Xu, Honghui; Liu, Shuhong; Zhou, Tao; Jin, Zhanpeng

    2015-10-01

    The phase equilibria of the Mg-Gd-Mn system at 773 K (500 °C) were investigated with sixteen alloys, by means of X-ray diffraction technique and electron probe microanalyses. Eight three-phase equilibria were accurately determined. No ternary compound was observed at 773 K (500 °C). The solubility of the third elements in the binary phases was measured. The isothermal section of the Mg-Gd-Mn system at 773 K (500 °C) was firstly established. It is worth mentioning that the three-phase field GdMg3-GdMg5-( αMn) was experimentally observed and is different from the three-phase field GdMg3-GdMg5-GdMn12 predicted using only the binary interaction parameters. Using the CALPHAD method, a thermodynamic modeling of the Mg-Gd-Mn system has been carried out in order to reasonably describe the experimental observations. The substitutional solution and sublattice models were used to describe the solution phases and intermediate phases. Comprehensive comparison between the calculated and measured isothermal sections shows that the experimental information is satisfactorily accounted for by the present thermodynamic modeling.

  3. Transferable potentials for phase equilibria. 8. United-atom description for thiols, sulfides, disulfides, and thiophene.

    PubMed

    Lubna, Nusrat; Kamath, Ganesh; Potoff, Jeffrey J; Rai, Neeraj; Siepmann, J Ilja

    2005-12-22

    An extension of the transferable potentials for phase equilibria united-atom (TraPPE-UA) force field to thiol, sulfide, and disulfide functionalities and thiophene is presented. In the TraPPE-UA force field, nonbonded interactions are governed by a Lennard-Jones plus fixed point charge functional form. Partial charges are determined through a CHELPG analysis of electrostatic potential energy surfaces derived from ab initio calculations at the HF/6-31g+(d,p) level. The Lennard-Jones well depth and size parameters for four new interaction sites, S (thiols), S(sulfides), S(disulfides), and S(thiophene), were determined by fitting simulation data to pure-component vapor-equilibrium data for methanethiol, dimethyl sulfide, dimethyl disulfide, and thiophene, respectively. Configurational-bias Monte Carlo simulations in the grand canonical ensemble combined with histogram-reweighting methods were used to calculate the vapor-liquid coexistence curves for methanethiol, ethanethiol, 2-methyl-1-propanethiol, 2-methyl-2-propanethiol, 2-butanethiol, pentanethiol, octanethiol, dimethyl sulfide, diethyl sulfide, ethylmethyl sulfide, dimethyl disulfide, diethyl disulfide, and thiophene. Excellent agreement with experiment is achieved, with unsigned errors of less than 1% for saturated liquid densities and less than 3% for critical temperatures. The normal boiling points were predicted to within 1% of experiment in most cases, although for certain molecules (pentanethiol) deviations as large as 5% were found. Additional calculations were performed to determine the pressure-composition behavior of ethanethiol+n-butane at 373.15 K and the temperature-composition behavior of 1-propanethiol+n-hexane at 1.01 bar. In each case, a good reproduction of experimental vapor-liquid equilibrium separation factors is achieved; both of the coexistence curves are somewhat shifted because of overprediction of the pure-component vapor pressures. PMID:16375402

  4. Phase Equilibria of the Ternary Sn-Zn-Co System at 250°C and 500°C

    NASA Astrophysics Data System (ADS)

    Wang, Chao-hong; Huang, Sheng-en; Huang, Po-yen

    2015-12-01

    The isothermal sections of the ternary Sn-Zn-Co system (<60 at.% Co) at 250°C and 500°C have been experimentally determined. A series of Sn-Zn-Co alloys of various compositions were prepared and annealed at the respective temperatures to reach phase equilibrium. The equilibrium phases in these alloys were examined metallographically and characterized by electron probe microanalysis and x-ray diffraction. In this system, the ternary solubilities of all the binary Sn-Co and Co-Zn intermetallic compounds (IMCs) are very limited. For the phase equilibria at 250°C, two ternary IMCs, T1 and T2, were found, whose compositions were Sn-25 at.%Zn-25 at.%Co and Sn-15 at.%Zn-41 at.%Co, respectively. For the phase equilibria at 500°C, in addition to the T2 phase, another ternary IMC, namely T3 (Sn-18 at.%Zn-37 at.%Co), was also found. Moreover, the phase stability of the T1 and T3 phases was investigated at temperatures of 260°C to 400°C in detail. The equilibrium phase was the T1 phase below 300°C, and changed to the T3 phase at 400°C. The crystal structures of these three ternary IMCs were also studied. The T1 phase has a cubic structure ( Pm3m), and the T2 and T3 phases are orthorhombic in space group Cmcm and Pnma, respectively.

  5. Heat capacity and phase equilibria of almandine, Fe3Al2Si3O12

    USGS Publications Warehouse

    Anovitz, Lawrence M.; Essene, E.J.; Metz, G.W.; Bohlen, S.R.; Westrum, E.F., Jr.; Hemingway, B.S.

    1993-01-01

    The heat capacity of a synthetic almandine, Fe3Al2Si3O12, was measured from 6 to 350 K using equilibrium, intermittent-heating quasi-adiabatic calorimetry and from 420 to 1000 K using differential scanning calorimetry. These measurements yield Cp298 = 342.80 ?? 1.4 J/mol ?? K and S298o = 342.60 J/mol ?? K. Mo??ssbauer characterizations show the almandine to contain less than 2 ?? 1% of the total iron as Fe3+. X-ray diffraction studies of this synthetic almandine yield a = 11.521 ?? 0.001 A?? and V298o = 115.11 +- 0.01 cm3/mol, somewhat smaller than previously reported. The low-temperature Cp data indicate a lambda transition at 8.7 K related to an antiferromagnetic-paramagnetic transition with TN = 7.5 K. Modeling of the lattice contribution to the total entropy suggests the presence of entropy in excess of that attributable to the effects of lattice vibrations and the magnetic transition. This probably arises from a low-temperature electronic transition (Schottky contribution). Combination of the Cp data with existing thermodynamic and phase equilibrium data on almandine yields ??Gf,298o = -4938.3 kJ/mol and ??Hf,298o= -5261.3 kJ/mol for almandine when calculated from the elements. The equilibrium almandine = hercynite + fayalite + quartz limits the upper T P for almandine and is metastably located at ca. 570??C at P = 1 bar, with a dP dT of +17 bars/??C. This agrees well with reversed experiments on almandine stability when they are corrected for magnetite and hercynite solid-solutions. In {norm of matrix}O2-T space, almandine oxidizes near QFM by the reactions almandine + O2 = magnetite + sillimanite + quartz and almandine + 02 = hercynite + magnetite + quartz. With suitable correction for reduced activities of solid phases, these equilibria provide useful oxygen barometers for medium- to high-grade metamorphic rocks. ?? 1993.

  6. Heat capacity and phase equilibria of almandine, Fe 3Al 2Si 3O 12

    NASA Astrophysics Data System (ADS)

    Anovitz, L. M.; Essene, E. J.; Metz, G. W.; Bohlen, S. R.; Westrum, E. F., Jr.; Hemingway, B. S.

    1993-09-01

    The heat capacity of a synthetic almandine, Fe 3Al 2Si 3O 12, was measured from 6 to 350 K using equilibrium, intermittent-heating quasi-adiabatic calorimetry and from 420 to 1000 K using differential scanning calorimetry. These measurements yield Cp298 = 342.80 ± 1.4 J/mol · K and S298o = 342.60 J/mol · K. Mössbauer characterizations show the almandine to contain less than 2 ± 1% of the total iron as Fe 3+. X-ray diffraction studies of this synthetic almandine yield a = 11.521 ± 0.001 Å and V298o = 115.11 +- 0.01 cm 3/mol, somewhat smaller than previously reported. The low-temperature Cp data indicate a lambda transition at 8.7 K related to an antiferromagnetic-paramagnetic transition with TN = 7.5 K. Modeling of the lattice contribution to the total entropy suggests the presence of entropy in excess of that attributable to the effects of lattice vibrations and the magnetic transition. This probably arises from a low-temperature electronic transition (Schottky contribution). Combination of the Cp data with existing thermodynamic and phase equilibrium data on almandine yields ΔGf,298 o = -4938.3 kJ/mol and ΔHf,298 o= - 5261.3 kJ/mol for almandine when calculated from the elements. The equilibrium almandine = hercynite + fayalite + quartz limits the upper T/P for almandine and is metastably located at ca. 570°C at P = 1 bar, with a dP/dT of +17 bars/°C. This agrees well with reversed experiments on almandine stability when they are corrected for magnetite and hercynite solid-solutions. In ‖ O2- T space, almandine oxidizes near QFM by the reactions almandine + O2 = magnetite + sillimanite + quartzandalmandine + 02 = hercynite + magnetite + quartz. With suitable correction for reduced activities of solid phases, these equilibria provide useful oxygen barometers for medium- to high-grade metamorphic rocks.

  7. Effect of Fluorine on Near-Liquidus Phase Equilibria of Basalts

    NASA Technical Reports Server (NTRS)

    Filiberto, Justin; Wood, Justin; Loan, Le; Dasgupta, Rajdeep; Shimizu, Nobumichi; Treiman, Allan H.

    2010-01-01

    Volatile species such as H2O, CO2, F, and Cl have significant impact in generation and differentiation of basaltic melts. Thus far experimental work has primarily focused on the effect of water and carbon dioxide on basalt crystallization, liquid-line of descent, and mantle melting [e.g., 1, 2] and the effects of halogens have received far less attention [3-4]. However, melts in the planetary interiors can have non-negligible chlorine and fluorine concentrations. Here, we explore the effects of fluorine on near-liquidus phase equilibria of basalt. We have conducted nominally anhydrous piston cylinder experiments using graphite capsules at 0.6 - 1.5 GPa on an Fe-rich model basalt composition. 1.75 wt% fluorine was added to the starting mix in the form of AgF2. Fluorine in the experimental glass was measured by SIMS and major elements of glass and minerals were analyzed by EPMA. Nominally volatile free experiments yield a liquidus temperature from 1330 C at 0.8GPa to 1400 at 1.6GPa and an olivine(Fo72)-pyroxene(En68)-liquid multiple saturation point at 1.25 GPa and 1375 C. The F-bearing experiments yield a liquiudus temperature from 1260 C at 0.6GPa to 1305 at 1.5GPa and an ol(Fo66)-pyx(En64)-MSP at 1 GPa and 1260 C. This shows that F depresses the basalt liquidus, extends the pyroxene stability field to lower pressure, and forces the liquidus phases to be more Fe-rich. KD(Fe-Mg/mineral-melt) calculated for both pyroxenes and olivines show an increase with increasing F content of the melt. Therefore, we infer that F complexes with Mg in the melt and thus increases the melt s silica activity, depressing the liquidus and changing the composition of the crystallizing minerals. Our study demonstrates that on a weight percent basis, the effect of fluorine is similar to the effect of H2O [1] and Cl [3] on freezing point depression of basalts. But on an atomic fraction basis, the effect of F on liquidus depression of basalts is xxxx compared to the effect of H. Future

  8. Prediction of the phase equilibria of methane hydrates using the direct phase coexistence methodology

    SciTech Connect

    Michalis, Vasileios K.; Costandy, Joseph; Economou, Ioannis G.; Tsimpanogiannis, Ioannis N.; Stubos, Athanassios K.

    2015-01-28

    The direct phase coexistence method is used for the determination of the three-phase coexistence line of sI methane hydrates. Molecular dynamics (MD) simulations are carried out in the isothermal–isobaric ensemble in order to determine the coexistence temperature (T{sub 3}) at four different pressures, namely, 40, 100, 400, and 600 bar. Methane bubble formation that results in supersaturation of water with methane is generally avoided. The observed stochasticity of the hydrate growth and dissociation processes, which can be misleading in the determination of T{sub 3}, is treated with long simulations in the range of 1000–4000 ns and a relatively large number of independent runs. Statistical averaging of 25 runs per pressure results in T{sub 3} predictions that are found to deviate systematically by approximately 3.5 K from the experimental values. This is in good agreement with the deviation of 3.15 K between the prediction of TIP4P/Ice water force field used and the experimental melting temperature of ice Ih. The current results offer the most consistent and accurate predictions from MD simulation for the determination of T{sub 3} of methane hydrates. Methane solubility values are also calculated at the predicted equilibrium conditions and are found in good agreement with continuum-scale models.

  9. Adiabatic invariants and phase equilibria for first-order orbital resonances. [solar mass change effect on asteroid orbits

    NASA Technical Reports Server (NTRS)

    Heppenheimer, T. A.

    1975-01-01

    In the planar circular restricted three-body problem, the evolution of near-commensurable orbits is studied under change in the mass ratio, mu. The evolution involves preservation of two adiabatic invariants. Transition from circulation to libration may occur; such transitions are of two types. Type I transition occurs when the evolutionary track in phase space passes through near-zero eccentricity; as in the ordinary case (no transition), pre- and post-evolutionary states are linked by solution of a two-point boundary-value problem. Type II transition occurs when the evolutionary track encounters an unstable phase equilibrium or periodic orbit. There is then a discontinuous change in one adiabatic invariant, and pre- and post-evolutionary states are linked by solution of a three-point boundary-value problem. No evolutionary track can encounter a stable phase equilibrium, but the class of all stable phase equilibria is mapped into itself under mu change.

  10. Phase Equilibria Studies of the Cu-Fe-O-Si System in Equilibrium with Air and with Metallic Copper

    NASA Astrophysics Data System (ADS)

    Hidayat, Taufiq; Henao, Hector M.; Hayes, Peter C.; Jak, Evgueni

    2012-10-01

    Phase equilibria of the Cu-Fe-O-Si system have been investigated in equilibrium: (1) with air atmosphere at temperatures between 1373 K and 1673 K (1100 °C and 1400 °C) and (2) with metallic copper at temperatures between 1373 K and 1573 K (1100 °C and 1300 °C). High-temperature equilibration/quenching/electron-probe X-ray microanalysis (EPMA) techniques have been used to accurately determine the compositions of the phases in equilibrium in the system. The new experimental results are presented in the form of "Cu2O"-"Fe2O3"-SiO2 ternary sections. The relationships between the activity of CuO0.5(l) and the composition of slag in equilibrium with metallic copper are discussed. The phase equilibria information of the Cu-Fe-O-Si system is of practical importance for industrial copper production processes and for the improvement of the existing thermodynamic database of copper-containing slag systems.

  11. Phase equilibria, crystal structure and oxygen content of intermediate phases in the Y-Ba-Co-O system

    NASA Astrophysics Data System (ADS)

    Urusova, A. S.; Cherepanov, V. A.; Aksenova, T. V.; Gavrilova, L. Ya.; Kiselev, E. A.

    2013-06-01

    The phase equilibria in the Y-Ba-Co-O system were systematically studied at 1373 K in air. The intermediate phases formed in the Y-Ba-Co-O system at 1373 K in air were: YBaCo2O5+δ, YBaCo4O7 and BaCo1-yYyO3-δ (0.09≤y≤0.42). It was shown that YBaCo2O5+δ possesses tetragonal structure with the 3ap×3ap×2ap superstructure (sp. gr. P4/mmm). High-temperature X-ray diffraction analysis of the YBaCo2O5+δ in the temperature range from 298 K up to 1073 K under Po2=0.21 аtm has not shown any phase transformations. The value of oxygen content for the YBaCo2O5+δ at room temperature was estimated as 5.40 and at 1323 K it was equal to 5.04. Thermal expansion of sample shows a linear characteristics and the average thermal expansion coefficient (TEC) is about 13.8×10-6, K-1 in the temperature range 298-1273 K. The homogeneity range and crystal structure of the BaCo1-yYyO3-δ (0.09≤y≤0.42) solid solutions were determined by X-ray diffraction of quenched samples. All BaCo1-yYyO3-δ solid solutions were found to have cubic structure (sp. gr. Pm3m). The unit cell parameters were refined using Rietveld full-profile analysis. Oxygen nonstoichiometry of BaCo1-yYyO3-δ solid solutions with 0.1≤y≤0.4 was measured by means of thermogravimetric technique within the temperature range 298-1373 K in air. Thermal expansion of BaCo1-yYyO3-δ (у=0.0; 0.1; 0.2; 0.3) samples was studied within the temperature range 298-1200 K in air. The projection of isothermal-isobaric phase diagram for the Y-Ba-Co-O system to the compositional triangle of metallic components was presented.

  12. Calculation of Phase Equilibria in the Y2O3-Yb2O3-ZrO2 System

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Liu, Zi-Kui; Kaufman, Larry; Zhang, Fan

    2001-01-01

    Rare earth oxide stabilized zirconias find a wide range of applications. An understanding of phase equilibria is essential to all applications. In this study, the available phase boundary data and thermodynamic data is collected and assessed. Calphad-type databases are developed to completely describe the Y2O3-ZrO2, Yb2O3-ZrO2, and Y2O3-Yb2O3 systems. The oxide units are treated as components and regular and subregular solution models are used. The resultant calculated phase diagrams show good agreement with the experimental data. Then the binaries are combined to form the database for the Y2O3-Yb2O3-ZrO2 psuedo-ternary.

  13. DEVELOPMENT OF A HIGH-TEMPERATURE CERAMIC BRAZE: ANALYSIS OF PHASE EQUILIBRIA IN THE Pd-Ag-CuOx SYSTEM

    SciTech Connect

    Weil, K. Scott; Darsell, Jens T.

    2006-01-18

    This paper describes the effects of small palladium additions on the phase equilibria in the Ag-CuOx system. Below a concentration of 5 mol%, palladium was found to increase the temperature of the eutectic reaction present in the pseudobinary system, but have little effect on a higher temperature monotectic reaction. However once enough palladium was added to increase the pseudoternary solidus temperature to that of the lower boundary for this three-phase field (~970°C), the lower boundary begins to increase in temperature as well. The addition of palladium also causes the original eutectic point to move to lower silver concentrations, which also causes a convergence of the two new three-phase fields, CuOx + L1 + L2 and CuOx + α + L1. This suggests that with higher palladium concentrations, a peritectic reaction, α + L1 + L2 → CuOx, may eventually be observed in the system.

  14. The role of intermolecular interactions in the prediction of the phase equilibria of carbon dioxide hydrates

    NASA Astrophysics Data System (ADS)

    Costandy, Joseph; Michalis, Vasileios K.; Tsimpanogiannis, Ioannis N.; Stubos, Athanassios K.; Economou, Ioannis G.

    2015-09-01

    The direct phase coexistence methodology was used to predict the three-phase equilibrium conditions of carbon dioxide hydrates. Molecular dynamics simulations were performed in the isobaric-isothermal ensemble for the determination of the three-phase coexistence temperature (T3) of the carbon dioxide-water system, at pressures in the range of 200-5000 bar. The relative importance of the water-water and water-guest interactions in the prediction of T3 is investigated. The water-water interactions were modeled through the use of TIP4P/Ice and TIP4P/2005 force fields. The TraPPE force field was used for carbon dioxide, and the water-guest interactions were probed through the modification of the cross-interaction Lennard-Jones energy parameter between the oxygens of the unlike molecules. It was found that when using the classic Lorentz-Berthelot combining rules, both models fail to predict T3 accurately. In order to rectify this problem, the water-guest interaction parameters were optimized, based on the solubility of carbon dioxide in water. In this case, it is shown that the prediction of T3 is limited only by the accuracy of the water model in predicting the melting temperature of ice.

  15. Phase equilibria, crystal structure and oxygen content of intermediate phases in the Y–Ba–Co–O system

    SciTech Connect

    Urusova, A.S.; Cherepanov, V.A. Aksenova, T.V.; Gavrilova, L.Ya.; Kiselev, E.A.

    2013-06-01

    The phase equilibria in the Y–Ba–Co–O system were systematically studied at 1373 K in air. The intermediate phases formed in the Y–Ba–Co–O system at 1373 K in air were: YBaCo₂O5+δ, YBaCo₄O₇ and BaCo1–yYyO3–δ (0.09≤y≤0.42). It was shown that YBaCo₂O5+δ possesses tetragonal structure with the 3aₚ×3aₚ×2aₚ superstructure (sp. gr. P4/mmm). High-temperature X-ray diffraction analysis of the YBaCo₂O5+δ in the temperature range from 298 K up to 1073 K under Po₂=0.21 atm has not shown any phase transformations. The value of oxygen content for the YBaCo₂O5+δ at room temperature was estimated as 5.40 and at 1323 K it was equal to 5.04. Thermal expansion of sample shows a linear characteristics and the average thermal expansion coefficient (TEC) is about 13.8×10⁻⁶, K⁻¹ in the temperature range 298–1273 K. The homogeneity range and crystal structure of the BaCo1–yYyO3–δ (0.09≤y≤0.42) solid solutions were determined by X-ray diffraction of quenched samples. All BaCo1–yYyO3–δ solid solutions were found to have cubic structure (sp. gr. Pm3m). The unit cell parameters were refined using Rietveld full-profile analysis. Oxygen nonstoichiometry of BaCo1–yYyO3–δ solid solutions with 0.1≤y≤0.4 was measured by means of thermogravimetric technique within the temperature range 298–1373 K in air. Thermal expansion of BaCo1–yYyO3–δ (y=0.0; 0.1; 0.2; 0.3) samples was studied within the temperature range 298–1200 K in air. The projection of isothermal–isobaric phase diagram for the Y–Ba–Co–O system to the compositional triangle of metallic components was presented. - Graphical abstract: A projection of isobaric isothermal phase diagram of the Y–Ba–Co–O system to the metallic components

  16. Petrogenesis of Mt. Baker Basalts and Andesites: Constraints From Mineral Chemistry and Phase Equilibria

    NASA Astrophysics Data System (ADS)

    Mullen, E.; McCallum, I. S.

    2009-12-01

    Basalts in continental arcs are volumetrically subordinate to andesites and this is the case for Mt. Baker in the northern Cascade magmatic arc. However, basalts provide indirect evidence on mantle compositions and processes that produce magmas parental to the abundant andesites and dacites of the stratocones. Basalts at Mt. Baker erupted from monogenetic vents peripheral to the andesitic stratocone. Flows are variable in composition; some samples would more appropriately be classified as basaltic andesites. The “basalts” have relatively low Mg/(Mg+Fe) indicating that they have evolved from their original compositions. Samples studied are Park Butte, Tarn Plateau, Lk. Shannon, Sulphur Cr. basalts, and Cathedral Crag, Hogback, and Rankin Ridge basaltic andesites. Mt. Baker lavas belong to the calc-alkaline basalt suite (CAB) defined by Bacon et al. (1997) and preserve arc geochemical features. High alumina olivine tholeiite (HAOT) are absent. Equilibrium mineral pairs and whole rock compositions were used to calculate pre-eruptive temperatures, water contents, and redox states of the “basalts.” All samples have zoned olivine phenocrysts with Fo68 to Fo87 cores and chromite inclusions. Cpx and zoned plagioclase occur in all flows, but opx occurs only in Cathedral Crag, Rankin Ridge, and Tarn Plateau. Ti-magnetite and ilmenite coexist in all flows except for Sulphur Cr., Lk. Shannon and Hogback, which contain a single Fe-Ti oxide. Liquidus temperatures range from 1080 to 1232°C and are negatively correlated with water contents. Water contents estimated using liquidus depression due to H2O (0.8 to 5.4 wt.%) agree well with plag core-whole rock equilibria estimates (1.2 to 3.9 wt.%). Park Butte, Sulphur Cr. and Lk. Shannon had <1.5 wt.% H2O, and Cathedral Crag is most hydrous. Redox states from ol-chr pairs (QFM +0.1 to +2.8) and Fe-Ti oxide pairs (QFM -0.6 to +1.8) indicate that Park Butte and Sulphur Cr. are most oxidized and Cathedral Crag most reduced

  17. Phase equilibria in the iron oxide-cobalt oxide-phosphorus oxide system

    NASA Technical Reports Server (NTRS)

    De Guire, Mark R.; Prasanna, T. R. S.; Kalonji, Gretchen; O'Handley, Robert C.

    1987-01-01

    Two novel ternary compounds are noted in the present study of 1000 C solid-state equilibria in the Fe-Co-P-O system's Fe2O3-FePO4-Co3(Po4)2-CoO region: CoFe(PO4)O, which undergoes incongruent melting at 1130 C, and Co3Fe4(PO4)6, whose incongruent melting occurs at 1080 C. The liquidus behavior-related consequences of rapidly solidified cobalt ferrite formation from cobalt ferrite-phosphate melts are discussed with a view to spinel formation. It is suggested that quenching from within the spinel-plus-liquid region may furnish an alternative to quenching a homogeneous melt.

  18. Phase equilibria and structural investigations in the Ni-poor part of the system Al–Ge–Ni

    PubMed Central

    Reichmann, Thomas L.; Duarte, Liliana I.; Effenberger, Herta S.; Leinenbach, Christian; Richter, Klaus W.

    2012-01-01

    The ternary phase diagram Al–Ge–Ni was investigated between 0 and 50 at.% Ni by a combination of differential thermal analysis (DTA), powder- and single-crystal X-ray diffraction (XRD), metallography and electron probe microanalysis (EPMA). Ternary phase equilibria and accurate phase compositions of the equilibrium phases were determined within two partial isothermal sections at 400 and 700 °C, respectively. The two binary intermediate phases AlNi and Al3Ni2 were found to form extended solid solutions with Ge in the ternary. Three new ternary phases were found to exist in the Ni-poor part of the phase diagram which were designated as τ1 (oC24, CoGe2-type), τ2 (at approximately Al67.5Ge18.0Ni14.5) and τ3 (cF12, CaF2-type). The ternary phases show only small homogeneity ranges. While τ1 was investigated by single crystal X-ray diffraction, τ2 and τ3 were identified from their powder diffraction pattern. Ternary phase reactions and melting behaviour were studied by means of DTA. A total number of eleven invariant reactions could be derived from these data, which are one ternary eutectic reaction, six transition reactions, three ternary peritectic reactions and one maximum. Based on the measured DTA values three vertical sections at 10, 20 and 35 at.% Ni were constructed. Additionally, all experimental results were combined to a ternary reaction scheme (Scheil diagram) and a liquidus surface projection. PMID:27087753

  19. Improving experimental phases for strong reflections prior to density modification

    DOE PAGESBeta

    Uervirojnangkoorn, Monarin; Hilgenfeld, Rolf; Terwilliger, Thomas C.; Read, Randy J.

    2013-09-20

    Experimental phasing of diffraction data from macromolecular crystals involves deriving phase probability distributions. These distributions are often bimodal, making their weighted average, the centroid phase, improbable, so that electron-density maps computed using centroid phases are often non-interpretable. Density modification brings in information about the characteristics of electron density in protein crystals. In successful cases, this allows a choice between the modes in the phase probability distributions, and the maps can cross the borderline between non-interpretable and interpretable. Based on the suggestions by Vekhter [Vekhter (2005), Acta Cryst. D61, 899–902], the impact of identifying optimized phases for a small number ofmore » strong reflections prior to the density-modification process was investigated while using the centroid phase as a starting point for the remaining reflections. A genetic algorithm was developed that optimizes the quality of such phases using the skewness of the density map as a target function. Phases optimized in this way are then used in density modification. In most of the tests, the resulting maps were of higher quality than maps generated from the original centroid phases. In one of the test cases, the new method sufficiently improved a marginal set of experimental SAD phases to enable successful map interpretation. Lastly, a computer program,SISA, has been developed to apply this method for phase improvement in macromolecular crystallography.« less

  20. Improving experimental phases for strong reflections prior to density modification

    SciTech Connect

    Uervirojnangkoorn, Monarin; Hilgenfeld, Rolf; Terwilliger, Thomas C.; Read, Randy J.

    2013-09-20

    Experimental phasing of diffraction data from macromolecular crystals involves deriving phase probability distributions. These distributions are often bimodal, making their weighted average, the centroid phase, improbable, so that electron-density maps computed using centroid phases are often non-interpretable. Density modification brings in information about the characteristics of electron density in protein crystals. In successful cases, this allows a choice between the modes in the phase probability distributions, and the maps can cross the borderline between non-interpretable and interpretable. Based on the suggestions by Vekhter [Vekhter (2005), Acta Cryst. D61, 899–902], the impact of identifying optimized phases for a small number of strong reflections prior to the density-modification process was investigated while using the centroid phase as a starting point for the remaining reflections. A genetic algorithm was developed that optimizes the quality of such phases using the skewness of the density map as a target function. Phases optimized in this way are then used in density modification. In most of the tests, the resulting maps were of higher quality than maps generated from the original centroid phases. In one of the test cases, the new method sufficiently improved a marginal set of experimental SAD phases to enable successful map interpretation. Lastly, a computer program,SISA, has been developed to apply this method for phase improvement in macromolecular crystallography.

  1. Phase equilibria and NaCu 2O 2 crystal growth in the Na-Cu-O system

    NASA Astrophysics Data System (ADS)

    Maljuk, A. N.; Kulakov, A. B.; Sofin, M.; Capogna, L.; Lin, C. T.; Jansen, M.; Keimer, B.

    2005-02-01

    The phase equilibria in the Cu-rich part of the Na-Cu-O phase diagram have been investigated by DTA-TG and powder X-ray diffraction (XRD) methods at different oxygen pressures. Part of the preliminary Na-Cu-O phase diagram has been built up, and the low-stability-limit of the NaCu 2O 2 phase was established. Based on these data single crystals of NaCu 2O 2 compound were obtained for the first time by the self-flux technique. Powder and single crystal XRD measurements verify the high quality of prepared crystals. All crystals have the orthorhombic structure: a=6.2087(1) Å, b=2.9343(1) Å and c=13.0648(3) Å. The magnetic susceptibility and heat capacity measurements carried out on the NaCu 2O 2 single crystals in the temperature range 2-325 K showed clear evidence of antiferromagnetism at T=12.25 K.

  2. Improving experimental phases for strong reflections prior to density modification

    SciTech Connect

    Uervirojnangkoorn, Monarin; Hilgenfeld, Rolf; Terwilliger, Thomas C.; Read, Randy J.

    2013-10-01

    A genetic algorithm has been developed to optimize the phases of the strongest reflections in SIR/SAD data. This is shown to facilitate density modification and model building in several test cases. Experimental phasing of diffraction data from macromolecular crystals involves deriving phase probability distributions. These distributions are often bimodal, making their weighted average, the centroid phase, improbable, so that electron-density maps computed using centroid phases are often non-interpretable. Density modification brings in information about the characteristics of electron density in protein crystals. In successful cases, this allows a choice between the modes in the phase probability distributions, and the maps can cross the borderline between non-interpretable and interpretable. Based on the suggestions by Vekhter [Vekhter (2005 ▶), Acta Cryst. D61, 899–902], the impact of identifying optimized phases for a small number of strong reflections prior to the density-modification process was investigated while using the centroid phase as a starting point for the remaining reflections. A genetic algorithm was developed that optimizes the quality of such phases using the skewness of the density map as a target function. Phases optimized in this way are then used in density modification. In most of the tests, the resulting maps were of higher quality than maps generated from the original centroid phases. In one of the test cases, the new method sufficiently improved a marginal set of experimental SAD phases to enable successful map interpretation. A computer program, SISA, has been developed to apply this method for phase improvement in macromolecular crystallography.

  3. Retention modification of nucleic acid constituents in reversed-phase high-performance liquid chromatography.

    PubMed

    Ramsey, R S; Chan, V W; Dittmar, B M; Row, K H

    1989-05-12

    Secondary equilibria in reversed-phase liquid chromatography have been investigated as a means of enhancing selectivity and optimizing separations of nucleic acid constituents. The retention behavior of various nucleotides, nucleosides and modified compounds has been examined as a function of five different metal ion additives in the mobile phase: K+, Mg2+, Mn2+, Ni2+ and Zn2+. Complexation of the solute molecules with the metal ions changes the electronic structure and alters solute-solvent interactions. Alkali and alkaline earth metals bind primarily to phosphate groups while transition metals also interact with the N7 of purine bases. All nucleotides were found to be eluted very close to the void volume of the high-performance liquid chromatographic column without any metal additive, but retention increased as the concentration of a given cation increased. The transition metals were found to have the greatest effect, with affinities for nucleotide monophosphates on the order of 100 times greater than potassium, and 10 times that of magnesium. Differences in affinity based upon phosphate structure (i.e., cyclic vs. linear), phosphate position (e.g., 2'- vs. 3'-monophosphates), and base modification were also noted. The retention of most nucleosides, unlike the charged compounds, remained relatively constant as the ionic strength or type of cation was varied. Also, improvements were obtained in the resolution of some oligonucleotides with the addition of divalent ions to a potassium buffer mobile phase. PMID:2732287

  4. Phase equilibria and PVT data for the methane-methanol system to 300 MPa and 240/sup 0/C

    SciTech Connect

    Francesconi, A.Z.; Lentz, H.; Franck, E.U.

    1981-10-29

    The apparatus and experimental procedure are described, which permit the determination of phase equilibria and PVT data of fluid binary systems to high temperatures and pressures. Visual observation through a sapphire window is combined with pT measurements at constant volumes. The boundary surface of the two-phase region of the methane-methanol system is determined by pT curves of nine compositions (isopleths) from 8 to 90 mol % CH/sub 3/OH. The critical curve is of the interrupted type and extends from the critical point of methanol (239/sup 0/C, 8.1 MPa) to 33.0/sup 0/C and 300 MPa with a critical volume of 31.2 cm/sup 3/ mol/sup -1/. At 150/sup 0/C molar volume data for the one-phase region to 300 MPa are given. For pressures to 30 MPa the critical curve could be calculated by a semiempirical method. New experimentally determined data for the molar volumes of methane are presented from 50 to 450/sup 0/C and from 30 to 300 MPa.

  5. Phase equilibria in the oxide system Nd 2O 3-K 2O-P 2O 5

    NASA Astrophysics Data System (ADS)

    Szczygieł, Irena; Znamierowska, Teresa; Mizer, Dagmara

    2010-07-01

    A phase equilibria diagram of the partial system NdPO 4-K 3PO 4-KPO 3 has been developed as part of the research aimed at determining the phase equilibrium relationships in the oxide system Nd 2O 3-K 2O-P 2O 5. The investigations were conducted using thermoanalytical techniques, X-ray powder diffraction analysis and reflected-light microscopy. Three isopleths existing between: K 3Nd(PO 4) 2-K 4P 2O 7, NdPO 4-K 5P 3O 10 and NdPO 4-K 4P 2O 7 have been identified in the partial NdPO 4-K 3PO 4-KPO 3 system. Previously unknown potassium-neodymium phosphate "K 4Nd 2P 4O 15" has been discovered in the latter isopleth section. This phosphate exists in the solid phase up to a temperature of 890 °C at which it decomposes into the parent phosphates NdPO 4 and K 4P 2O 7. Four invariant points: two quasi-ternary eutectics, E 1 (1057 °C) and E 2 (580 °C) and two quasi-ternary peritectics, P 1 (1078 °C) and P 2 (610 °C), occur in the NdPO 4-K 3PO 4-KPO 3 region.

  6. Effect of Slag Basicity on Phase Equilibria and Selenium and Tellurium Distribution in Magnesia-Saturated Calcium Iron Silicate Slags

    NASA Astrophysics Data System (ADS)

    Johnston, M. D.; Jahanshahi, S.; Zhang, L.; Lincoln, F. J.

    2010-06-01

    New measurements have been made on the phase equilibria of magnesia-saturated CaO-FeOx-SiO2 slags at 1573 K (1300 °C) and an oxygen partial pressure of 10-9 atm. The thermodynamic behavior of selenium (Se) and tellurium (Te) in the slag and the stability of oxide mineral phases within the slag were examined as a function of slag composition. The measured equilibrium distribution of Se and Te between the slag and the copper showed nonlinear dependence on the slag basicity, reaching maxima at CaO/(CaO + SiO2) ratios of about 0.2 and 1 and a minimum at a ratio of about 0.5. The solubility of the copper oxide in the bulk slag also passed through a minimum value at a ratio of about 0.5. Results from drop-quench experiments confirmed the stability of various oxide solid solution phases at 1573 K (1300 °C) that had virtually no solubility for Se and Te. The deduced capacity of the liquid slag for Se was found to be independent of basicity in relatively basic slags, and decreased sharply as SiO2 replaced CaO in relatively acidic slags.

  7. Direct phase coexistence molecular dynamics study of the phase equilibria of the ternary methane-carbon dioxide-water hydrate system.

    PubMed

    Michalis, Vasileios K; Tsimpanogiannis, Ioannis N; Stubos, Athanassios K; Economou, Ioannis G

    2016-09-14

    Molecular dynamics simulation is used to predict the phase equilibrium conditions of a ternary hydrate system. In particular, the direct phase coexistence methodology is implemented for the determination of the three-phase coexistence temperature of the methane-carbon dioxide-water hydrate system at elevated pressures. The TIP4P/ice, TraPPE-UA and OPLS-UA forcefields for water, carbon dioxide and methane respectively are used, in line with our previous studies of the phase equilibria of the corresponding binary hydrate systems. The solubility in the aqueous phase of the guest molecules of the respective binary and ternary systems is examined under hydrate-forming conditions, providing insight into the predictive capability of the methodology as well as the combination of these forcefields to accurately describe the phase behavior of the ternary system. The three-phase coexistence temperature is calculated at 400, 1000 and 2000 bar for two compositions of the methane-carbon dioxide mixture. The predicted values are compared with available calculations with satisfactory agreement. An estimation is also provided for the fraction of the guest molecules in the mixed hydrate phase under the conditions examined. PMID:27507133

  8. Phase equilibria and crystal chemistry of the R-Cu-Ti-O systems ( R=lanthanides and Y)

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Wong-Ng, W.; Kaduk, J. A.; Jang, M.; Liu, G.

    2009-05-01

    As part of the study of interaction of the Ba 2RCu 3O 6+z ( R=lanthanides and Y) superconductor with SrTiO 3 buffer, phase equilibria of the subsystem, R2O 3-TiO 2-CuO ( R=Nd, Y, and Yb), have been investigated in air at 960 °C. While the phase relationships of the two phase diagrams with smaller R (Y and Yb) are similar, substantial differences were found in the Nd 2O 3-TiO 2-CuO system, partly due to different phase formation in the binary R2O 3-TiO 2 and R2O 3-CuO systems. R2CuTiO 6 and R2Cu 9Ti 12O 36 were the only ternary phases established in all the three diagrams. R2Cu 9Ti 12O 36 belongs to the perovskite-related [AC 3](B 4)O 12 family which is cubic Im3. Depending on the size of R3+, R2CuTiO 6 crystallizes in two crystal systems: Pnma ( R=La-Gd), and P63cm ( R=Dy-Lu). The structure and crystal chemistry of the Pnma series of R2CuTiO 6 ( R=La, Nd, Sm, Eu, and Gd) are discussed in detail in this paper. Patterns for selected members of R2CuTiO 6 have also been prepared and submitted for inclusion in the Powder Diffraction File (PDF).

  9. Experimental phase equilibria of a Mount St. Helens rhyodacite: a framework for interpreting crystallization paths in degassing silicic magmas

    NASA Astrophysics Data System (ADS)

    Riker, Jenny M.; Blundy, Jonathan D.; Rust, Alison C.; Botcharnikov, Roman E.; Humphreys, Madeleine C. S.

    2015-07-01

    We present isothermal (885 °C) phase equilibrium experiments for a rhyodacite from Mount St. Helens (USA) at variable total pressure (25-457 MPa) and fluid composition (XH2Ofl = 0.6-1.0) under relatively oxidizing conditions (NNO to NNO + 3). Run products were characterized by SEM, electron microprobe, and SIMS. Experimental phase assemblages and phase chemistry are consistent with those of natural samples from Mount St. Helens from the last 4000 years. Our results emphasize the importance of pressure and melt H2O content in controlling phase proportions and compositions, showing how significant textural and compositional variability may be generated in the absence of mixing, cooling, or even decompression. Rather, variations in the bulk volatile content of magmas, and the potential for fluid migration relative to surrounding melts, mean that magmas may take varied trajectories through pressure-fluid composition space during storage, transport, and eruption. We introduce a novel method for projecting isothermal phase equilibria into CO2-H2O space (as conventionally done for melt inclusions) and use this projection to interpret petrological data from Mount St. Helens dacites. By fitting the experimental data as empirical functions of melt water content, we show how different scenarios of isothermal magma degassing (e.g., water-saturated ascent, vapor-buffered ascent, and vapor fluxing) can have quite different textural and chemical consequences. We explore how petrological data might be used to infer degassing paths of natural magmas and conclude that melt CO2 content is a much more useful parameter in this regard than melt H2O.

  10. Postperovskite phase equilibria in the MgSiO3–Al2O3 system

    PubMed Central

    Tsuchiya, Jun; Tsuchiya, Taku

    2008-01-01

    We investigate high-P,T phase equilibria of the MgSiO3–Al2O3 system by means of the density functional ab initio computation methods with multiconfiguration sampling. Being different from earlier studies based on the static substitution properties with no consideration of Rh2O3(II) phase, present calculations demonstrate that (i) dissolving Al2O3 tends to decrease the postperovskite transition pressure of MgSiO3 but the effect is not significant (≈-0.2 GPa/mol% Al2O3); (ii) Al2O3 produces the narrow perovskite+postperovskite coexisting P,T area (≈1 GPa) for the pyrolitic concentration (xAl2O3 ≈6 mol%), which is sufficiently responsible to the deep-mantle D″ seismic discontinuity; (iii) the transition would be smeared (≈4 GPa) for the basaltic Al-rich composition (xAl2O3 ≈20 mol%), which is still seismically visible unless iron has significant effects; and last (iv) the perovskite structure spontaneously changes to the Rh2O3(II) with increasing the Al concentration involving small displacements of the Mg-site cations. PMID:19036928

  11. Transferable potentials for phase equilibria-united atom description of five- and six-membered cyclic alkanes and ethers.

    PubMed

    Keasler, Samuel J; Charan, Sophia M; Wick, Collin D; Economou, Ioannis G; Siepmann, J Ilja

    2012-09-13

    While the transferable potentials for phase equilibria-united atom (TraPPE-UA) force field has generally been successful at providing parameters that are highly transferable between different molecules, the polarity and polarizability of a given functional group can be significantly perturbed in small cyclic structures, which limits the transferability of parameters obtained for linear molecules. This has motivated us to develop a version of the TraPPE-UA force field specifically for five- and six-membered cyclic alkanes and ethers. The Lennard-Jones parameters for the methylene group obtained from cyclic alkanes are transferred to the ethers for each ring size, and those for the oxygen atom are common to all compounds for a given ring size. However, the partial charges are molecule specific and parametrized using liquid-phase dielectric constants. This model yields accurate saturated liquid densities and vapor pressures, critical temperatures and densities, normal boiling points, heat capacities, and isothermal compressibilities for the following molecules: cyclopentane, tetrahydrofuran, 1,3-dioxolane, cyclohexane, oxane, 1,4-dioxane, 1,3-dioxane, and 1,3,5-trioxane. The azeotropic behavior and separation factor for the binary mixtures of 1,3-dioxolane/cyclohexane and ethanol/1,4-dioxane are qualitively reproduced. PMID:22900670

  12. Phase Equilibria in Ferrous Calcium Silicate Slags: Part II. Evaluation of Experimental Data and Computer Thermodynamic Models

    NASA Astrophysics Data System (ADS)

    Nikolic, Stanko; Henao, Hector; Hayes, Peter C.; Jak, Evgueni

    2008-04-01

    Ferrous calcium silicate slags (described by the FeO-Fe2O3-CaO-SiO2 system) are the basis for a number of slag systems used in nonferrous smelting. Characterization of this slag system is necessary to improve the design and optimization parameters of new processes, including fluxing and operating temperatures. Particularly of interest are the phase relations at intermediate oxygen partial pressures relevant to processes such as copper converting. Experimental data on the phase equilibria of these slags at controlled oxygen partial pressures in the temperature range between 1200 °C and 1350 °C are discussed, differences between various data sources are analyzed, and discrepancies are resolved. An evaluation of two thermodynamic computer models is undertaken to verify the computer-aided predictions using the experimental data. New experimental data for this system are reported for the temperature condition of 1300 °C, defined using the equilibration/rapid-quenching/electron probe microanalysis (EPMA) with wavelength dispersive detectors technique. This new information, combined with results from the previous study, has enabled the equilibrium liquidus compositions to be defined over a wide range of temperatures and oxygen partial pressures.

  13. Polarization effects and phase equilibria in high-energy-density polyvinylidene-fluoride-based polymers.

    SciTech Connect

    Ranjan, V.; Yu, L.; Nakhmanson, S.; Bernholc, J.; Nardelli, M. B.; Materials Science Division; North Carolina State Univ.; ORNL

    2010-01-01

    Using first-principles calculations, the phase diagrams of polyvinylidene fluoride (PVDF) and its copolymers under an applied electric field are studied and phase transitions between their nonpolar {alpha} and polar {beta} phases are discussed. The results show that the degree of copolymerization is a crucial parameter controlling the structural phase transition. In particular, for tetrafluoroethylene (TeFE) concentration above 12%, PVDF-TeFE is stabilized in the {beta} phase, whereas the {alpha} phase is stable for lower concentrations. As larger electric fields are applied, domains with smaller concentrations ({le} 12%) undergo a transition from the {alpha} to the {beta} phase until a breakdown field of {approx}600 MV m{sup -1} is reached. These structural phase transitions can be exploited for efficient storage of electrical energy.

  14. Phase equilibria, fluid structure, and diffusivity of a discotic liquid crystal.

    PubMed

    Cienega-Cacerez, Octavio; Moreno-Razo, José Antonio; Díaz-Herrera, Enrique; Sambriski, Edward John

    2014-05-14

    Molecular Dynamics simulations were performed for the Gay-Berne discotic fluid parameterized by GB(0.345, 0.2, 1.0, 2.0). The volumetric phase diagram exhibits isotropic (IL), nematic (ND), and two columnar phases characterized by radial distribution functions: the transversal fluid structure varies between a hexagonal columnar (CD) phase (at higher temperatures and pressures) and a rectangular columnar (CO) phase (at lower temperatures and pressures). The slab-wise analysis of fluid dynamics suggests the formation of grain-boundary defects in the CO phase. Longitudinal fluid structure is highly periodic with narrow peaks for the CO phase, suggestive of a near-crystalline (yet diffusive) system, but is only short-ranged for the CD phase. The IL phase does not exhibit anisotropic diffusion. Transversal diffusion is more favorable in the ND phase at all times, but only favorable at short times for the columnar phases. In the columnar phases, a crossover occurs where longitudinal diffusion is favored over transversal diffusion at intermediate-to-long timescales. The anomalous diffusivity is pronounced in both columnar phases, with three identifiable contributions: (a) the rattling of discogens within a transient "interdigitation" cage, (b) the hopping of discogens across columns, and (c) the drifting motion of discogens along the orientation of the director. PMID:24718439

  15. Phase equilibria in DOPC/DPPC: Conversion from gel to subgel in two component mixtures.

    PubMed

    Schmidt, Miranda L; Ziani, Latifa; Boudreau, Michelle; Davis, James H

    2009-11-01

    Biological membranes contain a mixture of phospholipids with varying degrees of hydrocarbon chain unsaturation. Mixtures of long chain saturated and unsaturated lipids with cholesterol have attracted a lot of attention because of the formation of two coexisting fluid bilayer phases in such systems over a broad range of temperature and composition. Interpretation of the phase behavior of such ternary mixtures must be based on a thorough understanding of the phase behavior of the binary mixtures formed with the same components. This article describes the phase behavior of mixtures of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) with 1,2-di-d(31)-palmitoyl-sn-glycero-3-phosphocholine (DPPC) between -20 and 50 degrees C. Particular attention has been paid to the phase coexistence below about 16 degrees C where the subgel phase appears. The changes in the shape of the spectrum (and its spectral moments) during the slow transformation process leads to the conclusion that below 16 degrees C the gel phase is metastable and the gel component of the two-phase mixture slowly transforms to the subgel phase with a slightly different composition. This results in a line of three-phase coexistence near 16 degrees C. Analysis of the transformation of the metastable gel domains into the subgel phase using the nucleation and growth model shows that the subgel domain growth is a two dimensional process. PMID:19895044

  16. Phase equilibria and trace element partitioning in a magma ocean to 260 kilobars

    NASA Technical Reports Server (NTRS)

    Herzberg, Claude

    1992-01-01

    A magma ocean can solidify in a way that is intermediate between perfect equilibrium and perfect fractional crystallization. In order to model quantitatively any fractional crystallization scenario, it is necessary to understand the geochemical characteristics of the phases that crystallize from a magma ocean, and how they vary with pressure. The crystallizing phase is called the liquidus phase, and their identities were determined by numerous experiments utilizing the multianvil apparatus. For chondritic compositions the liquidus phases are as follows: olivine at 1 atmosphere to 100 kilobars; garnet from 100 to about 260 kilobars; silicate perovskite from 260 kilobars to possibly the core-mantle boundary in the Earth.

  17. Prediction of fluid phase equilibria and interfacial tension of triangle-well fluids using transition matrix Monte Carlo

    NASA Astrophysics Data System (ADS)

    Sengupta, Angan; Adhikari, Jhumpa

    2016-05-01

    The triangle-well (TW) potential is a simple model which is able to capture the essence of the intermolecular attraction in real molecules. Transition matrix Monte Carlo simulations in the grand canonical ensemble (GC-TMMC) are performed to investigate the role of the range of attraction on the features of fluid phase equilibria. As the TW potential range increases, the vapour-liquid coexistence curves shift towards a higher temperature range with the critical temperature and pressure increasing, and the critical density values decreasing. These GC-TMMC results are in excellent agreement with the predictions of Gibbs ensemble Monte Carlo and replica exchange Monte Carlo (REMC) simulations reported in literature. Using the GC-TMMC method, the vapour pressures are also computed directly from the particle number probability distributions (PNPDs). It has been noted in literature that the surface tension values are computationally more expensive and difficult to determine than other coexistence properties using molecular simulations. The PNPDs from GC-TMMC simulations along with Binder's formalism allow for the calculation of the interfacial tension with relative ease. Also, our simulation generated results for the interfacial tension are in good agreement with the literature data obtained using REMC (via the virial route) and the plots of our interfacial tension values as a function of temperature are smooth unlike the literature data.

  18. Phase Equilibria, Microstructure, and High-Temperature Strength of TiC-Added Mo-Si-B Alloys

    NASA Astrophysics Data System (ADS)

    Miyamoto, Shimpei; Yoshimi, Kyosuke; Ha, Seong-Ho; Kaneko, Takahiro; Nakamura, Junya; Sato, Tetsuya; Maruyama, Kouichi; Tu, Rong; Goto, Takashi

    2013-05-01

    TiC was added to Mo-Si-B alloys using a conventional Ar arc-melting technique, and the phase equilibria, microstructure evolution, and high-temperature strength at 1673 K (1400 °C) were investigated. The primary phase changed to Mo solid solution (Moss), Mo5SiB2 (T2), or TiC depending on the composition. Following the primary phase solidification, a Moss + TiC, Moss + T2, or Moss + T2 + TiC + Mo2C eutectic reaction took place as the secondary solidification step. In some alloys, Moss + T2 + TiC and Moss + T2 + Mo2C eutectic reactions were present as higher-order solidification steps. After annealing at 2073 K (1800 °C) for 24 hours, Moss, T2, TiC, and Mo2C coexisted stably with microstructural coarsening. The coarsening rate was much faster in an alloy with no TiC dispersion, suggesting that TiC has a strong pinning effect on the grain boundary and interface migration. Compression tests conducted at 1673 K (1400 °C) revealed strength properties of almost all the alloys that were better than those of the Mo-Hf-C alloy (MHC). Alloy densities were 9 g/cm3 or less, which is lighter than pure Mo and MHC (≥10 g/cm3) and competitive with Ni-base superalloys. TiC-added Mo-Si-B alloys are promising candidates for ultrahigh-temperature materials beyond Ni-base superalloys.

  19. Magnesium sulfate-water to 400 MPa using a novel piezometer: Densities, phase equilibria, and planetological implications.

    NASA Astrophysics Data System (ADS)

    Hogenboom, D. L.; Kargel, J. S.; Ganasan, J. P.; Lee, L.

    1995-06-01

    Carbonaceons chondrites commonly contain 10-20% water-soluble salts by mass, the products of low-temperature aqueous alteration under oxidizing conditions. About 75% (by mass) of chondrite salts typically consists of magnesium sulfate hydrates. Conditions similar to those that affected carbonaceous chondrites may have prevailed within some asteroids and icy satellites, resulting in the formation of similar salt-rich rock (plus ice). These salts would be important in determining the physical and chemical characteristics of cryomagmatic brines. Frozen eutectic mixtures of MgSO 4-rich brines could constitute a large fraction of the mass and volume of differentiated salty icy satellites, and widespread volcanic ice plains on some icy satellites may consist of frozen MgSO 4-rich brines. The nature of brine magmatism depends in part on phase equilibria and volumetric relations of solid and liquid phases under the pertinent conditions of temperature, pressure, and other physical parameters. Accordingly, we have investigated densities and phase equilibria in the system MgSO 4-H 2O under pressures ranging from ˜0.1 MPa to ˜400 MPa, temperatures from 230 K to 300 K, and compositions up to 22% (by mass) MgSO 4 using a novel high-pressure apparatus, described here for the first time in detail. We have found no evidence for a transition of MgSO 4 hydrates to high-pressure polymorphs, although we have seen the expected transitions in water ice and we have found some evidence of a possible new magnesium sulfate hydrate. The graph of the eutectic melting point vs pressure approximately parallels the melting curve of water ice, except that the freezing-point depression increases slightly with pressure. Brine flows on icy satellites and chondritic asteroids mostly should correspond to eutectic and peritectic compositions (˜17 and ˜21% MgSO 4, respectively, if modeled in the pure system H 2O-MgSO 4; compositions vary somewhat with pressure). Ice phases I and III, MgSO 4 hydrates

  20. Phase and extraction equilibria in the water-ammonium chloride-Sintamid-5 system

    NASA Astrophysics Data System (ADS)

    Lesnov, A. E.; Kudryashova, O. S.; Denisova, S. A.; Chepkasova, A. V.

    2008-06-01

    The solubility isotherm of the H2O-NH4Cl-Sintamid-5 ternary system at 298 K was constructed on the basis of refractometer measurements. It was found that the region of two-phase liquid equilibrium existed over a wide pH range at inorganic acid concentrations from 10 to 2 mol/l. The distribution of some metal ions between the phases was studied. Conditions for quantitative extraction of thallium(III) and gallium were determined.

  1. Direct molecular dynamics simulation of liquid-solid phase equilibria for two-component plasmas

    NASA Astrophysics Data System (ADS)

    Schneider, A. S.; Hughto, J.; Horowitz, C. J.; Berry, D. K.

    2012-06-01

    We determine the liquid-solid phase diagram for carbon-oxygen and oxygen-selenium plasma mixtures using two-phase molecular dynamics simulations. We identify liquid, solid, and interface regions using a bond angle metric. To study finite-size effects, we perform 27 648- and 55 296-ion simulations. To help monitor nonequilibrium effects, we calculate diffusion constants Di. For the carbon-oxygen system we find that DO for oxygen ions in the solid is much smaller than DC for carbon ions and that both diffusion constants are 80 or more times smaller than diffusion constants in the liquid phase. There is excellent agreement between our carbon-oxygen phase diagram and that predicted by Medin and Cumming. This suggests that errors from finite-size and nonequilibrium effects are small and that the carbon-oxygen phase diagram is now accurately known. The oxygen-selenium system is a simple two-component model for more complex rapid proton capture nucleosynthesis ash compositions for an accreting neutron star. Diffusion of oxygen, in a predominantly selenium crystal, is remarkably fast, comparable to diffusion in the liquid phase. We find a somewhat lower melting temperature for the oxygen-selenium system than that predicted by Medin and Cumming. This is probably because of electron screening effects.

  2. Direct molecular dynamics simulation of liquid-solid phase equilibria for two-component plasmas.

    PubMed

    Schneider, A S; Hughto, J; Horowitz, C J; Berry, D K

    2012-06-01

    We determine the liquid-solid phase diagram for carbon-oxygen and oxygen-selenium plasma mixtures using two-phase molecular dynamics simulations. We identify liquid, solid, and interface regions using a bond angle metric. To study finite-size effects, we perform 27,648- and 55,296-ion simulations. To help monitor nonequilibrium effects, we calculate diffusion constants D(i). For the carbon-oxygen system we find that D(O) for oxygen ions in the solid is much smaller than D(C) for carbon ions and that both diffusion constants are 80 or more times smaller than diffusion constants in the liquid phase. There is excellent agreement between our carbon-oxygen phase diagram and that predicted by Medin and Cumming. This suggests that errors from finite-size and nonequilibrium effects are small and that the carbon-oxygen phase diagram is now accurately known. The oxygen-selenium system is a simple two-component model for more complex rapid proton capture nucleosynthesis ash compositions for an accreting neutron star. Diffusion of oxygen, in a predominantly selenium crystal, is remarkably fast, comparable to diffusion in the liquid phase. We find a somewhat lower melting temperature for the oxygen-selenium system than that predicted by Medin and Cumming. This is probably because of electron screening effects. PMID:23005226

  3. Equilibria in Chemical Systems

    Energy Science and Technology Software Center (ESTSC)

    1992-01-01

    SOLGASMIX-PV calculates equilibrium relationships in complex chemical systems. Chemical equilibrium calculations involve finding the system composition, within certain constraints, which contains the minimum free energy. The constraints are the preservation of the masses of each element present and either constant pressure or volume. SOLGASMIX-PV can calculate equilibria in systems containing a gaseous phase, condensed phase solutions, and condensed phases of invariant and variable stoichiometry. Either a constant total gas volume or a constant total pressuremore » can be assumed. Unit activities for condensed phases and ideality for solutions are assumed, although nonideal systems can be handled provided activity coefficient relationships are available.« less

  4. Transport and Phase Equilibria Properties for Steam Flooding of Heavy Oils

    SciTech Connect

    Gabitto, Jorge; Barrufet, Maria

    2002-11-20

    The objectives of this research included experimental determination and rigorous modeling and computation of phase equilibrium diagrams, volumetric, and transport properties of hydrocarbon/CO2/water mixtures at pressures and temperatures typical of steam injection processes for thermal recovery of heavy oils.

  5. A Classroom Experiment on Phase Equilibria Involving Orientational Disordering in Crystals.

    ERIC Educational Resources Information Center

    Mjojo, C. C.

    1985-01-01

    Background information, procedures used, and results obtained are provided for an experiment in which a phase diagram is determined using a differential scanning calorimeter. Commercial samples of D-camphoric anhydride (Eastman Kodak) and D,L-camphoric anhydride (Aldrich) were used in the experiment. (JN)

  6. The system Ta-V-Si: Crystal structure and phase equilibria

    SciTech Connect

    Khan, A.U.; Broz, P.; Bursik, J.; Grytsiv, A.; Chen, X.-Q.; Giester, G.; Rogl, P.

    2012-03-15

    Phase relations have been evaluated for the Ta-V-Si system at 1500 and 1200 Degree-Sign C. Three ternary phases were found: {tau}{sub 1}-(Ta,V){sub 5}Si{sub 3} (Mn{sub 5}Si{sub 3}-type), {tau}{sub 2}-Ta(Ta,V,Si){sub 2} (MgZn{sub 2}-type) and {tau}{sub 3}-Ta(Ta,V,Si){sub 2} (MgCu{sub 2}-type). The crystal structure of {tau}{sub 2}-Ta(Ta,V,Si){sub 2} was solved by X-ray single crystal diffraction (space group P6{sub 3}/mmc). Atom order in the crystal structures of {tau}{sub 1}-(Ta,V){sub 5}Si{sub 3} (Mn{sub 5}Si{sub 3} type) and {tau}{sub 3}-Ta(Ta,V,Si){sub 2} was derived from X-ray powder diffraction data. A large homogeneity range was found for {tau}{sub 1}-(Ta{sub x}V{sub 1-x}){sub 5}Si{sub 3} revealing random exchange of Ta and V at a constant Si content. At 1500 Degree-Sign C, the end points of the {tau}{sub 1}-phase solution (0.082{<=}x{<=}0.624) are in equilibrium with the solutions (Ta{sub 1-x}V{sub x}){sub 5}Si{sub 3} (Cr{sub 5}B{sub 3} type, 0{<=}x{<=}0.128) and (Ta{sub x}V{sub 1-x}){sub 5}Si{sub 3} (W{sub 5}Si{sub 3} type, 0{<=}x{<=}0.048). - Graphical abstract: Phase relations have been evaluated for the Ta-V-Si system at 1500 and 1200 Degree-Sign C. Highlights: Black-Right-Pointing-Pointer Phase relations have been evaluated for the Ta-V-Si system at 1500 and 1200 Degree-Sign C. Black-Right-Pointing-Pointer Three ternary phases were found at 1500 Degree-Sign C. Black-Right-Pointing-Pointer At 1500 Degree-Sign C, {tau}{sub 1}-phase has large homogeneity region (0.064{<=}x{<=}0.624).

  7. Phase equilibria and self-organizing behavior of side-chain liquid crystalline polymer mixtures

    NASA Astrophysics Data System (ADS)

    Chiu, Hao-Wen

    1998-12-01

    Phenomenological models for elucidating phase diagrams of binary smectic-A mixtures, polymer/smectic-A mixtures, induced smectic in nematic mixtures, and nematic/smectic mixtures have been proposed on the basis of the combination of the Flory-Huggins (FH) free energy of isotropic mixing and Maier-Saupe-McMillan (MSM) free energy for nematic/smectic ordering. The nematic and smectic order parameters have been coupled through the normalized partition and the orientation distribution functions. Flory-Huggins interaction parameter (chi) for isotropic mixing and the coupling term involving the nematic interaction parameter (nu) and the McMillan smectic interaction parameter (alpha) for phase transitions of liquid crystals have been incorporated in the calculation. The predictive capability of the combined FH/MSM theory has been demonstrated by testing with reported phase diagrams. Dynamics of phase separation and morphology development in mixtures of a nematic liquid crystal and a polymer due to thermal quenching have been investigated theoretically in comparison with experimental results. In the proposed model, the combined free energy densities of Flory-Huggins theory for isotropic mixing and Maier-Saupe (MS) theory for nematic ordering have been incorporated into the time-dependent Ginzburg-Landau equation (TDGL, type C). The temporal evolution of the structure factor and the emergence of phase separated liquid crystal (LC) domains have been simulated on the basis of an explicit central difference method based on a square lattice with a periodic boundary condition. Of particular interest is the observed plateau (or inflection) region in the growth dynamic curve, which may be attributed to the breakdown of the interconnected domains caused by the nematic ordering. The emergence of LC domains during polymerization induced phase separation in a polymer dispersed liquid crystal (PDLC) has been solved numerically by incorporating the reaction kinetics into the TDGL

  8. High-temperature phase equilibria studies in the Bi-Sr- Ca-Cu-O-Ag system

    NASA Astrophysics Data System (ADS)

    Margulies, Lawrence

    A variety of experimental techniques were utilized to examine the high temperature phase equilibria in the Bi- Sr-Ca-Cu-O-Ag system. Quenching studies were used to determine the liquid solubility of Ag in the Bi2Sr 2CaCu2O8 (Bi2212) melt and the details of the peritectic decomposition pathway of Bi2212 as a function on Ag content and oxygen partial pressure (PO2). A liquid immiscibility region between oxide and Ag liquids in the 8-98 at% range was found above 900°C. Two eutectics were found in the Bi2212-Ag pseudo-binary. On the oxide rich side, a eutectic exists at approximately 4 at% Ag. On the Ag rich side, a eutectic exists at approximately 98 at% Ag at a temperature of 15°C below the melting point of pure Ag. Six distinct solid phases were found to be in equilibrium with the partial melt within the Ag content and PO2 range studied. The stability of these solid phases were found to be highly sensitive to PO2, and to a much lesser extent Ag content. High temperature x-ray diffraction (HTXRD) studies of this system are in conflict with these results. It is suggested that these discrepancies are due to experimental artifacts caused by the significant thermal gradients and lack of full bulk sampling which is inherent in conventional HTXRD designs. In part II, a new furnace design compatible with synchrotron radiation sources is introduced to address these problems. This design allows for full bulk sampling in a low thermal gradient environment using Debye- Scherrer transmission geometry. Sample spinning is also introduced in the design to eliminate preferred orientation and incomplete powder averaging and allow for quantitative phase analysis and structural refinement. Studies on model systems are presented to demonstrate the capabilities for high resolution structural studies (Al 2O3) and time resolved phase transformation studies (SrCO 3). Finally, the Bi2212 system is examined to confirm the quenching results of part I, and to demonstrate the degree to which

  9. TRANSPORT AND PHASE EQUILIBRIA PROPERITIES FOR STEAM FLOODING OF HEAVY OILS

    SciTech Connect

    Jorge Gabitto; Maria Barrufet

    2002-09-01

    Hydrocarbon/water and CO{sub 2} systems are frequently found in petroleum recovery processes, petroleum refining, and gasification of coals, lignites and tar sands. Techniques to estimate the phase volume and phase composition are indispensable to design and improve oil recovery processes such as steam, hot water, or CO{sub 2}/steam combinations of flooding techniques typically used for heavy oils. An interdisciplinary research program to quantify transport, PVT, and equilibrium properties of selected oil/CO{sub 2}/water mixtures at pressures up to 10,000 psia and at temperatures up to 500 F has been put in place. The objectives of this research include experimental determination and rigorous modeling and computation of phase equilibrium diagrams, and volumetric properties of hydrocarbon/CO{sub 2}/water mixtures at pressures and temperatures typical of steam injection processes for thermal recovery of heavy oils. Highlighting the importance of phase behavior, researchers ([1], and [2]) insist on obtaining truly representative reservoir fluids samples for experimental analysis. The prevailing sampling techniques used for compositional analysis of the fluids have potential for a large source of error. These techniques bring the sample to atmospheric conditions and collect the liquid and vapor portion of the samples for further analysis. We developed a new experimental technique to determine phase volumes, compositions and equilibrium K-values at reservoir conditions. The new methodology is able to measure phase volume and composition at reservoir like temperatures and pressures. We use a mercury free PVT system in conjunction with a Hewlett Packard gas chromatograph capable of measuring compositions on line at high pressures and temperatures. This is made possible by an essentially negligible disturbance of the temperature and pressure equilibrium during phase volume and composition measurements. In addition, not many samples are withdrawn for compositional analysis

  10. Calculations of phase equilibria for mixtures of triglycerides, fatty acids, and their esters in lower alcohols

    NASA Astrophysics Data System (ADS)

    Stepanov, D. A.; Ermakova, A.; Anikeev, V. I.

    2011-01-01

    The objects of study were mixtures containing triglycerides and lower alcohols and also the products of the transesterification of triglycerides, glycerol and fatty acid esters. The Redlich-Kwong-Soave equation of state was used as a thermodynamic model for the phase state of the selected mixtures over wide temperature, pressure, and composition ranges. Group methods were applied to determine the critical parameters of pure substances and their acentric factors. The parameters obtained were used to calculate the phase diagrams and critical parameters of mixtures containing triglycerides and lower alcohols and the products of the transesterification of triglycerides, glycerol and fatty acid esters, at various alcohol/oil ratios. The conditions of triglyceride transesterification in various lower alcohols providing the supercritical state of reaction mixtures were selected.

  11. Experimental Determination of Phase Equilibria in the Silver-Copper Oxide System at High Temperature

    SciTech Connect

    Darsell, Jens T.; Weil, K. Scott

    2007-06-01

    The phase diagram of silver-copper oxide was studied using thermal, microstructural and compositional analysis of quenched samples. The eutectic and monotectic temperature were found and compared to previous data. The miscibility gap was analyzed at higher temperatures than previous experimental work. The profile of the miscibility gap was found to extend from the monotectic composition and extend further into the copper rich portion than previously experimental work had show, which verifies a previous computational study.

  12. Applications of Wang-Landau sampling to determine phase equilibria in complex fluids

    NASA Astrophysics Data System (ADS)

    Ganzenmüller, Georg; Camp, Philip J.

    2007-10-01

    Applications of the Wang-Landau algorithm for simulating phase coexistence at fixed temperature are presented. The number density is sampled using either volume scaling or particle insertion/deletion. The resulting algorithms, while being conceptually easy, are of comparable efficiency to existing multicanonical methods but with the advantage that neither the chemical potential nor the pressure at phase coexistence has to be estimated in advance of the simulation. First, we benchmark the algorithm against literature results for the vapor-liquid transition in the Lennard-Jones fluid. We then demonstrate the general applicability of the algorithm by studying vapor-liquid coexistence in two examples of complex fluids: charged soft spheres, which exhibit a transition similar to that in the restricted primitive model of ionic fluids, being characterized by strong ion pairing in the vapor phase; and Stockmayer fluids with high dipole strengths, in which the constituent particles aggregate to form chains, and for which the very existence of a transition has been widely debated. Finally, we show that the algorithm can be used to locate a weak isotropic-nematic transition in a fluid of Gay-Berne mesogens.

  13. Applications of Wang-Landau sampling to determine phase equilibria in complex fluids.

    PubMed

    Ganzenmüller, Georg; Camp, Philip J

    2007-10-21

    Applications of the Wang-Landau algorithm for simulating phase coexistence at fixed temperature are presented. The number density is sampled using either volume scaling or particle insertion/deletion. The resulting algorithms, while being conceptually easy, are of comparable efficiency to existing multicanonical methods but with the advantage that neither the chemical potential nor the pressure at phase coexistence has to be estimated in advance of the simulation. First, we benchmark the algorithm against literature results for the vapor-liquid transition in the Lennard-Jones fluid. We then demonstrate the general applicability of the algorithm by studying vapor-liquid coexistence in two examples of complex fluids: charged soft spheres, which exhibit a transition similar to that in the restricted primitive model of ionic fluids, being characterized by strong ion pairing in the vapor phase; and Stockmayer fluids with high dipole strengths, in which the constituent particles aggregate to form chains, and for which the very existence of a transition has been widely debated. Finally, we show that the algorithm can be used to locate a weak isotropic-nematic transition in a fluid of Gay-Berne mesogens. PMID:17949170

  14. Volumetric Properties and Fluid Phase Equilibria of CO2 + H2O

    SciTech Connect

    Capobianco, Ryan; Gruszkiewicz, Miroslaw {Mirek} S; Wesolowski, David J; Cole, David R; Bodnar, Robert

    2013-01-01

    The need for accurate modeling of fluid-mineral processes over wide ranges of temperature, pressure and composition highlighted considerable uncertainties of available property data and equations of state, even for the CO2 + H2O binary system. In particular, the solubility, activity, and ionic dissociation equilibrium data for the CO2-rich phase, which are essential for understanding dissolution/precipitation, fluid-matrix reactions, and solute transport, are uncertain or missing. In this paper we report the results of a new experimental study of volumetric and phase equilibrium properties of CO2 + H2O, to be followed by measurements for bulk and confined multicomponent fluid mixtures. Mixture densities were measured by vibrating tube densimetry (VTD) over the entire composition range at T = 200 and 250 C and P = 20, 40, 60, and 80 MPa. Initial analysis of the mutual solubilities, determined from volumetric data, shows good agreement with earlier results for the aqueous phase, but finds that the data of Takenouchi and Kennedy (1964) significantly overestimated the solubility of water in supercritical CO2 (by a factor of more than two at 200 C). Resolving this well-known discrepancy will have a direct impact on the accuracy of predictive modeling of CO2 injection in geothermal reservoirs and geological carbon sequestration through improved equations of state, needed for calibration of predictive molecular-scale models and large-scale reactive transport simulations.

  15. Reentrant radio-frequency resonator for automated phase-equilibria and dielectric measurements in fluids

    SciTech Connect

    Goodwin, A.R.; Mehl, J.B.; Moldover, M.R.

    1996-12-01

    A reentrant rf cavity resonator has been developed for automated detection of phase separation of fluid mixtures contained within the cavity. Successful operation was demonstrated by redetermining the phase boundaries of a CO{sub 2}+C{sub 2}H{sub 6} mixture in the vicinity of its critical point. We developed an accurate electrical model for the resonator and used helium to determine the deformation of the resonator under pressure. With the model and pressure compensation, the resonator was capable of very accurate dielectric measurements. We confirmed this by remeasuring the molar dielectric polarizability {ital A}{sub {epsilon}} of argon and obtained the result {ital A}{sub {epsilon}}=(4.140{plus_minus}0.006) cm{sup 3}/mol (standard uncertainty) in excellent agreement with published values. We exploited the capability for accurate dielectric measurements to determine the densities of the CO{sub 2}+C{sub 2}H{sub 6} mixture at the phase boundaries and to determine the dipole moment of 1,1,1,2,3,3-hexafluoropropane, a candidate replacement refrigerant. Near the operating frequency of 375 MHz the capacitor in the resonator has an impedance near 14 {Omega}. This low impedance is more tolerant of electrical conductivity within the test fluid and in parallel paths in the support structures than comparable capacitors operating at audio frequencies. This will be an advantage for operation at high temperatures where some conductivity must be expected in all fluids. Of further value for high-temperature applications, the present rf resonator has only two metal{endash}insulator joints. These joints seal coaxial cables; neither joint is subjected to large mechanical stresses and neither joint is required to maintain precise dimensional tolerances. The resonator is rugged and may be operated with inexpensive electronics.

  16. Phase equilibria of Fe-C binary alloys in a magnetic field

    NASA Astrophysics Data System (ADS)

    England, Roger Dale

    The deployment of high flux magnetic processing in industry requires the ability to model the expected results of a proposed processing, and the current assumptions in the literature did not reflect the actual outcome in measurements of ductile iron. Simple binary iron-carbon alloys of less than one weight percent carbon were thermo-magnetically processed and then compared with Gibbs free energy phase transformation predictions. The data was used to quantify the change in the Gibbs free energy associated with the addition of a static high flux magnetic field, which is complicated by the change in magnetic response as the iron carbon alloys pass through the Curie point. A current common practice is to modify Gibbs free energy by -12J per mole per Tesla applied, as has been reported in the literature. This current prediction practice was employed in initial experiments for this work and the experimental data did not agree with these predicted values. This work suggests two specific influences that affect the model, chemistry and magnetic dipole changes. First, that the influence of alloying elements in the original chemistry, as the samples in the literature were a manganese alloy with 0.45 weight percent carbon, as well as not being precisely controlled for tramp elements that commonly occur in recycled material, created a change that was not predicted and therefore the temperatures were incorrect. Also, the phase transformation in a high flux magnetic field was measured to have a different response under warming versus cooling than the normal hysteresis under ambient magnetism. The change in Gibbs free energy for the binary alloys was calculated as -3J per mole per Tesla in warming, and -8J per mole per tesla in cooling. The change from these values to the -12J per mole per Tesla previously reported is attributed to the change in chemistry. This work attributes the published increase in physical properties to the Hall-Petch relation as a result of the finer product

  17. Phase equilibria in a system of aqueous arginine with an octane solution of sulfonic acid

    NASA Astrophysics Data System (ADS)

    Kuvaeva, Z. I.; Koval'chuk, I. V.; Vodop'yanova, L. A.; Soldatov, V. S.

    2013-05-01

    The extraction of arginine (Arg) from aqueous salt (0.1 M NaCl) solutions with a sulfo extractant in a wide range of pH values and amino acid concentrations was studied. The 0.1 M solution of dinonylnaphthalenesulfonic acid (HD) in octane was used as an extractant. The degree of extraction was found to be high at pH 0.8-9.0. This can be explained by the effect of additional intermolecular interactions in the extractant phase involving the guanidine group of Arg.

  18. Crystallization history of lunar picritic basalt sample 12002 - Phase-equilibria and cooling-rate studies

    NASA Technical Reports Server (NTRS)

    Walker, D.; Kirkpatrick, R. J.; Longhi, J.; Hays, J. F.

    1976-01-01

    Experimental crystallization of a lunar picrite composition (sample 12002) at controlled linear cooling rates produces systematic changes in the temperature at which crystalline phases appear, in the texture, and in crystal morphology as a function of cooling rate. Phases crystallize in the order olivine, chromium spinel, pyroxene, plagioclase, and ilmenite during equilibrium crystallization, but ilmenite and plagioclase reverse their order of appearance and silica crystallizes in the groundmass during controlled cooling experiments. The partition of iron and magnesium between olivine and liquid is independent of cooling rate, temperature, and pressure. Comparison of the olivine nucleation densities in the lunar sample and in the experiments indicates that the sample began cooling at about 1 deg C/hr. Pyroxene size, chemistry, and growth instability spacings, as well as groundmass coarseness, all suggest that the cooling rate subsequently decreased by as much as a factor of 10 or more. The porphyritic texture of this sample, then, is produced at a decreasing, rather than a discontinuously increasing, cooling rate.

  19. Thermal analysis, phase equilibria, and superconducting properties in magnesium boride and carbon doped magnesium boride

    NASA Astrophysics Data System (ADS)

    Bohnenstiehl, Scot David

    In this work, the low temperature synthesis of MgB2 from Mg/B and MgH2/B powder mixtures was studied using Differential Scanning Calorimetry (DSC). For the Mg/B powder mixture, two exothermic reaction events were observed and the first reaction event was initiated by the decomposition of Mg(OH)2 on the surface of the magnesium powder. For the MgH 2/B powder mixture, there was an endothermic event at ˜375 °C (the decomposition of MgH2 into H2 and Mg) and an exothermic event ˜600 °C (the reaction of Mg and B). The Kissinger analysis method was used to estimate the apparent activation energy of the Mg and B reaction using DSC data with different furnace ramp rates. The limitations of MgB2 low temperature synthesis led to the development of a high pressure induction furnace that was constructed using a pressure vessel and an induction heating power supply. The purpose was to not only synthesize more homogeneous MgB2 samples, but also to determine whether MgB2 melts congruently or incongruently. A custom implementation of the Smith Thermal Analysis method was developed and tested on aluminum and AlB2, the closest analogue to MgB2. Measurements on MgB2 powder and a high purity Mg/B elemental mixture confirmed that MgB2 melts incongruently and decomposes into a liquid and MgB4 at ˜1445 °C at 10 MPa via peritectic decomposition. Another measurement using a Mg/B elemental mixture with impure boron suggested that ˜0.7 wt% carbon impurity in the boron raised the incongruent melting temperature to ˜1490-1500 °C. Lastly, the solubility limit for carbon in MgB2 was studied by making samples from B4C and Mg at 1530 °C, 1600 °C and 1700 °C in the high pressure furnace. All three samples had three phases: Mg, MgB2C2, and carbon doped MgB2. The MgB 2C2 and carbon doped MgB2 grain size increased with temperature and the 1700 °C sample had needle-like grains for both phases. The presence of the ternary phase, MgB2C2, suggested that the maximum doping limit for carbon in

  20. Experimental constraints on the Qitianling granite in south China: phase equilibria and petrogenetic implications

    NASA Astrophysics Data System (ADS)

    Huang, Fangfang; Scaillet, Bruno; Wang, Rucheng; Erdmann, Saskia; Chen, Yan; Faure, Michel; Liu, Hongsheng; Xie, Lei; Wang, Bo; Zhu, Jinchu

    2016-04-01

    In South China, the huge distribution of the Mesozoic metallogenic province reflects the abundant magmatism and associated mineralizations which occurred during that period. Building up the phase equilibrium diagrams of representative Mesozoic granites allows us to better understand Mesozoic magmatic events, an approach so far little applied to granites of South China. The Qitianling ganite is a representative Jurassic A-type metaluminous pluton which is associated with tin mineralization in South China. The dominant rock-types are hornblende-biotite monzonitic granites, biotite±hornblende bearing granites and fine-grained biotite-bearing granites. Three metaluminous granite samples (QTL38C, QTL14A and QTL13), of varying mafic character but all bearing hornblende, were chosen for constraining crystallization and magma generation conditions of the Qitianling composite batholith. Crystallization experiments were performed in the 100-700 MPa range, albeit mainly at 200 MPa, at an fO2 at NNO-1 or NNO +2.5, in a temperature range 700°C to 900°C. At 200 MPa, the water content in melt varies between 3 wt% and 6.5 wt% (water-saturated). Experimental results show that under H2O-saturated conditions and at NNO-1, ilmenite, magnetite and pyroxene are the liquidus phases, followed by hornblende, biotite and plagioclase. Hornblende is present only in the most mafic sample (QTL38C), below 900°C and above 5 wt% H2O. In contrast, for H2O-saturated conditions and at NNO+2.5, magnetite, pyroxene crystallize first, followed by biotite while ilmenite is rarely observed. Petrographic observations of natural samples show that magnetite and ilmenite coexist, whereas pyroxene is never observed. The Fe# value (Fe/Mg+Fe) of natural amphibole goes up to 0.69, being on average at 0.67. Experiments indicate that the crystallization of pyroxene occurs at early magmatic stages, but it breaks down to hornblende and biotite at low temperatures, explaining its absence in natural assemblages

  1. Application of the cell potential method to predict phase equilibria of multicomponent gas hydrate systems.

    PubMed

    Anderson, Brian J; Bazant, Martin Z; Tester, Jefferson W; Trout, Bernhardt L

    2005-04-28

    We present the application of a mathematical method reported earlier by which the van der Waals-Platteeuw statistical mechanical model with the Lennard-Jones and Devonshire approximation can be posed as an integral equation with the unknown function being the intermolecular potential between the guest molecules and the host molecules. This method allows us to solve for the potential directly for hydrates for which the Langmuir constants are computed, either from experimental data or from ab initio data. Given the assumptions made in the van der Waals-Platteeuw model with the spherical-cell approximation, there are an infinite number of solutions; however, the only solution without cusps is a unique central-well solution in which the potential is at a finite minimum at the center to the cage. From this central-well solution, we have found the potential well depths and volumes of negative energy for 16 single-component hydrate systems: ethane (C2H6), cyclopropane (C3H6), methane (CH4), argon (Ar), and chlorodifluoromethane (R-22) in structure I; and ethane (C2H6), cyclopropane (C3H6), propane (C3H8), isobutane (C4H10), methane (CH4), argon (Ar), trichlorofluoromethane (R-11), dichlorodifluoromethane (R-12), bromotrifluoromethane (R-13B1), chloroform (CHCl3), and 1,1,1,2-tetrafluoroethane (R-134a) in structure II. This method and the calculated cell potentials were validated by predicting existing mixed hydrate phase equilibrium data without any fitting parameters and calculating mixture phase diagrams for methane, ethane, isobutane, and cyclopropane mixtures. Several structural transitions that have been determined experimentally as well as some structural transitions that have not been examined experimentally were also predicted. In the methane-cyclopropane hydrate system, a structural transition from structure I to structure II and back to structure I is predicted to occur outside of the known structure II range for the cyclopropane hydrate. Quintuple (L

  2. Phase equilibria, leaching characteristics and ceramic processing of SYNROC D formulations for US defense wastes

    SciTech Connect

    Newkirk, H.; Ryerson, F.; Coles, D.; Hoenig, C.; Rozsa, R.; Rossington, C.; Bazan, F.; Tewhey, J.

    1980-01-01

    The assemblage of coexisting phases in SYNROC D is perovskite, zirconolite, nepheline and spinel. Cesium from the supernate is to be immobilized in hollandite. In the current processing scheme, presynthesized granules of hollandite are added to calcined SYNROC D powders prior to hot procesing or sintering. The disposition of inert and radwaste components of Savannah River Plant (SRP) wastes in SYNROC D formulations has been determined by means of optical microscopy, XRD, XRF, SEM, STEM, electron microprobe analysis and autoradiography. A summary of results is presented. Leaching studies of SYNROC D have been done by means of static, high temperature experiments and continuous-flow experiments. The data reported are from high-temperature experiments (distilled water, powdered sample, 150/sup 0/C, one day). The elements reported are the only ones observed in the leachate. Analysis was done by means of XRF. The flowsheet which depicts the current experimental methods that are being employed at LLNL to produce SYNROC D samples containing presynthesized Cs-bearing hollandite is presented. The starting material for SYNROC D (high Fe, high Al and composite compositions) is simulated sludge obtained in 55 gallon quantities from Southwestern Chemical Corporation. Hot pressing temperatures for SYNROC D are 1000 to 1150/sup 0/C. Hot pressing temperatures for hollandite are 1200 to 1400/sup 0/C.

  3. Phase Equilibria of a S- and C-Poor Lunar Core

    NASA Technical Reports Server (NTRS)

    Righter, K.; Pando, K.; Go, B. M.; Danielson, L. R.; Habermann, M.

    2016-01-01

    The composition of the lunar core can have a large impact on its thermal evolution, possible early dynamo creation, and physical state. Geochemical measurements have placed better constraints on the S and C content of the lunar mantle. In this study we have carried out phase equilibrium studies of geochemically plausible S- and C-poor lunar core compositions in the Fe-Ni-S-C system, and apply them to the early history of the Moon. We chose two bulk core compositions, with differing S and C content based on geochemical analyses of S and C trapped melts in Apollo samples, and on the partitioning of S and C between metal and silicate. This approach allowed calculation of core S and C contents - 90% Fe, 9% Ni, 0.5% C, and 0.375% S by weight; a second composition contained 1% each of S and C. Experiments were carried out from 1473K to 1973K and 1 GPa to 5 GPa, in piston cylinder and multi- anvil apparatuses. Combination of the thermal model of with our results, shows that a solid inner core (and therefore initiation of a dynamo) may have been possible in the earliest history of the Moon (approximately 4.2 Ga ago), in agreement with. Thus a volatile poor lunar core may explain the thermal and magnetic history of the Moon.

  4. Experimental Determinations of the Activity-Composition Relations and Phase Equilibria of H{sub 2}O-CO{sub 2}-NaCl Fluids

    SciTech Connect

    Anovitz, L.M.; Labotka, T.C.; Blencoe, J.G.; Singh, J.; Horita, J.

    1999-09-12

    An understanding of activity-composition (a/X) relations and phase equilibria for halite-bearing, mixed-species supercritical fluids is critically important in many geological and industrial applications. The authors have performed experiments on the a/X relations and phase equilibria of H{sub 2}O-CO{sub 2}-NaCl fluids at 5OO C, 500 bars, to obtain highly accurate and precise data for this ternary system. H{sub 2}O-CO{sub 2}-NaCl samples were reacted at a (H{sub 2}O) = 0.350, 0.425, 0.437, 0.448, 0.560, 0.606, 0.678, 0.798, and 0.841. Results indicate that fluids with these activities lie in the vapor-NaCl two-phase region, and that a fluid with the last value has a composition close to the three-phase (vapor + brine + halite) field. Data from these experiments and NaCl solubility runs also suggest that the vapor comer of the three-phase field lies near X(H{sub 2}O) = 0.760, X(NaCl) = 0.065, which is a significantly more water-rich composition than suggested by the model of [1].

  5. Re-investigation of phase equilibria in the system Al–Cu and structural analysis of the high-temperature phase η1-Al1−δCu

    PubMed Central

    Ponweiser, Norbert; Lengauer, Christian L.; Richter, Klaus W.

    2011-01-01

    The phase equilibria and reaction temperatures in the system Al–Cu were re-investigated by a combination of optical microscopy, powder X-ray diffraction (XRD) at ambient and elevated temperature, differential thermal analysis (DTA) and scanning electron microscopy (SEM). A full description of the phase diagram is given. The phase equilibria and invariant reactions in the Cu-poor part of the phase diagram could be confirmed. The Cu-rich part shows some differences in phase equilibria and invariant reactions compared to the known phase diagram. A two phase field was found between the high temperature phase η1 and the low temperature phase η2 thus indicating a first order transition. In the ζ1/ζ2 region of the phase diagram recent findings on the thermal stability could be widely confirmed. Contrary to previous results, the two phase field between δ and γ1 is very narrow. The results of the current work indicate the absence of the high temperature β0 phase as well as the absence of a two phase field between γ1 and γ0 suggesting a higher order transition between γ1 and γ0. The structure of γ0 (I-43m, Cu5Zn8-type) was confirmed by means of high-temperature XRD. Powder XRD was also used to determine the structure of the high temperature phase η1-Al1−δCu. The phase is orthorhombic (space group Cmmm) and the lattice parameters are a = 4.1450(1) Å, b = 12.3004(4) Å and c = 8.720(1) Å; atomic coordinates are given. PMID:27103761

  6. Phase relations in the system NaCl-KCl-H2O: V. Thermodynamic-PTX analysis of solid-liquid equilibria at high temperatures and pressures

    USGS Publications Warehouse

    Sterner, S.M.; Chou, I.-Ming; Downs, R.T.; Pitzer, Kenneth S.

    1992-01-01

    The Gibbs energies of mixing for NaCl-KCl binary solids and liquids and solid-saturated NaCl-KCl-H2O ternary liquids were modeled using asymmetric Margules treatments. The coefficients of the expressions were calibrated using an extensive array of binary solvus and solidus data, and both binary and ternary liquidus data. Over the PTX range considered, the system exhibits complete liquid miscibility among all three components and extensive solid solution along the anhydrous binary. Solid-liquid and solid-solid phase equilibria were calculated by using the resulting equations and invoking the equality of chemical potentials of NaCl and KCl between appropriate phases at equilibrium. The equations reproduce the ternary liquidus and predict activity coefficients for NaCl and KCl components in the aqueous liquid under solid-saturation conditions between 673 and 1200 K from vapor saturation up to 5 kbar. In the NaCl-KCl anhydrous binary system, the equations describe phase equilibria and predict activity coefficients of the salt components for all stable compositions of solid and liquid phases between room temperature and 1200 K and from 1 bar to 5 kbar. ?? 1992.

  7. Priming Silicic Giant Magma Bodies: Finding Evidence for Internal Forcing Versus External Triggering of Supereruptions by Phase Equilibria Modeling.

    NASA Astrophysics Data System (ADS)

    Tramontano, S.; Gualda, G. A. R.; Ghiorso, M. S.; Kennedy, B.

    2015-12-01

    It is important to understand what triggers silicic eruptions because of the implications for modern-day systems. The goal of this project is to use phase equilibria modeling (i.e. rhyolite-MELTS) to determine to what extent magmas within the crust are induced to erupt due to external triggers (e.g. earthquakes; new magma injection; neighboring eruptions) and to what extent they naturally evolve to a point where eruption is inevitable (e.g. by fluid exsolution and decrease in magma strength and density). Whole-rock compositions from four rhyolite tuffs across the globe associated with large or supereruptions (Mamaku Tuff, New Zealand; Peach Spring Tuff, SW USA; early and late-erupted Bishop Tuff, California; and Toba Tuff, Indonesia) are studied using rhyolite-MELTS modeling. Key physical properties of magma are strongly affected by the initial volatile content due to fluid exsolution. By running simulations with varying water contents, we can track the evolution of fluid exsolution during crystallization. Isobaric (constrained temperature change at constant pressure) and isochoric (constrained temperature change at constant volume) models were run for the four compositions. In constrained-pressure scenarios, fluid is free to exsolve as crystallization proceeds, and the total system volume can increase or decrease accordingly; this would require deformation of the surrounding crust to accommodate the magma volume change. In constrained-volume scenarios, bubble exsolution is limited to the volume change due to crystallization; in this case, pressure can decrease or increase (if bubbles are absent or present). For fixed-pressure scenarios, fluid exsolution is more extensive and leads to internal triggering, at least for fluid-saturated conditions; external triggering is more likely in fluid-undersaturated conditions. For fixed-volume scenarios, none of the systems cross a fragmentation threshold for the crystal contents typically observed in natural pumice. If

  8. The Gibbs free energy of nukundamite (Cu3.38Fe0.62S4): A correction and implications for phase equilibria

    USGS Publications Warehouse

    Seal, R.R., II; Inan, E.E.; Hemingway, B.S.

    2001-01-01

    The Gibbs free energy of formation of nukundamite (Cu3.38Fe0.62S4) was calculated from published experimental studies of the reaction 3.25 Cu3.38Fe0.62S4 + S2 = 11 CuS + 2 FeS2 in order to correct an erroneous expression in the published record. The correct expression describing the Gibbs free energy of formation (kJ???mol-1) of nukundamite relative to the elements and ideal S2 gas is ??fG?? nukundamite T(K) = -549.75 + 0.23242 T + 3.1284 T0.5, with an uncertainty of 0.6%. An evaluation of the phase equilibria of nukundamite with associated phases in the system Cu-Fe-S as a function of temperature and sulfur fugacity indicates that nukundamite is stable from 224 to 501??C at high sulfidation states. At its greatest extent, at 434??C, the stability field of nukundamite is only 0.4 log f(S2) units wide, which explains its rarity. Equilibria between nukundamite and bornite, which limit the stability of both phases, involve bornite compositions that deviate significantly from stoichiometric Cu5FeS4. Under equilibrium conditions in the system Cu-Fe-S, nukundamite + chalcopyrite is not a stable assemblage at any temperature.

  9. CRYOCHEM, Thermodynamic Model for Cryogenic Chemical Systems: Solid-Vapor and Solid-Liquid-Vapor Phase Equilibria Toward Applications on Titan and Pluto

    NASA Astrophysics Data System (ADS)

    Tan, S. P.; Kargel, J. S.; Adidharma, H.; Marion, G. M.

    2014-12-01

    Until in-situ measurements can be made regularly on extraterrestrial bodies, thermodynamic models are the only tools to investigate the properties and behavior of chemical systems on those bodies. The resulting findings are often critical in describing physicochemical processes in the atmosphere, surface, and subsurface in planetary geochemistry and climate studies. The extremely cold conditions on Triton, Pluto and other Kuiper Belt Objects, and Titan introduce huge non-ideality that prevents conventional models from performing adequately. At such conditions, atmospheres as a whole—not components individually—are subject to phase equilibria with their equilibrium solid phases or liquid phases or both. A molecular-based thermodynamic model for cryogenic chemical systems, referred to as CRYOCHEM, the development of which is still in progress, was shown to reproduce the vertical composition profile of Titan's atmospheric methane measured by the Huygens probe (Tan et al., Icarus 2013, 222, 53). Recently, the model was also used to describe Titan's global circulation where the calculated composition of liquid in Ligeia Mare is consistent with the bathymetry and microwave absorption analysis of T91 Cassini fly-by data (Tan et al., 2014, submitted). Its capability to deal with equilibria involving solid phases has also been demonstrated (Tan et al., Fluid Phase Equilib. 2013, 360, 320). With all those previous works done, our attention is now shifting to the lower temperatures in Titan's tropopause and on Pluto's surface, where much technical development remains for CRYOCHEM to assure adequate performance at low temperatures. In these conditions, solid-vapor equilibrium (SVE) is the dominant phase behavior that determines the composition of the atmosphere and the existing ices. Another potential application is for the subsurface phase equilibrium, which also involves liquid, thus three-phase equilibrium: solid-liquid-vapor (SLV). This presentation will discuss the

  10. A New Internally Consistent Thermodynamic Model for Calculating Hornblende-Bearing Phase Equilibria With Rhyolite-MELTS

    NASA Astrophysics Data System (ADS)

    Brooks, C. E.; Ghiorso, M. S.; Gualda, G. A.

    2011-12-01

    Hornblendes are the most widespread and compositionally variable hydrous minerals in igneous rocks, and provide important constraints on magmatic T-, P-conditions, volatile contents, and redox state. Despite their importance, the stability of hornblende is not currently modeled in the MELTS software package, due principally to the lack of an internally consistent thermodynamic model for the phase. This work represents a first attempt to rectify this deficiency. A database of phase compositions from hornblende-liquid equilibrium experiments was compiled from relevant studies in LEPR (Library of Experimental Phase Relations, Hirschmann et al. 2008) and supplemented with additional literature sources. We analyzed the compositional space of these compiled amphibole data using Principal Component Analysis (PCA) and selected eight component end-members to represent the major degrees of variance. A thermodynamic model was formulated under the assumption of ideal-site mixing on A, M4, M13, M2, and T1 sites, and a strictly regular solution to describe the excess Gibbs free energy of mixing. The model is calibrated from liquid-hornblende exchange equilibria with end-member properties (H, S, V) optimized along with excess mixing terms. The eight end-members selected, K-Hastingsite ( KCa2Mg4Fe3+Si6Al2O22(OH)2 ), Hastingsite ( NaCa2Mg4Fe3+Si6Al2O22(OH)2 ), Pargasite ( NaCa2Mg4AlSi6Al2O22(OH)2 ), Fe-Pargasite ( NaCa2Fe4AlSi6Al2O22(OH)2 ), Hornblende ( []Ca2Mg4AlSi7AlO22(OH)2 ), Kaersutite ( NaCa2Mg4TiSi6Al2O22OOH ), Edenite ( NaCa2Mg5AlSi7AlO22(OH)2 ), and Barroisite ( []NaCaMg3Al2Si7AlO22(OH)2 ), together with reciprocal exchange reactions, describe the general compositional variation of most volcanic amphiboles found in rocks spanning from basalt to rhyolite. The compiled database represents a liquid bulk compositional range from 40 to 73 wt. % SiO2. Preliminary modeling of natural and experimental whole rock data suggests hornblende compositions produced using this model in

  11. Phase equilibria of carbon dioxide and methane gas-hydrates predicted with the modified analytical S-L-V equation of state

    NASA Astrophysics Data System (ADS)

    Vinš, Václav; Jäger, Andreas; Hrubý, Jan; Span, Roland

    2012-04-01

    Gas-hydrates (clathrates) are non-stoichiometric crystallized solutions of gas molecules in the metastable water lattice. Two or more components are associated without ordinary chemical union but through complete enclosure of gas molecules in a framework of water molecules linked together by hydrogen bonds. The clathrates are important in the following applications: the pipeline blockage in natural gas industry, potential energy source in the form of natural hydrates present in ocean bottom, and the CO2 separation and storage. In this study, we have modified an analytical solid-liquid-vapor equation of state (EoS) [A. Yokozeki, Fluid Phase Equil. 222-223 (2004)] to improve its ability for modeling the phase equilibria of clathrates. The EoS can predict the formation conditions for CO2- and CH4-hydrates. It will be used as an initial estimate for a more complicated hydrate model based on the fundamental EoSs for fluid phases.

  12. Experimental determination and prediction of (solid+liquid) phase equilibria for binary mixtures of heavy alkanes and fatty acids

    NASA Astrophysics Data System (ADS)

    Benziane, Mokhtar; Khimeche, Kamel; Dahmani, Abdellah; Nezar, Sawsen; Trache, Djalal

    2012-06-01

    Solid-liquid equilibria for three binary mixtures, n-Eicosane (1) + Lauric acid (2), n-Tetracosane (1) + Stearic acid (2), and n-Octacosane (1) + Palmitic acid (2), were measured using a differential scanning calorimeter. Simple eutectic behaviour was observed for these systems. The experimental results were correlated by means of the modified UNIFAC (Larsen and Gmehling versions), UNIQUAC and ideal models. The root-mean-square deviations of the solubility temperatures for all measured data vary from 0.26 to 3.15 K and depend on the particular model used. The best solubility correlation was obtained with the UNIQUAC model.

  13. Transferable potentials for phase equilibria. 9. Explicit hydrogen description of benzene and five-membered and six-membered heterocyclic aromatic compounds.

    PubMed

    Rai, Neeraj; Siepmann, J Ilja

    2007-09-13

    The explicit hydrogen version of the transferable potentials for phase equilibria (TraPPE-EH) force field is extended to benzene, pyridine, pyrimidine, pyrazine, pyridazine, thiophene, furan, pyrrole, thiazole, oxazole, isoxazole, imidazole, and pyrazole. While the Lennard-Jones parameters for carbon, hydrogen (two types), nitrogen (two types), oxygen, and sulfur are transferable for all 13 compounds, the partial charges are specific for each compound. The benzene dimer energies for sandwich, T-shape, and parallel-displaced configurations obtained for the TraPPE-EH force field compare favorably with high-level electronic structure calculations. Gibbs ensemble Monte Carlo simulations were carried out to compute the single-component vapor-liquid equilibria for benzene, pyridine, three diazenes, and eight five-membered heterocycles. The agreement with experimental data is excellent with the liquid densities and vapor pressures reproduced within 1 and 5%, respectively. The critical temperatures and normal boiling points are predicted with mean deviations of 0.8 and 1.6%, respectively. PMID:17713943

  14. Chemical synthesis and modification of target phases of chalcogenide nanomaterials

    NASA Astrophysics Data System (ADS)

    Sines, Ian T.

    Inorganic nanoparticles have been at the forefront of materials research in recent years due to their utility in modern technological processes. Chalcogenide nanomaterials are of particular interest because of their wide range of desirable properties for semiconductors, magnetic devices, and energy industries. Primary factors that dictate the properties of the material are the elemental composition, crystal structure, stoichiometry, crystallite size, and particle morphology. One of the most common approaches to synthesize these materials is through solution mediated routes. This approach offers unique advantages in controlling the morphology and particle size that other methods lack. This dissertation describes our recent work on exploiting solution chemical routes to control the crystal structure and composition of chalcogenide nanomaterials. We will start by discussing solution chemistry routes to synthesize non-equilibrium phases of chaclogenide nanomaterials. By using low-temperature bottom-up techniques it is possible to trap kinetically stable phases that cannot be accessed using traditional high-temperature techniques. We used solution chemistry to synthesize and characterize, for the first time, wurtzite-type MnSe. Wurtzite-type MnSe is the end-member of the highly investigated ZnxMn1-xSe solid solution, a classic magnetic semiconductor system. We will then discuss PbO-type FeS, another non-equilibrium phase that is isostructural with the superconducting phase of FeSe. We synthesized phase-pure PbO-type FeS using a low-temperature solvothermal route. We will then discuss the post-synthetic modification of chalcogenides nanomaterials. By exploiting the solubility of Se and S in tri-n-octylphosphine we can selectively extract the chalcogen from preformed chalcogenide nanomaterials. This gives chemists a technique for purification and phase-targeting of particular chalcogenide phases. This method can be modified to facilitate anion exchange. When Te is

  15. Phase Equilibria Study of the ZnO-"FeO"-SiO2-Al2O3 System at Po2 10-8 atm

    NASA Astrophysics Data System (ADS)

    Liu, Hongquan; Cui, Zhixiang; Chen, Mao; Zhao, Baojun

    2016-04-01

    Phase equilibria studies on ZnO-"FeO"-SiO2-Al2O3 system have been carried out in the temperature range between 1523 K and 1573 K (1250 °C and 1300 °C) at Po2 10-8 atm. Experimental techniques applied in the present study include high temperature equilibration, quenching, and electron probe X-ray microanalysis (EPMA). The compositions of the phases present in the quenched samples were measured by EPMA and used to construct phase diagrams of the pseudo-ternary sections at fixed Al2O3 content. The experimental results show that, spinel, SiO2, and willemite are the major primary phase fields in the composition range investigated. With 2 wt pct Al2O3 content in the liquid phase, the liquidus temperature can be increased by 35 K in the spinel primary phase in comparison with Al2O3-free system. The partitioning of ZnO and Al2O3 between the spinel and liquid phases is also discussed in the paper.

  16. Adaptive dose modification for phase I clinical trials.

    PubMed

    Chu, Yiyi; Pan, Haitao; Yuan, Ying

    2016-09-10

    Most phase I dose-finding methods in oncology aim to find the maximum-tolerated dose from a set of prespecified doses. However, in practice, because of a lack of understanding of the true dose-toxicity relationship, it is likely that none of these prespecified doses are equal or reasonably close to the true maximum-tolerated dose. To handle this issue, we propose an adaptive dose modification (ADM) method that can be coupled with any existing dose-finding method to adaptively modify the dose, when it is needed, during the course of dose finding. To reflect clinical practice, we divide the toxicity probability into three regions: underdosing, acceptable, and overdosing regions. We adaptively add a new dose whenever the observed data suggest that none of the investigational doses are likely to be located in the acceptable region. The new dose is estimated via a nonparametric dose-toxicity model based on local polynomial regression. The simulation study shows that ADM substantially outperforms the similar existing method. We applied ADM to a phase I cancer trial. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27027650

  17. An analytical equation of state for describing isotropic-nematic phase equilibria of Lennard-Jones chain fluids with variable degree of molecular flexibility

    NASA Astrophysics Data System (ADS)

    van Westen, Thijs; Oyarzún, Bernardo; Vlugt, Thijs J. H.; Gross, Joachim

    2015-06-01

    We develop an equation of state (EoS) for describing isotropic-nematic (IN) phase equilibria of Lennard-Jones (LJ) chain fluids. The EoS is developed by applying a second order Barker-Henderson perturbation theory to a reference fluid of hard chain molecules. The chain molecules consist of tangentially bonded spherical segments and are allowed to be fully flexible, partially flexible (rod-coil), or rigid linear. The hard-chain reference contribution to the EoS is obtained from a Vega-Lago rescaled Onsager theory. For the description of the (attractive) dispersion interactions between molecules, we adopt a segment-segment approach. We show that the perturbation contribution for describing these interactions can be divided into an "isotropic" part, which depends only implicitly on orientational ordering of molecules (through density), and an "anisotropic" part, for which an explicit dependence on orientational ordering is included (through an expansion in the nematic order parameter). The perturbation theory is used to study the effect of chain length, molecular flexibility, and attractive interactions on IN phase equilibria of pure LJ chain fluids. Theoretical results for the IN phase equilibrium of rigid linear LJ 10-mers are compared to results obtained from Monte Carlo simulations in the isobaric-isothermal (NPT) ensemble, and an expanded formulation of the Gibbs-ensemble. Our results show that the anisotropic contribution to the dispersion attractions is irrelevant for LJ chain fluids. Using the isotropic (density-dependent) contribution only (i.e., using a zeroth order expansion of the attractive Helmholtz energy contribution in the nematic order parameter), excellent agreement between theory and simulations is observed. These results suggest that an EoS contribution for describing the attractive part of the dispersion interactions in real LCs can be obtained from conventional theoretical approaches designed for isotropic fluids, such as a Perturbed

  18. Optimized Mie potentials for phase equilibria: Application to noble gases and their mixtures with n-alkanes

    NASA Astrophysics Data System (ADS)

    Mick, Jason R.; Soroush Barhaghi, Mohammad; Jackman, Brock; Rushaidat, Kamel; Schwiebert, Loren; Potoff, Jeffrey J.

    2015-09-01

    Transferrable force fields, based on n-6 Mie potentials, are presented for noble gases. By tuning the repulsive exponent, ni, it is possible to simultaneously reproduce experimental saturated liquid densities and vapor pressures with high accuracy, from the normal boiling point to the critical point. Vapor-liquid coexistence curves for pure fluids are calculated using histogram reweighting Monte Carlo simulations in the grand canonical ensemble. For all noble gases, saturated liquid densities and vapor pressures are reproduced to within 1% and 4% of experiment, respectively. Radial distribution functions, extracted from NVT and NPT Monte Carlo simulations, are in similarly excellent agreement with experimental data. The transferability of the optimized force fields is assessed through calculations of binary mixture vapor-liquid equilibria. These mixtures include argon + krypton, krypton + xenon, methane + krypton, methane + xenon, krypton + ethane, and xenon + ethane. For all mixtures, excellent agreement with experiment is achieved without the introduction of any binary interaction parameters or multi-body interactions.

  19. Optimized Mie potentials for phase equilibria: Application to noble gases and their mixtures with n-alkanes.

    PubMed

    Mick, Jason R; Soroush Barhaghi, Mohammad; Jackman, Brock; Rushaidat, Kamel; Schwiebert, Loren; Potoff, Jeffrey J

    2015-09-21

    Transferrable force fields, based on n-6 Mie potentials, are presented for noble gases. By tuning the repulsive exponent, ni, it is possible to simultaneously reproduce experimental saturated liquid densities and vapor pressures with high accuracy, from the normal boiling point to the critical point. Vapor-liquid coexistence curves for pure fluids are calculated using histogram reweighting Monte Carlo simulations in the grand canonical ensemble. For all noble gases, saturated liquid densities and vapor pressures are reproduced to within 1% and 4% of experiment, respectively. Radial distribution functions, extracted from NVT and NPT Monte Carlo simulations, are in similarly excellent agreement with experimental data. The transferability of the optimized force fields is assessed through calculations of binary mixture vapor-liquid equilibria. These mixtures include argon + krypton, krypton + xenon, methane + krypton, methane + xenon, krypton + ethane, and xenon + ethane. For all mixtures, excellent agreement with experiment is achieved without the introduction of any binary interaction parameters or multi-body interactions. PMID:26395716

  20. Tales from supereruptions: Combining pumice and mineral textures with phase equilibria to constrain the evolution of giant silicic magma bodies in the crust

    NASA Astrophysics Data System (ADS)

    Gualda, G. A. R.; Pamukcu, A. S.; Wright, K. A.; Ghiorso, M. S.; Miller, C. F.

    2014-12-01

    Supereruption deposits demonstrate that giant magma bodies sporadically exist within the Earth's crust. We rely on study of such deposits to better understand the underlying magma bodies and their eruptions. We are studying several deposits: Bishop Tuff (BT, CA USA), Peach Spring Tuff (PST, SW USA), and Oruanui Tuff (OT, NZ). We combine quantitative textural characterization in 3D via x-ray tomography (XRT), focusing particularly on CSDs of major and accessory minerals; characterization of mineral zoning, particularly of Ti and CL in quartz, including inferences from diffusion chronometry; documentation of glass inclusion textures in 3D via XRT, with implications to crystallization timescales; and phase equilibria modeling (rhyolite-MELTS), including glass (inclusion and matrix) composition geobarometry, to constrain crystallization conditions. CSDs ubiquitously record a growth-dominated regime, characterized by limited nucleation, consistent with pre-eruptive crystallization under low supersaturation. Phenocryst interiors are largely unzoned, consistent with phase equilibria predictions of nearly invariant, effectively isothermal crystallization. Glass compositions record storage over a large spread of depths (~125-250 MPa) for early and late-erupted BT, while the OT represents multiple magma batches evacuated from different depths. Diffusion chronometry and melt inclusion faceting suggest pre-eruptive crystallization over centennial timescales. CSDs and mineral textures also record syn-eruptive crystallization, which results in huge numbers of small crystals, revealing extensive nucleation prior to eruption. Crystal rims develop on pre-existing phenocrysts, and they can be obvious if compositionally distinct from interiors (BT and PST). In PST, evidence for rim crystallization from hotter magma is very strong. BT contrasts with PST in many ways; evidence for heating is ambiguous, and pumice properties are difficult to reconcile with magma mixing, while the

  1. Phase equilibria among the superconductors in the Y[sub 2]O[sub 3][endash]BaO[endash]Cu[endash]O system

    SciTech Connect

    Zhou, Z.; Navrotsky, A. )

    1999-09-01

    The enthalpy of formation of Y[sub 2]Ba[sub 4]Cu[sub 7]O[sub 14.864] at room temperature has been determined by using high-temperature reaction calorimetry. The standard enthalpy of formation of the 247 phase is [Delta]H[sup o][sub f]=[minus]5463[plus minus]18 hthinsp;kJ hthinsp;mol[sup [minus]1]. Phase relationships among the superconductors, namely, the 123, 124, and 247, are assessed. It is intrinsic that impurity phases, such as Y[sub 2]Cu[sub 2]O[sub 5], BaCuO[sub 2], CuO, etc., coexist with the superconductors at equilibrium. Equilibria among the superconductor phases in the Y[sub 2]O[sub 3][endash]BaO[endash]Cu[endash]O system have been determined. The results show that, at the 124 bulk composition, the 247 phase coexists with the excess CuO in a narrow area of p[sub O[sub 2

  2. On the topological stability of magnetostatic equilibria

    NASA Technical Reports Server (NTRS)

    Tsinganos, K. C.; Rosner, R.; Distler, J.

    1984-01-01

    The topological stability of MHD equilibria is investigated by exploring the formal analogy, in the ideal MHD limit, between the topology of magnetic lines of force in coordinate space and the topology of integral surfaces of one- and two-dimensional Hamiltonian systems in phase space. It is demonstrated that in an astrophysical setting, symmetric magnetostatic equilibria satisfying the ideal MHD equations are exceptional. The principal result of the study is that previous infinitesimal perturbation theory calculations can be generalized to include finite-amplitude and symmetry-breaking effects. The effect of the ergodicity of perturbed symmetric equilibria on heat dispersal in magnetically dominated plasmas is discussed.

  3. The heat capacity of a natural monticellite and phase equilibria in the system CaO-MgO-SiO2-CO2

    USGS Publications Warehouse

    Sharp, Z.D.; Essene, E.J.; Anovitz, Lawrence M.; Metz, G.W.; Westrum, E.F., Jr.; Hemingway, B.S.; Valley, J.W.

    1986-01-01

    The heat capacity of a natural monticellite (Ca1.00Mg.09Fe.91Mn.01Si0.99O3.99) measured between 9.6 and 343 K using intermittent-heating, adiabatic calorimetry yields Cp0(298) and S2980 of 123.64 ?? 0.18 and 109.44 ?? 0.16 J ?? mol-1 K-1 respectively. Extrapolation of this entropy value to end-member monticellite results in an S0298 = 108.1 ?? 0.2 J ?? mol-1 K-1. High-temperature heat-capacity data were measured between 340-1000 K with a differential scanning calorimeter. The high-temperature data were combined with the 290-350 K adiabatic values, extrapolated to 1700 K, and integrated to yield the following entropy equation for end-member monticellite (298-1700 K): ST0(J ?? mol-1 K-1) = S2980 + 164.79 In T + 15.337 ?? 10-3 T + 22.791 ?? 105 T-2 - 968.94. Phase equilibria in the CaO-MgO-SiO2 system were calculated from 973 to 1673 K and 0 to 12 kbar with these new data combined with existing data for akermanite (Ak), diopside (Di), forsterite (Fo), merwinite (Me) and wollastonite (Wo). The location of the calculated reactions involving the phases Mo and Fo is affected by their mutual solid solution. A best fit of the thermodynamically generated curves to all experiments is made when the S0298 of Me is 250.2 J ?? mol-1 K-1 less than the measured value of 253.2 J ?? mol-1 K-1. A best fit to the reversals for the solid-solid and decarbonation reactions in the CaO-MgO-SiO2-CO2 system was obtained with the ??G0298 (kJ ?? mole-1) for the phases Ak(-3667), Di(-3025), Fo(-2051), Me(-4317) and Mo(-2133). The two invariant points - Wo and -Fo for the solid-solid reactions are located at 1008 ?? 5 K and 6.3 ?? 0.1 kbar, and 1361 ?? 10 K and 10.2 ?? 0.2 kbar respectively. The location of the thermodynamically generated curves is in excellent agreement with most experimental data on decarbonation equilibria involving these phases. ?? 1986.

  4. Phase equilibria and crystal structure of the complex oxides in the Ln-Ba-Co-O (Ln=Nd, Sm) systems

    SciTech Connect

    Gavrilova, L.Ya.; Aksenova, T.V.; Volkova, N.E.; Podzorova, A.S.; Cherepanov, V.A.

    2011-08-15

    The phase equilibria in the Ln-Ba-Co-O (Ln=Nd, Sm) systems were systematically studied at 1100 deg. C in air. The homogeneity ranges and crystal structure of the solid solutions: Ln{sub 2-x}Ba{sub x}O{sub 3-{delta}} (0phase diagrams for the Ln-Ba-Co-O (Ln=Nd, Sm) systems to the compositional triangle of metallic components were presented. - Graphical Abstract: Projections of isobaric isothermal phase diagrams of the Nd-Ba-Co-O system and Sm-Ba-Co-O system. Highlights: > Phase equilibria in the Ln-Ba-Co-O systems (Ln=Nd, Sm). > The homogeneity range for Nd{sub 2-x}Ba{sub x}O{sub 3-{delta}} solid solutions at studied conditions 0 The homogeneity range for Sm{sub 2-x}Ba{sub x}O{sub 3-{delta}} solid solutions at studied conditions 0 Nd{sub 3-y}Ba{sub y}Co{sub 2}O{sub 7} solid solutions within the range 0.7{<=}y{<=}0.8. > BaCo{sub 1-z}Sm{sub z}O{sub 3-{delta}} solid solutions within the range 0.1{<=}z{<=}0.2.

  5. Extension of Toth function from gas-solid to liquid-solid equilibria and application to reversed-phase liquid chromatography systems

    SciTech Connect

    Gritti, Fabrice; Guiochon, Georges A

    2006-03-01

    The extension of the {Psi} function developed by Toth from equilibria taking place at gas-solid interfaces to those taking place at liquid-solid interfaces was investigated. The results were applied to conventional liquid-solid systems used in reversed-phase liquid chromatography (RPLC). The adsorbents in these systems are made of porous silica having a hydrophobic solid surface obtained by chemically bonding C{sub 18} alkyl chains to a porous silica gel then endcapping the surface with trimethylsilyl groups. The liquid is an aqueous solution of an organic solvent, most often methanol or acetonitrile. The probe compound used here is phenol. Adsorption data of phenol were measured using the dynamic frontal analysis (FA) method. The excess adsorption of the organic solvent was measured using the minor disturbance (MD) method. Activity coefficients in the bulk were estimated through the UNIFAC group contributions. The results show that the {Psi} function predicts 90% of the total free energy of immersion, {Delta}F, of the solid when the concentration of phenol is moderate (typically less than 10 g/L). At higher concentrations, the nonideal behavior of the bulk liquid phase becomes significant and it may contribute up to about 30% of {Delta}F. The high concentration of adsorbed molecules of phenol at the interface decreases the interfacial tension, {sigma}, by about 18 mN/m, independently of the structure of the adsorbed phase and of the nature of the organic solvent.

  6. Phase Equilibria of the Ternary Sn-Pb-Co System at 250°C and Interfacial Reactions of Co with Sn-Pb Alloys

    NASA Astrophysics Data System (ADS)

    Wang, Chao-hong; Kuo, Chun-yi; Yang, Nian-cih

    2015-11-01

    The isothermal section of the ternary Sn-Pb-Co system at 250°C was experimentally determined through a series of the equilibrated Sn-Pb-Co alloys of various compositions. The equilibrium phases were identified on the basis of compositional analysis. For the Sn-Co intermetallic compounds (IMCs), CoSn3, CoSn2, CoSn and Co3Sn2, the Pb solubility was very limited. There exist five tie-triangle regions. The Co-Pb system involves one monotectic reaction, so the phase separation of liquid alloys near the Co-Pb side occurred prior to solidification. The immiscibility field was also determined. Additionally, interfacial reactions between Co and Sn-Pb alloys were conducted. The reaction phase for the Sn-48 at.%Pb and Sn-58 at.%Pb at 250°C was CoSn3 and CoSn2, respectively. Both of them were simultaneously formed in the Sn-53 at.%Pb/Co. The formed IMCs were closely associated to the phase equilibria relationship of the liquid-CoSn3-CoSn2 tie-triangle. Furthermore, with increasing temperatures, the phase formed in equilibrium with Sn-37 wt.%Pb was found to transit from CoSn3 to CoSn2 at 275°C. We propose a simple method of examining the phase transition temperature in the interfacial reactions to determine the boundaries of the liquid-CoSn3-CoSn2 tie-triangles at different temperatures.

  7. Computational Thermodynamic Study to Predict Complex Phase Equilibria in the Nickel-Base Superalloy Rene N6

    NASA Technical Reports Server (NTRS)

    Copland, Evan H.; Jacobson, Nathan S.; Ritzert, Frank J.

    2001-01-01

    A previous study by Ritzert et al. on the formation and prediction of topologically closed packed (TCP) phases in the nickel-base superalloy Rene' N6 is re-examined with computational thermodynamics. The experimental data on phase distribution in forty-four alloys with a composition within the patent limits of the nickel-base superalloy Rene' N6 provide a good basis for comparison to and validation of a commercial nickel superalloy database used with ThermoCalc. Volume fraction of the phases and partitioning of the elements are determined for the forty-four alloys in this dataset. The baseline heat treatment of 400 h at 1366 K was used. This composition set is particularly interesting since small composition differences lead to dramatic changes in phase composition. In general the calculated values follow the experimental trends. However, the calculations indicated no TCP phase formation when the experimental measurements gave a volume percent of TCP phase less than 2 percent. When TCP phases were predicted, the calculations under-predict the volume percent of TCP phases by a factor of 2 to 8. The calculated compositions of the gamma and gamma' phases show fair agreement with the measurements. However, the calculated compositions of the P Phase do not agree with those measured. This may be due to inaccuracies in the model parameters for P phase and/or issues with the microprobe analyses of these phases. In addition, phase fraction diagrams and sigma and P phase solvus temperatures are calculated for each of the alloys. These calculations indicate that P phase is the primary TCP phase formed for the alloys considered here at 1366 K. Finally, a series of isopleths are calculated for each of the seven alloying elements. These show the effect of each alloying element on creating TCP phases.

  8. Using nanogranitoids and phase equilibria modeling to unravel anatexis in the crustal footwall of the Ronda peridotites (Betic Cordillera, S Spain)

    NASA Astrophysics Data System (ADS)

    Bartoli, Omar; Acosta-Vigil, Antonio; Tajčmanová, Lucie; Cesare, Bernardo; Bodnar, Robert J.

    2016-07-01

    Anatexis in the crustal footwall of Ronda peridotites (Betic Cordillera, S Spain) is apparently related to the hot emplacement of this mantle slab over metasedimentary rocks. In this study, we combine the analysis of melt inclusions (MI) and phase equilibria calculations on quartzo-feldspathic mylonites (former migmatites) occurring at the contact with the mantle rocks, in the region of Sierra Alpujata (Ojén unit). The goal is to better characterize anatexis in these rocks and to provide new constraints on the geodynamic evolution of the crustal footwall. Such data are important for understanding the mechanisms of crustal emplacement of the mantle slice. The quartzo-feldspathic mylonites are characterized by the mineral assemblage Qtz + Pl + Kfs + Sil + Grt + Ilm + Bt ± Ap ± Gr. Clusters of MI are observed both at the core and toward the rim of peritectic garnet. In each cluster, MI range from totally glassy to nanogranitoids, consisting of Qtz + Kfs + Bt + Ms + Pl aggregates. The trapped melt is leucogranitic and peraluminous with variable Na2O/K2O values and low H2O contents (≈ 2-4 wt%). Phase equilibria modeling in the MnO-Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2-TiO2-O2-C (MnNCaKFMASHTOC) system with graphite-saturated fluid constrains the P-T conditions of melting at ≈ 6 kbar, ≈ 820 °C. MI data support the fluid-absent character of melting. The investigated MI represent the primary anatectic melts produced during prograde anatexis of the host rocks via biotite dehydration melting. Field, compositional, and textural observations indicate that mylonitic migmatites represent strongly deformed former diatexites. The comparison between the new data and some recently published information on migmatites located further from the contact with the peridotites and toward the bottom of the crustal footwall, raises some important issues which question the previously proposed geodynamic models for this region. Among them, (i) the crustal footwall at Sierra Alpujata

  9. Computation of liquid-liquid equilibria and phase stabilities: implications for RH-dependent gas/particle partitioning of organic-inorganic aerosols

    NASA Astrophysics Data System (ADS)

    Zuend, A.; Marcolli, C.; Peter, T.; Seinfeld, J. H.

    2010-05-01

    Semivolatile organic and inorganic aerosol species partition between the gas and aerosol particle phases to maintain thermodynamic equilibrium. Liquid-liquid phase separation into an organic-rich and an aqueous electrolyte phase can occur in the aerosol as a result of the salting-out effect. Such liquid-liquid equilibria (LLE) affect the gas/particle partitioning of the different semivolatile compounds and might significantly alter both particle mass and composition as compared to a one-phase particle. We present a new liquid-liquid equilibrium and gas/particle partitioning model, using as a basis the group-contribution model AIOMFAC (Zuend et al., 2008). This model allows the reliable computation of the liquid-liquid coexistence curve (binodal), corresponding tie-lines, the limit of stability/metastability (spinodal), and further thermodynamic properties of the phase diagram. Calculations for ternary and multicomponent alcohol/polyol-water-salt mixtures suggest that LLE are a prevalent feature of organic-inorganic aerosol systems. A six-component polyol-water-ammonium sulphate system is used to simulate effects of relative humidity (RH) and the presence of liquid-liquid phase separation on the gas/particle partitioning. RH, salt concentration, and hydrophilicity (water-solubility) are identified as key features in defining the region of a miscibility gap and govern the extent to which compound partitioning is affected by changes in RH. The model predicts that liquid-liquid phase separation can lead to either an increase or decrease in total particulate mass, depending on the overall composition of a system and the particle water content, which is related to the hydrophilicity of the different organic and inorganic compounds. Neglecting non-ideality and liquid-liquid phase separations by assuming an ideal mixture leads to an overestimation of the total particulate mass by up to 30% for the composition and RH range considered in the six-component system simulation

  10. Computation of liquid-liquid equilibria and phase stabilities: implications for RH-dependent gas/particle partitioning of organic-inorganic aerosols

    NASA Astrophysics Data System (ADS)

    Zuend, A.; Marcolli, C.; Peter, T.; Seinfeld, J. H.

    2010-08-01

    Semivolatile organic and inorganic aerosol species partition between the gas and aerosol particle phases to maintain thermodynamic equilibrium. Liquid-liquid phase separation into an organic-rich and an aqueous electrolyte phase can occur in the aerosol as a result of the salting-out effect. Such liquid-liquid equilibria (LLE) affect the gas/particle partitioning of the different semivolatile compounds and might significantly alter both particle mass and composition as compared to a one-phase particle. We present a new liquid-liquid equilibrium and gas/particle partitioning model, using as a basis the group-contribution model AIOMFAC (Zuend et al., 2008). This model allows the reliable computation of the liquid-liquid coexistence curve (binodal), corresponding tie-lines, the limit of stability/metastability (spinodal), and further thermodynamic properties of multicomponent systems. Calculations for ternary and multicomponent alcohol/polyol-water-salt mixtures suggest that LLE are a prevalent feature of organic-inorganic aerosol systems. A six-component polyol-water-ammonium sulphate system is used to simulate effects of relative humidity (RH) and the presence of liquid-liquid phase separation on the gas/particle partitioning. RH, salt concentration, and hydrophilicity (water-solubility) are identified as key features in defining the region of a miscibility gap and govern the extent to which compound partitioning is affected by changes in RH. The model predicts that liquid-liquid phase separation can lead to either an increase or decrease in total particulate mass, depending on the overall composition of a system and the particle water content, which is related to the hydrophilicity of the different organic and inorganic compounds. Neglecting non-ideality and liquid-liquid phase separations by assuming an ideal mixture leads to an overestimation of the total particulate mass by up to 30% for the composition and RH range considered in the six-component system

  11. Phase equilibria in the system H{sub 2}O-NaCl-KCl-MgCl{sub 2} relevant to salt cake processing

    SciTech Connect

    Bodnar, R.J.; Vityk, M.O.; Hryn, J.N.; Mavrogenes, J.

    1997-02-01

    One waste product in recycling of Al is salt cake, a mixture of Al, salts, and residue oxides. Several methods have been proposed to recycle salt cake, one involving high-temperature leaching of salts from the salt cake. The salt composition can be approximated as a mixture predominantly of NaCl and KCl salts, with lesser amounts of Mg chloride. In order to better assess the feasibility of recycling salt cake, an experimental study was conducted of phase equilibria in the system H{sub 2}O-NaCl-KCl-MgCl{sub 2} at pressure (P), temperature (T), and composition conditions appropriate for high- temperature salt cake recycling. These experiments were designed to evaluate the effect of small amounts (2-10 wt%) of MgCl{sub 2} on solubilities of halite (NaCl) and sylvite (KCl) in saturated solutions (30-50 wt% NaCl+KCl; NaCl:KCl = 1:1 and 3:1) at elevated P and T.

  12. Thermodynamics and phase equilibria of the silicate-fluoride-water systems: Implications for fluorine-bearing granites

    NASA Astrophysics Data System (ADS)

    Dolejs, David

    The progressive enrichment in volatiles and light incompatible elements observed during upper-crustal differentiation of granitic and rhyolitic magmas leads to significant changes in melt physical-chemical properties and has important implications for ore deposition and volcanic devolatization. Thermodynamic calculations and experimental studies of melting equilibria in the Na 2O-K2O-Al2O3-SiO2-F 2O-1-H2O system are used to evaluate mineral stabilities, fluid compositions, the extent of fluoride-silicate liquid-liquid immiscibility, fluorine and water solubility limits and differentiation paths of natural fluorine-bearing silicic magmas. The interaction of fluorine with rock-forming aluminosilicates corresponds to progressive fluorination by the thermodynamic component F2O-1. Formation of fluorine-bearing minerals first occurs in peralkaline and silica-undersaturated systems that buffer fluorine concentrations at very low levels (villiaumite, fluorite). The highest concentrations of fluorine are achieved in peraluminous silica-oversaturated systems, saturated with fluorite or topaz. Thermodynamic models of fluorosilicate melts indicate clustering of silicate tetrahedra in the Na2O-SiO 2-F2O-1 system, whereas initial NaAl-F short-range order evolves into partial O-F disorder in the albite-cryolite system. Experiments performed at 520-1100°C and 0.1-100 MPa completely describe liquidus relations and differentiation paths of fluorine-bearing felsic magmas. Coordination differences and short-range order effects between [NaAl]-F, Na-F vs. Si-O lead to the fluoride-silicate liquid immiscibility, which extends from the silica-cryolite binary through the peralkaline albite-silica-cryolite ternary and closes in multicomponent, topaz-bearing systems owing to the destabilizing effect of increasing peraluminosity. Liquidus relations indicate that fluoride-silicate liquid-liquid immiscibility is inaccessible to quartz-feldspar-saturated granitic melts. Differentiation paths of

  13. Phase equilibria in the Fe-rich corner of the Nd-Fe-Ti ternary alloy system at 1100 C

    NASA Astrophysics Data System (ADS)

    Margarian, A.; Dunlop, J. B.; Day, R. K.; Kalceff, W.

    1994-11-01

    High-temperature phase relations in the Fe-rich corner of the Nd-Fe-Ti ternary alloy system have been investigated and an equilibrium phase diagram has been constructed at 1100 C. Arc-melted and annealed alloys of systematically varying compositions were characterized utilizing scanning electron microscopy, and energy dispersive x-ray microanalysis system (EDS), x-ray diffraction, and optical metallography. Three major phases have been idenfified, the well known Nd(Fe,Ti)12 '1:12' (ThMn12-type structure) and Nd2(Fe,Ti)17 '2:17' (Th2Zn17-type structure compounds, and a phase with approximate composition Nd2(Fe,Ti)19 '2:19.' The crystal structure of the latter phase has very recently been solved, and the 'ideal' composition shown to be Nd3(Fe,Ti)29 '3:29.' Quantitative EDS data has been used to identify the compositional limits for the three major phases. Annealing the '1:12' and '3:29' ternary phases at 900 C results in a slow decomposition into Nd2(Fe,Ti)17, Fe2Ti, and alpha-Fe(Ti).

  14. Phase equilibria in four-component system consisting of water, a nonionic surfactant mixture, and oleic acid

    SciTech Connect

    Matveenko, V.N.; Drovetskii, B.Yu.; Kirasanov, E.A.

    1994-05-01

    The phase diagram of the system consisting of water, Tween 20, Span 80, and oleic acid has been obtained; the coexisting phases have been identified; and the character of the equilibrium of microemulsion, liquid crystal, and molecular solution has been described. In the water-Tween 20-oleic acid system, the ratio of the water volume to the surfactant volume is identical in all of the coexisting phases; this proves the existence of a corresponding field variable in a system with a nonionic surfactant.

  15. Programmable phase plate for tool modification in laser machining applications

    DOEpatents

    Thompson Jr., Charles A.; Kartz, Michael W.; Brase, James M.; Pennington, Deanna; Perry, Michael D.

    2004-04-06

    A system for laser machining includes a laser source for propagating a laser beam toward a target location, and a spatial light modulator having individual controllable elements capable of modifying a phase profile of the laser beam to produce a corresponding irradiance pattern on the target location. The system also includes a controller operably connected to the spatial light modulator for controlling the individual controllable elements. By controlling the individual controllable elements, the phase profile of the laser beam may be modified into a desired phase profile so as to produce a corresponding desired irradiance pattern on the target location capable of performing a machining operation on the target location.

  16. Phase equilibria study of {N-hexylisoquinolinium bis{(trifluoromethyl)sulfonyl}imide + aromatic hydrocarbons or an alcohol} binary systems.

    PubMed

    Domańska, Urszula; Zawadzki, Maciej; Tshibangu, M Marc; Ramjugernath, Deresh; Letcher, Trevor M

    2011-04-14

    Isoquinolinium ionic liquid (IL) has been synthesized from N-hexylisoquinolinium bromide as a substrate. Specific basic characterization of the synthesized compound is included, which includes NMR spectra, elementary analysis, and water content. The basic thermal properties of the pure IL, that is, melting and solid-solid transition temperatures, as well as the enthalpy of fusion, or solid-solid transition have been measured using a differential scanning microcalorimetry technique. The density and viscosity as a function of temperature have been measured for the pure IL at temperatures higher than the melting temperature and were extrapolated to T = 298.15 K. The temperature-composition phase diagrams of 8 binary mixtures composed of the IL N-hexylisoquinolinium bis{(trifluoromethyl)sulfonyl}imide, ([HiQuin][NTf(2)]) and an aromatic hydrocarbon (benzene, or toluene, or ethylbenzene, n-propylbenzene) or an alcohol (1-butanol, or 1-hexanol, or 1-octanol, or 1-decanol) have been determined from ambient temperature to the boiling-point temperature of the solvent at ambient pressure. A dynamic method was used over a broad range of mole fractions and temperatures from 270 to 330 K. For the binary systems, the eutectic diagrams were observed with immiscibility in the liquid phase with an upper critical solution temperature (UCST). In the case of the mixture {IL + benzene, or alkylbenzene} the eutectic systems with mutual immiscibility in the liquid phase with very high UCSTs were observed. These points were not detectable with our method and were observed at low IL mole fraction. For mixtures with alcohols, it was observed that with an increasing chain length of an alcohol, the solubility decreases and the UCST increases. The coexistence curves corresponding to liquid-liquid phase equilibrium boundaries and the solid-liquid phase equilibrium has been correlated using the well-known nonrandom two-liquid (NRTL) model. PMID:21417475

  17. Phase equilibria and distribution constants of metal ions in diantipyryl alkane-organic acid-hydrochloric acid-water systems

    NASA Astrophysics Data System (ADS)

    Degtev, M. I.; Popova, O. N.; Yuminova, A. A.

    2014-08-01

    The ability of antipyrine and its derivatives (diantipyryl alkanes) to form separating systems in the presence of salicylic (sulfosalicylic) acid and hydrochloric acid and water is studied. The optimum volume of the organic phase, the composition of complexes, and the mechanism for the distribution of metal ions are determined, depending on the concentrations of the main components and the salting-out agent. The complex distribution and extraction constants are calculated.

  18. Phase equilibria and elements partitioning in zirconolite-rich region of Ca-Zr-Ti-Al-Gd-Si-O system

    SciTech Connect

    Knyazev, O.A.; Stefanovsky, S.V.; Ioudintsev, S.V.; Nikonov, B.S.; Omelianenko, B.I.; Mokhov, A.V.; Yakushev, A.I.

    1997-12-31

    Zirconolite-rich ceramics were produced by the cold crucible melting technique in an air atmosphere, at 1550 {+-} 50 C and 1 atm. Four samples with overall composition (in wt.%): 4.9-14.3 CaO; 19.0-41.3 ZrO{sub 2}; 24.1-42.6 TiO{sub 2}; 1.3-11.3 Al{sub 2}O{sub 3}; 6.8-30.0 Gd{sub 2}O{sub 3}; and 1.1-8.5 SiO{sub 2} have been studied. Total phases in the ceramics consist of major zirconolite and minor rutile, perovskite, zirconia, aluminium titanate, and glass. The Gd{sub 2}O{sub 3} content in zirconolite reaches up to 31.4 wt.% corresponding to the formula: (Ca{sub 0.4},Gd{sub 0.7})Zr{sub 1.0}(Ti{sub 1.4},Al{sub 0.5})O{sub 7.0}. The data on the phase composition agree well with coupled Gd incorporation into the mineral structure: Ca(II) + Ti(IV) = Gd(III) + Al(III), and 2Gd(III) = Ca(II) + Zr(IV). The highest Gd contents observed in the other phases are 25.4% for zirconia, 12.6% in glass, 8.8% in perovskite, and 1.4% for rutile. The rest of the elements` distribution in the samples are analyzed.

  19. Phase equilibria between iron and slag in carbon monoxide/carbon dioxide/water atmospheres relevant to a novel flash ironmaking technology

    NASA Astrophysics Data System (ADS)

    Mohassab Ahmed, Mohassab Yousef

    In an effort to develop a novel flash ironmaking process, to be called the Sohn process in this dissertation, with the potential of steelmaking in a single continuous process, the phase equilibria involved and the chemistry of selected slag systems were investigated. The Sohn process is an ecofriendly flash ironmaking process for producing iron from iron oxide concentrates in a flash reactor using fuels and reductants that help reduce energy consumption and minimize greenhouse gas emissions. Amongst the proposed reductants and fuels are H2, natural gas, and coal gas. The molten bath (iron-slag bath) is expected to equilibrate with gas atmospheres of mainly H2/H 2O, CO/CO2/H2/H2O, and CO/CO2 corresponding to H2, natural gas/coal gas (NG/CG), and coke/coal (blast furnace, BF), respectively. The latter was investigated to allow comparison with the blast-furnace conditions. The slag composition was selected to resemble that of the blast furnace, which consisted of the CaO-MgO-SiO2-Al 2O2-FeO-MnO-P2O5 system with CaO/SiO 2 in the range 0.8 to 1.4. The temperature range was 1550 to 1650°C encompassing a wide range of expected ironmaking temperatures for the Sohn process. The oxygen partial pressure was maintained in the reducing range 10-10 to 10-9 atm in the three gas atmospheres. It was found that H2O dramatically affects the chemistry of the slag and strongly affects the phase equilibria in the slag as well as the equilibrium distribution of elements between slag and molten metal. It was found that the slags under H2O-containing (H2 and NG/CG) atmospheres had a moderately higher degree of polymerization as compared to that under the blast furnace conditions. H2O in the gas atmosphere also increased the activity coefficient of FeO in the slag and accordingly lowered the FeO content. The FeO content in the slag of H 2 (FeO wt% = 10) and NG/CG (11) was significantly less than under the BF (16) conditions. On the other hand, the average MgO solubility (22 wt%) under the

  20. Storage conditions and evolution of andesitic magma prior to the 1991 95 eruption of Unzen volcano: Constraints from natural samples and phase equilibria experiments

    NASA Astrophysics Data System (ADS)

    Botcharnikov, Roman E.; Holtz, Francois; Almeev, Renat R.; Sato, Hiroaki; Behrens, Harald

    2008-07-01

    The compositions of homogenized melt inclusions trapped in plagioclase (Pl) microphenocrysts (40-200 μm length) from mafic enclaves within dacitic rocks erupted at Unzen volcano in 1991-95 were investigated. The SiO 2 contents of the melt inclusions vary from 58 to 70 wt.% and Pl anorthite content is An 50-70. The stability fields (in terms of temperature and water activity) of natural Pl and coexisting melts from the melt inclusions were estimated from data of phase equilibria experiments performed with a synthetic andesite composition at T = 900-1140 °C, P = 200 MPa, log fO 2 = NNO-2-NNO, and water activity of about 0-1. This composition is representative of the average composition of mafic enclaves from the 1991-95 eruption and nearly identical to the composition of andesitic lavas from 1663 Unzen eruption. The temperatures and H 2O melt concentrations, calculated using the compositions of coexisting Pl and melt inclusions, provide an estimation of the conditions of andesitic magma evolution within the mafic enclaves prior to eruption. The formation of melt inclusions in plagioclase microphenocrysts occurred at a maximum temperature of ~ 1010 ± 35 °C for a melt containing 2 wt.% H 2O and a minimum temperature of ˜ 945 °C ± 30 °C for a melt with ˜ 4 wt.% dissolved H 2O. The compositional range of the melt inclusions indicates that the composition of the mafic enclave was not significantly contaminated by the host magma when inclusions were formed. The difference between concentrations of dissolved S (up to 0.06 wt.%) and Cl (up to 0.05 wt.%) in melt inclusions in Pl of mafic enclaves and concentrations of S (< 0.005 wt.%) and Cl (0.05-0.11 wt.%) in melt inclusions in phenocrysts of the dacitic magma clearly implies that two distinct sources for S and Cl in the 1991-95 eruption of Unzen volcano need to be considered. Sulfur degassing was generated by a release of fluids from the high-temperature andesitic magma whereas Cl was degassed from the low

  1. Density functional models of the interfacial tensions near the critical endpoints and tricritical point of three-phase equilibria.

    PubMed

    Koga, K; Widom, B

    2016-06-22

    We treat two different density-functional models of the structures and tensions of the interfaces between phases on approach to the tricritical point of three-phase equilibrium. The major objective is to account for some of the results of earlier experimental measurements of these tensions. The thermodynamic background is first reviewed, including representations of the properties near the critical endpoints and tricritical point and of the wetting transitions that may occur on approach to those critical points. The first of the models treated is analytically soluble. Its properties are illuminating but at the price of some artificiality paid for its analytical solubility. The second model, called model T, is in a class of those treated in the past and analyzed numerically. Some of its properties are obtained with sufficient precision to allow one to conclude with near certainty what the analytically exact results would be. This model, too, illuminates the experimental measurements. It is noted where its properties are in accord with those of the analytically soluble model and where the two differ. PMID:27116351

  2. Density functional models of the interfacial tensions near the critical endpoints and tricritical point of three-phase equilibria

    NASA Astrophysics Data System (ADS)

    Koga, K.; Widom, B.

    2016-06-01

    We treat two different density-functional models of the structures and tensions of the interfaces between phases on approach to the tricritical point of three-phase equilibrium. The major objective is to account for some of the results of earlier experimental measurements of these tensions. The thermodynamic background is first reviewed, including representations of the properties near the critical endpoints and tricritical point and of the wetting transitions that may occur on approach to those critical points. The first of the models treated is analytically soluble. Its properties are illuminating but at the price of some artificiality paid for its analytical solubility. The second model, called model T, is in a class of those treated in the past and analyzed numerically. Some of its properties are obtained with sufficient precision to allow one to conclude with near certainty what the analytically exact results would be. This model, too, illuminates the experimental measurements. It is noted where its properties are in accord with those of the analytically soluble model and where the two differ.

  3. Phase-equilibria for design of coal-gasification processes: dew points of hot gases containing condensible tars. Final report

    SciTech Connect

    Prausnitz, J.M.

    1980-05-01

    This research is concerned with the fundamental physical chemistry and thermodynamics of condensation of tars (dew points) from the vapor phase at advanced temperatures and pressures. Fundamental quantitative understanding of dew points is important for rational design of heat exchangers to recover sensible heat from hot, tar-containing gases that are produced in coal gasification. This report includes essentially six contributions toward establishing the desired understanding: (1) Characterization of Coal Tars for Dew-Point Calculations; (2) Fugacity Coefficients for Dew-Point Calculations in Coal-Gasification Process Design; (3) Vapor Pressures of High-Molecular-Weight Hydrocarbons; (4) Estimation of Vapor Pressures of High-Boiling Fractions in Liquefied Fossil Fuels Containing Heteroatoms Nitrogen or Sulfur; and (5) Vapor Pressures of Heavy Liquid Hydrocarbons by a Group-Contribution Method.

  4. Sorption equilibria of vapor-phase organic pollutants on unsaturated soils and soil minerals. Final report, Mar 85-Mar 89

    SciTech Connect

    Lion, L.W.; Ong, S.K.; Linder, S.R.; Swager, J.L.; Schwager, S.J.

    1990-04-01

    Most groundwater pollutants are volatile organic compounds; however, there is relatively little understanding of the sorption reactions that control the transport and fate of organic vapors in the vadose zone. This investigation identified the physical/chemical properties of the soil matrix and organic vapors which control vapor-solid phase distribution. The dominant property which regulates vapor sorption in the unsaturated zone is the moisture content of the soil. Under very dry conditions, soil mineral/vapor interactions are regulated by specific surface area, indicating the dominance of a relatively non-specific physical adsorption process. However, at moisture contents exceeding an average surface coverage of four to eight layers of water, vapor uptake is controlled by partitioning reactions into soil moisture and soil organic matter.

  5. Phase Equilibria, Crystal Structure and Hydriding/Dehydriding Mechanism of Nd4Mg80Ni8 Compound

    NASA Astrophysics Data System (ADS)

    Luo, Qun; Gu, Qin-Fen; Zhang, Jie-Yu; Chen, Shuang-Lin; Chou, Kuo-Chih; Li, Qian

    2015-10-01

    In order to find out the optimal composition of novel Nd-Mg-Ni alloys for hydrogen storage, the isothermal section of Nd-Mg-Ni system at 400 °C is established by examining the equilibrated alloys. A new ternary compound Nd4Mg80Ni8 is discovered in the Mg-rich corner. It has the crystal structure of space group I41/amd with lattice parameters of a = b = 11.2743(1) Å and c = 15.9170(2) Å, characterized by the synchrotron powder X-ray diffraction (SR-PXRD). High-resolution transmission electron microscopy (HR-TEM) is used to investigate the microstructure of Nd4Mg80Ni8 and its hydrogen-induced microstructure evolution. The hydrogenation leads to Nd4Mg80Ni8 decomposing into NdH2.61-MgH2-Mg2NiH0.3 nanocomposites, where the high density phase boundaries provide a great deal of hydrogen atoms diffusion channels and nucleation sites of hydrides, which greatly enhances the hydriding/dehydriding (H/D) properties. The Nd4Mg80Ni8 exhibits a good cycle ability. The kinetic mechanisms of H/D reactions are studied by Real Physical Picture (RPP) model. The rate controlling steps are diffusion for hydriding reaction in the temperature range of 100 ~ 350 °C and surface penetration for dehydriding reaction at 291 ~ 347 °C. In-situ SR-PXRD results reveal the phase transformations of Mg to MgH2 and Mg2Ni to Mg2NiH4 as functions of hydrogen pressure and hydriding time.

  6. Phase Equilibria, Crystal Structure and Hydriding/Dehydriding Mechanism of Nd4Mg80Ni8 Compound

    PubMed Central

    Luo, Qun; Gu, Qin-Fen; Zhang, Jie-Yu; Chen, Shuang-Lin; Chou, Kuo-Chih; Li, Qian

    2015-01-01

    In order to find out the optimal composition of novel Nd-Mg-Ni alloys for hydrogen storage, the isothermal section of Nd-Mg-Ni system at 400 °C is established by examining the equilibrated alloys. A new ternary compound Nd4Mg80Ni8 is discovered in the Mg-rich corner. It has the crystal structure of space group I41/amd with lattice parameters of a = b = 11.2743(1) Å and c = 15.9170(2) Å, characterized by the synchrotron powder X-ray diffraction (SR-PXRD). High-resolution transmission electron microscopy (HR-TEM) is used to investigate the microstructure of Nd4Mg80Ni8 and its hydrogen-induced microstructure evolution. The hydrogenation leads to Nd4Mg80Ni8 decomposing into NdH2.61-MgH2-Mg2NiH0.3 nanocomposites, where the high density phase boundaries provide a great deal of hydrogen atoms diffusion channels and nucleation sites of hydrides, which greatly enhances the hydriding/dehydriding (H/D) properties. The Nd4Mg80Ni8 exhibits a good cycle ability. The kinetic mechanisms of H/D reactions are studied by Real Physical Picture (RPP) model. The rate controlling steps are diffusion for hydriding reaction in the temperature range of 100 ~ 350 °C and surface penetration for dehydriding reaction at 291 ~ 347 °C. In-situ SR-PXRD results reveal the phase transformations of Mg to MgH2 and Mg2Ni to Mg2NiH4 as functions of hydrogen pressure and hydriding time. PMID:26471964

  7. Phase equilibria, formation, crystal and electronic structure of ternary compounds in Ti-Ni-Sn and Ti-Ni-Sb ternary systems

    SciTech Connect

    Romaka, V.V.; Rogl, P.; Romaka, L.; Stadnyk, Yu.; Melnychenko, N.; Grytsiv, A.; Falmbigl, M.; Skryabina, N.

    2013-01-15

    The phase equilibria of the Ti-Ni-Sn and Ti-Ni-Sb ternary systems have been studied in the whole concentration range by means of X-ray and EPM analyses at 1073 K and 873 K, respectively. Four ternary intermetallic compounds TiNiSn (MgAgAs-type), TiNi{sub 2-x}Sn (MnCu{sub 2}Al-type), Ti{sub 2}Ni{sub 2}Sn (U{sub 2}Pt{sub 2}Sn-type), and Ti{sub 5}NiSn{sub 3} (Hf{sub 5}CuSn{sub 3}-type) are formed in Ti-Ni-Sn system at 1073 K. The TiNi{sub 2}Sn stannide is characterized by homogeneity in the range of 50-47 at% of Ni. The Ti-Ni-Sb ternary system at 873 K is characterized by formation of three ternary intermetallic compounds, Ti{sub 0.8}NiSb (MgAgAs-type), Ti{sub 5}Ni{sub 0.45}Sb{sub 2.55} (W{sub 5}Si{sub 3}-type), and Ti{sub 5}NiSb{sub 3} (Hf{sub 5}CuSn{sub 3}-type). The solubility of Ni in Ti{sub 0.8}NiSb decreases number of vacancies in Ti site up to Ti{sub 0.91}Ni{sub 1.1}Sb composition. - Graphical abstract: Isothermal section of the Ti-Ni-Sn phase diagram and DOS distribution in hypothetical TiNi{sub 1+x}Sn solid solution. Highlights: Black-Right-Pointing-Pointer Ti-Ni-Sn phase diagram was constructed at 1073 K. Black-Right-Pointing-Pointer Four ternary compounds are formed: TiNiSn, TiNi{sub 2-x}Sn, Ti{sub 2}Ni{sub 2}Sn, and Ti{sub 5}NiSn{sub 3}. Black-Right-Pointing-Pointer Three ternary compounds exist in Ti-Ni-Sb system at 873 K. Black-Right-Pointing-Pointer The TiNi{sub 2}Sb compound is absent.

  8. Deep Recycling of Sedimentary Lithologies in Subduction Zones: Geochemical and Physical Constraints from Phase Equilibria and Synchrotron-Based Multi-Anvil Experiments at 15-25 GPa

    NASA Astrophysics Data System (ADS)

    Rapp, R. P.; Nishiyama, N.; Irifune, T.; Inoue, T.; Yamasaki, D.

    2003-12-01

    Ocean island basalts (OIBs) provide geochemical evidence for the presence of crustally-derived sedimentary material in the deep mantle plume source region for EM-type OIBs, and global seismic tomography provides us with dramatic images of subducted slabs, presumably carrying a sediment component, penetrating through the transition zone and into the lower mantle, in some cases to the core-mantle boundary. In an effort to better constrain the geochemical effects of deeply recycled sedimentary material in subduction zones, and their role in the petrogenesis of EM-type OIBs, we have undertaken a series of phase equlibria experiments in the multi-anvil apparatus at 10-25 GPa, using natural sediment lithologies as starting materials. The goal of these experiments is to identify the dominant phases in deeply subducted sediments, constrain their P-T stability limits, and to assess their role in crustal recycling and element redistribution in the deep mantle during subduction. The phase equilibria experiments were performed in a 2000-ton Kawai-type apparatus, using tungsten carbide cubes with 3 mm TEL and Cr-doped MgO and zirconia pressure media. A cylindrical lanthanum chromite heater was used, along with short (< 1 mm), thick-walled, pressure-welded gold capsules to minimize thermal gradients and to retain the small amounts of water (< 1 wt%) present in the starting material, and long run-durations (12-48 hours) in order to facilitate future analyses of the dominant phases for key trace elements using the ion microprobe. Our preliminary results at 10-25 GPa indicate that K-hollandite (KalSi3O3) and stishovite are the primary high-pressure phases in the sediment composition, with subordinate garnet and an as-yet-unidentified (possibly hydrous) Al-silicate phase present as well. These results suggest that K-hollandite is the primary repository for incompatible elements (e.g., La, Ce, Sr, Ba, Rb, etc., and the heat-producing elements K, U and Th) in sedimentary material

  9. Phase equilibria investigations and thermodynamic modeling of the system Bi2O3-Al2O3

    NASA Astrophysics Data System (ADS)

    Oudich, F.; David, N.; Mathieu, S.; Vilasi, M.

    2015-02-01

    The system Bi2O3-Al2O3 has been experimentally investigated above 600 °C by DTA, XRD and EPMA under air and low oxygen pressure. Only two compounds were found to exist in equilibrium, which are Bi2Al4O9(1Bi2O3:2Al2O3) and Bi25AlO39(25:1). The latter exhibits a sillenite structure and does not contain pentavalent bismuth. A peritectoid decomposition of (25:1) and a peritectic melting of (1:2) occur at 775 °C and 1075 °C respectively, while an eutectic transformation was observed at 815 °C for 97 mol% Bi2O3. On the basis of the results obtained within the present work as well as experimental data provided from literature, a thermodynamic modeling where the liquid phase is described by the two-sublattice ionic liquid model was performed according to the Calphad approach. The resulting thermodynamic optimization yielded good agreement with experimental results in the investigated region.

  10. Phase Equilibria, Morphologies of Microphase Separation, and Interfacial Structures of Polymer Systems Studied by Equations of State

    NASA Astrophysics Data System (ADS)

    Liu, Honglai; Xu, Hui; Chen, Houyang; Peng, Changjun; Hu, Ying

    Polymer blends or copolymers have multiscale complex structures that can be used as templates to prepare various complex materials. To regulate the mesoscale structures of these polymer blends or copolymers, there are three fun damental problems: What is the physical condition of the microphase separation needed to form materials with desired compositions and mesoscale structures in dif ferent domains? How do these compositions and mesoscale structures evolve during the preparation period? How does the morphology change in the interfacial region? Many experimental measurements, computer simulation methods, and theories have been developed. However, most of them are only suitable for individual tasks. In re cent years, we have developed theoretical methods based on equations of state that can be used comprehensively to study the multiscale structure of polymer systems, including the phase diagrams, the morphologies and evolution of microphase sepa ration, the densities and composition profiles in different domains, and the molecular configurations in the interfacial region. The molecular parameters of the equation of state or the Helmholtz function model can be determined from the pressure, volume, temperature, and miscibility data of polymers, which ensures the practical applica bility of the methods.

  11. Phase-space transport in cuspy triaxial potentials: can they be used to construct self-consistent equilibria?

    NASA Astrophysics Data System (ADS)

    Siopis, Christos; Kandrup, Henry E.

    2000-11-01

    This paper focuses on the statistical properties of chaotic orbit ensembles evolved in triaxial generalizations of the Dehnen potential which have been proposed recently to model realistic ellipticals that have a strong density cusp and manifest significant deviations from axisymmetry. Allowance is made for a possible supermassive black hole, as well as low-amplitude friction, noise, and periodic driving which can mimic irregularities associated with discreteness effects and/or an external environment. The chaos exhibited by these potentials is quantified by determining (1) how the relative number of chaotic orbits depends on the steepness of the cusp, as probed by γ, the power-law exponent with which density diverges, and MBH, the black hole mass, (2) how the size of the largest Lyapunov exponent varies with γ and MBH, and (3) the extent to which Arnold webs significantly impede phase-space transport, both with and without perturbations. The most important conclusions dynamically are (1) that, in the absence of irregularities, chaotic orbits tend to be extremely `sticky', so that different pieces of the same chaotic orbit can behave very differently for times ~10000tD or more, but (2) that even very low-amplitude perturbations can prove efficient in erasing many - albeit not all - of these differences. The implications of these facts are discussed both for the structure and evolution of real galaxies and for the possibility of constructing approximate near-equilibrium models using Schwarzschild's method. For example, when trying to use Schwarzschild's method to construct model galaxies containing significant numbers of chaotic orbits, it seems advantageous to build libraries with chaotic orbits evolved in the presence of low-amplitude friction and noise, since such noisy orbits are more likely to represent reasonable approximations to time-independent building blocks. Much of the observed qualitative behaviour can be reproduced with a toy potential given as the

  12. Vapor Pressure Plus: An Experiment for Studying Phase Equilibria in Water, with Observation of Supercooling, Spontaneous Freezing, and the Triple Point

    ERIC Educational Resources Information Center

    Tellinghuisen, Joel

    2010-01-01

    Liquid-vapor, solid-vapor, and solid-liquid-vapor equilibria are studied for the pure substance water, using modern equipment that includes specially fabricated glass cells. Samples are evaporatively frozen initially, during which they typically supercool to -5 to -10 [degrees]C before spontaneously freezing. Vacuum pumping lowers the temperature…

  13. Subseafloor phase equilibria in high-temperature hydrothermal fluids of the Lucky Strike Seamount (Mid-Atlantic Ridge, 37°17‧N)

    NASA Astrophysics Data System (ADS)

    Pester, Nicholas J.; Reeves, Eoghan P.; Rough, Mikaella E.; Ding, Kang; Seewald, Jeffrey S.; Seyfried, William E.

    2012-08-01

    As part of an integrated study conducted at the Lucky Strike Seamount (Mid-Atlantic Ridge, 37°17'N) in 2008, gas-tight sampling devices were used to collect high-temperature (˜300 °C) hydrothermal fluids issuing from sulfide structures distributed throughout the vent field located in the summit depression. Compared with previous observations from 1993 to 1997, the most substantial changes in vent fluid compositions are dramatically increased CO2 concentrations (˜5×, up to 133 mmol/L) and the observation of vent fluids enriched in dissolved chloride relative to seawater. Combined with an increase in δ13C values by ˜4‰ in 2008, the elevated CO2 indicates replenishment of the magmatic heat source and may be indicative of a recent magmatic event. The additional supporting fluid chemistry is, however, similar to that of the previous sampling intervals, necessitating a reassessment of the subseafloor controls on vent fluid chemistry at Lucky Strike in the context of recently obtained geophysical data that provides the depth/extent of a steady-state magma chamber. Two-phase behavior is indicated by the chloride variability in the vent fluids; and comparison with experimental data for the associated chloride-dependent partitioning of minor/trace elements suggests the possibility of a similar source fluid for all the vent structures, while limiting the likelihood of shallow phase separation and subseafloor mixing for the hydrothermal end-members. A recently calibrated Fe/Mn geothermometer indicates minimum subseafloor equilibration temperatures of 350-385 °C. However, constraints imposed by dissolved Si/Cl in conjunction with geophysical observations are consistent with peak reaction conditions at temperatures of 430-475 °C and pressures near the top of the axial magma chamber (˜410-480 bars), where magmatic CO2 becomes entrained in the circulating fluids. The distance between the magma chamber and the seafloor at Lucky Strike is substantially greater than at

  14. Effects of volatiles on phase equilibria of a basalt from Piton de la Fournaise (Réunion island): experimental results and comparison with natural products.

    NASA Astrophysics Data System (ADS)

    Brugier, Yann-Aurélien; Pichavant, Michel; di Muro, Andréa; Bourdier, Jean-Louis

    2015-04-01

    The eruptive activity of the Piton de la Fournaise (PdF) hotspot volcano is monitored by geophysical, geochemical and petrological approaches. Nevertheless, the structure of the feeding system and magma reservoirs is still debated. 4 different lava groups occur at PdF: (1) Steady State Basalts (SSB), the dominant group in the recent activity, (2) the Differentiated Lavas group, typical of the early activity, (3) the Picrites group with olivine-rich lavas (oceanites) characteristic of La Réunion volcanism and (4) the Abnormal Group (AbG) that contains lavas with mixed geochemical characteristics. To understand the petrogenetic relations between the 4 groups of lavas, constrain the structure of the feeding system and the magma storage conditions, experimental phase equilibria have been determined under fluid-present conditions, with either H2O or H2O+CO2 added, for a SSB lava from the 2009 eruption. Experiments have been performed both at high pressures (HP) and 1atm. The HP experiments were carried out in an IHPV, pressurized with Ar-H2 mixtures, at 50MPa and 400MPa. The 1atm experiments used a vertical CO-CO2 gas mixing furnace. Experimental products were analyzed by SEM, EMPA and µ-FTIR Spectroscopy. Results at 50 MPa lead to a crystallization sequence in the order olivine (ol, + spinel), clinopyroxene (cpx), plagioclase (plag). Volatile concentrations in experimental glasses range from 0.5 to 1 wt% for H2O and 30 to 180 ppm for CO2, within the range of glass inclusions in olivine phenocrysts. Fo contents in ol, Mg# in cpx and An contents in plag are in agreement with compositions of natural phenocrysts, suggesting that our experiments closely approach the shallow magmatic evolution at PdF. Preliminary experiments at 400 MPa indicate a change in the crystallization sequence, olivine being replaced by cpx as the liquidus phase. Our data are in marked contrast with previous experimental results under volatile-free conditions. Experiments at 1 atm are in progress

  15. Geometric phases causing lifetime modifications of metastable states of hydrogen

    NASA Astrophysics Data System (ADS)

    Trappe, Martin-Isbjörn; Augenstein, Peter; DeKieviet, Maarten; Gasenzer, Thomas; Nachtmann, Otto

    2016-04-01

    Externally applied electromagnetic fields in general have an influence on the width of atomic spectral lines. The decay rates of atomic states can also be affected by the geometry of an applied field configuration giving rise to an imaginary geometric phase. A specific chiral electromagnetic field configuration is presented which geometrically modifies the lifetimes of metastable states of hydrogen. We propose to extract the relevant observables in a realistic longitudinal atomic beam spin-echo apparatus which allows the initial and final fluxes of the metastable atoms to be compared with each other interferometrically. A geometry-induced change in lifetimes at the 5%-level is found, an effect large enough to be observed in an available experiment.

  16. Synthesis, Phase Transfer and Surface Modification of Hydrophobic Quantum Dots for Bioapplications

    NASA Astrophysics Data System (ADS)

    Zhang, Ruili; Zhang, Xiao; Li, Xiaoyu; Yang, Ping

    2013-06-01

    We review the preparation, phase transfer, surface modification and possible bioapplications of hydrophobic CdSe based quantum dots (QDs). CdSe cores with rod and spherical morphologies were prepared through adjusting preparation conditions. The photoluminescence (PL) of the QDs depended strongly on preparation conditions. The QDs were coated with semiconductor shells to improve their PL properties. Anisotropic growth occurred during shell coating. Core/shell QDs revealed tunable PL and high PL efficiencies up to 90%. The phase transfer of QDs from oil phase to water phase was carried out via polymer or a sol-gel process. The silanization of the QDs plays an important role for the sol-gel process. Because of a SiO2 coating, the surface modification of the QDs for bioapplications became easy. After transferring into water phase, the QDs still retained high PL efficiency. Because of their high PL, these biofunctional materials could provide a platform for various applications.

  17. Determination of epsomite-hexahydrite equilibria by the humidity-buffer technique at 0.1 MPa with implications for phase equilibria in the system MgSO4-H2O.

    USGS Publications Warehouse

    Chou, I.-Ming; Seal, R.R., 2nd.

    2003-01-01

    Epsomite (MgSO(4).7H(2)O) and hexahydrite (MgSO(4).6H(2)O) are common minerals found in marine evaporite deposits, in saline lakes as precipitates, in weathering zones of coal and metallic deposits, in some soils and their efflorescences, and possibly on the surface of Europa as evaporite deposits. Thermodynamic properties of these two minerals reported in the literature are in poor agreement. In this study, epsomite-hexahydrite equilibria were determined along four humidity-buffer curves at 0.1 MPa and between 25 and 45 degrees C. Results obtained for the reaction epsomite = hexahydrite + H(2)O, as demonstrated by very tight reversals along each humidity buffer, can be represented by ln K(+/- 0.012) = 20.001 - 7182.07/T, where K is the equilibrium constant, and T is temperature in Kelvin. The derived standard Gibbs free energy of reaction is 10.13 +/- 0.07 kJ/mol, which is essentially the same value as that calculated from vapor pressure measurements reported in the literature. However, this value is at least 0.8 kJ/mol lower than those calculated from the data derived mostly from calorimetric measurements.

  18. Gaseous phase coal surface modification. Final technical report

    SciTech Connect

    Okoh, J.M.; Pinion, J.; Thiensatit, S.

    1992-05-07

    In this report, we present an improved, feasible and potentially cost effective method of cleaning and beneficiating ultrafine coal. Increased mechanization of mining methods and the need towards depyritization, and demineralization have led to an increase in the quantity of coal fines generated in recent times. For example, the amount of {minus}100 mesh coal occurring in coal preparation plant feeds now typically varies from 5 to 25% of the total feed. Environmental constraints coupled with the greatly increased cost of coal have made it increasingly important to recover more of these fines. Our method chemically modifies the surface of such coals by a series of gaseous phase treatments employing Friedel-Crafts reactions. By using olefins (ethene, propene and butene) and hydrogen chloride catalyst at elevated temperature, the surface hydrophobicity of coal is enhanced. This increased hydrophobicity is manifest in surface phenomena which reflect conditions at the solid/liquid interphase (zeta potential) and those which reflect conditions at the solid/liquid/gas interphases (contact angle, wettability and floatability).

  19. Phase Equilibria Study in the TeO2-Na2O-SiO2 System in Air Between 723 K (500 °C) and 1473 K (1200 °C)

    NASA Astrophysics Data System (ADS)

    Santoso, Imam; Taskinen, Pekka

    2016-06-01

    Knowledge of phase equilibria in the TeO2-Na2O-SiO2 system at elevated temperatures is important for ceramic and glass industries and for improving the operation of the smelting process of tellurium-containing materials. A review of previous investigations has indicated, however, that there are omissions in the available datasets on the liquidus temperatures of the molten TeO2-Na2O-SiO2 mixtures. The employed experimental method included equilibration of mixtures made from high purity oxides, rapid quenching of the equilibrated samples in water and followed by compositional analysis of the phases using an electron probe X-ray microanalyzer. The liquidus and phase equilibria in the TeO2-SiO2, TeO2-Na2O, and SiO2-TeO2-Na2O systems have been studied for a wide range of compositions between 723 K (500 °C) and 1473 K (1200 °C) at TeO2, SiO2, and Na2SiO3 saturations. New data have been generated in the SiO2-TeO2-Na2O system at SiO2 saturation. The liquidus compositions in the TeO2-Na2O system at TeO2 saturation have been compared with the previous data and an assessed phase diagram.

  20. Phase Equilibria Study in the TeO2-Na2O-SiO2 System in Air Between 723 K (500 °C) and 1473 K (1200 °C)

    NASA Astrophysics Data System (ADS)

    Santoso, Imam; Taskinen, Pekka

    2016-08-01

    Knowledge of phase equilibria in the TeO2-Na2O-SiO2 system at elevated temperatures is important for ceramic and glass industries and for improving the operation of the smelting process of tellurium-containing materials. A review of previous investigations has indicated, however, that there are omissions in the available datasets on the liquidus temperatures of the molten TeO2-Na2O-SiO2 mixtures. The employed experimental method included equilibration of mixtures made from high purity oxides, rapid quenching of the equilibrated samples in water and followed by compositional analysis of the phases using an electron probe X-ray microanalyzer. The liquidus and phase equilibria in the TeO2-SiO2, TeO2-Na2O, and SiO2-TeO2-Na2O systems have been studied for a wide range of compositions between 723 K (500 °C) and 1473 K (1200 °C) at TeO2, SiO2, and Na2SiO3 saturations. New data have been generated in the SiO2-TeO2-Na2O system at SiO2 saturation. The liquidus compositions in the TeO2-Na2O system at TeO2 saturation have been compared with the previous data and an assessed phase diagram.

  1. Effect of trans-cis photoisomerization on phase equilibria and phase transition of liquid-crystalline azobenzene chromophore and its blends with reactive mesogenic diacrylate.

    PubMed

    Kim, Namil; Li, Quan; Kyu, Thein

    2011-03-01

    Photoisomerization-induced phase transition of neat liquid-crystalline azobenzene chromophore (LCAC) and its effect on phase diagrams of its mixtures with reactive mesogenic diacrylate monomer (RM257) have been investigated experimentally and theoretically. Upon irradiation with ultraviolet light, the nematic phase of LCAC transformed to isotropic, while the crystal phase showed corrugated textures on the surface (i.e., ripples). The phase-transition temperatures and corresponding morphologies of the blends have been investigated by means of differential scanning calorimetry and optical microscopy. A theoretical phase diagram of a binary nematic and crystalline system was constructed by self-consistently solving the combined free energies of Flory-Huggins, Maier-Saupe, and phase-field theory. The calculation revealed various coexistence regions such as nematic + liquid (N₁ + L₂), crystal + liquid (Cr₁ + L₂), crystal + nematic (Cr₁ + N₂), and crystal + crystal (Cr₁ + Cr₂) over a broad range of compositions including the single-phase nematic (N₁, N₂) of the corresponding constituents. The calculated liquidus lines were in good accord with the depressed mesophase-isotropic transition points. The present paper demonstrates the effect of trans-cis photoisomerization on the mesophase transitions of neat LCAC and the phase diagram of LCAC-RM257 as well as on the ripple formation (i.e., periodic undulation) on the azobenzene crystals. PMID:21517513

  2. Phase Equilibria of the Cu-Ti-Er System at 773 K (500 °C) and Stability of the CuTi3 Phase

    NASA Astrophysics Data System (ADS)

    Zhan, Yongzhong; Peng, Dan; She, Jia

    2012-11-01

    The phase relationships of the Cu-Ti-Er ternary phase diagram at 773 K (500 °C) were investigated mainly by means of X-ray powder diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS), and differential thermal analysis (DTA). It is confirmed in this work that the binary compounds Cu9Er2 and Cu7Er2 exist in the Cu-Er binary system at 773 K (500 °C). The stability of the CuTi3 phase is confirmed in the Cu-Ti system. After heat treatment at 1023 K (750 °C) for 90 hours, the phase CuTi3 is observed in the microstructure of the alloy 25Cu75Ti. The temperature of the eutectoid transformation, namely, β-Ti ↔ α-Ti + CuTi3, is determined to be 1078 K (805 °C) in this work. The 773 K (500 °C) isothermal section consists of 14 single-phase regions, 25 two-phase regions, and 12 three-phase regions. None of the phases in this system reveals a remarkable homogeneity range at 773 K (500 °C).

  3. Correction of magnetooptic device phase errors in optical correlators through filter design modifications

    NASA Technical Reports Server (NTRS)

    Downie, John D.; Reid, Max B.; Hine, Butler P.

    1991-01-01

    We address the problem of optical phase errors in an optical correlator introduced by the input and filter plane spatial light modulators. Specifically, we study a laboratory correlator with magnetooptic spatial light modulator (MOSLM) devices. We measure and characterize the phase errors, analyze their effects on the correlation process, and discuss a means of correction through a design modification of the binary phase-only optical filter function. The phase correction technique is found to produce correlation results close to those of an error-free correlator.

  4. Liquid phase methanol LaPorte process development unit: Modification, operation, and support studies

    SciTech Connect

    Not Available

    1991-02-02

    This report consists of Detailed Data Acquisition Sheets for Runs E-6 and E-7 for Task 2.2 of the Modification, Operation, and Support Studies of the Liquid Phase Methanol Laporte Process Development Unit. (Task 2.2: Alternate Catalyst Run E-6 and Catalyst Activity Maintenance Run E-7).

  5. CONTROL OF UTILITY BOILER AND GAS TURBINE POLLUTANT EMISSIONS BY COMBUSTION MODIFICATION--PHASE II

    EPA Science Inventory

    The report gives results of Phase II of a field study to assess the applicability of combustion modification (CM) techniques to control NOx and other pollutant emissions from utility boilers and gas turbines without causing deleterious side effects. Comprehensive, statistically d...

  6. Design modification and layout of utility substations for six phase transmission

    SciTech Connect

    Rebbapragada, R.V.; Brown, M.T. ); Dorazio, T.F. ); Stewart, J.R. )

    1993-01-01

    This paper describes the evaluations performed on the New York State Electric and Gas Corporation's (NYSEG) 115 kV Goudey-Oakdale line and Goudey and Oakdale substations to assess the capability of the existing equipment to operate as part of a six phase demonstration project. This paper also describes the design modifications that will be made to meet the goals of the commercial demonstration and to allow integration into the existing three phase operating grid. Reconfiguration of an existing double circuit line to a single circuit six phase line requires installation of phase reconfiguration transformers at the end of the line terminals and the associated switching, metering and protection equipment. In addition, the phase conductors from the terminals of the transformers have to be transposed for connection to the transmission line to achieve the desired 60[degree] vectorial separation angle between adjacent phase conductors. This requires innovative approaches to achieve phase reconfiguration that are economical, technically adequate and constructible and that provide design insights for future six phase lines. Concepts of substation compaction have been pursued when attempting substation modifications for six phase reconfiguration. This is demonstrated by the use of 132 kV metal oxide surge arresters on the 161 kV side of the transformer, the application of live tank gas insulated circuit breakers, the utilization of existing structures within the substation to the extent possible, and the use of railroad ties for transformer support and a membrane based oil containment pit.

  7. Solution equilibria of deferoxamine amides.

    PubMed

    Ihnat, Peter M; Vennerstrom, Jonathan L; Robinson, Dennis H

    2002-07-01

    The physico-chemical solution properties of deferoxamine were modified by acylating the terminal amino group with short-chain aliphatic, succinic, and methylsulphonic moieties. The analog iron(III)-binding constants and stabilities under physiological conditions were determined to confirm that the iron binding ability of the parent molecule was retained following modification. The proton dissociation constants of the lipophilic deferoxamine analogs were determined by potentiometric titration and nonlinear least-squares analysis. However, because the iron(III) binding complex is fully formed below pH 2, the metal-ligand equilibria could not be studied using potentiometric methods. The iron binding constants of the deferoxamine analogs were determined by spectrophotometrically following the proton-dependent exchange of iron with EDTA in the pH range of 4.0 to 6.5 and solving mass balance equations. The proton-dissociation constants and the iron binding constants of the lipophilic deferoxamine analogs were comparable to those of deferoxamine. However, at physiological conditions, the iron-binding complex of the most lipophilic butylamide derivative was slightly less stable and the succinamide derivative complex was slightly more stable. Like deferoxamine, the hydroxamate groups of the analogs were unhindered and free to form a 1:1 coordination complex with iron(III). Consequently, changes in aqueous solvation, conformation, and steric interference, imparted by the modifications at the terminal amino group of deferoxamine, may have affected the stabilities of the iron(III) complex and the efficiency of iron binding. PMID:12115836

  8. Phase variable type III restriction-modification systems of host-adapted bacterial pathogens.

    PubMed

    Fox, Kate L; Srikhanta, Yogitha N; Jennings, Michael P

    2007-09-01

    Phase variation, the high-frequency on/off switching of gene expression, is a common feature of host-adapted bacterial pathogens. Restriction-modification (R-M) systems, which are ubiquitous among bacteria, are classically assigned the role of cellular defence against invasion of foreign DNA. These enzymes are not obvious candidates for phase variable expression, a characteristic usually associated with surface-expressed molecules subject to host immune selection. Despite this, numerous type III R-M systems in bacterial pathogens contain repetitive DNA motifs that suggest the potential for phase variation. Several roles have been proposed for phase variable R-M systems based on DNA restriction function. However, there is now evidence in several important human pathogens, including Haemophilus influenzae, Neisseria meningitidis and Neisseria gonorrhoeae, that these systems are 'phasevarions' (phase variable regulons) controlling expression of multiple genes via a novel epigenetic mechanism. PMID:17714447

  9. Analysis of histone post translational modifications in primary monocyte derived macrophages using reverse phase×reverse phase chromatography in conjunction with porous graphitic carbon stationary phase.

    PubMed

    Minshull, Thomas C; Cole, Joby; Dockrell, David H; Read, Robert C; Dickman, Mark J

    2016-07-01

    A two dimensional-liquid chromatography (2D-LC) based approach was developed for the identification and quantification of histone post translational modifications in conjunction with mass spectrometry analysis. Using a bottom-up strategy, offline 2D-LC was developed using reverse phase chromatography. A porous graphitic carbon stationary phase in the first dimension and a C18 stationary phase in the second dimension interfaced with mass spectrometry was used to analyse global levels of histone post translational modifications in human primary monocyte-derived macrophages. The results demonstrated that 84 different histone peptide proteoforms, with modifications at 18 different sites including combinatorial marks were identified, representing an increase in the identification of histone peptides by 65% and 51% compared to two different 1D-LC approaches on the same mass spectrometer. The use of the porous graphitic stationary phase in the first dimension resulted in efficient separation of histone peptides across the gradient, with good resolution and is orthogonal to the online C18 reverse phase chromatography. Overall, more histone peptides were identified using the 2D-LC approach compared to conventional 1D-LC approaches. In addition, a bioinformatic pipeline was developed in-house to enable the high throughput efficient and accurate quantification of fractionated histone peptides. The automation of a section of the downstream analysis pipeline increased the throughput of the 2D-LC-MS/MS approach for the quantification of histone post translational modifications. PMID:27260198

  10. Phase equilibria of CFC alternative refrigerant mixtures: Binary systems of isobutane + 1,1,1,2-tetrafluoroethane, + 1,1-difluoroethane, and + difluoromethane

    SciTech Connect

    Lim, J.S.; Park, J.Y.; Lee, B.G.; Lee, Y.W.; Kim, J.D.

    1999-12-01

    Isothermal vapor-liquid equilibria were measured in the binary systems 1,1,1,2-tetrafluoroethane + isobutane at 303.2 and 323.2 K, 1,1-difluoroethane + isobutane at 303.2, 313.2, 323.2, and 333.2 K, and difluoromethane + isobutane at 301.8 and 321.8 K in a circulation-type equilibrium apparatus. The experimental data were well correlated with the Peng-Robinson equation of state using the Wong and Sandler mixing rules.

  11. Structure of alloys and diagram of phase equilibria of the Zr-Ru-Ir system. II. Solidification pattern of alloys of the partial system Ru-ZrRu-ZrIr-Ir

    SciTech Connect

    Eremenko, V.N.; Khoruzhaya, V.G.; Shtepa, T.D.

    1985-10-01

    The authors constructed the solidification diagram of alloys of the partial system Ru-ZrRu-ZrIr-Ir using data on the structure of alloys in the as-cast condition, yielded from metallographic examinations, microhardness determinations, and x-ray phase analyses together with results of an investigation of the solidus surface of the system. No ternary compounds were detected in the system. In accordance with the four three-phase regions found on the solidus surface, in the Ru-ZrRu-ZrIr-Ir system there are four invariant equilibria involving the participation of liquid, each of which is an equilibrium of the peritectic type. Their temperatures fall toward the Zr-Ru side of the composition triangle.

  12. Solution Versus Gas-Phase Modification of Peptide Cations with NHS-Ester Reagents

    NASA Astrophysics Data System (ADS)

    Mentinova, Marija; Barefoot, Nathan Z.; McLuckey, Scott A.

    2012-02-01

    A comparison between solution and gas phase modification of primary amine sites in model peptide cations with N-hydroxysuccinimide (NHS) ester reagents is presented. In all peptides, the site of modification in solution was directed to the N-terminus by conducting reactions at pH = 5, whereas for the same peptides, a lysine residue was preferentially modified in the gas phase. The difference in pKa values of the N-terminus and ɛ-amino group of the lysine allows for a degree of control over sites of protonation of the peptides in aqueous solution. With removal of the dielectric and multiple charging of the peptide ions in the gas phase, the accommodation of excess charge can affect the preferred sites of reaction. Interaction of the lone pair of the primary nitrogen with a proton reduces its nucleophilicity and, as a result, its reactivity towards NHS-esters. While no evidence for reaction of the N-terminus with sulfo-NHS-acetate was noted in the model peptide cations, a charge inversion experiment using bis[sulfosuccinimidyl] suberate, a cross-linking reagent with two sulfo-NHS-ester functionalities, showed modification of the N-terminus. Hence, an unprotonated N-terminus can serve as a nucleophile to displace NHS, which suggests that its lack of reactivity with the peptide cations is likely due to the participation of the N-terminus in solvating excess charge.

  13. Calculation of complex equilibria involving vaporization into vacuum

    NASA Technical Reports Server (NTRS)

    Paule, R. C.

    1974-01-01

    A simplified, direct approach is presented to the description of complex equilibria involving vaporization into vacuum. Emphasis is on the basic problem-solving process and on modification of existing techniques. Sequential solutions are presented to problems involving purification of a melt by vaporization into vacuum. The effects of concentration of melt and oxygen partial pressures on vaporization rates are demonstrated.

  14. Shifting Phases for Patchy Particles - Effect of mutagenesis and chemical modification on the phase diagram of human gamma D crystallin

    NASA Astrophysics Data System (ADS)

    McManus, Jennifer J.; James, Susan; McNamara, Ruth; Quinn, Michelle

    2014-03-01

    Single mutations in human gamma D crystallin (HGD), a protein found in the eye lens are associated with several childhood cataracts. Phase diagrams for several of these protein mutants have been measured and reveal that phase boundaries are shifted compared with the native protein, leading to condensation of protein in a physiologically relevant regime. Using HGD as a model protein, we have constructed phase diagrams for double mutants of the protein, incorporating two single amino acid substitutions for which phase diagrams are already known. In doing so, the characteristics of each of the single mutations are maintained but both are now present in the same protein particle. While these proteins are not of interest physiologically, this strategy allows the controlled synthesis of nano-scale patchy particles in which features associated with a known phase behavior can be included. It can also provide a strategy for the controlled crystallisation of proteins. Phase boundaries also change after the chemical modification of the protein, through the covalent attachment of fluorescent labels, for example, and this will also be discussed. The authors acknowledge Science Foundation Ireland Stokes Lectureship and Grant 11/RFP.1/PHY/3165. The authors also acknowledge the Irish Research Council and the John and Pat Hume Scholarship.

  15. Modifications in the glycerophospholipid composition between the Coxiella burnetii phase I and phase II cells suggest an association with phase variation of the bacterium.

    PubMed

    Frimmelová, M; Toman, R; Pompach, P; Škultéty, L

    2016-03-01

    Glycerophospholipids (GP) extracted from the Coxiella burnetii strain Nine Mile in virulent phase I (NM I) and low virulent phase II (NM II) were analyzed by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) that gave a superior mass resolution and mass accuracy allowing unambiguous peak recognition and precise assignment of ions. We showed that GP present in the pathogen's outer membrane underwent considerable modifications during the phase variation that might be related to impact of various environmental factors. It was found that GP from phase I cells were much more complex than those from phase II cells. While glycerophosphoethanolamines (PE), glycerophosphocholines (PC) and glycerophosphoglycerols (PG) were present in both phases of C. burnetii, major differences were observed in the presence of glycerophosphates (PA) and glycerophosphoserines (PS). Thus, PA but no PS were detected in NM I variant in contrast with NM II cells where PS but no PA were identified. It is suggested that enzymes for PA head group modifications to form PS, PE, and PG become active during the phase variation of the bacterium. PMID:26982464

  16. Reduction of erosion in elbows due to flow modifications: Final report, Phase 1. [Elbows

    SciTech Connect

    Johnson, E.K.; Means, K.H.; Eyler, R.L.; Holtzworth, J.D.

    1987-11-01

    The objective of this project is to investigate the concept of flow-field modification as a method for reducing erosion in bends (elbows) used in pneumatic transport systems. Flow field modifications were primarily accomplished by injecting air at selected locations within the bends. Part I of this project shows the feasibility of the concept. Part II of this project will include further experiments and analysis, leading to a design methodology for incorporating this concept into piping systems. This report represents the final report for Part I of this project. This report contains a survey of the literature dealing with the erosion in bends (elbows) and the fundamental subjects of erosion and two-phase, gas-solids, flow. Based on this literature survey, a pneumatic transport test loop was constructed. Several bend designs were tested, using sand, under a variety of operating conditions. The results of this exploratory effort indicate that modifying the flow field in a bend with jets may: (1) decrease erosion; (2) change the erosion pattern with the same amount of erosion; or (3) significantly increase the erosion process. Data indicate that the erosion rate may be reduced by low-velocity jets for high phase-density flow. Apparently the interaction of jets with dilute phase-density flow tends to accelerate the erosion process. It is recommended that the project be continued in order to more fully understand the process and its capabilities to solve the difficult technical problem of erosion in bends (elbows).

  17. Phase Equilibria Studies in the System ZnO-``FeO''-Al2O3-CaO-SiO2 Relevant to Imperial Smelting Furnace Slags: Part II

    NASA Astrophysics Data System (ADS)

    Zhao, Baojun; Hayes, Peter C.; Jak, Evgueni

    2010-04-01

    The phase equilibria and the liquidus temperatures in the system ZnO-“FeO”-Al2O3-CaO-SiO2 have been determined experimentally in equilibrium with metallic iron. Specifically, the effects of Al2O3 concentrations in Imperial Smelting Furnace slags are identified, and the results are presented in the form of pseudo-ternary sections ZnO-“FeO”-(Al2O3 + CaO + SiO2) in which CaO/SiO2 = 0.93 and (CaO + SiO2)/Al2O3 = 5.0 and 3.5, respectively. It was found that, in the presence of Al2O3, the spinel phase is formed, the spinel primary phase field expands, and the wustite and melilite primary phase fields are reduced in size with an increasing Al2O3 concentration. The implications of the findings to industrial practice are discussed.

  18. Phase Equilibria Studies in the System ZnO-``FeO''-Al2O3-CaO-SiO2 Relevant to Imperial Smelting Furnace Slags: Part I

    NASA Astrophysics Data System (ADS)

    Zhao, Baojun; Hayes, Peter C.; Jak, Evgueni

    2010-04-01

    The phase equilibria and liquidus temperatures in the system ZnO-“FeO”-Al2O3-CaO-SiO2 in equilibrium with metallic iron have been determined experimentally in the temperature range of 1423 K to 1553 K. The experimental conditions were focused on the composition range relevant to Imperial Smelting Furnace slags. The results are presented in the form of a pseudo-ternary section ZnO-“FeO”-(CaO + SiO2 + Al2O3) in which CaO/SiO2 = 0.93 and (CaO + SiO2)/Al2O3 = 7.0. It was found that wustite and spinel are the major primary phases and that zincite and melilite are also present in the composition range investigated. Wustite (Fe2+,Zn)O and spinel (Fe2+,Zn)O (A1,Fe3+)2O3 solid solutions are formed in this system, and the ZnO concentration in the spinel phase is found to be much greater than in the liquid phase.

  19. Liquid phase methanol LaPorte process development unit: Modification, operation, and support studies

    SciTech Connect

    Not Available

    1990-10-23

    The objectives of this program are to implement and test the process improvements identified through the engineering studies of the current program to demonstrate the capability of long-term catalyst activity maintenance, and to perform process and design engineering work that can be applied to a scaled-up Liquid Phase Methanol (LPMEOH) facility. An optional series of PDU runs is offered to extend the testing of the process improvements. A parallel research program will be performed to enhance the LPMEOH technical data base to improve the likelihood of commercialization of the LPMEOH process. Activities this quarter include: Flow sheet development for La Porte PDU modifications continues. A preliminary P ID review was completed and flow sheet modifications were identified and are being incorporated. A preliminary hazards review was completed on 22 May. Some minor flow sheet modifications resulted and a number of action items were identified. The most significant action item is to develop a materials reactivity and compatibility grid for the different alcohols, ethers, and esters which will be produced at the PDU. Heat and material balances were completed for the maximum production case of the mixed DME/MEOH synthesis campaign. An improved rate expression was developed. 1 fig.

  20. Altering the interfacial activation mechanism of a lipase by solid-phase selective chemical modification.

    PubMed

    López-Gallego, Fernando; Abian, Olga; Guisán, Jose Manuel

    2012-09-01

    This study presents a combined protein immobilization, directed mutagenesis, and site-selective chemical modification approach, which was used to create a hyperactivated semisynthetic variant of BTL2. Various alkane chains were tethered at three different positions in order to mimic the lipase interfacial activation exogenously triggered by detergents. Optimum results were obtained when a dodecane chain was introduced at position 320 by solid-phase site-selective chemical modification. The resulting semisynthetic variant showed a 2.5-fold higher activity than the wild-type nonmodified variant in aqueous conditions. Remarkably, this is the maximum hyperactivation ever observed for BTL2 in the presence of detergents such as Triton X-100. We present evidence to suggest that the endogenous dodecane chain hyperactivates the enzyme in a similar fashion as an exogenous detergent molecule. In this way, we also observe a faster irreversible enzyme inhibition and an altered detergent sensitivity profile promoted by the site-selective chemical modification. These findings are also supported by fluorescence studies, which reveal that the structural conformation changes of the semisynthetic variant are different to those of the wild type, an effect that is more pronounced in the presence of detergent. Finally, the optimal immobilized semisynthetic variant was successfully applied to the selective synthesis of oxiran-2-yl butyrate. Significantly, this biocatalyst is 12-fold more efficient than the immobilized wild-type enzyme, producing the S-enantiomer with higher enantiospecificity (ee = 92%). PMID:22876885

  1. Structural phase modification in Cu incorporated nanostructured zinc sulfide thin films

    NASA Astrophysics Data System (ADS)

    Chalana, S. R.; Jolly Bose, R.; Reshmi Krishnan, R.; Kavitha, V. S.; Sreeja Sreedharan, R.; Mahadevan Pillai, V. P.

    2016-08-01

    Cu incorporated zinc sulfide (ZnS) films are prepared by a RF magnetron sputtering technique and the influence of Cu doping concentration on the structural, morphological and optical properties is systematically analyzed using techniques like grazing incidence X-Ray diffraction (GIXRD), micro-Raman spectroscopy, atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS) and UV-vis spectroscopy. XRD examination of the as-prepared films revealed the presence of polycrystalline structure with co-existence of cubic and hexagonal phases in the pure and lower Cu incorporated films. Increase in Cu doping concentration causes a gradual phase transformation from mixed phase to cubic phase. Micro-Raman spectra further confirms the structural phase modifications with the addition of Cu in ZnS. Morphological analysis shows compact distribution of elongated grain geometry with good connectivity and detectable grain boundary in the pure and Cu incorporated films. Increase in Cu incorporation results in the systematic reduction of RMS surface roughness. EDS analysis confirms the incorporation of Cu and surface vacancy defects in the doped films. All the films are transparent in the visible region and band gap calculation by Tauc plot shows that increase in Cu incorporation results in band gap renormalization.

  2. Phase modification and surface plasmon resonance of Au/WO3 system

    NASA Astrophysics Data System (ADS)

    Bose, R. Jolly; Kavitha, V. S.; Sudarsanakumar, C.; Pillai, V. P. Mahadevan

    2016-08-01

    We report the action of gold as catalyst for the modification of phase from triclinic WO3 to monoclinic W18O49 and nucleation centre for the formation of W18O49 phase, in gold incorporated tungsten oxide films prepared by RF magnetron sputtering technique. A new band is observed near 925 cm-1 in the Raman spectra of gold incorporated tungsten oxide films which is not observed in the pure tungsten oxide film. The intensity of this band enhances with gold content. A localized surface plasmon resonance (LSPR) band is observed near the wavelength 604 nm in gold incorporated tungsten oxide films. The integrated intensities of LSPR band and Raman band (∼925 cm-1) can be used for sensing the quantity of gold in the Au/WO3 matrix.

  3. Femtosecond laser modification of an array of vertically aligned carbon nanotubes intercalated with Fe phase nanoparticles

    PubMed Central

    2013-01-01

    Femtosecond lasers (FSL) are playing an increasingly important role in materials research, characterization, and modification. Due to an extremely short pulse width, interactions of FSL irradiation with solid surfaces attract special interest, and a number of unusual phenomena resulted in the formation of new materials are expected. Here, we report on a new nanostructure observed after the interaction of FSL irradiation with arrays of vertically aligned carbon nanotubes (CNTs) intercalated with iron phase catalyst nanoparticles. It was revealed that the FSL laser ablation transforms the topmost layer of CNT array into iron phase nanospheres (40 to 680 nm in diameter) located at the tip of the CNT bundles of conical shape. Besides, the smaller nanospheres (10 to 30 nm in diameter) are found to be beaded at the sides of these bundles. Some of the larger nanospheres are encapsulated into carbon shells, which sometime are found to contain CNTs. The mechanism of creation of such nanostructures is proposed. PMID:24004518

  4. Modification of the aluminium rich portion of the Nd-Al phase diagram

    SciTech Connect

    Kale, G.B.; Biswas, A.; Sharma, I.G.

    1997-10-01

    The phase diagrams of neodymium-aluminum binary systems have been studied extensively during the last three decades. Most common methods of preparation of Nd-Al alloy is by melting the component species according to the desired ratios followed by homogenization. However, these alloys can be prepared by other methods such as aluminothermic reduction of neodymium oxide or fused salt electrowinning. In the present work aluminothermic reduction of neodymium oxide with excess of aluminum was used to make the alloys. The melted alloys were characterized with the help of optical microscope, Electron Probe Micro Analyzer (EPMA) and by X-ray Diffractometer (XRD). Based on the results obtained, few modifications pertaining to aluminum rich side of neodymium-aluminum phase diagram are suggested.

  5. Chemometric investigation of complex equilibria in solution phase II: Sensitivity of chemical models for the interaction of AADH and FAH with Ni(II) in aqueous medium.

    PubMed

    Babu, A R; Krishna, D M; Rao, R S

    1993-12-01

    A detailed study of the species formed in the complex equilibria involving adipic acid dihydrazide (AADH)/2-furoic acid hydrazide (FAH) with Ni(II) using pH titration with glass electrode is performed. The results of modeling studies and effect of errors on the equilibrium constants of AADH/FAH with Ni(II) refined by the non-linear least squares program MINIQUAD75 are reported. Based on the expert system approach developed in our laboratory for the species formed from secondary formation data (n and n (H)), several preliminary chemical models were tested. For the four species identified (MLH, ML, ML(2)H, ML(2)), an exhaustive search of a different combination of models (15) was performed. Then other suspected minor species (ML(2)H(2), ML(3) and ML(3)H) were tested. The final best fit chemical model was found to contain ML(3)H to an extent of 3% along with the other four major species. In order to ascertain the accuracy of the stability constants and consequently distribution of the species, a detailed error analysis is attempted. As the existing least squares procedures cannot suppress the systematic errors, three-dimensional plots of the simultaneous effects of pH and TLO:TMO (1.5:1 to 5:1) on the percentage of species are drawn which are of immense use in arriving at optimum conditions for the preparation of a complex of definite stoichiometry. PMID:18965865

  6. Illite equilibria in solutions: 1. Phase relationships in the system K sub 2 O-Al sub 2 O sub 3 -SiO sub 2 -H sub 2 O between 25 and 250C

    SciTech Connect

    Aja, S.U.; Rosenberg, P.E.; Kittrick, J.A. )

    1991-05-01

    Natural illite from Marblehead, Wisconsin (MH), USA, has been equilibrated with 0.2 and 2.0M KCl/KOH and KCl/HCl solutions in the presence of excess kaolinite or microcline and quartz or amorphous silica at temperatures between 25 and 250C and P{sub v} = P{sub H2O}. Reversibility of univariant equilibria was demonstrated by approach from high and low a{sub K{sup +}}/a{sub H{sup +}} vs. log a{sub SiO{sub 2,aq}} diagrams have been constructed defining possible stability fields for kaolinite, microcline, gibbsite (or boehmite or diaspore), muscovite, and four illitic phases. Assuming an R{sup +2}-free stoichiometry, K-content per half cell, estimated from the slopes of univariant lines, are 0.29, 0.50, 0.69, and 0.85 K; these phases are compositional analogs of smectite (S), mixed-layer illite I/S (i.e., IS, ISII) and illite (I), respectively. Illitization reactions are strongly affected by temperature and porewater chemistry. At quartz saturation, direct conversion of smectite or kaolinite to endmember illite can occur at high pH; at low pH, these reactions are unlikely inasmuch as K{sup +} requirements exceed concentrations observed in most natural pore waters. In silica-supersaturated solutions, illitization reactions proceed through crystallization of intermediated phases with compositions between smectite and endmember illite (I).

  7. Jump conditions in transonic equilibria

    SciTech Connect

    Guazzotto, L.; Betti, R.; Jardin, S. C.

    2013-04-15

    In the present paper, the numerical calculation of transonic equilibria, first introduced with the FLOW code in Guazzotto et al.[Phys. Plasmas 11, 604 (2004)], is critically reviewed. In particular, the necessity and effect of imposing explicit jump conditions at the transonic discontinuity are investigated. It is found that 'standard' (low-{beta}, large aspect ratio) transonic equilibria satisfy the correct jump condition with very good approximation even if the jump condition is not explicitly imposed. On the other hand, it is also found that high-{beta}, low aspect ratio equilibria require the correct jump condition to be explicitly imposed. Various numerical approaches are described to modify FLOW to include the jump condition. It is proved that the new methods converge to the correct solution even in extreme cases of very large {beta}, while they agree with the results obtained with the old implementation of FLOW in lower-{beta} equilibria.

  8. Phase-variable restriction/modification systems are required for Helicobacter pylori colonization

    PubMed Central

    2014-01-01

    Background One mechanism utilized by bacterial pathogens for host adaptation and immune evasion is the generation of phenotypic diversity by the phasevarion that results from the differential expression of a suite of genes regulated by the activity of a phase-variable methyltransferase within a restriction modification (RM) system. Phasevarions are active in Helicobacter pylori, however there have been no studies investigating the significance of phase-variable RM systems on host colonization. Methods Two mutant types incapable of phase variation were constructed; a clean deletion mutant (‘DEL’) and a mutant (‘ON’) where the homopolymeric repeat was replaced with a non-repeat synonymous sequence, resulting in expression of the full-length protein. The resulting mutants were assessed for their colonisation ability in the mouse model. Results Five phase-variable genes encoding either methyltransferases or members of RM systems were found in H. pylori OND79. Our mutants fell into three categories; 1, those with little effect on colonization, 2, those where expression of the full-length protein was detrimental, 3, those where both mutations were detrimental. Conclusions Our results demonstrated that phase-variable methyltransferases are critical to H. pylori colonization, suggesting that genome methylation and generation of epigenetic diversity is important for colonization and pathogenesis. The third category of mutants suggests that differential genome methylation status of H. pylori cell populations, achieved by the phasevarion, is essential for host adaptation. Studies of phase-variable RM mutants falling in the two other categories, not strictly required for colonization, represent a future perspective to investigate the role of phasevarion in persistence of H. pylori. PMID:25349630

  9. Code System to Model Aqueous Geochemical Equilibria.

    Energy Science and Technology Software Center (ESTSC)

    2001-08-23

    Version: 00 MINTEQ is a geochemical program to model aqueous solutions and the interactions of aqueous solutions with hypothesized assemblages of solid phases. It was developed for the Environmental Protection Agency to perform the calculations necessary to simulate the contact of waste solutions with heterogeneous sediments or the interaction of ground water with solidified wastes. MINTEQ can calculate ion speciation/solubility, adsorption, oxidation-reduction, gas phase equilibria, and precipitation/dissolution ofsolid phases. MINTEQ can accept a finite massmore » for any solid considered for dissolution and will dissolve the specified solid phase only until its initial mass is exhausted. This ability enables MINTEQ to model flow-through systems. In these systems the masses of solid phases that precipitate at earlier pore volumes can be dissolved at later pore volumes according to thermodynamic constraints imposed by the solution composition and solid phases present. The ability to model these systems permits evaluation of the geochemistry of dissolved traced metals, such as low-level waste in shallow land burial sites. MINTEQ was designed to solve geochemical equilibria for systems composed of one kilogram of water, various amounts of material dissolved in solution, and any solid materials that are present. Systems modeled using MINTEQ can exchange energy and material (open systems) or just energy (closed systems) with the surrounding environment. Each system is composed of a number of phases. Every phase is a region with distinct composition and physically definable boundaries. All of the material in the aqueous solution forms one phase. The gas phase is composed of any gaseous material present, and each compositionally and structurally distinct solid forms a separate phase.« less

  10. Solid state equilibria in the Ba-Cu-O system

    SciTech Connect

    Voronin, G.F.; Degterov, S.A. )

    1994-05-01

    Thermodynamic modeling is performed for the Ba-Cu-O system, which is essential to a good understanding of phase and chemical equilibria in the Y-Ba-Cu-O and some other oxide systems containing high-temperature superconductors. A self-consistent set of thermodynamic functions of the phases BaO[sub 2], BaCu[sub 2]O[sub 2], BaCuO[sub 2], Ba[sub 2]Cu[sub 3]O[sub 5+y], and Ba[sub 2]CuO[sub 3+q] is obtained. A variety of phase equilibria in the Ba-Cu-O system are calculated for a wide range of oxygen pressures and temperatures. The present thermodynamic data can be readily used for computing the phase equilibria and conditions for thermodynamic stability of oxide superconductors. It is detected that both BaCuO[sub 2] and Ba[sub 2]CuO[sub 3+q] have two stability boundaries, one at low temperatures and low oxygen pressures. Critical analysis of phase equilibria in the Ba-Cu-O system makes it possible to explain a number of conflicting results encountered in the literature. These contradictions arise from solid state reactions between phases, which may be very slow due to kinetic problems.

  11. Engineering study TWRS privatization phase I roads and rail system modifications

    SciTech Connect

    Ackerman, R.L.

    1996-09-30

    The DOE-RL is pursuing a new business strategy of hiring private contractors for treatment of Hanford Site tank wastes. This strategy is called privatization and includes design, permitting , construction, operation and deactivation of facilities for tank waste treatment. The TWRS Privatization Infrastructure Project is part of the first phase of the initiative. It consists of several sub-projects which will provide key physical interfaces and services needed to support the privatization mission. One sub-project is to establish transport system changes needed to support the privatization initiative. Specifically, this study identifies the road and rail system modifications needed to service the privatization site in 2OOE; an area previously developed and characterized for Grout Disposal.

  12. Illite equilibria in solutions: 2. Phase relationships in the system K sub 2 O-MgO-Al sub 2 O sub 3 -SiO sub 2 -H sub 2 O

    SciTech Connect

    Aja, S.U.; Rosenberg, P.E.; Kittrick, J.A. )

    1991-05-01

    The stability of the Marblehead illite has been investigated in the five-component system K{sub 2}O-MgO-Al{sub 2}O{sub 3}-SiO{sub 2}-H{sub 2}O in the presence of kaolinite and microcline. The mica-like solubility-controlling phases (K{sub x}(Mg{sub y}Al{sub 2{minus}y})(Al{sub x{minus}y}Si{sub 4{minus}(x{minus}y)}) O{sub 10}(OH){sub 2}) identified include (1) smectite x = 0.29 {plus minus} 0.04, y = 0.26 {plus minus} 0.02; (2) illite x = 0.50 {plus minus} 0.05, y = 0.22 {plus minus} 0.14; (3) illite x = 0.69 {plus minus} 0.08, y = 0.16 {plus minus} 0.03; (4) illite x = 0.85 {plus minus} 0.05, y = 0.12 {plus minus} 0.04; and (5) muscovite. Possible stability regions have been defined for these solubility-controlling phases using isothermal isobaric log a{sub Mg{sup +2}}{sup {1/2}}/a{sub H{sup +}} vs. log a{sub K{sup +}}/a{sub H{sup +}} diagrams. When illite stability is referred to the quaternary system K{sub 2}O-Al{sub 2}O{sub 3}-SiO{sub 2}-H{sub 2}O, the effect of (R{sup +2}){sup VI} substitution is neglected. The error inherent in this simplification has been estimated. Inasmuch as a four-fold increase in a{sub Mg{sup 2+}} shifts the illite-smectite-kaolinite-solution invariant point by less than 0.3 log units, stability relationships in the quaternary system provide an adequate representation of illite solution equilibria, to a first approximation, However, the error caused by neglecting Mg{sup 2+} is close to or within experimental error. Thus, a more precise determination of the effect of Mg{sup +2} on illite solution equilibria may not be possible using the solution equilibration method.

  13. Wavelength resolved specific optical rotations and homochiral equilibria.

    PubMed

    Polavarapu, P L; Covington, C L

    2015-09-01

    The fundamental expressions governing specific optical rotations (SORs) of homochiral systems exhibiting monomer-dimer equilibria are presented. These equations are then utilized with the experimental measurements of wavelength resolved circular birefringence for (R)-(-)-α-hydroxy-β,β-dimethyl-γ-butyrolactone, to determine the wavelength resolved SORs of monomer and dimer components for the first time. Density functional theory predictions on the corresponding dispersion properties of monomer and dimer are found to match with experimentally determined quantities within a factor of ∼2. The wavelength resolved circular birefringence in the liquid solution phase thus provides a powerful means to investigate the molecular properties involved in homochiral equilibria. PMID:26227210

  14. Phase Equilibria of ``Cu2O''-``FeO''-CaO-MgO-Al2O3 Slags at PO2 of 10-8.5 atm in Equilibrium with Metallic Copper for a Copper Slag Cleaning Production

    NASA Astrophysics Data System (ADS)

    Henao, Hector M.; Pizarro, Claudio; Font, Jonkion; Moyano, Alex; Hayes, Peter C.; Jak, Evgueni

    2010-12-01

    Limited data are available on phase equilibria of the multicomponent slag system at the oxygen partial pressures used in the copper smelting, converting, and slag-cleaning processes. Recently, experimental procedures have been developed and have been applied successfully to characterize several complex industrial slags. The experimental procedures involve high-temperature equilibration on a substrate and quenching followed by electron probe X-ray microanalysis. This technique has been used to construct the liquidus for the “Cu2O”-“FeO”-SiO2-based slags with 2 wt pct of CaO, 0.5 wt pct of MgO, and 4.0 wt pct of Al2O3 at controlled oxygen partial pressures in equilibrium with metallic copper. The selected ranges of compositions and temperatures are directly relevant to the copper slag-cleaning processes. The new experimental equilibrium results are presented in the form of ternary sections and as a liquidus temperature vs Fe/SiO2 weight ratio diagram. The experimental results are compared with the FactSage thermodynamic model calculations.

  15. Phase equilibria in systems Ce-M-Sb (M=Si, Ge, Sn) and superstructure Ce{sub 12}Ge{sub 9-x}Sb{sub 23+x} (x=3.8+-0.1)

    SciTech Connect

    Nasir, Navida; Grytsiv, Andriy; Rogl, Peter; Saccone, Adriana; Giester, Gerald

    2009-04-15

    Phase relations in the ternary systems Ce-M-Sb (M=Si, Ge, Sn) in composition regions CeSb{sub 2}-Sb-M were studied by optical and electron microscopy, X-ray diffraction, and electron probe microanalysis on arc-melted alloys and specimens annealed in the temperature region from 850 to 200 deg. C. The results, in combination with an assessment of all literature data available, were used to construct solidus surfaces and a series of isothermal sections. No ternary compounds were found to form in the Ce-Si-Sb system whilst Ce{sub 12}Ge{sub 9-x}Sb{sub 23+x} (3.3phase equilibria in the composition region investigated. Crystallographic parameters for the ternary compound Ce{sub 12}Ge{sub 9-x}Sb{sub 23+x} (x=3.8+-0.1) were determined from X-ray single crystal and powder diffraction. For the binary system Ge-Sb a eutectic was defined Lreversible(Ge)+(Sb) at 591.6 deg. C and 22.5 at%. Ge EPMA revealed a maximal solubility of 6.3 at% Ge in (Sb) at the eutectic temperature. - Graphical abstract: Phase relations in the ternary systems Ce-M-Sb (M=Si, Ge, Sn) in composition regions CeSb{sub 2}-Sb-M have been studied by optical and electron microscopy, XRD and EPMA on as cast alloys and specimens annealed in the temperature region 200-850 deg. C.

  16. Vent fluid chemistry of the Rainbow hydrothermal system (36°N, MAR): Phase equilibria and in situ pH controls on subseafloor alteration processes

    NASA Astrophysics Data System (ADS)

    Seyfried, W. E., Jr.; Pester, Nicholas J.; Ding, Kang; Rough, Mikaella

    2011-03-01

    -fluid equilibria. Indeed, the predicted correlation between dissolved silica and H 2 defines a trend that is in good agreement with vent fluid data from Rainbow and other high-temperature ultramafic-hosted hydrothermal systems. We speculate that the moderate concentrations of dissolved silica in vent fluids from these systems result from hydrothermal alteration of plagioclase and olivine in the form of subsurface gabbroic intrusions, which, in turn are variably replaced by chlorite + magnetite + talc ± tremolite, with important implications for pH lowering, dissolved sulfide concentrations, and metal mobility.

  17. Nucleophilic substitution in preparation and surface modification of hypercrosslinked stationary phases.

    PubMed

    Janků, Simona; Škeříková, Veronika; Urban, Jiří

    2015-04-01

    Four linear diaminoalkanes (1,2-diaminoethane, 1,4-diaminobutane, 1,6-diaminohexane, and 1,8-diaminooctane) have been used to hypercrosslink poly(styrene-co-vinylbenzyl chloride-co-divinylbenzene) monolithic stationary phases by nucleophilic substitution reaction. The column efficiency of polymer monoliths improved with longer diaminoalkane with 1,8-diaminoctane providing the highest efficiency. The concentration of 1,8-diaminoctane, together with hypercrosslinking time and temperature has been optimized. To improve the permeability of prepared columns, the hypercrosslinking modification has been combined with an early termination of polymerization reaction and decrease in polymerization temperature. The optimal column has been prepared by a polymerization reaction for 2h at 65°C and hypercrosslinked in the presence of 3% 1,8-diaminooctane for 2h at 95°C. The repeatability study of the presented protocol provided relative standard deviation for nine columns prepared independently out of three individual polymerization mixtures in between 2.0-12.0% for retention factors and 1.5-6.5% for plate heights, respectively. Further, we have modified residual chloromethyl groups with 2-aminoethanesulfonic acid (taurine) to prepare monolithic columns suitable for separation of small polar molecules in hydrophilic interaction chromatography. The highest retention of polar thiourea showed the column modified at 70°C for 20 h. Taurine-modified hypercrosslinked column showed the minimum of van Deemter curve of 20 μm. The prepared column provided dual-retention mechanism, including hydrophilic interaction and reversed-phase liquid chromatography that can be controlled by the composition of the mobile phase. The prepared column has been successfully used for an isocratic separation of low-molecular phenolic acids. PMID:25728663

  18. Three-dimensional stellarator equilibria by iteration

    SciTech Connect

    Boozer, A.H.

    1983-02-01

    The iterative method of evaluating plasma equilibria is especially simple in a magnetic coordinate representation. This method is particularly useful for clarifying the subtle constraints of three-dimensional equilibria and studying magnetic surface breakup at high plasma beta.

  19. Stable and Metastable Equilibria in the Pb-Cd System

    NASA Astrophysics Data System (ADS)

    Chuang, Ying-Yu; Paik, J.-S.; Zhang, C.; Perepezko, J. H.; Chang, Y. A.

    2013-07-01

    Thermodynamic and phase diagram data in the Pb-Cd system are reevaluated. A substitutional solution model is used for the liquid and fcc and hcp phases. The stable and metastable equilibria of this system are calculated using the thermodynamic equations derived from equilibrium data. Besides the well-established eutectic reaction at 521 K (248 °C), one stable monotectic reaction at 548 K (275 °C) is found due to the existence of a stable liquid miscibility gap. The stable monotectic reaction has been missed in all previous evaluations. Experimental verifications of the stable and metastable phase equilibria are provided using droplet samples and undercooled liquid alloys. A differential thermal analysis (DTA) method is applied to determine the phase reaction temperatures using both traditional heating and cooling processes and a specially designed cycling process. Additional microstructural evidence is used to elucidate the nature of the phase reactions. The refined thermodynamic descriptions are based upon both the thermochemical and phase diagram stable and metastable data. The agreement between the calculated and experimental data is good. All experimental stable and metastable results are well explained by the new Pb-Cd phase diagram calculations within the experimental accuracy limits. Combined experimental and thermodynamic modeling procedures developed for determining the stable and metastable phase equilibria yield a highly reliable overall phase diagram assessment and a quantitative basis for the interpretation of non-equilibrium solidification processing.

  20. In situ high temperature X-Ray diffraction study of the phase equilibria in the UO2-PuO2-Pu2O3 system

    NASA Astrophysics Data System (ADS)

    Belin, Renaud C.; Strach, Michal; Truphémus, Thibaut; Guéneau, Christine; Richaud, Jean-Christophe; Rogez, Jacques

    2015-10-01

    The region of the U-Pu-O phase diagram delimited by the compounds UO2-PuO2-Pu2O3 is known to exhibit a miscibility gap at low temperature. Consequently, MOX fuels with a composition entering this region could decompose into two fluorite phases and thus exhibit chemical heterogeneities. The experimental data on this domain found in the literature are scarce and usually provided using DTA that is not suitable for the investigation of such decomposition phenomena. In the present work, new experimental data, i.e. crystallographic phases, lattice parameters, phase fractions and temperature of phase separation, were measured in the composition range 0.14 < Pu/(U + Pu) < 0.62 and 1.85 < O/(U + Pu) < 2 from 298 to 1750 K using a novel in situ high temperature X-ray diffraction apparatus. A very good agreement is found between the temperature of phase separation determined from our results and using the thermodynamic model of the U-Pu-O system based on the CALPHAD method. Also, the combined use of thermodynamic calculations and XRD results refinement proved helpful in the determination of the O/M ratio of the samples during cooling. The methodology used in the current work might be useful to investigate other oxides systems exhibiting a miscibility gap.

  1. Phase equilibria in the Ti-Al-O system at 945 C and analysis of Ti/Al{sub 2}O{sub 3} reactions

    SciTech Connect

    Kelkar, G.P.; Carim, A.H.

    1995-03-01

    Phase relations in the Ti-Al-O system were evaluated experimentally at 945 C. The tie lines were established using equilibrated samples with phase compositions determined by electron probe microanalysis. The phase relations were in agreement with previous estimates but the phase fields of {alpha}-Ti[O,Al] and Ti{sub 3}Al[O] were significantly different. The Ti{sub 3}Al[O] phase has a maximum solubility of 22 at.% O, corresponding to a nominal stoichiometry of Ti{sub 3}AlO, whereas the {alpha}-Ti[O,Al] phase, at a maximum O solubility of 33.33 at.%, has a negligible amount of Al in solution. The disagreement between these results and previous studies was attributed to the differences in experimental techniques for sample preparation and analysis. The reported layer sequences at the Ti/Al{sub 2}O{sub 3} interface were evaluated based on the ternary section and the corresponding O activity diagram. The layered interfaces were found to be stable, with the evolution of the reaction products governed by the thickness of the initial Ti layer and the partial pressure in the ambient.

  2. Surface modification induced phase transformation and structure variation on the rapidly solidified recast layer of titanium

    SciTech Connect

    Tsai, Ming-Hung; Haung, Chiung-Fang; Shyu, Shih-Shiun; Chou, Yen-Ru; Lin, Ming-Hong; Peng, Pei-Wen; and others

    2015-08-15

    In this study, neodymium-doped yttrium orthovanadate (Nd:YVO{sub 4}) as a laser source with different scanning speeds was used on biomedical Ti surface. The microstructural and biological properties of laser-modified samples were investigated by means of optical microscope, electron microscope, X-ray diffraction, surface roughness instrument, contact angle and cell cytotoxicity assay. After laser modification, the rough volcano-like recast layer with micro-/nanoporous structure and wave-like recast layer with nanoporous structure were generated on the surfaces of laser-modified samples, respectively. It was also found out that, an α → (α + rutile-TiO{sub 2}) phase transition occurred on the recast layers of laser-modified samples. The Ti surface becomes hydrophilic at a high speed laser scanning. Moreover, the cell cytotoxicity assay demonstrated that laser-modified samples did not influence the cell adhesion and proliferation behaviors of osteoblast (MG-63) cell. The laser with 50 mm/s scanning speed induced formation of rough volcano-like recast layer accompanied with micro-/nanoporous structure, which can promote cell adhesion and proliferation of MG-63 cell on Ti surface. The results indicated that the laser treatment was a potential technology to enhance the biocompatibility for titanium. - Highlights: • Laser induced the formation of recast layer with micro-/nanoporous structure on Ti. • An α → (α + rutile-TiO{sub 2}) phase transition was observed within the recast layer. • The Ti surface becomes hydrophilic at a high speed laser scanning. • Laser-modified samples exhibit good biocompatibility to osteoblast (MG-63) cell.

  3. Liquid phase methanol LaPorte process development unit: Modification, operation, and support studies

    SciTech Connect

    Not Available

    1991-01-02

    Liquid-entrained operations at the LaPorte Liquid Phase Methanol (LPMEOH) Process Development Unit (PDU) continued during June and July 1988 under Tasks 2.1 and 2.2 of Contract No. DE-AC22-87PC90005 for the US Department of Energy. The primary focus of this PDU operating program was to prepare for a confident move to the next scale of operation with an optimized and simplified process. Several new design options had been identified and thoroughly evaluated in a detailed process engineering study completed under the LPMEOH Part-2 contract (DE-AC22-85PC80007), which then became the basis for the current PDU modification/operating program. The focus of the Process Engineering Design was to optimize and simplifications focused on the slurry loop, which consists of the reactor, vapor/liquid separator, slurry heat exchanger, and slurry circulation pump. Two-Phase Gas Holdup tests began at LaPorte in June 1988 with nitrogen/oil and CO- rich gas/oil systems. The purpose of these tests was to study the hydrodynamics of the reactor, detect metal carbonyl catalyst poisons, and train operating personnel. Any effect of the new gas sparger and the internal heat exchanger would be revealed by comparing the hydrodynamic data with previous PDU hydrodynamic data. The Equipment Evaluation'' Run E-5 was conducted at the LaPorte LPMEOH PDU in July 1988. The objective of Run E-5 was to systematically evaluate each new piece of equipment (sparger, internal heat exchanger, V/L disengagement zone, demister, and cyclone) which had been added to the system, and attempt to run the reactor in an internal-only mode. In addition, a successful catalyst activation with a concentrated (45 wt % oxide) slurry was sought. 9 refs., 26 figs., 15 tabs.

  4. Protein oxidative modifications during electrospray ionization: solution phase electrochemistry or corona discharge-induced radical attack?

    PubMed

    Boys, Brian L; Kuprowski, Mark C; Noël, James J; Konermann, Lars

    2009-05-15

    The exposure of solution-phase proteins to reactive oxygen species (ROS) causes oxidative modifications, giving rise to the formation of covalent +16 Da adducts. Electrospray ionization (ESI) mass spectrometry (MS) is the most widely used method for monitoring the extent of these modifications. Unfortunately, protein oxidation can also take place as an experimental artifact during ESI, such that it may be difficult to assess the actual level of oxidation in bulk solution. Previous work has demonstrated that ESI-induced oxidation is highly prevalent when operating at strongly elevated capillary voltage V(0) (e.g., +8 kV) and with oxygen nebulizer gas in the presence of a clearly visible corona discharge. Protein oxidation under these conditions is commonly attributed to OH radicals generated in the plasma of the discharge. On the other hand, charge balancing oxidation reactions are known to take place at the metal/liquid interface of the emitter. Previous studies have not systematically explored whether such electrochemical processes could be responsible for the formation of oxidative +16 Da adducts instead of (or in combination with) plasma-generated ROS. Using hemoglobin as a model system, this work illustrates the occurrence of extensive protein oxidation even under typical operating conditions (e.g., V(0) = 3.5 kV, N(2) nebulizer gas). Surprisingly, measurements of the current flowing in the ESI circuit demonstrate that a weak corona discharge persists for these relatively gentle settings. On the basis of comparative experiments with nebulizer gases of different dielectric strength, it is concluded that ROS generated under discharge conditions are solely responsible for ESI-induced protein oxidation. This result is corroborated through off-line electrolysis experiments designed to mimic the electrochemical processes taking place during ESI. Our findings highlight the necessity of using easily oxidizable internal standards in biophysical or biomedical ESI

  5. Study of improved methods for predicting chemical equilibria. Final technical report, April 1, 1993--August 31, 1997

    SciTech Connect

    Lenz, T.G.; Vaughan, J.D.

    1997-10-01

    A long-standing goal of chemical engineers and chemists has been the development of techniques for accurate prediction of the thermodynamic properties of isolated molecules. The thermochemical functions for an ideal gas then provide a means of computing chemical equilibria, and such computations can be extended to condensed phase chemical equilibria with appropriate physical property data. Such capability for predicting diverse chemical equilibria is important in today`s competitive international economic environment, where bringing new products to market rapidly and efficiently is crucial. The purpose of this project has been to develop such computational methods for predicting chemical equilibria.

  6. Correct Representation of Conformational Equilibria.

    ERIC Educational Resources Information Center

    Fulop, F.; And Others

    1983-01-01

    In representing conformational equilibria of compounds having only one chiral center, erroneous formulas showing different antipodes on the two sides of the equilibrium are rare. In contrast, with compounds having two or more chiral centers especially with saturated heterocycles, this erroneous representation occurs frequently in the chemical…

  7. Equilibria in Quantitative Reachability Games

    NASA Astrophysics Data System (ADS)

    Brihaye, Thomas; Bruyère, Véronique; de Pril, Julie

    In this paper, we study turn-based quantitative multiplayer non zero-sum games played on finite graphs with reachability objectives. In this framework each player aims at reaching his own goal as soon as possible. We prove existence of finite-memory Nash (resp. secure) equilibria in multiplayer (resp. two-player) games.

  8. A new equation of state of a flexible-chain polyelectrolyte solution: Phase equilibria and osmotic pressure in the salt-free case

    NASA Astrophysics Data System (ADS)

    Budkov, Yu. A.; Kolesnikov, A. L.; Georgi, N.; Nogovitsyn, E. A.; Kiselev, M. G.

    2015-05-01

    We develop a first-principle equation of state of salt-free polyelectrolyte solution in the limit of infinitely long flexible polymer chains in the framework of a field-theoretical formalism beyond the linear Debye-Hueckel theory and predict a liquid-liquid phase separation induced by a strong correlation attraction. As a reference system, we choose a set of two subsystems—charged macromolecules immersed in a structureless oppositely charged background created by counterions (polymer one component plasma) and counterions immersed in oppositely charged background created by polymer chains (hard-core one component plasma). We calculate the excess free energy of polymer one component plasma in the framework of modified random phase approximation, whereas a contribution of charge densities' fluctuations of neutralizing backgrounds we evaluate at the level of Gaussian approximation. We show that our theory is in a very good agreement with the results of Monte Carlo and MD simulations for critical parameters of liquid-liquid phase separation and osmotic pressure in a wide range of monomer concentration above the critical point, respectively.

  9. Investigations on the phase equilibria of some hydride ion conducting electrolyte systems and their application for hydrogen monitoring in sodium coolant

    NASA Astrophysics Data System (ADS)

    Joseph, Kitheri; Sujatha, K.; Nagaraj, S.; Mahendran, K. H.; Sridharan, R.; Periaswami, G.; Gnanasekaran, T.

    2005-09-01

    Electrochemical meters for measuring hydrogen levels in liquid sodium need thermodynamically stable hydride ion conducting electrolytes. In order to identify electrolytes that have high hydride ion conductivity, phase diagram of systems consisting of low melting compounds such as CaCl 2-LiCl, SrBr 2-LiBr, SrBr 2-SrHBr and CaBr 2-CaHBr were investigated by differential scanning calorimetry and their phase diagrams established. Using these information and supplementary information on effects of addition of alkaline earth hydride to these systems, potential electrolytes were tested for their use in electrochemical meters. Meters were constructed using electrolytes with (i) 22mol%SrCl 2-12.2mol%CaCl 2-54.5mol%LiCl-11.3mol%CaHCl, (ii) 70mol%LiCl-16mol%CaHCl-14mol%CaCl 2 and (iii) 40mol%CaHBr-60mol%CaBr 2 compositions. Output of meters that had Li ions in liquid phase electrolyte showed non-linearity at low hydrogen levels. Output of meters using CaBr 2-40mol%CaHBr solid showed linearity in the concentration range of 50-250 ppb in sodium.

  10. Numerical analysis of unsteady cavitating flow by using a modification based on an assumption of apparent phase equilibrium

    NASA Astrophysics Data System (ADS)

    Iga, Y.

    2014-03-01

    The prediction accuracy of cavitation by CFD is still not so high even in a simplest flow field around a single hydrofoil especially in transient condition at higher angle of attack, which is common problem in both commercial software and in-house solvers. In the transient condition, unsteady cavitation occurs, in which sheet cavity breaks off and cloud cavity sheds downstream periodically. At that time, the sheet cavity length tends to be underestimated in usual CFD. In the present study, modification for the phase change model is suggested, which is based on an idea of apparent phase equilibrium on gas-liquid interface with unsteady and disturbed flow. At first, a preliminary experiment has been done for evaporation on two gas- liquid interfaces with and without flow, the result contributes the evidence of the idea of apparent phase equilibrium with flow. In the result, the pressure around gas-liquid interface with flow was higher than that without flow on the occasion of evaporation, it means flow accelerates evaporation. I treat the gap of the pressure as a gap of phase equilibrium pressure macroscopically. Then, numerical simulation of cavitating flow around a hydrofoil is performed with a modification of phase change model in the transient condition at higher angle of attack which is most difficult to predict by the present solvers. In the modification, the gap of the pressure with and without flow is taken into account according to a value of a local variation of velocity in the cavitating flow filed. The formulation is similar to the PDF model for phase change model in cavitation by Singhal. The numerical results by the present modification are compared among few pressure variation components which are assumed to accelerate the evaporation in transient cavitation.