Science.gov

Sample records for phase lar large

  1. ICARUS: An Innovative Large LAR Detector for Neutrino Physics

    SciTech Connect

    Vignoli, C.; Barni, D.; Disdier, J. M.; Rampoldi, D.; Passardi, G.

    2006-04-27

    ICARUS is an international project that foresees the installation of very large LAr detectors inside the Gran Sasso underground laboratory in order to be sensitive to rare phenomena of particle physics. The detection technique is based on the collection of electrons produced by particle interactions in LAr by a matrix of thousands of thin wires. At the moment the project foresees the installation of a 600,000-kg vessel (T600). The total amount of LAr can be expanded in a modular way to masses of the order of 106 kg. The T600 houses two identical 300,000-kg Ar sub-cryostats that are aluminum boxes about 20-m long, 4-m high and 4-m wide. Safety requirements for the underground installation have led to a unique design for the vessels to prevent LAr spillages even in the case of inner cryostat failure. Electrons must drift over meters requiring the development of special gas and liquid Ar purification units to provide an extremely high LAr purity (better then 0.1 ppb). The cooling system has been designed to assure a high thermal uniformity in the detector volume (less than 1-K differential). The cryogenic system associated with the final ICARUS configuration is based on three N2 refrigerators, three 30-m3 tanks and pump driven two-phase N2 forced-flow cooling of the various sub-systems. The T600 was successfully tested in Pavia in 2001 and it is now under installation in Gran Sasso for final operation. The future mass expansion strategy is under investigation.

  2. LArGe R&D for active background suppression in Gerda

    NASA Astrophysics Data System (ADS)

    Agostini, M.; Barnabé-Heider, M.; Budjáš, D.; Cattadori, C.; D'Andragora, A.; Gangapshev, A.; Gusev, K.; Heisel, M.; Junker, M.; Klimenko, A.; Schönert, S.; Smolnikov, A.; Zuzel, G.

    2012-07-01

    LArGe is a GERDA low-background test facility to study novel background suppression methods in a low-background environment, for future application in the GERDA experiment. Similar to GERDA, LArGe operates bare germanium detectors submersed into liquid argon (1 m3, 1.4tons), which in addition is instrumented with photomultipliers to detect argon scintillation light. The light is used in anti-coincidence with the germanium detectors to effectively suppress background events that deposit energy in the liquid argon. The background suppression efficiency was studied in combination with a pulse shape discrimination (PSD) technique using a BEGe detector for various sources, which represent characteristic backgrounds to GERDA. Suppression factors of a few times 103 have been achieved. First background data of LArGe with a coaxial HPGe detector (without PSD) yield a background index of the order 10-2 cts/(keV-kg-y), which is at the level of the GERDA phase I design goal. As a consequence of these results, the development of an active liquid argon veto in GERDA is pursued.

  3. LArGe: active background suppression using argon scintillation for the Gerda 0ν β β -experiment

    NASA Astrophysics Data System (ADS)

    Agostini, M.; Barnabé-Heider, M.; Budjáš, D.; Cattadori, C.; Gangapshev, A.; Gusev, K.; Heisel, M.; Junker, M.; Klimenko, A.; Lubashevskiy, A.; Pelczar, K.; Schönert, S.; Smolnikov, A.; Zuzel, G.

    2015-10-01

    LArGe is a Gerda low-background test facility to study novel background suppression methods in a low-background environment, for future application in the Gerda experiment. Similar to Gerda, LArGe operates bare germanium detectors submersed into liquid argon (1 m^3, 1.4 tons), which in addition is instrumented with photomultipliers to detect argon scintillation light. The scintillation signals are used in anti-coincidence with the germanium detectors to effectively suppress background events that deposit energy in the liquid argon. The background suppression efficiency was studied in combination with a pulse shape discrimination (PSD) technique using a BEGe detector for various sources, which represent characteristic backgrounds to Gerda. Suppression factors of a few times 10^3 have been achieved. First background data of LArGe with a coaxial HPGe detector (without PSD) yield a background index of (0.12-4.6)× 10^{-2} cts/(keV kg year) (90 % C.L.), which is at the level of Gerda Phase I. Furthermore, for the first time we monitor the natural ^{42}Ar abundance (parallel to Gerda), and have indication for the 2ν β β -decay in natural germanium. These results show the effectivity of an active liquid argon veto in an ultra-low background environment. As a consequence, the implementation of a liquid argon veto in Gerda Phase II is pursued.

  4. Wire-Cell Tomographic Event Reconstruction for large LArTPCs

    NASA Astrophysics Data System (ADS)

    Qian, Xin; Viren, Brett; Zhang, Chao; Wire-Cell Team

    2016-03-01

    Event reconstruction is one of the most challenging tasks in analyzing the data from current and future large liquid argon time projection chambers (LArTPCs). The performance of the event reconstruction holds the key to many potential future discoveries with the LArTPC technology including i) searching for new CP violation in the leptonic sector, ii) determining the neutrino mass hierarchy, and iii) searching for additional light (sterile) neutrino species. In this talk, we introduce a new reconstruction method: Wire-Cell. The principle of Wire-Cell strictly follows the principle of LArTPC, that is, the same amount of ionization electrons are observed by all the wire-planes. Using both time and charge information, 3D image of the event topologies are firstly obtained. Further reconstruction steps including the clustering, tracking, and particle identifications (PID) are then directly applied to the 3D image. The principle, current status, and future development plan of Wire-Cell will be described. The results of Wire-Cell event reconstruction will be shown with an innovative web-based ``BEE'' 3D event display. This work is supported by U.S. Department of Energy, Office of Science, Office of High Energy Physics and Early Career Research program under Contract Number DE-SC0012704.

  5. Lars Onsager Prize: Topological Defects in Condensed Matter Phases

    NASA Astrophysics Data System (ADS)

    Mineev, Vladimir

    2014-03-01

    Circulation quantization in superfluid 4He and superconductors. General principles of classification of topologically stable defects in ordered media. Superfluid phases of 3He. Topology at different scales of length. Superfluids under rotation. Biaxial nematics. Nonabelian disclinations. Half-quantum vortices: 3He-A, Sr2RuO4, exciton-polariton condensates, FFLO, Super Solid.

  6. The big fat LARS - a LArge Reservoir Simulator for hydrate formation and gas production

    NASA Astrophysics Data System (ADS)

    Beeskow-Strauch, Bettina; Spangenberg, Erik; Schicks, Judith M.; Giese, Ronny; Luzi-Helbing, Manja; Priegnitz, Mike; Klump, Jens; Thaler, Jan; Abendroth, Sven

    2013-04-01

    Simulating natural scenarios on lab scale is a common technique to gain insight into geological processes with moderate effort and expenses. Due to the remote occurrence of gas hydrates, their behavior in sedimentary deposits is largely investigated on experimental set ups in the laboratory. In the framework of the submarine gas hydrate research project (SUGAR) a large reservoir simulator (LARS) with an internal volume of 425 liter has been designed, built and tested. To our knowledge this is presently a word-wide unique set up. Because of its large volume it is suitable for pilot plant scale tests on hydrate behavior in sediments. That includes not only the option of systematic tests on gas hydrate formation in various sedimentary settings but also the possibility to mimic scenarios for the hydrate decomposition and subsequent natural gas extraction. Based on these experimental results various numerical simulations can be realized. Here, we present the design and the experimental set up of LARS. The prerequisites for the simulation of a natural gas hydrate reservoir are porous sediments, methane, water, low temperature and high pressure. The reservoir is supplied by methane-saturated and pre-cooled water. For its preparation an external gas-water mixing stage is available. The methane-loaded water is continuously flushed into LARS as finely dispersed fluid via bottom-and-top-located sparger. The LARS is equipped with a mantle cooling system and can be kept at a chosen set temperature. The temperature distribution is monitored at 14 reasonable locations throughout the reservoir by Pt100 sensors. Pressure needs are realized using syringe pump stands. A tomographic system, consisting of a 375-electrode-configuration is attached to the mantle for the monitoring of hydrate distribution throughout the entire reservoir volume. Two sets of tubular polydimethylsiloxan-membranes are applied to determine gas-water ratio within the reservoir using the effect of permeability

  7. Long-term operation of a double phase LAr LEM Time Projection Chamber with a simplified anode and extraction-grid design

    NASA Astrophysics Data System (ADS)

    Cantini, C.; Epprecht, L.; Gendotti, A.; Horikawa, S.; Murphy, S.; Natterer, G.; Periale, L.; Resnati, F.; Rubbia, A.; Sergiampietri, F.; Viant, T.; Wu, S.

    2014-03-01

    We report on the successful operation of a double phase Liquid Argon Large Electron Multiplier Time Projection Chamber (LAr LEM-TPC) equipped with two dimensional projective anodes with dimensions 10 × 10 cm2, and with a maximum drift length of 21 cm. The anodes were manufactured for the first time from a single multilayer printed circuit board (PCB). Various layouts of the readout views have been tested and optimised. In addition, the ionisation charge was efficiently extracted from the liquid to the gas phase with a single grid instead of two previously. We studied the response and the gain of the detector to cosmic muon tracks. To study long-term stability over several weeks, we continuously operated the chamber at fixed electric field settings. We reproducibly observe that after an initial decrease with a characteristic time of τ ≈ 1.6 days, the observed gain is stable. In 46 days of operation, a total of 14.6 million triggers have been collected at a stable effective gain of G∞ ~ 15 corresponding to a signal-to-noise ratio (S/N)gtrsim60 for minimum ionising tracks. During the full period, eight discharges across the LEM were observed. A maximum effective gain of 90 was also observed, corresponding to a signal-to-noise ratio (S/N)gtrsim400 for minimum ionising tracks, or S/N ≈ 10 for an energy deposition of 15 keV on a single readout channel.

  8. Phase I Study of the Anti-IGF-1R Monoclonal Antibody, Cixutumumab in Combination with Everolimus and Octreotide LAR in Advanced Low to Intermediate Grade Neuroendocrine Tumors

    PubMed Central

    Dasari, Arvind; Phan, Alexandria; Gupta, Sanjay; Rashid, Asif; Yeung, Sai-ChingJim; Hess, Kenneth; Chen, Helen; Tarco, Emily; Chen, Huiqin; Wei, Caimiao; Anh-Do, Kim; Halperin, Daniel; Meric-Bernstam, Funda; Yao, James

    2015-01-01

    Preclinical data suggest multiple roles for the insulin like growth factor receptor 1 (IGF-1R) in neuroendocrine tumors (NET) including mediating resistance to mTOR inhibitors. Everolimus, an oral mTOR inhibitor and octreotide LAR are approved for subgroups of well differentiated NET. The primary objective was to establish the safety and recommended phase II dose (RP2D) of cixutumumab, a monoclonal antibody against IGF-1R with everolimus and octreotide LAR. Patients with well differentiated NET were treated with everolimus 10 mg po daily, octreotide LAR 20 mg IM every 21 days and escalating doses of cixutumumab. An expansion cohort was enrolled at RP2D. Correlative studies included evaluation of mTOR pathway inhibition in paired tumor biopsies and effects of this combination on metabolism per indirect calorimetry. 19 patients with progressive disease, including 9 to the expansion portion were enrolled. 2 patients had dose limiting toxicities of grade 3 mucositis at cixutumumab 15 mg/kg. Long term tolerance at RP2D was problematic, the most common ≥ grade 3 adverse event (AE) being fatigue. One patient with metastatic insulinoma had a confirmed partial response while seventeen had stable disease. Median progression free survival was 43.6 weeks and median overall survival was 25.5 months. Conclusions The RP2D of this combination per predefined study protocol cixutumumab iv 10 mg/kg, octreotide LAR 20 mg IM every 21 days plus everolimus 10 mg po daily is associated with non-DLT toxicities limiting long term tolerance. Although a signal of activity was noted in this study, this will need to be reconciled with limited tolerance of the combination and data from larger studies of anti-IGF-1R monoclonal antibodies in NET that have been disappointing. PMID:25900182

  9. Postcrystallization metasomatism in shergottites: Evidence from the paired meteorites LAR 06319 and LAR 12011

    NASA Astrophysics Data System (ADS)

    Howarth, Geoffrey H.; Liu, Yang; Chen, Yang; Pernet-Fisher, John F.; Taylor, Lawrence A.

    2016-03-01

    Apatite is the major volatile-bearing phase in Martian meteorites, containing structurally bound fluorine, chlorine, and hydroxyl ions. In apatite, F is more compatible than Cl, which in turn is more compatible than OH. During degassing, Cl strongly partitions into the exsolved phase, whereas F remains in the melt. For these reasons, the volatile concentrations within apatite are predictable during magmatic differentiation and degassing. Here, we present compositional data for apatite and merrillite in the paired enriched, olivine-phyric shergottites LAR 12011 and LAR 06319. In addition, we calculate the relative volatile fugacities of the parental melts at the time of apatite formation. The apatites are dominantly OH-rich (calculated by stoichiometry) with variable yet high Cl contents. Although several other studies have found evidence for degassing in the late-stage mineral assemblage of LAR 06319, the apatite evolutionary trends cannot be reconciled with this interpretation. The variable Cl contents and high OH contents measured in apatites are not consistent with fractionation either. Volatile fugacity calculations indicate that water and fluorine activities remain relatively constant, whereas there is a large variation in the chlorine activity. The Martian crust is Cl-rich indicating that changes in Cl contents in the apatites may be related to an external crustal source. We suggest that the high and variable Cl contents and high OH contents of the apatite are the results of postcrystallization interaction with Cl-rich, and possibly water-rich, crustal fluids circulating in the Martian crust.

  10. Lar gibbon (Hylobates lar) great call reveals individual caller identity.

    PubMed

    Terleph, Thomas A; Malaivijitnond, S; Reichard, U H

    2015-07-01

    Gibbons (family Hylobatidae) produce loud, elaborate vocalizations (songs), often in well-coordinated male/female duets. The female's great call, the most conspicuous phrase of the gibbon vocal repertoire, functions primarily to mediate territorial defense. Despite the fact that lar gibbons (Hylobates lar) are the most widely distributed and well researched hylobatid species and produce a rich vocal repertoire, the individual-specificity of their great calls has not previously been quantified. In addition, spectral and temporal features of notes occurring at specific locations within the lar great call have not been described. Here we provide such a description, and test the hypothesis that great calls are statistically discriminable between a large sample of individual callers. We compared recordings of great calls from 14 wild lar females in Khao Yai National Park, Thailand. Our analyses of principal components derived from spectral and temporal measures, as well as spectrograms from the entire great call, indicate that acoustic variation is sufficient to allow identification of individual callers (83.5% discriminability based on principal components, and inter-individual call variation exceeding intra-individual variation in overall spectrogram). These vocalizations potentially allow individual recognition of animals. PMID:25800578

  11. Large phased-array radars

    SciTech Connect

    Brookner, D.E.

    1988-12-15

    Large phased-array radars can play a very important part in arms control. They can be used to determine the number of RVs being deployed, the type of targeting of the RVs (the same or different targets), the shape of the deployed objects, and possibly the weight and yields of the deployed RVs. They can provide this information at night as well as during the day and during rain and cloud covered conditions. The radar can be on the ground, on a ship, in an airplane, or space-borne. Airborne and space-borne radars can provide high resolution map images of the ground for reconnaissance, of anti-ballistic missile (ABM) ground radar installations, missile launch sites, and tactical targets such as trucks and tanks. The large ground based radars can have microwave carrier frequencies or be at HF (high frequency). For a ground-based HF radar the signal is reflected off the ionosphere so as to provide over-the-horizon (OTH) viewing of targets. OTH radars can potentially be used to monitor stealth targets and missile traffic.

  12. Lars, the Oracle

    NASA Astrophysics Data System (ADS)

    Careri, Giorgio

    Lars Onsager was known for his obscure but correct predictions in several fields of science. Some scientific events, particularly in the field of superfluidity, are recollected here by one of his old friends.

  13. Solar neutrino detection in a large volume double-phase liquid argon experiment

    NASA Astrophysics Data System (ADS)

    Franco, D.; Giganti, C.; Agnes, P.; Agostino, L.; Bottino, B.; Canci, N.; Davini, S.; De Cecco, S.; Fan, A.; Fiorillo, G.; Galbiati, C.; Goretti, A. M.; Hungerford, E. V.; Ianni, Al.; Ianni, An.; Jollet, C.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Pagani, L.; Pallavicini, M.; Pantic, E.; Pocar, A.; Razeti, M.; Renshaw, A. L.; Rossi, B.; Rossi, N.; Suvorov, Y.; Testera, G.; Tonazzo, A.; Wang, H.; Zavatarelli, S.

    2016-08-01

    Precision measurements of solar neutrinos emitted by specific nuclear reaction chains in the Sun are of great interest for developing an improved understanding of star formation and evolution. Given the expected neutrino fluxes and known detection reactions, such measurements require detectors capable of collecting neutrino-electron scattering data in exposures on the order of 1 ktonne-yr, with good energy resolution and extremely low background. Two-phase liquid argon time projection chambers (LAr TPCs) are under development for direct Dark Matter WIMP searches, which possess very large sensitive mass, high scintillation light yield, good energy resolution, and good spatial resolution in all three cartesian directions. While enabling Dark Matter searches with sensitivity extending to the ``neutrino floor'' (given by the rate of nuclear recoil events from solar neutrino coherent scattering), such detectors could also enable precision measurements of solar neutrino fluxes using the neutrino-electron elastic scattering events. Modeling results are presented for the cosmogenic and radiogenic backgrounds affecting solar neutrino detection in a 300 tonne (100 tonne fiducial) LAr TPC operating at LNGS depth (3,800 meters of water equivalent). The results show that such a detector could measure the CNO neutrino rate with ~15% precision, and significantly improve the precision of the 7Be and pep neutrino rates compared to the currently available results from the Borexino organic liquid scintillator detector.

  14. Integrated plan for LArTPC neutrino detectors in the US

    SciTech Connect

    Baller, B.; Fleming, B.; /Fermilab

    2009-11-01

    We present an integrated R&D plan aimed at demonstrating the ability to build a very large Liquid Argon Time Projection Chamber (LArTPC), on a scale suitable for use as a Far Detector for the LBNE neutrino oscillation experiment. This plan adopts current LArTPC R&D-related activities and proposes new ones to address questions that go beyond those being answered by the current efforts. We have employed a risk evaluation strategy to identify questions that can be answered (or risks that can be mitigated) through one or more R&D steps. In summary form, the plan consists of the following pre-existing components: (1) The Materials Test Stand program, now in operation at Fermilab, addressing questions pertaining to maintenance of argon purity; (2) Existing electronics test stands at FNAL and BNL; (3) The Liquid Argon Purity Demonstrator (LAPD) now being assembled at Fermilab; (4) The ArgoNeuT prototype LArTPC, now running in the NuMI beam; (5) The MicroBooNE experiment, proposed as a physics experiment that will advance our understanding of the LArTPC technology, now completing its conceptual design phase; (6) A software development effort that is well integrated across present and planned LArTPC detectors. We are proposing to add to these efforts the following: (1) A membrane cryostat mechanical prototype to evaluate and gain expertise with this technology; (2) An installation and integration prototype, to understand issues pertaining to detector assembly, particularly in an underground environment; (3) A {approx} 5% scale electronics systems test to understand system-wide issues as well as individual component reliability. (4) A calibration test stand that would consist of a small TPC to be exposed to a test beam for calibration studies, relevant for evaluation of physics sensitivities. We have developed a timeline and milestones for achieving these goals as discussed in Section 4. The proposed activities necessary for the final design of LAr20 are complete by CD3 in

  15. A Direct Comparison of HI and Lyα Morphologies in Two LARS Galaxies

    NASA Astrophysics Data System (ADS)

    Fitzgibbon, Kathleen; Cannon, John M.; Freeland, Emily; Hayes, Matthew; Östlin, Göran; LARS Team

    2016-01-01

    The Lyman-Alpha Reference Sample (LARS) and its extension (eLARS) represent an exhaustive campaign to reverse-engineer galaxies. The main goal is to understand how Lyα is transported within galaxies: what fraction of it escapes, and what physical properties affect Lyα morphology and radiative transport (e.g. dust and gas content, metallicity, kinematics, properties of the stellar population). Neutral hydrogen emission, which can be used to determine a galaxy's structure and kinematics, was observed using the B and C configurations of the Very Large Array in two galaxies from the sample: LARS02 and LARS09. Images of the HI mass surface density and of the intensity weighted HI velocity field were created at angular scales of ~8 arcseconds. Extended HI gas is detected at high significance up to ˜30 kpc from the optical body of LARS02. LARS09 has a severely disturbed optical morphology; our new HI observations reveal that LARS09 is interacting with the nearby field galaxy SDSS J082353.65+280622.2. In combination with direct imaging of the Lyα morphology from the Hubble Space Telescope, this program has produced the first direct comparison of Lyα and HI morphologies. These observations demonstrate concept for a significant observational campaign that will produce similar comparisons in the remaining 40 LARS+eLARS galaxies.KF was partially supported by a Science Education Award from the Howard Hughes Medical Institute (HHMI) to Macalester College.

  16. Octreotide LAR and tamoxifen versus tamoxifen in phase III randomize early breast cancer trials: NCIC CTG MA.14 and NSABP B-29

    PubMed Central

    Costantino, Joseph P.; Dong, Bin; Margolese, Richard G.; Pritchard, Kathleen I.; Shepherd, Lois E.; Gelmon, Karen A.; Wolmark, Norman; Pollak, Michael N.

    2015-01-01

    NCIC CTG MA.14 and NSABP B-29 trials examined the addition of Octreotide LAR (OCT) to 5 years of tamoxifen (TAM). Gallbladder toxicity led to B-29 discontinuation of OCT, and MA.14 OCT administration shortened to 2 years. Median follow-up was 9.8 years for 667 MA.14 patients and 6.8 years for 893 B-29 patients. The primary endpoint was disease-free survival (DFS), defined as time from randomization to time of breast cancer recurrence; second primary cancer other than squamous or basal cell skin carcinoma, cervical carcinoma in situ, or lobular breast carcinoma in situ; or death. The primary statistical test was a univariable pooled stratified log-rank test; multivariable assessment was with Cox regression. For MA.14, 97 % of patients were ≥50 years; for B-29, 62 %. MA.14 patients were 53 % lymph node negative (LN–) while B-29 were 100 % LN–; 33 % of MA.14 patients received adjuvant chemotherapy, 2 % concurrently, while B-29 had 53 % concurrent chemotherapy. MA.14 patients were 90% hormone receptor positive; B-29, 100 %. MA.14 patients experienced 5-year DFS of 80 % with TAM, 76 % with TAM + OCT; B-29 patients had 5-year DFS of 88 % for both arms. Pooled univariable TAM + OCT to TAM hazard ratio (HR) was 0.99 (95% CI 0.81–1.20; p = 0.69): for MA.14, HR = 0.94 (0.73–1.20; p = 0.50); for B-29, HR = 1.09 (0.80–1.50; p = 0.59). Multivariable pooled HR = 0.98 (0.81–1.20; p = 0.84). Older patients (p < 0.001), with higher T stage (p < 0.001), and LN + (p < 0.001) had shorter DFS. Addition of OCT to TAM did not significantly improve DFS; gallbladder toxicity shortened the additional administration of OCT. This does not negate targeting the insulin–IGF-I receptor family with less toxic therapeutics. PMID:26276354

  17. Octreotide LAR and tamoxifen versus tamoxifen in phase III randomize early breast cancer trials: NCIC CTG MA.14 and NSABP B-29.

    PubMed

    Chapman, Judith-Anne W; Costantino, Joseph P; Dong, Bin; Margolese, Richard G; Pritchard, Kathleen I; Shepherd, Lois E; Gelmon, Karen A; Wolmark, Norman; Pollak, Michael N

    2015-09-01

    NCIC CTG MA.14 and NSABP B-29 trials examined the addition of Octreotide LAR (OCT) to 5 years of tamoxifen (TAM). Gallbladder toxicity led to B-29 discontinuation of OCT, and MA.14 OCT administration shortened to 2 years. Median follow-up was 9.8 years for 667 MA.14 patients and 6.8 years for 893 B-29 patients. The primary endpoint was disease-free survival (DFS), defined as time from randomization to time of breast cancer recurrence; second primary cancer other than squamous or basal cell skin carcinoma, cervical carcinoma in situ, or lobular breast carcinoma in situ; or death. The primary statistical test was a univariable pooled stratified log-rank test; multivariable assessment was with Cox regression. For MA.14, 97% of patients were ≥50 years; for B-29, 62%. MA.14 patients were 53% lymph node negative (LN-) while B-29 were 100% LN-; 33% of MA.14 patients received adjuvant chemotherapy, 2% concurrently, while B-29 had 53% concurrent chemotherapy. MA.14 patients were 90% hormone receptor positive; B-29, 100%. MA.14 patients experienced 5-year DFS of 80% with TAM, 76% with TAM + OCT; B-29 patients had 5-year DFS of 88% for both arms. Pooled univariable TAM + OCT to TAM hazard ratio (HR) was 0.99 (95% CI 0.81-1.20; p = 0.69): for MA.14, HR = 0.94 (0.73-1.20; p = 0.50); for B-29, HR = 1.09 (0.80-1.50; p = 0.59). Multivariable pooled HR = 0.98 (0.81-1.20; p = 0.84). Older patients (p < 0.001), with higher T stage (p < 0.001), and LN + (p < 0.001) had shorter DFS. Addition of OCT to TAM did not significantly improve DFS; gallbladder toxicity shortened the additional administration of OCT. This does not negate targeting the insulin-IGF-I receptor family with less toxic therapeutics. PMID:26276354

  18. Lars Onsager Prize Talk: 1+1d conformal field theories as natural languages for asymptotically large-scale quantum computing

    NASA Astrophysics Data System (ADS)

    Friedan, Daniel

    2010-03-01

    An abstract argument is offered that the ideal physical systems for asymptotically large-scale quantum computers are near-critical quantum circuits, critical in the bulk, whose bulk universality classes are described by 1+1d conformal field theories. One in particular -- the Monster conformal field theory -- is especially ideal, because all of its bulk couplings are irrelevant.

  19. Research and development for a free-running readout system for the ATLAS LAr Calorimeters at the high luminosity LHC

    NASA Astrophysics Data System (ADS)

    Hils, Maximilian

    2016-07-01

    The ATLAS Liquid Argon (LAr) Calorimeters were designed and built to measure electromagnetic and hadronic energy in proton-proton collisions produced at the Large Hadron Collider (LHC) at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to 1034 cm-2 s-1. The High Luminosity LHC (HL-LHC) programme is now developed for up to 5-7 times the design luminosity, with the goal of accumulating an integrated luminosity of 3000 fb-1. In the HL-LHC phase, the increased radiation levels and an improved ATLAS trigger system require a replacement of the Front-end (FE) and Back-end (BE) electronics of the LAr Calorimeters. Results from research and development of individual components and their radiation qualification as well as the overall system design will be presented.

  20. Towards large-Chern-number topological phases by periodic quenching

    NASA Astrophysics Data System (ADS)

    Xiong, Tian-Shi; Gong, Jiangbin; An, Jun-Hong

    2016-05-01

    Topological phases with large Chern numbers have important implications. They were previously predicted to exist by considering fabricated long-range interactions or multilayered materials. Stimulated by recent wide interests in Floquet topological phases, here we propose a scheme to engineer large-Chern-number phases with ease by periodic quenching. Using a two-band system as an example, we theoretically show how a variety of topological phases with widely tunable Chern numbers can be generated by periodic quenching between two simple Hamiltonians that otherwise give low Chern numbers. The obtained large Chern numbers are explained through the emergence of multiple Dirac cones in the Floquet spectra. The transition lines between different topological phases in the two-band model are also explicitly found, thus establishing a class of easily solvable but very rich systems useful for further understandings and applications of topological phases in periodically driven systems.

  1. Evaluation of the Effects of Pasireotide LAR Administration on Lymphocele Prevention after Axillary Node Dissection for Breast Cancer: Results of a Randomized Non-Comparative Phase 2 Study

    PubMed Central

    Chéreau, Elisabeth; Uzan, Catherine; Boutmy-Deslandes, Emmanuelle; Zohar, Sarah; Bézu, Corinne; Mazouni, Chafika; Garbay, Jean-Rémi; Daraï, Emile; Rouzier, Roman

    2016-01-01

    Objective The aim of this study was to assess the efficacy (response rate centered on 80%) of a somatostatin analog with high affinity for 4 somatostatin receptors in reducing the postoperative incidence of symptomatic lymphocele formation following total mastectomy with axillary lymph node dissection. Setting This prospective, double-blind, randomised, placebo-controlled, phase 2 trial was conducted in two secondary care centres. Participants All female patients for whom mastectomy and axillary lymph node dissection were indicated were eligible for the study, including patients who had received neo-adjuvant chemotherapy. Main exclusion criteria were related to diabetes, cardiac insufficiency, disorder of cardiac conduction or hepatic failure. Interventions Patients were randomised to receive one injection of either prolonged-release pasireotide 60 mg or placebo (physiological serum), which were administered intramuscularly 7 to 10 days before the scheduled surgery. The study was conducted in a double-blind manner. Primary and Secondary Outcome Measures The primary outcome measure was the percentage of patients who did not develop post-operative axillary symptomatic lymphoceles during the 2 postoperative months. Secondary endpoints were the total quantity of lymph drained, duration and daily volume of drainage and aspirated volumes of lymph. Results Ninety-one patients were randomised. Ninety patients were evaluable: 42 patients received pasireotide, and 48 patients received placebo. The mean estimated response rate were 62.4% (95% Credibility Interval [CrI]: 48.6%-75.3%) in the treatment group and 50.2% (95% CrI: 37.6%-62.8%) in the placebo group. Overall safety was comparable across groups, and one serious adverse event occurred. In the treatment group, one patient with known insulin-depe*ndent diabetes required hospitalization for hyperglycaemia. Conclusions With this phase 2 preliminary study, even if our results indicate a trend towards a reduction in

  2. The LArIAT Experiment at Fermilab

    NASA Astrophysics Data System (ADS)

    Nutini, Irene; LArIAT Collaboration

    2016-02-01

    The LArIAT experiment at Fermilab is part of the International Neutrino program recently approved in the US. LArIAT aims to measure the main features of charged particles interactions in argon in the energy range (0.2 - 2.0 GeV) corresponding to the energy spectrum of the same particles when produced in a neutrino-argon interaction (neutrino energies of few GeV) typical of the short- and long-baseline neutrino beams of the Neutrino Program. Data collected from the 1 st Run are being analyzed for both Physics studies and a technical characterization of the scintillation light collection system. Two analysis topics are reported: the method developed for charged pion cross section measurement, based on the specific features of the LArTPC, and the development and test of the LArIAT custom-designed cold front-end electronics for SiPM devices to collect LAr scintillation light.

  3. Spatial resolution of gas hydrate and permeability changes from ERT data in LARS simulating the Mallik gas hydrate production test

    NASA Astrophysics Data System (ADS)

    Priegnitz, Mike; Thaler, Jan; Spangenberg, Erik; Schicks, Judith M.; Abendroth, Sven

    2014-05-01

    The German gas hydrate project SUGAR studies innovative methods and approaches to be applied in the production of methane from hydrate-bearing reservoirs. To enable laboratory studies in pilot scale, a large reservoir simulator (LARS) was realized allowing for the formation and dissociation of gas hydrates under simulated in-situ conditions. LARS is equipped with a series of sensors. This includes a cylindrical electrical resistance tomography (ERT) array composed of 25 electrode rings featuring 15 electrodes each. The high-resolution ERT array is used to monitor the spatial distribution of the electrical resistivity during hydrate formation and dissociation experiments over time. As the present phases of poorly conducting sediment, well conducting pore fluid, non-conducting hydrates, and isolating free gas cover a wide range of electrical properties, ERT measurements enable us to monitor the spatial distribution of these phases during the experiments. In order to investigate the hydrate dissociation and the resulting fluid flow, we simulated a hydrate production test in LARS that was based on the Mallik gas hydrate production test (see abstract Heeschen et al., this volume). At first, a hydrate phase was produced from methane saturated saline water. During the two months of gas hydrate production we measured the electrical properties within the sediment sample every four hours. These data were used to establish a routine estimating both the local degrees of hydrate saturation and the resulting local permeabilities in the sediment's pore space from the measured resistivity data. The final gas hydrate saturation filled 89.5% of the total pore space. During hydrate dissociation, ERT data do not allow for a quantitative determination of free gas and remaining gas hydrates since both phases are electrically isolating. However, changes are resolved in the spatial distribution of the conducting liquid and the isolating phase with gas being the only mobile isolating phase

  4. Liquor Activity Reduction (LAR) Programme - 12397

    SciTech Connect

    Pether, Colin; Carrol, Phil; Birkett, Eddie; Kibble, Matthew

    2012-07-01

    Waste material from the reprocessing of irradiated fuel has been stored under water for several decades leading to the water becoming highly radioactive. As a critical enabler to the decommissioning strategy for the Sellafield site, the Liquor Activity Reduction (LAR) programme has been established to provide a processing route for this highly radioactive liquor. This paper reviews the progress that has been made since the start of routine LAR transfer cycles (July 2010) and follows on from the earlier paper presented at WM2011. The paper focuses on the learning from the first full year of routine LAR transfer cycles and the application of this learning to the wider strategies for the treatment of further radioactive liquid effluents on the Sellafield site. During this period over 100,000 Curies of radioactivity has been safely removed and treated. The past year has witnessed the very successful introduction of the LAR programme. This has lead to hazard reduction at MSSS and demonstration that the SIXEP facility can meet the significantly increased challenge that the LAR programme represents. Part of the success has been the ability to predict and deliver a realistic production schedule with the availability of the MSSS, EDT and SIXEP facilities being central to this. Most importantly, the LAR programme has been successful in bringing together key stakeholders to deliver this work while integrating with the existing, day to day, demands of the Sellafield site. (authors)

  5. Large conditional single-photon cross-phase modulation

    NASA Astrophysics Data System (ADS)

    Beck, Kristin; Hosseini, Mahdi; Duan, Yiheng; Vuletic, Vladan

    2016-05-01

    Deterministic optical quantum logic requires a nonlinear quantum process that alters the phase of a quantum optical state by π through interaction with only one photon. Here, we demonstrate a large conditional cross-phase modulation between a signal field, stored inside an atomic quantum memory, and a control photon that traverses a high-finesse optical cavity containing the atomic memory. This approach avoids fundamental limitations associated with multimode effects for traveling optical photons. We measure a conditional cross-phase shift of up to π / 3 between the retrieved signal and control photons, and confirm deterministic entanglement between the signal and control modes by extracting a positive concurrence. With a moderate improvement in cavity finesse, our system can reach a coherent phase shift of p at low loss, enabling deterministic and universal photonic quantum logic. Preprint: arXiv:1512.02166 [quant-ph

  6. Large conditional single-photon cross-phase modulation.

    PubMed

    Beck, Kristin M; Hosseini, Mahdi; Duan, Yiheng; Vuletić, Vladan

    2016-08-30

    Deterministic optical quantum logic requires a nonlinear quantum process that alters the phase of a quantum optical state by π through interaction with only one photon. Here, we demonstrate a large conditional cross-phase modulation between a signal field, stored inside an atomic quantum memory, and a control photon that traverses a high-finesse optical cavity containing the atomic memory. This approach avoids fundamental limitations associated with multimode effects for traveling optical photons. We measure a conditional cross-phase shift of [Formula: see text] (and up to [Formula: see text] by postselection on photons that remain in the system longer than average) between the retrieved signal and control photons, and confirm deterministic entanglement between the signal and control modes by extracting a positive concurrence. By upgrading to a state-of-the-art cavity, our system can reach a coherent phase shift of π at low loss, enabling deterministic and universal photonic quantum logic. PMID:27519798

  7. Large Phased Array Radar Using Networked Small Parabolic Reflectors

    NASA Technical Reports Server (NTRS)

    Amoozegar, Farid

    2006-01-01

    Multifunction phased array systems with radar, telecom, and imaging applications have already been established for flat plate phased arrays of dipoles, or waveguides. In this paper the design trades and candidate options for combining the radar and telecom functions of the Deep Space Network (DSN) into a single large transmit array of small parabolic reflectors will be discussed. In particular the effect of combing the radar and telecom functions on the sizes of individual antenna apertures and the corresponding spacing between the antenna elements of the array will be analyzed. A heterogeneous architecture for the DSN large transmit array is proposed to meet the radar and telecom requirements while considering the budget, scheduling, and strategic planning constrains.

  8. Large Area Crop Inventory Experiment (LACIE). Phase 2 evaluation report

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Documentation of the activities of the Large Area Crop Inventory Experiment during the 1976 Northern Hemisphere crop year is presented. A brief overview of the experiment is included as well as phase two area, yield, and production estimates for the United States Great Plains, Canada, and the Union of Soviet Socialist Republics spring winter wheat regions. The accuracies of these estimates are compared with independent government estimates. Accuracy assessment of the United States Great Plains yardstick region based on a through blind sight analysis is given, and reasons for variations in estimating performance are discussed. Other phase two technical activities including operations, exploratory analysis, reporting, methods of assessment, phase three and advanced system design, technical issues, and developmental activities are also included.

  9. Nonlocal nonlinear refraction in Hibiscus sabdariffa with large phase shifts.

    PubMed

    Ramírez-Martínez, D; Alvarado-Méndez, E; Trejo-Durán, M; Vázquez-Guevara, M A

    2014-10-20

    In this work we present a study of nonlinear optical properties in organic materials (hibiscus sabdariffa). Our results demonstrate that the medium exhibits a highly nonlocal nonlinear response. We show preliminary numerical results of the transmittance as nonlocal response by considering, simultaneously, the nonlinear absorption and refraction in media. Numerical results are accord to measurement obtained by Z- scan technique where we observe large phase shifts. We also analyze the far field diffraction ring patterns of the sample. PMID:25401548

  10. Large resistivity modulation in mixed-phase metallic systems

    NASA Astrophysics Data System (ADS)

    Lee, Yeonbae; Liu, Z. Q.; Heron, J. T.; Clarkson, J. D.; Hong, J.; Ko, C.; Biegalski, M. D.; Aschauer, U.; Hsu, S. L.; Nowakowski, M. E.; Wu, J.; Christen, H. M.; Salahuddin, S.; Bokor, J. B.; Spaldin, N. A.; Schlom, D. G.; Ramesh, R.

    2015-01-01

    In numerous systems, giant physical responses have been discovered when two phases coexist; for example, near a phase transition. An intermetallic FeRh system undergoes a first-order antiferromagnetic to ferromagnetic transition above room temperature and shows two-phase coexistence near the transition. Here we have investigated the effect of an electric field to FeRh/PMN-PT heterostructures and report 8% change in the electrical resistivity of FeRh films. Such a ‘giant’ electroresistance (GER) response is striking in metallic systems, in which external electric fields are screened, and thus only weakly influence the carrier concentrations and mobilities. We show that our FeRh films comprise coexisting ferromagnetic and antiferromagnetic phases with different resistivities and the origin of the GER effect is the strain-mediated change in their relative proportions. The observed behaviour is reminiscent of colossal magnetoresistance in perovskite manganites and illustrates the role of mixed-phase coexistence in achieving large changes in physical properties with low-energy external perturbation.

  11. Large resistivity modulation in mixed-phase metallic systems.

    PubMed

    Lee, Yeonbae; Liu, Z Q; Heron, J T; Clarkson, J D; Hong, J; Ko, C; Biegalski, M D; Aschauer, U; Hsu, S L; Nowakowski, M E; Wu, J; Christen, H M; Salahuddin, S; Bokor, J B; Spaldin, N A; Schlom, D G; Ramesh, R

    2015-01-01

    In numerous systems, giant physical responses have been discovered when two phases coexist; for example, near a phase transition. An intermetallic FeRh system undergoes a first-order antiferromagnetic to ferromagnetic transition above room temperature and shows two-phase coexistence near the transition. Here we have investigated the effect of an electric field to FeRh/PMN-PT heterostructures and report 8% change in the electrical resistivity of FeRh films. Such a 'giant' electroresistance (GER) response is striking in metallic systems, in which external electric fields are screened, and thus only weakly influence the carrier concentrations and mobilities. We show that our FeRh films comprise coexisting ferromagnetic and antiferromagnetic phases with different resistivities and the origin of the GER effect is the strain-mediated change in their relative proportions. The observed behaviour is reminiscent of colossal magnetoresistance in perovskite manganites and illustrates the role of mixed-phase coexistence in achieving large changes in physical properties with low-energy external perturbation. PMID:25564764

  12. Spin liquid phases of large spin Mott insulating ultracold atoms

    NASA Astrophysics Data System (ADS)

    Rutkowski, Todd C.; Lawler, Michael J.

    2015-03-01

    Understanding exotic forms of magnetism, primarily those driven by large spin fluctuations such as the quantum spin liquid state, is a major goal of condensed matter physics. But, the relatively small number of viable candidate materials poses a difficulty. We believe this problem can be solved by Mott insulating ultracold atoms with large spin moments that interact via whole-atom exchange. The large spin fluctuations of this exchange could stabilize exotic physics similar to condensed matter systems, all in an extremely tunable environment. We have approached the problem by performing a mean field theory for spin-f bosons in an optical lattice which is exact in the large-f limit. This setting is similar to that of SU(N) magnetism proposed for alkali-earth atoms but without the SU(N) symmetry. We find that states with long-range order, such as the spin nematic phase of f = 1 Na atoms, become highly entangled spin-liquid-like states for f = 3 Cr atoms. This is evidence that the magnetic phase diagram for Mott insulating atoms at larger spins generically contains exotic forms of magnetism.

  13. Phase retrieval in situ measurement for large aperture parabolic mirror

    NASA Astrophysics Data System (ADS)

    Ding, Lingyan; Wu, Yulie; Li, Shengyi; Liao, Yang; Shu, Yong

    2010-10-01

    Phase retrieval is a promising method for in-situ metrology and has been applied to spherical mirror surface metrology successfully. To meet the requirement of in-situ measurement in manufacturing large aperture parabolic mirror, a new method using phase retrieval technology is developed. In this method, an approximately parallel beam is used to illuminate the large parabolic mirror. The beam is produced by a point light source far away from the tested mirror. Then, intensity of diffraction patterns near the focus is measured by CCD. The experiment of testing a parabolic mirror with aperture 400mm and radius of curvature at vertex 2789.7mm is described. And some advices of improving the setup are presented. Errors brought by the approximately parallel beam are compensated by an algorithm derived from GS iterative algorithm. Phase retrieval result is consistent with that measured by interferometer sub-aperture stitching in error distribution, PV value and RMS value. The experiment shows that this method features simple optical path, good anti-vibration ability and acceptable accuracy.

  14. The liquid annular reactor system (LARS) propulsion

    SciTech Connect

    Maise, G.; Lazareth, O.W.; Horn, F.; Powell, J.R.; Ludewig, H. ); Lenard, R.X. )

    1991-01-05

    A new concept for very high specific impulse ({gt}2000 seconds) direct nuclear propulsion is described. The concept, termed LARS (Liquid Annular Reactor System) uses liquid nuclear fuel elements to heat hydrogen propellant to very high temperatures ({similar to}6000 K). Operating pressure is moderate ({similar to}10 atm), with the result that the outlet hydrogen is virtually 100% dissociated to monatomic H. The molten fuel is contained in a solid container of its own material, which is rotated to stabilize the liquid layer by centripetal force. LARS reactor designs are described, together with neutronic and thermal-hydraulic analyses. Power levels are on the order of 200 megawatts. Typically, LARS designs use 7 rotating fuel elements, are beryllium moderated and have critical radii of {similar to}100 cm (core L/D{approx}1.5).

  15. Polar Phase of One-dimensional Bosons with Large Spin

    SciTech Connect

    Tsvelik, A.M.; Shlyapnikov, G.

    2011-06-20

    Spinor ultracold gases in one dimension (1D) represent an interesting example of strongly correlated quantum fluids. They have a rich phase diagram and exhibit a variety of quantum phase transitions. We consider a 1D spinor gas of bosons with a large spin S. A particular example is the gas of chromium atoms (S = 3), where the dipolar collisions efficiently change the magnetization and make the system sensitive to the linear Zeeman effect. We argue that in 1D the most interesting effects come from the pairing interaction. If this interaction is negative, it gives rise to a (quasi)condensate of singlet bosonic pairs with an algebraic order at zero temperature, and for (2S+1) >> 1 the saddle point approximation leads to physically transparent results. Since in 1D one needs a finite energy to destroy a pair, the spectrum of spin excitations has a gap. Hence, in the absence of a magnetic field, there is only one gapless mode corresponding to phase fluctuations of the pair quasicondensate. Once the magnetic field exceeds the gap, another condensate emerges, namely the quasicondensate of unpaired bosons with spins aligned along the magnetic field. The spectrum then contains two gapless modes corresponding to the singlet-paired and spin-aligned unpaired Bose condensed particles, respectively. At T = 0, the corresponding phase transition is of the commensurate-incommensurate type.

  16. Large space telescope, phase A. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Phase A study of the Large Space Telescope (LST) is reported. The study defines an LST concept based on the broad mission guidelines provided by the Office of Space Science (OSS), the scientific requirements developed by OSS with the scientific community, and an understanding of long range NASA planning current at the time the study was performed. The LST is an unmanned astronomical observatory facility, consisting of an optical telescope assembly (OTA), scientific instrument package (SIP), and a support systems module (SSM). The report consists of five volumes. The report describes the constraints and trade off analyses that were performed to arrive at a reference design for each system and for the overall LST configuration. A low cost design approach was followed in the Phase A study. This resulted in the use of standard spacecraft hardware, the provision for maintenance at the black box level, growth potential in systems designs, and the sharing of shuttle maintenance flights with other payloads.

  17. Large resistivity modulation in mixed-phase metallic systems

    NASA Astrophysics Data System (ADS)

    Lee, Yeonbae; Liu, Zhiqi; Heron, John; Clarkson, James; Hong, Jeongmin; Ko, Changhyun; Biegalski, Michael; Aschauer, Ulrich; Hsu, Shang-Lin; Nowakowski, Mark; Wu, Junqiao; Christen, Hans; Salahuddin, Sayeef; Bokor, Jeffrey; Spaldin, Nicola; Schlom, Darrell; Ramesh, Ramamoorthy

    2015-03-01

    We have investigated the effect of an electric field to FeRh/PMN-PT heterostructures and report 8% change in the electrical resistivity of FeRh films. Such a ``giant'' electroresistance (GER) response is striking in metallic systems, in which external electric fields are screened and thus only weakly influence the carrier concentrations and mobilities. We show that our FeRh films comprise coexisting ferromagnetic and antiferromagnetic phases with different resistivities, and the origin of the GER effect is the strain-mediated change in their relative proportions. The observed behavior is reminiscent of colossal magnetoresistance in perovskite manganites, and illustrates the role of mixed-phase coexistence in achieving large changes in physical properties with low-energy external perturbation.

  18. Large N phase transitions in massive N = 2 gauge theories

    SciTech Connect

    Russo, J. G.

    2014-07-23

    Using exact results obtained from localization on S{sup 4}, we explore the large N limit of N = 2 super Yang-Mills theories with massive matter multiplets. In this talk we discuss two cases: N = 2* theory, describing a massive hypermultiplet in the adjoint representation, and super QCD with massive quarks. When the radius of the four-sphere is sent to infinity these theories are described by solvable matrix models, which exhibit a number of interesting phenomena including quantum phase transitions at finite 't Hooft coupling.

  19. Peology and Geochemistry of New Paired Martian Meteorites 12095 and LAR 12240

    NASA Technical Reports Server (NTRS)

    Funk, R. C.; Brandon, A. D.; Peslier, A.

    2015-01-01

    The meteorites LAR 12095 and LAR 12240 are believed to be paired Martian meteorites and were discovered during the Antarctic Search for Meteorites (ANSMET) 2012-2013 Season at Larkman Nunatak. The purpose of this study is to characterize these olivine-phyric shergottites by analyzing all mineral phases for major, minor and trace elements and examining their textural relationships. The goal is to constrain their crystallization history and place these shergottites among other Martian meteorites in order to better understand Martian geological history.

  20. Large-Aperture Membrane Active Phased-Array Antennas

    NASA Technical Reports Server (NTRS)

    Karasik, Boris; McGrath, William; Leduc, Henry

    2009-01-01

    Large-aperture phased-array microwave antennas supported by membranes are being developed for use in spaceborne interferometric synthetic aperture radar systems. There may also be terrestrial uses for such antennas supported on stationary membranes, large balloons, and blimps. These antennas are expected to have areal mass densities of about 2 kg/sq m, satisfying a need for lightweight alternatives to conventional rigid phased-array antennas, which have typical areal mass densities between 8 and 15 kg/sq m. The differences in areal mass densities translate to substantial differences in total mass in contemplated applications involving aperture areas as large as 400 sq m. A membrane phased-array antenna includes patch antenna elements in a repeating pattern. All previously reported membrane antennas were passive antennas; this is the first active membrane antenna that includes transmitting/receiving (T/R) electronic circuits as integral parts. Other integral parts of the antenna include a network of radio-frequency (RF) feed lines (more specifically, a corporate feed network) and of bias and control lines, all in the form of flexible copper strip conductors on flexible polymeric membranes. Each unit cell of a prototype antenna (see Figure 1) contains a patch antenna element and a compact T/R module that is compatible with flexible membrane circuitry. There are two membrane layers separated by a 12.7-mm air gap. Each membrane layer is made from a commercially available flexible circuit material that, as supplied, comprises a 127-micron-thick polyimide dielectric layer clad on both sides with 17.5-micron-thick copper layers. The copper layers are patterned into RF, bias, and control conductors. The T/R module is located on the back side of the ground plane and is RF-coupled to the patch element via a slot. The T/R module is a hybrid multilayer module assembled and packaged independently and attached to the membrane array. At the time of reporting the information for

  1. eLARS - extending the Lyman Alpha Reference Sample

    NASA Astrophysics Data System (ADS)

    Oestlin, Goeran

    2013-10-01

    Despite its pivotal importance in high-z astrophysics, Lyman alpha {LyA} imaging is a relatively unexplored territory, due to its reliance on HST for far UV imaging. Our team has pioneered systematic LyA imaging in the local universe and developed techniques for producing photometrically accurate images using HST. We recently finished LARS, the first systematic LyA imaging study of 14 UV+H-alpha selected starbursts in the local universe. We found further evidence for LyA variation on physical scales from 30 pc to several kpc, often in a manner uncorrelated with the UV continuum, H-alpha or the galaxy in general. Specifically, we find that when LyA is bright and when a lot of LyA manages to escape, it is always found in the form of a large scale halo. This is, in all such cases, more extended than the UV or H-alpha emission, but rarely symmetric.While these results are fascinating, LARS consists of extreme starbursts that contribute only a small fraction of the total UV and star-formation density at low and intermediate {z 2} redshifts. Given the importance of the LyA line for finding galaxies and for galaxy evolution studies it is imperative to now generalize the investigation and produce a fully representative quantitative framework. We here propose to image a sample of 28 local galaxies, dominated by more disk like objects {c.f. the irregular objects of LARS}, and the kind of objects than dominate the local FUV luminosity function. Specifically, we will investigate the effects of geometry and galaxy orientation of the emergent LyA emission.

  2. Large area nuclear particle detectors using ET materials, phase 2

    NASA Technical Reports Server (NTRS)

    Wrigley, Charles Y.; Storti, George M.; Walter, Lee; Mathews, Scott

    1990-01-01

    This report presents work done under a Phase 2 SBIR contract for demonstrating large area detector planes utilizing Quantex electron trapping materials as a film medium for storing high-energy nuclide impingement information. The detector planes utilize energy dissipated by passage of the high-energy nuclides to produce localized populations of electrons stored in traps. Readout of the localized trapped electron populations is effected by scanning the ET plane with near-infrared, which frees the trapped electrons and results in optical emission at visible wavelengths. The effort involved both optimizing fabrication technology for the detector planes and developing a readout system capable of high spatial resolution for displaying the recorded nuclide passage tracks.

  3. Nickel-pincer cofactor biosynthesis involves LarB-catalyzed pyridinium carboxylation and LarE-dependent sacrificial sulfur insertion.

    PubMed

    Desguin, Benoît; Soumillion, Patrice; Hols, Pascal; Hausinger, Robert P

    2016-05-17

    The lactate racemase enzyme (LarA) of Lactobacillus plantarum harbors a (SCS)Ni(II) pincer complex derived from nicotinic acid. Synthesis of the enzyme-bound cofactor requires LarB, LarC, and LarE, which are widely distributed in microorganisms. The functions of the accessory proteins are unknown, but the LarB C terminus resembles aminoimidazole ribonucleotide carboxylase/mutase, LarC binds Ni and could act in Ni delivery or storage, and LarE is a putative ATP-using enzyme of the pyrophosphatase-loop superfamily. Here, we show that LarB carboxylates the pyridinium ring of nicotinic acid adenine dinucleotide (NaAD) and cleaves the phosphoanhydride bond to release AMP. The resulting biscarboxylic acid intermediate is transformed into a bisthiocarboxylic acid species by two single-turnover reactions in which sacrificial desulfurization of LarE converts its conserved Cys176 into dehydroalanine. Our results identify a previously unidentified metabolic pathway from NaAD using unprecedented carboxylase and sulfur transferase reactions to form the organic component of the (SCS)Ni(II) pincer cofactor of LarA. In species where larA is absent, this pathway could be used to generate a pincer complex in other enzymes. PMID:27114550

  4. Muon Charge Sign Determination in LArIAT

    NASA Astrophysics Data System (ADS)

    Soubasis, Brandon; LArIAT Collaboration

    2016-03-01

    LArTPC In A Test beam experiment (LArIAT) at the Fermilab aims to calibrate and characterize liquid argon time projection chambers with a beam of charges particles. Liquid Argon Time Projection Chamber (LArTPC) are ideal neutrino detectors which has full 3D-imaging and particle Identification (PID) capability. Processes for which the μ undergoes capture vs. decay in LArIAT TPC for sign-determination (without magnetic field) is one area of studies we are currently interested in. Systematic study of the processes following μ- capture in argon have never been performed and LArTPC sign-determination capability has never been explored. Statistical analysis on topological criteria can be used to determine the sign of a particle's charge (without magnetic field). LArIAT test beam with selectable polarity will provide data for direct measurement of the sign separation efficiency (and purity) for muons.

  5. LAr calorimeter for SCC with a common vacuum bulkhead---a concept to improve hermeticity

    SciTech Connect

    Pope, W.L. ); Watt, R.D. )

    1989-11-01

    A new concept for a Barrel/Endcap LAr Calorimeter (LAC) is described in which the Barrel and Endcaps are in separate vacuum enclosures but share a common vacuum bulkhead (CVB). We explore 2 possible bulkhead construction types; welded plate sandwich panels, and brazed sandwich panels in which the core is an isotropic cellular solid--foamed aluminum. Gas lines and electric cables from he innermost Drift Chamber pass through radial holes in the core of the sandwich bulkhead. The CVB concept offers the potential to obtain a more hermetic calorimeter with significantly reduced dead material and/or space in the interface region common to conventional design LAr detectors for the SSC with Endcap features. To utilize a common additional steps to remove the Drift Chamber, a large increase in Endcap standby heat leak, and perhaps, new cryogenic safety issues. We find that significant amount of dead mass can be removed from critical regions of the vacuum shells when compared to a promising SSC LAC reference design. It is also shown that the increased standby heat leak of this concept can be easily removed by existing cooling capacity in another large LAr calorimeter. It is further shown that shut-downs need not be appreciably longer. Finally, it is argued that cryogen spill hazards can be avoided if the Endcap's LAr is removed during Drift chamber maintenance shutdowns, and that cryogenic safety is not compromised.

  6. Dark Sector Searches in LArTPC Experiments

    NASA Astrophysics Data System (ADS)

    Himwich, Elizabeth; MicroBooNE Collaboration

    2015-04-01

    Liquid Argon Time Projection Chamber (LArTPC) experiments, which allow for excellent event characterization and topological visualization, are sensitive to the distinct signatures of theorized low-energy dark sector phenomena. With the unique technology of LArTPC experiments, it is possible to perform a quasi-model independent dark sector search that can encompass a number of models. This talk will discuss the dark sector search in LArTPC experiments as well as the sensitivity of the MicroBooNE and Lar1-ND experiments to dark sector signatures predicted by leptophobic models, which has been evaluated based on simulated signal and background event rates.

  7. Mechanical Resonance Displaying Changes in Phase to Large Audiences.

    ERIC Educational Resources Information Center

    Dorner, R.; And Others

    1995-01-01

    Describes a lecture demonstration apparatus for displaying free and forced oscillations of a mechanical system to a large class. Discusses the Blinking Diode Display and the Standing Wave description. Contains 20 references. (JRH)

  8. ATLAS LAr calorimeter performance and LHC Run-2 commissioning

    NASA Astrophysics Data System (ADS)

    Spettel, Fabian

    2016-07-01

    The ATLAS detector was built to study proton-proton collisions produced by the Large Hadron Collider (LHC) at a center of mass energy of up to 14 TeV. The Liquid Argon (LAr) calorimeters are used for all electromagnetic calorimetry as well as the hadronic calorimetry in the endcap and forward regions. They have shown excellent performance during the first LHC data taking campaign, from 2010 to 2012, so-called Run 1, at a peak luminosity of 8 ×1033cm-2s-1. During the next run, peak luminosities of 1.5 ×1034cm-2s-1 and even higher are expected at a 25 ns bunch spacing. Such a high collision rate may have an impact on the quality of the energy reconstruction which is attempted to be maintained at a high level using a calibration procedure described in this contribution. It also poses major challenges to the first level of the trigger system which is constrained to a maximal rate of 100 kHz. For Run-3, scheduled to start in 2019, instantaneous luminosity as high as 3 ×1034cm-2s-1 are foreseen imposing an upgrade of the LAr trigger system to maintain its performance. A demonstrator containing prototypes of the upgraded trigger electronic architecture has been installed on one of the barrel electromagnetic calorimeter readout front end crates to test it during the Run-2 campaign. The new architecture and its benefits for data taking will be discussed below as well as the results from first beam splash events.

  9. Proximity nanovalve with large phase-tunable thermal conductance

    SciTech Connect

    Strambini, E. Giazotto, F.; Bergeret, F. S.

    2014-08-25

    We propose a phase-controlled heat-flux quantum valve based on the proximity effect driven by a superconducting quantum interference proximity transistor (SQUIPT). Its operation relies on the phase-dependent quasiparticle density of states in the Josephson weak-link of the SQUIPT which controls thermal transport across the device. In a realistic Al/Cu-based setup the structure can provide efficient control of thermal current inducing temperature swings exceeding ∼100 mK, and flux-to-temperature transfer coefficients up to ∼500 mK/Φ{sub 0} below 100 mK. The nanovalve performances improve by lowering the bath temperature, making the proposed structure a promising building-block for the implementation of coherent caloritronic devices operating below 1 K.

  10. Study of large nonlinear change phase in Hibiscus Sabdariffa

    NASA Astrophysics Data System (ADS)

    Trejo-Durán, M.; Alvarado-Méndez, E.; Andrade-Lucio, J. A.; Rojas-Laguna, R.; Vázquez-Guevara, M. A.

    2015-09-01

    High intensities electromagnetic energy interacting with organic media gives rise to nonlinear optical effects. Hibiscus Sabdariffa is a flower whose concentrated solution presents interesting nonlinear optical properties. This organic material shows an important self-phase modulation with changes bigger than 2π. We present a diffraction ring patterns study of the Hibiscus Sabdariffa solution. Numerical results of transmittance, with refraction and simultaneous absorption, are shown.

  11. Investigation of Large Earthquakes as Critical Phase Transitions

    NASA Astrophysics Data System (ADS)

    Gonzalez-Huizar, H.; Mariani, M. C.; Serpa, L. F.; Beccar-Varela, M. P.; Tweneboah, O. K.

    2015-12-01

    In this work we present some of our results from investigating earthquakes sequences, which include very large earthquakes, using different stochastic and deterministic critical phenomena models. With the objective to estimate magnitude and origin time of large earthquakes based on the preceding seismicity, we investigate the use of several modeling techniques, including: The Levy flight, Scale-Invariant functions, and the Ising models. We also developed a stochastic differential equation arising on the superposition of independent Ornstein-Uhlenbeck processes driven by a Gamma (a,b) process. Here we summarize some of the results of applying these techniques for modeling earthquakes sequences in different tectonic regions.

  12. Large space telescope, phase A. Volume 3: Optical telescope assembly

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The development and characteristics of the optical telescope assembly for the Large Space Telescope are discussed. The systems considerations are based on mission-related parameters and optical equipment requirements. Information is included on: (1) structural design and analysis, (2) thermal design, (3) stabilization and control, (4) alignment, focus, and figure control, (5) electronic subsystem, and (6) scientific instrument design.

  13. Large space telescope, phase A. Volume 4: Scientific instrument package

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The design and characteristics of the scientific instrument package for the Large Space Telescope are discussed. The subjects include: (1) general scientific objectives, (2) package system analysis, (3) scientific instrumentation, (4) imaging photoelectric sensors, (5) environmental considerations, and (6) reliability and maintainability.

  14. Large space telescope, phase A. Volume 5: Support systems module

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The development and characteristics of the support systems module for the Large Space Telescope are discussed. The following systems and described: (1) thermal control, (2) electrical, (3) communication and data landing, (4) attitude control system, and (5) structural features. Analyses of maintainability and reliability considerations are included.

  15. Holographic correction and phasing of large sparse-array telescopes.

    PubMed

    Andersen, Geoff

    2005-03-10

    I have constructed a 1-m-diameter telescope using separate, low-quality spherical primary mirror segments. A single hologram of the mirrors is used to correct the random surface distortions as well as spherical aberration, while simultaneously phasing the individual apertures together. I present experimental results of the removal of an error of thousands of waves to produce a diffraction-limited instrument operating over a narrow bandwidth. This technique promises to have many benefits in future space-based telescopes for imaging, lidar, and optical communications. PMID:15796231

  16. Numerical modeling of the simulated gas hydrate production test at Mallik 2L-38 in the pilot scale pressure reservoir LARS - Applying the "foamy oil" model

    NASA Astrophysics Data System (ADS)

    Abendroth, Sven; Thaler, Jan; Klump, Jens; Schicks, Judith; Uddin, Mafiz

    2014-05-01

    In the context of the German joint project SUGAR (Submarine Gas Hydrate Reservoirs: exploration, extraction and transport) we conducted a series of experiments in the LArge Reservoir Simulator (LARS) at the German Research Centre of Geosciences Potsdam. These experiments allow us to investigate the formation and dissociation of hydrates at large scale laboratory conditions. We performed an experiment similar to the field-test conditions of the production test in the Mallik gas hydrate field (Mallik 2L-38) in the Beaufort Mackenzie Delta of the Canadian Arctic. The aim of this experiment was to study the transport behavior of fluids in gas hydrate reservoirs during depressurization (see also Heeschen et al. and Priegnitz et al., this volume). The experimental results from LARS are used to provide details about processes inside the pressure vessel, to validate the models through history matching, and to feed back into the design of future experiments. In experiments in LARS the amount of methane produced from gas hydrates was much lower than expected. Previously published models predict a methane production rate higher than the one observed in experiments and field studies (Uddin et al. 2010; Wright et al. 2011). The authors of the aforementioned studies point out that the current modeling approach overestimates the gas production rate when modeling gas production by depressurization. They suggest that trapping of gas bubbles inside the porous medium is responsible for the reduced gas production rate. They point out that this behavior of multi-phase flow is not well explained by a "residual oil" model, but rather resembles a "foamy oil" model. Our study applies Uddin's (2010) "foamy oil" model and combines it with history matches of our experiments in LARS. Our results indicate a better agreement between experimental and model results when using the "foamy oil" model instead of conventional models of gas flow in water. References Uddin M., Wright J.F. and Coombe D

  17. Morphology of Two-Phase Layers with Large Bubbles

    NASA Astrophysics Data System (ADS)

    Vékony, Klára; Kiss, László I.

    2010-10-01

    The understanding of formation and movement of bubbles nucleated during aluminum reduction is essential for a good control of the electrolysis process. In our experiments, we filmed and studied the formation of a bubble layer under the anode in a real-size air-water electrolysis cell model. The maximum height of the bubbles was found to be up to 2 cm because of the presence of the so-called Fortin bubbles. Also, the mean height of the bubble layer was found to be much higher than published previously. The Fortin bubbles were investigated more closely, and their shape was found to be induced by a gravity wave formed at the gas-liquid interface. In addition, large bubbles were always observed to break up into smaller parts right before escaping from under the anode. This breakup and escape led to a large momentum transfer in the bath.

  18. Lessons learned with the Active Phasing Experiment: comparison of four optical phasing sensors on a segmented Very Large Telescope

    NASA Astrophysics Data System (ADS)

    Gonte, F.; Surdej, I.

    The adaptive optics capabilities are strongly limited by the quality of the phasing of the primary mirror of the extremely large telescope. Up to date, the Keck telescopes are the only segmented telescope phased with a quality enabling the application of adaptive optics. The Active Phasing Experiment has been installed at the Namyth focus of the Very Large Telescope Melipal during the last 6 months. Its purpose is to understand and compare different technological concepts for an optical phasing sensor dedicated to the European Extremely Large Telescope. The pupil of the telescope is segmented in 61 hexagonal segments by projecting it on an Active Segmented Mirror. The ASM is controlled by a dual wavenlength interferometer made by Fogale Nanotech with a nanometric precision. The segmented pupil is distributed in parallel to four optical phasing sensors. They are a pyramid sensor, a curvature sensor, a phase filtering sensor and a ShackHartmann sensor. They have been developed respectively by Istituto Nazionale di Astrofisica in Florenze, Instituto Astrofisica Canarias in Tenerife, Laboratoire d'Astrophysique de Marseille and ESO. The global behaviour of the optical phasing sensors will be described and preliminary results of the Active Phasing Experiments obtained on sky will be explained. The extrapolation of the results to the EELT and the potential consequences for the adaptive optics will be given. The Active Phasing Experiment has been financed by the European Union and the European Southern Observatory via the Sixth European Union Framework Program for Research and Technological Development under the contract number 011863.

  19. Large step-phase measurement by a reduced-phase triple-illumination interferometer.

    PubMed

    Tayebi, Behnam; Jafarfard, Mohammad Reza; Sharif, Farnaz; Song, Young Sik; Har, Dongsoo; Kim, Dug Young

    2015-05-01

    We present a reduced-phase triple-illumination interferometer (RPTII) as a novel single-shot technique to increase the precision of dual-illumination optical phase unwrapping techniques. The technique employs two measurement ranges to record both low-precision unwrapped and high-precision wrapped phases. To unwrap the high-precision phase, a hierarchical optical phase unwrapping algorithm is used with the low-precision unwrapped phase. The feasibility of this technique is demonstrated by measuring a stepped object with a height 2100 times greater than the wavelength of the source. The phase is reconstructed without applying any numerical unwrapping algorithms, and its noise level is decreased by a factor of ten. PMID:25969222

  20. Group and phase delay sensing for cophasing large optical arrays

    NASA Astrophysics Data System (ADS)

    Mourard, D.; Dali Ali, W.; Meilland, A.; Tarmoul, N.; Patru, F.; Clausse, J. M.; Girard, P.; Hénault, F.; Marcotto, A.; Mauclert, N.

    2014-12-01

    The next generation of optical interferometers will provide high-resolution imaging of celestial objects by using either the aperture synthesis technique or the direct imaging principle. To determine the technical requirements, we have developed an interferometric test bench, called SIRIUS. To preserve the quality of the image, fast corrections of the optical path differences within a fraction of a wavelength have to be applied: this is the cophasing of the array, whereas making it coherent aims at stabilizing the optical path differences within a fraction of the coherence length. In the SIRIUS test bench, coherence and cophasing are achieved by fibred delay lines. Air delay lines are also used for the raw delay equalization. We present an original implementation of a piston sensor, called chromatic phase diversity, which is adaptable to any interferometer, whatever the configuration of the entrance pupil and the number of sub-pupils and whatever the interferometric combiner. Our method is based on the dispersed fringes principle and uses a derived version of the dispersed speckles method. The numerical simulation shows the performance of the method in terms of cophasing, accuracy and limiting magnitude. Experimental tests have been carried out both with optical turbulence and without. They show good results in both cases, despite some instrument-related limitations that can be eliminated. We show that our method is able to handle an amplitude of correction of ±11(λ/2) with an accuracy of ˜λ/30 over many minutes.

  1. Phase Correlations and Topological Measures of Large-Scale Structure

    NASA Astrophysics Data System (ADS)

    Coles, P.

    The process of gravitational instability initiated by small primordial density perturbations is a vital ingredient of cosmological models that attempt to explain how galaxies and large-scale structure formed in the Universe. In the standard picture (the "concordance" model), a period of accelerated expansion ("inflation") generated density fluctuations with simple statistical properties through quantum processes (Starobinsky [82], [83], [84]; Guth [39]; Guth & Pi [40]; Albrecht & Steinhardt [2]; Linde [55]). In this scenario the primordial density field is assumed to form a statistically homogeneous and isotropic Gaussian random field (GRF). Over years of observational scrutiny this paradigm has strengthened its hold in the minds of cosmologists and has survived many tests, culminating in those furnished by the Wilkinson Microwave Anisotropy Probe (WMAP; Bennett et al. [7]; Hinshaw et al. [45].

  2. Large Area Crop Inventory Experiment (LACIE). Phase 1: Evaluation report

    NASA Technical Reports Server (NTRS)

    1976-01-01

    It appears that the Large Area Crop Inventory Experiment over the Great Plains, can with a reasonable expectation, be a satisfactory component of a 90/90 production estimator. The area estimator produced more accurate area estimates for the total winter wheat region than for the mixed spring and winter wheat region of the northern Great Plains. The accuracy does appear to degrade somewhat in regions of marginal agriculture where there are small fields and abundant confusion crops. However, it would appear that these regions tend also to be marginal with respect to wheat production and thus increased area estimation errors do not greatly influence the overall production estimation accuracy in the United States. The loss of segments resulting from cloud cover appears to be a random phenomenon that introduces no significant bias into the estimates. This loss does increase the variance of the estimates.

  3. Enantioselective Regulation of Lactate Racemization by LarR in Lactobacillus plantarum

    PubMed Central

    Desguin, Benoît; Goffin, Philippe; Bakouche, Nordine; Diman, Aurélie; Viaene, Eric; Dandoy, Damien; Fontaine, Laetitia; Hallet, Bernard

    2014-01-01

    Lactobacillus plantarum is a lactic acid bacterium that produces a racemic mixture of l- and d-lactate from sugar fermentation. The interconversion of lactate isomers is performed by a lactate racemase (Lar) that is transcriptionally controlled by the l-/d-lactate ratio and maximally induced in the presence of l-lactate. We previously reported that the Lar activity depends on the expression of two divergently oriented operons: (i) the larABCDE operon encodes the nickel-dependent lactate racemase (LarA), its maturases (LarBCE), and a lactic acid channel (LarD), and (ii) the larR(MN)QO operon encodes a transcriptional regulator (LarR) and a four-component ABC-type nickel transporter [Lar(MN), in which the M and N components are fused, LarQ, and LarO]. LarR is a novel regulator of the Crp-Fnr family (PrfA group). Here, the role of LarR was further characterized in vivo and in vitro. We show that LarR is a positive regulator that is absolutely required for the expression of Lar activity. Using gel retardation experiments, we demonstrate that LarR binds to a 16-bp palindromic sequence (Lar box motif) that is present in the larR-larA intergenic region. Mutations in the Lar box strongly affect LarR binding and completely abolish transcription from the larA promoter (PlarA). Two half-Lar boxes located between the Lar box and the −35 box of PlarA promote LarR multimerization on DNA, and point mutations within one or both half-Lar boxes inhibit PlarA induction by l-lactate. Gel retardation and footprinting experiments indicate that l-lactate has a positive effect on the binding and multimerization of LarR, while d-lactate antagonizes the positive effect of l-lactate. A possible mechanism of LarR regulation by lactate enantiomers is proposed. PMID:25349156

  4. Histological characteristics and ultrastructure of polyethylene terephthalate LARS ligament after the reconstruction of anterior cruciate ligament in rabbits

    PubMed Central

    Yu, Shao-Bin; Yang, Rong-Hua; Zuo, Zhong-Nan; Dong, Qi-Rong

    2014-01-01

    Polyethylene terephthalate LARS ligament were the remnant of LARS ligament used for repairing posterior cruciate ligament obtained from operation. We want to study histological characteristics and ultrastructure of polyethylene terephthalate LARS ligament after the reconstruction of anterior cruciate ligament in rabbits. Therefore, we replaced the original ACL with polyethylene terephthalate LARS ligament which was covering with the remnant of ACL in 9 rabbits (L-LARS group), while just only polyethylene terephthalate LARS ligament were transplanted in 3 rabbits (LARS group) with the remnant of ACL. Compared with group LARS, inflammatory cell reaction and foreign body reaction were more significant in group L-LARS. Moreover, electron microscopy investigation showed the tissue near LARS fibers was highly cellular with a matrix of thin collagen fibrils (50-100 nm) in group L-LARS. These above findings suggest the polyethylene terephthalate LARS ligament possess the high biocompatibility, which contributes to the polyethylene terephthalate LARS covered with recipient connective tissues. PMID:25356104

  5. APE: the Active Phasing Experiment to test new control system and phasing technology for a European Extremely Large Optical Telescope

    NASA Astrophysics Data System (ADS)

    Gonte, F.; Yaitskova, N.; Derie, F.; Constanza, A.; Brast, R.; Buzzoni, B.; Delabre, B.; Dierickx, P.; Dupuy, C.; Esteves, R.; Frank, C.; Guisard, S.; Karban, R.; Koenig, E.; Kolb, J.; Nylund, M.; Noethe, L.; Surdej, I.; Courteville, A.; Wilhelm, R.; Montoya, L.; Reyes, M.; Esposito, S.; Pinna, E.; Dohlen, K.; Ferrari, M.; Langlois, M.

    2005-08-01

    The future European Extremely Large Telescope will be composed of one or two giant segmented mirrors (up to 100 m of diameter) and of several large monolithic mirrors (up to 8 m in diameter). To limit the aberrations due to misalignments and defective surface quality it is necessary to have a proper active optics system. This active optics system must include a phasing system to limit the degradation of the PSF due to misphasing of the segmented mirrors. We will present the lastest design and development of the Active Phasing Experiment that will be tested in laboratory and on-sky connected to a VLT at Paranal in Chile. It includes an active segmented mirror, a static piston plate to simulate a secondary segmented mirror and of four phasing wavefront sensors to measure the piston, tip and tilt of the segments and the aberrations of the VLT. The four phasing sensors are the Diffraction Image Phase Sensing Instrument developed by Instituto de Astrofisica de Canarias, the Pyramid Phasing Sensor developed by Arcetri Astrophysical Observatory, the Shack-Hartmann Phasing Sensor developed by the European Southern Observatory and the Zernike Unit for Segment phasing developed by Laboratoire d'Astrophysique de Marseille. A reference measurement of the segmented mirror is made by an internal metrology developed by Fogale Nanotech. The control system of Active Phasing Experiment will perform the phasing of the segments, the guiding of the VLT and the active optics of the VLT. These activities are included in the Framework Programme 6 of the European Union.

  6. Ar-Ar ages and trapped Ar components in Martian shergottites RBT 04262 and LAR 06319

    NASA Astrophysics Data System (ADS)

    Park, Jisun; Bogard, Donald D.; Nyquist, Laurence E.; Garrison, Daniel H.; Mikouchi, Takashi

    2013-11-01

    We made 39Ar-40Ar (Ar-Ar) analyses of whole rock (WR) and mineral samples of two Martian shergottites, RBT 04262 (RBT) and LAR 06319 (LAR), in order to determine their Ar-Ar ages and the 40Ar/36Ar ratios of the trapped Martian Ar they contain. All samples released trapped (excess) 40Ar and 36Ar and suggested Ar-Ar ages older than their formation ages. Because trapped Ar components having different 40Ar/36Ar were released at different extraction temperatures, we utilized only a portion of the data to derive preferred Ar-Ar ages. We obtain Ar-Ar ages of 171 ± 8 Ma for RBT plagioclase and 163 ± 13 Ma for LAR whole rock. We identify two trapped Ar components. At low temperatures, particularly for plagioclase, Trapped-A with 40Ar/36Ar 285 ± 3 was released, and we believe this is most likely absorbed terrestrial air. At high extraction temperatures, particularly for pyroxene, Trapped-B with 40Ar/36Ar 1813 ± 127 was released. The poikilitic/non-poikilitic texture of RBT and the presence of large pyroxene oikocrysts allowed a clear definition of Trapped-B. This Ar component is Martian, and its isotopic similarity to the Martian atmospheric composition suggests that it may represent Martian atmospheric Ar incorporated into the shergottite melt via crustal rocks. Trapped-B partitioned into pyroxene at a constant molar ratio of K/36ArTr = 33.2 ± 9.5 × 106 for RBT 04262, and 80 ± 21 × 106 for LAR 06319. Trapped-A mixed in different proportions with Trapped-B could give apparently intermediate trapped 40Ar/36Ar compositions commonly observed in shergottites.

  7. Fabrication of large aperture kinoform phase plates in fused silica for smoothing focal plane intensity profiles

    SciTech Connect

    Rushford, M.; Dixit, S.; Thomas, I.; Perry, M.

    1996-04-26

    We have fabricated large aperture (40-cm) kinoform phase plates for producing super-Gaussian focal plane intensity profiles. The continuous phase screen, designed using a new iterative procedure, was fabricated in fused silica as a 16-level, one-wave deep rewrapped phase profile using a lithographic process and wet etching in buffered hydrofluoric acid. The observed far-field contains 94% of the incident energy inside the desired spot.

  8. Bibliographic Automation of Large Library Operations Using a Time-Sharing System: Phase I. Final Report.

    ERIC Educational Resources Information Center

    Epstein, A. H.; And Others

    The first phase of an ongoing library automation project at Stanford University is described. Project BALLOTS (Bibliographic Automation of Large Library Operations Using a Time-Sharing System) seeks to automate the acquisition and cataloging functions of a large library using an on-line time-sharing computer. The main objectives are to control…

  9. Cold Electronics Development for the LBNE LAr TPC

    NASA Astrophysics Data System (ADS)

    Thorn, C.; De Geronimo, Gianluigi; D'Andragora, Alessio; Li, Shaorui; Nambiar, Neena; Rescia, Sergio; Vernon, Emerson; Chen, Hucheng; Lanni, Francesco; Makowiecki, Don; Radeka, Veljko; Yu, Bo

    The LBNE Project is developing a design for multiple 20 kiloton liquid argon (LAr) time projection chambers to be used as the far detector for the Long Baseline Neutrino Experiment. An essential component of this design is a complete electronic readout system designed to operate in LAr (at 90K). This system is being implemented as a CMOS ASIC, in 180 nm commercial technology, that will provide low-noise readout of the signals induced on the TPC wires, digitization of those signals at 2 MS/s, zero-suppression, buffering and output multiplexing to a small number of cryostat feed-throughs. A resolution better than 1000 rms electrons at 200 pF input capacitance for an input range of 300 fC is required, along with low power (<15mW/channel) and operation in LAr with a lifetime greater than 15 years. An analog-only frontend has been successfully completed and fully evaluated, and will be used in the MicroBooNE LAr TPC. A prototype of the digital section has been fabricated and is being evaluated. The results demonstrate that CMOS transistors have lower noise and much improved dc characteristics at LAr temperature. We will describe the progress to date and plans for the remaining development.

  10. Scintillation light detection system in LArIAT

    NASA Astrophysics Data System (ADS)

    Kryczynski, P.

    2016-02-01

    The LArIAT experiment is currently taking data at Fermilab using a Liquid Argon TPC, with the aim of studying particle interactions and characterizing detector response for neutrino detectors using argon. In parallel, it serves as a test-bench to develop and evaluate the performance of the simulation, reconstruction, and analysis software used in LAr neutrino experiments. LArIAT also takes advantage of the scintillating capabilities of liquid argon and will evaluate the feasibility of using the light signal to determine calorimetric information and particle identification. To test this possibility, a scintillation light detection system consisting of high Quantum Efficiency (QE) PMT and Silicon Photomultiplier (SiPM) devices is installed in the cryostat, viewing the interior of the TPC. Light collection efficiency is maximized by means of lining the walls with reflector foils covered by a wavelength shifter layer. Collecting the light reflected at the boundaries of the active volume greatly improves also the uniformity of the light yield. Presented here are initial results of the LArIAT light detection system calibration together with the preliminary results of the dedicated simulation and its application in future LAr TPC experiments

  11. Testing the QCD string at large Nc from the thermodynamics of the hadronic phase

    NASA Astrophysics Data System (ADS)

    Cohen, Thomas D.

    2007-02-01

    It is generally believed that in the limit of a large number of colors (Nc) the description of confinement via flux tubes becomes valid and QCD can be modeled accurately via a hadronic string theory—at least for highly excited states. QCD at large Nc also has a well-defined deconfinement transition at a temperature Tc. In this talk it is shown how the thermodyanmics of the metastable hadronic phase of QCD (above Tc) at large NC can be related directly to properties of the effective QCD string. The key points in the derivation is the weakly interacting nature of hadrons at large Nc and the existence of a Hagedorn temperature TH for the effective string theory. From this it can be seen at large Nc and near TH, the energy density and pressure of the hadronic phase scale as E ˜ (TH - T)-(D⊥-6)/2 (for D⊥ < 6) and P ˜ (TH - T)-(D⊥-4)/2 (for D⊥ < 4) where D⊥ is the effective number of transverse dimensions of the string theory. This behavior for D⊥ < 6 is qualitatively different from typical models in statistical mechanics and if observed on the lattice would provide a direct test of the stringy nature of large Nc QCD. However since it can be seen that TH > Tc this behavior is of relevance only to the metastable phase. The prospect of using this result to extract D⊥ via lattice simulations of the metastable hadronic phase at moderately large Nc is discussed.

  12. Theory of Multifarious Quantum Phases and Large Anomalous Hall Effect in Pyrochlore Iridate Thin Films

    PubMed Central

    Hwang, Kyusung; Kim, Yong Baek

    2016-01-01

    We theoretically investigate emergent quantum phases in the thin film geometries of the pyrochore iridates, where a number of exotic quantum ground states are proposed to occur in bulk materials as a result of the interplay between electron correlation and strong spin-orbit coupling. The fate of these bulk phases as well as novel quantum states that may arise only in the thin film platforms, are studied via a theoretical model that allows layer-dependent magnetic structures. It is found that the magnetic order develop in inhomogeneous fashions in the thin film geometries. This leads to a variety of magnetic metal phases with modulated magnetic ordering patterns across different layers. Both the bulk and boundary electronic states in these phases conspire to promote unusual electronic properties. In particular, such phases are akin to the Weyl semimetal phase in the bulk system and they would exhibit an unusually large anomalous Hall effect. PMID:27418293

  13. Theory of Multifarious Quantum Phases and Large Anomalous Hall Effect in Pyrochlore Iridate Thin Films.

    PubMed

    Hwang, Kyusung; Kim, Yong Baek

    2016-01-01

    We theoretically investigate emergent quantum phases in the thin film geometries of the pyrochore iridates, where a number of exotic quantum ground states are proposed to occur in bulk materials as a result of the interplay between electron correlation and strong spin-orbit coupling. The fate of these bulk phases as well as novel quantum states that may arise only in the thin film platforms, are studied via a theoretical model that allows layer-dependent magnetic structures. It is found that the magnetic order develop in inhomogeneous fashions in the thin film geometries. This leads to a variety of magnetic metal phases with modulated magnetic ordering patterns across different layers. Both the bulk and boundary electronic states in these phases conspire to promote unusual electronic properties. In particular, such phases are akin to the Weyl semimetal phase in the bulk system and they would exhibit an unusually large anomalous Hall effect. PMID:27418293

  14. Theory of Multifarious Quantum Phases and Large Anomalous Hall Effect in Pyrochlore Iridate Thin Films

    NASA Astrophysics Data System (ADS)

    Hwang, Kyusung; Kim, Yong Baek

    2016-07-01

    We theoretically investigate emergent quantum phases in the thin film geometries of the pyrochore iridates, where a number of exotic quantum ground states are proposed to occur in bulk materials as a result of the interplay between electron correlation and strong spin-orbit coupling. The fate of these bulk phases as well as novel quantum states that may arise only in the thin film platforms, are studied via a theoretical model that allows layer-dependent magnetic structures. It is found that the magnetic order develop in inhomogeneous fashions in the thin film geometries. This leads to a variety of magnetic metal phases with modulated magnetic ordering patterns across different layers. Both the bulk and boundary electronic states in these phases conspire to promote unusual electronic properties. In particular, such phases are akin to the Weyl semimetal phase in the bulk system and they would exhibit an unusually large anomalous Hall effect.

  15. Lars Onsager Prize: Phase transitions in massive data acquisition

    NASA Astrophysics Data System (ADS)

    Mezard, Marc

    The rapid increase in the amount of data that is presently being generated, acquired and processed opens new perspectives in many branches of science. In order to take full advantage of this « data revolution », and to turn it into a major tool for scientific discoveries, new concepts and methods need to be developed, thus allowing us to focus on the extraction of significant information. Referring to the case of compressed sensing, the talk will show how ideas and methods in statistical physics -from spin glass theory to cristal nucleation - can help design faster, less destructive, and more efficient signal acquisition protocols, with possible applications into numerous fields -from magnetic resonance imaging to astronomy, tomography, or gene interaction network reconstruction.

  16. No large scale curvature perturbations during the waterfall phase transition of hybrid inflation

    SciTech Connect

    Abolhasani, Ali Akbar; Firouzjahi, Hassan

    2011-03-15

    In this paper the possibility of generating large scale curvature perturbations induced from the entropic perturbations during the waterfall phase transition of the standard hybrid inflation model is studied. We show that whether or not appreciable amounts of large scale curvature perturbations are produced during the waterfall phase transition depends crucially on the competition between the classical and the quantum mechanical backreactions to terminate inflation. If one considers only the classical evolution of the system, we show that the highly blue-tilted entropy perturbations induce highly blue-tilted large scale curvature perturbations during the waterfall phase transition which dominate over the original adiabatic curvature perturbations. However, we show that the quantum backreactions of the waterfall field inhomogeneities produced during the phase transition dominate completely over the classical backreactions. The cumulative quantum backreactions of very small scale tachyonic modes terminate inflation very efficiently and shut off the curvature perturbation evolution during the waterfall phase transition. This indicates that the standard hybrid inflation model is safe under large scale curvature perturbations during the waterfall phase transition.

  17. Phases of the two-leg Hubbard ladder in the large U limit

    NASA Astrophysics Data System (ADS)

    Liu, Li; Yao, Hong; Kivelson, Steven; White, Steven; Lee, Dung-Hai

    2012-02-01

    We study the phase diagram of the two-leg Hubbard ladder in the large U limit using the density matrix renormalization group (DMRG). Already in the limit of infinite on-site repulsion U, we find a rich phase diagram in which commensurability effects are unexpectedly prominent: A fully spin-polarized ``Nagaoka'' metallic phase occurs for electron density, n, in the range 1> n> n1, where n1 0.8 is not obviously locked by any commensurability. There is an insulating, anti-ferromagnetic commensurate plaquette phase at n=3/4, and two-phase coexistence for n1> n > 3/4. For 3/4 > n > n2 0.6, there is a partially spin-polarized metallic state with a magnetization peak centered at n=2/3. For the most part, the ground state is a paramagnetic Luttinger liquid for n2>=n, although an antiferromagnetic phase with a substantial charge gap (and which may or may not have a small spin-gap) arises at n=1/2. Interesting soliton excitations with fractional charge are found for the plaquette phase at n=3/4. We have also explored the evolution of these phases as a function of decreasing (but still large) U, both by studying the t-J model and of the underlying Hubbard model.

  18. Advection Scheme for Phase-changing Porous Media Flow of Fluids with Large Density Ratio

    NASA Astrophysics Data System (ADS)

    Zhang, Duan; Padrino, Juan

    2015-11-01

    Many flows in a porous media involve phase changes between fluids with a large density ratio. For instance, in the water-steam phase change the density ratio is about 1000. These phase changes can be results of physical changes, or chemical reactions, such as fuel combustion in a porous media. Based on the mass conservation, the velocity ratio between the fluids is of the same order of the density ratio. As the result the controlling Courant number for the time step in a numerical simulation is determined by the high velocity and low density phase, leading to small time steps. In this work we introduce a numerical approximation to increase the time step by taking advantage of the large density ratio. We provide analytical error estimation for this approximate numerical scheme. Numerical examples show that using this approximation about 40-fold speedup can be achieved at the cost of a few percent error. Work partially supported by LDRD project of LANL.

  19. The QCD Phase Diagram: Large Nc, Quarkyonic Matter and the Triple Point

    SciTech Connect

    McLerran L.

    2010-01-31

    I discuss the phase diagram of QCD in the large N_c limit. Quarkyonic Matter is described. The properties of QCD matter as measured in the abundance of produced particles are shown to be consistent with this phase diagram. A possible triple point of Hadronic Mater, Deconfined Matter and Quarkyonic matter is shown to explain various behaviors of ratios of particles abundances seen in CERN fixed target experiments.

  20. Operation of bare HPGe detectors in LAr/LN2 for the GERDA experiment

    NASA Astrophysics Data System (ADS)

    Barnabé Heider, M.; Cattadori, C.; Chkvorets, O.; di Vacri, A.; Gusev, K.; Schönert, S.; Shirchenko, M.

    2008-11-01

    GERDA is designed to search for 0νββ-decay of 76Ge using high purity germanium detectors (HPGe), enriched (~ 85%) in 76Ge, directly immersed in LAr which acts both as shield against γ radiation and as cooling medium. The cryostat is located in a stainless steel water tank providing an additional shield against external background. The GERDA experiment aims at a background (b) lessapprox10-3 cts/(kg-y-keV) and energy resolution (FWHM) <= 4 keV at Qββ = 2039 keV. GERDA experiment is foreseen to proceed in two phases. For Phase I, eight reprocessed enriched HPGe detectors from the past HdM [C Balysh et al., Phys. Rev. D 66 (1997) 54] and IGEX [C E Aalseth et al., Phys. of Atomic Nuclei 63 (2000) 1225] experiments (~ 18 kg) and six reprocessed natural HPGe detectors (~ 15 kg) from the Genius Test-Facility [H V Klapdor et al., HIM A 481 (2002) 149] will be deployed in strings. GERDA aims at b lessapprox 10-2 cts/(kg·keV·y). With an exposure of ~ 15 kg·y of 76Ge and resolution ~ 3.6 keV, the sensitivity on the half-life will be T0ν1/2 3 · 1025 y (90 % C.L.) corresponding to mee < 270 meV [V A Rodin et al., Nucl. Phys. A 766 (2006) 107]. In Phase II, new diodes, able to discriminate between single- and multi-site events, will be added (~ 20 kg of 76Ge with intrinsic b ~ 10-2 cts/(kg·keV·y). With an exposure of ~ 120 kg·y, it is expected T0ν1/2 > 1.5 · 1026 y (90% C.L.) corresponding to mee < 110 meV [V A Rodin et al., Nucl. Phys. A 766 (2006) 107]. Three natural p-type HPGe prototypes (different passivation layer designs) are available in the GERDA underground facility at LNGS to investigate the effect of the detector assembly (low-mass low-activity holder), of the handling procedure and of the refurbishment technology on long term stability and spectroscopy performance. The study started on prototype 1 (fully passivated on the borehole side). 60Co γ-irradiation of the detector in LAr resulted in an increase of the leakage current (LC), depending on the

  1. Large-N Over the Source Physics Experiment (SPE) Phase I and Phase II Test Beds

    NASA Astrophysics Data System (ADS)

    Snelson, C. M.; Carmichael, J. D.; Mellors, R. J.; Abbott, R. E.

    2014-12-01

    One of the current challenges in the field of monitoring and verification is source discrimination of low-yield nuclear explosions from background seismicity, both natural and anthropogenic. Work is underway at the Nevada National Security Site to conduct a series of chemical explosion experiments using a multi-institutional, multi-disciplinary approach. The goal of this series of experiments, called the Source Physics Experiments (SPE), is to refine the understanding of the effect of earth structures on source phenomenology and energy partitioning in the source region, the transition of seismic energy from the near field to the far field, and the development of S waves observed in the far field. To fully explore these problems, the SPE series includes tests in both hard and soft rock geologic environments. The project comprises a number of activities, which range from characterizing the shallow subsurface to acquiring new explosion data from both the near field (<100 m) and the far field (>100 m). SPE includes a series of planned explosions (with different yields and depths of burials), which are conducted in the same hole and monitored by a diverse set of sensors recording characteristics of the explosions, ground-shock, seismo-acoustic energy propagation. This presentation focuses on imaging the full 3D wavefield over hard rock and soft rock test beds using a large number of seismic sensors. This overview presents statistical analyses of optimal sensor layout required to estimate wavefield discriminants and the planned deployment for the upcoming experiments. This work was conducted under Contract No. DE-AC52-06NA25946 with the U.S. Department of Energy. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  2. Large scale, liquid phase synthesis of oligonucleotides by the phosphoramidite approach.

    PubMed Central

    Bonora, G M; Biancotto, G; Maffini, M; Scremin, C L

    1993-01-01

    A new method for the liquid phase synthesis of oligonucleotides is described which makes use of polyethylene glycol (PEG) as soluble support and phosphoramidite derivatives as synthons. The new synthetic protocol was applied to a quite large scale production (about 100 mumoles) of such compounds up to the 20mer level. This solution method, called HELP High Efficiency Liquid Phase) Plus, appears effective in terms of speed and coupling yield and can be evaluated for the production of large amount of oligonucleotides. PMID:8464706

  3. Two phase sampling for wheat acreage estimation. [large area crop inventory experiment

    NASA Technical Reports Server (NTRS)

    Thomas, R. W.; Hay, C. M.

    1977-01-01

    A two phase LANDSAT-based sample allocation and wheat proportion estimation method was developed. This technique employs manual, LANDSAT full frame-based wheat or cultivated land proportion estimates from a large number of segments comprising a first sample phase to optimally allocate a smaller phase two sample of computer or manually processed segments. Application to the Kansas Southwest CRD for 1974 produced a wheat acreage estimate for that CRD within 2.42 percent of the USDA SRS-based estimate using a lower CRD inventory budget than for a simulated reference LACIE system. Factor of 2 or greater cost or precision improvements relative to the reference system were obtained.

  4. Phases of a two-dimensional large-N gauge theory on a torus

    SciTech Connect

    Mandal, Gautam; Morita, Takeshi

    2011-10-15

    We consider two-dimensional large N gauge theory with D adjoint scalars on a torus, which is obtained from a D+2-dimensional pure Yang-Mills theory on T{sup D+2} with D small radii. The two-dimensional model has various phases characterized by the holonomy of the gauge field around noncontractible cycles of the 2-torus. We determine the phase boundaries and derive the order of the phase transitions using a method developed in an earlier work (hep-th/0910.4526), which is nonperturbative in the 't Hooft coupling and uses a 1/D expansion. We embed our phase diagram in the more extensive phase structure of the D+2-dimensional Yang-Mills theory and match with the picture of a cascade of phase transitions found earlier in lattice calculations. We also propose a dual gravity system based on a Scherk-Schwarz compactification of a D2 brane wrapped on a 3-torus and find a phase structure which is similar to the phase diagram found in the gauge theory calculation.

  5. Reduced-phase dual-illumination interferometer for measuring large stepped objects.

    PubMed

    Tayebi, Behnam; Jafarfard, Mohammad Reza; Sharif, Farnaz; Bae, Yoon Sung; Shokuh, Seyyed Hossein Hosseini; Kim, Dug Young

    2014-10-01

    We present a reduced-phase dual-illumination interferometer (RPDII) that measures the topography of a sample with large step height variation. We experimentally demonstrate the basic principle and the feasibility of this novel single-shot quantitative phase imaging. Two beams of this interferometer illuminate a sample at different incident angles, and two phases of the different incident angles and their phase difference are simultaneously recorded using three spatial frequencies. The relative phase difference between two beams of an RPDII can be controlled by adjusting the angle such that the maximum phase difference is smaller than 2π, and thus there is no phase wrapping ambiguity in the reconstructed phase. One 4f optical system with a transmission grating is used to illuminate the sample with two collimated beams incident at different angles. The feasibility of this technique is demonstrated by measuring the thicknesses of two stepped metal layers with heights of 150 and 660 μm. Although the change in stepped height is more than 1000 times the wavelength of the laser used in our interferometer, the thicknesses of these two metal layers are successfully obtained without the use of an unwrapping algorithm. PMID:25360973

  6. Some Fruits of Genius: Lars Onsager and the Ising Model

    NASA Astrophysics Data System (ADS)

    Fisher, Michael E.

    2006-03-01

    The story of the exact solution of the two-dimensional Ising model by Lars Onsager in the 1940's will be sketched and some of the striking developments following from it, especially for the behavior of fluctuating interfaces, will be recounted.

  7. Operation plan for the data 100/LARS terminal system

    NASA Technical Reports Server (NTRS)

    Bowen, A. J., Jr.

    1980-01-01

    The Data 100/LARS terminal system provides an interface for processing on the IBM 3031 computer system at Purdue University's Laboratory for Applications of Remote Sensing. The environment in which the system is operated and supported is discussed. The general support responsibilities, procedural mechanisms, and training established for the benefit of the system users are defined.

  8. Development of a Solid Phase Extraction Method for Agricultural Pesticides in Large-Volume Water Samples

    EPA Science Inventory

    An analytical method using solid phase extraction (SPE) and analysis by gas chromatography/mass spectrometry (GC/MS) was developed for the trace determination of a variety of agricultural pesticides and selected transformation products in large-volume high-elevation lake water sa...

  9. Testing the QCD string at large Nc from the thermodynamics of the hadronic phase

    SciTech Connect

    Cohen, Thomas D.

    2007-02-27

    It is generally believed that in the limit of a large number of colors (Nc) the description of confinement via flux tubes becomes valid and QCD can be modeled accurately via a hadronic string theory-at least for highly excited states. QCD at large Nc also has a well-defined deconfinement transition at a temperature Tc. In this talk it is shown how the thermodyanmics of the metastable hadronic phase of QCD (above Tc) at large NC can be related directly to properties of the effective QCD string. The key points in the derivation is the weakly interacting nature of hadrons at large Nc and the existence of a Hagedorn temperature TH for the effective string theory. From this it can be seen at large Nc and near TH, the energy density and pressure of the hadronic phase scale as E {approx} (TH - T)-(D perpendicular -6)/2 (for D perpendicular < 6) and P {approx} (TH - T)-(D perpendicular -4)/2 (for D perpendicular < 4) where D perpendicular s the effective number of transverse dimensions of the string theory. This behavior for D perpendicular < 6 is qualitatively different from typical models in statistical mechanics and if observed on the lattice would provide a direct test of the stringy nature of large Nc QCD. However since it can be seen that TH > Tc this behavior is of relevance only to the metastable phase. The prospect of using this result to extract D perpendicular via lattice simulations of the metastable hadronic phase at moderately large Nc is discussed.

  10. Evidence for large- N phase transitions in mathcal{N}={2^{*}} theory

    NASA Astrophysics Data System (ADS)

    Russo, Jorge G.; Zarembo, Konstantin

    2013-04-01

    We solve, using localization, for the large- N master field of {N}={2^{*}} superYang-Mills theory. From that we calculate expectation values of large Wilson loops and the free energy on the four-sphere. At weak coupling, these observables only receive nonperturbative contributions. The analytic solution holds for a finite range of the 't Hooft coupling and terminates at the point of a large- N phase transition. We find evidence that as the coupling is further increased the theory undergoes an infinite sequence of similar transitions that accumulate at infinity.

  11. Simulating the gas hydrate production test at Mallik using the pilot scale pressure reservoir LARS

    NASA Astrophysics Data System (ADS)

    Heeschen, Katja; Spangenberg, Erik; Schicks, Judith M.; Priegnitz, Mike; Giese, Ronny; Luzi-Helbing, Manja

    2014-05-01

    LARS, the LArge Reservoir Simulator, allows for one of the few pilot scale simulations of gas hydrate formation and dissociation under controlled conditions with a high resolution sensor network to enable the detection of spatial variations. It was designed and built within the German project SUGAR (submarine gas hydrate reservoirs) for sediment samples with a diameter of 0.45 m and a length of 1.3 m. During the project, LARS already served for a number of experiments simulating the production of gas from hydrate-bearing sediments using thermal stimulation and/or depressurization. The latest test simulated the methane production test from gas hydrate-bearing sediments at the Mallik test site, Canada, in 2008 (Uddin et al., 2011). Thus, the starting conditions of 11.5 MPa and 11°C and environmental parameters were set to fit the Mallik test site. The experimental gas hydrate saturation of 90% of the total pore volume (70 l) was slightly higher than volumes found in gas hydrate-bearing formations in the field (70 - 80%). However, the resulting permeability of a few millidarcy was comparable. The depressurization driven gas production at Mallik was conducted in three steps at 7.0 MPa - 5.0 MPa - 4.2 MPa all of which were used in the laboratory experiments. In the lab the pressure was controlled using a back pressure regulator while the confining pressure was stable. All but one of the 12 temperature sensors showed a rapid decrease in temperature throughout the sediment sample, which accompanied the pressure changes as a result of gas hydrate dissociation. During step 1 and 2 they continued up to the point where gas hydrate stability was regained. The pressure decreases and gas hydrate dissociation led to highly variable two phase fluid flow throughout the duration of the simulated production test. The flow rates were measured continuously (gas) and discontinuously (liquid), respectively. Next to being discussed here, both rates were used to verify a model of gas

  12. Two-Fluid Large-Eddy Simulation Approach for Two-Phase Turbulent Flows.

    NASA Astrophysics Data System (ADS)

    Mashayek, F.; Pandya, R. V. R.

    2002-11-01

    In recent years, large-eddy simulation (LES) is emerging as a predictive tool for particle/droplet-laden turbulent flows. In common practice, LES of two-phase flows involves tracking a large number of particles in a Lagrangian framework while using the Eulerian flow field generated by LES of the carrier fluid phase and proper forms for various forces acting on the particle. The two-way coupling effects (i.e. the effects of the particles on the LES flow field and subgrid scales motion and vice versa) have yet to be accounted for fully and in rigorous manner in these Eulerian-Lagrangian approaches. Recently, a new Eulerian-Eulerian approach has been proposed(R.V.R. Pandya and F. Mashayek, ``Two-fluid large-eddy simulation approach for particle-laden turbulent flows,'' to appear in Int. J. Heat and Mass Transfer.) in which Eulerian `fluid' equations are derived for the dispersed phase using the kinetic or probability density function (pdf) modeling approach after solving the closure problems arising in the filtered pdf equation. The solution to the closure accounts properly for the effects of the subgrid scales on the particles. The two-way coupling effects are modeled in a rigorous manner and included in the dynamic localization model for the subgrid stresses of the carrier phase. The `fluid' equations are supposed to capture the preferential distribution of the particles.

  13. Obituary: Gary Lars Grasdalen, 1945-2003

    NASA Astrophysics Data System (ADS)

    Strom, Stephen Eric

    2003-12-01

    With the passing of Gary Grasdalen on 20 April 2003 the astronomical community has lost one its most creative members. Born in Albert Lea, Minnesota on 7 October 1945 to the farming family of Lars G. and Lillie Grasdalen, Gary developed a strong childhood interest in science, and a particular fascination with astronomy. In 1964, he entered Harvard College intending to pursue those interests. During his freshman year, Gary enrolled in an undergraduate research seminar in which he first displayed the combination of keen insight and imagination in applying new techniques that was manifest throughout his professional career. In 1968, he published his first two papers---studies of the C12/C13 ratio in metal deficient stars, and of Fe I and Fe II transition probabilities---which summarized research carried out during his junior and senior years at Harvard. Grasdalen next entered the astronomy graduate program at the University of California, Berkeley. There he developed a strong interest in the early stages of stellar evolution and, in particular, the potential of S-1 image intensifiers and newly available near-infrared detectors to detect and analyze the stellar populations embedded within their parent molecular cloud complexes. Following award of his PhD in 1972, Grasdalen was appointed to the staff at the Kitt Peak National Observatory. Early in his career at KPNO, Gary developed tools that enabled routine near-infrared mapping of nearby molecular cloud complexes, most notably the telescope control programs that enabled precise raster scanning of these regions. Those same programs were some of the many innovations in which Gary had a hand. These innovations enabled a generation of KPNO observers in the 1970s to fully exploit the power of the newly commissioned Mayall telescope as well as the smaller telescopes on Kitt Peak. In 1973, he published the first map of the central region of a molecular cloud, which revealed an extensive embedded, optically obscured

  14. Liquid crystal spatial light modulator with very large phase modulation operating in high harmonic orders.

    PubMed

    Calero, Venancio; García-Martínez, Pascuala; Albero, Jorge; Sánchez-López, María M; Moreno, Ignacio

    2013-11-15

    Unusually large phase modulation in a commercial liquid crystal spatial light modulator (LCSLM) is reported. Such a situation is obtained by illuminating with visible light a device designed to operate in the infrared range. The phase modulation range reaches 6π radians in the red region of the visible spectrum and 10π radians in the blue region. Excellent diffraction efficiency in high harmonic orders is demonstrated despite a concomitant and non-negligible Fabry-Perot interference effect. This type of SLM opens the possibility to implement diffractive elements with reduced chromatic dispersion or chromatic control. PMID:24322100

  15. Thick strings, the liquid crystal blue phase, and cosmological large-scale structure

    NASA Technical Reports Server (NTRS)

    Luo, Xiaochun; Schramm, David N.

    1992-01-01

    A phenomenological model based on the liquid crystal blue phase is proposed as a model for a late-time cosmological phase transition. Topological defects, in particular thick strings and/or domain walls, are presented as seeds for structure formation. It is shown that the observed large-scale structure, including quasi-periodic wall structure, can be well fitted in the model without violating the microwave background isotropy bound or the limits from induced gravitational waves and the millisecond pulsar timing. Furthermore, such late-time transitions can produce objects such as quasars at high redshifts. The model appears to work with either cold or hot dark matter.

  16. Experimental magnetization evidence for two superconducting phases in Bi bicrystals with large crystallite disorientation angles

    SciTech Connect

    Muntyanu, F. M.; Gilewski, A.; Nenkov, K.; Warchulska, J.; Zaleski, A. J.

    2006-04-01

    Magnetization measurements prove that the magnetic properties of large-angle ({theta}>30 deg. ) bismuth bicrystals with a crystallite interface (CI) of twisting types essentially differ from well-known results on single-crystalline specimens. Two superconducting phases with T{sub c}{approx}8.4 K and {approx}4.3 K were observed at the CI of bicrystals while ordinary rhombohedral Bi is not a superconductor. We conclude that these phases have to do with the central part and the adjacent layers of the CI of bicrystals.

  17. Large-aperture continuous-phase diffractive optical element for beam transform

    NASA Astrophysics Data System (ADS)

    Tan, Qiaofeng; Yan, Yingbai; Jin, Guofan; Wu, Minxian

    1999-11-01

    Beam transform, such as to obtain uniform focal spot with flat top, steep edge, low side lobes and high light efficiency, can be realized well by diffractive optical element (DOE). The DOE has many advantages, such as high light efficiency and strong phase distribution design flexibility. To increase the light efficiency and decrease large-angle scattering, continuous phase DOE should be used. The phase design is competed by a kind of multi-resolution hybrid algorithm based on hill-climbing and simulated annealing, which exploits sufficiently strong convergence ability of the hill climbing and global optimization potential of the simulated annealing. A kind of phase distribution with good geometrical structure and diameter 80 mm is obtained by choosing disturbance function, receipt and refused probability and so on. The simulated results show that the light efficiency is more than 95 percent, and the non-uniformity is less than 5 percent. Because the etching depth is direct proportion to the exposure time, to obtain continuous phase DOE, a kind of hollowed-out mask, namely gray-scale mask is used to control exposure time of each are. The mask is manufactured by linear cutting machine. The continuous phase DOE with diameter 80mm is fabricated by ion-etching with the mask. Finally, the tolerance of manufacturing error including depth error and alignment error are analyzed.

  18. Large deployable antenna program. Phase 1: Technology assessment and mission architecture

    NASA Technical Reports Server (NTRS)

    Rogers, Craig A.; Stutzman, Warren L.

    1991-01-01

    The program was initiated to investigate the availability of critical large deployable antenna technologies which would enable microwave remote sensing missions from geostationary orbits as required for Mission to Planet Earth. Program goals for the large antenna were: 40-meter diameter, offset-fed paraboloid, and surface precision of 0.1 mm rms. Phase 1 goals were: to review the state-of-the-art for large, precise, wide-scanning radiometers up to 60 GHz; to assess critical technologies necessary for selected concepts; to develop mission architecture for these concepts; and to evaluate generic technologies to support the large deployable reflectors necessary for these missions. Selected results of the study show that deployable reflectors using furlable segments are limited by surface precision goals to 12 meters in diameter, current launch vehicles can place in geostationary only a 20-meter class antenna, and conceptual designs using stiff reflectors are possible with areal densities of 2.4 deg/sq m.

  19. WA105: a large-scale demonstrator of the Liquid Argon double phase TPC

    NASA Astrophysics Data System (ADS)

    Tonazzo, A.; WA105 Collaboration

    2016-05-01

    The physics case for a large underground detector devoted to neutrino oscillation measurements, nucleon decay and astrophysics is compelling. A time projection chamber based on the dual-phase liquid Argon technique is an extremely attractive option, allowing for long drift distances, low energy threshold and high readout granularity. It has been extensively studied in the LAGUNA-LBNO Design Study and is one of the two designs foreseen for the modules of the DUNE detector in the US. The WA105 experiment envisages the construction of a large scale prototype at CERN, to validate technical solutions and perform physics studies with charged particle beams.

  20. He II Liquid/Vapor Phase Separator for Large Dynamic Range Operation

    NASA Technical Reports Server (NTRS)

    Nakano, A.; Petrac, D.

    1995-01-01

    A phase separator, which separates helium vapor from liquid superfluid helium (He II), is an indispensable device for space cryogenics. The most recent approach to the Space Infrared Telescope Facility (SIRTF) uses a new design concept in which only the detector package is cold at launch, the remainder of the telescope being subsequently cooled to operating temperature on orbit. Therefore, a large dynamic operational range is required of the cryogen system. This is a report of initial laboratory test results with candidate porous plugs as phase separators. Mass flow rates and pressure and temperature differences across a porous plug were measured in this experiment. Relatively large mass flow rates were observed even at small pressure differences. In the high mass flow rate region, a hysteresis was observed with increases and decreases of the pressure difference. A linear theory is proposed and compared with experimental data to explain several phenomena observed in this system.

  1. Co-Phasing the Large Binocular Telescope:. [Status and Performance of LBTI-PHASECam

    NASA Technical Reports Server (NTRS)

    Defrere, D.; Hinz, P.; Downey, E.; Ashby, D.; Bailey, V.; Brusa, G.; Christou, J.; Danchi, W. C.; Grenz, P.; Hill, J. M.; Hoffmann, W. F.; Leisenring, J.; Lozi, J.; McMahon, T.; Mennesson, B.; Millan-Gabet, R.; Montoya, M.; Powell, K.; Skemer, A.; Vaitheeswaran, V.; Vaz, A.; Veillet, C.

    2014-01-01

    The Large Binocular Telescope Interferometer is a NASA-funded nulling and imaging instrument designed to coherently combine the two 8.4-m primary mirrors of the LBT for high-sensitivity, high-contrast, and high-resolution infrared imaging (1.5-13 micrometer). PHASECam is LBTI's near-infrared camera used to measure tip-tilt and phase variations between the two AO-corrected apertures and provide high-angular resolution observations. We report on the status of the system and describe its on-sky performance measured during the first semester of 2014. With a spatial resolution equivalent to that of a 22.8-meter telescope and the light-gathering power of single 11.8-meter mirror, the co-phased LBT can be considered to be a forerunner of the next-generation extremely large telescopes (ELT).

  2. Chemical ordering suppresses large-scale electronic phase separation in doped manganites

    NASA Astrophysics Data System (ADS)

    Zhu, Yinyan; Du, Kai; Niu, Jiebin; Lin, Lingfang; Wei, Wengang; Liu, Hao; Lin, Hanxuan; Zhang, Kai; Yang, Tieying; Kou, Yunfang; Shao, Jian; Gao, Xingyu; Xu, Xiaoshan; Wu, Xiaoshan; Dong, Shuai; Yin, Lifeng; Shen, Jian

    2016-04-01

    For strongly correlated oxides, it has been a long-standing issue regarding the role of the chemical ordering of the dopants on the physical properties. Here, using unit cell by unit cell superlattice growth technique, we determine the role of chemical ordering of the Pr dopant in a colossal magnetoresistant (La1-yPry)1-xCaxMnO3 (LPCMO) system, which has been well known for its large length-scale electronic phase separation phenomena. Our experimental results show that the chemical ordering of Pr leads to marked reduction of the length scale of electronic phase separations. Moreover, compared with the conventional Pr-disordered LPCMO system, the Pr-ordered LPCMO system has a metal-insulator transition that is ~100 K higher because the ferromagnetic metallic phase is more dominant at all temperatures below the Curie temperature.

  3. Synchronization of Stochastically Coupled Oscillators: Dynamical Phase Transitions and Large Deviations Theory (or Birds and Frogs)

    NASA Astrophysics Data System (ADS)

    Teodorescu, Razvan

    2009-10-01

    Systems of oscillators coupled non-linearly (stochastically or not) are ubiquitous in nature and can explain many complex phenomena: coupled Josephson junction arrays, cardiac pacemaker cells, swarms or flocks of insects and birds, etc. They are know to have a non-trivial phase diagram, which includes chaotic, partially synchronized, and fully synchronized phases. A traditional model for this class of problems is the Kuramoto system of oscillators, which has been studied extensively for the last three decades. The model is a canonical example for non-equilibrium, dynamical phase transitions, so little understood in physics. From a stochastic analysis point of view, the transition is described by the large deviations principle, which offers little information on the scaling behavior near the critical point. I will discuss a special case of the model, which allows a rigorous analysis of the critical properties of the model, and reveals a new, anomalous scaling behavior in the vicinity of the critical point.

  4. Chemical ordering suppresses large-scale electronic phase separation in doped manganites

    PubMed Central

    Zhu, Yinyan; Du, Kai; Niu, Jiebin; Lin, Lingfang; Wei, Wengang; Liu, Hao; Lin, Hanxuan; Zhang, Kai; Yang, Tieying; Kou, Yunfang; Shao, Jian; Gao, Xingyu; Xu, Xiaoshan; Wu, Xiaoshan; Dong, Shuai; Yin, Lifeng; Shen, Jian

    2016-01-01

    For strongly correlated oxides, it has been a long-standing issue regarding the role of the chemical ordering of the dopants on the physical properties. Here, using unit cell by unit cell superlattice growth technique, we determine the role of chemical ordering of the Pr dopant in a colossal magnetoresistant (La1−yPry)1−xCaxMnO3 (LPCMO) system, which has been well known for its large length-scale electronic phase separation phenomena. Our experimental results show that the chemical ordering of Pr leads to marked reduction of the length scale of electronic phase separations. Moreover, compared with the conventional Pr-disordered LPCMO system, the Pr-ordered LPCMO system has a metal–insulator transition that is ∼100 K higher because the ferromagnetic metallic phase is more dominant at all temperatures below the Curie temperature. PMID:27053071

  5. Two-dimensional Potts antiferromagnets with a phase transition at arbitrarily large q

    NASA Astrophysics Data System (ADS)

    Huang, Yuan; Chen, Kun; Deng, Youjin; Jacobsen, Jesper Lykke; Kotecký, Roman; Salas, Jesús; Sokal, Alan D.; Swart, Jan M.

    2013-01-01

    We exhibit infinite families of two-dimensional lattices (some of which are triangulations or quadrangulations of the plane) on which the q-state Potts antiferromagnet has a finite-temperature phase transition at arbitrarily large values of q. This unexpected result is proven rigorously by using a Peierls argument to measure the entropic advantage of sublattice long-range order. Additional numerical data are obtained using transfer matrices, Monte Carlo simulation, and a high-precision graph-theoretic method.

  6. Thirumŭlar--pioneer of the immunology concept.

    PubMed

    Rajasekaran, R; Narayana, Ala

    2006-01-01

    Extraordinary longevity of life, made possible by repeated reading and following of the text Thirumandiram 3000 - written by great Siddhar Thirumŭlar. He the Prince of Mystics is one of the 18 luminous Siddhars and the first and foremost #1 Siva śiddhăndi. Historians and scholars predicted his life period between 5th to 8th centuries AD. In his teachings, he explained the kinds of 'Thavam' (Yoga) and he insisted the #2 'Kăya siddhi'. Thousands of years ago, he wrote in detail about Anatomy of microcosm, Siddha physiology, Humoural pathology, Science of pulse, Microcosmic Atom theory, Immunology concept and Immortalization of our body. His marvelous text Thirumandiram deals with Medical science, Life science, Natural science and Divine. In this article authors, discuss about the biography of Thirumŭlar and his medical works. PMID:18175648

  7. Role of CSPG receptor LAR phosphatase in restricting axon regeneration after CNS injury

    PubMed Central

    Xu, Bin; Park, Dongsun; Ohtake, Yosuke; Li, Hui; Hayat, Umar; Li, Junjun; Selzer, Michael E.; Longo, Frank M.; Li, Shuxin

    2014-01-01

    Extracellular matrix molecule chondroitin sulfate proteoglycans (CSPGs) are highly upregulated in scar tissues and form a potent chemical barrier for CNS axon regeneration. Recent studies support that the receptor protein tyrosine phosphatase σ (PTPσ) and its subfamily member leukocyte common antigen related phosphatase (LAR) act as transmembrane receptors to mediate CSPG inhibition. PTPσ deficiency increased regrowth of ascending axons into scar tissues and descending corticospinal tract (CST) axons into the caudal spinal cord after spinal cord injury (SCI). Pharmacological LAR inhibition enhanced serotonergic axon growth in SCI mice. However, transgenic LAR deletion on axon growth in vivo and role of LAR in regulating regrowth of other fiber tracts have not been studied. Here, we studied role of LAR in restricting regrowth of injured descending CNS axons in deficient mice. LAR deletion increased regrowth of serotonergic axons into scar tissues and caudal spinal cord after dorsal overhemitransection. LAR deletion also stimulated regrowth of CST fibers into the caudal spinal cord. LAR protein was upregulated days to weeks after injury and co-localized to serotonergic and CST axons. Moreover, LAR deletion improved functional recovery by increasing BMS locomotor scores and stride length and reducing grid walk errors. This is the first transgenic study that demonstrates crucial role of LAR in restricting regrowth of injured CNS axons. PMID:25220840

  8. W phase source inversion using high-rate regional GPS data for large earthquakes

    NASA Astrophysics Data System (ADS)

    Riquelme, S.; Bravo, F.; Melgar, D.; Benavente, R.; Geng, J.; Barrientos, S.; Campos, J.

    2016-04-01

    W phase moment tensor inversion has proven to be a reliable method for rapid characterization of large earthquakes. For global purposes it is used at the United States Geological Survey, Pacific Tsunami Warning Center, and Institut de Physique du Globe de Strasbourg. These implementations provide moment tensors within 30-60 min after the origin time of moderate and large worldwide earthquakes. Currently, the method relies on broadband seismometers, which clip in the near field. To ameliorate this, we extend the algorithm to regional records from high-rate GPS data and retrospectively apply it to six large earthquakes that occurred in the past 5 years in areas with relatively dense station coverage. These events show that the solutions could potentially be available 4-5 min from origin time. Continuously improving GPS station availability and real-time positioning solutions will provide significant enhancements to the algorithm.

  9. Recent Enhancements of the Phased Array Mirror Extendible Large Aperture (PAMELA) Telescope Testbed at MSFC

    NASA Technical Reports Server (NTRS)

    Rakoczy, John; Montgomery, Edward E.; Lindner, Jeff

    2000-01-01

    Recent incremental upgrades to the Phased Array Mirror Extendible Large Aperture (PAMELA) telescope testbed have enabled the demonstration of phasing (with a monochromatic source) of clusters of primary mirror segments down to the diffraction limit. PAMELA upgrades include an improved Shack-Hartmann wavefront sensor, passive viscoelastic damping treatments for the voice-coil actuators, mechanical improvement of mirror surface figures, and optical bench baffling. This report summarizes the recent PAMELA upgrades, discusses the lessons learned, and presents a status of this unique testbed for wavefront sensing and control. The Marshall Space Flight Center acquired the Phased Array Mirror Extendible Large Aperture (PAMELA) telescope in 1993 after Kaman Aerospace was unable to complete integration and testing under the limited SDIO and DARPA funding. The PAMELA is a 36-segment, half-meter aperture, adaptive telescope which utilizes a Shack-Hartmann wavefront sensor, inductive coil edge sensors, voice coil actuators, imaging CCD cameras and interferometry for figure alignment, wavefront sensing and control. MSFC originally obtained the PAMELA to supplement its research in the interactions of control systems with flexible structures. In August 1994, complete tip, tilt and piston control was successfully demonstrated using the Shack-Hartmann wavefront sensor and the inductive edge sensors.

  10. Recent Enhancements of the Phased Array Mirror Extendible Large Aperture (PAMELA) Telescope Testbed at MSFC

    NASA Technical Reports Server (NTRS)

    Rakoczy, John; Burdine, Robert (Technical Monitor)

    2001-01-01

    Recent incremental upgrades to the Phased Array Mirror Extendible Large Aperture (PAMELA) telescope testbed have enabled the demonstration of phasing (with a monochromatic source) of clusters of primary mirror segments down to the diffraction limit. PAMELA upgrades include in improved Shack-Hartmann wavefront sensor, passive viscoelastic damping treatments for the voice-coil actuators, mechanical improvement of mirror surface figures, and optical bench baffling. This report summarizes the recent PAMELA upgrades, discusses the lessons learned, and presents a status of this unique testbed for wavefront sensing and control. The Marshall Space Flight Center acquired the Phased Array Mirror Extendible Large Aperture (PAMELA) telescope in 1993 after Kaman Aerospace was unable to complete integration and testing under the limited SDIO and DARPA funding. The PAMELA is a 36-segment, half-meter aperture, adaptive telescope which utilizes a Shack-Hartmann wavefront sensor, inductive coil edge sensors, voice coil actuators, imaging CCD cameras and interferometry for figure alignment, wavefront sensing and control. MSFC originally obtained the PAMELA to supplement its research in the interactions of control systems with flexible structures. In August 1994, complete tip, tilt and piston control was successfully demonstrated using the Shack-Hartmann wavefront sensor and the inductive edge sensors.

  11. Large Eddy Simulation of diesel injector opening with a two phase cavitation model

    NASA Astrophysics Data System (ADS)

    Koukouvinis, P.; Gavaises, M.; Li, J.; Wang, L.

    2015-12-01

    In the current paper, indicative results of the flow simulation during the opening phase of a Diesel injector are presented. In order to capture the complex flow field and cavitation structures forming in the injector, Large Eddy Simulation has been employed, whereas compressibility of the liquid was included. For taking into account cavitation effects, a two phase homogenous mixture model was employed. The mass transfer rate of the mixture model was adjusted to limit as much as possible the occurrence of negative pressures. During the simulation, pressure peaks have been found in areas of vapour collapse, with magnitude beyond 4000bar, which is higher that the yield stress of common materials. The locations of such pressure peaks corresponds well with the actual erosion location as found from X ray scans.

  12. RCM-E simulation of substorm growth phase arc associated with large-scale adiabatic convection

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Wolf, Richard A.; Toffoletto, Frank R.; Sazykin, Stanislav

    2013-12-01

    Substorm auroral breakup often occurs on a longitudinally elongated arc at the end of a growth phase. We present an idealized high-resolution simulation with the Rice Convection Model-Equilibrium (RCM-E) to investigate how large-scale adiabatic convection under equilibrium conditions can give rise to an auroral arc. We find that a thin arc that maps to the magnetic transition region at r ~ 8 RE emerges in the late growth phase. The simulation implies that the arc in the premidnight sector is associated with a sheet of additional region 1 sense field-aligned current (FAC) just poleward of the main region 2 FAC, while the arc in the postmidnight sector is associated with the poleward portion of the main upward region 2 FAC. Explanations for the location and the thickness of the arc are proposed, based on the simulation.

  13. Large spatial self-phase modulation in castor oil enhanced by gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Alencar, Márcio A. R. C.; Nascimento, César M.; Chávez-Cerda, Sabino; da Silva, Monique G. A.; Meneghetti, Mario R.; Hickmann, Jandir M.

    2006-02-01

    Spatial self-phase modulation was observed when a CW laser beam propagated along a cell containing castor oil. The minimum power needed to excite this effect decreases when the sample length is increased, as well as when the laser wavelength approaches to the absorption band of the medium. The same phenomenon was also observed when a laser beam interacts with a colloidal solution of gold nanoparticles in castor oil. For this system the self-phase modulation minimum power decreased dramatically, which indicates that the nonlinear refractive index for this system is enhanced due to the gold nanoparticles. Moreover, for laser wavelength near to the plasmon resonance of the gold nanoparticles, this enhancement factor is even higher. Although the large value of those media nonlinearity, its temporal response is slow. This fact suggests that this phenomenon is due to thermal effects mainly.

  14. Large-Actuator-Number Horizontal Path Correction of Atmospheric Turbulence utilizing an Interferometric Phase Conjugate Engine

    SciTech Connect

    Baker, K L; Stappaerts, E A; Gavel, D; Tucker, J; Silva, D A; Wilks, S C; Olivier, S S; Olsen, J

    2004-08-25

    An adaptive optical system used to correct horizontal beam propagation paths has been demonstrated. This system utilizes an interferometric wave-front sensor and a large-actuator-number MEMS-based spatial light modulator to correct the aberrations incurred by the beam after propagation along the path. Horizontal path correction presents a severe challenge to adaptive optics systems due to the short atmospheric transverse coherence length and the high degree of scintillation incurred by laser propagation along these paths. Unlike wave-front sensors that detect phase gradients, however, the interferometric wave-front sensor measures the wrapped phase directly. Because the system operates with nearly monochromatic light and uses a segmented spatial light modulator, it does not require that the phase be unwrapped to provide a correction and it also does not require a global reconstruction of the wave-front to determine the phase as required by gradient detecting wave-front sensors. As a result, issues with branch points are eliminated. Because the atmospheric probe beam is mixed with a large amplitude reference beam, it can be made to operate in a photon noise limited regime making its performance relatively unaffected by scintillation. The MEMS-based spatial light modulator in the system contains 1024 pixels and is controlled to speeds in excess of 800 Hz, enabling its use for correction of horizontal path beam propagation. In this article results are shown of both atmospheric characterization with the system and open loop horizontal path correction of a 1.53 micron laser by the system. To date Strehl ratios of greater than 0.5 have been achieved.

  15. Phase transitions as the origin of large scale structure in the universe

    NASA Technical Reports Server (NTRS)

    Turok, Neil

    1988-01-01

    A review of the formation of large scale structure through gravitational growth of primordial perturbations is given. This is followed by a discussion of how symmetry breaking phase transitions in the early universe might have produced the required perturbations, in particular through the formation and evolution of a network of cosmic strings. Finally, the statistical mechanics of string networks, for both cosmic and fundamental strings is discussed, leading to some more speculative ideas on the possible role of fundamental strings (superstrings or heterotic strings) in the very early universe.

  16. Dendronization-induced phase-transfer, stabilization and self-assembly of large colloidal Au nanoparticles.

    PubMed

    Malassis, Ludivine; Jishkariani, Davit; Murray, Christopher B; Donnio, Bertrand

    2016-07-21

    The phase-transfer of CTAB-coated aqueous, spherical gold nanoparticles, with metallic core diameters ranging from ca. 27 to 54 nm, into organic solvents by exchanging the primitive polar bilayer with lipophilic, disulfide dendritic ligands is reported. The presence of such a thick nonpolar organic shell around these large nanoparticles enhances their stabilization against aggregation, in addition to enabling their transfer into a variety of solvents such as chloroform, toluene or tetrahydrofuran. Upon the slow evaporation of a chloroform suspension deposited on a solid support, the dendronized hybrids were found to self-assemble into ring structures of various diameters. Moreover, their self-assembly at the liquid-air interface affords the formation of fairly long-range ordered monolayers, over large areas, that can then be entirely transferred onto solid substrates. PMID:27348477

  17. Application and Operations Concepts of Large Transmit Phased Array of Parabolic Reflectors

    NASA Technical Reports Server (NTRS)

    Amoozegar, Farid

    2006-01-01

    The primary motive for large transmit array of parabolic reflectors, also known as Uplink Array, was to explore alternate methods in order to replace the large 70m antennas of Deep Space Network (DSN) such that the core capability for emergency support to a troubled spacecraft in deep space is preserved. Given that the Uplink Array is a new technology, the focus has always been on its feasibility and phase calibration techniques, which by itself is quite a challenge. It would be interesting to examine, however, what else could be accomplished by the Uplink Array capability other than the emergency support to a troubled spacecraft in deep space. ... The objective of this paper is to discuss a few application scenarios and the corresponding operation concepts, such as lunar positioning system, high EIRP uplink and the synergies with solar radar, and high power RF beams.

  18. Dendronization-induced phase-transfer, stabilization and self-assembly of large colloidal Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Malassis, Ludivine; Jishkariani, Davit; Murray, Christopher B.; Donnio, Bertrand

    2016-07-01

    The phase-transfer of CTAB-coated aqueous, spherical gold nanoparticles, with metallic core diameters ranging from ca. 27 to 54 nm, into organic solvents by exchanging the primitive polar bilayer with lipophilic, disulfide dendritic ligands is reported. The presence of such a thick nonpolar organic shell around these large nanoparticles enhances their stabilization against aggregation, in addition to enabling their transfer into a variety of solvents such as chloroform, toluene or tetrahydrofuran. Upon the slow evaporation of a chloroform suspension deposited on a solid support, the dendronized hybrids were found to self-assemble into ring structures of various diameters. Moreover, their self-assembly at the liquid-air interface affords the formation of fairly long-range ordered monolayers, over large areas, that can then be entirely transferred onto solid substrates.The phase-transfer of CTAB-coated aqueous, spherical gold nanoparticles, with metallic core diameters ranging from ca. 27 to 54 nm, into organic solvents by exchanging the primitive polar bilayer with lipophilic, disulfide dendritic ligands is reported. The presence of such a thick nonpolar organic shell around these large nanoparticles enhances their stabilization against aggregation, in addition to enabling their transfer into a variety of solvents such as chloroform, toluene or tetrahydrofuran. Upon the slow evaporation of a chloroform suspension deposited on a solid support, the dendronized hybrids were found to self-assemble into ring structures of various diameters. Moreover, their self-assembly at the liquid-air interface affords the formation of fairly long-range ordered monolayers, over large areas, that can then be entirely transferred onto solid substrates. Electronic supplementary information (ESI) available: TEM microscope images. See DOI: 10.1039/c6nr03404g

  19. Liprin-alpha has LAR-independent functions in R7 photoreceptor axon targeting.

    PubMed

    Hofmeyer, Kerstin; Maurel-Zaffran, Corinne; Sink, Helen; Treisman, Jessica E

    2006-08-01

    In the Drosophila visual system, the color-sensing photoreceptors R7 and R8 project their axons to two distinct layers in the medulla. Loss of the receptor tyrosine phosphatase LAR from R7 photoreceptors causes their axons to terminate prematurely in the R8 layer. Here we identify a null mutation in the Liprin-alpha gene based on a similar R7 projection defect. Liprin-alpha physically interacts with the inactive D2 phosphatase domain of LAR, and this domain is also essential for R7 targeting. However, another LAR-dependent function, egg elongation, requires neither Liprin-alpha nor the LAR D2 domain. Although human and Caenorhabditis elegans Liprin-alpha proteins have been reported to control the localization of LAR, we find that LAR localizes to focal adhesions in Drosophila S2R+ cells and to photoreceptor growth cones in vivo independently of Liprin-alpha. In addition, Liprin-alpha overexpression or loss of function can affect R7 targeting in the complete absence of LAR. We conclude that Liprin-alpha does not simply act by regulating LAR localization but also has LAR-independent functions. PMID:16864797

  20. An optical spectrum of a large isolated gas-phase PAH cation: C78H26+

    NASA Astrophysics Data System (ADS)

    Zhen, Junfeng; Mulas, Giacomo; Bonnamy, Anthony; Joblin, Christine

    2016-03-01

    A gas-phase optical spectrum of a large polycyclic aromatic hydrocarbon (PAH) cation - C78H26+ - in the 410 -610 nm range is presented. This large all-benzenoid PAH should be large enough to be stable with respect to photodissociation in the harsh conditions prevailing in the interstellar medium (ISM). The spectrum is obtained via multi-photon dissociation (MPD) spectroscopy of cationic C78H26 stored in the Fourier Transform Ion Cyclotron Resonance (FT-ICR) cell of the PIRENEA setup using the radiation from a mid-band optical parametric oscillator (OPO) laser. The experimental spectrum shows two main absorption peaks at 431 nm and 516 nm, in good agreement with a theoretical spectrum computed via time-dependent density functional theory (TD-DFT). DFT calculations indicate that the equilibrium geometry, with the absolute minimum energy, is of lowered, nonplanar C2 symmetry instead of the more symmetric planar D2h symmetry that is usually the minimum for similar PAHs of smaller size. This kind of slightly broken symmetry could produce some of the fine structure observed in some diffuse interstellar bands (DIBs). It can also favor the folding of C78H26+ fragments and ultimately the formation of fullerenes. This study opens up the possibility to identify the most promising candidates for DIBs amongst large cationic PAHs.

  1. An optical spectrum of a large isolated gas-phase PAH cation: C78H26+

    PubMed Central

    Zhen, Junfeng; Mulas, Giacomo; Bonnamy, Anthony; Joblin, Christine

    2016-01-01

    A gas-phase optical spectrum of a large polycyclic aromatic hydrocarbon (PAH) cation - C78H26+- in the 410-610 nm range is presented. This large all-benzenoid PAH should be large enough to be stable with respect to photodissociation in the harsh conditions prevailing in the interstellar medium (ISM). The spectrum is obtained via multi-photon dissociation (MPD) spectroscopy of cationic C78H26 stored in the Fourier Transform Ion Cyclotron Resonance (FT-ICR) cell using the radiation from a mid-band optical parametric oscillator (OPO) laser. The experimental spectrum shows two main absorption peaks at 431 nm and 516 nm, in good agreement with a theoretical spectrum computed via time-dependent density functional theory (TD-DFT). DFT calculations indicate that the equilibrium geometry, with the absolute minimum energy, is of lowered, nonplanar C2 symmetry instead of the more symmetric planar D2h symmetry that is usually the minimum for similar PAHs of smaller size. This kind of slightly broken symmetry could produce some of the fine structure observed in some diffuse interstellar bands (DIBs). It can also favor the folding of C78H26+ fragments and ultimately the formation of fullerenes. This study opens up the possibility to identify the most promising candidates for DIBs amongst large cationic PAHs. PMID:26942230

  2. Timing of Formal Phase Safety Reviews for Large-Scale Integrated Hazard Analysis

    NASA Technical Reports Server (NTRS)

    Massie, Michael J.; Morris, A. Terry

    2010-01-01

    Integrated hazard analysis (IHA) is a process used to identify and control unacceptable risk. As such, it does not occur in a vacuum. IHA approaches must be tailored to fit the system being analyzed. Physical, resource, organizational and temporal constraints on large-scale integrated systems impose additional direct or derived requirements on the IHA. The timing and interaction between engineering and safety organizations can provide either benefits or hindrances to the overall end product. The traditional approach for formal phase safety review timing and content, which generally works well for small- to moderate-scale systems, does not work well for very large-scale integrated systems. This paper proposes a modified approach to timing and content of formal phase safety reviews for IHA. Details of the tailoring process for IHA will describe how to avoid temporary disconnects in major milestone reviews and how to maintain a cohesive end-to-end integration story particularly for systems where the integrator inherently has little to no insight into lower level systems. The proposal has the advantage of allowing the hazard analysis development process to occur as technical data normally matures.

  3. Spin liquid phases of large-spin Mott insulating ultracold bosons

    NASA Astrophysics Data System (ADS)

    Rutkowski, Todd C.; Lawler, Michael J.

    2016-03-01

    Mott insulating ultracold gases possess a unique whole-atom exchange interaction which enables large quantum fluctuations between the Zeeman sublevels of each atom. By strengthening this interaction—either through the use of large-spin atoms or by tuning the particle-particle interactions via optical Feshbach resonance—one may enhance fluctuations and facilitate the appearance of the long-sought-after quantum spin liquid phase—all in the highly tunable environment of cold atoms. To illustrate the relationship between the spin magnitude, interaction strength, and resulting magnetic phases, we present and solve a mean-field theory for bosons optically confined to the one-particle-per-site Mott state, using both analytic and numerical methods. We find on square and triangular lattices for bosons of hyperfine spin f >2 that making the repulsive s -wave scattering length through the singlet channel small—relative to the higher-order scattering channels—accesses a short-range resonating valence bond (s-RVB) spin liquid phase.

  4. An efficient pipeline wavefront phase recovery for the CAFADIS camera for extremely large telescopes.

    PubMed

    Magdaleno, Eduardo; Rodríguez, Manuel; Rodríguez-Ramos, José Manuel

    2010-01-01

    In this paper we show a fast, specialized hardware implementation of the wavefront phase recovery algorithm using the CAFADIS camera. The CAFADIS camera is a new plenoptic sensor patented by the Universidad de La Laguna (Canary Islands, Spain): international patent PCT/ES2007/000046 (WIPO publication number WO/2007/082975). It can simultaneously measure the wavefront phase and the distance to the light source in a real-time process. The pipeline algorithm is implemented using Field Programmable Gate Arrays (FPGA). These devices present architecture capable of handling the sensor output stream using a massively parallel approach and they are efficient enough to resolve several Adaptive Optics (AO) problems in Extremely Large Telescopes (ELTs) in terms of processing time requirements. The FPGA implementation of the wavefront phase recovery algorithm using the CAFADIS camera is based on the very fast computation of two dimensional fast Fourier Transforms (FFTs). Thus we have carried out a comparison between our very novel FPGA 2D-FFTa and other implementations. PMID:22315523

  5. An Efficient Pipeline Wavefront Phase Recovery for the CAFADIS Camera for Extremely Large Telescopes

    PubMed Central

    Magdaleno, Eduardo; Rodríguez, Manuel; Rodríguez-Ramos, José Manuel

    2010-01-01

    In this paper we show a fast, specialized hardware implementation of the wavefront phase recovery algorithm using the CAFADIS camera. The CAFADIS camera is a new plenoptic sensor patented by the Universidad de La Laguna (Canary Islands, Spain): international patent PCT/ES2007/000046 (WIPO publication number WO/2007/082975). It can simultaneously measure the wavefront phase and the distance to the light source in a real-time process. The pipeline algorithm is implemented using Field Programmable Gate Arrays (FPGA). These devices present architecture capable of handling the sensor output stream using a massively parallel approach and they are efficient enough to resolve several Adaptive Optics (AO) problems in Extremely Large Telescopes (ELTs) in terms of processing time requirements. The FPGA implementation of the wavefront phase recovery algorithm using the CAFADIS camera is based on the very fast computation of two dimensional fast Fourier Transforms (FFTs). Thus we have carried out a comparison between our very novel FPGA 2D-FFTa and other implementations. PMID:22315523

  6. T/R module development for large aperture L-band phased array

    NASA Technical Reports Server (NTRS)

    Chamberlain, Neil; Andricos, Constantine; Kumley, Kendra; Berkun, Andrew; Hodges, Richard; Spitz, Suzanne

    2004-01-01

    This paper describes a transmit / receive (T/R) module for a large L-band space based radar active phased array being developed at JPL. Electrical performance and construction techniques are described, with emphasis on the former. The T/R modules have a bandwidth of more than 80 MHz centered at 1260MHz and support dual, switched polarizations. Phase and amplitude are controlled by a 6-bit phase shifter and a 6-bit attenuator, respectively. The transmitter power amplifier generates 2.4 W into a nominal 50 ohm load with 36% overall efficiency. The receiver noise figure is 4.4 dB including all front-end losses. The module weighs 32 g and has a footprint of 8 cm x 4.5 cm. Fourteen of these T/R modules were fabricated at the JPL Pick-and-Place Facility and were tested using a computer-controlled measurement facility developed at JPL. Calibrated performance of this set of T/R modules is presented and shows good agreement with design predictions.

  7. Large magnetocrystalline anisotropy in bilayer transition metal phases from first-principles full-potential calculations

    NASA Astrophysics Data System (ADS)

    Ravindran, P.; Kjekshus, A.; Fjellvåg, H.; James, P.; Nordström, L.; Johansson, B.; Eriksson, O.

    2001-04-01

    The computational framework of this study is based on the local-spin-density approximation with first-principles full-potential linear muffin-tin orbital calculations including orbital polarization (OP) correction. We have studied the magnetic anisotropy for a series of bilayer CuAu(I)-type materials such as FeX, MnX (X=Ni,Pd,Pt), CoPt, NiPt, MnHg, and MnRh in a ferromagnetic state using experimental structural parameters to understand the microscopic origin of magnetic-anisotropy energy (MAE) in magnetic multilayers. Except for MnRh and MnHg, all these phases show perpendicular magnetization. We have analyzed our results in terms of angular momentum-, spin- and site-projected density of states, magnetic-angular-momentum-projected density of states, orbital-moment density of states, and total density of states. The orbital-moment number of states and the orbital-moment anisotropy for FeX (X=Ni,Pd,Pt) are calculated as a function of band filling to study its effect on MAE. The total and site-projected spin and orbital moments for all these systems are calculated with and without OP when the magnetization is along or perpendicular to the plane. The results are compared with available experimental as well as theoretical results. Our calculations show that OP always enhances the orbital moment in these phases and brings them closer to experimental values. The changes in MAE are analyzed in terms of exchange splitting, spin-orbit splitting, and tetragonal distortion/crystal-field splitting. The calculated MAE is found to be in good agreement with experimental values when the OP correction is included. Some of the materials considered here show large magnetic anisotropy of the order of meV. In particular we found that MnPt will have a very large MAE if it could be stabilized in a ferromagnetic configuration. Our analysis indicates that apart from large spin-orbit interaction and exchange interaction from at least one of the constituents, a large crystal-field splitting

  8. Simulations of spontaneous phase transitions in large, deeply supercooled clusters of SeF{sub 6}

    SciTech Connect

    Chushak, Y.G.; Bartell, L.S.

    1999-12-16

    The crystallization and subsequent solid-state transitions in a series of large clusters of SeF{sub 6} of two sizes have been studied by molecular dynamics simulations at constant temperature. Several diagnostic methods were applied to monitor molecular details of the clusters' structures and their evolution with time. The behavior of 12 liquid clusters with 725 molecules and 10 with 1,722 molecules was examined at 140 and 130 K. During the nanosecond runs of the simulations all of these clusters froze, initially to the bcc or a related but distorted structure. At the higher temperature all but one of the larger clusters underwent a transition to the monoclinic structure whereas all but one of the smaller clusters remained bcc. At the lower temperature all of the smaller clusters ultimately transformed, usually quite abruptly, to the monoclinic structure. In the case of the larger clusters a transition to the monoclinic phase was observed at 140 K whereas at 130 K, besides the monoclinic structure, the orthorhombic or a mixture of orthorhombic and monoclinic phases was obtained in a few clusters. Many of the larger frozen clusters were polycrystalline while the smaller ones were single crystals. How these results relate to Kaschiev's criterion for mononuclear vs polynuclear growth is discussed, and the time dependence of crystal growth was found to agree well with the Kolmogorov-Johnson-Mehl-Avrami equations. Growth rates of the bcc phase were in reasonable agreement with Turnbull's theory. Simulations of solid-state transitions from clusters prepared to have a well-ordered bcc configuration clearly indicate a lower nucleation rate for the low-energy phase than in a cluster with grain boundaries and/or despite the fact that surfaces of clusters tend to be disordered and melt at significantly lower temperatures than their cores. Such a behavior has also been reported for simulations of monatomic clusters.

  9. [Clinical aspects of obsessive-compulsive syndromes: results of phase 2 of a large French survey].

    PubMed

    Hantouche, E G; Bourgeois, M; Bouhassira, M; Lancrenon, S

    1996-01-01

    Obsessive-Compulsive Disorder (OCD) had received a new interest from fundamental research (psychopharmacology, neurobiology and brain imagery...). Although more investigation of OCD clinical aspects are needed, especially in large cohorts of patients, not seen nor investigated only in high specialized psychiatric units. A large french survey "Screening-Understanding-Treating OCD" was conducted in 1994 with the participation of 240 psychiatrists. The survey had included 4,363 new consecutive patients consulting in out-patient psychiatry. The phase 1 had shown a point prevalence rates of 9.2% for OCD (full criteria of DSM III-R) and 17% for OCS (Obsessive-Compulsive Syndromes). From 731 patients, the phrase 2 was conducted on a cohort of 646 patients with OCD or OCS and had explored in details in the clinical aspects of the OC illness (typology, symptomatic categories, comorbidity, OCD spectrum, psychiatric family history and treatment history...). The results of the french survey phase 2 had confirmed a variety of classical and current literature data, especially: the ICD 10 proposal for diagnostic sub-typology according to symptomatic predominance (obsessions, compulsions or both); the symptomatic clustering of obsessions and compulsions into three major categories, suggested by a recent study from the Boston University; the high rate of comorbidity with anxiety and depressive disorders and with disorders related to the large OCD spectrum (somatoform disorders, eating disorders, impulse-control disorders, compulsive buying...); the impact of clinical parameters (as slowness, avoidance, lack of insight) on clinical global OCD and OCS severity; the high rate of intrafamilial psychiatric morbidity (OCD, depression, anxiety disorders). PMID:9035981

  10. Site amplification at Avcılar, Istanbul

    NASA Astrophysics Data System (ADS)

    Ergin, M.; Özalaybey, S.; Aktar, M.; Yalçin, M. N.

    2004-10-01

    Avcılar is the suburb of Istanbul that was most heavily damaged during the August 17, 1999 Mw 7.4 Izmit earthquake. Strong ground motion caused fatalities and damage in Avcılar despite being ˜90 km from the epicenter. We deployed five portable seismograph stations equipped with Reftek 24-bit recorders and L4C-3D seismometers for 2 months, in order to understand why the local site response was different from elsewhere in Istanbul. A reference station was placed on a hard rock site, and the remaining four stations were placed on other geological units, in areas that had experienced varying levels of damage. We calculated frequency-dependent ground amplification curves by taking the ratios of the spectra at soft and hard rock sites. We obtained similar site response curves for most earthquakes at each site in the frequency range of 0.3-1.6 Hz, and observed no significant site amplification beyond 2.0 Hz at any site. The overall characteristics of the recorded S-waveforms and our modeling of the calculated site amplification curves are consistent with amplification as a result of trapping of seismic energy within a 100-150 m thick, low-velocity subsurface layer. We also review the applicability of microtremor measurements to estimate local site effects at Avcılar. For these data, we used ratios of spectra of horizontal to vertical components to obtain each site response. These results are compared with standard spectral ratios. These microtremor measurements provide consistent estimates of the amplification at most sites at the higher end of the frequency band, namely above 1 Hz. The results from both methods indeed agree well in this part of the frequency band. However, the microtremor method fails to detect amplification at lower frequencies, namely <1.0 Hz.

  11. Macroscopic quantum tunneling and quantum - classical phase transitions of the escape rate in large spin systems

    NASA Astrophysics Data System (ADS)

    Owerre, S. A.; Paranjape, M. B.

    2015-01-01

    This article presents a review on the theoretical and the experimental developments on macroscopic quantum tunneling and quantum-classical phase transitions of the escape rate in large spin systems. A substantial amount of research work has been done in this area of research over the years, so this article does not cover all the research areas that have been studied, for instance the effect of dissipation is not discussed and can be found in other review articles. We present the basic ideas with simplified calculations so that it is readable to both specialists and nonspecialists in this area of research. A brief derivation of the path integral formulation of quantum mechanics in its original form using the orthonormal position and momentum basis is reviewed. For tunneling of a particle into the classically forbidden region, the imaginary time (Euclidean) formulation of path integral is useful, we review this formulation and apply it to the problem of tunneling in a double well potential. For spin systems such as single molecule magnets, the formulation of path integral requires the use of non-orthonormal spin coherent states in (2 s + 1) dimensional Hilbert space, the coordinate independent and the coordinate dependent form of the spin coherent state path integral are derived. These two (equivalent) forms of spin coherent state path integral are applied to the tunneling of single molecule magnets through a magnetic anisotropy barrier. Most experimental and numerical results are presented. The suppression of tunneling for half-odd integer spin (spin-parity effect) at zero magnetic field is derived using both forms of spin coherent state path integral, which shows that this result (spin-parity effect) is independent of the choice of coordinate. At nonzero magnetic field we present both the experimental and the theoretical results of the oscillation of tunneling splitting as a function of the applied magnetic field applied along the spin hard anisotropy axis

  12. Experimental instrumentation system for the Phased Array Mirror Extendible Large Aperture (PAMELA) test program

    NASA Technical Reports Server (NTRS)

    Boykin, William H., Jr.

    1993-01-01

    Adaptive optics are used in telescopes for both viewing objects with minimum distortion and for transmitting laser beams with minimum beam divergence and dance. In order to test concepts on a smaller scale, NASA MSFC is in the process of setting up an adaptive optics test facility with precision (fraction of wavelengths) measurement equipment. The initial system under test is the adaptive optical telescope called PAMELA (Phased Array Mirror Extendible Large Aperture). Goals of this test are: assessment of test hardware specifications for PAMELA application and the determination of the sensitivities of instruments for measuring PAMELA (and other adaptive optical telescopes) imperfections; evaluation of the PAMELA system integration effort and test progress and recommended actions to enhance these activities; and development of concepts and prototypes of experimental apparatuses for PAMELA.

  13. Evidence for gentle chromospheric evaporation during the gradual phase of large solar flares

    NASA Technical Reports Server (NTRS)

    Schmieder, B.; Forbes, T. G.; Malherbe, J. M.; Machado, M. E.

    1987-01-01

    The Multichannel Subtractive Double Pass Spectrograph of the Meudon solar tower is used to obtain high spatial resolution H-alpha line profiles during the gradual phase of three solar flares. In all cases, small blueshifts lasting for several hours are observed in the flare ribbons. By contrast, the region between the two ribbons exhibits large redshifts that are typical of H-alpha post flare loops. The blueshifts in the ribbons is interpreted as upward chromospheric flows of 0.5-10 km/s, and the possible ambiguities of the interpretation are discussed. A preliminary analysis indicates that such upflows are sufficient to supply the greater than 10 to the 16th g of mass needed to maintain a dense H-alpha postflare loop system in the corona.

  14. The Late Gradual Phase of Large Flares: The Case of November 3, 2003

    NASA Astrophysics Data System (ADS)

    Auraß, H.

    2014-12-01

    The hard X-ray time profiles of most solar eruptive events begin with an impulsive phase that may be followed by a late gradual phase. In a recent article (Aurass et al. in Astron. Astrophys. 555, A40, 2013), we analyzed the impulsive phase of the solar eruptive event on November 3, 2003 in radio and X-ray emission. We found evidence of magnetic breakout reconnection using the radio diagnostic of the common effect of the flare current sheet and, at heights of ±0.4 R⊙, of a coronal breakout current sheet (a source site that we called X). In this article we investigate the radio emission during the late gradual phase of the previously analyzed event. The work is based on 40-400 MHz dynamic spectra (Radio Spectrograph Observatorium Tremsdorf, Leibniz Institut für Astrophysik Potsdam, AIP) combined with radio images obtained by the French Nançay Multifrequency Radio Heliograph (NRH) of the Observatoire de Paris, Meudon. Additionally we use Ramaty High Energy Solar Spectroscopic Imager (RHESSI) hard X-ray (HXR) flux records, and Solar and Heliospheric Observatory (SOHO) Large Angle and Spectrometric Coronagraph (LASCO) and Extreme ultraviolet Imaging Telescope (EIT) images. The analysis shows that the late gradual phase is subdivided into two distinct stages. Stage 1 (here lasting five minutes) is restricted to reoccurring radio emission at source site X. We observe plasma emission and an azimuthally moving source (from X toward the NE; speed ∼1200 kms) at levels radially ordered against the undisturbed coronal density gradient. These radio sources mark the lower boundary of an overdense region with a huge azimuthal extent. By the end of its motion, the source decays and reappears at point X. This is the onset of stage 2 traced here during its first 13 minutes. By this time, NRH sources observed at frequencies ≤236.6 MHz radially lift off with a speed of ∼400 kms (one third of the front speed of the coronal mass ejection (CME)) as one slowly decaying

  15. A 1372-element Large Scale Hemispherical Ultrasound Phased Array Transducer for Noninvasive Transcranial Therapy

    SciTech Connect

    Song, Junho; Hynynen, Kullervo

    2009-04-14

    Noninvasive transcranial therapy using high intensity focused ultrasound transducers has attracted high interest as a promising new modality for the treatments of brain related diseases. We describe the development of a 1372 element large scale hemispherical ultrasound phased array transducer operating at a resonant frequency of 306 kHz. The hemispherical array has a diameter of 31 cm and a 15.5 cm radius of curvature. It is constructed with piezoelectric (PZT-4) tube elements of a 10 mm in diameter, 6 mm in length and 1.4 mm wall thickness. Each element is quasi-air backed by attaching a cork-rubber membrane on the back of the element. The acoustic efficiency of the element is determined to be approximately 50%. The large number of the elements delivers high power ultrasound and offers better beam steering and focusing capability. Comparisons of sound pressure-squared field measurements with theoretical calculations in water show that the array provides good beam steering and tight focusing capability over an efficient volume of approximately 100x100x80 mm{sup 3} with nominal focal spot size of approximately 2.3 mm in diameter at -6 dB. We also present its beam steering and focusing capability through an ex vivo human skull by measuring pressure-squared amplitude after phase corrections. These measurements show the same efficient volume range and focal spot sizes at -6 dB as the ones in water without the skull present. These results indicate that the array is sufficient for use in noninvasive transcranial ultrasound therapy.

  16. A 1372-element Large Scale Hemispherical Ultrasound Phased Array Transducer for Noninvasive Transcranial Therapy

    NASA Astrophysics Data System (ADS)

    Song, Junho; Hynynen, Kullervo

    2009-04-01

    Noninvasive transcranial therapy using high intensity focused ultrasound transducers has attracted high interest as a promising new modality for the treatments of brain related diseases. We describe the development of a 1372 element large scale hemispherical ultrasound phased array transducer operating at a resonant frequency of 306 kHz. The hemispherical array has a diameter of 31 cm and a 15.5 cm radius of curvature. It is constructed with piezoelectric (PZT-4) tube elements of a 10 mm in diameter, 6 mm in length and 1.4 mm wall thickness. Each element is quasi-air backed by attaching a cork-rubber membrane on the back of the element. The acoustic efficiency of the element is determined to be approximately 50%. The large number of the elements delivers high power ultrasound and offers better beam steering and focusing capability. Comparisons of sound pressure-squared field measurements with theoretical calculations in water show that the array provides good beam steering and tight focusing capability over an efficient volume of approximately 100×100×80 mm3 with nominal focal spot size of approximately 2.3 mm in diameter at -6 dB. We also present its beam steering and focusing capability through an ex vivo human skull by measuring pressure-squared amplitude after phase corrections. These measurements show the same efficient volume range and focal spot sizes at -6 dB as the ones in water without the skull present. These results indicate that the array is sufficient for use in noninvasive transcranial ultrasound therapy.

  17. Kinetic Alfvén Wave Generation by Large-scale Phase Mixing

    NASA Astrophysics Data System (ADS)

    Vásconez, C. L.; Pucci, F.; Valentini, F.; Servidio, S.; Matthaeus, W. H.; Malara, F.

    2015-12-01

    One view of the solar wind turbulence is that the observed highly anisotropic fluctuations at spatial scales near the proton inertial length dp may be considered as kinetic Alfvén waves (KAWs). In the present paper, we show how phase mixing of large-scale parallel-propagating Alfvén waves is an efficient mechanism for the production of KAWs at wavelengths close to dp and at a large propagation angle with respect to the magnetic field. Magnetohydrodynamic (MHD), Hall magnetohydrodynamic (HMHD), and hybrid Vlasov-Maxwell (HVM) simulations modeling the propagation of Alfvén waves in inhomogeneous plasmas are performed. In the linear regime, the role of dispersive effects is singled out by comparing MHD and HMHD results. Fluctuations produced by phase mixing are identified as KAWs through a comparison of polarization of magnetic fluctuations and wave-group velocity with analytical linear predictions. In the nonlinear regime, a comparison of HMHD and HVM simulations allows us to point out the role of kinetic effects in shaping the proton-distribution function. We observe the generation of temperature anisotropy with respect to the local magnetic field and the production of field-aligned beams. The regions where the proton-distribution function highly departs from thermal equilibrium are located inside the shear layers, where the KAWs are excited, this suggesting that the distortions of the proton distribution are driven by a resonant interaction of protons with KAW fluctuations. Our results are relevant in configurations where magnetic-field inhomogeneities are present, as, for example, in the solar corona, where the presence of Alfvén waves has been ascertained.

  18. Impulsive Phase He 10830 Spectra of a Large Solar Limb Flare of 16 August 1989*

    NASA Astrophysics Data System (ADS)

    You, Jianqi; Wang, Chuanjin; Fan, Zhongyu; Li, Hui

    1998-10-01

    We obtained simultaneously Hei 10830 Å spectra, Hα filtergrams and microwave data of a large limb flare (2N/X20) in 1989. In this paper we characterize Hei 10830 spectra in relation to the impulsive phase. All the Hei 10830 spectra, except those of the surge, show blue shift or blue asymmetry. The velocities inferred from the spectra range from a few to 160kms-1, implying that the horizontal motion is very likely present in the structure of this flare at different heights. The Hei 10830 profiles of a flare are relatively broad and cannot be simulated by the Doppler broadening mechanism with a uniform flare model atmosphere. It is most likely that these characteristics are related to rapid and localized heating in the low and middle chromosphere. Comparing the SXR and microwave data with the optical data leads to the following scenario: the corona was already heated to some extent before the flare onset, and in the first 2minutes of the impulsive phase, heat conduction was the main source or, at least, a competitive source, for chromospheric heating. However, the impulsive event, associated with the unusually broadened Hei 10830 line (Deltalambdaf>20Å) and temporally correlated with a microwave burst, is probably caused by electron-beam heating.

  19. Novel Zn-based MOFs stationary phase with large pores for capillary electrochromatography.

    PubMed

    Tang, Pingxiu; Bao, Tao; Chen, Zilin

    2016-08-01

    Metal-organic frameworks (MOFs) are attractive stationary phases in the field of separation sciences for their unique properties such as large specific surface areas, high porosity, and diverse structures. However, there are few MOFs, which have ultrahigh porosities and gas uptake capacities. In this work, MOF-180 with exceptional porosity, a cage size of 15 × 23 Å, was grown on inner wall of capillary as a novel stationary phase for open-tubular CEC. It has been demonstrated that the MOF-180-modified capillary column exhibited good performance for separation of acidic, basic, and neutral analytes. As compared with MOF-199-modified column, MOF-180-modified column exhibited specific recognition and size selectivity to the tested compounds. The characteristics observed by SEM and FTIR indicated that MOF-180 was successfully grafted on the inner wall of the capillary. The precisions (RSDs) of retention time, peak area, and W1/2 for methylbenzene, ethylbenzene, n-propylbenzene, chlorobenzene, o-dichlorobenzene, and 1,2,4-trichlorobenzene were 0.50-0.54%, 3.31-4.13%, 0.35-1.61%, 1.73-4.22%, 2.67-4.37%, and 1.60-3.38%, respectively. Besides, the run-to-run, day-to-day, and column-to-column RSDs of EOF were 0.6%, 4.19%, and 4.31%, respectively. PMID:27129916

  20. A spectral Phase-Amplitude method for propagating a wave function to large distances

    NASA Astrophysics Data System (ADS)

    Rawitscher, George

    2015-06-01

    The phase and amplitude (Ph-A) of a wave function vary slowly with distance, in contrast to the wave function that can be highly oscillatory. Hence the Ph-A representation of a wave function requires far fewer computational mesh points than the wave function itself. In 1930 Milne presented an equation for the phase and the amplitude functions (which is different from the one developed by Calogero), and in 1962 Seaton and Peach solved these equations iteratively. The objective of the present study is to implement Seaton and Peach's iteration procedure with a spectral Chebyshev expansion method, and at the same time present a non-iterative analytic solution to an approximate version of the iterative equations. The iterations converge rapidly for the case of attractive potentials. Two numerical examples are given: (1) for a potential that decreases with distance as 1 /r3, and (2) a Coulomb potential ∝ 1 / r. In both cases the whole radial range of [0-2000] requires only between 25 and 100 mesh points and the corresponding accuracy is between 10-3 and 10-6. The 0th iteration (which is the WKB approximation) gives an accuracy of 10-2. This spectral method permits one to calculate a wave function out to large distances reliably and economically.

  1. Diffuse large B-cell lymphoma presenting in the leukemic phase

    PubMed Central

    Pires, Patricia Puccetti; Rays, Jairo; Catania, Marcos; Lima, Fabiana Roberto; Noronha, Thiago Rodrigo; Abdo, Andre Neder Ramires; Pereira, Juliana

    2016-01-01

    Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin lymphoma comprising a heterogeneous group of disorders with variable histological and clinical behavior. Although other lymphomas may present in the leukemic phase more frequently, this appearance is unusually observed among DLBCL cases. Diagnosing lymphoma is not always easy, and the patient's clinical status quite often may hamper invasive procedures for diagnosis pushing the clinician to look for alternatives to reach the nearest possible accurate diagnosis. The authors report the case of a middle-aged man who presented the history of malaise, weight loss, and low-grade fever. The peripheral blood count showed leukocytosis with the presence of blasts and thrombocytopenia. The cytological morphology and immunophenotyping of the peripheral blood and bone marrow aspirate, as well as the bone marrow biopsy accompanied by a thorough immunohistochemical analysis, rendered the diagnosis of DLBCL in the leukemic phase. The patient was prescribed R-CHOP with a favorable outcome. Intra-abdominal lymph node biopsy was avoided because of the patient's critical medical condition. The authors highlight this rare form of presentation of DLBCL as well as the combination of peripheral blood, bone marrow aspirate, and bone marrow biopsy for reaching the diagnosis in cases were a lymph node sample is unavailable for the diagnostic work-up. PMID:27284540

  2. MicroBooNE, A Liquid Argon Time Projection Chamber (LArTPC) Neutrino Experiment

    SciTech Connect

    Katori, Teppei

    2011-07-01

    Liquid Argon time projection chamber (LArTPC) is a promising detector technology for future neutrino experiments. MicroBooNE is a upcoming LArTPC neutrino experiment which will be located on-axis of Booster Neutrino Beam (BNB) at Fermilab, USA. The R&D efforts on this detection method and related neutrino interaction measurements are discussed.

  3. Language Arts Routing System (LARS) Instructor's Manual. Community College English Project.

    ERIC Educational Resources Information Center

    Michael, Gary; Sliger, Mary

    Implemented on the PLATO IV computer-assisted instruction facility located at the University of Illinois at Urbana-Champaign, the Language Arts Routing System (LARS) is a package of lessons and tests designed to provide remedial training in certain basic language arts skills. LARS is a system which may be used by itself or as an adjunct to regular…

  4. R×B drift momentum spectrometer with high resolution and large phase space acceptance.

    PubMed

    Wang, X; Konrad, G; Abele, H

    2013-02-11

    We propose a new type of momentum spectrometer, which uses the R×B drift effect to disperse the charged particles in a uniformly curved magnetic field, and measures the particles with large phase space acceptance and high resolution. This kind of R×B spectrometer is designed for the momentum analyses of the decay electrons and protons in the PERC (Proton and Electron Radiation Channel) beam station, which provides a strong magnetic field to guide the charged particles in the instrument. Instead of eliminating the guiding field, the R×B spectrometer evolves the field gradually to the analysing field, and the charged particles can be adiabatically transported during the dispersion and detection. The drifts of the particles have similar properties as their dispersion in the normal magnetic spectrometer. Besides, the R×B spectrometer is especially ideal for the measurements of particles with low momenta and large incident angles. We present a design of the R×B spectrometer, which can be used in PERC. For the particles with solid angle smaller than 88 msr, the maximum aberration is below 10(-4). The resolution of the momentum spectra can reach 14.4 keV/c, if the particle position measurements have a resolution of 1 mm. PMID:23576831

  5. Local stellar kinematics from large astrometric surveys: mapping the Galactic phase-space substructure

    NASA Astrophysics Data System (ADS)

    Lepine, Sebastien

    2016-05-01

    The potential of future large astrometric catalogs for mapping the velocity-space distribution of local stars in the Galaxy is illustrated with a kinematic study of K and M dwarfs in the SUPERBLINK catalog of 2.5 million stars with large proper motions (mu>40 mas/yr). Low mass K and M dwarfs, found in abundance thanks to the faint magnitude limit of the catalog (V<20) provide the densest possible sampling of the [(X,Y,Z),(U,V,W)] phase-space, making them well-suited to map out substructure (so-called "streams") in the velocity-space distributions, as well as variations in said distribution over >100 parsec scale distances. The SUPERBLINK proper motion catalog thus provides kinematic data for ~1.5 million M dwarfs from the Galactic disk population, located within 200 parsecs of the Sun, and for ~180,000 K and M (sub)dwarfs from the Galactic halo population, all within 500 parsecs of the Sun. While the disk dwarfs show clear signs of velocity-space substructure, the distribution of halo subdwarf does appear to be relatively smooth ("streamless") in contrast. Evidence for spatial variations at the few hundred parsec scale is also discussed. The current and unfortunately "blurry" view of the local velocity-space distribution promises to be set in much sharper focus with the upcoming availability of data from the GAIA mission.

  6. Calibration of spatially phase-shifted DSPI for measurement of large structures.

    PubMed

    Saif, Babak; Eegholm, Bente Hoffmann; Bluth, Marcel; Greenfield, Perry; Hack, Warren; Blake, Peter; Keski-Kuha, Ritva; North-Morris, Michael

    2007-08-10

    We present a method for the calibration of a spatially phase-shifted digital speckle pattern interferometer (SPS-DSPI), which was designed and built for the purpose of testing the James Webb space telescope (JWST) optical structures and related technology development structures. The need to measure dynamic deformations of large, diffuse structures to nanometer accuracy at cryogenic temperature is paramount in the characterization of a large diameter space and terrestrial based telescopes. The techniques described herein apply to any situation, in which high accuracy measurement of diffuse structures are required. The calibration of the instrument is done using a single-crystal silicon gauge. The gauge has four islands of different heights that change in a predictable manner as a function of temperature. The SPS-DSPI is used to measure the relative piston between the islands as the temperature of the gauge is changed. The measurement results are then compared with the theoretical changes in the height of the gauge islands. The maximum deviation of the measured rate of change of the relative piston in nm/K from the expected value is 3.3%. PMID:17694108

  7. Measurement of large cryogenic structures using a spatially phase-shifted digital speckle pattern interferometer.

    PubMed

    Saif, Babak; Bluth, Marcel; Greenfield, Perry; Hack, Warren; Eegholm, Bente Hoffmann; Blake, Peter; Keski-Kuha, Ritva; Feinberg, Lee; Arenberg, Jonathan W

    2008-02-20

    The James Webb Space Telescope (JWST) Backplane Stability Test Article (BSTA) was developed to demonstrate large precision cryogenic structures' technology readiness for use in the JWST. The thermal stability of the BSTA was measured at cryogenic temperatures at the Marshall Space Flight Center (MSFC) X-Ray Calibration Facility (XRCF) and included nearly continuous measurements over a six-week period in the summer of 2006 covering the temperature range from ambient down to 30 Kusing a spatially phase-shifted digital speckle pattern interferometer (SPS-DSPI). The BSTA is a full size, one-sixth section of the JWST primary mirror backplane assembly (PMBA). The BSTA, measuring almost 3 m across, contains most of the prominent structural elements of the backplane and is to our knowledge the largest structure ever measured with SPS-DSPI at cryogenic conditions. The SPS-DSPI measured rigid body motion and deformations of BSTA to nanometer-level accuracy. The SPS-DSPI was developed specifically for the purposes of this test and other tests of large cryogenic structures for JWST. PMID:18288221

  8. Magmatic history and parental melt composition of olivine-phyric shergottite LAR 06319: Importance of magmatic degassing and olivine antecrysts in Martian magmatism

    NASA Astrophysics Data System (ADS)

    Balta, J. Brian; Sanborn, Matthew; McSween, Harry Y.; Wadhwa, Meenakshi

    2013-08-01

    Several olivine-phyric shergottites contain enough olivine that they could conceivably represent the products of closed-system crystallization of primary melts derived from partial melting of the Martian mantle. Larkman Nunatak (LAR) 06319 has been suggested to represent a close approach to a Martian primary liquid composition based on approximate equilibrium between its olivine and groundmass. To better understand the olivine-melt relationship and the evolution of this meteorite, we report the results of new petrographic and chemical analyses. We find that olivine megacryst cores are generally not in equilibrium with the groundmass, but rather have been homogenized by diffusion to Mg# 72. We have identified two unique grain types: an olivine glomerocryst and an olivine grain preserving a primary magmatic boundary that constrains the time scale of eruption to be on the order of hours. We also report the presence of trace oxide phases and phosphate compositions that suggest that the melt contained approximately 1.1% H2O and lost volatiles during cooling, also associated with an increase in oxygen fugacity upon degassing. We additionally report in situ rare earth element measurements of the various mineral phases in LAR 06319. Based on these reported trace element abundances, we estimate the oxygen fugacity in the LAR 06319 parent melt early in its crystallization sequence (i.e., at the time of crystallization of the low-Ca and high-Ca pyroxenes), the rare earth element composition of the parent melt, and those of melts in equilibrium with later formed phases. We suggest that LAR 06319 represents the product of closed-system crystallization within a shallow magma chamber, with additional olivine accumulated from a cumulate pile. We infer that the olivine megacrysts are antecrysts, derived from a single magma chamber, but not directly related to the host magma, and suggest that mixing of antecrysts within magma chambers may be a common process in Martian magmatic

  9. Thermodynamically consistent phase field approach to dislocation evolution at small and large strains

    NASA Astrophysics Data System (ADS)

    Levitas, Valery I.; Javanbakht, Mahdi

    2015-09-01

    A thermodynamically consistent, large strain phase field approach to dislocation nucleation and evolution at the nanoscale is developed. Each dislocation is defined by an order parameter, which determines the magnitude of the Burgers vector for the given slip planes and directions. The kinematics is based on the multiplicative decomposition of the deformation gradient into elastic and plastic contributions. The relationship between the rates of the plastic deformation gradient and the order parameters is consistent with phenomenological crystal plasticity. Thermodynamic and stability conditions for homogeneous states are formulated and satisfied by the proper choice of the Helmholtz free energy and the order parameter dependence on the Burgers vector. They allow us to reproduce desired lattice instability conditions and a stress-order parameter curve, as well as to obtain a stress-independent equilibrium Burgers vector and to avoid artificial dissipation during elastic deformation. The Ginzburg-Landau equations are obtained as the linear kinetic relations between the rate of change of the order parameters and the conjugate thermodynamic driving forces. A crystalline energy coefficient for dislocations is defined as a periodic step-wise function of the coordinate along the normal to the slip plane, which provides an energy barrier normal to the slip plane and determines the desired, mesh-independent height of the dislocation bands for any slip system orientation. Gradient energy contains an additional term, which excludes the localization of a dislocation within a height smaller than the prescribed height, but it does not produce artificial interface energy. An additional energy term is introduced that penalizes the interaction of different dislocations at the same point. Non-periodic boundary conditions for dislocations are introduced which include the change of the surface energy due to the exit of dislocations from the crystal. Obtained kinematics, thermodynamics

  10. Troll Phase 1, design and execution of large scale rockdumping on a soft uneven seabed

    SciTech Connect

    Brennodden, H.; Christensen, S.; Tidemann, N.H.

    1996-12-01

    Development of the Troll Phase 1 project required landfall, towards the onshore gas conditioning plant, of both 36-in. wet gas feed (or import) pipelines and 40-in. dry gas export pipelines. The plant is located on the Norwegian West coast characterized by a very uneven topography with rocky outcrops and depressions filled with very soft clay sediments. Landfall preparations comprised, besides the driving of a 3.5 km long subsea tunnel system, extensive preparations nearshore in the form of rockdumped supports to limit pipeline spanning. The geotechnical design of these large supports, up to 10.4 m in height, geometrically complex and on a sloping soft seabed, included extensive stability, settlement and soil consolidation analyses for functional and environmental (including earthquake) loads. The design was translated into detailed construction procedures and drawings by very effectively utilizing integrated 3D CAD modeling of seabed and supports. A total of 10 single pipeline supports and 22 combined supports with extensive counterfills were accurately placed, {+-} 20 cm vertically and {+-} 2 m horizontally, utilizing a free fall pipe system and state-of-the-art surveying technology. After pipelay the pipelines were covered at the major peaks to prevent uplifting during operations. Total volume of rock installed in the nearshore area was approximately 290,000 m{sup 3}. A further 66,000 m{sup 3} was installed over an area of 150 by 200 m (tie-in area) to support large spool pieces, connecting offshore and tunnel sections, and associated tie-in equipment. The article describes the geotechnical design, the construction engineering and the construction execution of the pre-lay supports and post-lay covers in the nearshore and tie-in area.

  11. The costs and effectiveness of large Phase III pre-licensure vaccine clinical trials.

    PubMed

    Black, Steven

    2015-01-01

    Prior to the 1980s, most vaccines were licensed based upon safety and effectiveness studies in several hundred individuals. Beginning with the evaluation of Haemophilus influenzae type b conjugate vaccines, much larger pre-licensure trials became common. The pre-licensure trial for Haemophilus influenzae oligosaccharide conjugate vaccine had more than 60,000 children and that of the seven-valent pneumococcal conjugate vaccine included almost 38,000 children. Although trial sizes for both of these studies were driven by the sample size required to demonstrate efficacy, the sample size requirements for safety evaluations of other vaccines have subsequently increased. With the demonstration of an increased risk of intussusception following the Rotashield brand rotavirus vaccine, this trend has continued. However, routinely requiring safety studies of 20,000-50,000 or more participants has two major downsides. First, the cost of performing large safety trials routinely prior to licensure of a vaccine is very large, with some estimates as high at US$200 million euros for one vaccine. This high financial cost engenders an opportunity cost whereby the number of vaccines that a company is willing or able to develop to meet public health needs becomes limited by this financial barrier. The second downside is that in the pre-licensure setting, such studies are very time consuming and delay the availability of a beneficial vaccine substantially. One might argue that in some situations, this financial commitment is warranted such as for evaluations of the risk of intussusception following newer rotavirus vaccines. However, it must be noted that while an increased risk of intussusception was not identified in large pre-licensure studies, in post marketing evaluations an increased risk of this outcome has been identified. Thus, even the extensive pre-licensure evaluations conducted did not identify an associated risk. The limitations of large Phase III trials have also been

  12. Prediction of the Ignition Phases in Aeronautical and Laboratory Burners using Large Eddy Simulations

    NASA Astrophysics Data System (ADS)

    Gicquel, L. Y. M.; Staffelbach, G.; Sanjose, M.; Boileau, M.

    2009-12-01

    Being able to ignite or reignite a gas turbine engine in a cold and rarefied atmosphere is a critical issue for many aeronautical gas turbine manufacturers. From a fundamental point of view, the ignition of the first burner and the flame propagation from one burner to another are two phenomena that are usually not studied. The present work presents on-going and past Large Eddy Simulations (LES) on this specific subject and as investigated at CERFACS (European Centre for Research and Advanced Training in Scientific Computation) located in Toulouse, France. Validation steps and potential difficulties are underlined to ensure reliability of LES for such problems. Preliminary LES results on simple burners are then presented, followed by simulations of a complete ignition sequence in an annular helicopter chamber. For all cases and when possible, two-phase or purely gaseous LES have been applied to the experimentally simplified or the full geometries. For the latter, massively parallel computing (700 processors on a Cray XT3 machine) was essential to perform the computation. Results show that liquid fuel injection has a strong influence on the ignition times and the rate at which the flame progresses from burner to burner. The propagation speed characteristic of these phenomena is much higher than the turbulent flame speed. Based on an in-depth analysis of the computational data, the difference in speed is mainly identified as being due to thermal expansion and the flame speed is strongly modified by the main burner aerodynamics issued by the swirled injection.

  13. Two-dimensional phase contrast imaging for local turbulence measurements in large helical device (invited)

    SciTech Connect

    Tanaka, K.; Michael, C. A.; Kawahata, K.; Akiyama, T.; Tokuzawa, T.; Vyacheslavov, L. N.; Sanin, A. L.; Okajima, S.

    2008-10-15

    Two-dimensional phase contrast imaging (2D) installed on the large helical device (LHD) is a unique diagnostic for local turbulence measurements. A 10.6 {mu}m infrared CO{sub 2} laser and 6x8 channel HgCdTe 2D detector are used. The length of the scattering volume is larger than plasma size. However, the asymmetry of turbulence structure with respect to the magnetic field and magnetic shear make local turbulence measurements possible. From a 2D image of the integrated fluctuations, the spatial cross-correlation function was estimated using time domain correlation analysis, then, the integrated 2D k-spectrum is obtained using maximum entropy method. The 2D k-spectrum is converted from Cartesian coordinates to cylindrical coordinates. Finally, the angle in cylindrical coordinate is converted to flux surface labels. The fluctuation profile over almost the entire plasma diameter can be obtained at a single moment. The measurable k-region can be varied by adjusting the detection optics. Presently, k=0.1-1.0 mm{sup -1} can be measured which is expected region of ion temperature gradient modes and trapped electron mode in LHD. The spatial resolution is 10%-50% of the minor radius.

  14. Large-scale Coronal Propagating Fronts During the Rising Phase of Solar Cycle 24

    NASA Astrophysics Data System (ADS)

    Nitta, N. V.; Liu, W.; Schrijver, C. J.; Title, A. M.; Lemen, J. R.

    2011-12-01

    With increasing solar activity, the AIA on SDO has observed a number of large-scale coronal propagating fronts, which are often called "EIT waves." Although their nature is still actively debated, these propagating fronts usually accompany CMEs, and, in certain cases, may signify CME-related shock waves important for particle acceleration. Using the unprecedented temporal resolution and broad temperature coverage of the AIA, it is possible to characterize the propagating fronts in the corona far better than before, as demonstrated in the literature for a yet small number of cases. We study the properties of more than 40 propagating fronts as observed by AIA, and discuss the key properties for them to be associated with other phenomena such as type II radio bursts, flares, CMEs, ICMEs, and SEP events. We make use of data, both remote-sensing and in-situ, from STEREO which provides two additional vantage points, to make the associations more solid. For the associated phenomena, their basic properties are correlated with those of the propagating fronts. We also revisit the association of EIT waves with other phenomena during the similar phase of Solar Cycle 23 and discuss possible differences in terms of global magnetic field. Understanding their relation with other phenomena, we can have a more complete picture of the coronal propagating fronts in the context of CME acceleration and deceleration.

  15. Terbium-Doped VO2 Thin Films: Reduced Phase Transition Temperature and Largely Enhanced Luminous Transmittance.

    PubMed

    Wang, Ning; Duchamp, Martial; Dunin-Borkowski, Rafal E; Liu, Shiyu; Zeng, XianTing; Cao, Xun; Long, Yi

    2016-01-26

    Vanadium dioxide (VO2) is a well-known thermochromic material with large IR modulating ability, promising for energy-saving smart windows. The main drawbacks of VO2 are its high phase transition temperature (τ(c) = 68°C), low luminous transmission (T(lum)), and weak solar modulating ability (ΔT(sol)). In this paper, the terbium cation (Tb(3+)) doping was first reported to reduce τ(c) and increase T(lum) of VO2 thin films. Compared with pristine VO2, 2 at. % doping level gives both enhanced T(lum) and ΔT(sol) from 45.8% to 54.0% and 7.7% to 8.3%, respectively. The T(lum) increases with continuous Tb(3+) doping and reaches 79.4% at 6 at. % doping level, representing ∼73.4% relative increment compared with pure VO2. This has surpassed the best reported doped VO2 thin films. The enhanced thermochromic properties is meaningful for smart window applications of VO2 materials. PMID:26729057

  16. Synthesis and characterization of large-grain solid-phase crystallized polycrystalline silicon thin films

    SciTech Connect

    Kumar, Avishek E-mail: dalapatig@imre.a-star.edu.sg; Law, Felix; Widenborg, Per I.; Dalapati, Goutam K. E-mail: dalapatig@imre.a-star.edu.sg; Subramanian, Gomathy S.; Tan, Hui R.; Aberle, Armin G.

    2014-11-01

    n-type polycrystalline silicon (poly-Si) films with very large grains, exceeding 30 μm in width, and with high Hall mobility of about 71.5 cm{sup 2}/V s are successfully prepared by the solid-phase crystallization technique on glass through the control of the PH{sub 3} (2% in H{sub 2})/SiH{sub 4} gas flow ratio. The effect of this gas flow ratio on the electronic and structural quality of the n-type poly-Si thin film is systematically investigated using Hall effect measurements, Raman microscopy, and electron backscatter diffraction (EBSD), respectively. The poly-Si grains are found to be randomly oriented, whereby the average area weighted grain size is found to increase from 4.3 to 18 μm with increase of the PH{sub 3} (2% in H{sub 2})/SiH{sub 4} gas flow ratio. The stress in the poly-Si thin films is found to increase above 900 MPa when the PH{sub 3} (2% in H{sub 2})/SiH{sub 4} gas flow ratio is increased from 0.025 to 0.45. Finally, high-resolution transmission electron microscopy, high angle annular dark field-scanning tunneling microscopy, and EBSD are used to identify the defects and dislocations caused by the stress in the fabricated poly-Si films.

  17. Large Eddy Simulations of Two-phase Turbulent Reactive Flows in IC Engines

    NASA Astrophysics Data System (ADS)

    Banaeizadeh, Araz; Schock, Harold; Jaberi, Farhad

    2008-11-01

    The two-phase filtered mass density function (FMDF) subgrid-scale (SGS) model is used for large-eddy simulation (LES) of turbulent spray combustion in internal combustion (IC) engines. The LES/FMDF is implemented via an efficient, hybrid numerical method. In this method, the filtered compressible Navier-Stokes equations in curvilinear coordinate systems are solved with a generalized, high-order, multi-block, compact differencing scheme. The spray and the FMDF are implemented with Lagrangian methods. The reliability and the consistency of the numerical methods are established for different IC engines and the complex interactions among mean and turbulent velocity fields, fuel droplets and combustion are shown to be well captured with the LES/FMDF. In both spark-ignition/direct-injection and diesel engines, the droplet size and velocity distributions are found to be modified by the unsteady, vortical motions generated by the incoming air during the intake stroke. In turn, the droplets are found to change the in-cylinder flow structure. In the spark-ignition engine, flame propagation is similar to the experiment. In the diesel engine, the maximum evaporated fuel concentration is near the cylinder wall where the flame starts, which is again consistent with the experiment.

  18. Flow-based segmentation of the large thoracic arteries in tridirectional phase-contrast MRI

    NASA Astrophysics Data System (ADS)

    Schmidt, Michael; Unterhinninghofen, Roland; Ley, Sebastian; Dillmann, Rüdiger

    2009-02-01

    Tridirectional Phase-Contrast (PC)-MRI sequences provide spatially and temporally resolved measurements of blood flow velocity vectors in the human body. Analyzing flow conditions based on these datasets requires prior segmentation of the vessels of interest. In view of decreased quality of morphology images in PC-MRI sequences, the flow data provides valuable information to support reliable segmentation. This work presents a semi-automatic approach for segmenting the large arteries utilizing both morphology and flow information. It consists of two parts, the extraction of a simplified vessel model based on vessel centerlines and diameters, and a following refinement of the resulting surface for each time frame. Vessel centerlines and diameters are extracted using an offset adaptive medialness function that estimates a voxel's likelihood of belonging to a vessel centerline. The resulting centerline model is manually post-processed to select the appropriate centerlines and link possible gaps. The surface described by the final centerline model is used to initialize a 3D level set segmentation of each time frame. Deformation velocities that depend on both morphology and flow information are proposed and a new approach to account for the curved shape of vessels is introduced. The described segmentation system has been successfully applied on a total of 22 datasets of the thoracic aorta and the pulmonary arteries. Resulting segmentations have been assessed by an expert radiologist and were considered to be very satisfactory.

  19. Cryopreservation of lar gibbon semen collected by manual stimulation.

    PubMed

    Takasu, Masaki; Morita, Natsumi; Tajima, Shunichiro; Almunia, Julio; Maeda, Masami; Kamiguchi, Takashi

    2016-07-01

    We confirmed ejaculation as a result of manual stimulation in a lar gibbon, and attempted to cryopreserve the semen using TES-Tris-egg yolk-based (TTE) extender. After measuring the amount of semen (g), we first diluted the semen with TTE extender, and calculated sperm concentration (sperm/ml), total sperm count (sperm), and progressive sperm motility (%). Then, we cooled diluted semen slowly to 4 °C over 2 h, and added an equal volume of secondary extender containing glycerol over 30 min. Finally, we flash-froze the semen solution by plunging into liquid nitrogen. In addition, we freeze-thawed the solution to determine the recovery rate of the motile sperm. Collection of semen was successful on four of the five occasions. The median (min-max) quantity of ejaculate was 0.19 g (0.09-0.26 g), the median sperm concentration was 1.38 × 10(9) sperm/ml (1.20-1.53 × 10(9) sperm/ml), and the median total sperm count was 0.26 × 10(9) sperm (0.11-0.40 × 10(9) sperm). Moreover, the median sperm motility immediately after ejaculation was 65 % (60-75 %), the median sperm motility after freeze-thawing was 30 % (25-35 %), and the median recovery rate was 42.3 % (40.0-58.3 %). We were able to (1) collect semen from a lar gibbon by manual stimulation, (2) reveal andrological findings regarding semen characteristics, and (3) preserve the genetic resource using TTE cryopreservation. PMID:27179974

  20. Influence of LAR and VAR on Para-Aminopyridine Antimalarials Targetting Haematin in Chloroquine-Resistance

    PubMed Central

    Warhurst, David C.; Craig, John C.

    2016-01-01

    Antimalarial chloroquine (CQ) prevents haematin detoxication when CQ-base concentrates in the acidic digestive vacuole through protonation of its p-aminopyridine (pAP) basic aromatic nitrogen and sidechain diethyl-N. CQ export through the variant vacuolar membrane export channel, PFCRT, causes CQ-resistance in Plasmodium falciparum but 3-methyl CQ (sontochin SC), des-ethyl amodiaquine (DAQ) and bis 4-aminoquinoline piperaquine (PQ) are still active. This is determined by changes in drug accumulation ratios in parasite lipid (LAR) and in vacuolar water (VAR). Higher LAR may facilitate drug binding to and blocking PFCRT and also aid haematin in lipid to bind drug. LAR for CQ is only 8.3; VAR is 143,482. More hydrophobic SC has LAR 143; VAR remains 68,523. Similarly DAQ with a phenol substituent has LAR of 40.8, with VAR 89,366. In PQ, basicity of each pAP is reduced by distal piperazine N, allowing very high LAR of 973,492, retaining VAR of 104,378. In another bis quinoline, dichlorquinazine (DCQ), also active but clinically unsatisfactory, each pAP retains basicity, being insulated by a 2-carbon chain from a proximal nitrogen of the single linking piperazine. While LAR of 15,488 is still high, the lowest estimate of VAR approaches 4.9 million. DCQ may be expected to be very highly lysosomotropic and therefore potentially hepatotoxic. In 11 pAP antimalarials a quadratic relationship between logLAR and logResistance Index (RI) was confirmed, while log (LAR/VAR) vs logRI for 12 was linear. Both might be used to predict the utility of structural modifications. PMID:27483471

  1. Influence of LAR and VAR on Para-Aminopyridine Antimalarials Targetting Haematin in Chloroquine-Resistance.

    PubMed

    Warhurst, David C; Craig, John C; Raheem, K Saki

    2016-01-01

    Antimalarial chloroquine (CQ) prevents haematin detoxication when CQ-base concentrates in the acidic digestive vacuole through protonation of its p-aminopyridine (pAP) basic aromatic nitrogen and sidechain diethyl-N. CQ export through the variant vacuolar membrane export channel, PFCRT, causes CQ-resistance in Plasmodium falciparum but 3-methyl CQ (sontochin SC), des-ethyl amodiaquine (DAQ) and bis 4-aminoquinoline piperaquine (PQ) are still active. This is determined by changes in drug accumulation ratios in parasite lipid (LAR) and in vacuolar water (VAR). Higher LAR may facilitate drug binding to and blocking PFCRT and also aid haematin in lipid to bind drug. LAR for CQ is only 8.3; VAR is 143,482. More hydrophobic SC has LAR 143; VAR remains 68,523. Similarly DAQ with a phenol substituent has LAR of 40.8, with VAR 89,366. In PQ, basicity of each pAP is reduced by distal piperazine N, allowing very high LAR of 973,492, retaining VAR of 104,378. In another bis quinoline, dichlorquinazine (DCQ), also active but clinically unsatisfactory, each pAP retains basicity, being insulated by a 2-carbon chain from a proximal nitrogen of the single linking piperazine. While LAR of 15,488 is still high, the lowest estimate of VAR approaches 4.9 million. DCQ may be expected to be very highly lysosomotropic and therefore potentially hepatotoxic. In 11 pAP antimalarials a quadratic relationship between logLAR and logResistance Index (RI) was confirmed, while log (LAR/VAR) vs logRI for 12 was linear. Both might be used to predict the utility of structural modifications. PMID:27483471

  2. Extremely large anisotropic transport caused by electronic phase separation in Ti-doped Ca3Ru2O7

    NASA Astrophysics Data System (ADS)

    Peng, Jin; Liu, J. Y.; Gu, Xiaomin; Zhou, Guotai; Wang, Wei; Hu, J.; Zhang, F. M.; Wu, X. S.

    2016-06-01

    In this paper, we reported an extremely large out-of-plane/in-plane anisotropic transport ({ρc}/{ρab} ~ 109) in double layer ruthenates. The mechanism that may be responsible for this phenomenon is also explored here. Distinct from previously well studied layered materials which show large out-of-plane/in-plane electronic anisotropy (103–106), the Ti-doped Ca3Ru2O7 single crystals not only form quasi-2D layered structure, but also show phase separation within the layers. We found that Ti doping in Ca3Ru2O7 induced electronic phase separation between the insulating phase and weak localized phase. The ratio of these two phases is very sensitive to the Ti concentration. At typical concentration, the weak localized phase may form a channel on the background of the insulating phase within the ab plane. However, the small volume of weak localized phase makes it less likely to overlap in different layers. This results in a much larger electronic anisotropy ratio than pristine compound Ca3Ru2O7. This new mechanism provides a route for further increase electronic anisotropy, which will remarkably reduce current leak and power consumption in electronic devices.

  3. Trajectories of electrons with large longitudinal momenta in the phase plane during surfatron acceleration by an electromagnetic wave

    SciTech Connect

    Mkrtichyan, G. S.

    2015-07-15

    The trajectories of electrons with large longitudinal momenta in the phase plane in the course of their surfatron acceleration by an electromagnetic wave propagating in space plasma across the external magnetic field are analyzed. Electrons with large longitudinal momenta are trapped immediately if the initial wave phase Ψ(0) on the particle trajectory is positive. For negative values of Ψ(0), no electrons trapping by the wave is observed over the available computational times. According to numerical calculations, the trajectories of trapped particles in the phase plane have a singular point of the stable focus type and the behavior of the trajectory corresponds to the motion in a complex nonstationary effective potential well. For some initial phases, electrons are confined in the region of the accelerating electric field for relatively short time, the energy gain being about 50–130% and more.

  4. The massive fermion phase for the U(N) Chern-Simons gauge theory in D=3 at large N

    DOE PAGESBeta

    Bardeen, William A.

    2014-10-07

    We explore the phase structure of fermions in the U(N) Chern-Simons Gauge theory in three dimensions using the large N limit where N is the number of colors and the fermions are taken to be in the fundamental representation of the U(N) gauge group. In the large N limit, the theory retains its classical conformal behavior and considerable attention has been paid to possible AdS/CFT dualities of the theory in the conformal phase. In this paper we present a solution for the massive phase of the fermion theory that is exact to the leading order of ‘t Hooft’s large Nmore » expansion. We present evidence for the spontaneous breaking of the exact scale symmetry and analyze the properties of the dilaton that appears as the Goldstone boson of scale symmetry breaking.« less

  5. The massive fermion phase for the U(N) Chern-Simons gauge theory in D=3 at large N

    SciTech Connect

    Bardeen, William A.

    2014-10-07

    We explore the phase structure of fermions in the U(N) Chern-Simons Gauge theory in three dimensions using the large N limit where N is the number of colors and the fermions are taken to be in the fundamental representation of the U(N) gauge group. In the large N limit, the theory retains its classical conformal behavior and considerable attention has been paid to possible AdS/CFT dualities of the theory in the conformal phase. In this paper we present a solution for the massive phase of the fermion theory that is exact to the leading order of ‘t Hooft’s large N expansion. We present evidence for the spontaneous breaking of the exact scale symmetry and analyze the properties of the dilaton that appears as the Goldstone boson of scale symmetry breaking.

  6. Phase discrepancy induced from least squares wavefront reconstruction of wrapped phase measurements with high noise or large localized wavefront gradients

    NASA Astrophysics Data System (ADS)

    Steinbock, Michael J.; Hyde, Milo W.

    2012-10-01

    Adaptive optics is used in applications such as laser communication, remote sensing, and laser weapon systems to estimate and correct for atmospheric distortions of propagated light in real-time. Within an adaptive optics system, a reconstruction process interprets the raw wavefront sensor measurements and calculates an estimate for the unwrapped phase function to be sent through a control law and applied to a wavefront correction device. This research is focused on adaptive optics using a self-referencing interferometer wavefront sensor, which directly measures the wrapped wavefront phase. Therefore, its measurements must be reconstructed for use on a continuous facesheet deformable mirror. In testing and evaluating a novel class of branch-point- tolerant wavefront reconstructors based on the post-processing congruence operation technique, an increase in Strehl ratio compared to a traditional least squares reconstructor was noted even in non-scintillated fields. To investigate this further, this paper uses wave-optics simulations to eliminate many of the variables from a hardware adaptive optics system, so as to focus on the reconstruction techniques alone. The simulation results along with a discussion of the physical reasoning for this phenomenon are provided. For any applications using a self-referencing interferometer wavefront sensor with low signal levels or high localized wavefront gradients, understanding this phenomena is critical when applying a traditional least squares wavefront reconstructor.

  7. A Role of Phase-Resetting in Coordinating Large Scale Neural Networks During Attention and Goal-Directed Behavior.

    PubMed

    Voloh, Benjamin; Womelsdorf, Thilo

    2016-01-01

    Short periods of oscillatory activation are ubiquitous signatures of neural circuits. A broad range of studies documents not only their circuit origins, but also a fundamental role for oscillatory activity in coordinating information transfer during goal directed behavior. Recent studies suggest that resetting the phase of ongoing oscillatory activity to endogenous or exogenous cues facilitates coordinated information transfer within circuits and between distributed brain areas. Here, we review evidence that pinpoints phase resetting as a critical marker of dynamic state changes of functional networks. Phase resets: (1) set a "neural context" in terms of narrow band frequencies that uniquely characterizes the activated circuits; (2) impose coherent low frequency phases to which high frequency activations can synchronize, identifiable as cross-frequency correlations across large anatomical distances; (3) are critical for neural coding models that depend on phase, increasing the informational content of neural representations; and (4) likely originate from the dynamics of canonical E-I circuits that are anatomically ubiquitous. These multiple signatures of phase resets are directly linked to enhanced information transfer and behavioral success. We survey how phase resets re-organize oscillations in diverse task contexts, including sensory perception, attentional stimulus selection, cross-modal integration, Pavlovian conditioning, and spatial navigation. The evidence we consider suggests that phase-resets can drive changes in neural excitability, ensemble organization, functional networks, and ultimately, overt behavior. PMID:27013986

  8. A Role of Phase-Resetting in Coordinating Large Scale Neural Networks During Attention and Goal-Directed Behavior

    PubMed Central

    Voloh, Benjamin; Womelsdorf, Thilo

    2016-01-01

    Short periods of oscillatory activation are ubiquitous signatures of neural circuits. A broad range of studies documents not only their circuit origins, but also a fundamental role for oscillatory activity in coordinating information transfer during goal directed behavior. Recent studies suggest that resetting the phase of ongoing oscillatory activity to endogenous or exogenous cues facilitates coordinated information transfer within circuits and between distributed brain areas. Here, we review evidence that pinpoints phase resetting as a critical marker of dynamic state changes of functional networks. Phase resets: (1) set a “neural context” in terms of narrow band frequencies that uniquely characterizes the activated circuits; (2) impose coherent low frequency phases to which high frequency activations can synchronize, identifiable as cross-frequency correlations across large anatomical distances; (3) are critical for neural coding models that depend on phase, increasing the informational content of neural representations; and (4) likely originate from the dynamics of canonical E-I circuits that are anatomically ubiquitous. These multiple signatures of phase resets are directly linked to enhanced information transfer and behavioral success. We survey how phase resets re-organize oscillations in diverse task contexts, including sensory perception, attentional stimulus selection, cross-modal integration, Pavlovian conditioning, and spatial navigation. The evidence we consider suggests that phase-resets can drive changes in neural excitability, ensemble organization, functional networks, and ultimately, overt behavior. PMID:27013986

  9. LARS Artificial Ligament Versus ABC Purely Polyester Ligament for Anterior Cruciate Ligament Reconstruction

    PubMed Central

    Iliadis, Dimitrios Ph.; Bourlos, Dimitrios N.; Mastrokalos, Dimitrios S.; Chronopoulos, Efstathios; Babis, George C.

    2016-01-01

    Background: Graft choice for anterior cruciate ligament (ACL) reconstruction is of critical importance. Various grafts have been used so far, with autografts long considered the optimal solution for the treatment of ACL-deficient knees. Limited data are available on the long-term survivorship of synthetic grafts. Purpose: To compare the functional outcome and survivorship of ACL reconstructions performed using the LARS (ligament augmentation and reconstruction system) ligament and the ABC (active biosynthetic composite) purely polyester ligament. Study Design: Case series; Level of evidence, 4. Methods: The results of 72 patients who underwent primary arthroscopic ACL reconstruction with the LARS ligament and 31 cases with an ABC purely polyester ligament were reviewed. The mean follow-up periods for the LARS and ABC groups were 9.5 and 5.1 years, respectively. A survivorship analysis of the 2 synthetic grafts was performed using the Kaplan-Meier method with a log-rank test (Mantel-Cox, 95% CI). Lysholm, Tegner activity, Knee injury and Osteoarthritis Outcome Score (KOOS), and International Knee Documentation Committee (IKDC) scores as well as laxity measurements obtained using a KT-1000 arthrometer were recorded for all intact grafts, and a Mann-Whitney U test was used for comparison reasons. Results: The rupture rates for LARS and ABC grafts were 31% (95% CI, 20%-42%) and 42% (95% CI, 25%-59%), respectively. For intact grafts, the mean Lysholm score was good for both groups (90 for the LARS group and 89 for the ABC group), with the majority of patients returning to their preinjury level of activities, and the mean IKDC score was 90 for the LARS group and 86 for the ABC group. Conclusion: The rupture rates of both LARS and ABC grafts were both high. However, the LARS ligament provided significantly better survivorship compared with the ABC ligament at short- to midterm follow-up (95% CI). PMID:27453894

  10. Electromagnetic phase differences in the coherent backscattering enhancement mechanism for random media consisting of large nontransparent spheres.

    PubMed

    Stankevich, Dmitriy; Istomina, Larissa; Shkuratov, Yuriy; Videen, Gorden

    2007-03-20

    Phase curves of intensity are calculated for light scattering in media randomly packed with large nontransparent spheres (x=125), the surfaces of which reflect according to the Fresnel equations. We consider three values of refractive index: m = 0.73 + i5.93 (metal Al), 1.6 + i1.72 (metal Fe), and 1.5 + i0.1 (black glass). We use a Monte Carlo ray-tracing approach. Different kinds of electromagnetic phase differences of reciprocal trajectories are investigated for the second and third orders of scattering; the highest orders give comparatively small contributions due to the backward-scattering indicatrix of large nontransparent spheres. We find that the main electromagnetic phase difference between the direct and time-reversal (reciprocal) trajectories is the outer phase difference that depends only on the relative positions of the first and last points of the ray reflections and the phase angle. The inner phase difference is connected with the changing path length of the ray inside the medium. This depends on the particle size and the phase angle that is the angle between the source and receiver from the scatterer, i.e., 180 degrees minus the scattering angle. The inner phase difference can give oscillations in the phase curve consisting of second-order components if the medium consists of strictly monodisperse spheres. Usually the coherent backscattering enhancement is calculated ignoring the shadow-hiding effect. We show that accounting for the shadowing of the reciprocal trajectory is important for the formation of the backscattering effect. The third-order scattering surge is a superposition of wide and narrow opposition spikes that correspond to two different types of scattering trajectories, closed and opened ones. The first type is due to scattering by two particles; the second one corresponds to scattering by three particles. PMID:17334449

  11. Delayed sleep phase syndrome in adolescents: prevalence and correlates in a large population based study

    PubMed Central

    2013-01-01

    Background The aims of this study were to estimate the prevalence of Delayed Sleep Phase Syndrome (DSPS) in adolescence, and to examine the association to insomnia and school non-attendance. Methods Data stem from a large population based study in Hordaland County in Norway conducted in 2012, the ung@hordaland study. In all, 10,220 adolescents aged 16–18 years (54% girls) provided self-reported data on a range of sleep parameters: DSPS was defined according to the International Classification of Sleep Disorders, Revised (ICSD-R) criteria, while insomnia was defined according to the Quantitative Criteria for Insomnia. Other sleep parameters included time in bed, sleep duration, sleep efficiency, oversleeping, sleep onset latency, wake after sleep onset, subjective sleep need, sleep deficiency, sleepiness and tiredness. Sleep data were calculated separately for weekdays and weekends. Data on school non-attendance were provided by official registers. Results The prevalence of DSPS was 3.3%, and significantly higher among girls (3.7%) than boys (2.7%). There was a strong overlap between DSPS and insomnia, with more than half of the adolescents with DSPS also meeting the criteria for insomnia (53.8% for boys and 57.1% for girls). Adolescents with DSPS had significantly higher odds ratios (OR) of non-attendance at school. After adjusting for sociodeographical factors, insomnia and depression, the adjusted ORs for days of non-attendance were OR = 3.22 (95% CI: 1.94-5.34) for boys and OR = 1.87 (95% CI: 1.25-2.80) for girls. A similar effect was found for hours of non-attendance for boys, with an adjusted OR = 3.05 (95% CI: 1.89-4.92). The effect for girls was no longer significant after full adjustment (OR =1.48 [95% CI: 0.94-2.32]). Conclusions This is one of the first studies to estimate the prevalence of DSPS in adolescents. The high prevalence of DSPS, and overlap with insomnia, in combination with the odds of school non-attendance, suggest that a broad

  12. Phasing the Very Large Array on Galileo in the presence of Jupiter's strong radio emission

    NASA Technical Reports Server (NTRS)

    Ulvestad, J. S.

    1991-01-01

    Work is in progress to determine the feasibility of using the Very Large Array (VLA) radio telescope to receive telemetry from Galileo during its close encounter with Io on 7 Dec. 1995. The VLA was used previously to receive telemetry from Voyager 2 at Neptune. However, Jupiter's strong radio emission is an additional complication in the case of the Galileo encounter. This article analyzes the effect of Jupiter's radio emission on the phase-adjustment procedure ('autophasing') used to maintain coherence among the 27 VLA antennas. Results of an experiment designed to mimic the Io encounter are presented. As expected, Jupiter's strong radio emission has a considerable effect on the autophasing procedure. A simple emission model is found to give a good approximation to the fringe-visibility plots derived from the VLA data, and that successful model is used to estimate the VLA's ability to autophase on Galileo during the Io encounter. The effect of Jupiter should be small for projected baselines longer than approximately 800 m and completely negligible for projected baselines longer than approximately 1.1 km. The most extended configuration of the VLA (the A configuration) probably can be used successfully for telemetry reception during the Io encounter. Further analysis and testing of the effect of correlated noise from Jupiter is necessary before a final decision can be made about the feasibility of using the second largest (B) configuration of the VLA for reception of Galileo telemetry. Use of the B configuration could simplify the upgrades needed to support the Io encounter. Tests to help choose the preferred VLA configuration could be performed by using the VLA to observe the Magellan spacecraft at Venus during Jul. and Oct. 1991. Examination of the effects of planet noise on the VLA have implications beyond the use of that telescope for supporting the Io encounter. The effects of planet radio emission on spacecraft data received by antenna arrays are relevant to

  13. Appearance of large crystalline domains in VO{sub 2} films grown on sapphire (001) and their phase transition characteristics

    SciTech Connect

    Azhan, Nurul Hanis; Su, Kui; Okimura, Kunio; Zaghrioui, Mustapha; Sakai, Joe

    2015-06-28

    We report the first observation of large crystalline domains of several μm-size in VO{sub 2} films deposited on Al{sub 2}O{sub 3} (001) substrates by rf-biased reactive sputtering technique. The large crystalline domains, dominated with random in-plane oriented growth of (011){sub M1}-orientation, appear only under adequate substrate biasing, such as 10 W, while most biasing conditions result in conventional nanosized grains of highly oriented (010){sub M1}-orientation. Two temperature-controlled analyses, x-ray diffraction and micro-Raman spectroscopy, have revealed that some parts of large crystalline domains undergo intermediate monoclinic (M2) phase during the thermally-induced structural phase transition from monoclinic (M1) to rutile-tetragonal (R) phase. As an effect of the appearance of large crystalline domains, the film showed in-plane tensile stress, resulting in high T{sub IMT} of 69 °C due to the elongation of the V-V distance in its low-temperature monoclinic phase.

  14. Phased array feed design technology for Large Aperture Microwave Radiometer (LAMR) Earth observations

    NASA Technical Reports Server (NTRS)

    Schuman, H. K.

    1992-01-01

    An assessment of the potential and limitations of phased array antennas in space-based geophysical precision radiometry is described. Mathematical models exhibiting the dependence of system and scene temperatures and system sensitivity on phased array antenna parameters and components such as phase shifters and low noise amplifiers (LNA) are developed. Emphasis is given to minimum noise temperature designs wherein the LNA's are located at the array level, one per element or subarray. Two types of combiners are considered: array lenses (space feeds) and corporate networks. The result of a survey of suitable components and devices is described. The data obtained from that survey are used in conjunction with the mathematical models to yield an assessment of effective array antenna noise temperature for representative geostationary and low Earth orbit systems. Practical methods of calibrating a space-based, phased array radiometer are briefly addressed as well.

  15. Large-scale three-dimensional phase-field simulations for phase coarsening at ultrahigh volume fraction on high-performance architectures

    NASA Astrophysics Data System (ADS)

    Yan, Hui; Wang, K. G.; Jones, Jim E.

    2016-06-01

    A parallel algorithm for large-scale three-dimensional phase-field simulations of phase coarsening is developed and implemented on high-performance architectures. From the large-scale simulations, a new kinetics in phase coarsening in the region of ultrahigh volume fraction is found. The parallel implementation is capable of harnessing the greater computer power available from high-performance architectures. The parallelized code enables increase in three-dimensional simulation system size up to a 5123 grid cube. Through the parallelized code, practical runtime can be achieved for three-dimensional large-scale simulations, and the statistical significance of the results from these high resolution parallel simulations are greatly improved over those obtainable from serial simulations. A detailed performance analysis on speed-up and scalability is presented, showing good scalability which improves with increasing problem size. In addition, a model for prediction of runtime is developed, which shows a good agreement with actual run time from numerical tests.

  16. Large-scale and uniform preparation of pure-phase wurtzite GaAs NWs on non-crystalline substrates

    PubMed Central

    2012-01-01

    One of the challenges to prepare high-performance and uniform III-V semiconductor nanowires (NWs) is to control the crystal structure in large-scale. A mixed crystal phase is usually observed due to the small surface energy difference between the cubic zincblende (ZB) and hexagonal wurtzite (WZ) structures, especially on non-crystalline substrates. Here, utilizing Au film as thin as 0.1 nm as the catalyst, we successfully demonstrate the large-scale synthesis of pure-phase WZ GaAs NWs on amorphous SiO2/Si substrates. The obtained NWs are smooth, uniform with a high aspect ratio, and have a narrow diameter distribution of 9.5 ± 1.4 nm. The WZ structure is verified by crystallographic investigations, and the corresponding electronic bandgap is also determined to be approximately 1.62 eV by the reflectance measurement. The formation mechanism of WZ NWs is mainly attributed to the ultra-small NW diameter and the very narrow diameter distribution associated, where the WZ phase is more thermodynamically stable compared to the ZB structure. After configured as NW field-effect-transistors, a high ION/IOFF ratio of 104 − 105 is obtained, operating in the enhancement device mode. The preparation technology and good uniform performance here have illustrated a great promise for the large-scale synthesis of pure phase NWs for electronic and optical applications. PMID:23171521

  17. The Phase Diagram of QCD and Some Issues of Large N_c

    SciTech Connect

    McLerran,L.

    2009-02-28

    The large N{sub c} limit provides a good phenomenology of meson spectra and interactions, I discuss some problems with applying the large N{sub c} approximation to the description of baryons, and point out a number of apparent paradoxes and phenomenological difficulties.

  18. Definition of technology development missions for early space stations. Large space structures, phase 2, midterm review

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The large space structures technology development missions to be performed on an early manned space station was studied and defined and the resources needed and the design implications to an early space station to carry out these large space structures technology development missions were determined. Emphasis is being placed on more detail in mission designs and space station resource requirements.

  19. Large isotropic negative thermal expansion above a structural quantum phase transition

    SciTech Connect

    Handunkanda, Sahan Uddika; Curry, Erin B.; Voronov, Vladimir; Said, Ayman H.; Guzman-Verri, Gian G.; Brierley, Richard; Littlewood, Peter B.; Hancock, Jason N.

    2015-10-01

    Perovskite structured materials contain myriad tunable ordered phases of electronic and magnetic origin with proven technological importance and strong promise for a variety of energy solutions. An always-contributing influence beneath these cooperative and competing interactions is the lattice, whose physics may be obscured in complex perovskites by the many coupled degrees of freedom which makes these systems interesting. Here we report signatures of an approach to a quantum phase transition very near the ground state of the nonmagnetic, ionic insulating, simple cubic perovskite material ScF3 and show that its physical properties are strongly effected as much as 100 K above the putative transition. Spatial and temporal correlations in the high-symmetry cubic phase determined using energy- and momentum-resolved inelastic X-ray scattering as well as X-ray diffraction reveal that soft mode, central peak and thermal expansion phenomena are all strongly influenced by the transition.

  20. Large isotropic negative thermal expansion above a structural quantum phase transition

    NASA Astrophysics Data System (ADS)

    Handunkanda, Sahan U.; Curry, Erin B.; Voronov, Vladimir; Said, Ayman H.; Guzmán-Verri, Gian G.; Brierley, Richard T.; Littlewood, Peter B.; Hancock, Jason N.

    2015-10-01

    Perovskite structured materials contain myriad tunable ordered phases of electronic and magnetic origin with proven technological importance and strong promise for a variety of energy solutions. An always-contributing influence beneath these cooperative and competing interactions is the lattice, whose physics may be obscured in complex perovskites by the many coupled degrees of freedom, which makes these systems interesting. Here, we report signatures of an approach to a quantum phase transition very near the ground state of the nonmagnetic, ionic insulating, simple cubic perovskite material ScF3, and show that its physical properties are strongly effected as much as 100 K above the putative transition. Spatial and temporal correlations in the high-symmetry cubic phase determined using energy- and momentum-resolved inelastic x-ray scattering as well as x-ray diffraction reveal that soft mode, central peak, and thermal expansion phenomena are all strongly influenced by the transition.

  1. SALM5 trans-synaptically interacts with LAR-RPTPs in a splicing-dependent manner to regulate synapse development

    PubMed Central

    Choi, Yeonsoo; Nam, Jungyong; Whitcomb, Daniel J.; Song, Yoo Sung; Kim, Doyoun; Jeon, Sangmin; Um, Ji Won; Lee, Seong-Gyu; Woo, Jooyeon; Kwon, Seok-Kyu; Li, Yan; Mah, Won; Kim, Ho Min; Ko, Jaewon; Cho, Kwangwook; Kim, Eunjoon

    2016-01-01

    Synaptogenic adhesion molecules play critical roles in synapse formation. SALM5/Lrfn5, a SALM/Lrfn family adhesion molecule implicated in autism spectrum disorders (ASDs) and schizophrenia, induces presynaptic differentiation in contacting axons, but its presynaptic ligand remains unknown. We found that SALM5 interacts with the Ig domains of LAR family receptor protein tyrosine phosphatases (LAR-RPTPs; LAR, PTPδ, and PTPσ). These interactions are strongly inhibited by the splice insert B in the Ig domain region of LAR-RPTPs, and mediate SALM5-dependent presynaptic differentiation in contacting axons. In addition, SALM5 regulates AMPA receptor-mediated synaptic transmission through mechanisms involving the interaction of postsynaptic SALM5 with presynaptic LAR-RPTPs. These results suggest that postsynaptic SALM5 promotes synapse development by trans-synaptically interacting with presynaptic LAR-RPTPs and is important for the regulation of excitatory synaptic strength. PMID:27225731

  2. SALM5 trans-synaptically interacts with LAR-RPTPs in a splicing-dependent manner to regulate synapse development.

    PubMed

    Choi, Yeonsoo; Nam, Jungyong; Whitcomb, Daniel J; Song, Yoo Sung; Kim, Doyoun; Jeon, Sangmin; Um, Ji Won; Lee, Seong-Gyu; Woo, Jooyeon; Kwon, Seok-Kyu; Li, Yan; Mah, Won; Kim, Ho Min; Ko, Jaewon; Cho, Kwangwook; Kim, Eunjoon

    2016-01-01

    Synaptogenic adhesion molecules play critical roles in synapse formation. SALM5/Lrfn5, a SALM/Lrfn family adhesion molecule implicated in autism spectrum disorders (ASDs) and schizophrenia, induces presynaptic differentiation in contacting axons, but its presynaptic ligand remains unknown. We found that SALM5 interacts with the Ig domains of LAR family receptor protein tyrosine phosphatases (LAR-RPTPs; LAR, PTPδ, and PTPσ). These interactions are strongly inhibited by the splice insert B in the Ig domain region of LAR-RPTPs, and mediate SALM5-dependent presynaptic differentiation in contacting axons. In addition, SALM5 regulates AMPA receptor-mediated synaptic transmission through mechanisms involving the interaction of postsynaptic SALM5 with presynaptic LAR-RPTPs. These results suggest that postsynaptic SALM5 promotes synapse development by trans-synaptically interacting with presynaptic LAR-RPTPs and is important for the regulation of excitatory synaptic strength. PMID:27225731

  3. Gauging low-dose X-ray phase-contrast imaging at a single and large propagation distance.

    PubMed

    Hofmann, Ralf; Schober, Alexander; Hahn, Steffen; Moosmann, Julian; Kashef, Jubin; Hertel, Madeleine; Weinhardt, Venera; Hänschke, Daniel; Helfen, Lukas; Sánchez Salazar, Iván A; Guigay, Jean-Pierre; Xiao, Xianghui; Baumbach, Tilo

    2016-02-22

    The interactions of a beam of hard and spatio-temporally coherent X-rays with a soft-matter sample primarily induce a transverse distribution of exit phase variations δϕ (retardations or advancements in pieces of the wave front exiting the object compared to the incoming wave front) whose free-space propagation over a distance z gives rise to intensity contrast gz. For single-distance image detection and |δϕ| ≪ 1 all-order-in-z phase-intensity contrast transfer is linear in δϕ. Here we show that ideal coherence implies a decay of the (shot-)noise-to-signal ratio in gz and of the associated phase noise as z-1/2 and z-1, respectively. Limits on X-ray dose thus favor large values of z. We discuss how a phase-scaling symmetry, exact in the limit δϕ → 0 and dynamically unbroken up to |δϕ| ∼ 1, suggests a filtering of gz in Fourier space, preserving non-iterative quasi-linear phase retrieval for phase variations up to order unity if induced by multi-scale objects inducing phase variations δϕ of a broad spatial frequency spectrum. Such an approach continues to be applicable under an assumed phase-attenuation duality. Using synchrotron radiation, ex and in vivo microtomography on frog embryos exemplifies improved resolution compared to a conventional single-distance phase-retrieval algorithm. PMID:26907079

  4. Optical measuring and sensing system for large current in the isolated phase busbar

    NASA Astrophysics Data System (ADS)

    He, Bin; Zhao, Xia; Qiao, Song

    1996-09-01

    This paper describes a mixed fiber optical measuring system for the isolated phase busbar. As the magnetic field in the isolated phase busbar is only related to the busbar current, the current sensor, which makes up of the diamagnetic SF-6 glass with the thin-film polarizer and analyzer at both its ends, is placed inside the enclosed shell but outside the busbar, and the distance from the current sensor to the axis of the busbar depends upon the value of the current measured. The laboratorial experiment shows that the optical measuring system is reliable for using in the power system instead of the conventional current transformer.

  5. Modelling of phase boundaries for large industrial FZ silicon crystal growth with the needle-eye technique

    NASA Astrophysics Data System (ADS)

    Ratnieks, G.; Muižnieks, A.; Mühlbauer, A.

    2003-08-01

    In order to facilitate the numerical calculations of the phase boundaries in large industrial floating zone silicon crystal growth with the needle-eye technique, the chain of improved mathematical models is developed. The phase boundaries are solved in a partly transient way and the modelling improvements cover the open melting front, the inner triple point and the free melt surface. The view factors model is applied for the radiative heat transfer. The electromagnetic field is calculated with account of a multiple-slit inductor.

  6. Gibbon (Hylobates lar) reintroduction success in Phuket, Thailand, and its conservation benefits.

    PubMed

    Osterberg, Petra; Samphanthamit, Phamon; Maprang, Owart; Punnadee, Suwit; Brockelman, Warren Y

    2015-05-01

    We summarize the results from a long-term gibbon reintroduction project in Phuket, Thailand, and evaluate its benefits to conservation. Between October 2002 and November 2012, eight breeding families of white-handed gibbons (Hylobates lar) were returned to the wild in Khao Phra Thaew non-hunting area (KPT). Wild gibbons were extirpated from Phuket Island by the early 1980s, but the illegal wildlife trade has continued to bring young gibbons from elsewhere to the island's popular tourist areas as pets and photo props. The Gibbon Rehabilitation Project (GRP) has rescued and rehabilitated confiscated and donated captive gibbons since 1992 and aims to repopulate the island's last sizable forest area. Following unsuccessful early attempts at translocation in the 1990s, GRP has now developed specific methods for gibbon reintroduction that have led to the establishment of a small independent, reproducing population of captive-raised and wild-born gibbons on Phuket. Eleven infants have been born wild within the reintroduced population, including a second generation wild-born gibbon in September 2012. Benefits of the GRP project include restoration of the gibbon population on Phuket, rescue of illegally kept gibbons, public education, training of personnel in gibbon conservation work, and gaining experience which may prove useful in saving more severely threatened species. It is unlikely that gibbon (and other large primate) translocations will make a significant contribution to conservation of the species as a whole, and primate translocation projects should not be judged solely by this criterion. PMID:25597291

  7. COMPARISON OF TWO DIFFERENT SOLID PHASE EXTRACTION/LARGE VOLUME INJECTION PROCEDURES FOR METHOD 8270

    EPA Science Inventory

    Two solid phase (SPE) and one traditional continuous liquid-liquid extraction method are compared for analysis of Method 8270 SVOCs. Productivity parameters include data quality, sample volume, analysis time and solvent waste.

    One SPE system, unique in the U.S., uses aut...

  8. KrF excimer laser lithography with a phase-shifting mask for gigabit-scale ultra large scale integration

    NASA Astrophysics Data System (ADS)

    Imai, Akira; Terasawa, Tsuneo; Hasegawa, Norio; Asai, Naoko; Tanaka, Toshihiko P.; Okazaki, Shinji

    1996-10-01

    Resolution-enhancement technologies such as alternating-type phase-shifting masks (PSMs), half-tone PSMs, and the off- axis illumination method in optical lithography are necessary for manufacturing gigabit-scale ultra large scale integration (ULSI) devices. Because an alternating-type PSM is the most effective way to enhance resolution, we examine the resolution capabilities of KrF excimer laser lithography combined with the use of an alternating-type PSM through simulations. Our goal is to apply this technique to attain pattern delineation smaller than 200 nm. We simulate light intensity profiles for various types of PSMs in terms of the 3-D mask structure, and find that a PSM structure with a spin-on glass (SOG) phase shifter on a Cr layer that is thinner than in a conventional mask is one of the best choices for KrF excimer laser lithography. We examine potential problems such as the durability of the SOG phase shifters to KrF excimer laser irradiation exposure, and phase angle error due to the surface topography of the Cr aperture patterns. From our experimental results, we confirm that the optical characteristics of the PSM are not degraded, and the phase angle can be controlled with an accuracy sufficient for gigabit-scale ULSI device fabrication. Improved PSMs with a thin Cr layer and SOG phase shifters were successfully used to fabricate several layers of experimental 1-Gbit dynamic random access memory (DRAM) devices with sufficient resolution capability.

  9. Formation of large voids in the amorphous phase-change memory Ge2Sb2Te5 alloy.

    PubMed

    Sun, Zhimei; Zhou, Jian; Blomqvist, Andreas; Johansson, Börje; Ahuja, Rajeev

    2009-02-20

    On the basis of ab initio molecular dynamics simulations, large voids mainly surrounded by Te atoms are observed in molten and amorphous Ge2Sb2Te5, which is due to the clustering of two- and threefold coordinated Te atoms. Furthermore, pressure shows a significant effect on the clustering of the under coordinated Te atoms and hence the formation of large voids. The present results demonstrate that both vacancies and Te play an important role in the fast reversible phase transition process. PMID:19257687

  10. Large-scale controlled fabrication of highly roughened flower-like silver nanostructures in liquid crystalline phase

    PubMed Central

    Yang, Chengliang; Xiang, Xiangjun; Zhang, Ying; Peng, Zenghui; Cao, Zhaoliang; Wang, Junlin; Xuan, Li

    2015-01-01

    Large-scale controllable fabrication of highly roughened flower-like silver nanostructures is demonstrated experimentally via electrodeposition in the liquid crystalline phase. Different sizes of silver flowers are fabricated by adjusting the deposition time and the concentration of the silver nitrate solution. The density of the silver flowers in the sample is also controllable in this work. The flower-like silver nanostructures can serve as effective surface-enhanced Raman scattering and surface-enhanced fluorescence substrates because of their local surface plasmon resonance, and they may have applications in photoluminescence and catalysis. This liquid crystalline phase is used as a soft template for fabricating flower-like silver nanostructures for the first time, and this approach is suitable for large-scale uniform fabrication up to several centimetres. PMID:26216669

  11. Measurement of wavefront structure from large aperture optical components by phase shifting interferometry

    SciTech Connect

    Wolfe, C.R.; Lawson, J.K.; Kellam, M.; Maney, R.T.; Demiris, A.

    1995-05-12

    This paper discusses the results of high spatial resolution measurement of the transmitted or reflected wavefront of optical components using phase shifting interferometry with a wavelength of 6328 {angstrom}. The optical components studied range in size from approximately 50 mm {times} 100 mm to 400 mm {times} 750 mm. Wavefront data, in the form of 3-D phase maps, have been obtained for three regimes of scale length: ``micro roughness``, ``mid-spatial scale``, and ``optical figure/curvature.`` Repetitive wavefront structure has been observed with scale lengths from 10 mm to 100 mm. The amplitude of this structure is typically {lambda}/100 to {lambda}/20. Previously unobserved structure has been detected in optical materials and on the surfaces of components. We are using this data to assist in optimizing laser system design, to qualify optical components and fabrication processes under study in our component development program.

  12. A Phase Locked High Speed Real-Time Interferometry System for Large Amplitude Unsteady Flows

    NASA Technical Reports Server (NTRS)

    Chandrasekhara, M. S.; Squires, D. D.; Wilder, M. C.; Carr, L. W.; Kutler, Paul (Technical Monitor)

    1994-01-01

    A high speed phase locked interferometry system has been designed and developed for real-time measurements of the dynamic stall flow over a pitching airfoil. Point diffraction interferograms of incipient flow separation over a sinusoidally oscillating airfoil have been obtained at rates of up to 20 KHz and for free stream Mach numbers of 0.3 and 0.45. The images were recorded on ASA 125 and ASA 400 film using a drum camera. Special electronic timing and synchronizing circuits were developed to trigger the laser light source from the camera, and to initiate acquisition of the interferogram sequence from any desired phase angle of oscillation. The airfoil instantaneous angle of attack data provided by an optical encoder was recorded via a FIFO and in EPROM into a microcomputer. The interferograms have been analyzed using software developed in-house to get quantitative flow density and pressure distributions.

  13. Preliminary results of the large experimental wind turbine phase of the national wind energy program

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Sholes, J. E.

    1975-01-01

    A major phase of the wind energy program is the development of reliable wind turbines for supplying cost-competitive electrical energy. This paper discusses the preliminary results of two projects in this phase of the program. First an experimental 100 kW wind turbine design and its status are reviewed. Also discussed are the results of two parallel design studies for determining the configurations and power levels for wind turbines with minimum energy costs. These studies show wind energy costs of 7 to 1.5 c/kWH for wind turbines produced in quantities of 100 to 1000 a year and located at sites having average winds of 12 to 18 mph.

  14. Two phase choke flow in tubes with very large L/D

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Simoneau, R. J.

    1977-01-01

    Data were obtained for two phase and gaseous choked flow nitrogen in a long constant area duct of 16200 L/D with a diverging diffuser attached to the exit. Flow rate data were taken along five isotherms (reduced temperature of 0.81, 0.96, 1.06, 1.12, and 2.34) for reduced pressures to 3. The flow rate data were mapped in the usual manner using stagnation conditions at the inlet mixing chamber upstream of the entrance length. The results are predictable by a two phase homogeneous equilibrium choking flow model which includes wall friction. A simplified theory which in essence decouples the long tube region from the high acceleration choking region also appears to predict the data resonably well, but about 15 percent low.

  15. Two phase choke flow in tubes with very large L/D

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Simoneau, R. J.

    1977-01-01

    Two phase and gaseous choked flow data for fluid nitrogen were obtained for a test section which was a long constant area duct of 16 200 L/D with a diverging diffuser attached to the exit. Flow rate data were taken along five isotherms (reduced temperature of 0.81, 0.96, 1.06, 1.12, and 2.34) for reduced pressures to 3. The flow rate data were mapped in the usual manner using stagnation conditions at the inlet mixing chamber upstream of the entrance length. The results are predictable by a two-phase homogeneous equilibrium choking flow model which includes wall fraction. A simplified theory which in essence decouples the long tube region from the high acceleration choking region also appears to predict the data reasonably well, but about 15 percent low.

  16. Why can't current large-scale models predict mixed-phase clouds correctly?

    NASA Astrophysics Data System (ADS)

    Barrett, Andrew; Hogan, Robin; Forbes, Richard

    2013-04-01

    Stratiform mid-level mixed-phase clouds have a significant radiative impact but are often missing from numerical model simulations for a number of reasons. This is particularly true more recently as models move towards treating cloud ice as a prognostic variable. This presentation will demonstrate three important findings that will help lead to better simulations of mixed-phase clouds by models in the future. Each is briefly covered in the paragraphs below. 1) The occurrence of mid-level mixed-phase clouds in models is compared with ground based remote sensors, finding an under-prediction of the supercooled liquid water content in the models of a factor of 2 or more. This is accompanied by a low bias in the liquid cloud fraction whilst the ice properties are better simulated. Models with more sophisticated microphysics schemes that include prognostic cloud ice are the worst performing models. 2) A new single column model is used to investigate which processes are important for the maintenance of supercooled liquid layers. By running the model over multiple days and exploring the parameter-space of numerous physical parameterizations it was determined that the most sensitive areas of the model are ice microphysical processes and vertical resolution. 3) Vertical resolutions finer than 200 metres are required to capture the thin liquid layers in these clouds and therefore their important radiative effect. Leading models are still far coarser than this in the mid-troposphere, limiting hope of simulating these clouds properly. A new parameterization of the vertical structure of these clouds is developed and allows their properties to be correctly simulated in a resolution independent way by numerical models with coarse vertical resolution. This parameterization is explained and demonstrated here and could enable significant improvement in model simulations of stratiform mixed-phase clouds.

  17. Quantum-Classical Phase Transition of the Escape Rate of Two-Sublattice Antiferromagnetic Large Spins

    NASA Astrophysics Data System (ADS)

    Owerre, Solomon Akaraka; Paranjape, M. B.

    2014-11-01

    The Hamiltonian of a two-sublattice antiferromagnetic spins, with single (hard-axis) and double ion anisotropies described by H = J {\\hat S}1...\\hatS 2-2Jz \\hat {S}1z\\hat {S}2z+K(\\hat {S}1z2 +\\hat {S}2z2) is investigated using the method of effective potential. The problem is mapped to a single particle quantum-mechanical Hamiltonian in terms of the relative coordinate and reduced mass. We study the quantum-classical phase transition of the escape rate of this model. We show that the first-order phase transition for this model sets in at the critical value Jc = (Kc+Jz, c)/2 while for the anisotropic Heisenberg coupling H = J(S1xS2x +S1yS2y) + JzS1zS2z + K(S1z2+ S2z2) we obtain Jc = (2Kc-Jz, c)/3. The phase diagrams of the transition are also studied.

  18. Nuclear liquid-gas phase transition at large N{sub c} in the van der Waals approximation

    SciTech Connect

    Torrieri, Giorgio; Mishustin, Igor

    2010-11-15

    We examine the nuclear liquid-gas phase transition at a large number of colors (N{sub c}) within the framework of the van der Waals (VdW) We argue that the VdW equation is appropriate for describing internucleon forces, and discuss how each parameter scales with N{sub c}. We demonstrate that N{sub c}=3 (our world) is not large with respect to the other dimensionless scale relevant to baryonic matter, the number of neighbors in a dense system N{sub N}. Consequently, we show that the liquid-gas phase transition looks dramatically different at N{sub c{yields}{infinity}} with respect to our world: The critical-point temperature becomes of the order of {Lambda}{sub QCD} rather than below it. The critical-point density becomes of the order of the baryonic density, rather than an order of magnitude below it. These are precisely the characteristics usually associated with the ''quarkyonic phase.'' We therefore conjecture that quarkyonic matter is simply the large-N{sub c} limit of the nuclear liquid, and the interplay between N{sub c} and N{sub N} is the reason that the nuclear liquid in our world is so different from quarkyonic matter. We conclude by suggesting ways in which our conjecture can be tested in future lattice measurements.

  19. Resonant X-Ray Diffraction Study of an Unusually Large Phase Coexistance in Smectic Liquid-Crystal Films

    SciTech Connect

    Pan L.; Pindak R.; Barois, P.; Liu, Z.Q.; McCoy, B.K. & Hyang, C.C.

    2012-01-19

    The recent discovery of the new smectic-C{sub d6}* (SmC{sub d6}*) phase [S. Wang et al. Phys. Rev. Lett. 104 027801 (2010)] also revealed the existence of a noisy region in the temperature window between the SmC{sub d6}* phase and the smectic-C{sub d4}* (SmC{sub d4}*) phase. Characterized by multiple resonant peaks spanning a wide region in Q{sub Z}, the corresponding structure of this temperature window has been a mystery. In this Letter, through a careful resonant x-ray diffraction study and simulations of the diffraction spectra, we show that this region is in fact an unusually large coexistence region of the SmC{sub d6}* phase and the SmC{sub d4}* phase. The structure of the noisy region is found to be a heterogeneous mixture of local SmC{sub d6}* and SmC{sub d4}* orders on the sub-{micro}m scale.

  20. Evaluation of large format electron bombarded virtual phase CCDs as ultraviolet imaging detectors

    NASA Technical Reports Server (NTRS)

    Opal, Chet B.; Carruthers, George R.

    1989-01-01

    In conjunction with an external UV-sensitive cathode, an electron-bombarded CCD may be used as a high quantum efficiency/wide dynamic range photon-counting UV detector. Results are presented for the case of a 1024 x 1024, 18-micron square pixel virtual phase CCD used with an electromagnetically focused f/2 Schmidt camera, which yields excellent simgle-photoevent discrimination and counting efficiency. Attention is given to the vacuum-chamber arrangement used to conduct system tests and the CCD electronics and data-acquisition systems employed.

  1. Preliminary results of the large experimental wind turbine phase of the national wind energy program

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Sholes, T.; Sholes, J. E.

    1975-01-01

    The preliminary results of two projects in the development phase of reliable wind turbines designed to supply cost-competitive electrical energy were discussed. An experimental 100 kW wind turbine design and its status are first reviewed. The results of two parallel design studies for determining the configurations and power levels for wind turbines with minimum energy costs are also discussed. These studies predict wind energy costs of 1.5 to 7 cents per kW-h for wind turbines produced in quantities of 100 to 1000 per year and located at sites having average winds of 12 to 18 mph.

  2. Climate phase drives canopy condition in a large semi-arid floodplain forest.

    PubMed

    Wen, Li; Saintilan, Neil

    2015-08-15

    To maintain and restore the ecological integrity of floodplains, allocating water for environmental benefits (i.e. environmental water) is widely practised globally. To efficiently manage the always limited environmental water, there is pressing need to advance our understanding of the ecological response to long-term climate cycles as evidence grows of intensification of extreme climatic events such as severe drought and heat waves. In this study, we assessed the alleviating effects of artificial flooding on drought impact using the canopy condition of the iconic river red gum forests in Australia's Murray Darling Basin (MDB). To achieve this, we jointly analysed spatial-temporal patterns of NDVI response and drought conditions for the period of 2000-2013, during which the MDB experienced an extreme dry-wet cycle. Our results indicated that while NDVI-derived canopy condition was better at the sites receiving environmental water during the dry phases, both watered and unwatered sites displayed great similarity in seasonality and trends. Furthermore, we did not find any significant difference in NDVI response of the canopy between the sites to suggest significant differences in ecosystem stability and resilience, with watered and unwatered sites showing similar responses to the extreme wet conditions as the drought broke. The highly significant relationship between long-term drought index and NDVI anomaly suggest that climate phase is the main forcing driving canopy condition in semi-arid floodplain forests. PMID:26027753

  3. Main-chain Chiral Smectic Polymers Showing a Large Electroclinic Effect in the SmA* Phase

    SciTech Connect

    Walba,D.; Yang, H.; Shoemaker, R.; Keller, P.; Shao, r.; Coleman, D.; Jones, C.; Nakata, M.; Clark, N.

    2006-01-01

    The synthesis and characterization of a main-chain smectic liquid-crystalline polymer system designed for development into electromechanical actuators is described. The chemical structure is chosen to provide a large electroclinic effect in the SmA* phase, with large concomitant layer shrinkage (a rare combination). The polymers are prepared by acyclic diene metathesis polymerization (ADMET) of liquid-crystalline ,-dienes. Oligomers with a degree of polymerization of {approx}10-30 are obtained using Grubbs first-generation catalyst, while oligomers with a degree of polymerization of {approx}200 are obtained using Grubbs second-generation catalyst. All polymer samples show the following phase sequence: I - SmA* - SmC* - Glass. X-ray analysis of polymer powder samples demonstrates the desired layer shrinkage at the SmA* - SmC* transition. The polymers form well-aligned fibers by pulling from the isotropic melt, and X-ray analysis of fibers in the SmA* phase shows that in the bulk of the fiber the layers are oriented perpendicular to the fiber axis, while at the surfaces there appears to be a thin sheath where the layers are parallel to the fiber/air interface. The desired layer shrinkage with tilt at the SmA* - SmC* transition in these fibers is seen as well, and in the SmC* phase the fibers exhibit an interesting conical chevron layer structure. Electro-optic investigation of aligned thin films of the polymer, prepared from quenched fiber glasses using a novel technique, exhibit a large electroclinic effect, with substantial degradation of alignment quality upon field-induced tilt. This degradation in alignment quality, coupled with the layer shrinkage at the SmA* - SmC* transition demonstrated by X-ray scattering, strongly suggests the desired layer shrinkage with electroclinic tilt is in fact occurring in the polymer films.

  4. Report on phase 1 of the Microprocessor Seminar. [and associated large scale integration

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Proceedings of a seminar on microprocessors and associated large scale integrated (LSI) circuits are presented. The potential for commonality of device requirements, candidate processes and mechanisms for qualifying candidate LSI technologies for high reliability applications, and specifications for testing and testability were among the topics discussed. Various programs and tentative plans of the participating organizations in the development of high reliability LSI circuits are given.

  5. Phase A reaction control system design for the Large Space Telescope (LST)

    NASA Technical Reports Server (NTRS)

    Price, W. B.

    1972-01-01

    The design of a reaction control system (RCS) for the Large Space Telescope is discussed. The primary requirement for the RCS is to serve as an emergency backup control system to the primary attitude control system. A regulated gaseous nitrogen RCS was selected. The operation of the system and its individual components is described. The principal design goals of the RCS were to minimize contamination effects, make use of existing components, and modularize the system to provide ease in manned orbital maintenance.

  6. Structure/property development in aPET during large strain, solid phase polymer processing

    NASA Astrophysics Data System (ADS)

    Martin, Peter; Mohamed, Raja Roslan Raja

    2015-12-01

    Amorphous Polyethylene terephthalate (aPET) is increasingly of interest for the polymer packaging industry due to its blend of excellent mechanical properties and most importantly its ease of recyclability. Among the major commercial polymers it is almost unique in the degree of improvement in mechanical properties that can be obtained through process-induced strain. For many years these unique properties have been very successfully exploited in the injection stretch blow molding process, where it is deliberately stretched to very large strains using extremely high pressures. However, the material is now also being used in much lower pressure processes such as thermoforming where its properties are often not fully exploited. In this work the change in structure and properties of aPET with strain is systematically investigated using a high speed biaxial stretching machine. The aim was to demonstrate how the properties of the material could be controlled by large strain, high temperature biaxial stretching processes such as thermoforming and blow molding. The results show that property changes in the material are driven by orientation and the onset of rapid strain hardening at large strains. This in turn is shown to vary strongly with process-induced parameters such as the strain rate and the mode and magnitude of biaxial deformation.

  7. NOVEL CONCEPTS FOR THE COMPRESSION OF LARGE VOLUMES OF CARBON DIOXIDE-PHASE III

    SciTech Connect

    Moore, J. Jeffrey; Allison, Timothy; Evans, Neal; Moreland, Brian; Hernandez, Augusto; Day, Meera; Ridens, Brandon

    2014-06-30

    In the effort to reduce the release of CO2 greenhouse gases to the atmosphere, sequestration of CO2 from Integrated Gasification Combined Cycle (IGCC) and Oxy-Fuel power plants is being pursued. This approach, however, requires significant compression power to boost the pressure to typical pipeline levels. The penalty can be as high as 8-12% on a typical IGCC plant. The goal of this research is to reduce this penalty through novel compression concepts and integration with existing IGCC processes. The primary objective of the study of novel CO2 compression concepts is to reliably boost the pressure of CO2 to pipeline pressures with the minimal amount of energy required. Fundamental thermodynamics were studied to explore pressure rise in both liquid and gaseous states. For gaseous compression, the project investigated novel methods to compress CO2 while removing the heat of compression internal to the compressor. The highpressure ratio, due to the delivery pressure of the CO2 for enhanced oil recovery, results in significant heat of compression. Since less energy is required to boost the pressure of a cooler gas stream, both upstream and inter-stage cooling is desirable. While isothermal compression has been utilized in some services, it has not been optimized for the IGCC environment. Phase I of this project determined the optimum compressor configuration and developed technology concepts for internal heat removal. Other compression options using liquefied CO2 and cryogenic pumping were explored as well. Preliminary analysis indicated up to a 35% reduction in power is possible with the new concepts being considered. In the Phase II program, two experimental test rigs were developed to investigate the two concepts further. A new pump loop facility was constructed to qualify a cryogenic turbopump for use on liquid CO2. Also, an internally cooled compressor diaphragm was developed and tested in a closed loop compressor facility using CO2. Both test programs

  8. Use of IAEA's phase-space files for virtual source model implementation: Extension to large fields.

    PubMed

    Rucci, Alexis; Carletti, Claudia; Cravero, Walter; Strbac, Bojan

    2016-08-01

    In a previous work, phase-space data files (phsp) provided by the International Atomic Energy Agency (IAEA) were used to develop a hybrid virtual source model (VSM) for clinical photon beams. Very good agreement with dosimetric measurements performed on linear accelerators was obtained for field sizes up to 15×15cm(2). In the present work we extend the VSM to larger field sizes, for which phsp are not available. We incorporate a virtual flattening filter to our model, which can be determined from dose measurements for larger fields. In this way a fully functional VSM can be built, from publicly available IAEA's phsps and standard dose measurements, for fields of any size and tailored to a particular linac. PMID:27423827

  9. Large Area Crop Inventory Experiment (LACIE). Accuracy assessment report phase 1A, November - December 1974. [Kansas

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The author has identified the following significant results. Results of the accuracy assessment activity for Phase IA of LACIE indicated that (1) The 90/90 criteria could be reached if the degree of accuracy of the LACIE performance in Kansas could be equaled in other areas. (2) The classification of both wheat and nonwheat fields was significantly accurate for the three ITS segments analyzed. The wheat field classification accuracy varied for the segments. However, this was not so with respect to nonwheat fields. (3) Biophase as well as its interaction with segment location turned out to be an important factor for the classification performance. Analyst interpretation of segments for training the classifier was a significant error-contributing factor in the estimation of wheat acreage at both the field and the segment levels.

  10. Phase-B activities for the Large Isotope Spectrometer for Astromag

    NASA Technical Reports Server (NTRS)

    Mewaldt, Richard A.; Stone, E. C.

    1995-01-01

    The scientific objectives of the LISA experiment are to (1) extend measurements of the isotopic composition of cosmic ray elements from Be to Ni (Z = 4 to 28) into the energy range beyond 1 GeV per nucleon; (2) to measure the energy spectra of heavy elements up to energies greater than 100 GeV/nucleon with good statistical accuracy; and (3) to search for heavy anti-matter with Z greater than 2 in cosmic rays. This grant focussed on defining the Cherenkov subsystem of the LISA experiment. The Phase-B efforts included the following activities: (1) definition of the LISA Cherenkov counters for the Space Station version of Astromag; (2) testing of the 5-inch fine mesh photomultipliers; (3) development of the aerogel radiator; and (4) study of a free-flyer version of Astromag.

  11. Large conversion of energy in dielectric elastomers by electromechanical phase transition

    NASA Astrophysics Data System (ADS)

    Lu, Tong-Qing; Suo, Zhi-Gang

    2012-08-01

    When air is pumped in, a tubular balloon initially inflates slightly and homogeneously. A short section of the balloon then forms a bulge, which coexists with the unbulged section of the balloon. As more air is pumped in, the bulged section elongates at the expense of the unbulged section, until the entire balloon is bulged. The phenomenon is analogous to the liquid-to-vapor phase transition. Here we study the bulging transition in a dielectric elastomer tube as air is pumped into the balloon and a voltage is applied through the thickness of the membrane. We formulate the condition for coexistent budged and unbulged sections, and identify allowable states set by electrical breakdown and mechanical rupture. We find that the bulging transition dramatically amplifies electromechanical energy conversion. Energy converted in an electromechanical cycle consisting of unbulged and bulged states is thousands of times that in an electromechanical cycle consisting of only unbulged states.

  12. Large Area Crop Inventory Experiment (LACIE). Phase 3 direct wheat study of North Dakota

    NASA Technical Reports Server (NTRS)

    Kinsler, M. C.; Nichols, J. D.; Ona, A. L. (Principal Investigator)

    1979-01-01

    The author has identified the following significant results. The green number and brightness scatter plots, channel plots of radiance values, and visual study of the imagery indicate separability between barley and spring wheat/oats during the wheat mid-heading to mid-ripe stages. In the LACIE Phase 3 North Dakota data set, the separation time is more specifically the wheat soft dough stage. At this time, the barley is ripening, and is therefore, less green and brighter than the wheat. Only 4 of the 18 segments studied indicate separation of barley/other spring small grain, even though 11 of the segments have acquisitions covering the wheat soft dough stage. The remaining seven segments had less than 5 percent barley based on ground truth data.

  13. Phase transitions and metastability in the distribution of the bipartite entanglement of a large quantum system

    SciTech Connect

    De Pasquale, A.; Facchi, P.; Parisi, G.; Pascazio, S.; Scardicchio, A.

    2010-05-15

    We study the distribution of the Schmidt coefficients of the reduced density matrix of a quantum system in a pure state. By applying general methods of statistical mechanics, we introduce a fictitious temperature and a partition function and translate the problem in terms of the distribution of the eigenvalues of random matrices. We investigate the appearance of two phase transitions, one at a positive temperature, associated with very entangled states, and one at a negative temperature, signaling the appearance of a significant factorization in the many-body wave function. We also focus on the presence of metastable states (related to two-dimensional quantum gravity) and study the finite size corrections to the saddle point solution.

  14. The topology of large-scale structure. I - Topology and the random phase hypothesis. [galactic formation models

    NASA Technical Reports Server (NTRS)

    Weinberg, David H.; Gott, J. Richard, III; Melott, Adrian L.

    1987-01-01

    Many models for the formation of galaxies and large-scale structure assume a spectrum of random phase (Gaussian), small-amplitude density fluctuations as initial conditions. In such scenarios, the topology of the galaxy distribution on large scales relates directly to the topology of the initial density fluctuations. Here a quantitative measure of topology - the genus of contours in a smoothed density distribution - is described and applied to numerical simulations of galaxy clustering, to a variety of three-dimensional toy models, and to a volume-limited sample of the CfA redshift survey. For random phase distributions the genus of density contours exhibits a universal dependence on threshold density. The clustering simulations show that a smoothing length of 2-3 times the mass correlation length is sufficient to recover the topology of the initial fluctuations from the evolved galaxy distribution. Cold dark matter and white noise models retain a random phase topology at shorter smoothing lengths, but massive neutrino models develop a cellular topology.

  15. Large epitaxial bi-axial strain induces a Mott-like phase transition in VO{sub 2}

    SciTech Connect

    Kittiwatanakul, Salinporn; Wolf, Stuart A.; Lu, Jiwei

    2014-08-18

    The metal insulator transition (MIT) in vanadium dioxide (VO{sub 2}) has been an important topic for recent years. It has been generally agreed upon that the mechanism of the MIT in bulk VO{sub 2} is considered to be a collaborative Mott-Peierls transition, however, the effect of strain on the phase transition is much more complicated. In this study, the effect of the large strain on the properties of VO{sub 2} films was investigated. One remarkable result is that highly strained epitaxial VO{sub 2} thin films were rutile in the insulating state as well as in the metallic state. These highly strained VO{sub 2} films underwent an electronic phase transition without the concomitant Peierls transition. Our results also show that a very large tensile strain along the c-axis of rutile VO{sub 2} resulted in a phase transition temperature of ∼433 K, much higher than in any previous report. Our findings elicit that the metal insulator transition in VO{sub 2} can be driven by an electronic transition alone, rather the typical coupled electronic-structural transition.

  16. Yb-doped large-mode-area laser fiber fabricated by halide-gas-phase-doping technique

    NASA Astrophysics Data System (ADS)

    Peng, Kun; Wang, Yuying; Ni, Li; Wang, Zhen; Gao, Cong; Zhan, Huan; Wang, Jianjun; Jing, Feng; Lin, Aoxiang

    2015-06-01

    In this manuscript, we designed a rare-earth-halide gas-phase-doping setup to fabricate a large-mode-area fiber for high power laser applications. YbCl3 and AlCl3 halides are evaporated, carried respectively and finally mixed with usual host gas material SiCl4 at the hot zone of MCVD system. Owing to the all-gas-phasing reaction process and environment, the home-made Yb-doped fiber preform has a homogeneous large core and modulated refractive index profile to keep high beam quality. The drawn fiber core has a small numerical aperture of 0.07 and high Yb concentration of 9500 ppm. By using a master oscillator power amplifier system, nearly kW-level (951 W) laser output power was obtained with a slope efficiency of 83.3% at 1063.8 nm, indicating the competition and potential of the halide-gas-phase-doping technique for high power laser fiber fabrication.

  17. Large-scale tectonic features induced by mantle avalanches with phase, temperature, and pressure lateral variations of viscosity

    NASA Astrophysics Data System (ADS)

    Brunei, David; Machetel, Philippe

    1998-03-01

    million years).The temporal evolution of the convection pattern during an avalanche allows us to propose self-consistent mechanisms for slab migration above the 670 km discontinuity for the birth and disappearance of ridges, the rising of powerful plumes from the CMB, and the creation of low-viscosity zones which may act as a lubricant under continents for fast migration. These results show that the main mantle phase changes, combined with temperature and pressure dependent viscosity, induce convective behavior which provides an explanation for most of the past and present large-scale dynamic behavior of the Earth's global tectonics.

  18. Phase Diagram and Density Large Deviations of a Nonconserving ABC Model

    NASA Astrophysics Data System (ADS)

    Cohen, O.; Mukamel, D.

    2012-02-01

    The effect of particle-nonconserving processes on the steady state of driven diffusive systems is studied within the context of a generalized ABC model. It is shown that in the limit of slow nonconserving processes, the large deviation function of the overall particle density can be computed by making use of the steady-state density profile of the conserving model. In this limit one can define a chemical potential and identify first order transitions via Maxwell’s construction, similarly to what is done in equilibrium systems. This method may be applied to other driven models subjected to slow nonconserving dynamics.

  19. Large aperture kinoform phase plates in fused silica for spatial beam smoothing on Nova and the Beamlet Lasers

    SciTech Connect

    Rushford, M.C.; Dixit, S.N.; Thomas, I.M.; Martin, A.M.; Perry, M.D.

    1997-03-01

    It is now widely recognized that spatial beam smoothing (homogenization) is essential in coupling the laser energy to the inertial confinement fusion (ICF) targets. For the indirect drive approach to ICF, it is desirable to distribute the laser energy into a uniformly speckled profile that has a flat-top super-Gaussian envelope (8th power or higher) and contains greater than 95% of the energy inside the super-Gaussian profile. Spatial smoothing is easily achieved by introducing a binary random phase plate (RPP) in the beam. This produces a homogenized far-field pattern which consists of an overall envelope function determined by the RPP element superimposed with a fine scale speckle pattern arising due to the interference among the various RPP elements. Although easy to fabricate and currently in routine use in many fusion laboratories, the binary RPPs do not meet the ICF requirements stated above since the far-field intensity profile is restricted to essentially an Airy function containing only 84% (an upper limit) of the energy inside the central spot. Approaches using lenslet arrays (refractive or diffractive) have limited use since they operate in the quasi-far-field and have a short depth of focus. The limitations of the RPPs can be overcome by relaxing the binary phase constraint. We have recently presented 5 continuously varying phase screens for tailoring the focal plane irradiance profiles. Called kinoform phase plates (KPPs), these phase screens offer complete flexibility in tailoring the focal plane envelope and, at the same time, increasing the energy efficiency inside the focal spot. In this paper we discuss the design and fabrication of such kinoform phase plates in fused silica for spatial beam smoothing on the Nova and the Beamlet lasers. Since the phase plates are used at the end of the laser chain, KPPs on Nova and Beamlet have to be fabricated on large aperture optics (65-cm diameter and 40-cm square substrates respectively). The following

  20. Phase II Study to Assess the Efficacy of Hypofractionated Stereotactic Radiotherapy in Patients With Large Cavernous Sinus Hemangiomas

    SciTech Connect

    Wang Xin; Liu Xiaoxia; Mei Guanghai; Dai Jiazhong; Pan Li; Wang Enmin

    2012-06-01

    Purpose: Cavernous sinus hemangioma is a rare vascular tumor. The direct microsurgical approach usually results in massive hemorrhage. Although radiosurgery plays an important role in managing cavernous sinus hemangiomas as a treatment alternative to microsurgery, the potential for increased toxicity with single-session treatment of large tumors is a concern. The purpose of this study was to assess the efficacy of hypofractionated stereotactic radiotherapy in patients with large cavernous sinus hemangiomas. Methods: Fourteen patients with large (volume >20 cm{sup 3}) cavernous sinus hemangiomas were enrolled in a prospective Phase II study between December 2007 and December 2010. The hypofractionated stereotactic radiotherapy dose was 21 Gy delivered in 3 fractions. Results: After a mean follow-up of 15 months (range, 6-36 months), the magnetic resonance images showed a mean of 77% tumor volume reduction (range, 44-99%). Among the 6 patients with cranial nerve impairments before hypofractionated stereotactic radiotherapy, 1 achieved symptomatic complete resolution and 5 had improvement. No radiotherapy-related complications were observed during follow-up. Conclusion: Our current experience, though preliminary, substantiates the role of hypofractionated stereotactic radiotherapy for large cavernous sinus hemangiomas. Although a longer and more extensive follow-up is needed, hypofractionated stereotactic radiotherapy of 21 Gy delivered in 3 fractions is effective in reducing the tumor volume without causing any new deficits and can be considered as a treatment modality for large cavernous sinus hemangiomas.

  1. Large magneto-optic enhancement in ultra-thin liquid-phase-epitaxy iron garnet films

    SciTech Connect

    Levy, Miguel; Chakravarty, A.; Huang, H.-C.; Osgood, R. M.

    2015-07-06

    Significant departures from bulk-like magneto-optic behavior are found in ultra-thin bismuth-substituted iron-garnet films grown by liquid-phase-epitaxy. These changes are due, at least in part, to geometrical factors and not to departures from bulk-composition in the transient layer at the film-substrate interface. A monotonic increase in specific Faraday rotation with reduced thickness is the signature feature of the observed phenomena. These are traced to size-dependent modifications in the diamagnetic transition processes responsible for the Faraday rotation. These processes correspond to the electronic transitions from singlet {sup 6}S ground states to spin-orbit split excited states of the Fe{sup 3+} ions in the garnet. A measurable reduction in the corresponding ferrimagnetic resonance linewidths is found, thus pointing to an increase in electronic relaxation times and longer lived excitations at reduced thicknesses. These changes together with a shift in vibrational frequency of the Bi-O bonds in the garnet at reduced thicknesses result in greatly enhanced magneto-optical performance. These studies were conducted on epitaxial monocrystalline Bi{sub 0.8}Gd{sub 0.2}Lu{sub 2}Fe{sub 5}O{sub 12} films.

  2. Improved method for rapid shape recovery of large specular surfaces based on phase measuring deflectometry.

    PubMed

    Zhou, Tian; Chen, Kun; Wei, Haoyun; Li, Yan

    2016-04-01

    Incorporating the modal and zonal estimation approaches into a unifying scheme, we introduce an improved three-dimensional shape reconstruction version of specular surfaces based on phase measuring deflectometry in this paper. The modal estimation is first implemented to derive the coarse height information of the measured surface as initial iteration values. Then the real shape can be recovered utilizing a modified zonal wavefront reconstruction algorithm to simultaneously achieve consistently high accuracy and dramatically rapid convergence. Moreover, the iterative process based on an advanced successive over-relaxation technique shows a consistent rejection of measurement errors, guaranteeing the stability and robustness in practical applications. The reconstruction results of numerical examples of the sphere, hyperbolic, and arbitrary surfaces, as well as an experimentally measured sphere mirror demonstrate the validity and efficiency of the proposed improved method. In the simulations, the proposed method increases the rate of convergence by fourfold compared with the existing zonal approach and realizes three orders of magnitude improvement in reconstruction accuracy compared with the modal technique when handling the sample points of 401×401  pixels of a sphere surface. Furthermore, the computation time decreases approximately 74.92% in contrast to the zonal estimation, and the surface error is about 6.68 μm with reconstruction points of 391×529  pixels of an experimentally measured sphere mirror. In general, this new method can be conducted with fast convergence speed and high accuracy, providing an efficient, stable, and real-time approach for shape reconstruction in practical situations. PMID:27139683

  3. Fabrication of large-scale multilevel phase-type Fresnel zone plate arrays by femtosecond laser direct writing

    NASA Astrophysics Data System (ADS)

    Yu, Yan-Hao; Tian, Zhen-Nan; Jiang, Tong; Niu, Li-Gang; Gao, Bing-Rong

    2016-03-01

    We report on the fabrication of large-scale eight-level phase-type Fresnel zone plate arrays (FZPAs) by femtosecond-laser direct writing technology. A high-speed galvanometer scanning system was used to fabricate each Fresnel zone plate to realize high fabrication efficiency. To overcome the limited fabrication scale in the case of galvanometer scanning, inter-plate movements were controlled by multi-axis air-bearing precise positioning stages. With the system, FZPAs whose fill-factor was designed to be 100% realized a diffraction efficiency of 89%. The focusing and imaging properties of the FZPAs were also evaluated, and the FZPAs showed high fidelity.

  4. Photoresponse properties of large-area MoS{sub 2} atomic layer synthesized by vapor phase deposition

    SciTech Connect

    Luo, Siwei; Qi, Xiang E-mail: jxzhong@xtu.edu.cn; Ren, Long; Hao, Guolin; Fan, Yinping; Liu, Yundan; Han, Weijia; Zang, Chen; Li, Jun; Zhong, Jianxin E-mail: jxzhong@xtu.edu.cn

    2014-10-28

    Photoresponse properties of a large area MoS{sub 2} atomic layer synthesized by vapor phase deposition method without any catalyst are studied. Scanning electron microscopy, atomic force microscopy, Raman spectrum, and photoluminescence spectrum characterizations confirm that the two-dimensional microstructures of MoS{sub 2} atomic layer are of high quality. Photoelectrical results indicate that the as-prepared MoS{sub 2} devices have an excellent sensitivity and a good reproducibility as a photodetector, which is proposed to be ascribed to the potential-assisted charge separation mechanism.

  5. Direct synthesis of large size ferromagnetic SmCo{sub 5} nanoparticles by a gas-phase condensation method

    SciTech Connect

    He Shihai; Jing Ying; Wang Jianping

    2013-04-07

    Ferromagnetic SmCo{sub 5} nanoparticles with large size have been directly synthesized by a magnetron-sputtering-based gas-phase condensation method. Based on this method, we studied the effect of thermodynamic environment for the growth of SmCo{sub 5} nanoparticles. It was found that the well-crystallized SmCo{sub 5} nanoparticle tends to form a hexagonal disk shape with its easy axis perpendicular to the disk plane. More importantly, under the condition of high sputtering current, well-crystallized nanoparticles were found to be formed through a three-stage growth process: aggregation, coalescence, and second crystallization.

  6. Photoresponse properties of large-area MoS2 atomic layer synthesized by vapor phase deposition

    NASA Astrophysics Data System (ADS)

    Luo, Siwei; Qi, Xiang; Ren, Long; Hao, Guolin; Fan, Yinping; Liu, Yundan; Han, Weijia; Zang, Chen; Li, Jun; Zhong, Jianxin

    2014-10-01

    Photoresponse properties of a large area MoS2 atomic layer synthesized by vapor phase deposition method without any catalyst are studied. Scanning electron microscopy, atomic force microscopy, Raman spectrum, and photoluminescence spectrum characterizations confirm that the two-dimensional microstructures of MoS2 atomic layer are of high quality. Photoelectrical results indicate that the as-prepared MoS2 devices have an excellent sensitivity and a good reproducibility as a photodetector, which is proposed to be ascribed to the potential-assisted charge separation mechanism.

  7. A Large Liquid Argon TPC for Off-axis NuMI Neutrino Physics

    SciTech Connect

    Menary, Scott

    2006-07-11

    The ICARUS collaboration has shown the power of the liquid argon time projection chamber (LArTPC) technique to image events with bubble-chamber-like quality. I will describe a proposed long-baseline {nu}e appearance experiment utilizing a large ({>=} 15 kton1) LArTPC placed off-axis of Fermilab's NuMI {nu}{mu} beam. The total LArTPC program as it presently stands, which includes a number of smaller R and D projects designed to examine the key design issues, will be outlined.

  8. 2- and 3-dimensional synthetic large-scale de novo patterning by mammalian cells through phase separation.

    PubMed

    Cachat, Elise; Liu, Weijia; Martin, Kim C; Yuan, Xiaofei; Yin, Huabing; Hohenstein, Peter; Davies, Jamie A

    2016-01-01

    Synthetic biology provides an opportunity for the construction and exploration of alternative solutions to biological problems - solutions different from those chosen by natural life. To this end, synthetic biologists have built new sensory systems, cellular memories, and alternative genetic codes. There is a growing interest in applying synthetic approaches to multicellular systems, especially in relation to multicellular self-organization. Here we describe a synthetic biological system that confers large-scale de novo patterning activity on 2-D and 3-D populations of mammalian cells. Instead of using the reaction-diffusion mechanisms common in real embryos, our system uses cadherin-mediated phase separation, inspired by the known phenomenon of cadherin-based sorting. An engineered self-organizing, large-scale patterning system requiring no prior spatial cue may be a significant step towards the construction of self-assembling synthetic tissues. PMID:26857385

  9. Talbot interferometry with curved quasi-periodic gratings: towards large field of view X-ray phase-contrast imaging.

    PubMed

    Sun, Yangyang; Cong, Wenxiang; Xi, Yan; Wang, Ge; Pang, Shuo

    2015-10-01

    X-ray phase-contrast imaging based on grating interferometry has become a common method due to its superior contrast in biological soft tissue imaging. The high sensitivity relies on the high-aspect ratio structures of the planar gratings, which prohibit the large field of view applications with a diverging X-ray source. Curved gratings allow a high X-ray flux for a wider angular range, but the interference fringes are only visible within ~10° range due to the geometrical mismatch with the commonly used flat array detectors. In this paper, we propose a design using a curved quasi-periodic grating for large field of view imaging with a flat detector array. Our scheme is numerically verified in the X-ray regime and experimentally verified in the visible optical regime. The interference fringe pattern is observed over 25°, with less than 10% of decrease in visibility in our experiments. PMID:26480170

  10. 2- and 3-dimensional synthetic large-scale de novo patterning by mammalian cells through phase separation

    PubMed Central

    Cachat, Elise; Liu, Weijia; Martin, Kim C.; Yuan, Xiaofei; Yin, Huabing; Hohenstein, Peter; Davies, Jamie A.

    2016-01-01

    Synthetic biology provides an opportunity for the construction and exploration of alternative solutions to biological problems - solutions different from those chosen by natural life. To this end, synthetic biologists have built new sensory systems, cellular memories, and alternative genetic codes. There is a growing interest in applying synthetic approaches to multicellular systems, especially in relation to multicellular self-organization. Here we describe a synthetic biological system that confers large-scale de novo patterning activity on 2-D and 3-D populations of mammalian cells. Instead of using the reaction-diffusion mechanisms common in real embryos, our system uses cadherin-mediated phase separation, inspired by the known phenomenon of cadherin-based sorting. An engineered self-organizing, large-scale patterning system requiring no prior spatial cue may be a significant step towards the construction of self-assembling synthetic tissues. PMID:26857385

  11. Regulation of Platelet Derived Growth Factor Signaling by Leukocyte Common Antigen-related (LAR) Protein Tyrosine Phosphatase: A Quantitative Phosphoproteomics Study.

    PubMed

    Sarhan, Adil R; Patel, Trushar R; Creese, Andrew J; Tomlinson, Michael G; Hellberg, Carina; Heath, John K; Hotchin, Neil A; Cunningham, Debbie L

    2016-06-01

    Intracellular signaling pathways are reliant on protein phosphorylation events that are controlled by a balance of kinase and phosphatase activity. Although kinases have been extensively studied, the role of phosphatases in controlling specific cell signaling pathways has been less so. Leukocyte common antigen-related protein (LAR) is a member of the LAR subfamily of receptor-like protein tyrosine phosphatases (RPTPs). LAR is known to regulate the activity of a number of receptor tyrosine kinases, including platelet-derived growth factor receptor (PDGFR). To gain insight into the signaling pathways regulated by LAR, including those that are PDGF-dependent, we have carried out the first systematic analysis of LAR-regulated signal transduction using SILAC-based quantitative proteomic and phosphoproteomic techniques. We haveanalyzed differential phosphorylation between wild-type mouse embryo fibroblasts (MEFs) and MEFs in which the LAR cytoplasmic phosphatase domains had been deleted (LARΔP), and found a significant change in abundance of phosphorylation on 270 phosphosites from 205 proteins because of the absence of the phosphatase domains of LAR. Further investigation of specific LAR-dependent phosphorylation sites and enriched biological processes reveal that LAR phosphatase activity impacts on a variety of cellular processes, most notably regulation of the actin cytoskeleton. Analysis of putative upstream kinases that may play an intermediary role between LAR and the identified LAR-dependent phosphorylation events has revealed a role for LAR in regulating mTOR and JNK signaling. PMID:27074791

  12. Stages of rootless cone formation observed within the Raudhólar cone group, Iceland

    NASA Astrophysics Data System (ADS)

    Fitch, E. P.; Hamilton, C.; Fagents, S. A.; Thordarson, T.

    2013-12-01

    Secondary (rootless) cones form when lava interacts explosively with water contained in the substrate, and represent a largely degassed, end-member system that can elucidate mechanisms of magma-water interactions in the absence of primary degassing-induced fragmentation. Rootless cones are well documented in Iceland. The Raudhólar rootless cone group, located within the ~5200-year-old Ellidaá lava flow on the south-eastern outskirts of Reykjavík, was extensively quarried during the Second World War and now provides excellent cross-sections through the tephra sequences. Taking advantage of this exposure, we performed detailed stratigraphic, grain-size, and componentry analyses, which suggest that the energetics of rootless explosions vary substantially during cone formation. The lower unit contains the most substrate sediment and is characterized by dilute pyroclastic density current deposits. The middle unit is dominated by a succession of bed-pairs, each containing a finer-grained lower layer and coarser-grained upper layer. In the upper unit, the succession grades into a welded section that caps the cone. The abundance of substrate sediment generally decreases upwards within the cone, which suggests that the efficiency of lava-substrate mixing decreased with time. In addition, clast size generally increases upwards within the cone, implying that the fragmentation energy also decreased as the rootless eruption progressed. Both lines of evidence suggest that the explosions decreased in intensity with time, likely due to the depletion of available groundwater. However, alternating fine- and coarse-grained beds imply cycles of increased and decreased fragmentation efficiency, which we attribute to groundwater recharge and depletion during the event. Therefore, this study presents a detailed look at rootless cone formation and provides the foundation for future work on this important, yet understudied, system.

  13. The phase curve of cometary dust: Observations of comet 96P/Machholz 1 at large phase angle with the SOHO LASCO C3 coronagraph

    NASA Astrophysics Data System (ADS)

    Grynko, Ye.; Jockers, K.; Schwenn, R.

    2004-11-01

    We have analyzed brightness and polarization data of comet 96P/Machholz, obtained with the SOHO-LASCO C3 coronagraph at phase angles up to 167° and 157°, respectively. The polarization data are characteristic of a typical dusty comet. Within error limits the corresponding trigonometric fit describes the new data measured at larger phase angles as well as those of the previously known range. In the phase angle range from 110° to 167° the brightness increases almost linearly by about two orders of magnitude. The gradient is independent of wavelength. From the absence of a diffraction spike we conclude that the grains contributing significantly to the scattered light must have a size parameter x = 2π r/λ ≥20, i.e. have a radius larger than 1 μm. Fits of the data with Mie calculations of particles having a power law distribution of power index ≈ 2.5 provide a best fit refractive index m = 1.2 + i0.004. In the framework of effective medium theory and on the assumption of a particle porosity P= 0.5 this leads to a complex refractive index of the porous medium m = 1.43 + i0.009. A higher refractive index is possible for more porous grains with very low absorption. The large particle sizes are in qualitative agreement with findings derived from the analysis of the motion of cometary dust under solar radiation pressure (Fulle and coworkers, see \\cite{fulle}; \\cite{jockers} 1997) and with the in-situ measurements of the dust of Halley's comet.

  14. Observations of Comet P/2003 T12 = 2012 A3 (SOHO) at large phase angle in STEREO-B

    NASA Astrophysics Data System (ADS)

    Hui, Man-To

    2014-11-01

    Comet P/2003 T12 = 2012 A3 (SOHO) was observed by the satellite STEREO-B during the period 2012 January 13-27. During its apparition, it ventured into the highest phase angle ever observed for a comet, and the forward-scattering enhancement in brightness was marked, as large as ˜8.5 mag. Therefore, it provided a precious opportunity to examine the compound Henyey-Greenstein (HG) comet-dust light-scattering model and it also offered valuable polarization data under an unprecedented observing geometry. Our analysis reveals that the compound HG model fits the observations very well until the phase angle exceeds ˜173°, where the brightness surge of the comet was obviously steeper than the prediction by the model. We have found that the reason for the greater steepness cannot be explained by contaminations from the proximal tail. Instead, the model of Mie spheres with radii greater than 1 μm, having a power-law distribution of power index ˜3, matches the observation very well, providing a best-fitting complex refractive index μ = 1.38 + i 0.006. The dust size was found to be consistent with the analysis of the comet's syndyne lines. The debiased polarization of the coma was ˜0 per cent in the phase angle range from 172.9° to 177.6°. No convincing evidence of temporal variation of the polarization was detected.

  15. Observations of Comet P/2003 T12 = 2012 A3 (SOHO) at large phase angle in STEREO-B

    NASA Astrophysics Data System (ADS)

    Hui, M.-T.

    2013-12-01

    Comet P/2003 T12 = 2012 A3 (SOHO) was observed by the satellite STEREO-B during the period 2012 January 13-27. During its apparition, it ventured into the highest phase angle ever observed for a comet, and the forward-scattering enhancement in brightness was marked, as large as ˜8.5 mag. Therefore, it provided a precious opportunity to examine the compound Henyey-Greenstein (HG) comet-dust light-scattering model and it also offered valuable polarization data under an unprecedented observing geometry. Our analysis reveals that the compound HG model fits the observations very well until the phase angle exceeds ˜173°, where the brightness surge of the comet was obviously steeper than the prediction by the model. We have found that the reason for the greater steepness cannot be explained by contaminations from the proximal tail. Instead, the model of Mie spheres with radii greater than 1 μm, having a power-law distribution of power index ˜3, matches the observation very well, providing a best-fitting complex refractive index μ = 1.38 + i 0.006. The dust size was found to be consistent with the analysis of the comet's syndyne lines. The debiased polarization of the coma was ˜0 per cent in the phase angle range from 172.9° to 177.6°. . No convincing evidence of temporal variation of the polarization was detected.

  16. Vapor-phase concentrations of PAHs and their derivatives determined in a large city: correlations with their atmospheric aerosol concentrations.

    PubMed

    Barrado, Ana Isabel; García, Susana; Sevillano, Marisa Luisa; Rodríguez, Jose Antonio; Barrado, Enrique

    2013-11-01

    Thirteen PAHs, five nitro-PAHs and two hydroxy-PAHs were determined in 55 vapor-phase samples collected in a suburban area of a large city (Madrid, Spain), from January 2008 to February 2009. The data obtained revealed correlations between the concentrations of these compounds and a series of meteorological factors (e.g., temperature, atmospheric pressure) and physical-chemical factors (e.g., nitrogen and sulfur oxides). As a consequence, seasonal trends were observed in the atmospheric pollutants. A "mean sample" for the 14-month period would contain a total PAH concentration of 13835±1625 pg m(-3) and 122±17 pg m(-3) of nitro-PAHs. When the data were stratified by season, it emerged that a representative sample of the coldest months would contain 18900±2140 pg m(-3) of PAHs and 150±97 pg m(-3) of nitro-PAHs, while in an average sample collected in the warmest months, these values drop to 9293±1178 pg m(-3) for the PAHs and to 97±13 pg m(-3) for the nitro-PAHs. Total vapor phase concentrations of PAHs were one order of magnitude higher than concentrations detected in atmospheric aerosol samples collected on the same dates. Total nitro-PAH concentrations were comparable to their aerosol concentrations whereas vapor phase OH-PAHs were below their limits of the detection, indicating these were trapped in airborne particles. PMID:23816454

  17. SER-LARS, Volume 2. Learning Objective History I. 1975-76 Edition.

    ERIC Educational Resources Information Center

    Montgomery County Intermediate Unit 23, Blue Bell, PA.

    The second of nine volumes in the SER-LARS (Special Education Resources Location Analysis and Retrieval System) series, a diagnostic-prescriptive instructional data bank for teachers of handicapped children, presents learning objectives organized by content descriptions. The volume is explained to give a history of the use of each objective along…

  18. SER-LARS, Volume 12. Instructional Methods III. 1975-76 Edition.

    ERIC Educational Resources Information Center

    Montgomery County Intermediate Unit 23, Blue Bell, PA.

    The book briefly describes several hundred instructional methods from the Special Education Resources Location Analysis and Retrieval System (SER-LARS), which are intended for use in developing and carrying out individualized programs for handicapped children. Each teaching method includes an accession number; title; author; source; teacher tasks;…

  19. SER-LARS, Volume 10. Instructional Methods I. 1975-76 Edition.

    ERIC Educational Resources Information Center

    Montgomery County Intermediate Unit 23, Blue Bell, PA.

    The book briefly describes several hundred instructional methods from the Special Education Resources Location Analysis and Retrieval System (SER-LARS), which are intended for use in developing and carrying out individualized programs for handicapped children. Each teaching method includes an accession number; title; author; source; teacher tasks;…

  20. SER-LARS, Volume 11. Instructional Methods II. 1975-76 Edition.

    ERIC Educational Resources Information Center

    Montgomery County Intermediate Unit 23, Blue Bell, PA.

    The book briefly describes several hundred instructional methods from the Special Education Resources Location Analysis and Retrieval System (SER LARS), which are intended for use in developing and carrying out individualized programs for handicapped children. Each teaching method includes an accession number; title; author; source; teacher tasks;…

  1. SER-LARS, Volume 6. Instructional Materials, Teacher Made and Commercially Adapted. 1975-76 Edition.

    ERIC Educational Resources Information Center

    Montgomery County Intermediate Unit 23, Blue Bell, PA.

    The sixth of nine volumes in the Special Education Resources Location Analysis and Retrieval System (SER-LARS), a diagnostic-prescriptive instructional data bank for teachers of handicapped children, presents an inventory of teacher-made and commercially adapted instructional materials. The instructional materials are organized by accession number…

  2. SER-LARS, Volume 3. Learning Objective History II. 1975-76 Edition.

    ERIC Educational Resources Information Center

    Montgomery County Intermediate Unit 23, Blue Bell, PA.

    The third of nine volumes in the SER-LARS (Special Education Resources Location Analysis and Retrieval System) series, a diagnostic-prescriptive instructional data bank for teachers of handicapped children, presents learning objectives organized by content descriptions. Entries give a history of the use of each objective along with information on…

  3. SER-LARS, Volume 1. User's Handbook. 1975-76 Edition.

    ERIC Educational Resources Information Center

    Montgomery County Intermediate Unit 23, Blue Bell, PA.

    The first of nine volumes in the SER-LARS (Special Education Resources Location Analysis and Retrieval System) Series presents an overview of the system's diagnostic-prescriptive instructional data bank. Information for the user is provided on resources needed, information generated, and procedures for the model's eight levels: initial referral…

  4. SER-LARS, Volume 4. Learning Objective History III. 1975-76 Edition.

    ERIC Educational Resources Information Center

    Montgomery County Intermediate Unit 23, Blue Bell, PA.

    The fourth volume in the SER-LARS (Special Education Resources Location Analysis and Retrieval System) series, a diagnostic-prescriptive instructional data bank for teachers of handicapped children, presents a continuation of learning objectives organized by content descriptions. Entrees give a history of the use of each objective along with…

  5. Two-level optimization approach for Mars orbital long-duration, large non-coplanar rendezvous phasing maneuvers

    NASA Astrophysics Data System (ADS)

    Yang, Zhen; Luo, Ya-Zhong; Zhang, Jin

    2013-09-01

    A relative dynamics equation-set based on orbital element differences with J2 effects is derived, based on which a two-level approach is proposed to optimize the Mars orbital rendezvous phasing with a large difference in the initial ascending node. The up-level problem uses the revolution deviation between the target spacecraft and the chaser as the design variable, and employs a linear search to find the optimum. The low-level problem uses the maneuver revolutions, locations, and impulses as the design variables, and is solved using a hybrid genetic algorithm combined with sequential quadratic programming. To improve the solution accuracy, an iteration method is developed to satisfy the terminal constraints of the absolute numerical integration trajectory. Test cases involving Mars sample return missions with large initial node differences are presented, which show that the relative dynamics, two-level optimization model, and hybrid optimization algorithm are efficient and robust. Compared with previously published results, the total velocity increment has been further reduced by utilizing this proposed approach. It is found that a five-impulse plan requires the least quantity of propellant, and a propellant-optimal minimum rendezvous duration exists for this long-duration, large non-coplanar rendezvous problem.

  6. Large-eddy simulation of three mixed-phase cloud events during ISDAC: Conditions for persistent heterogeneous ice formation

    NASA Astrophysics Data System (ADS)

    Savre, J.; Ekman, A. M. L.

    2015-08-01

    A Classical-Nucleation-Theory-based parameterization for heterogenous ice nucleation, including explicit dependencies of the nucleation rates on the number concentration, size, and composition of the ambient aerosol population, is implemented in a cloud-scale, large-eddy simulation model and evaluated against Arctic mixed-phase cloud events observed during Indirect and Semi-Direct Aerosol Campaign (ISDAC). An important feature of the parameterization is that the ice nucleation efficiency of each considered aerosol type is described using a contact angle distribution which evolves with time so that the model accounts for the inhibition of ice nucleation as the most efficient ice-forming particles are nucleated and scavenged. The model gives a reasonable representation of first-order (ice water paths) and second-order (ice crystal size distributions) ice microphysical properties. The production of new ice crystals in the upper part of the cloud, essential to guarantee sustained mixed-phase conditions, is found to be controlled mostly by the competition between radiative cooling (resulting in more aerosol particles becoming efficient ice nuclei as the temperature decreases), cloud-top entrainment (entraining fresh particles into the cloud), and nucleation scavenging of the ice+forming aerosol particles. The relative contribution of each process is mostly determined by the cloud-top temperature and the entrainment rates. Accounting for the evolution of the contact angle probability density function with time seems to be essential to capture the persistence of in-cloud ice production without having to, for example, increase the free tropospheric aerosol concentration. Although limited to only three cases and despite important limitations of the parameterization (e.g., the present version only considers dust and black carbon as potential ice nuclei), the results suggest that modeling the time evolution of the ice nuclei population ability to form ice is required to

  7. Two-dimensional wave-number spectral analysis techniques for phase contrast imaging turbulence imaging data on large helical device.

    PubMed

    Michael, C A; Tanaka, K; Vyacheslavov, L; Sanin, A; Kawahata, K

    2015-09-01

    An analysis method for unfolding the spatially resolved wave-number spectrum and phase velocity from the 2D CO2 laser phase contrast imaging system on the large helical device is described. This is based on the magnetic shear technique which identifies propagation direction from 2D spatial Fourier analysis of images detected by a 6 × 8 detector array. Because the strongest modes have wave-number at the lower end of the instrumental k range, high resolution spectral techniques are necessary to clearly resolve the propagation direction and hence the spatial distribution of fluctuations along the probing laser beam. Multiple-spatial point cross-correlation averaging is applied before calculating the spatial power spectrum. Different methods are compared, and it is found that the maximum entropy method (MEM) gives best results. The possible generation of artifacts from the over-narrowing of spectra are investigated and found not to be a significant problem. The spatial resolution Δρ (normalized radius) around the peak wave-number, for conventional Fourier analysis, is ∼0.5, making physical interpretation difficult, while for MEM, Δρ ∼ 0.1. PMID:26429439

  8. Radiation levels in the CERN Large Electron Positron collider during the LEP 2 phase (68 105 GeV)

    NASA Astrophysics Data System (ADS)

    Gaborit, J. C.; Silari, M.; Ulrici, L.

    2006-09-01

    The CERN Large Electron Positron (LEP) collider was in operation from 1989 to 2000. At the end of 1995 the LEP 2 phase began, with the progressive upgrade of the collider energy above the W pair production threshold, until the final energy of 105 GeV per beam. During the 11-year operation an extensive radiation survey program monitored the dose levels inside and around the installation. The radiation levels monitored in the underground areas and on the surface during 1989-1995 (LEP 1 phase) were discussed in a previous paper. The aim of this paper is to complete the data reported earlier. This paper first gives an overview of the radiation levels in the LEP tunnel and in other underground areas, and then discusses measurements of the photon radiation performed in the machine tunnel at each energy increase. An estimate of neutron sources, measurements of radiation streaming through ducts and shafts and some results of measurements of synchrotron radiation from the wigglers are given next. Residual dose rates are then briefly addressed. Finally, an overview is provided of the radiation levels recorded on ground surface during operation, both at the LEP access points and at some reference areas in the French and Swiss countryside.

  9. Performance of large aperture tapered fiber phase conjugate mirror with high pulse energy and 1-kHz repetition rate.

    PubMed

    Zhao, Zhigang; Dong, Yantao; Pan, Sunqiang; Liu, Chong; Chen, Jun; Tong, Lixin; Gao, Qingsong; Tang, Chun

    2012-01-16

    A large aperture fused silica tapered fiber phase conjugate mirror is presented with a maximum 70% stimulated Brillouin scattering (SBS) reflectivity, which is obtained with 1 kHz repetition rate, 15 ns pulse width and 38 mJ input pulse energy. To the best of our knowledge, this is the highest SBS reflectivity ever reported by using optical fiber as a phase conjugate mirror for such high pulse repetition rate (1 kHz) and several tens of millijoule (mJ) input pulse energy. The influences of fiber end surface quality and pump pulse widths on SBS reflectivity are investigated experimentally. The results show that finer fiber end surface quality and longer input pulse widths are preferred for obtaining higher SBS reflectivity with higher input pulse energy. Double passing amplification experiments are also performed. 52 mJ pulse energy is achieved at 1 kHz repetition rate, with a reflected SBS pulse width of 1.5 ns and a M(2) factor of 2.3. The corresponding peak power reaches 34.6 MW. Obvious beam quality improvement is observed. PMID:22274534

  10. Two-dimensional wave-number spectral analysis techniques for phase contrast imaging turbulence imaging data on large helical device

    SciTech Connect

    Michael, C. A.; Tanaka, K.; Kawahata, K.; Vyacheslavov, L.; Sanin, A.

    2015-09-15

    An analysis method for unfolding the spatially resolved wave-number spectrum and phase velocity from the 2D CO{sub 2} laser phase contrast imaging system on the large helical device is described. This is based on the magnetic shear technique which identifies propagation direction from 2D spatial Fourier analysis of images detected by a 6 × 8 detector array. Because the strongest modes have wave-number at the lower end of the instrumental k range, high resolution spectral techniques are necessary to clearly resolve the propagation direction and hence the spatial distribution of fluctuations along the probing laser beam. Multiple-spatial point cross-correlation averaging is applied before calculating the spatial power spectrum. Different methods are compared, and it is found that the maximum entropy method (MEM) gives best results. The possible generation of artifacts from the over-narrowing of spectra are investigated and found not to be a significant problem. The spatial resolution Δρ (normalized radius) around the peak wave-number, for conventional Fourier analysis, is ∼0.5, making physical interpretation difficult, while for MEM, Δρ ∼ 0.1.

  11. Large-scale cubic InN nanocrystals by a combined solution- and vapor-phase method under silica confinement.

    PubMed

    Chen, Zhuo; Li, Yanan; Cao, Chuanbao; Zhao, Songrui; Fathololoumi, Saeed; Mi, Zetian; Xu, Xingyan

    2012-01-18

    Large-scale cubic InN nanocrystals were synthesized by a combined solution- and vapor-phase method under silica confinement. Nearly monodisperse cubic InN nanocrystals with uniform spherical shape were dispersed stably in various organic solvents after removal of the silica shells. The average size of InN nanocrystals is 5.7 ± 0.6 nm. Powder X-ray diffraction results indicate that the InN nanocrystals are of high crystallinity with a cubic phase. X-ray photoelectron spectroscopy and energy-dispersive spectroscopy confirm that the nanocrystals are composed of In and N elements. The InN nanocrystals exhibit infrared photoluminescence at room temperature, with a peak energy of ~0.62 eV, which is smaller than that of high-quality wurtzite InN (~0.65-0.7 eV) and is in agreement with theoretical calculations. The small emission peak energy of InN nanocrystals, as compared to other low-cost solution or vapor methods, reveals the superior crystalline quality of our samples, with low or negligible defect density. This work will significantly promote InN-based applications in IR optoelectronic device and biology. PMID:22224725

  12. On the thermodynamic stability of clathrate hydrates V: phase behaviors accommodating large guest molecules with new reference states.

    PubMed

    Tanaka, Hideki; Matsumoto, Masakazu

    2011-12-01

    We present a method that brings prediction of phase behaviors of various clathrate hydrates with firm statistical mechanical ground adopting a different reference state from the usual one. Accommodation of a large guest molecule makes the frequencies of the lattice vibrational motions higher, which is one of the breakdowns of the assumptions in the original van der Waals and Platteeuw theory. The frequency modulations are incorporated in the free energy of cage occupation in the present method. Moreover, the reference state, which is originally the corresponding empty clathrate structure, is alternated to a state where cages of at least one sort are fully occupied. This meets the stability condition of clathrate hydrates that most of the cages should be accommodated. Owing to this new reference state, the thermodynamic stability is evaluated with reasonable accuracy from the free energy of cage occupation especially by a large guest molecule without considering its dependence on the cage occupancy. This conversion is also beneficial to establish a relation between the chemical potential of water and the cage occupancy from grandcanonical Monte Carlo simulation. We show a new method indeed works well in predicting the dissociation pressures of clathrate hydrates containing isobutane, propane, ethane, Xe, and CF(4). PMID:21902174

  13. Anterior cruciate ligament repair with LARS (ligament advanced reinforcement system): a systematic review

    PubMed Central

    2010-01-01

    Background Injury to the anterior cruciate ligament (ACL) of the knee is common. Following complete rupture of the ACL, insufficient re-vascularization of the ligament prevents it from healing completely, creating a need for reconstruction. A variety of grafts are available for use in ACL reconstruction surgery, including synthetic grafts. Over the last two decades new types of synthetic ligaments have been developed. One of these synthetic ligaments, the Ligament Advanced Reinforcement System (LARS), has recently gained popularity. The aim of this systematic review was to assess the current best available evidence for the effectiveness of the LARS as a surgical option for symptomatic, anterior cruciate ligament rupture in terms of graft stability, rehabilitation time and return to pre-injury function. Method This systematic review included studies using subjects with symptomatic, ACL ruptures undergoing LARS reconstruction. A range of electronic databases were searched in May 2010. The methodological quality of studies was appraised with a modified version of the Law critical appraisal tool. Data relating to study characteristics, surgical times, complication rates, outcomes related to knee stability, quality of life, function, and return to sport as well as details of rehabilitation programs and timeframes were collected. Results This review identified four studies of various designs, of a moderate methodological quality. Only one case of knee synovitis was reported. Patient satisfaction with LARS was high. Graft stability outcomes were found to be inconsistent both at post operative and at follow up periods. The time frames of rehabilitation periods were poorly reported and at times omitted. Return to pre-injury function and activity was often discussed but not reported in results. Conclusions There is an emerging body of evidence for LARS with comparable complication rates to traditional surgical techniques, and high patient satisfaction scores. However, this

  14. Unique Piezoelectric Properties of the Monoclinic Phase in Pb (Zr ,Ti )O3 Ceramics: Large Lattice Strain and Negligible Domain Switching

    NASA Astrophysics Data System (ADS)

    Fan, Longlong; Chen, Jun; Ren, Yang; Pan, Zhao; Zhang, Linxing; Xing, Xianran

    2016-01-01

    The origin of the excellent piezoelectric properties at the morphotropic phase boundary is generally attributed to the existence of a monoclinic phase in various piezoelectric systems. However, there exist no experimental studies that reveal the role of the monoclinic phase in the piezoelectric behavior in phase-pure ceramics. In this work, a single monoclinic phase has been identified in Pb (Zr ,Ti )O3 ceramics at room temperature by in situ high-energy synchrotron x-ray diffraction, and its response to electric field has been characterized for the first time. Unique piezoelectric properties of the monoclinic phase in terms of large intrinsic lattice strain and negligible domain switching have been observed. The extensional strain constant d33 and the transverse strain constant d31 are calculated to be 520 and -200 pm /V , respectively. These large piezoelectric coefficients are mainly due to the large intrinsic lattice strain, with very little extrinsic contribution from domain switching. The unique properties of the monoclinic phase provide new insights into the mechanisms responsible for the piezoelectric properties at the morphotropic phase boundary.

  15. Lars Onsager Prize Lecture: Statistical Dynamics of Disordered Systems

    NASA Astrophysics Data System (ADS)

    Fisher, Daniel S.

    2013-03-01

    The properties of many systems are strongly affected by quenched disorder that arose from their past history but is frozen on the time scales of interest. Although equilibrium phases and phase transitions in disordered materials can be very different from their counterparts in pure systems, the most striking phenomena involve non-equilibrium dynamics. The state of understanding of some of these will be reviewed including approach to equilibrium in spin glasses and the onset of motion in driven systems such as vortices in superconductors or earthquakes on geological faults. The potential for developing understanding of short-term evolutionary dynamics of microbial populations by taking advantage of the randomness of their past histories and the biological complexities will be discussed briefly.

  16. Intercomparison of large-eddy simulations of Arctic mixed-phase clouds: Importance of ice size distribution assumptions

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, Mikhail; Ackerman, Andrew S.; Avramov, Alexander; Cheng, Anning; Fan, Jiwen; Fridlind, Ann M.; Ghan, Steven; Harrington, Jerry; Hoose, Corinna; Korolev, Alexei; McFarquhar, Greg M.; Morrison, Hugh; Paukert, Marco; Savre, Julien; Shipway, Ben J.; Shupe, Matthew D.; Solomon, Amy; Sulia, Kara

    2014-03-01

    Large-eddy simulations of mixed-phase Arctic clouds by 11 different models are analyzed with the goal of improving understanding and model representation of processes controlling the evolution of these clouds. In a case based on observations from the Indirect and Semi-Direct Aerosol Campaign (ISDAC), it is found that ice number concentration, Ni, exerts significant influence on the cloud structure. Increasing Ni leads to a substantial reduction in liquid water path (LWP), in agreement with earlier studies. In contrast to previous intercomparison studies, all models here use the same ice particle properties (i.e., mass-size, mass-fall speed, and mass-capacitance relationships) and a common radiation parameterization. The constrained setup exposes the importance of ice particle size distributions (PSDs) in influencing cloud evolution. A clear separation in LWP and IWP predicted by models with bin and bulk microphysical treatments is documented and attributed primarily to the assumed shape of ice PSD used in bulk schemes. Compared to the bin schemes that explicitly predict the PSD, schemes assuming exponential ice PSD underestimate ice growth by vapor deposition and overestimate mass-weighted fall speed leading to an underprediction of IWP by a factor of two in the considered case. Sensitivity tests indicate LWP and IWP are much closer to the bin model simulations when a modified shape factor which is similar to that predicted by bin model simulation is used in bulk scheme. These results demonstrate the importance of representation of ice PSD in determining the partitioning of liquid and ice and the longevity of mixed-phase clouds.

  17. Intercomparison of Large-Eddy Simulations of Arctic Mixed-Phase Clouds: Importance of Ice Size Distribution Assumptions

    NASA Technical Reports Server (NTRS)

    Ovchinnikov, Mikhail; Ackerman, Andrew S.; Avramov, Alexander; Cheng, Anning; Fan, Jiwen; Fridlind, Ann M.; Ghan, Steven; Harrington, Jerry; Hoose, Corinna; Korolev, Alexei; McFarquhar, Greg M.; Morrison, Hugh; Paukert, Marco; Savre, Julien; Shipway, Ben J.; Shupe, Matthew D.; Solomon, Amy; Sulia, Kara

    2014-01-01

    Large-eddy simulations of mixed-phase Arctic clouds by 11 different models are analyzed with the goal of improving understanding and model representation of processes controlling the evolution of these clouds. In a case based on observations from the Indirect and Semi-Direct Aerosol Campaign (ISDAC), it is found that ice number concentration, Ni, exerts significant influence on the cloud structure. Increasing Ni leads to a substantial reduction in liquid water path (LWP), in agreement with earlier studies. In contrast to previous intercomparison studies, all models here use the same ice particle properties (i.e., mass-size, mass-fall speed, and mass-capacitance relationships) and a common radiation parameterization. The constrained setup exposes the importance of ice particle size distributions (PSDs) in influencing cloud evolution. A clear separation in LWP and IWP predicted by models with bin and bulk microphysical treatments is documented and attributed primarily to the assumed shape of ice PSD used in bulk schemes. Compared to the bin schemes that explicitly predict the PSD, schemes assuming exponential ice PSD underestimate ice growth by vapor deposition and overestimate mass-weighted fall speed leading to an underprediction of IWP by a factor of two in the considered case. Sensitivity tests indicate LWP and IWP are much closer to the bin model simulations when a modified shape factor which is similar to that predicted by bin model simulation is used in bulk scheme. These results demonstrate the importance of representation of ice PSD in determining the partitioning of liquid and ice and the longevity of mixed-phase clouds.

  18. Light-based triggering and reconstruction of Michel electrons in LArIAT

    NASA Astrophysics Data System (ADS)

    Foreman, W.

    2016-01-01

    The LArIAT Experiment aims to calibrate the liquid argon time projection chamber (LArTPC) using a beam of charged particles at the Fermilab Test Beam Facility. It is equipped with a novel scintillation light readout system using PMTs and custom SiPM preamplifier boards to detect light from reflector foils coated with wavelength-shifting TPB. A trigger on delayed secondary flashes of light captures events containing stopping cosmic muons together with the Michel electrons coming from their subsequent decay. This dedicated Michel trigger supplies an abundant sample of low-energy electrons throughout the detector's active volume, providing opportunities to study the combined calorimetric capabilities of the light system and the TPC. Preliminary results using scintillation light to study properties of the Michel electron sample are presented.

  19. ATLAS LAr calorimeters readout electronics upgrade R&D for sLHC

    NASA Astrophysics Data System (ADS)

    Chen, Hucheng; ATLAS Liquid Argon Calorimeter Group

    2011-04-01

    The ATLAS Liquid Argon (LAr) calorimeters consist of an electromagnetic barrel calorimeter and two end-caps with electromagnetic, hadronic and forward calorimeters. A total of 182,468 signals are digitized and processed real-time on detector, to provide energy and time deposited in each detector element at every occurrence of the Level-1 trigger. A luminosity upgrade of the LHC will occur in the years ~2020. The current readout electronics will need to be upgraded to sustain the higher radiation levels. A completely innovative readout scheme is being developed. The front-end readout will send out data continuously at each bunch crossing through high speed radiation resistant optical links, the data will be processed real-time with the possibility of implementing trigger algorithms. This article is an overview of the R&D activities and architectural studies the ATLAS LAr Calorimeter Group is developing.

  20. Application of SDSM and LARS-WG for simulating and downscaling of rainfall and temperature

    NASA Astrophysics Data System (ADS)

    Hassan, Zulkarnain; Shamsudin, Supiah; Harun, Sobri

    2014-04-01

    Climate change is believed to have significant impacts on the water basin and region, such as in a runoff and hydrological system. However, impact studies on the water basin and region are difficult, since general circulation models (GCMs), which are widely used to simulate future climate scenarios, do not provide reliable hours of daily series rainfall and temperature for hydrological modeling. There is a technique named as "downscaling techniques", which can derive reliable hour of daily series rainfall and temperature due to climate scenarios from the GCMs output. In this study, statistical downscaling models are used to generate the possible future values of local meteorological variables such as rainfall and temperature in the selected stations in Peninsular of Malaysia. The models are: (1) statistical downscaling model (SDSM) that utilized the regression models and stochastic weather generators and (2) Long Ashton research station weather generator (LARS-WG) that only utilized the stochastic weather generators. The LARS-WG and SDSM models obviously are feasible methods to be used as tools in quantifying effects of climate change condition in a local scale. SDSM yields a better performance compared to LARS-WG, except SDSM is slightly underestimated for the wet and dry spell lengths. Although both models do not provide identical results, the time series generated by both methods indicate a general increasing trend in the mean daily temperature values. Meanwhile, the trend of the daily rainfall is not similar to each other, with SDSM giving a relatively higher change of annual rainfall compared to LARS-WG.

  1. The receptor protein tyrosine phosphatase LAR promotes R7 photoreceptor axon targeting by a phosphatase-independent signaling mechanism

    PubMed Central

    Hofmeyer, Kerstin; Treisman, Jessica E.

    2009-01-01

    Receptor protein tyrosine phosphatases (RPTPs) control many aspects of nervous system development. At the Drosophila neuromuscular junction (NMJ), regulation of synapse growth and maturation by the RPTP LAR depends on catalytic phosphatase activity and on the extracellular ligands Syndecan and Dally-like. We show here that the function of LAR in controlling R7 photoreceptor axon targeting in the visual system differs in several respects. The extracellular domain of LAR important for this process is distinct from the domains known to bind Syndecan and Dally-like, suggesting the involvement of a different ligand. R7 targeting does not require LAR phosphatase activity, but instead depends on the phosphatase activity of another RPTP, PTP69D. In addition, a mutation that prevents dimerization of the intracellular domain of LAR interferes with its ability to promote R7 targeting, although it does not disrupt phosphatase activity or neuromuscular synapse growth. We propose that LAR function in R7 is independent of its phosphatase activity, but requires structural features that allow dimerization and may promote the assembly of downstream effectors. PMID:19889974

  2. Intercomparison of Large-eddy Simulations of Arctic Mixed-phase Clouds: Importance of Ice Size Distribution Assumptions

    SciTech Connect

    Ovchinnikov, Mikhail; Ackerman, Andrew; Avramov, Alex; Cheng, Anning; Fan, Jiwen; Fridlind, Ann; Ghan, Steven J.; Harrington, Jerry Y.; Hoose, Corinna; Korolev, Alexei; McFarquhar, Greg; Morrison, H.; Paukert, Marco; Savre, Julien; Shipway, Ben; Shupe, Matthew D.; Solomon, Amy; Sulia, Kara

    2014-03-14

    Large-eddy simulations of mixed-phase Arctic clouds by 11 different models are analyzed with the goal of improving understanding and model representation of processes controlling the evolution of these clouds. In a case based on observations from the Indirect and Semi-Direct Aerosol Campaign (ISDAC), it is found that ice number concentration, Ni, exerts significant influence on the cloud structure. Increasing Ni leads to a substantial reduction in liquid water path (LWP) and potential cloud dissipation, in agreement with earlier studies. By comparing simulations with the same microphysics coupled to different dynamical cores as well as the same dynamics coupled to different microphysics schemes, it is found that the ice water path (IWP) is mainly controlled by ice microphysics, while the inter-model differences in LWP are largely driven by physics and numerics of the dynamical cores. In contrast to previous intercomparisons, all models here use the same ice particle properties (i.e., mass-size, mass-fall speed, and mass-capacitance relationships) and a common radiation parameterization. The constrained setup exposes the importance of ice particle size distributions (PSD) in influencing cloud evolution. A clear separation in LWP and IWP predicted by models with bin and bulk microphysical treatments is documented and attributed primarily to the assumed shape of ice PSD used in bulk schemes. Compared to the bin schemes that explicitly predict the PSD, schemes assuming exponential ice PSD underestimate ice growth by vapor deposition and overestimate mass-weighted fall speed leading to an underprediction of IWP by a factor of two in the considered case.

  3. Large-eddy simulation of contrail evolution in the vortex phase and its interaction with atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Picot, J.; Paoli, R.; Thouron, O.; Cariolle, D.

    2015-07-01

    In this work, the evolution of contrails in the vortex and dissipation regimes is studied by means of fully three-dimensional large-eddy simulation (LES) coupled to a Lagrangian particle tracking method to treat the ice phase. In this paper, fine-scale atmospheric turbulence is generated and sustained by means of a stochastic forcing that mimics the properties of stably stratified turbulent flows as those occurring in the upper troposphere and lower stratosphere. The initial flow field is composed of the turbulent background flow and a wake flow obtained from separate LES of the jet regime. Atmospheric turbulence is the main driver of the wake instability and the structure of the resulting wake is sensitive to the intensity of the perturbations, primarily in the vertical direction. A stronger turbulence accelerates the onset of the instability, which results in shorter contrail descent and more effective mixing in the interior of the plume. However, the self-induced turbulence that is produced in the wake after the vortex breakup dominates over background turbulence until the end of the vortex regime and controls the mixing with ambient air. This results in mean microphysical characteristics such as ice mass and optical depth that are slightly affected by the intensity of atmospheric turbulence. However, the background humidity and temperature have a first-order effect on the survival of ice crystals and particle size distribution, which is in line with recent studies.

  4. Experimental synchronization of chaos in a large ring of mutually coupled single-transistor oscillators: Phase, amplitude, and clustering effects

    SciTech Connect

    Minati, Ludovico E-mail: ludovico.minati@unitn.it

    2014-12-01

    In this paper, experimental evidence of multiple synchronization phenomena in a large (n = 30) ring of chaotic oscillators is presented. Each node consists of an elementary circuit, generating spikes of irregular amplitude and comprising one bipolar junction transistor, one capacitor, two inductors, and one biasing resistor. The nodes are mutually coupled to their neighbours via additional variable resistors. As coupling resistance is decreased, phase synchronization followed by complete synchronization is observed, and onset of synchronization is associated with partial synchronization, i.e., emergence of communities (clusters). While component tolerances affect community structure, the general synchronization properties are maintained across three prototypes and in numerical simulations. The clusters are destroyed by adding long distance connections with distant notes, but are otherwise relatively stable with respect to structural connectivity changes. The study provides evidence that several fundamental synchronization phenomena can be reliably observed in a network of elementary single-transistor oscillators, demonstrating their generative potential and opening way to potential applications of this undemanding setup in experimental modelling of the relationship between network structure, synchronization, and dynamical properties.

  5. First results of a large-area cryogenic gaseous photomultiplier coupled to a dual-phase liquid xenon TPC

    NASA Astrophysics Data System (ADS)

    Arazi, L.; Coimbra, A. E. C.; Erdal, E.; Israelashvili, I.; Rappaport, M. L.; Shchemelinin, S.; Vartsky, D.; dos Santos, J. M. F.; Breskin, A.

    2015-10-01

    We discuss recent advances in the development of cryogenic gaseous photomultipliers (GPM), for possible use in dark matter and other rare-event searches using noble-liquid targets. We present results from a 10 cm diameter GPM coupled to a dual-phase liquid xenon (LXe) TPC, demonstrating—for the first time—the feasibility of recording both primary (``S1'') and secondary (``S2'') scintillation signals. The detector comprised a triple Thick Gas Electron Multiplier (THGEM) structure with cesium iodide photocathode on the first element; it was shown to operate stably at 180 K with gains above 105, providing high single-photon detection efficiency even in the presence of large α particle-induced S2 signals comprising thousands of photoelectrons. S1 scintillation signals were recorded with a time resolution of 1.2 ns (RMS). The energy resolution (σ/E) for S2 electroluminescence of 5.5 MeV α particles was ~ 9%, which is comparable to that obtained in the XENON100 TPC with PMTs. The results are discussed within the context of potential GPM deployment in future multi-ton noble-liquid detectors.

  6. MicroBooNE and the Road to Large Liquid Argon Neutrino Detectors

    NASA Astrophysics Data System (ADS)

    Karagiorgi, G.

    Liquid Argon Time Projection Chambers (LArTPC's) provide a promising technology for multi-kiloton scale detectors aiming to address-among other pressing particle physics questions-the possibility of short and long baseline electron neutrino and antineutrino appearance. MicroBooNE, a 170 ton LArTPC under construction, is the next necessary step in a phased R&D effort toward construction and stable operation of larger-scale LArTPC's. This development effort also leans heavily on the ArgoNeuT and LAr1 LArTPC R&D experiments at Fermilab. In addition to advancing the LArTPC technology, these projects also provide unique physics opportunities. For example, Micro-BooNE will be located in the Booster Neutrino Beamline at Fermilab, at ∼470 m from neutrino production. Thus, in addition to measuring a suite of low energy neutrino cross sections on argon, MicroBooNE will investigate the anomalous low energy excess seen by the MiniBooNE experiment. Furthermore, the neutrino beam energy and relatively short baseline provide MicroBooNE with sensitivity to high-∼m2 neutrino oscillations. These proceedings summarize the role of the MicroBooNE detector in the US LArTPC R&D program, present its physics reach, and briefly discuss the physics potential of a dedicated near-future neutrino oscillation program at the Booster Neutrino Beamline, as a way to maximize the physics output of the Fermilab LArTPC R&D projects.

  7. Two-phase convection in the high-pressure ice layer of the large icy moons: geodynamical implications

    NASA Astrophysics Data System (ADS)

    Kalousova, K.; Sotin, C.; Tobie, G.; Choblet, G.; Grasset, O.

    2015-12-01

    The H2O layers of large icy satellites such as Ganymede, Callisto, or Titan probably include a liquid water ocean sandwiched between the deep high-pressure ice layer and the outer ice I shell [1]. It has been recently suggested that the high-pressure ice layer could be decoupled from the silicate core by a salty liquid water layer [2]. However, it is not clear whether accumulation of liquids at the bottom of the high-pressure layer is possible due to positive buoyancy of water with respect to high-pressure ice. Numerical simulation of this two-phase (i.e. ice and water) problem is challenging, which explains why very few studies have self-consistently handled the presence and transport of liquids within the solid ice [e.g. 3]. While using a simplified description of water production and transport, it was recently showed in [4] that (i) a significant fraction of the high-pressure layer reaches the melting point and (ii) the melt generation and its extraction to the overlying ocean significantly influence the global thermal evolution and interior structure of the large icy moons.Here, we treat the high-pressure ice layer as a compressible mixture of solid ice and liquid water [5]. Several aspects are investigated: (i) the effect of the water formation on the vigor of solid-state convection and its influence on the amount of heat that is transferred from the silicate mantle to the ocean; (ii) the fate of liquids within the upper thermal boundary layer - whether they freeze or reach the ocean; and (iii) the effect of salts and volatile compounds (potentially released from the rocky core) on the melting/freezing processes. Investigation of these aspects will allow us to address the thermo-chemical evolution of the internal ocean which is crucial to evaluate the astrobiological potential of large icy moons. This work has been performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. [1] Hussmann et al. (2007), Treatise of

  8. A study program on large aperture electronic scanning phased array antennas for the shuttle imaging microwave system

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Fundamental phased array theory and performance parameters are discussed in terms of their application to microwave radiometry, and four scanning phased arrays representing current examples of state-of-the-art phased array technology are evaluated for potential use as components of the multispectral antenna system for the space shuttle imaging microwave system (SIMS). A discussion of problem areas, both in performance and fabrication is included, with extrapolations of performance characteristics for phased array antennas of increased sizes up to 20 m by 20 m. The possibility of interlacing two or more phased arrays to achieve a multifrequency aperture is considered, and, finally, a specific antenna system is recommended for use with SIMS.

  9. Quantum mechanical computations and spectroscopy: from small rigid molecules in the gas phase to large flexible molecules in solution.

    PubMed

    Barone, Vincenzo; Improta, Roberto; Rega, Nadia

    2008-05-01

    Interpretation of structural properties and dynamic behavior of molecules in solution is of fundamental importance to understand their stability, chemical reactivity, and catalytic action. While information can be gained, in principle, by a variety of spectroscopic techniques, the interpretation of the rich indirect information that can be inferred from the analysis of experimental spectra is seldom straightforward because of the subtle interplay of several different effects, whose specific role is not easy to separate and evaluate. In such a complex scenario, theoretical studies can be very helpful at two different levels: (i) supporting and complementing experimental results to determine the structure of the target molecule starting from its spectral properties; (ii) dissecting and evaluating the role of different effects in determining the observed spectroscopic properties. This is the reason why computational spectroscopy is rapidly evolving from a highly specialized research field into a versatile and widespread tool for the assignment of experimental spectra and their interpretation in terms of chemical physical effects. In such a situation, it becomes important that both computationally and experimentally oriented chemists are aware that new methodological advances and integrated computational strategies are available, providing reliable estimates of fundamental spectral parameters not only for relatively small molecules in the gas phase but also for large and flexible molecules in condensed phases. In this Account, we review the most significant methodological contributions from our research group in this field, and by exploiting some recent results of their application to the computation of IR, UV-vis, NMR, and EPR spectral parameters, we discuss the microscopic mechanisms underlying solvent and vibrational effects on the spectral parameters. After reporting some recent achievements for the study of excited states by first principle quantum mechanical

  10. Phase 2 study of panobinostat with or without rituximab in relapsed diffuse large B-cell lymphoma.

    PubMed

    Assouline, Sarit E; Nielsen, Torsten Holm; Yu, Stephen; Alcaide, Miguel; Chong, Lauren; MacDonald, David; Tosikyan, Axel; Kukreti, Vishal; Kezouh, Abbas; Petrogiannis-Haliotis, Tina; Albuquerque, Marco; Fornika, Daniel; Alamouti, Sepideh; Froment, Remi; Greenwood, Celia M T; Oros, Kathleen Klein; Camglioglu, Errol; Sharma, Ayushi; Christodoulopoulos, Rosa; Rousseau, Caroline; Johnson, Nathalie; Crump, Michael; Morin, Ryan D; Mann, Koren K

    2016-07-14

    The majority of diffuse large B-cell lymphoma (DLBCL) tumors contain mutations in histone-modifying enzymes (HMEs), indicating a potential therapeutic benefit of histone deacetylase inhibitors (HDIs), and preclinical data suggest that HDIs augment the effect of rituximab. In this randomized phase 2 study, we evaluated the response rate and toxicity of panobinostat, a pan-HDI administered 30 mg orally 3 times weekly, with or without rituximab, in 40 patients with relapsed or refractory de novo (n = 27) or transformed (n = 13) DLBCL. Candidate genes and whole exomes were sequenced in relapse tumor biopsies to search for molecular correlates, and these data were used to quantify circulating tumor DNA (ctDNA) in serial plasma samples. Eleven of 40 patients (28%) responded to panobinostat (95% confidence interval [CI] 14.6-43.9) and rituximab did not increase responses. The median duration of response was 14.5 months (95% CI 9.4 to "not reached"). At time of data censoring, 6 of 11 patients had not progressed. Of the genes tested for mutations, only those in MEF2B were significantly associated with response. We detected ctDNA in at least 1 plasma sample from 96% of tested patients. A significant increase in ctDNA at day 15 relative to baseline was strongly associated with lack of response (sensitivity 71.4%, specificity 100%). We conclude that panobinostat induces very durable responses in some patients with relapsed DLBCL, and early responses can be predicted by mutations in MEF2B or a significant change in ctDNA level at 15 days after treatment initiation. This clinical trial was registered at www.ClinicalTrials.gov (#NCT01238692). PMID:27166360

  11. Production of clinical-grade plasmid DNA for human Phase I clinical trials and large animal clinical studies.

    PubMed

    Przybylowski, Mark; Bartido, Shirley; Borquez-Ojeda, Oriana; Sadelain, Michel; Rivière, Isabelle

    2007-06-28

    The use of plasmid DNA as vaccines for the treatment of cancer and infectious diseases is on the rise. In order to facilitate the manufacture of clinical-grade plasmid DNA for Phase I clinical trials, we developed a process whereby >200 mg plasmid could be produced in a single production run under Good Manufacturing Practices. A dedicated cleanroom (Class 10,000 with Class 100 biosafety cabinet) is utilized for production of the bacterial cell bank, fermentation, harvest/lysis of the biomass, and downstream purification. Fermentation requires three 16-18 h runs (approximately 12 L each) in shaker-flasks, yielding approximately 60 g bacterial paste following batch centrifugation. The biomass is alkaline-lysed, pooled, and the resulting flocculent precipitate is separated by a novel vacuum step, followed by depth-filtration. Downstream processing includes anion-exchange chromatography, utilizing Qiagen silica-based resin, and precipitation with isopropanol. Following precipitation, the DNA is harvested by centrifugation, dried, formulated, and sterile-filtered using a Sartorius Sartobran 150 filter prior to Final-Filling. All processing steps utilize sterilized, single-use components. This process results in a product manufactured according to regulatory guidelines. The plasmid DNA is sterile with >or=95% supercoiled DNA, an A260/A280 ratio>or=1.9, undetectable or extremely low residual endotoxin, RNA, genomic DNA, protein, and antibiotic. Residual solvent levels are negligible. The product yields the predicted profile upon restriction-enzyme digestion, is biologically active upon transfection and remains stable for several years at -20 degrees C. We have therefore developed a reproducible and cost effective process to manufacture clinical-grade plasmid DNA. This process can be adapted by other academic centers for human or large animal clinical trials. PMID:17537555

  12. Large-scale deformed quasiparticle random-phase approximation calculations of the γ -ray strength function using the Gogny force

    NASA Astrophysics Data System (ADS)

    Martini, M.; Péru, S.; Hilaire, S.; Goriely, S.; Lechaftois, F.

    2016-07-01

    Valuable theoretical predictions of nuclear dipole excitations in the whole chart are of great interest for different nuclear applications, including in particular nuclear astrophysics. Here we present large-scale calculations of the E 1 γ -ray strength function obtained in the framework of the axially symmetric deformed quasiparticle random-phase approximation based on the finite-range Gogny force. This approach is applied to even-even nuclei, the strength function for odd nuclei being derived by interpolation. The convergence with respect to the adopted number of harmonic oscillator shells and the cutoff energy introduced in the 2-quasiparticle (2 -q p ) excitation space is analyzed. The calculations performed with two different Gogny interactions, namely D1S and D1M, are compared. A systematic energy shift of the E 1 strength is found for D1M relative to D1S, leading to a lower energy centroid and a smaller energy-weighted sum rule for D1M. When comparing with experimental photoabsorption data, the Gogny-QRPA predictions are found to overestimate the giant dipole energy by typically ˜2 MeV. Despite the microscopic nature of our self-consistent Hartree-Fock-Bogoliubov plus QRPA calculation, some phenomenological corrections need to be included to take into account the effects beyond the standard 2 -q p QRPA excitations and the coupling between the single-particle and low-lying collective phonon degrees of freedom. For this purpose, three prescriptions of folding procedure are considered and adjusted to reproduce experimental photoabsorption data at best. All of them are shown to lead to somewhat similar predictions of the E 1 strength, both at low energies and for exotic neutron-rich nuclei. Predictions of γ -ray strength functions and Maxwellian-averaged neutron capture rates for the whole Sn isotopic chain are also discussed and compared with previous theoretical calculations.

  13. Phase 2 study of panobinostat with or without rituximab in relapsed diffuse large B-cell lymphoma

    PubMed Central

    Nielsen, Torsten Holm; Yu, Stephen; Alcaide, Miguel; Chong, Lauren; MacDonald, David; Tosikyan, Axel; Kukreti, Vishal; Kezouh, Abbas; Petrogiannis-Haliotis, Tina; Albuquerque, Marco; Fornika, Daniel; Alamouti, Sepideh; Froment, Remi; Greenwood, Celia M. T.; Oros, Kathleen Klein; Camglioglu, Errol; Sharma, Ayushi; Christodoulopoulos, Rosa; Rousseau, Caroline; Johnson, Nathalie; Crump, Michael; Morin, Ryan D.; Mann, Koren K.

    2016-01-01

    The majority of diffuse large B-cell lymphoma (DLBCL) tumors contain mutations in histone-modifying enzymes (HMEs), indicating a potential therapeutic benefit of histone deacetylase inhibitors (HDIs), and preclinical data suggest that HDIs augment the effect of rituximab. In this randomized phase 2 study, we evaluated the response rate and toxicity of panobinostat, a pan-HDI administered 30 mg orally 3 times weekly, with or without rituximab, in 40 patients with relapsed or refractory de novo (n = 27) or transformed (n = 13) DLBCL. Candidate genes and whole exomes were sequenced in relapse tumor biopsies to search for molecular correlates, and these data were used to quantify circulating tumor DNA (ctDNA) in serial plasma samples. Eleven of 40 patients (28%) responded to panobinostat (95% confidence interval [CI] 14.6-43.9) and rituximab did not increase responses. The median duration of response was 14.5 months (95% CI 9.4 to “not reached”). At time of data censoring, 6 of 11 patients had not progressed. Of the genes tested for mutations, only those in MEF2B were significantly associated with response. We detected ctDNA in at least 1 plasma sample from 96% of tested patients. A significant increase in ctDNA at day 15 relative to baseline was strongly associated with lack of response (sensitivity 71.4%, specificity 100%). We conclude that panobinostat induces very durable responses in some patients with relapsed DLBCL, and early responses can be predicted by mutations in MEF2B or a significant change in ctDNA level at 15 days after treatment initiation. This clinical trial was registered at www.ClinicalTrials.gov (#NCT01238692). PMID:27166360

  14. High-speed horizontal-path atmospheric turbulence correction using a large actuator-number MEMS spatial light modulator in an interferometric phase conjugation engine

    SciTech Connect

    Baker, K; Stappaerts, E; Gavel, D; Wilks, S; Tucker, J; Silva, D; Olsen, J; Olivier, S; Young, P; Kartz, M; Flath, L; Kruelivitch, P; Crawford, J; Azucena, O

    2004-03-04

    Atmospheric propagation results for a high-speed, large-actuator-number, adaptive optics system are presented. The system uses a MEMS-based spatial light modulator correction device with 1024 actuators. Tests over a 1.35 km path achieved correction speeds in excess of 800 Hz and Strehl ratios close to 0.5. The wave-front sensor was based on a quadrature interferometer that directly measures phase. This technique does not require global wave-front reconstruction, making it relatively insensitive to scintillation and phase residues. The results demonstrate the potential of large actuator number MEMS-based spatial light modulators to replace conventional deformable mirrors.

  15. Heavily reddened quasars at z ˜ 2 in the UKIDSS Large Area Survey: a transitional phase in AGN evolution

    NASA Astrophysics Data System (ADS)

    Banerji, Manda; McMahon, Richard G.; Hewett, Paul C.; Alaghband-Zadeh, Susannah; Gonzalez-Solares, Eduardo; Venemans, Bram P.; Hawthorn, Melanie J.

    2012-12-01

    We present a new sample of purely near-infrared-selected KVega < 16.5 [KAB < 18.4] extremely red [(J - K)Vega > 2.5] quasar candidates at z ˜ 2 from ≃900 deg2 of data in the UKIDSS Large Area Survey (LAS). Five of these are spectroscopically confirmed to be heavily reddened type 1 active galactic nuclei (AGN) with broad emission lines bringing our total sample of reddened quasars from the UKIDSS-LAS to 12 at z = 1.4-2.7. At these redshifts, Hα (6563 Å) is in the K band. However, the mean Hα equivalent width of the reddened quasars is only 10 per cent larger than that of the optically selected population and cannot explain the extreme colours. Instead, dust extinction of AV ˜ 2-6 mag is required to reproduce the continuum colours of our sources. This is comparable to the dust extinctions seen in submillimetre galaxies at similar redshifts. We argue that the AGN are likely being observed in a relatively short-lived breakout phase when they are expelling gas and dust following a massive starburst, subsequently turning into UV-luminous quasars. Some of our quasars show direct evidence for strong outflows (v ˜ 800-1000 km s-1) affecting the Hα line consistent with this scenario. We predict that a larger fraction of reddened quasar hosts are likely to be submillimetre bright compared to the UV-luminous quasar population. We use our sample to place new constraints on the fraction of obscured type 1 AGN likely to be missed in optical surveys. Taken at face value our findings suggest that the obscured fraction depends on quasar luminosity. The space density of obscured quasars is approximately five times that inferred for UV-bright quasars from the Sloan Digital Sky Survey (SDSS) luminosity function at Mi < -30 but seems to drop at lower luminosities even accounting for various sources of incompleteness in our sample. We find that at Mi ˜ -28 for example, this fraction is unlikely to be larger than ˜20 per cent although these fractions are highly uncertain at

  16. SN-detection in LAr-TPC and the quest for (ν-Ar) cross sections

    SciTech Connect

    Cavanna, F.

    2015-05-15

    Neutrino-nucleus cross sections are of relevance to supernova astrophysics. These cross-sections can be grouped into three categories, those that affect supernova dynamics, supernova nucleosynthesis, and terrestrial supernova neutrino detection, each of which would benefit from experimental study. In this report only the relevance of an accurate knowledge of neutrino-target nucleus cross sections for SN detection will be discussed, in particular for the case of Argon, the active target material of LAr-TPC detectors currently under construction or proposed for future very massive underground experiments.

  17. LAr Dewar Coil Feed Frame Pipe Analysis (Structural Analysis of General Structures, SAGS)

    SciTech Connect

    Parker, A.W.; /Fermilab

    1990-01-31

    This frame pipe analysis addresses the D0 LAr dewar Condenser tube (coil) feed pipe thermal contraction stresses and moments. The configuration is shown in PEI drawing C-32545, Rev 0, and the parameters detailed in the letter of November 20, 1989, located in appendix A. Note that all other thermal considerations for these condensing coils have been made in D0 EN 3740.512-234. The conclusion of this report is the feed lines, previously deemed appropriate without detailed analysis, have been demonstrated to be adequately designed for the intended service and require no further investigation.

  18. Improved Large Signal Analysis of the Dual-Wavelength Linearization Technique of Optically Phase-Modulated Analog Microwave Signals

    NASA Astrophysics Data System (ADS)

    Taher Abuelma'Atti, Muhammad

    2009-10-01

    This paper presents simple closed-form expressions, in terms of the ordinary Bessel functions, for the amplitudes of the third- and fifth-order intermodulation products of the dual-wavelength linearized phase modulated link for any scenario of the microwave driving voltage. The results obtained for a microwave driving voltage comprising equal-amplitude two- and three-tones show that the third-order intermodulation can be minimized for values of phase modulation depth less than 0.2 over a relatively wide range of the ratio between the powers in the TM and TE waves of the link. Using these results it is possible to adjust the phase modulation depth and/or the ratio between the powers of the TM and TE waves to achieve a dual-wavelength linearized phase modulated link with a predetermined intermodulation performance.

  19. Anomalous large electrical capacitance of planar microstructures with vanadium dioxide films near the insulator-metal phase transition

    SciTech Connect

    Aliev, V. Sh. Bortnikov, S. G.; Badmaeva, I. A.

    2014-03-31

    The temperature dependence of electrical capacitance of planar microstructures with vanadium dioxide (VO{sub 2}) film near the insulator-metal phase transition has been investigated at the frequency of 1 MHz. Electrical capacitance measurements of the microstructures were performed by the technique based on the using of a two-terminal resistor-capacitor module simulating the VO{sub 2} layer behavior at the insulator-metal phase transition. At temperatures 325–342 K, the anomalous increase in microstructures capacitance was observed. Calculation of electric field in the microstructure showed that VO{sub 2} relative permittivity (ε) reaches ∼10{sup 8} at the percolation threshold. The high value of ε can be explained by the fractal nature of the interface between metal and insulator clusters formed near the insulator-metal phase transition.

  20. Development of COTS ADC SEE Test System for the ATLAS LArCalorimeter Upgrade

    SciTech Connect

    Hu, Xue -Ye; Chen, Hu -Cheng; Chen, Kai; Mead, Joseph; Liu, Shu -Bin; An, Qi

    2014-12-01

    Radiation-tolerant, high speed, high density and low power commercial off-the-shelf (COTS) analog-to-digital converters (ADCs) are planned to be used in the upgrade to the Liquid Argon (LAr) calorimeter front end (FE) trigger readout electronics. Total ionization dose (TID) and single event effect (SEE) are two important radiation effects which need to be characterized on COTS ADCs. In our initial TID test, Texas Instruments (TI) ADS5272 was identified to be the top performer after screening a total 17 COTS ADCs from different manufacturers with dynamic range and sampling rate meeting the requirements of the FE electronics. Another interesting feature of ADS5272 is its 6.5 clock cycles latency, which is the shortest among the 17 candidates. Based on the TID performance, we have designed a SEE evaluation system for ADS5272, which allows us to further assess its radiation tolerance. In this paper, we present a detailed design of ADS5272 SEE evaluation system and show the effectiveness of this system while evaluating ADS5272 SEE characteristics in multiple irradiation tests. According to TID and SEE test results, ADS5272 was chosen to be implemented in the full-size LAr Trigger Digitizer Board (LTDB) demonstrator, which will be installed on ATLAS calorimeter during the 2014 Long Shutdown 1 (LS1).

  1. Development of COTS ADC SEE Test System for the ATLAS LArCalorimeter Upgrade

    DOE PAGESBeta

    Hu, Xue -Ye; Chen, Hu -Cheng; Chen, Kai; Mead, Joseph; Liu, Shu -Bin; An, Qi

    2014-12-01

    Radiation-tolerant, high speed, high density and low power commercial off-the-shelf (COTS) analog-to-digital converters (ADCs) are planned to be used in the upgrade to the Liquid Argon (LAr) calorimeter front end (FE) trigger readout electronics. Total ionization dose (TID) and single event effect (SEE) are two important radiation effects which need to be characterized on COTS ADCs. In our initial TID test, Texas Instruments (TI) ADS5272 was identified to be the top performer after screening a total 17 COTS ADCs from different manufacturers with dynamic range and sampling rate meeting the requirements of the FE electronics. Another interesting feature of ADS5272more » is its 6.5 clock cycles latency, which is the shortest among the 17 candidates. Based on the TID performance, we have designed a SEE evaluation system for ADS5272, which allows us to further assess its radiation tolerance. In this paper, we present a detailed design of ADS5272 SEE evaluation system and show the effectiveness of this system while evaluating ADS5272 SEE characteristics in multiple irradiation tests. According to TID and SEE test results, ADS5272 was chosen to be implemented in the full-size LAr Trigger Digitizer Board (LTDB) demonstrator, which will be installed on ATLAS calorimeter during the 2014 Long Shutdown 1 (LS1).« less

  2. R&D studies of the ATLAS LAr calorimeter readout electronics for super-LHC

    SciTech Connect

    Chen, H.

    2010-11-01

    The ATLAS Liquid Argon (LAr) calorimeters are high precision, high sensitivity and high granularity detectors. A total of 182,468 signals are digitized and processed real-time on detector, to provide energy and time deposited in each detector element at every occurrence of the L1-trigger. The current readout electronics will need to be upgraded to sustain the higher radiation levels expected with the increase of a factor 10 in luminosity at the LHC in the years {approx}2017. A completely innovative readout scheme is being developed. The front-end readout will send out data continuously at each bunch crossing through high speed radiation resistant optical links, the data will be processed real-time with the possibility of implementing trigger algorithms. This article is an overview of the R&D activities and architectural studies the ATLAS LAr Calorimeter Group is developing: front-end analog and mixed-signal ASIC design, radiation resistance optical-links in SOS, high-speed back-end processing units based on FPGA architectures and power supply distribution schemes.

  3. Phase-matched waveguide four-wave mixing scaled to higher peak powers with large-core-area hollow photonic-crystal fibers.

    PubMed

    Konorov, S O; Serebryannikov, E E; Fedotov, A B; Miles, R B; Zheltikov, A M

    2005-05-01

    Hollow photonic-crystal fibers with large core diameters are shown to allow waveguide nonlinear-optical interactions to be scaled to higher pulse peak powers. Phase-matched four-wave mixing is predicted theoretically and demonstrated experimentally for millijoule nanosecond pulses propagating in a hollow photonic-crystal fiber with a core diameter of about 50 microm , suggesting the way to substantially enhance the efficiency of nonlinear-optical spectral transformations and wave mixing of high-power laser pulses in the gas phase. PMID:16089705

  4. On spatial distribution of large sunspot groups during the rise phase and the epoch of maximum in solar cycle 22.

    NASA Astrophysics Data System (ADS)

    Vitinskij, Yu. I.

    1992-07-01

    The butterfly diagram has been plotted for 1986 - 1992 and active longitudes for 1976 - 1982 and 1986 - 1992 are given on the basis of R. S. Gnevysheva's Pulkovo lists of large sunspot groups. It is shown that the latitudinal distribution in number of large sunspot groups is characterized with great concentration towards high-latitude and low-latitude bounderies of sunspot zones and a complicated character of their equatorward latitude migration in the southern solar hemisphere in solar cycle 22. The stability of two active longitudes of large sunspot groups in the northern hemisphere and three in the southern hemisphere has been found. A double peak character of the curve of the large sunspot group number in solar cycle 22, due to the southern hemisphere mainly, has been detected.

  5. SCORPIO: A Scalable Two-Phase Parallel I/O Library With Application To A Large Scale Subsurface Simulator

    SciTech Connect

    Sreepathi, Sarat; Sripathi, Vamsi; Mills, Richard T; Hammond, Glenn; Mahinthakumar, Kumar

    2013-01-01

    Inefficient parallel I/O is known to be a major bottleneck among scientific applications employed on supercomputers as the number of processor cores grows into the thousands. Our prior experience indicated that parallel I/O libraries such as HDF5 that rely on MPI-IO do not scale well beyond 10K processor cores, especially on parallel file systems (like Lustre) with single point of resource contention. Our previous optimization efforts for a massively parallel multi-phase and multi-component subsurface simulator (PFLOTRAN) led to a two-phase I/O approach at the application level where a set of designated processes participate in the I/O process by splitting the I/O operation into a communication phase and a disk I/O phase. The designated I/O processes are created by splitting the MPI global communicator into multiple sub-communicators. The root process in each sub-communicator is responsible for performing the I/O operations for the entire group and then distributing the data to rest of the group. This approach resulted in over 25X speedup in HDF I/O read performance and 3X speedup in write performance for PFLOTRAN at over 100K processor cores on the ORNL Jaguar supercomputer. This research describes the design and development of a general purpose parallel I/O library, SCORPIO (SCalable block-ORiented Parallel I/O) that incorporates our optimized two-phase I/O approach. The library provides a simplified higher level abstraction to the user, sitting atop existing parallel I/O libraries (such as HDF5) and implements optimized I/O access patterns that can scale on larger number of processors. Performance results with standard benchmark problems and PFLOTRAN indicate that our library is able to maintain the same speedups as before with the added flexibility of being applicable to a wider range of I/O intensive applications.

  6. Catalytic domains of the LAR and CD45 protein tyrosine phosphatases from Escherichia coli expression systems: Purification and characterization for specificity and mechanism

    SciTech Connect

    Cho, Hyeongjin; Ramer, S.E.; Itoh, Michiyasu; Saito, Haruo; Walsh, C.T. ); Kitas, E.; Bannwarth, W.; Burn, P. )

    1992-01-14

    The cytoplasmic domains of two human transmembrane protein tyrosine phosphatases (PTPases), LAR and CD45, have been expressed in Escherichia coli, purified to near-homogeneity, and compared for catalytic efficiency toward several phosphotyrosine-containing peptide substrates. A 615-residue LAR fragment (LAR-D1D2) containing both tandemly repeated PTPase domains shows almost identical specific activity and high catalytic efficiency as the 40-kDa single-domain LAR-D1 fragment, consistent with a single functional active site in the 70-kDa LAR-D1D2 enzyme. A 90-kDa fragment of the human leukocyte CD45 PTPase, containing two similar tandemly repeated PTPase domains, shows parallel specificity to LAR-D1 and LAR-D1D2 with a high k{sub cat}/K{sub M} value for a phosphotyrosyl undecapeptide. Sufficient purified LAR-D1 and LAR-D1D2 PTPases were available to demonstrate enzymatic exchange of {sup 18}O from {sup 18}O{sub 4} inorganic phosphate into H{sub 2} {sup 16}O at rates of {approximately}1 {times} 10{sup {minus}2} s{sup {minus}1}. The oxygen-18 exchange probably proceeds via a phosphoenzyme intermediate. Brief incubation of all three PTPase fragments with a ({sup 32}P)phosphotyrosyl peptide substrate prior to quench with SDS sample buffer and gel electrophoresis led to autoradiographic detection of {sup 32}P-labeled enzymes. Pulse/chase studies on the LAR {sup 32}P-enzyme showed turnover of the labeled phosphoryl group.

  7. Unusual Emissions at Various Energies Prior to the Impulsive Phase of the Large Solar Flare and Coronal Mass Ejection of 4 November 2003

    NASA Technical Reports Server (NTRS)

    Kaufmann, Pierre; Holman, Gordon D.; Su, Yang; de Castro, C. Guillermo Gimenez; Correia, Emilia; Fernandes, Luis O. T.; de Souza, Rodney V.; Marun, Adolfo; Pereyra, Pablo

    2012-01-01

    The GOES X28 flare of 4 November 2003 was the largest ever recorded in its class. It produced the first evidence for two spectrally separated emission components, one at microwaves and the other in the THz range of frequencies.We analyzed the pre-flare phase of this large flare, twenty minutes before the onset of the major impulsive burst. This periodis characterized by unusual activity in X-rays, sub-THz frequencies, H, and microwaves.The CME onset occurred before the onset of the large burst by about 6 min.

  8. Impact of tissue atrophy on high-pass filtered MRI signal phase-based assessment in large-scale group-comparison studies: A simulation study

    NASA Astrophysics Data System (ADS)

    Schweser, Ferdinand; Dwyer, Michael G.; Deistung, Andreas; Reichenbach, Jürgen R.; Zivadinov, Robert

    2013-10-01

    The assessment of abnormal accumulation of tissue iron in the basal ganglia nuclei and in white matter plaques using the gradient echo magnetic resonance signal phase has become a research focus in many neurodegenerative diseases such as multiple sclerosis or Parkinson’s disease. A common and natural approach is to calculate the mean high-pass-filtered phase of previously delineated brain structures. Unfortunately, the interpretation of such an analysis requires caution: in this paper we demonstrate that regional gray matter atrophy, which is concomitant with many neurodegenerative diseases, may itself directly result in a phase shift seemingly indicative of increased iron concentration even without any real change in the tissue iron concentration. Although this effect is relatively small results of large-scale group comparisons may be driven by anatomical changes rather than by changes of the iron concentration.

  9. SISGR -- Domain Microstructures and Mechanisms for Large, Reversible and Anhysteretic Strain Behaviors in Phase Transforming Ferroelectric Materials

    SciTech Connect

    Wang, Yu U.

    2013-12-06

    This four-year project (including one-year no-cost extension) aimed to advance fundamental understanding of field-induced strain behaviors of phase transforming ferroelectrics. We performed meso-scale phase field modeling and computer simulation to study domain evolutions, mechanisms and engineering techniques, and developed computational techniques for nanodomain diffraction analysis; to further support above originally planned tasks, we also carried out preliminary first-principles density functional theory calculations of point defects and domain walls to complement meso-scale computations as well as performed in-situ high-energy synchrotron X-ray single crystal diffraction experiments to guide theoretical development (both without extra cost to the project thanks to XSEDE supercomputers and DOE user facility Advanced Photon Source).

  10. Ultrasonic Phased Array Sound Field Mapping Through Large-Bore Coarse Grained Cast Austenitic Stainless Steel (CASS) Piping Materials

    SciTech Connect

    Cinson, Anthony D.; Crawford, Susan L.; Prowant, Matthew S.; Diaz, Aaron A.; Hathaway, John E.; Anderson, Michael T.

    2012-04-16

    A sound field beam mapping exercise was conducted to further understand the effects of coarse grained microstructures found in CASS materials on phased array ultrasonic wave propagation. Laboratory measurements were made on three CASS specimens with different microstructures; the specimens were polished and etched to reveal measurable grain sizes, shapes and orientations. Three longitudinal, phased array probes were fixed on a specimen's outside diameter with the sound field directed toward one end (face) of the pipe segment over a fixed range of angles. A point receiver was raster scanned over the surface of the specimen face generating a sound field image. A slice of CASS material was then removed from the specimen end and the beam mapping exercise repeated. The sound fields acquired were analyzed for spot size, coherency, and beam redirection. Analyses were conducted between the resulting sound fields and the microstructural characteristics of each specimen.

  11. 77 FR 16559 - Large Power Transformers From Korea: Scheduling of the Final Phase of an Antidumping Investigation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-21

    ...The Commission hereby gives notice of the scheduling of the final phase of antidumping investigation No. 731-TA-1189 (Final) under section 735(b) of the Tariff Act of 1930 (19 U.S.C. 1673d(b)) (the Act) to determine whether an industry in the United States is materially injured or threatened with material injury, or the establishment of an industry in the United States is materially retarded,......

  12. Direct simulation of phase delay effects on induced-charge electro-osmosis under large ac electric fields.

    PubMed

    Sugioka, Hideyuki

    2016-08-01

    The standard theory of induced-charge electro-osmosis (ICEO) often overpredicts experimental values of ICEO velocities. Using a nonsteady direct multiphysics simulation technique based on the coupled Poisson-Nernst-Planck and Stokes equations for an electrolyte around a conductive cylinder subject to an ac electric field, we find that a phase delay effect concerning an ion response provides a fundamental mechanism for electrokinetic suppression. A surprising aspect of our findings is that the phase delay effect occurs even at much lower frequencies (e.g., 50 Hz) than the generally believed charging frequency of an electric double layer (typically, 1 kHz) and it can decrease the electrokinetic velocities in one to several orders. In addition, we find that the phase delay effect may also cause a change in the electrokinetic flow directions (i.e., flow reversal) depending on the geometrical conditions. We believe that our findings move toward a more complete understanding of complex experimental nonlinear electrokinetic phenomena. PMID:27627362

  13. Dual-domain microchip-based process for volume reduction solid phase extraction of nucleic acids from dilute, large volume biological samples.

    PubMed

    Reedy, Carmen R; Hagan, Kristin A; Strachan, Briony C; Higginson, Joshua J; Bienvenue, Joan M; Greenspoon, Susan A; Ferrance, Jerome P; Landers, James P

    2010-07-01

    A microfluidic device was developed to carry out integrated volume reduction and purification of nucleic acids from dilute, large volume biological samples commonly encountered in forensic genetic analysis. The dual-phase device seamlessly integrates two orthogonal solid-phase extraction (SPE) processes, a silica solid phase using chaotrope-driven binding and an ion exchange phase using totally aqueous chemistry (chitosan phase), providing the unique capability of removing polymerase chain reaction (PCR) inhibitors used in silica-based extractions (guanidine and isopropanol). Nucleic acids from a large volume sample are shown to undergo a substantial volume reduction on the silica phase, followed by a more stringent extraction on the chitosan phase. The key to interfacing the two steps is mixing of the eluted nucleic acids from the first phase with loading buffer which is facilitated by flow-mediated mixing over a herringbone mixing region in the device. The complete aqueous chemistry associated with the second purification step yields a highly concentrated PCR-ready eluate of nucleic acids devoid of PCR inhibitors that are reagent-based (isopropanol) and sample-based (indigo dye), both of which are shown to be successfully removed using the dual-phase device but not by the traditional microfluidic SPE (muSPE). The utility of the device for purifying DNA was demonstrated with dilute whole blood, dilute semen, a semen stain, and a blood sample inhibited with indigo dye, with the resultant DNA from all shown to be PCR amplifiable. The same samples purified using muSPE were not all PCR amplifiable due to a smaller concentration of the DNA and the lack of PCR-compatible aqueous chemistry in the extraction method. The utility of the device for the purification of RNA was also demonstrated, by the extraction of RNA from a dilute semen sample, with the resulting RNA amplified using reverse transcription (RT)-PCR. The vrSPE-SPE device reliably yields a volume reduction for

  14. Arthroscopic single-bundle posterior cruciate ligament reconstruction: retrospective review of hamstring tendon graft versus LARS artificial ligament

    PubMed Central

    Li, Bin; Wen, Yu; Qian, Qirong; Wu, Yuli; Lin, Xiangbo

    2008-01-01

    Our objective was to compare the results of reconstruction of isolated chronic posterior cruciate ligament (PCL) injury using a four-strand hamstring graft (4SHG) and a LARS artificial ligament. Thirty-six patients were divided into a 4SHG group (n = 15) and a LARS group (n = 21). The minimum follow-up time was two years. The outcome measures used were KT-1000 measurements, the International Knee Documentation Committee (IKDC) scoring system, Lysholm knee scoring scale and Tegner activity rating. Both groups improved significantly between the preoperative and postoperative assessment in terms of the knee laxity and functional examination (P < 0.01). Meanwhile, knee stability was significantly improved in the LARS group when compared with the 4SHG group (P < 0.05); this was also the case for the Lysholm, Tegner and IKDC scores (P < 0.05). Our study indicates that using a LARS ligament for PCL reconstruction was clinically more useful than using a 4SHG in the treatment of the PCL-deficient knee. PMID:18654776

  15. Extremely large electronic anisotropy caused by electronic phase separation in Ca3(Ru0.97Ti0.03)2O7 single crystal

    NASA Astrophysics Data System (ADS)

    Peng, Jing; Wu, Xiaoshan; Mao, Zhiqiang

    2015-03-01

    Bilayered ruthenate Ca3 Ru2O7 exhibits rich electronic and magnetic properties. It orders at 56K, with FM bilayers antiferromagnetically coupled along c-axis (AFM-a). The AFM transition is closely followed by a first-order metal-insulator (MI) transition at 48K where spin directions switch to the b-axis (AFM-b). While this MI transition is accompanied by the opening of anisotropic charge gap; small Fermi pockets survive from the MI transition, thus resulting in quasi-2D metallic transport behavior for T<30K. We previously showed such a quasi-2D metal with the AFM-b order composed of FM bilayers can be tuned to a Mott-insulating state with a nearest-neighbor AFM order via Ti doping. Ca3(Ru0 . 97 Ti0 . 03) 2O7 is close to the critical composition for the AFM-b-to-G-AFM phase transition. Our recent studies show the sample with this composition is characterized by an electronic phase separation between the insulating G-AFM phase (major) and the localized AFM-b phase (minor). The minor AFM-b phase forms a conducting path through electronic percolation within the ab-plane, but not along the c-axis, thus resulting in extremely large electronic anisotropy with ρab /ρc ~109 , which may be the largest among bulk materials.

  16. Large-eddy simulation study of contrail microphysics and geometry during the vortex phase and consequences on contrail-to-cirrus transition

    NASA Astrophysics Data System (ADS)

    Unterstrasser, S.

    2014-06-01

    Large-eddy simulations (LES) with Lagrangian ice microphysics were used to study the early contrail evolution during the vortex phase. Microphysical and geometrical properties of a contrail produced by a large-sized aircraft (type B777/A340) were investigated systematically for a large parameter range. Crystal loss due to adiabatic heating in the downward moving vortices was found to depend strongly on relative humidity and temperature, qualitatively similar to previous 2-D simulation results. Contrail depth is as large as 450 m for the investigated parameter range and was found to be underestimated in a previous 2-D study. Further sensitivity studies show a nonnegligible effect of the initial ice crystal size distribution and the initial ice crystal number on the crystal loss, whereas the contrail structure and ice mass evolution is only barely affected by these variations. Variation of fuel flow has the smallest effect on crystal loss. At high supersaturations, our choice of contrail spatial initialization may underestimate the ice crystal loss. The set of presented sensitivity studies is a first step toward a quantitative description of young contrails in terms of vertical extent and crystal loss. Concluding contrail-to-cirrus simulations demonstrate the relevance of vortex phase processes and its three-dimensional modeling on the later contrail-cirrus properties.

  17. Feasibility of Using Lateral Mode Coupling Method for a Large Scale Ultrasound Phased Array for Noninvasive Transcranial Therapy

    PubMed Central

    Song, Junho; Hynynen, Kullervo

    2009-01-01

    A hemispherical-focused, ultrasound phased array was designed and fabricated using 1372 cylindrical piezoelectric transducers that utilize lateral coupling for noninvasive transcranial therapy. The cylindrical transducers allowed the electrical impedance to be reduced by at least an order of magnitude, such that effective operation could be achieved without electronic matching circuits. In addition, the transducer elements generated the maximum acoustic average surface intensity of 27 W/cm2. The array, driven at the low (306 kHz) or high frequency (840 kHz), achieved excellent focusing through an ex vivo human skull and an adequate beam steering range for clinical brain treatments. It could electronically steer the ultrasound beam over cylindrical volumes of 100 mm in diameter and 60 mm in height at 306 kHz, and 30-mm in diameter and 30-mm in height at 840 kHz. A scanning laser vibrometer was used to investigate the radial and length mode vibrations of the element. The maximum pressure amplitudes through the skull at the geometric focus were predicted to be 5.5 MPa at 306 kHz and 3.7 MPa at 840 kHz for RF power of 1 W on each element. This is the first study demonstrating the feasibility of using cylindrical transducer elements and lateral coupling in construction of ultrasound phased arrays. PMID:19695987

  18. Large-scale Contraction and Subsequent Disruption of Coronal Loops During Various Phases of the M6.2 Flare Associated with the Confined Flux Rope Eruption

    NASA Astrophysics Data System (ADS)

    Kushwaha, Upendra; Joshi, Bhuwan; Veronig, Astrid M.; Moon, Yong-Jae

    2015-07-01

    We investigate evolutionary phases of an M6.2 flare and the associated confined eruption of a prominence. The pre-flare phase exhibits spectacular large-scale contraction of overlying extreme ultraviolet (EUV) coronal loops during which the loop system was subjected to an altitude decrease of ∼20 Mm (40% of the initial height) for an extended span of ∼30 minutes. This contraction phase is accompanied by sequential EUV brightenings associated with hard X-ray (HXR; up to 25 keV) and microwave (MW) sources from low-lying loops in the core region which together with X-ray spectra indicate strong localized heating in the source region before the filament activation. With the onset of the flare’s impulsive phase, we detect HXR and MW sources that exhibit intricate temporal and spatial evolution in relation to the fast rise of the prominence. Following the flare maximum, the filament eruption slowed down and subsequently became confined within the large overlying active region loops. During the confinement process of the erupting prominence, we detect MW emission from the extended coronal region with multiple emission centroids, which likely represent emission from hot blobs of plasma formed after the collapse of the expanding flux rope and entailing prominence material. RHESSI spectroscopy reveals high plasma temperature (∼30 MK) and substantial non-thermal characteristics (δ ∼ 5) during the impulsive phase of the flare. The time evolution of thermal energy exhibits a good correspondence with the variations in cumulative non-thermal energy, which suggests that the energy of accelerated particles is efficiently converted to hot flare plasma, implying an effective validation of the Neupert effect.

  19. Analysis of a dual-twist Pancharatnam phase device with ultrahigh-efficiency large-angle optical beam steering.

    PubMed

    Cheng, HsienHui; Bhowmik, Achintya K; Bos, Philip J

    2015-12-01

    It has been previously shown that a Pancharatnam phase device with a dual-twist structure can deflect light up to 60° with nearly perfect efficiency. This was beyond the limits previously assumed for these types of devices, which were considered to be optically similar to Raman-Nath gratings. In this paper we first consider the range of parameters that will allow for high efficiency and show the results for a structure that demonstrates 80° deflection. We then explore the light propagation through these devices to point out interesting intensity variations in the deflected mode of light as it traverses the deflecting layer. Finally, we explain the key to understanding the efficiency of these devices, which is not the typical parameters that are important for traditional diffractive devices, but rather the control of the polarization state of light. We provide a simple design approach for optimizing the twist angle and retardation for high efficiency. PMID:26836657

  20. Measurements of large-scale density fluctuations in the solar wind using dual-frequency phase scintillations

    NASA Technical Reports Server (NTRS)

    Woo, R.; Yang, F.-C.; Yip, K. W.; Kendall, W. B.

    1976-01-01

    It is demonstrated that phase-difference scintillations measured with a coherent dual-frequency radio system such as that on Mariner 10 can be used to study the structure of density fluctuations in the solar wind covering a wider range of scale sizes than has ever been possible before. The Mariner 10 observations at solar elongations of 11.5 and 12.6 deg show that the density spectrum in the frequency range from 0.0001 to 0.5 Hz, which corresponds to the spatial wavenumber range of 2 millionths to 0.001 inverse km if the solar wind velocity is assumed to be 350 km/s, is approximately power-law and close to Kolmogorov (spectral index of 11/3). The results are consistent with direct spacecraft observations near earth and provide strong evidence that the density fluctuations are produced by turbulence. The potential and benefits of future extensive measurements are also discussed.

  1. Large piezoelectric response of BiFeO3/BaTiO3 polycrystalline films induced by the low-symmetry phase.

    PubMed

    Hou, Y F; Li, W L; Zhang, T D; Wang, W; Cao, W P; Liu, X L; Fei, W D

    2015-05-01

    BaTiO3, BiFeO3 and BiFeO3/BaTiO3 polycrystalline films were prepared by the radio frequency magnetron sputtering on the Pt/Ti/SiO2/Si substrate. The phase structure, converse piezoelectric coefficient and domain structure of BaTiO3, BiFeO3 and BiFeO3/BaTiO3 thin films are characterized by XRD and PFM, respectively. The converse piezoelectric coefficient d33 of BiFeO3/BaTiO3 thin films is 119.5 pm V(-1), which is comparable to that of lead-based piezoelectric films. The large piezoelectric response of BiFeO3/BaTiO3 thin films is ascribed to the low-symmetry T-like phase BiFeO3, because the spontaneous polarization vector of T-like phase (with monoclinic symmetry) BiFeO3 can rotate easily under external field. In addition, the reduced leakage current and major domains with upward polarization are also attributed to the large piezoelectricity. PMID:25866266

  2. CNDOL: A fast and reliable method for the calculation of electronic properties of very large systems. Applications to retinal binding pocket in rhodopsin and gas phase porphine

    NASA Astrophysics Data System (ADS)

    Montero-Cabrera, Luis Alberto; Röhrig, Ute; Padrón-Garcia, Juan A.; Crespo-Otero, Rachel; Montero-Alejo, Ana L.; Garcia de la Vega, José M.; Chergui, Majed; Rothlisberger, Ursula

    2007-10-01

    Very large molecular systems can be calculated with the so called CNDOL approximate Hamiltonians that have been developed by avoiding oversimplifications and only using a priori parameters and formulas from the simpler NDO methods. A new diagonal monoelectronic term named CNDOL/21 shows great consistency and easier SCF convergence when used together with an appropriate function for charge repulsion energies that is derived from traditional formulas. It is possible to obtain a priori molecular orbitals and electron excitation properties after the configuration interaction of single excited determinants with reliability, maintaining interpretative possibilities even being a simplified Hamiltonian. Tests with some unequivocal gas phase maxima of simple molecules (benzene, furfural, acetaldehyde, hexyl alcohol, methyl amine, 2,5 dimethyl 2,4 hexadiene, and ethyl sulfide) ratify the general quality of this approach in comparison with other methods. The calculation of large systems as porphine in gas phase and a model of the complete retinal binding pocket in rhodopsin with 622 basis functions on 280 atoms at the quantum mechanical level show reliability leading to a resulting first allowed transition in 483nm, very similar to the known experimental value of 500nm of "dark state." In this very important case, our model gives a central role in this excitation to a charge transfer from the neighboring Glu- counterion to the retinaldehyde polyene chain. Tests with gas phase maxima of some important molecules corroborate the reliability of CNDOL/2 Hamiltonians.

  3. Injectable controlled release depots for large molecules

    PubMed Central

    Schwendeman, Steven P.; Shah, Ronak B.; Bailey, Brittany A.; Schwendeman, Anna S.

    2014-01-01

    Biodegradable, injectable depot formulations for long-term controlled drug release have improved therapy for a number of drug molecules and led to over a dozen highly successful pharmaceutical products. Until now, success has been limited to several small molecules and peptides, although remarkable improvements have been accomplished in some of these cases. For example, twice-a-year depot injections with leuprolide are available compared to the once-a-day injection of the solution dosage form. Injectable depots are typically prepared by encapsulation of the drug in poly(lactic-co-glycolic acid) (PLGA), a polymer that is used in children every day as a resorbable suture material, and therefore, highly biocompatible. PLGAs remain today as one of the few “real world” biodegradable synthetic biomaterials used in US FDA-approved parenteral long-acting-release (LAR) products. Despite their success, there remain critical barriers to the more widespread use of PLGA LAR products, particularly for delivery of more peptides and other large molecular drugs, namely proteins. In this review, we describe key concepts in the development of injectable PLGA controlled-release depots for peptides and proteins, and then use this information to identify key issues impeding greater widespread use of PLGA depots for this class of drugs. Finally, we examine important approaches, particularly those developed in our research laboratory, toward overcoming these barriers to advance commercial LAR development. PMID:24929039

  4. Large-scale gas dynamics in the adhesion model: implications for the two-phase massive galaxy formation scenario

    NASA Astrophysics Data System (ADS)

    Domínguez-Tenreiro, R.; Oñorbe, J.; Martínez-Serrano, F.; Serna, A.

    2011-06-01

    We have studied the mass assembly and star formation histories of massive galaxies identified at low redshift in different cosmological hydrodynamical simulations. To this end, we have carried out a detailed follow-up backwards in time of their constituent mass elements (sampled by particles) of different types. After that, the configurations they depict at progressively higher zs were carefully analysed. The analyses show that these histories share common generic patterns, irrespective of particular circumstances. In any case, however, the results we have found are different depending on the particle type. The most outstanding differences follow. We have found that by z˜ 3.5-6, mass elements identified as stellar particles at z= 0 exhibit a gaseous cosmic-web-like morphology with scales of ˜1 physical Mpc, where the densest mass elements have already turned into stars by z˜ 6. These settings are in fact the densest pieces of the cosmic web, where no hot particles show up, and dynamically organized as a hierarchy of flow convergence regions (FCRs), that is, attraction basins for mass flows. At high z FCRs undergo fast contractive deformations with very low angular momentum, shrinking them violently. Indeed, by z˜ 1 most of the gaseous or stellar mass they contain shows up as bound to a massive elliptical-like object at their centres, with typical half-mass radii of rmassstar˜ 2-3 kpc. After this, a second phase comes about where the mass assembly rate is much slower and characterized by mergers involving angular momentum. On the other hand, mass elements identified at the diffuse hot coronae surrounding massive galaxies at z= 0 do not display a clear web-like morphology at any z. Diffuse gas is heated when FCRs go through contractive deformations. Most of this gas remains hot and with low density throughout the evolution. To shed light on the physical foundations of the behaviour revealed by our analyses (i.e. a two-phase formation process with different

  5. Development of a single-phase harmonic power flow program to study the 20 kHz AC power system for large spacecraft

    NASA Technical Reports Server (NTRS)

    Kraft, L. Alan; Kankam, M. David

    1991-01-01

    The development of software is described to aid in design and analysis of AC power systems for large spacecraft. The algorithm is an important version of harmonic power flow program, HARMFLO, used for the study of AC power quality. The new program is applicable to three-phase systems typified by terrestrial power systems, and single-phase systems characteristic of space power systems. The modified HARMFLO accommodates system operating frequencies ranging from terrestrial 60 Hz to and beyond aerospace 20 kHz, and can handle both source and load-end harmonic distortions. Comparison of simulation and test results of a representative spacecraft power system shows a satisfactory correlation. Recommendations are made for the direction of future improvements to the software, to enhance its usefulness to power system designer and analysts.

  6. Yb3+-doped large core silica fiber for fiber laser prepared by glass phase-separation technology.

    PubMed

    Chu, Yingbo; Ma, Yunxiu; Yang, Yu; Liao, Lei; Wang, Yibo; Hu, Xiongwei; Peng, Jinggang; Li, Haiqing; Dai, Nengli; Li, Jinyan; Yang, Luyun

    2016-03-15

    We report on the preparation and optical characteristics of an Yb3+-doped large core silica fiber with the active core prepared from nanoporous silica rod by the glass phase-separation technology. The measurements show that the fiber has an Yb3+ concentration of 9811 ppm by weight, a low background attenuation of 0.02 dB/m, and absorption from Yb3+ about 5.5 dB/m at 976 nm. The laser performance presents a high slope efficiency of 72.8% for laser emission at 1071 nm and a low laser threshold of 3 W within only 2.3 m fiber length. It is suggested that the glass phase-separation technology shows great potential for realizing active fibers with larger core and complex fiber designs. PMID:26977675

  7. Phased Array Ultrasonic Sound Field Mapping through Large-Bore Coarse Grained Cast Austenitic Stainless Steel (CASS) Components

    SciTech Connect

    Crawford, Susan L.; Cinson, Anthony D.; Prowant, Matthew S.; Coble, Jamie B.; Diaz, Aaron A.; Anderson, Michael T.

    2012-09-01

    A sound field beam mapping exercise was conducted to assist in understanding the effects of coarse-grained microstructures found in cast austenitic stainless steel (CASS) materials on acoustic longitudinal wave propagation. Ultrasonic laboratory measurements were made on three specimens representing four different grain structures. Phased array (PA) probes were fixed on each specimen surface and excited in the longitudinal mode at specific angles while a point receiver was scanned in a raster pattern over the end of the specimen, generating a transmitted sound field image. Three probes operating at nominal frequencies of 0.5, 0.8, and 1.0 MHz were used. A 6.4 mm (0.25-in.) thick slice was removed from the specimen end and beam mapping was repeated three times, yielding four full sets of beam images. Data were collected both with a constant part path for each configuration (probe, specimen and slice, angle, etc.) and with a variable part path (fixed position on the surface). The base specimens and slices were then polished and etched to reveal measureable grain microstructures that were compared to the sound field interactions and scattering effects seen in the collected data.

  8. One-step large scale gas phase synthesis of Mn(2 + ) doped ZnS nanoparticles in reducing flames.

    PubMed

    Athanassiou, E K; Grass, R N; Stark, W J

    2010-05-28

    Metal sulfide nanoparticles have attracted considerable interest because of their unique semiconducting and electronic properties. In order to prepare these fascinating materials at an industrial scale, however, solvent-free, dry processes would be most advantageous. In the present work, we demonstrate how traditional oxide nanoparticle synthesis in flames can be extended to sulfides if we apply a careful control on flame gas composition and sulfur content. The ultra-fast (<1 ms) gas phase kinetics at elevated temperatures allow direct sulfidization of metals in flames ([Formula: see text]). As a representative example, we prepared air-stable Mn(2 + ) doped zinc sulfide nanoparticles. Post-sintering of the initially polycrystalline nanopowder resulted in a material of high crystallinity and improved photoluminescence. An analysis of the thermodynamics, gas composition, and kinetics in these reducing flames indicates that the here-presented extension of flame synthesis provides access to a broad range of metal sulfide nanoparticles and offers an alternative to non-oxide phosphor preparation. PMID:20431199

  9. One-step large scale gas phase synthesis of Mn2 + doped ZnS nanoparticles in reducing flames

    NASA Astrophysics Data System (ADS)

    Athanassiou, E. K.; Grass, R. N.; Stark, W. J.

    2010-05-01

    Metal sulfide nanoparticles have attracted considerable interest because of their unique semiconducting and electronic properties. In order to prepare these fascinating materials at an industrial scale, however, solvent-free, dry processes would be most advantageous. In the present work, we demonstrate how traditional oxide nanoparticle synthesis in flames can be extended to sulfides if we apply a careful control on flame gas composition and sulfur content. The ultra-fast (<1 ms) gas phase kinetics at elevated temperatures allow direct sulfidization of metals in flames (\\mathrm {MO}_{x} \\Rightarrow \\mathrm {MS}_{x} ). As a representative example, we prepared air-stable Mn2 + doped zinc sulfide nanoparticles. Post-sintering of the initially polycrystalline nanopowder resulted in a material of high crystallinity and improved photoluminescence. An analysis of the thermodynamics, gas composition, and kinetics in these reducing flames indicates that the here-presented extension of flame synthesis provides access to a broad range of metal sulfide nanoparticles and offers an alternative to non-oxide phosphor preparation.

  10. Large effect of membrane tension on the fluid–solid phase transitions of two-component phosphatidylcholine vesicles

    PubMed Central

    Chen, Dong; Santore, Maria M.

    2014-01-01

    Model phospholipid membranes and vesicles have long provided insight into the nature of confined materials and membranes while also providing a platform for drug delivery. The rich thermodynamic behavior and interesting domain shapes in these membranes have previously been mapped in extensive studies that vary temperature and composition; however, the thermodynamic impact of tension on bilayers has been restricted to recent reports of subtly reduced fluid–fluid transition temperatures. In two-component phosphatidylcholine unilamellar vesicles [1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)], we report a dramatic influence of tension on the fluid–solid transition and resulting phases: At fixed composition, systematic variations in tension produce differently shaped solid domains (striped or irregular hexagons), shift fluid–solid transition temperatures, and produce a triple-point–like intersection of coexistence curves at elevated tensions, about 3 mN/m for 30% DOPC/70% DPPC. Tension therefore represents a potential switch of microstructure in responsive engineered materials; it is an important morphology-determining variable in confined systems, and, in biological membranes, it may provide a means to regulate dynamic structure. PMID:24344297

  11. The Two-Phase Method for Finding a Great Number of Eigenpairs of the Symmetric or Weakly Non-symmetric Large Eigenvalue Problems

    NASA Astrophysics Data System (ADS)

    Dul, Franciszek A.; Arczewski, Krzysztof

    1994-03-01

    Although it has been stated that "an attempt to solve (very large problems) by subspace iterations seems futile" (H. G. Matthies, Comput. Struct.21 (1985), p. 324), we will show that the statement is not true, especially for extremely large eigenproblems. In this paper a new two-phase subspace iteration/Rayleigh quotient/conjugate gradient method for generalized, large, symmetric eigenproblems Ax = λBx is presented. It has the ability of solving extremely large eigenproblems, N = 216,000, for example, and finding a large number of leftmost or rightmost eigenpairs, up to 1000 or more. Multiple eigenpairs, even those with multiplicity 100, can be easily found. The use of the proposed method for solving the big full eigenproblems ( N ˜ 10 3), as well as for large weakly non-symmetric eigenproblems, have been considered also. The proposed method is fully iterative; thus the factorization of matrices is avoided. The key idea consists in joining two methods: subspace and Rayleigh quotient iterations. The systems of indefinite and almost singular linear equations ( A - σ B) x = By are solved by various iterative conjugate gradient/Lanczos methods. It will be shown that the standard conjugate gradient method can be used without danger of breaking down due to its property that may be called "self-correction towards the eigenvector," discovered recently by us. The use of various preconditioners (SSOR and IC) has also been considered. The main features of the proposed method have been analyzed in detail. Comparisons with other methods, such as, accelerated subspace iteration, Lanczos, Davidson, TLIME, TRACMN, and SRQMCG, are presented. The results of numerical tests for various physical problems (acoustic, vibrations of structures, quantum chemistry) are presented as well. The final conclusion is that our new method is usually much faster than other iterative methods, especially for very large eigenproblems arising from 3D elliptic or biharmonic problems defined on

  12. Clinical evaluation for batch consistency of an inactivated enterovirus 71 vaccine in a large-scale phase 3 clinical trial

    PubMed Central

    Chen, Yi-Juan; Meng, Fan-Yue; Mao, Qunying; Li, Jing-Xin; Wang, Hua; Liang, Zheng-Lun; Zhang, Yun-Tao; Gao, Fan; Chen, Qing-Hua; Hu, Yuemei; Ge, Zi-Jun; Yao, Xin; Guo, Hui-Jie; Zhu, Feng-Cai; Li, Xiu-Ling

    2014-01-01

    The demonstration of batch-to-batch consistency to confirm the reliability of the manufacturing process has become a mandatory step in vaccine development. This is a post-hoc analysis aimed to provide more solid evidence on the immunogenicity and consistency of 3 consecutive batches of a novel inactivated enterovirus 71 (EV71) vaccine. In total 10 245 healthy Chinese children aged 6–35 months had been recruited and randomized to receive one of 3 batches of EV71 vaccine or placebo according to a two-dose immunization schedule in a phase 3 clinical trial. Blood samples were taken just before and 28 days after vaccinations for serological tests of EV71 neutralizing antibody (NTAb) titer from the subjects. Among them, 7263 (70.9%) subjects with seronegative EV71 NTAb at baseline and the data of serological tests post-vaccination available were included for the analysis. The results showed that EV71 vaccine elicited high geometric mean titers (GMTs) of 407.0 U/mL (95% CI, 373.5–443.6) for batch 1, 468.1 U/mL (95% CI, 432.2–507.0) for batch 2, and 520.6 U/mL (95% CI, 481.2–563.3) for batch 3. The two-sided 95% confidence intervals (CIs) for the GMT ratios between each pair of vaccine batches were all within an interval of [0.67, 1.5]. Subjects who received EV71 vaccines demonstrated significant higher GMTs than those received placebos did (P < 0.001). In terms of incidence of both local and general adverse reactions, no differences were found among 3 vaccine batches and placebos. EV71 vaccine was highly immunogenic in children, and the 3 consecutive batches were well consistent. PMID:24633366

  13. Phase-locking in Coupled Non-linear Relaxation Oscillators: an Explanation for Observed Temporal and Spatial Correlation and Anti-correlation of Large Earthquakes

    NASA Astrophysics Data System (ADS)

    Sammis, C. G.; Dolan, J. F.; Smith, S. W.

    2003-12-01

    There is mounting paleoseismological evidence that large earthquakes on a given fault network tend to occur in temporal clusters. Examples include the southern San Andreas system in the Imperial Valley (Rockwell et al., in prep, 2003), the Eastern California Shear Zone (Rockwell et al., BSSA, 2000), the Garlock system (Dawson et al, in prep., 2003) and the Los Angeles area (Dolan et al., in prep., 2003). This last study has also found evidence that clusters within the Los Angeles area tend to be anti-correlated with similar clusters in the Eastern California shear zone and on the Garlock fault. This clustering behavior is expected if large earthquakes behave as coupled non-linear relaxation oscillators. As a simplest case, we consider two identical faults which are loaded at constant strain rate and which fail at a prescribed stress threshold. Each thus produces the saw-tooth stress strain curve characteristic of a relaxation oscillator. The faults are non-linear oscillators because we assume the stress-strain curve is non-linear, having the negative curvature typical of laboratory experiments and regional damage mechanics models (Ben-Zion and Lyakhovsky, 2002). The two faults are coupled by symmetric stress transfer, in that we assume each fault either increases or decrease the Coulomb stress on the other by an equal amount. We find that events on the two faults phase-lock either in phase if the Coulomb stress transfer is positive or 180 degrees out of phase if the transfer is negative. This phase-lock is driven by the non-linear stress-strain relation. When a fault is close to failure, the increment of stress transfer causes a larger increment in strain. Since time is linked to strain through the assumption of constant strain rate loading, the time shift of the impending event is larger the nearer a fault is to failure. For a positive stress transfer, this shortens the interval and leads to in-phase locking. For a negative stress transfer, the interval is

  14. Study to investigate design, fabrication and test of low cost concepts for large hybrid composite helicopter fuselage, phase 1

    NASA Technical Reports Server (NTRS)

    Adams, K. M.; Lucas, J. J.

    1975-01-01

    The development of a frame/stringer/skin fabrication technique for composite airframe construction was studied as a low cost approach to the manufacture of large helicopter airframe components. A center cabin aluminum airframe section of the Sikorsky CH-53D helicopter was selected for evaluation as a composite structure. The design, as developed, is composed of a woven KEVLAR-49/epoxy skin and graphite/epoxy frames and stringers. To support the selection of this specific design concept a materials study was conducted to develop and select a cure compatible graphite and KEVLAR-49/epoxy resin system, and a foam system capable of maintaining shape and integrity under the processing conditions established. The materials selected were, Narmco 5209/Thornel T-300 graphite, Narmco 5209/KEVLAR-49 woven fabric, and Stathane 8747 polyurethane foam. Eight specimens were fabricated, representative of the frame, stringer, and splice joint attachments. Evaluation of the results of analysis and test indicate that design predictions are good to excellent except for some conservatism of the complex frame splice.

  15. A phase field approach with a reaction pathways-based potential to model reconstructive martensitic transformations with a large number of variants

    NASA Astrophysics Data System (ADS)

    Denoual, C.; Vattré, A.

    2016-05-01

    A pathway tree is constructed by recursively duplicating a single reconstructive martensitic transformation path with respect to lattice symmetries and point-group rotations. An energy potential built on this pathway is implemented in a phase-field technique in large strain framework, with the transformational strain as the order parameter. A specific splitting between non-dissipative elastic behavior and the dissipative evolution of the order parameter allows for the modeling of acoustic waves during rapid transformations. A simple toy-model transition from hexa- to square-lattice successfully demonstrates the possibility to model reconstructive martensitic transformations for a large number of variants (more than one hundred). Pure traction applied to our toy-model shows that variants can nucleate into previously created variants, with a hierarchical nucleation of variants spanning over five levels of transformation.

  16. Simple and effective large-scale preparation of geniposide from fruit of Gardenia jasminoides Ellis using a liquid-liquid two-phase extraction.

    PubMed

    Zhou, Min; Zhuo, Jiaxiong; Wei, Wanxing; Zhu, Jianwen; Ling, Xiurong

    2012-12-01

    Geniposide was prepared on a large-scale using a selective two-phase liquid-liquid extraction. The aqueous residue from the fruit of Gardenia jasminoides Ellis was treated with sodium carbonate and extracted with n-butanol several times. The n-butanol extracts were treated with activated granular charcoal to remove pigments and were then concentrated to produce a residue with a high solid content. The residue was crystallized to obtain geniposide with 98% purity. For large-scale synthesis, the residue (solid content 45%, geniposide 5.5%) was extracted to generate 70g of geniposide with 98% purity and 84.8% recovery using 1500g residue. PMID:22975161

  17. Lattice Boltzmann modeling of contact angle and its hysteresis in two-phase flow with large viscosity difference

    NASA Astrophysics Data System (ADS)

    Liu, Haihu; Ju, Yaping; Wang, Ningning; Xi, Guang; Zhang, Yonghao

    2015-09-01

    Contact angle hysteresis is an important physical phenomenon omnipresent in nature and various industrial processes, but its effects are not considered in many existing multiphase flow simulations due to modeling complexity. In this work, a multiphase lattice Boltzmann method (LBM) is developed to simulate the contact-line dynamics with consideration of the contact angle hysteresis for a broad range of kinematic viscosity ratios. In this method, the immiscible two-phase flow is described by a color-fluid model, in which the multiple-relaxation-time collision operator is adopted to increase numerical stability and suppress unphysical spurious currents at the contact line. The contact angle hysteresis is introduced using the strategy proposed by Ding and Spelt [Ding and Spelt, J. Fluid Mech. 599, 341 (2008), 10.1017/S0022112008000190], and the geometrical wetting boundary condition is enforced to obtain the desired contact angle. This method is first validated by simulations of static contact angle and dynamic capillary intrusion process on ideal (smooth) surfaces. It is then used to simulate the dynamic behavior of a droplet on a nonideal (inhomogeneous) surface subject to a simple shear flow. When the droplet remains pinned on the surface due to hysteresis, the steady interface shapes of the droplet quantitatively agree well with the previous numerical results. Four typical motion modes of contact points, as observed in a recent study, are qualitatively reproduced with varying advancing and receding contact angles. The viscosity ratio is found to have a notable impact on the droplet deformation, breakup, and hysteresis behavior. Finally, this method is extended to simulate the droplet breakup in a microfluidic T junction, with one half of the wall surface ideal and the other half nonideal. Due to the contact angle hysteresis, the droplet asymmetrically breaks up into two daughter droplets with the smaller one in the nonideal branch channel, and the behavior of

  18. Lattice Boltzmann modeling of contact angle and its hysteresis in two-phase flow with large viscosity difference.

    PubMed

    Liu, Haihu; Ju, Yaping; Wang, Ningning; Xi, Guang; Zhang, Yonghao

    2015-09-01

    Contact angle hysteresis is an important physical phenomenon omnipresent in nature and various industrial processes, but its effects are not considered in many existing multiphase flow simulations due to modeling complexity. In this work, a multiphase lattice Boltzmann method (LBM) is developed to simulate the contact-line dynamics with consideration of the contact angle hysteresis for a broad range of kinematic viscosity ratios. In this method, the immiscible two-phase flow is described by a color-fluid model, in which the multiple-relaxation-time collision operator is adopted to increase numerical stability and suppress unphysical spurious currents at the contact line. The contact angle hysteresis is introduced using the strategy proposed by Ding and Spelt [Ding and Spelt, J. Fluid Mech. 599, 341 (2008)JFLSA70022-112010.1017/S0022112008000190], and the geometrical wetting boundary condition is enforced to obtain the desired contact angle. This method is first validated by simulations of static contact angle and dynamic capillary intrusion process on ideal (smooth) surfaces. It is then used to simulate the dynamic behavior of a droplet on a nonideal (inhomogeneous) surface subject to a simple shear flow. When the droplet remains pinned on the surface due to hysteresis, the steady interface shapes of the droplet quantitatively agree well with the previous numerical results. Four typical motion modes of contact points, as observed in a recent study, are qualitatively reproduced with varying advancing and receding contact angles. The viscosity ratio is found to have a notable impact on the droplet deformation, breakup, and hysteresis behavior. Finally, this method is extended to simulate the droplet breakup in a microfluidic T junction, with one half of the wall surface ideal and the other half nonideal. Due to the contact angle hysteresis, the droplet asymmetrically breaks up into two daughter droplets with the smaller one in the nonideal branch channel, and the

  19. Winter Temperature Response to Large Tropical Volcanic Eruptions in Temperate Western North America: Relationship to ENSO Phases

    NASA Astrophysics Data System (ADS)

    Wahl, E. R.; Diaz, H. F.; Smerdon, J. E.

    2013-12-01

    In light of anthropogenic climate forcing, significant evaluation of the climate system's response to a range of forcing factors has been undertaken. Responses to large tropical volcanic eruptions are a key focus area. Paleoclimatology offers a unique vehicle to extend the study of these responses over much longer periods than those available from instrumental data. In this work, we present a set of annually-resolved, late-winter temperature responses in temperate western North America over 1500-1980 CE, and evaluate, from a regional perspective, evidence that large tropical eruptions show a tendency towards an initial El Niño (EN) response followed by a delayed La Niña (LN) (c.f. Li et al., 2013, DOI:10.1038/NCLIMATE1936). The proxy information are primarily tree ring widths and some ring density data from the target reconstruction region (30-55° N, 95-130° W) and northern Mexico, which are calibrated and validated against 5x5° gridded instrumental temperature data. Calibration uses an optimized form of principal components spatial regression, and well-validated reconstructions (for both the regional average and spatially) were able to be achieved for the February-March (FM) period. The reconstructions are additionally validated by their capacity to resolve known regional composite EN and LN late-winter temperature patterns. Superposed epoch analysis (SEA, n=13) was used to determine the composite responses for a sequence of post-volcanic-event years. Results do not show an initial EN-like regional response, but do show LN-like patterns in post-event Years 3-5. The correlations of the SEA patterns for Years 3-4 with the LN regional composite are significant based on correlations observed in ensembles of random-event-year SEAs, which account for the strong regional ENSO teleconnection. Relative homogeneity of the SEA response for each post-event year is evaluated as the amplitude (signal) of the SEA composite relative to its variance (noise) across events

  20. MRF Applications: On the Road to Making Large-Aperture Ultraviolet Laser Resistant Continuous Phase Plates for High-Power Lasers

    SciTech Connect

    Menapace, J A; Davis, P J; Steele, W A; Hachkowski, M R; Nelson, A; Xin, K

    2006-10-26

    Over the past two years we have developed MRF tools and procedures to manufacture large-aperture (430 X 430 mm) continuous phase plates (CPPs) that are capable of operating in the infrared portion (1053 nm) of high-power laser systems. This is accomplished by polishing prescribed patterns of continuously varying topographical features onto finished plano optics using MRF imprinting techniques. We have been successful in making, testing, and using large-aperture CPPs whose topography possesses spatial periods as low as 4 mm and surface peak-to-valleys as high as 8.6 {micro}m. Combining this application of MRF technology with advanced MRF finishing techniques that focus on ultraviolet laser damage resistance makes it potentially feasible to manufacture large-aperture CPPs that can operate in the ultraviolet (351 nm) without sustaining laser-induced damage. In this paper, we will discuss the CPP manufacturing process and the results of 351-nm/3-nsec equivalent laser performance experiments conducted on large-aperture CPPs manufactured using advanced MRF protocols.

  1. Ultra trace analysis of PAHs by designing simple injection of large amounts of analytes through the sample reconcentration on SPME fiber after magnetic solid phase extraction.

    PubMed

    Khodaee, Nader; Mehdinia, Ali; Esfandiarnejad, Reyhaneh; Jabbari, Ali

    2016-01-15

    A simple solventless injection method was introduced based on the using of a solid-phase microextraction (SPME) fiber for injection of large amounts of the analytes extracted by the magnetic solid phase extraction (MSPE) procedure. The resulted extract from MSPE procedure was loaded on a G-coated SPME fiber, and then the fiber was injected into the gas chromatography (GC) injection port. This method combines the advantages of exhaustive extraction property of MSPE and the solvent-less injection of SPME to improve the sensitivity of the analysis. In addition, the analytes were re-concentrated prior to inject into the gas chromatography (GC) inlet because of the organic solvent removing from the remaining extract of MSPE technique. Injection of the large amounts of analytes was made possible by using the introduced procedure. Fourteen polycyclic aromatic hydrocarbons (PAHs) with different volatility were used as model compounds to investigate the method performance for volatile and semi-volatile compounds. The introduced method resulted in the higher enhancement factors (5097-59376), lower detection limits (0.29-3.3pgmL(-1)), and higher sensitivity for the semi-volatile compounds compared with the conventional direct injection method. PMID:26592576

  2. Large Eddy Simulation of Bubbly Flow and Slag Layer Behavior in Ladle with Discrete Phase Model (DPM)-Volume of Fluid (VOF) Coupled Model

    NASA Astrophysics Data System (ADS)

    Li, Linmin; Liu, Zhongqiu; Cao, Maoxue; Li, Baokuan

    2015-07-01

    In the ladle metallurgy process, the bubble movement and slag layer behavior is very important to the refining process and steel quality. For the bubble-liquid flow, bubble movement plays a significant role in the phase structure and causes the unsteady complex turbulent flow pattern. This is one of the most crucial shortcomings of the current two-fluid models. In the current work, a one-third scale water model is established to investigate the bubble movement and the slag open-eye formation. A new mathematical model using the large eddy simulation (LES) is developed for the bubble-liquid-slag-air four-phase flow in the ladle. The Eulerian volume of fluid (VOF) model is used for tracking the liquid-slag-air free surfaces and the Lagrangian discrete phase model (DPM) is used for describing the bubble movement. The turbulent liquid flow is induced by bubble-liquid interactions and is solved by LES. The procedure of bubble coming out of the liquid and getting into the air is modeled using a user-defined function. The results show that the present LES-DPM-VOF coupled model is good at predicting the unsteady bubble movement, slag eye formation, interface fluctuation, and slag entrainment.

  3. Development of high internal phase emulsion polymeric monoliths for highly efficient enrichment of trace polycyclic aromatic hydrocarbons from large-volume water samples.

    PubMed

    Su, Rihui; Ruan, Guihua; Nie, Honggang; Xie, Ting; Zheng, Yanjie; Du, Fuyou; Li, Jianping

    2015-07-31

    In this work, polymerized high internal phase emulsion (polyHIPE) monoliths were prepared and applied as monolithic adsorbent materials for proconcentration of trace polycyclic aromatic hydrocarbons (PAHs) from large-volume water samples. The monolithic polyHIPE columns were prepared by in situ polymerization of the continuous phase of a high internal phase emulsion (HIPE) containing styrene (STY), divinylbenzene (DVB) and glycidyl methacrylate (GMA) in pipette tips, and the resulting STY/DVB/GMA polyHIPE monoliths exhibited highly interconnected porosity and large surface areas, making them excellent candidates as adsorbents for enrichment of trace aromatic compounds. The prepared STY/DVB/GMA polyHIPE monoliths were applied to the determination of trace PAHs in environmental water samples by combing with high performance liquid chromatography-fluorescence detection (HPLC-FLD). Under the optimized experimental conditions, the polyHIPE monoliths could effectively enrich trace 13 PAHs from 500mL of water samples, the mean recoveries at four spiked levels were ranged from 80.7% to 115.0% with the relative standard deviations (RSDs) lower than 14%, and the detection limits (LODs) were ranged from 4.0 to 228pg/L. In addition, the prepared polyHIPE monolith was stable enough for more than 200 replicate extraction cycles without measurable loss of performance on the enrichment of PAHs, and good column-to-column repeatability was obtained with RSD less than 13%. The proposed method was applied to simultaneous analysis of 13 PAHs in water samples with satisfactory recoveries. PMID:26077972

  4. SALM4 suppresses excitatory synapse development by cis-inhibiting trans-synaptic SALM3-LAR adhesion.

    PubMed

    Lie, Eunkyung; Ko, Ji Seung; Choi, Su-Yeon; Roh, Junyeop Daniel; Cho, Yi Sul; Noh, Ran; Kim, Doyoun; Li, Yan; Kang, Hyeyeon; Choi, Tae-Yong; Nam, Jungyong; Mah, Won; Lee, Dongmin; Lee, Seong-Gyu; Kim, Ho Min; Kim, Hyun; Choi, Se-Young; Um, Ji Won; Kang, Myoung-Goo; Bae, Yong Chul; Ko, Jaewon; Kim, Eunjoon

    2016-01-01

    Synaptic adhesion molecules regulate various aspects of synapse development, function and plasticity. These functions mainly involve trans-synaptic interactions and positive regulations, whereas cis-interactions and negative regulation are less understood. Here we report that SALM4, a member of the SALM/Lrfn family of synaptic adhesion molecules, suppresses excitatory synapse development through cis inhibition of SALM3, another SALM family protein with synaptogenic activity. Salm4-mutant (Salm4(-/-)) mice show increased excitatory synapse numbers in the hippocampus. SALM4 cis-interacts with SALM3, inhibits trans-synaptic SALM3 interaction with presynaptic LAR family receptor tyrosine phosphatases and suppresses SALM3-dependent presynaptic differentiation. Importantly, deletion of Salm3 in Salm4(-/-) mice (Salm3(-/-); Salm4(-/-)) normalizes the increased excitatory synapse number. These results suggest that SALM4 negatively regulates excitatory synapses via cis inhibition of the trans-synaptic SALM3-LAR adhesion. PMID:27480238

  5. A test of the Suits vegetative-canopy reflectance model with LARS soybean-canopy reflectance data

    NASA Technical Reports Server (NTRS)

    Chance, J. E.; Lemaster, E. W.

    1985-01-01

    The Suits vegetative-canopy reflectance model is tested with an extensive set of field reflectance measurements made by the Laboratory for Application of Remote Sensing (LARS) for soybean canopies. The model is tested for the full hemisphere of observer directions as well as the nadir direction. The results show moderate agreement for the visible channels of the Landsat MSS and poor agreement in the near-infrared channel of Landsat MSS. An analysis of errors is given.

  6. Role of the addition of cabergoline to the management of acromegalic patients resistant to longterm treatment with octreotide LAR.

    PubMed

    Vilar, Lucio; Azevedo, Monalisa F; Naves, Luciana Ansaneli; Casulari, Luiz Augusto; Albuquerque, José Luciano; Montenegro, Renan M; Montenegro, Renan M; Figueiredo, Patricia; Nascimento, Gilvan C; Faria, Manuel S

    2011-06-01

    The aim of this prospective open trial was to evaluate the efficacy in normalizing IGF-I levels of the addition of cabergoline to the treatment of acromegalic patients partially responsive to Octreotide-LAR (OCT-LAR), a long acting somatotastin analog (SSA). Fifty-two patients who did not achieve hormonal control after longterm therapy (at least, 12 months) with OCT-LAR (30 mg every 28 days intramuscularly) were given cabergoline in addition to the SSA treatment. Normalization of IGF-I levels was achieved in 40.4% of patients by 6 months after the addition of cabergoline (1.0-3.0 mg/week; mean, 2.19 ± 0.64), and these patients were considered responsive. Compared to non-responsive subjects, responsive patients had significantly lower mean %ULNR-IGF-I and GH levels. However, the rate of hyperprolactinemia and positive immunohistochemical staining for PRL was similar in both groups, before the addition of cabergoline. Responsive patients were followed for at least 12 months on combination treatment and persisted with normal IGF-I levels. Patients with baseline %ULNR IGF-I up to 220% and/or GH up to 5 ng/ml were those who benefited the most from combination treatment. No patients with %ULNR-IGF-I>250% reached normalization of IGF-I levels. Our findings demonstrated that the addition of cabergoline, even at relatively low doses, is effective in both short- and long-term control of IGF-I levels in acromegalic patients partially responsive to octreotide LAR, particularly in those with mild/moderately elevated GH/IGF-levels, irrespective of prolactin status. PMID:21104199

  7. A More Reduced Mantle Source for Enriched Shergottites; Insights from the Olivine-Phyric Shergottite Lar 06319

    NASA Technical Reports Server (NTRS)

    Peslier, A. H.; Hnatyshin, D.; Herd, C. D. K.; Walton, E. L.; Brandon, A. D.; Lapen, T. J.; Shafer, J.

    2010-01-01

    A detailed petrographic study of melt inclusions and Cr-Fe-Ti oxides of LAR 06319 leads to two main conclusions: 1) this enriched oxidized olivine- phyric shergottite represents nearly continuous crystallization of a basaltic shergottite melt, 2) the melt became more oxidized during differentiation. The first crystallized mineral assemblages record the oxygen fugacity which is closest to that of the melt s mantle source, and which is lower than generally attributed to the enriched shergottite group.

  8. The two-phase method for finding a great number of eigenpairs of the symmetric or weakly non-symmetric large eigenvalue problems

    NASA Astrophysics Data System (ADS)

    Arczewski, Krzysztof; Dul, Franciszek A.

    1994-03-01

    In this paper a new two-phase subspace iteration/Rayleigh quotient/conjugate gradient method for generalized, large, symmetric eigenproblems Ax = lambda Bx is presented. It has the ability of solving extremely large eigenproblems, N = 216,000, for example, and finding a large number of leftmost or rightmost eigenpairs, up to 1000 or more. Multiple eigenpairs, even those with multiplicity 100, can be easily found. The use of the proposed method for solving the big full eigenproblems N approximately 10(exp 3), as well as for large weakly non-symmetric eigenproblems, have been considered also. The proposed method is fully iterative; thus the factorization of matrices is avoided. The key idea consists in joining two methods: subspace and Rayleigh quotient iterations. The systems of indefinite and almost singular linear equations (A - sigma B)x = By are solved by various iterative conjugate gradient/Lanczos methods. It will be shown that the standard conjugate gradient method can be used without danger of breaking down due to its property that may be called 'self-correction towards the eigenvector,' discovered recently by us. The use of various preconditions (SSOR and IC) has also been considered. The main features of the proposed method have been analyzed in detail. Comparisons with other methods, such as, accelerated subspace iteration, Lanczos, Davidson, TLIME, TRACMN, and SRQMCG, are presented. The results of numerical tests for various physical problems (acoustic, vibrations of structures, quantum chemistry) are presented as well. The final conclusion is that our new method is usually much faster than other iterative methods, especially for very large eigenproblems arising from 3D elliptic or biharmonic problems defined on irregular, multiply-connected domains, discretized by the finite element (FEM) or finite difference (FDM) methods.

  9. Determination of dissolved-phase pesticides in surface water from the Yakima River basin, Washington, using the Goulden large-sample extractor and gas chromatography/mass spectrometry

    USGS Publications Warehouse

    Foster, G.D.; Gates, Paul M.; Foreman, W.T.; McKenzie, S.W.; Rinella, F.A.

    1993-01-01

    Concentrations of pesticides in the dissolved phase of surface water samples from the Yakima River basin, WA, were determined using preconcentration in the Goulden large-sample extractor (GLSE) and gas chromatography/ mass spectrometry (GC/MS) analysis. Sample volumes ranging from 10 to 120 L were processed with the GLSE, and the results from the large-sample analyses were compared to those derived from 1-L continuous liquid-liquid extractions. Few of the 40 target pesticides were detected in 1-L samples, whereas large-sample preconcentration in the GLSE provided detectable levels for many of the target pesticides. The number of pesticides detected in GLSE processed samples was usually directly proportional to sample volume, although the measured concentrations of the pesticides were generally lower at the larger sample volumes for the same water source. The GLSE can be used to provide lower detection levels relative to conventional liquid-liquid extraction in GC/MS analysis of pesticides in samples of surface water. ?? 1993 American Chemical Society.

  10. Determination of dissolved-phase pesticides in surface water from the Yakima River basin, Washington, using the Goulden large-sample extractor and gas chromatography/mass spectrometer

    USGS Publications Warehouse

    Foster, Gregory D.; Gates, Paul M.; Foreman, William T.; McKenzie, Stuart W.; Rinella, Frank A.

    1993-01-01

    Concentrations of pesticides in the dissolved phase of surface water samples from the Yakima River basin, WA, were determined using preconcentration in the Goulden large-sample extractor (GLSE) and gas chromatography/mass spectrometry (GC/MS) analysis. Sample volumes ranging from 10 to 120 L were processed with the GLSE, and the results from the large-sample analyses were compared to those derived from 1-L continuous liquid-liquid extractions Few of the 40 target pesticides were detected in 1-L samples, whereas large-sample preconcentration in the GLSE provided detectable levels for many of the target pesticides. The number of pesticides detected in GLSE processed samples was usually directly proportional to sample volume, although the measured concentrations of the pesticides were generally lower at the larger sample volumes for the same water source. The GLSE can be used to provide lower detection levels relative to conventional liquid-liquid extraction in GC/MS analysis of pesticides in samples of surface water.

  11. Comparison of a k-Nearest-Neighbor Simulator and LARS-WG for generating daily Precipitation

    NASA Astrophysics Data System (ADS)

    Mehdizadeh, M.; Bárdossy, A.; Guenni, L.

    2009-04-01

    Weather generators are stochastic models that produce synthetic long time series of weather data from limited records of historical data with statistically similar characteristics to those of observed. Long timeseries of synthetic weather daily data, especially precipitation, are required as climate inputs to hydrological and agricultural models, in order to evaluate the performance of the associated physical systems. LARS-WG is a semi parametric weather generator that uses flexible semi-empirical distributions for the lengths of wet and dry day series and daily precipitation. On the other hand, k-Nearest Neighbor is a non parametric technique to resample data from historical records by conditioning on the preceding days (feature vector). The model finds the historical number of nearest neighbors of the current weather vector using the Euclidean distance and resamples from it their successors. To preserve the temporal persistence, the model calculates the Euclidean distance of vectors which have similar sequence of wet and dry days. The objective of this study is to evaluate the performance of these two different models in reproducing interannual variability of precipitation in three stations in Germany. Keywords: Weather generator, k-Nearest-Neighbor, LARSWG, daily precipitation

  12. Investigating the Microphysics of Arctic Mixed-Phase Clouds using Large Eddy Simulations: The Importance of Liquid-Dependent Ice Nucleation

    NASA Astrophysics Data System (ADS)

    Young, Gillian; Connolly, Paul J.; Jones, Hazel M.; Choularton, Thomas W.; Gallagher, Martin W.; Crosier, Jonathan; Lloyd, Gary; Bower, Keith N.

    2015-04-01

    Our ability to comprehend and accurately model the Arctic climate is currently hindered by a lack of observations of the atmospheric processes unique to this region. A significant source of uncertainty in such models may be found in our representation of aerosol-cloud interactions [1]: for example, there are unanswered questions concerning the relationship between the ice-nucleating Arctic aerosol and the unique cloud microphysics observed in this region [2]. In an effort to address this issue, the Aerosol-Cloud Coupling and Climate Interactions in the Arctic (ACCACIA) campaign of 2013 was conducted in the vicinity of the Svalbard archipelago, carrying out in-situ airborne observations of the mixed-phase clouds in this region. This campaign was split into two segments - one in spring, the other in summer - with airborne- and surface-based measurement platforms utilised in each. During the spring campaign, a range of microphysics and remote-sensing instruments were active on board the Facility for Airborne Atmospheric Measurements' (FAAM) BAe146 aircraft to produce a detailed record of the observed Arctic atmosphere. These data were used to conduct a modelling investigation with a focus on ice nucleation: the Large Eddy Model (LEM) - a cloud-resolving model developed by the UK Met Office - was initialised from these observations and simulations were performed to allow the resultant cloud evolution, structure and microphysics to be examined. Models on various scales notoriously have issues with reproducing persistent, mixed-phase Arctic clouds [2,3] and, upon first inspection, the LEM was no different: the modelled cloud dissipated quickly, thus inaccurately replicating the long-lived, mixed-phase clouds observed. However, by considering the discrepancies between the model output and aircraft observations, the treatment of cloud microphysics within the LEM has been developed to improve the simulation of the observed clouds. A long-lived, mixed-phase cloud of similar

  13. Tectonic stress inversion of large multi-phase fracture data sets: application of Win-Tensor to reveal the brittle tectonic history of the Lufilan Arc, DRC

    NASA Astrophysics Data System (ADS)

    Delvaux, Damien; Kipata, Louis; Sintubin, Manuel

    2013-04-01

    Large fault-slip data sets from multiphase orogenic regions present a particular challenge in paleostress reconstructions. The Lufilian Arc is an arcuate fold-and-thrust belt that formed during the late Pan-African times as the result of combined N-S and E-W amalgamation of Gondwana in SE-DRCongo and N-Zambia. We studied more than 22 sites in the Lufilian Arc, and its foreland and correlated the results obtained with existing result in the Ubende belt of W-Tanzania. Most studied sites are characterized by multiphase brittle deformation in which the observed brittle structures are the result of progressive saturation of the host rock by neoformed fractures and the reactivation of early formed fractures. They correspond to large mining exploitations with multiple large and continuous outcrops that allow obtaining datasets sufficiently large to be of statistical significance and often corresponding to several successive brittle events. In this context, the reconstruction of tectonic stress necessitates an initial field-base separation of data, completed by a dynamic separation of the original data set into subsets. In the largest sites, several parts of the deposits have been measured independently and are considered as sub-sites that are be processed separately in an initial stage. The procedure used for interactive fault-slip data separation and stress inversion will be illustrated by field examples (Luiswishi and Manono mining sites). This principle has been applied to all result in the reconstruction of the brittle tectonic history of the region, starting with two major phases of orogenic compression, followed by late orogenic extension and extensional collapse. A regional tectonic inversion during the early Mesozoic, as a result of far- field stresses mark the transition towards rift-related extension. More details in Kipata, Delvaux et al.(2013), Geologica Belgica 16/1-2: 001-017 Win-Tensor can be downloaded at: http://users.skynet.be/damien.delvaux/Tensor/tensor-index.html

  14. Optical readout of a two phase liquid argon TPC using CCD camera and THGEMs

    NASA Astrophysics Data System (ADS)

    Mavrokoridis, K.; Ball, F.; Carroll, J.; Lazos, M.; McCormick, K. J.; Smith, N. A.; Touramanis, C.; Walker, J.

    2014-02-01

    This paper presents a preliminary study into the use of CCDs to image secondary scintillation light generated by THick Gas Electron Multipliers (THGEMs) in a two phase LAr TPC. A Sony ICX285AL CCD chip was mounted above a double THGEM in the gas phase of a 40 litre two-phase LAr TPC with the majority of the camera electronics positioned externally via a feedthrough. An Am-241 source was mounted on a rotatable motion feedthrough allowing the positioning of the alpha source either inside or outside of the field cage. Developed for and incorporated into the TPC design was a novel high voltage feedthrough featuring LAr insulation. Furthermore, a range of webcams were tested for operation in cryogenics as an internal detector monitoring tool. Of the range of webcams tested the Microsoft HD-3000 (model no:1456) webcam was found to be superior in terms of noise and lowest operating temperature. In ambient temperature and atmospheric pressure 1 ppm pure argon gas, the THGEM gain was ≈ 1000 and using a 1 msec exposure the CCD captured single alpha tracks. Successful operation of the CCD camera in two-phase cryogenic mode was also achieved. Using a 10 sec exposure a photograph of secondary scintillation light induced by the Am-241 source in LAr has been captured for the first time.

  15. Experimental and numerical investigation of ADP square crystal with large aperture in the new Final Optics Assembly under the non-critical phase matching

    NASA Astrophysics Data System (ADS)

    Sun, Fuzhong; Zhang, Peng; Bai, Qingshun; Lu, Lihua; Xiang, Yong

    2016-04-01

    This paper presented a new Final Optics Assembly (FOA) of ammonium dihydrogen phosphate (ADP) square crystal with large aperture under the non-critical phase matching (NCPM), which controlled by the constant temperature water, and the temperature distribution was analyzed by simulation and experiment. Firstly, thermal analysis was carried out, as well as the temperature distribution of the cavity only heated under different velocities was analyzed. Then, the temperature distributions of ADP square crystal in the cavity were achieved using the Finite Volume Method (FVM), and this prediction was validated by the experiment results when the velocity is 0.1 m/s and 0.5 m/s. Finally, the optimal FHG conversion efficiency was obtained and the comparison of different heating methods was also highlighted.

  16. Large radius of curvature measurement based on virtual quadratic Newton rings phase-shifting moiré-fringes measurement method in a nonnull interferometer.

    PubMed

    Yang, Zhongming; Wang, Kailiang; Cheng, Jinlong; Gao, Zhishan; Yuan, Qun

    2016-06-10

    We have proposed a virtual quadratic Newton rings phase-shifting moiré-fringes measurement method in a nonnull interferometer to measure the large radius of curvature for a spherical surface. In a quadratic polar coordinate system, linear carrier testing Newton rings interferogram and virtual Newton rings interferogram form the moiré fringes. It is possible to retrieve the wavefront difference data between the testing and standard spherical surface from the moiré fringes after low-pass filtering. Based on the wavefront difference data, we deduced a precise formula to calculate the radius of curvature in the quadratic polar coordinate system. We calculated the retrace error in the nonnull interferometer using the multi-configuration model of the nonnull interferometric system in ZEMAX. Our experimental results indicate that the measurement accuracy is better than 0.18% for a spherical mirror with a radius of curvature of 41,400 mm. PMID:27409038

  17. Sunitinib in relapsed or refractory diffuse large B-cell lymphoma: a clinical and pharmacodynamic phase II multicenter study of the NCIC Clinical Trials Group

    PubMed Central

    Buckstein, Rena; Kuruvilla, John; Chua, Neil; Lee, Christina; Macdonald, David A; Al-Tourah, Abdulwahab J; Foo, Alison H; Walsh, Wendy; Ivy, S Percy; Crump, Michael; Eisenhauer, Elizabeth A

    2011-01-01

    There are limited effective therapies for most patients with relapsed diffuse large B-cell lymphoma (DLBCL). We conducted a phase II trial of the multi-targeted vascular endothelial growth factor receptor (VEGFR) kinase inhibitor, sunitinib, 37.5 mg given orally once daily in adult patients with relapsed or refractory DLBCL. Of 19 enrolled patients, 17 eligible patients were evaluable for toxicity and 15 for response. No objective responses were seen and nine patients achieved stable disease (median duration 3.4 months). As a result, the study was closed at the end of the first stage. Grades 3—4 neutropenia and thrombocytopenia were observed in 29% and 35%, respectively. There was no relationship between change in circulating endothelial cell numbers (CECs) and bidimensional tumor burden over time. Despite some activity in solid tumors, sunitinib showed no evidence of response in relapsed/refractory DLBCL and had greater than expected hematologic toxicity. PMID:21463120

  18. The phase transition of ɛ-InxFe2-xO3 nanomagnets with a large thermal hysteresis loop (invited)

    NASA Astrophysics Data System (ADS)

    Yamada, Kana; Tokoro, Hiroko; Yoshikiyo, Marie; Yorinaga, Takenori; Namai, Asuka; Ohkoshi, Shin-ichi

    2012-04-01

    A large thermal hysteresis loop was observed in the phase transition on rod-shaped ɛ-InxFe2-xO3 (x ˜ 0.04) nanomagnets. The width of the thermal hysteresis loop, ΔT, increased with increasing rod length (l), i.e., ΔT = 6 K (l = 25 nm), 14 K (40 nm), 25 K (80 nm), and 47 K (170 nm). The observed ΔT value of 47 K is one of the largest values among insulating ferromagnetic materials. The thermal hysteresis loops were analyzed by the Slichter and Drickamer model, and the results showed that the transition enthalpy and entropy do not change. However, the elastic interaction parameter between the transition sites increases with an increasing l value. Maybe the correlation length of a propagating phonon due to elastic interaction competes with the rod length of the samples, causing the rod-length dependence of the thermal hysteresis loop.

  19. Evaluation of the effects of ice massage applied to large intestine 4 (hegu) on postpartum pain during the active phase of labor

    PubMed Central

    Can, Hafize Ozturk; Saruhan, Aynur

    2015-01-01

    Background: The uterus continues to contract after childbirth. The pain caused by the contractions of the uterus can be as severe as labor pain. The study was aimed to evaluate the effects of ice massage applied to the large intestine 4 (LI4) on postpartum pain during the active phase of labor. Materials and Methods: The study was designed as a randomized controlled trial with three groups and carried out in two stages. The study sample comprised of 150 pregnant women, who were referred to a maternity hospital. In the experimental group, ice massage was applied to LI4 during four contractions within the active phase of labor. In the placebo group, pressure was applied to LI4 using silicone balloons and the third group was the control group. The Visual Analog Scale (VAS) and The McGill (Melzack) Pain Questionnaire (MPQ) were compared among the experimental, placebo, and control groups. Results: The mothers in the ice application group had the lowest mean VAS score. It was determined that ice massage applied to LI4 during the active phase of labor did not lead to any statistical differences in mothers in the first 24 hours postpartum in terms of the characteristics of the pain with MPQ and VAS. Conclusions: In the study, the perception of pain was tried to be minimized by applying pressure with ice balloons to LI4. However, although the application was determined to have made no difference in the pain intensity, the mothers’ statements in the ice application group suggested that they felt more comfortable than did the mothers in the other groups. PMID:25709702

  20. Twofold enhancement of the hidden-order/large-moment antiferromagnetic phase boundary in the URu2-xFexSi₂ system

    SciTech Connect

    Kanchanavatee, N.; Janoschek, M.; Baumbach, R. E.; Hamlin, J. J.; Zocco, D. A.; Huang, K.; Maple, M. B.

    2011-12-16

    Electrical resistivity, specific heat, and magnetization measurements on URu2-xFexSi₂ reveal a twofold enhancement of the “hidden-order” (HO)/large-moment antiferromagnetic (LMAFM) phase boundary T₀(x). The T₀(Pch) curve, obtained by converting x to “chemical pressure” Pch, is strikingly similar to the T₀(P) curve, where P is applied pressure, for URu₂Si₂ both exhibit a “kink” at 1.5 GPa and a maximum at ~7 GPa. This similarity suggests that the HO-LMAFM transition at 1.5 GPa in URu₂Si₂ occurs at x ≈ 0.2 (Pch≈1.5 GPa) in URu2-xFexSi₂. URu2-xFexSi₂ provides an opportunity for studying the HO and LMAFM phases with methods that probe the electronic structure [e.g., scanning tunneling microscopy (STM), angle-resolved photoemission spectroscopy (ARPES), and point-contact spectroscopy (PCS)] but cannot be used under pressure.

  1. Twofold enhancement of the hidden-order/large-moment antiferromagnetic phase boundary in the URu2-xFexSi₂ system

    DOE PAGESBeta

    Kanchanavatee, N.; Janoschek, M.; Baumbach, R. E.; Hamlin, J. J.; Zocco, D. A.; Huang, K.; Maple, M. B.

    2011-12-16

    Electrical resistivity, specific heat, and magnetization measurements on URu2-xFexSi₂ reveal a twofold enhancement of the “hidden-order” (HO)/large-moment antiferromagnetic (LMAFM) phase boundary T₀(x). The T₀(Pch) curve, obtained by converting x to “chemical pressure” Pch, is strikingly similar to the T₀(P) curve, where P is applied pressure, for URu₂Si₂ both exhibit a “kink” at 1.5 GPa and a maximum at ~7 GPa. This similarity suggests that the HO-LMAFM transition at 1.5 GPa in URu₂Si₂ occurs at x ≈ 0.2 (Pch≈1.5 GPa) in URu2-xFexSi₂. URu2-xFexSi₂ provides an opportunity for studying the HO and LMAFM phases with methods that probe the electronic structure [e.g.,more » scanning tunneling microscopy (STM), angle-resolved photoemission spectroscopy (ARPES), and point-contact spectroscopy (PCS)] but cannot be used under pressure.« less

  2. Results of a prospective phase II trial evaluating interim positron emission tomography-guided high dose therapy for poor prognosis diffuse large B-cell lymphoma.

    PubMed

    Stewart, Douglas A; Kloiber, Reinhard; Owen, Carolyn; Bahlis, Nizar J; Duggan, Peter; Mansoor, Adnan; Bence-Bruckler, Isabelle

    2014-09-01

    Patients with diffuse large B-cell lymphoma (DLBCL) with a poor prognosis based upon advanced stage and elevated serum lactate dehydrogenase achieve a 3-4-year progression-free survival (PFS) of only 55%. The role of interim fluoro-2-deoxy-d-glucose (FDG) positron emission tomography (PET) to guide use of upfront high dose chemotherapy (HDCT) and autologous stem cell transplant (ASCT) for patients with poor prognosis DLBCL is unproven. A prospective phase II clinical trial was designed to evaluate the outcomes of HDCT/ASCT for patients with poor prognosis DLBCL aged 18-65 years who had unfavorable interim restaging PET scans. Of the 70 eligible patients, 36 had unfavorable and 34 favorable interim PET responses, with 3-year PFS rates of 65.2% and 52.7%, respectively. In conclusion, favorable interim PET response as defined in this study is not associated with improved PFS rates for patients with poor prognosis DLBCL treated with RCHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone). A phase III trial evaluating this PET-guided approach is not warranted. PMID:24188476

  3. Simultaneous determination of hydrophobicity and dissociation constant for a large set of compounds by gradient reverse phase high performance liquid chromatography-mass spectrometry technique.

    PubMed

    Kubik, Łukasz; Struck-Lewicka, Wiktoria; Kaliszan, Roman; Wiczling, Paweł

    2015-10-16

    Fast and reliable methods for the determination of hydrophobicity and acidity are desired in pre-clinical drug development phases to eliminate compounds with poor pharmacokinetic properties. Reversed-phase high-performance liquid chromatography (RP HPLC) coupled with time-of-flight mass spectrometry (RP HPLC-ESI-TOF-MS) is a convenient technique for that purpose. In this work we determined the chromatographic measure of hydrophobicity (logkw) and dissociation constant (pKa) simultaneously for a large and diverse group of 161 drugs. Retention times were determined by means of RP HPLC-ESI-TOF-MS for a series of pH and organic modifier gradients. We were able to measure retention times for 140 out of 161 (87%) compounds. For those analytes logkw and pKa parameters were calculated and compared with literature and ACD Labs-calculated data. The determined chromatographic measure of hydrophobicity and dissociation constant was closely related to literature and theoretically calculated values. Applied methodology achieved the medium-throughput screening rate of 100 compounds per day and proved to be a simple, fast and reliable approach of assessing important physicochemical properties of drugs. This technique has certain limitations as it is not applicable for very hydrophilic analytes (logP<0.5) and compounds with identical molar masses. PMID:26365909

  4. Clinical Benefits of Above-Standard Dose of Octreotide LAR in Patients With Neuroendocrine Tumors for Control of Carcinoid Syndrome Symptoms: A Multicenter Retrospective Chart Review Study

    PubMed Central

    Strosberg, Jonathan R.; Benson, Al B.; Huynh, Lynn; Goldman, Jamie; Sahai, Vaibhav; Rademaker, Alfred W.; Kulke, Matthew H.

    2014-01-01

    Background. Octreotide LAR is used in patients for control of carcinoid syndrome (CS) and other symptoms of hormone hypersecretion. The aim of this study was to examine reasons for octreotide LAR dose escalation and observe CS symptom improvement in patients with neuroendocrine tumors (NETs) who underwent octreotide LAR dose escalation at three cancer referral centers. Methods. Medical records for patients with diagnosis of carcinoid or pancreatic NET who had received one dose or more of octreotide LAR above 30 mg every 4 weeks from 2000 to 2012 were reviewed. Reasons for dose escalation and symptomatic outcomes were abstracted for each patient 3 months prior to and up to 12 months following the dose escalation. Results. Of the evaluated 239 NET patients, 53% were male, mean age at first dose escalation was 60 years (standard deviation [SD]: 11 years), and mean time from octreotide LAR initiation to first dose escalation was 1.7 years (SD: 2.0 years). The primary reasons reported for dose escalation were carcinoid or hormonal syndrome (62%) or radiographic progression (28%). The most common dose changes at the first dose escalation were 40 mg every 4 weeks (71%) and 60 mg every 4 weeks (18%). Of 90 patients in whom flushing was reported prior to first dose escalation, 73 (81%) were reported to have experienced improvement or resolution of their symptoms following the dose escalation. Of 107 patients who were reported to have experienced diarrhea before the first dose escalation, 85 (79%) were reported to have experienced improvement or resolution after first dose escalation. Conclusion. The goal of improved symptom control is a common reason for dose escalation of octreotide LAR. This study suggests that escalation to above the standard dose of octreotide LAR of 30 mg every 4 weeks may result in improved CS symptom control. PMID:25096997

  5. A phase II trial of RCHOP followed by radioimmunotherapy for early stage (stages I/II) diffuse large B-cell non-Hodgkin lymphoma: ECOG3402.

    PubMed

    Witzig, Thomas E; Hong, Fangxin; Micallef, Ivana N; Gascoyne, Randy D; Dogan, Ahmet; Wagner, Henry; Kahl, Brad S; Advani, Ranjana H; Horning, Sandra J

    2015-09-01

    Patients with early stage diffuse large B-cell lymphoma (DLBCL) receive RCHOP (rituximab cyclophosphamide, doxorubicin, vincristine, prednisone) alone or with involved field radiotherapy (IFRT). Anti-CD20 radioimmunotherapy (RIT) delivers radiation to microscopic sites outside of known disease. This phase II study aimed to achieve a functional complete response (CR) rate of ≥75% to RCHOP and (90) Yttrium-ibritumomab tiuxetan RIT. Patients with stages I/II DLBCL received 4-6 cycles of RCHOP followed by RIT [14·8 MBq/kg (0·4 mCi/kg)]; patients with positron emission tomographypositive sites of disease after RCHOP/RIT received 30 Gy IFRT. Of the 62 patients enrolled; 53 were eligible. 42% (22/53) had stage I/IE; 58% (31/53) stage II/IIE. After RCHOP, 79% (42/53) were in CR/unconfirmed CR. Forty-eight patients proceeded to RIT. One partial responder after RIT received IFRT and achieved a CR. The best response after RCHOP + RIT in all 53 patients was a functional CR rate of 89% (47/53; 95% confidence interval: 77-96%). With a median follow-up of 5·9 years, 7 (13%) patients have progressed and 4 (8%) have died (2 with DLBCL). At 5 years, 78% of patients remain in remission and 94% are alive. Chemoimmunotherapy and RIT is an active regimen for early stage DLBCL patients. Eighty-nine percent of patients achieved functional CR without the requirement of IFRT. This regimen is worthy of further study for early stage DLBCL in a phase III trial. PMID:25974212

  6. Large scale motions of Neptune's bow shock: Evidence for control of the shock position by the rotation phase of Neptune's magnetic field

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.; Smith, Charles W.; Kurth, William S.; Gurnett, Donald A.; Moses, Stewart L.

    1991-01-01

    The Voyager 2 spacecraft observed high levels of Langmuir waves before the inbound crossing of Neptune's bow shock, thereby signifying magnetic connection of the bow shock. The Langmuir waves occurred in multiple bursts throughout two distinct periods separated by an 85 minute absence of wave activity. The times of onsets, peaks, and disappearances of the waves were used together with the magnetic field directions and spacecraft position, to perform a 'remote-sensing' analysis of the shape and location of Neptune's bow shock prior to the inbound bow shock crossing. The bow shock is assumed to have a parabolidal shape with a nose location and flaring parameter determined independently for each wave event. The remote-sensing analysis give a shock position consistent with the time of the inbound shock crossing. The flaring parameter of the shock remains approximately constant throughout each period of wave activity but differs by a factor of 10 between the two periods. The absence of waves between two periods of wave activity coincides with a large rotation of the magnetic field and a large increase in the solar wind ram pressure' both these effects lead to magnetic disconnection of the spacecraft from shock. The planetwards motion of the shock's nose from 38.5 R(sub N) to 34.5 R(sub N) during the second time period occurred while the solar wind ram pressure remained constant to within 15 percent. This second period of planetwards motion of the shock is therefore strong evidence for Neptune's bow shock moving in response to the rotation of Neptune's oblique, tilted magnetic dipole. Normalizing the ram pressure, the remotely-sensed shock moves sunwards during the first wave period and planetwards in the second wave period. The maximum standoff distance occurs while the dipole axis is close to being perpendicular to the Sun-Neptune direction. The remote-sensing analysis provides strong evidence that the location of Neptune's bow shock is controlled by Neptune's rotation

  7. Developing large-scale forcing data for single-column and cloud-resolving models from the Mixed-Phase Arctic Cloud Experiment

    SciTech Connect

    Xie, Shaocheng; Klein, Stephen A.; Zhang, Minghua; Yio, John J.; Cederwall, Richard T.; McCoy, Renata

    2006-10-05

    [1] This study represents an effort to develop Single-Column Model (SCM) and Cloud-Resolving Model large-scale forcing data from a sounding array in the high latitudes. An objective variational analysis approach is used to process data collected from the Atmospheric Radiation Measurement Program (ARM) Mixed-Phase Arctic Cloud Experiment (M-PACE), which was conducted over the North Slope of Alaska in October 2004. In this method the observed surface and top of atmosphere measurements are used as constraints to adjust the sounding data from M-PACE in order to conserve column-integrated mass, heat, moisture, and momentum. Several important technical and scientific issues related to the data analysis are discussed. It is shown that the analyzed data reasonably describe the dynamic and thermodynamic features of the Arctic cloud systems observed during M-PACE. Uncertainties in the analyzed forcing fields are roughly estimated by examining the sensitivity of those fields to uncertainties in the upper-air data and surface constraints that are used in the analysis. Impacts of the uncertainties in the analyzed forcing data on SCM simulations are discussed. Results from the SCM tests indicate that the bulk features of the observed Arctic cloud systems can be captured qualitatively well using the forcing data derived in this study, and major model errors can be detected despite the uncertainties that exist in the forcing data as illustrated by the sensitivity tests. Lastly, the possibility of using the European Center for Medium-Range Weather Forecasts analysis data to derive the large-scale forcing over the Arctic region is explored.

  8. Developing large-scale forcing data for single-column and cloud-resolving models from the Mixed-Phase Arctic Cloud Experiment

    DOE PAGESBeta

    Xie, Shaocheng; Klein, Stephen A.; Zhang, Minghua; Yio, John J.; Cederwall, Richard T.; McCoy, Renata

    2006-10-05

    [1] This study represents an effort to develop Single-Column Model (SCM) and Cloud-Resolving Model large-scale forcing data from a sounding array in the high latitudes. An objective variational analysis approach is used to process data collected from the Atmospheric Radiation Measurement Program (ARM) Mixed-Phase Arctic Cloud Experiment (M-PACE), which was conducted over the North Slope of Alaska in October 2004. In this method the observed surface and top of atmosphere measurements are used as constraints to adjust the sounding data from M-PACE in order to conserve column-integrated mass, heat, moisture, and momentum. Several important technical and scientific issues related tomore » the data analysis are discussed. It is shown that the analyzed data reasonably describe the dynamic and thermodynamic features of the Arctic cloud systems observed during M-PACE. Uncertainties in the analyzed forcing fields are roughly estimated by examining the sensitivity of those fields to uncertainties in the upper-air data and surface constraints that are used in the analysis. Impacts of the uncertainties in the analyzed forcing data on SCM simulations are discussed. Results from the SCM tests indicate that the bulk features of the observed Arctic cloud systems can be captured qualitatively well using the forcing data derived in this study, and major model errors can be detected despite the uncertainties that exist in the forcing data as illustrated by the sensitivity tests. Lastly, the possibility of using the European Center for Medium-Range Weather Forecasts analysis data to derive the large-scale forcing over the Arctic region is explored.« less

  9. Direct analysis of eight chlorophenols in urine by large volume injection online turbulent flow solid-phase extraction liquid chromatography with multiple wavelength ultraviolet detection.

    PubMed

    Guo, Feng; Liu, Qian; Shi, Jian-bo; Wei, Fu-sheng; Jiang, Gui-bin

    2014-02-01

    A novel method for determining eight chlorophenols (CPs) by large volume injection online turbulent flow solid-phase extraction high performance liquid chromatography in urine samples was developed. An aliquot of 1.0 mL urine sample could be analyzed directly after centrifugation. The analytes were preconcentrated online on a Turboflow C18-P SPE column, eluted in back-flush mode, and then separated on an Acclaim PA2 analytical column. Major parameters such as SPE column type, sample loading flow rate and elution time were optimized in detail. Eight CPs from monochlorophenol to pentacholophenol were measured by multiple-wavelength UV detection at four different wavelengths. The limits of detection (LODs) were between 0.5 and 2 ng/mL. The linearity range was from the limit of quantification to 1000 ng/mL for each compound, with the coefficients of determination (r(2)) ranging from 0.9990 to 0.9996. The reproducibility of intraday and interday relative standard deviations (RSDs) ranged from 0.6% to 4.5% (n=5). The method was successfully applied to analyze eight CPs in urine samples. Good recoveries, ranging from 76.3% to 122.9%, were obtained. This simple, sensitive and accurate method provides an alternative way to rapidly analyze and monitor CPs in urine samples, especially for matters of occupational exposure. PMID:24401430

  10. Determination of polybrominated diphenyl ethers and polychlorinated biphenyls in fishery and aquaculture products using sequential solid phase extraction and large volume injection gas chromatography/tandem mass spectrometry.

    PubMed

    Lu, Dasheng; Lin, Yuanjie; Feng, Chao; Wang, Dongli; Qiu, Xinlei; Jin, Yu'e; Xiong, Libei; Jin, Ying; Wang, Guoquan

    2014-01-15

    A new method was developed to determine polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in fishery and aquaculture products. Samples were extracted by an accelerated solvent extraction system and cleaned up by sequential solid phase extraction (SPE) including dispersive SPE (D-SPE) and tandem SPE. PBDEs and PCBs were analyzed by a large-volume injection gas chromatography triple quadrupole mass spectrometry (LVI-GC-QqQ-MS/MS). Good linearity (R(2)≥0.9958) was achieved. Method detection limits (MDLs) were 0.16-3.3pgg(-1) (wet weight, ww) for PBDEs and 0.13-0.97pgg(-1)ww for PCBs. Mean recoveries were 60-140% with relative standard deviations (RSDs) of less than 20% in weever fish, scallop and shrimp samples spiked at a lower level of 13-31pgg(-1)ww and a higher level of 50-125pgg(-1)ww. Certified reference materials were analyzed with acceptable results. The method reduced solvent consumption, analytical time and labor, and is suitable for the routine analysis of PBDEs and PCBs in fishery and aquaculture products. PMID:24321764

  11. Phase III study of pasireotide long-acting release in patients with metastatic neuroendocrine tumors and carcinoid symptoms refractory to available somatostatin analogues

    PubMed Central

    Wolin, Edward M; Jarzab, Barbara; Eriksson, Barbro; Walter, Thomas; Toumpanakis, Christos; Morse, Michael A; Tomassetti, Paola; Weber, Matthias M; Fogelman, David R; Ramage, John; Poon, Donald; Gadbaw, Brian; Li, Jiang; Pasieka, Janice L; Mahamat, Abakar; Swahn, Fredrik; Newell-Price, John; Mansoor, Wasat; Öberg, Kjell

    2015-01-01

    In a randomized, double-blind, Phase III study, we compared pasireotide long-acting release (pasireotide LAR) with octreotide long-acting repeatable (octreotide LAR) in managing carcinoid symptoms refractory to first-generation somatostatin analogues. Adults with carcinoid tumors of the digestive tract were randomly assigned (1:1) to receive pasireotide LAR (60 mg) or octreotide LAR (40 mg) every 28 days. Primary outcome was symptom control based on frequency of bowel movements and flushing episodes. Objective tumor response was a secondary outcome. Progression-free survival (PFS) was calculated in a post hoc analysis. Adverse events were recorded. At the time of a planned interim analysis, the data monitoring committee recommended halting the study because of a low predictive probability of showing superiority of pasireotide over octreotide for symptom control (n=43 pasireotide LAR, 20.9%; n=45 octreotide LAR, 26.7%; odds ratio, 0.73; 95% confidence interval [CI], 0.27–1.97; P=0.53). Tumor control rate at month 6 was 62.7% with pasireotide and 46.2% with octreotide (odds ratio, 1.96; 95% CI, 0.89–4.32; P=0.09). Median (95% CI) PFS was 11.8 months (11.0 – not reached) with pasireotide versus 6.8 months (5.6 – not reached) with octreotide (hazard ratio, 0.46; 95% CI, 0.20–0.98; P=0.045). The most frequent drug-related adverse events (pasireotide vs octreotide) included hyperglycemia (28.3% vs 5.3%), fatigue (11.3% vs 3.5%), and nausea (9.4% vs 0%). We conclude that, among patients with carcinoid symptoms refractory to available somatostatin analogues, similar proportions of patients receiving pasireotide LAR or octreotide LAR achieved symptom control at month 6. Pasireotide LAR showed a trend toward higher tumor control rate at month 6, although it was statistically not significant, and was associated with a longer PFS than octreotide LAR. PMID:26366058

  12. SALM4 suppresses excitatory synapse development by cis-inhibiting trans-synaptic SALM3–LAR adhesion

    PubMed Central

    Lie, Eunkyung; Ko, Ji Seung; Choi, Su-Yeon; Roh, Junyeop Daniel; Cho, Yi Sul; Noh, Ran; Kim, Doyoun; Li, Yan; Kang, Hyeyeon; Choi, Tae-Yong; Nam, Jungyong; Mah, Won; Lee, Dongmin; Lee, Seong-Gyu; Kim, Ho Min; Kim, Hyun; Choi, Se-Young; Um, Ji Won; Kang, Myoung-Goo; Bae, Yong Chul; Ko, Jaewon; Kim, Eunjoon

    2016-01-01

    Synaptic adhesion molecules regulate various aspects of synapse development, function and plasticity. These functions mainly involve trans-synaptic interactions and positive regulations, whereas cis-interactions and negative regulation are less understood. Here we report that SALM4, a member of the SALM/Lrfn family of synaptic adhesion molecules, suppresses excitatory synapse development through cis inhibition of SALM3, another SALM family protein with synaptogenic activity. Salm4-mutant (Salm4−/−) mice show increased excitatory synapse numbers in the hippocampus. SALM4 cis-interacts with SALM3, inhibits trans-synaptic SALM3 interaction with presynaptic LAR family receptor tyrosine phosphatases and suppresses SALM3-dependent presynaptic differentiation. Importantly, deletion of Salm3 in Salm4−/− mice (Salm3−/−; Salm4−/−) normalizes the increased excitatory synapse number. These results suggest that SALM4 negatively regulates excitatory synapses via cis inhibition of the trans-synaptic SALM3–LAR adhesion. PMID:27480238

  13. A Phase I Clinical Trial of Systemically Delivered NEMO Binding Domain Peptide in Dogs with Spontaneous Activated B-Cell like Diffuse Large B-Cell Lymphoma

    PubMed Central

    Habineza Ndikuyeze, Georges; Gaurnier-Hausser, Anita; Patel, Reema; Baldwin, Albert S.; May, Michael J.; Flood, Patrick; Krick, Erika; Propert, Kathleen J.; Mason, Nicola J.

    2014-01-01

    Activated B-Cell (ABC) Diffuse Large B-Cell Lymphoma (DLBCL) is a common, aggressive and poorly chemoresponsive subtype of DLBCL, characterized by constitutive canonical NF-κB signaling. Inhibition of NF-κB signaling leads to apoptosis of ABC-DLBCL cell lines, suggesting targeted disruption of this pathway may have therapeutic relevance. The selective IKK inhibitor, NEMO Binding Domain (NBD) peptide effectively blocks constitutive NF-κB activity and induces apoptosis in ABC-DLBCL cells in vitro. Here we used a comparative approach to determine the safety and efficacy of systemic NBD peptide to inhibit constitutive NF-κB signaling in privately owned dogs with spontaneous newly diagnosed or relapsed ABC-like DLBCL. Malignant lymph nodes biopsies were taken before and twenty-four hours after peptide administration to determine biological effects. Intravenous administration of <2 mg/kg NBD peptide was safe and inhibited constitutive canonical NF-κB activity in 6/10 dogs. Reductions in mitotic index and Cyclin D expression also occurred in a subset of dogs 24 hours post peptide and in 3 dogs marked, therapeutically beneficial histopathological changes were identified. Mild, grade 1 toxicities were noted in 3 dogs at the time of peptide administration and one dog developed transient subclinical hepatopathy. Long term toxicities were not identified. Pharmacokinetic data suggested rapid uptake of peptide into tissues. No significant hematological or biochemical toxicities were identified. Overall the results from this phase I study indicate that systemic administration of NBD peptide is safe and effectively blocks constitutive NF-κB signaling and reduces malignant B cell proliferation in a subset of dogs with ABC-like DLBCL. These results have potential translational relevance for human ABC-DLBCL. PMID:24798348

  14. Preparation phase and consequences of a large earthquake: insights from foreshocks and aftershocks of the 2014 Mw 8.1 Iquique earthquake, Chile

    NASA Astrophysics Data System (ADS)

    Cesca, Simone; Grigoli, Francesco; Heimann, Sebastian; Dahm, Torsten

    2015-04-01

    The April 1, 2014, Mw 8.1 Iquique earthquake in Northern Chile, was preceded by an anomalous, extensive preparation phase. The precursor seismicity at the ruptured slab segment was observed sporadically several months before the main shock, with a significant increment in seismicity rates and observed magnitudes in the last three weeks before the main shock. The large dataset of regional recordings helped us to investigate the role of such precursor activity, comparing foreshock and aftershock seismicity to test models of rupture preparation and models of strain and stress rotation during an earthquake. We used full waveforms techniques to locate events, map the seismicity rate, derive source parameters, and assess spatiotemporal stress changes. Results indicate that the spatial distributions of foreshocks delineated the shallower part of the rupture areas of the main shock and its largest aftershock, and is well matching the spatial extension of the aftershocks. During the foreshock sequence, seismicity spatially is mainly localized in two clusters, separated by a region of high locking. The ruptures of mainshock and largest aftershock nucleate within these clusters and propagate to the locked region; the aftershocks are again localized in correspondence to the original spatial clusters, and the central region is locked again. More than 300 moment tensor inversions were performed, down to Mw 4.0, most of them corresponding to almost pure double couple thrust mechanisms, with a geometry consistent with the slab orientation. No significant differences are observed among thrust mechanisms in different areas, nor among thrust foreshocks and aftershocks. However, a new family of normal fault mechanisms appears after the main shock, likely affecting the shallow wedge structure in consequence of the increased extensional stress in this region. We infer a stress rotation after the main shock, as proposed for recent larger thrust earthquakes, which suggests that the April

  15. A phase II, single-arm, multicentre study of coltuximab ravtansine (SAR3419) and rituximab in patients with relapsed or refractory diffuse large B-cell lymphoma.

    PubMed

    Coiffier, Bertrand; Thieblemont, Catherine; de Guibert, Sophie; Dupuis, Jehan; Ribrag, Vincent; Bouabdallah, Réda; Morschhauser, Franck; Navarro, Robert; Le Gouill, Steven; Haioun, Corinne; Houot, Roch; Casasnovas, Olivier; Holte, Harald; Lamy, Thierry; Broussais, Florence; Payrard, Sandrine; Hatteville, Laurence; Tilly, Hervé

    2016-06-01

    In this phase II, multicentre, single-arm study, 52 patients with relapsed/refractory diffuse large B-cell lymphoma (DLBCL) received the anti-CD19 antibody-drug conjugate coltuximab ravtansine (55 mg/m(2) ) and rituximab (375 mg/m(2) ) weekly for 4 weeks, then every 2 weeks for 8 weeks. The primary endpoint was objective response rate (ORR) by International Working Group Criteria. The primary objective was to reject the null hypothesis of an ORR of ≤40%. Among 45 evaluable patients, the ORR was 31·1% (80% confidence interval [CI]: 22·0-41·6%) and the primary objective was not met. The ORR appeared higher in patients with relapsed disease (58·3% [80% CI: 36·2-78·1%]) versus those refractory to their last (42·9% [80% CI: 17·0-72·1%]) or first-line therapy (15·4% [80% CI: 6·9-28·4%]). Median progression-free survival, overall survival and duration of response were 3·9 [80% CI: 3·22-3·98], 9·0 [80% CI: 6·47-13·67] and 8·6 (range: 0-18) months, respectively. The pharmacokinetics of both drugs were unaffected by co-administration. Common adverse events included gastrointestinal disorders (52%) and asthenia (25%). No patients discontinued due to adverse events. In conclusion, coltuximab ravtansine with rituximab was well tolerated and yielded clinical responses in a subset of patients with relapsed/refractory DLBCL. PMID:27010483

  16. Phase 2 study of the bispecific T-cell engager (BiTE) antibody blinatumomab in relapsed/refractory diffuse large B-cell lymphoma

    PubMed Central

    Goebeler, Marie-Elisabeth; Hess, Georg; Neumann, Svenja; Pfreundschuh, Michael; Adrian, Nicole; Zettl, Florian; Libicher, Martin; Sayehli, Cyrus; Stieglmaier, Julia; Zhang, Alicia; Nagorsen, Dirk; Bargou, Ralf C.

    2016-01-01

    Few patients with relapsed/refractory diffuse large B-cell lymphoma (DLBCL) achieve prolonged disease-free survival. Blinatumomab, a bispecific T-cell engaging antibody construct, transiently links CD3-positive T cells to CD19-positive B cells. This phase 2 study evaluated stepwise (9-28-112 μg/d with weekly dose increases; n = 23) or flat (112 μg/d; n = 2) dosing of blinatumomab by continuous infusion, with dexamethasone prophylaxis, in patients with relapsed/refractory DLBCL. Patients received a median of 3 prior lines of therapy. Median time since last regimen was 1.5 months. Seventeen patients ended treatment in cycle 1 (induction), 7 in cycle 2 (consolidation), and 1 in retreatment. Among 21 evaluable patients, the overall response rate after 1 blinatumomab cycle was 43%, including complete responses (CRs) in 19%. Three patients had late CR in follow-up without other treatment. The most common adverse events with stepwise dosing were tremor (48%), pyrexia (44%), fatigue (26%), and edema (26%). Grade 3 neurologic events with stepwise dosing were encephalopathy and aphasia (each 9%) and tremor, speech disorder, dizziness, somnolence, and disorientation (each 4%). Of 5 (22%) patients who discontinued stepwise dosing because of adverse events, 4 (17%) had neurologic events. Most neurologic events resolved. The flat-dose cohort was stopped because of grade 3 neurologic events in both patients. Blinatumomab monotherapy appears effective in patients with relapsed/refractory DLBCL, a heavily pretreated patient population with a high unmet medical need. Further studies need to define the optimal approach to achieve the target dose without early dropout. The study was registered at www.clinicaltrials.gov as #NCT01741792. PMID:26755709

  17. Phase 2 study of the bispecific T-cell engager (BiTE) antibody blinatumomab in relapsed/refractory diffuse large B-cell lymphoma.

    PubMed

    Viardot, Andreas; Goebeler, Marie-Elisabeth; Hess, Georg; Neumann, Svenja; Pfreundschuh, Michael; Adrian, Nicole; Zettl, Florian; Libicher, Martin; Sayehli, Cyrus; Stieglmaier, Julia; Zhang, Alicia; Nagorsen, Dirk; Bargou, Ralf C

    2016-03-17

    Few patients with relapsed/refractory diffuse large B-cell lymphoma (DLBCL) achieve prolonged disease-free survival. Blinatumomab, a bispecific T-cell engaging antibody construct, transiently links CD3-positive T cells to CD19-positive B cells. This phase 2 study evaluated stepwise (9-28-112 μg/d with weekly dose increases; n = 23) or flat (112 μg/d; n = 2) dosing of blinatumomab by continuous infusion, with dexamethasone prophylaxis, in patients with relapsed/refractory DLBCL. Patients received a median of 3 prior lines of therapy. Median time since last regimen was 1.5 months. Seventeen patients ended treatment in cycle 1 (induction), 7 in cycle 2 (consolidation), and 1 in retreatment. Among 21 evaluable patients, the overall response rate after 1 blinatumomab cycle was 43%, including complete responses (CRs) in 19%. Three patients had late CR in follow-up without other treatment. The most common adverse events with stepwise dosing were tremor (48%), pyrexia (44%), fatigue (26%), and edema (26%). Grade 3 neurologic events with stepwise dosing were encephalopathy and aphasia (each 9%) and tremor, speech disorder, dizziness, somnolence, and disorientation (each 4%). Of 5 (22%) patients who discontinued stepwise dosing because of adverse events, 4 (17%) had neurologic events. Most neurologic events resolved. The flat-dose cohort was stopped because of grade 3 neurologic events in both patients. Blinatumomab monotherapy appears effective in patients with relapsed/refractory DLBCL, a heavily pretreated patient population with a high unmet medical need. Further studies need to define the optimal approach to achieve the target dose without early dropout. The study was registered at www.clinicaltrials.gov as #NCT01741792. PMID:26755709

  18. Effects of gasket on coupled plastic flow and strain-induced phase transformations under high pressure and large torsion in a rotational diamond anvil cell

    NASA Astrophysics Data System (ADS)

    Feng, Biao; Levitas, Valery I.

    2016-01-01

    Combined plastic flow and strain-induced phase transformations (PTs) under high pressure in a sample within a gasket subjected to three dimensional compression and torsion in a rotational diamond anvil cell (RDAC) are studied using a finite element approach. The results are obtained for the weaker, equal-strength, and stronger high-pressure phases in comparison with low-pressure phases. It is found that, due to the strong gasket, the pressure in the sample is relatively homogenous and the geometry of the transformed zones is mostly determined by heterogeneity in plastic flow. For the equal-strength phases, the PT rate is higher than for the weaker and stronger high-pressure phases. For the weaker high-pressure phase, transformation softening induces material instability and leads to strain and PT localization. For the stronger high-pressure phase, the PT is suppressed by strain hardening during PT. The effect of the kinetic parameter k that scales the PT rate in the strain-controlled kinetic equation is also examined. In comparison with a traditional diamond anvil cell without torsion, the PT progress is much faster in RDAC under the same maximum pressure in the sample. Finally, the gasket size and strength effects are discussed. For a shorter and weaker gasket, faster plastic flow in radial and thickness directions leads to faster PT kinetics in comparison with a longer and stronger gasket. The rates of PT and plastic flows are not very sensitive to the modest change in a gasket thickness. Multiple experimental results are reproduced and interpreted. Obtained results allow one to design the desired pressure-plastic strain loading program in the experiments for searching new phases, reducing PT pressure by plastic shear, extracting kinetic properties from experiments with heterogeneous fields, and controlling homogeneity of all fields and kinetics of PTs.

  19. Thermal-Driven Fluorite-Pyrochlore-Fluorite Phase Transitions of Gd2Zr2O7 Ceramics Probed in Large Range of Sintering Temperature

    NASA Astrophysics Data System (ADS)

    Zhou, Li; Huang, Zhangyi; Qi, Jianqi; Feng, Zhao; Wu, Dengxue; Zhang, Wei; Yu, Xiaohe; Guan, Yongbing; Chen, Xingtao; Xie, Landong; Sun, Kai; Lu, Tiecheng

    2016-01-01

    Fluorite (F)-pyrochlore (P)-fluorite (F) phase transitions of Gd2Zr2O7 were investigated from 573 K to 1873 K (300 °C to 1600 °C), by means of X-ray diffraction, infrared spectra (IR), and Raman spectra. The low-temperature F phase can stably exist below 1523 K (1250 °C) and the F-P transition occurs at 1523 K to 1573 K (1250 °C to 1300 °C). The ordering process of P phase forms at 1573 K to 1773 K (1300 °C to 1500 °C) and the ordering degree increases with increasing sintering temperature and heat preservation period. High-temperature phase transition from P to F occurs between 1773 K and 1823 K (1300 °C and 1550 °C). IR spectra of samples with different ordering degrees show an interesting shift at 510 cm-1. Raman spectra show that only the A1 g mode displays a significant change between F and P phases. This ordering degree and phase transition temperature studies would allow a more targeted experimental optimization of Gd2Zr2O7 to use in nuclear waste host, thermal barrier coatings, and solid oxide fuel cells.

  20. Prediction of temperature and precipitation in Sudan and South Sudan by using LARS-WG in future

    NASA Astrophysics Data System (ADS)

    Chen, Hua; Guo, Jiali; Zhang, Zengxin; Xu, Chong-Yu

    2013-08-01

    Global warming has brought great pressure on the environment and livelihood conditions in Sudan and South Sudan. It is desirable to analyze and predict the change of critical climatic variables, such as temperature and precipitation, which will provide valuable reference results for future water resources planning and management in the region. The aims of this study are to test the applicability of the Long Ashton Research Station Weather Generator (LARS-WG) model in downscaling daily precipitation and daily maximum (Tmax) and daily minimum (Tmin) temperatures in Sudan and South Sudan and use it to predict future changes of precipitation; Tmin and Tmax for nine stations in Sudan and South Sudan are based on the SRA2 scenario of seven General Circulation Models (GCMs) outputs for the periods of 2011-2030, 2046-2065, and 2080-2099. The results showed that (1) the LARS-WG model produces good performance in downscaling daily precipitation and excellent performance in downscaling Tmax and Tmin in the study region; (2) downscaled precipitation from the prediction of seven GCMs showed great inconsistency in these two regions, which illustrates the great uncertainty in GCMs' results in the regions; (3) predicted precipitation in rainy season JJA (June, July, and August) based on the ensemble mean of seven GCMs showed a decreasing trend in the periods of 2011-2030, 2046-2065, and 2080-2099 in Sudan; however, an increasing trend can be found in SON (September, October, and November) in the future; (4) precipitation in South Sudan has an increasing trend in most seasons in the future except in MAM (March, April, and May) season in 2011-2030; and (5) predictions from seven GCMs showed a similar and continuous increasing trend for Tmax and Tmin in all three future periods, which will bring severe negative influence on improving livelihoods and reducing poverty in Sudan and South Sudan.

  1. What’s the Big Deal? Responder Experiences of Large Animal Rescue in Australia

    PubMed Central

    Smith, Bradley; Thompson, Kirrilly; Taylor, Melanie

    2015-01-01

    Background: The management of large animals during disasters and emergencies creates difficult operational environments for responders. The aims of this study were to identify the exact challenges faced by Australian emergency response personnel in their interactions with large animals and their owners, and to determine the readiness for large animal rescue (LAR) in Australia. Methods: A survey tool collected the views and experiences of a broad cross section of emergency services personnel operating across Australia and across all hazards. Data were collected from 156 responders including Australian emergency services personnel, emergency managers such as federal agricultural departments, and local government. Results: Overall, many of the respondents had serious concerns, and felt that there were significant issues in relation to LAR in Australia. These included the coordination of emergency care for animals, physical management of large animals, inter-agency coordination, and dealing with animal owners. Very few respondents had received any formal training in LAR, with an overwhelming majority indicating they would attend formal training if it were made available. Discussion: Results help to guide the development of evidence-informed support tools to assist operational response and community engagement, and the production of professional development resources. PMID:25685637

  2. Influence of nonhomogeneous earth on the rms phase error and beam-pointing errors of large, sparse high-frequency receiving arrays

    NASA Astrophysics Data System (ADS)

    Weiner, M. M.

    1994-01-01

    The performance of ground-based high-frequency (HF) receiving arrays is reduced when the array elements have electrically small ground planes. The array rms phase error and beam-pointing errors, caused by multipath rays reflected from a nonhomogeneous Earth, are determined for a sparse array of elements that are modeled as Hertzian dipoles in close proximity to Earth with no ground planes. Numerical results are presented for cases of randomly distributed and systematically distributed Earth nonhomogeneities where one-half of vertically polarized array elements are located in proximity to one type of Earth and the remaining half are located in proximity to a second type of Earth. The maximum rms phase errors, for the cases examined, are 18 deg and 9 deg for randomly distributed and systematically distributed nonhomogeneities, respectively. The maximum beampointing errors are 0 and 0.3 beam widths for randomly distributed and systematically distributed nonhomogeneities, respectively.

  3. Measurement and simulation of two-phase CO2 cooling in Micromegas modules for a Large Prototype of Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Bhattacharya, D. S.; Attié, D.; Colas, P.; Mukhopadhyay, S.; Majumdar, N.; Bhattacharya, S.; Sarkar, S.; Bhattacharya, A.; Ganjour, S.

    2015-08-01

    The readout electronics of a Micromegas (MM) module consume nearly 26 W of electric power, which causes the temperature of electronic board to increase upto 70 oC. Increase in temperature results in damage of electronics. Development of temperature gradient in the Time Projection Chamber (TPC) may affect precise measurement as well. Two-phase CO2 cooling has been applied to remove heat from the MM modules during two test beam experiments at DESY, Hamburg. Following the experimental procedure, a comprehensive study of the cooling technique has been accomplished for a single MM module by means of numerical simulation. This paper is focused to discuss the application of two-phase CO2 cooling to keep the temperature below 30 oC and stabilized within 0.2 oC.

  4. Recovery Act: High-Efficiency, Wideband Three-Phase Rectifiers and Adaptive Rectifier Management for Telecomm Central Office and Large Data Center Applications

    SciTech Connect

    Mark A. Johnson

    2012-06-29

    Lineage Power and Verizon teamed up to address a DOE funding opportunity focused on improving the power conversion chain in telecommunications facilities and data centers. The project had three significant elements: the design and development of high efficiency and high power three-phase rectifiers by Lineage Power, design and development of software to optimize overall plant energy efficiency by Lineage Power, and a field trial in active Verizon telecommunications facilities where energy consumption was measured before and after efficiency upgrades.

  5. Measurement of the surface form error of large aperture plane optical surfaces with a polarization phase-shifting liquid reference reflection Fizeau interferometer.

    PubMed

    Chatterjee, Sanjib; Kumar, Y Pavan; Singh, Rishipal; Singh, Sarvendra

    2016-01-10

    A polarization phase-shifting liquid reference reflection Fizeau interferometer has been proposed. A polarization cyclic path optical configuration along with a concave telescope mirror is used to produce a pair of expanded, collimated p and s polarized beams with a small angular separation between them. The collimated beams are deflected along a vertical direction toward a Fizeau interferometer cavity formed between a liquid surface that acts as a reference surface and a plane test surface. Either the p or s polarized beam is allowed to strike the liquid surface normally and the orientation of the test surface is adjusted to reflect the other beam, having orthogonal linear polarization, in the direction of the normally reflected reference beam from the liquid surface. A combination of a quarter-wave plate and linear polarizer is used to apply polarization phase shift between the test and reference beams, and quantitative surface form error is measured by applying phase-shifting interferometry. A method for elimination of the residual system aberration is discussed. Results obtained for an optically polished BK-7 disk of clear aperture diameter ≈160  mm are presented. PMID:26835767

  6. Correlation between direct dark matter detection and Br(B{sub s}{yields}{mu}{mu}) with a large phase of B{sub s}-B{sub s} mixing

    SciTech Connect

    Dutta, Bhaskar; Mimura, Yukihiro; Santoso, Yudi

    2009-11-01

    We combine the analyses for flavor changing neutral current processes and dark matter solutions in minimal-type supersymmetric grand unified theory models, SO(10) and SU(5), with a large B{sub s}-B{sub s} mixing phase and large tan{beta}. For large tan{beta}, the double-penguin diagram dominates the supersymmetry contribution to the B{sub s}-B{sub s} mixing amplitude. Also, the Br(B{sub s}{yields}{mu}{mu}) constraint becomes important as it grows as tan{sup 6}{beta}, although it can still be suppressed by a large pseudoscalar Higgs mass m{sub A}. We investigate the correlation between B{sub s}{yields}{mu}{mu} and the dark matter direct detection cross section through their dependence on m{sub A}. In the minimal-type of SU(5) with type I seesaw, the large mixing in neutrino Dirac couplings results in a large lepton flavor violating decay process {tau}{yields}{mu}{gamma}, which in turn sets the upper bound on m{sub A}. In the SO(10) case, the large mixing can be chosen to be in the Majorana couplings instead, and the constraint from Br({tau}{yields}{mu}{gamma}) can be avoided. The heavy Higgs funnel region turns out to be an interesting possibility in both cases and the direct dark matter detection should be possible in the near future in these scenarios.

  7. Patterning of self-assembled monolayers by phase-shifting mask and its applications in large-scale assembly of nanowires

    SciTech Connect

    Gao, Fan; Zhang, Dakuan; Wang, Jianyu; Sheng, Yun; Wang, Xinran; Chen, Kunji; Zhou, Minmin; Yan, Shancheng; Shen, Jiancang; Pan, Lijia; Shi, Yi

    2015-01-26

    A nonselective micropatterning method of self-assembled monolayers (SAMs) based on laser and phase-shifting mask (PSM) is demonstrated. Laser beam is spatially modulated by a PSM, and periodic SAM patterns are generated sequentially through thermal desorption. Patterned wettability is achieved with alternating hydrophilic/hydrophobic stripes on octadecyltrichlorosilane monolayers. The substrate is then used to assemble CdS semiconductor nanowires (NWs) from a solution, obtaining well-aligned NWs in one step. Our results show valuably the application potential of this technique in engineering SAMs for integration of functional devices.

  8. Lars Onsager Prize: Optimization and learning algorithms from the theory of disordered systems

    NASA Astrophysics Data System (ADS)

    Zecchina, Riccardo

    The extraction of information from large amounts of data is one of the prominent cross disciplinary challenges in contemporary science. Solving inverse and learning problems over large scale data sets requires the design of efficient optimization algorithms over very large scale networks of constraints. In such a setting, critical phenomena of the type studied in statistical physics of disordered systems often play a crucial role. This observation has lead in the last decade to a cross fertilization between statistical physics, information theory and computer science, with applications in a variety of fields. In particular a deeper geometrical understanding of the ground state structure of random computational problems and novel classes of probabilistic algorithms have emerged. In this talk I will give a brief overview of these conceptual advances and I will discuss the role that subdominant states play in the design of algorithms for large scale optimization problems. I will conclude by showing how these ideas can lead to novel applications in computational neuroscience.

  9. PoLAR Voices: Informing Adult Learners about the Science and Story of Climate Change in the Polar Regions Through Audio Podcast

    NASA Astrophysics Data System (ADS)

    Quinney, A.; Murray, M. S.; Gobroski, K. A.; Topp, R. M.; Pfirman, S. L.

    2015-12-01

    The resurgence of audio programming with the advent of podcasting in the early 2000s spawned a new medium for communicating advances in science, research, and technology. To capitalize on this informal educational outlet, the Arctic Institute of North America partnered with the International Arctic Research Center, the University of Alaska Fairbanks, and the UA Museum of the North to develop a podcast series called PoLAR Voices for the Polar Learning and Responding (PoLAR) Climate Change Education Partnership. PoLAR Voices is a public education initiative that uses creative storytelling and novel narrative structures to immerse the listener in an auditory depiction of climate change. The programs will feature the science and story of climate change, approaching topics from both the points of view of researchers and Arctic indigenous peoples. This approach will engage the listener in the holistic story of climate change, addressing both scientific and personal perspectives, resulting in a program that is at once educational, entertaining and accessible. Feedback is being collected at each stage of development to ensure the content and format of the program satisfies listener interests and preferences. Once complete, the series will be released on thepolarhub.org and on iTunes. Additionally, blanket distribution of the programs will be accomplished via radio broadcast in urban, rural and remote areas, and in multiple languages to increase distribution and enhance accessibility.

  10. Rb-Sr and Sm-Nd Studies of Olivine-Phyric Shergottites RBT 04262 and LAR 06319: Isotopic Evidence for Relationship to Enriched Basaltic Shergottites

    NASA Technical Reports Server (NTRS)

    Nyquist, L.E.; Shih, C.-Y.; Reese, Y.

    2009-01-01

    RBT 04262 and LAR 06319 are two Martian meteorites recently discovered in Antarctica. Both contain abundant olivines, and were classified as olivine-phyric shergottites. A detailed petrographic study of RBT 04262 suggested it should be reclassified as a lherzolitic shergottite. However, the moderately LREE-depleted REE distribution pattern indicated that it is closely related to enriched basaltic shergottites like Shergotty, Zagami, Los Angeles, etc. In earlier studies of a similarly olivinephyric shergottite NWA 1068 which contains 21% modal olivine, it was shown that it probably was produced from an enriched basaltic shergottite magma by olivine accumulation . As for LAR 06319, recent petrographic studies suggested that it is different from either lherzolitic shergottites or the highly LREE-depleted olivine-phyric shergottites. We performed Rb-Sr and Sm-Nd isotopic analyses on RBT 04262 and LAR 06319 to determine their crystallization ages and Sr and Nd isotopic signatures, and to better understand the petrogenetic relationships between them and other basaltic, lherzolitic and depleted olivine-phyric shergottites.

  11. First Independent Replication of the Involvement of LARS2 in Perrault Syndrome by Whole-Exome Sequencing of an Italian Family

    PubMed Central

    Soldà, Giulia; Caccia, Sonia; Robusto, Michela; Chiereghin, Chiara; Castorina, Pierangela; Ambrosetti, Umberto; Duga, Stefano; Asselta, Rosanna

    2015-01-01

    Perrault syndrome (MIM #233400) is a rare autosomal recessive disorder characterized by ovarian dysgenesis and primary ovarian insufficiency in females, and progressive hearing loss in both genders. Recently, mutations in five genes (HSD17B4, HARS2, CLPP, LARS2, and C10ORF2) were found to be responsible for Perrault syndrome, although they do not account for all cases of this genetically heterogeneous condition. We used whole-exome sequencing to identify pathogenic variants responsible for Perrault syndrome in an Italian pedigree with two affected siblings. Both patients were compound heterozygous for two novel missense variants within the mitochondrial leucyl-tRNA synthetase (LARS2), NM_015340.3:c.899C>T(p.Thr300Met) and c.1912G>A(p.Glu638Lys). Both variants co-segregated with the phenotype in the family. p.Thr300 and p.Glu638 are evolutionary conserved residues, and are located respectively within the editing domain and immediately before the catalytically important KMSKS motif. Homology modeling using as template the E. coli leucyl-tRNA synthetase provided further insights on the possible pathogenic effects of the identified variants. This represents the first independent replication of the involvement of LARS2 mutations in Perrault syndrome, contributing valuable information for the further understanding of this disease. PMID:26657938

  12. First independent replication of the involvement of LARS2 in Perrault syndrome by whole-exome sequencing of an Italian family.

    PubMed

    Soldà, Giulia; Caccia, Sonia; Robusto, Michela; Chiereghin, Chiara; Castorina, Pierangela; Ambrosetti, Umberto; Duga, Stefano; Asselta, Rosanna

    2016-04-01

    Perrault syndrome (MIM #233400) is a rare autosomal recessive disorder characterized by ovarian dysgenesis and primary ovarian insufficiency in females, and progressive hearing loss in both genders. Recently, mutations in five genes (HSD17B4, HARS2, CLPP, LARS2 and C10ORF2) were found to be responsible for Perrault syndrome, although they do not account for all cases of this genetically heterogeneous condition. We used whole-exome sequencing to identify pathogenic variants responsible for Perrault syndrome in an Italian pedigree with two affected siblings. Both patients were compound heterozygous for two novel missense variants within the mitochondrial leucyl-tRNA synthetase (LARS2): NM_015340.3:c.899C>T(p.Thr300Met) and c.1912G>A(p.Glu638Lys). Both variants cosegregated with the phenotype in the family. p.Thr300 and p.Glu638 are evolutionarily conserved residues, and are located, respectively, within the editing domain and immediately before the catalytically important KMSKS motif. Homology modeling using as template the E. coli leucyl-tRNA synthetase provided further insights on the possible pathogenic effects of the identified variants. This represents the first independent replication of the involvement of LARS2 mutations in Perrault syndrome, contributing valuable information for the further understanding of this disease. PMID:26657938

  13. Photometry and polarimetry of Jupiter at large phase angles. I - Analysis of imaging data of a prominent belt and a zone from Pioneer 10

    NASA Technical Reports Server (NTRS)

    Tomasko, M. G.; West, R. A.; Castillo, N. D.

    1978-01-01

    Photopolarimetric observations of a prominent bright zone and a dark belt of Jupiter in red and blue light are analyzed which were performed by Pioneer 10 at phase angles of 12, 23, 34, 109, 120, 127, and 150 deg. Geometric and photometric reductions of the imaging data are described, the instrument sensitivity at various times is evaluated, and the data are referred to an absolute scale. The observations are analyzed in detail by comparing the data with results of radiative-transfer calculations for specific scattering models of Jupiter's atmosphere. These models include those with a vertical structure consisting of a layer of Rayleigh-scattering gas above a semiinfinite mixture of cloud particles and gas, those having a small quantity of aerosols in the gas above either the diffuse cloud in a reflecting-scattering model or the top cloud of a two-cloud-layer model, those in which a forward-scattering haze is mixed uniformly with gas, and those containing dust layers. It is found that in both the belt and the zone in red as well as blue light, cloud phase functions are required which provide both strong forward scattering and some backscattering.

  14. Large entropy change accompanying two successive magnetic phase transitions in TbMn{sub 2}Si{sub 2} for magnetic refrigeration

    SciTech Connect

    Li, Guoxing; Cheng, Zhenxiang E-mail: cheng@uow.edu.au; Fang, Chunsheng; Dou, Shixue; Wang, Jianli E-mail: cheng@uow.edu.au; Ren, Qingyong

    2015-05-04

    Structural and magnetic properties in TbMn{sub 2}Si{sub 2} are studied by variable temperature X-ray diffraction, magnetization, electrical resistivity, and heat capacity measurements. TbMn{sub 2}Si{sub 2} undergoes two successive magnetic transitions at around T{sub c1} = 50 K and T{sub c2} = 64 K. T{sub c1} remains almost constant with increasing magnetic field, but T{sub c2} shifts significantly to higher temperature. Thus, there are two partially overlapping peaks in the temperature dependence of magnetic entropy change, i.e., −ΔS{sub M} (T). The different responses of T{sub c1} and T{sub c2} to external magnetic field, and the overlapping of −ΔS{sub M} (T) around T{sub c1} and T{sub c2} induce a large refrigerant capacity (RC) within a large temperature range. The large reversible magnetocaloric effect (−ΔS{sub M}{sup peak} ∼ 16 J/kg K for a field change of 0–5 T) and RC (=396 J/kg) indicate that TbMn{sub 2}Si{sub 2} could be a promising candidate for low temperature magnetic refrigeration.

  15. Image correction during large and rapid B(0) variations in an open MRI system with permanent magnets using navigator echoes and phase compensation.

    PubMed

    Li, Jianqi; Wang, Yi; Jiang, Yu; Xie, Haibin; Li, Gengying

    2009-09-01

    An open permanent magnet system with vertical B(0) field and without self-shielding can be quite susceptible to perturbations from external magnetic sources. B(0) variation in such a system located close to a subway station was measured to be greater than 0.7 microT by both MRI and a fluxgate magnetometer. This B(0) variation caused image artifacts. A navigator echo approach that monitored and compensated the view-to-view variation in magnetic resonance signal phase was developed to correct for image artifacts. Human brain imaging experiments using a multislice gradient-echo sequence demonstrated that the ghosting and blurring artifacts associated with B(0) variations were effectively removed using the navigator method. PMID:19369023

  16. Development of a ReaxFF potential for carbon condensed phases and its application to the thermal fragmentation of a large fullerene.

    PubMed

    Srinivasan, Sriram Goverapet; van Duin, Adri C T; Ganesh, P

    2015-01-29

    In this article, we report the development of a ReaxFF reactive potential that can accurately describe the chemistry and dynamics of carbon condensed phases. Density functional theory (DFT)-based calculations were performed to obtain the equation of state for graphite and diamond and the formation energies of defects in graphene and amorphous phases from fullerenes. The DFT data were used to reparametrize ReaxFFCHO, resulting in a new potential called ReaxFFC-2013. ReaxFFC-2013 accurately predicts the atomization energy of graphite and closely reproduces the DFT-based energy difference between graphite and diamond, and the barrier for transition from graphite to diamond. ReaxFFC-2013 also accurately predicts the DFT-based energy barrier for Stone-Wales transformation in a C60(Ih) fullerene through the concerted rotation of a C2 unit. Later, MD simulations of a C180 fullerene using ReaxFFC-2013 suggested that the thermal fragmentation of these giant fullerenes is an exponential function of time. An Arrhenius-type equation was fit to the decay rate, giving an activation energy of 7.66 eV for the loss of carbon atoms from the fullerene. Although the decay of the molecule occurs primarily via the loss of C2 units, we observed that, with an increase in temperature, the probability of loss of larger fragments increases. The ReaxFFC-2013 potential developed in this work, and the results obtained on fullerene fragmentation, provide an important step toward the full computational chemical modeling of coal pyrolysis, soot incandescence, high temperature erosion of graphitic rocket nozzles, and ablation of carbon-based spacecraft materials during atmospheric reentry. PMID:25562718

  17. A phase II study of dacetuzumab (SGN-40) in patients with relapsed diffuse large B-cell lymphoma (DLBCL) and correlative analyses of patient-specific factors

    PubMed Central

    2014-01-01

    Background Patients with DLBCL who are ineligible for or have relapsed after aggressive salvage chemotherapy have a poor prognosis. CD40 is expressed on multiple B-cell neoplasms including DLBCL and is a potential target for immunotherapy. Dacetuzumab (SGN-40), a non-blocking, partial agonist, humanized IgG1, anti-CD40 monoclonal antibody, has previously demonstrated anti-lymphoma activity in a phase I study. Methods A phase II study was undertaken to evaluate the rate and duration of objective responses and safety of single-agent dacetuzumab in relapsed DLBCL. Forty-six adult patients with relapsed/refractory DLBCL received up to 12 cycles of intravenous dacetuzumab using intrapatient dose-escalation to a target dose of 8 mg/kg/week in an initial 5-week cycle, followed by 4-week cycles of 8 mg/kg/week. Study endpoints included rate and duration of objective responses, safety, survival, pharmacokinetics, immunogenicity, and exploratory correlative studies. Results Overall response rate was 9% and disease control rate (complete remission + partial remission + stable disease) was 37%. Common non-hematologic adverse events (AEs) included fatigue, headache, chills, fever, and nausea. The most frequent Grade 3–4 non-hematologic AE was deep venous thrombosis (3 patients). Grade 3–4 lymphopenia (41%), neutropenia (13%), or thrombocytopenia (19%) occurred without associated infection or bleeding. Reversible ocular events, including conjunctivitis and ocular hyperemia, occurred in 8 patients (17%). Patient-specific factors, including Fc-gamma-RIIIa polymorphism, did not appear to correlate with antitumor activity. Conclusions Single-agent dacetuzumab has modest activity and manageable toxicity in unselected patients with relapsed DLBCL. Combination regimens and robust methods of patient selection may be necessary for further development. Trial registration ClinicalTrials.gov identifier NCT00435916. PMID:24919462

  18. Determination of the bias in LOFT fuel peak cladding temperature data from the blowdown phase of large-break LOCA experiments

    SciTech Connect

    Berta, V.T.; Hanson, R.G.; Johnsen, G.W.; Schultz, R.R.

    1993-05-01

    Data from the Loss-of-Fluid Test (LOFT) Program help quantify the margin of safety inherent in pressurized water reactors during postulated loss-of-coolant accidents (LOCAs). As early as 1979, questions arose concerning the accuracy of LOFT fuel rod cladding temperature data during several large-break LOCA experiments. This report analyzes how well externally-mounted fuel rod cladding thermocouples in LOFT accurately reflected actual cladding surface temperature during large-break LOCA experiments. In particular, the validity of the apparent core-wide fuel rod cladding quench exhibited during blowdown in LOFT Experiments L2-2 and L2-3 is studied. Also addressed is the question of whether the externally-mounted thermocouples might have influenced cladding temperature. The analysis makes use of data and information from several sources, including later, similar LOFT Experiments in which fuel centerline temperature measurements were made, experiments in other facilities, and results from a detailed FRAP-T6 model of the LOFT fuel rod. The analysis shows that there can be a significant difference (referred to as bias) between the surface-mounted thermocouple reading and the actual cladding temperature, and that the magnitude of this bias depends on the rate of heat transfer between the fuel rod cladding and coolant. The results of the analysis demonstrate clearly that a core-wide cladding quench did occur in Experiments L2-2 and L2-3. Further, it is shown that, in terms of peak cladding temperature recording during LOFT large-break LOCA experiments, the mean bias is 11.4 {plus_minus} 16.2K (20.5 {plus_minus} 29.2{degrees} F). The best-estimate value of peak cladding temperature for LOFT LP-02-6 is 1,104.8 K. The best-estimate peak cladding temperature for LOFT LP-LB-1 is 1284.0 K.

  19. Large Scale Solid Phase Synthesis of Peptide Drugs: Use of Commercial Anion Exchange Resin as Quenching Agent for Removal of Iodine during Disulphide Bond Formation

    PubMed Central

    Reddy, K. M. Bhaskara; Kumari, Y. Bharathi; Mallikharjunasarma, Dokka; Bulliraju, Kamana; Sreelatha, Vanjivaka; Ananda, Kuppanna

    2012-01-01

    The S-acetamidomethyl (Acm) or trityl (Trt) protecting groups are widely used in the chemical synthesis of peptides that contain one or more disulfide bonds. Treatment of peptides containing S-Acm protecting group with iodine results in simultaneous removal of the sulfhydryl protecting group and disulfide formation. However, the excess iodine needs to be quenched or adsorbed as quickly as possible after completion of the disulfide bond formation in order to minimize side reactions that are often associated with the iodination step. We report here a simple method for simultaneous quenching and removal of iodine and isolation of disulphide bridge peptides. The use of excess inexpensive anion exchange resin to the oxidized peptide from the aqueous acetic acid/methanol solution affords quantitative removal of iodine and other color impurities. This improves the resin life time of expensive chromatography media that is used in preparative HPLC column during the purification of peptide using preparative HPLC. Further, it is very useful for the conversion of TFA salt to acetate in situ. It was successfully applied commercially, to the large scale synthesis of various peptides including Desmopressin, Oxytocin, and Octreotide. This new approach offers significant advantages such as more simple utility, minimal side reactions, large scale synthesis of peptide drugs, and greater cost effectiveness. PMID:23118772

  20. FIRST RESULTS FROM VERY LARGE TELESCOPE NACO APODIZING PHASE PLATE: 4 {mu}m IMAGES OF THE EXOPLANET {beta} PICTORIS b

    SciTech Connect

    Quanz, Sascha P.; Meyer, Michael R.; Kenworthy, Matthew A.; Girard, Julien H. V.; Kasper, Markus; Lagrange, Anne-Marie; Bonnefoy, Mickael; Chauvin, Gael; Apai, Daniel; Boccaletti, Anthony; Hinz, Philip M.; Lenzen, Rainer

    2010-10-10

    Direct imaging of exoplanets requires both high contrast and high spatial resolution. Here, we present the first scientific results obtained with the newly commissioned apodizing phase plate coronagraph (APP) on VLT/NACO. We detected the exoplanet {beta} Pictoris b in the narrowband filter centered at 4.05 {mu}m (NB4.05). The position angle (209.{sup 0}13 {+-} 2.{sup 0}12) and the projected separation to its host star (0.''354 {+-} 0.''012, i.e., 6.8 {+-} 0.2 AU at a distance of 19.3 pc) are in good agreement with the recently presented data from Lagrange et al. Comparing the observed NB4.05 magnitude of 11.20 {+-} 0.23 mag to theoretical atmospheric models, we find a best fit with a 7-10 M {sub Jupiter} object for an age of 12 Myr, again in agreement with previous estimates. Combining our results with published L' photometry, we can compare the planet's [L' - NB4.05] color to that of cool field dwarfs of higher surface gravity suggesting an effective temperature of {approx}1700 K. The best-fit theoretical model predicts an effective temperature of {approx}1470 K, but this difference is not significant given our photometric uncertainties. Our results demonstrate the potential of NACO/APP for future planet searches and provide independent confirmation as well as complementary data for {beta} Pic b.

  1. Assessing the impact of safety monitoring on the efficacy analysis in large Phase III group sequential trials with non-trivial safety event rate.

    PubMed

    Weng, Yanqiu; Palesch, Yuko Y; DeSantis, Stacia M; Zhao, Wenle

    2016-01-01

    In Phase III clinical trials for life-threatening conditions, some serious but expected adverse events, such as early deaths or congestive heart failure, are often treated as the secondary or co-primary endpoint, and are closely monitored by the Data and Safety Monitoring Committee (DSMC). A naïve group sequential design (GSD) for such a study is to specify univariate statistical boundaries for the efficacy and safety endpoints separately, and then implement the two boundaries during the study, even though the two endpoints are typically correlated. One problem with this naïve design, which has been noted in the statistical literature, is the potential loss of power. In this article, we develop an analytical tool to evaluate this negative impact for trials with non-trivial safety event rates, particularly when the safety monitoring is informal. Using a bivariate binary power function for the GSD with a random-effect component to account for subjective decision-making in safety monitoring, we demonstrate how, under common conditions, the power loss in the naïve design can be substantial. This tool may be helpful to entities such as the DSMCs when they wish to deviate from the prespecified stopping boundaries based on safety measures. PMID:26010228

  2. Effect of an alpha-phase nucleating agent on the crystallization kinetics of a propylene/ethylene random copolymer at largely different supercooling

    NASA Astrophysics Data System (ADS)

    Androsch, René; Monami, Andrea; Kucera, Jaroslav

    2014-12-01

    The effect of addition of 0.1 wt% phosphate-ester based alpha-phase nucleating agent on the crystallization of a random propylene-based copolymer with 3.9 mol% ethylene has been investigated by fast scanning chip calorimetry (FSC). Main purpose of the work was the evaluation of the effect of the nucleating agent on the bimodal temperature dependence of the crystallization rate of propylene-based polymers caused by a change of the nucleation mechanism from heterogeneous to homogeneous nucleation on lowering the temperature to below about 60 °C. Presence of the nucleation agent in the copolymer of the present study accelerates crystallization only in the high-temperature range of predominant heterogeneous nucleation, but does not affect the crystallization rate in the low-temperature range of homogeneous nucleation. The observed decrease of the minimum crystallization half-time due to the addition of the nucleation agent, from 0.2 s in case of the unmodified copolymer to 0.04 s in case of the copolymer containing the nucleating agent, is paralleled by an increase of the critical cooling rate required to inhibit crystallization on continuous cooling to below the glass transition temperature from 102 to 103 K s-1. The study is completed by an analysis of the effect of addition of the nucleation agent on the spherulitic superstructure.

  3. Locality and rapidity of the ultra-large elastic deformation of Nb nanowires in a NiTi phase-transforming matrix

    SciTech Connect

    Wang, Shan; Cui, Lishan; Hao, Shijie; Jiang, Daqiang; Liu, Yinong; Liu, Zhenyang; Mao, Shengcheng; Han, Xiaodong; Ren, Yang

    2014-10-24

    This study investigated the elastic deformation behaviour of Nb nanowires embedded in a NiTi matrix. The Nb nanowires exhibited an ultra-large elastic deformation, which is found to be dictated by the martensitic transformation of the NiTi matrix, thus exhibiting unique characteristics of locality and rapidity. These are in clear contrast to our conventional observation of elastic deformations of crystalline solids, which is a homogeneous lattice distortion with a strain rate controlled by the applied strain. The Nb nanowires are also found to exhibit elastic-plastic deformation accompanying the martensitic transformation of the NiTi matrix in the case when the transformation strain of the matrix over-matches the elastic strain limit of the nanowires, or exhibit only elastic deformation in the case of under-matching. Such insight provides an important opportunity for elastic strain engineering and composite design.

  4. Locality and rapidity of the ultra-large elastic deformation of Nb nanowires in a NiTi phase-transforming matrix

    DOE PAGESBeta

    Wang, Shan; Cui, Lishan; Hao, Shijie; Jiang, Daqiang; Liu, Yinong; Liu, Zhenyang; Mao, Shengcheng; Han, Xiaodong; Ren, Yang

    2014-10-24

    This study investigated the elastic deformation behaviour of Nb nanowires embedded in a NiTi matrix. The Nb nanowires exhibited an ultra-large elastic deformation, which is found to be dictated by the martensitic transformation of the NiTi matrix, thus exhibiting unique characteristics of locality and rapidity. These are in clear contrast to our conventional observation of elastic deformations of crystalline solids, which is a homogeneous lattice distortion with a strain rate controlled by the applied strain. The Nb nanowires are also found to exhibit elastic-plastic deformation accompanying the martensitic transformation of the NiTi matrix in the case when the transformation strainmore » of the matrix over-matches the elastic strain limit of the nanowires, or exhibit only elastic deformation in the case of under-matching. Such insight provides an important opportunity for elastic strain engineering and composite design.« less

  5. Locality and rapidity of the ultra-large elastic deformation of Nb nanowires in a NiTi phase-transforming matrix

    PubMed Central

    Wang, Shan; Cui, Lishan; Hao, Shijie; Jiang, Daqiang; Liu, Yinong; Liu, Zhenyang; Mao, Shengcheng; Han, Xiaodong; Ren, Yang

    2014-01-01

    This study investigated the elastic deformation behaviour of Nb nanowires embedded in a NiTi matrix. The Nb nanowires exhibited an ultra-large elastic deformation, which is found to be dictated by the martensitic transformation of the NiTi matrix, thus exhibiting unique characteristics of locality and rapidity. These are in clear contrast to our conventional observation of elastic deformations of crystalline solids, which is a homogeneous lattice distortion with a strain rate controlled by the applied strain. The Nb nanowires are also found to exhibit elastic-plastic deformation accompanying the martensitic transformation of the NiTi matrix in the case when the transformation strain of the matrix over-matches the elastic strain limit of the nanowires, or exhibit only elastic deformation in the case of under-matching. Such insight provides an important opportunity for elastic strain engineering and composite design. PMID:25341619

  6. Ring-opening metathesis polymerization-derived large-volume monolithic supports for reversed-phase and anion-exchange chromatography of biomolecules.

    PubMed

    Bandari, Rajendar; Buchmeiser, Michael R

    2012-07-21

    Preparative-scale monolithic columns up to 433.5 mL in volume were prepared via transition metal-catalyzed ring-opening metathesis polymerization (ROMP) from norborn-2-ene (NBE) and trimethylolpropane-tris(5-norbornene-2-carboxylate) (CL) using the 1(st)-generation Grubbs initiator RuCl(2)(PCy(3))(2)(CHPh) (Cy = cyclohexyl) (1) in the presence of a macro- and microporogen, i.e. of 2-propanol and toluene. To prepare large-volume monoliths, bulk polymerizations were completed within borosilicate or PEEK column formats with diameters in the range of 3 to 49 mm. The pore structure of the large-volume monoliths was investigated by electron microscopy and inverse-size exclusion chromatography (ISEC), respectively. Monolithic columns with inner diameters (I.D.s) in the range of 10-49 mm were tested for the separation of a mixture of five proteins, i.e., insulin, cytochrome C, lysozyme, conalbumin, and β-lactoglobulin. Preparative separation of these proteins was achieved within less than 12 min in a 433.5 mL monolithic column by applying gradient elution in the RP-HPLC mode. Furthermore, weak and strong anion exchangers were prepared via post-synthesis grafting of bicyclo[2.2.1]hept-5-en-2-yl-methyl-N,N-dimethylammonium hydrochloride (4) and bicyclo[2.2.1]hept-5-en-2-ylmethyl-N,N,N-trimethylammonium iodide (5), respectively. The weak and strong anion exchangers were used for the preparative-scale separation of 5'-phosphorylated oligodeoxythymidylic acid fragments of d[pT](12-18) at pH values ranging from 5 to 9. PMID:22673214

  7. Large-scale qualitative and quantitative characterization of components in Shenfu injection by integrating hydrophilic interaction chromatography, reversed phase liquid chromatography, and tandem mass spectrometry.

    PubMed

    Song, Yuelin; Zhang, Na; Shi, Shepo; Li, Jun; Zhang, Qian; Zhao, Yunfang; Jiang, Yong; Tu, Pengfei

    2015-08-14

    It is of great importance to clarify in depth the chemical composition, including qualitative and quantitative aspects, of traditional Chinese medicine (TCM) injection that contains a great number of hydrophilic and hydrophobic ingredients to guarantee its safe medication in clinic. Column-switching hydrophilic interaction liquid chromatography-reversed phase liquid chromatography coupled with tandem mass spectrometry (HILIC-RPLC-MS/MS) has been revealed to be advantageous at simultaneous measurement of compounds covering a broad polarity range. Previous studies have profiled the hydrophobic components, mainly aconite alkaloids and ginsenosides, in Shenfu Injection (SFI); however, the hydrophilic substances haven't been taken into account. In the present study, we aim to holistically characterize the hydrophilic constituents and to simultaneously quantitate both hydrophilic and hydrophobic components in SFI. A strategy integrating predefined multiple reaction monitoring, step-wise multiple ion monitoring, and enhanced product ion scans was proposed to universally screen the hydrophilic substances using a hybrid triple quadrupole-linear ion trap mass spectrometer. Structural identification was carried out by comparing with authentic compounds, analyzing MS(2) spectra, and referring to accessible databases (e.g., MassBank, METLIN and HMDB). A total of 157 hydrophilic compounds were detected from SFI, and 154 ones were identified as amino acids, nucleosides, organic acid, carbohydrates, etc. A column-switching HILIC-RPLC-MS/MS system was developed and validated for simultaneously quantitative analysis of 40 primary hydrophilic and hydrophobic ingredients in SFI, including eleven amino acids, nine nucleosides, nine aconite alkaloids, and eleven ginsenosides. Taken together, the findings obtained could provide meaningful information for comprehensively understanding the chemical composition and offer a reliable approach for the quality control of SFI. PMID:26143607

  8. The receptor protein tyrosine phosphatase HmLAR1 is up-regulated in the CNS of the adult medicinal leech following injury and is required for neuronal sprouting and regeneration.

    PubMed

    Sethi, Jasmine; Zhao, Bailey; Cuvillier-Hot, Virginie; Boidin-Wichlacz, Céline; Salzet, Michel; Macagno, Eduardo R; Baker, Michael W

    2010-12-01

    LAR-like receptor protein tyrosine phosphatases (RPTPs), which are abundantly expressed in the nervous systems of most if not all bilaterian animals thus far examined, have been implicated in regulating a variety of critical neuronal processes. These include neuronal pathfinding, adhesion and synaptogenesis during development and, in adult mammals, neuronal regeneration. Here we explored a possible role of a LAR-like RPTP (HmLAR1) in response to mechanical trauma in the adult nervous system of the medicinal leech. In situ hybridization and QPCR analyses of HmLAR1 expression in individual segmental ganglia revealed a significant up-regulation in receptor expression following CNS injury, both in situ and following a period in vitro. Furthermore, we observed up-regulation in the expression of the leech homologue of the Abelson tyrosine kinase, a putative signaling partner to LAR receptors, but not among other tyrosine kinases. The effects on neuronal regeneration were assayed by comparing growth across a nerve crush by projections of individual dorsal P neurons (P(D)) following single-cell injection of interfering RNAs against the receptor or control RNAs. Receptor RNAi led to a significant reduction in HmLAR1 expression by the injected cells and resulted in a significant decrease in sprouting and regenerative growth at the crush site relative to controls. These studies extend the role of the HmLARs from leech neuronal development to adult neuronal regeneration and provide a platform to investigate neuronal regeneration and gene regulation at the single cell level. PMID:20708686

  9. Underground operation of the ICARUS T600 LAr-TPC: first results

    NASA Astrophysics Data System (ADS)

    Rubbia, C.; Antonello, M.; Aprili, P.; Baibussinov, B.; Baldo Ceolin, M.; Barzè, L.; Benetti, P.; Calligarich, E.; Canci, N.; Carbonara, F.; Cavanna, F.; Centro, S.; Cesana, A.; Cieslik, K.; Cline, D. B.; Cocco, A. G.; Dabrowska, A.; Dequal, D.; Dermenev, A.; Dolfini, R.; Farnese, C.; Fava, A.; Ferrari, A.; Fiorillo, G.; Gibin, D.; Gigli Berzolari, A.; Gninenko, S.; Golan, T.; Guglielmi, A.; Haranczyk, M.; Holeczek, J.; Karbowniczek, P.; Kirsanov, M.; Kisiel, J.; Kochanek, I.; Lagoda, J.; Lantz, M.; Mania, S.; Mannocchi, G.; Mauri, F.; Menegolli, A.; Meng, G.; Montanari, C.; Muraro, S.; Otwinowski, S.; Palamara, O.; Palczewski, T. J.; Periale, L.; Piazzoli, A.; Picchi, P.; Pietropaolo, F.; Plonski, P.; Prata, M.; Przewlocki, P.; Rappoldi, A.; Raselli, G. L.; Rossella, M.; Sala, P.; Scantamburlo, E.; Scaramelli, A.; Segreto, E.; Sergiampietri, F.; Sobczyk, J.; Stefan, D.; Stepaniak, J.; Sulej, R.; Szarska, M.; Terrani, M.; Varanini, F.; Ventura, S.; Vignoli, C.; Wachala, T.; Wang, H.; Yang, X.; Zalewska, A.; Zaremba, K.; Zmuda, J.

    2011-07-01

    Important open questions are still present in fundamental Physics and Cosmology, like the nature of Dark Matter, the matter-antimatter asymmetry and the validity of the Standard Model of particle interactions. Addressing these questions requires a new generation of massive particle detectors to explore the subatomic and astrophysical worlds. ICARUS T600 is the first large mass (760 tons) example of a new generation of detectors able to combine the imaging capabilities of the old famous ``bubble chamber'' with the excellent energy measurement of huge electronic detectors. ICARUS T600 now operates at the Gran Sasso underground laboratory and is used to study cosmic rays, neutrino oscillations and the proton decay. The potential for doing physics of this novel telescope is presented through a few examples of neutrino interactions reconstructed with unprecedented detail. Detector design and early operation are also reported.

  10. Phase 1 trial of IL-15 trans presentation blockade using humanized Mik-Beta-1 mAb in patients with T-cell large granular lymphocytic leukemia

    PubMed Central

    Conlon, Kevin C.; Stewart, Donn M.; Worthy, TatYana A.; Janik, John E.; Fleisher, Thomas A.; Albert, Paul S.; Figg, William D.; Spencer, Shawn D.; Raffeld, Mark; Decker, Jean R.; Goldman, Carolyn K.; Bryant, Bonita R.; Petrus, Michael N.; Creekmore, Stephen P.; Morris, John C.

    2013-01-01

    In the present study, Hu-Mikβ1, a humanized mAb directed at the shared IL-2/IL-15Rβ subunit (CD122) was evaluated in patients with T-cell large granular lymphocytic (T-LGL) leukemia. Hu-Mikβ1 blocked the trans presentation of IL-15 to T cells expressing IL-2/IL-15Rβ and the common γ-chain (CD132), but did not block IL-15 action in cells that expressed the heterotrimeric IL-15 receptor in cis. There was no significant toxicity associated with Hu-Mikβ1 administration in patients with T-LGL leukemia, but no major clinical responses were observed. One patient who had previously received murine Mikβ1 developed a measurable Ab response to the infused Ab. Nevertheless, the safety profile of this first in-human study of the humanized mAb to IL-2/IL-15Rβ (CD122) supports its evaluation in disorders such as refractory celiac disease, in which IL-15 and its receptor have been proposed to play a critical role in the pathogenesis and maintenance of disease activity. The protocol is registered with www.clinicaltrials.gov as number NCT 00076180. PMID:23212516

  11. Long-term home range use in white-handed gibbons (Hylobates lar) in Khao Yai National Park, Thailand.

    PubMed

    Bartlett, Thad Q; Light, Lydia E O; Brockelman, Warren Y

    2016-02-01

    Ranging behavior is an important element of how nonhuman primates obtain sufficient resources to ensure biological maintenance and reproductive success. As most primates live in permanent social groups, group members must balance the benefits of group living with the costs of intragroup competition for resources. One way to mitigate the cost of intragroup feeding competition is to increase foraging-related travel, thereby increasing the number of patches visited. As a result we might expect home range size to increase as a function of group size. On the other hand, for perennially territorial species, ranging behavior may be constrained by the ranging requirements of territorial defense or by the location of neighboring territories, which would result in long-term stability in the size and location of a group's home range. In this study, we examined changes in range-use characteristics in one well-habituated group of white-handed gibbons (Hylobates lar) during three study periods over a 10-year span. Group size changed from five members, two adults, two juveniles, and one infant, in 1994, to two adults in 2002, and to three adults and one sub-adult in 2004. Despite inter-annual changes in core area use we found that home range location was highly stable across years. Nevertheless, home range size was larger and daily path length significantly longer in 2002 relative to 1994 when a dependent infant was present in the group. The percentage of time adults spent resting was also significantly greater in 1994 when the infant was present. These findings highlight the importance of considering group composition, in addition to group size, when evaluating the determinants of ranging behavior. We also consider the influence of individual and shared knowledge on home range stability. PMID:26456317

  12. Investigation of standing wave formation in a human skull for a clinical prototype of a large-aperture, transcranial MR-guided Focused Ultrasound (MRgFUS) phased array: An experimental and simulation study

    PubMed Central

    Song, Junho; Pulkkinen, Aki; Huang, Yuexi; Hynynen, Kullervo

    2014-01-01

    Standing wave formation in an ex vivo human skull was investigated using a clinical prototype of a 30 cm diameter with 15 cm radius of curvature, low frequency (230 kHz), hemispherical transcranial Magnetic Resonance guided Focused Ultrasound (MRgFUS) phased-array. Experimental and simulation studies were conducted with changing aperture size and f-number configurations of the phased array, and qualitatively and quantitatively examined the acoustic pressure variation at the focus due to standing waves. The results demonstrated that the nodes and anti-nodes of standing wave produced by the small aperture array were clearly seen at approximately every 3 mm. The effect of the standing wave became more pronounced as the focus was moved closer to skull base. However, a sharp focus was seen for the full array, and there was no such standing wave pattern in the acoustic plane or near the skull base. This study showed that the fluctuation pressure amplitude would be greatly reduced by using a large-scale, hemispherical phased array with a low f-number. PMID:22049360

  13. Different Alleles of a Gene Encoding Leucoanthocyanidin Reductase (PaLAR3) Influence Resistance against the Fungus Heterobasidion parviporum in Picea abies.

    PubMed

    Nemesio-Gorriz, Miguel; Hammerbacher, Almuth; Ihrmark, Katarina; Källman, Thomas; Olson, Åke; Lascoux, Martin; Stenlid, Jan; Gershenzon, Jonathan; Elfstrand, Malin

    2016-08-01

    Despite the fact that fungal diseases are a growing menace for conifers in modern silviculture, only a very limited number of molecular markers for pathogen resistance have been validated in conifer species. A previous genetic study indicated that the resistance of Norway spruce (Picea abies) to Heterobasidion annosum s.l., a pathogenic basidiomycete species complex, is linked to a quantitative trait loci that associates with differences in fungal growth in sapwood (FGS) that includes a gene, PaLAR3, which encodes a leucoanthocyanidin reductase. In this study, gene sequences showed the presence of two PaLAR3 allelic lineages in P. abies. Higher resistance was associated with the novel allele, which was found in low frequency in the four P. abies populations that we studied. Norway spruce plants carrying at least one copy of the novel allele showed a significant reduction in FGS after inoculation with Heterobasidion parviporum compared to their half-siblings carrying no copies, indicating dominance of this allele. The amount of (+) catechin, the enzymatic product of PaLAR3, was significantly higher in bark of trees homozygous for the novel allele. Although we observed that the in vitro activities of the enzymes encoded by the two alleles were similar, we could show that allele-specific transcript levels were significantly higher for the novel allele, indicating that regulation of gene expression is responsible for the observed effects in resistance, possibly caused by differences in cis-acting elements that we observe in the promoter region of the two alleles. PMID:27317690

  14. Vitamin D Deficiency in Children and Adolescents in Bağcılar, İstanbul

    PubMed Central

    Erol, Meltem; Yiğit, Özgül; Küçük, Suat Hayri; Bostan Gayret, Özlem

    2015-01-01

    Objective: This study aimed to evaluate the frequency of seasonal 25-hydroxyvitamin D [25(OH)D] deficiency and insufficiency in children and adolescents living in Bağcılar, district of İstanbul city. Methods: Serum vitamin D levels of 280 children aged 3-17 years old were measured at the end of winter and at the end of summer. Of the total group, vitamin D levels were re-measured in 198 subjects. Vitamin D deficiency was defined as a serum 25(OH)D level less than 15 ng/mL and insufficiency-as levels between 15 and 20 ng/mL. Patients whose vitamin D levels were less than 15 ng/mL at the end of winter were treated with 2000 units/day of vitamin D for 3 months. Results: In the “end of winter” samples, 25(OH)D deficiency was present in 80.36% of the subjects and insufficiency in 11.79%. In the “end of summer” samples, vitamin D deficiency was detected in 3.44% and insufficiency in 27.75%. Vitamin D levels in the “end of winter” samples were not significantly different between boys and girls, while “end of summer” levels were significantly lower in girls (p=0.015). Sunlight exposure was significantly higher in boys (p=0.011). The group with sufficient dairy product consumption had significantly higher vitamin D levels in both “end of summer” and “end of winter” samples. Limb pain was frequently reported in children with low vitamin D levels in the “end of winter” samples (p=0.001). Negative correlations were observed between vitamin D levels and season and also between vitamin D levels and age. Conclusion: It is essential to provide supplemental vitamin D to children and adolescents to overcome the deficiency seen especially at the end of winter. PMID:26316436

  15. Large diameter astromast development, phase 1

    NASA Technical Reports Server (NTRS)

    Preiswerk, P. R.; Finley, L. A.; Knapp, K.

    1983-01-01

    Coilable-longeron lattice columns called Astromasts (trademark) were manufactured for a variety of spacecraft missions. These flight structures varied in diameter from 0.2 to 0.5 meter (9 to 19 in.), and the longest Astromast of this type deploys to a length of 30 meters (100 feet). A double-laced diagonal Astromast design referred to as the Supermast (trademark) which, because it has shorter baylengths than an Astromast, is approximately four times as strong. The longeron cross section and composite material selection for these structures are limited by the maximum strain associated with stowage and deployment. As a result, future requirements for deployable columns with high stiffness and strength require the development of both structures in larger diameters. The design, development, and manufacture of a 6.1-m-long (20-ft), 0.75-m-diameter (30-in.), double-laced diagonal version of the Astromast is described.

  16. A simultaneous explanation of the large phase in B{sub s}-B{sub s}mixing and B{yields}{pi}{pi}/{pi}K puzzles in R-parity violating supersymmetry

    SciTech Connect

    Bhattacharyya, Gautam; Chatterjee, Kalyan Brata

    2008-11-01

    Recent data on B meson mixings and decays are, in general, in accord with the standard model expectations, except showing a few hiccups: (i) a large phase in B{sub s} mixing, (ii) a significant difference (>3.5{sigma}) between CP-asymmetries in B{sup {+-}}{yields}{pi}{sup 0}K{sup {+-}} and B{sub d}{yields}{pi}{sup {+-}}K{sup {+-}} channels, and (iii) a larger than expected branching ratio in B{sub d}{yields}{pi}{sup 0}{pi}{sup 0} channel. We show that selective baryon-number violating Yukawa couplings in R-parity violating supersymmetry can reconcile all the measurements.

  17. Rituximab plus gemcitabine and oxaliplatin in patients with refractory/relapsed diffuse large B-cell lymphoma who are not candidates for high-dose therapy. A phase II Lymphoma Study Association trial.

    PubMed

    Mounier, Nicolas; El Gnaoui, Taoufik; Tilly, Hervé; Canioni, Danièle; Sebban, Catherine; Casasnovas, René-Olivier; Delarue, Richard; Sonet, Anne; Beaussart, Pauline; Petrella, Tony; Castaigne, Sylvie; Bologna, Serge; Salles, Gilles; Rahmouni, Alain; Gaulard, Philippe; Haioun, Corinne

    2013-11-01

    A previous pilot study with rituximab, gemcitabine and oxaliplatin showed promising activity in patients with refractory/relapsed B-cell lymphoma. We, therefore, conducted a phase II study to determine whether these results could be reproduced in a multi-institutional setting. This phase II study included 49 patients with refractory (n=6) or relapsing (n=43) diffuse large B-cell lymphoma. The median age of the patients was 69 years. Prior treatment included rituximab in 31 (63%) and autologous transplantation in 17 (35%) patients. International Prognostic Index at enrollment was >2 in 34 patients (71%). The primary endpoint was overall response rate after four cycles of treatment. Patients were planned to receive eight cycles if they reached at least partial remission after four cycles. After four cycles 21 patients (44%) were in complete remission and 8 (17%) in partial remission, resulting in an overall response rate of 61%. Factors significantly affecting overall response rate were early (<1 year) progression/relapse (18% versus 54%; P=0.001) and prior exposure to rituximab (23% versus 65%; P=0.004). Five-year progression-free and overall survival rates were 12.8% and 13.9%, respectively. Rituximab, gemcitabine and oxaliplatin were well tolerated with grade 3-4 infectious episodes in 22% of the cycles. These results are the first confirmation from a multicenter study that rituximab, gemcitabine and oxaliplatin provide a consistent response rate in patients with refractory/relapsed diffuse large B-cell lymphoma. This therapy can now be considered as a platform for new combinations with targeted treatments. This trial was registered at clinicaltrial.gov under #NCT00169195. PMID:23753028

  18. Rituximab plus gemcitabine and oxaliplatin in patients with refractory/relapsed diffuse large B-cell lymphoma who are not candidates for high-dose therapy. A phase II Lymphoma Study Association trial

    PubMed Central

    Mounier, Nicolas; El Gnaoui, Taoufik; Tilly, Hervé; Canioni, Danièle; Sebban, Catherine; Casasnovas, René-Olivier; Delarue, Richard; Sonet, Anne; Beaussart, Pauline; Petrella, Tony; Castaigne, Sylvie; Bologna, Serge; Salles, Gilles; Rahmouni, Alain; Gaulard, Philippe; Haioun, Corinne

    2013-01-01

    A previous pilot study with rituximab, gemcitabine and oxaliplatin showed promising activity in patients with refractory/relapsed B-cell lymphoma. We, therefore, conducted a phase II study to determine whether these results could be reproduced in a multi-institutional setting. This phase II study included 49 patients with refractory (n=6) or relapsing (n=43) diffuse large B-cell lymphoma. The median age of the patients was 69 years. Prior treatment included rituximab in 31 (63%) and autologous transplantation in 17 (35%) patients. International Prognostic Index at enrollment was >2 in 34 patients (71%). The primary endpoint was overall response rate after four cycles of treatment. Patients were planned to receive eight cycles if they reached at least partial remission after four cycles. After four cycles 21 patients (44%) were in complete remission and 8 (17%) in partial remission, resulting in an overall response rate of 61%. Factors significantly affecting overall response rate were early (<1 year) progression/relapse (18% versus 54%; P=0.001) and prior exposure to rituximab (23% versus 65%; P=0.004). Five-year progression-free and overall survival rates were 12.8% and 13.9%, respectively. Rituximab, gemcitabine and oxaliplatin were well tolerated with grade 3–4 infectious episodes in 22% of the cycles. These results are the first confirmation from a multicenter study that rituximab, gemcitabine and oxaliplatin provide a consistent response rate in patients with refractory/relapsed diffuse large B-cell lymphoma. This therapy can now be considered as a platform for new combinations with targeted treatments. This trial was registered at clinicaltrial.gov under #NCT00169195. PMID:23753028

  19. Mechanisms of membrane protein insertion into liposomes during reconstitution procedures involving the use of detergents. 1. Solubilization of large unilamellar liposomes (Prepared by reverse-phase evaporation) by Triton X-100 octyl glucoside, and sodium cholate

    SciTech Connect

    Paternostre, M.T.; Roux, M.; Rigaud, J.L.

    1988-04-19

    The mechanisms governing the solubilization by Triton X-100, octyl glucoside, and sodium cholate of large unilamellar liposomes prepared by reverse-phase evaporation were investigated. The solubilization process is described by the three-stage model previously proposed for the detergents. In stage I, detergent monomers are incorporated into the phospholipid bilayers until they saturate the liposomes. At this point, i.e., stage II, mixed phospholipid-detergent micelles begin to form. By stage III, the lamellar to micellar transition is complete and all the phospholipids are present as mixed micelles. The turbidity of liposome preparations was systematically measured as a function of the amount of detergent added for a wide range of phospholipid concentrations. The results allowed a quantitative determination of the effective detergent to lipid molar ratios in the saturated liposomes. The monomer concentrations of the three detergents in the aqueous phase were also determined at the lamellar to micellar transitions. These transitions were also investigated by /sup 31/P NMR spectroscopy, and complete agreement was found with turbidity measurements. Freeze-fracture electron microscopy and permeability studies in the sublytic range of detergent concentrations indicated that during stage I of solubilization detergent partitioning between the aqueous phase and the lipid bilayer greatly affects the basic permeability of the liposomes without significantly changing the morphology of the preparations. A rough approximation of the partition coefficients was derived from the turbidity and permeability data. It is concluded that when performed systematically, turbidity measurements constitute a very convenient and powerful technique for the quantitative study of the liposome solubilization process by detergents.

  20. Facile preparation of octadecyl monoliths with incorporated carbon nanotubes and neutral monoliths with coated carbon nanotubes stationary phases for HPLC of small and large molecules by hydrophobic and π-π interactions.

    PubMed

    Mayadunne, Erandi; El Rassi, Ziad

    2014-11-01

    Two approaches for incorporating carbon nanotubes into monolithic columns for HPLC are described in this report. They pertain to the investigation of carbon nanotubes either (i) as entities to modulate solute retention on monolithic columns bearing well defined retentive ligands or (ii) as entities that constitute the stationary phase responsible for solute retention and separation. Approach (i) involved the incorporation of carbon nanotubes into octadecyl monolithic columns while approach (ii) concerns the preparation and evaluation of an ideal monolithic support and coating it with carbon nanotubes to yield a real "carbon nanotube stationary phase" for the HPLC separation of a wide range of solutes. First, an octadecyl monolithic column based on the in situ polymerization of octadecyl acrylate and trimethylolpropane trimethacrylate was optimized for use in HPLC separations of small and large solutes (e.g., proteins). To further modulate the retention and separation of proteins, small amounts of carbon nanotubes were incorporated into the octadecyl monolith column. In approach (ii), an inert, relatively polar monolith based on the in situ polymerization of glyceryl monomethacrylate (GMM) and ethylene glycol dimethacrylate (EDMA) proved to be the most suitable support for the preparation of "carbon nanotube stationary phase". This carbon nanotube "coated" monolith proved useful in the HPLC separation of a wide range of small solutes including enantiomers. In approach (ii), a more homogeneous incorporation of carbon nanotubes into the diol monolithic columns (i.e., GMM/EDMA) was achieved when hydroxyl functionalized carbon nanotubes were incorporated into the GMM/EDMA monolithic support. In addition, high power sonication for a short time enhanced further the homogeneity of the monolith incorporated with nanotubes. In all cases, nonpolar and π interactions were responsible for solute retention on the monolith incorporated carbon nanotubes. PMID:25127634

  1. Modeling of Large-Scale Functional Brain Networks Based on Structural Connectivity from DTI: Comparison with EEG Derived Phase Coupling Networks and Evaluation of Alternative Methods along the Modeling Path

    PubMed Central

    Cheng, Bastian; Messé, Arnaud; Thomalla, Götz; Gerloff, Christian; König, Peter

    2016-01-01

    In this study, we investigate if phase-locking of fast oscillatory activity relies on the anatomical skeleton and if simple computational models informed by structural connectivity can help further to explain missing links in the structure-function relationship. We use diffusion tensor imaging data and alpha band-limited EEG signal recorded in a group of healthy individuals. Our results show that about 23.4% of the variance in empirical networks of resting-state functional connectivity is explained by the underlying white matter architecture. Simulating functional connectivity using a simple computational model based on the structural connectivity can increase the match to 45.4%. In a second step, we use our modeling framework to explore several technical alternatives along the modeling path. First, we find that an augmentation of homotopic connections in the structural connectivity matrix improves the link to functional connectivity while a correction for fiber distance slightly decreases the performance of the model. Second, a more complex computational model based on Kuramoto oscillators leads to a slight improvement of the model fit. Third, we show that the comparison of modeled and empirical functional connectivity at source level is much more specific for the underlying structural connectivity. However, different source reconstruction algorithms gave comparable results. Of note, as the fourth finding, the model fit was much better if zero-phase lag components were preserved in the empirical functional connectome, indicating a considerable amount of functionally relevant synchrony taking place with near zero or zero-phase lag. The combination of the best performing alternatives at each stage in the pipeline results in a model that explains 54.4% of the variance in the empirical EEG functional connectivity. Our study shows that large-scale brain circuits of fast neural network synchrony strongly rely upon the structural connectome and simple computational

  2. Modeling of Large-Scale Functional Brain Networks Based on Structural Connectivity from DTI: Comparison with EEG Derived Phase Coupling Networks and Evaluation of Alternative Methods along the Modeling Path.

    PubMed

    Finger, Holger; Bönstrup, Marlene; Cheng, Bastian; Messé, Arnaud; Hilgetag, Claus; Thomalla, Götz; Gerloff, Christian; König, Peter

    2016-08-01

    In this study, we investigate if phase-locking of fast oscillatory activity relies on the anatomical skeleton and if simple computational models informed by structural connectivity can help further to explain missing links in the structure-function relationship. We use diffusion tensor imaging data and alpha band-limited EEG signal recorded in a group of healthy individuals. Our results show that about 23.4% of the variance in empirical networks of resting-state functional connectivity is explained by the underlying white matter architecture. Simulating functional connectivity using a simple computational model based on the structural connectivity can increase the match to 45.4%. In a second step, we use our modeling framework to explore several technical alternatives along the modeling path. First, we find that an augmentation of homotopic connections in the structural connectivity matrix improves the link to functional connectivity while a correction for fiber distance slightly decreases the performance of the model. Second, a more complex computational model based on Kuramoto oscillators leads to a slight improvement of the model fit. Third, we show that the comparison of modeled and empirical functional connectivity at source level is much more specific for the underlying structural connectivity. However, different source reconstruction algorithms gave comparable results. Of note, as the fourth finding, the model fit was much better if zero-phase lag components were preserved in the empirical functional connectome, indicating a considerable amount of functionally relevant synchrony taking place with near zero or zero-phase lag. The combination of the best performing alternatives at each stage in the pipeline results in a model that explains 54.4% of the variance in the empirical EEG functional connectivity. Our study shows that large-scale brain circuits of fast neural network synchrony strongly rely upon the structural connectome and simple computational

  3. Oxidized multi-walled carbon nanotubes for the dispersive solid-phase extraction of quinolone antibiotics from water samples using capillary electrophoresis and large volume sample stacking with polarity switching.

    PubMed

    Herrera-Herrera, Antonio V; Ravelo-Pérez, Lidia M; Hernández-Borges, Javier; Afonso, María M; Palenzuela, J Antonio; Rodríguez-Delgado, Miguel Ángel

    2011-08-01

    In this work, a new method for the determination of eleven quinolone antibiotics (moxifloxacin, lomefloxacin, danofloxacin, ciprofloxacin, levofloxacin, marbofloxacin, enrofloxacin, difloxacin, pefloxacin, oxolinic acid and flumequine) in different water samples using dispersive solid-phase extraction (dSPE) and capillary zone electrophoresis with diode-array detection was developed. Oxidized multi-walled carbon nanotubes (o-MWCNTs) were used for the first time as stationary phases for the off-line preconcentration by dSPE of the antibiotics. A 65 mM phosphate buffer at pH 8.5 was found adequate for analyte separation while large volume sample stacking with polarity switching of the analytes dissolved in water containing 10% (v/v) of acetonitrile was carried out in order to improve the sensitivity. dSPE parameters, such as sample volume and pH, o-MWCNT amount, volume and type of eluent in dSPE were optimized. Application of the developed method to the analysis of spiked Milli-Q, mineral, tap, and wastewater samples resulted in good recoveries values ranging from 62.3 to 116% with relative standard deviation values lower than 7.7% in all cases. Limits of detection were in the range of 28-94 ng/L. The proposed method is very fast, simple, repeatable, accurate and highly selective. PMID:21726875

  4. Phase II clinical trial of pasireotide long-acting repeatable in patients with metastatic neuroendocrine tumors

    PubMed Central

    Cives, M; Kunz, P L; Morse, B; Coppola, D; Schell, M J; Campos, T; Nguyen, P T; Nandoskar, P; Khandelwal, V; Strosberg, J R

    2015-01-01

    Pasireotide long-acting repeatable (LAR) is a novel somatostatin analog (SSA) with avid binding affinity to somatostatin receptor subtypes 1, 2, 3 (SSTR1,2,3) and 5 (SSTR5). Results from preclinical studies indicate that pasireotide can inhibit neuroendocrine tumor (NET) growth more robustly than octreotide in vitro. This open-label, phase II study assessed the clinical activity of pasireotide in treatment-naïve patients with metastatic grade 1 or 2 NETs. Patients with metastatic pancreatic and extra-pancreatic NETs were treated with pasireotide LAR (60 mg every 4 weeks). Previous systemic therapy, including octreotide and lanreotide, was not permitted. Tumor assessments were performed every 3 months using Response Evaluation Criteria in Solid Tumors (RECIST) criteria. The primary endpoint was progression-free survival (PFS). The secondary endpoints included overall survival (OS), overall radiographic response rate (ORR), and safety. Twenty-nine patients were treated with pasireotide LAR (60 mg every 4 weeks) and 28 were evaluable for response. The median PFS was 11 months. The most favorable effect was observed in patients with low hepatic tumor burden, normal baseline chromogranin A, and high tumoral SSTR5 expression. Median OS has not been reached; the 30-month OS rate was 70%. The best radiographic response was partial response in one patient (4%), stable disease in 17 patients (60%), and progressive disease in ten patients (36%). Although grade 3/4 toxicities were rare, pasireotide LAR treatment was associated with a 79% rate of hyperglycemia including 14% grade 3 hyperglycemia. Although pasireotide appears to be an effective antiproliferative agent in the treatment of advanced NETs, the high incidence of hyperglycemia raises concerns regarding its suitability as a first-line systemic agent in unselected patients. SSTR5 expression is a potentially predictive biomarker for response. PMID:25376618

  5. Thinking large.

    PubMed

    Devries, Egbert

    2016-05-01

    Egbert Devries was brought up on a farm in the Netherlands and large animal medicine has always been his area of interest. After working in UK practice for 12 years he joined CVS and was soon appointed large animal director with responsibility for building a stronger large animal practice base. PMID:27154956

  6. Low distortion automatic phase control circuit. [voltage controlled phase shifter

    NASA Technical Reports Server (NTRS)

    Hauge, G.; Pederson, C. W. (Inventor)

    1974-01-01

    A voltage controlled phase shifter is rendered substantially harmonic distortion free over a large dynamic input range by employing two oppositely poled, equally biased varactor diodes as the voltage controlled elements which adjust the phase shift. Control voltages which affect the bias of both diodes equally are used to adjust the phase shift without increasing distortion. A feedback stabilized phase shifter is rendered substantially frequency independent by employing a phase detector to control the phase shift of the voltage controlled phase shifter.

  7. Phases and Phase Transitions

    NASA Astrophysics Data System (ADS)

    Gitterman, Moshe

    2014-09-01

    In discussing phase transitions, the first thing that we have to do is to define a phase. This is a concept from thermodynamics and statistical mechanics, where a phase is defined as a homogeneous system. As a simple example, let us consider instant coffee. This consists of coffee powder dissolved in water, and after stirring it we have a homogeneous mixture, i.e., a single phase. If we add to a cup of coffee a spoonful of sugar and stir it well, we still have a single phase -- sweet coffee. However, if we add ten spoonfuls of sugar, then the contents of the cup will no longer be homogeneous, but rather a mixture of two homogeneous systems or phases, sweet liquid coffee on top and coffee-flavored wet sugar at the bottom...

  8. Autologous stem cell transplantation after conditioning with yttrium-90 ibritumomab tiuxetan plus BEAM in refractory non-Hodgkin diffuse large B-cell lymphoma: results of a prospective, multicenter, phase II clinical trial

    PubMed Central

    Briones, Javier; Novelli, Silvana; García-Marco, José A.; Tomás, José F.; Bernal, Teresa; Grande, Carlos; Canales, Miguel A.; Torres, Antonio; Moraleda, José M.; Panizo, Carlos; Jarque, Isidro; Palmero, Francisca; Hernández, Miguel; González-Barca, Eva; López, Dulce; Caballero, Dolores

    2014-01-01

    Lymphoma patients with persistent disease undergoing autologous transplantation have a very poor prognosis in the rituximab era. The addition of radioimmunotherapy to the conditioning regimen may improve the outcome for these patients. In a prospective, phase 2 study, we evaluated the safety and efficacy of the addition of 90Y-ibritumomab tiuxetan to the conditioning chemotherapy in patients with refractory diffuse large B-cell lymphoma. Thirty patients with induction failure (primary refractory; n=18) or refractory to salvage immunochemotherapy at relapse (n=12) were included in the study. The median age of the patients was 53 years (range, 25–67). All patients were given 90Y-ibritumomab tiuxetan at a fixed dose of 0.4 mCi/kg (maximum dose 32 mCi) 14 days prior to the preparative chemotherapy regimen. Histological examination showed that 22 patients had de novo diffuse large B-cell lymphoma and eight had transformed diffuse large B-cell lymphoma. All patients had persistent disease at the time of transplantation, with 25 patients considered to be chemorefractory. The median time to neutrophil recovery (>500 white blood cells/μL) was 11 days (range, 9–21), while the median time to platelet recovery (>20,000 platelets/μL) was 13 days (range, 11–35). The overall response rate at day +100 was 70% (95% CI, 53.6–86.4) with 60% (95% CI, 42.5–77.5) of patients obtaining a complete response. After a median follow-up of 31 months for alive patients (range, 16–54), the estimated 3-year overall and progression-free survival rates are 63% (95% CI, 48–82) and 61% (95% CI, 45–80), respectively. We conclude that autologous transplantation with conditioning including 90Y-ibritumomab tiuxetan is safe and results in a very high response rate with promising survival in this group of patients with refractory diffuse large B-cell lymphoma with a very poor prognosis. Study registered at European Union Drug Regulating Authorities Clinical Trials (EudraCT) N. 2007

  9. Large-scale Folding: Implications For Effective Lithospheric Rheology And Thin Sheet Models.

    NASA Astrophysics Data System (ADS)

    Schmalholz, S. M.; Podladchikov, Yu. Yu.; Burg, J.-P.

    We show that folding of a non-Newtonian layer resting on a homogeneous Newto- nian matrix with finite thickness under influence of gravity can occur by three modes: (i) matrix-controlled folding, dependent on the effective viscosity contrast between layer and matrix, (ii) gravity-controlled folding, dependent on the Argand number (the ratio of the stress caused by gravity to the stress caused by shortening) and (iii) detachment folding, dependent on the ratio of matrix thickness to layer thickness. We construct a phase diagram that defines the transitions between each of the three fold- ing modes. Our priority is transparency of the analytical derivations (e.g. thin-plate versus thick-plate approximations), which permits complete classification of the fold- ing modes involving a minimum number of dimensionless parameters. Accuracy and sensitivity of the analytical results to model assumptions are investigated. In particu- lar, depth-dependence of matrix rheology is only important for folding over a narrow range of material parameters. In contrast, strong depth-dependence of the folding layer viscosity limits applicability of ductile rheology and leads to a viscoelastic transition for layers on the crustal and lithospheric scales. This transition allows estimating the critical elastic thickness of the oceanic lithosphere, which determines if the oceanic lithosphere deforms effectively ductile or elastic. Considering applicability conditions of thin viscous sheet models for large-scale lithospheric deformation, derived in terms of the Argand number, our results show that the uplift rates caused by folding (which are neglected by the thin sheet models) are of the same order than the uplift rates caused by layer thickening. This result further indicates that large-scale folding and not crustal thickening was the dominant deformation mode during the evolution of the Himalayan syntaxes. Our theory is applied to estimate the effective thickness of the folded Central Asian

  10. From feeder dykes to scoria cones: the tectonically controlled plumbing system of the Rauðhólar volcanic chain, Northern Volcanic Zone, Iceland

    NASA Astrophysics Data System (ADS)

    Friese, Nadine; Bense, Frithjof A.; Tanner, David C.; Gústafsson, Lúðvík E.; Siegesmund, Siegfried

    2013-06-01

    The Rauðhólar volcanic chain, located in the Northern Volcanic Zone of Iceland, has been variably eroded such that, in the northern part, the original scoria cones are preserved, while the central and southern parts expose their shallow feeders. The chain thus offers insight into the inner workings of the near-surface feeder system of scoria cones. The volcanic chain was mapped in 3D using GPS. The en echelon-arranged volcanic chain can be divided into three parts: The southernmost part contains only plugs and necks with a thin pyroclastic cover as well as multi-tiered lava flows. The central part combines partially eroded scoria cones, (feeder) dyke intersections, and welded scoria interbedded within rootless and clastogenic lava flows; the welded scoria is composed of different kinds of lithics and bombs. The northern part preserves almost intact, overlapping scoria cones with voluminous lapilli-sized scoriaceous deposits. The overall dyke trend is orthogonal but shows radial patterns in individual cone complexes. Feeder dykes observed to depths of about 200 m below the volcanic chain are up to 8 m thick and flare in to conduits in the uppermost 20-50 m. The exposed shallow plumbing system shows that magma pathways through the volcanic edifice are very complex with incremental, repeated intrusions. We interpret the arcuate shape to be the result of a local change in the orientation of the stress field because the Rauðhólar volcanic chain is located within a major relay structure between volcanoes on the eastern Fremrinámur rift arm and a rift extension with grabens on the western periphery.

  11. Phase II open label study of the oral vascular endothelial growth factor-receptor inhibitor PTK787/ZK222584 (vatalanib) in adult patients with refractory or relapsed diffuse large B-cell lymphoma.

    PubMed

    Brander, Danielle; Rizzieri, David; Gockerman, Jon; Diehl, Louis; Shea, Thomas Charles; Decastro, Carlos; Moore, Joseph O; Beaven, Anne

    2013-12-01

    PTK787/ZK222584 (vatalanib), an orally active inhibitor of vascular endothelial growth factor receptors (VEGFRs), was evaluated in this phase II study of 20 patients with relapsed/refractory diffuse large B-cell lymphoma (DLBCL). Patients received once-daily PTK787/ZK222584 at a target dose of 1250 mg. Eighteen patients were evaluable for response: one patient had a complete response (CR), six patients had stable disease but subsequently progressed, 10 patients had progressive disease by three cycles and one subject withdrew before response evaluation. The patient who attained a CR underwent autologous stem cell transplant and remains disease-free 76 months after study completion. There were no grade 4 toxicities. Grade 3 thrombocytopenia occurred in 20% and grade 3 hypertension occurred in 10%. There were no episodes of grade 3 proteinuria. In conclusion, PTK787/ZK222584 was well tolerated in a heavily pretreated population of patients with DLBCL, although its therapeutic potential as a single agent in DLBCL appears limited. PMID:23488610

  12. Disabling Immune Tolerance by Programmed Death-1 Blockade With Pidilizumab After Autologous Hematopoietic Stem-Cell Transplantation for Diffuse Large B-Cell Lymphoma: Results of an International Phase II Trial

    PubMed Central

    Armand, Philippe; Nagler, Arnon; Weller, Edie A.; Devine, Steven M.; Avigan, David E.; Chen, Yi-Bin; Kaminski, Mark S.; Holland, H. Kent; Winter, Jane N.; Mason, James R.; Fay, Joseph W.; Rizzieri, David A.; Hosing, Chitra M.; Ball, Edward D.; Uberti, Joseph P.; Lazarus, Hillard M.; Mapara, Markus Y.; Gregory, Stephanie A.; Timmerman, John M.; Andorsky, David; Or, Reuven; Waller, Edmund K.; Rotem-Yehudar, Rinat; Gordon, Leo I.

    2013-01-01

    Purpose The Programmed Death-1 (PD-1) immune checkpoint pathway may be usurped by tumors, including diffuse large B-cell lymphoma (DLBCL), to evade immune surveillance. The reconstituting immune landscape after autologous hematopoietic stem-cell transplantation (AHSCT) may be particularly favorable for breaking immune tolerance through PD-1 blockade. Patients and Methods We conducted an international phase II study of pidilizumab, an anti–PD-1 monoclonal antibody, in patients with DLBCL undergoing AHSCT, with correlative studies of lymphocyte subsets. Patients received three doses of pidilizumab beginning 1 to 3 months after AHSCT. Results Sixty-six eligible patients were treated. Toxicity was mild. At 16 months after the first treatment, progression-free survival (PFS) was 0.72 (90% CI, 0.60 to 0.82), meeting the primary end point. Among the 24 high-risk patients who remained positive on positron emission tomography after salvage chemotherapy, the 16-month PFS was 0.70 (90% CI, 0.51 to 0.82). Among the 35 patients with measurable disease after AHSCT, the overall response rate after pidilizumab treatment was 51%. Treatment was associated with increases in circulating lymphocyte subsets including PD-L1E–bearing lymphocytes, suggesting an on-target in vivo effect of pidilizumab. Conclusion This is the first demonstration of clinical activity of PD-1 blockade in DLBCL. Given these results, PD-1 blockade after AHSCT using pidilizumab may represent a promising therapeutic strategy in this disease. PMID:24127452

  13. Background rejection of n+ surface events in GERDA Phase II

    NASA Astrophysics Data System (ADS)

    Lehnert, Björn

    2016-05-01

    The GERDA experiment searches for neutrinoless double beta (0vββ) decay in 76Ge using an array of high purity germanium (HPGe) detectors immersed in liquid argon (LAr). Phase II of the experiment uses 30 new broad energy germanium (BEGe) detectors with superior pulse shape discrimination capabilities compared to the previously used semi-coaxial detector design. By far the largest background component for BEGe detectors in GERDA are n+-surface events from 42K β decays which are intrinsic in LAr. The β particles with up to 3.5 MeV can traverse the 0.5 to 0.9 mm thick electrode and deposit energy within the region of interest for the 0vββ decay. However, those events have particular pulse shape features allowing for a strong discrimination. The understanding and simulation of this background, showing a reduction by up to a factor 145 with pulse shape discrimination alone, is presented in this work.

  14. Large-scale pesticide testing in olives by liquid chromatography-electrospray tandem mass spectrometry using two sample preparation methods based on matrix solid-phase dispersion and QuEChERS.

    PubMed

    Gilbert-López, Bienvenida; García-Reyes, Juan F; Lozano, Ana; Fernández-Alba, Amadeo R; Molina-Díaz, Antonio

    2010-09-24

    In this work we have evaluated the performance of two sample preparation methodologies for the large-scale multiresidue analysis of pesticides in olives using liquid chromatography-electrospray tandem mass spectrometry (LC-MS/MS). The tested sample treatment methodologies were: (1) liquid-liquid partitioning with acetonitrile followed by dispersive solid-phase extraction clean-up using GCB, PSA and C18 sorbents (QuEChERS method - modified for fatty vegetables) and (2) matrix solid-phase dispersion (MSPD) using aminopropyl as sorbent material and a final clean-up performed in the elution step using Florisil. An LC-MS/MS method covering 104 multiclass pesticides was developed to examine the performance of these two protocols. The separation of the compounds from the olive extracts was achieved using a short C18 column (50 mm x 4.6 mm i.d.) with 1.8 microm particle size. The identification and confirmation of the compounds was based on retention time matching along with the presence (and ratio) of two typical MRM transitions. Limits of detection obtained were lower than 10 microgkg(-1) for 89% analytes using both sample treatment protocols. Recoveries studies performed on olives samples spiked at two concentration levels (10 and 100 microgkg(-1)) yielded average recoveries in the range 70-120% for most analytes when QuEChERS procedure is employed. When MSPD was the choice for sample extraction, recoveries obtained were in the range 50-70% for most of target compounds. The proposed methods were successfully applied to the analysis of real olives samples, revealing the presence of some of the target species in the microgkg(-1) range. Besides the evaluation of the sample preparation approaches, we also discuss the use of advanced software features associated to MRM method development that overcome several limitations and drawbacks associated to MS/MS methods (time segments boundaries, tedious method development/manual scheduling and acquisition limitations). This

  15. Map-likelihood phasing

    PubMed Central

    Terwilliger, Thomas C.

    2001-01-01

    The recently developed technique of maximum-likelihood density modification [Terwilliger (2000 ▶), Acta Cryst. D56, 965–972] allows a calculation of phase probabilities based on the likelihood of the electron-density map to be carried out separately from the calculation of any prior phase probabilities. Here, it is shown that phase-probability distributions calculated from the map-likelihood function alone can be highly accurate and that they show minimal bias towards the phases used to initiate the calculation. Map-likelihood phase probabilities depend upon expected characteristics of the electron-density map, such as a defined solvent region and expected electron-density distributions within the solvent region and the region occupied by a macromolecule. In the simplest case, map-likelihood phase-probability distributions are largely based on the flatness of the solvent region. Though map-likelihood phases can be calculated without prior phase information, they are greatly enhanced by high-quality starting phases. This leads to the technique of prime-and-switch phasing for removing model bias. In prime-and-switch phasing, biased phases such as those from a model are used to prime or initiate map-likelihood phasing, then final phases are obtained from map-likelihood phasing alone. Map-likelihood phasing can be applied in cases with solvent content as low as 30%. Potential applications of map-likelihood phasing include unbiased phase calculation from molecular-replacement models, iterative model building, unbiased electron-density maps for cases where 2Fo − Fc or σA-weighted maps would currently be used, structure validation and ab initio phase determination from solvent masks, non-crystallographic symmetry or other knowledge about expected electron density. PMID:11717488

  16. COMMIX-1AR/P: A three-dimensional transient single-phase computer program for thermal hydraulic analysis of single and multicomponent systems

    SciTech Connect

    Garner, P.L.; Blomquist, R.N.; Gelbard, E.M.

    1992-09-01

    The COMMIX-LAR/P computer program is designed for analyzing the steady-state and transient aspects of single-phase fluid flow and heat transfer in three spatial dimensions. This version is an extension of the modeling in COMMIX-lA to include multiple fluids in physically separate regions of the computational domain, modeling descriptions for pumps, radiation heat transfer between surfaces of the solids which are embedded in or surround the fluid, a keg model for fluid turbulence, and improved numerical techniques. The porous-medium formulation in COMMIX allows the program to be applied to a wide range of problems involving both simple and complex geometrical arrangements. The internal aspects of the COMMIX-LAR/P program are presented, covering descriptions of subprograms, variables, and files.

  17. Facile Preparation of Octadecyl Monoliths with Incorporated Carbon Nanotubes and Neutral Monoliths with Coated Carbon Nanotubes Stationary Phases for HPLC of Small and Large Molecules by Hydrophobic and π-π Interactions

    PubMed Central

    Mayadunne, Erandi; Rassi, Ziad El

    2014-01-01

    Two approaches for incorporating carbon nanotubes into monolithic columns for HPLC are described in this report. They pertain to the investigation of carbon nanotubes either (i) as entities to modulate solute retention on monolithic columns bearing well defined retentive ligands or (ii) as entities that constitute the stationary phase responsible for solute retention and separation. Approach (i) involved the incorporation of carbon nanotubes into octadecyl monolithic columns while approach (ii) concerns the preparation and evaluation of an ideal monolithic support and coating it with carbon nanotubes to yield a real “carbon nanotube stationary phase” for the HPLC separation of a wide range of solutes. First, an octadecyl monolithic column based on the in situ polymerization of octadecyl acrylate and trimethylolpropane trimethacrylate was optimized for use in HPLC separations of small and large solutes (e.g., proteins). To further modulate the retention and separation of proteins, small amounts of carbon nanotubes were incorporated into the octadecyl monolith column. In approach (ii), an inert, relatively polar monolith based on the in situ polymerization of glyceryl monomethacrylate (GMM) and ethylene glycol dimethacrylate (EDMA) proved to be the most suitable support for the preparation of “carbon nanotube stationary phase”. This carbon nanotube “coated” monolith proved useful in the HPLC separation of a wide range of small solutes including enantiomers. In approach (ii), a more homogeneous incorporation of carbon nanotubes into the diol monolithic columns (i.e., GMM/EDMA) was achieved when hydroxyl functionalized carbon nanotubes were incorporated into the GMM/EDMA monolithic support. In addition, high power sonication for a short time enhanced further the homogeneity of the monolith incorporated with nanotubes. In all cases, nonpolar and π interactions were responsible for solute retention on the monolith incorporated carbon nanotubes. PMID:25127634

  18. Extreme argon purity in a large, non-evacuated cryostat

    SciTech Connect

    Tope, Terry; Adamowski, Mark; Carls, B.; Hahn, A.; Jaskierny, W.; Jostlein, H.; Kendziora, C.; Lockwitz, S.; Pahlka, B.; Plunkett, R.; Pordes, S.; Rebel, B.; Schmitt, R.; Skup, E.; Stancari, M.; Yang, T.

    2014-01-29

    Liquid Argon Time Projection Chambers (LArTPCs) show promise as scalable devices for the large detectors needed for long-baseline neutrino oscillation physics. Over the last several years at Fermilab a staged approach to developing the technology for large detectors has been developed. The TPC detectors require ultra-pure liquid argon with respect to electronegative contaminants such as oxygen and water. The tolerable electronegative contamination level may be as pure as 60 parts per trillion of oxygen. Three liquid argon cryostats operated at Fermilab have achieved the extreme purity required by TPCs. These three cryostats used evacuation to remove atmospheric contaminants as the first purification step prior to filling with liquid argon. Future physics experiments may require very large detectors with tens of kilotonnes of liquid argon mass. The capability to evacuate such large cryostats adds significant cost to the cryostat itself in addition to the cost of a large scale vacuum pumping system. This paper describes a 30 ton liquid argon cryostat at Fermilab which uses purging to remove atmospheric contaminants instead of evacuation as the first purification step. This cryostat has achieved electronegative contamination levels better than 60 parts per trillion of oxygen equivalent. The results of this liquid argon purity demonstration will strongly influence the design of future TPC cryostats.

  19. Noisy quantum phase communication channels

    NASA Astrophysics Data System (ADS)

    Teklu, Berihu; Trapani, Jacopo; Olivares, Stefano; Paris, Matteo G. A.

    2015-06-01

    We address quantum phase channels, i.e communication schemes where information is encoded in the phase-shift imposed to a given signal, and analyze their performances in the presence of phase diffusion. We evaluate mutual information for coherent and phase-coherent signals, and for both ideal and realistic phase receivers. We show that coherent signals offer better performances than phase-coherent ones, and that realistic phase channels are effective ones in the relevant regime of low energy and large alphabets.

  20. Moon Phases

    ERIC Educational Resources Information Center

    Riddle, Bob

    2010-01-01

    When teaching Moon phases, the focus seems to be on the sequence of Moon phases and, in some grade levels, how Moon phases occur. Either focus can sometimes be a challenge, especially without the use of models and observations of the Moon. In this month's column, the author describes some of the lessons that he uses to teach the phases of the Moon…

  1. COMMIX-1AR/P: A three-dimensional transient single-phase computer program for thermal hydraulic analysis of single and multicomponent systems. Volume 3, Programmer`s guide

    SciTech Connect

    Garner, P.L.; Blomquist, R.N.; Gelbard, E.M.

    1992-09-01

    The COMMIX-LAR/P computer program is designed for analyzing the steady-state and transient aspects of single-phase fluid flow and heat transfer in three spatial dimensions. This version is an extension of the modeling in COMMIX-lA to include multiple fluids in physically separate regions of the computational domain, modeling descriptions for pumps, radiation heat transfer between surfaces of the solids which are embedded in or surround the fluid, a keg model for fluid turbulence, and improved numerical techniques. The porous-medium formulation in COMMIX allows the program to be applied to a wide range of problems involving both simple and complex geometrical arrangements. The internal aspects of the COMMIX-LAR/P program are presented, covering descriptions of subprograms, variables, and files.

  2. A METHOD FOR AUTOMATED ANALYSIS OF 10 ML WATER SAMPLES CONTAINING ACIDIC, BASIC, AND NEUTRAL SEMIVOLATILE COMPOUNDS LISTED IN USEPA METHOD 8270 BY SOLID PHASE EXTRACTION COUPLED IN-LINE TO LARGE VOLUME INJECTION GAS CHROMATOGRAPHY/MASS SPECTROMETRY

    EPA Science Inventory

    Data is presented showing the progress made towards the development of a new automated system combining solid phase extraction (SPE) with gas chromatography/mass spectrometry for the single run analysis of water samples containing a broad range of acid, base and neutral compounds...

  3. AUTOMATED ANALYSIS OF AQUEOUS SAMPLES CONTAINING PESTICIDES, ACIDIC/BASIC/NEUTRAL SEMIVOLATILES AND VOLATILE ORGANIC COMPOUNDS BY SOLID PHASE EXTRACTION COUPLED IN-LINE TO LARGE VOLUME INJECTION GC/MS

    EPA Science Inventory

    Data is presented on the development of a new automated system combining solid phase extraction (SPE) with GC/MS spectrometry for the single-run analysis of water samples containing a broad range of organic compounds. The system uses commercially available automated in-line 10-m...

  4. Phase transition sequence in Pb-free 0.96(K{sub 0.5}Na{sub 0.5}){sub 0.95}Li{sub 0.05}Nb{sub 0.93} Sb{sub 0.07}O{sub 3}−0.04BaZrO{sub 3} ceramic with large piezoelectric response

    SciTech Connect

    Gao, Jinghui Zhang, Le; Zhang, Ming; Dai, Ye; Hu, Xinghao; Wang, Dong; Zhong, Lisheng; Li, Shengtao; Ren, Shuai; Hao, Yanshuang Fang, Minxia; Ren, Xiaobing

    2015-07-20

    The piezoceramic 0.96(K{sub 0.5}Na{sub 0.5}){sub 0.95}Li{sub 0.05}Nb{sub 0.93}Sb{sub 0.07}O{sub 3}−0.04BaZrO{sub 3} (KNLNS{sub 0.07}-BZ), which shows large piezoelectric response (d{sub 33} ≈ 425 pC/N), has been considered as one of the promising Pb-free substitutions for Pb(Zr,Ti)O{sub 3}. In this paper, we investigate the phase transition sequence for KNLNS{sub 0.07}-BZ by employing the dielectric measurement, mechanical spectroscopy, as well as Raman spectroscopy. Two ferroelectric-ferroelectric transitions have been detected by inspecting anomalies in the spectra, indicating the existence of three ferroelectric phases. Moreover, in-situ X-ray diffraction study has been further performed on KNLNS{sub 0.07}-BZ to identify the crystal structure for each phase. The result reveals that the phase sequence for KNLNS{sub 0.07}-BZ evolves from tetragonal (T) to rhombohedral (R) via an intermediate orthorhombic (O) phase. And the piezoelectric-optimal region for KNLNS{sub 0.07}-BZ locates on a T-O boundary rather than the previously reported T-R boundary. Strong piezoelectricity may stem from the easier polarization rotation on the T-O boundary with reduced polarization anisotropy.

  5. PHASE DETECTOR

    DOEpatents

    Kippenhan, D.O.

    1959-09-01

    A phase detector circuit is described for use at very high frequencies of the order of 50 megacycles. The detector circuit includes a pair of rectifiers inverted relative to each other. One voltage to be compared is applied to the two rectifiers in phase opposition and the other voltage to be compared is commonly applied to the two rectifiers. The two result:ng d-c voltages derived from the rectifiers are combined in phase opposition to produce a single d-c voltage having amplitude and polarity characteristics dependent upon the phase relation between the signals to be compared. Principal novelty resides in the employment of a half-wave transmission line to derive the phase opposing signals from the first voltage to be compared for application to the two rectifiers in place of the transformer commonly utilized for such purpose in phase detector circuits for operation at lower frequency.

  6. Templated blue phases.

    PubMed

    Ravnik, Miha; Fukuda, Jun-ichi

    2015-11-21

    Cholesteric blue phases of a chiral liquid crystal are interesting examples of self-organised three-dimensional nanostructures formed by soft matter. Recently it was demonstrated that a polymer matrix introduced by photopolymerization inside a bulk blue phase not only stabilises the host blue phase significantly, but also serves as a template for blue phase ordering. We show with numerical modelling that the transfer of the orientational order of the blue phase to the surfaces of the polymer matrix, together with the resulting surface anchoring, can account for the templating behaviour of the polymer matrix inducing the blue phase ordering of an achiral nematic liquid crystal. Furthermore, tailoring the anchoring conditions of the polymer matrix surfaces can bring about orientational ordering different from those of bulk blue phases, including an intertwined complex of the polymer matrix and topological line defects of orientational order. Optical Kerr response of templated blue phases is explored, finding large Kerr constants in the range of K = 2-10 × 10(-9) m V(-2) and notable dependence on the surface anchoring strength. More generally, the presented numerical approach is aimed to clarify the role and actions of templating polymer matrices in complex chiral nematic fluids, and further to help design novel template-based materials from chiral liquid crystals. PMID:26412643

  7. UPVG phase 2 report

    SciTech Connect

    1995-08-01

    The Utility PhotoVoltaic Group (UPVG), supported by member dues and a grant from the US Department of Energy, has as its mission the acceleration of the use of cost-effective small-scale and emerging large-scale applications of photovoltaics for the benefit of electric utilities and their customers. Formed in October, 1992, with the support of the American Public Power Association, Edison Electric Institute, and the National Rural Electric Cooperative Association, the UPVG currently has 90 members from all sectors of the electric utility industry. The UPVG`s efforts as conceived were divided into four phases: Phase 0--program plan; Phase 1--organization and strategy development; Phase 2--creating market assurance; and Phase 3--higher volume purchases. The Phase 0 effort developed the program plan and was completed early in 1993. The Phase 1 goal was to develop the necessary background information and analysis to lead to a decision as to which strategies could be undertaken by utilities to promote greater understanding of PV markets and achieve increased volumes of PV purchases. This report provides the details of the UPVG`s Phase 2 efforts to initiate TEAM-UP, its multiyear, 50-MW hardware initiative.

  8. Interstitial Lung Disease Associated with mTOR Inhibitors in Solid Organ Transplant Recipients: Results from a Large Phase III Clinical Trial Program of Everolimus and Review of the Literature.

    PubMed

    Lopez, Patricia; Kohler, Sven; Dimri, Seema

    2014-01-01

    Interstitial lung disease (ILD) has been reported with the use of mammalian target of rapamycin inhibitors (mTORi). The clinical and safety databases of three Phase III trials of everolimus in de novo kidney (A2309), heart (A2310), and liver (H2304) transplant recipients (TxR) were searched using a standardized MedDRA query (SMQ) search for ILD followed by a case-by-case medical evaluation. A literature search was conducted in MEDLINE and EMBASE. Out of the 1,473 de novo TxR receiving everolimus in Phase III trials, everolimus-related ILD was confirmed in six cases (one kidney, four heart, and one liver TxR) representing an incidence of 0.4%. Everolimus was discontinued in three of the four heart TxR, resulting in ILD improvement or resolution. Outcome was fatal in the kidney TxR (in whom everolimus therapy was continued) and in the liver TxR despite everolimus discontinuation. The literature review identified 57 publications on ILD in solid organ TxR receiving everolimus or sirolimus. ILD presented months or years after mTORi initiation and symptoms were nonspecific and insidious. The event was more frequent in patients with a late switch to mTORi. In most cases, ILD was reversed after prompt mTORi discontinuation. ILD induced by mTORi is an uncommon and potentially fatal event warranting early recognition and drug discontinuation. PMID:25580277

  9. A robust and effective time-independent route to the calculation of Resonance Raman spectra of large molecules in condensed phases with the inclusion of Duschinsky, Herzberg-Teller, anharmonic, and environmental effects

    PubMed Central

    Egidi, Franco; Bloino, Julien; Cappelli, Chiara; Barone, Vincenzo

    2015-01-01

    We present an effective time-independent implementation to model vibrational resonance Raman (RR) spectra of medium-large molecular systems with the inclusion of Franck-Condon (FC) and Herzberg-Teller (HT) effects and a full account of the possible differences between the harmonic potential energy surfaces of the ground and resonant electronic states. Thanks to a number of algorithmic improvements and very effective parallelization, the full computations of fundamentals, overtones, and combination bands can be routinely performed for large systems possibly involving more than two electronic states. In order to improve the accuracy of the results, an effective inclusion of the leading anharmonic effects is also possible, together with environmental contributions under different solvation regimes. Reduced-dimensionality approaches can further enlarge the range of applications of this new tool. Applications to imidazole, pyrene, and chlorophyll a1 in solution are reported, as well as comparisons with available experimental data. PMID:26550003

  10. Quantum phase of inflation

    NASA Astrophysics Data System (ADS)

    Berera, Arjun; Rangarajan, Raghavan

    2013-02-01

    Inflation models can have an early phase of inflation where the evolution of the inflaton is driven by quantum fluctuations before entering the phase driven by the slope of the scalar field potential. For a Coleman-Weinberg potential this quantum phase lasts 107-8 e-foldings. A long period of fluctuation driven growth of the inflation field can possibly take the inflaton past ϕ*, the value of the field where our current horizon scale crosses the horizon; alternatively, even if the field does not cross ϕ*, the inflaton could have high kinetic energy at the end of this phase. Therefore, we study these issues in the context of different models of inflation. In scenarios where cosmological relevant scales leave during the quantum phase, we obtain large curvature perturbations of O(10). We also apply our results to quadratic curvaton models and to quintessence models. In curvaton models we find that inflation must last longer than required to solve the horizon problem, that the curvaton models are incompatible with small field inflation models, and that there may be too large non-Gaussianity. A new phase of thermal fluctuation driven inflation is proposed, in which during inflation the inflaton evolution is governed by fluctuations from a sustained thermal radiation bath rather than by a scalar field potential.

  11. Y-doped La{sub 0.7}Ca{sub 0.3}MnO{sub 3} manganites exhibiting a large magnetocaloric effect and the crossover of first-order and second-order phase transitions

    SciTech Connect

    Phan, The-Long; Jung, C. U.; Lee, B. W.; Ho, T. A.; Manh, T. V.; Dang, N. T.; Thanh, T. D.

    2015-10-14

    We prepared orthorhombic La{sub 0.7−x}Y{sub x}Ca{sub 0.3}MnO{sub 3} samples (x = 0, 0.04, 0.06, and 0.08) by conventional solid-state reaction and then studied their magnetic properties and magnetocaloric (MC) effect based on magnetization versus temperature and magnetic-field measurements, M(T, H). The experimental results revealed that an x increase in La{sub 0.7−x}Y{sub x}Ca{sub 0.3}MnO{sub 3} reduced the ferromagnetic-paramagnetic transition temperature (T{sub C}) from 260 K (for x = 0) to ∼126 K (for x = 0.08). Around the T{sub C}, maximum magnetic-entropy changes for a magnetic-field variation interval H = 50 kOe are about 10.7, 8.5, 7.4, and 5.8 J·kg{sup −1}·K{sup −1} for x = 0, 0.04, 0.06, and 0.08, respectively, corresponding to refrigerant capacities RC = 250–280 J·kg{sup −1}. These values are comparable to those of some conventional MC materials, revealing the applicability of La{sub 0.7−x}Y{sub x}Ca{sub 0.3}MnO{sub 3} in magnetic refrigeration. Using the Arrott method and scaling hypothesis as analyzing high-field M(H, T) data, and the universal-curve construction of the magnetic entropy change, we found a magnetic-phase separation. While the samples x = 0−0.06 exhibit a first-order magnetic phase transition, x = 0.08 exhibits the crossover of the first-to-second-order phase transformation (with its critical-exponent values close to those expected for the tricritical mean-field theory) and has the presence of ferromagnetic clusters even above the T{sub C}. Such the variations in the magnetism and MC effect are related to the changes in structural parameters caused by the Y substitution for La because Y doping does not change the concentration ratio of Mn{sup 3+}/Mn{sup 4+}.

  12. Expanding the potential of chiral chromatography for high-throughput screening of large compound libraries by means of sub-2μm Whelk-O 1 stationary phase in supercritical fluid conditions.

    PubMed

    Sciascera, Luca; Ismail, Omar; Ciogli, Alessia; Kotoni, Dorina; Cavazzini, Alberto; Botta, Lorenzo; Szczerba, Ted; Kocergin, Jelena; Villani, Claudio; Gasparrini, Francesco

    2015-02-27

    With the aim of exploring the potential of ultra-fast chiral chromatography for high-throughput analysis, the new sub-2 micron Whelk-O 1 chiral stationary phase (CSP) has been employed in supercritical fluid conditions to screen 129 racemates, mainly of pharmaceutical interest. By using a 5-cm long column (0.46cm internal diameter), a single co-solvent (MeOH) and a 7-min gradient elution, 85% of acidic and neutral analytes considered in this work have been successfully resolved, with resolution (Rs) larger than 2 in more than 65% of cases. Moreover, almost a half of basic samples that, for their own characteristics, are known to be difficult to separate on Whelk-O 1 CSP, have shown Rs greater than 0.3. The screening of the entire library could be accomplished in less than 24h (single run) with 63% of positive score. For well-resolved enantiomers (Rs roughly included between 1 and 3), we show that method transfer from gradient to isocratic conditions is straightforward. In many cases, isocratic ultra-fast separations (with analysis time smaller than 60s) have been achieved by simply employing, as isocratic mobile phase, the eluent composition at which the second enantiomer was eluted in gradient mode. By considering the extension and variety of the library in terms of chemico-physical and structural properties of compounds and numerousness, we believe that this work demonstrates the real potential of the technique for high-throughput enantioselective screening. PMID:25650355

  13. Silicon Ingot Casting - Heat Exchanger Method Multi-wire Slicing - Fixed Abrasive Slicing Technique. Phase 3 Silicon Sheet Growth Development for the Large Area Sheet Task of the Low-cost Solar Array Project

    NASA Technical Reports Server (NTRS)

    Schmid, F.; Khattak, C. P.

    1979-01-01

    Several 20 cm diameter silicon ingots, up to 6.3 kg. were cast with good crystallinity. The graphite heat zone can be purified by heating it to high temperatures in vacuum. This is important in reducing costs and purification of large parts. Electroplated wires with 45 um synthetic diamonds and 30 um natural diamonds showed good cutting efficiency and lifetime. During slicing of a 10 cm x 10 cm workpiece, jerky motion occurred in the feed and rocking mechanisms. This problem is corrected and modifications were made to reduce the weight of the bladeheat by 50%.

  14. Heat exchanger-ingot casting/slicing process, phase 1: Silicon sheet growth development for the large area silicon sheet task of the low cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Schmid, F.; Khattak, C. P.

    1977-01-01

    A controlled growth, heat-flow and cool-down process is described that yielded silicon with a high degree of single crystallinity. Even when the seed melted out, very large grains formed. Solar cell samples made from cast material yielded conversion efficiency of over 9%. Representative characterizations of grown silicon demonstrated a dislocation density of less than 100/sq cm and a minority carrier diffusion length of 31 micron. The source of silicon carbide in silicon ingots was identified to be from graphite retainers in contact with silica crucibles. Higher growth rates were achieved with the use of a graphite plug at the bottom of the silica crucible.

  15. Performance of the Demonstrator System for the Phase-I Upgrade of the Trigger Readout Electronics of the ATLAS Liquid Argon Calorimeters

    NASA Astrophysics Data System (ADS)

    Dumont Dayot, N.

    2016-01-01

    For the Phase-I luminosity upgrade of the LHC a higher granularity trigger readout of the ATLAS LAr Calorimeters is foreseen to enhance the trigger feature extraction and background rejection. The new readout system digitizes the detector signals, which are grouped into 34000 so-called Super Cells, with 12 bit precision at 40 MHz and transfers the data on optical links to the digital processing system, which extracts the Super Cell energies. A demonstrator version of the complete system has now been installed and operated on the ATLAS detector. Results from the commissioning and performance measurements are reported.

  16. Path Crossings with Lars Onsager

    NASA Astrophysics Data System (ADS)

    Yang, Chen Ning

    2013-05-01

    I first heard of Onsager's name from my M.S. degree thesis adviser J. S. Wang in Kunming, China. Wang had studied the theory of order-disorder transitions with R. H. Fowler in Cambridge, England in the 1930's. He told me one day in 1944-45 that Onsager had produced an exact solution of the Ising model in two dimensions. Wang was a quiet and reserved person. But that day he was evidently quite excited. I can remember still today, half a century later, the tone of admiration bordering on agitation with which he told me about Onsager's paper. I then looked up the paper [26J, but did not understand the strategic plan of Onsager's method. Onsager seemed to have a predilection for calculating commutators at every possible turn without supplying the reasons for so doing...

  17. Human exposure assessment to a large set of polymer additives through the analysis of urine by solid phase extraction followed by ultra high performance liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    Pouech, Charlène; Kiss, Agneta; Lafay, Florent; Léonard, Didier; Wiest, Laure; Cren-Olivé, Cécile; Vulliet, Emmanuelle

    2015-12-01

    Polymer items are extensively present in the human environment. Humans may be consequently exposed to some compounds, such as additives, incorporated in these items. The objective of this work is to assess the human exposure to the main additives such as those authorized in the packaging for pharmaceutical products. The urinary matrix was selected to optimally answer this challenge because it has already been proven that the exposure to chemicals can be revealed by the analysis of this biological matrix. A multi-residue analytical method for the trace analysis at ng/mL in human urine was developed, and consisted of an extraction of analytes from urine by solid phase extraction (SPE) and an analysis by ultra-high performance liquid chromatography coupled to a tandem mass spectrometer (UHPLC-MS/MS). Even if the quantification of these compounds was an analytical challenge because of (i) the presence of these substances in the analytical process, (ii) the diversity of their physicochemical properties, and (iii) the complexity of the matrix, the optimized method exhibited quantification limits lower than 25ng/mL and recoveries between 51% and 120% for all compounds. The method was validated and applied to 52 human urines. To the best of our knowledge, this work presents the first study allowing the assessment of the occurrence of more than twenty polymer additives at ng/mL in human urine. PMID:26554294

  18. Silicon Ingot Casting - Heat Exchanger Method (HEM). Multi-Wire Slicing - Fixed Abrasive Slicing Technique (Fast). Phase 4 Silicon Sheet Growth Development for the Large Area Sheet Task of the Low-Cost Solar Array Project

    NASA Technical Reports Server (NTRS)

    Schmid, F.

    1981-01-01

    The crystallinity of large HEM silicon ingots as a function of heat flow conditions is investigated. A balanced heat flow at the bottom of the ingot restricts spurious nucleation to the edge of the melted-back seed in contact with the crucible. Homogeneous resistivity distribution over all the ingot has been achieved. The positioning of diamonds electroplated on wirepacks used to slice silicon crystals is considered. The electroplating of diamonds on only the cutting edge is described and the improved slicing performance of these wires evaluated. An economic analysis of value added costs of HEM ingot casting and band saw sectioning indicates the projected add on cost of HEM is well below the 1986 allocation.

  19. Venus Phasing.

    ERIC Educational Resources Information Center

    Riddle, Bob

    1997-01-01

    Presents a science activity designed to introduce students to the geocentric and heliocentric models of the universe. Helps students discover why phase changes on Venus knocked Earth out of the center of the universe. (DKM)

  20. Switching of morphotropic phase boundary and large strain response in lead-free ternary (Bi0.5Na0.5)TiO3-(K0.5Bi0.5)TiO3-(K0.5Na0.5)NbO3 system

    NASA Astrophysics Data System (ADS)

    Hao, Jigong; Shen, Bo; Zhai, Jiwei; Liu, Chunze; Li, Xiaolong; Gao, Xingyu

    2013-03-01

    In this work, we report the phase diagram of lead-free ternary (1 - y)[(1 - x)(Bi0.5Na0.5)TiO3-x(Bi0.5K0.5)TiO3]-y(K0.5Na0.5)NbO3 (BNT-BKT-KNN) system and study the switching characteristics of the morphotropic phase boundary (MPB). The addition of KNN intrinsically changes the structural nature of the system with the shift of MPB from MPB(I) between ferroelectric rhombohedral and ferroelectric tetragonal phases to MPB(II) between ferroelectric rhombohedral and relaxor pseudocubic phases. As the MPB(I) switches to MPB(II), large piezoelectric response with d33 ˜ 150pC/N that obtained for BNT-0.20BKT near MPB(I) almost disappears. Instead, a significant jump of electric-filed-induced strain S up to 0.32%-0.46% (Smax/Emax = 400-575 pm/V) is achieved near MPB(II) due to the shift of the ferroelectric-relaxor transition temperature TF-R down to room temperature. In this study, giant strain ˜0.46% occurs in a very narrow region in the BNT-BKT-KNN system with x = 0.20, y = 0.01, which lies on an underlying tricritical triple point of a rhombohedral (R), tetragonal (T), and pseudocubic (Pc) phases. In-situ high-energy X-ray scattering experiments with external electric field reveal an initial electric-field-induced distortion from the Pc structure for the MPB(II) compositions, while those with single R phase shows no such distortion, which suggests that the large strain achieved near the MPB(II) is likely to be induced by the electric-field-induced structure distortion due to its relative instability structure. We believe that the discovery of a compositional line in the pseudo-ternary system, where the strain response is consistently derivable, should be useful for designing high-performance piezoelectric materials in other BNT-based systems by searching MPBs.

  1. Linear phase compressive filter

    DOEpatents

    McEwan, T.E.

    1995-06-06

    A phase linear filter for soliton suppression is in the form of a laddered series of stages of non-commensurate low pass filters with each low pass filter having a series coupled inductance (L) and a reverse biased, voltage dependent varactor diode, to ground which acts as a variable capacitance (C). L and C values are set to levels which correspond to a linear or conventional phase linear filter. Inductance is mapped directly from that of an equivalent nonlinear transmission line and capacitance is mapped from the linear case using a large signal equivalent of a nonlinear transmission line. 2 figs.

  2. Linear phase compressive filter

    DOEpatents

    McEwan, Thomas E.

    1995-01-01

    A phase linear filter for soliton suppression is in the form of a laddered series of stages of non-commensurate low pass filters with each low pass filter having a series coupled inductance (L) and a reverse biased, voltage dependent varactor diode, to ground which acts as a variable capacitance (C). L and C values are set to levels which correspond to a linear or conventional phase linear filter. Inductance is mapped directly from that of an equivalent nonlinear transmission line and capacitance is mapped from the linear case using a large signal equivalent of a nonlinear transmission line.

  3. Ulysses and IMP-8 Observations of Cosmic Rays and So-lar Energetic Particles from the South Pole to the North Pole of the Sun near Solar Maximum*

    NASA Astrophysics Data System (ADS)

    McKibben, R. B.; Connell, J. J.; Lopate, C.; Zhang, M.

    2001-12-01

    The High Energy Telescope (HET) of the Ulysses COSPIN experiment measures intensities of galactic cosmic rays and solar energetic particles (SEPs) with good energy and charge resolution at energies above about 30 MeV/n. Since passing over the South Polar regions of the Sun near solar maximum in late 2000 Ulysses has been rapidly traversing solar latitude in its so-called Fast Latitude Scan (FLS), passing through perihelion near the sun's equator in May 2001. Maximum northern latitude (80.2 deg N) will be reached in October 2001. HET observations since the onset of solar activity, including the South Polar pass and the first part of the FLS, show that SEPs from large events were commonly observed at both Ulysses and Earth (IMP-8) regardless of the radial, latitudinal, or longitudinal separations between Ulysses and Earth. During the decay phases of the events intensities were often almost equal at Ulysses and IMP, even when Ulysses was over the Sun's South Pole and the associated flare site was in the northern hemisphere. This suggests that propagation of particles across the average interplanetary magnetic field in the inner heliosphere is effective enough to relax longitudinal and latitudinal particle intensity gradients within a few days. For galactic cosmic rays, observations from the FLS so far show that latitudinal gradients resulting from solar modulation at solar maximum are <1%/degree, and are in fact consistent with zero to the accuracy of our measurements. The small gradients also suggest effective propagation in the latitudinal direction. We will report observations from the continuing FLS, give a first report of Ulysses observations over the sun's North Polar Regions, and discuss the significance of the results for models of energetic charged particle propagation through the heliosphere. * This work was supported in part by NASA Contract JPL-955432 and by NASA Grant NAG5-8032.

  4. Development of a solid-phase extraction system modified for preconcentration of emerging contaminants in large sample volumes from rivers of the lagoon system in the city of Rio de Janeiro, Brazil.

    PubMed

    Lopes, Vitor Sergio Almeida; Riente, Roselene Ribeiro; da Silva, Alexsandro Araújo; Torquilho, Delma Falcão; Carreira, Renato da Silva; Marques, Mônica Regina da Costa

    2016-09-15

    A single method modified for monitoring of emerging contaminants in river water was developed for large sample volumes. Water samples from rivers of the lagoon system in the city of Rio de Janeiro (Brazil) were analyzed by the SPE-HPLC-MS-TOF analytical method. Acetaminophen was detected in four rivers in the concentration range of 0.09μgL(-1) to 0.14μgL(-1). Salicylic acid was also found in the four rivers in the concentration range of 1.65μgL(-1) to 4.81μgL(-1). Bisphenol-A was detected in all rivers in the concentration range of 1.37μgL(-1) to 39.86μgL(-1). Diclofenac was found in only one river, with concentration of 0.22μgL(-1). The levels of emerging organic pollutants in the water samples of the Jacarepaguá hydrographical basin are significant. The compounds are not routinely monitored and present potential risks to environmental health. PMID:27241881

  5. Microwave performance characterization of large space antennas

    NASA Technical Reports Server (NTRS)

    Bathker, D. A. (Editor)

    1977-01-01

    Performance capabilities of large microwave space antenna configurations with apertures generally from 100 wavelengths upwards are discussed. Types of antennas considered include: phased arrays, lenses, reflectors, and hybrid combinations of phased arrays with reflectors or lenses. The performance characteristics of these broad classes of antennas are examined and compared in terms of applications.

  6. Clinical and genomic analysis of a randomised phase II study evaluating anastrozole and fulvestrant in postmenopausal patients treated for large operable or locally advanced hormone-receptor-positive breast cancer

    PubMed Central

    Quenel-Tueux, Nathalie; Debled, Marc; Rudewicz, Justine; MacGrogan, Gaetan; Pulido, Marina; Mauriac, Louis; Dalenc, Florence; Bachelot, Thomas; Lortal, Barbara; Breton-Callu, Christelle; Madranges, Nicolas; de Lara, Christine Tunon; Fournier, Marion; Bonnefoi, Hervé; Soueidan, Hayssam; Nikolski, Macha; Gros, Audrey; Daly, Catherine; Wood, Henry; Rabbitts, Pamela; Iggo, Richard

    2015-01-01

    Background: The aim of this study was to assess the efficacy of neoadjuvant anastrozole and fulvestrant treatment of large operable or locally advanced hormone-receptor-positive breast cancer not eligible for initial breast-conserving surgery, and to identify genomic changes occurring after treatment. Methods: One hundred and twenty post-menopausal patients were randomised to receive 1 mg anastrozole (61 patients) or 500 mg fulvestrant (59 patients) for 6 months. Genomic DNA copy number profiles were generated for a subgroup of 20 patients before and after treatment. Results: A total of 108 patients were evaluable for efficacy and 118 for toxicity. The objective response rate determined by clinical palpation was 58.9% (95% CI=45.0–71.9) in the anastrozole arm and 53.8% (95% CI=39.5–67.8) in the fulvestrant arm. The breast-conserving surgery rate was 58.9% (95% CI=45.0–71.9) in the anastrozole arm and 50.0% (95% CI=35.8–64.2) in the fulvestrant arm. Pathological responses >50% occurred in 24 patients (42.9%) in the anastrozole arm and 13 (25.0%) in the fulvestrant arm. The Ki-67 score fell after treatment but there was no significant difference between the reduction in the two arms (anastrozole 16.7% (95% CI=13.3–21.0) before, 3.2% (95% CI=1.9–5.5) after, n=43; fulvestrant 17.1% (95%CI=13.1–22.5) before, 3.2% (95% CI=1.8–5.7) after, n=38) or between the reduction in Ki-67 in clinical responders and non-responders. Genomic analysis appeared to show a reduction of clonal diversity following treatment with selection of some clones with simpler copy number profiles. Conclusions: Both anastrozole and fulvestrant were effective and well-tolerated, enabling breast-conserving surgery in over 50% of patients. Clonal changes consistent with clonal selection by the treatment were seen in a subgroup of patients. PMID:26171933

  7. Solid phase extraction membrane

    SciTech Connect

    Carlson, Kurt C; Langer, Roger L

    2002-11-05

    A wet-laid, porous solid phase extraction sheet material that contains both active particles and binder and that possesses excellent wet strength is described. The binder is present in a relatively small amount while the particles are present in a relatively large amount. The sheet material is sufficiently strong and flexible so as to be pleatable so that, for example, it can be used in a cartridge device.

  8. Phase Won.

    ERIC Educational Resources Information Center

    Kocher, Erik

    2003-01-01

    Describes ten steps involved in successful renovation of a college recreation center. They are as follows: hire the right architect, be realistic about costs, devise a plan, do a mental walk through, approach the renovation in phases, communicate to users, expect lost revenue and displacement issues, continue to communicate with architects and…

  9. The large binocular telescope.

    PubMed

    Hill, John M

    2010-06-01

    The Large Binocular Telescope (LBT) Observatory is a collaboration among institutions in Arizona, Germany, Italy, Indiana, Minnesota, Ohio, and Virginia. The telescope on Mount Graham in Southeastern Arizona uses two 8.4 m diameter primary mirrors mounted side by side. A unique feature of the LBT is that the light from the two Gregorian telescope sides can be combined to produce phased-array imaging of an extended field. This cophased imaging along with adaptive optics gives the telescope the diffraction-limited resolution of a 22.65 m aperture and a collecting area equivalent to an 11.8 m circular aperture. This paper describes the design, construction, and commissioning of this unique telescope. We report some sample astronomical results with the prime focus cameras. We comment on some of the technical challenges and solutions. The telescope uses two F/15 adaptive secondaries to correct atmospheric turbulence. The first of these adaptive mirrors has completed final system testing in Firenze, Italy, and is planned to be at the telescope by Spring 2010. PMID:20517352

  10. Large bowel resection - slideshow

    MedlinePlus

    ... this page: //medlineplus.gov/ency/presentations/100089.htm Large bowel resection - Series To use the sharing features ... 6 out of 6 Normal anatomy Overview The large bowel [large intestine or the colon] is part ...

  11. Infrared metamaterial phase holograms

    NASA Astrophysics Data System (ADS)

    Larouche, Stéphane; Tsai, Yu-Ju; Tyler, Talmage; Jokerst, Nan M.; Smith, David R.

    2012-05-01

    As a result of advances in nanotechnology and the burgeoning capabilities for fabricating materials with controlled nanoscale geometries, the traditional notion of what constitutes an optical device continues to evolve. The fusion of maturing low-cost lithographic techniques with newer optical design strategies has enabled the introduction of artificially structured metamaterials in place of conventional materials for improving optical components as well as realizing new optical functionality. Here we demonstrate multilayer, lithographically patterned, subwavelength, metal elements, whose distribution forms a computer-generated phase hologram in the infrared region (10.6 μm). Metal inclusions exhibit extremely large scattering and can be implemented in metamaterials that exhibit a wide range of effective medium response, including anomalously large or negative refractive index; optical magnetism; and controlled anisotropy. This large palette of metamaterial responses can be leveraged to achieve greater control over the propagation of light, leading to more compact, efficient and versatile optical components.

  12. Direct Measurement of Large, Diffuse, Optical Structures

    NASA Technical Reports Server (NTRS)

    Saif, Babak N.; Keski-Kuha, Ritva; Feinberg, Lee; Wyant, J. C.; Atkinson, C.

    2004-01-01

    Digital Speckle Pattern Interferometry (DSPI) is a well-established method for the measurement of diffuse objects in experimental mechanics. DSPIs are phase shifting interferometers. Three or four bucket temporal phase shifting algorithms are commonly used to provide phase shifting. These algorithms are sensitive to vibrations and can not be used to measure large optical structures far away from the interferometer. In this research a simultaneous phase shifted interferometer, PhaseCam product of 4D Technology Corporation in Tucson Arizona, is modified to be a Simultaneous phase shifted Digital Speckle Pattern Interferometer (SDSPI). Repeatability, dynamic range, and accuracy of the SDSPI are characterized by measuring a 5 cm x 5 cm carbon fiber coupon.

  13. Large block migration experiments: INTRAVAL phase 1, Test Case 9

    SciTech Connect

    Gureghian, A.B.; Noronha, C.J. . Office of Waste Technology Development); Vandergraaf, T.T. )

    1990-08-01

    The development of INTRAVAL Test Case 9, as presented in this report, was made possible by a past subsidiary agreement to the bilateral cooperative agreement between the US Department of Energy (DOE) and Atomic Energy of Canada Limited (AECL) encompassing various aspects of nuclear waste disposal research. The experimental aspect of this test case, which included a series of laboratory experiments designed to quantify the migration of tracers in a single, natural fracture, was undertaken by AECL. The numerical simulation of the results of these experiments was performed by the Battelle Office of Waste Technology Development (OWTD) by calibrating an in-house analytical code, FRACFLO, which is capable of predicting radionuclide transport in an idealized fractured rock. Three tracer migration experiments were performed, using nonsorbing uranine dye for two of them and sorbing Cs-137 for the third. In addition, separate batch experiments were performed to determine the fracture surface and rock matrix sorption coefficients for Cs-137. The two uranine tracer migration experiment were used to calculate the average fracture aperture and to calibrate the model for the fracture dispersivity and matrix diffusion coefficient. The predictive capability of the model was then tested by simulating the third, Cs-137, tracer test without changing the parameter values determined from the other experiments. Breakthrough curves of both the experimental and numerical results obtained at the outlet face of the fracture are presented for each experiment. The reported spatial concentration profiles for the rock matrix are based solely on numerical predictions. 22 refs., 12 figs., 8 tabs.

  14. Validating Phasing and Geometry of Large Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Standley, Shaun P.; Gautier, Thomas N.; Caldwell, Douglas A.; Rabbette, Maura

    2011-01-01

    The Kepler Mission is designed to survey our region of the Milky Way galaxy to discover hundreds of Earth-sized and smaller planets in or near the habitable zone. The Kepler photometer is an array of 42 CCDs (charge-coupled devices) in the focal plane of a 95-cm Schmidt camera onboard the Kepler spacecraft. Each 50x25-mm CCD has 2,200 x 1,024 pixels. The CCDs accumulate photons and are read out every six seconds to prevent saturation. The data is integrated for 30 minutes, and then the pixel data is transferred to onboard storage. The data is subsequently encoded and transmitted to the ground. During End-to-End Information System (EEIS) testing of the Kepler Mission System (KMS), there was a need to verify that the pixels requested by the science team operationally were correctly collected, encoded, compressed, stored, and transmitted by the FS, and subsequently received, decoded, uncompressed, and displayed by the Ground Segment (GS) without the outputs of any CCD modules being flipped, mirrored, or otherwise corrupted during the extensive FS and GS processing. This would normally be done by projecting an image on the focal plane array (FPA), collecting the data in a flight-like way, and making a comparison between the original data and the data reconstructed by the science data system. Projecting a focused image onto the FPA through the telescope would normally involve using a collimator suspended over the telescope opening. There were several problems with this approach: the collimation equipment is elaborate and expensive; as conceived, it could only illuminate a limited section of the FPA (.25 percent) during a given test; the telescope cover would have to be deployed during testing to allow the image to be projected into the telescope; the equipment was bulky and difficult to situate in temperature-controlled environments; and given all the above, test setup, execution, and repeatability were significant concerns. Instead of using this complicated approach of projecting an optical image on the FPA, the Kepler project developed a method using known defect features in the CCDs to verify proper collection and reassembly of the pixels, thereby avoiding the costs and risks of the optical projection approach. The CCDs composing the Kepler FPA, as all CCDs, had minor defects. At ambient temperature, some pixels look far brighter than they should. These ghot h pixels have a higher rate of charge leakage than the others due to manufacturing variations. They are usually stable over time, and appear at temperatures above 5 oC. The hot pixels on the Kepler FPA were mapped before photometer assembly during module testing. Selected hot pixels were used as target gstars h for the purposes of EEIS testing. gDead h pixels are permanently off, producing a permanently black pixel. These can also be used if there is some illumination of the FPA. During EEIS testing, Dark Current Full Frame Images (FFIs) taken at room temperature were used to create the hot pixel maps for all 84 Kepler photometer CCD channels. Data from two separate nights were used to create two hot pixel maps per channel, which were cross-correlated to remove cosmic ray events which appear to be hot pixels. These hot pixel maps obtained during EEIS testing were compared to the maps made during module testing to verify that the end-to-end data flow was correct.

  15. Instantons and Large N

    NASA Astrophysics Data System (ADS)

    Mariño, Marcos

    2015-09-01

    Preface; Part I. Instantons: 1. Instantons in quantum mechanics; 2. Unstable vacua in quantum field theory; 3. Large order behavior and Borel summability; 4. Non-perturbative aspects of Yang–Mills theories; 5. Instantons and fermions; Part II. Large N: 6. Sigma models at large N; 7. The 1=N expansion in QCD; 8. Matrix models and matrix quantum mechanics at large N; 9. Large N QCD in two dimensions; 10. Instantons at large N; Appendix A. Harmonic analysis on S3; Appendix B. Heat kernel and zeta functions; Appendix C. Effective action for large N sigma models; References; Author index; Subject index.

  16. Electroweak Phase Transitions

    NASA Astrophysics Data System (ADS)

    Anderson, Gregory Wayne

    An analytic treatment of the one Higgs doublet, electroweak phase transition is given. The phase transition is first order, occurs by the nucleation of thin walled bubbles, and completes at a temperature where the order parameter, _ {T}, is significantly smaller than it is when the origin becomes absolutely unstable. The rate of anomalous baryon number violation is an exponentially sensitive function of T. In very minimal extensions of the standard model it is quite easy to increase T so that anomalous baryon number violation is suppressed after completion of the phase transition. Hence baryogenesis at the electroweak phase transition is tenable in minimal extensions of the standard model. In some cases additional phase transitions are possible. For a light Higgs boson, when the top quark mass is sufficiently large, the state where the Higgs field has a vacuum expectation value = 246 GeV is not the true minimum of the Higgs potential. When this is the case, and when the top quark mass exceeds some critical value, thermal fluctuations in the early universe would have rendered the state = 246 GeV unstable. The requirement that the state = 246 GeV is sufficiently long lived constrains the masses of the Higgs boson and the top quark. Finally, we consider whether local phase transitions can be induced by heavy particles which act as seeds for deformations in the scalar field. Semi-classical reasoning suggests that, when a particle receives a contribution to its mass from the vacuum expectation value of a scalar, under certain conditions, the ground state of particle number one contains a 'dimple' or shallow scalar field condensate around the particle. We argue that this is not the case. A careful analysis, taking into account quantum mechanics, shows that the semi-classical approximation is a poor one. We find that there are no energetically favored one-particle dimple solutions for perturbative couplings.

  17. Electroweak phase transitions

    SciTech Connect

    Anderson, G.W.

    1991-09-16

    An analytic treatment of the one Higgs doublet, electroweak phase transition is given. The phase transition is first order, occurs by the nucleation of thin walled bubbles and completes at a temperature where the order parameter, {l angle}{phi}{r angle}{sub T} is significantly smaller than it is when the origin becomes absolutely unstable. The rate of anomalous baryon number violation is an exponentially function of {l angle}{phi}{r angle}{sub T}. In very minimal extensions of the standard model it is quite easy to increase {l angle}{phi}{r angle}{sub T} so that anomalous baryon number violation is suppressed after completion of the phase transition. Hence baryogenesis at the electroweak phase transition is tenable in minimal of the standard model. In some cases additional phase transitions are possible. For a light Higgs boson, when the top quark mass is sufficiently large, the state where the Higgs field has a vacuum expectation value {l angle}{phi}{r angle} = 246 GeV is not the true minimum of the Higgs potential. When this is the case, and when the top quark mass exceeds some critical value, thermal fluctuations in the early universe would have rendered the state {l angle}{phi}{r angle} = 246 GeV unstable. The requirement that the state {l angle}{phi}{r angle} = 246 GeV is sufficiently long lived constrains the masses of the Higgs boson and the top quark. Finally, we consider whether local phase transitions can be induced by heavy particles which act as seeds for deformations in the scalar field.

  18. Electroweak phase transitions

    SciTech Connect

    Anderson, G.W.

    1991-09-16

    An analytic treatment of the one Higgs doublet, electroweak phase transition is given. The phase transition is first order, occurs by the nucleation of thin walled bubbles and completes at a temperature where the order parameter, {l_angle}{phi}{r_angle}{sub T} is significantly smaller than it is when the origin becomes absolutely unstable. The rate of anomalous baryon number violation is an exponentially function of {l_angle}{phi}{r_angle}{sub T}. In very minimal extensions of the standard model it is quite easy to increase {l_angle}{phi}{r_angle}{sub T} so that anomalous baryon number violation is suppressed after completion of the phase transition. Hence baryogenesis at the electroweak phase transition is tenable in minimal of the standard model. In some cases additional phase transitions are possible. For a light Higgs boson, when the top quark mass is sufficiently large, the state where the Higgs field has a vacuum expectation value {l_angle}{phi}{r_angle} = 246 GeV is not the true minimum of the Higgs potential. When this is the case, and when the top quark mass exceeds some critical value, thermal fluctuations in the early universe would have rendered the state {l_angle}{phi}{r_angle} = 246 GeV unstable. The requirement that the state {l_angle}{phi}{r_angle} = 246 GeV is sufficiently long lived constrains the masses of the Higgs boson and the top quark. Finally, we consider whether local phase transitions can be induced by heavy particles which act as seeds for deformations in the scalar field.

  19. Adaptive Optics for Large Telescopes

    SciTech Connect

    Olivier, S

    2008-06-27

    The use of adaptive optics was originally conceived by astronomers seeking to correct the blurring of images made with large telescopes due to the effects of atmospheric turbulence. The basic idea is to use a device, a wave front corrector, to adjust the phase of light passing through an optical system, based on some measurement of the spatial variation of the phase transverse to the light propagation direction, using a wave front sensor. Although the original concept was intended for application to astronomical imaging, the technique can be more generally applied. For instance, adaptive optics systems have been used for several decades to correct for aberrations in high-power laser systems. At Lawrence Livermore National Laboratory (LLNL), the world's largest laser system, the National Ignition Facility, uses adaptive optics to correct for aberrations in each of the 192 beams, all of which must be precisely focused on a millimeter scale target in order to perform nuclear physics experiments.

  20. Phase noise measurement of phase modulation microwave photonic links

    NASA Astrophysics Data System (ADS)

    Ye, Quanyi; Chen, Zhengyu; Xu, Zhiguo; Gao, Yingjie

    2015-10-01

    Microwave photonic links (MPLs) can provide many advantages over traditional coaxial and waveguide solutions due to its low loss, small size, lightweight, large bandwidth, superior stability and immunity to external interference. It has been considered in various applications such as: the transmission of radio frequency (RF) signal over optical carriers, video television transmission, radar and communication systems. Stability of phase of the microwave photonic links is a critical issue in several realistic applications. The delay line technique for phase noise measurement of phase modulation microwave photonic links is measured for the first time. Using this approach, the input signal noise and power supply noise can be effectively cancelled, and it does not require phase locking. The phase noise of a microwave photonic links with a 10 GHz sinusoidal signal is experimentally demonstrated.

  1. {sup 129}I Interlaboratory comparison: phase I and phase II

    SciTech Connect

    Caffee, M W; Roberts, M L

    1999-09-30

    An interlaboratory comparison exercise for {sup 129}I was organized and conducted. Nine laboratories participated in the exercise to either a full or limited extent. In Phase I of the comparison, 11 samples were measured. The suite of samples contained both synthetic ''standard type'' materials (i.e., AgI) and environmental materials. The isotopic {sup 129}I/{sup 127}I ratios of the samples varied from 10{sup {minus}8} to 10{sup {minus}14}. In this phase, each laboratory was responsible for its own chemical preparation of the samples. In Phase I, the {sup 129}I AMS measurements for prepared AgI were in good agreement. However, large discrepancies were seen in {sup 129}I AMS measurements of environmental samples. Because of the large discrepancies seen in the Phase I {sup 129}I intercomparison, a subsequent study was conducted. In Phase II of the {sup 129}I intercomparison, three separate laboratories prepared AgI from two environmental samples (IAEA 375 soil and maples leaves). Each laboratory used its own chemical preparation method with each of the methods being distinctly different. The resulting six samples (two sets of three) were then re-distributed to the participating {sup 129}I AMS facilities and {sup 129}I/{sup 127}I ratios measured. Results and discussion of both the Phase I and Phase II interlaboratory comparison are presented.

  2. Apodized Phase Mask Coronagraphs

    NASA Astrophysics Data System (ADS)

    Carlotti, Alexis

    2013-01-01

    Among the optical instruments proposed to detect and characterize exoplanets, phase masks coronagraphs offer very small inner working angles. Designed for off-axis telescopes, their performance is greatly reduced when used with centrally obstructed apertures such as those of the Palomar telescope, the very large telescope, or the James Webb space telescope. However, a clear circular aperture is not the only pupil shape for which a phase mask coronagraph can work properly. In fact, for a given centrally obstructed aperture, we show that it is possible to compute optimal apodizers that help achieve stellar extinction levels similar to those obtained in the ideal case of an off-axis telescope. Trade-offs exist between these levels, the transmission of the apodizer, and the area covered by the Lyot stop. We detail the Fourier optics formalism that makes these optimizations possible, as well as a few examples of shaped pupils. Some are designed for a four-quadrants phase mask, and some others for a vortex phase mask. We also offer a comparison with a coronagraph solely composed of a shaped pupil.

  3. A cosmic superfluid phase

    NASA Technical Reports Server (NTRS)

    Gradwohl, Ben-Ami

    1991-01-01

    The universe may have undergone a superfluid-like phase during its evolution, resulting from the injection of nontopological charge into the spontaneously broken vacuum. In the presence of vortices this charge is identified with angular momentum. This leads to turbulent domains on the scale of the correlation length. By restoring the symmetry at low temperatures, the vortices dissociate and push the charges to the boundaries of these domains. The model can be scaled (phenomenologically) to very low energies, it can be incorporated in a late time phase transition and form large scale structure in the boundary layers of the correlation volumes. The novel feature of the model lies in the fact that the dark matter is endowed with coherent motion. The possibilities of identifying this flow around superfluid vortices with the observed large scale bulk motion is discussed. If this identification is possible, then the definite prediction can be made that a more extended map of peculiar velocities would have to reveal large scale circulations in the flow pattern.

  4. Optical encryption for large-sized images

    NASA Astrophysics Data System (ADS)

    Sanpei, Takuho; Shimobaba, Tomoyoshi; Kakue, Takashi; Endo, Yutaka; Hirayama, Ryuji; Hiyama, Daisuke; Hasegawa, Satoki; Nagahama, Yuki; Sano, Marie; Oikawa, Minoru; Sugie, Takashige; Ito, Tomoyoshi

    2016-02-01

    We propose an optical encryption framework that can encrypt and decrypt large-sized images beyond the size of the encrypted image using our two methods: random phase-free method and scaled diffraction. In order to record the entire image information on the encrypted image, the large-sized images require the random phase to widely diffuse the object light over the encrypted image; however, the random phase gives rise to the speckle noise on the decrypted images, and it may be difficult to recognize the decrypted images. In order to reduce the speckle noise, we apply our random phase-free method to the framework. In addition, we employ scaled diffraction that calculates light propagation between planes with different sizes by changing the sampling rates.

  5. Lars Onsager Prize: The mean field solution for Hard Sphere Jamming and a new scenario for the low temperature landscape of glasses

    NASA Astrophysics Data System (ADS)

    Parisi, Giorgio

    In a hard spheres systems particles cannot overlap. Increasing the density we reach a point where most of the particles are blocked and the density cannot be increased any more: this is the jamming point. The jamming point separates the phase, where all the constraint can be satisfied, from an unsatifiable phase, where spheres do have to overlap. A scaling theory of the behavior around the jamming critical point has been formulated and a few critical exponents have been introduced. The exponents are apparently super-universal, as far as they do seem to be independent from the space dimensions. The mean field version of the model (i.e. the infinite dimensions limit) has been solved analytically using broken replica symmetry techniques and the computed critical exponents have been found in a remarkable agreement with three-dimensional and two-dimensional numerical results and experiments. The theory predicts in hard spheres (in glasses) a new transition (the Gardener transition) from the replica symmetric phase to the replica broken phase at high density (at low temperature), in agreement with simulations on hard sphere systems. I will briefly discuss the possible consequences of this new picture on the very low temperature behavior of glasses in the quantum regime.

  6. Stability and support issues in the construction of large span caverns for physics

    SciTech Connect

    Laughton, C.; /Fermilab

    2008-05-01

    New physics experiments, proposed to study neutrinos and protons, call for the use of large underground particle detectors. In the United States, such detectors would be housed in the US Deep Underground Science and Engineering Laboratory (DUSEL), sited within the footprint of the defunct Homestake Mine, South Dakota. Although the experimental proposals differ in detail, all rely heavily upon the ability of the mined and reinforced rock mass to serve as a stable host for the detector facilities. Experimental proposals, based on the use of Water Cherenkov detector technology, specify rock caverns with excavated volumes in excess of half a million cubic meters, spans of at least 50 m, sited at depths of approximately one to 1.5 kilometers. Although perhaps sited at shallower depth, proposals based on the use of Liquid Argon (LAr) detector technology are no less challenging. LAr proposals not only call for the excavation of large span caverns, but have an additional need for the safe management of large quantities (kilo-tonnes) of cryogenic liquid, including critical provisions for the fail-safe egress of underground personnel and the reliable exhaust of Argon gas in the event of a catastrophic release. These multi-year, high value physics experiments will provide the key experimental data needed to support the research of a new generation of physicists as they probe the behavior of basic particles and the fundamental laws of nature. The rock engineer must deliver caverns that will reliably meet operational requirements and remain stable for periods conservatively estimated to be in excess of twenty years. This paper provides an overview of the DUSEL site conditions and discusses key end-user requirements and design criteria likely to dominate in determining the viability of experimental options. The paper stresses the paramount importance of collecting adequate site-specific data to inform early siting, dimensioning and layout decisions. Given the large-scale of the

  7. Athena: Assessment Phase Activities

    NASA Astrophysics Data System (ADS)

    Lumb, David; Ayre, Mark

    2015-09-01

    The Athena mission concept has been proposed by the community in response to science themes of the Hot and Energetic Universe. Unlike other, competitive, mission selection exercises this "Large" class observatory mission has essentially been pre-selected. Nevertheless it has to be demonstrated that Athena meets the programmatic constraints of 1Bn euro cost cap, and a readiness level appropriate for formal mission adoption by the end 2019. This should be confirmed through a Phase A study conducted with two parallel industry activities. We describe the technical and programmatic content of these and latest progress in space and ground segment definition.

  8. Transition of Bery Phase and Pancharatnam Phase and Phase Change

    NASA Astrophysics Data System (ADS)

    Fu, Guolan; Pan, Hui; Wang, Zisheng

    2016-07-01

    Berry Phase and time-dependent Pancharatnam phase are investigated for nuclear spin polarization in a liquid by a rotation magnetic field, where two-state mixture effect is exactly included in the geometric phases. We find that when the system of nuclear spin polarization is in the unpolarized state, the transitive phenomena of both Berry phase and Pancharatnam phase are taken place. For the polarized system, in contrast, such a transition is not taken place. It is obvious that the transitions of geometric phase correspond to the phase change of physical system.

  9. Large intestine (colon) (image)

    MedlinePlus

    The large intestine is the portion of the digestive system most responsible for absorption of water from the indigestible ... the ileum (small intestine) passes material into the large intestine at the cecum. Material passes through the ...

  10. Large displacement spherical joint

    DOEpatents

    Bieg, Lothar F.; Benavides, Gilbert L.

    2002-01-01

    A new class of spherical joints has a very large accessible full cone angle, a property which is beneficial for a wide range of applications. Despite the large cone angles, these joints move freely without singularities.

  11. Large active retrodirective arrays for space applications

    NASA Technical Reports Server (NTRS)

    Chernoff, R. C.

    1979-01-01

    An active retrodirective array (ARA) transmits a beam toward the apparent source of an illuminating signal called the pilot. The term active implies that the array produces, not merely reflects, RF power. Retrodirectivity is achieved by retransmitting from each element of the array a signal whose phase is the conjugate of that received by the element. The problem of supplying the correct phase reference to the phase conjugation circuit (PCC) is solved by central phasing. A new form of central phasing suitable for very large arrays is outlined. ARAs may serve simultaneously as transmitting and receiving satellite antennas for space applications. Precision pointing and input-output isolation is provided by exact frequency-translating PCCs. A two-element ARA breadboard has been built and tested.

  12. Phase II Final Report

    SciTech Connect

    Schuknecht, Nate; White, David; Hoste, Graeme

    2014-09-11

    The SkyTrough DSP will advance the state-of-the-art in parabolic troughs for utility applications, with a larger aperture, higher operating temperature, and lower cost. The goal of this project was to develop a parabolic trough collector that enables solar electricity generation in the 2020 marketplace for a 216MWe nameplate baseload power plant. This plant requires an LCOE of 9¢/kWhe, given a capacity factor of 75%, a fossil fuel limit of 15%, a fossil fuel cost of $6.75/MMBtu, $25.00/kWht thermal storage cost, and a domestic installation corresponding to Daggett, CA. The result of our optimization was a trough design of larger aperture and operating temperature than has been fielded in large, utility scale parabolic trough applications: 7.6m width x 150m SCA length (1,118m2 aperture), with four 90mm diameter × 4.7m receivers per mirror module and an operating temperature of 500°C. The results from physical modeling in the System Advisory Model indicate that, for a capacity factor of 75%: The LCOE will be 8.87¢/kWhe. SkyFuel examined the design of almost every parabolic trough component from a perspective of load and performance at aperture areas from 500 to 2,900m2. Aperture-dependent design was combined with fixed quotations for similar parts from the commercialized SkyTrough product, and established an installed cost of $130/m2 in 2020. This project was conducted in two phases. Phase I was a preliminary design, culminating in an optimum trough size and further improvement of an advanced polymeric reflective material. This phase was completed in October of 2011. Phase II has been the detailed engineering design and component testing, which culminated in the fabrication and testing of a single mirror module. Phase II is complete, and this document presents a summary of the comprehensive work.

  13. Muon-induced background to proton decay in the p →K+ ν decay channel with large underground liquid argon TPC detectors

    NASA Astrophysics Data System (ADS)

    Klinger, J.; Kudryavtsev, V. A.; Richardson, M.; Spooner, N. J. C.

    2015-06-01

    Large liquid argon TPC detector programs such as LBNE and LAGUNA-LBNO will be able to make measurements of the proton lifetime which will outperform Cherenkov detectors in the proton decay channel p →K+ ν. At the large depths which are proposed for such experiments, a non-negligible source of isolated charged kaons may be produced in the showers of cosmogenic muons. We present an estimate of the cosmogenic muon background to proton decay in the p →K+ ν channel. The simulation of muon transport to a depth of 4 km w.e. is performed in the MUSIC framework and the subsequent propagation of muons and secondary particles in the vicinity of a cylindrical 20 kt LAr target is performed using GEANT4. An exposure time of 100 years is considered, with a rate of <0.0012 events/kt/year at 90% CL predicted from our simulations.

  14. Unfolding wrapped phase

    NASA Astrophysics Data System (ADS)

    Treviño-Palacios, Carlos Gerardo

    2015-11-01

    Phase unwrapping is the final step in phase extraction methods, which consists of recovering the correct phase from the wrapped phase by removing 2π discontinuities. The difference between the correct phase and the wrapped phase is the phase wrapping map. A new method for phase unwrapping is presented by identifying the phase wrapping map as a sequence of binary valued intermediate wrapping maps and iteratively removing them producing the correct phase by phase-wrapped unfolding. A path-following algorithm is presented to exemplify the phase wrapped unfolding method.

  15. 129I interlaboratory comparison: phase I and phase II results

    SciTech Connect

    Roberts, M.I.; Caffee, M.W.; Proctor, I.D.

    1997-07-01

    An interlaboratory comparison exercise for 129I was organized and conducted. A total of nine laboratories participated in the exercise to either a full or limited extent. In Phase I of the comparison, a suite of 11 samples were measured. The suite of samples contained both synthetic `standard type` materials (i.e., AgI) and environmental materials. The isotopic 129I/127I ratios of the samples varied from 10`-8 to 10`-14. In this phase, each laboratory was responsible for its own chemical preparation of the environmental samples. The 129I AMS measurements obtained at different laboratories for prepared AgI were in good agreement. However, large discrepancies were seen in 129I AMS measurements of environmental samples. Because of the large discrepancies seen in the Phase I intercomparison, a subsequent study was conducted. In Phase II of the comparison, AgI was prepared from two environmental samples (IAEA 375 soil and maples leaves) by three separate laboratories. Each laboratory used its own chemical preparation method with each of the methods being distinctly different. The resulting six samples (two sets of three) were then redistributed to the participating 129I AMS facilities and 129I/127I ratios measured. Results and discussion of both the Phase I and Phase II interlaboratory comparison are presented.

  16. Phase transitions in disordered systems

    NASA Astrophysics Data System (ADS)

    Hrahsheh, Fawaz Y.

    Disorder can have a wide variety of consequences for the physics of phase transitions. Some transitions remain unchanged in the presence of disorder while others are completely destroyed. In this thesis we study the effects of disorder on several classical and quantum phase transitions in condensed matter systems. After a brief introduction, we study the ferromagnetic phase transition in a randomly layered Heisenberg magnet using large-scale Monte-Carlo simulations. Our results provide numerical evidence for the exotic infinite-randomness scenario. We study classical and quantum smeared phase transitions in substitutional alloys A1-xBx. Our results show that the disorder completely destroys the phase transition with a pronounced tail of the ordered phase developing for all compositions x < 1. In addition, we find that short-ranged disorder correlations can have a dramatic effect on the transition. Moreover, we show an experimental realization of the composition-tuned ferromagnetic-to-paramagnetic quantum phase transition in Sr1-xCa xRuO3. We investigate the effects of disorder on first-order quantum phase transitions on the example of the N-color quantum Ashkin-Teller model. By means of a strong disorder renormalization group, we demonstrate that disorder rounds the first-order transition to a continuous one for both weak and strong coupling between the colors. Finally, we investigate the superfluid-insulator quantum phase transition of one-dimensional bosons with off-diagonal disorder by means of large-scale Monte-Carlo simulations. Beyond a critical disorder strength, we find nonuniversal, disorder dependent critical behavior.

  17. Active phase locking of thirty fiber channels using multilevel phase dithering method.

    PubMed

    Huang, Zhimeng; Tang, Xuan; Luo, Yongquan; Liu, Cangli; Li, Jianfeng; Zhang, Dayong; Wang, Xiaojun; Chen, Tunan; Han, Mei

    2016-03-01

    An active phase locking of a large-scale fiber array with thirty channels has been demonstrated experimentally. In the experiment, the first group of thirty phase controllers is used to compensate the phase noises between the elements and the second group of thirty phase modulators is used to impose additional phase disturbances to mimic the phase noises in the high power fiber amplifiers. A multi-level phase dithering algorithm using dual-level rectangular-wave phase modulation and time division multiplexing can achieve the same phase control as single/multi-frequency dithering technique, but without coherent demodulation circuit. The phase locking efficiency of 30 fiber channels is achieved about 98.68%, 97.82%, and 96.50% with no additional phase distortion, modulated phase distortion I (±1 rad), and phase distortion II (±2 rad), corresponding to the phase error of λ/54, λ/43, and λ/34 rms. The contrast of the coherent combined beam profile is about 89%. Experimental results reveal that the multi-level phase dithering technique has great potential in scaling to a large number of laser beams. PMID:27036760

  18. Active phase locking of thirty fiber channels using multilevel phase dithering method

    NASA Astrophysics Data System (ADS)

    Huang, Zhimeng; Tang, Xuan; Luo, Yongquan; Liu, Cangli; Li, Jianfeng; Zhang, Dayong; Wang, Xiaojun; Chen, Tunan; Han, Mei

    2016-03-01

    An active phase locking of a large-scale fiber array with thirty channels has been demonstrated experimentally. In the experiment, the first group of thirty phase controllers is used to compensate the phase noises between the elements and the second group of thirty phase modulators is used to impose additional phase disturbances to mimic the phase noises in the high power fiber amplifiers. A multi-level phase dithering algorithm using dual-level rectangular-wave phase modulation and time division multiplexing can achieve the same phase control as single/multi-frequency dithering technique, but without coherent demodulation circuit. The phase locking efficiency of 30 fiber channels is achieved about 98.68%, 97.82%, and 96.50% with no additional phase distortion, modulated phase distortion I (±1 rad), and phase distortion II (±2 rad), corresponding to the phase error of λ/54, λ/43, and λ/34 rms. The contrast of the coherent combined beam profile is about 89%. Experimental results reveal that the multi-level phase dithering technique has great potential in scaling to a large number of laser beams.

  19. Describing phase coexistence in systems with small phases

    NASA Astrophysics Data System (ADS)

    Lovett, R.

    2007-02-01

    Clusters of atoms can be studied in molecular beams and by computer simulation; 'liquid drops' provide elementary models for atomic nuclei and for the critical nuclei of nucleation theory. These clusters are often described in thermodynamic terms, but the behaviour of small clusters near a phase boundary is qualitatively different from the behaviour at a first order phase transition in idealized thermodynamics. In the idealized case the density and entropy show mathematically sharp discontinuities when the phase boundary is crossed. In large, but finite, systems, the phase boundaries become regions of state space wherein these properties vary rapidly but continuously. In small clusters with a large surface/volume ratio, however, the positive interfacial free energy makes it unlikely, even in states on phase boundaries, that a cluster will have a heterogeneous structure. What is actually seen in these states is a structure that fluctuates in time between homogeneous structures characteristic of the two sides of the phase boundary. That is, structural fluctuations are observed. Thermodynamics only predicts average properties; statistical mechanics is required to understand these fluctuations. Failure to distinguish thermodynamic properties and characterizations of fluctuations, particularly in the context of first order phase transitions, has led to suggestions that the classical rules for thermodynamic stability are violated in small systems and that classical thermodynamics provides an inconsistent description of these systems. Much of the confusion stems from taking statistical mechanical identifications of thermodynamic properties, explicitly developed for large systems, and applying them uncritically to small systems. There are no inconsistencies if thermodynamic properties are correctly identified and the distinction between thermodynamic properties and fluctuations is made clear.

  20. Photoinduced phase transitions.

    PubMed

    Bennemann, K H

    2011-02-23

    Optically induced ultrafast electronic excitations with sufficiently long lifetimes may cause strong effects on phase transitions like structural and nonmetal→metal ones and on supercooling, supersaturation, etc. Examples are the transitions diamond→graphite, graphite→graphene, non-metal→metal, solid→liquid and vapor→liquid, solid. Photoinduced formation of graphene and water condensation of saturated or supersaturated vapor due to increased bonding amongst water molecules are of particular interest. These nonequilibrium transitions are an ultrafast response, on a few hundred fs time scale, to the fast low to large energy electronic excitations. The energy of the photons is converted into electronic energy via electronic excitations changing the cohesive energy. This changes the chemical potential controlling the phase transition. In view of the advances in laser optics photon induced transitions are expected to become an active area in nonequilibrium physics and phase transition dynamics. Conservation laws like energy or angular momentum conservation control the time during which the transitions occur. Since the photon induced effects result from weakening or strengthening of the bonding between the atoms or molecules transitions like solid/liquid, etc can be shifted in both directions. Photoinduced transitions will be discussed from a unified point of view. PMID:21411879

  1. Four-phase differential phase shift resolver

    NASA Technical Reports Server (NTRS)

    Hopkins, P. M.; Wallingford, W. M.

    1973-01-01

    Two systems have been developed to resolve phase uncertainty without transmitting reference signals. In both methods signal is impressed on carrier as differential, rather than absolute, phase shift. At the receiver four-phase demodulation and logic process unambiguously resolves differential phase shift of input carrier.

  2. Large mode radius resonators

    NASA Technical Reports Server (NTRS)

    Harris, Michael R.

    1987-01-01

    Resonator configurations permitting operation with large mode radius while maintaining good transverse mode discrimination are considered. Stable resonators incorporating an intracavity telescope and unstable resonator geometries utilizing an output coupler with a Gaussian reflectivity profile are shown to enable large radius single mode laser operation. Results of heterodyne studies of pulsed CO2 lasers with large (11mm e sup-2 radius) fundamental mode sizes are presented demonstrating minimal frequency sweeping in accordance with the theory of laser-induced medium perturbations.

  3. Computerized Torque Control for Large dc Motors

    NASA Technical Reports Server (NTRS)

    Willett, Richard M.; Carroll, Michael J.; Geiger, Ronald V.

    1987-01-01

    Speed and torque ranges in generator mode extended. System of shunt resistors, electronic switches, and pulse-width modulation controls torque exerted by large, three-phase, electronically commutated dc motor. Particularly useful for motor operating in generator mode because it extends operating range to low torque and high speed.

  4. Linearity optimization in a class of analog phase modulators

    NASA Technical Reports Server (NTRS)

    Hearn, C. P.

    1985-01-01

    This paper examines the ultimate modulating linearity attainable with a phase modulation technique based on the linear addition of quadrature phase carrier signals which have been multiplied by precisely defined nonlinear transformations of the modulating signal. Optimum gain coefficients are derived and plotted to permit implementation of analog phase modulators capable of exceptionally good linearity of phase deviations as large as 5 radians.

  5. Deflectometric measurement of large mirrors

    NASA Astrophysics Data System (ADS)

    Olesch, Evelyn; Häusler, Gerd; Wörnlein, André; Stinzing, Friedrich; van Eldik, Christopher

    2014-06-01

    We discuss the inspection of large-sized, spherical mirror tiles by `Phase Measuring Deflectometry' (PMD). About 10 000 of such mirror tiles, each satisfying strict requirements regarding the spatial extent of the point-spread-function (PSF), are planned to be installed on the Cherenkov Telescope Array (CTA), a future ground-based instrument to observe the sky in very high energy gamma-rays. Owing to their large radii of curvature of up to 60 m, a direct PSF measurement of these mirrors with concentric geometry requires large space. We present a PMD sensor with a footprint of only 5×2×1.2 m3 that overcomes this limitation. The sensor intrinsically acquires the surface slope; the shape data are calculated by integration. In this way, the PSF can be calculated for real case scenarios, e.g., when the light source is close to infinity and off-axis. The major challenge is the calibration of the PMD sensor, specifically because the PSF data have to be reconstructed from different camera views. The calibration of the setup is described, and measurements presented and compared to results obtained with the direct approach.

  6. Large Active Retrodirective Arrays for Space Applications

    NASA Technical Reports Server (NTRS)

    Chernoff, R. C.

    1978-01-01

    An active retrodirective array (ARA) electronically points a microwave beam back at the apparent source of an incident pilot signal. Retrodirectivity is the result of phase conjugation of the pilot signal received by each element of the array. The problem of supplying the correct phase reference to the phase conjugation circuit (PCC) associated with each element of the array is solved by central phasing. By eliminating the need for structural rigidity, central phasing confers a decisive advantage on ARA's as large spaceborne antennas. A new form of central phasing suitable for very large arrays is described. ARA's may easily be modified to serve both as transmitting and receiving arrays simultaneously. Two new kinds of exact, frequency translating PCC's are described. Such PCC's provide the ARA with input-output isolation and freedom from squint. The pointing errors caused by the radial and transverse components of the ARA's velocity, by the propagation medium, and by multipath are discussed. A two element ARA breadboard was built and tested at JPL. Its performance is limited primarily by multipath induced errors.

  7. Large Print Bibliography, 1990.

    ERIC Educational Resources Information Center

    South Dakota State Library, Pierre.

    This bibliography lists materials that are available in large print format from the South Dakota State Library. The annotated entries are printed in large print and include the title of the material and its author, call number, publication date, and type of story or subject area covered. Some recorded items are included in the list. The entries…

  8. Large wind turbine generators

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Donovon, R. M.

    1978-01-01

    The development associated with large wind turbine systems is briefly described. The scope of this activity includes the development of several large wind turbines ranging in size from 100 kW to several megawatt levels. A description of the wind turbine systems, their programmatic status and a summary of their potential costs is included.

  9. LARGE BUILDING RADON MANUAL

    EPA Science Inventory

    The report summarizes information on how bilding systems -- especially the heating, ventilating, and air-conditioning (HVAC) system -- inclurence radon entry into large buildings and can be used to mitigate radon problems. It addresses the fundamentals of large building HVAC syst...

  10. Large Scale Computing

    NASA Astrophysics Data System (ADS)

    Capiluppi, Paolo

    2005-04-01

    Large Scale Computing is acquiring an important role in the field of data analysis and treatment for many Sciences and also for some Social activities. The present paper discusses the characteristics of Computing when it becomes "Large Scale" and the current state of the art for some particular application needing such a large distributed resources and organization. High Energy Particle Physics (HEP) Experiments are discussed in this respect; in particular the Large Hadron Collider (LHC) Experiments are analyzed. The Computing Models of LHC Experiments represent the current prototype implementation of Large Scale Computing and describe the level of maturity of the possible deployment solutions. Some of the most recent results on the measurements of the performances and functionalities of the LHC Experiments' testing are discussed.

  11. Magnetic Phases in Dense Quark Matter

    SciTech Connect

    Incera, Vivian de la

    2007-10-26

    In this paper I discuss the magnetic phases of the three-flavor color superconductor. These phases can take place at different field strengths in a highly dense quark system. Given that the best natural candidates for the realization of color superconductivity are the extremely dense cores of neutron stars, which typically have very large magnetic fields, the magnetic phases here discussed could have implications for the physics of these compact objects.

  12. Multi-pore carbon phase plate for phase-contrast transmission electron microscopy.

    PubMed

    Sannomiya, Takumi; Junesch, Juliane; Hosokawa, Fumio; Nagayama, Kuniaki; Arai, Yoshihiro; Kayama, Yoko

    2014-11-01

    A new fabrication method of carbon based phase plates for phase-contrast transmission electron microscopy is presented. This method utilizes colloidal masks to produce pores as well as disks on thin carbon membranes for phase modulation. Since no serial process is involved, carbon phase plate membranes containing hundreds of pores can be mass-produced on a large scale, which allows "disposal" of contaminated or degraded phase modulating objects after use. Due to the spherical shape of the mask colloid particles, the produced pores are perfectly circular. The pore size and distribution can be easily tuned by the mask colloid size and deposition condition. By using the stencil method, disk type phase plates can also be fabricated on a pore type phase plate. Both pore and disk type phase plates were tested by measuring amorphous samples and confirmed to convert the sinus phase contrast transfer function to the cosine shape. PMID:25129640

  13. Phase unwrapping using discontinuity optimization

    SciTech Connect

    Flynn, T.J.

    1998-03-01

    In SAR interferometry, the periodicity of the phase must be removed using two-dimensional phase unwrapping. The goal of the procedure is to find a smooth surface in which large spatial phase differences, called discontinuities, are restricted to places where their presence is reasonable. The pioneering work of Goldstein et al. identified points of local unwrap inconsistency called residues, which must be connected by discontinuities. This paper presents an overview of recent work that treats phase unwrapping as a discrete optimization problem with the constraint that residues must be connected. Several algorithms use heuristic methods to reduce the total number of discontinuities. Constantini has introduced the weighted sum of discontinuity magnitudes as a criterion of unwrap error and shown how algorithms from optimization theory are used to minimize it. Pixels of low quality are given low weight to guide discontinuities away from smooth, high-quality regions. This method is generally robust, but if noise is severe it underestimates the steepness of slopes and the heights of peaks. This problem is mitigated by subtracting (modulo 2{pi}) a smooth estimate of the unwrapped phase from the data, then unwrapping the resulting residual phase. The unwrapped residual is added to the smooth estimate to produce the final unwrapped phase. The estimate can be computed by lowpass filtering of an existing unwrapped phase; this makes possible an iterative algorithm in which the result of each iteration provides the estimate for the next. An example illustrates the results of optimal discontinuity placement and the improvement from unwrapping of the residual phase.

  14. Large bowel resection - discharge

    MedlinePlus

    ... large bowel). You may also have had a colostomy . ... have diarrhea. You may have problems with your colostomy. ... protect it if needed. If you have a colostomy, follow care instructions from your provider. Sitting on ...

  15. Large Customers (DR Sellers)

    SciTech Connect

    Kiliccot, Sila

    2011-10-25

    State of the large customers for demand response integration of solar and wind into electric grid; openADR; CAISO; DR as a pseudo generation; commercial and industrial DR strategies; California regulations

  16. Large scale dynamic systems

    NASA Technical Reports Server (NTRS)

    Doolin, B. F.

    1975-01-01

    Classes of large scale dynamic systems were discussed in the context of modern control theory. Specific examples discussed were in the technical fields of aeronautics, water resources and electric power.

  17. Closed Large Cell Clouds

    Atmospheric Science Data Center

    2013-04-19

    article title:  Closed Large Cell Clouds in the South Pacific     ... unperturbed by cyclonic or frontal activity. When the cell centers are cloudy and the main sinking motion is concentrated at cell ...

  18. Large wood recruitment and transport during large floods: A review

    NASA Astrophysics Data System (ADS)

    Comiti, F.; Lucía, A.; Rickenmann, D.

    2016-09-01

    Large wood (LW) elements transported during large floods are long known to have the capacity to induce dangerous obstructions along the channel network, mostly at bridges and at hydraulic structures such as weirs. However, our current knowledge of wood transport dynamics during high-magnitude flood events is still very scarce, mostly because these are (locally) rare and thus unlikely to be directly monitored. Therefore, post-event surveys are invaluable ways to get insights (although indirectly) on LW recruitment processes, transport distance, and factors inducing LW deposition - all aspects that are crucial for the proper management of river basins related to flood hazard mitigation. This paper presents a review of the (quite limited) literature available on LW transport during large floods, drawing extensively on the authors' own experience in mountain and piedmont rivers, published and unpublished. The overall picture emerging from these studies points to a high, catchment-specific variability in all the different processes affecting LW dynamics during floods. Specifically, in the LW recruitment phase, the relative floodplain (bank erosion) vs. hillslope (landslide and debris flows) contribution in mountain rivers varies substantially, as it relates to the extent of channel widening (which depends on many variables itself) but also to the hillslope-channel connectivity of LW mobilized on the slopes. As to the LW transport phase within the channel network, it appears to be widely characterized by supply-limited conditions; whereby LW transport rates (and thus volumes) are ultimately constrained by the amount of LW that is made available to the flow. Indeed, LW deposition during floods was mostly (in terms of volume) observed at artificial structures (bridges) in all the documented events. This implies that the estimation of LW recruitment and the assessment of clogging probabilities for each structure (for a flood event of given magnitude) are the most important

  19. A large liquid argon time projection chamber for long-baseline, off-axis neutrino oscillation physics with the NuMI beam

    SciTech Connect

    Finley, D.; Jensen, D.; Jostlein, H.; Marchionni, A.; Pordes, S.; Rapidis, P.A.; Bromberg, C.; Lu, C.; McDonald, T.; Gallagher, H.; Mann, A.; Schneps, J.; Cline, D.; Sergiampietri, F.; Wang, H.; Curioni, A.; Fleming, B.T.; Menary, S.; /York U., Canada

    2005-09-01

    Results from neutrino oscillation experiments in the last ten years have revolutionized the field of neutrino physics. While the overall oscillation picture for three neutrinos is now well established and precision measurements of the oscillation parameters are underway, crucial issues remain. In particular, the hierarchy of the neutrino masses, the structure of the neutrino mixing matrix, and, above all, CP violation in the neutrino sector are the primary experimental challenges in upcoming years. A program that utilizes the newly commissioned NuMI neutrino beamline, and its planned upgrades, together with a high-performance, large-mass detector will be in an excellent position to provide decisive answers to these key neutrino physics questions. A Liquid Argon time projection chamber (LArTPC) [2], which combines fine-grained tracking, total absorption calorimetry, and scalability, is well matched for this physics program. The few-millimeter-scale spatial granularity of a LArTPC combined with dE/dx measurements make it a powerful detector for neutrino oscillation physics. Scans of simulated event samples, both directed and blind, have shown that electron identification in {nu}{sub e} charged current interactions can be maintained at an efficiency of 80%. Backgrounds for {nu}{sub e} appearance searches from neutral current events with a {pi}{sup 0} are reduced well below the {approx} 0.5-1.0% {nu}{sub e} contamination of the {nu}{sub {mu}} beam [3]. While the ICARUS collaboration has pioneered this technology and shown its feasibility with successful operation of the T600 (600-ton) LArTPC [4], a detector for off-axis, long-baseline neutrino physics must be many times more massive to compensate for the low event rates. We have a baseline concept [5] based on the ICARUS wire plane structure and commercial methods of argon purification and housed in an industrial liquefied-natural-gas tank. Fifteen to fifty kton liquid argon capacity tanks have been considered. A very

  20. Updated constraints on large field hybrid inflation

    NASA Astrophysics Data System (ADS)

    Clesse, Sébastien; Rekier, Jérémy

    2014-10-01

    We revisit the status of hybrid inflation in the light of Planck and recent BICEP2 results, taking care of possible transient violations of the slow-roll conditions as the field passes from the large field to the vacuum dominated phase. The usual regime where observable scales exit the Hubble radius in the vacuum dominated phase predicts a blue scalar spectrum, which is ruled out. But whereas assuming slow-roll one expects this regime to be generic, by solving the exact dynamics we identify the parameter space for which the small field phase is naturally avoided due to slow-roll violations at the end of the large field phase. When the number of e -folds generated at small field is negligible, the model predictions are degenerated with those of a quadratic potential. There exists also a transitory case for which the small field phase is sufficiently long to affect importantly the observable predictions. Interestingly, in this case the spectral index and the tensor to scalar ratio agree respectively with the best fit of Planck and BICEP2. This results in a Δ χ2≃5.0 in favor of hybrid inflation for Planck+BICEP 2 (Δ χ2≃0.9 for Planck only). The last considered regime is when the critical point at which inflation ends is located in the large field phase. It is constrained to be lower than about ten times the reduced Planck mass. The analysis has been conducted with the use of Markov-chain-Monte-Carlo Bayesian method, in a reheating consistent way, and we present the posterior probability distributions for all the model parameters.