Science.gov

Sample records for phase formation mechanism

  1. Amorphous phase formation in mechanically alloyed iron-based systems

    NASA Astrophysics Data System (ADS)

    Sharma, Satyajeet

    Bulk metallic glasses have interesting combination of physical, chemical, mechanical, and magnetic properties which make them attractive for a variety of applications. Consequently there has been a lot of interest in understanding the structure and properties of these materials. More varied applications can be sought if one understands the reasons for glass formation and the methods to control them. The glass-forming ability (GFA) of alloys can be substantially increased by a proper selection of alloying elements and the chemical composition of the alloy. High GFA will enable in obtaining large section thickness of amorphous alloys. Ability to produce glassy alloys in larger section thicknesses enables exploitation of these advanced materials for a variety of different applications. The technique of mechanical alloying (MA) is a powerful non-equilibrium processing technique and is known to produce glassy (or amorphous) alloys in several alloy systems. Metallic amorphous alloys have been produced by MA starting from either blended elemental metal powders or pre-alloyed powders. Subsequently, these amorphous alloy powders could be consolidated to full density in the temperature range between the glass transition and crystallization temperatures, where the amorphous phase has a very low viscosity. This Dissertation focuses on identifying the various Fe-based multicomponent alloy systems that can be amorphized using the MA technique, studying the GFA of alloys with emphasis on improving it, and also on analyzing the effect of extended milling time on the constitution of the amorphous alloy powder produced at earlier times. The Dissertation contains seven chapters, where the lead chapter deals with the background, history and introduction to bulk metallic glasses. The following four chapters are the published/to be published work, where the criterion for predicting glass formation, effect of Niobium addition on glass-forming ability (GFA), lattice contraction on

  2. MECHANISM AND KINETICS OF THE FORMATION OF NOX AND OTHER COMBUSTION POLLUTANTS. PHASE II. MODIFIED COMBUSTION

    EPA Science Inventory

    The report gives Phase II results of a combined experimental/theoretical study to define the mechanisms and kinetics of the formation of NOx and other combustion pollutants. Two experimental devices were used in Phase II. A special flat-flame burner with a controlled-temperature ...

  3. Mechanism of Phase Formation in the Batch Mixtures for Slag-Bearing Glass Ceramics - 12207

    SciTech Connect

    Stefanovsky, Sergey V.; Stefanovsky, Olga I.; Malinina, Galina A.

    2012-07-01

    Slag surrogate was produced from chemicals by heating to 900 deg. C and keeping at this temperature for 1 hr. The product obtained was intermixed with either sodium di-silicate (75 wt.% waste loading) or borax (85 wt.% slag loading). The mixtures were heat-treated within a temperature range of 25 to 1300 deg. C. The products were examined by X-ray diffraction and infrared spectroscopy. The products prepared at temperatures of up to 1000 deg. C contained both phase typical of the source slag and intermediate phases as well as phases typical of the materials melted at 1350 deg. C such as nepheline, britholite, magnetite and matrix vitreous phase. Vitrification process in batch mixtures consisting of slag surrogate and either sodium di-silicate or sodium tetraborate runs through formation of intermediate phases mainly silico-phosphates capable to incorporate Sm as trivalent actinides surrogate. Reactions in the batch mixtures are in the whole completed by ∼1000 deg. C but higher temperatures are required to homogenize the products. If in the borate-based system the mechanism is close to simple dissolution of slag constituents in the low viscous borate melt, then in the silicate-based system the mechanism was found to be much complicated and includes re-crystallization during melting with segregation of newly-formed nepheline type phase. (authors)

  4. Phenomenological thermodynamics and the structure formation mechanism of the CuTi₂S₄ rhombohedral phase.

    PubMed

    Talanov, Michail V; Shirokov, Vladimir B; Talanov, Valery M

    2016-04-21

    The theory of structural phase transition in CuTi2S4 is proposed. The symmetry of order parameters, thermodynamics and the mechanism of the atomic structure formation of the rhombohedral Cu-Ti-thiospinel have been studied. The critical order parameter inducing the phase transition has been found. Within the Landau theory of phase transitions, it is shown that the phase state may change from the high-symmetry cubic disordered Fd3[combining macron]m phase to the low-symmetry ordered rhombohedral R3[combining macron]m phase as a result of phase transition of the first order close to the second order. It is shown that the rhombohedral structure of CuTi2S4 is formed as a result of the displacements of all types of atoms and the ordering of Cu-atoms (1 : 1 order type in tetrahedral spinel sites), Ti-atoms (1 : 1 : 6 order type in octahedral spinel sites), and S-atoms (1 : 1 : 3 : 3 order type). The Cu- and Ti-atoms form metal nanoclusters which are named a "bunch" of dimers. The "bunch" of dimers in CuTi2S4 is a new type of self-organization of atoms in frustrated spinel-like structures. It is shown that Ti-atoms also form other types of metal nanoclusters: trimers and tetrahedra. PMID:27035866

  5. Global modeling of SOA: the use of different mechanisms for aqueous-phase formation

    NASA Astrophysics Data System (ADS)

    Lin, G.; Sillman, S.; Penner, J. E.; Ito, A.

    2014-06-01

    There is growing interest in the formation of secondary organic aerosol (SOA) through condensed aqueous-phase reactions. In this study, we use a global model (IMPACT) to investigate the potential formation of SOA in the aqueous phase. We compare results from several multiphase process schemes with detailed aqueous-phase reactions to schemes that use a first-order gas-to-particle formation rate based on uptake coefficients. The predicted net global SOA production rate in cloud water ranges from 13.1 Tg yr-1 to 46.8 Tg yr-1 while that in aerosol water ranges from -0.4 Tg yr-1 to 12.6 Tg yr-1. The predicted global burden of SOA formed in the aqueous phase ranges from 0.09 Tg to 0.51 Tg. A sensitivity test to investigate two representations of cloud water content from two global models shows that increasing cloud water by an average factor of 2.7 can increase the net SOA production rate in cloud water by a factor of 4 at low altitudes (below approximately 900 hPa). We also investigated the importance of including dissolved Fe chemistry in cloud water aqueous reactions. Adding these reactions increases the formation rate of aqueous-phase OH by a factor of 2.6 and decreases the amount of global aqueous SOA formed by 31%. None of the mechanisms discussed here is able to provide a best fit for all observations. Rather, the use of an uptake coefficient method for aerosol water and a multi-phase scheme for cloud water provides the best fit in the Northern Hemisphere and the use of multiphase process scheme for aerosol and cloud water provides the best fit in the tropics. The model with Fe chemistry underpredicts oxalate measurements in all regions. Finally, the comparison of oxygen-to-carbon (O / C) ratios estimated in the model with those estimated from measurements shows that the modeled SOA has a slightly higher O / C ratio than the observed SOA for all cases.

  6. Comparison of Phases Formation Process in Initial and Mechanically Activated Ceramic Batches with Pyrochlore Formulations

    SciTech Connect

    Stefanovsky, S. V.; Chizhevskaya, S. V.; Yudintsev, S. V.

    2002-02-25

    Formation of two pyrochlore ceramics with formulations CaZr0.25U0.75Ti2O7 and CaUTi2O7 within the temperature range 1000-1500 C from batches prepared by grinding of oxide powders in a mortar and an activator with hydrostatic yokes AGO-2U as well as soaking of a Ca, Zr, and Ti oxide mixture with uranylnitrate solution was studied. The pyrochlore ceramics are produced through intermediate calcium uranate formation. Phase formation reactions in the batch pre-treated in the AGO-2U unit were completed within the temperature range 1000-1100 C that is lower than in the batches prepared by two other methods.

  7. Liquid nanodroplet formation through phase explosion mechanism in laser-irradiated metal targets

    NASA Astrophysics Data System (ADS)

    Mazzi, Alberto; Gorrini, Federico; Miotello, Antonio

    2015-09-01

    Some quantitative aspects of laser-irradiated pure metals, while approaching phase explosion, are still not completely understood. Here, we develop a model that describes the main quantities regulating the liquid-vapor explosive phase transition and the expulsion of liquid nanodroplets that, by solidifying, give rise to nanoparticle formation. The model combines both a thermodynamics description of the explosive phase change and a Monte Carlo simulation of the randomly generated critical vapor bubbles. The calculation is performed on a set of seven metals (Al, Fe, Co, Ni, Cu, Ag, and Au) which are frequently used in pulsed laser ablation experiments. Our final predictions about the size distribution of the liquid nanodroplets and the number ratio of liquid/vapor ejected atoms are compared, whenever possible, with available molecular dynamics simulations and experimental data.

  8. Synthesis, characterization and formation mechanism of metastable phase VO{sub 2}(A) nanorods

    SciTech Connect

    Cheng, X.H.; Xu, H.F.; Wang, Z.Z.; Zhu, K.R.; Li, G.; Jin, Shaowei

    2013-09-01

    Graphical abstract: - Highlights: • Pure phases of VO{sub 2}(B) and VO{sub 2}(A) were prepared by a facile hydrothermal method. • Belt-like particles prepared at 180 °C was indexed as monoclinic VO{sub 2}(B) phase. • Rod-like particles prepared at 230 °C was indexed as tetragonal VO{sub 2}(A) phase. • VO{sub 2}(A) nanorods resulted from VO{sub 2}(B) nanobelts by assembly and crystal adjustment. - Abstract: Pure phase VO{sub 2}(A) nanorods were synthesized via the reduction of V{sub 2}O{sub 5} by oxalic acid during the hydrothermal treatment. Two sets of samples were prepared by varying both system temperature and reaction time under a filling ratio of 0.40 for observing the formation and evolution of VO{sub 2}(A) nanorods. Structures were characterized by X-ray diffraction, scanning and transmission electron microscopies, respectively. It was found that VO{sub 2}(B) was firstly formed and then transformed into VO{sub 2}(A) as the increasing system temperature or extending reaction time. An assembling and following crystal adjustment was proposed for explanation the formation process of VO{sub 2}(A) from VO{sub 2}(B). For VO{sub 2}(A) nanorods, the phase transition temperature of 169.7 °C was higher than that of the VO{sub 2}(A) bulk, it might be ascribed to the lower crystallinity or nonstoichiometry in VO{sub 2}(A) nanorods. VO{sub 2} nanostructures with controllable phases and properties should find their promising applications in a single VO{sub 2} nanodevice.

  9. Creation and formation mechanism of new carbon phases constructed by amorphous carbon

    NASA Astrophysics Data System (ADS)

    Yao, Mingguang; Cui, Wen; Liu, Bingbing

    Our recent effort is focusing on the creation of new hard/superhard carbon phases constructed by disordered carbons or amorphous carbon clusters under high pressure. We showed that the pressure-induced amorphous hard carbon clusters from collapsed fullerenes can be used as building blocks (BBs) for constructing novel carbon structures. This new strategy has been verified by compressing a series of intercalated fullerides, pre-designed by selecting various dopants with special features. We demonstrate that the boundaries of the amorphous BBs are mediated by intercalated dopants and several new superhard materials have been prepared. We also found that the dopant-mediated BBs can be arranged in either ordered or disordered structures, both of which can be hard enough to indent the diamond anvils. The hardening mechanisms of the new phases have also been discussed. For the glassy carbon (GC) constructructed by disordered fullerene-like nanosized fragments, we also found that these disordered fragments can bond and the compressed GC transformed into a transparent superhard phase. Such pressure-induced transformation has been discovered to be driven by a novel mechanism (unpublished). By understanding the mechanisms we can clarify the controversial results on glassy carbon reported recently. The authors would like to thank the financial support from the National Natural Science Foundation of China (No. 11474121, 51320105007).

  10. Identification of Abnormal Phase and its Formation Mechanism in Synthesizing Chalcogenide Films

    NASA Astrophysics Data System (ADS)

    Liu, Kegao; Ji, Nianjing; Xu, Yong; Liu, Hong

    2016-09-01

    Chalcogenide films can be used in thin-film solar cells due to their high photoelectric conversion efficiencies. It was difficult to identify one abnormal phase with high X-ray diffraction (XRD) intensity and preferred orientation in the samples for preparing chalcogenide films by spin-coating and co-reduction on soda-lime glass (Na2OṡCaOṡ6SiO2) substrates. The raw materials and reductant are metal chlorides and hydrazine hydrate respectively. In order to identify this phase, a series of experiments were done under different conditions. The phases of obtained products were analyzed by XRD and the size and morphology were characterized by scanning electron microscope (SEM) and atomic force microscopy (AFM). From the experimental results, first it was proved that the abnormal phase was water-soluble by water immersion experiment, then it was identified as NaCl crystal through XRD, energy dispersive spectrometer (EDS) and SEM. The cubic NaCl crystals have high crystallinity with size lengths of about 0.5-2μm and show a <100> preferred orientation. The reaction mechanism of NaCl crystal was proposed as follows: The NaCl crystal was formed by reaction of Na2O and HCl in a certain experimental conditions.

  11. Study on the Formation and Precipitation Mechanism of Mn5Si3 Phase in the MBA-2 Brass Alloy

    NASA Astrophysics Data System (ADS)

    Li, Hang; Jie, Jinchuan; Zhang, Pengchao; Jia, Chunxu; Wang, Tongmin; Li, Tingju

    2016-06-01

    Mn5Si3 is an attractive dispersion in the special brass, owing to its high hardness and high wear resistance. In the present study, synchrotron X-ray radiography and rapid cooling were applied to investigate the formation mechanism of Mn5Si3 phase in the MBA-2 brass alloy. The primary Mn5Si3 phase is proved to exist stably in the alloy melt and nucleate from the melt at temperatures above 1373 K (1100 °C). In addition, the precipitation mechanism of Mn5Si3 phase is addressed systematically by the isothermal heat treatment. The Mn5Si3 particles are observed to precipitate from the matrix at temperatures above 1023 K (750 °C), and a crystallographic orientation relationship is found between the precipitated Mn5Si3 particle and β phase: (110)_{β } //(1overline{1} 00)_{{{{Mn}}5 {{Si}}3 }} and [overline{1} 11]_{β } //[11overline{2} overline{2} ]_{{{{Mn}}5 {{Si}}3 }} . However, the precipitation of Mn5Si3 phase is thermodynamically inhibited at lower temperatures, which can be ascribed to the increase in the Gibbs free energy of formation of Mn5Si3 with decreasing the temperature.

  12. Synthesis and formation mechanism of pinnoite by the phase transition process

    NASA Astrophysics Data System (ADS)

    Lin, Feng; Dong, Yaping; Peng, Jiaoyu; Wang, Liping; Li, Wu

    2016-06-01

    Pinnoite (MgB2O(OH)6) for the first time was synthesized using the solid-liquid-solid conversion method. The effects of reaction time, pH value and concentrations of magnesium and borate were investigated. Pinnoite was synthesized under the optimum condition of 8 mmol hungtsaoite and 1% boric acid solution at 80 °C. The products were determined using X-ray diffraction, Fourier-transform infrared spectroscopy, TG-DSC and a UV-vis spectrometer. The change processes of the surface morphology of pinnoite were investigated using scanning electron microscopy. In addition, the formation mechanism of pinnoite was discussed according to the changes in the content of precipitation and pH value.

  13. Phase formation and superconducting properties of mechanically alloyed Nb3(Al1‑x Ge x ) system

    NASA Astrophysics Data System (ADS)

    Li, Pingyuan; Chen, Yongliang; Xu, Liyuan; Zhang, Yun; Pan, Xifeng; Yan, Guo; Zhang, Yong; Cheng, C. H.; Feng, Yong; Zhao, Yong

    2016-07-01

    Mechanically alloyed Nb3(Al1‑x Ge x ) compounds with nominal composition x = 0%, 10%, 15%, 20%, 25% and 30% were synthesized using high-energy ball milling. The effects of Ge content and sintering temperature on the formation of the Nb3Al superconducting phase at a relatively low temperature without the extremely high-temperature rapid heating, quenching and transformation process were studied. The results revealed that Ge doping in Nb3Al improved the formation of the A15 phase at low temperatures, enhanced the superconducting transition temperature (T c), and refined the grain structure, thus improving the overall superconducting properties. The pinning behavior was also studied for the optimized sample.

  14. The mechanism of 2-furaldehyde formation from D-xylose dehydration in the gas phase. A tandem mass spectrometric study.

    PubMed

    Ricci, Andreina; Piccolella, Simona; Pepi, Federico; Garzoli, Stefania; Giacomello, Pierluigi

    2013-07-01

    The mechanism of reactions occurring in solution can be investigated also in the gas phase by suited mass spectrometric techniques, which allow to highlight fundamental mechanistic features independent of the influence of the medium and to clarifying controversial hypotheses proposed in solution studies. In this work, we report a gas-phase study performed by electrospray triple stage quadrupole mass spectrometry (ESI-TSQ/MS) on the dehydration of D-xylose, leading mainly to the formation of 2-furaldehyde (2-FA). It is generally known in carbohydrate chemistry that the thermal acid catalyzed dehydration of pentoses leads to the formation of 2-FA, but several aspects on the solution-phase mechanism are controversial. Here, gaseous reactant ions corresponding to protonated xylose molecules obtained from ESI of a solution containing D-xylose and ammonium acetate as protonating reagent were allowed to undergo collisionally activated decomposition (CAD) into the triple stage quadrupole analyzer. The product ion mass spectra of protonated xylose are characterized by the presence of ionic intermediates arising from xylose dehydration, which were structurally characterized by their fragmentation patterns. As expected, the xylose triple dehydration leads to the formation of the ion at m/z 97, corresponding to protonated 2-FA. On the basis of mass spectrometric evidences, we demonstrated that in the gas phase, the formation of 2-FA involves protonation at the OH group bound to the C1 atom of the sugar, the first ionic intermediate being characterized by a cyclic structure. Finally, energy resolved product ion mass spectra allowed to obtain information on the energetic features of the D-xylose→2-FA conversion. ᅟ PMID:23690250

  15. Colloidal nanocrystals of orthorhombic Cu2ZnGeS4: phase-controlled synthesis, formation mechanism and photocatalytic behavior

    NASA Astrophysics Data System (ADS)

    Fan, Cong-Min; Regulacio, Michelle D.; Ye, Chen; Lim, Suo Hon; Lua, Shun Kuang; Xu, Qing-Hua; Dong, Zhili; Xu, An-Wu; Han, Ming-Yong

    2015-02-01

    The orthorhombic polymorph of Cu2ZnGeS4 (CZGS) is a metastable wurtzite-derived phase that can only be prepared in the bulk form by extensive heating at high temperatures (>=790 °C) when using the conventional solid-state reaction route. By employing a facile solution-based synthetic strategy, we were able to obtain phase-pure orthorhombic CZGS in nanocrystalline form at a much lower reaction temperature. Prior to this work, the colloidal synthesis of single-phase orthorhombic CZGS on the nanoscale has never been reported. We find that the use of an appropriate combination of coordinating solvents and precursors is crucial to the sole formation of this metastable phase in solution. A possible formation mechanism is proposed on the basis of our experimental results. Because CZGS consists of environmentally benign metal components, it is regarded as a promising alternative material to the technologically useful yet toxic cadmium-containing semiconductors. The orthorhombic CZGS nanocrystals display strong photon absorption in the visible spectrum and are photocatalytically active in dye degradation under visible-light illumination.The orthorhombic polymorph of Cu2ZnGeS4 (CZGS) is a metastable wurtzite-derived phase that can only be prepared in the bulk form by extensive heating at high temperatures (>=790 °C) when using the conventional solid-state reaction route. By employing a facile solution-based synthetic strategy, we were able to obtain phase-pure orthorhombic CZGS in nanocrystalline form at a much lower reaction temperature. Prior to this work, the colloidal synthesis of single-phase orthorhombic CZGS on the nanoscale has never been reported. We find that the use of an appropriate combination of coordinating solvents and precursors is crucial to the sole formation of this metastable phase in solution. A possible formation mechanism is proposed on the basis of our experimental results. Because CZGS consists of environmentally benign metal components, it is

  16. Colloidal nanocrystals of orthorhombic Cu2ZnGeS4: phase-controlled synthesis, formation mechanism and photocatalytic behavior.

    PubMed

    Fan, Cong-Min; Regulacio, Michelle D; Ye, Chen; Lim, Suo Hon; Lua, Shun Kuang; Xu, Qing-Hua; Dong, Zhili; Xu, An-Wu; Han, Ming-Yong

    2015-02-21

    The orthorhombic polymorph of Cu2ZnGeS4 (CZGS) is a metastable wurtzite-derived phase that can only be prepared in the bulk form by extensive heating at high temperatures (≥790 °C) when using the conventional solid-state reaction route. By employing a facile solution-based synthetic strategy, we were able to obtain phase-pure orthorhombic CZGS in nanocrystalline form at a much lower reaction temperature. Prior to this work, the colloidal synthesis of single-phase orthorhombic CZGS on the nanoscale has never been reported. We find that the use of an appropriate combination of coordinating solvents and precursors is crucial to the sole formation of this metastable phase in solution. A possible formation mechanism is proposed on the basis of our experimental results. Because CZGS consists of environmentally benign metal components, it is regarded as a promising alternative material to the technologically useful yet toxic cadmium-containing semiconductors. The orthorhombic CZGS nanocrystals display strong photon absorption in the visible spectrum and are photocatalytically active in dye degradation under visible-light illumination. PMID:25619770

  17. MECHANISMS OF PHASE FORMATION IN THE VITRIFICATION OF HIGH-FERROUS SAVANNAH RIVER SITE SB2 HLW SLUDGE SURROGATE - 9300

    SciTech Connect

    Marra, J

    2008-08-27

    Phase formation mechanisms associated with the vitrification of high-ferrous Savannah River Site (SRS) Sludge Batch 2 (SB2) high level waste surrogate were studied by infrared spectroscopy (IRS) and X-ray diffraction (XRD). Two mixtures at 50 wt% waste loading with commercially available Frit 320 (Li{sub 2}O - 8 wt %, B{sub 2}O{sub 3} - 8 wt %, Na{sub 2}O - 12 wt %, SiO{sub 2} - 72 wt %) and batch chemicals (LiOH {center_dot} H{sub 2}O, H{sub 3}BO{sub 3}, NaNO{sub 3}, SiO{sub 2}) to represent the frit formulation were prepared as slurries with a water content of {approx}50 wt%. The mixtures were air-dried at a temperature of 115 C and heat-treated at 500, 700, 900, 1000, 1100, 1200, and 1300 C for 1 hr at each temperature. Infrared spectra and XRD patterns of the products produced at each temperature were recorded. In both mixtures prepared using frit and batch chemicals to represent the frit, phase formation reactions were completed within the temperature range between 900 and 1000 C. However, residual quartz was still present in glass produced from the mixture with batch chemicals even at 1100 C. Although, the phase composition and structure of the glassy products obtained from both mixtures at temperatures over 1000 C were similar, the products obtained from the mixture using actual frit were more homogeneous than those from the mixture with batch chemicals. Thus, the use of frit rather than batch chemicals reduced the temperature range of phase formation and provided for production of higher quality glass.

  18. Formation mechanism of primary phases and eutectic structures within undercooled Pb-Sb-Sn ternary alloys

    NASA Astrophysics Data System (ADS)

    Wang, Weili; Dai, Fuping; Wei, Bingbo

    2007-08-01

    The solidification characteristics of three types of Pb-Sb-Sn ternary alloys with different primary phases were studied under substantial undercooling conditions. The experimental results show that primary (Pb) and SbSn phases grow in the dendritic mode, whereas primary (Sb) phase exhibits faceted growth in the form of polygonal blocks and long strips. (Pb) solid solution phase displays strong affinity with SbSn intermetallic compound so that they produce various morphologies of pseudobinary eutectics, but it can only grow in the divorced eutectic mode together with (Sb) phase. Although (Sb) solid solution phase and SbSn intermetallic compound may grow cooperatively within ternary eutectic microstructures, they seldom form pseudobinary eutectics independently. The (Pb)+(Sb)+SbSn ternary eutectic structure usually shows lamellar morphology, but appears as anomalous eutectic when its volume fraction becomes small. EDS analyses reveal that all of the three primary (Pb), (Sb) and SbSn phases exhibit conspicuous solute trapping effect during rapid solidification, which results in the remarkable extension of solute solubility.

  19. Complementary Studies of Phase Formation During Fabrication of Fe0.65Co0.35 Nanoparticles by Mechanical Alloying

    NASA Astrophysics Data System (ADS)

    Manh, Do Hung; Tung, D. K.; Phong, L. T. H.; Phuc, Nguyen Xuan; Phong, P. T.; Jutimoosik, Jaru; Yimnirun, Rattikorn

    2016-05-01

    Fe-Co nanoparticles were prepared by mechanical alloying in air with various milling times from 0 h to 10 h and annealing temperatures in the range from 773 K to 973 K. The combined use of both conventional x-ray diffraction (XRD) and synchrotron x-ray absorption spectroscopy (XAS) techniques allowed us to obtain accurate data on the phase formation and the oxidation state of the materials. XRD patterns reveal a secondary phase of Fe3O4 that is present in as-milled samples and those annealed in Ar + H2 (5%) at temperatures of up to 600°C. This secondary phase disappeared for annealing temperatures of over 700°C. Meanwhile, analyses of Fe K-edge x-ray absorption near-edge structure (XANES) and extended x-ray absorption fine structure (EXAFS) spectra clearly showed that the local structure around Fe of all samples were of a bcc structure and had the oxidation state of +0. Most importantly, the ratio of bcc and hcp structures was also extracted from the Co K-edge XANES and the measured K-weighted EXAFS spectra of the alloyed Fe-Co samples. Moreover, magnetization measurements at room temperature indicated that the saturation magnetization ( M s) increased with increasing milling time and annealing temperature. While the former behavior is assigned to the Fe-Co alloy formation, we believe the effects of reducing the oxidation of the annealed samples to be the major cause of the enhanced M s. The dependence of coercivity ( H c) on milling time and annealing temperature was also investigated and discussed.

  20. Design and characterization of a smog chamber for studying gas-phase chemical mechanisms and aerosol formation

    NASA Astrophysics Data System (ADS)

    Wang, X.; Liu, T.; Bernard, F.; Ding, X.; Wen, S.; Zhang, Y.; Zhang, Z.; He, Q.; Lü, S.; Chen, J.; Saunders, S.; Yu, J.

    2014-01-01

    We describe here characterization of a new state-of-the-art smog chamber facility for studying atmospheric gas-phase and aerosol chemistry. The chamber consists of a 30 m3 fluorinated ethylene propylene (FEP) Teflon film reactor housed in a temperature-controlled enclosure equipped with black lamps as the light source. Temperature can be set in the range from -10 to 40 °C at accuracy of ±1 °C as measured by eight temperature sensors inside the enclosure and one just inside the reactor. Matrix air can be purified with non-methane hydrocarbons (NMHCs) < 0.5 ppb, NOx/O3/carbonyls < 1 ppb and particles < 1 cm-3. The photolysis rate of NO2 is adjustable between 0 and 0.49 min-1. At 298 K under dry conditions, the average wall loss rates of NO, NO2 and O3 were measured to be 1.41 × 10-4 min-1, 1.39 × 10-4 min-1 and 1.31 × 10-4 min-1, respectively, and the particle number wall loss rate was measured to be 0.17 h-1. Auxiliary mechanisms of this chamber are determined and included in the Master Chemical Mechanism to evaluate and model propene-NOx-air irradiation experiments. The results indicate that this new smog chamber can provide high-quality data for mechanism evaluation. Results of α-pinene dark ozonolysis experiments revealed secondary organic aerosol (SOA) yields comparable to those from other chamber studies, and the two-product model gives a good fit for the yield data obtained in this work. Characterization experiments demonstrate that our Guangzhou Institute of Geochemistry, Chinese Academy Sciences (GIG-CAS), smog chamber facility can be used to provide valuable data for gas-phase chemistry and secondary aerosol formation.

  1. Diagenetic Microcrystalline Opal Varieties from the Monterey Formation, CA: HRTEM Study of Structures and Phase Transformation Mechanisms

    NASA Technical Reports Server (NTRS)

    Cady, Sherry L.; Wenk, H.-R.; DeVincenzi, Don (Technical Monitor)

    1994-01-01

    Microcrystalline opal varieties form as intermediary precipitates during the diagenetic transformation of biogenically precipitated non-crystalline opal (opal-A) to microquartz. With regard to the Monterey Formation of California, X-ray powder diffraction studies have shown that a decrease in the primary d-spacing of opal-CT toward that of cristobalite occurs with increasing diagenesis. The initial timing of opal-CT/quartz formation and the value of the primary opal-CT d-spacing, are influenced by the sediment. lithology. Transmission electron microscopy methods (CTEM/HRTEM) were used to investigate the structure of the diagenetic phases and establish transformation mechanisms between the varieties of microcrystalline opals in charts and porcelanites from the Monterey Formation. HRTEM images revealed that the most common fibrous varieties of microcrystalline opals contain varying amounts of structural disorder. Finite lamellar units of cristobalite-and tridymite-type. layer sequences were found to be randomly stacked in a direction perpendicular to the fiber axis. Disordered and ordered fibers were found to have coprecipitated within the same radial fiber bundles that formed within the matrix of the Most siliceous samples. HRTEM images, which reveal that the fibers within radial and lepispheric fiber bundles branch non-crystallographically, support an earlier proposal that microspheres in chert grow via a spherulitic growth mechanism. A less common variety of opal-CT was found to be characterized by non-parallel (low-angle) stacking sequences that often contain twinned lamellae. Tabular-shaped crystals of orthorhombic tridymite (PO-2) were also identified in the porcelanite samples. A shift in the primary d-spacing of opal-CT has been interpreted as an indication of solid-state ordering g toward a predominantly cristobalite structure, (opal-C). Domains of opal-C were identified as topotactically-oriented overgrowths on discrete Sections of opal-CT fibers and as

  2. Control of Y₂O₃ phase and its nanostructure formation through a very high energy mechanical milling

    SciTech Connect

    Lee, M.K.; Park, E.K.; Park, J.J.; Rhee, C.K.

    2013-05-01

    The formation behavior of Y₂O₃ ceramic particles was studied by employing a very high energy ball milling (milling energy: ~165 kJ/g·hit, milling speed: 1000 rpm). Both the XRD and HRTEM studies revealed that the high impact strain energy generated during the milling caused a drastic phase transition from the original C-type cubic (space group Ia3, a=10.58 Å) to the metastable B-type monoclinic (space group C2/m, a=13.89 Å), finally followed by a partial solid-state amorphization. The cubic phase was difficult to be reduced down to smaller than 10 nm, while the monoclinic phase was stabilized at sizes smaller than 10 nm with a mean crystallite size of 7.57 nm. Consequently, the existence of Y₂O₃ at a nanoscale smaller than 10 nm is possible by forming metastable monoclinic crystals, which are strain-induced. - Graphical abstract: The fig shows the solid-state phase formation of Y₂O₃ by very high energy input into the particles during milling: ordered body-centered cubic phase (space group Ia3, a=10.58 Å) nanocrystalline monoclinic phase (space group C2/m, a=13.89 Å) disordered monoclinic phase partial amorphous phase. The formation of Y₂O₃ smaller than 10 nm was strongly dependent on whether the phase transition from cubic to monoclinic occurred. Highlights: • This paper analyses very high energy milling behavior of coarse Y₂O₃ particles. • A drastic phase transition from cubic to monoclinic occurred with a partial amorphization. • An existence of Y₂O₃ smaller than 10 nm is possible by forming strain-induced monoclinic crystals.

  3. Impacts of aqueous phase radical mechanism of oligomerization of methyl vinyl ketone (MVK) on SOA formation: on the prevailing role of dissolved oxygen

    NASA Astrophysics Data System (ADS)

    Renard, P.; Ervens, B.; Siekmann, F.; Vassalo, L.; Ravier, S.; Clement, J.; Monod, A.

    2012-12-01

    It is now recognized that the aqueous phase photochemistry of organic compounds in cloud droplets and deliquescent aerosol particles lead to the formation of oligomers and thus it might produce a substantial amount of atmospheric Secondary Organic Aerosol (SOA) with unique properties. However, the chemical mechanisms leading to these oligomers are still poorly understood, and consequently, their atmospheric impacts are difficult to assess. The goal of this study was to investigate the atmospheric impact of an aqueous phase radical mechanism of oligomerization of methyl vinyl ketone (MVK: one of the main reaction products of isoprene) on SOA formation. Aqueous phase photooxidation of MVK was investigated in a photoreactor using photolysis of H2O2 as OH radical generator. Electrospray high resolution mass spectrometry analysis of the solutions brought clear evidence for the formation of oligomer systems having a mass range of up to 1800 Da within less than 15 minutes of reaction. Highest oligomer formation rates were obtained under conditions of low dissolved oxygen, highest temperature and highest MVK initial concentrations. A radical mechanism of polymerization is proposed to explain this oligomer formation. Furthermore, we quantified the total amount of carbon present in oligomers, and the initial radical branching ratios. Kinetic parameters of the proposed oligomerization mechanism are constrained by means of a box model that is able to reproduce the temporal evolution of intermediates and products as observed in the laboratory experiments. Additional model simulations for atmospherically-relevant conditions will be presented that show the extent to which these radical processes contribute to SOA formation in the multiphase system as compared to other aqueous phase as well as traditional SOA sources.

  4. Morphology selective preparation and formation mechanism of graphene nanoribbons from graphite by liquid-phase pulsed laser ablation

    NASA Astrophysics Data System (ADS)

    Ren, X. D.; Liu, R.; Zheng, L. M.; Ren, Y. P.; Hu, Z. Z.; He, H.

    2016-02-01

    The paper studied preparation and formation mechanism of free-standing 3D graphene nanoribbons (GNRs) from graphite by pulsed laser ablation in liquid. The method to fabricate freestanding graphene nanoribbons directly was simple and controllable, which does not need other precursor materials and has no byproducts. Prepared graphene nanoribbons are shown composed of up to 14 layers of graphene, spaced about 0.30-0.35 nm and have a length of hundreds of nanometers. Formation mechanism of graphene nanoribbons was proposed based on the interaction between laser and material which can be demonstrated that the exfoliation of GNRs is a carbon plasma collision connecting-graphene segments-graphene sheets-multilayer graphene-graphene nanoribbons process. The high degree of repeatability and particularity found in the obtained GNRs might suggest their unique advantages and potential applications in nano-devices and spin electronics.

  5. Effects of sigma-phase formation on some mechanical properties of a wrought nickel-base superalloy (IN-100)

    NASA Technical Reports Server (NTRS)

    Dreshfield, R. L.; Ashbrook, R. L.

    1974-01-01

    The effect of sigma phase formation on an extruded and forged nickel base superalloy with the composition of the casting alloy IN-100 was studied. By adding only aluminum and titanium to remelt stock, three compositions were produced which had varying propensities for sigma formation. These compositions were given a four step heat treatment and were stress-ruptured or tensile tested. The very sigma prone composition had a shorter rupture life than the sigma-free or moderately sigma prone compositions when tested at 843 and 885 C. Elongation in room temperature tensile tests was considerably lower for the very sigma prone composition than for the other two wrought compositions after prolonged exposure at 732 or 843 C.

  6. Isoprene and terpene gas-phase mechanisms and their effect on ozone formation over the regional scale

    SciTech Connect

    Stockwell, W.R.; Kuhn, M.; Seefeld, S.; Kirchner, F.

    1997-12-31

    Ozone is produced through the photo-oxidation of nitrogen oxides and volatile organic compounds. Biogenic emissions are an important source of reactive organic compounds such as isoprene and terpenes. Their reactions contribute to the production of ozone and aerosol particles. The photo-oxidation of isoprene and terpene affect the atmosphere`s nitrogen budget through the formation of nitrates and peroxyacetyl nitrates (PAN). Biogenic compounds also affect hydroperoxide formation rates. The authors have developed new oxidation mechanisms for isoprene, a-pinene and d-limonene based upon recent laboratory results. However, many unknowns remain in the experimental data and it was necessary to complete the a-pinene and d-limonene mechanism by using reactions that were analogous to known reactions for alkenes of lower carbon number. The new mechanism for isoprene, a-pinene and d-limonene was successfully tested against smog chamber runs. The authors will present the new biogenic mechanisms, compare simulations with environmental chamber runs and show results of simulations for typical urban, rural and remote conditions. They will show evaluations of the influence of biogenic emissions on the concentrations of ozone, nitrates, hydroperoxides and peroxynitrates over the regional scale.

  7. Mechanism of GEMS formation

    SciTech Connect

    Bradley, J P; Dai, Z R

    2004-03-10

    GEMS (glass with embedded metal and sulfides) in interplanetary dust particles (IDPs) were examined using 200 keV analytical transmission electron microscopy. The morphologies and crystallography of embedded relict grains reveal that GEMS are pseudomorphs formed by irradiation processing of crystals free-floating in space. Some GEMS retain a compositional and morphological ''memory'' of the crystal from which they formed. Pseudomorphism rules out condensation, annealing, flash heating, or shock melting as alternative mechanisms of GEMS formation. A significant and often dominant fraction of the atoms in GEMS were sputtered deposited from other grains. Therefore, a normal (solar) isotopic composition is not a reliable indicator of whether GEMS formed in the solar system or in presolar interstellar or circumstellar environments.

  8. Formation mechanism of superconducting phase and its three-dimensional architecture in pseudo-single-crystal KxFe2-ySe2

    DOE PAGESBeta

    Liu, Yong; Xing, Qingfeng; Straszheim, Warren E.; Marshman, Jeff; Pedersen, Pal; McLaughlin, Richard; Lograsso, Thomas A.

    2016-02-11

    Here, we report how the superconducting phase forms in pseudo-single-crystal KxFe2-ySe2. In situ scanning electron microscopy (SEM) observation reveals that, as an order-disorder transition occurs, on cooling, most of the high-temperature iron-vacancy-disordered phase gradually changes into the iron-vacancy-ordered phase whereas a small quantity of the high-temperature phase retains its structure and aggregates to the stripes with more iron concentration but less potassium concentration compared to the iron-vacancy-ordered phase. The stripes that are generally recognized as the superconducting phase are actually formed as a remnant of the high-temperature phase with a compositional change after an “imperfect” order-disorder transition. It should bemore » emphasized that the phase separation in pseudo-single-crystal KxFe2-ySe2 is caused by the iron-vacancy order-disorder transition. The shrinkage of the high-temperature phase and the expansion of the newly created iron-vacancy-ordered phase during the phase separation rule out the mechanism of spinodal decomposition proposed in an early report [Wang et al, Phys. Rev. B 91, 064513 (2015)]. Since the formation of the superconducting phase relies on the occurrence of the iron-vacancy order-disorder transition, it is impossible to synthesize a pure superconducting phase by a conventional solid state reaction or melt growth. By focused ion beam-scanning electron microscopy, we further demonstrate that the superconducting phase forms a contiguous three-dimensional architecture composed of parallelepipeds that have a coherent orientation relationship with the iron-vacancy-ordered phase.« less

  9. Phase space quantum mechanics

    NASA Astrophysics Data System (ADS)

    Błaszak, Maciej; Domański, Ziemowit

    2012-02-01

    This paper develops an alternative formulation of quantum mechanics known as the phase space quantum mechanics or deformation quantization. It is shown that the quantization naturally arises as an appropriate deformation of the classical Hamiltonian mechanics. More precisely, the deformation of the point-wise product of observables to an appropriate noncommutative ⋆-product and the deformation of the Poisson bracket to an appropriate Lie bracket are the key elements in introducing the quantization of classical Hamiltonian systems. The formalism of the phase space quantum mechanics is presented in a very systematic way for the case of any smooth Hamiltonian function and for a very wide class of deformations. The considered class of deformations and the corresponding ⋆-products contains as a special case all deformations which can be found in the literature devoted to the subject of the phase space quantum mechanics. Fundamental properties of ⋆-products of observables, associated with the considered deformations are presented as well. Moreover, a space of states containing all admissible states is introduced, where the admissible states are appropriate pseudo-probability distributions defined on the phase space. It is proved that the space of states is endowed with a structure of a Hilbert algebra with respect to the ⋆-multiplication. The most important result of the paper shows that developed formalism is more fundamental than the axiomatic ordinary quantum mechanics which appears in the presented approach as the intrinsic element of the general formalism. The equivalence of two formulations of quantum mechanics is proved by observing that the Wigner-Moyal transform has all properties of the tensor product. This observation allows writing many previous results found in the literature in a transparent way, from which the equivalence of the two formulations of quantum mechanics follows naturally. In addition, examples of a free particle and a simple harmonic

  10. Phase Field Fracture Mechanics.

    SciTech Connect

    Robertson, Brett Anthony

    2015-11-01

    For this assignment, a newer technique of fracture mechanics using a phase field approach, will be examined and compared with experimental data for a bend test and a tension test. The software being used is Sierra Solid Mechanics, an implicit/explicit finite element code developed at Sandia National Labs in Albuquerque, New Mexico. The bend test experimental data was also obtained at Sandia Labs while the tension test data was found in a report online from Purdue University.

  11. Mechanistic Studies Of Combustion And Structure Formation During Combustion Synthesis Of Advanced Materials: Phase Separation Mechanism For Bio-Alloys

    NASA Technical Reports Server (NTRS)

    Varma, A.; Lau, C.; Mukasyan, A.

    2003-01-01

    Among all implant materials, Co-Cr-Mo alloys demonstrate perhaps the most useful balance of resistance to corrosion, fatigue and wear, along with strength and biocompatibility [1]. Currently, these widely used alloys are produced by conventional furnace technology. Owing to high melting points of the main alloy elements (e.g. Tm.p.(Co) 1768 K), high-temperature furnaces and long process times (several hours) are required. Therefore, attempts to develop more efficient and flexible methods for production of such alloys with superior properties are of great interest. The synthesis of materials using combustion phenomena is an advanced approach in powder metallurgy [2]. The process is characterized by unique conditions involving extremely fast heating rates (up to 10(exp 6 K/s), high temperatures (up to 3500 K), and short reaction times (on the order of seconds). As a result, combustion synthesis (CS) offers several attractive advantages over conventional metallurgical processing and alloy development technologies. The foremost is that solely the heat of chemical reaction (instead of an external source) supplies the energy for the synthesis. Also, simple equipment, rather than energy-intensive high-temperature furnaces, is sufficient. This work was devoted to experiments on CS of Co-based alloys by utilizing thermite (metal oxide-reducing metal) reactions, where phase separation subsequently produces materials with tailored compositions and properties. Owing to high reaction exothermicity, the CS process results in a significant increase of temperature (up to 3000 C), which is higher than melting points of all products. Since the products differ in density, phase separation may be a gravitydriven process: the heavy (metallic phase) settles while the light (slag) phase floats. The goal was to determine if buoyancy is indeed the major mechanism that controls phase segregation.

  12. Deformation-phase transformation coupling mechanism of white layer formation in high speed machining of FGH95 Ni-based superalloy

    NASA Astrophysics Data System (ADS)

    Du, Jin; Liu, zhanqiang; Lv, Shaoyu

    2014-02-01

    Ni-based superalloy represents a significant metal portion of the aircraft critical structural and engine components. When these critical structural components in aerospace industry are manufactured with the objective to reach high reliability levels and excellent service performance, surface integrity is one of the most relevant parameter used for evaluating the quality of finish machined surfaces. In the study of surface integrity, the formation white layer is a very important research topic. The formation of white layer on the Ni-based superalloy machined surface will reduce the machined parts service performance and fatigue life. This paper was conducted to determine the effects of cutting speed on white layer formation in high speed machining of FGH95 Ni-based superalloy. Optical microscope, scanning electron microscope and X-ray diffraction were employed to analyze the elements and microstructures of white layer and bulk materials. The statistical analysis for grain numbers was executed to study the influence of cutting speed on the grain refinement in the machined surface. The investigation results showed that white layer exhibits significantly different microstructures with the bulk materials. It shows densification, no obvious structural features characteristic. The microstructure and phase of Ni-based solid solution changed during cutting process. The increase of cutting speed causes the increase of white layer thickness when the cutting speed is less than 2000 m/min. However, white layer thickness reduces with the cutting speed further increase. The higher the cutting speed, the more serious grains refinement in machined surface. 2-D FEM for machining FGH95 were carried out to simulate the cutting process and obtained the cutting temperature field, cutting strain field and strain rate field. The impact mechanisms of cutting temperature, cutting strain and strain rates on white layer formation were analyzed. At last, deformation-phase transformation

  13. Mechanism and modeling of saw-tooth structure formation in the L1{sub 2}-L1{sub 0} two-phase system

    SciTech Connect

    Le Bouar, Y.; Khachaturyan, A.G.

    2000-05-11

    The strain-accommodating mechanism of formation of the saw-tooth microstructure in the LI{sub 2} + LI{sub 0} two-phase ordered system is proposed. To describe the atomic scale kinetics of ordering and decomposition in this system, the master equation, which explicitly incorporates the effect of the transformation strain, is formulated. It is used to simulate the precipitation of the LI{sub 0} phase from the LI{sub 2} parent phase in the Co-Pt alloy. The computer simulation shows that the decomposition occurs heterogeneously on antiphase boundaries of the LI{sub 2} structure if the composition is near the solubility limit of the LI{sub 2} phase. It eventually produces the saw-tooth microstructure. The decomposition transforms the (010) anti-phase boundary into a layer of the single-variant tetragonal LI{sub 0} phase separating the LI{sub 2} antiphase domains. Later, the strain accommodation transforms this single-variant LI{sub 0} phase layer into the saw-tooth pattern. The simulation results are in excellent qualitative and quantitative agreement with out TEM images of Co{sub 38.5}Pt{sub 61.5}.

  14. In situ Measurements of Gas- and Particle-Phase Organic Compounds: Insights for SOA Formation Mechanisms and Contributions of SOA to Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Kreisberg, N. M.; Worton, D. R.; Isaacman, G. A.; Weber, R.; Liu, S.; Day, D. A.; Markovic, M. Z.; VandenBoer, T. C.; Russell, L. M.; Murphy, J. G.; Hering, S. V.; Goldstein, A. H.

    2011-12-01

    To investigate formation of secondary organic aerosol (SOA) and the contribution of SOA to organic aerosols, semi-volatile and intermediate-volatile organic compounds (SVOCs/IVOCs) in both gas and particle phases were measured using a modified Thermal Desorption Gas Chromatograph (TAG) instrument in Bakersfield, CA during the CALifornia at the NEXus between air quality and climate (CALNEX) campaign from 31 May through 27 June, 2010. More than 150 organic compounds were identified, spanning a wide range of volatility and functionality. Quantified compounds included organic tracers for primary and secondary organic sources, such as alkanes, PAHs, acids, hopanes and ketones. Hourly gas/particle partitioning was determined by a denuder difference method where the sample flow alternated every other sample through an active charcoal multi-channel denuder that efficiently removed gas-phase components. Gas/particle partitioning of three SOA tracers (phthalic acid, pinonaldehyde and 6, 10, 14-trimethyl-2-pentadecanone) was investigated to understand the formation mechanisms of SOA for different functional group classes in the ambient atmosphere. Comparison with Pankow gas/particle partitioning theory, observed particle-phase phthalic acid and pinonaldehyde, suggests formation by other mechanisms than gas-to-particle condensation. Source attribution is performed using Positive Matrix Factorization (PMF) analysis of speciated particle-phase TAG data along with total submicron organic aerosol (OA) measured by an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS). SOA accounts for a major component of OA and the contribution of biogenic SOA to total SOA is comparable to anthropogenic SOA during nights.

  15. CHEMICAL TRANSFORMATIONS IN ACID RAIN. VOLUME 2. INVESTIGATION OF KINETICS AND MECHANISM OF AQUEOUS-PHASE PEROXIDE FORMATION

    EPA Science Inventory

    The aqueous-phase reactions of O3 with a number of species have been studied in an effort to identify pathways leading to the production of hydrogen peroxide in solution. The aqueous-phase systems studied included the decomposition of O3 in pure water and the interaction of O3 wi...

  16. Kinetics and Mechanisms of Cr(VI) Formation via the Oxidation of Cr(III) Solid Phases by Chlorine in Drinking Water.

    PubMed

    Chebeir, Michelle; Liu, Haizhou

    2016-01-19

    Hexavalent chromium Cr(VI), typically existing as the oxyanion form of CrO4(2-), is being considered for more stringent drinking water standards by regulatory agencies. Cr(VI) can be inadvertently produced via the oxidation of trivalent chromium Cr(III) solids. This study investigated the kinetics and mechanisms of Cr(III) solids oxidation by chlorine in drinking water and associated Cr(VI) formation. Batch experiments were carried out with three Cr(III) solids of environmental relevance, i.e., chromium hydroxide Cr(OH)3(s), chromium oxide Cr2O3(s), and copper chromite Cu2Cr2O5(s). Impacts of water chemical parameters including pH (6.0-8.5) and bromide concentration (0-5 mg/L) were examined. Results showed that the rapid oxidation of Cr(III) solid phases by chlorine was accompanied by Cr(VI) formation and an unexpected production of dissolved oxygen. Analysis of reaction stoichiometry indicated the existence of Cr intermediate species that promoted the autocatalytic decay of chlorine. An increase in pH modestly enhanced Cr(VI) formation due to changes of reactive Cr(III) surface hydroxo species. Bromide, a trace chemical constituent in source waters, exhibited a catalytic effect on Cr(VI) formation due to an electron shuttle mechanism between Cr(III) and chlorine and the bypass of Cr intermediate formation. The kinetics data obtained from this study suggest that the oxidation of Cr(III) solids by chlorine in water distribution systems can contribute to Cr(VI) occurrence in tap water, especially in the presence of a trace level of bromide. PMID:26647114

  17. Three-Dimensional Multiscale Modeling of Stable Intermediate State Formation Mechanism in a Single Active Layer- Phase Change Memory Cell

    NASA Astrophysics Data System (ADS)

    Dincer, Onur; Cinar, Ibrahim; Karakas, Vedat; Aslan, Ozgur Burak; Gokce, Aisha; Stipe, Barry; Katine, Jordan A.; Aktas, Gulen; Ozatay, Ozhan

    2014-03-01

    Phase change memory (PCM) appears as a potential memory technology with its superior scalability which could be enhanced by a boost in storage density via multiple-bit per cell functionality. Given the large contrast between set and reset states of a PCM cell it is yet unclear whether it is possible to create intermediate logic states reproducibly and controllably in a device with a single active phase change layer. Here we report the results of a 3D finite element model that pinpoints the direct effect of current distribution and the indirect effect of device top contact fabrication induced defects through modification of phase change kinetics (crystallite nucleation and growth rates) on stabilization of intermediate states. A comprehensive picture of the electrical, thermal and phase change dynamics is obtained using a multiphysics approach. Our study shows that homogeneous and heterogeneous phase transition can be induced in the active region such that nonuniform temperature distribution and modification of switching dynamics with various contact shapes and sizes play a major role in the stabilization of a mixed phase state. This work has been supported by the European Commission FP7 Marie Curie IRG grant: PCM-256281 and TUBITAK grant: 113F385.

  18. Comparison of experimental approaches to study selective properties of thick phase-amplitude holograms recorded in materials with diffusion-based formation mechanisms

    NASA Astrophysics Data System (ADS)

    Borisov, Vladimir; Klepinina, Mariia; Veniaminov, Andrey; Angervaks, Aleksandr; Shcheulin, Aleksandr; Ryskin, Aleksandr

    2016-04-01

    Volume holographic gratings, both transmission and reflection-type, may be employed as one-dimensional pho- tonic crystals. More complex two- and three-dimensional holographic photonic-crystalline structures can be recorded using several properly organized beams. As compared to colloidal photonic crystals, their holographic counterparts let minimize distortions caused by multiple inner boundaries of the media. Unfortunately, it's still hard to analyze spectral response of holographic structures. This work presents the results of thick holographic gratings analysis based on spectral-angular selectivity contours approximation. The gratings were recorded in an additively colored fluorite crystal and a glassy polymer doped with phenanthrenequinone (PQ-PMMA). The two materials known as promising candidates for 3D diffraction optics including photonic crystals, employ diffusion-based mechanisms of grating formation. The surfaces of spectral-angular selectivity were obtained in a single scan using a white-light LED, rotable table and a matrix spectrometer. The data expressed as 3D plots make apparent visual estimation of the grating phase/amplitude nature, noninearity of recording, etc., and provide sufficient information for numerical analysis. The grating recorded in the crystal was found to be a mixed phase-amplitude one, with different contributions of refractive index and absorbance modulation at different wavelengths, and demonstrated three diffraction orders corresponding to its three spatial harmonics originating from intrinsically nonlinear diffusion-drift recording mechanism. Contrastingly, the grating in the polymeric medium appeared purely phase and linearly recorded.

  19. Suppression of Boride Formation in Transient Liquid Phase Bonding of Pairings of Parent Superalloy Materials with Different Compositions and Grain Structures and Resulting Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Steuer, Susanne; Singer, Robert F.

    2014-07-01

    Two Ni-based superalloys, columnar grained Alloy 247 and single-crystal PWA1483, are joined by transient liquid phase bonding using an amorphous brazing foil containing boron as a melting point depressant. At lower brazing temperatures, two different morphologies of borides develop in both base materials: plate-like and globular ones. Their ratio to each other is temperature dependent. With very high brazing temperatures, the deleterious boride formation in Alloy 247 can be totally avoided, probably because the three-phase-field moves to higher alloying element contents. For the superalloy PWA1483, the formation of borides cannot be completely avoided at high brazing temperatures as incipient melting occurs. During subsequent solidification of these areas, Chinese-script-like borides precipitate. The mechanical properties (tensile tests at room and elevated temperatures and short-term creep rupture tests at elevated temperatures) for brazed samples without boride precipitation are very promising. Tensile strengths and creep times to 1 pct strain are comparable, respectively, higher than the ones of the weaker parent material for all tested temperatures and creep conditions (from 90 to 100 pct rsp. 175 to 250 pct).

  20. Mechanical and kinetic study on gas-phase formation of dinitro-naphthalene from 1- and 2-nitronaphthalene.

    PubMed

    Huang, Zixiao; Zhang, Qingzhu; Wang, Wenxing

    2016-08-01

    Nitrated polycyclic aromatic hydrocarbons have received an increasing number of considerations because of their higher mutagens than parent PAHs. In this paper, the formation of dinitro-naphthalene was investigated mechanistically using 1- and 2-nitronaphthalene as precursors with the aid of high-accuracy quantum chemistry calculation. The geometrical parameters, as well as vibrational frequencies, were calculated at the BB1K/6-31+G(d,p) level. Water molecule plays an important role in the formation of dinitro-naphthalene. The rate constants were deduced by canonical variational transition-state theory with small curvature tunneling contribution over the temperature range of 273-333 K. Meanwhile, the Arrhenius formulas were fitted for the OH addition of both 1- and 2-nitronaphthalene. The calculated overall rate constants for 1-nitronaphthalene and 2-nitronaphthalene at 298 K and 1 atm are 7.43 × 10(-13) and 7.48 × 10(-13) cm(3) molecule(-1) s(-1), respectively. The rate constants of NO3 addition to 1-nitronaphthalene and 2-nitronaphthalene by RRKM method at 298 K and 1 atm are 3.55 × 10(-15) and 3.47 × 10(-15) cm(3) molecule(-1) s(-1), respectively. This study provides a comprehensive investigation of the formation process of dinitro-naphthalenes, initiated by OH and NO3 radicals and should facilitate to illuminate its atmospheric source. Oxygen may probably be competitive with the second NO2 addition step when the concentration of NO2 is at low level. PMID:27174822

  1. Analysis of interface formation mechanism in GaN double-polarity selective-area growth by metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Kuze, Kenta; Osumi, Noriyuki; Fujita, Yohei; Inoue, Yoku; Nakano, Takayuki

    2016-05-01

    The fabrication of quasi-phase-matching (QPM) crystals by selective-area growth on the two asymmetrically polar surfaces of GaN is examined. We attempted the fabrication of GaN-QPM crystals by one-time growth using a carbon mask. For GaN double-polarity selective-area growth (DP-SAG), we investigated the effect of varied nitriding times of the Al2O3 templates patterned with the carbon mask. We optimized the nitriding conditions for the DP-SAG process, and evaluated the substrate fabricated by the optimized DP-SAG process. In addition, we examined the interface formation mechanism of DP-GaN fabricated by GaN DP-SAG process. We determined that it is possible to fabricate DP-GaN with a sharp interface by optimizing the growth conditions.

  2. Aqueous-phase mechanism for secondary organic aerosol formation from isoprene: application to the Southeast United States and co-benefit of SO2 emission controls

    NASA Astrophysics Data System (ADS)

    Marais, E. A.; Jacob, D. J.; Jimenez, J. L.; Campuzano-Jost, P.; Day, D. A.; Hu, W.; Krechmer, J.; Zhu, L.; Kim, P. S.; Miller, C. C.; Fisher, J. A.; Travis, K.; Yu, K.; Hanisco, T. F.; Wolfe, G. M.; Arkinson, H. L.; Pye, H. O. T.; Froyd, K. D.; Liao, J.; McNeill, V. F.

    2015-11-01

    Isoprene emitted by vegetation is an important precursor of secondary organic aerosol (SOA), but the mechanism and yields are uncertain. Aerosol is prevailingly aqueous under the humid conditions typical of isoprene-emitting regions. Here we develop an aqueous-phase mechanism for isoprene SOA formation coupled to a detailed gas-phase isoprene oxidation scheme. The mechanism is based on aerosol reactive uptake probabilities (γ) for water-soluble isoprene oxidation products, including sensitivity to aerosol acidity and nucleophile concentrations. We apply this mechanism to simulation of aircraft (SEAC4RS) and ground-based (SOAS) observations over the Southeast US in summer 2013 using the GEOS-Chem chemical transport model. Emissions of nitrogen oxides (NOx ≡ NO + NO2) over the Southeast US are such that the peroxy radicals produced from isoprene oxidation (ISOPO2) react significantly with both NO (high-NOx pathway) and HO2 (low-NOx pathway), leading to different suites of isoprene SOA precursors. We find a mean SOA mass yield of 3.3 % from isoprene oxidation, consistent with the observed relationship of OA and formaldehyde (a product of isoprene oxidation). The yield is mainly contributed by two immediate gas-phase precursors, isoprene epoxydiols (IEPOX, 58 % of isoprene SOA) from the low-NOx pathway and glyoxal (28 %) from both low- and high-NOx pathways. This speciation is consistent with observations of IEPOX SOA from SOAS and SEAC4RS. Observations show a strong relationship between IEPOX SOA and sulfate aerosol that we explain as due to the indirect effect of sulfate on aerosol acidity and volume, rather than a direct mechanistic role for sulfate. Isoprene SOA concentrations increase as NOx emissions decrease (favoring the low-NOx pathway for isoprene oxidation), but decrease as SO2 emissions decrease (due to the effect of sulfate on aerosol acidity and volume). The US EPA projects 2013-2025 decreases in anthropogenic emissions of 34 % for NOx (leading to

  3. Aqueous-phase mechanism for secondary organic aerosol formation from isoprene: application to the southeast United States and co-benefit of SO2 emission controls

    NASA Astrophysics Data System (ADS)

    Marais, E. A.; Jacob, D. J.; Jimenez, J. L.; Campuzano-Jost, P.; Day, D. A.; Hu, W.; Krechmer, J.; Zhu, L.; Kim, P. S.; Miller, C. C.; Fisher, J. A.; Travis, K.; Yu, K.; Hanisco, T. F.; Wolfe, G. M.; Arkinson, H. L.; Pye, H. O. T.; Froyd, K. D.; Liao, J.; McNeill, V. F.

    2016-02-01

    Isoprene emitted by vegetation is an important precursor of secondary organic aerosol (SOA), but the mechanism and yields are uncertain. Aerosol is prevailingly aqueous under the humid conditions typical of isoprene-emitting regions. Here we develop an aqueous-phase mechanism for isoprene SOA formation coupled to a detailed gas-phase isoprene oxidation scheme. The mechanism is based on aerosol reactive uptake coefficients (γ) for water-soluble isoprene oxidation products, including sensitivity to aerosol acidity and nucleophile concentrations. We apply this mechanism to simulation of aircraft (SEAC4RS) and ground-based (SOAS) observations over the southeast US in summer 2013 using the GEOS-Chem chemical transport model. Emissions of nitrogen oxides (NOx ≡ NO + NO2) over the southeast US are such that the peroxy radicals produced from isoprene oxidation (ISOPO2) react significantly with both NO (high-NOx pathway) and HO2 (low-NOx pathway), leading to different suites of isoprene SOA precursors. We find a mean SOA mass yield of 3.3 % from isoprene oxidation, consistent with the observed relationship of total fine organic aerosol (OA) and formaldehyde (a product of isoprene oxidation). Isoprene SOA production is mainly contributed by two immediate gas-phase precursors, isoprene epoxydiols (IEPOX, 58 % of isoprene SOA) from the low-NOx pathway and glyoxal (28 %) from both low- and high-NOx pathways. This speciation is consistent with observations of IEPOX SOA from SOAS and SEAC4RS. Observations show a strong relationship between IEPOX SOA and sulfate aerosol that we explain as due to the effect of sulfate on aerosol acidity and volume. Isoprene SOA concentrations increase as NOx emissions decrease (favoring the low-NOx pathway for isoprene oxidation), but decrease more strongly as SO2 emissions decrease (due to the effect of sulfate on aerosol acidity and volume). The US Environmental Protection Agency (EPA) projects 2013-2025 decreases in anthropogenic emissions of

  4. Impact of solid second phases on deformation mechanisms of naturally deformed salt rocks (Kuh-e-Namak, Dashti, Iran) and rheological stratification of the Hormuz Salt Formation

    NASA Astrophysics Data System (ADS)

    Závada, P.; Desbois, G.; Urai, J. L.; Schulmann, K.; Rahmati, M.; Lexa, O.; Wollenberg, U.

    2015-05-01

    Viscosity contrasts displayed in flow structures of a mountain namakier (Kuh-e-Namak - Dashti), between 'weak' second phase bearing rock salt and 'strong' pure rock salt types are studied for deformation mechanisms using detailed quantitative microstructural study. While the solid inclusions rich ("dirty") rock salts contain disaggregated siltstone and dolomite interlayers, "clean" salts reveal microscopic hematite and remnants of abundant fluid inclusions in non-recrystallized cores of porphyroclasts. Although the flow in both, the recrystallized "dirty" and "clean" salt types is accommodated by combined mechanisms of pressure-solution creep (PS), grain boundary sliding (GBS), transgranular microcracking and dislocation creep accommodated grain boundary migration (GBM), their viscosity contrasts observed in the field outcrops are explained by: 1) enhanced ductility of "dirty" salts due to increased diffusion rates along the solid inclusion-halite contacts than along halite-halite contacts, and 2) slow rates of intergranular diffusion due to dissolved iron and inhibited dislocation creep due to hematite inclusions for "clean" salt types Rheological contrasts inferred by microstructural analysis between both salt rock classes apply in general for the "dirty" salt forming Lower Hormuz and the "clean" salt forming the Upper Hormuz of the Hormuz Formation and imply strain rate gradients or decoupling along horizons of mobilized salt types of different composition and microstructure.

  5. Phase space quantum mechanics - Direct

    SciTech Connect

    Nasiri, S.; Sobouti, Y.; Taati, F.

    2006-09-15

    Conventional approach to quantum mechanics in phase space (q,p), is to take the operator based quantum mechanics of Schroedinger, or an equivalent, and assign a c-number function in phase space to it. We propose to begin with a higher level of abstraction, in which the independence and the symmetric role of q and p is maintained throughout, and at once arrive at phase space state functions. Upon reduction to the q- or p-space the proposed formalism gives the conventional quantum mechanics, however, with a definite rule for ordering of factors of noncommuting observables. Further conceptual and practical merits of the formalism are demonstrated throughout the text.

  6. Mechanism of polymer nanoparticle formation by nanoprecipitation

    NASA Astrophysics Data System (ADS)

    Zhao, Chen; Li, Tingting; van Keuren, Edward

    Nanoprecipitation method is a simple and convenient way to produce nanoparticles from polymers in solution. The control of nanoparticle size and size distribution plays a pivotal role in the use of nanoprecipitation for drug delivery. We investigated various factors and initial conditions that affect the particle size, such as the initial solute concentration, solvent/non-solvent ratio and the molecular weight of the polymer samples. The results shed light on the mechanisms of particle formation and phase separation which occurs in nanoprecipitation. Spinodal decomposition, which takes place as a result of a quench to a sufficiently high supersaturation, is believed to be the main mechanism that governs the phase separation. In addition, the glass transition of the polymers will also be a key factor that contributes to the thermodynamics and kinetics of the phase separation and the resulting particle size and morphology.

  7. Aqueous-phase mechanism for secondary organic aerosol formation from isoprene: application to the southeast United States and co-benefit of SO2 emission controls

    EPA Science Inventory

    Isoprene emitted by vegetation is an important precursor of secondary organic aerosol (SOA), but the mechanism and yields are uncertain. Aerosol is prevailingly aqueous under the humid conditions typical of isoprene-emitting regions. Here we develop an aqueous-phase mechanism for...

  8. Possible mechanisms of macrolayer formation

    SciTech Connect

    Sadasivan, P.; Chappidi, P.R.; Unal, C.; Nelson, R.A.

    1992-01-01

    The high heat flux nucleate boiling region, also called the vapor mushroom region, has been shown to have a thin liquid layer on the heater surface under the large mushroom-shaped vapor bubbles that grow from the heater surface. The name given to this liquid layer is the macrolayer to differentiate it from the microlayer that exists under the discrete bubbles found at lower heat fluxes in the nucleate boiling region. Typical thicknesses of this macrolayer range from 50 to 500 {mu}m for water on a flat horizontal boiling surface and depend upon the heat flux. Thus, the macrolayer is thicker than the wedge-shaped microlayers, found under discrete bubbles, which range in thickness from 1 to 10 {mu}m. Although the mechanism of microlayer formation and its evaporation is conceptually simple that of the macrolayer is still not understood. This paper critically compares the potential mechanisms proposed for macrolayer formation. These mechanisms include the Helmholtz instability applied to the vapor stem above active nucleation sites, liquid trapped by lateral coalescence of discrete bubbles that initially form during the mushroom bubble's waiting period, and the limitation of liquid resupply at mushroom departure as a result of vapor flow from the active nucleation sites.

  9. Possible mechanisms of macrolayer formation

    SciTech Connect

    Sadasivan, P.; Chappidi, P.R.; Unal, C.; Nelson, R.A.

    1992-05-01

    The high heat flux nucleate boiling region, also called the vapor mushroom region, has been shown to have a thin liquid layer on the heater surface under the large mushroom-shaped vapor bubbles that grow from the heater surface. The name given to this liquid layer is the macrolayer to differentiate it from the microlayer that exists under the discrete bubbles found at lower heat fluxes in the nucleate boiling region. Typical thicknesses of this macrolayer range from 50 to 500 {mu}m for water on a flat horizontal boiling surface and depend upon the heat flux. Thus, the macrolayer is thicker than the wedge-shaped microlayers, found under discrete bubbles, which range in thickness from 1 to 10 {mu}m. Although the mechanism of microlayer formation and its evaporation is conceptually simple that of the macrolayer is still not understood. This paper critically compares the potential mechanisms proposed for macrolayer formation. These mechanisms include the Helmholtz instability applied to the vapor stem above active nucleation sites, liquid trapped by lateral coalescence of discrete bubbles that initially form during the mushroom bubble`s waiting period, and the limitation of liquid resupply at mushroom departure as a result of vapor flow from the active nucleation sites.

  10. Effect of silicon on the phase formation in mechanically activated systems based on Fe(75)C(25): Temperature-induced transformations in mechanosynthesized composites

    NASA Astrophysics Data System (ADS)

    Volkov, V. A.; Chulkina, A. A.; Ul'yanov, A. I.; Elsukov, E. P.

    2012-04-01

    Transformations realized in mechanosynthesized amorphous-nanocrystalline Fe(75)C(25 - x)Si( x) (0 ≤ x ≤ 10 at %) alloys during heating have been studied using dynamic magnetic susceptibility measurements, X-ray diffraction, and metallography. In contrast to mechanosynthesized alloys consisting of α-Fe, Fe3C, and amorphous phases, the annealed alloys with x > 5 at % were found to exhibit the formation of an additional phase such as Fe5SiC. After heating to 700 and 800°C, the powder particles of alloys contain a large amount of uniformly distributed graphite particles of ˜0.5 μm in size. The formation of particles results from the cementite decomposition, which is accelerated at the expense of partial silicon dissolution in cementite and in the presence of α-Fe nanograins as well.

  11. New phase formation in titanium aluminide during chemical etching

    SciTech Connect

    Takasaki, Akito; Ojima, Kozo; Taneda, Youji . Dept. of Mathematics and Physics)

    1994-05-01

    A chemical etching technique is widely used for metallographic observation. Because this technique is based on a local corrosion phenomenon on a sample, the etching mechanism, particularly for two-phase alloys, can be understood by electrochemical consideration. This paper describes formation of a new phase in a Ti-45Al (at.%) titanium aluminide during chemical etching, and the experimental results are discussed electrochemically.

  12. Geometrical Phases in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Christian, Joy Julius

    In quantum mechanics, the path-dependent geometrical phase associated with a physical system, over and above the familiar dynamical phase, was initially discovered in the context of adiabatically changing environments. Subsequently, Aharonov and Anandan liberated this phase from the original formulation of Berry, which used Hamiltonians, dependent on curves in a classical parameter space, to represent the cyclic variations of the environments. Their purely quantum mechanical treatment, independent of Hamiltonians, instead used the non-trivial topological structure of the projective space of one-dimensional subspaces of an appropriate Hilbert space. The geometrical phase, in their treatment, results from a parallel transport of the time-dependent pure quantum states along a curve in this space, which is endowed with an abelian connection. Unlike Berry, they were able to achieve this without resort to an adiabatic approximation or to a time-independent eigenvalue equation. Prima facie, these two approaches are conceptually quite different. After a review of both approaches, an exposition bridging this apparent conceptual gap is given; by rigorously analyzing a model composite system, it is shown that, in an appropriate correspondence limit, the Berry phase can be recovered as a special case from the Aharonov-Anandan phase. Moreover, the model composite system is used to show that Berry's correction to the traditional Born-Oppenheimer energy spectra indeed brings the spectra closer to the exact results. Then, an experimental arrangement to measure geometrical phases associated with cyclic and non-cyclic variations of quantum states of an entangled composite system is proposed, utilizing the fundamental ideas of the recently opened field of two-particle interferometry. This arrangement not only resolves the controversy regarding the true nature of the phases associated with photon states, but also unequivocally predicts experimentally accessible geometrical phases in a

  13. Mechanisms and Geochemical Models of Core Formation

    NASA Astrophysics Data System (ADS)

    David Rubie; Seth Andrew Jacobson

    2016-03-01

    The formation of the Earth's core is a consequence of planetary accretion and processes in the Earth's interior. The mechanical process of planetary differentiation is likely to occur in large, if not global, magma oceans created by the collisions of planetary embryos. Metal-silicate segregation in magma oceans occurs rapidly and efficiently unlike grain scale percolation according to laboratory experiments and calculations. Geochemical models of the core formation process as planetary accretion proceeds are becoming increasingly realistic. Single stage and continuous core formation models have evolved into multi-stage models that are couple to the output of dynamical models of the giant impact phase of planet formation. The models that are most successful in matching the chemical composition of the Earth's mantle, based on experimentally-derived element partition coefficients, show that the temperature and pressure of metal-silicate equilibration must increase as a function of time and mass accreted and so must the oxygen fugacity of the equilibrating material. The latter can occur if silicon partitions into the core and through the late delivery of oxidized material. Coupled dynamical accretion and multi-stage core formation models predict the evolving mantle and core compositions of all the terrestrial planets simultaneously and also place strong constraints on the bulk compositions and oxidation states of primitive bodies in the protoplanetary disk.

  14. Study of Formation Mechanisms of Gas Hydrate

    NASA Astrophysics Data System (ADS)

    Yang, Jia-Sheng; Wu, Cheng-Yueh; Hsieh, Bieng-Zih

    2015-04-01

    Gas hydrates, which had been found in subsurface geological environments of deep-sea sediments and permafrost regions, are solid crystalline compounds of gas molecules and water. The estimated energy resources of hydrates are at least twice of that of the conventional fossil fuel in the world. Gas hydrates have a great opportunity to become a dominating future energy. In the past years, many laboratory experiments had been conducted to study chemical and thermodynamic characteristics of gas hydrates in order to investigate the formation and dissociation mechanisms of hydrates. However, it is difficult to observe the formation and dissociation of hydrates in a porous media from a physical experiment directly. The purpose of this study was to model the dynamic formation mechanisms of gas hydrate in porous media by reservoir simulation. Two models were designed for this study: 1) a closed-system static model with separated gas and water zones; this model was a hydrate equilibrium model to investigate the behavior of the formation of hydrates near the initial gas-water contact; and 2) an open-system dynamic model with a continuous bottom-up gas flow; this model simulated the behavior of gas migration and studied the formation of hydrates from flowed gas and static formation water in porous media. A phase behavior module was developed in this study for reservoir simulator to model the pressure-volume-temperature (PVT) behavior of hydrates. The thermodynamic equilibriums and chemical reactions were coupled with the phase behavior module to have functions modelling the formation and dissociation of hydrates from/to water and gas. The simulation models used in this study were validated from the code-comparison project proposed by the NETL. According to the modelling results of the closed-system static model, we found that predominated location for the formation of hydrates was below the gas-water contact (or at the top of water zone). The maximum hydrate saturation

  15. Quantum-chemical study of the mechanism of formation of the pyridinium ion on an aluminosilicate surface and in the liquid phase

    SciTech Connect

    Zhanpeisov, N.U.; Pel'menshchikov, A.G.; Paukshtis, E.A.; Zhidomirov, G.M.

    1987-08-01

    The possibility of a pyridinium ion forming on the surface of an aluminosilicate is considered in terms of the cluster approximation of the MINDO/3-NV method proposed by the authors. The calculations show that in the first stage of absorption of pyridine on Broensted-acid-site (BAC) aluminosilicates, a hydrogen-bonded complex forms which then transforms to a pyridinium ion. The energy required to transfer a proton from the surface to the pyridine is offset by the formation of a number of C-O ..pi..-bonds. A comparison is drawn between the analogous process of the formation of an ion of pyridinium in the liquid phase, which was investigated using Germer's solvation model taking the interaction of pyridine with an aqueous solution of hydrochloric acid as an example.

  16. Early phases of star formation

    NASA Astrophysics Data System (ADS)

    Bok, B. J.

    1981-04-01

    Five broad areas of potential star formation in our galaxy and the Magellanic Clouds are presented. The role of gravitational collapse in concentrating matter into eventual stars is examined briefly. The five areas of research are: (1) giant molecular clouds with dimensions of 50 to 100 parsecs and masses equivalent to 100,000 or more suns; (2) the proximity of an H II emission nebula with an embedded or attached cluster of association of O and B stars to a large molecular cloud; (3) the larger so-called globules, notably the roundish and often isolated dark nebulae called Barnard objects, of which 200 or so have been identified within 500 parsecs of the sun; (4) close passage or collisions between interstellar clouds; and (5) supernova explosions. The Large Magellanic Clouds are also examined as an example of an area of potential star formation without the protection of a cosmic dust cloud. Finally, the likelihood that many new stars might possess planets and perhaps even life is discussed.

  17. Gas-Phase Infrared; JCAMP Format

    National Institute of Standards and Technology Data Gateway

    SRD 35 NIST/EPA Gas-Phase Infrared; JCAMP Format (PC database for purchase)   This data collection contains 5,228 infrared spectra in the JCAMP-DX (Joint Committee for Atomic and Molecular Physical Data "Data Exchange") format.

  18. Magma ocean: Mechanisms of formation

    NASA Technical Reports Server (NTRS)

    Kaula, W. M.

    1992-01-01

    The thermal state of the Earth at the time relevant to formation of a magma ocean was dominated by the great impact that created the Moon. As shown in computer experiments, the iron in the impacting bodies quickly sank to the core of the proto-Earth, while a significant fraction of silicates was pushed far enough out beyond the geosynchronous limit to constitute the main material of the Moon. Most of any atmosphere would have been pushed aside, rather than being expelled in the impact. However, the energy remaining in the material not going to the core or expelled was still sufficient to raise its temperature some 1000's of degrees, enough to vaporize silicates and to generate a strong 'planetary wind': a hydrodynamic expansion carrying with it virtually all volatiles plus appreciable silicates. This expansion was violent and uneven in its most energetic stage, but probably the resulting magma ocean was global. The duration, until cooling, was sufficient for silicates to condense to melt and the duration was probably short. Comparison of the Earth and Venus indicates that the great impact was extraordinarily effective in removing volatiles from the proto-Earth; in particular, the enormous differences in primordial inert gases between the planets demand a catastrophic difference in origin circumstances. On the other hand, the comparison limits the amount of silicates lost by the Earth to a rather minor fraction; most of that expelled in the wind must have condensed soon enough for the silicate to fall back to Earth or be swept up by the proto-Moon. So the Earth was left with a magma ocean. The question is whether sufficient water was retained to constitute a steam atmosphere. Probably not, but unknowns affecting this question are the efficiencies of outgassing in great impacts and in subsequent convective churnings deep in the mantle. During the stage when mantle convection is turbulent, an appreciable fraction of volatiles were also retained at depth, perhaps in

  19. Phase separation and the formation of cellular bodies

    NASA Astrophysics Data System (ADS)

    Xu, Bin; Broedersz, Chase P.; Meir, Yigal; Wingreen, Ned S.

    Cellular bodies in eukaryotic cells spontaneously assemble to form cellular compartments. Among other functions, these bodies carry out essential biochemical reactions. Cellular bodies form micron-sized structures, which, unlike canonical cell organelles, are not surrounded by membranes. A recent in vitro experiment has shown that phase separation of polymers in solution can explain the formation of cellular bodies. We constructed a lattice-polymer model to capture the essential mechanism leading to this phase separation. We used both analytical and numerical tools to predict the phase diagram of a system of two interacting polymers, including the concentration of each polymer type in the condensed and dilute phase.

  20. Formation of phase space holes and clumps.

    PubMed

    Lilley, M K; Nyqvist, R M

    2014-04-18

    It is shown that the formation of phase space holes and clumps in kinetically driven, dissipative systems is not restricted to the near threshold regime, as previously reported and widely believed. Specifically, we observe hole-clump generation from the edges of an unmodulated phase space plateau, created via excitation, phase mixing and subsequent dissipative decay of a linearly unstable bulk plasma mode in the electrostatic bump-on-tail model. This has now allowed us to elucidate the underlying physics of the hole-clump formation process for the first time. Holes and clumps develop from negative energy waves that arise due to the sharp gradients at the interface between the plateau and the nearly unperturbed, ambient distribution and destabilize in the presence of dissipation in the bulk plasma. We confirm this picture by demonstrating that the formation of such nonlinear structures in general does not rely on a "seed" wave, only on the ability of the system to generate a plateau. In addition, we observe repetitive cycles of plateau generation and erosion, the latter due to hole-clump formation and detachment, which appear to be insensitive to initial conditions and can persist for a long time. We present an intuitive discussion of why this continual regeneration occurs. PMID:24785043

  1. Interplay between micelle formation and waterlike phase transitions

    NASA Astrophysics Data System (ADS)

    Heinzelmann, G.; Figueiredo, W.; Girardi, M.

    2010-02-01

    A lattice model for amphiphilic aggregation in the presence of a structured waterlike solvent is studied through Monte Carlo simulations. We investigate the interplay between the micelle formation and the solvent phase transition in two different regions of temperature-density phase diagram of pure water. A second order phase transition between the gaseous (G) and high density liquid (HDL) phases that occurs at very high temperatures, and a first order phase transition between the low density liquid (LDL) and (HDL) phases that takes place at lower temperatures. In both cases, we find the aggregate size distribution curve and the critical micellar concentration as a function of the solvent density across the transitions. We show that micelle formation drives the LDL-HDL first order phase transition to lower solvent densities, while the transition G-HDL is driven to higher densities, which can be explained by the markedly different degrees of micellization in both cases. The diffusion coefficient of surfactants was also calculated in the LDL and HDL phases, changing abruptly its behavior due to the restructuring of waterlike solvent when we cross the first order LDL-HDL phase transition. To understand such behavior, we calculate the solvent density and the number of hydrogen bonds per water molecule close to micelles. The curves of the interfacial solvent density and the number of hydrogen bonds per water molecule in the first hydration signal a local phase change of the interfacial water, clarifying the diffusion mechanism of free surfactants in the solvent.

  2. Phase Formation Behavior in Ultrathin Iron Oxide.

    PubMed

    Jõgi, Indrek; Jacobsson, T Jesper; Fondell, Mattis; Wätjen, Timo; Carlsson, Jan-Otto; Boman, Mats; Edvinsson, Tomas

    2015-11-17

    Nanostructured iron oxides, and especially hematite, are interesting for a wide range of applications ranging from gas sensors to renewable solar hydrogen production. A promising method for deposition of low-dimensional films is atomic layer deposition (ALD). Although a potent technique, ALD of ultrathin films is critically sensitive to the substrate and temperature conditions where initial formation of islands and crystallites influences the properties of the films. In this work, deposition at the border of the ALD window forming a hybrid ALD/pulsed CVD (pCVD) deposition is utilized to obtain a deposition less sensitive to the substrate. A thorough analysis of iron oxide phases formation on two different substrates, Si(100) and SiO2, was performed. Films between 3 and 50 nm were deposited and analyzed with diffraction techniques, high-resolution Raman spectroscopy, and optical spectroscopy. Below 10 nm nominal film thickness, island formation and phase dependent particle crystallization impose constraints for deposition of phase pure iron oxides on non-lattice-matching substrates. Films between 10 and 20 nm thickness on SiO2 could effectively be recrystallized into hematite whereas for the corresponding films on Si(100), no recrystallization occurred. For films thicker than 20 nm, phase pure hematite can be formed directly with ALD/pCVD with very low influence of the substrate on either Si or SiO2. For more lattice matched substrates such as SnO2:F, Raman spectroscopy indicated formation of the hematite phase already for films with 3 nm nominal thickness and clearly for 6 nm films. Analysis of the optical properties corroborated the analysis and showed a quantum confined blue-shift of the absorption edge for the thinnest films. PMID:26506091

  3. OH radical formation from the gas-phase reaction of ozone with terminal alkenes and the relationship between structure and mechanism

    SciTech Connect

    Paulson, S.E.; Chung, M.Y.; Hasson, A.S.

    1999-10-14

    The reactions of ozone with alkenes have been shown recently to lead to the direct production of OH radicals in quantities that vary from 7 to 100% depending on the structure of the alkene. OH radicals are the most important oxidizing species in the lower atmosphere, and the OH-alkene reaction is a large source of new OH radicals, important in urban and rural air during both day and night. Evidence for OH formation comes both from low-pressure direct measurements and from tracer experiments at high pressure. With the goal of measuring OH formation yields with good precision, a small-ratio relative rate technique was developed. This method uses small amounts of fast-reacting aromatics and aliphatic ethers to trace OH formation yields. Here, the authors report OH formation yields for a series of terminal alkenes reacting with ozone. Measured OH yields were 0.29 {+-} 0.05, 0.24 {+-} 0.05, 0.18 {+-} 0.04, and 0.10 {+-} 0.03 for 1-butene, 1-pentene, 1-hexene, and 1-octene, respectively. For the methyl-substituted terminal alkenes methyl propene and 2-methyl-1-butene, OH yields were 0.72 {+-} 0.12 and 0.67 {+-} 0.12, respectively. The results are discussed both in terms of their atmospheric implications and the relationship between structure and OH formation.

  4. Phase formation and melt processing of Yb- 123.

    SciTech Connect

    Athur, S. P.; Putman, P.; Balachandran, U.; Salama, K.; Energy Technology; Univ. of Houston

    1998-01-01

    The formation of Yb-123 has been studied at different temperatures in air and in reduced oxygen partial pressure. It is found that the stability and/or the formation kinetics of Yb-123 phase is a major hurdle in manufacturing phase-pure Yb-123 in air. However, under reduced oxygen partial pressure, Yb-123 forms rapidly and more than 90% phase-pure Yb-123 is achieved within three sintering steps. Rods made from this powder were melt-processed in air and showed a T{sub c} of 90 K. Kinetic studies performed by interrupting the growth during the directional solidification of these rods revealed a growth mechanism similar to that of Y-123 and a maximum growth rate of 7.2 mm/h for a stable planar interface. EPMA of the interface showed the liquid to be rich in barium cuprates with a Ba:Cu ratio of 1:3.

  5. On the lag phase in amyloid fibril formation

    PubMed Central

    Arosio, Paolo; Knowles, Tuomas P. J.

    2015-01-01

    The formation of nanoscale amyloid fibrils from normally soluble peptides and proteins is a common form of self-assembly phenomenon that has fundamental connections with biological functions and human diseases. The kinetics of this process has been widely studied and exhibits on a macroscopic level three characteristic stages: a lag phase, a growth phase and a final plateau regime. The question of which molecular events take place during each one of these phases has been a central element in the quest for a mechanism of amyloid formation. In this review, we discuss the nature and molecular origin of the lag-phase in amyloid formation by making use of tools and concepts from physical chemistry, in particular from chemical reaction kinetics. We discuss how, in macroscopic samples, it has become apparent that the lag-phase is not a waiting time for nuclei to form. Rather, multiple parallel processes exist and typically millions of primary nuclei form during the lag phase from monomers in solution. Thus, the lag-time represents a time that is required for the nuclei that are formed early on in the reaction to grow and proliferate in order to reach an aggregate concentration that is readily detected in bulk assays. In many cases, this proliferation takes place through secondary nucleation, where fibrils may present a catalytic surface for the formation of new aggregates. Fibrils may also break (fragmentation) and thereby provide new ends for elongation. Thus, at least two – primary nucleation and elongation – and in many systems at least four – primary nucleation, elongation, secondary nucleation and fragmentation – microscopic processes occur during the lag phase. Moreover, these same processes occur during all three phases of the macroscopic aggregation process, albeit at different rates as governed by rate constants and by the concentration of reacting species at each point in time. PMID:25719972

  6. THE TWO PHASES OF GALAXY FORMATION

    SciTech Connect

    Oser, Ludwig; Naab, Thorsten; Johansson, Peter H.; Burkert, Andreas; Ostriker, Jeremiah P.

    2010-12-20

    Cosmological simulations of galaxy formation appear to show a 'two-phase' character with a rapid early phase at z {approx}> 2 during which 'in situ' stars are formed within the galaxy from infalling cold gas followed by an extended phase since z {approx}< 3 during which 'ex situ' stars are primarily accreted. In the latter phase, massive systems grow considerably in mass and radius by accretion of smaller satellite stellar systems formed at quite early times (z>3) outside of the virial radius of the forming central galaxy. These tentative conclusions are obtained from high-resolution re-simulations of 39 individual galaxies in a full cosmological context with present-day virial halo masses ranging from 7 x 10{sup 11} M{sub sun} h {sup -1} {approx}formation, and energetic feedback from Type II supernova. The importance of stellar accretion increases with galaxy mass and toward lower redshift. In our simulations, lower mass galaxies (M{sub *} {approx}< 9 x 10{sup 10} M{sub sun} h {sup -1}) accrete about 60% of their present-day stellar mass. High-mass galaxy (M{sub *} {approx}> 1.7 x 10{sup 11} M{sub sun} h {sup -1}) assembly is dominated by accretion and merging with about 80% of the stars added by the present day. In general the simulated galaxies approximately double their mass since z = 1. For massive systems this mass growth is not accompanied by significant star formation. The majority of the in situ created stars are formed at z>2, primarily out of cold gas flows. We recover the observational result of 'archaeological downsizing', where the most massive galaxies harbor the oldest stars. We find that this is not in contradiction with hierarchical structure

  7. Mechanically loaded myotubes affect osteoclast formation.

    PubMed

    Juffer, Petra; Jaspers, Richard T; Klein-Nulend, Jenneke; Bakker, Astrid D

    2014-03-01

    In response to mechanical loading skeletal muscle produces numerous growth factors and cytokines that enter the circulation. We hypothesized that myotubes produce soluble factors that affect osteoclast formation and aimed to identify which osteoclastogenesis-modulating factors are differentially produced by mechanically stimulated myotubes. C2C12 myotubes were subjected to mechanical loading by cyclic strain for 1 h, and postincubated with or without cyclic strain for 24 h. The effect of cyclic strain on gene expression in myotubes was determined by PCR. Conditioned medium (CM) was collected from cultures of unloaded and loaded myotubes and from MLO-Y4 osteocytes. CM was added to mouse bone marrow cells containing osteoclast precursors, and after 6 days osteoclasts were counted. Compared to unconditioned medium, CM from unloaded osteocytes increased osteoclast formation, while CM from unloaded myotubes decreased osteoclast formation. Cyclic strain strongly enhanced IL-6 expression in myotubes. CM from cyclically strained myotubes increased osteoclast formation compared to CM from unloaded myotubes, but this effect did not occur in the presence of an IL-6 antibody. In conclusion, mechanically loaded myotubes secrete soluble factors, among others IL-6, which affect osteoclast formation. These results suggest that muscle could potentially affect bone homeostasis in vivo via production of growth factors and/or cytokines. PMID:24264813

  8. Nonlinear dynamic theory for photorefractive phase hologram formation

    NASA Technical Reports Server (NTRS)

    Kim, D. M.; Shah, R. R.; Rabson, T. A.; Tittle, F. K.

    1976-01-01

    A nonlinear dynamic theory is developed for the formation of photorefractive volume phase holograms. A feedback mechanism existing between the photogenerated field and free-electron density, treated explicitly, yields the growth and saturation of the space-charge field in a time scale characterized by the coupling strength between them. The expression for the field reduces in the short-time limit to previous theories and approaches in the long-time limit the internal or photovoltaic field. Additionally, the phase of the space charge field is shown to be time-dependent.

  9. A phase-separation kinetic model for coke formation

    SciTech Connect

    Wiehe, I.A. . Corporate Research Lab.)

    1993-11-01

    Coke formation during the thermolysis of petroleum residua is postulated to occur by a mechanism that involves the liquid-liquid phase separation of reacted asphaltenes to form a phase that is lean in abstractable hydrogen. This mechanism provides the basis of a model that quantitatively describes the kinetics for the thermolysis of Cold Lake vacuum residuum and its deasphalted oil in an open-tube reactor at 400 C. The previously unreacted asphaltenes were found to be the fraction with the highest rate of thermal reaction but with the least extent of reaction. This not only described the appearance and disappearance of asphaltenes but also quantitatively described the variation in molecular weight and hydrogen content of the asphaltenes with reaction time. Further evidence of the liquid-liquid phase separation was the observation of spherical particles of liquid crystalline coke and the preferential conversion of the most associated asphaltenes to coke.

  10. A phase separation kinetic model for coke formation

    SciTech Connect

    Wiehe, I.A.

    1993-12-31

    Coke formation during the thermolysis of petroleum residua is postulated to occur by a mechanism that involves the liquid-liquid phase separation of reacted asphaltenes to form a phase that is lean in abstractable hydrogen. This mechanism provides the basis of a model the quantitatively describes the kinetics for the thermolysis of Cold Lake vacuum residuum and its deasphalted oil in an open tube reactor at 400{degrees}C. The previously unreacted asphaltenes were found to be the fraction with the highest rate of thermal reaction but with the least extent of reaction. Further evidence of the liquid-liquid phase separation was the observation of spherical particles of liquid crystalline coke and the preferential conversion of the most associated asphaltenes to coke.

  11. Molecular mechanisms of bone formation in spondyloarthritis.

    PubMed

    González-Chávez, Susana Aideé; Quiñonez-Flores, Celia María; Pacheco-Tena, César

    2016-07-01

    Spondyloarthritis comprise a group of inflammatory rheumatic diseases characterized by its association to HLA-B27 and the presence of arthritis and enthesitis. The pathogenesis involves both an inflammatory process and new bone formation, which eventually lead to ankylosis of the spine. To date, the intrinsic mechanisms of the pathogenic process have not been fully elucidated, and our progress is remarkable in the identification of therapeutic targets to achieve the control of the inflammatory process, yet our ability to inhibit the excessive bone formation is still insufficient. The study of new bone formation in spondyloarthritis has been mostly conducted in animal models of the disease and only few experiments have been done using human biopsies. The deregulation and overexpression of molecules involved in the osteogenesis process have been observed in bone cells, mesenchymal cells, and fibroblasts. The signaling associated to the excessive bone formation is congruent with those involved in the physiological processes of bone remodeling. Bone morphogenetic proteins and Wnt pathways have been found deregulated in this disease; however, the cause for uncontrolled stimulation remains unknown. Mechanical stress appears to play an important role in the pathological osteogenesis process; nevertheless, the association of other important factors, such as the presence of HLA-B27 and environmental factors, remains uncertain. The present review summarizes the experimental findings that describe the signaling pathways involved in the new bone formation process in spondyloarthritis in animal models and in human biopsies. The role of mechanical stress as the trigger of these pathways is also reviewed. PMID:26838262

  12. Histopathology Predicts the Mechanism of Stone Formation

    NASA Astrophysics Data System (ADS)

    Evan, Andrew P.

    2007-04-01

    About 5% of American women and 12% of men will develop a kidney stone at some time in their life and these numbers appear to be on the rise. Despite years of scientific research into the mechanisms of stone formation and growth, limited advances have been made until recently. Randall's original observations and thoughts on the mechanisms for kidney stone formation have been validated for idiopathic calcium oxalate stone formers (ICSF) but not for most other stone forming groups. Our current studies on selected groups of human stone formers using intraoperative papillary biopsies has shown overwhelming evidence for the presence of Randall's plaque in ICSF and that stone formation and growth are exclusively linked to its availability to urinary ions and proteins. Intense investigation of the plaque-stone junction is needed if we are to understand the factors leading to the overgrowth process on exposed regions of plaque. Such information should allow the development of treatment strategies to block stone formation in ICSF patients. Patients who form brushite stones, or who form apatite stones because of distal renal tubular acidosis (dRTA), or patients with calcium oxalate stones due to obesity bypass procedures, or patients with cystinuria, get plugged inner medullary collecting ducts (IMCD) which leads to total destruction of the lining cells and focal sites of interstitial fibrosis. These stone formers have plaque but at levels equal to or below non-stone formers, which would suggest that they form stones by a different mechanism than do ICSF patients.

  13. Cellular and molecular mechanisms underlying presynapse formation

    PubMed Central

    Chia, Poh Hui; Li, Pengpeng

    2013-01-01

    Synapse formation is a highly regulated process that requires the coordination of many cell biological events. Decades of research have identified a long list of molecular components involved in assembling a functioning synapse. Yet how the various steps, from transporting synaptic components to adhering synaptic partners and assembling the synaptic structure, are regulated and precisely executed during development and maintenance is still unclear. With the improvement of imaging and molecular tools, recent work in vertebrate and invertebrate systems has provided important insight into various aspects of presynaptic development, maintenance, and trans-synaptic signals, thereby increasing our understanding of how extrinsic organizers and intracellular mechanisms contribute to presynapse formation. PMID:24127213

  14. Investigation of formation mechanisms of chips in orthogonal cutting process

    NASA Astrophysics Data System (ADS)

    Ma, W.

    2012-08-01

    This work investigates the formation mechanisms of chips in orthogonal cutting of mild steel and the transformation conditions between various morphology chips. It is supposed that the modeling material follows the Johnson-Cook constitutive model. In orthogonal cutting process, both the plastic flow and the instability behaviors of chip materials are caused by the plane strain loadings. Therefore, the general instability behaviors of materials in plane strain state are first analyzed with linear perturbation method and a universal instability criterion is established. Based on the analytical results, the formation mechanisms of chips and the transformation conditions between continuous and serrated chips are further studied by instability phase diagram method. The results show that the chip formation strongly depends on the intensity ratios between shear and normal stresses. The ratios of dissipative rates of plastic work done by compression and shear stresses govern the transformation from continuous to serrated chips. These results are verified by the numerical simulations on the orthogonal cutting process.

  15. Mechanisms of foam formation in anaerobic digesters.

    PubMed

    Subramanian, Bhargavi; Pagilla, Krishna R

    2015-02-01

    An anaerobic digester (AD) is the most essential step to generate energy in the form of biogas from waste. AD foaming is widespread and leads to deterioration of the AD process and operation. In extreme conditions, AD foaming poses a significant safety risk and considerable economic impacts. It is, therefore, necessary to understand the fundamentals of AD foaming to develop effective strategies that can help minimize the foaming impacts. Several aspects of AD foaming have attracted considerable research attention, however, the focused has been mainly on site specific causes and prevention. Here, the available three-phase foam literature is reviewed with an emphasis on the fundamental aspects of bubble formation in AD: similarities between AD foams and other "desirable" foams, surface rheology, physico-chemical aspects of carbon dioxide (CO2) in digesters, dynamics of the gas-phase, pH, alkalinity and certain relationships between these factors are discussed. All of the abovementioned fundamental aspects seem to be involved in AD foam formation. However, the detailed relationship between these uncontrolled and controlled factors, foam formation and its implications for process and operation of AD is still inconclusive. PMID:25487880

  16. The Embedded Phase of Massive Star Formation

    NASA Astrophysics Data System (ADS)

    van der Tak, Floris

    2000-11-01

    This thesis studies the physical and chemical structure of a set of massive young stars which are surrounded by a thick envelope of dust and gas, the earliest known phase of massive star formation. The primary scientific questions addressed are: (i) What is the evolutionary order of the phenomena associated with massive star formation? (ii) What is the physical and chemical structure of the envelopes of massive young stars? How do they compare to those of low-mass stars? Do specific molecules trace different stages? (iii) What are the masses of any circumstellar disks, and on what time scales are they dispersed? To answer these questions, a sample of infrared and submillimeter sources has been selected on high luminosity, close distance, isolated location and high mid-infrared flux. We present observations of these sources with single-dish submillimeter antennas, millimeter interferometers and near-infrared spectroscopy, and also discuss ISO spectra. For the interpretation, we have developed models with a detailed physical structure, combined with chemical differentiation, which is strongly coupled to the temperature. Some of the conclusions are: The envelopes of massive young stars are well described by centrally heated spherical models, with masses of ~ 100-1000 Modot within radii of ~0.1 pc. For a power-law density structure n(r) = n0 (r / r0)-α, we find α = 1.0-1.5 for the younger sources, significantly lower than α ≅ 2 found for the envelopes of low-mass stars at a comparable stage of evolution. This difference may indicate that the support against gravitational collapse in high-mass cores is by nonthermal (e.g., turbulent) pressure, and in low-mass cores by thermal pressure. For the more evolved sources, α = 1.5-2.0 fits the data best. Unlike in low-mass star formation, the near-infrared emission decreases as the envelope warms up, indicates that the hot dust close to the star is destroyed and/or pushed out by stellar radiation or mass loss. The

  17. Mechanisms of scaling in pattern formation

    PubMed Central

    Umulis, David M.; Othmer, Hans G.

    2013-01-01

    Many organisms and their constituent tissues and organs vary substantially in size but differ little in morphology; they appear to be scaled versions of a common template or pattern. Such scaling involves adjusting the intrinsic scale of spatial patterns of gene expression that are set up during development to the size of the system. Identifying the mechanisms that regulate scaling of patterns at the tissue, organ and organism level during development is a longstanding challenge in biology, but recent molecular-level data and mathematical modeling have shed light on scaling mechanisms in several systems, including Drosophila and Xenopus. Here, we investigate the underlying principles needed for understanding the mechanisms that can produce scale invariance in spatial pattern formation and discuss examples of systems that scale during development. PMID:24301464

  18. Structural mechanism of the formation of mineral Na-tveitite-a new type of phase with a fluorite-derivative structure-in the NaF-CaF{sub 2}-(Y,Ln)F{sub 3} natural system

    SciTech Connect

    Golubev, A. M. Otroshchenko, L. P.; Sobolev, B. P.

    2012-03-15

    Relationships between the chemical compositions and structures of the mineral tveitite from the southern Norway pegmatites (with the idealized formula Ca{sub 14}Y{sub 5}F{sub 43}) and Na-tveitite from the Rov mountain (Keivy, Kola Peninsula) Na{sub 2.5}Ca{sub 10}Ln{sub 1.5}Y{sub 5}F{sub 42} are considered. According to the structural mechanism of its formation, Na-tveitite is a nanocomposite crystal based on the crystalline matrix Ca{sub 14}Y{sub 5}F{sub 43} with the ordered arrangement of {l_brace}Ca{sub 8}[CaY{sub 5}]F{sub 69}{r_brace} clusters which contain anionic {l_brace}F{sub 13}{r_brace} cuboctahedra with F{sup 1-} at the center. When Na-tveitite is formed, 29% of these clusters are statistically replaced by Na-'Y' clusters {l_brace}[Na{sub 0.5}(Y,Ln){sub 0.5}]{sub 14}F{sub 64}{r_brace} with {l_brace}F{sub 8}{r_brace} cubes at the center (analogs of matrix fluorite groups {l_brace}Ca{sub 14}F{sub 64}{r_brace}). This replacement gives rise to composition-imperfect (Na, Ca, 'Y') cationic positions and occupancy-deficient F positions, which correspond to {l_brace}F{sub 13}{r_brace} cuboctahedra and the {l_brace}F{sub 8}{r_brace} cubes that replace them. The difference between Na-tveitite and fluorite phases M{sub 1-x}R{sub x}F{sub 2+x} is as follows: its matrix is the structure of the ordered phase (tveitite) into which Na-containing rare earth fragments of fluorite-type structure are incorporated instead of ordered-phase structural blocks (clusters).

  19. Investigating materials formation with liquid-phase and cryogenic TEM

    NASA Astrophysics Data System (ADS)

    de Yoreo, J. J.; N. A. J. M., Sommerdijk

    2016-08-01

    The recent advent of liquid-phase transmission electron microscopy (TEM) and advances in cryogenic TEM are transforming our understanding of the physical and chemical mechanisms underlying the formation of materials in synthetic, biological and geochemical systems. These techniques have been applied to study the dynamic processes of nucleation, self-assembly, crystal growth and coarsening for metallic and semiconductor nanoparticles, (bio)minerals, electrochemical systems, macromolecular complexes, and organic and inorganic self-assembling systems. New instrumentation and methodologies that are currently on the horizon promise new opportunities for advancing the science of materials synthesis.

  20. Molecular mechanism of magnet formation in bacteria.

    PubMed

    Matsunaga, T; Sakaguchi, T

    2000-01-01

    Magnetic bacteria have an ability to synthesize intracellular ferromagnetic crystalline particles consisting of magnetite (Fe3O4) or greigite (Fe3S4) which occur within a specific size range (50-100 nm). Bacterial magnetic particles (BMPs) can be distinguished by the regular morphology and the presence of an thin organic membrane enveloping crystals from abiologically formed magnetite. The particle is the smallest magnetic crystal that has a regular morphology within the single domain size. Therefore, BMPs have an unfathomable amount of potential value for various technological applications not only scientific interests. However, the molecular and genetic mechanism of magnetite biomineralization is hardly understood although iron oxide formation occurs widely in many higher animals as well as microorganisms. In order to elucidate the molecular and genetic mechanisms of magnetite biomineralization, a magnetic bacterium Magnetospirillum sp. AMB-1, for which gene transfer and transposon mutagenesis techniques had been recently developed, has been used as a model organism. Several findings and information on the BMPs formation process have been obtained within this decade by means of studies with this model organism and its related one. Biomineralization mechanism and potential availability in biotechnology of bacterial magnets have been elucidated through molecular and genetic approach. PMID:16232810

  1. Space Shuttle Pinhole Formation Mechanism Studies

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.

    1998-01-01

    Pinholes have been observed to form on the wing leading edge of the space shuttle after about 10-15 flights. In this report we expand upon previous observations by Christensen (1) that these pinholes often form along cracks and are associated with a locally zinc-rich area. The zinc appears to come from weathering and peeling paint on the launch structure. Three types of experimental examinations are performed to understand this issue further: (A) Detailed microstructural examination of actual shuttle pinholes (B) Mass spectrometric studies of coupons containing, actual shuttle pinholes and (C) Laboratory furnace studies of ZnO/SiC reactions and ZnO/SiC protected carbon/carbon reaction. On basis of these observations we present a detailed mechanism of pinhole formation due to formation of a corrosive ZnO-Na-2-O-SiO2 ternary glass, which flows into existing cracks and enlarges them.

  2. Mechanisms of lamellar collagen formation in connective tissues.

    PubMed

    Ghazanfari, Samaneh; Khademhosseini, Ali; Smit, Theodoor H

    2016-08-01

    The objective of tissue engineering is to regenerate functional tissues. Engineering functional tissues requires an understanding of the mechanisms that guide the formation and evolution of structure in the extracellular matrix (ECM). In particular, the three-dimensional (3D) collagen fiber arrangement is important as it is the key structural determinant that provides mechanical integrity and biological function. In this review, we survey the current knowledge on collagen organization mechanisms that can be applied to create well-structured functional lamellar tissues and in particular intervertebral disc and cornea. Thus far, the mechanisms behind the formation of cross-aligned collagen fibers in the lamellar structures is not fully understood. We start with cell-induced collagen alignment and strain-stabilization behavior mechanisms which can explain a single anisotropically aligned collagen fiber layer. These mechanisms may explain why there is anisotropy in a single layer in the first place. However, they cannot explain why a consecutive collagen layer is laid down with an alternating alignment. Therefore, we explored another mechanism, called liquid crystal phasing. While dense concentrations of collagen show such behavior, there is little evidence that the conditions for liquid crystal phasing are actually met in vivo. Instead, lysyl aldehyde-derived collagen cross-links have been found essential for correct lamellar matrix deposition. Furthermore, we suggest that supra-cellular (tissue-level) shear stress may be instrumental in the alignment of collagen fibers. Understanding the potential mechanisms behind the lamellar collagen structure in connective tissues will lead to further improvement of the regeneration strategies of functional complex lamellar tissues. PMID:27162076

  3. String Mechanism for Relativistic Jet Formation

    NASA Astrophysics Data System (ADS)

    Dyadechkin, S. A.; Semenov, V. S.; Punsly, B.; Biernat, H. K.

    Here we present our latest studies of relativistic jet formation in the vicinity of a rotating black hole where the reconnection process has been taken into account. In order to simplify the problem, we use Lagrangian formalism and develop a method which enables us to consider a magnetized plasma as a set of magnetic flux tubes [5,6]. Within the limits of the Lagrangian approach, we perform numerical simulations of the flux tube (nonlinear string) behavior which clearly demonstrates the process of relativistic jet formation in the form of outgoing torsional nonlinear aves. It turns out that the jet is produced deep inside the ergosphere where the flux tube takes away spinning energy from the black hole due to the nonlocal Penrose process [2]. This is similar to the Blandford-Znajek (BZ) mechanism to some extent [8], however, the string mechanism is essentially time dependent. It is shown that the leading part of the accreting tube gains negative energy and therefore has to stay in the ergosphere forever. Simultaneously, another part of the tube propagates along the spinning axis away from the hole with nearly the speed of light. As a result, the tube is continuously stretching and our mechanism is essentially time dependent. Obviously, such process cannot last infinitely long and we have to take into account the reconnection process. Due to reconnection, the topology of the flux tube is changed and it gives rise to a plasmoid creation which propagates along spin axis of the hole with relativistic speed carrying off the energy and angular momentum away from the black hole.

  4. Molecular mechanism of pore formation by actinoporins.

    PubMed

    Kristan, Katarina Crnigoj; Viero, Gabriella; Dalla Serra, Mauro; Macek, Peter; Anderluh, Gregor

    2009-12-15

    Actinoporins are effective pore-forming toxins produced by sea anemones. These extremely potent, basic 20 kDa proteins readily form pores in membranes that contain sphingomyelin. Much has been learned about the molecular basis of their pore-forming mechanism in recent years. Pore formation is a multi-step process that involves recognition of membrane sphingomyelin, firm binding to the membrane accompanied by the transfer of the N-terminal region to the lipid-water interface and finally pore formation after oligomerisation of three to four monomers. The final conductive pathway is formed by amphipathic alpha-helices, hence actinoporins are an important example of so-called alpha-helical pore-forming toxins. Actinoporins have become useful model proteins to study protein-membrane interactions, specific recognition of lipids in the membrane, and protein oligomerisation in the lipid milieu. Recent sequence and structural data of proteins similar to actinoporins indicate that they are not a unique family restricted to sea anemones as was long believed. An AF domain superfamily (abbreviated from actinoporin-like proteins and fungal fruit-body lectins) was defined and shown to contain members from three animal and two plant phyla. On the basis of functional properties of some members we hypothesise that AF domain proteins are peripheral membrane proteins. Finally, ability of actinoporins to form transmembrane pores has been exploited in some novel biomedical applications. PMID:19268680

  5. Pathobiochemical mechanisms during the acute phase response.

    PubMed

    Kleesiek, K; Greiling, H

    1984-01-01

    The acute phase response is characterised by the following sequence of principle phenomena: (1) an early local inflammatory reaction, (2) formation of inflammatory humoral factors inducing a systemic reaction, (3) stimulation of glycoprotein synthesis predominantly in the hepatocytes, and (4) an increase in the plasma concentration of acute phase proteins, when the rate of biosynthesis exceeds the degradation rate. Inflammatory mediators (lysosomal enzymes, oxygen derived radicals, prostaglandins) are mainly released during phagocytosis by granulocytes and macrophages. The signal reaching the hepatocytes is not yet clearly identified. A leukocyte endogenous mediator (LEM) released by macrophages is described. There is evidence that prostaglandins and probably proteinase alpha 2-macroglobulin complexes are also involved. The hepatic acute phase protein synthesis is modulated by hormones (insulin, cortisol, somatotropin). The biochemical events in the hepatocyte include an increase in protein synthesis and the regulatory control of the glycosylation of polypeptide precursors. The secreted glycoproteins serve variously as inhibitors or mediators of the inflammatory processes. PMID:6208159

  6. The free energy of mechanically unstable phases

    PubMed Central

    van de Walle, A.; Hong, Q.; Kadkhodaei, S.; Sun, R.

    2015-01-01

    Phase diagrams provide ‘roadmaps' to the possible states of matter. Their determination traditionally rests on the assumption that all phases, even unstable ones, have well-defined free energies under all conditions. However, this assumption is commonly violated in condensed phases due to mechanical instabilities. This long-standing problem impedes thermodynamic database development, as pragmatic attempts at solving this problem involve delicate extrapolations that are highly nonunique and that lack an underlying theoretical justification. Here we propose an efficient computational solution to this problem that has a simple interpretation, both as a topological partitioning of atomic configuration space and as a minimally constrained physical system. Our natural scheme smoothly extends the free energy of stable phases, without relying on extrapolation, thus enabling a formal assessment of widely used extrapolation schemes. PMID:26130613

  7. Defect Formation beyond Kibble-Zurek Mechanism and Holography

    NASA Astrophysics Data System (ADS)

    Chesler, Paul M.; García-García, Antonio M.; Liu, Hong

    2015-04-01

    We study the dynamic after a smooth quench across a continuous transition from the disordered phase to the ordered phase. Based on scaling ideas, linear response, and the spectrum of unstable modes, we develop a theoretical framework, valid for any second-order phase transition, for the early-time evolution of the condensate in the broken phase. Our analysis unveils a novel period of nonadiabatic evolution after the system passes through the phase transition, where a parametrically large amount of coarsening occurs before a well-defined condensate forms. Our formalism predicts a rate of defect formation parametrically smaller than the Kibble-Zurek prediction and yields a criterion for the breakdown of Kibble-Zurek scaling for sufficiently fast quenches. We numerically test our formalism for a thermal quench in a (2 +1 )-dimensional holographic superfluid. These findings, of direct relevance in a broad range of fields including cold atom, condensed matter, statistical mechanics, and cosmology, are an important step toward a more quantitative understanding of dynamical phase transitions.

  8. Mechanisms of Soldering Formation on Coated Core Pins

    NASA Astrophysics Data System (ADS)

    Song, Jie; Denouden, Tony; Han, Qingyou

    2012-02-01

    Die soldering is one of the major casting defects during the high-pressure die casting (HPDC) process, causing dimensional inaccuracy of the castings and increased downtimes of the HPDC machine. In this study, we analyzed actually failed core pins to determine the mechanism of soldering and its procedures. The results show that the soldering process starts from a local coating failure, involves a series of intermetallic phase formation from reactions between molten aluminum alloys and the H13 steel pin, and accelerates when an aluminum-rich, face-centered cubic (fcc) phase is formed between the intermetallic phases. It is the formation of the aluminum-rich fcc phase in the reaction region that joins the core pin with the casting, resulting in the sticking of the casting to the core pin. When undercuts are formed on the core pin, the ejection of castings from the die will lead to either a core pin failure or damages to the casting being ejected.

  9. Metastable phases in mechanically alloyed aluminum germanium powders

    SciTech Connect

    Yvon, P.J.; Schwarz, R.B.

    1993-03-01

    Aluminum and germanium form a simple eutectic system with no stable intermetallic phase, and limited mutual solubility. We report the formation of a metastable rhombohedral,{gamma}{sub 1} phase by mechanically alloying aluminum and germanium powders. This phase, which appears for compositions between 20 and 50 at. % germanium, has also been observed in rapidly quenched alloys, but there is disagreement as to its composition. By measuring the heat of crystallization as a function of composition, we determined the composition of the {gamma}{sub 1} phase to be Al{sub 70}Ge{sub 30}. We also produced Al{sub 70}Ge{sub 30} by arc melting the pure elements, followed by splat-quenching at a cooling rate in the range of 10{sup 8} K s{sup {minus}1}. This method produced two metastable phases, one of which was found to be the {gamma}{sub 1} phase obtained by mechanical alloying. The other was a monoclinic phase reported earlier in the literature as {gamma}{sub 2}.

  10. Phase diagram of hopping conduction mechanisms in polymer nanofiber network

    SciTech Connect

    Li, Jeng-Ting; Lu, Yu-Cheng; Jiang, Shiau-Bin; Zhong, Yuan-Liang; Yeh, Jui-Ming

    2015-12-07

    Network formation by nanofiber crosslinking is usually in polymer materials as application in organic semiconductor devices. Electron hopping transport mechanisms depend on polymer morphology in network. Conducting polymers morphology in a random network structure is modeled by a quasi-one-dimensional system coupled of chains or fibers. We observe the varying hopping conduction mechanisms in the polyaniline nanofibers of the random network structure. The average diameter d of the nanofibers is varied from approximately 10 to 100 nm. The different dominant hopping mechanisms including Efros-Shklovskii variable-range hopping (VRH), Mott VRH, and nearest-neighbor hopping are dependent on temperature range and d in crossover changes. The result of this study is first presented in a phase diagram of hopping conduction mechanisms based on the theories of the random network model. The hopping conduction mechanism is unlike in normal semiconductor materials.

  11. O2 on ganymede: Spectral characteristics and plasma formation mechanisms

    USGS Publications Warehouse

    Calvin, W.M.; Johnson, R.E.; Spencer, J.R.

    1996-01-01

    Weak absorption features in the visible reflectance spectrum of Jupiter's satellite Ganymede have been correlated to those observed in the spectrum of molecular oxygen. We examine the spectral characteristics of these absorption features in all phases of O2 and conclude that the molecular oxygen is most likely present at densities similar to the liquid or solid ??-phase. The contribution of O2 to spectral features observed on Ganymede in the near-infrared wavelength region affects the previous estimates of photon pathlength in ice. The concentration of the visible absorption features on the trailing hemisphere of Ganymede suggests an origin due to bombardment by magneto-spheric ions. We derive an approximate O2 formation rate from this mechanism and consider the state of O2 within the surface.

  12. Formation mechanism of diamond nanocrystal from catalysed carbon black

    NASA Astrophysics Data System (ADS)

    Wen, Bin; Li, Tingju; Dong, Chuang; Zhang, Xingguo; Yao, Shan; Cao, Zhiqiang; Wang, Dehe; Ji, Shouhua; Jin, Junze

    2004-10-01

    Recently, our group has synthesized nanocrystal n-diamond and diamond-like carbon (DLC) from catalysed carbon black. Based on the results of XRD, TGA and DTA, a formation mechanism has been proposed to explain the phase transformation from carbon black to diamond nanocrystal. With the increase of temperature and hence the carbon diffusion in iron, the phase sequence is from Fe(OH)3 into Fe2O3, agr-Fe, ggr-Fe, then liquid iron. When the carbon in the liquid iron is saturated, DLC or graphite separates out of the liquid iron. With decrease of temperature, the carbon in ggr-Fe is separated out, and n-diamond nuclei form and grow.

  13. The mechanics of endothelial gap formation

    NASA Astrophysics Data System (ADS)

    Chattoraj, Joyjit; Del Gado, Emanuela; Hardin, C. Corey; Krishnan, Ramaswamy

    The vascular endothelium is a layer of specialized cells, referred to as endothelial cells (EC) that line the internal surfaces of blood vessels and are largely responsible for regulating the transit of fluids, solutes and immune system cells from the circulation, across the vessel wall, and into the tissues. We investigate the physics of the mechanical events that may proceed and eventually lead to dramatic increase of its permeability, leading to serious illness. In combination with experiments measuring local stresses and gap formation in EC in different conditions, we devise a minimal model based on an amorphous assembly of adhesive particles, subjected to an imposed tension. Numerical simulations of the model show that, as a function of the rate at which the tension is imposed, the system goes from an elastic regime in which small gaps increase in number to a ``plastic'' one, where pre-existing gaps increase in size, and internal stresses display large hetereogeneities and long range correlations. This second regime bears intriguing similarities with the experimental finding in EC monolayers.

  14. Graphite formation in cast iron, phase 2

    NASA Technical Reports Server (NTRS)

    Stefanescu, D. M.; Fiske, M. R.

    1985-01-01

    Several types of cast irons are directionally solidified aboard the KC-135 aircraft. Also, control samples are run on Earth for comparison. Some of these samples are unusable because of various mechanical problems; the analysis and the interpretation of results on the samples that are run successfully is discussed.

  15. Prevention of chi and sigma phases formation in aged 16-8-2 weld metal

    SciTech Connect

    Leitnaker, J.M.

    1982-01-01

    Type 16-8-2 weld filler metal (16 wt-% Cr, 8 wt-% Ni, 2 wt-% Mo, nominally) is commonly used to weld Type 316 stainless steel base metal. Suitable control of composition can prevent formation of embrittling phases. The chi phase can be eliminated by adjusting the molybdenum content. The /delta/-ferrite-/sigma/ phase transformation can be prevented by suitably adjusting the carbon-plus-nitrogen content. The mechanism of this behavior is discussed. 14 refs.

  16. Electrochemical phase formation: classical and atomistic theoretical models.

    PubMed

    Milchev, Alexander

    2016-08-01

    The process of electrochemical phase formation at constant thermodynamic supersaturation is considered in terms of classical and atomistic nucleation theories. General theoretical expressions are derived for important thermodynamic and kinetic quantities commenting also upon the correlation between the existing theoretical models and experimental results. Progressive and instantaneous nucleation and growth of multiple clusters of the new phase are briefly considered, too. PMID:27108683

  17. The formation phase of the solar nebula

    NASA Technical Reports Server (NTRS)

    Bodenheimer, Peter; Yorke, Harold W.; Rozyczka, Michal; Tohline, Joel E.

    1990-01-01

    Hydrodynamical calculations of the collapse of an axisymmetric, rotating protostellar cloud, with radiation transport and without magnetic fields, are presented. The collapse is assumed to start from a centrally condensed sphere of radius 5 x 10 to the 15th cm, a mean density of 4 x 10 to the -15th g/cu cm, a total mass of 1 solar mass, and a total angular momentum of 10 to the 53rd g sq cm per sec. The numerical grid is chosen to resolve the region of disk formation between 1 and 60 AU from the center. Frequency-dependent radiative transfer calculations show how the emergent spectrum of the structure depends upon viewing angle with respect to the rotation axis and how the observed isophotal contours should depend on wavelength and viewing angle. The central part of the protostar, interior to 1 AU, is not resolved numerically but is modeled approximately. At the end of the calculation, this region is found to have a mass of 0.6 solar mass and a ratio of rotational to gravitational energy of about 0.4, sufficiently large to be unstable to nonaxisymmetric perturbations. Although the disk is gravitationally stable according to the local Toomre criterion, the nonaxisymmetric structure in the center is likely to lead to angular momentum transport.

  18. Dynamical phase transitions in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Rotter, Ingrid

    2012-02-01

    The nucleus is described as an open many-body quantum system with a non-Hermitian Hamilton operator the eigenvalues of which are complex, in general. The eigenvalues may cross in the complex plane (exceptional points), the phases of the eigenfunctions are not rigid in approaching the crossing points and the widths bifurcate. By varying only one parameter, the eigenvalue trajectories usually avoid crossing and width bifurcation occurs at the critical value of avoided crossing. An analog spectroscopic redistribution takes place for discrete states below the particle decay threshold. By this means, a dynamical phase transition occurs in the many-level system starting at a critical value of the level density. Hence the properties of the low-lying nuclear states (described well by the shell model) and those of highly excited nuclear states (described by random ensembles) differ fundamentally from one another. The statement of Niels Bohr on the collective features of compound nucleus states at high level density is therefore not in contradiction to the shell-model description of nuclear (and atomic) states at low level density. Dynamical phase transitions are observed experimentally in different quantum mechanical systems by varying one or two parameters.

  19. Atomistic Mechanism of Surface-Oxide Formation on Ru(0001)

    NASA Astrophysics Data System (ADS)

    Reuter, K.; Ganduglia-Pirovano, M. V.; Scheffler, M.; Stampfl, C.

    2001-03-01

    CO-oxidation catalysis on Ruthenium is a prime example of the pressure and materials gap in the sense, that a very low activity under UHV conditions is contrasted with very high turnover rates at high pressures. A recent experimental study has connected this change in activity with the formation of RuO_2(110) patches on the surface (H. Over et al., Science 287, 1474 (2000)). In order to analyze the atomistic mechanism behind this surface oxide formation, we perform density functional theory calculations for more and more O loaded Ru(0001) surfaces. After a full monolayer coverage on the surface has been reached, O starts to penetrate into the sample. Instead of diffusing further into the bulk, oxygen agglomerates in subsurface islands between the first and second substrate layers. These islands can be characterized as a O-Ru-O trilayer ``floating'' on top of the Ru(0001) substrate. Further O incorporation leads to a successive formation of such O-Ru-O trilayers, which at first remain in a CaF2 type stacking sequence. After a critical thickness has been exceeded, we finally observe a phase transition into the experimentally seen rutile RuO_2(110) structure.

  20. Structure Formation Mechanisms and Electrical Properties of PVD Fluoropolymer Films

    NASA Astrophysics Data System (ADS)

    Luchnikov, P. A.

    2015-01-01

    The mechanisms of forming fluoropolymer coatings on silicon substrates via condensation from an active gas phase using directed flows of accelerated electrons and ions are studied. It is demonstrated that electrical properties of the resulting fluoropolymer films strongly depend on the technological parameters of the deposition process. Their most optimal properties are reported when condensation takes place at the temperatures within ~373-386 K. It is shown that thermal annealing of the films in vacuum at 430-470 K improves their electrophysical parameters by re-evaporating the low-molecular complexes from the structure and decreasing the concentration of defects and spin-radicals, while annealing in air gives rise to formation of additional polar groups.

  1. Mechanisms for indirect effects from aerosol pollution on mixed-phase clouds

    NASA Astrophysics Data System (ADS)

    Phillips, Vaughan

    2015-04-01

    Aerosol pollution can have various effects on mixed-phase clouds. They can alter coalescence and raindrop-freezing for droplet activation by CCN aerosols. They can alter aggregation of ice crystals and snow formation. This can alter the lifetime of mixed-phase clouds, as well as the reflectivity for solar radiation. Simulations of observed cases of mixed-phase clouds have been performed to examine the mechanisms for effects from aerosol pollution on them. Such mechanisms are discussed in the presentation.

  2. Mechanisms of osteoclast-dependent bone formation

    PubMed Central

    Teti, Anna

    2013-01-01

    Should we believe that osteoclasts are only involved in bone resorption? What about their contribution to bone formation? In this article I will review evidence that bone formation can be regulated by osteoclasts. Why is this? Likely because in the physiologic condition of bone remodeling, bone resorption and formation are balanced, and there is no better way to control this equilibrium than through a concerted action between the two cell types. Although the influence of osteoblasts on osteoclastic bone resorption is well documented and consolidated over time, what osteoclasts do to regulate osteoblast activity is still matter of intense investigation. The original hypothesis that all is in the osteoblast-seeking factors stored in the bone matrix, released and activated during bone resorption, is now being challenged by several studies, suggesting that osteoclasts are also capable of producing ‘clastokines' that regulate osteoblast performance. Indeed, several of them have been demonstrated to orchestrate osteoclast–osteoblast activities. However, we are probably still at the dawn of a new era, and future work will tell us whether any of these clastokines can be exploited to stimulate bone formation and rebalance bone remodeling in skeletal diseases. PMID:24422142

  3. Quantum mechanics on phase space and teleportation

    NASA Astrophysics Data System (ADS)

    Messamah, Juba; Schroeck, Franklin E.; Hachemane, Mahmoud; Smida, Abdallah; Hamici, Amel H.

    2015-03-01

    The formalism of quantum mechanics on phase space is used to describe the standard protocol of quantum teleportation with continuous variables in order to partially investigate the interplay between this formalism and quantum information. Instead of the Wigner quasi-probability distributions used in the standard protocol, we use positive definite true probability densities which account for unsharp measurements through a proper wave function representing a non-ideal quantum measuring device. This is based on a result of Schroeck and may be taken on any relativistic or nonrelativistic phase space. The obtained formula is similar to a known formula in quantum optics, but contains the effect of the measuring device. It has been applied in three cases. In the first case, the two measuring devices, corresponding to the two entangled parts shared by Alice and Bob, are not entangled and described by two identical Gaussian wave functions with respect to the Heisenberg group. They lead to a probability density identical to the function which is analyzed and compared with the Wigner formalism. A new expression of the teleportation fidelity for a coherent state in terms of the quadrature variances is obtained. In the second case, these two measuring devices are entangled in a two-mode squeezed vacuum state. In the third case, two Gaussian states are combined in an entangled squeezed state. The overall observation is that the state of the measuring devices shared by Alice and Bob influences the fidelity of teleportation through their unsharpness and entanglement.

  4. Modeling liquid-liquid phase transitions and quasicrystal formation

    NASA Astrophysics Data System (ADS)

    Skibinsky, Anna

    In this thesis, studies which concern two different subjects related to phase transitions in fluids and crystalline solids are presented. Condensed matter formation, structure, and phase transitions are modeled using molecular dynamics simulations of simple discontinuous potentials with attractive and repulsive interactions. Novel phase diagrams are proposed for quasicrystals, crystals, and liquids. In the first part of the thesis, the formation of a quasicrystal in a two dimensional monodisperse system is investigated using molecular dynamics simulations of hard sphere particles interacting via a two-dimensional square-well potential. It is found that for certain values of the square-well parameters more than one stable crystalline phase can form. By quenching the liquid phase at a very low temperature, an amorphous phase is obtained. When this the amorphous phase is heated, a quasicrystalline structure with five-fold symmetry forms. From estimations of the Helmholtz potentials of the stable crystalline phases and of the quasicrystal, it is concluded that within a specific temperature range, the observed quasicrystal phase can be the stable phase. The second part of the thesis concerns a study of the liquid-liquid phase transition for a single-component system in three dimensions, interacting via an isotropic potential with a repulsive soft-core shoulder at short distance and an attractive well at an intermediate distance. The potential is similar to potentials used to describe such liquid systems as colloids, protein solutions, or liquid metals. It is shown that the phase diagram for such a potential can have two lines of first-order fluid-fluid phase transitions: one separating a gas and a low-density liquid (LDL), and another between the LDL and a high-density liquid (HDL). Both phase transition lines end in a critical point, a gas-LDL critical point and, depending on the potential parameters, either a gas-HDL critical point or a LDL-HDL critical point. A

  5. Statistical mechanics of soft-boson phase transitions

    NASA Technical Reports Server (NTRS)

    Gupta, Arun K.; Hill, Christopher T.; Holman, Richard; Kolb, Edward W.

    1991-01-01

    The existence of structure on large (100 Mpc) scales, and limits to anisotropies in the cosmic microwave background radiation (CMBR), have imperiled models of structure formation based solely upon the standard cold dark matter scenario. Novel scenarios, which may be compatible with large scale structure and small CMBR anisotropies, invoke nonlinear fluctuations in the density appearing after recombination, accomplished via the use of late time phase transitions involving ultralow mass scalar bosons. Herein, the statistical mechanics are studied of such phase transitions in several models involving naturally ultralow mass pseudo-Nambu-Goldstone bosons (pNGB's). These models can exhibit several interesting effects at high temperature, which is believed to be the most general possibilities for pNGB's.

  6. The phase evolution mechanism in Fe(Se, Te) system

    NASA Astrophysics Data System (ADS)

    Liu, Jixing; Li, Chengshan; Zhang, Shengnan; Feng, Jianqing; Zhang, Pingxiang; Zhou, Lian

    2016-08-01

    The phase evolution mechanism in Fe(Se, Te) system during sintering was investigated with step-by-step heat treatment process. It was noticed that the diffusion processes between Fe and Se (Te) as well as that between Se and Te were both very important to the formation of superconducting Fe(Se, Te) phase with very uniform chemical composition. During heat treatment, solid solutions of (Se, Te)ss with different chemical composition were formed with the diffusion of Se atoms into Te solids and Te atoms into Se melts, simultaneously. Then with the increasing temperature, Fe atoms diffused into (Se, Te)ss, Fe(Se, Te)2 and Fe(Se, Te) phases were formed in sequence with the increasing Fe content. The chemical composition in melts became more and more uniform with the further increasing of sintering temperature and dwell time. Therefore, it was suggested that in order to achieve Fe(Se, Te) phase with high superconducting properties, it was necessary to enhance the diffusion process during sintering. The critical temperature of the sample, which was sintered at 700 °C for 12 h with slow cooling process and an O2-annealing process for 24 h, was above 14.0 K. This Tc value proved that a good superconducting β phase could be obtained under this sintering condition.

  7. Effect of electron irradiation exposure on phase formation, microstructure and mechanical strength of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} superconductor prepared via co-precipitation method

    SciTech Connect

    Mohiju, Zaahidah 'Atiqah; Hamid, Nasri A. Kannan, V.; Abdullah, Yusof

    2015-04-29

    In this work the effect of electron irradiation on the mechanical properties of Bi2Sr2CaCu2O8 (Bi-2212) superconductor was studied by exposing the Bi-2212 superconductor with different doses of electron irradiation. Bi-2212 samples were prepared by using co-precipitation method. Irradiation was performed with irradiation dose of 100 kGray and 200 kGray, respectively. Characterization of the samples was performed by using X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). Instron Universal Testing machine was used to measure the strength of the samples. The XRD patterns for the non-irradiated and irradiated samples show well-defined peaks of which could be indexed on the basis of a Bi-2212 phase structure. XRD patterns also indicate that electron irradiation did not affect the Bi-2212 superconducting phase. SEM micrographs show disorientation in the texture of the microstructure for irradiated samples. Sample exposed to 200 kGray electron irradiation dose shows enhancement of grain size. Their grain growth and texture improved slightly compared to other sample. The results also show that enlargement of grain size resulted in higher mechanical strength.

  8. Omega phase formation in titanium and titanium alloys

    SciTech Connect

    Gray, G.T. III; Morris, C.E.; Lawson, A.C.

    1992-05-01

    Although the response of titanium alloys to dynamic loading is receiving increased attention in the literature (particularly in the area of shear-band formation), a more limited experimental database exists concerning the detailed structure/property relationships of titanium alloys subjected to shock loading. In this study, preliminary results concerning the influence of alloy chemistry on the property of omega-phase formation and its structure in three titanium alloys are presented. The influence of shock-wave deformation on the phase stability and substructure evolution of high-purity (low-interstitial) titanium, A-70 (3700 ppm oxygen) titanium, and Ti-6Al-4V were probed utilizing real-time velocity interferometry (VISAR) and ``soft`` shock-recovery techniques. VISAR wave profiles of shock-loaded high-purity titanium revealed the omega-phase pressure-induced transition to occur at approximately 10.4 GPa. Wave profile measurements on A-70 Ti shocked to pressures up to 35 GPa and Ti-6Al-4V shocked to pressures up to 25 GPa exhibited no evidence of a three-wave structure indicative of a pressure-induced phase transition. Neutron and X-ray diffractometry and TEM analysis confirmed the presence of retained {omega}-phase in the electrolytic-Ti and the absence of {omega}-phase in the shock-recovered A-70 Ti and Ti-6Al-4V. Suppression of the {alpha}-{omega} phase transition in A-70 Ti, containing a high interstitial oxygen content, is seen to simultaneously correlate with suppression of deformation twinning. Neutron diffraction was used to measure the in-situ bulk lattice constants and volume fraction of the {alpha} and {omega} phases in the recovered high-purity titanium samples that were shock loaded. The influence of alloy content on the kinetics of formation/retention of {omega}-phase and substructure evolution is discussed and contrasted in light of previous literature studies.

  9. A Gas-phase Formation Route to Interstellar Trans-methyl Formate

    NASA Astrophysics Data System (ADS)

    Cole, Callie A.; Wehres, Nadine; Yang, Zhibo; Thomsen, Ditte L.; Snow, Theodore P.; Bierbaum, Veronica M.

    2012-07-01

    The abundance of methyl formate in the interstellar medium has previously been underpredicted by chemical models. Additionally, grain surface chemistry cannot account for the relative abundance of the cis- and trans-conformers of methyl formate, and the trans-conformer is not even formed at detectable abundance on these surfaces. This highlights the importance of studying formation pathways to methyl formate in the gas phase. The rate constant and branching fractions are reported for the gas-phase reaction between protonated methanol and formic acid to form protonated trans-methyl formate and water as well as adduct ion: Rate constants were experimentally determined using a flowing afterglow-selected ion flow tube apparatus at 300 K and a pressure of 530 mTorr helium. The results indicate a moderate overall rate constant of (3.19 ± 0.39) × 10-10 cm3 s-1 (± 1σ) and an average branching fraction of 0.05 ± 0.04 for protonated trans-methyl formate and 0.95 ± 0.04 for the adduct ion. These experimental results are reinforced by ab initio calculations at the MP2(full)/aug-cc-pVTZ level of theory to examine the reaction coordinate and complement previous density functional theory calculations. This study underscores the need for continued observational studies of trans-methyl formate and for the exploration of other gas-phase formation routes to complex organic molecules.

  10. A GAS-PHASE FORMATION ROUTE TO INTERSTELLAR TRANS-METHYL FORMATE

    SciTech Connect

    Cole, Callie A.; Wehres, Nadine; Yang Zhibo; Thomsen, Ditte L.; Bierbaum, Veronica M.; Snow, Theodore P. E-mail: Nadine.Wehres@colorado.edu E-mail: Veronica.Bierbaum@colorado.edu E-mail: dlt@chem.ku.dk

    2012-07-20

    The abundance of methyl formate in the interstellar medium has previously been underpredicted by chemical models. Additionally, grain surface chemistry cannot account for the relative abundance of the cis- and trans-conformers of methyl formate, and the trans-conformer is not even formed at detectable abundance on these surfaces. This highlights the importance of studying formation pathways to methyl formate in the gas phase. The rate constant and branching fractions are reported for the gas-phase reaction between protonated methanol and formic acid to form protonated trans-methyl formate and water as well as adduct ion: Rate constants were experimentally determined using a flowing afterglow-selected ion flow tube apparatus at 300 K and a pressure of 530 mTorr helium. The results indicate a moderate overall rate constant of (3.19 {+-} 0.39) Multiplication-Sign 10{sup -10} cm{sup 3} s{sup -1} ({+-} 1{sigma}) and an average branching fraction of 0.05 {+-} 0.04 for protonated trans-methyl formate and 0.95 {+-} 0.04 for the adduct ion. These experimental results are reinforced by ab initio calculations at the MP2(full)/aug-cc-pVTZ level of theory to examine the reaction coordinate and complement previous density functional theory calculations. This study underscores the need for continued observational studies of trans-methyl formate and for the exploration of other gas-phase formation routes to complex organic molecules.

  11. The Mechanics of Pseudotachylite Formation in Impacts

    NASA Astrophysics Data System (ADS)

    Melosh, H. J.

    2003-12-01

    Geologist James Shand first recognized pseudotachylites near the Vredefort structure in 1916. They appear to be black, glassy veins that often contain broken fragments of country rock. The veins range from millimeters thick to masses many meters in extent. Since this discovery they have puzzled several generations of geologists. Pseudotachylites are evidently due to rapid melting of rock in place and seem to be associated with environments, such as faulting, landslides and impacts, where rock is put into rapid motion. I examine the basic constraints controlling the formation of pseudotachylites in the rapidly sheared rocks in the vicinity of a large meteorite impact. The prevailing opinion among many geologists is that pseudotachylites are formed by friction melting of rock. The principal mystery of pseudotachylite formation is not that friction can cause melting, but that it seems to form thick masses of it. Yet such thick masses ought to preclude melting by reducing the friction between sliding rock masses. I propose that a solution to this conundrum is that the melt produced by sliding on narrow shear zones is extruded into the adjacent country rock, thus keeping the sliding surfaces narrow while thick masses of melt accumulate in pockets opened by slip on faults oriented at large angles to the sliding plane.

  12. Mechanisms of coke formation and fouling in thermal cracking

    SciTech Connect

    Lott, R.K.; Rangwala, H.A.; Hsi, C.

    1995-12-31

    When heavy oil is cracked to produce distillate, coking of the reacting liquid is, in general, preceded by formation of a new, highly viscous liquid phase, rich in coke precursors. Results from pilot-scale experiments using feedstocks from Gudao (China) reported here show that inert-gas stripping of light distillates from the reacting liquid strongly inhibits coking and possibly the partition of precursors into the new phase. Heavy oil, rich in asphaltene, is often reported to have a high coking propensity. This paper provides experimental evidence to show that the asphaltene concentration is not the most critical factor in the coking propensity of heavy oil. Autoclave tests show that the liquid product could contain more than 40% of asphaltene, and yield only 60% of the coke produced by similar tests in which the liquid product contains less than 20% asphaltene. The solubility of asphaltene in the reaction liquid is the most crucial factor affecting coke yield. It controls the coking mechanisms and the fouling tendency of the resulting coke.

  13. Fluid Mechanics of Blood Clot Formation

    NASA Astrophysics Data System (ADS)

    Fogelson, Aaron L.; Neeves, Keith B.

    2015-01-01

    Intravascular blood clots form in an environment in which hydrodynamic forces dominate and in which fluid-mediated transport is the primary means of moving material. The clotting system has evolved to exploit fluid dynamic mechanisms and to overcome fluid dynamic challenges to ensure that clots that preserve vascular integrity can form over the wide range of flow conditions found in the circulation. Fluid-mediated interactions between the many large deformable red blood cells and the few small rigid platelets lead to high platelet concentrations near vessel walls where platelets contribute to clotting. Receptor-ligand pairs with diverse kinetic and mechanical characteristics work synergistically to arrest rapidly flowing cells on an injured vessel. Variations in hydrodynamic stresses switch on and off the function of key clotting polymers. Protein transport to, from, and within a developing clot determines whether and how fast it grows. We review ongoing experimental and modeling research to understand these and related phenomena.

  14. Fluid Mechanics of Blood Clot Formation

    PubMed Central

    Fogelson, Aaron L.; Neeves, Keith B.

    2015-01-01

    Intravascular blood clots form in an environment in which hydrodynamic forces dominate and in which fluid-mediated transport is the primary means of moving material. The clotting system has evolved to exploit fluid dynamic mechanisms and to overcome fluid dynamic challenges to ensure that clots that preserve vascular integrity can form over the wide range of flow conditions found in the circulation. Fluid-mediated interactions between the many large deformable red blood cells and the few small rigid platelets lead to high platelet concentrations near vessel walls where platelets contribute to clotting. Receptor-ligand pairs with diverse kinetic and mechanical characteristics work synergistically to arrest rapidly flowing cells on an injured vessel. Variations in hydrodynamic stresses switch on and off the function of key clotting polymers. Protein transport to, from, and within a developing clot determines whether and how fast it grows. We review ongoing experimental and modeling research to understand these and related phenomena. PMID:26236058

  15. Kinetic Study to Predict Sigma Phase Formation in Duplex Stainless Steels

    NASA Astrophysics Data System (ADS)

    dos Santos, Daniella Caluscio; Magnabosco, Rodrigo

    2016-04-01

    This work presents an improved kinetic study of sigma phase formation during isothermal aging between 973 K and 1223 K (700 °C and 950 °C), based on Kolmogorov-Johnson-Mehl-Avrami (K-J-M-A) model, established from volume fraction of sigma phase determined in backscattered electron images over polished surfaces of aged samples. The kinetic study shows a change in the main mechanism of sigma formation between 973 K and 1173 K (700 °C and 900 °C), from a nucleation-governed stage to a diffusion-controlled growth-coarsening stage, confirmed by a double inclination in K-J-M-A plots and microstructural observations. A single inclination in K-J-M-A plots was observed for the 1223 K (950 °C) aging temperature, showing that kinetic behavior in this temperature is only related to diffusion-controlled growth of sigma phase. The estimated activation energies for the nucleation of sigma phase are close to the molybdenum diffusion in ferrite, probably the controlling mechanism of sigma phase nucleation. The proposed time-temperature-transformation (TTT) diagram shows a "double c curve" configuration, probably associated to the presence of chi-phase formed between 973 K and 1073 K (700 °C and 800 °C), which acts as heterogeneous nuclei for sigma phase formation in low aging temperatures.

  16. The fluid mechanics of thrombus formation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Experimental data are presented for the growth of thrombi (blood clots) in a stagnation point flow of fresh blood. Thrombus shape, size and structure are shown to depend on local flow conditions. The evolution of a thrombus is described in terms of a physical model that includes platelet diffusion, a platelet aggregation mechanism, and diffusion and convection of the chemical species responsible for aggregation. Diffusion-controlled and convection-controlled regimes are defined by flow parameters and thrombus location, and the characteristic growth pattern in each regime is explained. Quantitative comparisons with an approximate theoretical model are presented, and a more general model is formulated.

  17. Indolicidin action on membrane permeability: carrier mechanism versus pore formation.

    PubMed

    Rokitskaya, Tatyana I; Kolodkin, Nikolay I; Kotova, Elena A; Antonenko, Yuri N

    2011-01-01

    Indolicidin, a 13-residue cationic peptide with extremely high tryptophan content, exhibits broad-spectrum antimicrobial as well as hemolytic activity. To gain insight into the mechanism of indolicidin action on membrane permeability, liposome leakage induced by this peptide was studied by using various probes with vesicles of different lipid compositions. In liposomes containing negatively charged lipids, indolicidin induced rather unselective permeabilization. By contrast, the peptide appeared to be selective in provoking leakage of neutral, egg phosphatidylcholine (PC) liposomes: it effectively induced the release of negatively charged fluorescent dyes, carboxyfluorescein (CF), calcein and sulforhodamine B, but was unable to induce the leakage of a neutral compound, glucose, and that of positively charged doxorubicin. Moreover, organic anions, such as fatty acids, were found to suppress the indolicidin-induced CF leakage of egg PC liposomes. Based on these results, we concluded that indolicidin facilitates the dye release from uncharged lipid vesicles not by formation of membrane pores as it is generally accepted for the majority of antimicrobial peptides but rather via translocation of dye molecules across the membrane in the form of dye-peptide complexes, i.e. indolicidin operates as an organic anion carrier. This conclusion was supported by observing the formation of complexes between indolicidin and pyrenebutyrate in solution. The indolicidin analog having only one arginine was ineffective in pyrenebutyrate binding and CF transport. The mode of action proposed here for indolicidin can be related to that previously postulated for oligoarginine derivatives which are able to carry organic anions across liposomal and bulk phase membranes [Sakai N. & Matile S. J. Am. Chem. Soc. 2003, 125:14348-14356]. The newly identified mechanism of peptide ionophoric activity in uncharged lipid membranes may be involved in hemolytic action of indolicidin via induction of

  18. The stable polyiodides: Experimental and theoretical studies of formation mechanism

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Xue, Yongqiang; Wang, Xueping; Cui, Zixiang; Wang, Leilei

    2014-09-01

    The structures of polyiodides have been extensively studied for long time, but it was rarely involved of the mechanism of polyiodide species formation in preparation. The tetraethylammonium polyiodides were chosen as model chemicals and prepared with different molar ratios of reactants in ethanol solvent, the products were analyzed by titration, Raman spectra and TGA/DTG/DSC analysis, with the increase of the molar ratios of reactants, the iodine contents of the products reached a constant value. Finally, only two stable structures, Et4NI3 (1, space group Cmca) and Et4NI7 (2, space group Cmca), were isolated by recrystallization of slow evaporating solvent(s). The thermal analysis of tetraethylammonium polyiodides showed that all tetraethylammonium polyiodides lost I2 together to become Et4NI3 firstly and then continue to decompose. The decomposition of Et4NI3 was not a simple process which Et4NI3 lost one iodine molecule and then became Et4NI. In addition, the thermodynamical properties of species (I2 and Et4NIx, x = 1, 3, 5, 7) and the molar standard Gibbs free energy changes of reactions (ΔrGmθ), as well as the mechanism of tetraethylammonium polyiodides formation were interpreted by density functional theory (DFT) calculations. The calculations show that the solvent effects have impact on the reactions. Accordingly, a comparative study was carried out on the solid phase synthesis of Et4NI5 at 80 °C and at molten state. Furthermore, the solid synthesis of Et4NI5 was characterized by variable temperature (-25 °C ∼ 150 °C) Raman Spectrometer. The polyiodide components interconversion showed the discrete I5- could be formed in molten state. In short, what species of polyiodides crystallized from reactions in solutions are decided by the synergy between ΔrGm of reactions and Coulombic interactions etc. of polyiodide crystals.

  19. Advective Mechanisms in Tree Island Formation

    NASA Astrophysics Data System (ADS)

    Stothoff, S.

    2002-05-01

    Tree islands are important landscape features in the Florida Everglades. Tres islands are formed of peat deposited on the shallow limestone bedrock, and have been stressed as the system has changed in response to anthropogenic activities due to the sensitivity of organic soils to hydrologic cycles. The plume shape aligned with flow direction for typical tree islands is characteristic of advective transport, despite the rather low flow velocities in the system. Hypothesized mechanisms for the plume shape include sediment transport downstream from the head of the island (often anchored by a bedrock rise), or nutrient transport downstream allowing plants to produce more sediments in situ. Understanding mechanisms controlling tree island shape will aid in understanding the response of tree islands to hydrologic management. An integrated system of field, laboratory, and modeling studies is underway, with the first effort aimed at bounding the importance of the simpler sediment transport processes before tackling more-complex nutrient transport processes. The numerical model integrating the field and laboratory efforts is a 3D finite volume model considering water flow in the shallow groundwater/surface-water system together with sediment transport. The model can account for variable vegetative resistance through the flow column, including the important case where a dense mat forms at the surface. Model components specific for this system and associated data requirements are presented.

  20. Causal mechanisms in airfoil-circulation formation

    NASA Astrophysics Data System (ADS)

    Zhu, J. Y.; Liu, T. S.; Liu, L. Q.; Zou, S. F.; Wu, J. Z.

    2015-12-01

    In this paper, we trace the dynamic origin, rather than any kinematic interpretations, of lift in two-dimensional flow to the physical root of airfoil circulation. We show that the key causal process is the vorticity creation by tangent pressure gradient at the airfoil surface via no-slip condition, of which the theoretical basis has been given by Lighthill ["Introduction: Boundary layer theory," in Laminar Boundary Layers, edited by L. Rosenhead (Clarendon Press, 1963), pp. 46-113], which we further elaborate. This mechanism can be clearly revealed in terms of vorticity formulation but is hidden in conventional momentum formulation, and hence has long been missing in the history of one's efforts to understand lift. By a careful numerical simulation of the flow around a NACA-0012 airfoil, and using both Eulerian and Lagrangian descriptions, we illustrate the detailed transient process by which the airfoil gains its circulation and demonstrate the dominating role of relevant dynamical causal mechanisms at the boundary. In so doing, we find that the various statements for the establishment of Kutta condition in steady inviscid flow actually correspond to a sequence of events in unsteady viscous flow.

  1. Stalk Phase Formation: Effects of Dehydration and Saddle Splay Modulus

    PubMed Central

    Kozlovsky, Yonathan; Efrat, Avishay; Siegel, David A.; Kozlov, Michael M.

    2004-01-01

    One of the earliest lipid intermediates forming in the course of membrane fusion is the lipid stalk. Although many aspects of the stalk hypothesis were elaborated theoretically and confirmed by experiments it remained unresolved whether stalk formation is always an energy consuming process or if there are conditions where the stalks are energetically favorable and form spontaneously resulting in an equilibrium stalk phase. Motivated by a recent breakthrough experiments we analyze the physical factors determining the spontaneous stalk formation. We show that this process can be driven by interplay between two factors: the elastic energy of lipid monolayers including a contribution of the saddle splay deformation and the energy of hydration repulsion acting between apposing membranes. We analyze the dependence of stalk formation on the saddle splay (Gaussian) modulus of the lipid monolayers and estimate the values of this modulus based on the experimentally established phase boundary between the lamellar and the stalk phases. We suggest that fusion proteins can induce stalk formation just by bringing the membranes into close contact, and accumulating, at least locally, a sufficiently large energy of the hydration repulsion. PMID:15454446

  2. Simulating the Phases of the Moon Shortly After Its Formation

    NASA Astrophysics Data System (ADS)

    Noordeh, Emil; Hall, Patrick; Cuk, Matija

    2014-04-01

    The leading theory for the origin of the Moon is the giant impact hypothesis, in which the Moon was formed out of the debris left over from the collision of a Marssized body with the Earth. Soon after its formation, the orbit of the Moon may have been very different than it is today. We have simulated the phases of the Moon in a model for its formation wherein the Moon develops a highly elliptical orbit with its major axis tangential to the Earth's orbit. This note describes these simulations and their pedagogical value.

  3. Dynamic phases, pinning, and pattern formation for driven dislocation assemblies

    SciTech Connect

    Zhou, Caizhi; Reichhardt, Charles; Olson Reichhardt, Cynthia J.; Beyerlein, Irene J.

    2015-01-23

    We examine driven dislocation assemblies and show that they can exhibit a set of dynamical phases remarkably similar to those of driven systems with quenched disorder such as vortices in superconductors, magnetic domain walls, and charge density wave materials. These phases include pinned-jammed, fluctuating, and dynamically ordered states, and each produces distinct dislocation patterns as well as specific features in the noise fluctuations and transport properties. Lastly, our work suggests that many of the results established for systems with quenched disorder undergoing plastic depinning transitions can be applied to dislocation systems, providing a new approach for understanding pattern formation and dynamics in these systems.

  4. Dynamic phases, pinning, and pattern formation for driven dislocation assemblies

    DOE PAGESBeta

    Zhou, Caizhi; Reichhardt, Charles; Olson Reichhardt, Cynthia J.; Beyerlein, Irene J.

    2015-01-23

    We examine driven dislocation assemblies and show that they can exhibit a set of dynamical phases remarkably similar to those of driven systems with quenched disorder such as vortices in superconductors, magnetic domain walls, and charge density wave materials. These phases include pinned-jammed, fluctuating, and dynamically ordered states, and each produces distinct dislocation patterns as well as specific features in the noise fluctuations and transport properties. Lastly, our work suggests that many of the results established for systems with quenched disorder undergoing plastic depinning transitions can be applied to dislocation systems, providing a new approach for understanding pattern formation andmore » dynamics in these systems.« less

  5. Dynamic Phases, Pinning, and Pattern Formation for Driven Dislocation Assemblies

    PubMed Central

    Zhou, Caizhi; Reichhardt, Charles; Olson Reichhardt, Cynthia J.; Beyerlein, Irene J.

    2015-01-01

    We examine driven dislocation assemblies and show that they can exhibit a set of dynamical phases remarkably similar to those of driven systems with quenched disorder such as vortices in superconductors, magnetic domain walls, and charge density wave materials. These phases include pinned-jammed, fluctuating, and dynamically ordered states, and each produces distinct dislocation patterns as well as specific features in the noise fluctuations and transport properties. Our work suggests that many of the results established for systems with quenched disorder undergoing plastic depinning transitions can be applied to dislocation systems, providing a new approach for understanding pattern formation and dynamics in these systems. PMID:25613839

  6. Dynamic Phases, Pinning, and Pattern Formation for Driven Dislocation Assemblies

    NASA Astrophysics Data System (ADS)

    Zhou, Caizhi; Reichhardt, Charles; Olson Reichhardt, Cynthia J.; Beyerlein, Irene J.

    2015-01-01

    We examine driven dislocation assemblies and show that they can exhibit a set of dynamical phases remarkably similar to those of driven systems with quenched disorder such as vortices in superconductors, magnetic domain walls, and charge density wave materials. These phases include pinned-jammed, fluctuating, and dynamically ordered states, and each produces distinct dislocation patterns as well as specific features in the noise fluctuations and transport properties. Our work suggests that many of the results established for systems with quenched disorder undergoing plastic depinning transitions can be applied to dislocation systems, providing a new approach for understanding pattern formation and dynamics in these systems.

  7. Physiological and molecular biochemical mechanisms of bile formation

    PubMed Central

    Reshetnyak, Vasiliy Ivanovich

    2013-01-01

    This review considers the physiological and molecular biochemical mechanisms of bile formation. The composition of bile and structure of a bile canaliculus, biosynthesis and conjugation of bile acids, bile phospholipids, formation of bile micellar structures, and enterohepatic circulation of bile acids are described. In general, the review focuses on the molecular physiology of the transporting systems of the hepatocyte sinusoidal and apical membranes. Knowledge of physiological and biochemical basis of bile formation has implications for understanding the mechanisms of development of pathological processes, associated with diseases of the liver and biliary tract. PMID:24259965

  8. Solid-state graphene formation via a nickel carbide intermediate phase [Nickel carbide (Ni3C) as an intermediate phase for graphene formation

    SciTech Connect

    Xiong, W; Zhou, Yunshen; Hou, Wenjia; Guillemet, Thomas; Silvain, Jean-François; Lahaye, Michel; Lebraud, Eric; Xu, Shen; Wang, Xinwei; Cullen, David A; More, Karren Leslie; Lu, Yong Feng

    2015-01-01

    Direct formation of graphene with controlled number of graphitic layers on dielectric surfaces is highly desired for practical applications. Despite significant progress achieved in understanding the formation of graphene on metallic surfaces through chemical vapor deposition (CVD) of hydrocarbons, very limited research is available elucidating the graphene formation process via rapid thermal processing (RTP) of solid-state amorphous carbon, through which graphene is formed directly on dielectric surfaces accompanied by autonomous nickel evaporation. It is suggested that a metastable hexagonal nickel carbide (Ni3C) intermediate phase plays a critical role in transforming amorphous carbon to 2D crystalline graphene and contributing to the autonomous Ni evaporation. Temperature resolved carbon and nickel evolution in the RTP process is investigated using Auger electron spectroscopic (AES) depth profiling and glancing-angle X-ray diffraction (GAXRD). Formation, migration and decomposition of the hexagonal Ni3C are confirmed to be responsible for the formation of graphene and the evaporation of Ni at 1100 °C. The Ni3C-assisted graphene formation mechanism expands the understanding of Ni-catalyzed graphene formation, and provides insightful guidance for controlled growth of graphene through the solid-state transformation process.

  9. Solid-state graphene formation via a nickel carbide intermediate phase [Nickel carbide (Ni3C) as an intermediate phase for graphene formation

    DOE PAGESBeta

    Xiong, W; Zhou, Yunshen; Hou, Wenjia; Guillemet, Thomas; Silvain, Jean-François; Lahaye, Michel; Lebraud, Eric; Xu, Shen; Wang, Xinwei; Cullen, David A; et al

    2015-01-01

    Direct formation of graphene with controlled number of graphitic layers on dielectric surfaces is highly desired for practical applications. Despite significant progress achieved in understanding the formation of graphene on metallic surfaces through chemical vapor deposition (CVD) of hydrocarbons, very limited research is available elucidating the graphene formation process via rapid thermal processing (RTP) of solid-state amorphous carbon, through which graphene is formed directly on dielectric surfaces accompanied by autonomous nickel evaporation. It is suggested that a metastable hexagonal nickel carbide (Ni3C) intermediate phase plays a critical role in transforming amorphous carbon to 2D crystalline graphene and contributing to themore » autonomous Ni evaporation. Temperature resolved carbon and nickel evolution in the RTP process is investigated using Auger electron spectroscopic (AES) depth profiling and glancing-angle X-ray diffraction (GAXRD). Formation, migration and decomposition of the hexagonal Ni3C are confirmed to be responsible for the formation of graphene and the evaporation of Ni at 1100 °C. The Ni3C-assisted graphene formation mechanism expands the understanding of Ni-catalyzed graphene formation, and provides insightful guidance for controlled growth of graphene through the solid-state transformation process.« less

  10. A FIB induced boiling mechanism for rapid nanopore formation.

    PubMed

    Das, K; Freund, J B; Johnson, H T

    2014-01-24

    Focused ion beam (FIB) technology is widely used to fabricate nanopores in solid-state membranes. These nanopores have desirable thermomechanical properties for applications such as high-throughput DNA sequencing. Using large scale molecular dynamics simulations of the FIB nanopore formation process, we show that there is a threshold ion delivery rate above which the mechanism underlying nanopore formation changes. At low rates nanopore formation is slow, with the rate proportional to the ion flux and therefore limited by the sputter rate of the target material. However, at higher fluxes nanopores form via a thermally dominated process, consistent with an explosive boiling mechanism. In this case, mass is rapidly rearranged via bubble growth and coalescence, much more quickly than would occur during sputtering. This mechanism has the potential to greatly speed up nanopore formation. PMID:24356374

  11. A FIB induced boiling mechanism for rapid nanopore formation

    PubMed Central

    Das, K; Freund, J B; Johnson, H T

    2015-01-01

    Focused ion beam (FIB) technology is widely used to fabricate nanopores in solid-state membranes. These nanopores have desirable thermomechanical properties for applications such as high-throughput DNA sequencing. Using large scale molecular dynamics simulations of the FIB nanopore formation process, we show that there is a threshold ion delivery rate above which the mechanism underlying nanopore formation changes. At low rates nanopore formation is slow, with the rate proportional to the ion flux and therefore limited by the sputter rate of the target material. However, at higher fluxes nanopores form via a thermally dominated process, consistent with an explosive boiling mechanism. In this case, mass is rapidly rearranged via bubble growth and coalescence, much more quickly than would occur during sputtering. This mechanism has the potential to greatly speed up nanopore formation. PMID:24356374

  12. Formation of vortex loops (strings) in continuous phase transitions.

    PubMed

    Bowick, Mark J; Cacciuto, Angelo; Travesset, Alex

    2002-02-01

    The formation of vortex loops (global cosmic strings) in an O(2) linear sigma model in three spatial dimensions is analyzed numerically. For over-damped Langevin dynamics we find that defect production is suppressed by an interaction between correlated domains that reduces the effective spatial variation of the phase of the order field. The degree of suppression is sensitive to the quench rate. A detailed description of the numerical methods used to analyze the model is also reported. PMID:11863613

  13. Simulating the Phases of the Moon Shortly after Its Formation

    ERIC Educational Resources Information Center

    Noordeh, Emil; Hall, Patrick; Cuk, Matija

    2014-01-01

    The leading theory for the origin of the Moon is the giant impact hypothesis, in which the Moon was formed out of the debris left over from the collision of a Mars sized body with the Earth. Soon after its formation, the orbit of the Moon may have been very different than it is today. We have simulated the phases of the Moon in a model for its…

  14. Orientation-dependent mechanical behavior and phase transformation of mono-crystalline silicon

    NASA Astrophysics Data System (ADS)

    Sun, Jiapeng; Ma, Aibin; Jiang, Jinghua; Han, Jing; Han, Ying

    2016-03-01

    We perform a large-scale molecular dynamics simulation of nanoindentation on the (100), (110), and (111) oriented silicon surface to investigate the orientation-dependent mechanical behavior and phase transformation of monocrystalline silicon. The results show both the remarkable anisotropic mechanical behavior and structure phase transformation of monocrystalline silicon. The mechanical behavior of the (110) and (111) oriented surfaces are similar (has a high indentation modulus, low critical indentation depth for the onset of plastic deformation) but quite different from the (100) oriented surface. The mechanical behavior is carefully linked to the phase transformation. The formation of crystalline bct5 phase and β-Si phase is the fundamental phase transformation mechanism for (100) oriented surface. But, a large number of amorphous silicon can be found beneath the indenter for (110) and (111) oriented surface beside the bct5 phase and β-Si phase. The β-Si phase region is relatively small for (110) and (111) oriented surface, even cannot be detected for (111) oriented surface. This result highlights the dominating role of the amorphous transformation in the mechanical behavior of monocrystalline silicon. Additionally, our results indicate that the high pressure phases form a symmetrical, anisotropic pattern on the indented surface for all three oriented surface which is linked to the active {111}<110> slip systems.

  15. Mechanisms and Consequences of Macromolecular Phase Separation.

    PubMed

    Bergeron-Sandoval, Louis-Philippe; Safaee, Nozhat; Michnick, Stephen W

    2016-05-19

    Over a century ago, colloidal phase separation of matter into non-membranous bodies was recognized as a fundamental organizing principal of cell "protoplasm." Recent insights into the molecular properties of such phase-separated bodies present challenges to our understanding of cellular protein interaction networks, as well as opportunities for interpreting and understanding of native and pathological genetic and molecular interactions. Here, we briefly review examples of and discuss physical principles of phase-separated cellular bodies and then reflect on how knowledge of these principles may direct future research on their functions. PMID:27203111

  16. Impact of Gas-Phase Mechanisms on Weather Research Forecasting Model with Chemistry (WRF/Chem) Predictions: Mechanism Implementation and Comparative Evaluation

    EPA Science Inventory

    Gas-phase mechanisms provide important oxidant and gaseous precursors for secondary aerosol formation. Different gas-phase mechanisms may lead to different predictions of gases, aerosols, and aerosol direct and indirect effects. In this study, WRF/Chem-MADRID simulations are cond...

  17. The formation of topological defects in phase transitions

    NASA Technical Reports Server (NTRS)

    Hodges, Hardy M.

    1989-01-01

    It was argued, and fought through numerical work that the results of non-dynamical Monte Carlo computer simulations cannot be applied to describe the formation of topological defects when the correlation length at the Ginzburg temperature is significantly smaller than the horizon size. To test the current hypothesis that infinite strings at formation are essentially described by Brownian walks of size the correlation length at the Ginzburg temperature, fields at the Ginzburg temperature were equilibrated. Infinite structure do not exist in equilibrium for reasonable definitions of the Ginzburg temperature, and horizons must be included in a proper treatment. A phase transition, from small-scale to large-scale string or domain wall structure, is found to occur very close to the Ginzburg temperature, in agreement with recent work. The formation process of domain walls and global strings were investigated through the breaking of initially ordered states. To mimic conditions in the early Universe, cooling times are chosen so that horizons exist in the sample volume when topological structure formation occurs. The classical fields are evolved in real-time by the numerical solution of Langevin equations of motion on a three dimensional spatial lattice. The results indicate that it is possible for most of the string energy to be in small loops, rather than in long strings, at formation.

  18. Role of Nucleation and Growth in Two-Phase Microstructure Formation

    SciTech Connect

    Jong Ho Shin

    2008-05-01

    During the directional solidification of peritectic alloys, a rich variety of two-phase microstructures develop, and the selection process of a specific microstructure is complicated due to the following two considerations. (1) In contrast to many single phase and eutectic microstructures that grow under steady state conditions, two-phase microstructures in a peritectic system often evolve under non-steady-state conditions that can lead to oscillatory microstructures, and (2) the microstructure is often governed by both the nucleation and the competitive growth of the two phases in which repeated nucleation can occur due to the change in the local conditions during growth. In this research, experimental studies in the Sn-Cd system were designed to isolate the effects of nucleation and competitive growth on the dynamics of complex microstructure formation. Experiments were carried out in capillary samples to obtain diffusive growth conditions so that the results can be analyzed quantitatively. At high thermal gradient and low velocity, oscillatory microstructures were observed in which repeated nucleation of the two phases was observed at the wall-solid-liquid junction. Quantitative measurements of nucleation undercooling were obtained for both the primary and the peritectic phase nucleation, and three different ampoule materials were used to examine the effect of different contact angles at the wall on nucleation undercooling. Nucleation undercooling for each phase was found to be very small, and the experimental undercooling values were orders of magnitude smaller than that predicted by the classical theory of nucleation. A new nucleation mechanism is proposed in which the clusters of atoms at the wall ahead of the interface can become a critical nucleus when the cluster encounters the triple junction. Once the nucleation of a new phase occurs, the microstructure is found to be controlled by the relative growth of the two phases that give rise to different

  19. Mechanism of vacancy formation induced by hydrogen in tungsten

    SciTech Connect

    Liu, Yi-Nan; Ahlgren, T.; Bukonte, L.; Nordlund, K.; Shu, Xiaolin; Yu, Yi; Lu, Guang-Hong; Li, Xiao-Chun

    2013-12-15

    We report a hydrogen induced vacancy formation mechanism in tungsten based on classical molecular dynamics simulations. We demonstrate the vacancy formation in tungsten due to the presence of hydrogen associated directly with a stable hexagonal self-interstitial cluster as well as a linear crowdion. The stability of different self-interstitial structures has been further studied and it is particularly shown that hydrogen plays a crucial role in determining the configuration of SIAs, in which the hexagonal cluster structure is preferred. Energetic analysis has been carried out to prove that the formation of SIA clusters facilitates the formation of vacancies. Such a mechanism contributes to the understanding of the early stage of the hydrogen blistering in tungsten under a fusion reactor environment.

  20. Collisionless Weibel shocks: Full formation mechanism and timing

    SciTech Connect

    Bret, A.; Stockem, A.; Narayan, R.; Silva, L. O.

    2014-07-15

    Collisionless shocks in plasmas play an important role in space physics (Earth's bow shock) and astrophysics (supernova remnants, relativistic jets, gamma-ray bursts, high energy cosmic rays). While the formation of a fluid shock through the steepening of a large amplitude sound wave has been understood for long, there is currently no detailed picture of the mechanism responsible for the formation of a collisionless shock. We unravel the physical mechanism at work and show that an electromagnetic Weibel shock always forms when two relativistic collisionless, initially unmagnetized, plasma shells encounter. The predicted shock formation time is in good agreement with 2D and 3D particle-in-cell simulations of counterstreaming pair plasmas. By predicting the shock formation time, experimental setups aiming at producing such shocks can be optimised to favourable conditions.

  1. Formation mechanism of robust silver nanoparticle film with superhydrophobicity

    NASA Astrophysics Data System (ADS)

    Guo, Zhiguang; Liu, Weimin

    2010-12-01

    The promising formation mechanism of Ag nanoparticles on a Si wafer displaying superhydrophobicity, generated by means of a facile in situ galvanic cell route, is discussed. The results showed that the promising formation of Ag nanoparticles is based on a microelectrochemical redox reaction in which both the anodic process and the cathodic process occur simultaneously on the silicon substrate surface. This discovery could be of great importance in the design of other metal/semiconductor systems.

  2. Energy phase shift as mechanism for catalysis

    NASA Astrophysics Data System (ADS)

    Beke-Somfai, Tamás; Feng, Bobo; Nordén, Bengt

    2012-05-01

    Catalysts are agents that by binding reactant molecules lower the energy barriers to chemical reaction. After reaction the catalyst is regenerated, its unbinding energy recruited from the environment, which is associated with an inevitable loss of energy. We show that combining several catalytic sites to become energetically and temporally phase-shifted relative to each other provides a possibility to sustain the overall reaction by internal 'energy recycling', bypassing the need for thermal activation, and in principle allowing the system to work adiabatically. Using an analytical model for superimposed, phase-shifted potentials of F1-ATP synthase provides a description integrating main characteristics of this rotary enzyme complex.

  3. Closure of supporting cell scar formations requires dynamic actin mechanisms.

    PubMed

    Hordichok, Andrew J; Steyger, Peter S

    2007-10-01

    In many vertebrate inner ear sensory epithelia, dying sensory hair cells are extruded, and the apices of surrounding supporting cells converge to re-seal the epithelial barrier between the electrochemically-distinct endolymph and perilymph. These cellular mechanisms remain poorly understood. Dynamic microtubular mechanisms have been proposed for hair cell extrusion; while contractile actomyosin-based mechanisms are required for cellular extrusion and closure in epithelial monolayers. The hypothesis that cytoskeletal mechanisms are required for hair cell extrusion and supporting cell scar formation was tested using bullfrog saccules incubated with gentamicin (6h), and allowed to recover (18h). Explants were then fixed, labeled for actin and cytokeratins, and viewed with confocal microscopy. To block dynamic cytoskeletal processes, disruption agents for microtubules (colchicine, paclitaxel) myosin (Y-27632, ML-9) or actin (cytochalasin D, latrunculin A) were added during treatment and recovery. Microtubule disruption agents had no effect on hair cell extrusion or supporting cell scar formation. Myosin disruption agents appeared to slow down scar formation but not hair cell extrusion. Actin disruption agents blocked scar formation, and largely prevented hair cell extrusion. These data suggest that actin-based cytoskeletal processes are required for hair cell extrusion and supporting cell scar formation in bullfrog saccules. PMID:17716843

  4. Domain wall formation in late-time phase transitions

    NASA Technical Reports Server (NTRS)

    Kolb, Edward W.; Wang, Yun

    1992-01-01

    We examine domain wall formulation in late time phase transitions. We find that in the invisible axion domain wall phenomenon, thermal effects alone are insufficient to drive different parts of the disconnected vacuum manifold. This suggests that domain walls do not form unless either there is some supplemental (but perhaps not unreasonable) dynamics to localize the scalar field responsible for the phase transition to the low temperature maximum (to an extraordinary precision) before the onset of the phase transition, or there is some non-thermal mechanism to produce large fluctuations in the scalar field. The fact that domain wall production is not a robust prediction of late time transitions may suggest future directions in model building.

  5. Relative Navigation Algorithms for Phase 1 of the MMS Formation

    NASA Technical Reports Server (NTRS)

    Kelbel, David; Lee, Taesul; Long, Anne; Carpenter, Russell; Gramling, Cheryl

    2003-01-01

    This paper evaluates several navigation approaches for the first phase of the Magnetospheric Multiscale (MMS) mission, which consists of a tetrahedral formation of four satellites in highly eccentric Earth orbits of approximately 1.2 by 12 Earth radii at an inclination of 10 degrees. The inter-satellite separation is approximately 10 kilometers near apogees. Navigation approaches were studied using ground station m g e =d two-way Doppler measurements, Global Positioning System (GPS) pseudorange measurements, crosslink range measurements among the members flying in formation, and various combinations of these measurement types. An absolute position accuracy of 10 kilometers or better can be achieved with most of the approaches studied and a relative position accuracy of 100 meters or better can be achieved at apogee in some cases. Among the various approaches studied, the approaches that use a combination of GPS and crosslink measurements were found to be more reliable in terms of absolute and relative navigation accuracies and operational flexibility.

  6. Formation energy in σ-phase Fe-V alloys

    NASA Astrophysics Data System (ADS)

    Cieslak, J.; Tobola, J.; Dubiel, S. M.

    2013-09-01

    Formation energy of the σ-phase in the Fe-V alloy system, ΔE, was computed in the full compositional range of its occurrence (˜34≤x≤˜60) using the electronic band structure calculations by means of the KKR method. ΔE-values were found to strongly depend on the Fe concentration, also its variation with different site occupancies was characteristic of a given lattice site. Calculated magnetic, Smagn, and configuration, Sconf, entropy contributions were used to determine sublattice occupancies for various compositions and temperatures. The results agree well with those obtained from neutron diffraction measurements.

  7. Ethanol formation mechanism from CO + H/sub 2/

    SciTech Connect

    Takeuchi, A.; Katzer, J.R.

    1982-06-24

    The mechanism of ethanol formation from CO + H/sub 2/ was studied by the isotopic tracer method. Enol condensation and CO insertion into surface-bound CH/sub 3/ does not explain the isotopic composition of the ethanol product. A substitute mechanism involving CO insertion into an adsorbed carbene followed by isotopic scrambling in the adsorbed intermediate is proposed. 1 figure, 3 tables.

  8. Gas-phase formation of silicon carbides, oxides, and sulphides from atomic silicon ions

    NASA Technical Reports Server (NTRS)

    Bohme, Diethard K.; Wlodek, Stanislaw; Fox, Arnold

    1989-01-01

    A systematic experimental study of the kinetics and mechanisms of the chemical reactions in the gas phase between ground-state Si(+)2p and a variety of astrophysical molecules. The aim of this study is to identify the reactions which trigger the formation of chemical bonds between silicon and carbon, oxygen and sulphur, and the chemical pathways which lead to further molecular growth. Such knowledge is valuable in the identification of new extraterrestrial silicon-bearing molecules and for an assessment of the gas-phase transition from atomic silicon to silicon carbide and silicate grain particles in carbon-rich and oxygen-rich astrophysical environments.

  9. PRISMA—A formation flying project in implementation phase

    NASA Astrophysics Data System (ADS)

    Persson, Staffan; Veldman, Sytze; Bodin, Per

    2009-11-01

    The PRISMA project for autonomous formation flying and rendezvous has passed its critical design review in February-March 2007. The project comprises two satellites which are an in-orbit testbed for Guidance, Navigation and Control (GNC) algorithms and sensors for advanced formation flying and rendezvous. Several experiments involving GNC algorithms, sensors and thrusters will be performed during a 10 month mission with launch planned for the second half of 2009. The project is run by the Swedish Space Corporation (SSC) in close cooperation with the German Aerospace Center (DLR), the French Space Agency (CNES) and the Technical University of Denmark (DTU). Additionally, the project also will demonstrate flight worthiness of two novel motor technologies: one that uses environmentally clean and non-hazardous propellant, and one that consists of a microthruster system based on MEMS technology. The project will demonstrate autonomous formation flying and rendezvous based on several sensors—GPS, RF-based and vision based—with different objectives and in different combinations. The GPS-based onboard navigation system, contributed by DLR, offers relative orbit information in real-time in decimetre range. The RF-based navigation instrument intended for DARWIN, under CNES development, will be tested for the first time on PRISMA, both for instrument performance, but also in closed loop as main sensor for formation flying. Several rendezvous and proximity manoeuvre experiments will be demonstrated using only vision based sensor information coming from the modified star camera provided by DTU. Semi-autonomous operations ranging from 200 km to 1 m separation between the satellites will be demonstrated. With the project now in the verification phase particular attention is given to the specific formation flying and rendezvous functionality on instrument, GNC-software and system level.

  10. Droplets formation and merging in two-phase flow microfluidics.

    PubMed

    Gu, Hao; Duits, Michel H G; Mugele, Frieder

    2011-01-01

    Two-phase flow microfluidics is emerging as a popular technology for a wide range of applications involving high throughput such as encapsulation, chemical synthesis and biochemical assays. Within this platform, the formation and merging of droplets inside an immiscible carrier fluid are two key procedures: (i) the emulsification step should lead to a very well controlled drop size (distribution); and (ii) the use of droplet as micro-reactors requires a reliable merging. A novel trend within this field is the use of additional active means of control besides the commonly used hydrodynamic manipulation. Electric fields are especially suitable for this, due to quantitative control over the amplitude and time dependence of the signals, and the flexibility in designing micro-electrode geometries. With this, the formation and merging of droplets can be achieved on-demand and with high precision. In this review on two-phase flow microfluidics, particular emphasis is given on these aspects. Also recent innovations in microfabrication technologies used for this purpose will be discussed. PMID:21731459

  11. Droplets Formation and Merging in Two-Phase Flow Microfluidics

    PubMed Central

    Gu, Hao; Duits, Michel H. G.; Mugele, Frieder

    2011-01-01

    Two-phase flow microfluidics is emerging as a popular technology for a wide range of applications involving high throughput such as encapsulation, chemical synthesis and biochemical assays. Within this platform, the formation and merging of droplets inside an immiscible carrier fluid are two key procedures: (i) the emulsification step should lead to a very well controlled drop size (distribution); and (ii) the use of droplet as micro-reactors requires a reliable merging. A novel trend within this field is the use of additional active means of control besides the commonly used hydrodynamic manipulation. Electric fields are especially suitable for this, due to quantitative control over the amplitude and time dependence of the signals, and the flexibility in designing micro-electrode geometries. With this, the formation and merging of droplets can be achieved on-demand and with high precision. In this review on two-phase flow microfluidics, particular emphasis is given on these aspects. Also recent innovations in microfabrication technologies used for this purpose will be discussed. PMID:21731459

  12. A novel mechanical model for phase-separation in debris flows

    NASA Astrophysics Data System (ADS)

    Pudasaini, Shiva P.

    2015-04-01

    Understanding the physics of phase-separation between solid and fluid phases as a two-phase mass moves down slope is a long-standing challenge. Here, I propose a fundamentally new mechanism, called 'separation-flux', that leads to strong phase-separation in avalanche and debris flows. This new model extends the general two-phase debris flow model (Pudasaini, 2012) to include a separation-flux mechanism. The new flux separation mechanism is capable of describing and controlling the dynamically evolving phase-separation, segregation, and/or levee formation in a real two-phase, geometrically three-dimensional debris flow motion and deposition. These are often observed phenomena in natural debris flows and industrial processes that involve the transportation of particulate solid-fluid mixture material. The novel separation-flux model includes several dominant physical and mechanical aspects that result in strong phase-separation (segregation). These include pressure gradients, volume fractions of solid and fluid phases and their gradients, shear-rates, flow depth, material friction, viscosity, material densities, boundary structures, gravity and topographic constraints, grain shape, size, etc. Due to the inherent separation mechanism, as the mass moves down slope, more and more solid particles are brought to the front, resulting in a solid-rich and mechanically strong frontal surge head followed by a weak tail largely consisting of the viscous fluid. The primary frontal surge head followed by secondary surge is the consequence of the phase-separation. Such typical and dominant phase-separation phenomena are revealed here for the first time in real two-phase debris flow modeling and simulations. However, these phenomena may depend on the bulk material composition and the applied forces. Reference: Pudasaini, Shiva P. (2012): A general two-phase debris flow model. J. Geophys. Res., 117, F03010, doi: 10.1029/2011JF002186.

  13. Molecular Mechanisms of Floral Boundary Formation in Arabidopsis

    PubMed Central

    Yu, Hongyang; Huang, Tengbo

    2016-01-01

    Boundary formation is a crucial developmental process in plant organogenesis. Boundaries separate cells with distinct identities and act as organizing centers to control the development of adjacent organs. In flower development, initiation of floral primordia requires the formation of the meristem-to-organ (M–O) boundaries and floral organ development depends on the establishment of organ-to-organ (O–O) boundaries. Studies in this field have revealed a suite of genes and regulatory pathways controlling floral boundary formation. Many of these genes are transcription factors that interact with phytohormone pathways. This review will focus on the functions and interactions of the genes that play important roles in the floral boundaries and discuss the molecular mechanisms that integrate these regulatory pathways to control the floral boundary formation. PMID:26950117

  14. Mechanics of metals with phase changes

    NASA Astrophysics Data System (ADS)

    Lashley, Jason C.

    New experimental data is presented on some exotic metals that exhibit phase changes at cryogenic temperatures. The types of phase changes that were detected in the specific heat data range from martensitic (diffusionless) transitions to superconducting transitions. In addition, the charge density wave (CDW) state in uranium metal was detected in the specific heat. Specific-heat measurements were made in zero-magnetic field using an apparatus capable of obtaining temperatures as low as 0.4 K. Calibration performed on this apparatus, using a single-crystal copper sample, show its accuracy to be 0.50 per cent, while the resolution was better than 0.1 per cent. Our measurements demonstrate that similar high precision and accurate specific-heat measurements can be obtained on milligram-scale samples. In Chapters 2 and 3, specific-heat measurements are presented for the B2 (CsCl structure) alloy AuZn and for alpha-uranium (orthorhombic symmetry). The AuZn alloy exhibits a continuous transition at 64.75 K and an entropy of transition of (DeltaStr ) 2.02 J K-1 mol-1. Calculation of the Debye temperature, by extrapolating of the high temperature phase elastic constants to T = 0 K yields a value of 207 K (+/-2 K), in favorable agreement with the calorimetric value of 219 K (+/-0.50 K), despite the intervening martensitic transition. Reported results for single-crystal alpha-U show a low-temperature limiting 19, of 256 K (+/-0.50 K) and four low-temperature anamolies: a superconducting transition below 1 K, an electronic transition at 22 K, and two anamolies at 38 K and at 42 K indicative of the CDW state. In order to continue the study of the actinide series of elements, a program was initiated to first purify and then grow single crystals of plutonium. Accordingly, the focus of Chapters 4 through 6 will be a description of plutonium sample preparation. In this program plutonium metal was purified via zone refining, using a levitated molten zone to minimize the introduction

  15. The Theory of Evaluation with an Emphasis on the Formative Phase.

    ERIC Educational Resources Information Center

    Holleman, I. Thomas, Jr.

    An overview of educational evaluation theory in general, and its formative phase in specific, is presented. Educational evaluation is defined as are its formative and summative phases and its classifications of external and internal evaluation. Each phase and classification are discussed largely in the context of formative evaluation. In addition,…

  16. Fibril Formation and Phase Separation in Aqueous Cellulose Ethers

    NASA Astrophysics Data System (ADS)

    Maxwell, Amanda; Schmidt, Peter; McAllister, John; Lott, Joseph; Bates, Frank; Lodge, Timothy

    Aqueous solutions of many cellulose ethers are known to undergo thermoreversible gelation and phase separation upon heating to form turbid hydrogels, but the mechanism and resulting structures have not been well understood. Turbidity, light scattering and small-angle neutron scattering (SANS) are used to show that hydroxypropyl methylcellulose (HPMC) chains are dissolved in water below 50 °C and undergo phase separation at higher temperatures. At 70 °C, at sufficiently high concentrations in water, HPMC orders into fibrillar structures with a well-defined radius of 18 +/- 2 nm, as characterized by cryogenic transmission electron microscopy and SANS. The HPMC fibril structure is independent of concentration and heating rate. However, HPMC fibrils do not form a percolating network as readily as is seen in methylcellulose, resulting in a lower hot-gel modulus, as demonstrated by rheology.

  17. A directional nucleation-zipping mechanism for triple helix formation

    PubMed Central

    Alberti, Patrizia; Arimondo, Paola B.; Mergny, Jean-Louis; Garestier, Thérèse; Hélène, Claude; Sun, Jian-Sheng

    2002-01-01

    A detailed kinetic study of triple helix formation was performed by surface plasmon resonance. Three systems were investigated involving 15mer pyrimidine oligonucleotides as third strands. Rate constants and activation energies were validated by comparison with thermodynamic values calculated from UV-melting analysis. Replacement of a T·A base pair by a C·G pair at either the 5′ or the 3′ end of the target sequence allowed us to assess mismatch effects and to delineate the mechanism of triple helix formation. Our data show that the association rate constant is governed by the sequence of base triplets on the 5′ side of the triplex (referred to as the 5′ side of the target oligopurine strand) and provides evidence that the reaction pathway for triple helix formation in the pyrimidine motif proceeds from the 5′ end to the 3′ end of the triplex according to the nucleation-zipping model. It seems that this is a general feature for all triple helices formation, probably due to the right-handedness of the DNA double helix that provides a stronger base stacking at the 5′ than at the 3′ duplex–triplex junction. Understanding the mechanism of triple helix formation is not only of fundamental interest, but may also help in designing better triple helix-forming oligonucleotides for gene targeting and control of gene expression. PMID:12490709

  18. Mechanics of Metals with Phase Changes

    SciTech Connect

    Lashley, J.C.

    2001-01-01

    New experimental data is presented on some exotic metals that exhibit phase changes at cryogenic temperatures. The types of phase changes that were detected in the specific heat data range from martensitic (diffusion less) transitions to superconducting transitions. In addition, the charge density wave (CDW) state in uranium metal was detected in the specific heat. Specific-heat measurements were made in zero-magnetic field using an apparatus capable of obtaining temperatures as low as 0.4 K. Calibration performed on this apparatus, using a single-crystal copper sample, show its accuracy to be 0.50%, while the resolution was better than 0.1%. Our measurements demonstrate that similar high precision and accurate specific-heat measurements can be obtained on milligram-scale samples. In Chapters 2 and 3, specific-heat measurements are presented for the B2 (CsCl structure) alloy AuZn and for {alpha}-uranium (orthorhombic symmetry). The AuZn alloy exhibits a continuous transition at 64.75 K and an entropy of transition of ({Delta}S{sub tr}) 2.02 J K{sup {minus}1} mol{sup {minus}1}. Calculation of the Debye temperature, by extrapolating of the high temperature phase elastic constants to T = 0 K yields a value of 207 K ({+-}2 K), in favorable agreement with the calorimetric value of 219 K ({+-}0.50 K), despite the intervening martensitic transition. Reported results for single-crystal {alpha}-U show a low-temperature limiting {Theta}{sub D} of 256 K ({+-}0.50 K) and four low-temperature anomalies: a superconducting transition below 1 K, an electronic transition at 22 K, and two anomalies at 38 K and at 42 K indicative of the CDW state. In order to continue the study of the actinide series of elements, a program was initiated to first purify and then grow single crystals of plutonium. Accordingly, the focus of Chapters 4 through 6 will be a description of plutonium sample preparation. In this program plutonium metal was purified via zone refining, using a levitated molten

  19. Statistical mechanical and quantum mechanical modeling of condensed phase systems

    NASA Astrophysics Data System (ADS)

    Labrosse, Matthew R.

    Understanding adsorption in nanoporous media is vital to improving their use in industrial applications such as fluid storage and separations processes. One major objective of this research is to shed light on an on-going controversy in literature over where gases adsorb on single walled carbon nanotube bundles. Grand-canonical Monte Carlo simulations have been performed using models of carbon nanotube bundles composed of tubes of all the same diameter (homogeneous) and tubes of different diameters (heterogeneous). We used three metrics with which we compared our simulation results to those found in experiments on carbon nanotubes: the specific surface area, the isosteric heat of adsorption, and the adsorption capacity. Simulations of classically behaved fluids Ar, CH4, and Xe indicate that nanotubes prepared by the HiPco process are best described by a heterogeneous bundle model with ˜11% of the nanotubes opened. Ne gas requires additional considerations to describe the quantum effects at the temperatures of interest, which have been implemented by the Feynman-Hibbs approximation. Overall, calculated results from Ne simulations are consistent with those from classical fluids. However, Ne simulations strongly indicate that the small interstitial channels formed by exactly three nanotubes are closed. Combined with previous studies on classically behaved fluids Ar, CH4, and Xe, experimental data including Ne are best matched by hetergeneous bundles with ˜11% open-ended nanotubes. The development of a heterogeneous Co/C/O reactive force field (ReaxFF) potential has also been a major objective of this research. ReaxFF provides a method to describe bond-breaking and bond-forming events that can be applied to large-scale molecular dynamics (MD) simulations. This many-bodied semi-empirical potential has been trained from ab initio density functional theory (DFT) calculations. The training set originally included descriptions of bulk and surface condensed phase cobalt

  20. Homogeneous gas-phase formation of polychlorinated naphthalene from dimerization of 4-chlorophenoxy radicals and cross-condensation of phenoxy radical with 4-chlorophenoxy radical: Mechanism and kinetics study

    NASA Astrophysics Data System (ADS)

    Xu, Fei; Zhang, Ruiming; Li, Yunfeng; Zhang, Qingzhu

    2015-10-01

    A direct density functional theory (DFT) calculation was performed for the formation of polychlorinated naphthalenes (PCNs) from dimerization of 4-chlorophenoxy radicals (4-CPRs) and cross-condensation of phenoxy radical (PhR) with 4-CPR, respectively. Several energetically feasible formation routes were proposed. The rate constants were computed by the canonical variational transition-state theory (CVT) with the small curvature tunneling (SCT) contribution over temperature range of 600-1200 K. This study shows that PCN productions from the dimerization of 4-CPRs just contain DCNs. All the monochlorinated naphthalene (MCN) detected in the experiment from 4-chlorophenol (4-CP) as precursor are formed form the cross-condensation of PhR with 4-CPR.

  1. Metastable bcc phase formation in the Nb-Cr system

    SciTech Connect

    Thoma, D.J.; Schwarz, R.B.; Perepezko, J.H.; Plantz, D.H.

    1993-08-01

    Extended metastable bcc solid solutions of Nb-Xat.%Cr (X = 35, 50, 57, 77, 82, and 94) were synthesized by two-anvil splat-quenching. In addition, bcc (Nb-67at.%Cr) was prepared by mechanically alloying mixtures of niobium and chromium powders. The lattice parameters were measured by X-ray diffraction and the Young`s moduli were measured by low-load microindentation. The composition dependence of the lattice parameters and elastic moduli show a positive deviation with respect to a rule of mixtures. During continuous heating at 15C/min., the metastable precursor bcc phases decomposed at temperatures above 750C to uniformly refined microstructures.

  2. Influence of sigma-phase formation on the localized corrosion behavior of a duplex stainless steel

    NASA Astrophysics Data System (ADS)

    Adhe, K. M.; Kain, V.; Madangopal, K.; Gadiyar, H. S.

    1996-08-01

    Because of their austenitic-ferritic microstructures, duplex stainless steels offer a good combination of mechanical and corrosion resistance properties. However, heat treatments can lower the mechanical strength of these stainless steels as well as render them susceptible to intergranular corrosion (IGC) and pitting corrosion. In this study, a low-carbon (0.02%) duplex stainless steel is subjected to various heat treatments at 450 to 950 °C for 30 min to 10 h. The heat-treated samples then undergo ASTM IGC and pitting corrosion tests, and the results are correlated with the microstructures obtained after each heat treatment. In the absence of Cr23C6 precipitation, σ-phase precipitates render this duplex stainless steel susceptible to IGC and pitting corrosion. Even submicroscopic σ-phase precipitates are deleterious for IGC resistance. Longer-duration heat treatments (at 750 to 850 °C) induce chromium diffusion to replenish the chromium-depleted regions around the σ-phase precipitates and improve IGC resistance; pitting resistance, however, is not fully restored. Various mechanisms of σ-phase formation are discussed to show that regions adjacent to σ-phase are depleted of chromium and molybdenum. The effect of chemical composition (pitting resistance equivalent) on the pitting resistance of various stainless steels is also noted.

  3. Hebbian and neuromodulatory mechanisms interact to trigger associative memory formation

    PubMed Central

    Johansen, Joshua P.; Diaz-Mataix, Lorenzo; Hamanaka, Hiroki; Ozawa, Takaaki; Ycu, Edgar; Koivumaa, Jenny; Kumar, Ashwani; Hou, Mian; Deisseroth, Karl; Boyden, Edward S.; LeDoux, Joseph E.

    2014-01-01

    A long-standing hypothesis termed “Hebbian plasticity” suggests that memories are formed through strengthening of synaptic connections between neurons with correlated activity. In contrast, other theories propose that coactivation of Hebbian and neuromodulatory processes produce the synaptic strengthening that underlies memory formation. Using optogenetics we directly tested whether Hebbian plasticity alone is both necessary and sufficient to produce physiological changes mediating actual memory formation in behaving animals. Our previous work with this method suggested that Hebbian mechanisms are sufficient to produce aversive associative learning under artificial conditions involving strong, iterative training. Here we systematically tested whether Hebbian mechanisms are necessary and sufficient to produce associative learning under more moderate training conditions that are similar to those that occur in daily life. We measured neural plasticity in the lateral amygdala, a brain region important for associative memory storage about danger. Our findings provide evidence that Hebbian mechanisms are necessary to produce neural plasticity in the lateral amygdala and behavioral memory formation. However, under these conditions Hebbian mechanisms alone were not sufficient to produce these physiological and behavioral effects unless neuromodulatory systems were coactivated. These results provide insight into how aversive experiences trigger memories and suggest that combined Hebbian and neuromodulatory processes interact to engage associative aversive learning. PMID:25489081

  4. Phase Separation and Pattern Formation in a Binary Bose-Einstein Condensate

    NASA Astrophysics Data System (ADS)

    Sabbatini, Jacopo; Zurek, Wojciech H.; Davis, Matthew J.

    2011-12-01

    The miscibility-immiscibility phase transition in binary Bose-Einstein condensates (BECs) can be controlled by a coupling between the two components. Here we propose a new scheme that uses coupling-induced pattern formation to test the Kibble-Zurek mechanism (KZM) of topological-defect formation in a quantum phase transition. For a binary BEC in a ring trap we find that the number of domains forming the pattern scales as a function of the coupling quench rate with an exponent as predicted by the KZM. For a binary BEC in an elongated harmonic trap we find a different scaling law due to the transition being spatially inhomogeneous. We perform a “quantum simulation” of the harmonically trapped system in a ring trap to verify the scaling exponent.

  5. Phase Separation and Pattern Formation in a Binary Bose-Einstein Condensate

    SciTech Connect

    Sabbatini, Jacopo; Davis, Matthew J.; Zurek, Wojciech H.

    2011-12-02

    The miscibility-immiscibility phase transition in binary Bose-Einstein condensates (BECs) can be controlled by a coupling between the two components. Here we propose a new scheme that uses coupling-induced pattern formation to test the Kibble-Zurek mechanism (KZM) of topological-defect formation in a quantum phase transition. For a binary BEC in a ring trap we find that the number of domains forming the pattern scales as a function of the coupling quench rate with an exponent as predicted by the KZM. For a binary BEC in an elongated harmonic trap we find a different scaling law due to the transition being spatially inhomogeneous. We perform a ''quantum simulation'' of the harmonically trapped system in a ring trap to verify the scaling exponent.

  6. Correlative theoretical and experimental investigation of the formation of AlYB14 and competing phases

    NASA Astrophysics Data System (ADS)

    Hunold, Oliver; Chen, Yen-Ting; Music, Denis; Persson, Per O. Å.; Primetzhofer, Daniel; to Baben, Moritz; Achenbach, Jan-Ole; Keuter, Philipp; Schneider, Jochen M.

    2016-02-01

    The phase formation in the boron-rich section of the Al-Y-B system has been explored by a correlative theoretical and experimental research approach. The structure of coatings deposited via high power pulsed magnetron sputtering from a compound target was studied using elastic recoil detection analysis, electron energy loss spectroscopy spectrum imaging, as well as X-ray and electron diffraction data. The formation of AlYB14 together with the (Y,Al)B6 impurity phase, containing 1.8 at. % less B than AlYB14, was observed at a growth temperature of 800 °C and hence 600 °C below the bulk synthesis temperature. Based on quantum mechanical calculations, we infer that minute compositional variations within the film may be responsible for the formation of both icosahedrally bonded AlYB14 and cubic (Y,Al)B6 phases. These findings are relevant for synthesis attempts of all boron rich icosahedrally bonded compounds with the space group: Imma that form ternary phases at similar compositions.

  7. Quasi-Hermitian quantum mechanics in phase space

    SciTech Connect

    Curtright, Thomas; Veitia, Andrzej

    2007-10-15

    We investigate quasi-Hermitian quantum mechanics in phase space using standard deformation quantization methods: Groenewold star products and Wigner transforms. We focus on imaginary Liouville theory as a representative example where exact results are easily obtained. We emphasize spatially periodic solutions, compute various distribution functions and phase-space metrics, and explore the relationships between them.

  8. Methylammonium formate as a mobile phase modifier for reversed-phase liquid chromatography

    PubMed Central

    Grossman, Shau; Danielson, Neil D.

    2009-01-01

    Although alkylammonium ionic liquids such as ethylammonium nitrate and ethylammonium formate have been used as mobile phase “solvents” for liquid chromatography (LC), we have shown that methylammonium formate (MAF), in part because of its lower viscosity, can be an effective replacement for methanol (MeOH) in reversed-phase LC. Plots of log retention factor versus the fraction of MeOH and MAF in the mobile phase indicate quite comparable solvent strength slope values of 2.50 and 2.05, respectively. Using a polar endcapped C18 column, furazolidone and nitrofurantoin using 20% MAF-80% water could be separated in 22 min but no baseline separation was possible using MeOH as the modifier, even down to 10%. Suppression of silanol peak broadening effects by MAF is important permitting a baseline separation of pyridoxine, thiamine, and nicotinamide using 5% MAF-95% water at 0.7 mL/min. Using 5% MeOH-95% water, severe peak broadening for thiamine is evident. The compatibility of MAF as a mobile phase modifer for LC with mass spectrometry detection of water soluble vitamins is also shown. PMID:18849044

  9. Characterising the acceleration phase of blast wave formation

    SciTech Connect

    Fox, T. E. Pasley, J.; Robinson, A. P. L.; Schmitz, H.

    2014-10-15

    Intensely heated, localised regions in uniform fluids will rapidly expand and generate an outwardly propagating blast wave. The Sedov-Taylor self-similar solution for such blast waves has long been studied and applied to a variety of scenarios. A characteristic time for their formation has also long been identified using dimensional analysis, which by its very nature, can offer several interpretations. We propose that, rather than simply being a characteristic time, it may be interpreted as the definitive time taken for a blast wave resulting from an intense explosion in a uniform media to contain its maximum kinetic energy. A scaling relation for this measure of the acceleration phase, preceding the establishment of the blast wave, is presented and confirmed using a 1D planar hydrodynamic model.

  10. COMPETING MECHANISMS OF MOLECULAR HYDROGEN FORMATION IN CONDITIONS RELEVANT TO THE INTERSTELLAR MEDIUM

    SciTech Connect

    Lemaire, J. L.; Vidali, G.; Baouche, S.; Chehrouri, M.; Chaabouni, H.; Mokrane, H.

    2010-12-20

    The most efficient mechanism of the formation of molecular hydrogen in the current universe is by association of hydrogen atoms on the surface of interstellar dust grains. The details of the processes of its formation and release from the grain are of great importance in the physical and chemical evolution of the space environments where it takes place. The main puzzle is still the fate of the 4.5 eV released in H{sub 2} formation and whether it goes into internal energy (rovibrational excitation), translational kinetic energy, or heating of the grain. The modality of the release of this energy affects the dynamics of the ISM and its evolution toward star formation. We present results of the detection of the rovibrational states of the just-formed H{sub 2} as it leaves the surface of a silicate. We find that rovibrationally excited molecules are ejected into the gas phase immediately after formation over a much wider range of grain temperatures than anticipated. Our results can be explained by the presence of two mechanisms of molecule formation that operate in partially overlapping ranges of grain temperature. A preliminary analysis of the relative importance of these two mechanisms is given. These unexpected findings, which will be complemented with experiments on the influence of factors such as silicate morphology, should be of great interest to the astrophysics and astrochemistry communities.

  11. Physical Mechanisms of Pattern Formation in the Early Chick Embryo

    NASA Astrophysics Data System (ADS)

    Balter, Ariel; Glazier, James; Zaitlen, Benji; Chaplain, Mark; Weijer, Cornelis

    2007-03-01

    Gastrulation marks a critical step in early embryogenesis when the first recognizable patterns are laid down. Although the genome maintains ultimate responsibility for this pattern formation, it cannot actually control the organization of individual cells. The robustness of embryogenic pattern formation suggests that a few simple, physical mechanisms are unleashed and that self-organization results. We perform numerical simulations of early chick gastrulation using an agent based method in which individual cells interact via a handful of behaviors including adhesivity, secretion and chemotaxis. Through these simulations we have identified certain behaviors as being important for various stages and morphological events. For instance, experimental results on primitive streak formation are best reproduced by a model in which the Kohler's Sickle secretes a chemo repellant for streak tip cells, and cell polarization appears to be important for initiating polonaise motion during streak elongation.

  12. On mechanisms of reactive metabolite formation from drugs.

    PubMed

    Claesson, Alf; Spjuth, Ola

    2013-04-01

    Idiosyncratic adverse drug reactions (IADRs) cause a broad range of clinically severe conditions of which drug induced liver injury (DILI) in particular is one of the most frequent causes of safety-related drug withdrawals. The underlying cause is almost invariably formation of reactive metabolites (RM) which by attacking macromolecules induc eorgan injuries. Attempts are being made in the pharmaceutical industry to lower the risk of selecting unfit compounds as clinical candidates. Approaches vary but do not seem to be overly successful at the initial design/synthesis stage. We review here the most frequent categories of mechanisms for RM formation and propose that many cases of RMs encountered within early ADME screening can be foreseen by applying chemical and metabolic knowledge. We also mention a web tool, SpotRM, which can be used for efficient look-up and learning about drugs that have recognized IADRs likely caused by RM formation. PMID:23035789

  13. Defect formation mechanism during PECVD of a-Si:H

    SciTech Connect

    Maeda, Keiji; Umezu, Ikurou

    1997-07-01

    Defect formation mechanism in a-Si:H during PECVD at substrate temperature below 250 C is considered to be breaking of weak bonds in the Urbach tail. To break weak bonds, an extra energy is necessary. This energy is supplied by the reaction energy of SiH{sub 3} precursor at the growing surface incorporating SiH{sub 2} into the network. The defect density is experimentally shown to be proportional to a product of the energy supply frequency, i.e., SiH{sub 2} density, and the weak bond density which is obtained by the Urbach energy. By analysis using the configurational coordinate diagram the energy level of the broken weak bond is determined to be 0.2 eV above the valence band mobility edge. There is similarity of the defect formation mechanism during deposition to that of the Staebler-Wronski effect.

  14. Characterization and formation mechanism understanding of asperities to be burnished

    NASA Astrophysics Data System (ADS)

    Man, Y. J.; Yu, S. K.; Liu, B.

    2006-08-01

    To achieve rigorous glide performance for ultra-low flying height, disk media with asperities that exceed the flying height of the magnetic head must be eliminated. Burnishing process is one of the critical ways to remove such asperities from the disk surface. A successful burnishing process demonstrating improved disk yields and less disk damages depends on an effective burnish head that is designed by the understanding of asperities to be burnished. However, optimization of sputtering process is the most essential to avoid those asperities on the disk surface and strongly relies on the formation mechanism understanding of the asperities. It was attempted to trace and characterize the asperities on specially prepared disks in this work. Experimental studies after aggressive burnishing processes on the disks categorized the asperities and indicated their possible formation mechanisms.

  15. Resolving the molecular mechanism of cadherin catch bond formation

    NASA Astrophysics Data System (ADS)

    Manibog, Kristine; Li, Hui; Rakshit, Sabyasachi; Sivasankar, Sanjeevi

    2014-06-01

    Classical cadherin Ca2+-dependent cell-cell adhesion proteins play key roles in embryogenesis and in maintaining tissue integrity. Cadherins mediate robust adhesion by binding in multiple conformations. One of these adhesive states, called an X-dimer, forms catch bonds that strengthen and become longer lived in the presence of mechanical force. Here we use single-molecule force-clamp spectroscopy with an atomic force microscope along with molecular dynamics and steered molecular dynamics simulations to resolve the molecular mechanisms underlying catch bond formation and the role of Ca2+ ions in this process. Our data suggest that tensile force bends the cadherin extracellular region such that they form long-lived, force-induced hydrogen bonds that lock X-dimers into tighter contact. When Ca2+ concentration is decreased, fewer de novo hydrogen bonds are formed and catch bond formation is eliminated.

  16. Neural and Cellular Mechanisms of Fear and Extinction Memory Formation

    PubMed Central

    Orsini, Caitlin A.; Maren, Stephen

    2012-01-01

    Over the course of natural history, countless animal species have evolved adaptive behavioral systems to cope with dangerous situations and promote survival. Emotional memories are central to these defense systems because they are rapidly acquired and prepare organisms for future threat. Unfortunately, the persistence and intrusion of memories of fearful experiences are quite common and can lead to pathogenic conditions, such as anxiety and phobias. Over the course of the last thirty years, neuroscientists and psychologists alike have attempted to understand the mechanisms by which the brain encodes and maintains these aversive memories. Of equal interest, though, is the neurobiology of extinction memory formation as this may shape current therapeutic techniques. Here we review the extant literature on the neurobiology of fear and extinction memory formation, with a strong focus on the cellular and molecular mechanisms underlying these processes. PMID:22230704

  17. On the mechanical theory for biological pattern formation

    NASA Astrophysics Data System (ADS)

    Bentil, D. E.; Murray, J. D.

    1993-02-01

    We investigate the pattern-forming potential of mechanical models in embryology proposed by Oster, Murray and their coworkers. We show that the presence of source terms in the tissue extracellular matrix and cell density equations give rise to spatio-temporal oscillations. An extension of one such model to include ‘biologically realistic long range effects induces the formation of stationary spatial patterns. Previous attempts to solve the full system were in one dimension only. We obtain solutions in one dimension and extend our simulations to two dimensions. We show that a single mechanical model alone is capable of generating complex but regular spatial patterns rather than the requirement of model interaction as suggested by Nagorcka et al. and Shaw and Murray. We discuss some biological applications of the models among which are would healing and formation of dermatoglyphic (fingerprint) patterns.

  18. Neural and cellular mechanisms of fear and extinction memory formation.

    PubMed

    Orsini, Caitlin A; Maren, Stephen

    2012-08-01

    Over the course of natural history, countless animal species have evolved adaptive behavioral systems to cope with dangerous situations and promote survival. Emotional memories are central to these defense systems because they are rapidly acquired and prepare organisms for future threat. Unfortunately, the persistence and intrusion of memories of fearful experiences are quite common and can lead to pathogenic conditions, such as anxiety and phobias. Over the course of the last 30 years, neuroscientists and psychologists alike have attempted to understand the mechanisms by which the brain encodes and maintains these aversive memories. Of equal interest, though, is the neurobiology of extinction memory formation as this may shape current therapeutic techniques. Here we review the extant literature on the neurobiology of fear and extinction memory formation, with a strong focus on the cellular and molecular mechanisms underlying these processes. PMID:22230704

  19. Formation of Asymmetrical Structured Silica Controlled by a Phase Separation Process and Implication for Biosilicification

    PubMed Central

    Shi, Jia-Yuan; Yao, Qi-Zhi; Li, Xi-Ming; Zhou, Gen-Tao; Fu, Sheng-Quan

    2013-01-01

    Biogenetic silica displays intricate patterns assembling from nano- to microsize level and interesting non-spherical structures differentiating in specific directions. Several model systems have been proposed to explain the formation of biosilica nanostructures. Of them, phase separation based on the physicochemical properties of organic amines was considered to be responsible for the pattern formation of biosilica. In this paper, using tetraethyl orthosilicate (TEOS, Si(OCH2CH3)4) as silica precursor, phospholipid (PL) and dodecylamine (DA) were introduced to initiate phase separation of organic components and influence silica precipitation. Morphology, structure and composition of the mineralized products were characterized using a range of techniques including field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM), X-ray diffraction (XRD), thermogravimetric and differential thermal analysis (TG-DTA), infrared spectra (IR), and nitrogen physisorption. The results demonstrate that the phase separation process of the organic components leads to the formation of asymmetrically non-spherical silica structures, and the aspect ratios of the asymmetrical structures can be well controlled by varying the concentration of PL and DA. On the basis of the time-dependent experiments, a tentative mechanism is also proposed to illustrate the asymmetrical morphogenesis. Therefore, our results imply that in addition to explaining the hierarchical porous nanopatterning of biosilica, the phase separation process may also be responsible for the growth differentiation of siliceous structures in specific directions. Because organic amine (e.g., long-chair polyamines), phospholipids (e.g., silicalemma) and the phase separation process are associated with the biosilicification of diatoms, our results may provide a new insight into the mechanism of biosilicification. PMID:23585878

  20. Formation of asymmetrical structured silica controlled by a phase separation process and implication for biosilicification.

    PubMed

    Shi, Jia-Yuan; Yao, Qi-Zhi; Li, Xi-Ming; Zhou, Gen-Tao; Fu, Sheng-Quan

    2013-01-01

    Biogenetic silica displays intricate patterns assembling from nano- to microsize level and interesting non-spherical structures differentiating in specific directions. Several model systems have been proposed to explain the formation of biosilica nanostructures. Of them, phase separation based on the physicochemical properties of organic amines was considered to be responsible for the pattern formation of biosilica. In this paper, using tetraethyl orthosilicate (TEOS, Si(OCH2CH3)4) as silica precursor, phospholipid (PL) and dodecylamine (DA) were introduced to initiate phase separation of organic components and influence silica precipitation. Morphology, structure and composition of the mineralized products were characterized using a range of techniques including field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM), X-ray diffraction (XRD), thermogravimetric and differential thermal analysis (TG-DTA), infrared spectra (IR), and nitrogen physisorption. The results demonstrate that the phase separation process of the organic components leads to the formation of asymmetrically non-spherical silica structures, and the aspect ratios of the asymmetrical structures can be well controlled by varying the concentration of PL and DA. On the basis of the time-dependent experiments, a tentative mechanism is also proposed to illustrate the asymmetrical morphogenesis. Therefore, our results imply that in addition to explaining the hierarchical porous nanopatterning of biosilica, the phase separation process may also be responsible for the growth differentiation of siliceous structures in specific directions. Because organic amine (e.g., long-chair polyamines), phospholipids (e.g., silicalemma) and the phase separation process are associated with the biosilicification of diatoms, our results may provide a new insight into the mechanism of biosilicification. PMID:23585878

  1. Formation and phase transitions of methane hydrates under dynamic loadings: Compression rate dependent kinetics

    NASA Astrophysics Data System (ADS)

    Chen, Jing-Yin; Yoo, Choong-Shik

    2012-03-01

    We describe high-pressure kinetic studies of the formation and phase transitions of methane hydrates (MH) under dynamic loading conditions, using a dynamic-diamond anvil cell (d-DAC) coupled with time-resolved confocal micro-Raman spectroscopy and high-speed microphotography. The time-resolved spectra and dynamic pressure responses exhibit profound compression-rate dependences associated with both the formation and the solid-solid phase transitions of MH-I to II and MH-II to III. Under dynamic loading conditions, MH forms only from super-compressed water and liquid methane in a narrow pressure range between 0.9 and 1.6 GPa at the one-dimensional (1D) growth rate of 42 μm/s. MH-I to II phase transition occurs at the onset of water solidification 0.9 GPa, following a diffusion controlled mechanism. We estimated the activation volume to be -109 ± 29 Å3, primarily associated with relatively slow methane diffusion which follows the rapid interfacial reconstruction, or martensitic displacements of atomic positions and hydrogen bonds, of 51262 water cages in MH-I to 4351263 cages in MH-II. MH-II to III transition, on the other hand, occurs over a broad pressure range between 1.5 and 2.2 GPa, following a reconstructive mechanism from super-compressed MH-II clathrates to a broken ice-filled viscoelastic solid of MH-III. It is found that the profound dynamic effects observed in the MH formation and phase transitions are primarily governed by the stability of water and ice phases at the relevant pressures.

  2. Formation and phase transitions of methane hydrates under dynamic loadings: compression rate dependent kinetics.

    PubMed

    Chen, Jing-Yin; Yoo, Choong-Shik

    2012-03-21

    We describe high-pressure kinetic studies of the formation and phase transitions of methane hydrates (MH) under dynamic loading conditions, using a dynamic-diamond anvil cell (d-DAC) coupled with time-resolved confocal micro-Raman spectroscopy and high-speed microphotography. The time-resolved spectra and dynamic pressure responses exhibit profound compression-rate dependences associated with both the formation and the solid-solid phase transitions of MH-I to II and MH-II to III. Under dynamic loading conditions, MH forms only from super-compressed water and liquid methane in a narrow pressure range between 0.9 and 1.6 GPa at the one-dimensional (1D) growth rate of 42 μm/s. MH-I to II phase transition occurs at the onset of water solidification 0.9 GPa, following a diffusion controlled mechanism. We estimated the activation volume to be -109±29 Å(3), primarily associated with relatively slow methane diffusion which follows the rapid interfacial reconstruction, or martensitic displacements of atomic positions and hydrogen bonds, of 5(12)6(2) water cages in MH-I to 4(3)5(12)6(3) cages in MH-II. MH-II to III transition, on the other hand, occurs over a broad pressure range between 1.5 and 2.2 GPa, following a reconstructive mechanism from super-compressed MH-II clathrates to a broken ice-filled viscoelastic solid of MH-III. It is found that the profound dynamic effects observed in the MH formation and phase transitions are primarily governed by the stability of water and ice phases at the relevant pressures. PMID:22443783

  3. Vesicle formation and endocytosis: function, machinery, mechanisms, and modeling.

    PubMed

    Parkar, Nihal S; Akpa, Belinda S; Nitsche, Ludwig C; Wedgewood, Lewis E; Place, Aaron T; Sverdlov, Maria S; Chaga, Oleg; Minshall, Richard D

    2009-06-01

    Vesicle formation provides a means of cellular entry for extracellular substances and for recycling of membrane constituents. Mechanisms governing the two primary endocytic pathways (i.e., caveolae- and clathrin-mediated endocytosis, as well as newly emerging vesicular pathways) have become the focus of intense investigation to improve our understanding of nutrient, hormone, and drug delivery, as well as opportunistic invasion of pathogens. In this review of endocytosis, we broadly discuss the structural and signaling proteins that compose the molecular machinery governing endocytic vesicle formation (budding, invagination, and fission from the membrane), with some regard for the specificity observed in certain cell types and species. Important biochemical functions of endocytosis and diseases caused by their disruption also are discussed, along with the structures of key components of endocytic pathways and their known mechanistic contributions. The mechanisms by which principal components of the endocytic machinery are recruited to the plasma membrane, where they interact to induce vesicle formation, are discussed, together with computational approaches used to simulate simplified versions of endocytosis with the hope of clarifying aspects of vesicle formation that may be difficult to determine experimentally. Finally, we pose several unanswered questions intended to stimulate further research interest in the cell biology and modeling of endocytosis. PMID:19113823

  4. Vesicle Formation and Endocytosis: Function, Machinery, Mechanisms, and Modeling

    PubMed Central

    Parkar, Nihal S.; Akpa, Belinda S.; Nitsche, Ludwig C.; Wedgewood, Lewis E.; Place, Aaron T.; Sverdlov, Maria S.; Chaga, Oleg

    2009-01-01

    Abstract Vesicle formation provides a means of cellular entry for extracellular substances and for recycling of membrane constituents. Mechanisms governing the two primary endocytic pathways (i.e., caveolae- and clathrin-mediated endocytosis, as well as newly emerging vesicular pathways) have become the focus of intense investigation to improve our understanding of nutrient, hormone, and drug delivery, as well as opportunistic invasion of pathogens. In this review of endocytosis, we broadly discuss the structural and signaling proteins that compose the molecular machinery governing endocytic vesicle formation (budding, invagination, and fission from the membrane), with some regard for the specificity observed in certain cell types and species. Important biochemical functions of endocytosis and diseases caused by their disruption also are discussed, along with the structures of key components of endocytic pathways and their known mechanistic contributions. The mechanisms by which principal components of the endocytic machinery are recruited to the plasma membrane, where they interact to induce vesicle formation, are discussed, together with computational approaches used to simulate simplified versions of endocytosis with the hope of clarifying aspects of vesicle formation that may be difficult to determine experimentally. Finally, we pose several unanswered questions intended to stimulate further research interest in the cell biology and modeling of endocytosis. Antioxid. Redox Signal. 11, 1301–1312. PMID:19113823

  5. Accretion phase of star formation in clouds with different metallicities

    NASA Astrophysics Data System (ADS)

    Machida, Masahiro N.; Nakamura, Teppei

    2015-04-01

    The main accretion phase of star formation is investigated in clouds with different metallicities in the range 0 ≤ Z ≤ Z⊙, resolving the protostellar radius. Starting from a near-equilibrium prestellar cloud, we calculate the cloud evolution up to ˜100 yr after the first protostar forms. Star formation differs considerably between clouds with lower (Z ≤ 10-4 Z⊙) and higher (Z > 10-4 Z⊙) metallicities. Fragmentation frequently occurs and many protostars appear without a stable circumstellar disc in lower-metallicity clouds. In these clouds, although protostars mutually interact and some are ejected from the cloud centre, many remain as a small stellar cluster. In contrast, higher-metallicity clouds produce a single protostar surrounded by a nearly stable rotation-supported disc. In these clouds, although fragmentation occasionally occurs in the disc, the fragments migrate inwards and finally fall on to the central protostar. The difference in cloud evolution is due to different thermal evolutions and mass accretion rates. The thermal evolution of the cloud determines the emergence and lifetime of the first core. The first core develops prior to the formation of a protostar in higher-metallicity clouds, whereas no (obvious) first core appears in lower-metallicity clouds. The first core evolves into a circumstellar disc with a spiral pattern, which effectively transfers the angular momentum outwards and suppresses frequent fragmentation. In lower-metallicity clouds, the higher mass accretion rate increases the disc surface density within a very short time, rendering the disc unstable to self-gravity and inducing vigorous fragmentation.

  6. Mechanisms of Bowtie- and Star-Shaped MX2 Nanoisland Formation

    NASA Astrophysics Data System (ADS)

    Artyukhov, Vasilii I.; Hu, Zhili; Zhang, Zhuhua; Yakobson, Boris I.

    A large number of experimental studies over the last few years observed the formation of unusual highly symmetric polycrystalline twinned nanoislands of transition metal dichalcogenides, resembling bowties or stars. Here we analyze their morphology in terms of equilibrium and growth shapes. We propose a mechanism for their formation via collision of concurrently growing islands and validate the theory with phase-field simulations. Finally, we use first-principles calculations to propose an explanation of the predominance of high-symmetry polycrystals with 60-degree lattice misorientation angles.

  7. Diffusion mechanism of exchange bias formation in permalloy-manganese nanostructures at thermo-magnetic treatment.

    PubMed

    Blinov, I V; Krinitsina, T P; Matveev, S A; Milyaev, M A; Sedova, P N; Popov, V V; Ustinov, V V

    2012-09-01

    A mechanism of unidirectional exchange anisotropy formation at thermo-magnetic treatment of permalloy-manganese bilayers has been studied. A shift of hysteresis loops appears at annealing beginning from 230 degrees C. The maximal exchange field of 155 Oe is reached after the 250 degrees C annealing for 2 h. As demonstrated by transmission electron microscopy, the exchange bias and the coercivity growth result from an ordered anti-ferromagnetic NiFeMn phase formation due to the diffusion interaction of permalloy and manganese at annealing. PMID:23035517

  8. Physical Mechanisms of Glaze Ice Scallop Formations on Swept Wings

    NASA Technical Reports Server (NTRS)

    Vargas, Mario; Reshotko, Eli

    1998-01-01

    An experiment was conducted to understand the physical mechanisms that lead to the formation of scallops on swept wings. Icing runs were performed on a NACA 0012 swept wing tip at 45 deg, 30 deg, and 15 deg sweep angles. A baseline case was chosen and direct measurements of scallop height and spacing, castings, video data and close-up photographic data were obtained. The results showed the scallops are made of glaze ice feathers that grow from roughness elements that have reached a minimum height and are located beyond a given distance from the attachment line. This distance depends on tunnel conditions and sweep angle, and is the critical parameter in the formation of scallops. It determines if complete scallops, incomplete scallops or no scallops are going to be formed. The mechanisms of growth for complete and incomplete scallops were identified. The effect of velocity, temperature and LWC on scallop formation was studied. The possibility that cross flow instability may be the physical mechanism that triggers the growth of roughness elements into glaze ice feathers is examined.

  9. Importance of Silicon and Mechanisms of Biosilica Formation in Plants

    PubMed Central

    Siti Nor Akmar, Abdullah; Rafii, Mohd Y.; Tengoua, F. F.; Nurul Mayzaitul Azwa, Jamaludin; Shabanimofrad, M.

    2015-01-01

    Silicon (Si) is one of the most prevalent macroelements, performing an essential function in healing plants in response to environmental stresses. The purpose of using Si is to induce resistance to distinct stresses, diseases, and pathogens. Additionally, Si can improve the condition of soils, which contain toxic levels of heavy metals along with other chemical elements. Silicon minimizes toxicity of Fe, Al, and Mn, increases the availability of P, and enhances drought along with salt tolerance in plants through the formation of silicified tissues in plants. However, the concentration of Si depends on the plants genotype and organisms. Hence, the physiological mechanisms and metabolic activities of plants may be affected by Si application. Peptides as well as amino acids can effectively create polysilicic species through interactions with different species of silicate inside solution. The carboxylic acid and the alcohol groups of serine and asparagine tend not to engage in any significant role in polysilicates formation, but the hydroxyl group side chain can be involved in the formation of hydrogen bond with Si(OH)4. The mechanisms and trend of Si absorption are different between plant species. Furthermore, the transportation of Si requires an energy mechanism; thus, low temperatures and metabolic repressors inhibit Si transportation. PMID:25685787

  10. Importance of silicon and mechanisms of biosilica formation in plants.

    PubMed

    Sahebi, Mahbod; Hanafi, Mohamed M; Siti Nor Akmar, Abdullah; Rafii, Mohd Y; Azizi, Parisa; Tengoua, F F; Nurul Mayzaitul Azwa, Jamaludin; Shabanimofrad, M

    2015-01-01

    Silicon (Si) is one of the most prevalent macroelements, performing an essential function in healing plants in response to environmental stresses. The purpose of using Si is to induce resistance to distinct stresses, diseases, and pathogens. Additionally, Si can improve the condition of soils, which contain toxic levels of heavy metals along with other chemical elements. Silicon minimizes toxicity of Fe, Al, and Mn, increases the availability of P, and enhances drought along with salt tolerance in plants through the formation of silicified tissues in plants. However, the concentration of Si depends on the plants genotype and organisms. Hence, the physiological mechanisms and metabolic activities of plants may be affected by Si application. Peptides as well as amino acids can effectively create polysilicic species through interactions with different species of silicate inside solution. The carboxylic acid and the alcohol groups of serine and asparagine tend not to engage in any significant role in polysilicates formation, but the hydroxyl group side chain can be involved in the formation of hydrogen bond with Si(OH)4. The mechanisms and trend of Si absorption are different between plant species. Furthermore, the transportation of Si requires an energy mechanism; thus, low temperatures and metabolic repressors inhibit Si transportation. PMID:25685787

  11. Formation mechanism of silver nanoparticles stabilized in glassy matrices.

    PubMed

    Simo, Anne; Polte, Jörg; Pfänder, Norbert; Vainio, Ulla; Emmerling, Franziska; Rademann, Klaus

    2012-11-14

    In any given matrix control over the final particle size distribution requires a constitutive understanding of the mechanisms and kinetics of the particle evolution. In this contribution we report on the formation mechanism of silver nanoparticles embedded in a soda-lime silicate glass matrix. For the silver ion-exchanged glass it is shown that at temperatures below 410 °C only molecular clusters (diameter <1 nm) are forming which are most likely silver dimers. These clusters grow to nanoparticles (diameter >1 nm) by annealing above this threshold temperature of 410 °C. It is evidenced that the growth and thus the final silver nanoparticle size are determined by matrix-assisted reduction mechanisms. As a consequence, particle growth proceeds after the initial formation of stable clusters by addition of silver monomers which diffuse from the glass matrix. This is in contrast to the widely accepted concept of particle growth in metal-glass systems, in which it is assumed that the nanoparticle formation is predominantly governed by Ostwald ripening processes. PMID:23098252

  12. Gas-phase hydrolysis of triplet SO2: A possible direct route to atmospheric acid formation.

    PubMed

    Donaldson, D James; Kroll, Jay A; Vaida, Veronica

    2016-01-01

    Sulfur chemistry is of great interest to the atmospheric chemistry of several planets. In the presence of water, oxidized sulfur can lead to new particle formation, influencing climate in significant ways. Observations of sulfur compounds in planetary atmospheres when compared with model results suggest that there are missing chemical mechanisms. Here we propose a novel mechanism for the formation of sulfurous acid, which may act as a seed for new particle formation. In this proposed mechanism, the lowest triplet state of SO2 ((3)B1), which may be accessed by near-UV solar excitation of SO2 to its excited (1)B1 state followed by rapid intersystem crossing, reacts directly with water to form H2SO3 in the gas phase. For ground state SO2, this reaction is endothermic and has a very high activation barrier; our quantum chemical calculations point to a facile reaction being possible in the triplet state of SO2. This hygroscopic H2SO3 molecule may act as a condensation nucleus for water, giving rise to facile new particle formation (NPF). PMID:27417675

  13. Gas-phase hydrolysis of triplet SO2: A possible direct route to atmospheric acid formation

    NASA Astrophysics Data System (ADS)

    Donaldson, D. James; Kroll, Jay A.; Vaida, Veronica

    2016-07-01

    Sulfur chemistry is of great interest to the atmospheric chemistry of several planets. In the presence of water, oxidized sulfur can lead to new particle formation, influencing climate in significant ways. Observations of sulfur compounds in planetary atmospheres when compared with model results suggest that there are missing chemical mechanisms. Here we propose a novel mechanism for the formation of sulfurous acid, which may act as a seed for new particle formation. In this proposed mechanism, the lowest triplet state of SO2 (3B1), which may be accessed by near-UV solar excitation of SO2 to its excited 1B1 state followed by rapid intersystem crossing, reacts directly with water to form H2SO3 in the gas phase. For ground state SO2, this reaction is endothermic and has a very high activation barrier; our quantum chemical calculations point to a facile reaction being possible in the triplet state of SO2. This hygroscopic H2SO3 molecule may act as a condensation nucleus for water, giving rise to facile new particle formation (NPF).

  14. Gas-phase hydrolysis of triplet SO2: A possible direct route to atmospheric acid formation

    PubMed Central

    Donaldson, D. James; Kroll, Jay A.; Vaida, Veronica

    2016-01-01

    Sulfur chemistry is of great interest to the atmospheric chemistry of several planets. In the presence of water, oxidized sulfur can lead to new particle formation, influencing climate in significant ways. Observations of sulfur compounds in planetary atmospheres when compared with model results suggest that there are missing chemical mechanisms. Here we propose a novel mechanism for the formation of sulfurous acid, which may act as a seed for new particle formation. In this proposed mechanism, the lowest triplet state of SO2 (3B1), which may be accessed by near-UV solar excitation of SO2 to its excited 1B1 state followed by rapid intersystem crossing, reacts directly with water to form H2SO3 in the gas phase. For ground state SO2, this reaction is endothermic and has a very high activation barrier; our quantum chemical calculations point to a facile reaction being possible in the triplet state of SO2. This hygroscopic H2SO3 molecule may act as a condensation nucleus for water, giving rise to facile new particle formation (NPF). PMID:27417675

  15. Morphogengineering roots: comparing mechanisms of morphogen gradient formation

    PubMed Central

    2012-01-01

    Background In developmental biology, there has been a recent focus on the robustness of morphogen gradients as possible providers of positional information. It was shown that functional morphogen gradients present strong biophysical constraints and lack of robustness to noise. Here we explore how the details of the mechanism which underlies the generation of a morphogen gradient can influence those properties. Results We contrast three gradient-generating mechanisms, (i) a source-decay mechanism; and (ii) a unidirectional transport mechanism; and (iii) a so-called reflux-loop mechanism. Focusing on the dynamics of the phytohormone auxin in the root, we show that only the reflux-loop mechanism can generate a gradient that would be adequate to supply functional positional information for the Arabidopsis root, for biophysically reasonable kinetic parameters. Conclusions We argue that traits that differ in spatial and temporal time-scales can impose complex selective pressures on the mechanism of morphogen gradient formation used for the development of the particular organism. PMID:22583698

  16. Structural phase transitions in trigonal Selenium induce the formation of a disordered phase

    NASA Astrophysics Data System (ADS)

    Pal, Anirban; Gohil, Smita; Sengupta, Surajit; Poswal, H. K.; Sharma, Surinder M.; Ghosh, Shankar; Ayyub, Pushan

    2015-10-01

    Arguments based on the Mermin-Wagner theorem suggest that the quasi-1D trigonal phase of Se should be unstable against long wavelength perturbations. Consisting of parallel Se-Se chains, this essentially fragile solid undergoes a partial transition to a monoclinic structure (consisting of 8-membered rings) at low temperatures (≈50 K), and to a distorted trigonal phase at moderate pressures (≈3GPa). Experimental investigations on sub-millimeter-sized single crystals provide clear evidence that these transitions occur via a novel and counter-intuitive route. This involves the reversible formation of an intermediate, disordered structure that appears as a minority phase with increasing pressure as well as with decreasing temperature. The formation of the disordered state is indicated by: (a) a ‘Boson-peak’ that appears at low temperatures in the specific heat and resonance Raman data, and (b) a decrease in the intensity of Raman lines over a relatively narrow pressure range. We complement the experimental results with a phenomenological model that illustrates how a first order structural transition may lead to disorder. Interestingly, nanocrystals of trigonal Se do not undergo any structural transition in the parameter space studied; neither do they exhibit signs of disorder, further underlining the role of disorder in this type of structural transition.

  17. Nucleation mechanism for the direct graphite-to-diamond phase transition.

    PubMed

    Khaliullin, Rustam Z; Eshet, Hagai; Kühne, Thomas D; Behler, Jörg; Parrinello, Michele

    2011-09-01

    Graphite and diamond have comparable free energies, yet forming diamond from graphite in the absence of a catalyst requires pressures that are significantly higher than those at equilibrium coexistence. At lower temperatures, the formation of the metastable hexagonal polymorph of diamond is favoured instead of the more stable cubic diamond. These phenomena cannot be explained by the concerted mechanism suggested in previous theoretical studies. Using an ab initio quality neural-network potential, we carried out a large-scale study of the graphite-to-diamond transition assuming that it occurs through nucleation. The nucleation mechanism accounts for the observed phenomenology and reveals its microscopic origins. We demonstrate that the large lattice distortions that accompany the formation of diamond nuclei inhibit the phase transition at low pressure, and direct it towards the hexagonal diamond phase at higher pressure. The proposed nucleation mechanism should improve our understanding of structural transformations in a wide range of carbon-based materials. PMID:21785417

  18. Protein adduct formation as a molecular mechanism in neurotoxicity.

    PubMed

    Lopachin, Richard M; Decaprio, Anthony P

    2005-08-01

    Chemicals that cause nerve injury and neurological deficits are a structurally diverse group. For the majority, the corresponding molecular mechanisms of neurotoxicity are poorly understood. Many toxicants (e.g., hepatotoxicants) of other organ systems and/or their oxidative metabolites have been identified as electrophiles and will react with cellular proteins by covalently binding nucleophilic amino acid residues. Cellular toxicity occurs when adduct formation disrupts protein structure and/or function, which secondarily causes damage to submembrane organelles, metabolic pathways, or cytological processes. Since many neurotoxicants are also electrophiles, the corresponding pathophysiological mechanism might involve protein adduction. In this review, we will summarize the principles of covalent bond formation that govern reactions between xenobiotic electrophiles and biological nucleophiles. Because a neurotoxicant can form adducts with multiple nucleophilic residues on proteins, the challenge is to identify the mechanistically important adduct. In this regard, it is now recognized that despite widespread chemical adduction of tissue proteins, neurotoxicity can be mediated through binding of specific target nucleophiles in key neuronal proteins. Acrylamide and 2,5-hexanedione are prototypical neurotoxicants that presumably act through the formation of protein adducts. To illustrate both the promise and the difficulty of adduct research, these electrophilic chemicals will be discussed with respect to covalent bond formation, suspected protein sites of adduction, and proposed mechanisms of neurotoxicity. The goals of future investigations are to identify and quantify specific protein adducts that play a causal role in the generation of neurotoxicity induced by electrophilic neurotoxicants. This is a challenging but critical objective that will be facilitated by recent advances in proteomic methodologies. PMID:15901921

  19. Numerical analysis of fume formation mechanism in arc welding

    NASA Astrophysics Data System (ADS)

    Tashiro, Shinichi; Zeniya, Tasuku; Yamamoto, Kentaro; Tanaka, Manabu; Nakata, Kazuhiro; Murphy, Anthony B.; Yamamoto, Eri; Yamazaki, Kei; Suzuki, Keiichi

    2010-11-01

    In order to clarify the fume formation mechanism in arc welding, a quantitative investigation based on the knowledge of interaction among the electrode, arc and weld pool is indispensable. A fume formation model consisting of a heterogeneous condensation model, a homogeneous nucleation model and a coagulation model has been developed and coupled with the GTA or GMA welding model. A series of processes from evaporation of metal vapour to fume formation from the metal vapour was totally investigated by employing this simulation model. The aim of this paper is to visualize the fume formation process and clarify the fume formation mechanism theoretically through a numerical analysis. Furthermore, the reliability of the simulation model was also evaluated through a comparison of the simulation result with the experimental result. As a result, it was found that the size of the secondary particles consisting of small particles with a size of several tens of nanometres reached 300 nm at maximum and the secondary particle was in a U-shaped chain form in helium GTA welding. Furthermore, it was also clarified that most part of the fume was produced in the downstream region of the arc originating from the metal vapour evaporated mainly from the droplet in argon GMA welding. The fume was constituted by particles with a size of several tens of nanometres and had similar characteristics to that of GTA welding. On the other hand, if the metal transfer becomes unstable and the metal vapour near the droplet diffuses directly towards the surroundings of the arc not getting into the plasma flow, the size of the particles reaches several hundred nanometres.

  20. Multilamellar vesicle formation from a planar lamellar phase under shear flow.

    PubMed

    Gentile, Luigi; Behrens, Manja A; Porcar, Lionel; Butler, Paul; Wagner, Norman J; Olsson, Ulf

    2014-07-22

    The formation of multilamellar vesicles (MLVs) from the lamellar phase of nonionic surfactant system C12E5/D2O under shear flow is studied by time-resolved small angle neutron and light scattering during shear flow. A novel small angle neutron scattering sample environment enables the tracking of the lamellae alignment in the velocity-velocity gradient (1-2) plane during MLV formation, which was tracked independently using flow small angle light scattering commensurate with rheology. During the lamellar-to-multilamellar vesicle transition, the primary Bragg peak from the lamellar ordering was observed to tilt, and this gradually increased with time, leading to an anisotropic pattern with a primary axis oriented at ∼25° relative to the flow direction. This distorted pattern persists under flow after MLV formation. A critical strain and critical capillary number based on the MLV viscosity are demonstrated for MLV formation, which is shown to be robust for other systems as well. These novel measurements provide fundamentally new information about the flow orientation of lamellae in the plane of flow that cannot be anticipated from the large body of previous literature showing nearly isotropic orientation in the 2,3 and 1,3 planes of flow. These observations are consistent with models for buckling-induced MLV formation but suggest that the instability is three-dimensional, thereby identifying the mechanism of MLV formation in simple shear flow. PMID:24983325

  1. Mantle–slab interaction and redox mechanism of diamond formation

    PubMed Central

    Palyanov, Yuri N.; Bataleva, Yuliya V.; Sokol, Alexander G.; Borzdov, Yuri M.; Kupriyanov, Igor N.; Reutsky, Vadim N.; Sobolev, Nikolai V.

    2013-01-01

    Subduction tectonics imposes an important role in the evolution of the interior of the Earth and its global carbon cycle; however, the mechanism of the mantle–slab interaction remains unclear. Here, we demonstrate the results of high-pressure redox-gradient experiments on the interactions between Mg-Ca-carbonate and metallic iron, modeling the processes at the mantle–slab boundary; thereby, we present mechanisms of diamond formation both ahead of and behind the redox front. It is determined that, at oxidized conditions, a low-temperature Ca-rich carbonate melt is generated. This melt acts as both the carbon source and crystallization medium for diamond, whereas at reduced conditions, diamond crystallizes only from the Fe-C melt. The redox mechanism revealed in this study is used to explain the contrasting heterogeneity of natural diamonds, as seen in the composition of inclusions, carbon isotopic composition, and nitrogen impurity content. PMID:24297876

  2. Mantle-slab interaction and redox mechanism of diamond formation.

    PubMed

    Palyanov, Yuri N; Bataleva, Yuliya V; Sokol, Alexander G; Borzdov, Yuri M; Kupriyanov, Igor N; Reutsky, Vadim N; Sobolev, Nikolai V

    2013-12-17

    Subduction tectonics imposes an important role in the evolution of the interior of the Earth and its global carbon cycle; however, the mechanism of the mantle-slab interaction remains unclear. Here, we demonstrate the results of high-pressure redox-gradient experiments on the interactions between Mg-Ca-carbonate and metallic iron, modeling the processes at the mantle-slab boundary; thereby, we present mechanisms of diamond formation both ahead of and behind the redox front. It is determined that, at oxidized conditions, a low-temperature Ca-rich carbonate melt is generated. This melt acts as both the carbon source and crystallization medium for diamond, whereas at reduced conditions, diamond crystallizes only from the Fe-C melt. The redox mechanism revealed in this study is used to explain the contrasting heterogeneity of natural diamonds, as seen in the composition of inclusions, carbon isotopic composition, and nitrogen impurity content. PMID:24297876

  3. Elucidation of reaction mechanism involved in the formation of LaNiO3 from XRD and TG analysis

    NASA Astrophysics Data System (ADS)

    Dharmadhikari, Dipti V.; Athawale, Anjali A.

    2013-06-01

    The present work is focused on the synthesis and elucidation of reaction mechanism involved in the formation of LaNiO3 with the help of X-ray diffraction (XRD) and thermogravimetric (TG) analysis. LaNiO3 was synthesized by hydrothermal method by heating at 160°C under autogenous pressure for 6h. Pure phase product was obtained after calcining the hydrothermally activated product for 6h at 700°C. The various phases of the product obtained after hydrothermal treatment and calcination followed by the formation of pure phase nanocrystalline lanthanum nickel oxide could be determined from XRD analysis of the samples. The reaction mechanism and phase formation temperature has been interpreted by thermogravimetric analysis of the hydrothermally synthesized product and XRD analysis.

  4. Rheological controls on the terrestrial core formation mechanism

    NASA Astrophysics Data System (ADS)

    Golabek, G. J.; Gerya, T. V.; Ziethe, R.; Kaus, B. J. P.; Tackley, P. J.

    2009-04-01

    Knowledge about the terrestrial core formation mechanism is still very limited. The fracturing mechanism was proposed for cold planetary interiors surrounded by an iron layer [Stevenson, 1981], which develops from an overlying magma ocean. In this case the cold central region is displaced by a degree one mode from the centre of the accreting planet and fractured due to the large stresses. In contrast the consideration of short-lived radioactive heating may result in warmer central regions and the preference of higher mode iron diapirism as core formation mechanism [e.g. Rubie et al., 2007; Ziethe and Spohn, 2007]. Until now most numerical models of core formation via diapirism were limited to the simulation of the sinking of a single diapir. We perform 2D cylindrical simulations using the code I2ELVIS applying the newly developed "spherical-Cartesian" methodology [Gerya and Yuen, 2007]. It combines finite differences on a fully staggered rectangular Eulerian grid and Lagrangian marker-in-cell technique for solving momentum, continuity and temperature equations as well as the Poisson equation for gravity potential in a self-gravitating planetary body. In the model the planet is surrounded by a low viscosity, massless fluid ("sticky air") to simulate a free surface [Schmeling et al., 2008]. We apply a temperature- and stress-dependent viscoplastic rheology inside Mars- and Earth-sized planets and include heat release due to radioactive decay, shear and adiabatic heating. As initial condition we use randomly distributed iron diapirs with random sizes in the range 50 to 100 km radius inside the accreting planet, which represent the iron delivered by predifferentiated impactors. A systematic investigation of the diapir behaviour for different activation volumes and Peierls stresses is being performed, and results are being compared to the isotopic time scale of core formation on terrestrial planets. We show that the rheology controls which formation mechanism becomes

  5. Retardation of Abeta fibril formation by phospholipid vesicles depends on membrane phase behavior.

    PubMed

    Hellstrand, Erik; Sparr, Emma; Linse, Sara

    2010-05-19

    An increasing amount of evidence suggests that in several amyloid diseases, the fibril formation in vivo and the mechanism of toxicity both involve membrane interactions. We have studied Alzheimer's disease related amyloid beta peptide (Abeta). Recombinant Abeta(M1-40) and Abeta(M1-42) produced in Escherichia coli, allows us to carry out large scale kinetics assays with good statistics. The amyloid formation process is followed in means of thioflavin T fluorescence at relatively low (down to 380 nM) peptide concentration approaching the physiological range. The lipid membranes are introduced in the system as large and small unilamellar vesicles. The aggregation lagtime increases in the presence of lipid vesicles for all situations investigated and the phase behavior of the membrane in the vesicles has a large effect on the aggregation kinetics. By comparing vesicles with different membrane phase behavior we see that the solid gel phase dipalmitoylphosphatidylcholine bilayers cause the largest retardation of Abeta fibril formation. The membrane-induced retardation reaches saturation and is present when the vesicles are added during the lag time up to the nucleation point. No significant difference is detected in lag time when increasing amount of negative charge is incorporated into the membrane. PMID:20483329

  6. Mechanisms of amyloid formation revealed by solution NMR

    PubMed Central

    Karamanos, Theodoros K.; Kalverda, Arnout P.; Thompson, Gary S.; Radford, Sheena E.

    2015-01-01

    Amyloid fibrils are proteinaceous elongated aggregates involved in more than fifty human diseases. Recent advances in electron microscopy and solid state NMR have allowed the characterization of fibril structures to different extents of refinement. However, structural details about the mechanism of fibril formation remain relatively poorly defined. This is mainly due to the complex, heterogeneous and transient nature of the species responsible for assembly; properties that make them difficult to detect and characterize in structural detail using biophysical techniques. The ability of solution NMR spectroscopy to investigate exchange between multiple protein states, to characterize transient and low-population species, and to study high molecular weight assemblies, render NMR an invaluable technique for studies of amyloid assembly. In this article we review state-of-the-art solution NMR methods for investigations of: (a) protein dynamics that lead to the formation of aggregation-prone species; (b) amyloidogenic intrinsically disordered proteins; and (c) protein–protein interactions on pathway to fibril formation. Together, these topics highlight the power and potential of NMR to provide atomic level information about the molecular mechanisms of one of the most fascinating problems in structural biology. PMID:26282197

  7. Effects of Strain Rates on Mechanical Properties and Fracture Mechanism of DP780 Dual Phase Steel

    NASA Astrophysics Data System (ADS)

    Li, Shengci; Kang, Yonglin; Zhu, Guoming; Kuang, Shuang

    2015-06-01

    The mechanical properties of DP780 dual phase steel were measured by quasi-static and high-speed tensile tests at strain rates between 0.001 and 1000 s-1 at room temperature. The deformation and fracture mechanisms were analyzed by observation of the tensile fracture and microstructure near the fracture. Dynamic factor and feret ratio quantitative methods were applied to study the effect of strain rate on the microstructure and properties of DP780 steel. The constitutive relation was described by a modified Johnson-Cook and Zerilli-Armstrong model. The results showed that the strain rate sensitivity of yield strength is bigger than that of ultimate tensile strength; as strain rate increased, the formation of microcracks and voids at the ferrite/martensite interface can be alleviated; the strain rate effect is unevenly distributed in the plastic deformation region. Moreover, both models can effectively describe the experimental results, while the modified Zerilli-Armstrong model is more accurate because the strain-hardening rate of this model is independent of strain rate.

  8. FRAGMENTATION AT THE EARLIEST PHASE OF MASSIVE STAR FORMATION

    SciTech Connect

    Zhang Qizhou; Wang Yang; Pillai, Thushara; Rathborne, Jill

    2009-05-01

    We present 1.3 mm continuum and spectral line images of two massive molecular clumps P1 and P2 in the G28.34+0.06 region with the Submillimeter Array (SMA). While the two clumps contain masses of 1000 and 880 M {sub sun}, respectively, P1 has a luminosity OF <10{sup 2} L {sub sun}, and a lower gas temperature and smaller line width than P2. Thus, P1 appears to be at a much earlier stage of massive star formation than P2. The high-resolution SMA observations reveal two distinctive cores in P2 with masses of 97 and 49 M {sub sun}, respectively. The 4 GHz spectral bandpass captures line emission from CO isotopologues, SO, CH{sub 3}OH, and CH{sub 3}CN, similar to hot molecular cores harboring massive young stars. The P1 clump, on the other hand, is resolved into five cores along the filament with masses from 22 to 64 M {sub sun} and an average projected separation of 0.19 pc. Except {sup 12}CO, no molecular line emission is detected toward the P1 cores at a 1{sigma} rms of 0.1 K. Since strong {sup 12}CO and C{sup 18}O emissions are seen with the single-dish telescope at a resolution of 11'', the nondetection of these lines with the SMA indicates a depletion factor up to 10{sup 3}. While the spatial resolution of the SMA is better than the expected Jeans length, the masses in P1 cores are much larger than the thermal Jeans mass, indicating the importance of turbulence and/or magnetic fields in cloud fragmentation. The hierarchical structures in the P1 region provide a glimpse of the initial phase of massive star and cluster formation.

  9. The probabilistic mechanism of formation of block structures

    NASA Astrophysics Data System (ADS)

    Ivanov, V. I.

    2012-03-01

    Questions on the formation of block structures are considered. It is shown that the block structure is characteristic of bodies in a wide range of scales from microscopic to astronomic and from the bodies of nonliving nature to living organisms and communities. A scheme of the mechanism of the probabilistic formation of block structures is suggested. The characteristics general for structures of all scales are revealed. Evidence is presented that the hierarchical pattern of element sizes is characteristic of natural structures in which the ratio of linear sizes of elements neighboring by hierarchy is 2-5, while the characteristic scale coefficient is √ N , where N is the total number of elements of which the system is formed. The block-probabilistic approach ensures knowledge of rare catastrophic events, including earthquakes, market crashes, floods, and industrial catastrophes, or creative events such as the formation of hypercomplex systems similar to organisms and communities. The statistics of rare events follows the power distribution (the distribution with a "heavy tail") rather than the exponential one and especially the Poisson distribution, the Gaussian distribution, or the distributions with "light tails" close to them. The expression for the factor of increasing the formation probability of the systems, which is of many orders of magnitude even for the simplest systems, is acquired.

  10. Formation of Intermediate Carbon Phases in Hydrothermal Abiotic Organic Synthesis

    NASA Astrophysics Data System (ADS)

    Fu, Q.; Foustoukos, D. I.; Seyfried, W. E.

    2005-12-01

    With high dissolved concentrations of methane and other hydrocarbon species revealed at the Rainbow and Logatchev vent systems on the Mid-Atlantic Ridge, it is essential to better understand reaction pathways of abiotic organic synthesis in hydrothermal systems. Thus, we performed a hydrothermal carbon reduction experiment with 13C labeled carbon source at temperature and pressure conditions that approximate those inferred for ultramafic-hosted hydrothermal systems. Pentlandite, a common alteration mineral phase in subseafloor reaction zones, acted as a potential catalyst. Surface analysis techniques (XPS and ToF-SIMS) were used to characterize intermediate carbon species within this process. Time series dissolved H2 and H2S concentrations indicated thermodynamic equilibrium. Dissolved H2 and H2S concentrations of 13 and 2 mmol/kg, respectively, are approximately equivalent to measured values in Rainbow and Logatchev hydrothermal systems. Isotopically pure 13C methane and other alkane species (C2H6 and C3H8) were observed throughout the experiment, and attained steady state conditions. XPS analysis on mineral product surface indicated carbon enrichment on mineral surface following reaction. The majority of surface carbon involves species containing C-C or C-H bonds, such as alkyl or methylene groups. Alcohol and carboxyl groups in fewer amounts were also observed. ToF-SIMS analysis, which can offer isotope identification with high mass resolution, showed that most of these carbon species were 13C-labeled. Unlike gas phase Fischer-Tropsch synthesis, no carbide was observed on mineral product surface during the experiment. Therefore, a reaction pathway is proposed for formation of dissolved linear alkane species in hydrothermal abiotic organic synthesis, where oxygen-bearing organic compounds are expected to form in aqueous products by way of alcohol and carboxyl groups on mineral catalyst surface.

  11. Multiple repressive mechanisms in the hippocampus during memory formation.

    PubMed

    Cho, Jun; Yu, Nam-Kyung; Choi, Jun-Hyeok; Sim, Su-Eon; Kang, SukJae Joshua; Kwak, Chuljung; Lee, Seung-Woo; Kim, Ji-il; Choi, Dong Il; Kim, V Narry; Kaang, Bong-Kiun

    2015-10-01

    Memory stabilization after learning requires translational and transcriptional regulations in the brain, yet the temporal molecular changes that occur after learning have not been explored at the genomic scale. We used ribosome profiling and RNA sequencing to quantify the translational status and transcript levels in the mouse hippocampus after contextual fear conditioning. We revealed three types of repressive regulations: translational suppression of ribosomal protein-coding genes in the hippocampus, learning-induced early translational repression of specific genes, and late persistent suppression of a subset of genes via inhibition of estrogen receptor 1 (ESR1/ERα) signaling. In behavioral analyses, overexpressing Nrsn1, one of the newly identified genes undergoing rapid translational repression, or activating ESR1 in the hippocampus impaired memory formation. Collectively, this study unveils the yet-unappreciated importance of gene repression mechanisms for memory formation. PMID:26430118

  12. Mechanism of décollement formation in subduction zones

    NASA Astrophysics Data System (ADS)

    Hori, Takane; Sakaguchi, Hide

    2011-12-01

    The mechanism of décollement formation was investigated through a particle-based simulation model assuming homogeneity (e.g. no weak layer or pore fluid). A décollement-like structure appeared as a spontaneously localized shear deformation near the bottom of the sediment when the thickness of the sediment was sufficient to balance the gravitational force and tectonic loading. In contrast, no such décollement-like structure was formed when the sediment was too thin; in this case, the entire prism was deformed because of plate motion. These results are consistent with various observations in real subduction zones. A precise analysis of the stress state evolution during accretion reveals that the formation of a décollement-like structure is controlled by the spatio-temporal distribution of isotropic compression states.

  13. Clarifying the dominant sources and mechanisms of cirrus cloud formation.

    PubMed

    Cziczo, Daniel J; Froyd, Karl D; Hoose, Corinna; Jensen, Eric J; Diao, Minghui; Zondlo, Mark A; Smith, Jessica B; Twohy, Cynthia H; Murphy, Daniel M

    2013-06-14

    Formation of cirrus clouds depends on the availability of ice nuclei to begin condensation of atmospheric water vapor. Although it is known that only a small fraction of atmospheric aerosols are efficient ice nuclei, the critical ingredients that make those aerosols so effective have not been established. We have determined in situ the composition of the residual particles within cirrus crystals after the ice was sublimated. Our results demonstrate that mineral dust and metallic particles are the dominant source of residual particles, whereas sulfate and organic particles are underrepresented, and elemental carbon and biological materials are essentially absent. Further, composition analysis combined with relative humidity measurements suggests that heterogeneous freezing was the dominant formation mechanism of these clouds. PMID:23661645

  14. Mechanical phase matching of birefringent non-linear crystals.

    PubMed

    Deyra, Loïc; Balembois, François; Guilbaud, André; Villeval, Philippe; Georges, Patrick

    2014-09-22

    Second-order nonlinear processes such as second harmonic generation or parametric amplification have found numerous applications in the scientific and industrial world, from micromachining to petawatt laser facilities. These nonlinear interactions are mostly carried out in birefringent crystals because of their low cost and the possibility to operate at high powers Phase-matching configurations in birefringent crystals are determined by their refractive indexes. Here, we show that an important mechanical stress can be used to significantly change the phase-matching properties of a birefringent crystal. As an example, we demonstrate the shift of second harmonic non-critical phase matching wavelength of LiB3O5 (LBO) crystal at room temperature from 1200 nm to 1120 nm by applying compressive forces up to 100 MPa. We believe that this mechanical phase matching can be used as an additional degree of freedom to optimize nonlinear optical frequency mixing geometries. PMID:25321800

  15. Formation of binary phase gratings in photopolymer-liquid crystal composites by a surface-controlled anisotropic phase separation

    SciTech Connect

    Park, Jae-Hong; Khoo, Iam Choon; Yu, Chang-Jae; Jung, Min-Sik; Lee, Sin-Doo

    2005-01-10

    We report on formation of binary phase gratings in photopolymer-liquid crystal (PLC) composites using a surface-controlled phase separation method. The binary nature of the PLC phase gratings is produced by employing a single step photo-ablation through an amplitude photomask which precisely controls the interfacial interactions between the LC and the photopolymer on the alignment layer. A subsequent illumination of the ultraviolet light onto the whole PLC promotes an anisotropic phase separation resulting in the formation of distinct binary patterns for the PLC structure. The electrically tunable diffraction properties of the binary phase gratings are presented.

  16. Mechanical compaction directly modulates the dynamics of bile canaliculi formation.

    PubMed

    Wang, Yan; Toh, Yi-Chin; Li, Qiushi; Nugraha, Bramasta; Zheng, Baixue; Lu, Thong Beng; Gao, Yi; Ng, Mary Mah Lee; Yu, Hanry

    2013-02-01

    Homeostatic pressure-driven compaction is a ubiquitous mechanical force in multicellular organisms and is proposed to be important in the maintenance of multicellular tissue integrity and function. Previous cell-free biochemical models have demonstrated that there are cross-talks between compaction forces and tissue structural functions, such as cell-cell adhesion. However, its involvement in physiological tissue function has yet to be directly demonstrated. Here, we use the bile canaliculus (BC) as a physiological example of a multicellular functional structure in the liver, and employ a novel 3D microfluidic hepatocyte culture system to provide an unprecedented opportunity to experimentally modulate the compaction states of primary hepatocyte aggregates in a 3D physiological-mimicking environment. Mechanical compaction alters the physical attributes of the hepatocyte aggregates, including cell shape, cell packing density and cell-cell contact area, but does not impair the hepatocytes' remodeling and functional capabilities. Characterization of structural and functional polarity shows that BC formation in compact hepatocyte aggregates is accelerated to as early as 12 hours post-seeding; whereas non-compact control requires 48 hours for functional BC formation. Further dynamic immunofluorescence imaging and gene expression profiling reveal that compaction accelerated BC formation is accompanied by changes in actin cytoskeleton remodeling dynamics and transcriptional levels of hepatic nuclear factor 4α and Annexin A2. Our report not only provides a novel strategy of modeling BC formation for in vitro hepatology research, but also shows a first instance that homeostatic pressure-driven compaction force is directly coupled to the higher-order multicellular functions. PMID:23233209

  17. A mechanical device to study geometric phases and curvatures

    NASA Astrophysics Data System (ADS)

    Gil, Salvador

    2010-04-01

    A simple mechanical device is introduced that can be used to illustrate the parallel transport of a vector along a curved surface and the geometric phase shift that occurs when a vector is carried along a loop on a curved surface. Its connection with the Foucault pendulum and Berry phases is discussed. The experimental results are in close agreement with the theoretical expectations. The experiment is inexpensive and conceptually easy to understand and perform.

  18. Shock-induced formation mechanism of seifertite in shergottites

    NASA Astrophysics Data System (ADS)

    Bläß, Ulrich W.

    2013-05-01

    The Martian meteorites Shergotty, Zagami and Dhofar 378 have been re-investigated in order to elucidate the shock-induced formation of seifertite. The occurrence of orthorhombic seifertite (α-PbO2 structured SiO2) has been confirmed for the mesostasis of Shergotty and Zagami by transmission electron microscopy with lattice parameters of a = 4.05(1) Å, b = 5.05(1) Å and c = 4.45(1) Å. Seifertite crystals are interpreted as shock-induced transformation products occurring together with maskelynite of both plagioclase and alkali-feldspar composition in a largely preserved eutectic crystallisation texture. Shock-induced microstructures in accessory minerals demonstrate that these regions cannot have been completely re-molten. No further features indicating shock-pressures above ~30 GPa are detected. Hence, seifertite must have been formed below its stability field by a fast solid-state process. Significantly higher shock-pressures of Dhofar 378 indicate an inhibition of a potential seifertite crystallisation by resulting high post-shock temperatures. Crystallographic considerations reveal that a direct formation of seifertite from a high-pressure derivate of cristobalite is possible without breaking any silicon-oxygen bonds. Important implications arise from the existence of such a non-equilibrium pathway. Inferring shock-pressures from metastably formed phases appears implausible, and the transition pressure could be even below 30 GPa. Furthermore, the transformation product is determined by the precursor phase. Epitaxial intergrowth with other silica high-pressure polymorphs should be induced by certain features of the precursor, for example, planar defects, or heterogeneous strain conditions. Due to symmetrical considerations, seifertite will get amorphous during a potential back-transformation, which provides an explanation for the formation of numerous amorphous lamellae.

  19. Project ARGO: Gas phase formation in simulated microgravity

    NASA Technical Reports Server (NTRS)

    Powell, Michael R.; Waligora, James M.; Norfleet, William T.; Kumar, K. Vasantha

    1993-01-01

    The ARGO study investigated the reduced incidence of joint pain decompression sickness (DCS) encountered in microgravity as compared with an expected incidence of joint pain DCS experienced by test subjects in Earth-based laboratories (unit gravity) with similar protocols. Individuals who are decompressed from saturated conditions usually acquire joint pain DCS in the lower extremities. Our hypothesis is that the incidence of joint pain DCS can be limited by a significant reduction in the tissue gas micronuclei formed by stress-assisted nucleation. Reductions in dynamic and kinetic stresses in vivo are linked to hypokinetic and adynamic conditions of individuals in zero g. We employed the Doppler ultrasound bubble detection technique in simulated microgravity studies to determine quantitatively the degree of gas phase formation in the upper and lower extremities of test subjects during decompression. We found no evidence of right-to-left shunting through pulmonary vasculature. The volume of gas bubble following decompression was examined and compared with the number following saline contrast injection. From this, we predict a reduced incidence of DCS on orbit, although the incidence of predicted mild DCS still remains larger than that encountered on orbit.

  20. Pore formation mechanism of porous poly(DL-lactic acid) matrix membrane.

    PubMed

    Phaechamud, Thawatchai; Chitrattha, Sasiprapa

    2016-04-01

    Porous PLA structure has been widely used in cell transplantation, drug carrier and wound dressing. The porous structure can be controlled depending on the choice of the polymer, solvent, nonsolvent and preparation parameters. In this study, the porous PLA matrix membranes were prepared by adding PEG 400 in PLA solution using dichloromethane (DCM) as solvent prior to casting. The influence of other liquids as co-solvent on pore formation and the structural change during membrane formation were evaluated. The co-solvents affected both porous topography and mechanical properties of PLA membrane. The porous matrix were produced when the non-solvent of PLA was used as co-solvent. Cryo-SEM micrographs revealed that PEG 400 still remained in the PLA porous matrix membrane. From the tracking of the structural change during film formation, the PLA-PEG solution changed into porous structure by liquid liquid phase separation and solidification processes, respectively. Thermogravimetric analysis revealed that PLA-PEG in DCM solution exhibited the two-step of weight loss, the first step occurred from DCM evaporation and the second step occurred from the degradation of PLA-PEG matrix. The liquid-liquid phase separation and solidification started when the amount of DCM was higher than PEG 400 for 2.67 folds and DCM amount was equal to that of PEG 400, respectively. These results could clarify the pore formation mechanism of porous PLA membrane and will be useful for the further investigation and application. PMID:26838905

  1. Mechanisms of nascent fiber formation during avian skeletal muscle hypertrophy

    NASA Technical Reports Server (NTRS)

    McCormick, K. M.; Schultz, E.

    1992-01-01

    This study examined two putative mechanisms of new fiber formation in postnatal skeletal muscle, namely longitudinal fragmentation of existing fibers and de novo formation. The relative contributions of these two mechanisms to fiber formation in hypertrophying anterior latissimus dorsi (ALD) muscle were assessed by quantitative analysis of their nuclear populations. Muscle hypertrophy was induced by wing-weighting for 1 week. All nuclei formed during the weighting period were labeled by continuous infusion of 5-bromo-2'-deoxyuridine (BrdU), a thymidine analog, and embryonic-like fibers were identified using an antibody to ventricular-like embryonic (V-EMB) myosin. The number of BrdU-labeled and unlabeled nuclei in V-EMB-positive fibers were counted. Wing-weighting resulted in significant muscle enlargement and the appearance of many V-EMB+ fibers. The majority of V-EMB+ fibers were completely independent of mature fibers and had a nuclear density characteristics of developing fibers. Furthermore, nearly 100% of the nuclei in independent V-EMB+ fibers were labeled. These findings strongly suggest that most V-EMB+ fibers were nascent fibers formed de novo during the weighting period by satellite cell activation and fusion. Nascent fibers were found primarily in the space between fascicles where they formed a complex anastomosing network of fibers running at angles to one another. Although wing-weighting induced an increase in the number of branched fibers, there was no evidence that V-EMB+ fibers were formed by longitudinal fragmentation. The location of newly formed fibers in wing-weighted and regenerating ALD muscle was compared to determine whether satellite cells in the ALD muscle were unusual in that, if stimulated to divide, they would form fibers in the inter- and intrafascicular space. In contrast to wing-weighted muscle, nascent fibers were always found closely associated with necrotic fibers. These results suggest that wing-weighting is not simply another

  2. NO Formation and Consumption Mechanisms in a Plasma Filament

    NASA Astrophysics Data System (ADS)

    Burnette, David; Shkurenkov, Ivan; Adamovich, Igor; Lempert, Walter; Chaszeyka Non-Equilibrium Thermodynamics Laboratory Team

    2013-09-01

    Laser-induced fluorescence measurements have been performed on nitric oxide, oxygen atoms, and nitrogen atoms in low temperature, diffuse plasma filaments of air and air/fuel mixtures. The results have been compared to a one-dimensional numerical model and show that NO is rapidly formed in air as a result of excited species within the plasma and is consumed quickly by the reverse Zel'dovich mechanism. The evolution of the nitric oxide concentration in hydrogen and ethylene fuels is presented and the possibility of additional NO formation channels is discussed.

  3. Quark CP-phase and Froggatt-Nielsen mechanism

    NASA Astrophysics Data System (ADS)

    Hattori, Chuichiro; Matsuda, Masahisa; Matsunaga, Mamoru; Matsuoka, Takeo

    2016-08-01

    On the basis of the Froggatt-Nielsen mechanism, we study quark flavor mixings in the SU (6) × SU (2)R model. The characteristic structure of the CKM matrix is attributed to the hierarchical effective Yukawa couplings due to the Froggatt-Nielsen mechanism and also to the state-mixings beyond the MSSM. We elucidate the detailed form of the CKM matrix elements and find interesting relations between the CP violating phase and three mixing angles. Taking the existing data of three mixing angles, we estimate the quark CP-phase at δ = (75 ± 3) °. This result is in accord with observations.

  4. Mechanism for direct graphite-to-diamond phase transition

    PubMed Central

    Xie, Hongxian; Yin, Fuxing; Yu, Tao; Wang, Jian-Tao; Liang, Chunyong

    2014-01-01

    Using classical molecular dynamics with a more reliable reactive LCBOPII potential, we have performed a detailed study on the direct graphite-to-diamond phase transition. Our results reveal a new so-called “wave-like buckling and slipping” mechanism, which controls the transformation from hexagonal graphite to cubic diamond. Based on this mechanism, we have explained how polycrystalline cubic diamond is converted from hexagonal graphite, and demonstrated that the initial interlayer distance of compressed hexagonal graphite play a key role to determine the grain size of cubic diamond. These results can broaden our understanding of the high pressure graphite-to-diamond phase transition. PMID:25088720

  5. Pessimum effect of externally applied chlorides on expansion due to delayed ettringite formation: Proposed mechanism

    SciTech Connect

    Ekolu, S.O. . E-mail: s.ekolu@utoronto.ca; Thomas, M.D.A.; Hooton, R.D.

    2006-04-15

    Mortars and concretes were subjected to a heat treatment cycle consisting of a pre-set period of 4 h at 23 deg. C followed by accelerated curing at 95 deg. C prior to storage at room temperature in water or limewater, 0.5 M, 2.8 M sodium chloride solutions. It was found that the specimens stored in 0.5 M sodium chloride solution gave a much greater expansion than those stored in limewater or 2.8 M sodium chloride solution. This pessimum influence of chlorides on expansion due to delayed ettringite formation deviates from the commonly held view that chlorides mitigate sulphate attack in concretes. The mechanism of the pessimum effect of chlorides on expansion due to delayed ettringite formation, and the final products of the associated phase transformations have been proposed. X-ray diffraction and differential thermal analysis techniques were used to follow phase transformations.

  6. Formation mechanism of the protective layer in a blast furnace hearth

    NASA Astrophysics Data System (ADS)

    Jiao, Ke-xin; Zhang, Jian-liang; Liu, Zheng-jian; Xu, Meng; Liu, Feng

    2015-10-01

    A variety of techniques, such as chemical analysis, scanning electron microscopy-energy dispersive spectroscopy, and X-ray diffraction, were applied to characterize the adhesion protective layer formed below the blast furnace taphole level when a certain amount of titanium- bearing burden was used. Samples of the protective layer were extracted to identify the chemical composition, phase assemblage, and distribution. Furthermore, the formation mechanism of the protective layer was determined after clarifying the source of each component. Finally, a technical strategy was proposed for achieving a stable protective layer in the hearth. The results show that the protective layer mainly exists in a bilayer form in the sidewall, namely, a titanium-bearing layer and a graphite layer. Both the layers contain the slag phase whose major crystalline phase is magnesium melilite (Ca2MgSi2O7) and the main source of the slag phase is coke ash. It is clearly determined that solid particles such as graphite, Ti(C,N) and MgAl2O4 play an important role in the formation of the protective layer, and the key factor for promoting the formation of a stable protective layer is reasonable control of the evolution behavior of coke.

  7. BDNF mechanisms in late LTP formation: A synthesis and breakdown.

    PubMed

    Panja, Debabrata; Bramham, Clive R

    2014-01-01

    Unraveling the molecular mechanisms governing long-term synaptic plasticity is a key to understanding how the brain stores information in neural circuits and adapts to a changing environment. Brain-derived neurotrophic factor (BDNF) has emerged as a regulator of stable, late phase long-term potentiation (L-LTP) at excitatory glutamatergic synapses in the adult brain. However, the mechanisms by which BDNF triggers L-LTP are controversial. Here, we distill and discuss the latest advances along three main lines: 1) TrkB receptor-coupled translational control underlying dendritic protein synthesis and L-LTP, 2) Mechanisms for BDNF-induced rescue of L-LTP when protein synthesis is blocked, and 3) BDNF-TrkB regulation of actin cytoskeletal dynamics in dendritic spines. Finally, we explore the inter-relationships between BDNF-regulated mechanisms, how these mechanisms contribute to different forms of L-LTP in the hippocampus and dentate gyrus, and outline outstanding issues for future research. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'. PMID:23831365

  8. Formation of Nonclassical Ordered Phases of A B -Type Multiarm Block Copolymers

    NASA Astrophysics Data System (ADS)

    Gao, Ya; Deng, Hanlin; Li, Weihua; Qiu, Feng; Shi, An-Chang

    2016-02-01

    The formation of ordered phases from block copolymers is driven by a delicate balance between the monomer-monomer interaction and chain configurational entropy. The configurational entropy can be regulated by designed chain architecture, resulting in a new entropy-driven mechanism to control the self-assembly of ordered phases from block copolymers. An effective routine to regulate the configurational entropy is to utilize multiarm architecture, in which the entropic contribution to the free energy could be qualitatively controlled by the fraction of bridging configurations. As an illustration of this mechanism, the phase behavior of two A B -type multiarm block copolymers, B0-(Bi-Ai) m and (B1-Ai-B2) m where the minority A blocks form cylindrical or spherical domains, are examined using the self-consistent field theory (SCFT). The SCFT results demonstrate that the packing symmetry of the cylinders or spheres can be controlled by the length of the bridging B blocks. Several nonclassical ordered phases, including a novel square array cylinder with p 4 m m symmetry, are predicted to form from the A B -type multiarm block copolymers.

  9. Cementite Formation from Hematite-Graphite Mixture by Simultaneous Thermal-Mechanical Activation

    NASA Astrophysics Data System (ADS)

    Ashrafzadeh, Milad; Soleymani, Amir Peyman; Panjepour, Masoud; Shamanian, Morteza

    2015-04-01

    In this study, the effect of simultaneous thermal-mechanical activation (STMA) process on carbothermic reduction of hematite and also on iron carbide formation has been investigated. For this purpose, the STMA process was performed for 3 and 6 hours at 973 K (700 °C) and 1073 K (800 °C) on hematite-graphite powder mixtures (with 22 wt pct C) in argon atmosphere. The XRD patterns showed that by performing this process at 973 K (700 °C), the initial hematite reduction led to the formation of wüstite in the presence of graphite. Metallic iron phase was also formed along with wüstite phase at 1073 K (800 °C) for 3 hours, and by increasing the process time to 6 hours, in addition to the metallic iron, iron carbide was also formed. The SEM images and EDS analysis obtained at 1073 K (800 °C)were also indicative of the formation of pearlite structure along with proeutectoid cementite phase and free carbon in the form of graphite in the structure of the samples. According to the results of the image analysis, the percentage of the carbon content was more than 2.22 wt pct in this process lasting for 6 hours at 1073 K (800 °C). Also, DTA results showed that the sample hot milled for 6 hours at 1073 K (800 °C) contained more than 2.1 wt pct carbon. The mechanism of metallic iron and cementite formation from hematite was proposed. Therefore, the STMA process led to an increase in the rate of carbothermic reduction of hematite to metallic iron and reduced its starting temperature relative to the non-simultaneous application of each of the thermal and mechanical activation. Finally, this process can be brought up as a new method for the production of iron carbide from iron oxides.

  10. A new mechanism for dendritic pattern formation in dense systems

    PubMed Central

    Oikawa, Noriko; Kurita, Rei

    2016-01-01

    Patterns are often formed when particles cluster: Since patterns reflect the connectivity of different types of material, the emergence of patterns affects the physical and chemical properties of systems and shares a close relationship to their macroscopic functions. A radial dendritic pattern (RDP) is observed in many systems such as snow crystals, polymer crystals and biological systems. Although most of these systems are considered as dense particle suspensions, the mechanism of RDP formation in dense particle systems is not yet understood. It should be noted that the diffusion limited aggregation model is not applicable to RDP formation in dense systems, but in dilute particle systems. Here, we propose a simple model that exhibits RDP formation in a dense particle system. The model potential for the inter-particle interaction is composed of two parts, a repulsive and an attractive force. The repulsive force is applied to all the particles all the time and the attractive force is exerted only among particles inside a circular domain, which expands at a certain speed as a wave front propagating from a preselected centre. It is found that an RDP is formed if the velocity of the wave front that triggers the attractive interaction is of the same order of magnitude as the time scale defined by the aggregation speed. PMID:27353447

  11. A new mechanism for dendritic pattern formation in dense systems.

    PubMed

    Oikawa, Noriko; Kurita, Rei

    2016-01-01

    Patterns are often formed when particles cluster: Since patterns reflect the connectivity of different types of material, the emergence of patterns affects the physical and chemical properties of systems and shares a close relationship to their macroscopic functions. A radial dendritic pattern (RDP) is observed in many systems such as snow crystals, polymer crystals and biological systems. Although most of these systems are considered as dense particle suspensions, the mechanism of RDP formation in dense particle systems is not yet understood. It should be noted that the diffusion limited aggregation model is not applicable to RDP formation in dense systems, but in dilute particle systems. Here, we propose a simple model that exhibits RDP formation in a dense particle system. The model potential for the inter-particle interaction is composed of two parts, a repulsive and an attractive force. The repulsive force is applied to all the particles all the time and the attractive force is exerted only among particles inside a circular domain, which expands at a certain speed as a wave front propagating from a preselected centre. It is found that an RDP is formed if the velocity of the wave front that triggers the attractive interaction is of the same order of magnitude as the time scale defined by the aggregation speed. PMID:27353447

  12. A new mechanism for dendritic pattern formation in dense systems

    NASA Astrophysics Data System (ADS)

    Oikawa, Noriko; Kurita, Rei

    2016-06-01

    Patterns are often formed when particles cluster: Since patterns reflect the connectivity of different types of material, the emergence of patterns affects the physical and chemical properties of systems and shares a close relationship to their macroscopic functions. A radial dendritic pattern (RDP) is observed in many systems such as snow crystals, polymer crystals and biological systems. Although most of these systems are considered as dense particle suspensions, the mechanism of RDP formation in dense particle systems is not yet understood. It should be noted that the diffusion limited aggregation model is not applicable to RDP formation in dense systems, but in dilute particle systems. Here, we propose a simple model that exhibits RDP formation in a dense particle system. The model potential for the inter-particle interaction is composed of two parts, a repulsive and an attractive force. The repulsive force is applied to all the particles all the time and the attractive force is exerted only among particles inside a circular domain, which expands at a certain speed as a wave front propagating from a preselected centre. It is found that an RDP is formed if the velocity of the wave front that triggers the attractive interaction is of the same order of magnitude as the time scale defined by the aggregation speed.

  13. Sensitivity analysis of a mixed-phase chemical mechanism using automatic differentiation

    SciTech Connect

    Zhang, Y.; Easter, R.C.

    1998-08-01

    A sensitivity analysis of a comprehensive mixed-phase chemical mechanism is conducted under a variety of atmospheric conditions. The local sensitivities of gas and aqueous phase species concentrations with respect to a variety of model parameters are calculated using the novel automatic differentiation ADIFOR tool. The main chemical reaction pathways in all phases, interfacial mass transfer processes, and ambient physical parameters that affect tropospheric O{sub 3} formation and O{sub 3}-precursor relations under all modeled conditions are identified and analyzed. The results show that the presence of clouds not only reduces many gas phase species concentrations and the total oxidizing capacity but alters O{sub 3}-precursor relations. Decreases in gas phase concentrations and photochemical formation rates of O{sub 3} can be up to 9{percent} and 100{percent}, respectively, depending on the preexisting atmospheric conditions. The decrease in O{sub 3} formation is primarily caused by the aqueous phase reactions of O{sub 2}{sup {minus}} with dissolved HO{sub 2} and O{sub 3} under most cloudy conditions. {copyright} 1998 American Geophysical Union

  14. Intermetallic Phase Formation in Explosively Welded Al/Cu Bimetals

    NASA Astrophysics Data System (ADS)

    Amani, H.; Soltanieh, M.

    2016-05-01

    Diffusion couples of aluminum and copper were fabricated by explosive welding process. The interface evolution caused by annealing at different temperatures and time durations was investigated by means of optical microscopy, scanning electron microscopy equipped with energy dispersive spectroscopy, and x-ray diffraction. Annealing in the temperature range of 573 K to 773 K (300 °C to 500 °C) up to 408 hours showed that four types of intermetallic layers have been formed at the interface, namely Al2Cu, AlCu, Al3Cu4, and Al4Cu9. Moreover, it was observed that iron trace in aluminum caused the formation of Fe-bearing intermetallics in Al, which is near the interface of the Al-Cu intermetallic layers. Finally, the activation energies for the growth of Al2Cu, AlCu + Al3Cu4, Al4Cu9, and the total intermetallic layer were calculated to be about 83.3, 112.8, 121.6, and 109.4 kJ/mol, respectively. Considering common welding methods (i.e., explosive welding, cold rolling, and friction welding), although there is a great difference in welding mechanism, it is found that the total activation energy is approximately the same.

  15. Intermetallic Phase Formation in Explosively Welded Al/Cu Bimetals

    NASA Astrophysics Data System (ADS)

    Amani, H.; Soltanieh, M.

    2016-08-01

    Diffusion couples of aluminum and copper were fabricated by explosive welding process. The interface evolution caused by annealing at different temperatures and time durations was investigated by means of optical microscopy, scanning electron microscopy equipped with energy dispersive spectroscopy, and x-ray diffraction. Annealing in the temperature range of 573 K to 773 K (300 °C to 500 °C) up to 408 hours showed that four types of intermetallic layers have been formed at the interface, namely Al2Cu, AlCu, Al3Cu4, and Al4Cu9. Moreover, it was observed that iron trace in aluminum caused the formation of Fe-bearing intermetallics in Al, which is near the interface of the Al-Cu intermetallic layers. Finally, the activation energies for the growth of Al2Cu, AlCu + Al3Cu4, Al4Cu9, and the total intermetallic layer were calculated to be about 83.3, 112.8, 121.6, and 109.4 kJ/mol, respectively. Considering common welding methods ( i.e., explosive welding, cold rolling, and friction welding), although there is a great difference in welding mechanism, it is found that the total activation energy is approximately the same.

  16. Molecular Mechanisms of the Formation and Progression of Intracranial Aneurysms

    PubMed Central

    KATAOKA, Hiroharu

    2015-01-01

    Until recently, only a little was understood about molecular mechanisms of the development of an intracranial aneurysm (IA). Recent advancements over the last decade in the field of genetics and molecular biology have provided us a wide variety of evidences supporting the notion that chronic inflammation is closely associated with the pathogenesis of IA development. In the field of genetics, large-scale Genome-wide association studies (GWAS) has identified some IA susceptible loci and genes related to cell cycle and endothelial function. Researches in molecular biology using human samples and animal models have revealed the common pathway of the initiation, progression, and rupture of IAs. IA formation begins with endothelial dysfunction followed by pathological remodeling with degenerative changes of vascular walls. Medical treatments inhibiting inflammatory cascades in IA development are likely to prevent IA progression and rupture. Statins and aspirin are expected to suppress IA progression by their anti-inflammatory effects. Decoy oligodeoxynucleotides (ODNs) inhibiting inflammatory transcription factors such as nuclear factor kappa-B (NF-κB) and Ets-1 are the other promising choice of the prevention of IA development. Further clarification of molecular mechanisms of the formation and progression of IAs will shed light to the pathogenesis of IA development and provide insight into novel diagnostic and therapeutic strategies for IAs. PMID:25761423

  17. Analysis of Europan Cycloid Morphology and Implications for Formation Mechanisms

    NASA Technical Reports Server (NTRS)

    Marshall, S. T.; Kattenhorn, S. A.

    2004-01-01

    Europa's highly fractured crust has been shown to contain features with a range of differing morphologies. Most lineaments on Europa are believed to have initiated as cracks, although the type of cracking (e.g. tensile vs. shear) remains unclear and may vary for different morphologies. Arcuate lineaments, called cycloids or flexi, have been observed in nearly all imaged regions of Europa and have been modeled as tensile fractures that were initiated in response to diurnal variations in tides. Despite this hypothesis about the formation mechanism, there have been no detailed analyses of the variable morphologies of cycloids. We have examined Galileo images of numerous locations on Europa to develop a catalog of the different morphologies of cycloids. This study focuses on variations in morphology along individual cycloid segments and differences in cusp styles between segments, while illustrating how morphologic evidence can help unravel formation mechanisms. In so doing, we present evidence for cycloid cusps forming due to secondary fracturing during strike-slip sliding on pre-existing cycloid segments.

  18. Boron nitride hollow nanospheres: Synthesis, formation mechanism and dielectric property

    SciTech Connect

    Zhong, B.; Tang, X.H.; Huang, X.X.; Xia, L.; Zhang, X.D.; Wang, C.J.; Wen, G.W.

    2015-04-15

    Highlights: • BN hollow nanospheres are fabricated in large scale via a new CVD method. • Morphology and structure are elucidated by complementary analytical techniques. • Formation mechanism is proposed based on experimental observations. • Dielectric properties are investigated in the X-band microwave frequencies. • BN hollow nanospheres show lower dielectric loss than regular BN powders. - Abstract: Boron nitride (BN) hollow nanospheres have been successfully fabricated by pyrolyzing vapors decomposed from ammonia borane (NH{sub 3}BH{sub 3}) at 1300 °C. The final products have been extensively characterized by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. The BN hollow nanospheres were ranging from 100 to 300 nm in diameter and around 30–100 nm in thickness. The internal structure of the products was found dependent on the reaction temperatures. A possible formation mechanism of the BN hollow nanospheres was proposed on the basis of the experimental observations. Dielectric measurements in the X-band microwave frequencies (8–12 GHz) showed that the dielectric loss of the paraffin filled by the BN hollow nanospheres was lower than that filled by regular BN powders, which indicated that the BN hollow nanospheres could be potentially used as low-density fillers for microwave radomes.

  19. The reaction mechanism of formation of chemically synthesized Nd{sub 2}Fe{sub 14}B hard magnetic nanoparticles

    SciTech Connect

    Deheri, P.K.; Shukla, S.; Ramanujan, R.V.

    2012-02-15

    Nd{sub 2}Fe{sub 14}B based magnetic materials exhibit excellent magnetic properties and are widely used in many engineering applications. However, chemical synthesis of this compound is challenging. In this work, the formation mechanism of chemically synthesized Nd{sub 2}Fe{sub 14}B magnetic nanoparticles was studied. Nd, Fe and B precursors were converted to Nd-Fe-B oxide by the sol-gel method, reduction of these oxides by CaH{sub 2} resulted in Nd{sub 2}Fe{sub 14}B nanoparticles. Nd{sub 2}Fe{sub 14}B phase formation resulted from two competing reactions: (a) Nd{sub 2}Fe{sub 14}B phase formation by direct combination of NdH{sub 2}, Fe and B, (b) Nd{sub 2}Fe{sub 17} phase formation from NdH{sub 2} and Fe, followed by Nd{sub 2}Fe{sub 14}B phase formation by the reaction of Nd{sub 2}Fe{sub 17} and B. Addition of boron to Nd-Fe-B oxide during reduction resulted in improved magnetic properties. The activation energy for Nd{sub 2}Fe{sub 14}B phase formation was found to be 365 kJ mol{sup -1}. The optimum heat treatment temperature and time for Nd{sub 2}Fe{sub 14}B phase formation were found to be 800 Degree-Sign C and 90 min, respectively. - Graphical abstract: The kinetics, reaction mechanism and morphology of Nd{sub 2}Fe{sub 14}B magnetic nanoparticles synthesized by sol-gel followed by reduction-diffusion at 800 Degree-Sign C. Highlights: Black-Right-Pointing-Pointer The formation mechanism of Nd{sub 2}Fe{sub 14}B magnetic nanoparticles was studied. Black-Right-Pointing-Pointer Nd{sub 2}Fe{sub 14}B phase formation occurs by two parallel competing reactions. Black-Right-Pointing-Pointer Reaction of NdH{sub 2}, Fe and B resulted in Nd{sub 2}Fe{sub 14}B phase formation. Black-Right-Pointing-Pointer Nd{sub 2}Fe{sub 14}B phase can also be formed by the reaction of Nd{sub 2}Fe{sub 17} and B. Black-Right-Pointing-Pointer Maximum wt% of Nd{sub 2}Fe{sub 14}B phase was obtained at 800 Degree-Sign C and 90 min annealing.

  20. Aqueous phase oligomerization of methyl vinyl ketone through photooxidation - Part 2: Development of the chemical mechanism and atmospheric implications

    NASA Astrophysics Data System (ADS)

    Ervens, B.; Renard, P.; Ravier, S.; Clément, J.-L.; Monod, A.

    2014-08-01

    We developed a chemical mechanism based on laboratory experiments that have shown efficient oligomerization from methyl vinyl ketone (MVK) in the bulk aqueous phase. Kinetic data are applied (if known) or fitted to the observed MVK decay and oligomer mass increase. The mechanism is then implemented into a multiphase box model that simulates (i) oligomer formation upon uptake of MVK from the gas phase, and (ii) SOA formation from isoprene, as a precursor of MVK and methacrolein (MACR) in the aqueous and gas phases. Model results show that under atmospheric conditions, the oligomer formation rate strongly depends on the availability of dissolved oxygen. If oxygen is consumed too quickly or its solubility is kinetically or thermodynamically limited, oligomerization is accelerated, in agreement with the laboratory studies. The comparison of predicted oligomer formation shows that for most model assumptions (e.g. depending on the assumed partitioning of MVK and MACR), SOA formation from isoprene in the gas phase exceeds aqueous SOA formation by a factor 3-4. However, at high aerosol liquid water content and potentially high partitioning of oligomer precursors into the aqueous phase, SOA formation in both phases might be equally efficient.

  1. THE FORMATION MECHANISM OF GAS GIANTS ON WIDE ORBITS

    SciTech Connect

    Dodson-Robinson, Sarah E.; Veras, Dimitri; Ford, Eric B.; Beichman, C. A.

    2009-12-10

    The recent discoveries of massive planets on ultra-wide orbits of HR 8799 and Fomalhaut present a new challenge for planet formation theorists. Our goal is to figure out which of three giant planet formation mechanisms-core accretion (with or without migration), scattering from the inner disk, or gravitational instability-could be responsible for Fomalhaut b, HR 8799 b, c and d, and similar planets discovered in the future. This paper presents the results of numerical experiments comparing the long-period planet formation efficiency of each possible mechanism in model A star, G star, and M star disks. First, a simple core accretion simulation shows that planet cores forming beyond 35 AU cannot reach critical mass, even under the most favorable conditions one can construct. Second, a set of N-body simulations demonstrates that planet-planet scattering does not create stable, wide-orbit systems such as HR 8799. Finally, a linear stability analysis verifies previous work showing that global spiral instabilities naturally arise in high-mass disks. We conclude that massive gas giants on stable orbits with semimajor axes a approx> 35 AU form by gravitational instability in the disk. We recommend that observers examine the planet detection rate as a function of stellar age, controlling for the planets' dimming with time. Any age trend would indicate that planets on wide orbits are transient relics of scattering from the inner disk. If planet detection rate is found to be independent of stellar age, it would confirm our prediction that gravitational instability is the dominant mode of producing detectable planets on wide orbits. We also predict that the occurrence ratio of long-period to short-period gas giants should be highest for M dwarfs due to the inefficiency of core accretion and the expected small fragment mass (approx10 M {sub Jup}) in their disks.

  2. Formation of organic acids from the gas-phase ozonolysis of terpinolene.

    PubMed

    Ma, Yan; Marston, George

    2009-06-01

    Gas-phase ozonolysis of terpinolene was studied in static chamber experiments using gas chromatography coupled to mass spectrometric and flame ionisation detection to separate and detect products. Two isomers of C(7)-diacids and three isomers of C(7)-aldehydic acids were identified in the condensed phase after derivatisation. Possible mechanisms of formation of these acids were investigated using different OH radical scavengers and relative humidities, and were compared to those reported earlier for the ozonolysis of beta-pinene. In addition, branching ratios for some of the individual reaction steps, e.g. the branching ratio between the two hydroperoxide channels of the C(7)-CI, were deduced from the quantitative product yield data. Branching ratios for POZ decomposition and the stabilisation/decomposition of the C(7-)CI were also obtained from measurements of the C(7) primary carbonyl product. PMID:19458821

  3. Auto Mechanics. Pre-Apprenticeship Phase 1 Training. Instructor's Guide.

    ERIC Educational Resources Information Center

    Lane Community Coll., Eugene, OR.

    This instructor's guide accompanies the self-paced student training modules on auto mechanics, one of which is available separately as CE 032 867. Introductory materials include an introduction to pre-apprenticeship and its three phases of training, a recommended preocedure for conducting pre-apprenticeship training, and a course outline. Teaching…

  4. Simulation of semi-explicit mechanisms of SOA formation from glyoxal in a 3-D model

    NASA Astrophysics Data System (ADS)

    Knote, C.; Hodzic, A.; Jimenez, J. L.; Volkamer, R.; Orlando, J. J.; Baidar, S.; Brioude, J.; Fast, J.; Gentner, D. R.; Goldstein, A. H.; Hayes, P. L.; Knighton, W. B.; Oetjen, H.; Setyan, A.; Stark, H.; Thalman, R.; Tyndall, G.; Washenfelder, R.; Waxman, E.; Zhang, Q.

    2013-10-01

    New pathways to form secondary organic aerosols (SOA) have been postulated recently. Glyoxal, the smallest dicarbonyl, is one of the proposed precursors. It has both anthropogenic and biogenic sources, and readily partitions into the aqueous-phase of cloud droplets and deliquesced aerosols where it undergoes both reversible and irreversible chemistry. In this work we extend the regional scale chemistry transport model WRF-Chem to include a detailed gas-phase chemistry of glyoxal formation as well as a state-of-the-science module describing its partitioning and reactions in the aqueous-phase of aerosols. A comparison of several proposed mechanisms is performed to quantify the relative importance of different formation pathways and their regional variability. The CARES/CalNex campaigns over California in summer 2010 are used as case studies to evaluate the model against observations. In all simulations the LA basin was found to be the hotspot for SOA formation from glyoxal, which contributes between 1% and 15% of the model SOA depending on the mechanism used. Our results indicate that a mechanism based only on a simple uptake coefficient, as frequently employed in global modeling studies, leads to higher SOA contributions from glyoxal compared to a more detailed description that considers aerosol phase state and chemical composition. In the more detailed simulations, surface uptake is found to be the main contributor to SOA mass compared to a volume process and reversible formation. We find that contribution of the latter is limited by the availability of glyoxal in aerosol water, which is in turn controlled by an increase in the Henry's law constant depending on salt concentrations ("salting-in"). A kinetic limitation in this increase prevents substantial partitioning of glyoxal into aerosol water at high salt concentrations. If this limitation is removed, volume pathways contribute >20% of glyoxal SOA mass, and the total mass formed (5.8% of total SOA in the LA

  5. Upwash exploitation and downwash avoidance by flap phasing in ibis formation flight.

    PubMed

    Portugal, Steven J; Hubel, Tatjana Y; Fritz, Johannes; Heese, Stefanie; Trobe, Daniela; Voelkl, Bernhard; Hailes, Stephen; Wilson, Alan M; Usherwood, James R

    2014-01-16

    Many species travel in highly organized groups. The most quoted function of these configurations is to reduce energy expenditure and enhance locomotor performance of individuals in the assemblage. The distinctive V formation of bird flocks has long intrigued researchers and continues to attract both scientific and popular attention. The well-held belief is that such aggregations give an energetic benefit for those birds that are flying behind and to one side of another bird through using the regions of upwash generated by the wings of the preceding bird, although a definitive account of the aerodynamic implications of these formations has remained elusive. Here we show that individuals of northern bald ibises (Geronticus eremita) flying in a V flock position themselves in aerodynamically optimum positions, in that they agree with theoretical aerodynamic predictions. Furthermore, we demonstrate that birds show wingtip path coherence when flying in V positions, flapping spatially in phase and thus enabling upwash capture to be maximized throughout the entire flap cycle. In contrast, when birds fly immediately behind another bird--in a streamwise position--there is no wingtip path coherence; the wing-beats are in spatial anti-phase. This could potentially reduce the adverse effects of downwash for the following bird. These aerodynamic accomplishments were previously not thought possible for birds because of the complex flight dynamics and sensory feedback that would be required to perform such a feat. We conclude that the intricate mechanisms involved in V formation flight indicate awareness of the spatial wake structures of nearby flock-mates, and remarkable ability either to sense or predict it. We suggest that birds in V formation have phasing strategies to cope with the dynamic wakes produced by flapping wings. PMID:24429637

  6. Motionless electromagnetic phase stepping versus mechanical phase stepping in x-ray phase-contrast imaging with a compact source.

    PubMed

    Harmon, Katherine J; Miao, Houxun; Gomella, Andrew A; Bennett, Eric E; Foster, Barbara A; Bhandarkar, Priya; Wen, Han

    2015-04-21

    X-ray phase contrast imaging based on grating interferometers detects the refractive index distribution of an object without relying on radiation attenuation, thereby having the potential for reduced radiation absorption. These techniques belong to the broader category of optical wavefront measurement, which requires stepping the phase of the interference pattern to obtain a pixel-wise map of the phase distortion of the wavefront. While phase stepping traditionally involves mechanical scanning of a grating or mirror, we developed electromagnetic phase stepping (EPS) for imaging with compact sources to obviate the need for mechanical movement. In EPS a solenoid coil is placed outside the x-ray tube to shift its focal spot with a magnetic field, causing a relative movement between the projection of the sample and the interference pattern in the image. Here we present two embodiments of this method. We verified experimentally that electromagnetic and mechanical phase stepping give the same results and attain the same signal-to-noise ratios under the same radiation dose. We found that the relative changes of interference fringe visibility were within 3.0% when the x-ray focal spot was shifted by up to 1.0 mm in either direction. We conclude that when using x-ray tube sources, EPS is an effective means of phase stepping without the need for mechanical movement. PMID:25803511

  7. Mechanism of YF3 nanoparticle formation in reverse micelles.

    PubMed

    Lemyre, Jean-Luc; Lamarre, Sébastien; Beaupré, Ariane; Ritcey, Anna M

    2011-10-01

    This article reports an investigation of the mechanism of YF(3) nanoparticle formation in two variants of the reverse microemulsion precipitation method. These two variants involve the addition of F(-), either as a microemulsion or directly as an aqueous solution, to Y(3+) dispersed in nonionic reverse micelles. The two methods yield amorphous and single-crystal nanoparticles, respectively. The kinetics of reagent mixing are studied by (19)F NMR and colorimetric model reactions, and the particle growth is monitored by TEM. Mixing and nucleation are shown to occur within seconds to minutes whereas particle growth continues for 4 to 48 h, depending on the particle type. Moreover, the growth rate remains constant during most of the growth period, indicating that Ostwald ripening is the most probable growth mechanism. The single-emulsion method also produces a minority amorphous population that exhibits significantly different growth kinetics, attributed to a coagulation mechanism. Secondary growth experiments, involving the addition of precursor ions to mature particles, have been conducted to evaluate the relative importance of nucleation and the competitive growth of existing particle populations. The key differences between the two methods reside in the nucleation step. In the case of the classical method, nucleation occurs upon intermicellar collisions and under conditions of comparable concentrations of Y(3+) and F(-). This method generates more numerous stable nuclei and smaller particles. In the single-microemulsion method, nucleation occurs in the presence of excess F(-) through the interaction of Y(3+)-containing micelles with microdroplets of aqueous F(-). These conditions lead to the formation of crystalline particles and a wider size distribution of unstable nuclei. PMID:21842856

  8. Formation of Secondary Particulate Matter by Reactions of Gas Phase Hexanal with Sulfate Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Zhang, J.

    2003-12-01

    The formation of secondary particulate matter from the atmospheric oxidation of organic compounds can significantly contribute to the particulate burden, but the formation of organic secondary particulate matter is poorly understood. One way of producing organic secondary particulate matter is the oxidation of hydrocarbons with seven or more carbon atoms to get products with low vapor pressure. However, several recent reports suggest that relatively low molecular weight carbonyls can enter the particle phase by undergoing heterogeneous reactions. This may be a very important mechanism for the formation of organic secondary particulate matter. Atmospheric aldehydes are important carbonyls in the gas phase, which form via the oxidation of hydrocarbons emitted from anthropogenic and biogenic sources. In this poster, we report the results on particle growth by the heterogeneous reactions of hexanal. A 5 L Continuous Stirred Tank Reactor (CSTR) is set up to conduct the reactions in the presence of seed aerosol particles of deliquesced ammonia bisulfate. Hexanal is added into CSTR by syringe pump, meanwhile the concentrations of hexanal are monitored with High Pressure Liquid Chromatograph (HPLC 1050). A differential Mobility Analyzer (TSI 3071) set to an appropriate voltage is employed to obtain monodisperse aerosols, and another DMA associated with a Condensation Nuclear Counter (TSI 7610) is used to measure the secondary particle size distribution by the reaction in CSTR. This permits the sensitive determination of particle growth due to the heterogeneous reaction, very little growth occurs when hexanal added alone. Results for the simultaneous addition of hexanal and alcohols will also be presented.

  9. Nanoscale self-assembly of starch: Phase relations, formation, and structure

    NASA Astrophysics Data System (ADS)

    Creek, John A.

    This project has been undertaken to develop a fundamental understanding of the spherulitic self-assembly of starch polymers from aqueous solution, both as a model for starch granule initiation in vivo and as a biologically-inspired material with applications in the food and pharmaceutical industries. Botanical starches were observed to form semi-crystalline spherulites from aqueous solution when cooled after a high temperature treatment, and the processes resulting in spherulite formation were investigated. Based on the influence of cooling rate on spherulite formation from a botanical starch, liquid-liquid demixing in competition with crystallization was proposed as the mechanism leading to spherulite formation (summarized in a hypothetical phase diagram). Study of amylose and amylopectin self-assembly demonstrated that the linear polymer plays the primary role in forming spherulites. As a result, the roles of degree of polymerization, concentration, and thermal processing conditions on amylose self-assembly were explored. Thermal properties, final system morphology, and crystalline allomorph were characterized. In all cases the experimental findings supported the proposed phase diagram. Finally, the crystalline nanostructure of the spherulites was probed using atomic force microscopy (AFM), revealing a seemingly universal level of structure in crystalline starch materials. This was compared to an existing model of crystallization for synthetic polymers involving a transitional liquid crystalline-like ordering---a comparison that makes sense in light of the known helical structure of starch.

  10. Formation of tetragonal hydrogen tungsten bronze by reactive mechanical alloying

    SciTech Connect

    Urretavizcaya, G. Tonus, F.; Gaudin, E.; Bobet, J.-L.; Castro, F.J.

    2007-10-15

    Hydrogen tungsten bronzes have been synthesized by reactive mechanical alloying monoclinic tungsten (VI) oxide under hydrogen atmosphere. Two milling devices with different energy ranges were used. Regardless of the distinct reaction times, a similar phase evolution was observed with both apparatus. The characterization of the materials was performed by XRD, SEM, DSC and total hydrogen content determination. The final product obtained was a mixture of tetragonal H{sub 0.33}WO{sub 3} and H{sub 0.23}WO{sub 3} bronzes. - Graphical abstract: Hydrogen tungsten bronzes have been synthesized by reactive mechanical alloying (RMA) monoclinic WO{sub 3} under H{sub 2} atmosphere. By using two milling devices with different energy ranges a similar phase evolution with distinct reaction times was observed. The materials were characterized by XRD, SEM, DSC and total hydrogen content determination. The final product obtained was a mixture of tetragonal H{sub 0.33}WO{sub 3} and H{sub 0.23}WO{sub 3} bronzes. Display Omitted.

  11. Secondary Aerosol: Precursors and Formation Mechanisms. Technical Report on Grant

    SciTech Connect

    Weinstein-Lloyd, Judith B

    2009-05-04

    This project focused on studying trace gases that participate in chemical reactions that form atmospheric aerosols. Ammonium sulfate is a major constituent of these tiny particles, and one important pathway to sulfate formation is oxidation of dissolved sulfur dioxide by hydrogen peroxide in cloud, fog and rainwater. Sulfate aerosols influence the number and size of cloud droplets, and since these factors determine cloud radiative properties, sulfate aerosols also influence climate. Peroxide measurements, in conjunction with those of other gaseous species, can used to distinguish the contribution of in-cloud reaction to new sulfate aerosol formation from gas-phase nucleation reactions. This will lead to more reliable global climate models. We constructed and tested a new 4-channel fluorescence detector for airborne detection of peroxides. We integrated the instrument on the G-1 in January, 2006 and took a test flight in anticipation of the MAX-Mex field program, where we planned to fly under pressurized conditions for the first time. We participated in the 2006 Megacity Initiative: Local and Global Research Observations (MILAGRO) - Megacity Aerosol EXperiment Mexico City (MAX-Mex) field measurement campaign. Peroxide instrumentation was deployed on the DOE G-1 research aircraft based in Veracruz, and at the surface site at Tecamac University.

  12. Phase Transition in Postsynaptic Densities Underlies Formation of Synaptic Complexes and Synaptic Plasticity.

    PubMed

    Zeng, Menglong; Shang, Yuan; Araki, Yoichi; Guo, Tingfeng; Huganir, Richard L; Zhang, Mingjie

    2016-08-25

    Postsynaptic densities (PSDs) are membrane semi-enclosed, submicron protein-enriched cellular compartments beneath postsynaptic membranes, which constantly exchange their components with bulk aqueous cytoplasm in synaptic spines. Formation and activity-dependent modulation of PSDs is considered as one of the most basic molecular events governing synaptic plasticity in the nervous system. In this study, we discover that SynGAP, one of the most abundant PSD proteins and a Ras/Rap GTPase activator, forms a homo-trimer and binds to multiple copies of PSD-95. Binding of SynGAP to PSD-95 induces phase separation of the complex, forming highly concentrated liquid-like droplets reminiscent of the PSD. The multivalent nature of the SynGAP/PSD-95 complex is critical for the phase separation to occur and for proper activity-dependent SynGAP dispersions from the PSD. In addition to revealing a dynamic anchoring mechanism of SynGAP at the PSD, our results also suggest a model for phase-transition-mediated formation of PSD. PMID:27565345

  13. Kinetics and mechanism of the beta-alanine + OH gas phase reaction: a quantum mechanical approach.

    PubMed

    Cruz-Torres, Armando; Galano, Annia; Alvarez-Idaboy, J Raúl

    2006-01-14

    The OH hydrogen abstraction reaction from beta-alanine has been studied using the BHandHLYP hybrid HF-density functional and 6-311G(d,p) basis sets. The energies have been improved by single point calculations at the CCSD(T)/6-311G(d,p) level of theory. The structures of the different stationary points are discussed. Reaction profiles are modeled including the formation of pre-reactive and product complexes. Negative net activation energy is obtained for the overall reaction. A complex mechanism is proposed, and the rate coefficients are calculated using transition state theory over the temperature range of 250-400 K. The rate coefficients are proposed for the first time and it was found that in the gas phase the hydrogen abstraction occurs mainly from the CH(2) group next to the amino end. The following expressions, in cm(3) mol(-1) s(-1), are obtained for the overall rate constants, at 250-400 and 290-310 K, respectively: k(250-400)= 2.36 x 10(-12) exp(340/T), and k(290-310)= 1.296 x 10(-12) exp(743/T). The three parameter expression that best describes the studied reaction is k(250-400)= 1.01 x 10(-21)T(3.09) exp(1374/T). The beta-alanine + OH reaction was found to be 1.5 times faster than the alpha-alanine + OH reaction. PMID:16482271

  14. A unifying picture of gas-phase formation and growth of PAH (Polycyclic Aromatic Hydrocarbons), soot, diamond and graphite

    NASA Technical Reports Server (NTRS)

    Frenklach, Michael

    1990-01-01

    A variety of seemingly different carbon formation processes -- polycyclic aromatic hydrocarbons and diamond in the interstellar medium, soot in hydrocarbon flames, graphite and diamond in plasma-assisted-chemical vapor deposition reactors -- may all have closely related underlying chemical reaction mechanisms. Two distinct mechanisms for gas-phase carbon growth are discussed. At high temperatures it proceeds via the formation of carbon clusters. At lower temperatures it follows a polymerization-type kinetic sequence of chemical reactions of acetylene addition to a radical, and reactivation of the resultant species through H-abstraction by a hydrogen atom.

  15. Reexamination of CO formation during formic acid decomposition on the Pt(1 1 1) surface in the gas phase

    NASA Astrophysics Data System (ADS)

    Wang, Yingying; Zhang, Dongju; Liu, Peng; Liu, Chengbu

    2016-08-01

    Existing theoretical results for formic acid (HCOOH) decomposition on Pt(1 1 1) cannot rationalize the easy CO poisoning of the catalysts in the gas phase. The present work reexamined HCOOH decomposition on Pt(1 1 1) by considering the effect of the initial adsorption structure of the reactant on the reactivity. Our calculations present a new adsorption configuration of HCOOH on Pt(1 1 1), from which the formation of CO is found to be competing with the formation of CO2. The newly proposed mechanism improves our understanding for the mechanism of HCOOH decomposition catalyzed by Pt-based catalysts.

  16. [Mechanisms of Forespore Formation during Polysporogenesis of an Anaerobic Bacterium Anaerobacter polyendosporus PST(T)].

    PubMed

    Duda, V I; Suzina, N E

    2015-01-01

    Forespore formation in the anaerobic bacterium Anaerobacterpolyendosporus PS-1(T) was studied by phase contrast, fluorescence, and electron microscopy. It is concluded that in this bacterium the formation of all forespores in multispore sporangia occurs via the same mechanism as that operating in all known bacilli and clostridia during the single-spore variant of endogenous sporogenesis. Its cytological indicators are as follows: (1) formation of the forespore septum, (2) engulfment of the smaller prespore cell by the larger mother cell, (3) cortex synthesis, (4) assembly of the spore coats, (5) exosporium formation, and (6) lysis of the mother cell. Polysporogenesis in strain PS-1(T) is characterized by synchronous formation of all spores (siblings) in a given sporangium and by the absence of any indication of forespore division within the mother cell. These data suggest that multiple spores within a single PS-1(T) cell result not from division of the first forespores developing at one or two cell poles, as it was reported for another polysporogenic bacterium, "Metabacterium polyspora", but rather from simultaneous independent formation of several prespores in a single mother cell in the course of modified cell division. PMID:27169242

  17. Shocked cobbles in Lower Cretaceous Duwon Formation, South Korea: their classification and possible formation mechanisms

    NASA Astrophysics Data System (ADS)

    Lim, Hyoun Soo; Chae, Yong-Un; Kim, Kyung Soo; Kim, Cheng-Bin; Huh, Min

    2016-04-01

    Shocked cobbles are the cobbles having shock-induced deformation structures on the surfaces. The most distinctive macroscopic features are the subparallel fractures and the pervasive surface craters, with or without radial fractures. Until now, these shocked cobbles have been reported mainly in Europe, America, and Africa, but never been found or reported in Korea. Shocked cobbles have recently found in the Lower Cretaceous Duwon Formation in South Korea, which was the second report in Asia. The Duwon Formation consists mainly of conglomerates, gravelly sandstones and intercalated mudstone and shale layers. The shocked cobbles are commonly found in the lowermost clast-supported conglomerate layers, and they show various deformation features, such as pockmarked (circular or elliptical) cobbles, cratered (Hertzian or bowl-shaped) cobbles with or without radial fractures, cobbles showing subparallel fractures, and strongly squashed or heavily dissected cobbles. In general, these deformation structures are considered to have resulted from pressure dissolution by overburden, tectonic compression, and seismic or meteorite impacts. However, the exact formation mechanism is not clearly understood, and still in debate. The shocked cobbles found in the Duwon Formation have similar features to those of previously reported shocked cobbles, especially to Triassic Buntsandstein conglomerates in northeastern Spain. Based on the degree of deformation, the Duwon shocked cobbles can be divided into four types, which are (1) faint contact marks, (2) pitted marks without any fractures, (3) pitted marks with radial or sub-parallel fractures affected by pits, and (4) intensive fractures and heavily dissected fragments. The possible mechanisms for the Duwon shocked cobbles are thought to be crushing process by shear stress and pressure solution.

  18. Noise and disorder: Phase transitions and universality in a model of opinion formation

    NASA Astrophysics Data System (ADS)

    Crokidakis, Nuno

    2016-02-01

    In this work, we study a three-state opinion formation model considering two distinct mechanisms, namely independence and conviction. Independence is introduced in the model as a noise by means of a probability of occurrence q. On the other hand, conviction acts as a disorder in the system, and it is introduced by two discrete probability distributions. We analyze the effects of such two mechanisms on the phase transitions of the model, and we found that the critical exponents are universal over the order-disorder frontier, presenting the same universality class of the mean-field Ising model. In addition, for one of the probability distributions, the transition may be eliminated for a wide range of the parameters.

  19. Pattern-formation mechanisms in motility mutants of Myxococcus xanthus

    PubMed Central

    Starruß, Jörn; Peruani, Fernando; Jakovljevic, Vladimir; Søgaard-Andersen, Lotte; Deutsch, Andreas; Bär, Markus

    2012-01-01

    Formation of spatial patterns of cells is a recurring theme in biology and often depends on regulated cell motility. Motility of the rod-shaped cells of the bacterium Myxococcus xanthus depends on two motility machineries, type IV pili (giving rise to S-motility) and the gliding motility apparatus (giving rise to A-motility). Cell motility is regulated by occasional reversals. Moving M. xanthus cells can organize into spreading colonies or spore-filled fruiting bodies, depending on their nutritional status. To ultimately understand these two pattern-formation processes and the contributions by the two motility machineries, as well as the cell reversal machinery, we analyse spatial self-organization in three M. xanthus strains: (i) a mutant that moves unidirectionally without reversing by the A-motility system only, (ii) a unidirectional mutant that is also equipped with the S-motility system, and (iii) the wild-type that, in addition to the two motility systems, occasionally reverses its direction of movement. The mutant moving by means of the A-engine illustrates that collective motion in the form of large moving clusters can arise in gliding bacteria owing to steric interactions of the rod-shaped cells, without the need of invoking any biochemical signal regulation. The two-engine strain mutant reveals that the same phenomenon emerges when both motility systems are present, and as long as cells exhibit unidirectional motion only. From the study of these two strains, we conclude that unidirectional cell motion induces the formation of large moving clusters at low and intermediate densities, while it results in vortex formation at very high densities. These findings are consistent with what is known from self-propelled rod models, which strongly suggests that the combined effect of self-propulsion and volume exclusion interactions is the pattern-formation mechanism leading to the observed phenomena. On the other hand, we learn that when cells occasionally reverse

  20. Wind a potential mechanism of Mars gully formation

    NASA Astrophysics Data System (ADS)

    Yue, Z.; Xie, H.

    2007-12-01

    Since Mars gullies were first revealed with the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) in 2000, they rapidly became a hotspot in Mars studying in that some of them are very young features on Mars surface. The previous studies focused on their formation and erosion mechanisms. As a result, several mechanisms have been proposed. But none of them can interpret the formation of all gullies perfectly. High resolution HiRISE images give us a good opportunity to examine it. In this study, we propose that wind could play an important role in some of the gullies formation. Wind is the most important agent acting on Mars surface (Fenton, 2003) and produced many features on Mars surface, including ubiquitous dunes, yardangs, deflation pits, dust storms, and dust deposits. Similarly, wind can also affect the inner edge of craters and valleys, where the gullies have been found mostly. Under the erosion of wind, the small channel will turn to a big gully. Wind could be a major reason to explain (1) why gullies formed in one side of a crater wall, while small wind-blown sand deposits in the opposite side of the same crater, as found in the crater of this HiRISE image (PSP_001697_1390_RED.JP2) and (2) why two craters next to each other, but only the big one has gullies developed. The reason for this is that big crater can form a strong wind circulation. In another HiRISE image (PSP_001330_1395_RED.JP2), we found a rock in the lower end of a gully course in a crater wall, for which we explain this gully is in the process of formation. This rock could be moving down and carving in to form the course due to the wind force. Based on the common characteristics of wind abrasion mechanics (Greeley and Iversen, 1985), we propose the following processes of gully formation by wind: (1) Embryonic stage: one side of a crater wall or valley wall was "softened" by the wind storm and formed some irregular and V-shaped fractured channels. (2) Youthful stage: small impact pits formed

  1. New understanding of microstructure formation of the rubber phase in thermoplastic vulcanizates (TPV).

    PubMed

    Wu, Hanguang; Tian, Ming; Zhang, Liqun; Tian, Hongchi; Wu, Youping; Ning, Nanying

    2014-03-21

    The breakup of the rubber phase in an ethylene-propylene-diene monomer (EPDM)/polypropylene (PP) blend at the early stage of dynamic vulcanization is similar to that in an unvulcanized EPDM/PP blend because of the low crosslink density of the EPDM phase. In this work, the minimum size of the rubber phase in the unvulcanized EPDM/PP blend was first calculated by using the critical breakup law of viscoelastic droplets in a matrix. The calculated results showed that the minimum size of the rubber phase in the unvulcanized blend was in the nanometer scale (25-46 nm), not the micrometer scale as reported in many works. Meanwhile, the actual size of the rubber phase in the thermoplastic vulcanizate (TPV) at both the early stage and the final stage of dynamic vulcanization was observed by using peak force tapping atomic force microscopy (PF-AFM). The results indicated that the EPDM phase indeed broke up into nanoparticles at the early stage of dynamic vulcanization, in good agreement with the calculated results. More interestingly, we first revealed that the micrometer-sized rubber particles commonly observed in TPV were actually the agglomerates of rubber nanoparticles with diameters between 40 and 60 nm. The mechanism for the formation of rubber nanoparticles and their agglomerates during dynamic vulcanization was then discussed. Our work provides guidance to control the microstructure of the rubber phase in TPV to prepare high performance TPV products for a wide range of applications in the automobile and electronic industries. PMID:24652229

  2. Circuit Mechanisms Underlying Motor Memory Formation in the Cerebellum

    PubMed Central

    Lee, Ka Hung; Mathews, Paul J.; Reeves, Alexander M.B.; Choe, Katrina Y.; Jami, Shekib A.; Serrano, Raul E.; Otis, Thomas S.

    2015-01-01

    SUMMARY The cerebellum stores associative motor memories essential for properly timed movement; however, the mechanisms by which these memories form and are acted upon remain unclear. To determine how cerebellar activity relates to movement and motor learning, we used optogenetics to manipulate spontaneously firing Purkinje neurons (PNs) in mouse simplex lobe. Using high-speed videography and motion tracking, we found that altering PN activity produced rapid forelimb movement. PN inhibition drove movements time-locked to stimulus onset, whereas PN excitation drove delayed movements time-locked to stimulus offset. Pairing either PN inhibition or excitation with sensory stimuli triggered the formation of robust, associative motor memories; however, PN excitation led to learned movements whose timing more closely matched training intervals. These findings implicate inhibition of PNs as a teaching signal, consistent with a model whereby learning leads first to reductions in PN firing that subsequently instruct circuit changes in the cerebellar nucleus. PMID:25843404

  3. An interfacial mechanism for cloud droplet formation on organic aerosols

    NASA Astrophysics Data System (ADS)

    Ruehl, Christopher R.; Davies, James F.; Wilson, Kevin R.

    2016-03-01

    Accurate predictions of aerosol/cloud interactions require simple, physically accurate parameterizations of the cloud condensation nuclei (CCN) activity of aerosols. Current models assume that organic aerosol species contribute to CCN activity by lowering water activity. We measured droplet diameters at the point of CCN activation for particles composed of dicarboxylic acids or secondary organic aerosol and ammonium sulfate. Droplet activation diameters were 40 to 60% larger than predicted if the organic was assumed to be dissolved within the bulk droplet, suggesting that a new mechanism is needed to explain cloud droplet formation. A compressed film model explains how surface tension depression by interfacial organic molecules can alter the relationship between water vapor supersaturation and droplet size (i.e., the Köhler curve), leading to the larger diameters observed at activation.

  4. Formation of charged nanoparticles in hydrocarbon flames: principal mechanisms

    NASA Astrophysics Data System (ADS)

    Starik, A. M.; Savel'ev, A. M.; Titova, N. S.

    2008-11-01

    The processes of charged gaseous and particulate species formation in sooting hydrocarbon/air flame are studied. The original kinetic model, comprising the chemistry of neutral and charged gaseous species, generation of primary clusters, which then undergo charging due to attachment of ions and electrons to clusters and via thermoemission, and coagulation of charged-charged, charged-neutral and neutral-neutral particles, is reported. The analysis shows that the principal mechanisms of charged particle origin in hydrocarbon flames are associated with the attachment of ions and electrons produced in the course of chemoionization reactions to primary small clusters and particles and coagulation via charged-charged and charged-neutral particle interaction. Thermal ionization of particles does not play a significant role in the particle charging. This paper was presented at the Third International Symposium on Nonequilibrium Process, combustion, and Atmospheric Phenomena (Dagomys, Sochi, Russia, 25-29 June 2007).

  5. An interfacial mechanism for cloud droplet formation on organic aerosols.

    PubMed

    Ruehl, Christopher R; Davies, James F; Wilson, Kevin R

    2016-03-25

    Accurate predictions of aerosol/cloud interactions require simple, physically accurate parameterizations of the cloud condensation nuclei (CCN) activity of aerosols. Current models assume that organic aerosol species contribute to CCN activity by lowering water activity. We measured droplet diameters at the point of CCN activation for particles composed of dicarboxylic acids or secondary organic aerosol and ammonium sulfate. Droplet activation diameters were 40 to 60% larger than predicted if the organic was assumed to be dissolved within the bulk droplet, suggesting that a new mechanism is needed to explain cloud droplet formation. A compressed film model explains how surface tension depression by interfacial organic molecules can alter the relationship between water vapor supersaturation and droplet size (i.e., the Köhler curve), leading to the larger diameters observed at activation. PMID:27013731

  6. Formation Mechanism for a Hybrid Supramolecular Network Involving Cooperative Interactions

    NASA Astrophysics Data System (ADS)

    Mura, Manuela; Silly, Fabien; Burlakov, Victor; Castell, Martin R.; Briggs, G. Andrew D.; Kantorovich, Lev N.

    2012-04-01

    A novel mechanism of hybrid assembly of molecules on surfaces is proposed stemming from interactions between molecules and on-surface metal atoms which eventually got trapped inside the network pores. Based on state-of-the-art theoretical calculations, we find that the new mechanism relies on formation of molecule-metal atom pairs which, together with molecules themselves, participate in the assembly growth. Most remarkably, the dissociation of pairs is facilitated by a cooperative interaction involving many molecules. This new mechanism is illustrated on a low coverage Melamine hexagonal network on the Au(111) surface where multiple events of gold atoms trapping via a set of so-called “gate” transitions are found by kinetic Monte Carlo simulations based on transition rates obtained using ab initio density functional theory calculations and the nudged elastic band method. Simulated STM images of gold atoms trapped in the pores of the Melamine network predict that the atoms should appear as bright spots inside Melamine hexagons. No trapping was found at large Melamine coverages, however. These predictions have been supported by preliminary STM experiments which show bright spots inside Melamine hexagons at low Melamine coverages, while empty pores are mostly observed at large coverages. Therefore, we suggest that bright spots sometimes observed in the pores of molecular assemblies on metal surfaces may be attributed to trapped substrate metal atoms. We believe that this type of mechanism could be used for delivering adatom species of desired functionality (e.g., magnetic) into the pores of hydrogen-bonded networks serving as templates for their capture.

  7. Formation mechanism of land subsidence in the North China Plain

    NASA Astrophysics Data System (ADS)

    Guo, Haipeng; Cheng, Guoming

    2014-05-01

    Land subsidence is a progressive and gradual geological disaster, whose development is irreversible. Due to rapid development of industrialization and urbanization, land subsidence occurs commonly in the North China Plain, and has become the main environmental factor impacting sustainable economic and social development. This study presents a brief review on the current situation of land subsidence in the North China Plain. Then the hydrologic, hydrogeologic and anthropogenic conditions favorable for the formation of land subsidence are analyzed, indicating that the formation of land subsidence is mainly determined by local geological condition and enabling conditions, e.g. long-term excessive exploitation of groundwater and engineering construction. A correlation analysis was conducted in both the North China Plain and Cangzhou region, a typical area where severe land subsidence occurs, of the quantitative relationship between deep groundwater yield and the land subsidence. The analysis results indicate that the land subsidence volume accounts for 40% to 44% of deep water yield in the North China Plain, indirectly showing the proportion of released water from compressibility of the aquifer and the aquitard in deep groundwater yield. In Cangzhou region, this proportion was calculated as 58%, far greater than that of the North China Plain. This is induced by the local lithologic structure and recharge condition of deep groundwater in Cangzhou region. The analysis of soil samples in Cangzhou region shows that strong relations exist among different physical parameters, and good change laws of compression with depth and pressure are found for soil samples. The hydraulic conductivities of clay are six orders of magnitude greater than those of the aquifer, implying the strong hypothesis of land subsidence. This analysis provides data and scientific basis for further study on formation mechanism of land subsidence in Cangzhou region and objective evaluation of its

  8. Study of the mechanisms of acid rain formation

    SciTech Connect

    Parungo, F.; Nagamoto, C.; Madel, R.

    1987-11-01

    Samples of rain, snow, cloud water, aerosols and soil were collected in Colorado to study the mechanisms of acid rain formation. Chemical compositions of various types of samples were analyzed to investigate the stepwise incorporation of inpurities into precipitation. Local soil was generally alkaline; atmospheric aerosols, which are mixtures of stirred-up soil particles and anthropogenic pollution, were slightly acidic; cloud condensation nuclei, which initiate clouds at condensation level, had an average pH of approx.6. However, local clouds were very acidic (pH approx.4), indicating that further acidification takes place in clouds by adsorption of acidic gases, e.g., CO/sub 2/, SO/sub 2/, and NO/sub x/. We found that summer showers formed by coalescence of cloud droplets are likely to be as acidic as cloud water. The chemistry of snow may differ from that of clouds, depending on the mechanisms of snow formation. If snow crystals are initiated by deposition nucleation and grown by diffusion of water vapor from surrounding evaporating cloud droplets as in the Bergeron--Findeisen process, the snow crystals are purified and should not be acidic. If the snow crystals are initiated by freezing of cloud droplets and grow by vapor diffusion, then the constituents of cloud water are diluted and the snow is less acidic than cloud water. If snow grains (graupel) are formed by accretion of frozen cloud drops or by riming, the snow can be as acidic as cloud water. Raindrops formed by melting snow inherit the chemistry of the parent snow, but differentiate in scavenging coefficiencies of gases and aerosols below the clouds. Both atmospheric chemical reactions and cloud microphysical processes are responsible for chemical variations in precipitation.

  9. [Molecular mechanisms underlying the formation of neuromuscular junction].

    PubMed

    Higuchi, Osamu; Yamanashi, Yuji

    2011-07-01

    The neuromuscular junction (NMJ) is a synapse between a motor neuron and skeletal muscle. The contraction of skeletal muscle is controlled by the neurotransmitter acetylcholine (ACh), which is released from the motor nerve terminal. To achieve efficient neuromuscular transmission, acetylcholine receptors (AChRs) must be densely clustered on the muscle membrane of the NMJ. Failure of AChR clustering is associated with disorders of neuromuscular transmission such as congenital myasthenic syndromes (CMS) and myasthenia gravis (MG). Motoneuronal agrin and muscle-specific receptor tyrosine kinase (MuSK) are known to play essential roles in the formation and maintenance of NMJs in the central region of each muscle. However, it had been unclear how agrin activates MuSK. Recent studies have elucidated the roles of several key molecules, including the cytoplasmic adaptor protein Dok-7 and LDL receptor-related protein 4 (Lrp4), in agrin-induced MuSK activation. Moreover, new evidence indicates that cyclin-dependent kinase 5 (Cdk5) regulates postsynaptic differentiation. In this review, we summarize the latest developments in molecular mechanisms underlying NMJ formation in vertebrates. PMID:21747134

  10. Nonlinear Mechanisms of Lesion Formation by High Intensity Focused Ultrasound

    NASA Astrophysics Data System (ADS)

    Khokhlova, V. A.; Bailey, M. R.; Reed, J.; Canney, M. S.; Kaczkowski, P. J.; Crum, L. A.

    2006-05-01

    Nonlinear mechanisms of lesion formation by high intensity focused ultrasound (HIFU) were investigated experimentally and numerically in a transparent polyacrylamide gel phantom. Numerical predictions were made with a finite-amplitude acoustic propagation model. A 2-MHz transducer of 42-mm diameter and 44.5-mm radius of curvature was operated above the cavitation threshold of the gel phantom at various peak acoustic powers and duty cycles. Acoustic waveforms were recorded in the gel by a fiber optic hydrophone. Bubble activity was detected actively by B-mode diagnostic imaging, passively by a remote focused hydrophone, and optically by CCD and high-speed cameras. Elevated static pressure was applied to suppress bubble activity and increase the boiling temperature, thus isolating the pure effect of acoustic nonlinearity. In overpressure experiment performed at 32 W acoustic power, both cavitation and nonlinear ultrasound propagation accelerated lesion inception and growth, but acoustic nonlinearity, which led to shock formation, played the dominant role. Rapid localized heating, particularly by increased absorption in the shocked wave, led to boiling and then to proximal growth and migration of the lesion even at low overpressure. At 90W acoustic power, boiling was observed and predicted in less than 50 ms.

  11. Insight into the mechanism of Sb promoted Cu(In,Ga)Se{sub 2} formation

    SciTech Connect

    Xiang, Yong Zhang, Xiaokun; Zhang, Shu

    2013-08-15

    Sb-doping has been demonstrated to be a new approach to promote Cu(In,Ga)Se{sub 2} (CIGS) thin film formation. To study the mechanism of Sb-promoted CIGS formation, we investigated the influence of Sb on the evolution of the critical intermediate Cu–Se phases, and found that Cu{sub 3}SbSe{sub 3} species was formed. Phase change of the as-prepared Cu–Se compounds at elevated temperature was determined using the differential scanning calorimetry analysis. For samples containing Sb, the melting decomposition occurred at 507.1 °C, along with aggregation of nanocrystals into a bulk, while the morphology of the sample without Sb barely changed after heating. This result suggests that the mobile Cu{sub 3}SbSe{sub 3} is likely the key intermediate responsible for Sb-promoted CIGS formation. Furthermore, we extended the scope of Sb-doping approach to solvothermal synthesis and CIGS nanocrystals were synthesized with significantly promoted kinetics in the presence of Sb. Based on these results, we propose the mechanism of Sb promoted CIGS formation. - Graphical abstract: Cu{sub 3}SbSe{sub 3} mobile phase is likely the key species to promote the formation of Cu(In,Ga)Se{sub 2}, and significantly promoting effect by Sb is also found in the synthesis of Cu(In,Ga)Se{sub 2} nanocrystals. Highlights: • In the presence of Sb, Cu{sub 3}SbSe{sub 3} is formed while synthesizing the essential intermediate Cu–Se compounds for Cu(In,Ga)Se{sub 2} materials. • Cu{sub 3}SbSe{sub 3} shows high mobility at elevated temperature. • Cu{sub 3}SbSe{sub 3} mobile phase is likely the key species to improve Cu(In,Ga)Se{sub 2} thin film formation. • A synthesis methodology is developed to produce Cu(In,Ga)Se{sub 2} nanocrystals with significantly promoted reaction kinetics.

  12. Hexagonal CoSe formation in mechanical alloyed Co 75Se 25 mixture

    NASA Astrophysics Data System (ADS)

    Campos, C. E. M.; de Lima, J. C.; Grandi, T. A.; Machado, K. D.; Drago, V.; Pizani, P. S.

    2004-07-01

    A hexagonal CoSe alloy with NiAs-type structure was obtained by mechanical alloying starting from a mixture of pure crystalline powders with nominal composition Co 75Se 25. X-ray diffraction (XRD), differential scanning calorimetry (DSC), Mössbauer spectroscopy (MS) and Raman scattering (RS) techniques were used to follow the structural, thermal, magnetic and optical properties of the binary mixture as a function of milling time. XRD results show the formation of a nanometric hexagonal CoSe phase between 3 and 70 h of milling coexisting with non-reacted Co phases, also in nanometric scale. DSC and RS results showed some changes in the thermal and optical properties of the crystalline phases when the milling time increases. The Raman active modes of the CoSe and Co oxide phases were observed. MS results showed practically no iron in the samples milled up to 15 h, while for extended milling times (70 h), they showed the presence of some α-Fe and the formation of other iron alloys due to the contamination by the milling media.

  13. Phase stability, mechanical property, and electronic structure of an Mg-Ca system.

    PubMed

    Zhou, Peng; Gong, H R

    2012-04-01

    First principle calculations reveal that Mg-Ca phases are energetically favorable with negative heats of formation within the entire composition range, and that a strong chemical bonding is formed between Mg and Ca atoms. Calculations also show that the composition has an important effect on mechanical properties of Mg-Ca, and that the Mg-Ca phases with an Mg composition of less than 50 at.% would be good candidates as degradable bone materials in terms of Young's modulus and ductility. In addition, it is found out that Mg(3)Ca, MgCa and MgCa(3) have phase sequences of BCC→HCP, BCC→HCP and FCC→HCP under high pressure, respectively, and that Ca plays a dominant role in determining the electronic structures and stable crystal structures of various Mg-Ca phases. PMID:22402162

  14. Formation and Maturation of Phase-Separated Liquid Droplets by RNA-Binding Proteins.

    PubMed

    Lin, Yuan; Protter, David S W; Rosen, Michael K; Parker, Roy

    2015-10-15

    Eukaryotic cells possess numerous dynamic membrane-less organelles, RNP granules, enriched in RNA and RNA-binding proteins containing disordered regions. We demonstrate that the disordered regions of key RNP granule components and the full-length granule protein hnRNPA1 can phase separate in vitro, producing dynamic liquid droplets. Phase separation is promoted by low salt concentrations or RNA. Over time, the droplets mature to more stable states, as assessed by slowed fluorescence recovery after photobleaching and resistance to salt. Maturation often coincides with formation of fibrous structures. Different disordered domains can co-assemble into phase-separated droplets. These biophysical properties demonstrate a plausible mechanism by which interactions between disordered regions, coupled with RNA binding, could contribute to RNP granule assembly in vivo through promoting phase separation. Progression from dynamic liquids to stable fibers may be regulated to produce cellular structures with diverse physiochemical properties and functions. Misregulation could contribute to diseases involving aberrant RNA granules. PMID:26412307

  15. Influence of Powder Metallurgical Processing Routes on Phase Formations in a Multicomponent NbSi-Alloy

    NASA Astrophysics Data System (ADS)

    Seemüller, C.; Hartwig, T.; Mulser, M.; Adkins, N.; Wickins, M.; Heilmaier, M.

    2014-09-01

    Refractory metal silicide composites on the basis of Nbss-Nb5Si3 have been investigated as potential alternatives for nickel-base superalloys for years because of their low densities and good high-temperature strengths. NbSi-based composites are typically produced by arc-melting or casting. Samples in this study, however, were produced by powder metallurgy because of the potential for near net-shape component fabrication with very homogeneous microstructures. Either gas atomized powder or high-energy mechanically alloyed elemental powders were compacted by powder injection molding or hot isostatic pressing. Heat treatments were applied for phase stability evaluation. Slight compositional changes (oxygen, nitrogen, or iron) introduced by the processing route, i.e., powder production and consolidation, can affect phase formations and phase transitions during the process. Special focus is put on the distinction between different silicides (Nb5Si3 and Nb3Si) and silicide modifications (α-, β-, and γ-Nb5Si3), respectively. These were evaluated by x-ray diffraction and energy-dispersive spectroscopy measurements with the additional inclusion of thermodynamic calculations using the calculated phase diagram method.

  16. Mechanisms of kinetic trapping in self-assembly and phase transformation

    NASA Astrophysics Data System (ADS)

    Hagan, Michael F.; Elrad, Oren M.; Jack, Robert L.

    2011-09-01

    In self-assembly processes, kinetic trapping effects often hinder the formation of thermodynamically stable ordered states. In a model of viral capsid assembly and in the phase transformation of a lattice gas, we show how simulations in a self-assembling steady state can be used to identify two distinct mechanisms of kinetic trapping. We argue that one of these mechanisms can be adequately captured by kinetic rate equations, while the other involves a breakdown of theories that rely on cluster size as a reaction coordinate. We discuss how these observations might be useful in designing and optimising self-assembly reactions.

  17. Investigation of the mechanism of impurity assisted nanoripple formation on Si induced by low energy ion beam erosion

    SciTech Connect

    Koyiloth Vayalil, Sarathlal; Gupta, Ajay; Roth, Stephan V.; Ganesan, V.

    2015-01-14

    A detailed mechanism of the nanoripple pattern formation on Si substrates generated by the simultaneous incorporation of pure Fe impurities at low energy (1 keV) ion beam erosion has been studied. To understand and clarify the mechanism of the pattern formation, a comparative analysis of the samples prepared for various ion fluence values using two complimentary methods for nanostructure analysis, atomic force microscopy, and grazing incidence small angle x-ray scattering has been done. We observed that phase separation of the metal silicide formed during the erosion does not precede the ripple formation. It rather concurrently develops along with the ripple structure. Our work is able to differentiate among various models existing in the literature and provides an insight into the mechanism of pattern formation under ion beam erosion with impurity incorporation.

  18. Phase space view of quantum mechanical systems and Fisher information

    NASA Astrophysics Data System (ADS)

    Nagy, Á.

    2016-06-01

    Pennini and Plastino showed that the form of the Fisher information generated by the canonical distribution function reflects the intrinsic structure of classical mechanics. Now, a quantum mechanical generalization of the Pennini-Plastino theory is presented based on the thermodynamical transcription of the density functional theory. Comparing to the classical case, the phase-space Fisher information contains an extra term due to the position dependence of the temperature. However, for the special case of constant temperature, the expression derived bears resemblance to the classical one. A complete analogy to the classical case is demonstrated for the linear harmonic oscillator.

  19. An ionic mechanism of carbon formation in flames

    NASA Technical Reports Server (NTRS)

    Calcote, H. F.

    1990-01-01

    The formation of incipient carbon in flames can be described by a series of elementary reactions in which the precursor of soot is the ion C3H3+, and the major building block is acetylene, polyacetylenes, or other hydrocarbon fragments which are present in large concentrations. The precursor ion is produced by nonequilibrium chemi-ionization reactions, e.g., CH asterisk plus C2H2 yields C3H3+ plus e or CH asterisk plus O yields CHO+ plus e. The CHO+ rapidly becomes C3H3+ through a series of ion-molecule reactions. The chemi-ion then adds acetylene in a series of very rapid ion-molecule reactions producing larger and larger ions. Ions isomerize very rapidly to produce aromatic structures overcoming one of the major problems with neutral species mechanisms: how to form the first carbon ring. As the ions grow, their recombination rate coefficients with electrons increase so that the larger ions are removed by dissociative recombination. These neutral species now continue to grow by the addition of more acetylene producing even larger neutral species. With increasing size, the rate coefficient of electron attachment also increases causing the reaction to become important, depending upon the temperature. Appreciable concentrations of negative ions shift the ion removal process to dissociative ion-ion recombination, which is orders of magnitude slower than ion-electron recombination. As the neutral species continue to grow by the addition of acetylene, they gradually take on the aspect of particles, i.e., the bulk properties of the substance CxHy dominate over the chemical properties. This change is gradual and there is no distinct size at which a large molecule becomes a particle. Evidence will be presented supporting the above mechanism. All of the ions proposed in the mechanism have been observed by mass spectrometric analysis, their concentrations measured, and their rates of reaction in the flame environment determined to be adequate to account for the observed rate

  20. Mechanically driven phase transformation from crystal to glass in Ti-Al binary system

    SciTech Connect

    Fan, G.J.; Quan, M.X.; Hu, Z.Q. . National Key Lab for RSA)

    1995-01-15

    Metastable phases such as metallic glass have been widely studied during the past few years. A number of techniques have been employed to synthesize these alloys, among which, mechanical alloying (MA) was considered to be a promising tool for large production and economical operation. However, the mechanism of formation of the metastable phases during mechanical alloying/ball milling have not been well determined. Previous studies of amorphization by mechanical alloying of pure elements or ball milling of intermetallics have proposed the following mechanics: rapid quenching of local melts produced by mechanical impacts, high density of defects generated by mechanical deformation which raises the free energy of compound to above that of the amorphous phase, effective local temperature rise at the collision site which gives rise to a solid-state reaction similar to thin film diffusion couples. Most of the studies have suggested that solid-state-type reactions are most likely to be responsible for vitrification during mechanical alloying, and the kinetics was controlled by the point and lattice defects generated by mechanical deformation. In the Zr-Al alloy system, however, another mechanisms was proposed by Fecht et al. based on a chemically induced catastrophic transition. The amorphization was interpreted with the elastic instability of crystal caused by the atomic mismatch of two components in supersaturated solid solution; when solute concentration reaches a critical value, the supersaturated solid solution becomes metastable and a polymorphous melting'' transition to a glass may occur. This hypothesis has been further examined by Ma and Atzmon with calorimeter measurements. In this paper, it will be shown experimentally that this mechanism may be valid in the Ti-Al binary system.

  1. Effect of temperature on the reaction pathway of calcium carbonate formation via precursor phases

    NASA Astrophysics Data System (ADS)

    Purgstaller, Bettina; Mavromatis, Vasileios; Konrad, Florian; Dietzel, Martin

    2016-04-01

    It has been earlier postulated that some biogenic and sedimentary calcium carbonate (CaCO3) minerals (e.g. calcite and aragonite) are secondary in origin and have originally formed via a metastable calcium carbonate precursor phase (e.g. amorphous CaCO3, [1-2]). Such formation pathways are likely affected by various physicochemical parameters including aqueous Mg and temperature. In an effort to improve our understanding on the formation mechanism of CaCO3 minerals, precipitation experiments were carried out by the addition of a 0.6 M (Ca,Mg)Cl2 solution at distinct Mg/Ca ratios (1/4 and 1/8) into a 1 M NaHCO3 solution under constant pH conditions(8.3 ±0.1). The formation of CaCO3 was systematically examined as a function of temperature (6, 12, 18 and 25 ±0.3° C). During the experimental runs mineral precipitation was monitored by in situ Raman spectroscopy as well as by continuous sampling and analyzing of precipitates and reactive solutions. The results revealed two pathways of CaCO3 formation depending on the initial Mg/Ca ratio and temperature: (i) In experiments with a Mg/Ca ratio of 1/4 at ≤ 12° C as well as in experiments with a Mg/Ca ratio of 1/8 at ≤ 18° C, ikaite (CaCO3 6H2O) acts as a precursor phase for aragonite formation. (ii) In contrast higher temperatures induced the formation of Mg-rich amorphous CaCO3 (Mg-ACC) which was subsequently transformed to Mg-rich calcite. In situ Raman spectra showed that the transformation of Mg-ACC to Mg-calcite occurs at a higher rate (˜ 8 min) compared to that of ikaite to aragonite (> 2 h). Thus, the formation of aragonite rather than of Mg-calcite occurs due to the slower release of Ca2+and CO32‑ ions into the Mg-rich reactive solution during retarded ikaite dissolution. This behavior is generally consistent with the observation that calcite precipitation is inhibited at elevated aqueous Mg/Ca ratios. [1] Addadi L., Raz S. and Weiner S. (2003) Advanced Materials 15, 959-970. [2] Rodriguez-Blanco J. D

  2. Mechanism for the formation of density gradients through semipermeable membranes

    NASA Astrophysics Data System (ADS)

    Serra, Roberto; Villani, Marco

    2013-06-01

    We describe and theoretically analyze here a phenomenon which can take place in a system with two different compartments, each containing the same chemicals, which undergo reactions on the surface of both sides of the membrane which separates the two compartments, in the case where the membrane permeabilities to the various chemicals are different and diffusion is fast. There are two main reasons of interest for this kind of system. First, if the overall system is isolated, starting from the case where the initial concentrations of the chemicals are the same in the two phases, one observes the formation of a transient concentration difference. This difference eventually vanishes, although it might last for a long time, depending upon the value of the relevant parameters. The second reason of interest is that, in the case of an open system, one can achieve a steady-state value of the concentration of some chemicals in the smaller compartment which is higher than that in the external one. These results may prove important, inter alia, to understand the behavior of lipid vesicles in water, a topic which is important for studies on the origin of life as well as for possible future applications.

  3. Laws of formation of polar smectic phases under a frustrated interaction

    SciTech Connect

    Dolganov, P. V.; Zhilin, V. M.; Kats, E. I.

    2012-12-15

    The Landau theory of phase transitions with a two-component order parameter is used to systematically calculate the structures and phase diagrams of polar liquid crystals. Commensurate and incommensurate structures with a layer-type period form as a result of a frustration interaction. Phase diagrams are calculated when various short- and long-range interlayer interactions are sequentially introduced. As a result, the nature of formation of various structures is revealed. The calculated phase diagrams explain the formation of various phases, their temperature sequence (including so-called 'unusual' sequence of phases), and the nature of forces responsible for the formation of a certain structure and the shape of a phase diagram.

  4. Minimal mechanisms for school formation in self-propelled particles

    NASA Astrophysics Data System (ADS)

    Li, Yue-Xian; Lukeman, Ryan; Edelstein-Keshet, Leah

    2008-05-01

    In the context of social organisms, a school refers to a cohesive group of organisms that share a common speed and direction of motion, as well as a common axis of body alignment or polarization. Schools are also noted for the relatively fixed nearest-neighbour distances between individuals. The rules of interaction that lead to the formation and maintenance of a school structure have been explored experimentally, analytically, and by simulation. Interest in biological examples, and non-biological “self-propelled particles” such as robots, vehicles, or autonomous agents leads to the question of what are the simplest possible sets of rules that can assure the formation and the stability of the “perfect school”: an aggregate in which the nearest-neighbour distances and speeds are identical. Here we explore mechanisms that lead to a perfect school structure in one and two dimensions. We consider distance-detection as well as velocity-detection between the interacting pairs of self-propelled particles. We construct interaction forces and formulate schooling equations. In the simplest cases, these equations have analytic solutions. In many cases, the stability of the perfect school can be explored. We then investigate how these structures form and evolve over time from various initial configurations using simulations. We study the relationship between the assumed interaction forces and the school patterns that emerge. While true biological schools are far from perfect, the insights gained from this investigation can help to understand some properties of real schools, and to suggest the appropriate properties of artificial schools where coordinated motion is desired.

  5. The formation mechanism of the Bonin high in August

    NASA Astrophysics Data System (ADS)

    Enomoto, Takeshi; Hoskins, Brian J.; Matsuda, Yoshihisa

    2003-01-01

    The Bonin high is a subtropical anticyclone that is predominant near Japan in the summer. This anticyclone is associated with an equivalent-barotropic structure, often extending throughout the entire troposphere. Although the equivalent-barotropic structure of the Bonin high has been known for years among synopticians because of its importance to the summer climate in east Asia, there are few dynamical explanations for such a structure. The present paper attempts to provide a formation mechanism for the deep ridge near Japan. We propose a new hypothesis that this equivalent-barotropic ridge near Japan is formed as a result of the propagation of stationary Rossby waves along the Asian jet in the upper troposphere ('the Silk Road pattern'). First, the monthly mean climatology is examined in order to demonstrate this hypothesis. It is shown that the enhanced Asian jet in August is favourable for the propagation of stationary Rossby waves and that the regions of descent over the eastern Mediterranean Sea and the Aral Sea act as two major wave sources. Second, a primitive-equation model is used to simulate the climatology of August. The model successfully simulates the Bonin high with an equivalent-barotropic structure. The upper-tropospheric ridge is found to be enhanced by a height anomaly of more than 80 m at 200 hPa, when a wave packet arrives. Sensitivity experiments are conducted to show that the removal of the diabatic cooling over the Asian jet suppresses the Silk Road pattern and formation of an equivalent-barotropic ridge near Japan, while the removal of the diabatic heating in the western Pacific does not.

  6. The reversal phase of the bone-remodeling cycle: cellular prerequisites for coupling resorption and formation

    PubMed Central

    Delaisse, Jean-Marie

    2014-01-01

    The reversal phase couples bone resorption to bone formation by generating an osteogenic environment at remodeling sites. The coupling mechanism remains poorly understood, despite the identification of a number of ‘coupling' osteogenic molecules. A possible reason is the poor attention for the cells leading to osteogenesis during the reversal phase. This review aims at creating awareness of these cells and their activities in adult cancellous bone. It relates cell events (i) on the bone surface, (ii) in the mesenchymal envelope surrounding the bone marrow and appearing as a canopy above remodeling surfaces and (iii) in the bone marrow itself within a 50-μm distance of this canopy. When bone remodeling is initiated, osteoprogenitors at these three different levels are activated, likely as a result of a rearrangement of cell–cell and cell–matrix interactions. Notably, canopies are brought under the osteogenic influence of capillaries and osteoclasts, whereas bone surface cells become exposed to the eroded matrix and other osteoclast products. In several diverse pathophysiological situations, including osteoporosis, a decreased availability of osteoprogenitors from these local reservoirs coincides with decreased osteoblast recruitment and impaired initiation of bone formation, that is, uncoupling. Overall, this review stresses that coupling does not only depend on molecules able to activate osteogenesis, but that it also demands the presence of osteoprogenitors and ordered cell rearrangements at the remodeling site. It points to protection of local osteoprogenitors as a critical strategy to prevent bone loss. PMID:25120911

  7. Kinetics, products, and mechanisms of secondary organic aerosol formation.

    PubMed

    Ziemann, Paul J; Atkinson, Roger

    2012-10-01

    Secondary organic aerosol (SOA) is formed in the atmosphere when volatile organic compounds (VOCs) emitted from anthropogenic and biogenic sources are oxidized by reactions with OH radicals, O(3), NO(3) radicals, or Cl atoms to form less volatile products that subsequently partition into aerosol particles. Once in particles, these organic compounds can undergo heterogenous/multiphase reactions to form more highly oxidized or oligomeric products. SOA comprises a large fraction of atmospheric aerosol mass and can have significant effects on atmospheric chemistry, visibility, human health, and climate. Previous articles have reviewed the kinetics, products, and mechanisms of atmospheric VOC reactions and the general chemistry and physics involved in SOA formation. In this article we present a detailed review of VOC and heterogeneous/multiphase chemistry as they apply to SOA formation, with a focus on the effects of VOC molecular structure on the kinetics of initial reactions with the major atmospheric oxidants, the subsequent reactions of alkyl, alkyl peroxy, and alkoxy radical intermediates, and the composition of the resulting products. Structural features of reactants and products discussed include compound carbon number; linear, branched, and cyclic configurations; the presence of C[double bond, length as m-dash]C bonds and aromatic rings; and functional groups such as carbonyl, hydroxyl, ester, hydroxperoxy, carboxyl, peroxycarboxyl, nitrate, and peroxynitrate. The intention of this review is to provide atmospheric chemists with sufficient information to understand the dominant pathways by which the major classes of atmospheric VOCs react to form SOA products, and the further reactions of these products in particles. This will allow reasonable predictions to be made, based on molecular structure, about the kinetics, products, and mechanisms of VOC and heterogeneous/multiphase reactions, including the effects of important variables such as VOC, oxidant, and NO

  8. Modeling Mechanisms of Saucer-Shaped Sill Formation

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Bunger, A.

    2006-12-01

    Magmatic sills have a basic tendency to form concave-upward saucer shapes. This morphology is observed in numerous seismic images and in the striking formations which dominate the landscape in South Africa's Karoo Basin. The propensity of sills to curve upward has also been suggested as a mechanism for magma ascent, particularly in compressive tectonic regions. Recent efforts that are focused on understanding the fundamental mechanisms controlling the saucer curvature indicate that saucer-shaped growth should be understood to result from asymmetry in the induced stress field near the fracture tip that results when the sill attains a size similar to its depth. Here we explore this phenomenon numerically and extend the consideration to examine the tendency of sills that are growing in a naturally layered environment to curve upward as they mechanically interact with a stiffer underlying layer or softer overlying layer. Our numerical model is based on the displacement discontinuity method, where the presence of three layers is accounted for explicitly in the plane strain linear elastic fundamental solution upon which the method is built. The equations governing fluid flow in the fracture are solved using a finite difference method, but here we consider only the limiting case where the effects of viscous dissipation are shown to be negligible so that the internal fluid pressure is uniform. The numerical results are first compared with laboratory experiments performed by injecting glycerin or glucose- based fluids to form hydraulic fractures in PMMA or glass specimens. The particular case of a fracture growing near a free-surface is examined. Reasonable agreement for the curving fracture path is found between the numerical model and experimental results up until the point where the initial radial symmetry in the experiments breaks down and the fracture elongates to become egg-shaped in plan view as growth favors one direction over the others. The numerical model is then

  9. The early phases of galaxy formation and evolution

    NASA Astrophysics Data System (ADS)

    Dickinson, Mark

    2016-05-01

    I review observations of galaxy formation and evolution from multiwavelength deep field surveys. These programs are designed to detect and study galaxies over a large range of cosmic history, with observations and many different wavelengths, each of which is important for measuring different physical processes at work in evolving galaxies. I begin with some background motivating interest in multiwavelength deep fields, and a short review of energetic processes that result in emission from galaxies in different wavelength/energy ranges. I then give a short summary of major observing facilities that are currently used for multiwavelength deep surveys, and then offer short descriptions of some of the major surveys that have produced much of the data used today by astronomers studying distant galaxy evolution. I continue with an overview of different methods that are commonly used to identify various types of galaxies at high redshift in deep field data sets. Then, for the remainder of the review, I focus on measurements of star formation rates and stellar masses in galaxies, and how they are used to evaluate the history of galaxy growth and evolution. I discuss the ways in which data at different wavelengths are used to infer star formation rates and stellar masses, concentrating on the complementarity of different techniques, as well as their limitations. I then discuss application of these methods for deriving the global history of star formation in the universe. These measurement now push back over more than 13 billion years of cosmic history and portray the rapid early growth of galaxies, and then the long, slow decline of star formation rates to the present era. I discuss recent results on the nature of star formation in galaxies at the peak epoch of galaxy growth, particularly around redshifts of 2, and their implications about the dominant physical processes that shaped the growth of most galaxies from the earliest times to the present day.

  10. Unified Mechanism for the Formation of Moving Magnetic Features

    NASA Astrophysics Data System (ADS)

    Ryutova, M. P.; Hagenaar, H. J.

    2005-05-01

    In the highly dynamic environment around sunspots there are small scale magnetic features, MMF's, that show clear regularities and may be thus categorized according their observed properties. For now there are at least 4 types of "MMF's" (Moving Magnetic Features). Type I MMF's are compact pairs of opposite polarity elements that may emerge anywhere in penumbra or moat region and move radially outward gradually separating; their velocities exceed the velocities of ambient flows, and their inner " foot" shares the sunspot's polarity. Type II MMF's are seen as unipolar features of the same polarity as the sunspot, moving outward from the sunspot with higher velocities than type I. Type III MMF's are also seen as unipolar features but have the polarity opposite to the sunspot's and travel with higher velocities than the other two types of MMF's. Recently the "type IV" features were observed in a sunspot formation region, that appear as compact bipoles flowing into sunspots and with an inner foot of a polarity opposite to the sunspot's. These were dubbed the MDF's (Moving Dipolar Features). The observed properties of all types of MMF's clearly violate the energy and momentum conservation laws, and thus require the application of physical mechanisms adequate for energetically open systems. Such mechanisms have been applied to type I and type II MMF's (Ryutova, Shine, Title, and Sakai, 1998, ApJ, 492, 402) with a good agreement between the theory and observations. Here we show that the same approach not only explains the origin, structure and dynamics of MDF's and type III MMF's, but consolidates all types of MMF's into one scheme. Theoretical results are compared with the observed properties of MMF's using time series of several data sets.

  11. A THREE-PHASE CHEMICAL MODEL OF HOT CORES: THE FORMATION OF GLYCINE

    SciTech Connect

    Garrod, Robin T.

    2013-03-01

    A new chemical model is presented that simulates fully coupled gas-phase, grain-surface, and bulk-ice chemistry in hot cores. Glycine (NH{sub 2}CH{sub 2}COOH), the simplest amino acid, and related molecules such as glycinal, propionic acid, and propanal, are included in the chemical network. Glycine is found to form in moderate abundance within and upon dust-grain ices via three radical-addition mechanisms, with no single mechanism strongly dominant. Glycine production in the ice occurs over temperatures {approx}40-120 K. Peak gas-phase glycine fractional abundances lie in the range 8 Multiplication-Sign 10{sup -11}-8 Multiplication-Sign 10{sup -9}, occurring at {approx}200 K, the evaporation temperature of glycine. A gas-phase mechanism for glycine production is tested and found insignificant, even under optimal conditions. A new spectroscopic radiative-transfer model is used, allowing the translation and comparison of the chemical-model results with observations of specific sources. Comparison with the nearby hot-core source NGC 6334 IRS1 shows excellent agreement with integrated line intensities of observed species, including methyl formate. The results for glycine are consistent with the current lack of a detection of this molecule toward other sources; the high evaporation temperature of glycine renders the emission region extremely compact. Glycine detection with ALMA is predicted to be highly plausible, for bright, nearby sources with narrow emission lines. Photodissociation of water and subsequent hydrogen abstraction from organic molecules by OH, and NH{sub 2}, are crucial to the buildup of complex organic species in the ice. The inclusion of alternative branches within the network of radical-addition reactions appears important to the abundances of hot-core molecules; less favorable branching ratios may remedy the anomalously high abundance of glycolaldehyde predicted by this and previous models.

  12. A Three-phase Chemical Model of Hot Cores: The Formation of Glycine

    NASA Astrophysics Data System (ADS)

    Garrod, Robin T.

    2013-03-01

    A new chemical model is presented that simulates fully coupled gas-phase, grain-surface, and bulk-ice chemistry in hot cores. Glycine (NH2CH2COOH), the simplest amino acid, and related molecules such as glycinal, propionic acid, and propanal, are included in the chemical network. Glycine is found to form in moderate abundance within and upon dust-grain ices via three radical-addition mechanisms, with no single mechanism strongly dominant. Glycine production in the ice occurs over temperatures ~40-120 K. Peak gas-phase glycine fractional abundances lie in the range 8 × 10-11-8 × 10-9, occurring at ~200 K, the evaporation temperature of glycine. A gas-phase mechanism for glycine production is tested and found insignificant, even under optimal conditions. A new spectroscopic radiative-transfer model is used, allowing the translation and comparison of the chemical-model results with observations of specific sources. Comparison with the nearby hot-core source NGC 6334 IRS1 shows excellent agreement with integrated line intensities of observed species, including methyl formate. The results for glycine are consistent with the current lack of a detection of this molecule toward other sources; the high evaporation temperature of glycine renders the emission region extremely compact. Glycine detection with ALMA is predicted to be highly plausible, for bright, nearby sources with narrow emission lines. Photodissociation of water and subsequent hydrogen abstraction from organic molecules by OH, and NH2, are crucial to the buildup of complex organic species in the ice. The inclusion of alternative branches within the network of radical-addition reactions appears important to the abundances of hot-core molecules; less favorable branching ratios may remedy the anomalously high abundance of glycolaldehyde predicted by this and previous models.

  13. Formation mechanism of the graphite-rich protective layer in blast furnace hearths

    NASA Astrophysics Data System (ADS)

    Jiao, Ke-xin; Zhang, Jian-liang; Liu, Zheng-jian; Liu, Feng; Liang, Li-sheng

    2016-01-01

    A long campaign life of blast furnaces is heavily linked to the existence of a protective layer in their hearths. In this work, we conducted dissection studies and investigated damage in blast furnace hearths to estimate the formation mechanism of the protective layer. The results illustrate that a significant amount of graphite phase was trapped within the hearth protective layer. Furthermore, on the basis of the thermodynamic and kinetic calculations of the graphite precipitation process, a precipitation potential index related to the formation of the graphite-rich protective layer was proposed to characterize the formation ability of this layer. We determined that, under normal operating conditions, the precipitation of graphite phase from hot metal was thermodynamically possible. Among elements that exist in hot metal, C, Si, and P favor graphite precipitation, whereas Mn and Cr inhibit this process. Moreover, at the same hot-face temperature, an increase of carbon concentration in hot metal can shorten the precipitation time. Finally, the results suggest that measures such as reducing the hot-face temperature and increasing the degree of carbon saturation in hot metal are critically important to improve the precipitation potential index.

  14. Self-Gravitating Relativistic Fluids: The Formation of a Free Phase Boundary in the Phase Transition from Hard to Soft

    NASA Astrophysics Data System (ADS)

    Christodoulou, Demetrios; Lisibach, André

    2016-06-01

    In the 1990s Christodoulou introduced an idealized fluid model intended to capture some of the features of the gravitational collapse of a massive star to form a neutron star or a black hole. This was the two-phase model introduced in `Self-gravitating relativistic fluids: a two phase model' (Demeterios, Arch Ration Mech Anal 130:343-400, 1995). The present work deals with the formation of a free phase boundary in the phase transition from hard to soft in this model. In this case the phase boundary has corners at the null points; the points which separate the timelike and spacelike components of the interface between the two phases. We prove the existence and uniqueness of a free phase boundary. Also the local form of the shock near the null point is established.

  15. VO{sub 2} (A): Reinvestigation of crystal structure, phase transition and crystal growth mechanisms

    SciTech Connect

    Rao Popuri, Srinivasa; Artemenko, Alla; Labrugere, Christine; Miclau, Marinela; Villesuzanne, Antoine; Pollet, Michaël

    2014-05-01

    Well crystallized VO{sub 2} (A) microrods were grown via a single step hydrothermal reaction in the presence of V{sub 2}O{sub 5} and oxalic acid. With the advantage of high crystalline samples, we propose P4/ncc as an appropriate space group at room temperature. From morphological studies, we found that the oriented attachment and layer by layer growth mechanisms are responsible for the formation of VO{sub 2} (A) micro rods. The structural and electronic transitions in VO{sub 2} (A) are strongly first order in nature, and a marked difference between the structural transition temperatures and electronic transitions temperature was evidenced. The reversible intra- (LTP-A to HTP-A) and irreversible inter- (HTP-A to VO{sub 2} (M1)) structural phase transformations were studied by in-situ powder X-ray diffraction. Attempts to increase the size of the VO{sub 2} (A) microrods are presented and the possible formation steps for the flower-like morphologies of VO{sub 2} (M1) are described. - Graphical abstract: Using a single step and template free hydrothermal synthesis, well crystallized VO{sub 2} (A) microrods were prepared and the P4/ncc space group was assigned to the room temperature crystal structure. Reversible and irreversible phase transitions among different VO{sub 2} polymorphs were identified and their progressive nature was highlighted. Attempts to increase the microrods size, involving layer by layer formation mechanisms, are presented. - Highlights: • Highly crystallized VO{sub 2} (A) microrods were grown via a single step hydrothermal process. • The P4/ncc space group was determined for VO{sub 2} (A) at room temperature. • The electronic structure and progressive nature of the structural phase transition were investigated. • A weak coupling between structural and electronic phase transitions was identified. • Different crystallite morphologies were discussed in relation with growth mechanisms.

  16. A Driving Mechanism for Moonlets Formation in Saturn's A Ring

    NASA Astrophysics Data System (ADS)

    Griv, Evgeny; Gedalin, Michael

    2010-05-01

    Tiscareno et al. (2006, 2008) and Sremčević et al. (2007) have detected in recent Cassini images of Saturn's A ring localized features - 'propellers'- which may be interpreted as signatures of small moonlets of some 100 m in size embedded within the ring. The features, believed to be disturbances generated by unseen embedded small moonlets (tens to hundreds of meters in diameter), are concentrated in three bands in the mid-A ring. The propellers are most abundant in a 3000 km-wide belt, about 130000 km from Saturn's center. It is estimated that the A ring contains thousands of such objects. Some very large propellers (from > 100 m objects) are found in the outermost A ring farther from Saturn than the population in the propeller-rich belt. It was especially noted that the lack of significant brightening at high phase angle indicates that these bodies are likely composed primarily of macroscopic particles, rather than dust. Herein, the linear stability of the Saturnian ring disk of mutually gravitating and physically colliding macroscoping particles is examined. Jeans' instabilities of small-amplitude gravity perturbations (e.g., those produced by a spontaneous disturbance) are analyzed analytically through the use of dynamical equations of a compressible fluid. The approach taken in this article differs from traditional dynamical views by taking into account the three-dimensional effects. The simple model of the system is considered: the ring disk is considered to be a thin slab with plane-parallel symmetry and its structure is considered in a horizontally local short-wave approximation. The used is a viscous isothermal fluid, viscosity is driven by physical collisions between particles, and the analysis is linear. It is shown that Jeans' gravitational instability (discussed first by Lin and Shu in context of the formation of spiral arms of normal galaxies) of both radial and spiral perturbations can lead to formation of porous moonlets with diameters ≈ 100

  17. Mechanism of voltage-gated channel formation in lipid membranes.

    PubMed

    Guidelli, Rolando; Becucci, Lucia

    2016-04-01

    Although several molecular models for voltage-gated ion channels in lipid membranes have been proposed, a detailed mechanism accounting for the salient features of experimental data is lacking. A general treatment accounting for peptide dipole orientation in the electric field and their nucleation and growth kinetics with ion channel formation is provided. This is the first treatment that explains all the main features of the experimental current-voltage curves of peptides forming voltage-gated channels available in the literature. It predicts a regime of weakly voltage-dependent conductance, followed by one of strong voltage-dependent conductance at higher voltages. It also predicts values of the parameters expressing the exponential dependence of conductance upon voltage and peptide bulk concentration for both regimes, in good agreement with those reported in the literature. Most importantly, the only two adjustable parameters involved in the kinetics of nucleation and growth of ion channels can be varied over broad ranges without affecting the above predictions to a significant extent. Thus, the fitting of experimental current-voltage curves stems naturally from the treatment and depends only slightly upon the choice of the kinetic parameters. PMID:26768224

  18. Mechanics of salt tongue formation with examples from Louisiana Slope

    SciTech Connect

    D'Onfro, P.

    1988-01-01

    Salt tongues up to several thousand feet thick and a few tens of miles long appear to intrude sediments along the Sigsbee Scarp and in the Mississippi fan in the Gulf of Mexico. Because salt tongues are impermeable and cover large areas of sediment, they have the potential to trap tremendous volumes of hydrocarbons. Field observations, laboratory experiments, and in-situ measurements in salt mines indicate that salt behaves like a viscous fluid over geologic time. Consequently, the same mechanical principles used to analyze igneous dike and sill formation can be applied to salt intrusions. Evidence suggests that salt tongues, like igneous sills, intrude sedimentary strata in which both horizontal principal compressive stresses exceed the overburden stress. This stress state exists in areas of regional tectonic or localized horizontal compression (e.g., in active thrust and foldbelts, in the toe regions of active growth fault systems, and around the flanks of intruding diapirs). This model puts constraints on both the timing of emplacement and the location of salt tongues.

  19. Formation mechanisms and aggregation behavior of borohydride reduced silver particles

    SciTech Connect

    Hyning, D.L. van; Zukoski, C.F.

    1998-11-24

    In this work, the authors examine the formation mechanisms of nanoscale silver particles produced by the reduction of silver perchlorate with sodium borohydride. Evidence is presented that the reaction pathway does not follow classical nucleation and growth theory, but is dominated by colloidal interactions. Upon injection of silver into a sodium borohydride solution, a molecular species absorbing at 220 nm is produced in less than 1 s. The authors suggest that this species contains borohydride nd small particles of reduced silver. The reaction mixture is initially dark as the result of the aggregation of the small silver particles into larger particles which have broad absorption spectra. During an intermediate stage, transmission electron microscopy and absorbance data show that even larger ({approximately}6--10 nm) particles grow at the expense of the monomeric silver particles. Later in the reaction, electrochemical potential measurements show that the borohydride concentration suddenly decreases. Direct measurement of interparticle forces demonstrate that this change in the solution conditions drives the particle surface potential toward zero and results in increased adhesive forces. The resulting aggregation manifests itself in a darkening of the solution temperatures, the increase is minimal. This effect can be linked to the number of monomeric silver particles remaining during the final transition.

  20. Mechanism of formation of supramolecular DNA-templated polymer nanowires.

    PubMed

    Watson, Scott M D; Galindo, Miguel A; Horrocks, Benjamin R; Houlton, Andrew

    2014-05-01

    Details of the mechanism of formation of supramolecular polymer nanowires by templating on DNA are revealed for the first time using AFM. Overall these data reveal that the smooth, regular, structures produced are rendered by highly dynamic supramolecular transformations occurring over the micrometre scale. In the initial stages of the process a low density of conducting polymer (CP) binds to the DNA as, essentially, spherical particles. Further reaction time produces DNA strands which are more densely packed with particles giving a beads-on-a-string appearance. The particles subsequently undergo dynamic reconfiguration so as to elongate along the template axis and merge to yield the highly regular, smooth morphology of the final nanowire. MD simulations illustrate the early stages of the process showing the binding of globular CP to duplex DNA, while the latter stages can be modeled effectively by a linear thermodynamic description based on the balance between the line energy, which accounts for adhesion of the material to the template, and its surface tension. This model accounts for the phenomena observed in the AFM studies: the relative success of DNA templating of polymers compared to metals; the slow approach to equilibrium; and the observed thinning and 'necking' phenomena as the structures transform from beads-on-a-string to smooth nanowire. PMID:24712548

  1. Mechanism of the formation for thoracic impedance change.

    PubMed

    Kuang, Ming-Xing; Xiao, Qiu-Jin; Cui, Chao-Ying; Kuang, Nan-Zhen; Hong, Wen-Qin; Hu, Ai-Rong

    2010-03-01

    The purpose of this study is to investigate the mechanism of the formation for thoracic impedance change. On the basis of Ohm's law and the electrical field distribution in the cylindrical volume conductor, the formula about the thoracic impedance change are deduced, and they are demonstrated with the model experiment. The results indicate that the thoracic impedance change caused by single blood vessel is directly proportional to the ratio of the impedance change to the basal impedance of the blood vessel itself, to the length of the blood vessel appearing between the current electrodes, and to the basal impedance between two detective electrodes on the chest surface, while it is inversely proportional to the distance between the blood vessel and the line joining two detective electrodes. The thoracic impedance change caused by multiple blood vessels together is equal to the algebraic addition of all thoracic impedance changes resulting from the individual blood vessels. That is, the impedance changes obey the principle of adding scalars in the measurement of the electrical impedance graph. The present study can offer the theoretical basis for the waveform reconstruction of Impedance cardiography (ICG). PMID:20336823

  2. Luster decoration of ceramics: mechanisms of metallic luster formation

    NASA Astrophysics Data System (ADS)

    Pradell, T.; Molera, J.; Bayés, C.; Roura, P.

    2006-05-01

    Luster is a metallic decoration produced since early Islamic times (9th century AD in Iraq). Different studies have shown that medieval lusters are a metal-glass nanocomposite (metal nanoparticles embodied in a silica glassy matrix) obtained from the reaction of a copper and/or silver containing paint with a glaze. The mechanisms of formation of these metallic-like layers are investigated by laboratory reproductions of Medieval luster. Copper and silver lusters are obtained based on different thermal paths and atmospheres, and by using different glaze compositions. The ionic exchange between Cu+ and Ag+ ions from the luster paint with Na+ and K+ of the glaze, is demonstrated in either oxidizing or inert atmospheres and at firing temperatures between 500 °C and 600 °C. The reduction of copper and silver to their metallic state is obtained by introducing a reducing gas afterwards. The lusters are non-metallic red ruby copper or green with brown spots silver when developed over alkaline glazes, while they appear coppery and golden metallic when developed over mixed alkaline-lead glazes. SR-XRD, optical absorption and microprobe chemical analysis of the lusters indicate that the total amount of copper and silver, and the nature and size of the nanoparticles, are similar in both cases. Further work is needed to clarify the origin of these differences.

  3. Formative Evaluation in the Development Phases of a College Telecourse.

    ERIC Educational Resources Information Center

    Flagg, Barbara N.

    This paper summarizes formative evaluation activities during the development of a pilot program by the Consortium for Mathematics and Its Applications for a telecourse on introductory data analysis. These activities included: (1) two major design activities--selection of a statistician host teacher and script development; (2) production phase…

  4. Formation of nonequilibrium modulated phases under local energy input

    NASA Astrophysics Data System (ADS)

    Li, Linjun; Pleimling, Michel

    2012-05-01

    We study numerically an inhomogeneous Ising lattice gas with short-range interactions where different sectors are in contact with thermal baths at different temperatures. Inside the different sectors particles jump to empty sites following the familiar Kawasaki dynamics. In addition, particles can freely hop from one sector to the other. This crossing between the sectors breaks detailed balance and yields a local energy influx that drives the system to a nonequilibrium steady state. When the low-temperature sector is cooled below the equilibrium critical temperature, a complicated nonequilibrium phase diagram emerges, dominated by unusual modulated nonequilibrium stationary states. These steady states result from the interplay of phase separation and convection.

  5. Prediction of the condensed phase heat of formation of energetic compounds.

    PubMed

    Keshavarz, Mohammad Hossein

    2011-06-15

    A new reliable simple model is presented for estimating the condensed phase heat of formation of important classes of energetic compounds including polynitro arene, polynitro heteroarene, acyclic and cyclic nitramine, nitrate ester and nitroaliphatic compounds. For CHNO energetic compounds, elemental compositions as well as increasing and decreasing energy content parameters are used in the new method. The novel correlation is tested for 192 organic compounds containing complex molecular structures with at least one nitro, nitramine or nitrate energetic functional groups. This work improves the predictive ability of previous empirical correlations for a wide range of energetic compounds. For those energetic compounds where group additivity method can be applied and outputs of quantum mechanical computations were available, it is shown that the root mean square (rms) deviation of the new method is lower. PMID:21458917

  6. Formation mechanism of Si3N4 nanowires via carbothermal reduction of carbonaceous silica xerogels.

    PubMed

    Wang, Feng; Jin, Guo-Qiang; Guo, Xiang-Yun

    2006-08-01

    Si3N4 nanowires prepared from the carbothermal reduction of carbonaceous silica xerogels with metal salt additives usually contain a small amount of nanotubes. This paper is devoted to the investigation of the formation mechanism of the Si3N4 nanowires. As-prepared samples heated at 1300 degrees C for different reaction times (1, 5, 10, and 30 h) were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The results showed that all the samples mainly consisted of nanowires, while their crystalline phases changed with the heating time. Nitrogen-doped silicon oxide nanowires were first produced via the vapor-liquid-solid process and then underwent a stepwise surface nitrogenization to silicon nitride. The suggested mechanism can easily explain the existence of nanotubes in the Si3N4 nanowires. PMID:16869553

  7. Microstructure and plastic deformation of orthorhombic titanium aluminides Ti2AlNb. IV. Formation of the transformation twins upon the α2 → O phase transformation

    NASA Astrophysics Data System (ADS)

    Kazantseva, N. V.; Demakov, S. L.; Popov, A. A.

    2007-04-01

    X-ray diffraction transmission electron microscopy, and measurements of microhardness and resistivity were used to study the formation of the orthorhombic O phase upon the α2 → O phase transformation. It has been found that the orthorhombic O phase is formed by the diffusion mechanism in the form of thin lamellar precipitates (domains). Upon subsequent growth, these domains form packets of twins with a twinning plane {110}. It is shown that the (130) twinning plane is not realized directly, but it appears as a result of joining of twin packets. No formation of an intermediate metastable phase was observed upon this transformation.

  8. Phase equilibria in systems of formates with isobutyl alcohol

    SciTech Connect

    Seselkin, I.V.; Garber, Y.N.; Mironenko, V.F.

    1985-09-01

    The borate method, based on esterification with boric acid, was proposed for isolation of isobutyl alchohol. The method inv olves formation and hydrolysis of alkyl borate esters; in particular, formation and hydrolysis of triisobutyl borate. Esterification of isobutyl alcohol with boric acid is a reversible equilibrium reaction, and therefore in order to obtain high yields the water formed in the reaction must be removed. The presence of other organic compounds, which do not react with boric acid, in the mixture does not affect esterification of the alcohol. The reaction proceeds at 95-100/sup 0/ under atmospheric pressure. It was found that up to 97% of the isobutyl alcohol combines with boric acid. The resultant triisobutyl borate is isolated by ordinary distillation and then hydrolyzed to form boric acid and isobutyl alcohol.

  9. Laboratory Investigations of Titan Haze Formation: Characterization of Gas Phase and Particle Phase Nitrogen

    NASA Astrophysics Data System (ADS)

    Horst, Sarah; Yoon, Heidi; Li, Rui; deGouw, Joost; Tolbert, Margaret

    2014-11-01

    Prior to the arrival of the Cassini-Huygens spacecraft, aerosol production in Titan’s atmosphere was believed to begin in the stratosphere where chemical processes are predominantly initiated by far ultraviolet (FUV) radiation. However, the discovery of very heavy ions, coupled with Cassini Ultraviolet Imaging Spectrograph (UVIS) occultation measurements that show haze absorption up to 1000 km altitude (Liang et al., 2007), indicates that haze formation initiates in the thermosphere. The energy environment of the thermosphere is significantly different from the stratosphere; in particular there is a greater flux of extreme ultraviolet (EUV) photons and energetic particles available to initiate chemical reactions, including the destruction of N2, in the upper atmosphere. The discovery of previously unpredicted nitrogen species in measurements of Titan’s atmosphere by the Cassini Ion and Neutral Mass Spectrometer (INMS) indicates that nitrogen participates in the chemistry to a much greater extent than was appreciated before Cassini (Vuitton et al., 2007). Additionally, measurements obtained by the Aerosol Collector Pyrolyzer (ACP) carried by Huygens to Titan’s surface may indicate that Titan’s aerosols contain significant amounts of nitrogen (Israël et al., 2005, 2006). The degree of nitrogen incorporation in the haze particles is important for understanding the diversity of molecules that may be present in Titan’s atmosphere and on its surface. We have conducted a series of Titan atmosphere simulation experiments using either spark discharge (tesla coil) or FUV photons (deuterium lamp) to initiate chemistry in CH4/N2 gas mixtures ranging from 0.01% CH4/99.99% N2 to 10% CH4/90% N2. We obtained in situ measurements using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) to measure the particle composition as a function of particle size and a proton-transfer ion-trap mass spectrometer (PIT-MS) to measure the composition of gas phase

  10. Mechanism and microstructures in Ga2O3 pseudomartensitic solid phase transition.

    PubMed

    Zhu, Sheng-Cai; Guan, Shu-Hui; Liu, Zhi-Pan

    2016-07-21

    Solid-to-solid phase transition, although widely exploited in making new materials, challenges persistently our current theory for predicting its complex kinetics and rich microstructures in transition. The Ga2O3α-β phase transformation represents such a common but complex reaction with marked change in cation coordination and crystal density, which was known to yield either amorphous or crystalline products under different synthetic conditions. Here we, via recently developed stochastic surface walking (SSW) method, resolve for the first time the atomistic mechanism of Ga2O3α-β phase transformation, the pathway of which turns out to be the first reaction pathway ever determined for a new type of diffusionless solid phase transition, namely, pseudomartensitic phase transition. We demonstrate that the sensitivity of product crystallinity is caused by its multi-step, multi-type reaction pathway, which bypasses seven intermediate phases and involves all types of elementary solid phase transition steps, i.e. the shearing of O layers (martensitic type), the local diffusion of Ga atoms (reconstructive type) and the significant lattice dilation (dilation type). While the migration of Ga atoms across the close-packed O layers is the rate-determining step and yields "amorphous-like" high energy intermediates, the shearing of O layers contributes to the formation of coherent biphase junctions and the presence of a crystallographic orientation relation, (001)α//(201[combining macron])β + [120]α//[13[combining macron]2]β. Our experiment using high-resolution transmission electron microscopy further confirms the theoretical predictions on the atomic structure of biphase junction and the formation of (201[combining macron])β twin, and also discovers the late occurrence of lattice expansion in the nascent β phase that grows out from the parent α phase. By distinguishing pseudomartensitic transition from other types of mechanisms, we propose general rules to predict the

  11. Evidence of reaction rate influencing cubic and hexagonal phase formation process in CdS nanocrystals

    NASA Astrophysics Data System (ADS)

    Deka, Kuldeep; Kalita, M. P. C.

    2016-05-01

    CdS nanocrystals are synthesized by co-precipitation method using 2-mercaptoethanol (ME) as capping agent. Cubic, hexagonal and their mixture are obtained by varying the ME concentration. Lower (higher) ME concentration results in cubic (hexagonal) phase. The crystallite sizes are in the range 3-7 nm. Increase in ME concentration lead to lower reaction rate between Cd2+ and S2- of the precursors, and slower reaction rate is found to favor hexagonal phase formation over the cubic one in CdS nanocrystals. Role of reaction rate in the phase formation process provides a way to synthesize CdS nanocrystals in desired crystal phase.

  12. From Phase Locking to Phase Slips: A Mechanism for a Quiescent H mode

    NASA Astrophysics Data System (ADS)

    Guo, Z. B.; Diamond, P. H.

    2015-04-01

    We demonstrate that E ×B shear, VE×B ' , governs the dynamics of the cross phase of the peeling-ballooning-(PB-)mode-driven heat flux, and so determines the evolution from the edge-localized (ELMy) H mode to the quiescent (Q ) H mode. A physics-based scaling of the critical E ×B shearing rate (VE×B ,c r ' ) for accessing the Q H mode is predicted. The ELMy H mode to the Q H -mode evolution is shown to follow from the conversion from a phase locked state to a phase slip state. In the phase locked state, PB modes are pumped continuously, so bursts occur. In the slip state, the PB activity is a coherent oscillation. Stronger E ×B shearing implies a higher phase slip frequency. This finding predicts a new state of cross phase dynamics and shows a new way to understand the physics mechanism for ELMy to the Q H -mode evolution.

  13. Formation of single-phase BaO nanoclusters

    SciTech Connect

    Du, Yingge; Kim, Dong Jun; Varga, Tamas; Wang, Zhitao; Szanyi, Janos; Lyubinetsky, Igor

    2011-06-01

    Combined analysis employing in-situ X-rays photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), and ex-situ X-ray diffraction (XRD) has demonstrated the feasibility to deposit single-phase barium oxide overlayers by a direct sublimation of BaO material from an effusion cell. Furthermore, in situ scanning tunneling microscopy (STM) has confirmed that the BaO grows as nanoclusters with dimensions down to ~2 nm.

  14. Anelastic loss mechanisms associated with phase transitions in perovskites

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Koppensteiner, J.; Schranz, W.; Carpenter, M. A.

    2009-12-01

    Seismic attenuation has become a topical issue in geophysics because of the potential information about temperature, as a function of depth in the earth, which it might convey. Aside from the expected role of grain boundaries, dislocations, etc., attenuation associated with phase transformations could be as marked and important as the changes in elastic moduli by which the latter are identified. In the present study, anelastic loss mechanisms associated with phase transitions in perovskites have been studied by Resonant Ultrasound Spectroscopy (10^5 - 10^6 Hz, relatively low stress and low strain ~10^-7), and by Dynamic Mechanical Analysis (10^-2 - 10^2 Hz, relatively high stress and high strain ~10^-5 - 10^-3), in the temperature range 10 - 1200 K. (Mg, Fe)SiO3 has the Pnma structure and CaSiO3 could have the Pm3m or I4/mcm structure under lower mantle conditions. In addition, a stability field for the Imma structure would be easy to miss. It is difficult to investigate transitions occurring in these directly, so use has been made of analogue phases. BeCeO3 and Sr(ZrxTi(1-x))O3 have been studied for dissipation effects associated with displacive phase transitions, and LaCoO3 has been investigated for the high spin/low spin behaviour of Co3+. The transitions in BaCeO3, i.e. Pm3m - R3c - Imma - Pnma, and the transitions in Sr(ZrxTi(1-x))O3, i.e. Pm3m - I4/mcm - Imma - Pnma, cover a wider variety of transitions than has been investigated in other analogue materials. The possible loss mechanisms identified in BeCeO3 are twin wall movement, two phase interface movement (perhaps around clusters of one structure in another close to a first order phase transition), and an unidentified process which gives to a Debye-like anomaly at low temperature in the stability field of the Pnma structure. Possible loss mechanisms in Sr(ZrxTi(1-x))O3 are twin wall movement and two phase interface movement. Associated with the high spin - intermediate spin transition in LaCoO3 near 500 K

  15. Untangling the web: Mechanisms underlying ER network formation

    PubMed Central

    Goyal, Uma; Blackstone, Craig

    2013-01-01

    The ER is a continuous membrane system consisting of the nuclear envelope, flat sheets often studded with ribosomes, and a polygonal network of highly-curved tubules extending throughout the cell. Although protein and lipid biosynthesis, protein modification, vesicular transport, Ca2+dynamics, and protein quality control have been investigated in great detail, mechanisms that generate the distinctive architecture of the ER have been uncovered only recently. Several protein families including the reticulons and REEPs/DP1/Yop1p harbor hydrophobic hairpin domains that shape high-curvature ER tubules and mediate intramembrane protein interactions. Members of the atlastin/RHD3/Sey1p family of dynamin-related GTPases interact with the ER-shaping proteins and mediate the formation of three-way junctions responsible for the polygonal structure of the tubular ER network, with Lunapark proteins acting antagonistically. Additional classes of tubular ER proteins including some REEPs and the M1 spastin ATPase interact with the microtubule cytoskeleton. Flat ER sheets possess a different complement of proteins such as p180, CLIMP-63 and kinectin implicated in shaping, cisternal stacking and cytoskeletal interactions. The ER is also in constant motion, and numerous signaling pathways as well as interactions among cytoskeletal elements, the plasma membrane, and organelles cooperate to position and shape the ER dynamically. Finally, many proteins involved in shaping the ER network are mutated in the most common forms of hereditary spastic paraplegia, indicating a particular importance for proper ER morphology and distribution in large, highly-polarized cells such as neurons. PMID:23602970

  16. Mechanisms of the early phases of plant gravitropism

    NASA Technical Reports Server (NTRS)

    Kiss, J. Z.

    2000-01-01

    Gravitropism is directed growth of a plant or plant organ in response to gravity and can be divided into the following temporal sequence: perception, transduction, and response. This article is a review of the research on the early events of gravitropism (i.e., phenomena associated with the perception and transduction phases). The two major hypotheses for graviperception are the protoplast-pressure and starch-statolith models. While most researchers support the concept of statoliths, there are suggestions that plants have multiple mechanisms of perception. Evidence supports the hypothesis that the actin cytoskeleton is involved in graviperception/transduction, but the details of these mechanisms remain elusive. A number of recent developments, such as increased use of the molecular genetic approach, magnetophoresis, and laser ablation, have facilitated research in graviperception and have allowed for refinement of the current models. In addition, the entire continuum of acceleration forces from hypo- to hyper-gravity have been useful in studying perception mechanisms. Future interdisciplinary molecular approaches and the availability of sophisticated laboratories on the International Space Station should help to develop new insights into mechanisms of gravitropism in plants.

  17. In situ characterization of formation and growth of high-pressure phases in single-crystal silicon during nanoindentation

    NASA Astrophysics Data System (ADS)

    Huang, Hu; Yan, Jiwang

    2016-04-01

    Pressure-induced intermediate phases of silicon exhibit unique characteristics in mechanics, chemistry, optics, and electrics. Clarifying the formation and growth processes of these new phases is essential for the preparation and application of them. For in situ characterization of the formation and growth of high-pressure phases in single-crystal silicon, a quantitative parameter, namely displacement change of indenter (Δ h) during the unloading holding process in nanoindentation, was proposed. Nanoindentation experiments under various unloading holding loads and loading/unloading rates were performed to investigate their effects on Δ h. Results indicate that Δ h varies significantly before and after the occurrence of pop-out; for the same maximum indentation load, it tends to increase with the decrease in the holding load and to increase with the increase in the loading/unloading rate. Thus, the value of Δ h can be regarded as an indicator that reflects the formation and growth processes of the high-pressure phases. Using Δ h, the initial position for the nucleation of the high-pressure phases, their growth, and their correlation to the loading/unloading rate were predictable.

  18. A thermodynamic analysis of the mechanism of formation of homologs of the cucurbit[ n]uril family

    NASA Astrophysics Data System (ADS)

    Bakovets, V. V.

    2007-10-01

    A mechanism of the formation of cyclic cavitand CB[ n] macromolecules based on the aggregation in solution of monomeric hydrate derivatives of glycoluril and formaldehyde was suggested. A quasi-chemical description of the formation of macrorings led us to conclude that the formation of the population of a definite CB[ n] homolog was controlled by the solution composition. For this reason, homologs were formed in closed systems sequentially, first higher and then lower homologs, and the stable CB[6] macroring formed at the last stage of the process. Nucleation theory was used to describe the sequential formation of homolog solid phases. The use of open systems allows stationary conditions to be created for the formation of individual homologs by maintaining a constant solution composition.

  19. Phase Formation in PZT Phosphorus-Doped Ceramics

    SciTech Connect

    Celi, L. A.; Caballero, A. C.; Villegas, M.; Moure, C.; Fernandez, J. F.; Eiras, J. A.

    2009-04-19

    The surface modification of lead zirconate titanate (PZT) ceramics with phosphate ester leaves a phosphorus residue absorbed onto the particle surface. During the sintering processes, this surface layer reacts with the PZT to form lead-rich compounds, such as Pb{sub 3}(PO{sub 4}){sub 2} and Pb{sub 4}(P{sub 2}O{sub 9}). The formation of such a compounds may be the responsible for the grain growth inhibition observed in PZT-modified ceramics, as well as the lead loss reduction.

  20. Illuminating the Atmospheric Oxidation Mechanisms, SOA Formation Pathways and Radical Yields of the Monoterpene Myrcene

    NASA Astrophysics Data System (ADS)

    Wyche, Kevin; Carr, Timo; Monks, Paul; Ellis, Andrew; Alfarra, Rami; McFiggans, Gordon; Hamilton, Jacqueline; Ward, Martyn; Boss, William; Camredon, Marie

    2010-05-01

    Biogenic Volatile Organic Compounds (BVOCs) are ubiquitous in the global troposphere, being emitted primarily from terrestrial plant life in significant quantities. Indeed, it is estimated that the total annual emission rate of all (non-methane) BVOCs is roughly ten times that of all anthropogenic volatile organic compounds (Guenther et al., 1995). With the exception of methane, the most dominant species of BVOC, in terms of emission strength, reactivity and their impact upon the atmosphere, are terpenes. Terpenes are a subdivision of BVOCs, composed primarily of hemiterpenes (C5), monoterpenes (C10), sesquiterpenes (C15) and diterpenes (C20). Under troposheric conditions terpenes react via complex and extensive gas phase oxidation pathways, have strong photochemical ozone creation potentials, constitute a significant radical source and are known to generate secondary organic aerosol (SOA) in high yields. At present there exists a certain lack of understanding regarding the oxidation mechanisms of certain terpenes and their role in SOA and radical formation. Consequently, as part of the NERC funded Aerosol Coupling in the Earth's System (ACES) and Total RAdical Production from the OZonolysis of alkenes (TRAPOZ) projects, a comprehensive series of simulation chamber experiments were conducted at the University of Manchester aerosol chamber facility, and at the EUropean PHOto REactor (EUPHORE) in order to investigate the gas phase degradation mechanisms, and SOA and radical formation potentials of a number of atmospherically significant terpenes. Both simulation chambers were highly instrumented during all experiments such that detailed and concomitant gas and aerosol phase measurements were made across a range of conditions. The work presented here describes the findings obtained from both photooxidation and ozonolysis experiments involving the common, but less well studied, aliphatic monoterpene, myrcene. The data presented include NOx and ozone measurements and

  1. GT1_cdedes_1: Heating and cooling mechanics in massive star formation

    NASA Astrophysics Data System (ADS)

    Dedes, C.

    2010-03-01

    Massive stars are important constituents of the interstellar medium (ISM) in our Galaxy and beyond. Their strong feedback processes influence the dynamics, energetics and chemistry of the surrounding interstellar medium both locally and on large scales. An important question to be answered is the one of cooling and heating mechanisms in regions of massive star formation. In the vicinity of massive stars, heating is provided mostly by far-UV (FUV) and infra-red radiation. Cooling is mostly provided by emission in the fine structure lines of CII. There are however other atomic and molecular lines such as OI, CO, OH and H_2O which can become significant coolants in the dense, embedded regions of massive star formation. This early phase when the forming massive star is still deeply embedded in its natal envelope, yet already interacting with, and potentially destroying, its environment through copious amounts of UV radiation, massive outflows and ultra compact HII (UCHII) regions, is an important phase in the star formation process. To understand the heating and cooling balance in this phase, one has to consider the contributions of various radiative and dynamical processes such as the FUV radiation from the young star itself, shocks created by strong stellar winds and the photon dominated regions (PDRs) where the radiation impinges on the molecular material. The tracers of these processes can be observed in the far-infrared, a wavelength range that is now accessible at unprecedented high spectral and spatial resolution with the Herschel Space Observatory. We propose to observe the aformentioned tracers of cooling and heating in the massive star forming region IRAS 12326-6245 to obtain a complete picture of the different processes, the regions they originate from and how they interact. This proposal is for time granted to the HIFI hardware team (PI: Frank Helmich) and to be accounted as part of the Swiss guaranteed time (Lead-Co-I: Arnold O. Benz).

  2. Phase dependent restoration mechanisms of TC8 titanium alloy during hot compression in the two phase region

    NASA Astrophysics Data System (ADS)

    Wang, K.; Luan, B. F.; Li, M. Q.; Liu, Q.

    2015-08-01

    The TC8 titanium alloy was isothermally compressed at 1133 K and 1213 K in the (α+β) two phase region. The microstructural evolution and restoration mechanism in the α and β phases were characterized by optical microscopy and transmission electron microscopy. The results show a significant effect of phase content on the microstructural evolution and restoration mechanism. The grain refinement occurs in the α phase at both temperatures, but in the β phase only at the higher temperature of 1213 K. This difference in microstructural evolution is attributed to the different temperature dependence of restoration mechanisms in the two phases. A significant increase in the volume fraction of β phase makes the restoration mechanism in the β phase change from dynamic recovery (DRV) to dynamic recrystallization (DRX), which subsequently induces the β grain refinement.

  3. Mechanical parameters and flight phase characteristics in aquatic plyometric jumping.

    PubMed

    Louder, Talin J; Searle, Cade J; Bressel, Eadric

    2016-09-01

    Plyometric jumping is a commonly prescribed method of training focused on the development of reactive strength and high-velocity concentric power. Literature suggests that aquatic plyometric training may be a low-impact, effective supplement to land-based training. The purpose of the present study was to quantify acute, biomechanical characteristics of the take-off and flight phase for plyometric movements performed in the water. Kinetic force platform data from 12 young, male adults were collected for counter-movement jumps performed on land and in water at two different immersion depths. The specificity of jumps between environmental conditions was assessed using kinetic measures, temporal characteristics, and an assessment of the statistical relationship between take-off velocity and time in the air. Greater peak mechanical power was observed for jumps performed in the water, and was influenced by immersion depth. Additionally, the data suggest that, in the water, the statistical relationship between take-off velocity and time in air is quadratic. Results highlight the potential application of aquatic plyometric training as a cross-training tool for improving mechanical power and suggest that water immersion depth and fluid drag play key roles in the specificity of the take-off phase for jumping movements performed in the water. PMID:27125295

  4. Simulation of oxide phases formation under pulsed electron beam

    NASA Astrophysics Data System (ADS)

    Kryukova, O. N.; Maslov, A. L.

    2016-04-01

    This paper presents the mathematical model of evolution phase composition in the TiNi+Si system under impulsive electron beam. It was assumed that the initial coating contains small concentration of molecular oxygen. This model is one-demensional, and takes into account the phenomena of diffusion, chemical reactions, and thermal effects of chemical reactions. Results of the numerical modeling had show that the oxide of titanium and triple solution TiNiSi formed in significant amounts, and triple solution preferentially forms in the substrate. Other oxides must be formed in trace amounts.

  5. Parenchymal mechanics, gas mixing, and the slope of phase III.

    PubMed

    Wilson, Theodore A

    2013-07-01

    A model of parenchymal mechanics is revisited with the objective of investigating the differences in parenchymal microstructure that underlie the differences in regional compliance that are inferred from gas-mixing studies. The stiffness of the elastic line elements that lie along the free edges of alveoli and form the boundary of the lumen of the alveolar duct is the dominant determinant of parenchymal compliance. Differences in alveolar size cause parallel shifts of the pressure-volume curve, but have little effect on compliance. However, alveolar size also affects the relation between surface tension and pressure during the breathing cycle. Thus regional differences in alveolar size generate regional differences in surface tension, and these drive Marangoni surface flows that equilibrate surface tension between neighboring acini. Surface tension relaxation introduces phase differences in regional volume oscillations and a dependence of expired gas concentration on expired volume. A particular example of different parenchymal properties in two neighboring acini is described, and gas exchange in this model is calculated. The efficiency of mixing and slope of phase III for the model agree well with published data. This model constitutes a new hypothesis concerning the origin of phase III. PMID:23599394

  6. Local Cloudiness Development Forecast Based on Simulation of Solid Phase Formation Processes in the Atmosphere

    NASA Astrophysics Data System (ADS)

    Barodka, Siarhei; Kliutko, Yauhenia; Krasouski, Alexander; Papko, Iryna; Svetashev, Alexander; Turishev, Leonid

    2013-04-01

    Nowadays numerical simulation of thundercloud formation processes is of great interest as an actual problem from the practical point of view. Thunderclouds significantly affect airplane flights, and mesoscale weather forecast has much to contribute to facilitate the aviation forecast procedures. An accurate forecast can certainly help to avoid aviation accidents due to weather conditions. The present study focuses on modelling of the convective clouds development and thunder clouds detection on the basis of mesoscale atmospheric processes simulation, aiming at significantly improving the aeronautical forecast. In the analysis, the primary weather radar information has been used to be further adapted for mesoscale forecast systems. Two types of domains have been selected for modelling: an internal one (with radius of 8 km), and an external one (with radius of 300 km). The internal domain has been directly applied to study the local clouds development, and the external domain data has been treated as initial and final conditions for cloud cover formation. The domain height has been chosen according to the civil aviation forecast data (i.e. not exceeding 14 km). Simulations of weather conditions and local clouds development have been made within selected domains with the WRF modelling system. In several cases, thunderclouds are detected within the convective clouds. To specify the given category of clouds, we employ a simulation technique of solid phase formation processes in the atmosphere. Based on modelling results, we construct vertical profiles indicating the amount of solid phase in the atmosphere. Furthermore, we obtain profiles demonstrating the amount of ice particles and large particles (hailstones). While simulating the processes of solid phase formation, we investigate vertical and horizontal air flows. Consequently, we attempt to separate the total amount of solid phase into categories of small ice particles, large ice particles and hailstones. Also, we

  7. Structure and Mechanism of a Pentameric Formate Channel

    SciTech Connect

    Waight, A.; Love, J; Wang, D

    2010-01-01

    Formate transport across the inner membrane is a critical step in anaerobic bacterial respiration. Members of the formate/nitrite transport protein family function to shuttle substrate across the cytoplasmic membrane. In bacterial pathogens, the nitrite transport protein is involved in protecting bacteria from peroxynitrite released by host macrophages. We have determined the 2.13-{angstrom} structure of the formate channel FocA from Vibrio cholerae, which reveals a pentamer in which each monomer possesses its own substrate translocation pore. Unexpectedly, the fold of the FocA monomer resembles that found in water and glycerol channels. The selectivity filter in FocA consists of a cytoplasmic slit and a central constriction ring. A 2.5-{angstrom} high-formate structure shows two formate ions bound to the cytoplasmic slit via both hydrogen bonding and van der Waals interactions, providing a structural basis for the substrate selectivity of the channel.

  8. Local structure, composition, and crystallization mechanism of a model two-phase "composite nanoglass".

    PubMed

    Chattopadhyay, Soma; Kelly, S D; Shibata, Tomohiro; Balasubramanian, M; Srinivasan, S G; Du, Jincheng; Banerjee, Rajarshi; Ayyub, Pushan

    2016-02-14

    We report a detailed study of the local composition and structure of a model, bi-phasic nanoglass with nominal stoichiometry Cu55Nb45. Three dimensional atom probe data suggest a nanoscale-phase-separated glassy structure having well defined Cu-rich and Nb-rich regions with a characteristic length scale of ≈3 nm. However, extended x-ray absorption fine structure analysis indicates subtle differences in the local environments of Cu and Nb. While the Cu atoms displayed a strong tendency to cluster and negligible structural order beyond the first coordination shell, the Nb atoms had a larger fraction of unlike neighbors (higher chemical order) and a distinctly better-ordered structural environment (higher topological order). This provides the first experimental indication that metallic glass formation may occur due to frustration arising from the competition between chemical ordering and clustering. These observations are complemented by classical as well as ab initio molecular dynamics simulations. Our study indicates that these nanoscale phase-separated glasses are quite distinct from the single phase nanoglasses (studied by Gleiter and others) in the following three respects: (i) they contain at least two structurally and compositionally distinct, nanodispersed, glassy phases, (ii) these phases are separated by comparatively sharp inter-phase boundaries, and (iii) thermally induced crystallization occurs via a complex, multi-step mechanism. Such materials, therefore, appear to constitute a new class of disordered systems that may be called a composite nanoglass. PMID:26874493

  9. Ultrasound Microbubble Treatment Enhances Clathrin-Mediated Endocytosis and Fluid-Phase Uptake through Distinct Mechanisms

    PubMed Central

    Fekri, Farnaz; Delos Santos, Ralph Christian; Karshafian, Raffi

    2016-01-01

    Drug delivery to tumors is limited by several factors, including drug permeability of the target cell plasma membrane. Ultrasound in combination with microbubbles (USMB) is a promising strategy to overcome these limitations. USMB treatment elicits enhanced cellular uptake of materials such as drugs, in part as a result of sheer stress and formation of transient membrane pores. Pores formed upon USMB treatment are rapidly resealed, suggesting that other processes such as enhanced endocytosis may contribute to the enhanced material uptake by cells upon USMB treatment. How USMB regulates endocytic processes remains incompletely understood. Cells constitutively utilize several distinct mechanisms of endocytosis, including clathrin-mediated endocytosis (CME) for the internalization of receptor-bound macromolecules such as Transferrin Receptor (TfR), and distinct mechanism(s) that mediate the majority of fluid-phase endocytosis. Tracking the abundance of TfR on the cell surface and the internalization of its ligand transferrin revealed that USMB acutely enhances the rate of CME. Total internal reflection fluorescence microscopy experiments revealed that USMB treatment altered the assembly of clathrin-coated pits, the basic structural units of CME. In addition, the rate of fluid-phase endocytosis was enhanced, but with delayed onset upon USMB treatment relative to the enhancement of CME, suggesting that the two processes are distinctly regulated by USMB. Indeed, vacuolin-1 or desipramine treatment prevented the enhancement of CME but not of fluid phase endocytosis upon USMB, suggesting that lysosome exocytosis and acid sphingomyelinase, respectively, are required for the regulation of CME but not fluid phase endocytosis upon USMB treatment. These results indicate that USMB enhances both CME and fluid phase endocytosis through distinct signaling mechanisms, and suggest that strategies for potentiating the enhancement of endocytosis upon USMB treatment may improve targeted

  10. Ultrasound Microbubble Treatment Enhances Clathrin-Mediated Endocytosis and Fluid-Phase Uptake through Distinct Mechanisms.

    PubMed

    Fekri, Farnaz; Delos Santos, Ralph Christian; Karshafian, Raffi; Antonescu, Costin N

    2016-01-01

    Drug delivery to tumors is limited by several factors, including drug permeability of the target cell plasma membrane. Ultrasound in combination with microbubbles (USMB) is a promising strategy to overcome these limitations. USMB treatment elicits enhanced cellular uptake of materials such as drugs, in part as a result of sheer stress and formation of transient membrane pores. Pores formed upon USMB treatment are rapidly resealed, suggesting that other processes such as enhanced endocytosis may contribute to the enhanced material uptake by cells upon USMB treatment. How USMB regulates endocytic processes remains incompletely understood. Cells constitutively utilize several distinct mechanisms of endocytosis, including clathrin-mediated endocytosis (CME) for the internalization of receptor-bound macromolecules such as Transferrin Receptor (TfR), and distinct mechanism(s) that mediate the majority of fluid-phase endocytosis. Tracking the abundance of TfR on the cell surface and the internalization of its ligand transferrin revealed that USMB acutely enhances the rate of CME. Total internal reflection fluorescence microscopy experiments revealed that USMB treatment altered the assembly of clathrin-coated pits, the basic structural units of CME. In addition, the rate of fluid-phase endocytosis was enhanced, but with delayed onset upon USMB treatment relative to the enhancement of CME, suggesting that the two processes are distinctly regulated by USMB. Indeed, vacuolin-1 or desipramine treatment prevented the enhancement of CME but not of fluid phase endocytosis upon USMB, suggesting that lysosome exocytosis and acid sphingomyelinase, respectively, are required for the regulation of CME but not fluid phase endocytosis upon USMB treatment. These results indicate that USMB enhances both CME and fluid phase endocytosis through distinct signaling mechanisms, and suggest that strategies for potentiating the enhancement of endocytosis upon USMB treatment may improve targeted

  11. Gas-phase Mechanisms of Sulfur Isotope Mass-independent Fractionation

    NASA Astrophysics Data System (ADS)

    Lyons, J. R.

    2006-12-01

    Mass-independent fractionation (MIF) in sulfur isotopes in ancient sulfur-bearing rocks (Farquhar et al. 2000a) is interpreted as evidence for gas-phase MIF processes in the early Earth atmosphere. This interpretation is made by analogy with oxygen isotope MIF in the modern atmosphere (produced during ozone formation), and by laboratory photolysis experiments on SO2 (Farquhar et al. 2001; Wing et al. 2004) that yield both elemental sulfur and sulfate with S MIF signatures at wavelengths above and below the SO2 dissociation limit. What is lacking is a quantitative understanding of the mechanisms of gas-phase S MIF. Quantification is essential in order to extract the full implications of sulfur MIF throughout Earth history, including for bacterial sulfate reduction processes which largely conserve D33S and D36S. Several sulfur MIF mechanisms are possible. The most obvious is the gas-phase thiozone reaction, which is isovalent to the ozone formation reaction. Ozone formation produces a well-known MIF signature in oxygen isotopes (Thiemens and Heidenreich 1983), and a symmetry-dependent non-RRKM mechanism has been proposed as the origin of O MIF (Gao and Marcus 2001). It is possible and perhaps likely that S3 formation also proceeds by a non-RRKM process. Data are lacking on isotopic (an even non-isotopic) rates of S3 formation, so it is not possible to make definitive statements about MIF in S3 at this time. However modeling results suggest that the vapor pressure of S2 is too low for gas-phase S3 formation to be significant. Two additional species that may exhibit a non-RRKM MIF signature are S2O2 and S4. Again, there is a lack of isotopomer-specific kinetic data for these reactions, and gas-phase formation of S4 is likely inconsequential. Perhaps the most obvious mechanism is simply the primary act of SO2 photolysis. The SO2 absorption spectrum is highly structured, with strong vibronic bands above and below the dissociation limit. In contrast H2S, with its mostly

  12. Modification of linear prepolymers to tailor heterogeneous network formation through photo-initiated Polymerization-Induced Phase Separation

    PubMed Central

    Szczepanski, Caroline R.; Stansbury, Jeffrey W.

    2015-01-01

    Polymerization-induced phase separation (PIPS) was studied in ambient photopolymerizations of triethylene glycol dimethacrylate (TEGDMA) modified by poly(methyl methacrylate) (PMMA). The molecular weight of PMMA and the rate of network formation (through incident UV-irradiation) were varied to influence both the promotion of phase separation through increases in overall free energy, as well as the extent to which phase development occurs during polymerization through diffusion prior to network gelation. The overall free energy of the polymerizing system increases with PMMA molecular weight, such that PIPS is promoted thermodynamically at low loading levels (5 wt%) of a higher molecular weight PMMA (120 kDa), while a higher loading level (20 wt%) is needed to induce PIPS with lower PMMA molecular weight (11 kDa), and phase separation was not promoted at any loading level tested of the lowest molecular weight PMMA (1 kDa). Due to these differences in overall free energy, systems modified by PMMA (11 kDa) underwent phase separation via Nucleation and Growth, and systems modified by PMMA (120 kDa), followed the Spinodal Decomposition mechanism. Despite differences in phase structure, all materials form a continuous phase rich in TEGDMA homopolymer. At high irradiation intensity (Io=20mW/cm2), the rate of network formation prohibited significant phase separation, even when thermodynamically preferred. A staged curing approach, which utilizes low intensity irradiation (Io=300µW/cm2) for the first ~50% of reaction to allow phase separation via diffusion, followed by a high intensity flood-cure to achieve a high degree of conversion, was employed to form phase-separated networks with reduced polymerization stress yet equivalent final conversion and modulus. PMID:26190865

  13. Coupling between pore formation and phase separation in charged lipid membranes

    NASA Astrophysics Data System (ADS)

    Himeno, Hiroki; Ito, Hiroaki; Higuchi, Yuji; Hamada, Tsutomu; Shimokawa, Naofumi; Takagi, Masahiro

    2015-12-01

    We investigated the effect of charge on the membrane morphology of giant unilamellar vesicles (GUVs) composed of various mixtures containing charged lipids. We observed the membrane morphologies by fluorescent and confocal laser microscopy in lipid mixtures consisting of a neutral unsaturated lipid [dioleoylphosphatidylcholine (DOPC)], a neutral saturated lipid [dipalmitoylphosphatidylcholine (DPPC)], a charged unsaturated lipid [dioleoylphosphatidylglycerol (DOP G(-)) ], a charged saturated lipid [dipalmitoylphosphatidylglycerol (DPP G(-)) ], and cholesterol (Chol). In binary mixtures of neutral DOPC-DPPC and charged DOPC -DPP G(-) , spherical vesicles were formed. On the other hand, pore formation was often observed with GUVs consisting of DOP G(-) and DPPC. In a DPPC-DPPG(-) -Chol ternary mixture, pore-formed vesicles were also frequently observed. The percentage of pore-formed vesicles increased with the DPP G(-) concentration. Moreover, when the head group charges of charged lipids were screened by the addition of salt, pore-formed vesicles were suppressed in both the binary and ternary charged lipid mixtures. We discuss the mechanisms of pore formation in charged lipid mixtures and the relationship between phase separation and the membrane morphology. Finally, we reproduce the results seen in experimental systems by using coarse-grained molecular dynamics simulations.

  14. A new mechanism for the formation of regolith on asteroids

    NASA Astrophysics Data System (ADS)

    Delbo, M.; Libourel, G.; Wilkerson, J.; Murdoch, N.; Michel, P.; Ramesh, K. T.; Ganino, C.; Verati, C.; Marchi, S.

    2014-12-01

    The soil of asteroids, like that of the Moon, Mars, and other rocky bodies in the Solar System, is made of a layer of pebbles, sand, and dust called regolith. Previous studies suggested that the regolith of asteroids is made from material ejected from impacts and re-accumulated on the surface and from boulders that are comminuted by micrometeoroid impacts. However, this classical scenario of regolith formation has problems to explain the regolith on km-sized and smaller asteroids: laboratory experiments and impact modelling have shown that the impact fragments can reach escape velocities and breaks free from the gravitational pull of these small asteroids, indicating the impact mechanism is not the dominant process for regolith creation. Other studies also reveal that there is too much regolith on small asteroids' surfaces to have been deposited there solely through impacts over the millions of years of asteroids' evolution. We discovered that another process is capable of gently breaking rocks at the surface of asteroids: thermal fatigue by temperature cycling. As asteroids spin about their rotation axes, their surfaces plunge in and out of shadow resulting in large surface temperature variations. The rapid heating and cooling creates thermal expansion and contraction in the asteroid material, initiating cracking and propagating existing cracks. As the process is repeated over and over, the crack damage increases with time, leading eventually to rock fragmentation (and production of new regolith). To study this process, in the laboratory, we subjected meteorites, used as asteroid material analogs, to 37 days of thermal cycles similar to those occurring on asteroids. We measured cracks widening at an average rate of 0.5 mm/y. Some fragments were also produced, indicating meteorite fragmentation. To scale our results to asteroid lifetime, we incorporated our measurements into a fracture model and we deduced that thermal cycling is more efficient than micrometeorite

  15. Delta ferrite-containing austenitic stainless steel resistant to the formation of undesirable phases upon aging

    SciTech Connect

    Leitnaker, J.M.

    1981-05-05

    Austenitic stainless steel alloys containing delta ferrite, such as are used as weld deposits, are protected against the transformation of delta ferrite to sigma phase during aging by the presence of carbon plus nitrogen in a weight percent 015-0.030 times the volume percent ferrite present in alloy. The formation of chi phase upon aging is controlled by controlling the mo content.

  16. Surfactants from the gas phase may promote cloud droplet formation.

    PubMed

    Sareen, Neha; Schwier, Allison N; Lathem, Terry L; Nenes, Athanasios; McNeill, V Faye

    2013-02-19

    Clouds, a key component of the climate system, form when water vapor condenses upon atmospheric particulates termed cloud condensation nuclei (CCN). Variations in CCN concentrations can profoundly impact cloud properties, with important effects on local and global climate. Organic matter constitutes a significant fraction of tropospheric aerosol mass, and can influence CCN activity by depressing surface tension, contributing solute, and influencing droplet activation kinetics by forming a barrier to water uptake. We present direct evidence that two ubiquitous atmospheric trace gases, methylglyoxal (MG) and acetaldehyde, known to be surface-active, can enhance aerosol CCN activity upon uptake. This effect is demonstrated by exposing acidified ammonium sulfate particles to 250 parts per billion (ppb) or 8 ppb gas-phase MG and/or acetaldehyde in an aerosol reaction chamber for up to 5 h. For the more atmospherically relevant experiments, i.e., the 8-ppb organic precursor concentrations, significant enhancements in CCN activity, up to 7.5% reduction in critical dry diameter for activation, are observed over a timescale of hours, without any detectable limitation in activation kinetics. This reduction in critical diameter enhances the apparent particle hygroscopicity up to 26%, which for ambient aerosol would lead to cloud droplet number concentration increases of 8-10% on average. The observed enhancements exceed what would be expected based on Köhler theory and bulk properties. Therefore, the effect may be attributed to the adsorption of MG and acetaldehyde to the gas-aerosol interface, leading to surface tension depression of the aerosol. We conclude that gas-phase surfactants may enhance CCN activity in the atmosphere. PMID:23382211

  17. Surfactants from the gas phase may promote cloud droplet formation

    PubMed Central

    Sareen, Neha; Schwier, Allison N.; Lathem, Terry L.; Nenes, Athanasios; McNeill, V. Faye

    2013-01-01

    Clouds, a key component of the climate system, form when water vapor condenses upon atmospheric particulates termed cloud condensation nuclei (CCN). Variations in CCN concentrations can profoundly impact cloud properties, with important effects on local and global climate. Organic matter constitutes a significant fraction of tropospheric aerosol mass, and can influence CCN activity by depressing surface tension, contributing solute, and influencing droplet activation kinetics by forming a barrier to water uptake. We present direct evidence that two ubiquitous atmospheric trace gases, methylglyoxal (MG) and acetaldehyde, known to be surface-active, can enhance aerosol CCN activity upon uptake. This effect is demonstrated by exposing acidified ammonium sulfate particles to 250 parts per billion (ppb) or 8 ppb gas-phase MG and/or acetaldehyde in an aerosol reaction chamber for up to 5 h. For the more atmospherically relevant experiments, i.e., the 8-ppb organic precursor concentrations, significant enhancements in CCN activity, up to 7.5% reduction in critical dry diameter for activation, are observed over a timescale of hours, without any detectable limitation in activation kinetics. This reduction in critical diameter enhances the apparent particle hygroscopicity up to 26%, which for ambient aerosol would lead to cloud droplet number concentration increases of 8–10% on average. The observed enhancements exceed what would be expected based on Köhler theory and bulk properties. Therefore, the effect may be attributed to the adsorption of MG and acetaldehyde to the gas–aerosol interface, leading to surface tension depression of the aerosol. We conclude that gas-phase surfactants may enhance CCN activity in the atmosphere. PMID:23382211

  18. Formation of aqueous-phase α-hydroxyhydroperoxides (α-HHP): potential atmospheric impacts

    NASA Astrophysics Data System (ADS)

    Zhao, R.; Lee, A. K. Y.; Soong, R.; Simpson, A. J.; Abbatt, J. P. D.

    2013-06-01

    The focus of this work is on quantifying the degree of the aqueous-phase formation of α-hydroxyhydroperoxides (α-HHPs) via reversible nucleophilic addition of H2O2 to aldehydes. Formation of this class of highly oxygenated organic hydroperoxides represents a poorly characterized aqueous-phase processing pathway that may lead to enhanced SOA formation and aerosol toxicity. Specifically, the equilibrium constants of α-HHP formation have been determined using proton nuclear-magnetic-resonance (1H NMR) spectroscopy and proton-transfer-reaction mass spectrometry (PTR-MS). Significant α-HHP formation was observed from formaldehyde, acetaldehyde, propionaldehyde, glycolaldehyde, glyoxylic acid, and methylglyoxal, but not from methacrolein and ketones. Low temperatures enhanced the formation of α-HHPs but slowed their formation rates. High inorganic salt concentrations shifted the equilibria toward the hydrated form of the aldehydes and slightly suppressed α-HHP formation. Using the experimental equilibrium constants, we predict the equilibrium concentration of α-HHPs to be in the μM level in cloud water, but it may also be present in the mM level in aerosol liquid water (ALW), where the concentrations of H2O2 and aldehydes can be high. Formation of α-HHPs in ALW may significantly affect the effective Henry's law constants of H2O2 and aldehydes but may not affect their gas-phase levels. The photochemistry and reactivity of this class of atmospheric species have not been studied.

  19. Formation of aqueous-phase α-hydroxyhydroperoxides (α-HHP): potential atmospheric impacts

    NASA Astrophysics Data System (ADS)

    Zhao, R.; Lee, A. K. Y.; Soong, R.; Simpson, A. J.; Abbatt, J. P. D.

    2013-02-01

    The focus of this work is on quantifying the degree of the aqueous-phase formation of α-hydroxyhydroperoxides (α-HHPs) via reversible nucleophilic addition of H2O2 to aldehydes. Formation of this class of highly oxygenated organic hydroperoxides represents a poorly characterized aqueous-phase processing pathway that may lead to enhanced SOA formation and aerosol toxicity. Specifically, the equilibrium constants of α-HHP formation have been determined using proton nuclear resonance (1H NMR) spectroscopy and proton transfer reaction mass spectrometry (PTR-MS). Significant α-HHP formation was observed from formaldehyde, acetaldehyde, propionaldehyde, glycolaldehyde, glyoxylic acid, methylglyoxal, but not from methacrolein and ketones. Low temperatures enhanced the formation of α-HHPs but slowed their formation rates. High inorganic salt concentrations shifted the equilibria toward the hydrated form of the aldehydes and slightly suppressed α-HHP formation. Using the experimental equilibrium constants, we predict the equilibrium concentration of α-HHPs to be in the μM level in cloud water but may be present in the mM level in aerosol liquid water (ALW), where the concentrations of H2O2 and aldehydes can be high. Formation of α-HHPs in ALW may significantly affect the effective Henry's law constants of H2O2 and aldehydes but may not affect their gas-phase levels. The photochemistry and reactivity of this class of atmospheric species have not been studied.

  20. Formation Process of the Circumstellar Disk: Long-term Simulations in the Main Accretion Phase of Star Formation

    NASA Astrophysics Data System (ADS)

    Machida, Masahiro N.; Inutsuka, Shu-ichiro; Matsumoto, Tomoaki

    2010-12-01

    The formation and evolution of the circumstellar disk in unmagnetized molecular clouds is investigated using three-dimensional hydrodynamic simulations from the prestellar core until the end of the main accretion phase. In collapsing cloud cores, the first (adiabatic) core with a size of gsim3 AU forms prior to the formation of the protostar. At its formation, the first core has a thick disk-like structure and is mainly supported by the thermal pressure. After the protostar formation, it decreases the thickness gradually and becomes supported by the centrifugal force. We found that the first core is a precursor of the circumstellar disk with a size of >3 AU. This means that unmagnetized protoplanetary disk smaller than <3 AU does not exist. Reflecting the thermodynamics of the collapsing gas, at the protostar formation epoch, the first core (or the circumstellar disk) has a mass of ~0.005-0.1 M sun, while the protostar has a mass of ~10-3 M sun. Thus, just after the protostar formation, the circumstellar disk is about 10-100 times more massive than the protostar. In the main accretion phase that lasts for ~105 yr, the circumstellar disk mass initially tends to dominate the protostellar mass. Such a massive disk is unstable to gravitational instability and tends to show fragmentation. Our calculations indicate that the low-mass companions may form in the circumstellar disk in the main accretion phase. In addition, the mass accretion rate onto the protostar shows a strong time variability that is caused by the torque from the low-mass companions and/or the spiral arms in the circumstellar disk. Such variability provides an important signature for detecting the substellar mass companion in the circumstellar disk around very young protostars.

  1. FORMATION PROCESS OF THE CIRCUMSTELLAR DISK: LONG-TERM SIMULATIONS IN THE MAIN ACCRETION PHASE OF STAR FORMATION

    SciTech Connect

    Machida, Masahiro N.; Inutsuka, Shu-ichiro; Matsumoto, Tomoaki E-mail: inutsuka@nagoya-u.j

    2010-12-01

    The formation and evolution of the circumstellar disk in unmagnetized molecular clouds is investigated using three-dimensional hydrodynamic simulations from the prestellar core until the end of the main accretion phase. In collapsing cloud cores, the first (adiabatic) core with a size of {approx}>3 AU forms prior to the formation of the protostar. At its formation, the first core has a thick disk-like structure and is mainly supported by the thermal pressure. After the protostar formation, it decreases the thickness gradually and becomes supported by the centrifugal force. We found that the first core is a precursor of the circumstellar disk with a size of >3 AU. This means that unmagnetized protoplanetary disk smaller than <3 AU does not exist. Reflecting the thermodynamics of the collapsing gas, at the protostar formation epoch, the first core (or the circumstellar disk) has a mass of {approx}0.005-0.1 M{sub sun}, while the protostar has a mass of {approx}10{sup -3} M{sub sun}. Thus, just after the protostar formation, the circumstellar disk is about 10-100 times more massive than the protostar. In the main accretion phase that lasts for {approx}10{sup 5} yr, the circumstellar disk mass initially tends to dominate the protostellar mass. Such a massive disk is unstable to gravitational instability and tends to show fragmentation. Our calculations indicate that the low-mass companions may form in the circumstellar disk in the main accretion phase. In addition, the mass accretion rate onto the protostar shows a strong time variability that is caused by the torque from the low-mass companions and/or the spiral arms in the circumstellar disk. Such variability provides an important signature for detecting the substellar mass companion in the circumstellar disk around very young protostars.

  2. The provenance and formation of reduced carbon phases on Mars from the study of Martian meteorites.

    NASA Astrophysics Data System (ADS)

    Steele, A.; McCubbin, F. M.; Fries, M.

    2015-12-01

    Organic carbon compounds are essential building blocks of terrestrial life, so the occurrence and origin (biotic or abiotic) of organic compounds on Mars is of great significance. Indeed, the question of Martian organic matter is among the highest priority targets for robotic spacecraft missions in the next decade includ- ing the Mars Science Laboratory and Mars 2020. Sev- eral Martian meteorites contain organic carbon (i.e., macromolecular reduced carbon-rich material, not nec- essarily related to biota), but there is little agreement on its origins. Initial hypotheses for the origin of this organic carbon included: terrestrial contamination; chondritic meteoritic input; thermal decomposition of Martian carbonate minerals; direct precipitation from cooling aqueous fluids; and the remains of ancient Martian biota. We report on results from the analysis of 14 martian meteorites and show the distribution of organic phases throughout the samples analyzed. We will present formation scearios for each of the types of organic matter discovered. These studies when combined show 4 possible pools of reduced carbon on Mars. 1) impact generated graphite in the Tissint meteorite, 2) secondary hydrothermal generated graphite in ALH 84001, 3) primary igneous reduced carbon in 12 Martian meteorites associated with spinel inclusions in olivine and pyroxene 4) and potentially primary hydrothermally formed organic carbon / nitrogen containing organic species in the maskelynite phases of the Tissint meteorite. These studies show that Mars has produced reduced carbon / organic carbon via several mechanisms and reveal that the building blocks of life, if not life itself, are present on Mars.

  3. Modulation-format-independent blind phase search algorithm for coherent optical square M-QAM systems.

    PubMed

    Zhou, Xian; Zhong, Kangping; Gao, Yuliang; Lu, Chao; Lau, Alan Pak Tao; Long, Keping

    2014-10-01

    Modulation format independence is one of the key challenges in digital signal processing (DSP) techniques for future elastic optical transmissions. We proposed a modulation-format-independent blind phase search (MFI-BPS) algorithm for square M-ary quadrature amplitude modulation (M-QAM) systems, in which modulation format recognition (MFR) and carrier phase estimation (CPE), are included and implemented both in a feed-forward manner. Comprehensive simulation and the experimental studies on 224 Gbit/s polarization multiplexing 16-QAM (PM-16QAM) systems demonstrate the feasibility and the effectiveness of the proposed MFI-BPS algorithm. PMID:25321980

  4. Stochastic simulation of fluctuation stage of phase transfer on solid surface during thin film formation

    SciTech Connect

    Bondareva, A.L.; Zmievskaya, G.I.

    2005-05-16

    Ions irradiation leads to nano-scale islands of thin cover formation. Influence on a solid surface of the following processes: fluctuation stage of phase transition (new phase island formation), its migration under long-range potentials of interaction which leads to brownian motion of islands on the surface, inelastic collisions of islands has been simulated by stochastic analogue method. The calculated time evolution of islands kinetic distribution function from islands square sizes and coordinates of its masses centres on the surface is calculated taking into account non-linear Gibbs energy of islands formation, which depends on lattice elastic responses as well on dislocation influence.

  5. A HRMS study of oligomer formation through aqueous phase photooxidation of methylvinyl-ketone and methacrolein

    NASA Astrophysics Data System (ADS)

    Salque-moreton, G.; Liu, Y.; Voisin, D.; Siekmann, F.; Renard, P.; Monod, A.; Thissen, R.

    2012-04-01

    Global estimates of secondary organic aerosol (SOA) formation flux show that the current descriptions miss a large fraction of the sources. Aqueous phase photochemistry in cloud droplets and deliquescent aerosol may provide some of this missing flux. Organic reactions in those media, particularly leading to higher molecular weight products thus need better understanding. Here, we investigated the aqueous phase photooxidation of methacrolein (MACR) and methylvinyl-ketone (MVK), which are the two main oxidation products of isoprene, the volatile organic compound (VOC) that is mostly emitted on the global scale. In our experiments, photolysis of H2O2 provided OH radicals whose reaction with MACR or MVK produced oligomers. Firstly, oligomers were analyzed using electrospray ionization coupled with high-resolution linear ion trap Orbitrap™ (Thermo Corp.) mass spectrometer (HRMS). This technique enabled to propose the unambiguous elemental composition of the produced compounds as data were collected for a mass range of m/z 50-2000 amu. The mass of oligomers increased strongly in positive and negative ionization modes when initial concentrations of MACR and MVK were increased from 2 to 20 mM. Typical regular patterns of oligomer formation were observed for both precursors, and extended up to 1400 amu. These patterns were very different from each other for the two precursors although both showed regular mass differences of 70 amu. In addition, we used a Kendrick analysis and identified more than 20 distinct chemical oligomer series produced by photooxidation of both MACR and MVK, some of which reaching more than 1400 amu. The HRMS investigations allowed us to propose a mechanism of production of oligomers. Upon nebulization, both oligomer systems produce SOA with a mass yield of 2-12%. This mass yield increases with reaction time and precursor concentration. Moreover, time evolution of the oligomer systems observed with the Orbitrap will be compared to HR

  6. Experimental and Computational Studies of the Formation Mechanism of Protonated Interstellar Diazines

    NASA Astrophysics Data System (ADS)

    Wang, Zhe-Chen; Cole, Callie A.; Snow, Theodore P.; Bierbaum, Veronica M.

    2015-01-01

    Studies of interstellar chemistry have grown in number and complexity by both observations and laboratory measurements, and nitrogen-containing aromatics have been implicated as important interstellar molecules. In this paper, the gas-phase collision induced dissociation (CID) processes of protonated pyridazine (1,2-diazine), pyrimidine (1,3-diazine), and pyrazine (1,4-diazine) cations (C4H5N2 +) are investigated in detail both experimentally and theoretically. The major neutral loss for all three CID processes is HCN, leading to the formation of C3H4N+ isomers; our density functional theory (DFT) calculations support and elucidate our experimental results. The formation of C3H4N+ isomers from the reaction of abundant interstellar acrylonitrile (CH2CHCN) and H+is also studied employing DFT calculations. Our results lead to a novel mechanism for interstellar protonated diazine formation from the consecutive reactions of CH2CHCN+ H+ + HCN. Moreover, our results motivate the continuing search for interstellar C3H4N+ isomers as well as polycyclic aromatic N-containing hydrocarbons (PANHs).

  7. EXPERIMENTAL AND COMPUTATIONAL STUDIES OF THE FORMATION MECHANISM OF PROTONATED INTERSTELLAR DIAZINES

    SciTech Connect

    Wang, Zhe-Chen; Cole, Callie A.; Bierbaum, Veronica M.; Snow, Theodore P.

    2015-01-10

    Studies of interstellar chemistry have grown in number and complexity by both observations and laboratory measurements, and nitrogen-containing aromatics have been implicated as important interstellar molecules. In this paper, the gas-phase collision induced dissociation (CID) processes of protonated pyridazine (1,2-diazine), pyrimidine (1,3-diazine), and pyrazine (1,4-diazine) cations (C{sub 4}H{sub 5}N{sub 2} {sup +}) are investigated in detail both experimentally and theoretically. The major neutral loss for all three CID processes is HCN, leading to the formation of C{sub 3}H{sub 4}N{sup +} isomers; our density functional theory (DFT) calculations support and elucidate our experimental results. The formation of C{sub 3}H{sub 4}N{sup +} isomers from the reaction of abundant interstellar acrylonitrile (CH{sub 2}CHCN) and H{sup +}is also studied employing DFT calculations. Our results lead to a novel mechanism for interstellar protonated diazine formation from the consecutive reactions of CH{sub 2}CHCN+ H{sup +} + HCN. Moreover, our results motivate the continuing search for interstellar C{sub 3}H{sub 4}N{sup +} isomers as well as polycyclic aromatic N-containing hydrocarbons (PANHs)

  8. Mechanisms of HsSAS-6 assembly promoting centriole formation in human cells

    PubMed Central

    Keller, Debora; Orpinell, Meritxell; Olivier, Nicolas; Wachsmuth, Malte; Mahen, Robert; Wyss, Romain; Hachet, Virginie; Ellenberg, Jan; Manley, Suliana; Gönczy, Pierre

    2014-01-01

    SAS-6 proteins are thought to impart the ninefold symmetry of centrioles, but the mechanisms by which their assembly occurs within cells remain elusive. In this paper, we provide evidence that the N-terminal, coiled-coil, and C-terminal domains of HsSAS-6 are each required for procentriole formation in human cells. Moreover, the coiled coil is necessary and sufficient to mediate HsSAS-6 centrosomal targeting. High-resolution imaging reveals that GFP-tagged HsSAS-6 variants localize in a torus around the base of the parental centriole before S phase, perhaps indicative of an initial loading platform. Moreover, fluorescence recovery after photobleaching analysis demonstrates that HsSAS-6 is immobilized progressively at centrosomes during cell cycle progression. Using fluorescence correlation spectroscopy and three-dimensional stochastic optical reconstruction microscopy, we uncover that HsSAS-6 is present in the cytoplasm primarily as a homodimer and that its oligomerization into a ninefold symmetrical ring occurs at centrioles. Together, our findings lead us to propose a mechanism whereby HsSAS-6 homodimers are targeted to centrosomes where the local environment and high concentration of HsSAS-6 promote oligomerization, thus initiating procentriole formation. PMID:24590172

  9. Visual semiquantification via the formation of phase segregation.

    PubMed

    Kuo, Chun-Ting; Liu, Yao-Min; Wu, Sung-Hsun; Lin, Cheng-Han; Lin, Chia-Mei; Chen, Chun-hsien

    2011-05-15

    Colorimetry, one of the central themes in contemporary chemistry, generally relies on spectrometers to quantify specimens of interest. Developed herein is a rapid screening scheme to determine whether the amount of an analyte falls into a diagnostic concentration range by the naked eye. This is particularly important for applications under circumstances where instruments are not readily available. The aforementioned goal is demonstrated by utilizing copper-thiol chemistry as a model system in which polymerization occurs within a certain range of copper-to-cysteine mole ratios; hence, the targeted range of copper concentration is tunable by adjusting the amount of cysteine. Within and outside the range, the solutions appear cloudy and homogeneous, respectively. The reaction mechanism is proposed and scrutinized. The detection scheme is applied successfully on samples of human serum (15.7-23.6 μM) and pond water (<3.0 ppm or 47 μM) with a handy laser pointer. PMID:21491873

  10. Formation of quark phases in compact stars and SN explosion

    SciTech Connect

    Drago, A.; Pagliara, G.; Pagliaroli, G.; Villante, F. L.; Vissani, F.

    2008-10-13

    We describe possible scenarios of quark deconfinement in compact stars and we analyze their astrophysical implications. The quark deconfinement process can proceed rapidly, as a strong deflagration, releasing a huge amount of energy in a short time and generating an extra neutrino burst. If energy is tranferred efficiently to the surface, like e.g. in the presence of convective instabilities, this burst could contribute to revitalize a partially failed SN explosion. We discuss how the neutrino observations from SN1987A would fit in this scenario. Finally, we focus on the fate of massive and rapidly rotating progenitors, discussing possible time separations between the moment of the core collapse and the moment of quark deconfinement. This mechanism can be at the basis of the interpretation of gamma ray bursts in which lines associated with heavy elements are present in the spectrum.

  11. An HPLC chromatographic framework to analyze the β-cyclodextrin/solute complexation mechanism using a carbon nanotube stationary phase.

    PubMed

    Aljhni, Rania; Andre, Claire; Lethier, Lydie; Guillaume, Yves Claude

    2015-11-01

    A carbon nanotube (CNT) stationary phase was used for the first time to study the β-cyclodextrin (β-CD) solute complexation mechanism using high performance liquid chromatography (HPLC). For this, the β-CD was added at various concentrations in the mobile phase and the effect of column temperature was studied on both the retention of a series of aniline and benzoic acid derivatives with the CNT stationary phase and their complexation mechanism with β-CD. A decrease in the solute retention factor was observed for all the studied molecules without change in the retention order. The apparent formation constant KF of the inclusion complex β-CD/solute was determined at various temperatures. Our results showed that the interaction of β-CD with both the mobile phase and the stationary phase interfered in the complex formation. The enthalpy and entropy of the complex formation (ΔHF and ΔSF) between the solute molecule and CD were determined using a thermodynamic approach. Negative enthalpies and entropies indicated that the inclusion process of the studied molecule in the CD cavity was enthalpically driven and that the hydrogen bonds between carboxylic or aniline groups and the functional groups on the β-CD rim play an important role in the complex formation. PMID:26452814

  12. Thermoseparating aqueous two-phase systems: Recent trends and mechanisms.

    PubMed

    Leong, Yoong Kit; Lan, John Chi-Wei; Loh, Hwei-San; Ling, Tau Chuan; Ooi, Chien Wei; Show, Pau Loke

    2016-02-01

    Having the benefits of being environmentally friendly, providing a mild environment for bioseparation, and scalability, aqueous two-phase systems (ATPSs) have increasingly caught the attention of industry and researchers for their application in the isolation and recovery of bioproducts. The limitations of conventional ATPSs give rise to the development of temperature-induced ATPSs that have distinctive thermoseparating properties and easy recyclability. This review starts with a brief introduction to thermoseparating ATPSs, including its history, unique characteristics and advantages, and lastly, key factors that influence partitioning. The underlying mechanism of temperature-induced ATPSs is covered together with a summary of recent applications. Thermoseparating ATPSs have been proven as a solution to the demand for economically favorable and environmentally friendly industrial-scale bioextraction and purification techniques. PMID:26447739

  13. Gas-Phase Anionic σ-Adduct (Trans)formations in Heteroaromatic Systems1

    NASA Astrophysics Data System (ADS)

    Zimnicka, Magdalena; Danikiewicz, Witold

    2015-07-01

    Anions of nitroderivatives of thiophene and furan were subjected to the reactions with selected C-H acids in the gas phase. Various structures and reaction pathways were proposed for the observed ionic products. In general, the reactions of heteroaromatic anions with C-H acids may be divided into three groups, depending on the proton affinity difference between C-H acid's conjugate base and heteroaromatic anion (ΔPA). The proton transfer from C-H acid to heteroaromatic anion is a dominant process in the reactions for which ΔPA < 0 kcal mol-1, whereas the reactions with high ΔPA (ΔPA > 16 kcal mol-1) do not lead to any ionic products. The formation of σ-adducts and products of their further transformations according to the VNS, SNAr, cine, and tele substitution mechanisms have been proposed for reactions with moderate ΔPA. The other possible mechanisms as SN2 reaction, nucleophilic addition to the cyano group, ring-opening pathway, and halogenophilic reaction have also been discussed to contribute in the reactions between heteroaromatic anions and C-H acids.

  14. The Role of Possible Feedback Mechanisms in the Effects of Altered Gravity on Formation and Function of Gravireceptors of Mollusks and Fish

    NASA Technical Reports Server (NTRS)

    Kondrachuk, Alexander V.; Boyle, Richard D.

    2005-01-01

    The variety of the effects of altered gravity (AG) on development and function of gravireceptors cannot be explained by simple feedback mechanism that correlates gravity level and weight of test mass. The reaction of organisms to the change of gravity depends on the phase of their development. To predict this reaction we need to know the details of the mechanisms of gravireceptor formation

  15. Theoretical Mechanistic and Kinetic Studies on Homogeneous Gas-Phase Formation of Polychlorinated Naphthalene from 2-Chlorophenol as Forerunner

    PubMed Central

    Xu, Fei; Zhang, Ruiming; Li, Yunfeng; Zhang, Qingzhu; Wang, Wenxing

    2015-01-01

    Polychlorinated naphthalenes (PCNs) are dioxins-like compounds and are formed along with polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) in thermal and combustion procedures. Chlorophenols (CPs) are the most important forerunners of PCNs. A comprehensive comprehension of PCN formation procedure from CPs is a precondition for reducing the discharge of PCNs. Experiments on the formation of PCNs from CPs have been hindered by PCN toxicity and short of precise detection methods for active intermediate radicals. In this work, PCN formation mechanism in gas-phase condition from 2-chlorophenol (2-CP) as forerunner was studied by quantum chemistry calculations. Numbers of energetically advantaged formation routes were proposed. The rate constants of key elementary steps were calculated over 600–1200 K using canonical variational transition-state theory (CVT) with small curvature tunneling contribution (SCT) method. This study illustrates formation of PCNs with one chlorine atom loss from 2-CP is preferred over that without chlorine atom loss. In comparison with formation of PCDFs from 2-CP, PCN products are less chlorinated and have lower formation potential. PMID:26516839

  16. Theoretical Mechanistic and Kinetic Studies on Homogeneous Gas-Phase Formation of Polychlorinated Naphthalene from 2-Chlorophenol as Forerunner.

    PubMed

    Xu, Fei; Zhang, Ruiming; Li, Yunfeng; Zhang, Qingzhu; Wang, Wenxing

    2015-01-01

    Polychlorinated naphthalenes (PCNs) are dioxins-like compounds and are formed along with polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) in thermal and combustion procedures. Chlorophenols (CPs) are the most important forerunners of PCNs. A comprehensive comprehension of PCN formation procedure from CPs is a precondition for reducing the discharge of PCNs. Experiments on the formation of PCNs from CPs have been hindered by PCN toxicity and short of precise detection methods for active intermediate radicals. In this work, PCN formation mechanism in gas-phase condition from 2-chlorophenol (2-CP) as forerunner was studied by quantum chemistry calculations. Numbers of energetically advantaged formation routes were proposed. The rate constants of key elementary steps were calculated over 600-1200 K using canonical variational transition-state theory (CVT) with small curvature tunneling contribution (SCT) method. This study illustrates formation of PCNs with one chlorine atom loss from 2-CP is preferred over that without chlorine atom loss. In comparison with formation of PCDFs from 2-CP, PCN products are less chlorinated and have lower formation potential. PMID:26516839

  17. The mechanical properties of phase separated protein droplets

    NASA Astrophysics Data System (ADS)

    Jawerth, Louise; Ijavi, Mahdiye; Patel, Avinash; Saha, Shambaditya; Jülicher, Frank; Hyman, Anthony

    In vivo, numerous proteins associate into liquid compartments by de-mixing from the surrounding solution, similar to oil molecules in water. Many of these proteins and their corresponding liquid compartments play a crucial role in important biological processes, for instance germ line specification in C. elegans or in neurodegenerative diseases such as Amyotrophic lateral sclerosis (ALS). However, despite their importance, very little is known about the physical properties of the resulting droplets as well as the physical mechanisms that control their phase separation from solution. To gain a deeper understanding of these aspects, we study a few such proteins in vitro. When these proteins are purified and added to a physiological buffer, they phase separate into droplets ranging in size from a few to tens of microns with liquid-like behavior similar to their physiological counterparts. By attaching small beads to the surface of the droplets, we can deform the droplets by manipulating the beads directly using optical tweezers. By measuring the force required to deform the droplets we determine their surface tension, elasticity and viscosity as well as the frequency response of these properties. We also measure these properties using passive micro-rheology.

  18. Kinetics and dynamics of annealing during sub-gel phase formation in phospholipid bilayers

    PubMed Central

    Páli, Tibor; Bartucci, Rosa; Horváth, László I.; Marsh, Derek

    1993-01-01

    The saturation transfer electron spin resonance (STESR) spectra of spin-labeled phosphatidylcholine have been used to follow the kinetics of conversion from the gel phase to the sub-gel phase in aqueous bilayers of dipalmitoyl phosphatidylcholine. This is a simple, well-defined model system for lipid domain formation in membranes. The integrated intensity of the STESR spectrum from the chain-labeled lipid first increases and then decreases with time of incubation in the gel phase at 0°C. The first, more rapid phase of the kinetics is attributed to the conversion of germ nuclei to growth nuclei of the sub-gel phase. The increase in STESR intensity corresponds to the reduction in chain mobility of spin labels located in the gel phase at the boundaries of the growth nuclei and correlates with the increase in the diagnostic STESR line height ratios over this time range. The second, slower phase of the kinetics is attributed to growth of the domains of the sub-gel phase. The decrease in STESR intensity over this time regime corresponds to exclusion of the spin-labeled lipids from the tightly packed sub-gel phase and correlates quantitatively with calibrations of the spin label concentration dependence of the STESR intensity in the gel phase. The kinetics of formation of the sub-gel phase are consistent with the classical model for domain formation and growth. At 0°C, the half-time for conversion of germ nuclei to growth nuclei is ∼7.7 h and domain growth of the sub-gel phase is characterized by a rate constant of 0.025 h-1. The temperature dependence of the STESR spectra from samples annealed at 0°C suggests that the subtransition takes place via dissolution of sub-gel phase domains, possibly accompanied by domain fission. PMID:19431899

  19. The Mechanism of First Raindrops Formation in Deep Convective Clouds

    SciTech Connect

    Khain, Alexander; Prabha, Thara; Benmoshe, Nir; Pandithurai, G.; Ovchinnikov, Mikhail

    2013-08-22

    The formation of first raindrops in deep convective clouds is investigated. A combination of observational data analysis and 2-D and 3-D numerical bin microphysical simulations of deep convective clouds suggests that the first raindrops form at the top of undiluted or slightly diluted cores. It is shown that droplet size distributions in these regions are wider and contain more large droplets than in diluted volumes. The results of the study indicate that the initial raindrop formation is determined by the basic microphysical processes within ascending adiabatic volumes. It allows one to predict the height of the formation of first raindrops considering the processes of nucleation, diffusion growth and collisions. The results obtained in the study explain observational results reported by Freud and Rosenfeld (2012) according to which the height of first raindrop formation depends linearly on the droplet number concentration at cloud base. The results also explain why a simple adiabatic parcel model can reproduce this dependence. The present study provides a physical basis for retrieval algorithms of cloud microphysical properties and aerosol properties using satellites proposed by Rosenfeld et al. ( 2012). The study indicates that the role of mixing and entrainment in the formation of the first raindrops is not of crucial importance. It is also shown that low variability of effective and mean volume radii along horizontal traverses, as regularly observed by in situ measurements, can be simulated by high-resolution cloud models, in which mixing is parameterized by a traditional 1.5 order turbulence closure scheme.

  20. Chemical pattern formation driven by a neutralization reaction. I. Mechanism and basic features

    NASA Astrophysics Data System (ADS)

    Eckert, Kerstin; Acker, Margret; Shi, Ying

    2004-02-01

    We study the chemohydrodynamic pattern formation during interfacial mass transfer accompanied by a neutralization reaction. The system, which is placed in a Hele-Shaw cell, is a configuration of two immiscible liquid phases in contact along a plane interface. In the upper, organic layer a carboxylic acid is dissolved, the concentration of which is far beyond the equilibrium partition ratio. Interfacial acid transfer initiates the neutralization with an organic base dissolved in the lower, aqueous layer. Focus is on the exploration of a novel instability consisting of a regular cellular structure penetrating into the aqueous bulk solution. By several complementary experimental methods, including shadowgraph visualization with different magnifications, particle image velocimetry, differential interferometry, and detailed measurements of relevant material properties, the driving mechanism of the instability is identified. Synthesis of the experimental results suggests that lateral differences in buoyancy are responsible for the convection.

  1. Insights into secondary organic aerosol formation mechanisms from measured gas/particle partitioning of specific organic tracer compounds.

    PubMed

    Zhao, Yunliang; Kreisberg, Nathan M; Worton, David R; Isaacman, Gabriel; Weber, Robin J; Liu, Shang; Day, Douglas A; Russell, Lynn M; Markovic, Milos Z; VandenBoer, Trevor C; Murphy, Jennifer G; Hering, Susanne V; Goldstein, Allen H

    2013-04-16

    In situ measurements of organic compounds in both gas and particle phases were made with a thermal desorption aerosol gas chromatography (TAG) instrument. The gas/particle partitioning of phthalic acid, pinonaldehyde, and 6,10,14-trimethyl-2-pentadecanone is discussed in detail to explore secondary organic aerosol (SOA) formation mechanisms. Measured fractions in the particle phase (f(part)) of 6,10,14-trimethyl-2-pentadecanone were similar to those expected from the absorptive gas/particle partitioning theory, suggesting that its partitioning is dominated by absorption processes. However, f(part) of phthalic acid and pinonaldehyde were substantially higher than predicted. The formation of low-volatility products from reactions of phthalic acid with ammonia is proposed as one possible mechanism to explain the high f(part) of phthalic acid. The observations of particle-phase pinonaldehyde when inorganic acids were fully neutralized indicate that inorganic acids are not required for the occurrence of reactive uptake of pinonaldehyde on particles. The observed relationship between f(part) of pinonaldehyde and relative humidity suggests that the aerosol water plays a significant role in the formation of particle-phase pinonaldehyde. Our results clearly show it is necessary to include multiple gas/particle partitioning pathways in models to predict SOA and multiple SOA tracers in source apportionment models to reconstruct SOA. PMID:23448102

  2. Tribological behavior and film formation mechanisms of carbon nanopearls

    NASA Astrophysics Data System (ADS)

    Hunter, Chad Nicholas

    Carbon nanopearls (CNPs) are amorphous carbon spheres that contain concentrically-oriented nanometer-sized graphitic flakes. Because of their spherical shape, size (˜150 nm), and structure consisting of concentrically oriented nano-sized sp2 flakes, CNPs are of interest for tribological applications, in particular for use in solid lubricant coatings. These studies were focused on investigating mechanisms of CNP lubrication, development of methods to deposit CNP onto substrates, synthesizing CNP-gold hybrid films using Matrix Assisted Pulsed Laser Evaporation (MAPLE) and magnetron sputtering, and studying plasmas and other species present during film deposition using an Electrostatic Quadrupole Plasma (EQP) analyzer. CNPs deposited onto silicon using drop casting with methanol showed good lubricating properties in sliding contacts under dry conditions, where a transfer film was created in which morphology changed from nano-sized spheres to micron-sized agglomerates consisting of many highly deformed CNPs in which the nano-sized graphene flakes are sheared from the wrapped layer structure of the CNPs. The morphology of carbon nanopearl films deposited using a MAPLE system equipped with a 248 nm KrF excimer laser source was found to be influenced by multiple factors, including composition of the matrix solvent, laser energy and repetition rate, background pressure, and substrate temperature. The best parameters for depositing CNP films that are disperse, droplet-free and have the maximum amount of material deposited are as follows: toluene matrix, 700 mJ, 1 Hz, 100°C substrate temperature, and unregulated vacuum pressure. During depositions using MAPLE and sputtering in argon, electron ionization of toluene vapor generated from the MAPLE target and charge exchange reactions between toluene vapor and the argon plasma generated by the magnetron caused carbon to be deposited onto the gold sputter target. Thin films deposited under these conditions contained high

  3. What is the mechanism of formation of hydroxyaluminosilicates?

    PubMed Central

    Beardmore, James; Lopez, Xabier; Mujika, Jon I.; Exley, Christopher

    2016-01-01

    The formation of hydroxyaluminosilicates is integral to the biogeochemical cycles of aluminium and silicon. The unique inorganic chemistry which underlies their formation explains the non-essentiality in biota of both of these elements. However, the first steps in the formation of hydroxyaluminosilicates were hitherto only theoretical and plausibly only accessible in silico. Herein we have used computational chemistry to identify and define for the first time these unique and ultimately critically important reaction steps. We have used density-functional theory combined with solvent continuum models to confirm first, the nature of the reactants, an aluminium hydroxide dimer and silicic acid, second, the reaction products, two distinct hydroxyaluminosilicates A and B and finally, how these are the precursors to highly insoluble hydroxyaluminosilicates the role of which has been and continues to be to keep inimical aluminium out of biota. PMID:27477995

  4. What is the mechanism of formation of hydroxyaluminosilicates?

    NASA Astrophysics Data System (ADS)

    Beardmore, James; Lopez, Xabier; Mujika, Jon I.; Exley, Christopher

    2016-08-01

    The formation of hydroxyaluminosilicates is integral to the biogeochemical cycles of aluminium and silicon. The unique inorganic chemistry which underlies their formation explains the non-essentiality in biota of both of these elements. However, the first steps in the formation of hydroxyaluminosilicates were hitherto only theoretical and plausibly only accessible in silico. Herein we have used computational chemistry to identify and define for the first time these unique and ultimately critically important reaction steps. We have used density-functional theory combined with solvent continuum models to confirm first, the nature of the reactants, an aluminium hydroxide dimer and silicic acid, second, the reaction products, two distinct hydroxyaluminosilicates A and B and finally, how these are the precursors to highly insoluble hydroxyaluminosilicates the role of which has been and continues to be to keep inimical aluminium out of biota.

  5. The mechanism of vapor phase hydration of calcium oxide: implications for CO2 capture.

    PubMed

    Kudłacz, Krzysztof; Rodriguez-Navarro, Carlos

    2014-10-21

    Lime-based sorbents are used for fuel- and flue-gas capture, thereby representing an economic and effective way to reduce CO2 emissions. Their use involves cyclic carbonation/calcination which results in a significant conversion reduction with increasing number of cycles. To reactivate spent CaO, vapor phase hydration is typically performed. However, little is known about the ultimate mechanism of such a hydration process. Here, we show that the vapor phase hydration of CaO formed after calcination of calcite (CaCO3) single crystals is a pseudomorphic, topotactic process, which progresses via an intermediate disordered phase prior to the final formation of oriented Ca(OH)2 nanocrystals. The strong structural control during this solid-state phase transition implies that the microstructural features of the CaO parent phase predetermine the final structural and physicochemical (reactivity and attrition) features of the product hydroxide. The higher molar volume of the product can create an impervious shell around unreacted CaO, thereby limiting the efficiency of the reactivation process. However, in the case of compact, sintered CaO structures, volume expansion cannot be accommodated in the reduced pore volume, and stress generation leads to pervasive cracking. This favors complete hydration but also detrimental attrition. Implications of these results in carbon capture and storage (CCS) are discussed. PMID:25233236

  6. Mechanisms of zinc incorporation in aluminosilicate crystalline structures and the leaching behaviour of product phases.

    PubMed

    Tang, Yuanyuan; Shih, Kaimin

    2015-01-01

    This study quantitatively evaluates a waste-to-resource strategy of blending zinc-laden sludge and clay material for low-cost ceramic products. Using ZnO as the simulated zinc-laden sludge to sinter with kaolinite, both zinc aluminate spinel (ZnAl₂O₄) and willemite (Zn₂SiO₄) phases were formed during the sintering process. To analyse the details of zinc incorporation reactions, γ-Al₂O₃and quartz were further used as precursors to observe ZnAl₂O₄and Zn₂SiO₄formations. By firing the ZnO mixtures and their corresponding precursors at 750-1350°C for 3 h, the efficiency of zinc transformation was determined through Rietveld refinement analyses of X-ray diffraction data. The results also show different incorporation behaviour for kaolinite and mullite precursors during the formation of ZnAl2O₄and Zn2SiO₄in the system. In addition, with a competitive formation between ZnAl₂O₄and Zn₂SiO₄, the ZnAl₂O₄spinel phase is predominant at temperatures higher than 1050°C. This study used a prolonged leaching test modified from the US Environmental Protection Agency's toxicity characteristic leaching procedure to evaluate ZnO, ZnAl₂O₄, and Zn₂SiO₄product phases. The zinc concentrations in ZnO and Zn₂SiO₄leachates were about two orders of magnitude higher than that of ZnAl₂O₄ leachate at the end of the experiment, indicating that ZnAl₂O₄formation is the preferred stabilization mechanism for incorporating zinc in ceramic products. PMID:25399963

  7. MECHANISMS OF NITROUS OXIDE FORMATION IN COAL FLAMES

    EPA Science Inventory

    The paper gives results of a study, using both detailed kinetic modeling and plug-flow simulator experiments, to investigate an unknown mechanism by which N2O is formed in coal flames. This mechanism has considerable importance in determining the influence of common and advanced ...

  8. [HYPOTHESIS OF FORMATION DURING THE EVOLUTION OF MECHANISM OF SENESCENCE].

    PubMed

    Makrushin, A V

    2015-01-01

    A hypothesis is in the evolution origin of the mechanism of senescence--is consequence of growth of individual integrity and thus loss ability to asexual reproduction. Evolutionary precursor of senescence mechanism was probably morphogenetic adaptation of potentially immortal precambrian Metazoa with which they adapted to the changing environment. PMID:26390606

  9. New Pathways for the Formation of Complex Organics and Prebiotic Synthesis in the Gas Phase

    NASA Astrophysics Data System (ADS)

    El-Shall, M. S.

    2010-04-01

    We study the formation mechanisms of complex organics that are present in interstellar clouds. The reaction of acetylene ion with water produces vinyl alcohol while the reaction of benzene ion with acetylene produces naphthalene-type ion.

  10. Mechanical properties of irradiated multi-phase polycrystalline BCC materials

    NASA Astrophysics Data System (ADS)

    Song, Dingkun; Xiao, Xiazi; Xue, Jianming; Chu, Haijian; Duan, Huiling

    2015-04-01

    Structure materials under severe irradiations in nuclear environments are known to degrade because of irradiation hardening and loss of ductility, resulting from irradiation-induced defects such as vacancies, interstitials and dislocation loops, etc. In this paper, we develop an elastic-viscoplastic model for irradiated multi-phase polycrystalline BCC materials in which the mechanical behaviors of individual grains and polycrystalline aggregates are both explored. At the microscopic grain scale, we use the internal variable model and propose a new tensorial damage descriptor to represent the geometry character of the defect loop, which facilitates the analysis of the defect loop evolutions and dislocation-defect interactions. At the macroscopic polycrystal scale, the self-consistent scheme is extended to consider the multiphase problem and used to bridge the individual grain behavior to polycrystal properties. Based on the proposed model, we found that the work-hardening coefficient decreases with the increase of irradiation-induced defect loops, and the orientation/loading dependence of mechanical properties is mainly attributed to the different Schmid factors. At the polycrystalline scale, numerical results for pure Fe match well with the irradiation experiment data. The model is further extended to predict the hardening effect of dispersoids in oxide-dispersed strengthened steels by the considering the Orowan bowing. The influences of grain size and irradiation are found to compete to dominate the strengthening behaviors of materials.

  11. Kinetics, Mechanism, and Secondary Organic Aerosol Yield of Aqueous Phase Photo-oxidation of α-Pinene Oxidation Products.

    PubMed

    Aljawhary, Dana; Zhao, Ran; Lee, Alex K Y; Wang, Chen; Abbatt, Jonathan P D

    2016-03-10

    Formation of secondary organic aerosol (SOA) involves atmospheric oxidation of volatile organic compounds (VOCs), the majority of which are emitted from biogenic sources. Oxidation can occur not only in the gas-phase but also in atmospheric aqueous phases such as cloudwater and aerosol liquid water. This study explores for the first time the aqueous-phase OH oxidation chemistry of oxidation products of α-pinene, a major biogenic VOC species emitted to the atmosphere. The kinetics, reaction mechanisms, and formation of SOA compounds in the aqueous phase of two model compounds, cis-pinonic acid (PIN) and tricarballylic acid (TCA), were investigated in the laboratory; TCA was used as a surrogate for 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA), a known α-pinene oxidation product. Aerosol time-of-flight chemical ionization mass spectrometry (Aerosol-ToF-CIMS) was used to follow the kinetics and reaction mechanisms at the molecular level. Room-temperature second-order rate constants of PIN and TCA were determined to be 3.3 (±0.5) × 10(9) and 3.1 (±0.2) × 10(8) M(-1) s(-1), respectively, from which were estimated their condensed-phase atmospheric lifetimes. Aerosol-ToF-CIMS detected a large number of products leading to detailed reaction mechanisms for PIN and MBTCA. By monitoring the particle size distribution after drying, the amount of SOA material remaining in the particle phase was determined. An aqueous SOA yield of 40 to 60% was determined for PIN OH oxidation. Although recent laboratory studies have focused primarily on aqueous-phase processing of isoprene-related compounds, we demonstrate that aqueous formation of SOA materials also occurs from monoterpene oxidation products, thus representing an additional source of biogenically driven aerosol formation. PMID:26299576

  12. Effect of annealing process on the phase formation in poly(vinylidene fluoride) thin films

    SciTech Connect

    Abdullah, Ibtisam Yahya; Yahaya, Muhammad; Jumali, Mohd Hafizuddin Haji; Shanshool, Haider Mohammed

    2014-09-03

    This work reports the initial study on the effect of annealing process on the crystalline phase of poly(vinylidene fluoride) (PVDF) thin film. PVDF powder was dissolved in N,N-dimethylformamide before spin-coated onto a glass substrate to form a film. The films were annealed at 30°C, 90°C and 110°C for 5 hrs. The crystalline phase of the powder PVDF as received was investigated by using XRD and FTIR techniques. Moreover, the crystalline phases of thin films after annealing were investigated by using the same techniques. XRD analysis showed that in powder form PVDF exists in α-phase. Each annealed PVDF thin films exhibited identical formation of three-phases material namely γ (as major phase) while α and β phases as the minor phases. The FTIR analysis showed that the powder form of PVDF exists in α and β phases. FTIR measurement further confirmed the XRD results implying that the annealing process has no significant effect on the phase formation in PVDF films.

  13. Exploring Technology Supported Collaborative and Cooperative Group Formation Mechanisms

    ERIC Educational Resources Information Center

    Carapina, Mia; Boticki, Ivica

    2015-01-01

    This paper reflects on the systematic literature review paper (in progress), which analyzes technology enhanced collaborative and cooperative learning in elementary education worldwide from 2004 to 2015, focusing on the exploration of technology mediated group formation. The review paper reports on only a few cases of technology supported methods…

  14. Santilli’s hadronic mechanics of formation of deuteron

    SciTech Connect

    Dhondge, Sudhakar S.

    2015-03-10

    In the present communication a brief review of the structure of deuteron proposed by Professor Santilli [1, 2] and its physical properties have been presented. Although Deuteron is a simple molecule, quantum mechanics has been unable to explain its different properties like the spin, magnetic moment, binding energy, stability, charge radius, dipole moment, etc. However, the Hadronic Mechanics developed by Santilli and applied by him [1, 2] to deuteron has succeeded in explaining the above properties to the scientific satisfaction. Santilli proposed Deuteron as a three body system which could take care of all the insufficiencies of quantum mechanics.

  15. Imaging the Lipid-Phase-Dependent Pore Formation of Equinatoxin II in Droplet Interface Bilayers

    PubMed Central

    Rojko, N.; Cronin, B.; Danial, J.S.H.; Baker, M.A.B.; Anderluh, G.; Wallace, M.I.

    2014-01-01

    Using phase-separated droplet interface bilayers, we observe membrane binding and pore formation of a eukaryotic cytolysin, Equinatoxin II (EqtII). EqtII activity is known to depend on the presence of sphingomyelin in the target membrane and is enhanced by lipid phase separation. By imaging the ionic flux through individual pores in vitro, we observe that EqtII pores form predominantly within the liquid-disordered phase. We observe preferential binding of labeled EqtII at liquid-ordered/liquid-disordered domain boundaries before it accumulates in the liquid-disordered phase. PMID:24739162

  16. Reversible work of formation of an embryo of a new phase within a uniform macroscopic mother phase

    SciTech Connect

    Debenedetti, P.G.; Reiss, H. |

    1998-04-01

    A thermodynamically consistent formalism is derived for calculating the reversible work needed to form a small amount of a new phase (embryo) within a uniform macroscopic mother phase. The treatment goes beyond the classic work of Gibbs, who solved the problem for the particular case in which the embryo is in equilibrium with the mother phase, constituting a so-called critical nucleus. The formalism results in a new expression for the reversible work of embryo formation, the extrema conditions for which yield the correct conditions of equilibrium between the critical nucleus and the mother phase, as well as Gibbs{close_quote} result for the reversible work needed to form the critical nucleus. The new expression for the work of embryo formation differs from the one commonly used in the nucleation literature. In order to extend the Gibbsian formalism to noncritical nuclei, it is necessary to introduce a constraint that prevents the free transfer of matter between the embryo and the mother phase. The present approach is valid in the limit in which curvature contributions to the interfacial energy can be neglected. {copyright} {ital 1998 American Institute of Physics.}

  17. Modelling non-equilibrium secondary organic aerosol formation and evaporation with the aerosol dynamics, gas- and particle-phase chemistry kinetic multilayer model ADCHAM

    SciTech Connect

    Roldin, P.; Eriksson, A. C.; Nordin, E. Z.; Hermansson, E.; Mogensen, Ditte; Rusanen, A.; Boy, Michael; Swietlicki, E.; Svenningsson, Birgitta; Zelenyuk, Alla; Pagels, J.

    2014-08-11

    We have developed the novel Aerosol Dynamics, gas- and particle- phase chemistry model for laboratory CHAMber studies (ADCHAM). The model combines the detailed gas phase Master Chemical Mechanism version 3.2, an aerosol dynamics and particle phase chemistry module (which considers acid catalysed oligomerization, heterogeneous oxidation reactions in the particle phase and non-ideal interactions between organic compounds, water and inorganic ions) and a kinetic multilayer module for diffusion limited transport of compounds between the gas phase, particle surface and particle bulk phase. In this article we describe and use ADCHAM to study: 1) the mass transfer limited uptake of ammonia (NH3) and formation of organic salts between ammonium (NH4+) and carboxylic acids (RCOOH), 2) the slow and almost particle size independent evaporation of α-pinene secondary organic aerosol (SOA) particles, and 3) the influence of chamber wall effects on the observed SOA formation in smog chambers.

  18. Formation of prismatic loops from C15 Laves phase interstitial clusters in body-centered cubic iron

    SciTech Connect

    Zhang, Yongfeng; Bai, Xian-Ming; Tonks, Michael R.; Biner, S. Bulent

    2015-03-01

    This Letter reports the transition of C15 phase self-interstitial clusters to loops in body-centered-cubic Iron. Molecular dynamics simulations are performed to evaluate the relative stabilities of difference interstitial cluster configurations including C15 phase structure and <100> and <111>/2 loops. Within a certain size range, C15 cluster are found more stable than loops, and the relative stabilities are reversed beyond that range. In accordance to the crossover in relative stabilities, C15 clusters may grow by absorbing individual interstitials at small sizes and transitions into loops eventually. The transition takes place by nucleation and reaction of <111>/2 loop segments. These observations explain the absence of C15 phase interstitial clusters predicted by density-functional-theory calculations in previous experimental observations. More importantly, the current results provide a new formation mechanism of <100> loops which requires no interaction of loops.

  19. Structural basis of Staphylococcus epidermidis biofilm formation: mechanisms and molecular interactions

    PubMed Central

    Büttner, Henning; Mack, Dietrich; Rohde, Holger

    2015-01-01

    Staphylococcus epidermidis is a usually harmless commensal bacterium highly abundant on the human skin. Under defined predisposing conditions, most importantly implantation of a medical device, S. epidermidis, however, can switch from a colonizing to an invasive life style. The emergence of S. epidermidis as an opportunistic pathogen is closely linked to the biofilm forming capability of the species. During the past decades, tremendous advance regarding our understanding of molecular mechanisms contributing to surface colonization has been made, and detailed information is available for several factors active during the primary attachment, accumulative or dispersal phase of biofilm formation. A picture evolved in which distinct factors, though appearing to be redundantly organized, take over specific and exclusive functions during biofilm development. In this review, these mechanisms are described in molecular detail, with a highlight on recent insights into multi-functional S. epidermidis cell surface proteins contributing to surface adherence and intercellular adhesion. The integration of distinct biofilm-promoting factors into regulatory networks is summarized, with an emphasis on mechanism that could allow S. epidermidis to flexibly adapt to changing environmental conditions present during colonizing or invasive life-styles. PMID:25741476

  20. The Formation Mechanism of Mesoporous Materials studied by EPR Spectroscopy and Cryo-TEM

    NASA Astrophysics Data System (ADS)

    Ruthstein, Sharon

    Ordered mesoporous materials raised a wide interest in the scientific community due to their unique structural properties which encompasses nanosize ordered channels. These materials have potential applications in diverse technological fields such as catalysis, membranes, microelectronics and sensors. The formation of these materials is initiated by the interaction of micelle of surfactant molecules with precursors of an inorganic oxide, usually silica, which further polymerizes to form solids with a well defined pore structure and amorphous walls. The aim of this study is to explore the details of this intriguing reaction mechanism on two types of materials, hexagonal and cubic, prepared with Pluronic block-copolymers as surfactants. The Pluronic micelles are characterized by a hydrophobic polypropylene oxide core and a hydrophilic polyethylene oxide corona. Examples of questions we address are: How does a homogeneous micellar solution transforms into an ordered phase? What kinds of interactions are responsible to this transformation? Our work focused on processes that take place on two levels, the molecular one and the mesoscale, which were investigated by combining electron paramagnetic resonance (EPR) and cryogenic transmission electron microscopy (cryo-TEM) techniques. The molecular level studies combine in-situ and freeze quench EPR spectroscopic techniques applied to nitroxide spin-probes introduced (at minute quantities) into the reaction mixtures. The nitroxide radicals serve as paramagnetic probes in the reaction mixture. They do not react or affect the reaction product but they sense in-situ the changes that occur in their environment during the reaction. The EPR spectrum provides information regarding the dynamic of the probe, which is affected by its surrounding, and the polarity of its environment. Fine structural details, such as the distribution of water and additives within the micelle, can be obtained from Electron Spin Echo Envelope Modulation

  1. Phase formation and texture of thin nickel germanides on Ge(001) and Ge(111)

    NASA Astrophysics Data System (ADS)

    De Schutter, B.; Van Stiphout, K.; Santos, N. M.; Bladt, E.; Jordan-Sweet, J.; Bals, S.; Lavoie, C.; Comrie, C. M.; Vantomme, A.; Detavernier, C.

    2016-04-01

    We studied the solid-phase reaction between a thin Ni film and a single crystal Ge(001) or Ge(111) substrate during a ramp anneal. The phase formation sequence was determined using in situ X-ray diffraction and in situ Rutherford backscattering spectrometry (RBS), while the nature and the texture of the phases were studied using X-ray pole figures and transmission electron microscopy. The phase sequence is characterized by the formation of a single transient phase before NiGe forms as the final and stable phase. X-ray pole figures were used to unambiguously identify the transient phase as the ɛ-phase, a non-stoichiometric Ni-rich germanide with a hexagonal crystal structure that can exist for Ge concentrations between 34% and 48% and which forms with a different epitaxial texture on both substrate orientations. The complementary information gained from both RBS and X-ray pole figure measurements revealed a simultaneous growth of both the ɛ-phase and NiGe over a small temperature window on both substrate orientations.

  2. Formation mechanisms and optimization of trap-based positron beams

    NASA Astrophysics Data System (ADS)

    Natisin, M. R.; Danielson, J. R.; Surko, C. M.

    2016-02-01

    Described here are simulations of pulsed, magnetically guided positron beams formed by ejection from Penning-Malmberg-style traps. In a previous paper [M. R. Natisin et al., Phys. Plasmas 22, 033501 (2015)], simulations were developed and used to describe the operation of an existing trap-based beam system and provided good agreement with experimental measurements. These techniques are used here to study the processes underlying beam formation in more detail and under more general conditions, therefore further optimizing system design. The focus is on low-energy beams (˜eV) with the lowest possible spread in energies (<10 meV), while maintaining microsecond pulse durations. The simulations begin with positrons trapped within a potential well and subsequently ejected by raising the bottom of the trapping well, forcing the particles over an end-gate potential barrier. Under typical conditions, the beam formation process is intrinsically dynamical, with the positron dynamics near the well lip, just before ejection, particularly crucial to setting beam quality. In addition to an investigation of the effects of beam formation on beam quality under typical conditions, two other regimes are discussed; one occurring at low positron temperatures in which significantly lower energy and temporal spreads may be obtained, and a second in cases where the positrons are ejected on time scales significantly faster than the axial bounce time, which results in the ejection process being essentially non-dynamical.

  3. Planetary Embryo Bow Shocks as a Mechanism for Chondrule Formation

    NASA Astrophysics Data System (ADS)

    Mann, Christopher R.; Boley, Aaron C.; Morris, Melissa A.

    2016-02-01

    We use radiation hydrodynamics with direct particle integration to explore the feasibility of chondrule formation in planetary embryo bow shocks. The calculations presented here are used to explore the consequences of a Mars-size planetary embryo traveling on a moderately excited orbit through the dusty, early environment of the solar system. The embryo’s eccentric orbit produces a range of supersonic relative velocities between the embryo and the circularly orbiting gas and dust, prompting the formation of bow shocks. Temporary atmospheres around these embryos, which can be created via volatile outgassing and gas capture from the surrounding nebula, can non-trivially affect thermal profiles of solids entering the shock. We explore the thermal environment of solids that traverse the bow shock at different impact radii, the effects that planetoid atmospheres have on shock morphologies, and the stripping efficiency of planetoidal atmospheres in the presence of high relative winds. Simulations are run using adiabatic and radiative conditions, with multiple treatments for the local opacities. Shock speeds of 5, 6, and 7 km s-1 are explored. We find that a high-mass atmosphere and inefficient radiative conditions can produce peak temperatures and cooling rates that are consistent with the constraints set by chondrule furnace studies. For most conditions, the derived cooling rates are potentially too high to be consistent with chondrule formation.

  4. Mechanisms for plasma formation during high power pumping of XPAL

    NASA Astrophysics Data System (ADS)

    Babaeva, Natalia Yu.; Zatsarinny, Oleg; Bartschat, Klaus; Kushner, Mark J.

    2014-02-01

    During operation of the excimer pumped alkali laser, XPAL, large densities of alkali excited states are produced. Through superelastic electron collisional relaxation of these states, any pre-existing electrons will be heated, leading to additional ionization. The end result is plasma formation. A first principles global model has been developed for the Ar/Cs XPAL system to investigate the possible formation of plasma during high repetition rate, high power pumping; and the consequences on laser performance. Four- and five-level pumping schemes were used to enable assessment of XPAL operating on the Cs(62P3/2) → Cs(62S1/2) (852 nm) and Cs(62P1/2) → Cs(62S1/2) (894 nm) transitions. The model was parameterized as a function of pump power, excitation frequency, cell temperature (Cs vapor pressure) and collision mixing agent (N2) mole fraction. We found that at sufficiently high operating temperature, pump power and repetition rate, plasma formation in excess of 1014-1016 cm-3 occurs, which potentially reduces laser output power by electron collisional mixing of the upper and lower laser levels.

  5. Microstructure and Mechanical Properties of Laves Phase-strengthened Fe-Cr-Zr Alloys

    DOE PAGESBeta

    Tan, Lizhen; Yang, Ying

    2014-12-05

    Laves phase-reinforced alloys have shown some preliminary promising performance at room temperatures. This paper aims at evaluating mechanical properties of Laves phase-strengthened alloys at elevated temperatures. Three Fe-Cr-Zr alloys were designed to favor the formation of eutectic microstructures containing Laves and body-centered cubic phases with the aid of thermodynamic calculations. Microstructural characterization was carried out on the alloys in as-processed and aged states using optical microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. The effect of thermal aging and alloy composition on microstructure has been discussed based on microstructural characterization results. Mechanical properties have been evaluated by meansmore » of Vickers microhardness measurements, tensile testing at temperatures up to 973.15 K (700.15 °C), and creep testing at 873.15 K (600.15 °C) and 260 MPa. Alloys close to the eutectic composition show significantly superior strength and creep resistance compared to P92. Finally, however, their low tensile ductility may limit their applications at relatively low temperatures.« less

  6. Mechanisms of vascular dysfunction in acute phase of Trypanosoma cruzi infection in mice.

    PubMed

    Silva, Josiane F; Capettini, Luciano S A; da Silva, José F P; Sales-Junior, Policarpo; Cruz, Jader Santos; Cortes, Steyner F; Lemos, Virginia S

    2016-07-01

    Vascular disorders have a direct link to mortality in the acute phase of Trypanosoma cruzi infection. However, the underlying mechanisms of vascular dysfunction in this phase are largely unknown. We hypothesize that T. cruzi invades endothelial cells causing dysfunction in contractility and relaxation of the mouse aorta. Immunodetection of T. cruzi antigen TcRBP28 was observed in endothelial cells. There was a decreased endothelial nitric oxide synthase (eNOS)-derived NO-dependent vascular relaxation, and increased vascular contractility accompanied by augmented superoxide anions production. Endothelial removal, inhibition of cyclooxygenase 2 (COX-2), blockade of thromboxane A2 (TXA2) TP receptors, and scavenger of superoxide normalized the contractile response. COX-2, thromboxane synthase, inducible nitric oxide synthase (iNOS), p65 NFκB subunit and p22(phox) of NAD(P)H oxidase (NOX) subunit expressions were increased in vessels of chagasic animals. Serum TNF-α was augmented. Basal NO production, and nitrotyrosine residue expression were increased. It is concluded that T. cruzi invades mice aorta endothelial cells and increases TXA2/TP receptor/NOX-derived superoxide formation. Alongside, T. cruzi promotes systemic TNF-α increase, which stimulates iNOS expression in vessels and nitrosative stress. In light of the heart failure that develops in the chronic phase of the disease, to understand the mechanism involved in the increased contractility of the aorta is crucial. PMID:26988253

  7. Microstructure and Mechanical Properties of Laves Phase-strengthened Fe-Cr-Zr Alloys

    SciTech Connect

    Tan, Lizhen; Yang, Ying

    2014-12-05

    Laves phase-reinforced alloys have shown some preliminary promising performance at room temperatures. This paper aims at evaluating mechanical properties of Laves phase-strengthened alloys at elevated temperatures. Three Fe-Cr-Zr alloys were designed to favor the formation of eutectic microstructures containing Laves and body-centered cubic phases with the aid of thermodynamic calculations. Microstructural characterization was carried out on the alloys in as-processed and aged states using optical microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. The effect of thermal aging and alloy composition on microstructure has been discussed based on microstructural characterization results. Mechanical properties have been evaluated by means of Vickers microhardness measurements, tensile testing at temperatures up to 973.15 K (700.15 °C), and creep testing at 873.15 K (600.15 °C) and 260 MPa. Alloys close to the eutectic composition show significantly superior strength and creep resistance compared to P92. Finally, however, their low tensile ductility may limit their applications at relatively low temperatures.

  8. Distributional Language Learning: Mechanisms and Models of ategory Formation

    PubMed Central

    Aslin, Richard N.; Newport, Elissa L.

    2015-01-01

    In the past 15 years, a substantial body of evidence has confirmed that a powerful distributional learning mechanism is present in infants, children, adults and (at least to some degree) in nonhuman animals as well. The present article briefly reviews this literature and then examines some of the fundamental questions that must be addressed for any distributional learning mechanism to operate effectively within the linguistic domain. In particular, how does a naive learner determine the number of categories that are present in a corpus of linguistic input and what distributional cues enable the learner to assign individual lexical items to those categories? Contrary to the hypothesis that distributional learning and category (or rule) learning are separate mechanisms, the present article argues that these two seemingly different processes---acquiring specific structure from linguistic input and generalizing beyond that input to novel exemplars---actually represent a single mechanism. Evidence in support of this single-mechanism hypothesis comes from a series of artificial grammar-learning studies that not only demonstrate that adults can learn grammatical categories from distributional information alone, but that the specific patterning of distributional information among attested utterances in the learning corpus enables adults to generalize to novel utterances or to restrict generalization when unattested utterances are consistently absent from the learning corpus. Finally, a computational model of distributional learning that accounts for the presence or absence of generalization is reviewed and the implications of this model for linguistic-category learning are summarized. PMID:26855443

  9. Palladium-modified aluminide coatings: Mechanisms of formation

    SciTech Connect

    Lamesle, P.; Steinmetz, P.; Steinmetz, J.; Alperine, S.

    1995-02-01

    The need to increase the efficiency of turbo engines has led manufacturers to increase the temperature of gases at the exhaust of the combustion chamber. Another limiting factor for the lifetime of blades or vanes used in gas turbines is hot corrosion due to the condensation of alkaline sulfate produced by the oxidation of sulfur contained in kerosene or fuels. To overcome these problems, the use of protective coatings has come into general use. A systematic investigation of the influence of Pd-Ni predeposit alloys on the microstructure and composition of aluminum diffusion coatings has been conducted on Ni base superalloys (mainly IN738). Their metallurgical structure has been studied with a special emphasis on the nature of the phases and distribution of the various elements throughout the coating section. A two-layer structure similar to that formed on simple aluminide coatings is observed whatever the type of aluminizing treatment (low and high aluminum activity, pack of vapor-phase coating). The superficial layer is, however, very different from that observed in simple aluminide coatings, since it is constituted with a ternary PdNi aluminide. Palladium concentration profiles, which significantly differ when using low or high activity cements, and the results of a study of the ternary Ni-Pd-Al phase diagram, provide qualitative indications concerning the coatings` growth processes. Palladium, if present at a sufficient level, enhances Al diffusion in the beta phase. In the case of low activity processes, a consequence of this increase of Al diffusion flux is the location of an NiAl reaction zone inside the coating.

  10. Simulating the SOA formation of isoprene from partitioning and aerosol phase reactions in the presence of inorganics

    NASA Astrophysics Data System (ADS)

    Beardsley, R. L.; Jang, M.

    2015-11-01

    The secondary organic aerosol (SOA) produced by the photooxidation of isoprene with and without inorganic seed is simulated using the Unified Partitioning Aerosol Phase Reaction (UNIPAR) model. Recent work has found the SOA formation of isoprene to be sensitive to both aerosol acidity ([H+]) and aerosol liquid water content (LWC) with the presence of either leading to significant aerosol phase organic mass generation and large growth in SOA yields (YSOA). Classical partitioning models alone are insufficient to predict isoprene SOA formation due to the high volatility of the photooxidation products and the sensitivity of their mass yields to variations in inorganic aerosol composition. UNIPAR utilizes the chemical structures provided by a near-explicit chemical mechanism to estimate the thermodynamic properties of the gas phase products, which are lumped based on their calculated vapor pressure (8 groups) and aerosol phase reactivity (6 groups). UNIPAR then determines the SOA formation of each lumping group from both partitioning and aerosol phase reactions (oligomerization, acid catalyzed reactions, and organosulfate formation) assuming a single homogeneously mixed organic-inorganic phase as a function of inorganic composition and VOC / NOx. The model is validated using isoprene photooxidation experiments performed in the dual, outdoor UF APHOR chambers. UNIPAR is able to predict the experimental SOA formation of isoprene without seed, with H2SO4 seed gradually titrated by ammonia, and with the acidic seed generated by SO2 oxidation. Oligomeric mass is predicted to account for more than 65 % of the total OM formed in all cases and over 85 % in the presence of strongly acidic seed. The model is run to determine the sensitivity of YSOA to [H+], LWC, and VOC / NOx, and it is determined that the SOA formation of isoprene is most strongly related to [H+] but is dynamically related to all three parameters. For VOC / NOx > 10, with increasing NOx both experimental and

  11. Simulating the SOA formation of isoprene from partitioning and aerosol phase reactions in the presence of inorganics

    NASA Astrophysics Data System (ADS)

    Beardsley, Ross L.; Jang, Myoseon

    2016-05-01

    The secondary organic aerosol (SOA) produced by the photooxidation of isoprene with and without inorganic seed is simulated using the Unified Partitioning Aerosol Phase Reaction (UNIPAR) model. Recent work has found the SOA formation of isoprene to be sensitive to both aerosol acidity ([H+], mol L-1) and aerosol liquid water content (LWC) with the presence of either leading to significant aerosol phase organic mass generation and large growth in SOA yields (YSOA). Classical partitioning models alone are insufficient to predict isoprene SOA formation due to the high volatility of photooxidation products and sensitivity of their mass yields to variations in inorganic aerosol composition. UNIPAR utilizes the chemical structures provided by a near-explicit chemical mechanism to estimate the thermodynamic properties of the gas phase products, which are lumped based on their calculated vapor pressure (eight groups) and aerosol phase reactivity (six groups). UNIPAR then determines the SOA formation of each lumping group from both partitioning and aerosol phase reactions (oligomerization, acid-catalyzed reactions and organosulfate formation) assuming a single homogeneously mixed organic-inorganic phase as a function of inorganic composition and VOC / NOx (VOC - volatile organic compound). The model is validated using isoprene photooxidation experiments performed in the dual, outdoor University of Florida Atmospheric PHotochemical Outdoor Reactor (UF APHOR) chambers. UNIPAR is able to predict the experimental SOA formation of isoprene without seed, with H2SO4 seed gradually titrated by ammonia, and with the acidic seed generated by SO2 oxidation. Oligomeric mass is predicted to account for more than 65 % of the total organic mass formed in all cases and over 85 % in the presence of strongly acidic seed. The model is run to determine the sensitivity of YSOA to [H+], LWC and VOC / NOx, and it is determined that the SOA formation of isoprene is most strongly related to [H

  12. Formation mechanism of steep wave front in magnetized plasmas

    SciTech Connect

    Sasaki, M. Kasuya, N.; Itoh, S.-I.; Kobayashi, T.; Arakawa, H.; Itoh, K.; Fukunaga, K.; Yamada, T.; Yagi, M.

    2015-03-15

    Bifurcation from a streamer to a solitary drift wave is obtained in three dimensional simulation of resistive drift waves in cylindrical plasmas. The solitary drift wave is observed in the regime where the collisional transport is important as well as fluctuation induced transport. The solitary drift wave forms a steep wave front in the azimuthal direction. The phase of higher harmonic modes are locked to that of the fundamental mode, so that the steep wave front is sustained for a long time compared to the typical time scale of the drift wave oscillation. The phase entrainment between the fundamental and second harmonic modes is studied, and the azimuthal structure of the stationary solution is found to be characterized by a parameter which is determined by the deviation of the fluctuations from the Boltzmann relation. There are two solutions of the azimuthal structures, which have steep wave front facing forward and backward in the wave propagation direction, respectively. The selection criterion of these solutions is derived theoretically from the stability of the phase entrainment. The simulation result and experimental observations are found to be consistent with the theoretical prediction.

  13. Formation of free radicals during mechanical degradation of elastomers.

    NASA Technical Reports Server (NTRS)

    Devries, K. L.; Williams, M. L.; Roylance, D. K.

    1971-01-01

    Solithane 113 (an amorphous polyurethane elastomer) was prepared by curing equal proportions of castor oil and trifunctional isocyanate for 6 hr 45 min at 170 F. The sample material was mechanically degraded by grinding below and above its glass transition point at liquid nitrogen and room temperatures. The EPR spectra of ground samples were recorded and the number of free radicals were determined by a computer double-integration of the recorded spectra and by a comparison of the values with those of a standard material. Curves of EPR spectra suggest that different molecular mechanisms may be active in degradation of this material below and above its glass transition temperature.

  14. Identification of the formation phases of filamentary damage induced by nanosecond laser pulses in bulk fused silica

    SciTech Connect

    Shen, Chao; Xu, Zhongjie; Chambonneau, Maxime E-mail: jiangtian198611@163.com; Cheng, Xiang'ai; Jiang, Tian E-mail: jiangtian198611@163.com

    2015-09-14

    Employing a pump-probe polarization-based two-frame shadowgraphy setup, the formation of filamentary damage induced in bulk fused silica by a nanosecond pulse at 1064 nm is investigated with a picosecond probe. Three different phases are exhibited in the damage experiments. The first phase is the formation of a micrometric plasma channel along the laser direction during the beginning of the pulse likely caused by multi-photon ionization. This channel exhibits growth during ∼400 ps, and the newly grown plasma is discrete. Then, during the end of the pulse, this channel evolves into a tadpole-like morphology showing an elliptical head upstream the laser flux followed by a thin tail. This observed asymmetry is attributed to shielding effects caused by both the plasma and hot modified silica. Once the damage shows its almost final morphology, a last phase consists in the launch of a pressure wave enlarging it after the laser pulse. The physical mechanisms that might be involved in the formation of plasma channels are discussed. The experimental data are first confronted to the moving breakdown model which overestimates the filamentary damage length. Finally, taking into account the temporal shape of the laser pulses, the coupling between Kerr-induced self-focusing and stimulated Brillouin scattering is discussed to interpret the observations.

  15. Insights into aerosol formation chemistry from comprehensive gas-phase precursor measurement in the TRAPOZ chamber experiments; an overview

    NASA Astrophysics Data System (ADS)

    Carr, Timo; Wyche, Kevin; Monks, Paul S.; Camredon, Marie; Alam, Mohammed S.; Bloss, William J.; Rickard, Andrew R.

    2010-05-01

    Aerosols have a profound affect on the environment on local, regional and even global levels, with impacts including adverse health effects, (Alfarra, Paulsen et al. 2006) visibility reduction, cloud formation, direct radiative forcing (Charlson, Schwartz et al. 1992) and an important role in influencing the climate due to their contribution to important atmospheric processes (Baltensperger, Kalberer et al. 2005; Alfarra, Paulsen et al. 2006). The Total Radical Production from the OZonolysis of alkenes (TRAPOZ) project was used to study the gas phase and radical chemistry along with secondary organic aerosol (SOA) formation for a number of different alkenes and terpenes. In order to better the scientific knowledge regarding the oxidation mechanisms of terpene and alkene species along with radical and SOA formation, the experiments were conducted under varying conditions controlled and monitored by the EUropean PHOto REactor (EUPHORE) simulation chamber in Valencia, Spain. A vast number of instruments enabled a detailed examination of the chemistry within oxidation of each precursor. However the work here will focus on the results obtained from the University of Leicester Chemical Ionisation Reaction Time-of-Flight Mass Spectrometer (CIR-TOF-MS). With regard to the gas phase chemistry an analysis of the degradation of the precursor Volatile Organic Compounds (VOCs) and evolution of certain gas phase species in each experiment has been presented and discussed.

  16. High-temperature- and high-pressure-induced formation of the Laves-phase compound XeS2

    NASA Astrophysics Data System (ADS)

    Yan, Xiaozhen; Chen, Yangmei; Xiang, Shikai; Kuang, Xiaoyu; Bi, Yan; Chen, Haiyan

    2016-06-01

    We explore the reactivity of xenon with sulfur under high pressure, using unbiased structure searching techniques combined with first-principles calculations, which identify a stable XeS2 compound crystallized in a Laves phase with hypercoordinated (16-fold) Xe at 191 GPa and 0 K. Taking the thermal effects into account, we find that increasing the temperature could further stabilize it. The formation of XeS2 is a consequence of pressure-induced charge transfer from Xe to S atoms and the delocalization of Xe 5 p and S 3 p electrons. Meanwhile, the stabilization into a Laves phase of XeS2 is the result of delocalized chemical bonding and the need for optimum structure packing. The present discussion of the formation mechanism in XeS2 is general, and conclusions can be used to understand the formation of other Laves-phase compounds and the Xe chemistry that allows closed-shell Xe to participate in chemical reactions.

  17. Identification of the formation phases of filamentary damage induced by nanosecond laser pulses in bulk fused silica

    NASA Astrophysics Data System (ADS)

    Shen, Chao; Chambonneau, Maxime; Cheng, Xiang'ai; Xu, Zhongjie; Jiang, Tian

    2015-09-01

    Employing a pump-probe polarization-based two-frame shadowgraphy setup, the formation of filamentary damage induced in bulk fused silica by a nanosecond pulse at 1064 nm is investigated with a picosecond probe. Three different phases are exhibited in the damage experiments. The first phase is the formation of a micrometric plasma channel along the laser direction during the beginning of the pulse likely caused by multi-photon ionization. This channel exhibits growth during ˜400 ps, and the newly grown plasma is discrete. Then, during the end of the pulse, this channel evolves into a tadpole-like morphology showing an elliptical head upstream the laser flux followed by a thin tail. This observed asymmetry is attributed to shielding effects caused by both the plasma and hot modified silica. Once the damage shows its almost final morphology, a last phase consists in the launch of a pressure wave enlarging it after the laser pulse. The physical mechanisms that might be involved in the formation of plasma channels are discussed. The experimental data are first confronted to the moving breakdown model which overestimates the filamentary damage length. Finally, taking into account the temporal shape of the laser pulses, the coupling between Kerr-induced self-focusing and stimulated Brillouin scattering is discussed to interpret the observations.

  18. Thermo-mechanical Response and Damping Behavior of Shape Memory Alloy-MAX Phase Composites

    NASA Astrophysics Data System (ADS)

    Kothalkar, Ankush Dilip; Benitez, Rogelio; Hu, Liangfa; Radovic, Miladin; Karaman, Ibrahim

    2014-05-01

    NiTi/Ti3SiC2 interpenetrating composites that combine two unique material systems—a shape memory alloy (SMA) and a MAX phase—demonstrating two different pseudoelastic mechanisms, were processed using spark plasma sintering. The goal of mixing these two material systems was to enhance the damping behavior and thermo-mechanical response of the composite by combining two pseudoelastic mechanisms, i.e., reversible stress-induced martensitic transformation in SMA and reversible incipient kink band formation in MAX phase. Equal volume fractions of equiatomic NiTi and Ti3SiC2 were used. Microstructural characterization was conducted using scanning electron microscopy to study the distribution of NiTi, Ti3SiC2, and remnant porosity in the composite. Thermo-mechanical testing in the form of thermal cycles under constant stress levels was performed in order to characterize shape memory behavior and thereby introducing residual stresses in the composites. Evolution of two-way shape memory effect was studied and related to the presence of residual stresses in the composites. Damping behavior, implying the energy dissipation per loading-unloading cycle under increasing compressive stresses, of pure NiTi, pure Ti3SiC2, as-sintered, and thermo-mechanically cycled (TC) NiTi/Ti3SiC2 composites, was investigated and compared to the literature data. In this study, the highest energy dissipation was observed for the TC composite followed by the as-sintered (AS) composite, pure NiTi, and pure Ti3SiC2 when compared at the same applied stress levels. Both the AS and TC composites showed higher damping up to 200 MPa stress than any of the metal—MAX phase composites reported in the literature to date. The ability to enhance the performance of the composite by controlling the thermo-mechanical loading paths was further discussed.

  19. Studies of the underlying mechanisms for optical nonlinearities of blue phase liquid crystals (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Wei; Khoo, Iam Choon; Zhao, Shuo; Lin, Tsung-Hsien; Ho, Tsung-Jui

    2015-10-01

    We have investigated the mechanisms responsible for nonlinear optical processes occurring in azobenzene-doped blue phase liquid crystals (BPLC), which exhibit two thermodynamically stable BPs: BPI and BPII. In coherent two wave-mixing experiments, a slow (minutes) and a fast (few milliseconds) side diffractions are observed. The underlying mechanisms were disclosed by monitoring the dynamics of grating formation and relaxation as well as by some supplementary experiments. We found the photothermal indexing and dye/LC intermolecular torque leading to lattice distortion to be the dominant mechanisms for the observed nonlinear response in BPLC. Moreover, the response time of the nonlinear optical process varied with operating phase. The rise time of the thermal indexing process was in good agreement with our findings on the temperature dependence of BP refractive index: τ(ISO) > τ(BPI) > τ(BPII). The relaxation time of the torque-induced lattice distortion was analogue to its electrostriction counterpart: τ'(BPI) > τ'(BPII). In a separate experiment, lattice swelling with selective reflection of <110> direction changed from green to red was also observed. This was attributable to the isomerization-induced change in cholesteric pitch, which directly affects the lattice spacing. The phenomenon was confirmed by measuring the optical rotatory power of the BPLC.

  20. Development of theory-based health messages: three-phase programme of formative research.

    PubMed

    Epton, Tracy; Norman, Paul; Harris, Peter; Webb, Thomas; Snowsill, F Alexandra; Sheeran, Paschal

    2015-09-01

    Online health behaviour interventions have great potential but their effectiveness may be hindered by a lack of formative and theoretical work. This paper describes the process of formative research to develop theoretically and empirically based health messages that are culturally relevant and can be used in an online intervention to promote healthy lifestyle behaviours among new university students. Drawing on the Theory of Planned Behaviour, a three-phase programme of formative research was conducted with prospective and current undergraduate students to identify (i) modal salient beliefs (the most commonly held beliefs) about fruit and vegetable intake, physical activity, binge drinking and smoking, (ii) which beliefs predicted intentions/behaviour and (iii) reasons underlying each of the beliefs that could be targeted in health messages. Phase 1, conducted with 96 pre-university college students, elicited 56 beliefs about the behaviours. Phase 2, conducted with 3026 incoming university students, identified 32 of these beliefs that predicted intentions/behaviour. Phase 3, conducted with 627 current university students, elicited 102 reasons underlying the 32 beliefs to be used to construct health messages to bolster or challenge these beliefs. The three-phase programme of formative research provides researchers with an example of how to develop health messages with a strong theoretical- and empirical base for use in health behaviour change interventions. PMID:24504361

  1. Development of theory-based health messages: three-phase programme of formative research

    PubMed Central

    Epton, Tracy; Norman, Paul; Harris, Peter; Webb, Thomas; Snowsill, F. Alexandra; Sheeran, Paschal

    2015-01-01

    Online health behaviour interventions have great potential but their effectiveness may be hindered by a lack of formative and theoretical work. This paper describes the process of formative research to develop theoretically and empirically based health messages that are culturally relevant and can be used in an online intervention to promote healthy lifestyle behaviours among new university students. Drawing on the Theory of Planned Behaviour, a three-phase programme of formative research was conducted with prospective and current undergraduate students to identify (i) modal salient beliefs (the most commonly held beliefs) about fruit and vegetable intake, physical activity, binge drinking and smoking, (ii) which beliefs predicted intentions/behaviour and (iii) reasons underlying each of the beliefs that could be targeted in health messages. Phase 1, conducted with 96 pre-university college students, elicited 56 beliefs about the behaviours. Phase 2, conducted with 3026 incoming university students, identified 32 of these beliefs that predicted intentions/behaviour. Phase 3, conducted with 627 current university students, elicited 102 reasons underlying the 32 beliefs to be used to construct health messages to bolster or challenge these beliefs. The three-phase programme of formative research provides researchers with an example of how to develop health messages with a strong theoretical- and empirical base for use in health behaviour change interventions. PMID:24504361

  2. Aging behavior and mechanical properties of maraging steels in the presence of submicrocrystalline Laves phase particles

    SciTech Connect

    Mahmoudi, A.; Ghavidel, M.R. Zamanzad; Nedjad, S. Hossein; Heidarzadeh, A.; Ahmadabadi, M. Nili

    2011-10-15

    Cold rolling and annealing of homogenized Fe-Ni-Mn-Mo-Ti-Cr maraging steels resulted in the formation of submicrocrystalline Fe{sub 2}(Mo,Ti) Laves phase particles. Optical and scanning electron microscopy, X-ray diffraction, tensile and hardness tests were used to study the microstructure, aging behavior and mechanical properties of the annealed steels. The annealed microstructures showed age hardenability during subsequent isothermal aging at 753 K. Ultrahigh fracture stress but poor tensile ductility was obtained after substantial age hardening in the specimens with 2% and 4% chromium. Increasing chromium addition up to 6% toughened the aged microstructure at the expense of the fracture stress by increasing the volume fraction of retained austenite. The Laves phase particles acted as crack nucleation sites during tensile deformation. - Highlights: {yields} Laves phases dispersed in a BCC iron matrix by annealing of cold rolled samples. {yields} The samples showed age hardenability during subsequent isothermal aging at 753 K. {yields} Ultrahigh fracture stress but poor ductility was obtained after age hardening. {yields} Increasing chromium addition toughened the aged microstructure. {yields} Laves phase particles acting as crack nucleation sites during tensile deformation.

  3. Electrical characteristics and formation mechanism of atmospheric pressure plasma jet

    SciTech Connect

    Liu, Lijuan; Zhang, Yu; Tian, Weijing; Meng, Ying; Ouyang, Jiting

    2014-06-16

    The behavior of atmospheric pressure plasma jet produced by a coplanar dielectric barrier discharge in helium in external electrostatic and magnetic field is investigated. Net negative charges in the plasma jet outside the tube were detected. The deflection of the plume in the external field was observed. The plasma jet is suggested to be formed by the electron beam from the temporal cathode which is accelerated by a longitudinal field induced by the surface charges on the dielectric tube or interface between the helium and ambient air. The helium flow is necessary for the jet formation in the surrounding air.

  4. Mechanisms underlying structural variant formation in genomic disorders

    PubMed Central

    Carvalho, Claudia M. B.; Lupski, James R.

    2016-01-01

    With the recent burst of technological developments in genomics, and the clinical implementation of genome-wide assays, our understanding of the molecular basis of genomic disorders, specifically the contribution of structural variation to disease burden, is evolving quickly. Ongoing studies have revealed a ubiquitous role for genome architecture in the formation of structural variants at a given locus, both in DNA recombination-based processes and in replication-based processes. These reports showcase the influence of repeat sequences on genomic stability and structural variant complexity and also highlight the tremendous plasticity and dynamic nature of our genome in evolution, health and disease susceptibility. PMID:26924765

  5. Distinct Neural Mechanisms Mediate Olfactory Memory Formation at Different Timescales

    ERIC Educational Resources Information Center

    McNamara, Ann Marie; Magidson, Phillip D.; Linster, Christiane; Wilson, Donald A.; Cleland, Thomas A.

    2008-01-01

    Habituation is one of the oldest forms of learning, broadly expressed across sensory systems and taxa. Here, we demonstrate that olfactory habituation induced at different timescales (comprising different odor exposure and intertrial interval durations) is mediated by different neural mechanisms. First, the persistence of habituation memory is…

  6. Mechanisms of Nitrogen Oxide Formation During Ensiling of Dairy Feeds

    EPA Science Inventory

    This product is the abstract of a proposed paper. The emission of NOx has been observed during the ensiling process (Peterson et al. 1958, Maw et al. 2002). Substantial NOx is not inherently present in corn. It is generated by an unknown mechanism during the early days of the ens...

  7. Distributional Language Learning: Mechanisms and Models of Category Formation

    ERIC Educational Resources Information Center

    Aslin, Richard N.; Newport, Elissa L.

    2014-01-01

    In the past 15 years, a substantial body of evidence has confirmed that a powerful distributional learning mechanism is present in infants, children, adults and (at least to some degree) in nonhuman animals as well. The present article briefly reviews this literature and then examines some of the fundamental questions that must be addressed for…

  8. Analysis of diarylmethylamine compounds using electrospray mass spectrometry: formation mechanisms of radical ions and dehydro cations.

    PubMed

    Cai, Tian; Xu, Xiao-Ying; Wu, Zhi-Jun

    2015-12-01

    A series of diarylmethylamine compounds were analyzed using electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-QTOF-MS). [M](+)˙ and [M - H](+) were both observed, but showed different abundances. A possible mechanism for the formation of [M](+)˙ and [M - H](+) was proposed to explicate the rule for the ratio change of I([M](+)˙)/I([M-H](+)). The [M](+)˙ has two structures, which can interconvert into each other in the gas phase. The substituted groups on the benzene rings play a crucial role in the transfer between the two structures. Electron withdrawing groups can prevent the formation of carbocations, thus nitro-containing diarylmethylamines remained mainly as structure I and were detected as [M](+)˙. On the contrary, electron donating groups help to stabilize carbocations. This makes structure I transfer to structure II, and structure II prefers to further generate [M - H](+) by loss of an H radical. Nuclear magnetic resonance and D-labelled MS experiments indicate that the 1-C-H bond has strong activity. PMID:26465612

  9. Nanobacteria: an alternative mechanism for pathogenic intra- and extracellular calcification and stone formation.

    PubMed

    Kajander, E O; Ciftçioglu, N

    1998-07-01

    Calcium phosphate is deposited in many diseases, but formation mechanisms remain speculative. Nanobacteria are the smallest cell-walled bacteria, only recently discovered in human and cow blood and commercial cell culture serum. In this study, we identified with energy-dispersive x-ray microanalysis and chemical analysis that all growth phases of nanobacteria produce biogenic apatite on their cell envelope. Fourier transform IR spectroscopy revealed the mineral as carbonate apatite. The biomineralization in cell culture media resulted in biofilms and mineral aggregates closely resembling those found in tissue calcification and kidney stones. In nanobacteria-infected fibroblasts, electron microscopy revealed intra- and extracellular acicular crystal deposits, stainable with von Kossa staining and resembling calcospherules found in pathological calcification. Previous models for stone formation have led to an hypothesis that elevated pH due to urease and/or alkaline phosphatase activity is a lithogenic factor. Our results indicate that carbonate apatite can be formed without these factors at pH 7.4, at physiological phosphate and calcium concentrations. Nanobacteria can produce apatite in media mimicking tissue fluids and glomerular filtrate and provide a unique model for in vitro studies on calcification. PMID:9653177

  10. Mechanisms of endoderm formation in a cartilaginous fish reveal ancestral and homoplastic traits in jawed vertebrates

    PubMed Central

    Godard, Benoit G.; Coolen, Marion; Le Panse, Sophie; Gombault, Aurélie; Ferreiro-Galve, Susana; Laguerre, Laurent; Lagadec, Ronan; Wincker, Patrick; Poulain, Julie; Da Silva, Corinne; Kuraku, Shigehiro; Carre, Wilfrid; Boutet, Agnès; Mazan, Sylvie

    2014-01-01

    ABSTRACT In order to gain insight into the impact of yolk increase on endoderm development, we have analyzed the mechanisms of endoderm formation in the catshark S. canicula, a species exhibiting telolecithal eggs and a distinct yolk sac. We show that in this species, endoderm markers are expressed in two distinct tissues, the deep mesenchyme, a mesenchymal population of deep blastomeres lying beneath the epithelial-like superficial layer, already specified at early blastula stages, and the involuting mesendoderm layer, which appears at the blastoderm posterior margin at the onset of gastrulation. Formation of the deep mesenchyme involves cell internalizations from the superficial layer prior to gastrulation, by a movement suggestive of ingressions. These cell movements were observed not only at the posterior margin, where massive internalizations take place prior to the start of involution, but also in the center of the blastoderm, where internalizations of single cells prevail. Like the adjacent involuting mesendoderm, the posterior deep mesenchyme expresses anterior mesendoderm markers under the control of Nodal/activin signaling. Comparisons across vertebrates support the conclusion that endoderm is specified in two distinct temporal phases in the catshark as in all major osteichthyan lineages, in line with an ancient origin of a biphasic mode of endoderm specification in gnathostomes. They also highlight unexpected similarities with amniotes, such as the occurrence of cell ingressions from the superficial layer prior to gastrulation. These similarities may correspond to homoplastic traits fixed separately in amniotes and chondrichthyans and related to the increase in egg yolk mass. PMID:25361580

  11. Delta ferrite-containing austenitic stainless steel resistant to the formation of undesirable phases upon aging

    DOEpatents

    Leitnaker, J.M.

    Austenitic stainless steel alloys containing delta ferrite, such as are used as weld deposits, are protected against the transformation of delta ferrite to sigma phase during aging by the presence of carbon plus nitrogen in a weight percent 0.015 to 0.030 times the volume percent ferrite present in the alloy. The formation of chi phase upon aging is controlled by controlling the Mo content.

  12. Delta ferrite-containing austenitic stainless steel resistant to the formation of undesirable phases upon aging

    DOEpatents

    Leitnaker, James M.

    1981-01-01

    Austenitic stainless steel alloys containing delta ferrite, such as are used as weld deposits, are protected against the transformation of delta ferrite to sigma phase during aging by the presence of carbon plus nitrogen in a weight percent 0.015-0.030 times the volume percent ferrite present in the alloy. The formation of chi phase upon aging is controlled by controlling the Mo content.

  13. Follow up of the glassy phase formation as silicon oxide was added to Brownmillerite phase of Portland cement clinker

    NASA Astrophysics Data System (ADS)

    Hassaan, M. Y.; Salem, S. M.; Ebrahim, F. M.

    2009-01-01

    Brownmillerite phase is one of the four main phases of Portland cement clinker. It was prepared as pure C4AF1 and C4AF with different amount of SiO2, (5, 10, 15, 20, 25, and 40 mol%) by addition. Pure C4AF was prepared using CaO, Al2O3 and Fe2O3 according to the ratios 4:1:1. Each sample mixture was fired at 1,400°C for 1 h then ground and introduced again to 1,400°C for 1/2 h then quenched in air. The prepared samples were ground and measured using x-ray diffraction, scanning electron microscope, A.C. conductivity and Mössbauer spectroscopy. The results were correlated and discussed. The main finding is the formation of a glassy phase besides the C4AF structure, in addition to the formation of the C2S phase of cement clinker as SiO2 addition was upgraded. The electrical conductivity results showed that the 20 mol% SiO2 sample has the lowest ( σ) value.

  14. Phase Transformations and Formation of Ultra-Fine Microstructure During Hydrogen Sintering and Phase Transformation (HSPT) Processing of Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Sun, Pei; Fang, Zhigang Zak; Koopman, Mark; Xia, Yang; Paramore, James; Ravi Chandran, K. S.; Ren, Yang; Lu, Jun

    2015-12-01

    The hydrogen sintering and phase transformation (HSPT) process is a novel powder metallurgy method for producing Ti alloys, particularly the Ti-6Al-4V alloy, with ultra-fine microstructure in the as-sintered state. The ultra-fine microstructure is obtained as a direct result of the use of H2 gas during sintering. The refinement of the microstructure during HSPT is similar to that of thermal hydrogen processing (THP) of bulk Ti alloys. For both THP and HSPT of Ti-6Al-4V alloy, the mechanisms of the grain refinement depend on the phase equilibria and phase transformations in the presence of hydrogen, which are surprisingly still not well established to date and are still subjected to research and debate. In recent work by the present authors, a pseudo-binary phase diagram of (Ti-6Al-4V)-H has been determined by using in situ synchrotron XRD and TGA/DSC techniques. Aided by this phase diagram, the current paper focuses on the series of phase transformations during sintering and cooling of Ti-6Al-4V in a hydrogen atmosphere and the mechanisms for the formation of the ultra-fine microstructures obtained. Using experimental techniques, including in situ synchrotron XRD, SEM, EBSD, and TEM, the microstructural refinement was found to be the result of (1) the precipitation of ultra-fine α/α2 within coarse β grains during an isothermal hold at intermediate temperatures, and (2) the eutectoid transformation of β → α + δ at approximately 473 K (200 °C).

  15. On the bar formation mechanism in galaxies with cuspy bulges

    NASA Astrophysics Data System (ADS)

    Polyachenko, E. V.; Berczik, P.; Just, A.

    2016-08-01

    We show by numerical simulations that a purely stellar dynamical model composed of an exponential disc, a cuspy bulge, and an NFW halo with parameters relevant to the Milky Way Galaxy is subject to bar formation. Taking into account the finite disc thickness, the bar formation can be explained by the usual bar instability, in spite of the presence of an inner Lindblad resonance, that is believed to damp any global modes. The effect of replacing the live halo and bulge by a fixed external axisymmetric potential (rigid models) is studied. It is shown that while the e-folding time of bar instability increases significantly (from 250 to 500 Myr), the bar pattern speed remains almost the same. For the latter, our average value of 55 km/s/kpc agrees with the assumption that the Hercules stream in the solar neighbourhood is an imprint of the bar-disc interaction at the outer Lindblad resonance of the bar. Vertical averaging of the radial force in the central disc region comparable to the characteristic scale length allows us to reproduce the bar pattern speed and the growth rate of the rigid models, using normal mode analysis of linear perturbation theory in a razor thin disc. The strong increase of the e-folding time with decreasing disc mass predicted by the mode analysis suggests that bars in galaxies similar to the Milky Way have formed only recently.

  16. Annealing-induced change in quantum dot chain formation mechanism

    NASA Astrophysics Data System (ADS)

    Park, Tyler D.; Colton, John S.; Farrer, Jeffrey K.; Yang, Haeyeon; Kim, Dong Jun

    2014-12-01

    Self-assembled InGaAs quantum dot chains were grown using a modified Stranski-Krastanov method in which the InGaAs layer is deposited under a low growth temperature and high arsenic overpressure, which suppresses the formation of dots until a later annealing process. The dots are capped with a 100 nm GaAs layer. Three samples, having three different annealing temperatures of 460°C, 480°C, and 500°C, were studied by transmission electron microscopy. Results indicate two distinct types of dot formation processes: dots in the 460°C and 480°C samples form from platelet precursors in a one-to-one ratio whereas the dots in the sample annealed at 500°C form through the strain-driven self-assembly process, and then grow larger via an additional Ostwald ripening process whereby dots grow into larger dots at the expense of smaller seed islands. There are consequently significant morphological differences between the two types of dots, which explain many of the previously-reported differences in optical properties. Moreover, we also report evidence of indium segregation within the dots, with little or no indium intermixing between the dots and the surrounding GaAs barrier.

  17. Molecular mechanisms involved in Bacillus subtilis biofilm formation

    PubMed Central

    Mielich-Süss, Benjamin; Lopez, Daniel

    2014-01-01

    Summary Biofilms are the predominant lifestyle of bacteria in natural environments, and they severely impact our societies in many different fashions. Therefore, biofilm formation is a topic of growing interest in microbiology, and different bacterial models are currently studied to better understand the molecular strategies that bacteria undergo to build biofilms. Among those, biofilms of the soil-dwelling bacterium Bacillus subtilis are commonly used for this purpose. Bacillus subtilis biofilms show remarkable architectural features that are a consequence of sophisticated programs of cellular specialization and cell-cell communication within the community. Many laboratories are trying to unravel the biological role of the morphological features of biofilms, as well as exploring the molecular basis underlying cellular differentiation. In this review, we present a general perspective of the current state of knowledge of biofilm formation in B. subtilis. In particular, a special emphasis is placed on summarizing the most recent discoveries in the field and integrating them into the general view of these truly sophisticated microbial communities. PMID:24909922

  18. [Molecular mechanisms of cartilage formation and chondrocyte maturation].

    PubMed

    Tamamura, Yoshihiro; Iwamoto, Masahiro

    2004-07-01

    Cartilage plays multiple roles in vertebrate animals. In an embryonic stage and early postnatal life, cartilage is important not only as a structural support of early embryo but also as a template of endochondral bone. In a later postnatal life, cartilage provides smooth joint movement and tissue elasticity. A number of critical signaling molecules that regulate cartilage formation and chondrocytes maturation in endochondral bone formation have been identified to date. The interplay of those important molecules is also actively studied. However, several fundamental questions still remain unsolved. What signal initiates mesenchymal cell condensation? Does condensation enough to make cells competent for BMP-induced chondrogenesis? Is there chondrocyte stem cell in cartilage? Likewise, it is not known which factor triggers chondrocytes maturation. In this review article, we summarized the action of several key factors including BMP, hedgehog, PTHrP, and Wnt in condensation, chondrogenenic differentiation and maturation of chondrocytes. Towards further understanding of above fundamental questions, this review article also tried to propose future direction of cartilage biology research. PMID:15577071

  19. Annealing-induced change in quantum dot chain formation mechanism

    SciTech Connect

    Park, Tyler D.; Colton, John S.; Farrer, Jeffrey K.; Yang, Haeyeon; Kim, Dong Jun

    2014-12-15

    Self-assembled InGaAs quantum dot chains were grown using a modified Stranski-Krastanov method in which the InGaAs layer is deposited under a low growth temperature and high arsenic overpressure, which suppresses the formation of dots until a later annealing process. The dots are capped with a 100 nm GaAs layer. Three samples, having three different annealing temperatures of 460°C, 480°C, and 500°C, were studied by transmission electron microscopy. Results indicate two distinct types of dot formation processes: dots in the 460°C and 480°C samples form from platelet precursors in a one-to-one ratio whereas the dots in the sample annealed at 500°C form through the strain-driven self-assembly process, and then grow larger via an additional Ostwald ripening process whereby dots grow into larger dots at the expense of smaller seed islands. There are consequently significant morphological differences between the two types of dots, which explain many of the previously-reported differences in optical properties. Moreover, we also report evidence of indium segregation within the dots, with little or no indium intermixing between the dots and the surrounding GaAs barrier.

  20. Biomolecular Mechanisms of Pseudomonas aeruginosa and Escherichia coli Biofilm Formation

    PubMed Central

    Laverty, Garry; Gorman, Sean P.; Gilmore, Brendan F.

    2014-01-01

    Pseudomonas aeruginosa and Escherichia coli are the most prevalent Gram-negative biofilm forming medical device associated pathogens, particularly with respect to catheter associated urinary tract infections. In a similar manner to Gram-positive bacteria, Gram-negative biofilm formation is fundamentally determined by a series of steps outlined more fully in this review, namely adhesion, cellular aggregation, and the production of an extracellular polymeric matrix. More specifically this review will explore the biosynthesis and role of pili and flagella in Gram-negative adhesion and accumulation on surfaces in Pseudomonas aeruginosa and Escherichia coli. The process of biofilm maturation is compared and contrasted in both species, namely the production of the exopolysaccharides via the polysaccharide synthesis locus (Psl), pellicle Formation (Pel) and alginic acid synthesis in Pseudomonas aeruginosa, and UDP-4-amino-4-deoxy-l-arabinose and colonic acid synthesis in Escherichia coli. An emphasis is placed on the importance of the LuxR homologue sdiA; the luxS/autoinducer-II; an autoinducer-III/epinephrine/norepinephrine and indole mediated Quorum sensing systems in enabling Gram-negative bacteria to adapt to their environments. The majority of Gram-negative biofilms consist of polysaccharides of a simple sugar structure (either homo- or heteropolysaccharides) that provide an optimum environment for the survival and maturation of bacteria, allowing them to display increased resistance to antibiotics and predation. PMID:25438014

  1. Acute formation of lumbar discal cyst: what is the mechanism?

    PubMed

    Aydin, S; Kucukyuruk, B; Yildirim, H; Abuzayed, B; Bozkus, H; Vural, M

    2010-12-01

    Lumbar discal cysts are extremely rare pathologies, with only few reports describing these lesions in the literature. Moreover, their definite pathogenesis is still unknown, with proposed theories based on radialogic and histologic findings. In this report, the authors present an acute formation of a discal cyst, which is reported for the first time. Also, we center our case on the discussion of the possible pathogenesis. Also, this is the first case of discal cyst reported in Turkey. A 67-year-old woman, whose complaints, and clinical and radiological findings demonstrated lumbar disc herniation with acute Modic 1 degererative changes of the adjacent end plates of L3-4 level. After medical and physical therapies, follow-up lumbar MRI has been taken to demonstrate a discal cyst formation on the adjacent intervertebral disc, showed cranially migrated cyst superior posterior on herniated disc, in 2 weeks period. The patient was treated by microsurgical resection of the cyst, and her complaints resolved completely. PMID:21423085

  2. Phase Formation and Transformations in Transmutation Fuel Materials for the LIFE Engine Part I - Path Forward

    SciTech Connect

    Turchi, P E; Kaufman, L; Fluss, M J

    2008-11-10

    The current specifications of the LLNL fusion-fission hybrid proposal, namely LIFE, impose severe constraints on materials, and in particular on the nuclear fissile or fertile nuclear fuel and its immediate environment. This constitutes the focus of the present report with special emphasis on phase formation and phase transformations of the transmutation fuel and their consequences on particle and pebble thermal, chemical and mechanical integrities. We first review the work that has been done in recent years to improve materials properties under the Gen-IV project, and with in particular applications to HTGR and MSR, and also under GNEP and AFCI in the USA. Our goal is to assess the nuclear fuel options that currently exist together with their issues. Among the options, it is worth mentioning TRISO, IMF, and molten salts. The later option will not be discussed in details since an entire report is dedicated to it. Then, in a second part, with the specific LIFE specifications in mind, the various fuel options with their most critical issues are revisited with a path forward for each of them in terms of research, both experimental and theoretical. Since LIFE is applicable to very high burn-up of various fuels, distinctions will be made depending on the mission, i.e., energy production or incineration. Finally a few conclusions are drawn in terms of the specific needs for integrated materials modeling and the in depth knowledge on time-evolution thermochemistry that controls and drastically affects the performance of the nuclear materials and their immediate environment. Although LIFE demands materials that very likely have not yet been fully optimized, the challenge are not insurmountable and a well concerted experimental-modeling effort should lead to dramatic advances that should well serve other fission programs such as Gen-IV, GNEP, AFCI as well as the international fusion program, ITER.

  3. Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation.

    PubMed

    Shiraiwa, Manabu; Yee, Lindsay D; Schilling, Katherine A; Loza, Christine L; Craven, Jill S; Zuend, Andreas; Ziemann, Paul J; Seinfeld, John H

    2013-07-16

    Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality, and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosols (SOAs). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multigeneration gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface, and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a midexperiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. Although experiments need to be conducted with other SOA precursor hydrocarbons, current results demonstrate coupling between particle-phase chemistry and size distribution dynamics in the formation of SOAs, thereby opening up an avenue for analysis of the SOA formation process. PMID:23818634

  4. Geo-mechanical consequences of large scale fluid storage in the Utsira formation in the North Sea

    NASA Astrophysics Data System (ADS)

    Wangen, Magnus; Gasda, Sarah; Bjørnarå, Tore

    2016-04-01

    The Utsira formation in the North Sea is a more than 400 km long formation of Pliocene sand with a thickness in the range from 50m to 350m. The porosity of the Utsira formation is estimated to 35% and the permeability is of the order Darcy (1e-12 m2). This formation is being considered as a possible site for large scale CO2 storage, because of its large storage capacity and good permeability. In this work we look at the geo-mechanical implications of injecting "large'' volumes of fluid in the Utsira formation. Our modelling is based on Biot's poro-elasticity in combination with one-phase and two phase flow. We compare the pressure build-up from injection of brine with the pressure build-up from from injection of supercritical CO2. Well placement and near well modelling is not a part of the modelling. We study four different injection scenarios over 25 years, which have injection rates: 1 Mt/year, 10 Mt/year, 100 Mt/year and 1000 Mt/year. We observe that the pressure plume scales with the injection rate, which is the same behaviour as with Theis solution for pressure build-up. A particular concern is the mechanical properties of the Utsira sand and the cap rock. The cap rock is a Quaternary shale with a Young's modulus measured to 0.25 GPa and a Poisson ratio 0.25. A Young's modulus for the Utsira sand, which can be used to model expansion of the formation, is not measured. It is reasonable to assume that the loose sand has a low Young's modulus. We have tested low values of the Young's modulus for the sand and we get considerable mechanical expansion of the Utsira formation, even in the case of low pressure build-up from the fluid injection. Almost all the surface (seabed) uplift is linked to mechanical expansion of the sand. The strain of the Utsira formation and related surface uplift can be estimated with simple 1D models. Vertical 1D models apply because of the large lateral extent of the pressure plume compared to the thickness of the formation. The limits of

  5. Three-phase heaters with common overburden sections for heating subsurface formations

    SciTech Connect

    Vinegar, Harold J.

    2012-02-14

    A heating system for a subsurface formation is described. The heating system includes three substantially u-shaped heaters with first end portions of the heaters being electrically coupled to a single, three-phase wye transformer and second end portions of the heaters being electrically coupled to each other and/or to ground. The three heaters may enter the formation through a first common wellbore and exit the formation through a second common wellbore so that the magnetic fields of the three heaters at least partially cancel out in the common wellbores.

  6. A possible oriented attachment growth mechanism for silver nanowire formation

    SciTech Connect

    Murph, Simona E. Hunyadi; Murphy, Catherine J.; Leach, Austin; Gall, Kenneth

    2015-04-06

    Electron microscopy studies suggest that silver nanowires prepared by an approach reported earlier by us (Caswell, K. K., Bender, C. M., Murphy, C. J. Nano Lett.,2003, 3, 667–669) form through a coarsening process via an oriented attachment mechanism. Initially, silver nucleation centers were produced by chemical reduction of silver ions in boiling water, with sodium citrate and sodium hydroxide as additives in solution. These nucleation centers, with a twinned crystallographic orientation, ultimately merge into fully grown silver nanowires. This is a completely different mechanism from the seed-mediated growth approach, which has also been used to produce silver nanowires. Furthermore, companion molecular dynamics performed with the embedded atom method are in agreement with our experimental data.

  7. A possible oriented attachment growth mechanism for silver nanowire formation

    DOE PAGESBeta

    Murph, Simona E. Hunyadi; Murphy, Catherine J.; Leach, Austin; Gall, Kenneth

    2015-04-06

    Electron microscopy studies suggest that silver nanowires prepared by an approach reported earlier by us (Caswell, K. K., Bender, C. M., Murphy, C. J. Nano Lett.,2003, 3, 667–669) form through a coarsening process via an oriented attachment mechanism. Initially, silver nucleation centers were produced by chemical reduction of silver ions in boiling water, with sodium citrate and sodium hydroxide as additives in solution. These nucleation centers, with a twinned crystallographic orientation, ultimately merge into fully grown silver nanowires. This is a completely different mechanism from the seed-mediated growth approach, which has also been used to produce silver nanowires. Furthermore, companionmore » molecular dynamics performed with the embedded atom method are in agreement with our experimental data.« less

  8. FUNDAMENTAL COMBUSTION RESEARCH APPLIED TO POLLUTION FORMATION. VOLUME 2A. PHYSICS AND CHEMISTRY OF TWO-PHASE SYSTEMS: FLAME COMBUSTION PROCESSES

    EPA Science Inventory

    The reports included in the three-part volume describe eight studies by various investigators, to better understand the physics and chemistry of two-phase combustion with respect to pollution formation. Volume IIa describes mechanisms of fuel nitrogen processing in large-scale ut...

  9. FUNDAMENTAL COMBUSTION RESEARCH APPLIED TO POLLUTION FORMATION. VOLUME 2C. PHYSICS AND CHEMISTRY OF TWO-PHASE SYSTEMS: HETEROGENEOUS NO REDUCTION

    EPA Science Inventory

    The reports included in the three-part volume describe eight studies by various investigators, to better understand the physics and chemistry of two-phase combustion with respect to pollution formation. Volume IIc gives information on the kinetic rates and mechanisms of nitrogen ...

  10. BINARY FORMATION MECHANISMS: CONSTRAINTS FROM THE COMPANION MASS RATIO DISTRIBUTION

    SciTech Connect

    Reggiani, Maddalena M.; Meyer, Michael R.

    2011-09-01

    We present a statistical comparison of the mass ratio distribution of companions, as observed in different multiplicity surveys, to the most recent estimate of the single-object mass function. The main goal of our analysis is to test whether or not the observed companion mass ratio distribution (CMRD) as a function of primary star mass and star formation environment is consistent with having been drawn from the field star initial mass function (IMF). We consider samples of companions for M dwarfs, solar-type stars, and intermediate-mass stars, both in the field as well as clusters or associations, and compare them with populations of binaries generated by random pairing from the assumed IMF for a fixed primary mass. With regard to the field we can reject the hypothesis that the CMRD was drawn from the IMF for different primary mass ranges: the observed CMRDs show a larger number of equal-mass systems than predicted by the IMF. This is in agreement with fragmentation theories of binary formation. For the open clusters {alpha} Persei and the Pleiades we also reject the IMF random-pairing hypothesis. Concerning young star-forming regions, currently we can rule out a connection between the CMRD and the field IMF in Taurus but not in Chamaeleon I. Larger and different samples are needed to better constrain the result as a function of the environment. We also consider other companion mass functions and we compare them with observations. Moreover the CMRD both in the field and clusters or associations appears to be independent of separation in the range covered by the observations. Combining therefore the CMRDs of M (1-2400 AU) and G (28-1590 AU) primaries in the field and intermediate-mass primary binaries in Sco OB2 (29-1612 AU) for mass ratios, q = M{sub 2}/M{sub 1}, from 0.2 to 1, we find that the best chi-square fit follows a power law dN/dq{proportional_to}q {sup {beta}}, with {beta} = -0.50 {+-} 0.29, consistent with previous results. Finally, we note that the

  11. Binary Formation Mechanisms: Constraints from the Companion Mass Ratio Distribution

    NASA Astrophysics Data System (ADS)

    Reggiani, Maddalena M.; Meyer, Michael R.

    2011-09-01

    We present a statistical comparison of the mass ratio distribution of companions, as observed in different multiplicity surveys, to the most recent estimate of the single-object mass function. The main goal of our analysis is to test whether or not the observed companion mass ratio distribution (CMRD) as a function of primary star mass and star formation environment is consistent with having been drawn from the field star initial mass function (IMF). We consider samples of companions for M dwarfs, solar-type stars, and intermediate-mass stars, both in the field as well as clusters or associations, and compare them with populations of binaries generated by random pairing from the assumed IMF for a fixed primary mass. With regard to the field we can reject the hypothesis that the CMRD was drawn from the IMF for different primary mass ranges: the observed CMRDs show a larger number of equal-mass systems than predicted by the IMF. This is in agreement with fragmentation theories of binary formation. For the open clusters α Persei and the Pleiades we also reject the IMF random-pairing hypothesis. Concerning young star-forming regions, currently we can rule out a connection between the CMRD and the field IMF in Taurus but not in Chamaeleon I. Larger and different samples are needed to better constrain the result as a function of the environment. We also consider other companion mass functions and we compare them with observations. Moreover the CMRD both in the field and clusters or associations appears to be independent of separation in the range covered by the observations. Combining therefore the CMRDs of M (1-2400 AU) and G (28-1590 AU) primaries in the field and intermediate-mass primary binaries in Sco OB2 (29-1612 AU) for mass ratios, q = M 2/M 1, from 0.2 to 1, we find that the best chi-square fit follows a power law dN/dqvpropq β, with β = -0.50 ± 0.29, consistent with previous results. Finally, we note that the Kolmogorov-Smirnov test gives a ~1% probability

  12. Molecular Mechanisms for Vascular Development and Secondary Cell Wall Formation

    PubMed Central

    Yang, Jung Hyun; Wang, Huanzhong

    2016-01-01

    Vascular tissues are important for transporting water and nutrients throughout the plant and as physical support of upright growth. The primary constituents of vascular tissues, xylem, and phloem, are derived from the meristematic vascular procambium and cambium. Xylem cells develop secondary cell walls (SCWs) that form the largest part of plant lignocellulosic biomass that serve as a renewable feedstock for biofuel production. For the last decade, research on vascular development and SCW biosynthesis has seen rapid progress due to the importance of these processes to plant biology and to the biofuel industry. Plant hormones, transcriptional regulators and peptide signaling regulate procambium/cambium proliferation, vascular patterning, and xylem differentiation. Transcriptional regulatory pathways play a pivot role in SCW biosynthesis. Although most of these discoveries are derived from research in Arabidopsis, many genes have shown conserved functions in biofuel feedstock species. Here, we review the recent advances in our understanding of vascular development and SCW formation and discuss potential biotechnological uses. PMID:27047525

  13. Formation mechanism of silicon carbide nanotubes with special morphology

    NASA Astrophysics Data System (ADS)

    Pei, L. Z.; Tang, Y. H.; Zhao, X. Q.; Chen, Y. W.; Guo, C.

    2006-08-01

    SiC nanotubes have been synthesized under hydrothermal conditions. Research results show that SiC nanotubes consist of hollow inner pore, crystalline SiC wall layers, and thin amorphous silica sheath. Besides most abundant normal nanotubes, bamboo-shaped SiC nanotubes and elliptically hollow SiC nanospheres were also observed. The different morphologies of the SiC nanotubes are closely relative to the diameter of the SiC nanotubes. The confinement effect of other SiC nanotubes may play an important effect retarding the growth of SiC nanotubes to form the hollow SiC nanospheres. Defect inducing growth is proposed to explain the formation of bamboo-shaped SiC nanotubes.

  14. Molecular Mechanisms for Vascular Development and Secondary Cell Wall Formation.

    PubMed

    Yang, Jung Hyun; Wang, Huanzhong

    2016-01-01

    Vascular tissues are important for transporting water and nutrients throughout the plant and as physical support of upright growth. The primary constituents of vascular tissues, xylem, and phloem, are derived from the meristematic vascular procambium and cambium. Xylem cells develop secondary cell walls (SCWs) that form the largest part of plant lignocellulosic biomass that serve as a renewable feedstock for biofuel production. For the last decade, research on vascular development and SCW biosynthesis has seen rapid progress due to the importance of these processes to plant biology and to the biofuel industry. Plant hormones, transcriptional regulators and peptide signaling regulate procambium/cambium proliferation, vascular patterning, and xylem differentiation. Transcriptional regulatory pathways play a pivot role in SCW biosynthesis. Although most of these discoveries are derived from research in Arabidopsis, many genes have shown conserved functions in biofuel feedstock species. Here, we review the recent advances in our understanding of vascular development and SCW formation and discuss potential biotechnological uses. PMID:27047525

  15. A study of pyramidal islands formation in epitaxy within the generalized phase-field model

    NASA Astrophysics Data System (ADS)

    Kharchenko, Dmitrii O.; Kharchenko, Vasyl O.; Zhylenko, Tetyana; Dvornichenko, Alina V.

    2013-04-01

    We study epitaxial growth of pyramidal patterns in a framework of the phase-field model generalized by introduction of temperature field dynamics and an assumption of interacting adsorbate due to elastic effects. We have shown that in the system with different rates of the phase-field change oscillatory dynamics of surface pattern formation can be realized. Analytical results are verified by numerical simulations. We compare properties of surface structures within the framework of the standard phase-field model and proposed a generalized model of epitaxial growth using statistical approach. It is shown that in the generalized model pyramidal patterns can be sustained by thermodynamical force governing flux of interacting adsorbate.

  16. Review of third phase formation in extraction of actinides by neutral organophosphorus extractants

    SciTech Connect

    Rao, P.R.V.; Kolarik, Z.

    1996-11-01

    Data are reviewed on the information of third phase in the extraction of actinide(IV,VI) nitrates by neutral organophosphorus extractants, mainly tributyl phosphate. The data are critically evaluated and the effect of variables on the third phase formation is discussed. The variables are the concentrations of nitric acid and the extractant, temperature, the nature of diluent, addition of modifiers and the ionic strength of the aqueous phase. Also discussed are systems involving two extracted actinide ions. 42 refs., 16 figs., 4 tabs.

  17. Causes and formation of cavitation in mechanical heart valves.

    PubMed

    Graf, T; Reul, H; Detlefs, C; Wilmes, R; Rau, G

    1994-04-01

    Cavitation may develop on mechanical valvular prostheses in the mitral position; it causes blood damage and, under particularly adverse conditions, it may result in sudden failure of the prosthesis. Therefore, with regard to future development of mechanical heart valves, the pattern of cavitation and its predisposing factors in different types of prostheses were investigated in in vitro studies, which focused on the analysis of valve closure dynamics and the influence of design parameters on the cavitation-inducing pressure drop at the artificial valve. It was found that cavitation is produced primarily by the deceleration of the closing body of the valve. At 900g, the measured deceleration of the closing bodies falls in the range of the decelerations determined in oscillation experiments for investigating cavitation-induced material erosion. The pressure drop produced thereby is overlapped by the pressure drop in accelerated or turbulent flow regions produced by design characteristics at outlet struts, stop faces or sealing lips during backflow through the closing disc. These phenomena exist particularly in regions of high flow velocity, i.e. at the instant of closure at the maximum distance from the bearing axis of the closing body (12 o'clock position). The onset of cavitation is additionally promoted in this position by a tight joint between the closing body and the ring. Oscillations of the closing body generally have a negligible effect on the cavitation behavior. From these relationships one can infer that cavitation can be avoided in future in mechanical heart valves by locally limited design measures. Especially, unsteadiness in the backflow through the closing valve is to be avoided. PMID:8061870

  18. Formation of Bi(Pb)-2223 with chemically compatible V-rich phase

    NASA Astrophysics Data System (ADS)

    Kazin, P. E.; Uskova, M. A.; Tretyakov, Yu. D.; Jansen, M.; Scheurell, S.; Kemnitz, E.

    1998-06-01

    Phase assemblage was studied in the samples obtained by thermal treatment of fine nitrate mixtures containing cations of Bi, Pb, Sr, Ca, Cu, and V. Large Bi(Pb)-2223 phase fraction was observed for the initial composition Bi(Pb)-2223+Sr 3V 2O 8. It was found that vanadium-containing surplus resulted in the formation of Sr 3- xCa xCu yV 2O z phase which proved to be chemically compatible with Bi(Pb)-2223, while vanadium solubility in the Bi(Pb)-2223 did not exceed 5 mol%. The new vanadate phase had diffraction pattern different from rhombohedric Sr 3V 2O 8. Composites of Bi(Pb)-2223+ nSr 2.8Ca 0.2Cu 0.3V 2O z ( n=0, 0.1, 0.5, 1) were prepared by thermal treatment of the homogeneous precursors at 860°C. In the samples with large vanadium content the formation rate of Bi(Pb)-2223 phase was higher, although the presence of vanadium caused a few degrees Tc drop. Low fraction of the vanadate phase in the composite did not influence markedly the sample magnetization at 5, 30 and 77 K, while high fraction of this phase resulted in strong decrease of the hysteresis magnetization at T≥30 K.

  19. Mechanics of rockslides in a layered marly-arenaceous formation

    NASA Astrophysics Data System (ADS)

    Simoni, Alessandro; Berti, Matteo; Bernardi, Anna Rita; Guida, Monica; Ghiselli, Franco; Pizziolo, Marco; Preti, Domenico

    2013-04-01

    In April 2005, following intense rainfall, three spectacular rockslides occurred in the eastern sector of the Northern Apennines of Italy. The landslides affected a flysch formation characterized by rhythmic alternations of sandstone and fine grained (pelitic) layers, locally known as "Marnoso-Arenacea" formation. The rock blocks detached along gently-sloping bedding planes (8° to 12° degrees) and slid downhill exhibiting varied amount of internal deformation. The thickness of the rock slabs ranged from 15 to 30 m and the overall volume from 1E5 to 1E6 cubic meters. An eyewitness interviewed during field work said that one of the three events (the Pezzolo landslide) produced a loud crashing sound associated to shaking of the ground. According to his description the rockslide moved with a peak velocity of 1-2 m/s. Geomorphic evidences of ancient rockslides are common in the Marnoso-Arenacea Formation. Most of the slopes where beddings dip similar to the slope are characterized by scarps, structural surfaces, debris deposits, and detached rock blocks clearly associated to past rockslides. The temporal frequency of these landslides is relatively low. Multiple catastrophic rockslide events occurred only once in the previous 70 years (May 1939) and, also in that case, a limited number of failures was triggered. Despite their low frequency, the risk associated to these phenomena is significant because of the high speed associated to the large volume and to the widespread presence of vulnerable elements. After the 2005 events a three-years research project was started in order to improve our knowledge on these particular landslides. On one side, detailed geomorphological surveys, geotechnical laboratory tests, and parametric back-analyses were performed on rockslides to evaluate the hydraulic conditions that triggered the failures. On the other side, four potentially unstable slopes were identified and instrumented by means of automatic pressure transducers and

  20. Formation mechanisms, structure, solution behavior, and reactivity of aminodiborane.

    PubMed

    Li, Huizhen; Ma, Nana; Meng, Wenjuan; Gallucci, Judith; Qiu, Yongqing; Li, Shujun; Zhao, Qianyi; Zhang, Jie; Zhao, Ji-Cheng; Chen, Xuenian

    2015-09-30

    A facile synthesis of cyclic aminodiborane (NH2B2H5, ADB) from ammonia borane (NH3·BH3, AB) and THF·BH3 has made it possible to determine its important characteristics. Ammonia diborane (NH3BH2(μ-H)BH3, AaDB) and aminoborane (NH2BH2, AoB) were identified as key intermediates in the formation of ADB. Elimination of molecular hydrogen occurred from an ion pair, [H2B(NH3) (THF)](+)[BH4](-). Protic-hydridic hydrogen scrambling was proved on the basis of analysis of the molecular hydrogen products, ADB and other reagents through (2)H NMR and MS, and it was proposed that the scrambling occurred as the ion pair reversibly formed a BH5-like intermediate, [(THF)BH2NH2](η(2)-H2)BH3. Loss of molecular hydrogen from the ion pair led to the formation of AoB, most of which was trapped by BH3 to form ADB with a small amount oligomerizing to (NH2BH2)n. Theoretical calculations showed the thermodynamic feasibility of the proposed intermediates and the activation processes. The structure of the ADB·THF complex was found from X-ray single crystal analysis to be a three-dimensional array of zigzag chains of ADB and THF, maintained by hydrogen and dihydrogen bonding. Room temperature exchange of terminal and bridge hydrogens in ADB was observed in THF solution, while such exchange was not observed in diethyl ether or toluene. Both experimental and theoretical results confirm that the B-H-B bridge in ADB is stronger than that in diborane (B2H6, DB). The B-H-B bridge is opened when ADB and NaH react to form sodium aminodiboronate, Na[NH2(BH3)2]. The structure of the sodium salt as its 18-crown-6 ether adduct was determined by X-ray single crystal analysis. PMID:26335760

  1. Mechanisms of Formation and Transformation of Ni-Fe Hydroxycarbonates

    SciTech Connect

    Refait, Ph.; Jeannin, M.; Reffass, M.; Drissi, S.H.; Abdelmoula, M.; Genin, J.-M.R.

    2005-04-26

    The mechanisms of the transformation of (Ni,Fe)(OH)2 precipitates in carbonated aqueous solutions were studied. The reactions were monitored by measuring the redox potential of the aqueous suspension, and end products were studied by Moessbauer spectroscopy, X-ray diffraction and Raman spectroscopy. The oxidation processes were compared to those occurring without Ni, that is when the initial hydroxide is Fe(OH)2. Schematically, the oxidation of Fe(OH)2 involves two intermediate compounds, the carbonated GR of formula Fe{sup II}{sub 4}Fe{sup III}{sub 2}(OH){sub 12}CO{sub 3} {center_dot} 2H{sub 2}O, and ferrihydrite, before to lead finally to goethite {alpha}-FeOOH. It proved possible to prepare Ni(II)-Fe(III) hydroxycarbonates with ratios Fe/Ni from 1/6 to 1/3. When the Fe/Ni ratio is larger than 1/3, a two stage oxidation process takes place. The first stage leads to a Ni(II)-Fe(II)-Fe(III) hydroxycarbonate. The second stage corresponds to the oxidation of the Fe(II) remaining inside the hydroxycarbonate and leads to a mixture of Ni(II)-Fe(III) hydroxycarbonate with ferrihydrite. The main effect of Ni is then to stop the reaction at an intermediate stage, as Ni(II) is not oxidised by O2, leaving unchanged the main features of the mechanisms of transformation.

  2. Formation of gold nanorods by a stochastic "popcorn" mechanism.

    PubMed

    Edgar, Jonathan A; McDonagh, Andrew M; Cortie, Michael B

    2012-02-28

    Gold nanorods have significant technological potential and are of broad interest to the nanotechnology community. The discovery of the seeded, wet-chemical synthetic process to produce them may be regarded as a landmark in the control of metal nanoparticle shape. However, the mechanism by which the initial spherical gold seeds acquire anisotropy is a critical, yet poorly understood, factor. Here we examine the very early stages of rod growth using a combination of techniques including cryogenic transmission electron microscopy, optical spectroscopy, and computational modeling. Reconciliation of the available experimental observations can only be achieved by invoking a stochastic, "popcorn"-like mechanism of growth, in which individual seeds lie quiescent for some time before suddenly and rapidly growing into rods. This is quite different from the steady, concurrent growth of nanorods that has been previously generally assumed. Furthermore we propose that the shape is controlled by the ratio of surface energy of rod sides to rod ends, with values of this quantity in the range of 0.3-0.8 indicated for typical growth solutions. PMID:22301937

  3. KEEPING A STEP AHEAD - FORMATIVE PHASE OF A WORKPLACE INTERVENTION TRIAL TO PREVENT OBESITY

    PubMed Central

    Zapka, Jane; Lemon, Stephenie C.; Estabrook, Barbara B.; Jolicoeur, Denise G.

    2008-01-01

    Background Ecological interventions hold promise for promoting overweight and obesity prevention in worksites. Given the paucity of evaluative research in the hospital worksite setting, considerable formative work is required for successful implementation and evaluation. Purpose This paper describes the formative phases of Step Ahead, a site-randomized controlled trial of a multi-level intervention that promotes physical activity and healthy eating in 6 hospitals in central Massachusetts. The purpose of the formative research phase was to increase the feasibility, effectiveness and likelihood of sustainability of the intervention. Design and Procedures The Step Ahead ecological intervention approach targets change at the organization, the interpersonal work environment and the individual levels. The intervention was developed using fundamental steps of intervention mapping and important tenets of participatory research. Formative research methods were used to engage leadership support and assistance and to develop an intervention plan that is both theoretically and practically grounded. This report uses observational data, program minutes and reports, and process tracking data. Developmental Strategies and Observations Leadership involvement (key informant interviews and advisory boards), employee focus groups and advisory boards, and quantitative environmental assessments cultivated participation and support. Determining multiple foci of change and designing measurable objectives and generic assessment tools to document progress are complex challenges encountered in planning phases. Lessons Learned Multi-level trials in diverse organizations require flexibility and balance of theory application and practice-based perspectives to affect impact and outcome objectives. Formative research is an essential component. PMID:18073339

  4. Mechanical loading, damping, and load-driven bone formation in mouse tibiae.

    PubMed

    Dodge, Todd; Wanis, Mina; Ayoub, Ramez; Zhao, Liming; Watts, Nelson B; Bhattacharya, Amit; Akkus, Ozan; Robling, Alexander; Yokota, Hiroki

    2012-10-01

    Mechanical loads play a pivotal role in the growth and maintenance of bone and joints. Although loading can activate anabolic genes and induce bone remodeling, damping is essential for preventing traumatic bone injury and fracture. In this study we investigated the damping capacity of bone, joint tissue, muscle, and skin using a mouse hindlimb model of enhanced loading in conjunction with finite element modeling to model bone curvature. Our hypothesis was that loads were primarily absorbed by the joints and muscle tissue, but that bone also contributed to damping through its compression and natural bending. To test this hypothesis, fresh mouse distal lower limb segments were cyclically loaded in axial compression in sequential bouts, with each subsequent bout having less surrounding tissue. A finite element model was generated to model effects of bone curvature in silico. Two damping-related parameters (phase shift angle and energy loss) were determined from the output of the loading experiments. Interestingly, the experimental results revealed that the knee joint contributed to the largest portion of the damping capacity of the limb, and bone itself accounted for approximately 38% of the total phase shift angle. Computational results showed that normal bone curvature enhanced the damping capacity of the bone by approximately 40%, and the damping effect grew at an accelerated pace as curvature was increased. Although structural curvature reduces critical loads for buckling in beam theory, evolution apparently favors maintaining curvature in the tibia. Histomorphometric analysis of the tibia revealed that in response to axial loading, bone formation was significantly enhanced in the regions that were predicted to receive a curvature-induced bending moment. These results suggest that in addition to bone's compressive damping capacity, surrounding tissues, as well as naturally-occurring bone curvature, also contribute to mechanical damping, which may ultimately affect

  5. Theory of the formation of the ordered LiZn{sub 0.5}Mn{sub 1.5}O{sub 4} phase

    SciTech Connect

    Talanov, V. M.; Shirokov, V. B.

    2013-03-15

    A theory of the structural phase transition in LiZn{sub 0.5}Mn{sub 1.5}O{sub 4} cathode material is proposed. The symmetry of the order parameter, thermodynamics, and mechanisms of formation of the atomic structure of low-symmetry ordered cubic lithium-zinc-manganese oxide spinel have been studied. The critical order parameter inducing the phase transition has been found. It is shown that the calculated LiZn{sub 0.5}Mn{sub 1.5}O{sub 4} structure is formed due to displacements and orderings of lithium, zinc, manganese, and oxygen atoms. Within the Landau theory of phase transitions, it is shown that the phase states may change from high-symmetry cubic disordered Fd3m phase to the low-symmetry ordered cubic P2{sub 1}3 phase as a result of first-order phase transitions.

  6. Characterization of water formation mechanisms on hydrophobic radome materials

    SciTech Connect

    Roberts, J.C.; Wienhold, P.D.; Nicholas, A.A.; Garner, P.N.

    1994-03-01

    The degree of hydrophobicity and contact angle of water on different radome coating materials was measured. The ability of these hydrophobic materials to bond to a radome substrate was also observed. The materials tested were; Raydell M-26-OS, Raydell M-15-OS, RA 7947, RA 7943, Teflon/Tedlar and Vellox-140. Each material was bonded to G-10 fiberglass panels and evaluated under conditions simulating dew formation, driving rain, freezing rain. Raydell M-26-OS had a relatively high contact angle, demonstrated excellent boding to a radome material, and had fair hydrophobic properties. RA 7947 and RA 7943 had relatively high contact angles, demonstrated poor and fair bonding, respectively, to a radome material, and exhibited good hydrophobic properties. The Teflon/Tedlar material had a low contact angle, demonstrated good bonding to a radome material, but showed fair to poor hydrophobic properties. The Vellox-140 and Raydell M-15-OS had relatively high to high contact angles, demonstrated excellent and possibly excellent bonding, respectively, to a radome material, and showed good to excellent, respectively, hydrophobic properties. These results were consistent whether the test temperature was 22{degrees}C (72{degrees}F) or -13{degrees}C (8{degrees}F) and whether the water was in the form of a mist or a concentrated stream. Long term tests and the effects of salt spray and dirt and the hydrophobic materials were not examined. 17 refs., 7 figs., 2 tabs.

  7. Barrier formation: potential molecular mechanism of enamel fluorosis.

    PubMed

    Lyaruu, D M; Medina, J F; Sarvide, S; Bervoets, T J M; Everts, V; Denbesten, P; Smith, C E; Bronckers, A L J J

    2014-01-01

    Enamel fluorosis is an irreversible structural enamel defect following exposure to supraoptimal levels of fluoride during amelogenesis. We hypothesized that fluorosis is associated with excess release of protons during formation of hypermineralized lines in the mineralizing enamel matrix. We tested this concept by analyzing fluorotic enamel defects in wild-type mice and mice deficient in anion exchanger-2a,b (Ae2a,b), a transmembrane protein in maturation ameloblasts that exchanges extracellular Cl(-) for bicarbonate. Defects were more pronounced in fluorotic Ae2a,b (-/-) mice than in fluorotic heterozygous or wild-type mice. Phenotypes included a hypermineralized surface, extensive subsurface hypomineralization, and multiple hypermineralized lines in deeper enamel. Mineral content decreased in all fluoride-exposed and Ae2a,b(-/-) mice and was strongly correlated with Cl(-). Exposure of enamel surfaces underlying maturation-stage ameloblasts to pH indicator dyes suggested the presence of diffusion barriers in fluorotic enamel. These results support the concept that fluoride stimulates hypermineralization at the mineralization front. This causes increased release of protons, which ameloblasts respond to by secreting more bicarbonates at the expense of Cl(-) levels in enamel. The fluoride-induced hypermineralized lines may form barriers that impede diffusion of proteins and mineral ions into the subsurface layers, thereby delaying biomineralization and causing retention of enamel matrix proteins. PMID:24170372

  8. Modeling the Mechanism of Coagulum Formation in Dispersions

    PubMed Central

    2014-01-01

    The stability of colloidal dispersions is of crucial importance because the properties of dispersions are strongly affected by the degree of coagulation. Whereas the coagulation kinetics for quiescent (i.e., nonstirred) and diluted systems is well-established, the behavior of concentrated dispersions subjected to shear is still not fully understood. We employ the discrete element method (DEM) for the simulation of coagulation of concentrated colloidal dispersions. Normal forces between interacting particles are described by a combination of the Derjaguin, Landau, Verwey, and Overbeek (DLVO) and Johnson, Kendall, and Roberts (JKR) theories. We show that, in accordance with the expectations, the coagulation behavior depends strongly on the particle volume fraction, the surface potential, and the shear rate. Moreover, we demonstrate that the doublet formation rate is insufficient for the description of the coagulation kinetics and that the detailed DEM model is able to explain the autocatalytic nature of the coagulation of stabilized dispersions subjected to shear. With no adjustable parameters we are able to provide semiquantitative predictions of the coagulation behavior in the high-shear regions for a broad range of particle volume fractions. The results obtained using the DEM model can provide valuable guidelines for the operation of industrial dispersion processes. PMID:24564707

  9. The formation mechanism of aluminum oxide tunnel barriers.

    SciTech Connect

    Cerezo, A.; Petford-Long, A. K.; Larson, D. J.; Pinitsoontorn, S.; Singleton, E. W.; Materials Science Division; Univ. Oxford; Seagate Tech.

    2006-01-01

    The functional properties of magnetic tunnel junctions are critically dependant on the nanoscale morphology of the insulating barrier (usually only a few atomic layers thick) that separates the two ferromagnetic layers. Three-dimensional atom probe analysis has been used to study the chemistry of a magnetic tunnel junction structure comprising an aluminium oxide barrier formed by in situ oxidation, both in the under-oxidized and fully oxidized states and before and after annealing. Low oxidation times result in discrete oxide islands. Further oxidation leads to a more continuous, but still non-stoichiometric, barrier with evidence that oxidation proceeds along the top of grain boundaries in the underlying CoFe layer. Post-deposition annealing leads to an increase in the barrier area, but only in the case of the fully oxidized and annealed structure is a continuous planar layer formed, which is close to the stoichiometric Al:O ratio of 2:3. These results are surprising, in that the planar layers are usually considered unstable with respect to breaking up into separate islands. Analysis of the various driving forces suggests that the formation of a continuous layer requires a combination of factors, including the strain energy resulting from the expansion of the oxide during internal oxidation on annealing.

  10. Pseudogap formation and quantum phase transition in strongly-correlated electron systems

    SciTech Connect

    Chern, Chyh-Hong

    2014-11-15

    Pseudogap formation is a ubiquitous phenomenon in strongly-correlated superconductors, for example cuprates, heavy-fermion superconductors, and iron pnictides. As the system is cooled, an energy gap opens in the excitation spectrum before entering the superconducting phase. The origin of formation and the relevancy to the superconductivity remain unclear, which is the most challenging problem in condensed matter physics. Here, using the cuprate as a model, we demonstrate that the formation of pseudogap is due to a massive gauge interaction between electrons, where the mass of the gauge boson, determining the interaction length scale, is the consequence of the remnant antiferromagnetic fluctuation inherited from the parent compounds. Extracting from experimental data, we predict that there is a quantum phase transition belonging to the 2D XY universality class at the critical doping where pseudogap transition vanishes.

  11. Formation of complex organic molecules in cold objects: the role of gas-phase reactions

    NASA Astrophysics Data System (ADS)

    Balucani, Nadia; Ceccarelli, Cecilia; Taquet, Vianney

    2015-04-01

    While astrochemical models are successful in reproducing many of the observed interstellar species, they have been struggling to explain the observed abundances of complex organic molecules. Current models tend to privilege grain surface over gas-phase chemistry in their formation. One key assumption of those models is that radicals trapped in the grain mantles gain mobility and react on lukewarm ( ≳ 30 K) dust grains. Thus, the recent detections of methyl formate (MF) and dimethyl ether (DME) in cold objects represent a challenge and may clarify the respective role of grain-surface and gas-phase chemistry. We propose here a new model to form DME and MF with gas-phase reactions in cold environments, where DME is the precursor of MF via an efficient reaction overlooked by previous models. Furthermore, methoxy, a precursor of DME, is also synthesized in the gas phase from methanol, which is desorbed by a non-thermal process from the ices. Our new model reproduces fairly well the observations towards L1544. It also explains, in a natural way, the observed correlation between DME and MF. We conclude that gas-phase reactions are major actors in the formation of MF, DME and methoxy in cold gas. This challenges the exclusive role of grain-surface chemistry and favours a combined grain-gas chemistry.

  12. A study of suppressed formation of low-conductivity phases in doped Li7La3Zr2O12 garnets by in situ neutron diffraction

    DOE PAGESBeta

    Chen, Yan; Rangasamy, Ezhiylmurugan; dela Cruz, Clarina R.; Liang, Chengdu; An, Ke

    2015-09-28

    Doped Li7La3Zr2O12 garnets, oxide-based solids with good Li+ conductivity and compatibility, show great potential as leading electrolyte material candidates for all-solid-state lithium ion batteries. Still yet, the conductive bulk usually suffers from the presence of secondary phases and the transition towards a low-conductivity tetragonal phase during synthesis. Dopants are designed to stabilize the high-conductive cubic phase and suppress the formation of the low-conductivity phases. In situ neutron diffraction enables a direct observation of the doping effects by monitoring the phase evolutions during garnet synthesis. It reveals the reaction mechanism involving the temporary presence of intermediate phases. The off-stoichiometry due tomore » the liquid Li2CO3 evaporation leads to the residual of the low-conductivity intermediate phase in the as-synthesized bulk. Appropriate doping of an active element may alter the component of the intermediate phases and promote the completion of the reaction. While the dopants aid to stabilize most of the cubic phase, a small amount of tetragonal phase tends to form under a diffusion process. Lastly, the in situ observations provide the guideline of process optimization to suppress the formation of unwanted low-conductivity phases.« less

  13. A kinetic study on the potential of a hybrid reaction mechanism for prediction of NOx formation in biomass grate furnaces

    NASA Astrophysics Data System (ADS)

    Zahirović, Selma; Scharler, Robert; Kilpinen, Pia; Obernberger, Ingwald

    2011-10-01

    This paper presents the verification of a hybrid reaction mechanism (28 species, 104 reactions) by means of a kinetic study with a view to its application for the CFD-based prediction of gas phase combustion and NOx formation in biomass grate furnaces. The mechanism is based on a skeletal kinetic scheme that includes the subsets for H2, CO, NH3 and HCN oxidation derived from the detailed Kilpinen 97 reaction mechanism. To account for the CH4 breakdown two related reactions from the 4-step global mechanism for hydrocarbons oxidation by Jones and Lindstedt were adopted. The hybrid mechanism was compared to the global mechanism and validated against the detailed Kilpinen 97 mechanism. For that purpose plug flow reactor simulations at conditions relevant to biomass combustion (atmospheric pressure, 1200-1600 K) for approximations of the flue gases in a grate furnace at fuel lean and fuel rich conditions were carried out. The hybrid reaction mechanism outperformed the global one at all conditions investigated. The most striking differences obtained in predictions by the hybrid and the detailed mechanism at the residence times prior to ignition were attributed to the simplified description of the CH4 oxidation in the case of the former. The overall agreement regarding both combustion and NOx chemistry between the hybrid and the detailed mechanism was better at fuel lean conditions than at fuel rich conditions. However, also at fuel rich conditions, the agreement was improving with increasing temperature. Moreover, it was shown that an improvement in the prediction of NOx formation by the N-subset of the hybrid reaction mechanism can be achieved by replacing its C-H-O subset with that of the detailed one.

  14. On the Mechanical Stability of Austenite Matrix After Martensite Formation in a Medium Mn Steel

    NASA Astrophysics Data System (ADS)

    He, B. B.; Huang, M. X.

    2016-07-01

    The present work employs the nanoindentation technique to investigate the effect of prior martensite formation on the mechanical stability of a retained austenite matrix. It is found that the small austenite grains that were surrounded by martensite laths have higher mechanical stability than the large austenite grains that were free of martensite laths. The higher mechanical stability of small austenite grains is due to its higher amount of defects resulting from the prior martensite formation. These defects act as barriers for the later martensite formation and therefore contribute to the higher mechanical stability of small austenite grains. As a result, the present work suggests that the formation of martensite tends to stabilize the surrounding austenite matrix. Therefore, it may explain the lower transformed amount of martensite after quenching as compared to the theoretical calculation using the Koistinen and Marburger (K-M) equation.

  15. On the Mechanical Stability of Austenite Matrix After Martensite Formation in a Medium Mn Steel

    NASA Astrophysics Data System (ADS)

    He, B. B.; Huang, M. X.

    2016-04-01

    The present work employs the nanoindentation technique to investigate the effect of prior martensite formation on the mechanical stability of a retained austenite matrix. It is found that the small austenite grains that were surrounded by martensite laths have higher mechanical stability than the large austenite grains that were free of martensite laths. The higher mechanical stability of small austenite grains is due to its higher amount of defects resulting from the prior martensite formation. These defects act as barriers for the later martensite formation and therefore contribute to the higher mechanical stability of small austenite grains. As a result, the present work suggests that the formation of martensite tends to stabilize the surrounding austenite matrix. Therefore, it may explain the lower transformed amount of martensite after quenching as compared to the theoretical calculation using the Koistinen and Marburger (K-M) equation.

  16. Multishelled Metal Oxide Hollow Spheres: Easy Synthesis and Formation Mechanism.

    PubMed

    Wu, Hongjing; Wu, Guanglei; Ren, Yanyan; Li, Xinghua; Wang, Liuding

    2016-06-20

    Uniform multishelled NiO, Co3 O4 , ZnO, and Au@NiO hollow spheres were synthesized (NiO and Co3 O4 hollow spheres for the first time) by a simple shell-by-shell self-assembly allowing for tuning of the the size, thickness and shell numbers by controlling the heat treatment, glucose/metal salt molar ratio, and hydrothermal reaction time. These findings further the development of synthetic methodologies for multishelled hollow structures and could open up new opportunities for deeper understanding of the mechanisms of shell-by-shell self-assembly. Moreover, the double-shelled NiO hollow sphere exhibits a higher photocatalytic activity for degradation of methyl orange than its morphological counterparts. PMID:27164001

  17. Mechanism of Hot Finger Formation in Mantle Wedge

    NASA Astrophysics Data System (ADS)

    Matsuo, M. Y.; Tamura, Y.; Sakaguchi, H.

    2013-12-01

    Processes of mantle melting and volcanic eruptions along subduction zones are often illustrated by the use of two-dimensional cross-section models of convergent margins. However, Quaternary volcanoes in the NE Japan arc could be grouped into ten volcano clusters striking transverse to the arc; these have an average width of ~ 50 km, and are separated by parallel gaps 30-75 km wide (Tamura et al., 2002). Moreover, the structure of the mantle wedge and arc crust beneath the NE Japan arc and the Izu-Bonin-Mariana arc, respectively, suggest that the third dimension, lying along the strike of the arc, is necessary to understand the actual production of magmas in subduction zones (e.g., Nakajima et al., 2001; Hasegawa & Nakajima, 2004; Kodaira et al., 2007; Kodaira et al., 2008). Common periodic structural variations, having wavelengths of 80-100 km, can be observed in both areas. This grouping of volcanoes and the structural variations may be related to locally developed hot regions within the mantle wedge that have the form of inclined, 50 km-wide fingers (hot fingers). The 'hot fingers' models (Tamura et al., 2002) may play an important role in linking the 3D structures within the mantle wedge and overlying arc crust to volcanic eruptions at the surface. To explore a physical and mathematical mechanism to produce a hot finger pattern, we develop a hydrodynamic model of mantle convection in mantle wedge. A hypothesis incorporated in our model is a double diffusive mechanism of mantle materials; diffusion of composition of mantle materials is much weaker than temperature diffusion. We show that our model shows a spatiotemporal pattern in a mantle material composition, temperature, and velocity that are similar to the spatiotemporal patterns observed in the NE Japan arc.

  18. Mechanism of Membranous Tunnelling Nanotube Formation in Viral Genome Delivery

    PubMed Central

    Peralta, Bibiana; Gil-Carton, David; Castaño-Díez, Daniel; Bertin, Aurelie; Boulogne, Claire; Oksanen, Hanna M.; Bamford, Dennis H.; Abrescia, Nicola G. A.

    2013-01-01

    In internal membrane-containing viruses, a lipid vesicle enclosed by the icosahedral capsid protects the genome. It has been postulated that this internal membrane is the genome delivery device of the virus. Viruses built with this architectural principle infect hosts in all three domains of cellular life. Here, using a combination of electron microscopy techniques, we investigate bacteriophage PRD1, the best understood model for such viruses, to unveil the mechanism behind the genome translocation across the cell envelope. To deliver its double-stranded DNA, the icosahedral protein-rich virus membrane transforms into a tubular structure protruding from one of the 12 vertices of the capsid. We suggest that this viral nanotube exits from the same vertex used for DNA packaging, which is biochemically distinct from the other 11. The tube crosses the capsid through an aperture corresponding to the loss of the peripentonal P3 major capsid protein trimers, penton protein P31 and membrane protein P16. The remodeling of the internal viral membrane is nucleated by changes in osmolarity and loss of capsid-membrane interactions as consequence of the de-capping of the vertices. This engages the polymerization of the tail tube, which is structured by membrane-associated proteins. We have observed that the proteo-lipidic tube in vivo can pierce the gram-negative bacterial cell envelope allowing the viral genome to be shuttled to the host cell. The internal diameter of the tube allows one double-stranded DNA chain to be translocated. We conclude that the assembly principles of the viral tunneling nanotube take advantage of proteo-lipid interactions that confer to the tail tube elastic, mechanical and functional properties employed also in other protein-membrane systems. PMID:24086111

  19. New thresholds for Primordial Black Hole formation during the QCD phase transition

    NASA Astrophysics Data System (ADS)

    Sobrinho, J. L. G.; Augusto, P.; Gonçalves, A. L.

    2016-08-01

    Primordial Black Holes (PBHs) might have formed in the early Universe as a consequence of the collapse of density fluctuations with an amplitude above a critical value δc: the formation threshold. Although for a radiation-dominated Universe δc remains constant, if the Universe experiences some dust-like phases (e.g. phase transitions) δc might decrease, improving the chances of PBH formation. We studied the evolution of δc during the QCD phase transition epoch within three different models: Bag Model (BM), Lattice Fit Model (LFM), and Crossover Model (CM). We found that the reduction on the background value of δc can be as high as 77% (BM), which might imply a ˜10-10 probability of PBHs forming at the QCD epoch.

  20. Gas Phase Synthesis of (Iso)Quinoline and Its Role in the Formation of Nucleobases in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Parker, Dorian S. N.; Kaiser, Ralf. I.; Kostko, Oleg; Troy, Tyler P.; Ahmed, Musahid; Mebel, Alexander M.; Tielens, Alexander G. G. M.

    2015-04-01

    Nitrogen-substituted polycyclic aromatic hydrocarbons (NPAHs) have been proposed to play a key role in the astrochemical evolution of the interstellar medium, yet the formation mechanisms of even their simplest prototypes—quinoline and isoquinoline—remain elusive. Here, we reveal a novel concept that under high temperature conditions representing circumstellar envelopes of carbon stars, (iso)quinoline can be synthesized via the reaction of pyridyl radicals with two acetylene molecules. The facile gas phase formation of (iso)quinoline in circumstellar envelopes defines a hitherto elusive reaction class synthesizing aromatic structures with embedded nitrogen atoms that are essential building blocks in contemporary biological-structural motifs. Once ejected from circumstellar shells and incorporated into icy interstellar grains in cold molecular clouds, these NPAHs can be functionalized by photo processing forming nucleobase-type structures as sampled in the Murchison meteorite.

  1. The formation mechanism of heavy haze over China

    NASA Astrophysics Data System (ADS)

    Li, J.; Zhuang, G.

    2007-12-01

    Most cities in China have been suffering from very heavy haze, a new weather pattern, which formed for more than one third of the whole year in the past several years. High concentration of fine aerosol, much frequent occurrence plus rapid formation were the three main characteristics of the heavy haze. As a typical example, the air pollution in an inland city, Urumqi, located in the center of Asia, was systematically monitoring and investigated for the past 6 years. 19 elements and 16 ions were measured in PM2.5 and TSP aerosols collected over urban Urumqi, as well as those surface soil samples collected from inside the city, the surrounding areas, and those upstream areas of Asia dust. With comparison of the pollution elements abundance in aerosol/soil and using Ca/Al as a tracer, it was identified that the mixing of the local anthropogenic aerosol with the transported soil dust from outside the city was the main sources of the high concentration of sulfate, which was the one of the main factors causing the heavy air pollution in the aerosols over the urban area. The industrial emitted sulfur dioxide was converted to sulfate in the aerosol and the soil dust containing high concentration of sulfate from the agriculture field located in the south of Jungger Basin and Salt Lake areas was transported to the air over the city. The total water soluble ions (TWSI) and the total ammonium salts were as high as 57.8% and 51.0% in PM2.5. The extremely high concentration of TWSI, especially the high concentration of ammonium salts with very high hygroscopicity, plus the low wind speed could be the main factors, to form the heavy haze over China.

  2. Asian summer monsoon onset barrier and its formation mechanism

    NASA Astrophysics Data System (ADS)

    Liu, Boqi; Liu, Yimin; Wu, Guoxiong; Yan, Jinghui; He, Jinhai; Ren, Suling

    2015-08-01

    The onset process of Asian summer monsoon (ASM) is investigated based on diagnostic analysis of observations of precipitation and synoptic circulation. Results show that after the ASM commences over the eastern Bay of Bengal (BOB) around early May, the onset can propagate eastwards towards the South China Sea and western Pacific but is blocked on its westward propagation along the eastern coast of India. This blocking, termed the "monsoon onset barrier (MOB)", presents a Gill-type circulation response to the latent heating released by BOB monsoon convection. This convective condensation heating generates summertime (wintertime) vertical easterly (westerly) shear to its east (west) and facilitates air ascent (descent). The convection then propagates eastward but gets trapped on its westward path. To the east of the central BOB, the surface air temperature (SAT) cools faster than the underlying sea surface temperature (SST) due to monsoon onset. Thus more sensible heat flux supports the onset convection to propagate eastward. To the west of the central BOB, however, the land surface sensible heating over the Indian Peninsula is strengthened by the enhanced anticyclone circulation and air descent induced by the BOB monsoon heating. The strengthened upstream warm horizontal advection then produces a warm SAT center over the MOB region, which together with the in situ cooled SST reduces the surface sensible heating and atmospheric available potential energy to prevent the occurrence of free convection. Therefore, it is the change in both large-scale circulation and air-sea interaction due to BOB summer monsoon onset that contributes to the MOB formation.

  3. Mechanism of interface formation in a silicon carbide fiber-reinforced magnesuium aluminosilicate

    SciTech Connect

    Kumar, A.; Knowles, K.M.

    1995-12-01

    The formation of sliding interfacial layers is a major key to the success of fiber-reinforced glass-ceramics. This paper reports the mechanism of formation of fiber-matrix interfaces during oxidizing heat treatments in a SiC fiber-reinforced magnesium aluminosilicate.

  4. Study of formation mechanism of incipient melting in thixo-cast Al–Si–Cu–Mg alloys

    SciTech Connect

    Du, Kang Zhu, Qiang Li, Daquan Zhang, Fan

    2015-08-15

    Mechanical properties of thixo-cast Al–Si–Cu–Mg alloys can be enhanced by T61 heat treatment. Copper and magnesium atoms in aluminum matrix can form homogeneously distributed precipitations after solution and aging treatment which harden the alloys. However, microsegregation of these alloying elements could form numerous tiny multi-compound phases during solidification. These phases could cause incipient melting defects in subsequent heat treatment process and degrade the macro-mechanical properties of productions. This study is to present heterogeneous distribution of Cu, Si, and Mg elements and formation of incipient melting defects (pores). In this study, incipient melting pores that occurred during solution treatment at various temperatures, even lower than common melting points of various intermetallic phases, were identified, in terms of a method of investigating the same surface area in the samples before and after solution treatment in a vacuum environment. The results also show that the incipient melting mostly originates at the clusters with fine intermetallic particles while also some at the edge of block-like Al{sub 2}Cu. The fine particles were determined being Al{sub 2}Cu, Al{sub 5}Cu{sub 2}Mg{sub 8}Si{sub 6} and Al{sub 8}Mg{sub 3}FeSi{sub 2}. Tendency of the incipient melting decreases with decreases of the width of the clusters. The formation mechanism of incipient melting pores in solution treatment process was discussed using both the Fick law and the LSW theory. Finally, a criterion of solution treatment to avoid incipient melting pores for the thixo-cast alloys is proposed. - Highlights: • In-situ comparison technique was used to analysis the change of eutectic phases. • The ralationship between eutectic phase size and incipient melting was studied. • Teat treatment criterion for higher incipient melting resistance was proposed.

  5. Mechanisms of iron-silica aqueous interaction and the genesis of Precambrian iron formation

    NASA Astrophysics Data System (ADS)

    Chemtob, S. M.; Catalano, J. G.; Moynier, F.; Pringle, E. A.

    2015-12-01

    Iron formations (IFs), Fe- and Si-rich chemical sediments common in Precambrian successions, preserve key information about the compositional, biological, and oxidative evolution of the Precambrian ocean. Stable Si isotopes (δ30Si) of IF have been used to infer paleo-oceanic composition, and secular variations in δ30Si may reflect ancient biogeochemical cycles. The δ30Si of primary Fe-Si precipitates that formed IF depends not only on the δ30Si of aqueous silica but also on the precipitation mechanism. Multiple formation mechanisms for these primary precipitates are plausible. Aqueous Si may have adsorbed on newly precipitated iron oxyhydroxide surfaces; alternatively, Fe and Si may have coprecipitated as a single phase. Here we explore variations in the Si isotope fractionation factor (ɛ) with Fe-Si aqueous interaction mechanism (adsorption vs. coprecipitation). In adsorption experiments, sodium silicate solutions (pH 8.1, 125-2000 µM Si) were reacted with iron oxide particles (hematite, ferrihydrite, goethite, and magnetite) for 24 to 72 hours. Resultant solutions had δ30Si between 0 and +6‰. Calculated ɛ varied significantly with oxide mineralogy and morphology. For ferrihydrite, ɛ = -1.7‰; for hematite, ɛ = -2 to -5‰, depending on particle morphology. Apparent ɛ decreased upon surface site saturation, implying a smaller isotope effect for polymeric Si adsorption than monomeric adsorption. In coprecipitation experiments, solutions of Na-silicate and Fe(II) chloride (0.4-10 mM) were prepared anaerobically, then air-oxidized for 3 days to induce precipitation. At low Si concentrations, magnetite formed; near silica saturation, lepidocrocite and ferrihydrite formed. The Si isotope fractionation factor for coprecipitation was within the range of ɛ observed for adsorption (ɛ = -2.3 ± 1.0‰). These results indicate that the mechanism of Fe-Si interaction affects ɛ, presumably due to varying silicate coordination environments. These isotopic

  6. Soliton-dark pulse pair formation in birefringent cavity fiber lasers through cross phase coupling.

    PubMed

    Shao, Guodong; Song, Yufeng; Zhao, Luming; Shen, Deyuan; Tang, Dingyuan

    2015-10-01

    We report on the experimental observation of soliton-dark pulse pair formation in a birefringent cavity fiber laser. Temporal cavity solitons are formed in one polarization mode of the cavity. It is observed that associated with each of the cavity solitons a dark pulse is induced on the CW background of the orthogonal polarization mode. We show that the dark pulse formation is a result of the incoherent cross polarization coupling between the soliton and the CW beam and has a mechanism similar to that of the polarization domain formation observed in the fiber lasers. PMID:26480138

  7. Atomic scale observation of phase separation and formation of silicon clusters in Hf higk-κ silicates

    NASA Astrophysics Data System (ADS)

    Talbot, E.; Roussel, M.; Genevois, C.; Pareige, P.; Khomenkova, L.; Portier, X.; Gourbilleau, F.

    2012-05-01

    Hafnium silicate films were fabricated by RF reactive magnetron sputtering technique. Fine microstructural analyses of the films were performed by means of high-resolution transmission electron microscopy and atom probe tomography. A thermal treatment of as-grown homogeneous films leads to a phase separation process. The formation of SiO2 and HfO2 phases as well as pure Si one was revealed. This latter was found to be amorphous Si nanoclusters, distributed uniformly in the film volume. Their mean diameter and density were estimated to be about 2.8 nm and (2.9 ± 0.4) × 1017 Si-ncs/cm3, respectively. The mechanism of the decomposition process was proposed. The obtained results pave the way for future microelectronic and photonic applications of Hf-based high-κ dielectrics with embedded Si nanoclusters.

  8. Atomic scale observation of phase separation and formation of silicon clusters in Hf higk-{kappa} silicates

    SciTech Connect

    Talbot, E.; Roussel, M.; Genevois, C.; Pareige, P.; Khomenkova, L.; Portier, X.; Gourbilleau, F.

    2012-05-15

    Hafnium silicate films were fabricated by RF reactive magnetron sputtering technique. Fine microstructural analyses of the films were performed by means of high-resolution transmission electron microscopy and atom probe tomography. A thermal treatment of as-grown homogeneous films leads to a phase separation process. The formation of SiO{sub 2} and HfO{sub 2} phases as well as pure Si one was revealed. This latter was found to be amorphous Si nanoclusters, distributed uniformly in the film volume. Their mean diameter and density were estimated to be about 2.8 nm and (2.9 {+-} 0.4) x 10{sup 17} Si-ncs/cm{sup 3}, respectively. The mechanism of the decomposition process was proposed. The obtained results pave the way for future microelectronic and photonic applications of Hf-based high-{kappa} dielectrics with embedded Si nanoclusters.

  9. Trace phase formation, crystallization kinetics and crystallographic evolution of a lithium disilicate glass probed by synchrotron XRD technique

    PubMed Central

    Huang, Saifang; Huang, Zhaohui; Gao, Wei; Cao, Peng

    2015-01-01

    X-ray diffraction technique using a laboratory radiation has generally shown limitation in detectability. In this work, we investigated the in situ high-temperature crystallization of a lithium disilicate glass-ceramic in the SiO2–Li2O–CaO–P2O5–ZrO2 system with the aid of synchrotron radiation. The formation of lithium metasilicate and other intermediate phases in trace amount was successfully observed by synchrotron X-ray diffraction (SXRD). The crystallization mechanism in this glass was thus intrinsically revised to be the co-nucleation of lithium metasilicate and disilicate, instead of the nucleation of lithium disilicate only. The phase content, crystallite size and crystallographic evolutions of Li2Si2O5 in the glass-ceramic as a function of annealing temperature were studied by performing Rietveld refinements. It is found that the growth of Li2Si2O5 is constrained by Li2SiO3 phase at 580–700°C. The relationship between the crystallographic evolution and phase transition was discussed, suggesting a common phenomenon of structural response of Li2Si2O5 along its c axis to other silicon-related phases during glass crystallization. PMID:25778878

  10. Kinetics, mechanism and thermodynamics of bisulfite-aldehyde adduct formation

    SciTech Connect

    Olson, T.M.; Boyce, S.D.; Hoffmann, M.R.

    1986-04-01

    The kinetics and mechanism of bisulfite addition to benzaldehyde were studied at low pH in order to assess the importance of this reaction in stabilizing S(IV) in fog-, cloud-, and rainwater. Previously, the authors established that appreciable concentrations of the formaldehyde-bisulfite adduct (HMSA) are often present in fogwater. Measured HMSA concentrations in fogwater often do not fully account for observed excess S(IV) concentrations, however, so that other S(IV)-aldehyde adducts may be present. Reaction rates were determined by monitoring the disappearance of benzaldehyde by U.V. spectrophotometry under pseudo-first order conditions, (S(IV))/sub T/ >>(phi-CHO)/sub T/, in the pH range 0 - 4.4 at 25/sup 0/C. The equilibrium constant was determined by dissolving the sodium salt of the addition compound in a solution adjusted to pH 3.9, and measuring the absorbance of the equilibrated solution at 250 nm. A literature value of the extinction coefficient for benzaldehyde was used to calculate the concentration of free benzaldehyde. All solutions were prepared under an N/sub 2/ atmosphere using deoxygenated, deionized water and ionic strength was maintained at 1.0 M with sodium chloride.

  11. Star formation driven mechanical feedback in molecular clouds

    NASA Astrophysics Data System (ADS)

    Cunningham, Andrew J.

    The ubiquity and high density of outflows from young stars in clusters make them an intriguing candidate for the source of turbulence energy in molecular clouds. This work addresses, by direct numerical simulation, elements of protostellar outflow evolution that is relevant to their ability to drive turbulent flows in molecular clouds. The result of this work is surprising in that it shows that fossil cavities, rather than how shocks from active outflows, constitute the primary avenue by which outflows re-energize turbulence. This work first considers collisions between active jets, showing that this process is ineffective at converting the directed momentum and mechanical energy of outflows into turbulence. This effect is due to radiative energy loss which constrains the surface area through which colliding outflows entrain ambient gas. Recent observational results are discussed which indicate that fossil cavities from extinct outflows are abundant in molecular material surrounding clusters such as NGC1333. These structures, rather than the bow shocks of active outflows, comprise the link between outflow energy input, and re-energizing turbulence in the parent molecular cloud core. Numerical simulations are presented winch confirm that the evolution of cavities front decaying outflow sources leads to structures which match the observations of fossil cavities. The algorithms and tests of the AstroBEAR adaptive mesh refinement code for astrophysical magnetohydrodynamics are also presented. The code was developed during the course of this work and used for the numerical simulations.

  12. Investigation of mechanics of mine acid formation. Volume 1

    SciTech Connect

    Paciorek, K.L.; Kimble, P.F.; Vatasescu, A.L.; Toben, W.A.; Kratzer, R.H.

    1980-03-01

    The objective of the contract was to determine, by the combination of laboratory experiments and mine samplings, the kinetics and mechanisms of the various reactions that produce mine acid drainage. To achieve this goal, primary investigations were performed utilizing pure iron disulfide in the form of pyrite and marcasite, free from coal. The effects of temperature, concentration, surface area, media nature, oxygen, presence of additional ions and bacterial action with respect to dissolution rates were measured. Thiobacillus ferrooxidans and T. thiooxidans were included in this study, both as purchased cultures and freshly isolated from mine samples. Mine samplings were performed to determine the type and quantity of bacteria present, the effect of weathering upon coals' propensity to produce acid and other drainage, the effect of other minerals and the nature of the mine water upon ion liberation, and the effect of the different kinds of bacteria upon the above process. It was established that both pyrite and marcasite, provided sufficient surface area is exposed, will produce hydrogen, sulfate, and iron ions. This process is accelerated in the case of pyrite and marcasite by the presence of T. ferrooxidans and ferric ions. T. thiooxidans accelerates marcasite solubilization and the dissolution of iron disulfide present in coal, but had no effect on museum grade pyrite.

  13. Calculating Equilibrium Phase Distribution during the Formation of Secondary Organic Aerosol Using COSMOtherm.

    PubMed

    Wang, Chen; Goss, Kai-Uwe; Lei, Ying Duan; Abbatt, Jonathan P D; Wania, Frank

    2015-07-21

    Challenges in the parametrization of compound distribution between the gas and particle phase contribute significantly to the uncertainty in the prediction of secondary organic aerosol (SOA) formation and are rooted in the complexity and variability of atmospheric condensed matter, which includes water, salts, and a multitude of organic oxidation products, often in two separated phases. Here, we explore the use of the commercial quantum-chemistry-based software COSMOtherm to predict equilibrium partitioning and Setchenow coefficients of a suite of oxidation products of α-pinene ozonolysis in an aerosol that is assumed to separate into an organic-enriched phase and an electrolyte-enriched aqueous phase. The predicted coefficients are used to estimate the phase distribution of the organic compounds, water and ammonium sulfate, the resulting phase composition, and the SOA yield. Four scenarios that differ in terms of organic loading, liquid water content, and chemical aging are compared. The organic compounds partition preferentially to the organic phase rather than the aqueous phase for the studied aerosol scenarios, partially due to the salting-out effect. Extremely low volatile organic compounds are predicted to be the dominant species in the organic aerosols at low loadings and an important component at higher loadings. The highest concentration of oxidation products in the condensed phase is predicted for a scenario assuming the presence of non-phase-separated cloud droplets. Partitioning into an organic aerosol phase composed of the oxidation products is predicted to be similar to partitioning into a phase composed of a single organic surrogate molecule, suggesting that the calculation procedure can be simplified without major loss of accuracy. COSMOtherm is shown to produce results that are comparable to those obtained using group contribution methods. COSMOtherm is likely to have a much larger application domain than those group contribution methods because

  14. Direct Observations of Sigma Phase Formation in Duplex Stainless Steels using In Situ Synchrotron X-Ray Diffraction

    SciTech Connect

    Elmer, J W; Palmer, T A; Specht, E D

    2006-07-03

    The formation and growth of sigma phase in 2205 duplex stainless steel was observed and measured in real time using synchrotron radiation during 10 hr isothermal heat treatments at temperatures between 700 C and 850 C. Sigma formed in near-equilibrium quantities during the isothermal holds, starting from a microstructure which contained a balanced mixture of metastable ferrite and austenite. In situ synchrotron diffraction continuously monitored the transformation, and these results were compared to those predicted by thermodynamic calculations. Differences between the calculated and measured amounts of sigma, ferrite and austenite suggest that the thermodynamic calculations underpredict the sigma dissolution temperature by approximately 50 C. The data were further analyzed using a modified Johnson-Mehl-Avrami (JMA) approach to determine kinetic parameters for sigma formation over this temperature range. The initial JMA exponent, n, at low fractions of sigma was found to be approximately 7.0, however, towards the end of the transformation, n decreased to values of approximately 0.75. The change in the JMA exponent was attributed to a change in the transformation mechanism from discontinuous precipitation with increasing nucleation rate, to growth of the existing sigma phase after nucleation site saturation occurred. Because of this change in mechanism, it was not possible to determine reliable values for the activation energy and pre-exponential terms for the JMA equation. While cooling back to room temperature, the partial transformation of austenite resulted in a substantial increase in the ferrite content, but sigma retained its high temperature value to room temperature.

  15. Biological pattern formation: from basic mechanisms to complex structures

    SciTech Connect

    Koch, A.J.; Meinhardt, H. )

    1994-10-01

    The reliable development of highly complex organisms is an intriguing and fascinating problem. The genetic material is, as a rule, the same in each cell of an organism. How then do cells, under the influence of their common genes, produce spatial patterns Simple models are discussed that describe the generation of patterns out of an initially nearly homogeneous state. They are based on nonlinear interactions of at least two chemicals and on their diffusion. The concepts of local autocatalysis and of long-range inhibition play a fundamental role. Numerical simulations show that the models account for many basic biological observations such as the regeneration of a pattern after excision of tissue or the production of regular (or nearly regular) arrays of organs during (or after) completion of growth. Very complex patterns can be generated in a reproducible way by hierarchical coupling of several such elementary reactions. Applications to animal coats and to the generation of polygonally shaped patterns are provided. It is further shown how to generate a strictly periodic pattern of units that themselves exhibit a complex and polar fine structure. This is illustrated by two examples: the assembly of photoreceptor cells in the eye of [ital Drosophila] and the positioning of leaves and axillary buds in a growing shoot. In both cases, the substructures have to achieve an internal polarity under the influence of some primary pattern-forming system existing in the fly's eye or in the plant. The fact that similar models can describe essential steps in organisms as distantly related as animals and plants suggests that they reveal some universal mechanisms.

  16. Phase stability, mechanical properties, hardness, and possible reactive routing of chromium triboride from first-principle investigations

    SciTech Connect

    Zhong, Ming-Min; Kuang, Xiao-Yu Wang, Zhen-Hua; Shao, Peng; Ding, Li-Ping; Huang, Xiao-Fen

    2013-12-21

    The first-principles calculations are employed to provide a fundamental understanding of the structural features and relative stability, mechanical and electronic properties, and possible reactive route for chromium triboride. The predicted new phase of CrB{sub 3} belongs to the rhombohedral phase with R-3m symmetry and it transforms into a hexagonal phase with P-6m2 symmetry at 64 GPa. The mechanical and thermodynamic stabilities of CrB{sub 3} are verified by the calculated elastic constants and formation enthalpies. Also, the full phonon dispersion calculations confirm the dynamic stability of predicted CrB{sub 3}. Considering the role of metallic contributions, the calculated hardness values from our semiempirical method for rhombohedral and hexagonal phases are 23.8 GPa and 22.1 GPa, respectively. In addition, the large shear moduli, Young's moduli, low Poisson's ratios, and small B/G ratios indicate that they are potential hard materials. Relative enthalpy calculations with respect to possible constituents are also investigated to assess the prospects for phase formation and an attempt at high-pressure synthesis is suggested to obtain chromium triboride.

  17. Phase mixing of chaotic orbits as an irreversible ''relaxation'' mechanism

    SciTech Connect

    C.L. Bohn et al.

    2002-01-15

    Orbits that are chaotic will tend to phase-mix exponentially through their accessible phase space. This phenomenon, commonly called ''chaotic mixing'', stands in marked contrast to phase mixing of regular orbits. It is inherently irreversible, and thus its associated e-folding time scale sets a condition on any process envisioned for emittance compensation. Accordingly, two questions arise. First, under what conditions does chaotic mixing manifest itself in beams? Second, when it is active, over what time scale does it operate? The work described here is part of an ongoing effort to answer these questions.

  18. Formation of parallel two-phase flow in nanochannel and application to solvent extraction

    NASA Astrophysics Data System (ADS)

    Kazoe, Yutaka; Ugajin, Takuya; Ohta, Ryoichi; Mawatari, Kazuma; Kitamori, Takehiko; The University of Tokyo Team

    2015-11-01

    Micro chemical systems have realized high-throughput analysis in ultra small volumes. Our group has established unit operations such as extraction, separation and reaction, and a concept of integration of chemical processes using parallel multi-phase flows in microchannels. Recently, the research field has been extended to 10-1000 nm space (extended-nanospace). Exploiting extended-nanospace, we developed ultra high performance chemical operations such as aL-chromatography and single molecule immunoassay. However, formation of parallel multi-phase flow in nanochannels has been difficult. The challenge is to control liquid-liquid/gas-liquid interfaces in 100 nm-scale. For this purpose, this study developed a partial surface modification method of nanochannel and verified formation of parallel two-phase flow. We achieved partial hydrophobic modification using focused ion beam (FIB). Using this method, formation of parallel water/dodecane two-phase flow in a nanochannel of 1500 nm width and 890 nm depth was succeeded. Solvent extraction of lipid, which is a basic separation in bioanalysis, was achieved in 25 fL volume much smaller than single cell. This study will greatly contribute to develop novel nanofluidic devices for chemical analysis and chemical synthesis. This work was supported by Japan Science and Technology Agency, Core Research for Evolutional Science and Technology.

  19. Unexpected δ-Phase Formation in Additive-Manufactured Ni-Based Superalloy

    NASA Astrophysics Data System (ADS)

    Idell, Y.; Levine, L. E.; Allen, A. J.; Zhang, F.; Campbell, C. E.; Olson, G. B.; Gong, J.; Snyder, D. R.; Deutchman, H. Z.

    2016-03-01

    An as-built and solutionized Ni-based superalloy built by additive manufacturing through a direct metal laser sintering technique is characterized to understand the microstructural differences as compared to the as-wrought alloy. Initially, each layer undergoes rapid solidification as it is melted by the laser; however, as the part is built, the underlying layers experience a variety of heating and cooling cycles that produce significant microsegregation of niobium which allows for the formation of the deleterious δ-phase. The as-built microstructure was characterized through Vickers hardness, optical microscopy, scanning and transmission electron microscopy, electron back-scattering diffraction, x-ray diffraction, and synchrotron x-ray microLaue diffraction. The isothermal formation and growth of the δ-phase were characterized using synchrotron-based in situ small angle and wide angle x-ray scattering experiments. These experimental results are compared with multicomponent diffusion simulations that predict the phase fraction and composition. The high residual stresses and unexpected formation of the δ-phase will require further annealing treatments to be designed so as to remove these deficiencies and obtain an optimized microstructure.

  20. The Inflow Signature toward Different Evolutionary Phases of Massive Star Formation

    NASA Astrophysics Data System (ADS)

    Jin, Mihwa; Lee, Jeong-Eun; Kim, Kee-Tae; Evans, Neal J., II

    2016-08-01

    We analyze both HCN J = 1–0 and HNC J = 1–0 line profiles to study the inflow motions in different evolutionary stages of massive star formation: 54 infrared dark clouds (IRDCs), 69 high-mass protostellar objects (HMPOs), and 54 ultra-compact H ii regions (UCHIIs). Inflow asymmetry in the HCN spectra seems to be prevalent throughout all the three evolutionary phases, with IRDCs showing the largest excess in the blue profile. In the case of the HNC spectra, the prevalence of blue sources does not appear, apart from for IRDCs. We suggest that this line is not appropriate to trace the inflow motion in the evolved stages of massive star formation, because the abundance of HNC decreases at high temperatures. This result highlights the importance of considering chemistry in dynamics studies of massive star-forming regions. The fact that the IRDCs show the highest blue excess in both transitions indicates that the most active inflow occurs in the early phase of star formation, i.e., in the IRDC phase rather than in the later phases. However, mass is still inflowing onto some UCHIIs. We also find that the absorption dips of the HNC spectra in six out of seven blue sources are redshifted relative to their systemic velocities. These redshifted absorption dips may indicate global collapse candidates, although mapping observations with better resolution are needed to examine this feature in more detail.

  1. Low temperature phase formation of Tl-based superconducting thin films in reduced oxygen atmosphere

    NASA Technical Reports Server (NTRS)

    Wu, C. Y.; Foong, F.; Liou, S. H.; Ho, J. C.

    1993-01-01

    Tl-Ba-Cu-Cu-O superconducting thin films were prepared by magnetron sputtering with postannealing in a reduced oxygen atmosphere. Single-phase Tl2Ba2Ca2Cu3O(x) can form on the MgO substrate at 800 C under P(O2) about 0.1 atm. However the phase formation temperature can be affected by the starting composition of the film. Tl1Ba2Ca2Cu3O(x) phase can be formed by simply lowering the Tl2O pressure. The thermal stability of Tl1Ba2Ca2Cu3O(x) phase was studied by resistivity measurements at high temperatures.

  2. Aging mechanisms in amorphous phase-change materials

    NASA Astrophysics Data System (ADS)

    Raty, Jean Yves; Zhang, Wei; Luckas, Jennifer; Chen, Chao; Mazzarello, Riccardo; Bichara, Christophe; Wuttig, Matthias

    2015-06-01

    Aging is a ubiquitous phenomenon in glasses. In the case of phase-change materials, it leads to a drift in the electrical resistance, which hinders the development of ultrahigh density storage devices. Here we elucidate the aging process in amorphous GeTe, a prototypical phase-change material, by advanced numerical simulations, photothermal deflection spectroscopy and impedance spectroscopy experiments. We show that aging is accompanied by a progressive change of the local chemical order towards the crystalline one. Yet, the glass evolves towards a covalent amorphous network with increasing Peierls distortion, whose structural and electronic properties drift away from those of the resonantly bonded crystal. This behaviour sets phase-change materials apart from conventional glass-forming systems, which display the same local structure and bonding in both phases.

  3. Dynamical mechanism of two-phase phenomena in financial markets

    NASA Astrophysics Data System (ADS)

    Lim, Gyuchang; Yong Kim, Soo; Kim, Kyungsik; Lee, Dong-In; Park, Sang-Bum

    2007-12-01

    Two-phase behavior of the Korean treasury bond (KTB) futures in the Korean exchange market is investigated in this study. To show that the two-phase phenomena are due to heavy-tailed behavior of distribution of price returns, actual data from the KTB futures market with shuffled data and a generated time series are examined according to the Brownian process. In addition, we study the correlation inherent in the KTB futures and its Brownian walk, describing the extent to which the volatility clustering plays a crucial role in equilibrium and nonequilibrium states of financial markets. It is shown that the two-phase behavior essentially results from heavy-tailed behavior of the distribution of price returns. This two-phase behavior does not appear to be relevant to volatility clustering.

  4. Live-streaming: Time-lapse video evidence of novel streamer formation mechanism and varying viscosity

    PubMed Central

    Parvinzadeh Gashti, Mazeyar; Bellavance, Julien; Kroukamp, Otini; Wolfaardt, Gideon; Taghavi, Seyed Mohammad; Greener, Jesse

    2015-01-01

    Time-lapse videos of growing biofilms were analyzed using a background subtraction method, which removed camouflaging effects from the heterogeneous field of view to reveal evidence of streamer formation from optically dense biofilm segments. In addition, quantitative measurements of biofilm velocity and optical density, combined with mathematical modeling, demonstrated that streamer formation occurred from mature, high-viscosity biofilms. We propose a streamer formation mechanism by sudden partial detachment, as opposed to continuous elongation as observed in other microfluidic studies. Additionally, streamer formation occurred in straight microchannels, as opposed to serpentine or pseudo-porous channels, as previously reported. PMID:26339304

  5. Live-streaming: Time-lapse video evidence of novel streamer formation mechanism and varying viscosity.

    PubMed

    Parvinzadeh Gashti, Mazeyar; Bellavance, Julien; Kroukamp, Otini; Wolfaardt, Gideon; Taghavi, Seyed Mohammad; Greener, Jesse

    2015-07-01

    Time-lapse videos of growing biofilms were analyzed using a background subtraction method, which removed camouflaging effects from the heterogeneous field of view to reveal evidence of streamer formation from optically dense biofilm segments. In addition, quantitative measurements of biofilm velocity and optical density, combined with mathematical modeling, demonstrated that streamer formation occurred from mature, high-viscosity biofilms. We propose a streamer formation mechanism by sudden partial detachment, as opposed to continuous elongation as observed in other microfluidic studies. Additionally, streamer formation occurred in straight microchannels, as opposed to serpentine or pseudo-porous channels, as previously reported. PMID:26339304

  6. Secondary organic aerosol (trans)formation through aqueous phase guaiacol photonitration: a kinetic study

    NASA Astrophysics Data System (ADS)

    Kroflič, Ana; Grgić, Irena

    2014-05-01

    It is well known that atmospheric aerosols play a crucial role in the Earth's climate and public health (Pöschl 2005). Despite a great effort invested in the studies of secondary organic aerosol (SOA) budget, composition, and its formation mechanisms, there is still a gap between field observations and atmospheric model predictions (Heald et al. 2005, Hallquist et al. 2009, and Lim et al. 2010). The insisting uncertainties surrounding SOA formation and aging thus gained an increasing interest in atmospheric aqueous phase chemistry; they call for more complex and time consuming studies at the environmentally relevant conditions allowing confident extrapolation to desired ambient conditions. In addition to the adverse health effects of atmospheric particulate matter (PM) as such, toxicity is also attributed to nitro-aromatic and other organic compounds which have already been detected in real aerosol samples (Traversi et al. 2009). Moreover, low-volatility aromatic derivatives are believed to form at least partly in the aerosol aqueous phase and not only in the gas phase from where they partition into water droplets (Ervens et al. 2011). Two nitro derivatives of biomass burning tracer guaiacol have recently been found in winter PM10 samples from the city of Ljubljana, Slovenia, and aqueous photonitration reaction was proposed as their possible production pathway (Kitanovski et al. 2012). In this study the kinetics of guaiacol nitration in aqueous solution was investigated in the presence of H2O2 and NO2¯ upon simulated solar irradiation (Xenon lamp, 300 W). During the experiment the DURAN® flask with the reaction mixture was held in the thermostated bath and thoroughly mixed. The reaction was monitored for 44 hours at different temperatures. Guaiacol and its main nitro-products (4-nitroguaiacol, 4-NG; 6-nitroguaiacol, 6-NG; and 4,6-dinitroguaiacol, 4,6-DNG) were quantified in every aliquot, taken from the reaction mixture, by use of high pressure liquid

  7. Simulation of semi-explicit mechanisms of SOA formation from glyoxal in aerosol in a 3-D model

    NASA Astrophysics Data System (ADS)

    Knote, C.; Hodzic, A.; Jimenez, J. L.; Volkamer, R.; Orlando, J. J.; Baidar, S.; Brioude, J.; Fast, J.; Gentner, D. R.; Goldstein, A. H.; Hayes, P. L.; Knighton, W. B.; Oetjen, H.; Setyan, A.; Stark, H.; Thalman, R.; Tyndall, G.; Washenfelder, R.; Waxman, E.; Zhang, Q.

    2014-06-01

    New pathways to form secondary organic aerosol (SOA) have been postulated recently. Glyoxal, the smallest dicarbonyl, is one of the proposed precursors. It has both anthropogenic and biogenic sources, and readily partitions into the aqueous phase of cloud droplets and deliquesced particles where it undergoes both reversible and irreversible chemistry. In this work we extend the regional scale chemistry transport model WRF-Chem to include detailed gas-phase chemistry of glyoxal formation as well as a state-of-the-science module describing its partitioning and reactions in the aerosol aqueous-phase. A comparison of several proposed mechanisms is performed to quantify the relative importance of different formation pathways and their regional variability. The CARES/CalNex campaigns over California in summer 2010 are used as case studies to evaluate the model against observations. A month-long simulation over the continental United States (US) enables us to extend our results to the continental scale. In all simulations over California, the Los Angeles (LA) basin was found to be the hot spot for SOA formation from glyoxal, which contributes between 1% and 15% of the model SOA depending on the mechanism used. Our results indicate that a mechanism based only on a reactive (surface limited) uptake coefficient leads to higher SOA yields from glyoxal compared to a more detailed description that considers aerosol phase state and chemical composition. In the more detailed simulations, surface uptake is found to give the highest SOA mass yields compared to a volume process and reversible formation. We find that the yields of the latter are limited by the availability of glyoxal in aerosol water, which is in turn controlled by an increase in the Henry's law constant depending on salt concentrations ("salting-in"). A time dependence in this increase prevents substantial partitioning of glyoxal into aerosol water at high salt concentrations. If this limitation is removed, volume

  8. Single-phase and two-phase flow properties of mesaverde tight sandstone formation; random-network modeling approach

    NASA Astrophysics Data System (ADS)

    Bashtani, Farzad; Maini, Brij; Kantzas, Apostolos

    2016-08-01

    3D random networks are constructed in order to represent the tight Mesaverde formation which is located in north Wyoming, USA. The porous-space is represented by pore bodies of different shapes and sizes which are connected to each other by pore throats of varying length and diameter. Pore bodies are randomly distributed in space and their connectivity varies based on the connectivity number distribution which is used in order to generate the network. Network representations are then validated using publicly available mercury porosimetry experiments. The network modeling software solves the fundamental equations of two-phase immiscible flow incorporating wettability and contact angle variability. Quasi-static displacement is assumed. Single phase macroscopic properties (porosity, permeability) are calculated and whenever possible are compared to experimental data. Using this information drainage and imbibition capillary pressure, and relative permeability curves are predicted and (whenever possible) compared to experimental data. The calculated information is grouped and compared to available literature information on typical behavior of tight formations. Capillary pressure curve for primary drainage process is predicted and compared to experimental mercury porosimetry in order to validate the virtual porous media by history matching. Relative permeability curves are also calculated and presented.

  9. Studies On The Rules For Amorphous Phase Formation By Ion-Mixing In Metallic Systems

    NASA Astrophysics Data System (ADS)

    Cheng, Y.-T.; Johnson, W. L.; Nicolet, M.-A.

    1985-04-01

    Ion mixing (IM) has been of considerable interest over the last several years.1 It has emerged as a convenient method to produce various amorphous and metastable crystalline phases.2 Several attempts have been made to predict the formation of amorphous phases by this technique. Liu and coworkers have formulated a rule which states that an amorphous binary alloy will be formed by IM of the multilayered sample when the two constituent metals are of different structures.3 It has also been suggested that IM is likely to produce a crystalline phase at a composition which corresponds to a compound of simple lattice struc-ture.4 Recently, the application of thermodynamic considerations to IM processes have proven fruitful.5,6 The present authors have provided some general criteria regarding amorphous and crystalline phases formation by IM6 of metal-metal systems based on considerations of thermodynamic free energy diagrams and the restricted growth kinetics of competing phases. In this paper we shall examine these ideas by studying the IM of metal-metal systems of Ru-Zr and Ru-Ti.

  10. Formation and Growth of Stacking Fault Tetrahedra in Ni via Vacancy Aggregation Mechanism

    SciTech Connect

    Aidhy, Dilpuneet S.; Lu, Chenyang; Jin, Ke; Bei, Hongbin; Zhang, Yanwen; Wang, Lumin; Weber, William J.

    2015-12-29

    Using molecular dynamics simulations, the formation and growth of stacking fault tetrahedra (SFT) are captured by vacancy cluster diffusion and aggregation mechanisms in Ni. The vacancytetrahedron acts as a nucleation point for SFT formation. Simulations show that perfect SFT can grow to the next size perfect SFT via a vacancy aggregation mechanism. The stopping and range of ions in matter (SRIM) calculations and transmission electron microscopy (TEM) observations reveal that SFT can form farther away from the initial cascade-event locations, indicating the operation of diffusion-based vacancy-aggregation mechanism.

  11. Formation Mechanism and Shape Control of Monodisperse Magnetic CoFe2O4 Nanocrystals

    SciTech Connect

    Bao, Ningzhong; Shen, Liming; An, Wei; Padhan, Prahallad; Turner, C. H.; Gupta, Arunuba

    2009-07-28

    The formation mechanism and shape control of monodisperse magnetic cobalt ferrite (CoFe2O4) nanocrystals produced by thermolysis of a stoichiometric Co2+Fe2 3+-oleate complex in organic solution has been investigated. Synthesis of the pure ternary CoFe2O4 inverse spinel phase, without formation of any intermediate binary cobalt and iron oxides, is favored by the close thermal decomposition temperature of the Co2+-oleate and Fe3+-oleate precursors. For reaction temperatures between 250 and 320 ˚C, the nucleation and growth dynamics dictate the size and shape evolution of the nanocrystals. Prenucleation of CoFe2O4 occurs at 250-300 ˚C but without any growth of nanocrystals, because the monomer concentration is lower than the critical nucleation concentration. For temperatures in the range of 300-320 ˚C,which is above the thermolysis temperature of the mixed Co2+Fe2 3+-oleate complex, the monomer concentration increases rapidly resulting in homogeneous nucleation. Atomic clusters of CoFe2O4 with size<2 nm are initially formed at 314 ˚C that then grow rapidly when the temperature is raised to 320 ˚C in less than a minute. The shape of the CoFe2O4 nanocrystals can be reproducibly controlled by prolonging the aging time at 320 ˚C, evolving from initial spherical, to spherical-to-cubic, cubic, corner-grown cubic, or starlike shapes. Thus, with careful choice of reaction parameters, such as the precursor concentration and the heating rate, it is possible to achieve large-scale synthesis of shape-controlled monodisperse CoFe2O4 nanocrystals with high yield.

  12. Study of Hind Limb Tissue Gas Phase Formation in Response to Suspended Adynamia and Hypokinesia

    NASA Technical Reports Server (NTRS)

    Butler, Bruce D.

    1996-01-01

    The purpose of this study was to investigate the hypothesis that reduced joint/muscle activity (hypo kinesia) as well as reduced or null loading of limbs (adynamia) in gravity would result in reduced decompression-induced gas phase and symptoms of decompression sickness (DCS). Finding a correlation between the two phenomena would correspond to the proposed reduction in tissue gas phase formation in astronauts undergoing decompression during extravehicular activity (EVA) in microgravity. The observation may further explain the reported low incidence of DCS in space.

  13. Atmospheric chemistry of gas-phase polycyclic aromatic hydrocarbons: formation of atmospheric mutagens.

    PubMed Central

    Atkinson, R; Arey, J

    1994-01-01

    The atmospheric chemistry of the 2- to 4-ring polycyclic aromatic hydrocarbons (PAH), which exist mainly in the gas phase in the atmosphere, is discussed. The dominant loss process for the gas-phase PAH is by reaction with the hydroxyl radical, resulting in calculated lifetimes in the atmosphere of generally less than one day. The hydroxyl (OH) radical-initiated reactions and nitrate (NO3) radical-initiated reactions often lead to the formation of mutagenic nitro-PAH and other nitropolycyclic aromatic compounds, including nitrodibenzopyranones. These atmospheric reactions have a significant effect on ambient mutagenic activity, indicating that health risk assessments of combustion emissions should include atmospheric transformation products. PMID:7821285

  14. Hydride phase formation in carbon supported palladium hydride nanoparticles by in situ EXAFS and XRD

    NASA Astrophysics Data System (ADS)

    Bugaev, A. L.; Guda, A. A.; Lomachenko, K. A.; Lazzarini, A.; Srabionyan, V. V.; Vitillo, J. G.; Piovano, A.; Groppo, E.; Bugaev, L. A.; Soldatov, A. V.; Dmitriev, V. P.; Pellegrini, R.; van Bokhoven, J. A.; Lamberti, C.

    2016-05-01

    In the current work we present a detailed analysis of the hydride phase formation in industrial Pd/C nanocatalysts by means of combined in situ X-ray absorption spectroscopy (EXAFS), X-ray diffraction (XRD) and volumetric measurements for the temperatures from - 10 to 50 °C in the hydrogen pressure range from 0 to 1000 mbar. α- and β- hydride phases are clearly distinguished in XRD. For the first time, H/Pd atomic ratio were obtained by theoretical fitting of the near-edge region of the absorption spectra (XANES) and compared with volumetric measurements.

  15. Effects of added silica nanoparticles on the nematic liquid crystal phase formation in beidellite suspensions.

    PubMed

    Landman, Jasper; Paineau, Erwan; Davidson, Patrick; Bihannic, Isabelle; Michot, Laurent J; Philippe, Adrian-Marie; Petukhov, Andrei V; Lekkerkerker, Henk N W

    2014-05-01

    In this article, we present a study of the liquid crystal phase behavior of mixed suspensions of the natural smectite clay mineral beidellite and nonadsorbing colloidal silica particles. While virtually all smectite clays dispersed in water form gels at very low concentrations, beidellite displays a first order isotropic-nematic phase transition before gel formation (J. Phys. Chem. B, 2009, 113, 15858-15869). The addition of silica nanospheres shifts the concentrations of the coexisting isotropic and nematic phases to slightly higher values while at the same time markedly accelerating the phase separation process. Furthermore, beidellite suspensions at volume fractions above the isotropic-nematic phase separation, trapped in a kinetically arrested gel state, liquefy on the addition of silica nanospheres and proceed to isotropic-nematic phase separation. Using small-angle X-ray scattering (SAXS), we probe the structural changes caused by the addition of the silica nanospheres, and we relate the modification of the phase transition kinetics to the change of the rheological properties. PMID:24758198

  16. The kinetics and mechanism of an aqueous phase isoprene reaction with hydroxy radical

    NASA Astrophysics Data System (ADS)

    Huang, D.; Zhang, X.; Chen, Z. M.; Zhao, Y.; Shen, X. L.

    2011-03-01

    Aqueous phase chemical processes of organic compounds in the atmosphere have received increasing attention, partly due to their potential contribution to the formation of secondary organic aerosol (SOA). Here, we analyzed the aqueous oxidation of isoprene in clouds and its reaction products, including carbonyl compounds and organic acids. We also performed a laboratory simulation to improve our understanding of the kinetics and mechanisms for the products of aqueous isoprene oxidation that are significant precursors of SOA; these included methacrole