Science.gov

Sample records for phase lar large

  1. ICARUS: An Innovative Large LAR Detector for Neutrino Physics

    SciTech Connect

    Vignoli, C.; Barni, D.; Disdier, J. M.; Rampoldi, D.; Passardi, G.

    2006-04-27

    ICARUS is an international project that foresees the installation of very large LAr detectors inside the Gran Sasso underground laboratory in order to be sensitive to rare phenomena of particle physics. The detection technique is based on the collection of electrons produced by particle interactions in LAr by a matrix of thousands of thin wires. At the moment the project foresees the installation of a 600,000-kg vessel (T600). The total amount of LAr can be expanded in a modular way to masses of the order of 106 kg. The T600 houses two identical 300,000-kg Ar sub-cryostats that are aluminum boxes about 20-m long, 4-m high and 4-m wide. Safety requirements for the underground installation have led to a unique design for the vessels to prevent LAr spillages even in the case of inner cryostat failure. Electrons must drift over meters requiring the development of special gas and liquid Ar purification units to provide an extremely high LAr purity (better then 0.1 ppb). The cooling system has been designed to assure a high thermal uniformity in the detector volume (less than 1-K differential). The cryogenic system associated with the final ICARUS configuration is based on three N2 refrigerators, three 30-m3 tanks and pump driven two-phase N2 forced-flow cooling of the various sub-systems. The T600 was successfully tested in Pavia in 2001 and it is now under installation in Gran Sasso for final operation. The future mass expansion strategy is under investigation.

  2. LArGe R&D for active background suppression in Gerda

    NASA Astrophysics Data System (ADS)

    Agostini, M.; Barnabé-Heider, M.; Budjáš, D.; Cattadori, C.; D'Andragora, A.; Gangapshev, A.; Gusev, K.; Heisel, M.; Junker, M.; Klimenko, A.; Schönert, S.; Smolnikov, A.; Zuzel, G.

    2012-07-01

    LArGe is a GERDA low-background test facility to study novel background suppression methods in a low-background environment, for future application in the GERDA experiment. Similar to GERDA, LArGe operates bare germanium detectors submersed into liquid argon (1 m3, 1.4tons), which in addition is instrumented with photomultipliers to detect argon scintillation light. The light is used in anti-coincidence with the germanium detectors to effectively suppress background events that deposit energy in the liquid argon. The background suppression efficiency was studied in combination with a pulse shape discrimination (PSD) technique using a BEGe detector for various sources, which represent characteristic backgrounds to GERDA. Suppression factors of a few times 103 have been achieved. First background data of LArGe with a coaxial HPGe detector (without PSD) yield a background index of the order 10-2 cts/(keV-kg-y), which is at the level of the GERDA phase I design goal. As a consequence of these results, the development of an active liquid argon veto in GERDA is pursued.

  3. LArGe: active background suppression using argon scintillation for the Gerda 0ν β β -experiment

    NASA Astrophysics Data System (ADS)

    Agostini, M.; Barnabé-Heider, M.; Budjáš, D.; Cattadori, C.; Gangapshev, A.; Gusev, K.; Heisel, M.; Junker, M.; Klimenko, A.; Lubashevskiy, A.; Pelczar, K.; Schönert, S.; Smolnikov, A.; Zuzel, G.

    2015-10-01

    LArGe is a Gerda low-background test facility to study novel background suppression methods in a low-background environment, for future application in the Gerda experiment. Similar to Gerda, LArGe operates bare germanium detectors submersed into liquid argon (1 m^3, 1.4 tons), which in addition is instrumented with photomultipliers to detect argon scintillation light. The scintillation signals are used in anti-coincidence with the germanium detectors to effectively suppress background events that deposit energy in the liquid argon. The background suppression efficiency was studied in combination with a pulse shape discrimination (PSD) technique using a BEGe detector for various sources, which represent characteristic backgrounds to Gerda. Suppression factors of a few times 10^3 have been achieved. First background data of LArGe with a coaxial HPGe detector (without PSD) yield a background index of (0.12-4.6)× 10^{-2} cts/(keV kg year) (90 % C.L.), which is at the level of Gerda Phase I. Furthermore, for the first time we monitor the natural ^{42}Ar abundance (parallel to Gerda), and have indication for the 2ν β β -decay in natural germanium. These results show the effectivity of an active liquid argon veto in an ultra-low background environment. As a consequence, the implementation of a liquid argon veto in Gerda Phase II is pursued.

  4. Wire-Cell Tomographic Event Reconstruction for large LArTPCs

    NASA Astrophysics Data System (ADS)

    Qian, Xin; Viren, Brett; Zhang, Chao; Wire-Cell Team

    2016-03-01

    Event reconstruction is one of the most challenging tasks in analyzing the data from current and future large liquid argon time projection chambers (LArTPCs). The performance of the event reconstruction holds the key to many potential future discoveries with the LArTPC technology including i) searching for new CP violation in the leptonic sector, ii) determining the neutrino mass hierarchy, and iii) searching for additional light (sterile) neutrino species. In this talk, we introduce a new reconstruction method: Wire-Cell. The principle of Wire-Cell strictly follows the principle of LArTPC, that is, the same amount of ionization electrons are observed by all the wire-planes. Using both time and charge information, 3D image of the event topologies are firstly obtained. Further reconstruction steps including the clustering, tracking, and particle identifications (PID) are then directly applied to the 3D image. The principle, current status, and future development plan of Wire-Cell will be described. The results of Wire-Cell event reconstruction will be shown with an innovative web-based ``BEE'' 3D event display. This work is supported by U.S. Department of Energy, Office of Science, Office of High Energy Physics and Early Career Research program under Contract Number DE-SC0012704.

  5. Lars Onsager Prize: Topological Defects in Condensed Matter Phases

    NASA Astrophysics Data System (ADS)

    Mineev, Vladimir

    2014-03-01

    Circulation quantization in superfluid 4He and superconductors. General principles of classification of topologically stable defects in ordered media. Superfluid phases of 3He. Topology at different scales of length. Superfluids under rotation. Biaxial nematics. Nonabelian disclinations. Half-quantum vortices: 3He-A, Sr2RuO4, exciton-polariton condensates, FFLO, Super Solid.

  6. The big fat LARS - a LArge Reservoir Simulator for hydrate formation and gas production

    NASA Astrophysics Data System (ADS)

    Beeskow-Strauch, Bettina; Spangenberg, Erik; Schicks, Judith M.; Giese, Ronny; Luzi-Helbing, Manja; Priegnitz, Mike; Klump, Jens; Thaler, Jan; Abendroth, Sven

    2013-04-01

    Simulating natural scenarios on lab scale is a common technique to gain insight into geological processes with moderate effort and expenses. Due to the remote occurrence of gas hydrates, their behavior in sedimentary deposits is largely investigated on experimental set ups in the laboratory. In the framework of the submarine gas hydrate research project (SUGAR) a large reservoir simulator (LARS) with an internal volume of 425 liter has been designed, built and tested. To our knowledge this is presently a word-wide unique set up. Because of its large volume it is suitable for pilot plant scale tests on hydrate behavior in sediments. That includes not only the option of systematic tests on gas hydrate formation in various sedimentary settings but also the possibility to mimic scenarios for the hydrate decomposition and subsequent natural gas extraction. Based on these experimental results various numerical simulations can be realized. Here, we present the design and the experimental set up of LARS. The prerequisites for the simulation of a natural gas hydrate reservoir are porous sediments, methane, water, low temperature and high pressure. The reservoir is supplied by methane-saturated and pre-cooled water. For its preparation an external gas-water mixing stage is available. The methane-loaded water is continuously flushed into LARS as finely dispersed fluid via bottom-and-top-located sparger. The LARS is equipped with a mantle cooling system and can be kept at a chosen set temperature. The temperature distribution is monitored at 14 reasonable locations throughout the reservoir by Pt100 sensors. Pressure needs are realized using syringe pump stands. A tomographic system, consisting of a 375-electrode-configuration is attached to the mantle for the monitoring of hydrate distribution throughout the entire reservoir volume. Two sets of tubular polydimethylsiloxan-membranes are applied to determine gas-water ratio within the reservoir using the effect of permeability

  7. Long-term operation of a double phase LAr LEM Time Projection Chamber with a simplified anode and extraction-grid design

    NASA Astrophysics Data System (ADS)

    Cantini, C.; Epprecht, L.; Gendotti, A.; Horikawa, S.; Murphy, S.; Natterer, G.; Periale, L.; Resnati, F.; Rubbia, A.; Sergiampietri, F.; Viant, T.; Wu, S.

    2014-03-01

    We report on the successful operation of a double phase Liquid Argon Large Electron Multiplier Time Projection Chamber (LAr LEM-TPC) equipped with two dimensional projective anodes with dimensions 10 × 10 cm2, and with a maximum drift length of 21 cm. The anodes were manufactured for the first time from a single multilayer printed circuit board (PCB). Various layouts of the readout views have been tested and optimised. In addition, the ionisation charge was efficiently extracted from the liquid to the gas phase with a single grid instead of two previously. We studied the response and the gain of the detector to cosmic muon tracks. To study long-term stability over several weeks, we continuously operated the chamber at fixed electric field settings. We reproducibly observe that after an initial decrease with a characteristic time of τ ≈ 1.6 days, the observed gain is stable. In 46 days of operation, a total of 14.6 million triggers have been collected at a stable effective gain of G∞ ~ 15 corresponding to a signal-to-noise ratio (S/N)gtrsim60 for minimum ionising tracks. During the full period, eight discharges across the LEM were observed. A maximum effective gain of 90 was also observed, corresponding to a signal-to-noise ratio (S/N)gtrsim400 for minimum ionising tracks, or S/N ≈ 10 for an energy deposition of 15 keV on a single readout channel.

  8. Phase I Study of the Anti-IGF-1R Monoclonal Antibody, Cixutumumab in Combination with Everolimus and Octreotide LAR in Advanced Low to Intermediate Grade Neuroendocrine Tumors

    PubMed Central

    Dasari, Arvind; Phan, Alexandria; Gupta, Sanjay; Rashid, Asif; Yeung, Sai-ChingJim; Hess, Kenneth; Chen, Helen; Tarco, Emily; Chen, Huiqin; Wei, Caimiao; Anh-Do, Kim; Halperin, Daniel; Meric-Bernstam, Funda; Yao, James

    2015-01-01

    Preclinical data suggest multiple roles for the insulin like growth factor receptor 1 (IGF-1R) in neuroendocrine tumors (NET) including mediating resistance to mTOR inhibitors. Everolimus, an oral mTOR inhibitor and octreotide LAR are approved for subgroups of well differentiated NET. The primary objective was to establish the safety and recommended phase II dose (RP2D) of cixutumumab, a monoclonal antibody against IGF-1R with everolimus and octreotide LAR. Patients with well differentiated NET were treated with everolimus 10 mg po daily, octreotide LAR 20 mg IM every 21 days and escalating doses of cixutumumab. An expansion cohort was enrolled at RP2D. Correlative studies included evaluation of mTOR pathway inhibition in paired tumor biopsies and effects of this combination on metabolism per indirect calorimetry. 19 patients with progressive disease, including 9 to the expansion portion were enrolled. 2 patients had dose limiting toxicities of grade 3 mucositis at cixutumumab 15 mg/kg. Long term tolerance at RP2D was problematic, the most common ≥ grade 3 adverse event (AE) being fatigue. One patient with metastatic insulinoma had a confirmed partial response while seventeen had stable disease. Median progression free survival was 43.6 weeks and median overall survival was 25.5 months. Conclusions The RP2D of this combination per predefined study protocol cixutumumab iv 10 mg/kg, octreotide LAR 20 mg IM every 21 days plus everolimus 10 mg po daily is associated with non-DLT toxicities limiting long term tolerance. Although a signal of activity was noted in this study, this will need to be reconciled with limited tolerance of the combination and data from larger studies of anti-IGF-1R monoclonal antibodies in NET that have been disappointing. PMID:25900182

  9. Postcrystallization metasomatism in shergottites: Evidence from the paired meteorites LAR 06319 and LAR 12011

    NASA Astrophysics Data System (ADS)

    Howarth, Geoffrey H.; Liu, Yang; Chen, Yang; Pernet-Fisher, John F.; Taylor, Lawrence A.

    2016-03-01

    Apatite is the major volatile-bearing phase in Martian meteorites, containing structurally bound fluorine, chlorine, and hydroxyl ions. In apatite, F is more compatible than Cl, which in turn is more compatible than OH. During degassing, Cl strongly partitions into the exsolved phase, whereas F remains in the melt. For these reasons, the volatile concentrations within apatite are predictable during magmatic differentiation and degassing. Here, we present compositional data for apatite and merrillite in the paired enriched, olivine-phyric shergottites LAR 12011 and LAR 06319. In addition, we calculate the relative volatile fugacities of the parental melts at the time of apatite formation. The apatites are dominantly OH-rich (calculated by stoichiometry) with variable yet high Cl contents. Although several other studies have found evidence for degassing in the late-stage mineral assemblage of LAR 06319, the apatite evolutionary trends cannot be reconciled with this interpretation. The variable Cl contents and high OH contents measured in apatites are not consistent with fractionation either. Volatile fugacity calculations indicate that water and fluorine activities remain relatively constant, whereas there is a large variation in the chlorine activity. The Martian crust is Cl-rich indicating that changes in Cl contents in the apatites may be related to an external crustal source. We suggest that the high and variable Cl contents and high OH contents of the apatite are the results of postcrystallization interaction with Cl-rich, and possibly water-rich, crustal fluids circulating in the Martian crust.

  10. Lar gibbon (Hylobates lar) great call reveals individual caller identity.

    PubMed

    Terleph, Thomas A; Malaivijitnond, S; Reichard, U H

    2015-07-01

    Gibbons (family Hylobatidae) produce loud, elaborate vocalizations (songs), often in well-coordinated male/female duets. The female's great call, the most conspicuous phrase of the gibbon vocal repertoire, functions primarily to mediate territorial defense. Despite the fact that lar gibbons (Hylobates lar) are the most widely distributed and well researched hylobatid species and produce a rich vocal repertoire, the individual-specificity of their great calls has not previously been quantified. In addition, spectral and temporal features of notes occurring at specific locations within the lar great call have not been described. Here we provide such a description, and test the hypothesis that great calls are statistically discriminable between a large sample of individual callers. We compared recordings of great calls from 14 wild lar females in Khao Yai National Park, Thailand. Our analyses of principal components derived from spectral and temporal measures, as well as spectrograms from the entire great call, indicate that acoustic variation is sufficient to allow identification of individual callers (83.5% discriminability based on principal components, and inter-individual call variation exceeding intra-individual variation in overall spectrogram). These vocalizations potentially allow individual recognition of animals. PMID:25800578

  11. Large phased-array radars

    SciTech Connect

    Brookner, D.E.

    1988-12-15

    Large phased-array radars can play a very important part in arms control. They can be used to determine the number of RVs being deployed, the type of targeting of the RVs (the same or different targets), the shape of the deployed objects, and possibly the weight and yields of the deployed RVs. They can provide this information at night as well as during the day and during rain and cloud covered conditions. The radar can be on the ground, on a ship, in an airplane, or space-borne. Airborne and space-borne radars can provide high resolution map images of the ground for reconnaissance, of anti-ballistic missile (ABM) ground radar installations, missile launch sites, and tactical targets such as trucks and tanks. The large ground based radars can have microwave carrier frequencies or be at HF (high frequency). For a ground-based HF radar the signal is reflected off the ionosphere so as to provide over-the-horizon (OTH) viewing of targets. OTH radars can potentially be used to monitor stealth targets and missile traffic.

  12. Lars, the Oracle

    NASA Astrophysics Data System (ADS)

    Careri, Giorgio

    Lars Onsager was known for his obscure but correct predictions in several fields of science. Some scientific events, particularly in the field of superfluidity, are recollected here by one of his old friends.

  13. Solar neutrino detection in a large volume double-phase liquid argon experiment

    NASA Astrophysics Data System (ADS)

    Franco, D.; Giganti, C.; Agnes, P.; Agostino, L.; Bottino, B.; Canci, N.; Davini, S.; De Cecco, S.; Fan, A.; Fiorillo, G.; Galbiati, C.; Goretti, A. M.; Hungerford, E. V.; Ianni, Al.; Ianni, An.; Jollet, C.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Pagani, L.; Pallavicini, M.; Pantic, E.; Pocar, A.; Razeti, M.; Renshaw, A. L.; Rossi, B.; Rossi, N.; Suvorov, Y.; Testera, G.; Tonazzo, A.; Wang, H.; Zavatarelli, S.

    2016-08-01

    Precision measurements of solar neutrinos emitted by specific nuclear reaction chains in the Sun are of great interest for developing an improved understanding of star formation and evolution. Given the expected neutrino fluxes and known detection reactions, such measurements require detectors capable of collecting neutrino-electron scattering data in exposures on the order of 1 ktonne-yr, with good energy resolution and extremely low background. Two-phase liquid argon time projection chambers (LAr TPCs) are under development for direct Dark Matter WIMP searches, which possess very large sensitive mass, high scintillation light yield, good energy resolution, and good spatial resolution in all three cartesian directions. While enabling Dark Matter searches with sensitivity extending to the ``neutrino floor'' (given by the rate of nuclear recoil events from solar neutrino coherent scattering), such detectors could also enable precision measurements of solar neutrino fluxes using the neutrino-electron elastic scattering events. Modeling results are presented for the cosmogenic and radiogenic backgrounds affecting solar neutrino detection in a 300 tonne (100 tonne fiducial) LAr TPC operating at LNGS depth (3,800 meters of water equivalent). The results show that such a detector could measure the CNO neutrino rate with ~15% precision, and significantly improve the precision of the 7Be and pep neutrino rates compared to the currently available results from the Borexino organic liquid scintillator detector.

  14. Integrated plan for LArTPC neutrino detectors in the US

    SciTech Connect

    Baller, B.; Fleming, B.; /Fermilab

    2009-11-01

    We present an integrated R&D plan aimed at demonstrating the ability to build a very large Liquid Argon Time Projection Chamber (LArTPC), on a scale suitable for use as a Far Detector for the LBNE neutrino oscillation experiment. This plan adopts current LArTPC R&D-related activities and proposes new ones to address questions that go beyond those being answered by the current efforts. We have employed a risk evaluation strategy to identify questions that can be answered (or risks that can be mitigated) through one or more R&D steps. In summary form, the plan consists of the following pre-existing components: (1) The Materials Test Stand program, now in operation at Fermilab, addressing questions pertaining to maintenance of argon purity; (2) Existing electronics test stands at FNAL and BNL; (3) The Liquid Argon Purity Demonstrator (LAPD) now being assembled at Fermilab; (4) The ArgoNeuT prototype LArTPC, now running in the NuMI beam; (5) The MicroBooNE experiment, proposed as a physics experiment that will advance our understanding of the LArTPC technology, now completing its conceptual design phase; (6) A software development effort that is well integrated across present and planned LArTPC detectors. We are proposing to add to these efforts the following: (1) A membrane cryostat mechanical prototype to evaluate and gain expertise with this technology; (2) An installation and integration prototype, to understand issues pertaining to detector assembly, particularly in an underground environment; (3) A {approx} 5% scale electronics systems test to understand system-wide issues as well as individual component reliability. (4) A calibration test stand that would consist of a small TPC to be exposed to a test beam for calibration studies, relevant for evaluation of physics sensitivities. We have developed a timeline and milestones for achieving these goals as discussed in Section 4. The proposed activities necessary for the final design of LAr20 are complete by CD3 in

  15. A Direct Comparison of HI and Lyα Morphologies in Two LARS Galaxies

    NASA Astrophysics Data System (ADS)

    Fitzgibbon, Kathleen; Cannon, John M.; Freeland, Emily; Hayes, Matthew; Östlin, Göran; LARS Team

    2016-01-01

    The Lyman-Alpha Reference Sample (LARS) and its extension (eLARS) represent an exhaustive campaign to reverse-engineer galaxies. The main goal is to understand how Lyα is transported within galaxies: what fraction of it escapes, and what physical properties affect Lyα morphology and radiative transport (e.g. dust and gas content, metallicity, kinematics, properties of the stellar population). Neutral hydrogen emission, which can be used to determine a galaxy's structure and kinematics, was observed using the B and C configurations of the Very Large Array in two galaxies from the sample: LARS02 and LARS09. Images of the HI mass surface density and of the intensity weighted HI velocity field were created at angular scales of ~8 arcseconds. Extended HI gas is detected at high significance up to ˜30 kpc from the optical body of LARS02. LARS09 has a severely disturbed optical morphology; our new HI observations reveal that LARS09 is interacting with the nearby field galaxy SDSS J082353.65+280622.2. In combination with direct imaging of the Lyα morphology from the Hubble Space Telescope, this program has produced the first direct comparison of Lyα and HI morphologies. These observations demonstrate concept for a significant observational campaign that will produce similar comparisons in the remaining 40 LARS+eLARS galaxies.KF was partially supported by a Science Education Award from the Howard Hughes Medical Institute (HHMI) to Macalester College.

  16. Octreotide LAR and tamoxifen versus tamoxifen in phase III randomize early breast cancer trials: NCIC CTG MA.14 and NSABP B-29.

    PubMed

    Chapman, Judith-Anne W; Costantino, Joseph P; Dong, Bin; Margolese, Richard G; Pritchard, Kathleen I; Shepherd, Lois E; Gelmon, Karen A; Wolmark, Norman; Pollak, Michael N

    2015-09-01

    NCIC CTG MA.14 and NSABP B-29 trials examined the addition of Octreotide LAR (OCT) to 5 years of tamoxifen (TAM). Gallbladder toxicity led to B-29 discontinuation of OCT, and MA.14 OCT administration shortened to 2 years. Median follow-up was 9.8 years for 667 MA.14 patients and 6.8 years for 893 B-29 patients. The primary endpoint was disease-free survival (DFS), defined as time from randomization to time of breast cancer recurrence; second primary cancer other than squamous or basal cell skin carcinoma, cervical carcinoma in situ, or lobular breast carcinoma in situ; or death. The primary statistical test was a univariable pooled stratified log-rank test; multivariable assessment was with Cox regression. For MA.14, 97% of patients were ≥50 years; for B-29, 62%. MA.14 patients were 53% lymph node negative (LN-) while B-29 were 100% LN-; 33% of MA.14 patients received adjuvant chemotherapy, 2% concurrently, while B-29 had 53% concurrent chemotherapy. MA.14 patients were 90% hormone receptor positive; B-29, 100%. MA.14 patients experienced 5-year DFS of 80% with TAM, 76% with TAM + OCT; B-29 patients had 5-year DFS of 88% for both arms. Pooled univariable TAM + OCT to TAM hazard ratio (HR) was 0.99 (95% CI 0.81-1.20; p = 0.69): for MA.14, HR = 0.94 (0.73-1.20; p = 0.50); for B-29, HR = 1.09 (0.80-1.50; p = 0.59). Multivariable pooled HR = 0.98 (0.81-1.20; p = 0.84). Older patients (p < 0.001), with higher T stage (p < 0.001), and LN + (p < 0.001) had shorter DFS. Addition of OCT to TAM did not significantly improve DFS; gallbladder toxicity shortened the additional administration of OCT. This does not negate targeting the insulin-IGF-I receptor family with less toxic therapeutics. PMID:26276354

  17. Octreotide LAR and tamoxifen versus tamoxifen in phase III randomize early breast cancer trials: NCIC CTG MA.14 and NSABP B-29

    PubMed Central

    Costantino, Joseph P.; Dong, Bin; Margolese, Richard G.; Pritchard, Kathleen I.; Shepherd, Lois E.; Gelmon, Karen A.; Wolmark, Norman; Pollak, Michael N.

    2015-01-01

    NCIC CTG MA.14 and NSABP B-29 trials examined the addition of Octreotide LAR (OCT) to 5 years of tamoxifen (TAM). Gallbladder toxicity led to B-29 discontinuation of OCT, and MA.14 OCT administration shortened to 2 years. Median follow-up was 9.8 years for 667 MA.14 patients and 6.8 years for 893 B-29 patients. The primary endpoint was disease-free survival (DFS), defined as time from randomization to time of breast cancer recurrence; second primary cancer other than squamous or basal cell skin carcinoma, cervical carcinoma in situ, or lobular breast carcinoma in situ; or death. The primary statistical test was a univariable pooled stratified log-rank test; multivariable assessment was with Cox regression. For MA.14, 97 % of patients were ≥50 years; for B-29, 62 %. MA.14 patients were 53 % lymph node negative (LN–) while B-29 were 100 % LN–; 33 % of MA.14 patients received adjuvant chemotherapy, 2 % concurrently, while B-29 had 53 % concurrent chemotherapy. MA.14 patients were 90% hormone receptor positive; B-29, 100 %. MA.14 patients experienced 5-year DFS of 80 % with TAM, 76 % with TAM + OCT; B-29 patients had 5-year DFS of 88 % for both arms. Pooled univariable TAM + OCT to TAM hazard ratio (HR) was 0.99 (95% CI 0.81–1.20; p = 0.69): for MA.14, HR = 0.94 (0.73–1.20; p = 0.50); for B-29, HR = 1.09 (0.80–1.50; p = 0.59). Multivariable pooled HR = 0.98 (0.81–1.20; p = 0.84). Older patients (p < 0.001), with higher T stage (p < 0.001), and LN + (p < 0.001) had shorter DFS. Addition of OCT to TAM did not significantly improve DFS; gallbladder toxicity shortened the additional administration of OCT. This does not negate targeting the insulin–IGF-I receptor family with less toxic therapeutics. PMID:26276354

  18. Lars Onsager Prize Talk: 1+1d conformal field theories as natural languages for asymptotically large-scale quantum computing

    NASA Astrophysics Data System (ADS)

    Friedan, Daniel

    2010-03-01

    An abstract argument is offered that the ideal physical systems for asymptotically large-scale quantum computers are near-critical quantum circuits, critical in the bulk, whose bulk universality classes are described by 1+1d conformal field theories. One in particular -- the Monster conformal field theory -- is especially ideal, because all of its bulk couplings are irrelevant.

  19. Research and development for a free-running readout system for the ATLAS LAr Calorimeters at the high luminosity LHC

    NASA Astrophysics Data System (ADS)

    Hils, Maximilian

    2016-07-01

    The ATLAS Liquid Argon (LAr) Calorimeters were designed and built to measure electromagnetic and hadronic energy in proton-proton collisions produced at the Large Hadron Collider (LHC) at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to 1034 cm-2 s-1. The High Luminosity LHC (HL-LHC) programme is now developed for up to 5-7 times the design luminosity, with the goal of accumulating an integrated luminosity of 3000 fb-1. In the HL-LHC phase, the increased radiation levels and an improved ATLAS trigger system require a replacement of the Front-end (FE) and Back-end (BE) electronics of the LAr Calorimeters. Results from research and development of individual components and their radiation qualification as well as the overall system design will be presented.

  20. Towards large-Chern-number topological phases by periodic quenching

    NASA Astrophysics Data System (ADS)

    Xiong, Tian-Shi; Gong, Jiangbin; An, Jun-Hong

    2016-05-01

    Topological phases with large Chern numbers have important implications. They were previously predicted to exist by considering fabricated long-range interactions or multilayered materials. Stimulated by recent wide interests in Floquet topological phases, here we propose a scheme to engineer large-Chern-number phases with ease by periodic quenching. Using a two-band system as an example, we theoretically show how a variety of topological phases with widely tunable Chern numbers can be generated by periodic quenching between two simple Hamiltonians that otherwise give low Chern numbers. The obtained large Chern numbers are explained through the emergence of multiple Dirac cones in the Floquet spectra. The transition lines between different topological phases in the two-band model are also explicitly found, thus establishing a class of easily solvable but very rich systems useful for further understandings and applications of topological phases in periodically driven systems.

  1. Evaluation of the Effects of Pasireotide LAR Administration on Lymphocele Prevention after Axillary Node Dissection for Breast Cancer: Results of a Randomized Non-Comparative Phase 2 Study

    PubMed Central

    Chéreau, Elisabeth; Uzan, Catherine; Boutmy-Deslandes, Emmanuelle; Zohar, Sarah; Bézu, Corinne; Mazouni, Chafika; Garbay, Jean-Rémi; Daraï, Emile; Rouzier, Roman

    2016-01-01

    Objective The aim of this study was to assess the efficacy (response rate centered on 80%) of a somatostatin analog with high affinity for 4 somatostatin receptors in reducing the postoperative incidence of symptomatic lymphocele formation following total mastectomy with axillary lymph node dissection. Setting This prospective, double-blind, randomised, placebo-controlled, phase 2 trial was conducted in two secondary care centres. Participants All female patients for whom mastectomy and axillary lymph node dissection were indicated were eligible for the study, including patients who had received neo-adjuvant chemotherapy. Main exclusion criteria were related to diabetes, cardiac insufficiency, disorder of cardiac conduction or hepatic failure. Interventions Patients were randomised to receive one injection of either prolonged-release pasireotide 60 mg or placebo (physiological serum), which were administered intramuscularly 7 to 10 days before the scheduled surgery. The study was conducted in a double-blind manner. Primary and Secondary Outcome Measures The primary outcome measure was the percentage of patients who did not develop post-operative axillary symptomatic lymphoceles during the 2 postoperative months. Secondary endpoints were the total quantity of lymph drained, duration and daily volume of drainage and aspirated volumes of lymph. Results Ninety-one patients were randomised. Ninety patients were evaluable: 42 patients received pasireotide, and 48 patients received placebo. The mean estimated response rate were 62.4% (95% Credibility Interval [CrI]: 48.6%-75.3%) in the treatment group and 50.2% (95% CrI: 37.6%-62.8%) in the placebo group. Overall safety was comparable across groups, and one serious adverse event occurred. In the treatment group, one patient with known insulin-depe*ndent diabetes required hospitalization for hyperglycaemia. Conclusions With this phase 2 preliminary study, even if our results indicate a trend towards a reduction in

  2. The LArIAT Experiment at Fermilab

    NASA Astrophysics Data System (ADS)

    Nutini, Irene; LArIAT Collaboration

    2016-02-01

    The LArIAT experiment at Fermilab is part of the International Neutrino program recently approved in the US. LArIAT aims to measure the main features of charged particles interactions in argon in the energy range (0.2 - 2.0 GeV) corresponding to the energy spectrum of the same particles when produced in a neutrino-argon interaction (neutrino energies of few GeV) typical of the short- and long-baseline neutrino beams of the Neutrino Program. Data collected from the 1 st Run are being analyzed for both Physics studies and a technical characterization of the scintillation light collection system. Two analysis topics are reported: the method developed for charged pion cross section measurement, based on the specific features of the LArTPC, and the development and test of the LArIAT custom-designed cold front-end electronics for SiPM devices to collect LAr scintillation light.

  3. Spatial resolution of gas hydrate and permeability changes from ERT data in LARS simulating the Mallik gas hydrate production test

    NASA Astrophysics Data System (ADS)

    Priegnitz, Mike; Thaler, Jan; Spangenberg, Erik; Schicks, Judith M.; Abendroth, Sven

    2014-05-01

    The German gas hydrate project SUGAR studies innovative methods and approaches to be applied in the production of methane from hydrate-bearing reservoirs. To enable laboratory studies in pilot scale, a large reservoir simulator (LARS) was realized allowing for the formation and dissociation of gas hydrates under simulated in-situ conditions. LARS is equipped with a series of sensors. This includes a cylindrical electrical resistance tomography (ERT) array composed of 25 electrode rings featuring 15 electrodes each. The high-resolution ERT array is used to monitor the spatial distribution of the electrical resistivity during hydrate formation and dissociation experiments over time. As the present phases of poorly conducting sediment, well conducting pore fluid, non-conducting hydrates, and isolating free gas cover a wide range of electrical properties, ERT measurements enable us to monitor the spatial distribution of these phases during the experiments. In order to investigate the hydrate dissociation and the resulting fluid flow, we simulated a hydrate production test in LARS that was based on the Mallik gas hydrate production test (see abstract Heeschen et al., this volume). At first, a hydrate phase was produced from methane saturated saline water. During the two months of gas hydrate production we measured the electrical properties within the sediment sample every four hours. These data were used to establish a routine estimating both the local degrees of hydrate saturation and the resulting local permeabilities in the sediment's pore space from the measured resistivity data. The final gas hydrate saturation filled 89.5% of the total pore space. During hydrate dissociation, ERT data do not allow for a quantitative determination of free gas and remaining gas hydrates since both phases are electrically isolating. However, changes are resolved in the spatial distribution of the conducting liquid and the isolating phase with gas being the only mobile isolating phase

  4. Liquor Activity Reduction (LAR) Programme - 12397

    SciTech Connect

    Pether, Colin; Carrol, Phil; Birkett, Eddie; Kibble, Matthew

    2012-07-01

    Waste material from the reprocessing of irradiated fuel has been stored under water for several decades leading to the water becoming highly radioactive. As a critical enabler to the decommissioning strategy for the Sellafield site, the Liquor Activity Reduction (LAR) programme has been established to provide a processing route for this highly radioactive liquor. This paper reviews the progress that has been made since the start of routine LAR transfer cycles (July 2010) and follows on from the earlier paper presented at WM2011. The paper focuses on the learning from the first full year of routine LAR transfer cycles and the application of this learning to the wider strategies for the treatment of further radioactive liquid effluents on the Sellafield site. During this period over 100,000 Curies of radioactivity has been safely removed and treated. The past year has witnessed the very successful introduction of the LAR programme. This has lead to hazard reduction at MSSS and demonstration that the SIXEP facility can meet the significantly increased challenge that the LAR programme represents. Part of the success has been the ability to predict and deliver a realistic production schedule with the availability of the MSSS, EDT and SIXEP facilities being central to this. Most importantly, the LAR programme has been successful in bringing together key stakeholders to deliver this work while integrating with the existing, day to day, demands of the Sellafield site. (authors)

  5. Large conditional single-photon cross-phase modulation

    NASA Astrophysics Data System (ADS)

    Beck, Kristin; Hosseini, Mahdi; Duan, Yiheng; Vuletic, Vladan

    2016-05-01

    Deterministic optical quantum logic requires a nonlinear quantum process that alters the phase of a quantum optical state by π through interaction with only one photon. Here, we demonstrate a large conditional cross-phase modulation between a signal field, stored inside an atomic quantum memory, and a control photon that traverses a high-finesse optical cavity containing the atomic memory. This approach avoids fundamental limitations associated with multimode effects for traveling optical photons. We measure a conditional cross-phase shift of up to π / 3 between the retrieved signal and control photons, and confirm deterministic entanglement between the signal and control modes by extracting a positive concurrence. With a moderate improvement in cavity finesse, our system can reach a coherent phase shift of p at low loss, enabling deterministic and universal photonic quantum logic. Preprint: arXiv:1512.02166 [quant-ph

  6. Large conditional single-photon cross-phase modulation.

    PubMed

    Beck, Kristin M; Hosseini, Mahdi; Duan, Yiheng; Vuletić, Vladan

    2016-08-30

    Deterministic optical quantum logic requires a nonlinear quantum process that alters the phase of a quantum optical state by π through interaction with only one photon. Here, we demonstrate a large conditional cross-phase modulation between a signal field, stored inside an atomic quantum memory, and a control photon that traverses a high-finesse optical cavity containing the atomic memory. This approach avoids fundamental limitations associated with multimode effects for traveling optical photons. We measure a conditional cross-phase shift of [Formula: see text] (and up to [Formula: see text] by postselection on photons that remain in the system longer than average) between the retrieved signal and control photons, and confirm deterministic entanglement between the signal and control modes by extracting a positive concurrence. By upgrading to a state-of-the-art cavity, our system can reach a coherent phase shift of π at low loss, enabling deterministic and universal photonic quantum logic. PMID:27519798

  7. Large Phased Array Radar Using Networked Small Parabolic Reflectors

    NASA Technical Reports Server (NTRS)

    Amoozegar, Farid

    2006-01-01

    Multifunction phased array systems with radar, telecom, and imaging applications have already been established for flat plate phased arrays of dipoles, or waveguides. In this paper the design trades and candidate options for combining the radar and telecom functions of the Deep Space Network (DSN) into a single large transmit array of small parabolic reflectors will be discussed. In particular the effect of combing the radar and telecom functions on the sizes of individual antenna apertures and the corresponding spacing between the antenna elements of the array will be analyzed. A heterogeneous architecture for the DSN large transmit array is proposed to meet the radar and telecom requirements while considering the budget, scheduling, and strategic planning constrains.

  8. Large Area Crop Inventory Experiment (LACIE). Phase 2 evaluation report

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Documentation of the activities of the Large Area Crop Inventory Experiment during the 1976 Northern Hemisphere crop year is presented. A brief overview of the experiment is included as well as phase two area, yield, and production estimates for the United States Great Plains, Canada, and the Union of Soviet Socialist Republics spring winter wheat regions. The accuracies of these estimates are compared with independent government estimates. Accuracy assessment of the United States Great Plains yardstick region based on a through blind sight analysis is given, and reasons for variations in estimating performance are discussed. Other phase two technical activities including operations, exploratory analysis, reporting, methods of assessment, phase three and advanced system design, technical issues, and developmental activities are also included.

  9. Nonlocal nonlinear refraction in Hibiscus sabdariffa with large phase shifts.

    PubMed

    Ramírez-Martínez, D; Alvarado-Méndez, E; Trejo-Durán, M; Vázquez-Guevara, M A

    2014-10-20

    In this work we present a study of nonlinear optical properties in organic materials (hibiscus sabdariffa). Our results demonstrate that the medium exhibits a highly nonlocal nonlinear response. We show preliminary numerical results of the transmittance as nonlocal response by considering, simultaneously, the nonlinear absorption and refraction in media. Numerical results are accord to measurement obtained by Z- scan technique where we observe large phase shifts. We also analyze the far field diffraction ring patterns of the sample. PMID:25401548

  10. Large resistivity modulation in mixed-phase metallic systems

    NASA Astrophysics Data System (ADS)

    Lee, Yeonbae; Liu, Z. Q.; Heron, J. T.; Clarkson, J. D.; Hong, J.; Ko, C.; Biegalski, M. D.; Aschauer, U.; Hsu, S. L.; Nowakowski, M. E.; Wu, J.; Christen, H. M.; Salahuddin, S.; Bokor, J. B.; Spaldin, N. A.; Schlom, D. G.; Ramesh, R.

    2015-01-01

    In numerous systems, giant physical responses have been discovered when two phases coexist; for example, near a phase transition. An intermetallic FeRh system undergoes a first-order antiferromagnetic to ferromagnetic transition above room temperature and shows two-phase coexistence near the transition. Here we have investigated the effect of an electric field to FeRh/PMN-PT heterostructures and report 8% change in the electrical resistivity of FeRh films. Such a ‘giant’ electroresistance (GER) response is striking in metallic systems, in which external electric fields are screened, and thus only weakly influence the carrier concentrations and mobilities. We show that our FeRh films comprise coexisting ferromagnetic and antiferromagnetic phases with different resistivities and the origin of the GER effect is the strain-mediated change in their relative proportions. The observed behaviour is reminiscent of colossal magnetoresistance in perovskite manganites and illustrates the role of mixed-phase coexistence in achieving large changes in physical properties with low-energy external perturbation.

  11. Large resistivity modulation in mixed-phase metallic systems.

    PubMed

    Lee, Yeonbae; Liu, Z Q; Heron, J T; Clarkson, J D; Hong, J; Ko, C; Biegalski, M D; Aschauer, U; Hsu, S L; Nowakowski, M E; Wu, J; Christen, H M; Salahuddin, S; Bokor, J B; Spaldin, N A; Schlom, D G; Ramesh, R

    2015-01-01

    In numerous systems, giant physical responses have been discovered when two phases coexist; for example, near a phase transition. An intermetallic FeRh system undergoes a first-order antiferromagnetic to ferromagnetic transition above room temperature and shows two-phase coexistence near the transition. Here we have investigated the effect of an electric field to FeRh/PMN-PT heterostructures and report 8% change in the electrical resistivity of FeRh films. Such a 'giant' electroresistance (GER) response is striking in metallic systems, in which external electric fields are screened, and thus only weakly influence the carrier concentrations and mobilities. We show that our FeRh films comprise coexisting ferromagnetic and antiferromagnetic phases with different resistivities and the origin of the GER effect is the strain-mediated change in their relative proportions. The observed behaviour is reminiscent of colossal magnetoresistance in perovskite manganites and illustrates the role of mixed-phase coexistence in achieving large changes in physical properties with low-energy external perturbation. PMID:25564764

  12. Spin liquid phases of large spin Mott insulating ultracold atoms

    NASA Astrophysics Data System (ADS)

    Rutkowski, Todd C.; Lawler, Michael J.

    2015-03-01

    Understanding exotic forms of magnetism, primarily those driven by large spin fluctuations such as the quantum spin liquid state, is a major goal of condensed matter physics. But, the relatively small number of viable candidate materials poses a difficulty. We believe this problem can be solved by Mott insulating ultracold atoms with large spin moments that interact via whole-atom exchange. The large spin fluctuations of this exchange could stabilize exotic physics similar to condensed matter systems, all in an extremely tunable environment. We have approached the problem by performing a mean field theory for spin-f bosons in an optical lattice which is exact in the large-f limit. This setting is similar to that of SU(N) magnetism proposed for alkali-earth atoms but without the SU(N) symmetry. We find that states with long-range order, such as the spin nematic phase of f = 1 Na atoms, become highly entangled spin-liquid-like states for f = 3 Cr atoms. This is evidence that the magnetic phase diagram for Mott insulating atoms at larger spins generically contains exotic forms of magnetism.

  13. Phase retrieval in situ measurement for large aperture parabolic mirror

    NASA Astrophysics Data System (ADS)

    Ding, Lingyan; Wu, Yulie; Li, Shengyi; Liao, Yang; Shu, Yong

    2010-10-01

    Phase retrieval is a promising method for in-situ metrology and has been applied to spherical mirror surface metrology successfully. To meet the requirement of in-situ measurement in manufacturing large aperture parabolic mirror, a new method using phase retrieval technology is developed. In this method, an approximately parallel beam is used to illuminate the large parabolic mirror. The beam is produced by a point light source far away from the tested mirror. Then, intensity of diffraction patterns near the focus is measured by CCD. The experiment of testing a parabolic mirror with aperture 400mm and radius of curvature at vertex 2789.7mm is described. And some advices of improving the setup are presented. Errors brought by the approximately parallel beam are compensated by an algorithm derived from GS iterative algorithm. Phase retrieval result is consistent with that measured by interferometer sub-aperture stitching in error distribution, PV value and RMS value. The experiment shows that this method features simple optical path, good anti-vibration ability and acceptable accuracy.

  14. The liquid annular reactor system (LARS) propulsion

    SciTech Connect

    Maise, G.; Lazareth, O.W.; Horn, F.; Powell, J.R.; Ludewig, H. ); Lenard, R.X. )

    1991-01-05

    A new concept for very high specific impulse ({gt}2000 seconds) direct nuclear propulsion is described. The concept, termed LARS (Liquid Annular Reactor System) uses liquid nuclear fuel elements to heat hydrogen propellant to very high temperatures ({similar to}6000 K). Operating pressure is moderate ({similar to}10 atm), with the result that the outlet hydrogen is virtually 100% dissociated to monatomic H. The molten fuel is contained in a solid container of its own material, which is rotated to stabilize the liquid layer by centripetal force. LARS reactor designs are described, together with neutronic and thermal-hydraulic analyses. Power levels are on the order of 200 megawatts. Typically, LARS designs use 7 rotating fuel elements, are beryllium moderated and have critical radii of {similar to}100 cm (core L/D{approx}1.5).

  15. Polar Phase of One-dimensional Bosons with Large Spin

    SciTech Connect

    Tsvelik, A.M.; Shlyapnikov, G.

    2011-06-20

    Spinor ultracold gases in one dimension (1D) represent an interesting example of strongly correlated quantum fluids. They have a rich phase diagram and exhibit a variety of quantum phase transitions. We consider a 1D spinor gas of bosons with a large spin S. A particular example is the gas of chromium atoms (S = 3), where the dipolar collisions efficiently change the magnetization and make the system sensitive to the linear Zeeman effect. We argue that in 1D the most interesting effects come from the pairing interaction. If this interaction is negative, it gives rise to a (quasi)condensate of singlet bosonic pairs with an algebraic order at zero temperature, and for (2S+1) >> 1 the saddle point approximation leads to physically transparent results. Since in 1D one needs a finite energy to destroy a pair, the spectrum of spin excitations has a gap. Hence, in the absence of a magnetic field, there is only one gapless mode corresponding to phase fluctuations of the pair quasicondensate. Once the magnetic field exceeds the gap, another condensate emerges, namely the quasicondensate of unpaired bosons with spins aligned along the magnetic field. The spectrum then contains two gapless modes corresponding to the singlet-paired and spin-aligned unpaired Bose condensed particles, respectively. At T = 0, the corresponding phase transition is of the commensurate-incommensurate type.

  16. Large space telescope, phase A. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Phase A study of the Large Space Telescope (LST) is reported. The study defines an LST concept based on the broad mission guidelines provided by the Office of Space Science (OSS), the scientific requirements developed by OSS with the scientific community, and an understanding of long range NASA planning current at the time the study was performed. The LST is an unmanned astronomical observatory facility, consisting of an optical telescope assembly (OTA), scientific instrument package (SIP), and a support systems module (SSM). The report consists of five volumes. The report describes the constraints and trade off analyses that were performed to arrive at a reference design for each system and for the overall LST configuration. A low cost design approach was followed in the Phase A study. This resulted in the use of standard spacecraft hardware, the provision for maintenance at the black box level, growth potential in systems designs, and the sharing of shuttle maintenance flights with other payloads.

  17. Large resistivity modulation in mixed-phase metallic systems

    NASA Astrophysics Data System (ADS)

    Lee, Yeonbae; Liu, Zhiqi; Heron, John; Clarkson, James; Hong, Jeongmin; Ko, Changhyun; Biegalski, Michael; Aschauer, Ulrich; Hsu, Shang-Lin; Nowakowski, Mark; Wu, Junqiao; Christen, Hans; Salahuddin, Sayeef; Bokor, Jeffrey; Spaldin, Nicola; Schlom, Darrell; Ramesh, Ramamoorthy

    2015-03-01

    We have investigated the effect of an electric field to FeRh/PMN-PT heterostructures and report 8% change in the electrical resistivity of FeRh films. Such a ``giant'' electroresistance (GER) response is striking in metallic systems, in which external electric fields are screened and thus only weakly influence the carrier concentrations and mobilities. We show that our FeRh films comprise coexisting ferromagnetic and antiferromagnetic phases with different resistivities, and the origin of the GER effect is the strain-mediated change in their relative proportions. The observed behavior is reminiscent of colossal magnetoresistance in perovskite manganites, and illustrates the role of mixed-phase coexistence in achieving large changes in physical properties with low-energy external perturbation.

  18. Large N phase transitions in massive N = 2 gauge theories

    SciTech Connect

    Russo, J. G.

    2014-07-23

    Using exact results obtained from localization on S{sup 4}, we explore the large N limit of N = 2 super Yang-Mills theories with massive matter multiplets. In this talk we discuss two cases: N = 2* theory, describing a massive hypermultiplet in the adjoint representation, and super QCD with massive quarks. When the radius of the four-sphere is sent to infinity these theories are described by solvable matrix models, which exhibit a number of interesting phenomena including quantum phase transitions at finite 't Hooft coupling.

  19. Peology and Geochemistry of New Paired Martian Meteorites 12095 and LAR 12240

    NASA Technical Reports Server (NTRS)

    Funk, R. C.; Brandon, A. D.; Peslier, A.

    2015-01-01

    The meteorites LAR 12095 and LAR 12240 are believed to be paired Martian meteorites and were discovered during the Antarctic Search for Meteorites (ANSMET) 2012-2013 Season at Larkman Nunatak. The purpose of this study is to characterize these olivine-phyric shergottites by analyzing all mineral phases for major, minor and trace elements and examining their textural relationships. The goal is to constrain their crystallization history and place these shergottites among other Martian meteorites in order to better understand Martian geological history.

  20. Large-Aperture Membrane Active Phased-Array Antennas

    NASA Technical Reports Server (NTRS)

    Karasik, Boris; McGrath, William; Leduc, Henry

    2009-01-01

    Large-aperture phased-array microwave antennas supported by membranes are being developed for use in spaceborne interferometric synthetic aperture radar systems. There may also be terrestrial uses for such antennas supported on stationary membranes, large balloons, and blimps. These antennas are expected to have areal mass densities of about 2 kg/sq m, satisfying a need for lightweight alternatives to conventional rigid phased-array antennas, which have typical areal mass densities between 8 and 15 kg/sq m. The differences in areal mass densities translate to substantial differences in total mass in contemplated applications involving aperture areas as large as 400 sq m. A membrane phased-array antenna includes patch antenna elements in a repeating pattern. All previously reported membrane antennas were passive antennas; this is the first active membrane antenna that includes transmitting/receiving (T/R) electronic circuits as integral parts. Other integral parts of the antenna include a network of radio-frequency (RF) feed lines (more specifically, a corporate feed network) and of bias and control lines, all in the form of flexible copper strip conductors on flexible polymeric membranes. Each unit cell of a prototype antenna (see Figure 1) contains a patch antenna element and a compact T/R module that is compatible with flexible membrane circuitry. There are two membrane layers separated by a 12.7-mm air gap. Each membrane layer is made from a commercially available flexible circuit material that, as supplied, comprises a 127-micron-thick polyimide dielectric layer clad on both sides with 17.5-micron-thick copper layers. The copper layers are patterned into RF, bias, and control conductors. The T/R module is located on the back side of the ground plane and is RF-coupled to the patch element via a slot. The T/R module is a hybrid multilayer module assembled and packaged independently and attached to the membrane array. At the time of reporting the information for

  1. Large area nuclear particle detectors using ET materials, phase 2

    NASA Technical Reports Server (NTRS)

    Wrigley, Charles Y.; Storti, George M.; Walter, Lee; Mathews, Scott

    1990-01-01

    This report presents work done under a Phase 2 SBIR contract for demonstrating large area detector planes utilizing Quantex electron trapping materials as a film medium for storing high-energy nuclide impingement information. The detector planes utilize energy dissipated by passage of the high-energy nuclides to produce localized populations of electrons stored in traps. Readout of the localized trapped electron populations is effected by scanning the ET plane with near-infrared, which frees the trapped electrons and results in optical emission at visible wavelengths. The effort involved both optimizing fabrication technology for the detector planes and developing a readout system capable of high spatial resolution for displaying the recorded nuclide passage tracks.

  2. eLARS - extending the Lyman Alpha Reference Sample

    NASA Astrophysics Data System (ADS)

    Oestlin, Goeran

    2013-10-01

    Despite its pivotal importance in high-z astrophysics, Lyman alpha {LyA} imaging is a relatively unexplored territory, due to its reliance on HST for far UV imaging. Our team has pioneered systematic LyA imaging in the local universe and developed techniques for producing photometrically accurate images using HST. We recently finished LARS, the first systematic LyA imaging study of 14 UV+H-alpha selected starbursts in the local universe. We found further evidence for LyA variation on physical scales from 30 pc to several kpc, often in a manner uncorrelated with the UV continuum, H-alpha or the galaxy in general. Specifically, we find that when LyA is bright and when a lot of LyA manages to escape, it is always found in the form of a large scale halo. This is, in all such cases, more extended than the UV or H-alpha emission, but rarely symmetric.While these results are fascinating, LARS consists of extreme starbursts that contribute only a small fraction of the total UV and star-formation density at low and intermediate {z 2} redshifts. Given the importance of the LyA line for finding galaxies and for galaxy evolution studies it is imperative to now generalize the investigation and produce a fully representative quantitative framework. We here propose to image a sample of 28 local galaxies, dominated by more disk like objects {c.f. the irregular objects of LARS}, and the kind of objects than dominate the local FUV luminosity function. Specifically, we will investigate the effects of geometry and galaxy orientation of the emergent LyA emission.

  3. Nickel-pincer cofactor biosynthesis involves LarB-catalyzed pyridinium carboxylation and LarE-dependent sacrificial sulfur insertion.

    PubMed

    Desguin, Benoît; Soumillion, Patrice; Hols, Pascal; Hausinger, Robert P

    2016-05-17

    The lactate racemase enzyme (LarA) of Lactobacillus plantarum harbors a (SCS)Ni(II) pincer complex derived from nicotinic acid. Synthesis of the enzyme-bound cofactor requires LarB, LarC, and LarE, which are widely distributed in microorganisms. The functions of the accessory proteins are unknown, but the LarB C terminus resembles aminoimidazole ribonucleotide carboxylase/mutase, LarC binds Ni and could act in Ni delivery or storage, and LarE is a putative ATP-using enzyme of the pyrophosphatase-loop superfamily. Here, we show that LarB carboxylates the pyridinium ring of nicotinic acid adenine dinucleotide (NaAD) and cleaves the phosphoanhydride bond to release AMP. The resulting biscarboxylic acid intermediate is transformed into a bisthiocarboxylic acid species by two single-turnover reactions in which sacrificial desulfurization of LarE converts its conserved Cys176 into dehydroalanine. Our results identify a previously unidentified metabolic pathway from NaAD using unprecedented carboxylase and sulfur transferase reactions to form the organic component of the (SCS)Ni(II) pincer cofactor of LarA. In species where larA is absent, this pathway could be used to generate a pincer complex in other enzymes. PMID:27114550

  4. Muon Charge Sign Determination in LArIAT

    NASA Astrophysics Data System (ADS)

    Soubasis, Brandon; LArIAT Collaboration

    2016-03-01

    LArTPC In A Test beam experiment (LArIAT) at the Fermilab aims to calibrate and characterize liquid argon time projection chambers with a beam of charges particles. Liquid Argon Time Projection Chamber (LArTPC) are ideal neutrino detectors which has full 3D-imaging and particle Identification (PID) capability. Processes for which the μ undergoes capture vs. decay in LArIAT TPC for sign-determination (without magnetic field) is one area of studies we are currently interested in. Systematic study of the processes following μ- capture in argon have never been performed and LArTPC sign-determination capability has never been explored. Statistical analysis on topological criteria can be used to determine the sign of a particle's charge (without magnetic field). LArIAT test beam with selectable polarity will provide data for direct measurement of the sign separation efficiency (and purity) for muons.

  5. LAr calorimeter for SCC with a common vacuum bulkhead---a concept to improve hermeticity

    SciTech Connect

    Pope, W.L. ); Watt, R.D. )

    1989-11-01

    A new concept for a Barrel/Endcap LAr Calorimeter (LAC) is described in which the Barrel and Endcaps are in separate vacuum enclosures but share a common vacuum bulkhead (CVB). We explore 2 possible bulkhead construction types; welded plate sandwich panels, and brazed sandwich panels in which the core is an isotropic cellular solid--foamed aluminum. Gas lines and electric cables from he innermost Drift Chamber pass through radial holes in the core of the sandwich bulkhead. The CVB concept offers the potential to obtain a more hermetic calorimeter with significantly reduced dead material and/or space in the interface region common to conventional design LAr detectors for the SSC with Endcap features. To utilize a common additional steps to remove the Drift Chamber, a large increase in Endcap standby heat leak, and perhaps, new cryogenic safety issues. We find that significant amount of dead mass can be removed from critical regions of the vacuum shells when compared to a promising SSC LAC reference design. It is also shown that the increased standby heat leak of this concept can be easily removed by existing cooling capacity in another large LAr calorimeter. It is further shown that shut-downs need not be appreciably longer. Finally, it is argued that cryogen spill hazards can be avoided if the Endcap's LAr is removed during Drift chamber maintenance shutdowns, and that cryogenic safety is not compromised.

  6. Dark Sector Searches in LArTPC Experiments

    NASA Astrophysics Data System (ADS)

    Himwich, Elizabeth; MicroBooNE Collaboration

    2015-04-01

    Liquid Argon Time Projection Chamber (LArTPC) experiments, which allow for excellent event characterization and topological visualization, are sensitive to the distinct signatures of theorized low-energy dark sector phenomena. With the unique technology of LArTPC experiments, it is possible to perform a quasi-model independent dark sector search that can encompass a number of models. This talk will discuss the dark sector search in LArTPC experiments as well as the sensitivity of the MicroBooNE and Lar1-ND experiments to dark sector signatures predicted by leptophobic models, which has been evaluated based on simulated signal and background event rates.

  7. Mechanical Resonance Displaying Changes in Phase to Large Audiences.

    ERIC Educational Resources Information Center

    Dorner, R.; And Others

    1995-01-01

    Describes a lecture demonstration apparatus for displaying free and forced oscillations of a mechanical system to a large class. Discusses the Blinking Diode Display and the Standing Wave description. Contains 20 references. (JRH)

  8. Proximity nanovalve with large phase-tunable thermal conductance

    SciTech Connect

    Strambini, E. Giazotto, F.; Bergeret, F. S.

    2014-08-25

    We propose a phase-controlled heat-flux quantum valve based on the proximity effect driven by a superconducting quantum interference proximity transistor (SQUIPT). Its operation relies on the phase-dependent quasiparticle density of states in the Josephson weak-link of the SQUIPT which controls thermal transport across the device. In a realistic Al/Cu-based setup the structure can provide efficient control of thermal current inducing temperature swings exceeding ∼100 mK, and flux-to-temperature transfer coefficients up to ∼500 mK/Φ{sub 0} below 100 mK. The nanovalve performances improve by lowering the bath temperature, making the proposed structure a promising building-block for the implementation of coherent caloritronic devices operating below 1 K.

  9. ATLAS LAr calorimeter performance and LHC Run-2 commissioning

    NASA Astrophysics Data System (ADS)

    Spettel, Fabian

    2016-07-01

    The ATLAS detector was built to study proton-proton collisions produced by the Large Hadron Collider (LHC) at a center of mass energy of up to 14 TeV. The Liquid Argon (LAr) calorimeters are used for all electromagnetic calorimetry as well as the hadronic calorimetry in the endcap and forward regions. They have shown excellent performance during the first LHC data taking campaign, from 2010 to 2012, so-called Run 1, at a peak luminosity of 8 ×1033cm-2s-1. During the next run, peak luminosities of 1.5 ×1034cm-2s-1 and even higher are expected at a 25 ns bunch spacing. Such a high collision rate may have an impact on the quality of the energy reconstruction which is attempted to be maintained at a high level using a calibration procedure described in this contribution. It also poses major challenges to the first level of the trigger system which is constrained to a maximal rate of 100 kHz. For Run-3, scheduled to start in 2019, instantaneous luminosity as high as 3 ×1034cm-2s-1 are foreseen imposing an upgrade of the LAr trigger system to maintain its performance. A demonstrator containing prototypes of the upgraded trigger electronic architecture has been installed on one of the barrel electromagnetic calorimeter readout front end crates to test it during the Run-2 campaign. The new architecture and its benefits for data taking will be discussed below as well as the results from first beam splash events.

  10. Study of large nonlinear change phase in Hibiscus Sabdariffa

    NASA Astrophysics Data System (ADS)

    Trejo-Durán, M.; Alvarado-Méndez, E.; Andrade-Lucio, J. A.; Rojas-Laguna, R.; Vázquez-Guevara, M. A.

    2015-09-01

    High intensities electromagnetic energy interacting with organic media gives rise to nonlinear optical effects. Hibiscus Sabdariffa is a flower whose concentrated solution presents interesting nonlinear optical properties. This organic material shows an important self-phase modulation with changes bigger than 2π. We present a diffraction ring patterns study of the Hibiscus Sabdariffa solution. Numerical results of transmittance, with refraction and simultaneous absorption, are shown.

  11. Investigation of Large Earthquakes as Critical Phase Transitions

    NASA Astrophysics Data System (ADS)

    Gonzalez-Huizar, H.; Mariani, M. C.; Serpa, L. F.; Beccar-Varela, M. P.; Tweneboah, O. K.

    2015-12-01

    In this work we present some of our results from investigating earthquakes sequences, which include very large earthquakes, using different stochastic and deterministic critical phenomena models. With the objective to estimate magnitude and origin time of large earthquakes based on the preceding seismicity, we investigate the use of several modeling techniques, including: The Levy flight, Scale-Invariant functions, and the Ising models. We also developed a stochastic differential equation arising on the superposition of independent Ornstein-Uhlenbeck processes driven by a Gamma (a,b) process. Here we summarize some of the results of applying these techniques for modeling earthquakes sequences in different tectonic regions.

  12. Large space telescope, phase A. Volume 3: Optical telescope assembly

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The development and characteristics of the optical telescope assembly for the Large Space Telescope are discussed. The systems considerations are based on mission-related parameters and optical equipment requirements. Information is included on: (1) structural design and analysis, (2) thermal design, (3) stabilization and control, (4) alignment, focus, and figure control, (5) electronic subsystem, and (6) scientific instrument design.

  13. Large space telescope, phase A. Volume 5: Support systems module

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The development and characteristics of the support systems module for the Large Space Telescope are discussed. The following systems and described: (1) thermal control, (2) electrical, (3) communication and data landing, (4) attitude control system, and (5) structural features. Analyses of maintainability and reliability considerations are included.

  14. Large space telescope, phase A. Volume 4: Scientific instrument package

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The design and characteristics of the scientific instrument package for the Large Space Telescope are discussed. The subjects include: (1) general scientific objectives, (2) package system analysis, (3) scientific instrumentation, (4) imaging photoelectric sensors, (5) environmental considerations, and (6) reliability and maintainability.

  15. Holographic correction and phasing of large sparse-array telescopes.

    PubMed

    Andersen, Geoff

    2005-03-10

    I have constructed a 1-m-diameter telescope using separate, low-quality spherical primary mirror segments. A single hologram of the mirrors is used to correct the random surface distortions as well as spherical aberration, while simultaneously phasing the individual apertures together. I present experimental results of the removal of an error of thousands of waves to produce a diffraction-limited instrument operating over a narrow bandwidth. This technique promises to have many benefits in future space-based telescopes for imaging, lidar, and optical communications. PMID:15796231

  16. Morphology of Two-Phase Layers with Large Bubbles

    NASA Astrophysics Data System (ADS)

    Vékony, Klára; Kiss, László I.

    2010-10-01

    The understanding of formation and movement of bubbles nucleated during aluminum reduction is essential for a good control of the electrolysis process. In our experiments, we filmed and studied the formation of a bubble layer under the anode in a real-size air-water electrolysis cell model. The maximum height of the bubbles was found to be up to 2 cm because of the presence of the so-called Fortin bubbles. Also, the mean height of the bubble layer was found to be much higher than published previously. The Fortin bubbles were investigated more closely, and their shape was found to be induced by a gravity wave formed at the gas-liquid interface. In addition, large bubbles were always observed to break up into smaller parts right before escaping from under the anode. This breakup and escape led to a large momentum transfer in the bath.

  17. Numerical modeling of the simulated gas hydrate production test at Mallik 2L-38 in the pilot scale pressure reservoir LARS - Applying the "foamy oil" model

    NASA Astrophysics Data System (ADS)

    Abendroth, Sven; Thaler, Jan; Klump, Jens; Schicks, Judith; Uddin, Mafiz

    2014-05-01

    In the context of the German joint project SUGAR (Submarine Gas Hydrate Reservoirs: exploration, extraction and transport) we conducted a series of experiments in the LArge Reservoir Simulator (LARS) at the German Research Centre of Geosciences Potsdam. These experiments allow us to investigate the formation and dissociation of hydrates at large scale laboratory conditions. We performed an experiment similar to the field-test conditions of the production test in the Mallik gas hydrate field (Mallik 2L-38) in the Beaufort Mackenzie Delta of the Canadian Arctic. The aim of this experiment was to study the transport behavior of fluids in gas hydrate reservoirs during depressurization (see also Heeschen et al. and Priegnitz et al., this volume). The experimental results from LARS are used to provide details about processes inside the pressure vessel, to validate the models through history matching, and to feed back into the design of future experiments. In experiments in LARS the amount of methane produced from gas hydrates was much lower than expected. Previously published models predict a methane production rate higher than the one observed in experiments and field studies (Uddin et al. 2010; Wright et al. 2011). The authors of the aforementioned studies point out that the current modeling approach overestimates the gas production rate when modeling gas production by depressurization. They suggest that trapping of gas bubbles inside the porous medium is responsible for the reduced gas production rate. They point out that this behavior of multi-phase flow is not well explained by a "residual oil" model, but rather resembles a "foamy oil" model. Our study applies Uddin's (2010) "foamy oil" model and combines it with history matches of our experiments in LARS. Our results indicate a better agreement between experimental and model results when using the "foamy oil" model instead of conventional models of gas flow in water. References Uddin M., Wright J.F. and Coombe D

  18. Lessons learned with the Active Phasing Experiment: comparison of four optical phasing sensors on a segmented Very Large Telescope

    NASA Astrophysics Data System (ADS)

    Gonte, F.; Surdej, I.

    The adaptive optics capabilities are strongly limited by the quality of the phasing of the primary mirror of the extremely large telescope. Up to date, the Keck telescopes are the only segmented telescope phased with a quality enabling the application of adaptive optics. The Active Phasing Experiment has been installed at the Namyth focus of the Very Large Telescope Melipal during the last 6 months. Its purpose is to understand and compare different technological concepts for an optical phasing sensor dedicated to the European Extremely Large Telescope. The pupil of the telescope is segmented in 61 hexagonal segments by projecting it on an Active Segmented Mirror. The ASM is controlled by a dual wavenlength interferometer made by Fogale Nanotech with a nanometric precision. The segmented pupil is distributed in parallel to four optical phasing sensors. They are a pyramid sensor, a curvature sensor, a phase filtering sensor and a ShackHartmann sensor. They have been developed respectively by Istituto Nazionale di Astrofisica in Florenze, Instituto Astrofisica Canarias in Tenerife, Laboratoire d'Astrophysique de Marseille and ESO. The global behaviour of the optical phasing sensors will be described and preliminary results of the Active Phasing Experiments obtained on sky will be explained. The extrapolation of the results to the EELT and the potential consequences for the adaptive optics will be given. The Active Phasing Experiment has been financed by the European Union and the European Southern Observatory via the Sixth European Union Framework Program for Research and Technological Development under the contract number 011863.

  19. Large step-phase measurement by a reduced-phase triple-illumination interferometer.

    PubMed

    Tayebi, Behnam; Jafarfard, Mohammad Reza; Sharif, Farnaz; Song, Young Sik; Har, Dongsoo; Kim, Dug Young

    2015-05-01

    We present a reduced-phase triple-illumination interferometer (RPTII) as a novel single-shot technique to increase the precision of dual-illumination optical phase unwrapping techniques. The technique employs two measurement ranges to record both low-precision unwrapped and high-precision wrapped phases. To unwrap the high-precision phase, a hierarchical optical phase unwrapping algorithm is used with the low-precision unwrapped phase. The feasibility of this technique is demonstrated by measuring a stepped object with a height 2100 times greater than the wavelength of the source. The phase is reconstructed without applying any numerical unwrapping algorithms, and its noise level is decreased by a factor of ten. PMID:25969222

  20. Group and phase delay sensing for cophasing large optical arrays

    NASA Astrophysics Data System (ADS)

    Mourard, D.; Dali Ali, W.; Meilland, A.; Tarmoul, N.; Patru, F.; Clausse, J. M.; Girard, P.; Hénault, F.; Marcotto, A.; Mauclert, N.

    2014-12-01

    The next generation of optical interferometers will provide high-resolution imaging of celestial objects by using either the aperture synthesis technique or the direct imaging principle. To determine the technical requirements, we have developed an interferometric test bench, called SIRIUS. To preserve the quality of the image, fast corrections of the optical path differences within a fraction of a wavelength have to be applied: this is the cophasing of the array, whereas making it coherent aims at stabilizing the optical path differences within a fraction of the coherence length. In the SIRIUS test bench, coherence and cophasing are achieved by fibred delay lines. Air delay lines are also used for the raw delay equalization. We present an original implementation of a piston sensor, called chromatic phase diversity, which is adaptable to any interferometer, whatever the configuration of the entrance pupil and the number of sub-pupils and whatever the interferometric combiner. Our method is based on the dispersed fringes principle and uses a derived version of the dispersed speckles method. The numerical simulation shows the performance of the method in terms of cophasing, accuracy and limiting magnitude. Experimental tests have been carried out both with optical turbulence and without. They show good results in both cases, despite some instrument-related limitations that can be eliminated. We show that our method is able to handle an amplitude of correction of ±11(λ/2) with an accuracy of ˜λ/30 over many minutes.

  1. Phase Correlations and Topological Measures of Large-Scale Structure

    NASA Astrophysics Data System (ADS)

    Coles, P.

    The process of gravitational instability initiated by small primordial density perturbations is a vital ingredient of cosmological models that attempt to explain how galaxies and large-scale structure formed in the Universe. In the standard picture (the "concordance" model), a period of accelerated expansion ("inflation") generated density fluctuations with simple statistical properties through quantum processes (Starobinsky [82], [83], [84]; Guth [39]; Guth & Pi [40]; Albrecht & Steinhardt [2]; Linde [55]). In this scenario the primordial density field is assumed to form a statistically homogeneous and isotropic Gaussian random field (GRF). Over years of observational scrutiny this paradigm has strengthened its hold in the minds of cosmologists and has survived many tests, culminating in those furnished by the Wilkinson Microwave Anisotropy Probe (WMAP; Bennett et al. [7]; Hinshaw et al. [45].

  2. Large Area Crop Inventory Experiment (LACIE). Phase 1: Evaluation report

    NASA Technical Reports Server (NTRS)

    1976-01-01

    It appears that the Large Area Crop Inventory Experiment over the Great Plains, can with a reasonable expectation, be a satisfactory component of a 90/90 production estimator. The area estimator produced more accurate area estimates for the total winter wheat region than for the mixed spring and winter wheat region of the northern Great Plains. The accuracy does appear to degrade somewhat in regions of marginal agriculture where there are small fields and abundant confusion crops. However, it would appear that these regions tend also to be marginal with respect to wheat production and thus increased area estimation errors do not greatly influence the overall production estimation accuracy in the United States. The loss of segments resulting from cloud cover appears to be a random phenomenon that introduces no significant bias into the estimates. This loss does increase the variance of the estimates.

  3. Enantioselective Regulation of Lactate Racemization by LarR in Lactobacillus plantarum

    PubMed Central

    Desguin, Benoît; Goffin, Philippe; Bakouche, Nordine; Diman, Aurélie; Viaene, Eric; Dandoy, Damien; Fontaine, Laetitia; Hallet, Bernard

    2014-01-01

    Lactobacillus plantarum is a lactic acid bacterium that produces a racemic mixture of l- and d-lactate from sugar fermentation. The interconversion of lactate isomers is performed by a lactate racemase (Lar) that is transcriptionally controlled by the l-/d-lactate ratio and maximally induced in the presence of l-lactate. We previously reported that the Lar activity depends on the expression of two divergently oriented operons: (i) the larABCDE operon encodes the nickel-dependent lactate racemase (LarA), its maturases (LarBCE), and a lactic acid channel (LarD), and (ii) the larR(MN)QO operon encodes a transcriptional regulator (LarR) and a four-component ABC-type nickel transporter [Lar(MN), in which the M and N components are fused, LarQ, and LarO]. LarR is a novel regulator of the Crp-Fnr family (PrfA group). Here, the role of LarR was further characterized in vivo and in vitro. We show that LarR is a positive regulator that is absolutely required for the expression of Lar activity. Using gel retardation experiments, we demonstrate that LarR binds to a 16-bp palindromic sequence (Lar box motif) that is present in the larR-larA intergenic region. Mutations in the Lar box strongly affect LarR binding and completely abolish transcription from the larA promoter (PlarA). Two half-Lar boxes located between the Lar box and the −35 box of PlarA promote LarR multimerization on DNA, and point mutations within one or both half-Lar boxes inhibit PlarA induction by l-lactate. Gel retardation and footprinting experiments indicate that l-lactate has a positive effect on the binding and multimerization of LarR, while d-lactate antagonizes the positive effect of l-lactate. A possible mechanism of LarR regulation by lactate enantiomers is proposed. PMID:25349156

  4. APE: the Active Phasing Experiment to test new control system and phasing technology for a European Extremely Large Optical Telescope

    NASA Astrophysics Data System (ADS)

    Gonte, F.; Yaitskova, N.; Derie, F.; Constanza, A.; Brast, R.; Buzzoni, B.; Delabre, B.; Dierickx, P.; Dupuy, C.; Esteves, R.; Frank, C.; Guisard, S.; Karban, R.; Koenig, E.; Kolb, J.; Nylund, M.; Noethe, L.; Surdej, I.; Courteville, A.; Wilhelm, R.; Montoya, L.; Reyes, M.; Esposito, S.; Pinna, E.; Dohlen, K.; Ferrari, M.; Langlois, M.

    2005-08-01

    The future European Extremely Large Telescope will be composed of one or two giant segmented mirrors (up to 100 m of diameter) and of several large monolithic mirrors (up to 8 m in diameter). To limit the aberrations due to misalignments and defective surface quality it is necessary to have a proper active optics system. This active optics system must include a phasing system to limit the degradation of the PSF due to misphasing of the segmented mirrors. We will present the lastest design and development of the Active Phasing Experiment that will be tested in laboratory and on-sky connected to a VLT at Paranal in Chile. It includes an active segmented mirror, a static piston plate to simulate a secondary segmented mirror and of four phasing wavefront sensors to measure the piston, tip and tilt of the segments and the aberrations of the VLT. The four phasing sensors are the Diffraction Image Phase Sensing Instrument developed by Instituto de Astrofisica de Canarias, the Pyramid Phasing Sensor developed by Arcetri Astrophysical Observatory, the Shack-Hartmann Phasing Sensor developed by the European Southern Observatory and the Zernike Unit for Segment phasing developed by Laboratoire d'Astrophysique de Marseille. A reference measurement of the segmented mirror is made by an internal metrology developed by Fogale Nanotech. The control system of Active Phasing Experiment will perform the phasing of the segments, the guiding of the VLT and the active optics of the VLT. These activities are included in the Framework Programme 6 of the European Union.

  5. Histological characteristics and ultrastructure of polyethylene terephthalate LARS ligament after the reconstruction of anterior cruciate ligament in rabbits

    PubMed Central

    Yu, Shao-Bin; Yang, Rong-Hua; Zuo, Zhong-Nan; Dong, Qi-Rong

    2014-01-01

    Polyethylene terephthalate LARS ligament were the remnant of LARS ligament used for repairing posterior cruciate ligament obtained from operation. We want to study histological characteristics and ultrastructure of polyethylene terephthalate LARS ligament after the reconstruction of anterior cruciate ligament in rabbits. Therefore, we replaced the original ACL with polyethylene terephthalate LARS ligament which was covering with the remnant of ACL in 9 rabbits (L-LARS group), while just only polyethylene terephthalate LARS ligament were transplanted in 3 rabbits (LARS group) with the remnant of ACL. Compared with group LARS, inflammatory cell reaction and foreign body reaction were more significant in group L-LARS. Moreover, electron microscopy investigation showed the tissue near LARS fibers was highly cellular with a matrix of thin collagen fibrils (50-100 nm) in group L-LARS. These above findings suggest the polyethylene terephthalate LARS ligament possess the high biocompatibility, which contributes to the polyethylene terephthalate LARS covered with recipient connective tissues. PMID:25356104

  6. Ar-Ar ages and trapped Ar components in Martian shergottites RBT 04262 and LAR 06319

    NASA Astrophysics Data System (ADS)

    Park, Jisun; Bogard, Donald D.; Nyquist, Laurence E.; Garrison, Daniel H.; Mikouchi, Takashi

    2013-11-01

    We made 39Ar-40Ar (Ar-Ar) analyses of whole rock (WR) and mineral samples of two Martian shergottites, RBT 04262 (RBT) and LAR 06319 (LAR), in order to determine their Ar-Ar ages and the 40Ar/36Ar ratios of the trapped Martian Ar they contain. All samples released trapped (excess) 40Ar and 36Ar and suggested Ar-Ar ages older than their formation ages. Because trapped Ar components having different 40Ar/36Ar were released at different extraction temperatures, we utilized only a portion of the data to derive preferred Ar-Ar ages. We obtain Ar-Ar ages of 171 ± 8 Ma for RBT plagioclase and 163 ± 13 Ma for LAR whole rock. We identify two trapped Ar components. At low temperatures, particularly for plagioclase, Trapped-A with 40Ar/36Ar 285 ± 3 was released, and we believe this is most likely absorbed terrestrial air. At high extraction temperatures, particularly for pyroxene, Trapped-B with 40Ar/36Ar 1813 ± 127 was released. The poikilitic/non-poikilitic texture of RBT and the presence of large pyroxene oikocrysts allowed a clear definition of Trapped-B. This Ar component is Martian, and its isotopic similarity to the Martian atmospheric composition suggests that it may represent Martian atmospheric Ar incorporated into the shergottite melt via crustal rocks. Trapped-B partitioned into pyroxene at a constant molar ratio of K/36ArTr = 33.2 ± 9.5 × 106 for RBT 04262, and 80 ± 21 × 106 for LAR 06319. Trapped-A mixed in different proportions with Trapped-B could give apparently intermediate trapped 40Ar/36Ar compositions commonly observed in shergottites.

  7. Fabrication of large aperture kinoform phase plates in fused silica for smoothing focal plane intensity profiles

    SciTech Connect

    Rushford, M.; Dixit, S.; Thomas, I.; Perry, M.

    1996-04-26

    We have fabricated large aperture (40-cm) kinoform phase plates for producing super-Gaussian focal plane intensity profiles. The continuous phase screen, designed using a new iterative procedure, was fabricated in fused silica as a 16-level, one-wave deep rewrapped phase profile using a lithographic process and wet etching in buffered hydrofluoric acid. The observed far-field contains 94% of the incident energy inside the desired spot.

  8. Bibliographic Automation of Large Library Operations Using a Time-Sharing System: Phase I. Final Report.

    ERIC Educational Resources Information Center

    Epstein, A. H.; And Others

    The first phase of an ongoing library automation project at Stanford University is described. Project BALLOTS (Bibliographic Automation of Large Library Operations Using a Time-Sharing System) seeks to automate the acquisition and cataloging functions of a large library using an on-line time-sharing computer. The main objectives are to control…

  9. Scintillation light detection system in LArIAT

    NASA Astrophysics Data System (ADS)

    Kryczynski, P.

    2016-02-01

    The LArIAT experiment is currently taking data at Fermilab using a Liquid Argon TPC, with the aim of studying particle interactions and characterizing detector response for neutrino detectors using argon. In parallel, it serves as a test-bench to develop and evaluate the performance of the simulation, reconstruction, and analysis software used in LAr neutrino experiments. LArIAT also takes advantage of the scintillating capabilities of liquid argon and will evaluate the feasibility of using the light signal to determine calorimetric information and particle identification. To test this possibility, a scintillation light detection system consisting of high Quantum Efficiency (QE) PMT and Silicon Photomultiplier (SiPM) devices is installed in the cryostat, viewing the interior of the TPC. Light collection efficiency is maximized by means of lining the walls with reflector foils covered by a wavelength shifter layer. Collecting the light reflected at the boundaries of the active volume greatly improves also the uniformity of the light yield. Presented here are initial results of the LArIAT light detection system calibration together with the preliminary results of the dedicated simulation and its application in future LAr TPC experiments

  10. Cold Electronics Development for the LBNE LAr TPC

    NASA Astrophysics Data System (ADS)

    Thorn, C.; De Geronimo, Gianluigi; D'Andragora, Alessio; Li, Shaorui; Nambiar, Neena; Rescia, Sergio; Vernon, Emerson; Chen, Hucheng; Lanni, Francesco; Makowiecki, Don; Radeka, Veljko; Yu, Bo

    The LBNE Project is developing a design for multiple 20 kiloton liquid argon (LAr) time projection chambers to be used as the far detector for the Long Baseline Neutrino Experiment. An essential component of this design is a complete electronic readout system designed to operate in LAr (at 90K). This system is being implemented as a CMOS ASIC, in 180 nm commercial technology, that will provide low-noise readout of the signals induced on the TPC wires, digitization of those signals at 2 MS/s, zero-suppression, buffering and output multiplexing to a small number of cryostat feed-throughs. A resolution better than 1000 rms electrons at 200 pF input capacitance for an input range of 300 fC is required, along with low power (<15mW/channel) and operation in LAr with a lifetime greater than 15 years. An analog-only frontend has been successfully completed and fully evaluated, and will be used in the MicroBooNE LAr TPC. A prototype of the digital section has been fabricated and is being evaluated. The results demonstrate that CMOS transistors have lower noise and much improved dc characteristics at LAr temperature. We will describe the progress to date and plans for the remaining development.

  11. Testing the QCD string at large Nc from the thermodynamics of the hadronic phase

    NASA Astrophysics Data System (ADS)

    Cohen, Thomas D.

    2007-02-01

    It is generally believed that in the limit of a large number of colors (Nc) the description of confinement via flux tubes becomes valid and QCD can be modeled accurately via a hadronic string theory—at least for highly excited states. QCD at large Nc also has a well-defined deconfinement transition at a temperature Tc. In this talk it is shown how the thermodyanmics of the metastable hadronic phase of QCD (above Tc) at large NC can be related directly to properties of the effective QCD string. The key points in the derivation is the weakly interacting nature of hadrons at large Nc and the existence of a Hagedorn temperature TH for the effective string theory. From this it can be seen at large Nc and near TH, the energy density and pressure of the hadronic phase scale as E ˜ (TH - T)-(D⊥-6)/2 (for D⊥ < 6) and P ˜ (TH - T)-(D⊥-4)/2 (for D⊥ < 4) where D⊥ is the effective number of transverse dimensions of the string theory. This behavior for D⊥ < 6 is qualitatively different from typical models in statistical mechanics and if observed on the lattice would provide a direct test of the stringy nature of large Nc QCD. However since it can be seen that TH > Tc this behavior is of relevance only to the metastable phase. The prospect of using this result to extract D⊥ via lattice simulations of the metastable hadronic phase at moderately large Nc is discussed.

  12. Theory of Multifarious Quantum Phases and Large Anomalous Hall Effect in Pyrochlore Iridate Thin Films

    PubMed Central

    Hwang, Kyusung; Kim, Yong Baek

    2016-01-01

    We theoretically investigate emergent quantum phases in the thin film geometries of the pyrochore iridates, where a number of exotic quantum ground states are proposed to occur in bulk materials as a result of the interplay between electron correlation and strong spin-orbit coupling. The fate of these bulk phases as well as novel quantum states that may arise only in the thin film platforms, are studied via a theoretical model that allows layer-dependent magnetic structures. It is found that the magnetic order develop in inhomogeneous fashions in the thin film geometries. This leads to a variety of magnetic metal phases with modulated magnetic ordering patterns across different layers. Both the bulk and boundary electronic states in these phases conspire to promote unusual electronic properties. In particular, such phases are akin to the Weyl semimetal phase in the bulk system and they would exhibit an unusually large anomalous Hall effect. PMID:27418293

  13. Theory of Multifarious Quantum Phases and Large Anomalous Hall Effect in Pyrochlore Iridate Thin Films.

    PubMed

    Hwang, Kyusung; Kim, Yong Baek

    2016-01-01

    We theoretically investigate emergent quantum phases in the thin film geometries of the pyrochore iridates, where a number of exotic quantum ground states are proposed to occur in bulk materials as a result of the interplay between electron correlation and strong spin-orbit coupling. The fate of these bulk phases as well as novel quantum states that may arise only in the thin film platforms, are studied via a theoretical model that allows layer-dependent magnetic structures. It is found that the magnetic order develop in inhomogeneous fashions in the thin film geometries. This leads to a variety of magnetic metal phases with modulated magnetic ordering patterns across different layers. Both the bulk and boundary electronic states in these phases conspire to promote unusual electronic properties. In particular, such phases are akin to the Weyl semimetal phase in the bulk system and they would exhibit an unusually large anomalous Hall effect. PMID:27418293

  14. Theory of Multifarious Quantum Phases and Large Anomalous Hall Effect in Pyrochlore Iridate Thin Films

    NASA Astrophysics Data System (ADS)

    Hwang, Kyusung; Kim, Yong Baek

    2016-07-01

    We theoretically investigate emergent quantum phases in the thin film geometries of the pyrochore iridates, where a number of exotic quantum ground states are proposed to occur in bulk materials as a result of the interplay between electron correlation and strong spin-orbit coupling. The fate of these bulk phases as well as novel quantum states that may arise only in the thin film platforms, are studied via a theoretical model that allows layer-dependent magnetic structures. It is found that the magnetic order develop in inhomogeneous fashions in the thin film geometries. This leads to a variety of magnetic metal phases with modulated magnetic ordering patterns across different layers. Both the bulk and boundary electronic states in these phases conspire to promote unusual electronic properties. In particular, such phases are akin to the Weyl semimetal phase in the bulk system and they would exhibit an unusually large anomalous Hall effect.

  15. No large scale curvature perturbations during the waterfall phase transition of hybrid inflation

    SciTech Connect

    Abolhasani, Ali Akbar; Firouzjahi, Hassan

    2011-03-15

    In this paper the possibility of generating large scale curvature perturbations induced from the entropic perturbations during the waterfall phase transition of the standard hybrid inflation model is studied. We show that whether or not appreciable amounts of large scale curvature perturbations are produced during the waterfall phase transition depends crucially on the competition between the classical and the quantum mechanical backreactions to terminate inflation. If one considers only the classical evolution of the system, we show that the highly blue-tilted entropy perturbations induce highly blue-tilted large scale curvature perturbations during the waterfall phase transition which dominate over the original adiabatic curvature perturbations. However, we show that the quantum backreactions of the waterfall field inhomogeneities produced during the phase transition dominate completely over the classical backreactions. The cumulative quantum backreactions of very small scale tachyonic modes terminate inflation very efficiently and shut off the curvature perturbation evolution during the waterfall phase transition. This indicates that the standard hybrid inflation model is safe under large scale curvature perturbations during the waterfall phase transition.

  16. Lars Onsager Prize: Phase transitions in massive data acquisition

    NASA Astrophysics Data System (ADS)

    Mezard, Marc

    The rapid increase in the amount of data that is presently being generated, acquired and processed opens new perspectives in many branches of science. In order to take full advantage of this « data revolution », and to turn it into a major tool for scientific discoveries, new concepts and methods need to be developed, thus allowing us to focus on the extraction of significant information. Referring to the case of compressed sensing, the talk will show how ideas and methods in statistical physics -from spin glass theory to cristal nucleation - can help design faster, less destructive, and more efficient signal acquisition protocols, with possible applications into numerous fields -from magnetic resonance imaging to astronomy, tomography, or gene interaction network reconstruction.

  17. Phases of the two-leg Hubbard ladder in the large U limit

    NASA Astrophysics Data System (ADS)

    Liu, Li; Yao, Hong; Kivelson, Steven; White, Steven; Lee, Dung-Hai

    2012-02-01

    We study the phase diagram of the two-leg Hubbard ladder in the large U limit using the density matrix renormalization group (DMRG). Already in the limit of infinite on-site repulsion U, we find a rich phase diagram in which commensurability effects are unexpectedly prominent: A fully spin-polarized ``Nagaoka'' metallic phase occurs for electron density, n, in the range 1> n> n1, where n1 0.8 is not obviously locked by any commensurability. There is an insulating, anti-ferromagnetic commensurate plaquette phase at n=3/4, and two-phase coexistence for n1> n > 3/4. For 3/4 > n > n2 0.6, there is a partially spin-polarized metallic state with a magnetization peak centered at n=2/3. For the most part, the ground state is a paramagnetic Luttinger liquid for n2>=n, although an antiferromagnetic phase with a substantial charge gap (and which may or may not have a small spin-gap) arises at n=1/2. Interesting soliton excitations with fractional charge are found for the plaquette phase at n=3/4. We have also explored the evolution of these phases as a function of decreasing (but still large) U, both by studying the t-J model and of the underlying Hubbard model.

  18. Advection Scheme for Phase-changing Porous Media Flow of Fluids with Large Density Ratio

    NASA Astrophysics Data System (ADS)

    Zhang, Duan; Padrino, Juan

    2015-11-01

    Many flows in a porous media involve phase changes between fluids with a large density ratio. For instance, in the water-steam phase change the density ratio is about 1000. These phase changes can be results of physical changes, or chemical reactions, such as fuel combustion in a porous media. Based on the mass conservation, the velocity ratio between the fluids is of the same order of the density ratio. As the result the controlling Courant number for the time step in a numerical simulation is determined by the high velocity and low density phase, leading to small time steps. In this work we introduce a numerical approximation to increase the time step by taking advantage of the large density ratio. We provide analytical error estimation for this approximate numerical scheme. Numerical examples show that using this approximation about 40-fold speedup can be achieved at the cost of a few percent error. Work partially supported by LDRD project of LANL.

  19. The QCD Phase Diagram: Large Nc, Quarkyonic Matter and the Triple Point

    SciTech Connect

    McLerran L.

    2010-01-31

    I discuss the phase diagram of QCD in the large N_c limit. Quarkyonic Matter is described. The properties of QCD matter as measured in the abundance of produced particles are shown to be consistent with this phase diagram. A possible triple point of Hadronic Mater, Deconfined Matter and Quarkyonic matter is shown to explain various behaviors of ratios of particles abundances seen in CERN fixed target experiments.

  20. Operation of bare HPGe detectors in LAr/LN2 for the GERDA experiment

    NASA Astrophysics Data System (ADS)

    Barnabé Heider, M.; Cattadori, C.; Chkvorets, O.; di Vacri, A.; Gusev, K.; Schönert, S.; Shirchenko, M.

    2008-11-01

    GERDA is designed to search for 0νββ-decay of 76Ge using high purity germanium detectors (HPGe), enriched (~ 85%) in 76Ge, directly immersed in LAr which acts both as shield against γ radiation and as cooling medium. The cryostat is located in a stainless steel water tank providing an additional shield against external background. The GERDA experiment aims at a background (b) lessapprox10-3 cts/(kg-y-keV) and energy resolution (FWHM) <= 4 keV at Qββ = 2039 keV. GERDA experiment is foreseen to proceed in two phases. For Phase I, eight reprocessed enriched HPGe detectors from the past HdM [C Balysh et al., Phys. Rev. D 66 (1997) 54] and IGEX [C E Aalseth et al., Phys. of Atomic Nuclei 63 (2000) 1225] experiments (~ 18 kg) and six reprocessed natural HPGe detectors (~ 15 kg) from the Genius Test-Facility [H V Klapdor et al., HIM A 481 (2002) 149] will be deployed in strings. GERDA aims at b lessapprox 10-2 cts/(kg·keV·y). With an exposure of ~ 15 kg·y of 76Ge and resolution ~ 3.6 keV, the sensitivity on the half-life will be T0ν1/2 3 · 1025 y (90 % C.L.) corresponding to mee < 270 meV [V A Rodin et al., Nucl. Phys. A 766 (2006) 107]. In Phase II, new diodes, able to discriminate between single- and multi-site events, will be added (~ 20 kg of 76Ge with intrinsic b ~ 10-2 cts/(kg·keV·y). With an exposure of ~ 120 kg·y, it is expected T0ν1/2 > 1.5 · 1026 y (90% C.L.) corresponding to mee < 110 meV [V A Rodin et al., Nucl. Phys. A 766 (2006) 107]. Three natural p-type HPGe prototypes (different passivation layer designs) are available in the GERDA underground facility at LNGS to investigate the effect of the detector assembly (low-mass low-activity holder), of the handling procedure and of the refurbishment technology on long term stability and spectroscopy performance. The study started on prototype 1 (fully passivated on the borehole side). 60Co γ-irradiation of the detector in LAr resulted in an increase of the leakage current (LC), depending on the

  1. Large-N Over the Source Physics Experiment (SPE) Phase I and Phase II Test Beds

    NASA Astrophysics Data System (ADS)

    Snelson, C. M.; Carmichael, J. D.; Mellors, R. J.; Abbott, R. E.

    2014-12-01

    One of the current challenges in the field of monitoring and verification is source discrimination of low-yield nuclear explosions from background seismicity, both natural and anthropogenic. Work is underway at the Nevada National Security Site to conduct a series of chemical explosion experiments using a multi-institutional, multi-disciplinary approach. The goal of this series of experiments, called the Source Physics Experiments (SPE), is to refine the understanding of the effect of earth structures on source phenomenology and energy partitioning in the source region, the transition of seismic energy from the near field to the far field, and the development of S waves observed in the far field. To fully explore these problems, the SPE series includes tests in both hard and soft rock geologic environments. The project comprises a number of activities, which range from characterizing the shallow subsurface to acquiring new explosion data from both the near field (<100 m) and the far field (>100 m). SPE includes a series of planned explosions (with different yields and depths of burials), which are conducted in the same hole and monitored by a diverse set of sensors recording characteristics of the explosions, ground-shock, seismo-acoustic energy propagation. This presentation focuses on imaging the full 3D wavefield over hard rock and soft rock test beds using a large number of seismic sensors. This overview presents statistical analyses of optimal sensor layout required to estimate wavefield discriminants and the planned deployment for the upcoming experiments. This work was conducted under Contract No. DE-AC52-06NA25946 with the U.S. Department of Energy. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  2. Large scale, liquid phase synthesis of oligonucleotides by the phosphoramidite approach.

    PubMed Central

    Bonora, G M; Biancotto, G; Maffini, M; Scremin, C L

    1993-01-01

    A new method for the liquid phase synthesis of oligonucleotides is described which makes use of polyethylene glycol (PEG) as soluble support and phosphoramidite derivatives as synthons. The new synthetic protocol was applied to a quite large scale production (about 100 mumoles) of such compounds up to the 20mer level. This solution method, called HELP High Efficiency Liquid Phase) Plus, appears effective in terms of speed and coupling yield and can be evaluated for the production of large amount of oligonucleotides. PMID:8464706

  3. Two phase sampling for wheat acreage estimation. [large area crop inventory experiment

    NASA Technical Reports Server (NTRS)

    Thomas, R. W.; Hay, C. M.

    1977-01-01

    A two phase LANDSAT-based sample allocation and wheat proportion estimation method was developed. This technique employs manual, LANDSAT full frame-based wheat or cultivated land proportion estimates from a large number of segments comprising a first sample phase to optimally allocate a smaller phase two sample of computer or manually processed segments. Application to the Kansas Southwest CRD for 1974 produced a wheat acreage estimate for that CRD within 2.42 percent of the USDA SRS-based estimate using a lower CRD inventory budget than for a simulated reference LACIE system. Factor of 2 or greater cost or precision improvements relative to the reference system were obtained.

  4. Phases of a two-dimensional large-N gauge theory on a torus

    SciTech Connect

    Mandal, Gautam; Morita, Takeshi

    2011-10-15

    We consider two-dimensional large N gauge theory with D adjoint scalars on a torus, which is obtained from a D+2-dimensional pure Yang-Mills theory on T{sup D+2} with D small radii. The two-dimensional model has various phases characterized by the holonomy of the gauge field around noncontractible cycles of the 2-torus. We determine the phase boundaries and derive the order of the phase transitions using a method developed in an earlier work (hep-th/0910.4526), which is nonperturbative in the 't Hooft coupling and uses a 1/D expansion. We embed our phase diagram in the more extensive phase structure of the D+2-dimensional Yang-Mills theory and match with the picture of a cascade of phase transitions found earlier in lattice calculations. We also propose a dual gravity system based on a Scherk-Schwarz compactification of a D2 brane wrapped on a 3-torus and find a phase structure which is similar to the phase diagram found in the gauge theory calculation.

  5. Reduced-phase dual-illumination interferometer for measuring large stepped objects.

    PubMed

    Tayebi, Behnam; Jafarfard, Mohammad Reza; Sharif, Farnaz; Bae, Yoon Sung; Shokuh, Seyyed Hossein Hosseini; Kim, Dug Young

    2014-10-01

    We present a reduced-phase dual-illumination interferometer (RPDII) that measures the topography of a sample with large step height variation. We experimentally demonstrate the basic principle and the feasibility of this novel single-shot quantitative phase imaging. Two beams of this interferometer illuminate a sample at different incident angles, and two phases of the different incident angles and their phase difference are simultaneously recorded using three spatial frequencies. The relative phase difference between two beams of an RPDII can be controlled by adjusting the angle such that the maximum phase difference is smaller than 2π, and thus there is no phase wrapping ambiguity in the reconstructed phase. One 4f optical system with a transmission grating is used to illuminate the sample with two collimated beams incident at different angles. The feasibility of this technique is demonstrated by measuring the thicknesses of two stepped metal layers with heights of 150 and 660 μm. Although the change in stepped height is more than 1000 times the wavelength of the laser used in our interferometer, the thicknesses of these two metal layers are successfully obtained without the use of an unwrapping algorithm. PMID:25360973

  6. Development of a Solid Phase Extraction Method for Agricultural Pesticides in Large-Volume Water Samples

    EPA Science Inventory

    An analytical method using solid phase extraction (SPE) and analysis by gas chromatography/mass spectrometry (GC/MS) was developed for the trace determination of a variety of agricultural pesticides and selected transformation products in large-volume high-elevation lake water sa...

  7. Testing the QCD string at large Nc from the thermodynamics of the hadronic phase

    SciTech Connect

    Cohen, Thomas D.

    2007-02-27

    It is generally believed that in the limit of a large number of colors (Nc) the description of confinement via flux tubes becomes valid and QCD can be modeled accurately via a hadronic string theory-at least for highly excited states. QCD at large Nc also has a well-defined deconfinement transition at a temperature Tc. In this talk it is shown how the thermodyanmics of the metastable hadronic phase of QCD (above Tc) at large NC can be related directly to properties of the effective QCD string. The key points in the derivation is the weakly interacting nature of hadrons at large Nc and the existence of a Hagedorn temperature TH for the effective string theory. From this it can be seen at large Nc and near TH, the energy density and pressure of the hadronic phase scale as E {approx} (TH - T)-(D perpendicular -6)/2 (for D perpendicular < 6) and P {approx} (TH - T)-(D perpendicular -4)/2 (for D perpendicular < 4) where D perpendicular s the effective number of transverse dimensions of the string theory. This behavior for D perpendicular < 6 is qualitatively different from typical models in statistical mechanics and if observed on the lattice would provide a direct test of the stringy nature of large Nc QCD. However since it can be seen that TH > Tc this behavior is of relevance only to the metastable phase. The prospect of using this result to extract D perpendicular via lattice simulations of the metastable hadronic phase at moderately large Nc is discussed.

  8. Some Fruits of Genius: Lars Onsager and the Ising Model

    NASA Astrophysics Data System (ADS)

    Fisher, Michael E.

    2006-03-01

    The story of the exact solution of the two-dimensional Ising model by Lars Onsager in the 1940's will be sketched and some of the striking developments following from it, especially for the behavior of fluctuating interfaces, will be recounted.

  9. Operation plan for the data 100/LARS terminal system

    NASA Technical Reports Server (NTRS)

    Bowen, A. J., Jr.

    1980-01-01

    The Data 100/LARS terminal system provides an interface for processing on the IBM 3031 computer system at Purdue University's Laboratory for Applications of Remote Sensing. The environment in which the system is operated and supported is discussed. The general support responsibilities, procedural mechanisms, and training established for the benefit of the system users are defined.

  10. Evidence for large- N phase transitions in mathcal{N}={2^{*}} theory

    NASA Astrophysics Data System (ADS)

    Russo, Jorge G.; Zarembo, Konstantin

    2013-04-01

    We solve, using localization, for the large- N master field of {N}={2^{*}} superYang-Mills theory. From that we calculate expectation values of large Wilson loops and the free energy on the four-sphere. At weak coupling, these observables only receive nonperturbative contributions. The analytic solution holds for a finite range of the 't Hooft coupling and terminates at the point of a large- N phase transition. We find evidence that as the coupling is further increased the theory undergoes an infinite sequence of similar transitions that accumulate at infinity.

  11. Simulating the gas hydrate production test at Mallik using the pilot scale pressure reservoir LARS

    NASA Astrophysics Data System (ADS)

    Heeschen, Katja; Spangenberg, Erik; Schicks, Judith M.; Priegnitz, Mike; Giese, Ronny; Luzi-Helbing, Manja

    2014-05-01

    LARS, the LArge Reservoir Simulator, allows for one of the few pilot scale simulations of gas hydrate formation and dissociation under controlled conditions with a high resolution sensor network to enable the detection of spatial variations. It was designed and built within the German project SUGAR (submarine gas hydrate reservoirs) for sediment samples with a diameter of 0.45 m and a length of 1.3 m. During the project, LARS already served for a number of experiments simulating the production of gas from hydrate-bearing sediments using thermal stimulation and/or depressurization. The latest test simulated the methane production test from gas hydrate-bearing sediments at the Mallik test site, Canada, in 2008 (Uddin et al., 2011). Thus, the starting conditions of 11.5 MPa and 11°C and environmental parameters were set to fit the Mallik test site. The experimental gas hydrate saturation of 90% of the total pore volume (70 l) was slightly higher than volumes found in gas hydrate-bearing formations in the field (70 - 80%). However, the resulting permeability of a few millidarcy was comparable. The depressurization driven gas production at Mallik was conducted in three steps at 7.0 MPa - 5.0 MPa - 4.2 MPa all of which were used in the laboratory experiments. In the lab the pressure was controlled using a back pressure regulator while the confining pressure was stable. All but one of the 12 temperature sensors showed a rapid decrease in temperature throughout the sediment sample, which accompanied the pressure changes as a result of gas hydrate dissociation. During step 1 and 2 they continued up to the point where gas hydrate stability was regained. The pressure decreases and gas hydrate dissociation led to highly variable two phase fluid flow throughout the duration of the simulated production test. The flow rates were measured continuously (gas) and discontinuously (liquid), respectively. Next to being discussed here, both rates were used to verify a model of gas

  12. Two-Fluid Large-Eddy Simulation Approach for Two-Phase Turbulent Flows.

    NASA Astrophysics Data System (ADS)

    Mashayek, F.; Pandya, R. V. R.

    2002-11-01

    In recent years, large-eddy simulation (LES) is emerging as a predictive tool for particle/droplet-laden turbulent flows. In common practice, LES of two-phase flows involves tracking a large number of particles in a Lagrangian framework while using the Eulerian flow field generated by LES of the carrier fluid phase and proper forms for various forces acting on the particle. The two-way coupling effects (i.e. the effects of the particles on the LES flow field and subgrid scales motion and vice versa) have yet to be accounted for fully and in rigorous manner in these Eulerian-Lagrangian approaches. Recently, a new Eulerian-Eulerian approach has been proposed(R.V.R. Pandya and F. Mashayek, ``Two-fluid large-eddy simulation approach for particle-laden turbulent flows,'' to appear in Int. J. Heat and Mass Transfer.) in which Eulerian `fluid' equations are derived for the dispersed phase using the kinetic or probability density function (pdf) modeling approach after solving the closure problems arising in the filtered pdf equation. The solution to the closure accounts properly for the effects of the subgrid scales on the particles. The two-way coupling effects are modeled in a rigorous manner and included in the dynamic localization model for the subgrid stresses of the carrier phase. The `fluid' equations are supposed to capture the preferential distribution of the particles.

  13. Obituary: Gary Lars Grasdalen, 1945-2003

    NASA Astrophysics Data System (ADS)

    Strom, Stephen Eric

    2003-12-01

    With the passing of Gary Grasdalen on 20 April 2003 the astronomical community has lost one its most creative members. Born in Albert Lea, Minnesota on 7 October 1945 to the farming family of Lars G. and Lillie Grasdalen, Gary developed a strong childhood interest in science, and a particular fascination with astronomy. In 1964, he entered Harvard College intending to pursue those interests. During his freshman year, Gary enrolled in an undergraduate research seminar in which he first displayed the combination of keen insight and imagination in applying new techniques that was manifest throughout his professional career. In 1968, he published his first two papers---studies of the C12/C13 ratio in metal deficient stars, and of Fe I and Fe II transition probabilities---which summarized research carried out during his junior and senior years at Harvard. Grasdalen next entered the astronomy graduate program at the University of California, Berkeley. There he developed a strong interest in the early stages of stellar evolution and, in particular, the potential of S-1 image intensifiers and newly available near-infrared detectors to detect and analyze the stellar populations embedded within their parent molecular cloud complexes. Following award of his PhD in 1972, Grasdalen was appointed to the staff at the Kitt Peak National Observatory. Early in his career at KPNO, Gary developed tools that enabled routine near-infrared mapping of nearby molecular cloud complexes, most notably the telescope control programs that enabled precise raster scanning of these regions. Those same programs were some of the many innovations in which Gary had a hand. These innovations enabled a generation of KPNO observers in the 1970s to fully exploit the power of the newly commissioned Mayall telescope as well as the smaller telescopes on Kitt Peak. In 1973, he published the first map of the central region of a molecular cloud, which revealed an extensive embedded, optically obscured

  14. Liquid crystal spatial light modulator with very large phase modulation operating in high harmonic orders.

    PubMed

    Calero, Venancio; García-Martínez, Pascuala; Albero, Jorge; Sánchez-López, María M; Moreno, Ignacio

    2013-11-15

    Unusually large phase modulation in a commercial liquid crystal spatial light modulator (LCSLM) is reported. Such a situation is obtained by illuminating with visible light a device designed to operate in the infrared range. The phase modulation range reaches 6π radians in the red region of the visible spectrum and 10π radians in the blue region. Excellent diffraction efficiency in high harmonic orders is demonstrated despite a concomitant and non-negligible Fabry-Perot interference effect. This type of SLM opens the possibility to implement diffractive elements with reduced chromatic dispersion or chromatic control. PMID:24322100

  15. Experimental magnetization evidence for two superconducting phases in Bi bicrystals with large crystallite disorientation angles

    SciTech Connect

    Muntyanu, F. M.; Gilewski, A.; Nenkov, K.; Warchulska, J.; Zaleski, A. J.

    2006-04-01

    Magnetization measurements prove that the magnetic properties of large-angle ({theta}>30 deg. ) bismuth bicrystals with a crystallite interface (CI) of twisting types essentially differ from well-known results on single-crystalline specimens. Two superconducting phases with T{sub c}{approx}8.4 K and {approx}4.3 K were observed at the CI of bicrystals while ordinary rhombohedral Bi is not a superconductor. We conclude that these phases have to do with the central part and the adjacent layers of the CI of bicrystals.

  16. Thick strings, the liquid crystal blue phase, and cosmological large-scale structure

    NASA Technical Reports Server (NTRS)

    Luo, Xiaochun; Schramm, David N.

    1992-01-01

    A phenomenological model based on the liquid crystal blue phase is proposed as a model for a late-time cosmological phase transition. Topological defects, in particular thick strings and/or domain walls, are presented as seeds for structure formation. It is shown that the observed large-scale structure, including quasi-periodic wall structure, can be well fitted in the model without violating the microwave background isotropy bound or the limits from induced gravitational waves and the millisecond pulsar timing. Furthermore, such late-time transitions can produce objects such as quasars at high redshifts. The model appears to work with either cold or hot dark matter.

  17. Large-aperture continuous-phase diffractive optical element for beam transform

    NASA Astrophysics Data System (ADS)

    Tan, Qiaofeng; Yan, Yingbai; Jin, Guofan; Wu, Minxian

    1999-11-01

    Beam transform, such as to obtain uniform focal spot with flat top, steep edge, low side lobes and high light efficiency, can be realized well by diffractive optical element (DOE). The DOE has many advantages, such as high light efficiency and strong phase distribution design flexibility. To increase the light efficiency and decrease large-angle scattering, continuous phase DOE should be used. The phase design is competed by a kind of multi-resolution hybrid algorithm based on hill-climbing and simulated annealing, which exploits sufficiently strong convergence ability of the hill climbing and global optimization potential of the simulated annealing. A kind of phase distribution with good geometrical structure and diameter 80 mm is obtained by choosing disturbance function, receipt and refused probability and so on. The simulated results show that the light efficiency is more than 95 percent, and the non-uniformity is less than 5 percent. Because the etching depth is direct proportion to the exposure time, to obtain continuous phase DOE, a kind of hollowed-out mask, namely gray-scale mask is used to control exposure time of each are. The mask is manufactured by linear cutting machine. The continuous phase DOE with diameter 80mm is fabricated by ion-etching with the mask. Finally, the tolerance of manufacturing error including depth error and alignment error are analyzed.

  18. Large deployable antenna program. Phase 1: Technology assessment and mission architecture

    NASA Technical Reports Server (NTRS)

    Rogers, Craig A.; Stutzman, Warren L.

    1991-01-01

    The program was initiated to investigate the availability of critical large deployable antenna technologies which would enable microwave remote sensing missions from geostationary orbits as required for Mission to Planet Earth. Program goals for the large antenna were: 40-meter diameter, offset-fed paraboloid, and surface precision of 0.1 mm rms. Phase 1 goals were: to review the state-of-the-art for large, precise, wide-scanning radiometers up to 60 GHz; to assess critical technologies necessary for selected concepts; to develop mission architecture for these concepts; and to evaluate generic technologies to support the large deployable reflectors necessary for these missions. Selected results of the study show that deployable reflectors using furlable segments are limited by surface precision goals to 12 meters in diameter, current launch vehicles can place in geostationary only a 20-meter class antenna, and conceptual designs using stiff reflectors are possible with areal densities of 2.4 deg/sq m.

  19. WA105: a large-scale demonstrator of the Liquid Argon double phase TPC

    NASA Astrophysics Data System (ADS)

    Tonazzo, A.; WA105 Collaboration

    2016-05-01

    The physics case for a large underground detector devoted to neutrino oscillation measurements, nucleon decay and astrophysics is compelling. A time projection chamber based on the dual-phase liquid Argon technique is an extremely attractive option, allowing for long drift distances, low energy threshold and high readout granularity. It has been extensively studied in the LAGUNA-LBNO Design Study and is one of the two designs foreseen for the modules of the DUNE detector in the US. The WA105 experiment envisages the construction of a large scale prototype at CERN, to validate technical solutions and perform physics studies with charged particle beams.

  20. He II Liquid/Vapor Phase Separator for Large Dynamic Range Operation

    NASA Technical Reports Server (NTRS)

    Nakano, A.; Petrac, D.

    1995-01-01

    A phase separator, which separates helium vapor from liquid superfluid helium (He II), is an indispensable device for space cryogenics. The most recent approach to the Space Infrared Telescope Facility (SIRTF) uses a new design concept in which only the detector package is cold at launch, the remainder of the telescope being subsequently cooled to operating temperature on orbit. Therefore, a large dynamic operational range is required of the cryogen system. This is a report of initial laboratory test results with candidate porous plugs as phase separators. Mass flow rates and pressure and temperature differences across a porous plug were measured in this experiment. Relatively large mass flow rates were observed even at small pressure differences. In the high mass flow rate region, a hysteresis was observed with increases and decreases of the pressure difference. A linear theory is proposed and compared with experimental data to explain several phenomena observed in this system.

  1. Co-Phasing the Large Binocular Telescope:. [Status and Performance of LBTI-PHASECam

    NASA Technical Reports Server (NTRS)

    Defrere, D.; Hinz, P.; Downey, E.; Ashby, D.; Bailey, V.; Brusa, G.; Christou, J.; Danchi, W. C.; Grenz, P.; Hill, J. M.; Hoffmann, W. F.; Leisenring, J.; Lozi, J.; McMahon, T.; Mennesson, B.; Millan-Gabet, R.; Montoya, M.; Powell, K.; Skemer, A.; Vaitheeswaran, V.; Vaz, A.; Veillet, C.

    2014-01-01

    The Large Binocular Telescope Interferometer is a NASA-funded nulling and imaging instrument designed to coherently combine the two 8.4-m primary mirrors of the LBT for high-sensitivity, high-contrast, and high-resolution infrared imaging (1.5-13 micrometer). PHASECam is LBTI's near-infrared camera used to measure tip-tilt and phase variations between the two AO-corrected apertures and provide high-angular resolution observations. We report on the status of the system and describe its on-sky performance measured during the first semester of 2014. With a spatial resolution equivalent to that of a 22.8-meter telescope and the light-gathering power of single 11.8-meter mirror, the co-phased LBT can be considered to be a forerunner of the next-generation extremely large telescopes (ELT).

  2. Chemical ordering suppresses large-scale electronic phase separation in doped manganites

    PubMed Central

    Zhu, Yinyan; Du, Kai; Niu, Jiebin; Lin, Lingfang; Wei, Wengang; Liu, Hao; Lin, Hanxuan; Zhang, Kai; Yang, Tieying; Kou, Yunfang; Shao, Jian; Gao, Xingyu; Xu, Xiaoshan; Wu, Xiaoshan; Dong, Shuai; Yin, Lifeng; Shen, Jian

    2016-01-01

    For strongly correlated oxides, it has been a long-standing issue regarding the role of the chemical ordering of the dopants on the physical properties. Here, using unit cell by unit cell superlattice growth technique, we determine the role of chemical ordering of the Pr dopant in a colossal magnetoresistant (La1−yPry)1−xCaxMnO3 (LPCMO) system, which has been well known for its large length-scale electronic phase separation phenomena. Our experimental results show that the chemical ordering of Pr leads to marked reduction of the length scale of electronic phase separations. Moreover, compared with the conventional Pr-disordered LPCMO system, the Pr-ordered LPCMO system has a metal–insulator transition that is ∼100 K higher because the ferromagnetic metallic phase is more dominant at all temperatures below the Curie temperature. PMID:27053071

  3. Chemical ordering suppresses large-scale electronic phase separation in doped manganites

    NASA Astrophysics Data System (ADS)

    Zhu, Yinyan; Du, Kai; Niu, Jiebin; Lin, Lingfang; Wei, Wengang; Liu, Hao; Lin, Hanxuan; Zhang, Kai; Yang, Tieying; Kou, Yunfang; Shao, Jian; Gao, Xingyu; Xu, Xiaoshan; Wu, Xiaoshan; Dong, Shuai; Yin, Lifeng; Shen, Jian

    2016-04-01

    For strongly correlated oxides, it has been a long-standing issue regarding the role of the chemical ordering of the dopants on the physical properties. Here, using unit cell by unit cell superlattice growth technique, we determine the role of chemical ordering of the Pr dopant in a colossal magnetoresistant (La1-yPry)1-xCaxMnO3 (LPCMO) system, which has been well known for its large length-scale electronic phase separation phenomena. Our experimental results show that the chemical ordering of Pr leads to marked reduction of the length scale of electronic phase separations. Moreover, compared with the conventional Pr-disordered LPCMO system, the Pr-ordered LPCMO system has a metal-insulator transition that is ~100 K higher because the ferromagnetic metallic phase is more dominant at all temperatures below the Curie temperature.

  4. Synchronization of Stochastically Coupled Oscillators: Dynamical Phase Transitions and Large Deviations Theory (or Birds and Frogs)

    NASA Astrophysics Data System (ADS)

    Teodorescu, Razvan

    2009-10-01

    Systems of oscillators coupled non-linearly (stochastically or not) are ubiquitous in nature and can explain many complex phenomena: coupled Josephson junction arrays, cardiac pacemaker cells, swarms or flocks of insects and birds, etc. They are know to have a non-trivial phase diagram, which includes chaotic, partially synchronized, and fully synchronized phases. A traditional model for this class of problems is the Kuramoto system of oscillators, which has been studied extensively for the last three decades. The model is a canonical example for non-equilibrium, dynamical phase transitions, so little understood in physics. From a stochastic analysis point of view, the transition is described by the large deviations principle, which offers little information on the scaling behavior near the critical point. I will discuss a special case of the model, which allows a rigorous analysis of the critical properties of the model, and reveals a new, anomalous scaling behavior in the vicinity of the critical point.

  5. Two-dimensional Potts antiferromagnets with a phase transition at arbitrarily large q

    NASA Astrophysics Data System (ADS)

    Huang, Yuan; Chen, Kun; Deng, Youjin; Jacobsen, Jesper Lykke; Kotecký, Roman; Salas, Jesús; Sokal, Alan D.; Swart, Jan M.

    2013-01-01

    We exhibit infinite families of two-dimensional lattices (some of which are triangulations or quadrangulations of the plane) on which the q-state Potts antiferromagnet has a finite-temperature phase transition at arbitrarily large values of q. This unexpected result is proven rigorously by using a Peierls argument to measure the entropic advantage of sublattice long-range order. Additional numerical data are obtained using transfer matrices, Monte Carlo simulation, and a high-precision graph-theoretic method.

  6. Thirumŭlar--pioneer of the immunology concept.

    PubMed

    Rajasekaran, R; Narayana, Ala

    2006-01-01

    Extraordinary longevity of life, made possible by repeated reading and following of the text Thirumandiram 3000 - written by great Siddhar Thirumŭlar. He the Prince of Mystics is one of the 18 luminous Siddhars and the first and foremost #1 Siva śiddhăndi. Historians and scholars predicted his life period between 5th to 8th centuries AD. In his teachings, he explained the kinds of 'Thavam' (Yoga) and he insisted the #2 'Kăya siddhi'. Thousands of years ago, he wrote in detail about Anatomy of microcosm, Siddha physiology, Humoural pathology, Science of pulse, Microcosmic Atom theory, Immunology concept and Immortalization of our body. His marvelous text Thirumandiram deals with Medical science, Life science, Natural science and Divine. In this article authors, discuss about the biography of Thirumŭlar and his medical works. PMID:18175648

  7. Role of CSPG receptor LAR phosphatase in restricting axon regeneration after CNS injury

    PubMed Central

    Xu, Bin; Park, Dongsun; Ohtake, Yosuke; Li, Hui; Hayat, Umar; Li, Junjun; Selzer, Michael E.; Longo, Frank M.; Li, Shuxin

    2014-01-01

    Extracellular matrix molecule chondroitin sulfate proteoglycans (CSPGs) are highly upregulated in scar tissues and form a potent chemical barrier for CNS axon regeneration. Recent studies support that the receptor protein tyrosine phosphatase σ (PTPσ) and its subfamily member leukocyte common antigen related phosphatase (LAR) act as transmembrane receptors to mediate CSPG inhibition. PTPσ deficiency increased regrowth of ascending axons into scar tissues and descending corticospinal tract (CST) axons into the caudal spinal cord after spinal cord injury (SCI). Pharmacological LAR inhibition enhanced serotonergic axon growth in SCI mice. However, transgenic LAR deletion on axon growth in vivo and role of LAR in regulating regrowth of other fiber tracts have not been studied. Here, we studied role of LAR in restricting regrowth of injured descending CNS axons in deficient mice. LAR deletion increased regrowth of serotonergic axons into scar tissues and caudal spinal cord after dorsal overhemitransection. LAR deletion also stimulated regrowth of CST fibers into the caudal spinal cord. LAR protein was upregulated days to weeks after injury and co-localized to serotonergic and CST axons. Moreover, LAR deletion improved functional recovery by increasing BMS locomotor scores and stride length and reducing grid walk errors. This is the first transgenic study that demonstrates crucial role of LAR in restricting regrowth of injured CNS axons. PMID:25220840

  8. W phase source inversion using high-rate regional GPS data for large earthquakes

    NASA Astrophysics Data System (ADS)

    Riquelme, S.; Bravo, F.; Melgar, D.; Benavente, R.; Geng, J.; Barrientos, S.; Campos, J.

    2016-04-01

    W phase moment tensor inversion has proven to be a reliable method for rapid characterization of large earthquakes. For global purposes it is used at the United States Geological Survey, Pacific Tsunami Warning Center, and Institut de Physique du Globe de Strasbourg. These implementations provide moment tensors within 30-60 min after the origin time of moderate and large worldwide earthquakes. Currently, the method relies on broadband seismometers, which clip in the near field. To ameliorate this, we extend the algorithm to regional records from high-rate GPS data and retrospectively apply it to six large earthquakes that occurred in the past 5 years in areas with relatively dense station coverage. These events show that the solutions could potentially be available 4-5 min from origin time. Continuously improving GPS station availability and real-time positioning solutions will provide significant enhancements to the algorithm.

  9. Recent Enhancements of the Phased Array Mirror Extendible Large Aperture (PAMELA) Telescope Testbed at MSFC

    NASA Technical Reports Server (NTRS)

    Rakoczy, John; Burdine, Robert (Technical Monitor)

    2001-01-01

    Recent incremental upgrades to the Phased Array Mirror Extendible Large Aperture (PAMELA) telescope testbed have enabled the demonstration of phasing (with a monochromatic source) of clusters of primary mirror segments down to the diffraction limit. PAMELA upgrades include in improved Shack-Hartmann wavefront sensor, passive viscoelastic damping treatments for the voice-coil actuators, mechanical improvement of mirror surface figures, and optical bench baffling. This report summarizes the recent PAMELA upgrades, discusses the lessons learned, and presents a status of this unique testbed for wavefront sensing and control. The Marshall Space Flight Center acquired the Phased Array Mirror Extendible Large Aperture (PAMELA) telescope in 1993 after Kaman Aerospace was unable to complete integration and testing under the limited SDIO and DARPA funding. The PAMELA is a 36-segment, half-meter aperture, adaptive telescope which utilizes a Shack-Hartmann wavefront sensor, inductive coil edge sensors, voice coil actuators, imaging CCD cameras and interferometry for figure alignment, wavefront sensing and control. MSFC originally obtained the PAMELA to supplement its research in the interactions of control systems with flexible structures. In August 1994, complete tip, tilt and piston control was successfully demonstrated using the Shack-Hartmann wavefront sensor and the inductive edge sensors.

  10. Recent Enhancements of the Phased Array Mirror Extendible Large Aperture (PAMELA) Telescope Testbed at MSFC

    NASA Technical Reports Server (NTRS)

    Rakoczy, John; Montgomery, Edward E.; Lindner, Jeff

    2000-01-01

    Recent incremental upgrades to the Phased Array Mirror Extendible Large Aperture (PAMELA) telescope testbed have enabled the demonstration of phasing (with a monochromatic source) of clusters of primary mirror segments down to the diffraction limit. PAMELA upgrades include an improved Shack-Hartmann wavefront sensor, passive viscoelastic damping treatments for the voice-coil actuators, mechanical improvement of mirror surface figures, and optical bench baffling. This report summarizes the recent PAMELA upgrades, discusses the lessons learned, and presents a status of this unique testbed for wavefront sensing and control. The Marshall Space Flight Center acquired the Phased Array Mirror Extendible Large Aperture (PAMELA) telescope in 1993 after Kaman Aerospace was unable to complete integration and testing under the limited SDIO and DARPA funding. The PAMELA is a 36-segment, half-meter aperture, adaptive telescope which utilizes a Shack-Hartmann wavefront sensor, inductive coil edge sensors, voice coil actuators, imaging CCD cameras and interferometry for figure alignment, wavefront sensing and control. MSFC originally obtained the PAMELA to supplement its research in the interactions of control systems with flexible structures. In August 1994, complete tip, tilt and piston control was successfully demonstrated using the Shack-Hartmann wavefront sensor and the inductive edge sensors.

  11. RCM-E simulation of substorm growth phase arc associated with large-scale adiabatic convection

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Wolf, Richard A.; Toffoletto, Frank R.; Sazykin, Stanislav

    2013-12-01

    Substorm auroral breakup often occurs on a longitudinally elongated arc at the end of a growth phase. We present an idealized high-resolution simulation with the Rice Convection Model-Equilibrium (RCM-E) to investigate how large-scale adiabatic convection under equilibrium conditions can give rise to an auroral arc. We find that a thin arc that maps to the magnetic transition region at r ~ 8 RE emerges in the late growth phase. The simulation implies that the arc in the premidnight sector is associated with a sheet of additional region 1 sense field-aligned current (FAC) just poleward of the main region 2 FAC, while the arc in the postmidnight sector is associated with the poleward portion of the main upward region 2 FAC. Explanations for the location and the thickness of the arc are proposed, based on the simulation.

  12. Large Eddy Simulation of diesel injector opening with a two phase cavitation model

    NASA Astrophysics Data System (ADS)

    Koukouvinis, P.; Gavaises, M.; Li, J.; Wang, L.

    2015-12-01

    In the current paper, indicative results of the flow simulation during the opening phase of a Diesel injector are presented. In order to capture the complex flow field and cavitation structures forming in the injector, Large Eddy Simulation has been employed, whereas compressibility of the liquid was included. For taking into account cavitation effects, a two phase homogenous mixture model was employed. The mass transfer rate of the mixture model was adjusted to limit as much as possible the occurrence of negative pressures. During the simulation, pressure peaks have been found in areas of vapour collapse, with magnitude beyond 4000bar, which is higher that the yield stress of common materials. The locations of such pressure peaks corresponds well with the actual erosion location as found from X ray scans.

  13. Large spatial self-phase modulation in castor oil enhanced by gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Alencar, Márcio A. R. C.; Nascimento, César M.; Chávez-Cerda, Sabino; da Silva, Monique G. A.; Meneghetti, Mario R.; Hickmann, Jandir M.

    2006-02-01

    Spatial self-phase modulation was observed when a CW laser beam propagated along a cell containing castor oil. The minimum power needed to excite this effect decreases when the sample length is increased, as well as when the laser wavelength approaches to the absorption band of the medium. The same phenomenon was also observed when a laser beam interacts with a colloidal solution of gold nanoparticles in castor oil. For this system the self-phase modulation minimum power decreased dramatically, which indicates that the nonlinear refractive index for this system is enhanced due to the gold nanoparticles. Moreover, for laser wavelength near to the plasmon resonance of the gold nanoparticles, this enhancement factor is even higher. Although the large value of those media nonlinearity, its temporal response is slow. This fact suggests that this phenomenon is due to thermal effects mainly.

  14. Large-Actuator-Number Horizontal Path Correction of Atmospheric Turbulence utilizing an Interferometric Phase Conjugate Engine

    SciTech Connect

    Baker, K L; Stappaerts, E A; Gavel, D; Tucker, J; Silva, D A; Wilks, S C; Olivier, S S; Olsen, J

    2004-08-25

    An adaptive optical system used to correct horizontal beam propagation paths has been demonstrated. This system utilizes an interferometric wave-front sensor and a large-actuator-number MEMS-based spatial light modulator to correct the aberrations incurred by the beam after propagation along the path. Horizontal path correction presents a severe challenge to adaptive optics systems due to the short atmospheric transverse coherence length and the high degree of scintillation incurred by laser propagation along these paths. Unlike wave-front sensors that detect phase gradients, however, the interferometric wave-front sensor measures the wrapped phase directly. Because the system operates with nearly monochromatic light and uses a segmented spatial light modulator, it does not require that the phase be unwrapped to provide a correction and it also does not require a global reconstruction of the wave-front to determine the phase as required by gradient detecting wave-front sensors. As a result, issues with branch points are eliminated. Because the atmospheric probe beam is mixed with a large amplitude reference beam, it can be made to operate in a photon noise limited regime making its performance relatively unaffected by scintillation. The MEMS-based spatial light modulator in the system contains 1024 pixels and is controlled to speeds in excess of 800 Hz, enabling its use for correction of horizontal path beam propagation. In this article results are shown of both atmospheric characterization with the system and open loop horizontal path correction of a 1.53 micron laser by the system. To date Strehl ratios of greater than 0.5 have been achieved.

  15. Phase transitions as the origin of large scale structure in the universe

    NASA Technical Reports Server (NTRS)

    Turok, Neil

    1988-01-01

    A review of the formation of large scale structure through gravitational growth of primordial perturbations is given. This is followed by a discussion of how symmetry breaking phase transitions in the early universe might have produced the required perturbations, in particular through the formation and evolution of a network of cosmic strings. Finally, the statistical mechanics of string networks, for both cosmic and fundamental strings is discussed, leading to some more speculative ideas on the possible role of fundamental strings (superstrings or heterotic strings) in the very early universe.

  16. Dendronization-induced phase-transfer, stabilization and self-assembly of large colloidal Au nanoparticles.

    PubMed

    Malassis, Ludivine; Jishkariani, Davit; Murray, Christopher B; Donnio, Bertrand

    2016-07-21

    The phase-transfer of CTAB-coated aqueous, spherical gold nanoparticles, with metallic core diameters ranging from ca. 27 to 54 nm, into organic solvents by exchanging the primitive polar bilayer with lipophilic, disulfide dendritic ligands is reported. The presence of such a thick nonpolar organic shell around these large nanoparticles enhances their stabilization against aggregation, in addition to enabling their transfer into a variety of solvents such as chloroform, toluene or tetrahydrofuran. Upon the slow evaporation of a chloroform suspension deposited on a solid support, the dendronized hybrids were found to self-assemble into ring structures of various diameters. Moreover, their self-assembly at the liquid-air interface affords the formation of fairly long-range ordered monolayers, over large areas, that can then be entirely transferred onto solid substrates. PMID:27348477

  17. Application and Operations Concepts of Large Transmit Phased Array of Parabolic Reflectors

    NASA Technical Reports Server (NTRS)

    Amoozegar, Farid

    2006-01-01

    The primary motive for large transmit array of parabolic reflectors, also known as Uplink Array, was to explore alternate methods in order to replace the large 70m antennas of Deep Space Network (DSN) such that the core capability for emergency support to a troubled spacecraft in deep space is preserved. Given that the Uplink Array is a new technology, the focus has always been on its feasibility and phase calibration techniques, which by itself is quite a challenge. It would be interesting to examine, however, what else could be accomplished by the Uplink Array capability other than the emergency support to a troubled spacecraft in deep space. ... The objective of this paper is to discuss a few application scenarios and the corresponding operation concepts, such as lunar positioning system, high EIRP uplink and the synergies with solar radar, and high power RF beams.

  18. Dendronization-induced phase-transfer, stabilization and self-assembly of large colloidal Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Malassis, Ludivine; Jishkariani, Davit; Murray, Christopher B.; Donnio, Bertrand

    2016-07-01

    The phase-transfer of CTAB-coated aqueous, spherical gold nanoparticles, with metallic core diameters ranging from ca. 27 to 54 nm, into organic solvents by exchanging the primitive polar bilayer with lipophilic, disulfide dendritic ligands is reported. The presence of such a thick nonpolar organic shell around these large nanoparticles enhances their stabilization against aggregation, in addition to enabling their transfer into a variety of solvents such as chloroform, toluene or tetrahydrofuran. Upon the slow evaporation of a chloroform suspension deposited on a solid support, the dendronized hybrids were found to self-assemble into ring structures of various diameters. Moreover, their self-assembly at the liquid-air interface affords the formation of fairly long-range ordered monolayers, over large areas, that can then be entirely transferred onto solid substrates.The phase-transfer of CTAB-coated aqueous, spherical gold nanoparticles, with metallic core diameters ranging from ca. 27 to 54 nm, into organic solvents by exchanging the primitive polar bilayer with lipophilic, disulfide dendritic ligands is reported. The presence of such a thick nonpolar organic shell around these large nanoparticles enhances their stabilization against aggregation, in addition to enabling their transfer into a variety of solvents such as chloroform, toluene or tetrahydrofuran. Upon the slow evaporation of a chloroform suspension deposited on a solid support, the dendronized hybrids were found to self-assemble into ring structures of various diameters. Moreover, their self-assembly at the liquid-air interface affords the formation of fairly long-range ordered monolayers, over large areas, that can then be entirely transferred onto solid substrates. Electronic supplementary information (ESI) available: TEM microscope images. See DOI: 10.1039/c6nr03404g

  19. Liprin-alpha has LAR-independent functions in R7 photoreceptor axon targeting.

    PubMed

    Hofmeyer, Kerstin; Maurel-Zaffran, Corinne; Sink, Helen; Treisman, Jessica E

    2006-08-01

    In the Drosophila visual system, the color-sensing photoreceptors R7 and R8 project their axons to two distinct layers in the medulla. Loss of the receptor tyrosine phosphatase LAR from R7 photoreceptors causes their axons to terminate prematurely in the R8 layer. Here we identify a null mutation in the Liprin-alpha gene based on a similar R7 projection defect. Liprin-alpha physically interacts with the inactive D2 phosphatase domain of LAR, and this domain is also essential for R7 targeting. However, another LAR-dependent function, egg elongation, requires neither Liprin-alpha nor the LAR D2 domain. Although human and Caenorhabditis elegans Liprin-alpha proteins have been reported to control the localization of LAR, we find that LAR localizes to focal adhesions in Drosophila S2R+ cells and to photoreceptor growth cones in vivo independently of Liprin-alpha. In addition, Liprin-alpha overexpression or loss of function can affect R7 targeting in the complete absence of LAR. We conclude that Liprin-alpha does not simply act by regulating LAR localization but also has LAR-independent functions. PMID:16864797

  20. An optical spectrum of a large isolated gas-phase PAH cation: C78H26+

    NASA Astrophysics Data System (ADS)

    Zhen, Junfeng; Mulas, Giacomo; Bonnamy, Anthony; Joblin, Christine

    2016-03-01

    A gas-phase optical spectrum of a large polycyclic aromatic hydrocarbon (PAH) cation - C78H26+ - in the 410 -610 nm range is presented. This large all-benzenoid PAH should be large enough to be stable with respect to photodissociation in the harsh conditions prevailing in the interstellar medium (ISM). The spectrum is obtained via multi-photon dissociation (MPD) spectroscopy of cationic C78H26 stored in the Fourier Transform Ion Cyclotron Resonance (FT-ICR) cell of the PIRENEA setup using the radiation from a mid-band optical parametric oscillator (OPO) laser. The experimental spectrum shows two main absorption peaks at 431 nm and 516 nm, in good agreement with a theoretical spectrum computed via time-dependent density functional theory (TD-DFT). DFT calculations indicate that the equilibrium geometry, with the absolute minimum energy, is of lowered, nonplanar C2 symmetry instead of the more symmetric planar D2h symmetry that is usually the minimum for similar PAHs of smaller size. This kind of slightly broken symmetry could produce some of the fine structure observed in some diffuse interstellar bands (DIBs). It can also favor the folding of C78H26+ fragments and ultimately the formation of fullerenes. This study opens up the possibility to identify the most promising candidates for DIBs amongst large cationic PAHs.

  1. An optical spectrum of a large isolated gas-phase PAH cation: C78H26+

    PubMed Central

    Zhen, Junfeng; Mulas, Giacomo; Bonnamy, Anthony; Joblin, Christine

    2016-01-01

    A gas-phase optical spectrum of a large polycyclic aromatic hydrocarbon (PAH) cation - C78H26+- in the 410-610 nm range is presented. This large all-benzenoid PAH should be large enough to be stable with respect to photodissociation in the harsh conditions prevailing in the interstellar medium (ISM). The spectrum is obtained via multi-photon dissociation (MPD) spectroscopy of cationic C78H26 stored in the Fourier Transform Ion Cyclotron Resonance (FT-ICR) cell using the radiation from a mid-band optical parametric oscillator (OPO) laser. The experimental spectrum shows two main absorption peaks at 431 nm and 516 nm, in good agreement with a theoretical spectrum computed via time-dependent density functional theory (TD-DFT). DFT calculations indicate that the equilibrium geometry, with the absolute minimum energy, is of lowered, nonplanar C2 symmetry instead of the more symmetric planar D2h symmetry that is usually the minimum for similar PAHs of smaller size. This kind of slightly broken symmetry could produce some of the fine structure observed in some diffuse interstellar bands (DIBs). It can also favor the folding of C78H26+ fragments and ultimately the formation of fullerenes. This study opens up the possibility to identify the most promising candidates for DIBs amongst large cationic PAHs. PMID:26942230

  2. Spin liquid phases of large-spin Mott insulating ultracold bosons

    NASA Astrophysics Data System (ADS)

    Rutkowski, Todd C.; Lawler, Michael J.

    2016-03-01

    Mott insulating ultracold gases possess a unique whole-atom exchange interaction which enables large quantum fluctuations between the Zeeman sublevels of each atom. By strengthening this interaction—either through the use of large-spin atoms or by tuning the particle-particle interactions via optical Feshbach resonance—one may enhance fluctuations and facilitate the appearance of the long-sought-after quantum spin liquid phase—all in the highly tunable environment of cold atoms. To illustrate the relationship between the spin magnitude, interaction strength, and resulting magnetic phases, we present and solve a mean-field theory for bosons optically confined to the one-particle-per-site Mott state, using both analytic and numerical methods. We find on square and triangular lattices for bosons of hyperfine spin f >2 that making the repulsive s -wave scattering length through the singlet channel small—relative to the higher-order scattering channels—accesses a short-range resonating valence bond (s-RVB) spin liquid phase.

  3. Timing of Formal Phase Safety Reviews for Large-Scale Integrated Hazard Analysis

    NASA Technical Reports Server (NTRS)

    Massie, Michael J.; Morris, A. Terry

    2010-01-01

    Integrated hazard analysis (IHA) is a process used to identify and control unacceptable risk. As such, it does not occur in a vacuum. IHA approaches must be tailored to fit the system being analyzed. Physical, resource, organizational and temporal constraints on large-scale integrated systems impose additional direct or derived requirements on the IHA. The timing and interaction between engineering and safety organizations can provide either benefits or hindrances to the overall end product. The traditional approach for formal phase safety review timing and content, which generally works well for small- to moderate-scale systems, does not work well for very large-scale integrated systems. This paper proposes a modified approach to timing and content of formal phase safety reviews for IHA. Details of the tailoring process for IHA will describe how to avoid temporary disconnects in major milestone reviews and how to maintain a cohesive end-to-end integration story particularly for systems where the integrator inherently has little to no insight into lower level systems. The proposal has the advantage of allowing the hazard analysis development process to occur as technical data normally matures.

  4. An efficient pipeline wavefront phase recovery for the CAFADIS camera for extremely large telescopes.

    PubMed

    Magdaleno, Eduardo; Rodríguez, Manuel; Rodríguez-Ramos, José Manuel

    2010-01-01

    In this paper we show a fast, specialized hardware implementation of the wavefront phase recovery algorithm using the CAFADIS camera. The CAFADIS camera is a new plenoptic sensor patented by the Universidad de La Laguna (Canary Islands, Spain): international patent PCT/ES2007/000046 (WIPO publication number WO/2007/082975). It can simultaneously measure the wavefront phase and the distance to the light source in a real-time process. The pipeline algorithm is implemented using Field Programmable Gate Arrays (FPGA). These devices present architecture capable of handling the sensor output stream using a massively parallel approach and they are efficient enough to resolve several Adaptive Optics (AO) problems in Extremely Large Telescopes (ELTs) in terms of processing time requirements. The FPGA implementation of the wavefront phase recovery algorithm using the CAFADIS camera is based on the very fast computation of two dimensional fast Fourier Transforms (FFTs). Thus we have carried out a comparison between our very novel FPGA 2D-FFTa and other implementations. PMID:22315523

  5. An Efficient Pipeline Wavefront Phase Recovery for the CAFADIS Camera for Extremely Large Telescopes

    PubMed Central

    Magdaleno, Eduardo; Rodríguez, Manuel; Rodríguez-Ramos, José Manuel

    2010-01-01

    In this paper we show a fast, specialized hardware implementation of the wavefront phase recovery algorithm using the CAFADIS camera. The CAFADIS camera is a new plenoptic sensor patented by the Universidad de La Laguna (Canary Islands, Spain): international patent PCT/ES2007/000046 (WIPO publication number WO/2007/082975). It can simultaneously measure the wavefront phase and the distance to the light source in a real-time process. The pipeline algorithm is implemented using Field Programmable Gate Arrays (FPGA). These devices present architecture capable of handling the sensor output stream using a massively parallel approach and they are efficient enough to resolve several Adaptive Optics (AO) problems in Extremely Large Telescopes (ELTs) in terms of processing time requirements. The FPGA implementation of the wavefront phase recovery algorithm using the CAFADIS camera is based on the very fast computation of two dimensional fast Fourier Transforms (FFTs). Thus we have carried out a comparison between our very novel FPGA 2D-FFTa and other implementations. PMID:22315523

  6. T/R module development for large aperture L-band phased array

    NASA Technical Reports Server (NTRS)

    Chamberlain, Neil; Andricos, Constantine; Kumley, Kendra; Berkun, Andrew; Hodges, Richard; Spitz, Suzanne

    2004-01-01

    This paper describes a transmit / receive (T/R) module for a large L-band space based radar active phased array being developed at JPL. Electrical performance and construction techniques are described, with emphasis on the former. The T/R modules have a bandwidth of more than 80 MHz centered at 1260MHz and support dual, switched polarizations. Phase and amplitude are controlled by a 6-bit phase shifter and a 6-bit attenuator, respectively. The transmitter power amplifier generates 2.4 W into a nominal 50 ohm load with 36% overall efficiency. The receiver noise figure is 4.4 dB including all front-end losses. The module weighs 32 g and has a footprint of 8 cm x 4.5 cm. Fourteen of these T/R modules were fabricated at the JPL Pick-and-Place Facility and were tested using a computer-controlled measurement facility developed at JPL. Calibrated performance of this set of T/R modules is presented and shows good agreement with design predictions.

  7. Large magnetocrystalline anisotropy in bilayer transition metal phases from first-principles full-potential calculations

    NASA Astrophysics Data System (ADS)

    Ravindran, P.; Kjekshus, A.; Fjellvåg, H.; James, P.; Nordström, L.; Johansson, B.; Eriksson, O.

    2001-04-01

    The computational framework of this study is based on the local-spin-density approximation with first-principles full-potential linear muffin-tin orbital calculations including orbital polarization (OP) correction. We have studied the magnetic anisotropy for a series of bilayer CuAu(I)-type materials such as FeX, MnX (X=Ni,Pd,Pt), CoPt, NiPt, MnHg, and MnRh in a ferromagnetic state using experimental structural parameters to understand the microscopic origin of magnetic-anisotropy energy (MAE) in magnetic multilayers. Except for MnRh and MnHg, all these phases show perpendicular magnetization. We have analyzed our results in terms of angular momentum-, spin- and site-projected density of states, magnetic-angular-momentum-projected density of states, orbital-moment density of states, and total density of states. The orbital-moment number of states and the orbital-moment anisotropy for FeX (X=Ni,Pd,Pt) are calculated as a function of band filling to study its effect on MAE. The total and site-projected spin and orbital moments for all these systems are calculated with and without OP when the magnetization is along or perpendicular to the plane. The results are compared with available experimental as well as theoretical results. Our calculations show that OP always enhances the orbital moment in these phases and brings them closer to experimental values. The changes in MAE are analyzed in terms of exchange splitting, spin-orbit splitting, and tetragonal distortion/crystal-field splitting. The calculated MAE is found to be in good agreement with experimental values when the OP correction is included. Some of the materials considered here show large magnetic anisotropy of the order of meV. In particular we found that MnPt will have a very large MAE if it could be stabilized in a ferromagnetic configuration. Our analysis indicates that apart from large spin-orbit interaction and exchange interaction from at least one of the constituents, a large crystal-field splitting

  8. Simulations of spontaneous phase transitions in large, deeply supercooled clusters of SeF{sub 6}

    SciTech Connect

    Chushak, Y.G.; Bartell, L.S.

    1999-12-16

    The crystallization and subsequent solid-state transitions in a series of large clusters of SeF{sub 6} of two sizes have been studied by molecular dynamics simulations at constant temperature. Several diagnostic methods were applied to monitor molecular details of the clusters' structures and their evolution with time. The behavior of 12 liquid clusters with 725 molecules and 10 with 1,722 molecules was examined at 140 and 130 K. During the nanosecond runs of the simulations all of these clusters froze, initially to the bcc or a related but distorted structure. At the higher temperature all but one of the larger clusters underwent a transition to the monoclinic structure whereas all but one of the smaller clusters remained bcc. At the lower temperature all of the smaller clusters ultimately transformed, usually quite abruptly, to the monoclinic structure. In the case of the larger clusters a transition to the monoclinic phase was observed at 140 K whereas at 130 K, besides the monoclinic structure, the orthorhombic or a mixture of orthorhombic and monoclinic phases was obtained in a few clusters. Many of the larger frozen clusters were polycrystalline while the smaller ones were single crystals. How these results relate to Kaschiev's criterion for mononuclear vs polynuclear growth is discussed, and the time dependence of crystal growth was found to agree well with the Kolmogorov-Johnson-Mehl-Avrami equations. Growth rates of the bcc phase were in reasonable agreement with Turnbull's theory. Simulations of solid-state transitions from clusters prepared to have a well-ordered bcc configuration clearly indicate a lower nucleation rate for the low-energy phase than in a cluster with grain boundaries and/or despite the fact that surfaces of clusters tend to be disordered and melt at significantly lower temperatures than their cores. Such a behavior has also been reported for simulations of monatomic clusters.

  9. [Clinical aspects of obsessive-compulsive syndromes: results of phase 2 of a large French survey].

    PubMed

    Hantouche, E G; Bourgeois, M; Bouhassira, M; Lancrenon, S

    1996-01-01

    Obsessive-Compulsive Disorder (OCD) had received a new interest from fundamental research (psychopharmacology, neurobiology and brain imagery...). Although more investigation of OCD clinical aspects are needed, especially in large cohorts of patients, not seen nor investigated only in high specialized psychiatric units. A large french survey "Screening-Understanding-Treating OCD" was conducted in 1994 with the participation of 240 psychiatrists. The survey had included 4,363 new consecutive patients consulting in out-patient psychiatry. The phase 1 had shown a point prevalence rates of 9.2% for OCD (full criteria of DSM III-R) and 17% for OCS (Obsessive-Compulsive Syndromes). From 731 patients, the phrase 2 was conducted on a cohort of 646 patients with OCD or OCS and had explored in details in the clinical aspects of the OC illness (typology, symptomatic categories, comorbidity, OCD spectrum, psychiatric family history and treatment history...). The results of the french survey phase 2 had confirmed a variety of classical and current literature data, especially: the ICD 10 proposal for diagnostic sub-typology according to symptomatic predominance (obsessions, compulsions or both); the symptomatic clustering of obsessions and compulsions into three major categories, suggested by a recent study from the Boston University; the high rate of comorbidity with anxiety and depressive disorders and with disorders related to the large OCD spectrum (somatoform disorders, eating disorders, impulse-control disorders, compulsive buying...); the impact of clinical parameters (as slowness, avoidance, lack of insight) on clinical global OCD and OCS severity; the high rate of intrafamilial psychiatric morbidity (OCD, depression, anxiety disorders). PMID:9035981

  10. Site amplification at Avcılar, Istanbul

    NASA Astrophysics Data System (ADS)

    Ergin, M.; Özalaybey, S.; Aktar, M.; Yalçin, M. N.

    2004-10-01

    Avcılar is the suburb of Istanbul that was most heavily damaged during the August 17, 1999 Mw 7.4 Izmit earthquake. Strong ground motion caused fatalities and damage in Avcılar despite being ˜90 km from the epicenter. We deployed five portable seismograph stations equipped with Reftek 24-bit recorders and L4C-3D seismometers for 2 months, in order to understand why the local site response was different from elsewhere in Istanbul. A reference station was placed on a hard rock site, and the remaining four stations were placed on other geological units, in areas that had experienced varying levels of damage. We calculated frequency-dependent ground amplification curves by taking the ratios of the spectra at soft and hard rock sites. We obtained similar site response curves for most earthquakes at each site in the frequency range of 0.3-1.6 Hz, and observed no significant site amplification beyond 2.0 Hz at any site. The overall characteristics of the recorded S-waveforms and our modeling of the calculated site amplification curves are consistent with amplification as a result of trapping of seismic energy within a 100-150 m thick, low-velocity subsurface layer. We also review the applicability of microtremor measurements to estimate local site effects at Avcılar. For these data, we used ratios of spectra of horizontal to vertical components to obtain each site response. These results are compared with standard spectral ratios. These microtremor measurements provide consistent estimates of the amplification at most sites at the higher end of the frequency band, namely above 1 Hz. The results from both methods indeed agree well in this part of the frequency band. However, the microtremor method fails to detect amplification at lower frequencies, namely <1.0 Hz.

  11. Macroscopic quantum tunneling and quantum - classical phase transitions of the escape rate in large spin systems

    NASA Astrophysics Data System (ADS)

    Owerre, S. A.; Paranjape, M. B.

    2015-01-01

    This article presents a review on the theoretical and the experimental developments on macroscopic quantum tunneling and quantum-classical phase transitions of the escape rate in large spin systems. A substantial amount of research work has been done in this area of research over the years, so this article does not cover all the research areas that have been studied, for instance the effect of dissipation is not discussed and can be found in other review articles. We present the basic ideas with simplified calculations so that it is readable to both specialists and nonspecialists in this area of research. A brief derivation of the path integral formulation of quantum mechanics in its original form using the orthonormal position and momentum basis is reviewed. For tunneling of a particle into the classically forbidden region, the imaginary time (Euclidean) formulation of path integral is useful, we review this formulation and apply it to the problem of tunneling in a double well potential. For spin systems such as single molecule magnets, the formulation of path integral requires the use of non-orthonormal spin coherent states in (2 s + 1) dimensional Hilbert space, the coordinate independent and the coordinate dependent form of the spin coherent state path integral are derived. These two (equivalent) forms of spin coherent state path integral are applied to the tunneling of single molecule magnets through a magnetic anisotropy barrier. Most experimental and numerical results are presented. The suppression of tunneling for half-odd integer spin (spin-parity effect) at zero magnetic field is derived using both forms of spin coherent state path integral, which shows that this result (spin-parity effect) is independent of the choice of coordinate. At nonzero magnetic field we present both the experimental and the theoretical results of the oscillation of tunneling splitting as a function of the applied magnetic field applied along the spin hard anisotropy axis

  12. Experimental instrumentation system for the Phased Array Mirror Extendible Large Aperture (PAMELA) test program

    NASA Technical Reports Server (NTRS)

    Boykin, William H., Jr.

    1993-01-01

    Adaptive optics are used in telescopes for both viewing objects with minimum distortion and for transmitting laser beams with minimum beam divergence and dance. In order to test concepts on a smaller scale, NASA MSFC is in the process of setting up an adaptive optics test facility with precision (fraction of wavelengths) measurement equipment. The initial system under test is the adaptive optical telescope called PAMELA (Phased Array Mirror Extendible Large Aperture). Goals of this test are: assessment of test hardware specifications for PAMELA application and the determination of the sensitivities of instruments for measuring PAMELA (and other adaptive optical telescopes) imperfections; evaluation of the PAMELA system integration effort and test progress and recommended actions to enhance these activities; and development of concepts and prototypes of experimental apparatuses for PAMELA.

  13. Evidence for gentle chromospheric evaporation during the gradual phase of large solar flares

    NASA Technical Reports Server (NTRS)

    Schmieder, B.; Forbes, T. G.; Malherbe, J. M.; Machado, M. E.

    1987-01-01

    The Multichannel Subtractive Double Pass Spectrograph of the Meudon solar tower is used to obtain high spatial resolution H-alpha line profiles during the gradual phase of three solar flares. In all cases, small blueshifts lasting for several hours are observed in the flare ribbons. By contrast, the region between the two ribbons exhibits large redshifts that are typical of H-alpha post flare loops. The blueshifts in the ribbons is interpreted as upward chromospheric flows of 0.5-10 km/s, and the possible ambiguities of the interpretation are discussed. A preliminary analysis indicates that such upflows are sufficient to supply the greater than 10 to the 16th g of mass needed to maintain a dense H-alpha postflare loop system in the corona.

  14. The Late Gradual Phase of Large Flares: The Case of November 3, 2003

    NASA Astrophysics Data System (ADS)

    Auraß, H.

    2014-12-01

    The hard X-ray time profiles of most solar eruptive events begin with an impulsive phase that may be followed by a late gradual phase. In a recent article (Aurass et al. in Astron. Astrophys. 555, A40, 2013), we analyzed the impulsive phase of the solar eruptive event on November 3, 2003 in radio and X-ray emission. We found evidence of magnetic breakout reconnection using the radio diagnostic of the common effect of the flare current sheet and, at heights of ±0.4 R⊙, of a coronal breakout current sheet (a source site that we called X). In this article we investigate the radio emission during the late gradual phase of the previously analyzed event. The work is based on 40-400 MHz dynamic spectra (Radio Spectrograph Observatorium Tremsdorf, Leibniz Institut für Astrophysik Potsdam, AIP) combined with radio images obtained by the French Nançay Multifrequency Radio Heliograph (NRH) of the Observatoire de Paris, Meudon. Additionally we use Ramaty High Energy Solar Spectroscopic Imager (RHESSI) hard X-ray (HXR) flux records, and Solar and Heliospheric Observatory (SOHO) Large Angle and Spectrometric Coronagraph (LASCO) and Extreme ultraviolet Imaging Telescope (EIT) images. The analysis shows that the late gradual phase is subdivided into two distinct stages. Stage 1 (here lasting five minutes) is restricted to reoccurring radio emission at source site X. We observe plasma emission and an azimuthally moving source (from X toward the NE; speed ∼1200 kms) at levels radially ordered against the undisturbed coronal density gradient. These radio sources mark the lower boundary of an overdense region with a huge azimuthal extent. By the end of its motion, the source decays and reappears at point X. This is the onset of stage 2 traced here during its first 13 minutes. By this time, NRH sources observed at frequencies ≤236.6 MHz radially lift off with a speed of ∼400 kms (one third of the front speed of the coronal mass ejection (CME)) as one slowly decaying

  15. A 1372-element Large Scale Hemispherical Ultrasound Phased Array Transducer for Noninvasive Transcranial Therapy

    SciTech Connect

    Song, Junho; Hynynen, Kullervo

    2009-04-14

    Noninvasive transcranial therapy using high intensity focused ultrasound transducers has attracted high interest as a promising new modality for the treatments of brain related diseases. We describe the development of a 1372 element large scale hemispherical ultrasound phased array transducer operating at a resonant frequency of 306 kHz. The hemispherical array has a diameter of 31 cm and a 15.5 cm radius of curvature. It is constructed with piezoelectric (PZT-4) tube elements of a 10 mm in diameter, 6 mm in length and 1.4 mm wall thickness. Each element is quasi-air backed by attaching a cork-rubber membrane on the back of the element. The acoustic efficiency of the element is determined to be approximately 50%. The large number of the elements delivers high power ultrasound and offers better beam steering and focusing capability. Comparisons of sound pressure-squared field measurements with theoretical calculations in water show that the array provides good beam steering and tight focusing capability over an efficient volume of approximately 100x100x80 mm{sup 3} with nominal focal spot size of approximately 2.3 mm in diameter at -6 dB. We also present its beam steering and focusing capability through an ex vivo human skull by measuring pressure-squared amplitude after phase corrections. These measurements show the same efficient volume range and focal spot sizes at -6 dB as the ones in water without the skull present. These results indicate that the array is sufficient for use in noninvasive transcranial ultrasound therapy.

  16. A 1372-element Large Scale Hemispherical Ultrasound Phased Array Transducer for Noninvasive Transcranial Therapy

    NASA Astrophysics Data System (ADS)

    Song, Junho; Hynynen, Kullervo

    2009-04-01

    Noninvasive transcranial therapy using high intensity focused ultrasound transducers has attracted high interest as a promising new modality for the treatments of brain related diseases. We describe the development of a 1372 element large scale hemispherical ultrasound phased array transducer operating at a resonant frequency of 306 kHz. The hemispherical array has a diameter of 31 cm and a 15.5 cm radius of curvature. It is constructed with piezoelectric (PZT-4) tube elements of a 10 mm in diameter, 6 mm in length and 1.4 mm wall thickness. Each element is quasi-air backed by attaching a cork-rubber membrane on the back of the element. The acoustic efficiency of the element is determined to be approximately 50%. The large number of the elements delivers high power ultrasound and offers better beam steering and focusing capability. Comparisons of sound pressure-squared field measurements with theoretical calculations in water show that the array provides good beam steering and tight focusing capability over an efficient volume of approximately 100×100×80 mm3 with nominal focal spot size of approximately 2.3 mm in diameter at -6 dB. We also present its beam steering and focusing capability through an ex vivo human skull by measuring pressure-squared amplitude after phase corrections. These measurements show the same efficient volume range and focal spot sizes at -6 dB as the ones in water without the skull present. These results indicate that the array is sufficient for use in noninvasive transcranial ultrasound therapy.

  17. Kinetic Alfvén Wave Generation by Large-scale Phase Mixing

    NASA Astrophysics Data System (ADS)

    Vásconez, C. L.; Pucci, F.; Valentini, F.; Servidio, S.; Matthaeus, W. H.; Malara, F.

    2015-12-01

    One view of the solar wind turbulence is that the observed highly anisotropic fluctuations at spatial scales near the proton inertial length dp may be considered as kinetic Alfvén waves (KAWs). In the present paper, we show how phase mixing of large-scale parallel-propagating Alfvén waves is an efficient mechanism for the production of KAWs at wavelengths close to dp and at a large propagation angle with respect to the magnetic field. Magnetohydrodynamic (MHD), Hall magnetohydrodynamic (HMHD), and hybrid Vlasov-Maxwell (HVM) simulations modeling the propagation of Alfvén waves in inhomogeneous plasmas are performed. In the linear regime, the role of dispersive effects is singled out by comparing MHD and HMHD results. Fluctuations produced by phase mixing are identified as KAWs through a comparison of polarization of magnetic fluctuations and wave-group velocity with analytical linear predictions. In the nonlinear regime, a comparison of HMHD and HVM simulations allows us to point out the role of kinetic effects in shaping the proton-distribution function. We observe the generation of temperature anisotropy with respect to the local magnetic field and the production of field-aligned beams. The regions where the proton-distribution function highly departs from thermal equilibrium are located inside the shear layers, where the KAWs are excited, this suggesting that the distortions of the proton distribution are driven by a resonant interaction of protons with KAW fluctuations. Our results are relevant in configurations where magnetic-field inhomogeneities are present, as, for example, in the solar corona, where the presence of Alfvén waves has been ascertained.

  18. A spectral Phase-Amplitude method for propagating a wave function to large distances

    NASA Astrophysics Data System (ADS)

    Rawitscher, George

    2015-06-01

    The phase and amplitude (Ph-A) of a wave function vary slowly with distance, in contrast to the wave function that can be highly oscillatory. Hence the Ph-A representation of a wave function requires far fewer computational mesh points than the wave function itself. In 1930 Milne presented an equation for the phase and the amplitude functions (which is different from the one developed by Calogero), and in 1962 Seaton and Peach solved these equations iteratively. The objective of the present study is to implement Seaton and Peach's iteration procedure with a spectral Chebyshev expansion method, and at the same time present a non-iterative analytic solution to an approximate version of the iterative equations. The iterations converge rapidly for the case of attractive potentials. Two numerical examples are given: (1) for a potential that decreases with distance as 1 /r3, and (2) a Coulomb potential ∝ 1 / r. In both cases the whole radial range of [0-2000] requires only between 25 and 100 mesh points and the corresponding accuracy is between 10-3 and 10-6. The 0th iteration (which is the WKB approximation) gives an accuracy of 10-2. This spectral method permits one to calculate a wave function out to large distances reliably and economically.

  19. Diffuse large B-cell lymphoma presenting in the leukemic phase

    PubMed Central

    Pires, Patricia Puccetti; Rays, Jairo; Catania, Marcos; Lima, Fabiana Roberto; Noronha, Thiago Rodrigo; Abdo, Andre Neder Ramires; Pereira, Juliana

    2016-01-01

    Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin lymphoma comprising a heterogeneous group of disorders with variable histological and clinical behavior. Although other lymphomas may present in the leukemic phase more frequently, this appearance is unusually observed among DLBCL cases. Diagnosing lymphoma is not always easy, and the patient's clinical status quite often may hamper invasive procedures for diagnosis pushing the clinician to look for alternatives to reach the nearest possible accurate diagnosis. The authors report the case of a middle-aged man who presented the history of malaise, weight loss, and low-grade fever. The peripheral blood count showed leukocytosis with the presence of blasts and thrombocytopenia. The cytological morphology and immunophenotyping of the peripheral blood and bone marrow aspirate, as well as the bone marrow biopsy accompanied by a thorough immunohistochemical analysis, rendered the diagnosis of DLBCL in the leukemic phase. The patient was prescribed R-CHOP with a favorable outcome. Intra-abdominal lymph node biopsy was avoided because of the patient's critical medical condition. The authors highlight this rare form of presentation of DLBCL as well as the combination of peripheral blood, bone marrow aspirate, and bone marrow biopsy for reaching the diagnosis in cases were a lymph node sample is unavailable for the diagnostic work-up. PMID:27284540

  20. Impulsive Phase He 10830 Spectra of a Large Solar Limb Flare of 16 August 1989*

    NASA Astrophysics Data System (ADS)

    You, Jianqi; Wang, Chuanjin; Fan, Zhongyu; Li, Hui

    1998-10-01

    We obtained simultaneously Hei 10830 Å spectra, Hα filtergrams and microwave data of a large limb flare (2N/X20) in 1989. In this paper we characterize Hei 10830 spectra in relation to the impulsive phase. All the Hei 10830 spectra, except those of the surge, show blue shift or blue asymmetry. The velocities inferred from the spectra range from a few to 160kms-1, implying that the horizontal motion is very likely present in the structure of this flare at different heights. The Hei 10830 profiles of a flare are relatively broad and cannot be simulated by the Doppler broadening mechanism with a uniform flare model atmosphere. It is most likely that these characteristics are related to rapid and localized heating in the low and middle chromosphere. Comparing the SXR and microwave data with the optical data leads to the following scenario: the corona was already heated to some extent before the flare onset, and in the first 2minutes of the impulsive phase, heat conduction was the main source or, at least, a competitive source, for chromospheric heating. However, the impulsive event, associated with the unusually broadened Hei 10830 line (Deltalambdaf>20Å) and temporally correlated with a microwave burst, is probably caused by electron-beam heating.

  1. Novel Zn-based MOFs stationary phase with large pores for capillary electrochromatography.

    PubMed

    Tang, Pingxiu; Bao, Tao; Chen, Zilin

    2016-08-01

    Metal-organic frameworks (MOFs) are attractive stationary phases in the field of separation sciences for their unique properties such as large specific surface areas, high porosity, and diverse structures. However, there are few MOFs, which have ultrahigh porosities and gas uptake capacities. In this work, MOF-180 with exceptional porosity, a cage size of 15 × 23 Å, was grown on inner wall of capillary as a novel stationary phase for open-tubular CEC. It has been demonstrated that the MOF-180-modified capillary column exhibited good performance for separation of acidic, basic, and neutral analytes. As compared with MOF-199-modified column, MOF-180-modified column exhibited specific recognition and size selectivity to the tested compounds. The characteristics observed by SEM and FTIR indicated that MOF-180 was successfully grafted on the inner wall of the capillary. The precisions (RSDs) of retention time, peak area, and W1/2 for methylbenzene, ethylbenzene, n-propylbenzene, chlorobenzene, o-dichlorobenzene, and 1,2,4-trichlorobenzene were 0.50-0.54%, 3.31-4.13%, 0.35-1.61%, 1.73-4.22%, 2.67-4.37%, and 1.60-3.38%, respectively. Besides, the run-to-run, day-to-day, and column-to-column RSDs of EOF were 0.6%, 4.19%, and 4.31%, respectively. PMID:27129916

  2. MicroBooNE, A Liquid Argon Time Projection Chamber (LArTPC) Neutrino Experiment

    SciTech Connect

    Katori, Teppei

    2011-07-01

    Liquid Argon time projection chamber (LArTPC) is a promising detector technology for future neutrino experiments. MicroBooNE is a upcoming LArTPC neutrino experiment which will be located on-axis of Booster Neutrino Beam (BNB) at Fermilab, USA. The R&D efforts on this detection method and related neutrino interaction measurements are discussed.

  3. Language Arts Routing System (LARS) Instructor's Manual. Community College English Project.

    ERIC Educational Resources Information Center

    Michael, Gary; Sliger, Mary

    Implemented on the PLATO IV computer-assisted instruction facility located at the University of Illinois at Urbana-Champaign, the Language Arts Routing System (LARS) is a package of lessons and tests designed to provide remedial training in certain basic language arts skills. LARS is a system which may be used by itself or as an adjunct to regular…

  4. Local stellar kinematics from large astrometric surveys: mapping the Galactic phase-space substructure

    NASA Astrophysics Data System (ADS)

    Lepine, Sebastien

    2016-05-01

    The potential of future large astrometric catalogs for mapping the velocity-space distribution of local stars in the Galaxy is illustrated with a kinematic study of K and M dwarfs in the SUPERBLINK catalog of 2.5 million stars with large proper motions (mu>40 mas/yr). Low mass K and M dwarfs, found in abundance thanks to the faint magnitude limit of the catalog (V<20) provide the densest possible sampling of the [(X,Y,Z),(U,V,W)] phase-space, making them well-suited to map out substructure (so-called "streams") in the velocity-space distributions, as well as variations in said distribution over >100 parsec scale distances. The SUPERBLINK proper motion catalog thus provides kinematic data for ~1.5 million M dwarfs from the Galactic disk population, located within 200 parsecs of the Sun, and for ~180,000 K and M (sub)dwarfs from the Galactic halo population, all within 500 parsecs of the Sun. While the disk dwarfs show clear signs of velocity-space substructure, the distribution of halo subdwarf does appear to be relatively smooth ("streamless") in contrast. Evidence for spatial variations at the few hundred parsec scale is also discussed. The current and unfortunately "blurry" view of the local velocity-space distribution promises to be set in much sharper focus with the upcoming availability of data from the GAIA mission.

  5. R×B drift momentum spectrometer with high resolution and large phase space acceptance.

    PubMed

    Wang, X; Konrad, G; Abele, H

    2013-02-11

    We propose a new type of momentum spectrometer, which uses the R×B drift effect to disperse the charged particles in a uniformly curved magnetic field, and measures the particles with large phase space acceptance and high resolution. This kind of R×B spectrometer is designed for the momentum analyses of the decay electrons and protons in the PERC (Proton and Electron Radiation Channel) beam station, which provides a strong magnetic field to guide the charged particles in the instrument. Instead of eliminating the guiding field, the R×B spectrometer evolves the field gradually to the analysing field, and the charged particles can be adiabatically transported during the dispersion and detection. The drifts of the particles have similar properties as their dispersion in the normal magnetic spectrometer. Besides, the R×B spectrometer is especially ideal for the measurements of particles with low momenta and large incident angles. We present a design of the R×B spectrometer, which can be used in PERC. For the particles with solid angle smaller than 88 msr, the maximum aberration is below 10(-4). The resolution of the momentum spectra can reach 14.4 keV/c, if the particle position measurements have a resolution of 1 mm. PMID:23576831

  6. Calibration of spatially phase-shifted DSPI for measurement of large structures.

    PubMed

    Saif, Babak; Eegholm, Bente Hoffmann; Bluth, Marcel; Greenfield, Perry; Hack, Warren; Blake, Peter; Keski-Kuha, Ritva; North-Morris, Michael

    2007-08-10

    We present a method for the calibration of a spatially phase-shifted digital speckle pattern interferometer (SPS-DSPI), which was designed and built for the purpose of testing the James Webb space telescope (JWST) optical structures and related technology development structures. The need to measure dynamic deformations of large, diffuse structures to nanometer accuracy at cryogenic temperature is paramount in the characterization of a large diameter space and terrestrial based telescopes. The techniques described herein apply to any situation, in which high accuracy measurement of diffuse structures are required. The calibration of the instrument is done using a single-crystal silicon gauge. The gauge has four islands of different heights that change in a predictable manner as a function of temperature. The SPS-DSPI is used to measure the relative piston between the islands as the temperature of the gauge is changed. The measurement results are then compared with the theoretical changes in the height of the gauge islands. The maximum deviation of the measured rate of change of the relative piston in nm/K from the expected value is 3.3%. PMID:17694108

  7. Measurement of large cryogenic structures using a spatially phase-shifted digital speckle pattern interferometer.

    PubMed

    Saif, Babak; Bluth, Marcel; Greenfield, Perry; Hack, Warren; Eegholm, Bente Hoffmann; Blake, Peter; Keski-Kuha, Ritva; Feinberg, Lee; Arenberg, Jonathan W

    2008-02-20

    The James Webb Space Telescope (JWST) Backplane Stability Test Article (BSTA) was developed to demonstrate large precision cryogenic structures' technology readiness for use in the JWST. The thermal stability of the BSTA was measured at cryogenic temperatures at the Marshall Space Flight Center (MSFC) X-Ray Calibration Facility (XRCF) and included nearly continuous measurements over a six-week period in the summer of 2006 covering the temperature range from ambient down to 30 Kusing a spatially phase-shifted digital speckle pattern interferometer (SPS-DSPI). The BSTA is a full size, one-sixth section of the JWST primary mirror backplane assembly (PMBA). The BSTA, measuring almost 3 m across, contains most of the prominent structural elements of the backplane and is to our knowledge the largest structure ever measured with SPS-DSPI at cryogenic conditions. The SPS-DSPI measured rigid body motion and deformations of BSTA to nanometer-level accuracy. The SPS-DSPI was developed specifically for the purposes of this test and other tests of large cryogenic structures for JWST. PMID:18288221

  8. Magmatic history and parental melt composition of olivine-phyric shergottite LAR 06319: Importance of magmatic degassing and olivine antecrysts in Martian magmatism

    NASA Astrophysics Data System (ADS)

    Balta, J. Brian; Sanborn, Matthew; McSween, Harry Y.; Wadhwa, Meenakshi

    2013-08-01

    Several olivine-phyric shergottites contain enough olivine that they could conceivably represent the products of closed-system crystallization of primary melts derived from partial melting of the Martian mantle. Larkman Nunatak (LAR) 06319 has been suggested to represent a close approach to a Martian primary liquid composition based on approximate equilibrium between its olivine and groundmass. To better understand the olivine-melt relationship and the evolution of this meteorite, we report the results of new petrographic and chemical analyses. We find that olivine megacryst cores are generally not in equilibrium with the groundmass, but rather have been homogenized by diffusion to Mg# 72. We have identified two unique grain types: an olivine glomerocryst and an olivine grain preserving a primary magmatic boundary that constrains the time scale of eruption to be on the order of hours. We also report the presence of trace oxide phases and phosphate compositions that suggest that the melt contained approximately 1.1% H2O and lost volatiles during cooling, also associated with an increase in oxygen fugacity upon degassing. We additionally report in situ rare earth element measurements of the various mineral phases in LAR 06319. Based on these reported trace element abundances, we estimate the oxygen fugacity in the LAR 06319 parent melt early in its crystallization sequence (i.e., at the time of crystallization of the low-Ca and high-Ca pyroxenes), the rare earth element composition of the parent melt, and those of melts in equilibrium with later formed phases. We suggest that LAR 06319 represents the product of closed-system crystallization within a shallow magma chamber, with additional olivine accumulated from a cumulate pile. We infer that the olivine megacrysts are antecrysts, derived from a single magma chamber, but not directly related to the host magma, and suggest that mixing of antecrysts within magma chambers may be a common process in Martian magmatic

  9. Thermodynamically consistent phase field approach to dislocation evolution at small and large strains

    NASA Astrophysics Data System (ADS)

    Levitas, Valery I.; Javanbakht, Mahdi

    2015-09-01

    A thermodynamically consistent, large strain phase field approach to dislocation nucleation and evolution at the nanoscale is developed. Each dislocation is defined by an order parameter, which determines the magnitude of the Burgers vector for the given slip planes and directions. The kinematics is based on the multiplicative decomposition of the deformation gradient into elastic and plastic contributions. The relationship between the rates of the plastic deformation gradient and the order parameters is consistent with phenomenological crystal plasticity. Thermodynamic and stability conditions for homogeneous states are formulated and satisfied by the proper choice of the Helmholtz free energy and the order parameter dependence on the Burgers vector. They allow us to reproduce desired lattice instability conditions and a stress-order parameter curve, as well as to obtain a stress-independent equilibrium Burgers vector and to avoid artificial dissipation during elastic deformation. The Ginzburg-Landau equations are obtained as the linear kinetic relations between the rate of change of the order parameters and the conjugate thermodynamic driving forces. A crystalline energy coefficient for dislocations is defined as a periodic step-wise function of the coordinate along the normal to the slip plane, which provides an energy barrier normal to the slip plane and determines the desired, mesh-independent height of the dislocation bands for any slip system orientation. Gradient energy contains an additional term, which excludes the localization of a dislocation within a height smaller than the prescribed height, but it does not produce artificial interface energy. An additional energy term is introduced that penalizes the interaction of different dislocations at the same point. Non-periodic boundary conditions for dislocations are introduced which include the change of the surface energy due to the exit of dislocations from the crystal. Obtained kinematics, thermodynamics

  10. Troll Phase 1, design and execution of large scale rockdumping on a soft uneven seabed

    SciTech Connect

    Brennodden, H.; Christensen, S.; Tidemann, N.H.

    1996-12-01

    Development of the Troll Phase 1 project required landfall, towards the onshore gas conditioning plant, of both 36-in. wet gas feed (or import) pipelines and 40-in. dry gas export pipelines. The plant is located on the Norwegian West coast characterized by a very uneven topography with rocky outcrops and depressions filled with very soft clay sediments. Landfall preparations comprised, besides the driving of a 3.5 km long subsea tunnel system, extensive preparations nearshore in the form of rockdumped supports to limit pipeline spanning. The geotechnical design of these large supports, up to 10.4 m in height, geometrically complex and on a sloping soft seabed, included extensive stability, settlement and soil consolidation analyses for functional and environmental (including earthquake) loads. The design was translated into detailed construction procedures and drawings by very effectively utilizing integrated 3D CAD modeling of seabed and supports. A total of 10 single pipeline supports and 22 combined supports with extensive counterfills were accurately placed, {+-} 20 cm vertically and {+-} 2 m horizontally, utilizing a free fall pipe system and state-of-the-art surveying technology. After pipelay the pipelines were covered at the major peaks to prevent uplifting during operations. Total volume of rock installed in the nearshore area was approximately 290,000 m{sup 3}. A further 66,000 m{sup 3} was installed over an area of 150 by 200 m (tie-in area) to support large spool pieces, connecting offshore and tunnel sections, and associated tie-in equipment. The article describes the geotechnical design, the construction engineering and the construction execution of the pre-lay supports and post-lay covers in the nearshore and tie-in area.

  11. The costs and effectiveness of large Phase III pre-licensure vaccine clinical trials.

    PubMed

    Black, Steven

    2015-01-01

    Prior to the 1980s, most vaccines were licensed based upon safety and effectiveness studies in several hundred individuals. Beginning with the evaluation of Haemophilus influenzae type b conjugate vaccines, much larger pre-licensure trials became common. The pre-licensure trial for Haemophilus influenzae oligosaccharide conjugate vaccine had more than 60,000 children and that of the seven-valent pneumococcal conjugate vaccine included almost 38,000 children. Although trial sizes for both of these studies were driven by the sample size required to demonstrate efficacy, the sample size requirements for safety evaluations of other vaccines have subsequently increased. With the demonstration of an increased risk of intussusception following the Rotashield brand rotavirus vaccine, this trend has continued. However, routinely requiring safety studies of 20,000-50,000 or more participants has two major downsides. First, the cost of performing large safety trials routinely prior to licensure of a vaccine is very large, with some estimates as high at US$200 million euros for one vaccine. This high financial cost engenders an opportunity cost whereby the number of vaccines that a company is willing or able to develop to meet public health needs becomes limited by this financial barrier. The second downside is that in the pre-licensure setting, such studies are very time consuming and delay the availability of a beneficial vaccine substantially. One might argue that in some situations, this financial commitment is warranted such as for evaluations of the risk of intussusception following newer rotavirus vaccines. However, it must be noted that while an increased risk of intussusception was not identified in large pre-licensure studies, in post marketing evaluations an increased risk of this outcome has been identified. Thus, even the extensive pre-licensure evaluations conducted did not identify an associated risk. The limitations of large Phase III trials have also been

  12. Prediction of the Ignition Phases in Aeronautical and Laboratory Burners using Large Eddy Simulations

    NASA Astrophysics Data System (ADS)

    Gicquel, L. Y. M.; Staffelbach, G.; Sanjose, M.; Boileau, M.

    2009-12-01

    Being able to ignite or reignite a gas turbine engine in a cold and rarefied atmosphere is a critical issue for many aeronautical gas turbine manufacturers. From a fundamental point of view, the ignition of the first burner and the flame propagation from one burner to another are two phenomena that are usually not studied. The present work presents on-going and past Large Eddy Simulations (LES) on this specific subject and as investigated at CERFACS (European Centre for Research and Advanced Training in Scientific Computation) located in Toulouse, France. Validation steps and potential difficulties are underlined to ensure reliability of LES for such problems. Preliminary LES results on simple burners are then presented, followed by simulations of a complete ignition sequence in an annular helicopter chamber. For all cases and when possible, two-phase or purely gaseous LES have been applied to the experimentally simplified or the full geometries. For the latter, massively parallel computing (700 processors on a Cray XT3 machine) was essential to perform the computation. Results show that liquid fuel injection has a strong influence on the ignition times and the rate at which the flame progresses from burner to burner. The propagation speed characteristic of these phenomena is much higher than the turbulent flame speed. Based on an in-depth analysis of the computational data, the difference in speed is mainly identified as being due to thermal expansion and the flame speed is strongly modified by the main burner aerodynamics issued by the swirled injection.

  13. Two-dimensional phase contrast imaging for local turbulence measurements in large helical device (invited)

    SciTech Connect

    Tanaka, K.; Michael, C. A.; Kawahata, K.; Akiyama, T.; Tokuzawa, T.; Vyacheslavov, L. N.; Sanin, A. L.; Okajima, S.

    2008-10-15

    Two-dimensional phase contrast imaging (2D) installed on the large helical device (LHD) is a unique diagnostic for local turbulence measurements. A 10.6 {mu}m infrared CO{sub 2} laser and 6x8 channel HgCdTe 2D detector are used. The length of the scattering volume is larger than plasma size. However, the asymmetry of turbulence structure with respect to the magnetic field and magnetic shear make local turbulence measurements possible. From a 2D image of the integrated fluctuations, the spatial cross-correlation function was estimated using time domain correlation analysis, then, the integrated 2D k-spectrum is obtained using maximum entropy method. The 2D k-spectrum is converted from Cartesian coordinates to cylindrical coordinates. Finally, the angle in cylindrical coordinate is converted to flux surface labels. The fluctuation profile over almost the entire plasma diameter can be obtained at a single moment. The measurable k-region can be varied by adjusting the detection optics. Presently, k=0.1-1.0 mm{sup -1} can be measured which is expected region of ion temperature gradient modes and trapped electron mode in LHD. The spatial resolution is 10%-50% of the minor radius.

  14. Large-scale Coronal Propagating Fronts During the Rising Phase of Solar Cycle 24

    NASA Astrophysics Data System (ADS)

    Nitta, N. V.; Liu, W.; Schrijver, C. J.; Title, A. M.; Lemen, J. R.

    2011-12-01

    With increasing solar activity, the AIA on SDO has observed a number of large-scale coronal propagating fronts, which are often called "EIT waves." Although their nature is still actively debated, these propagating fronts usually accompany CMEs, and, in certain cases, may signify CME-related shock waves important for particle acceleration. Using the unprecedented temporal resolution and broad temperature coverage of the AIA, it is possible to characterize the propagating fronts in the corona far better than before, as demonstrated in the literature for a yet small number of cases. We study the properties of more than 40 propagating fronts as observed by AIA, and discuss the key properties for them to be associated with other phenomena such as type II radio bursts, flares, CMEs, ICMEs, and SEP events. We make use of data, both remote-sensing and in-situ, from STEREO which provides two additional vantage points, to make the associations more solid. For the associated phenomena, their basic properties are correlated with those of the propagating fronts. We also revisit the association of EIT waves with other phenomena during the similar phase of Solar Cycle 23 and discuss possible differences in terms of global magnetic field. Understanding their relation with other phenomena, we can have a more complete picture of the coronal propagating fronts in the context of CME acceleration and deceleration.

  15. Terbium-Doped VO2 Thin Films: Reduced Phase Transition Temperature and Largely Enhanced Luminous Transmittance.

    PubMed

    Wang, Ning; Duchamp, Martial; Dunin-Borkowski, Rafal E; Liu, Shiyu; Zeng, XianTing; Cao, Xun; Long, Yi

    2016-01-26

    Vanadium dioxide (VO2) is a well-known thermochromic material with large IR modulating ability, promising for energy-saving smart windows. The main drawbacks of VO2 are its high phase transition temperature (τ(c) = 68°C), low luminous transmission (T(lum)), and weak solar modulating ability (ΔT(sol)). In this paper, the terbium cation (Tb(3+)) doping was first reported to reduce τ(c) and increase T(lum) of VO2 thin films. Compared with pristine VO2, 2 at. % doping level gives both enhanced T(lum) and ΔT(sol) from 45.8% to 54.0% and 7.7% to 8.3%, respectively. The T(lum) increases with continuous Tb(3+) doping and reaches 79.4% at 6 at. % doping level, representing ∼73.4% relative increment compared with pure VO2. This has surpassed the best reported doped VO2 thin films. The enhanced thermochromic properties is meaningful for smart window applications of VO2 materials. PMID:26729057

  16. Synthesis and characterization of large-grain solid-phase crystallized polycrystalline silicon thin films

    SciTech Connect

    Kumar, Avishek E-mail: dalapatig@imre.a-star.edu.sg; Law, Felix; Widenborg, Per I.; Dalapati, Goutam K. E-mail: dalapatig@imre.a-star.edu.sg; Subramanian, Gomathy S.; Tan, Hui R.; Aberle, Armin G.

    2014-11-01

    n-type polycrystalline silicon (poly-Si) films with very large grains, exceeding 30 μm in width, and with high Hall mobility of about 71.5 cm{sup 2}/V s are successfully prepared by the solid-phase crystallization technique on glass through the control of the PH{sub 3} (2% in H{sub 2})/SiH{sub 4} gas flow ratio. The effect of this gas flow ratio on the electronic and structural quality of the n-type poly-Si thin film is systematically investigated using Hall effect measurements, Raman microscopy, and electron backscatter diffraction (EBSD), respectively. The poly-Si grains are found to be randomly oriented, whereby the average area weighted grain size is found to increase from 4.3 to 18 μm with increase of the PH{sub 3} (2% in H{sub 2})/SiH{sub 4} gas flow ratio. The stress in the poly-Si thin films is found to increase above 900 MPa when the PH{sub 3} (2% in H{sub 2})/SiH{sub 4} gas flow ratio is increased from 0.025 to 0.45. Finally, high-resolution transmission electron microscopy, high angle annular dark field-scanning tunneling microscopy, and EBSD are used to identify the defects and dislocations caused by the stress in the fabricated poly-Si films.

  17. Large Eddy Simulations of Two-phase Turbulent Reactive Flows in IC Engines

    NASA Astrophysics Data System (ADS)

    Banaeizadeh, Araz; Schock, Harold; Jaberi, Farhad

    2008-11-01

    The two-phase filtered mass density function (FMDF) subgrid-scale (SGS) model is used for large-eddy simulation (LES) of turbulent spray combustion in internal combustion (IC) engines. The LES/FMDF is implemented via an efficient, hybrid numerical method. In this method, the filtered compressible Navier-Stokes equations in curvilinear coordinate systems are solved with a generalized, high-order, multi-block, compact differencing scheme. The spray and the FMDF are implemented with Lagrangian methods. The reliability and the consistency of the numerical methods are established for different IC engines and the complex interactions among mean and turbulent velocity fields, fuel droplets and combustion are shown to be well captured with the LES/FMDF. In both spark-ignition/direct-injection and diesel engines, the droplet size and velocity distributions are found to be modified by the unsteady, vortical motions generated by the incoming air during the intake stroke. In turn, the droplets are found to change the in-cylinder flow structure. In the spark-ignition engine, flame propagation is similar to the experiment. In the diesel engine, the maximum evaporated fuel concentration is near the cylinder wall where the flame starts, which is again consistent with the experiment.

  18. Flow-based segmentation of the large thoracic arteries in tridirectional phase-contrast MRI

    NASA Astrophysics Data System (ADS)

    Schmidt, Michael; Unterhinninghofen, Roland; Ley, Sebastian; Dillmann, Rüdiger

    2009-02-01

    Tridirectional Phase-Contrast (PC)-MRI sequences provide spatially and temporally resolved measurements of blood flow velocity vectors in the human body. Analyzing flow conditions based on these datasets requires prior segmentation of the vessels of interest. In view of decreased quality of morphology images in PC-MRI sequences, the flow data provides valuable information to support reliable segmentation. This work presents a semi-automatic approach for segmenting the large arteries utilizing both morphology and flow information. It consists of two parts, the extraction of a simplified vessel model based on vessel centerlines and diameters, and a following refinement of the resulting surface for each time frame. Vessel centerlines and diameters are extracted using an offset adaptive medialness function that estimates a voxel's likelihood of belonging to a vessel centerline. The resulting centerline model is manually post-processed to select the appropriate centerlines and link possible gaps. The surface described by the final centerline model is used to initialize a 3D level set segmentation of each time frame. Deformation velocities that depend on both morphology and flow information are proposed and a new approach to account for the curved shape of vessels is introduced. The described segmentation system has been successfully applied on a total of 22 datasets of the thoracic aorta and the pulmonary arteries. Resulting segmentations have been assessed by an expert radiologist and were considered to be very satisfactory.

  19. Cryopreservation of lar gibbon semen collected by manual stimulation.

    PubMed

    Takasu, Masaki; Morita, Natsumi; Tajima, Shunichiro; Almunia, Julio; Maeda, Masami; Kamiguchi, Takashi

    2016-07-01

    We confirmed ejaculation as a result of manual stimulation in a lar gibbon, and attempted to cryopreserve the semen using TES-Tris-egg yolk-based (TTE) extender. After measuring the amount of semen (g), we first diluted the semen with TTE extender, and calculated sperm concentration (sperm/ml), total sperm count (sperm), and progressive sperm motility (%). Then, we cooled diluted semen slowly to 4 °C over 2 h, and added an equal volume of secondary extender containing glycerol over 30 min. Finally, we flash-froze the semen solution by plunging into liquid nitrogen. In addition, we freeze-thawed the solution to determine the recovery rate of the motile sperm. Collection of semen was successful on four of the five occasions. The median (min-max) quantity of ejaculate was 0.19 g (0.09-0.26 g), the median sperm concentration was 1.38 × 10(9) sperm/ml (1.20-1.53 × 10(9) sperm/ml), and the median total sperm count was 0.26 × 10(9) sperm (0.11-0.40 × 10(9) sperm). Moreover, the median sperm motility immediately after ejaculation was 65 % (60-75 %), the median sperm motility after freeze-thawing was 30 % (25-35 %), and the median recovery rate was 42.3 % (40.0-58.3 %). We were able to (1) collect semen from a lar gibbon by manual stimulation, (2) reveal andrological findings regarding semen characteristics, and (3) preserve the genetic resource using TTE cryopreservation. PMID:27179974

  20. Extremely large anisotropic transport caused by electronic phase separation in Ti-doped Ca3Ru2O7

    NASA Astrophysics Data System (ADS)

    Peng, Jin; Liu, J. Y.; Gu, Xiaomin; Zhou, Guotai; Wang, Wei; Hu, J.; Zhang, F. M.; Wu, X. S.

    2016-06-01

    In this paper, we reported an extremely large out-of-plane/in-plane anisotropic transport ({ρc}/{ρab} ~ 109) in double layer ruthenates. The mechanism that may be responsible for this phenomenon is also explored here. Distinct from previously well studied layered materials which show large out-of-plane/in-plane electronic anisotropy (103–106), the Ti-doped Ca3Ru2O7 single crystals not only form quasi-2D layered structure, but also show phase separation within the layers. We found that Ti doping in Ca3Ru2O7 induced electronic phase separation between the insulating phase and weak localized phase. The ratio of these two phases is very sensitive to the Ti concentration. At typical concentration, the weak localized phase may form a channel on the background of the insulating phase within the ab plane. However, the small volume of weak localized phase makes it less likely to overlap in different layers. This results in a much larger electronic anisotropy ratio than pristine compound Ca3Ru2O7. This new mechanism provides a route for further increase electronic anisotropy, which will remarkably reduce current leak and power consumption in electronic devices.

  1. Influence of LAR and VAR on Para-Aminopyridine Antimalarials Targetting Haematin in Chloroquine-Resistance.

    PubMed

    Warhurst, David C; Craig, John C; Raheem, K Saki

    2016-01-01

    Antimalarial chloroquine (CQ) prevents haematin detoxication when CQ-base concentrates in the acidic digestive vacuole through protonation of its p-aminopyridine (pAP) basic aromatic nitrogen and sidechain diethyl-N. CQ export through the variant vacuolar membrane export channel, PFCRT, causes CQ-resistance in Plasmodium falciparum but 3-methyl CQ (sontochin SC), des-ethyl amodiaquine (DAQ) and bis 4-aminoquinoline piperaquine (PQ) are still active. This is determined by changes in drug accumulation ratios in parasite lipid (LAR) and in vacuolar water (VAR). Higher LAR may facilitate drug binding to and blocking PFCRT and also aid haematin in lipid to bind drug. LAR for CQ is only 8.3; VAR is 143,482. More hydrophobic SC has LAR 143; VAR remains 68,523. Similarly DAQ with a phenol substituent has LAR of 40.8, with VAR 89,366. In PQ, basicity of each pAP is reduced by distal piperazine N, allowing very high LAR of 973,492, retaining VAR of 104,378. In another bis quinoline, dichlorquinazine (DCQ), also active but clinically unsatisfactory, each pAP retains basicity, being insulated by a 2-carbon chain from a proximal nitrogen of the single linking piperazine. While LAR of 15,488 is still high, the lowest estimate of VAR approaches 4.9 million. DCQ may be expected to be very highly lysosomotropic and therefore potentially hepatotoxic. In 11 pAP antimalarials a quadratic relationship between logLAR and logResistance Index (RI) was confirmed, while log (LAR/VAR) vs logRI for 12 was linear. Both might be used to predict the utility of structural modifications. PMID:27483471

  2. Influence of LAR and VAR on Para-Aminopyridine Antimalarials Targetting Haematin in Chloroquine-Resistance

    PubMed Central

    Warhurst, David C.; Craig, John C.

    2016-01-01

    Antimalarial chloroquine (CQ) prevents haematin detoxication when CQ-base concentrates in the acidic digestive vacuole through protonation of its p-aminopyridine (pAP) basic aromatic nitrogen and sidechain diethyl-N. CQ export through the variant vacuolar membrane export channel, PFCRT, causes CQ-resistance in Plasmodium falciparum but 3-methyl CQ (sontochin SC), des-ethyl amodiaquine (DAQ) and bis 4-aminoquinoline piperaquine (PQ) are still active. This is determined by changes in drug accumulation ratios in parasite lipid (LAR) and in vacuolar water (VAR). Higher LAR may facilitate drug binding to and blocking PFCRT and also aid haematin in lipid to bind drug. LAR for CQ is only 8.3; VAR is 143,482. More hydrophobic SC has LAR 143; VAR remains 68,523. Similarly DAQ with a phenol substituent has LAR of 40.8, with VAR 89,366. In PQ, basicity of each pAP is reduced by distal piperazine N, allowing very high LAR of 973,492, retaining VAR of 104,378. In another bis quinoline, dichlorquinazine (DCQ), also active but clinically unsatisfactory, each pAP retains basicity, being insulated by a 2-carbon chain from a proximal nitrogen of the single linking piperazine. While LAR of 15,488 is still high, the lowest estimate of VAR approaches 4.9 million. DCQ may be expected to be very highly lysosomotropic and therefore potentially hepatotoxic. In 11 pAP antimalarials a quadratic relationship between logLAR and logResistance Index (RI) was confirmed, while log (LAR/VAR) vs logRI for 12 was linear. Both might be used to predict the utility of structural modifications. PMID:27483471

  3. Trajectories of electrons with large longitudinal momenta in the phase plane during surfatron acceleration by an electromagnetic wave

    SciTech Connect

    Mkrtichyan, G. S.

    2015-07-15

    The trajectories of electrons with large longitudinal momenta in the phase plane in the course of their surfatron acceleration by an electromagnetic wave propagating in space plasma across the external magnetic field are analyzed. Electrons with large longitudinal momenta are trapped immediately if the initial wave phase Ψ(0) on the particle trajectory is positive. For negative values of Ψ(0), no electrons trapping by the wave is observed over the available computational times. According to numerical calculations, the trajectories of trapped particles in the phase plane have a singular point of the stable focus type and the behavior of the trajectory corresponds to the motion in a complex nonstationary effective potential well. For some initial phases, electrons are confined in the region of the accelerating electric field for relatively short time, the energy gain being about 50–130% and more.

  4. The massive fermion phase for the U(N) Chern-Simons gauge theory in D=3 at large N

    DOE PAGESBeta

    Bardeen, William A.

    2014-10-07

    We explore the phase structure of fermions in the U(N) Chern-Simons Gauge theory in three dimensions using the large N limit where N is the number of colors and the fermions are taken to be in the fundamental representation of the U(N) gauge group. In the large N limit, the theory retains its classical conformal behavior and considerable attention has been paid to possible AdS/CFT dualities of the theory in the conformal phase. In this paper we present a solution for the massive phase of the fermion theory that is exact to the leading order of ‘t Hooft’s large Nmore » expansion. We present evidence for the spontaneous breaking of the exact scale symmetry and analyze the properties of the dilaton that appears as the Goldstone boson of scale symmetry breaking.« less

  5. The massive fermion phase for the U(N) Chern-Simons gauge theory in D=3 at large N

    SciTech Connect

    Bardeen, William A.

    2014-10-07

    We explore the phase structure of fermions in the U(N) Chern-Simons Gauge theory in three dimensions using the large N limit where N is the number of colors and the fermions are taken to be in the fundamental representation of the U(N) gauge group. In the large N limit, the theory retains its classical conformal behavior and considerable attention has been paid to possible AdS/CFT dualities of the theory in the conformal phase. In this paper we present a solution for the massive phase of the fermion theory that is exact to the leading order of ‘t Hooft’s large N expansion. We present evidence for the spontaneous breaking of the exact scale symmetry and analyze the properties of the dilaton that appears as the Goldstone boson of scale symmetry breaking.

  6. Phase discrepancy induced from least squares wavefront reconstruction of wrapped phase measurements with high noise or large localized wavefront gradients

    NASA Astrophysics Data System (ADS)

    Steinbock, Michael J.; Hyde, Milo W.

    2012-10-01

    Adaptive optics is used in applications such as laser communication, remote sensing, and laser weapon systems to estimate and correct for atmospheric distortions of propagated light in real-time. Within an adaptive optics system, a reconstruction process interprets the raw wavefront sensor measurements and calculates an estimate for the unwrapped phase function to be sent through a control law and applied to a wavefront correction device. This research is focused on adaptive optics using a self-referencing interferometer wavefront sensor, which directly measures the wrapped wavefront phase. Therefore, its measurements must be reconstructed for use on a continuous facesheet deformable mirror. In testing and evaluating a novel class of branch-point- tolerant wavefront reconstructors based on the post-processing congruence operation technique, an increase in Strehl ratio compared to a traditional least squares reconstructor was noted even in non-scintillated fields. To investigate this further, this paper uses wave-optics simulations to eliminate many of the variables from a hardware adaptive optics system, so as to focus on the reconstruction techniques alone. The simulation results along with a discussion of the physical reasoning for this phenomenon are provided. For any applications using a self-referencing interferometer wavefront sensor with low signal levels or high localized wavefront gradients, understanding this phenomena is critical when applying a traditional least squares wavefront reconstructor.

  7. A Role of Phase-Resetting in Coordinating Large Scale Neural Networks During Attention and Goal-Directed Behavior

    PubMed Central

    Voloh, Benjamin; Womelsdorf, Thilo

    2016-01-01

    Short periods of oscillatory activation are ubiquitous signatures of neural circuits. A broad range of studies documents not only their circuit origins, but also a fundamental role for oscillatory activity in coordinating information transfer during goal directed behavior. Recent studies suggest that resetting the phase of ongoing oscillatory activity to endogenous or exogenous cues facilitates coordinated information transfer within circuits and between distributed brain areas. Here, we review evidence that pinpoints phase resetting as a critical marker of dynamic state changes of functional networks. Phase resets: (1) set a “neural context” in terms of narrow band frequencies that uniquely characterizes the activated circuits; (2) impose coherent low frequency phases to which high frequency activations can synchronize, identifiable as cross-frequency correlations across large anatomical distances; (3) are critical for neural coding models that depend on phase, increasing the informational content of neural representations; and (4) likely originate from the dynamics of canonical E-I circuits that are anatomically ubiquitous. These multiple signatures of phase resets are directly linked to enhanced information transfer and behavioral success. We survey how phase resets re-organize oscillations in diverse task contexts, including sensory perception, attentional stimulus selection, cross-modal integration, Pavlovian conditioning, and spatial navigation. The evidence we consider suggests that phase-resets can drive changes in neural excitability, ensemble organization, functional networks, and ultimately, overt behavior. PMID:27013986

  8. A Role of Phase-Resetting in Coordinating Large Scale Neural Networks During Attention and Goal-Directed Behavior.

    PubMed

    Voloh, Benjamin; Womelsdorf, Thilo

    2016-01-01

    Short periods of oscillatory activation are ubiquitous signatures of neural circuits. A broad range of studies documents not only their circuit origins, but also a fundamental role for oscillatory activity in coordinating information transfer during goal directed behavior. Recent studies suggest that resetting the phase of ongoing oscillatory activity to endogenous or exogenous cues facilitates coordinated information transfer within circuits and between distributed brain areas. Here, we review evidence that pinpoints phase resetting as a critical marker of dynamic state changes of functional networks. Phase resets: (1) set a "neural context" in terms of narrow band frequencies that uniquely characterizes the activated circuits; (2) impose coherent low frequency phases to which high frequency activations can synchronize, identifiable as cross-frequency correlations across large anatomical distances; (3) are critical for neural coding models that depend on phase, increasing the informational content of neural representations; and (4) likely originate from the dynamics of canonical E-I circuits that are anatomically ubiquitous. These multiple signatures of phase resets are directly linked to enhanced information transfer and behavioral success. We survey how phase resets re-organize oscillations in diverse task contexts, including sensory perception, attentional stimulus selection, cross-modal integration, Pavlovian conditioning, and spatial navigation. The evidence we consider suggests that phase-resets can drive changes in neural excitability, ensemble organization, functional networks, and ultimately, overt behavior. PMID:27013986

  9. Electromagnetic phase differences in the coherent backscattering enhancement mechanism for random media consisting of large nontransparent spheres.

    PubMed

    Stankevich, Dmitriy; Istomina, Larissa; Shkuratov, Yuriy; Videen, Gorden

    2007-03-20

    Phase curves of intensity are calculated for light scattering in media randomly packed with large nontransparent spheres (x=125), the surfaces of which reflect according to the Fresnel equations. We consider three values of refractive index: m = 0.73 + i5.93 (metal Al), 1.6 + i1.72 (metal Fe), and 1.5 + i0.1 (black glass). We use a Monte Carlo ray-tracing approach. Different kinds of electromagnetic phase differences of reciprocal trajectories are investigated for the second and third orders of scattering; the highest orders give comparatively small contributions due to the backward-scattering indicatrix of large nontransparent spheres. We find that the main electromagnetic phase difference between the direct and time-reversal (reciprocal) trajectories is the outer phase difference that depends only on the relative positions of the first and last points of the ray reflections and the phase angle. The inner phase difference is connected with the changing path length of the ray inside the medium. This depends on the particle size and the phase angle that is the angle between the source and receiver from the scatterer, i.e., 180 degrees minus the scattering angle. The inner phase difference can give oscillations in the phase curve consisting of second-order components if the medium consists of strictly monodisperse spheres. Usually the coherent backscattering enhancement is calculated ignoring the shadow-hiding effect. We show that accounting for the shadowing of the reciprocal trajectory is important for the formation of the backscattering effect. The third-order scattering surge is a superposition of wide and narrow opposition spikes that correspond to two different types of scattering trajectories, closed and opened ones. The first type is due to scattering by two particles; the second one corresponds to scattering by three particles. PMID:17334449

  10. Phasing the Very Large Array on Galileo in the presence of Jupiter's strong radio emission

    NASA Technical Reports Server (NTRS)

    Ulvestad, J. S.

    1991-01-01

    Work is in progress to determine the feasibility of using the Very Large Array (VLA) radio telescope to receive telemetry from Galileo during its close encounter with Io on 7 Dec. 1995. The VLA was used previously to receive telemetry from Voyager 2 at Neptune. However, Jupiter's strong radio emission is an additional complication in the case of the Galileo encounter. This article analyzes the effect of Jupiter's radio emission on the phase-adjustment procedure ('autophasing') used to maintain coherence among the 27 VLA antennas. Results of an experiment designed to mimic the Io encounter are presented. As expected, Jupiter's strong radio emission has a considerable effect on the autophasing procedure. A simple emission model is found to give a good approximation to the fringe-visibility plots derived from the VLA data, and that successful model is used to estimate the VLA's ability to autophase on Galileo during the Io encounter. The effect of Jupiter should be small for projected baselines longer than approximately 800 m and completely negligible for projected baselines longer than approximately 1.1 km. The most extended configuration of the VLA (the A configuration) probably can be used successfully for telemetry reception during the Io encounter. Further analysis and testing of the effect of correlated noise from Jupiter is necessary before a final decision can be made about the feasibility of using the second largest (B) configuration of the VLA for reception of Galileo telemetry. Use of the B configuration could simplify the upgrades needed to support the Io encounter. Tests to help choose the preferred VLA configuration could be performed by using the VLA to observe the Magellan spacecraft at Venus during Jul. and Oct. 1991. Examination of the effects of planet noise on the VLA have implications beyond the use of that telescope for supporting the Io encounter. The effects of planet radio emission on spacecraft data received by antenna arrays are relevant to

  11. Delayed sleep phase syndrome in adolescents: prevalence and correlates in a large population based study

    PubMed Central

    2013-01-01

    Background The aims of this study were to estimate the prevalence of Delayed Sleep Phase Syndrome (DSPS) in adolescence, and to examine the association to insomnia and school non-attendance. Methods Data stem from a large population based study in Hordaland County in Norway conducted in 2012, the ung@hordaland study. In all, 10,220 adolescents aged 16–18 years (54% girls) provided self-reported data on a range of sleep parameters: DSPS was defined according to the International Classification of Sleep Disorders, Revised (ICSD-R) criteria, while insomnia was defined according to the Quantitative Criteria for Insomnia. Other sleep parameters included time in bed, sleep duration, sleep efficiency, oversleeping, sleep onset latency, wake after sleep onset, subjective sleep need, sleep deficiency, sleepiness and tiredness. Sleep data were calculated separately for weekdays and weekends. Data on school non-attendance were provided by official registers. Results The prevalence of DSPS was 3.3%, and significantly higher among girls (3.7%) than boys (2.7%). There was a strong overlap between DSPS and insomnia, with more than half of the adolescents with DSPS also meeting the criteria for insomnia (53.8% for boys and 57.1% for girls). Adolescents with DSPS had significantly higher odds ratios (OR) of non-attendance at school. After adjusting for sociodeographical factors, insomnia and depression, the adjusted ORs for days of non-attendance were OR = 3.22 (95% CI: 1.94-5.34) for boys and OR = 1.87 (95% CI: 1.25-2.80) for girls. A similar effect was found for hours of non-attendance for boys, with an adjusted OR = 3.05 (95% CI: 1.89-4.92). The effect for girls was no longer significant after full adjustment (OR =1.48 [95% CI: 0.94-2.32]). Conclusions This is one of the first studies to estimate the prevalence of DSPS in adolescents. The high prevalence of DSPS, and overlap with insomnia, in combination with the odds of school non-attendance, suggest that a broad

  12. LARS Artificial Ligament Versus ABC Purely Polyester Ligament for Anterior Cruciate Ligament Reconstruction

    PubMed Central

    Iliadis, Dimitrios Ph.; Bourlos, Dimitrios N.; Mastrokalos, Dimitrios S.; Chronopoulos, Efstathios; Babis, George C.

    2016-01-01

    Background: Graft choice for anterior cruciate ligament (ACL) reconstruction is of critical importance. Various grafts have been used so far, with autografts long considered the optimal solution for the treatment of ACL-deficient knees. Limited data are available on the long-term survivorship of synthetic grafts. Purpose: To compare the functional outcome and survivorship of ACL reconstructions performed using the LARS (ligament augmentation and reconstruction system) ligament and the ABC (active biosynthetic composite) purely polyester ligament. Study Design: Case series; Level of evidence, 4. Methods: The results of 72 patients who underwent primary arthroscopic ACL reconstruction with the LARS ligament and 31 cases with an ABC purely polyester ligament were reviewed. The mean follow-up periods for the LARS and ABC groups were 9.5 and 5.1 years, respectively. A survivorship analysis of the 2 synthetic grafts was performed using the Kaplan-Meier method with a log-rank test (Mantel-Cox, 95% CI). Lysholm, Tegner activity, Knee injury and Osteoarthritis Outcome Score (KOOS), and International Knee Documentation Committee (IKDC) scores as well as laxity measurements obtained using a KT-1000 arthrometer were recorded for all intact grafts, and a Mann-Whitney U test was used for comparison reasons. Results: The rupture rates for LARS and ABC grafts were 31% (95% CI, 20%-42%) and 42% (95% CI, 25%-59%), respectively. For intact grafts, the mean Lysholm score was good for both groups (90 for the LARS group and 89 for the ABC group), with the majority of patients returning to their preinjury level of activities, and the mean IKDC score was 90 for the LARS group and 86 for the ABC group. Conclusion: The rupture rates of both LARS and ABC grafts were both high. However, the LARS ligament provided significantly better survivorship compared with the ABC ligament at short- to midterm follow-up (95% CI). PMID:27453894

  13. Appearance of large crystalline domains in VO{sub 2} films grown on sapphire (001) and their phase transition characteristics

    SciTech Connect

    Azhan, Nurul Hanis; Su, Kui; Okimura, Kunio; Zaghrioui, Mustapha; Sakai, Joe

    2015-06-28

    We report the first observation of large crystalline domains of several μm-size in VO{sub 2} films deposited on Al{sub 2}O{sub 3} (001) substrates by rf-biased reactive sputtering technique. The large crystalline domains, dominated with random in-plane oriented growth of (011){sub M1}-orientation, appear only under adequate substrate biasing, such as 10 W, while most biasing conditions result in conventional nanosized grains of highly oriented (010){sub M1}-orientation. Two temperature-controlled analyses, x-ray diffraction and micro-Raman spectroscopy, have revealed that some parts of large crystalline domains undergo intermediate monoclinic (M2) phase during the thermally-induced structural phase transition from monoclinic (M1) to rutile-tetragonal (R) phase. As an effect of the appearance of large crystalline domains, the film showed in-plane tensile stress, resulting in high T{sub IMT} of 69 °C due to the elongation of the V-V distance in its low-temperature monoclinic phase.

  14. Phased array feed design technology for Large Aperture Microwave Radiometer (LAMR) Earth observations

    NASA Technical Reports Server (NTRS)

    Schuman, H. K.

    1992-01-01

    An assessment of the potential and limitations of phased array antennas in space-based geophysical precision radiometry is described. Mathematical models exhibiting the dependence of system and scene temperatures and system sensitivity on phased array antenna parameters and components such as phase shifters and low noise amplifiers (LNA) are developed. Emphasis is given to minimum noise temperature designs wherein the LNA's are located at the array level, one per element or subarray. Two types of combiners are considered: array lenses (space feeds) and corporate networks. The result of a survey of suitable components and devices is described. The data obtained from that survey are used in conjunction with the mathematical models to yield an assessment of effective array antenna noise temperature for representative geostationary and low Earth orbit systems. Practical methods of calibrating a space-based, phased array radiometer are briefly addressed as well.

  15. Large-scale three-dimensional phase-field simulations for phase coarsening at ultrahigh volume fraction on high-performance architectures

    NASA Astrophysics Data System (ADS)

    Yan, Hui; Wang, K. G.; Jones, Jim E.

    2016-06-01

    A parallel algorithm for large-scale three-dimensional phase-field simulations of phase coarsening is developed and implemented on high-performance architectures. From the large-scale simulations, a new kinetics in phase coarsening in the region of ultrahigh volume fraction is found. The parallel implementation is capable of harnessing the greater computer power available from high-performance architectures. The parallelized code enables increase in three-dimensional simulation system size up to a 5123 grid cube. Through the parallelized code, practical runtime can be achieved for three-dimensional large-scale simulations, and the statistical significance of the results from these high resolution parallel simulations are greatly improved over those obtainable from serial simulations. A detailed performance analysis on speed-up and scalability is presented, showing good scalability which improves with increasing problem size. In addition, a model for prediction of runtime is developed, which shows a good agreement with actual run time from numerical tests.

  16. Large-scale and uniform preparation of pure-phase wurtzite GaAs NWs on non-crystalline substrates

    PubMed Central

    2012-01-01

    One of the challenges to prepare high-performance and uniform III-V semiconductor nanowires (NWs) is to control the crystal structure in large-scale. A mixed crystal phase is usually observed due to the small surface energy difference between the cubic zincblende (ZB) and hexagonal wurtzite (WZ) structures, especially on non-crystalline substrates. Here, utilizing Au film as thin as 0.1 nm as the catalyst, we successfully demonstrate the large-scale synthesis of pure-phase WZ GaAs NWs on amorphous SiO2/Si substrates. The obtained NWs are smooth, uniform with a high aspect ratio, and have a narrow diameter distribution of 9.5 ± 1.4 nm. The WZ structure is verified by crystallographic investigations, and the corresponding electronic bandgap is also determined to be approximately 1.62 eV by the reflectance measurement. The formation mechanism of WZ NWs is mainly attributed to the ultra-small NW diameter and the very narrow diameter distribution associated, where the WZ phase is more thermodynamically stable compared to the ZB structure. After configured as NW field-effect-transistors, a high ION/IOFF ratio of 104 − 105 is obtained, operating in the enhancement device mode. The preparation technology and good uniform performance here have illustrated a great promise for the large-scale synthesis of pure phase NWs for electronic and optical applications. PMID:23171521

  17. Definition of technology development missions for early space stations. Large space structures, phase 2, midterm review

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The large space structures technology development missions to be performed on an early manned space station was studied and defined and the resources needed and the design implications to an early space station to carry out these large space structures technology development missions were determined. Emphasis is being placed on more detail in mission designs and space station resource requirements.

  18. The Phase Diagram of QCD and Some Issues of Large N_c

    SciTech Connect

    McLerran,L.

    2009-02-28

    The large N{sub c} limit provides a good phenomenology of meson spectra and interactions, I discuss some problems with applying the large N{sub c} approximation to the description of baryons, and point out a number of apparent paradoxes and phenomenological difficulties.

  19. Large isotropic negative thermal expansion above a structural quantum phase transition

    NASA Astrophysics Data System (ADS)

    Handunkanda, Sahan U.; Curry, Erin B.; Voronov, Vladimir; Said, Ayman H.; Guzmán-Verri, Gian G.; Brierley, Richard T.; Littlewood, Peter B.; Hancock, Jason N.

    2015-10-01

    Perovskite structured materials contain myriad tunable ordered phases of electronic and magnetic origin with proven technological importance and strong promise for a variety of energy solutions. An always-contributing influence beneath these cooperative and competing interactions is the lattice, whose physics may be obscured in complex perovskites by the many coupled degrees of freedom, which makes these systems interesting. Here, we report signatures of an approach to a quantum phase transition very near the ground state of the nonmagnetic, ionic insulating, simple cubic perovskite material ScF3, and show that its physical properties are strongly effected as much as 100 K above the putative transition. Spatial and temporal correlations in the high-symmetry cubic phase determined using energy- and momentum-resolved inelastic x-ray scattering as well as x-ray diffraction reveal that soft mode, central peak, and thermal expansion phenomena are all strongly influenced by the transition.

  20. Large isotropic negative thermal expansion above a structural quantum phase transition

    SciTech Connect

    Handunkanda, Sahan Uddika; Curry, Erin B.; Voronov, Vladimir; Said, Ayman H.; Guzman-Verri, Gian G.; Brierley, Richard; Littlewood, Peter B.; Hancock, Jason N.

    2015-10-01

    Perovskite structured materials contain myriad tunable ordered phases of electronic and magnetic origin with proven technological importance and strong promise for a variety of energy solutions. An always-contributing influence beneath these cooperative and competing interactions is the lattice, whose physics may be obscured in complex perovskites by the many coupled degrees of freedom which makes these systems interesting. Here we report signatures of an approach to a quantum phase transition very near the ground state of the nonmagnetic, ionic insulating, simple cubic perovskite material ScF3 and show that its physical properties are strongly effected as much as 100 K above the putative transition. Spatial and temporal correlations in the high-symmetry cubic phase determined using energy- and momentum-resolved inelastic X-ray scattering as well as X-ray diffraction reveal that soft mode, central peak and thermal expansion phenomena are all strongly influenced by the transition.

  1. Gauging low-dose X-ray phase-contrast imaging at a single and large propagation distance.

    PubMed

    Hofmann, Ralf; Schober, Alexander; Hahn, Steffen; Moosmann, Julian; Kashef, Jubin; Hertel, Madeleine; Weinhardt, Venera; Hänschke, Daniel; Helfen, Lukas; Sánchez Salazar, Iván A; Guigay, Jean-Pierre; Xiao, Xianghui; Baumbach, Tilo

    2016-02-22

    The interactions of a beam of hard and spatio-temporally coherent X-rays with a soft-matter sample primarily induce a transverse distribution of exit phase variations δϕ (retardations or advancements in pieces of the wave front exiting the object compared to the incoming wave front) whose free-space propagation over a distance z gives rise to intensity contrast gz. For single-distance image detection and |δϕ| ≪ 1 all-order-in-z phase-intensity contrast transfer is linear in δϕ. Here we show that ideal coherence implies a decay of the (shot-)noise-to-signal ratio in gz and of the associated phase noise as z-1/2 and z-1, respectively. Limits on X-ray dose thus favor large values of z. We discuss how a phase-scaling symmetry, exact in the limit δϕ → 0 and dynamically unbroken up to |δϕ| ∼ 1, suggests a filtering of gz in Fourier space, preserving non-iterative quasi-linear phase retrieval for phase variations up to order unity if induced by multi-scale objects inducing phase variations δϕ of a broad spatial frequency spectrum. Such an approach continues to be applicable under an assumed phase-attenuation duality. Using synchrotron radiation, ex and in vivo microtomography on frog embryos exemplifies improved resolution compared to a conventional single-distance phase-retrieval algorithm. PMID:26907079

  2. Optical measuring and sensing system for large current in the isolated phase busbar

    NASA Astrophysics Data System (ADS)

    He, Bin; Zhao, Xia; Qiao, Song

    1996-09-01

    This paper describes a mixed fiber optical measuring system for the isolated phase busbar. As the magnetic field in the isolated phase busbar is only related to the busbar current, the current sensor, which makes up of the diamagnetic SF-6 glass with the thin-film polarizer and analyzer at both its ends, is placed inside the enclosed shell but outside the busbar, and the distance from the current sensor to the axis of the busbar depends upon the value of the current measured. The laboratorial experiment shows that the optical measuring system is reliable for using in the power system instead of the conventional current transformer.

  3. SALM5 trans-synaptically interacts with LAR-RPTPs in a splicing-dependent manner to regulate synapse development.

    PubMed

    Choi, Yeonsoo; Nam, Jungyong; Whitcomb, Daniel J; Song, Yoo Sung; Kim, Doyoun; Jeon, Sangmin; Um, Ji Won; Lee, Seong-Gyu; Woo, Jooyeon; Kwon, Seok-Kyu; Li, Yan; Mah, Won; Kim, Ho Min; Ko, Jaewon; Cho, Kwangwook; Kim, Eunjoon

    2016-01-01

    Synaptogenic adhesion molecules play critical roles in synapse formation. SALM5/Lrfn5, a SALM/Lrfn family adhesion molecule implicated in autism spectrum disorders (ASDs) and schizophrenia, induces presynaptic differentiation in contacting axons, but its presynaptic ligand remains unknown. We found that SALM5 interacts with the Ig domains of LAR family receptor protein tyrosine phosphatases (LAR-RPTPs; LAR, PTPδ, and PTPσ). These interactions are strongly inhibited by the splice insert B in the Ig domain region of LAR-RPTPs, and mediate SALM5-dependent presynaptic differentiation in contacting axons. In addition, SALM5 regulates AMPA receptor-mediated synaptic transmission through mechanisms involving the interaction of postsynaptic SALM5 with presynaptic LAR-RPTPs. These results suggest that postsynaptic SALM5 promotes synapse development by trans-synaptically interacting with presynaptic LAR-RPTPs and is important for the regulation of excitatory synaptic strength. PMID:27225731

  4. SALM5 trans-synaptically interacts with LAR-RPTPs in a splicing-dependent manner to regulate synapse development

    PubMed Central

    Choi, Yeonsoo; Nam, Jungyong; Whitcomb, Daniel J.; Song, Yoo Sung; Kim, Doyoun; Jeon, Sangmin; Um, Ji Won; Lee, Seong-Gyu; Woo, Jooyeon; Kwon, Seok-Kyu; Li, Yan; Mah, Won; Kim, Ho Min; Ko, Jaewon; Cho, Kwangwook; Kim, Eunjoon

    2016-01-01

    Synaptogenic adhesion molecules play critical roles in synapse formation. SALM5/Lrfn5, a SALM/Lrfn family adhesion molecule implicated in autism spectrum disorders (ASDs) and schizophrenia, induces presynaptic differentiation in contacting axons, but its presynaptic ligand remains unknown. We found that SALM5 interacts with the Ig domains of LAR family receptor protein tyrosine phosphatases (LAR-RPTPs; LAR, PTPδ, and PTPσ). These interactions are strongly inhibited by the splice insert B in the Ig domain region of LAR-RPTPs, and mediate SALM5-dependent presynaptic differentiation in contacting axons. In addition, SALM5 regulates AMPA receptor-mediated synaptic transmission through mechanisms involving the interaction of postsynaptic SALM5 with presynaptic LAR-RPTPs. These results suggest that postsynaptic SALM5 promotes synapse development by trans-synaptically interacting with presynaptic LAR-RPTPs and is important for the regulation of excitatory synaptic strength. PMID:27225731

  5. Modelling of phase boundaries for large industrial FZ silicon crystal growth with the needle-eye technique

    NASA Astrophysics Data System (ADS)

    Ratnieks, G.; Muižnieks, A.; Mühlbauer, A.

    2003-08-01

    In order to facilitate the numerical calculations of the phase boundaries in large industrial floating zone silicon crystal growth with the needle-eye technique, the chain of improved mathematical models is developed. The phase boundaries are solved in a partly transient way and the modelling improvements cover the open melting front, the inner triple point and the free melt surface. The view factors model is applied for the radiative heat transfer. The electromagnetic field is calculated with account of a multiple-slit inductor.

  6. COMPARISON OF TWO DIFFERENT SOLID PHASE EXTRACTION/LARGE VOLUME INJECTION PROCEDURES FOR METHOD 8270

    EPA Science Inventory

    Two solid phase (SPE) and one traditional continuous liquid-liquid extraction method are compared for analysis of Method 8270 SVOCs. Productivity parameters include data quality, sample volume, analysis time and solvent waste.

    One SPE system, unique in the U.S., uses aut...

  7. KrF excimer laser lithography with a phase-shifting mask for gigabit-scale ultra large scale integration

    NASA Astrophysics Data System (ADS)

    Imai, Akira; Terasawa, Tsuneo; Hasegawa, Norio; Asai, Naoko; Tanaka, Toshihiko P.; Okazaki, Shinji

    1996-10-01

    Resolution-enhancement technologies such as alternating-type phase-shifting masks (PSMs), half-tone PSMs, and the off- axis illumination method in optical lithography are necessary for manufacturing gigabit-scale ultra large scale integration (ULSI) devices. Because an alternating-type PSM is the most effective way to enhance resolution, we examine the resolution capabilities of KrF excimer laser lithography combined with the use of an alternating-type PSM through simulations. Our goal is to apply this technique to attain pattern delineation smaller than 200 nm. We simulate light intensity profiles for various types of PSMs in terms of the 3-D mask structure, and find that a PSM structure with a spin-on glass (SOG) phase shifter on a Cr layer that is thinner than in a conventional mask is one of the best choices for KrF excimer laser lithography. We examine potential problems such as the durability of the SOG phase shifters to KrF excimer laser irradiation exposure, and phase angle error due to the surface topography of the Cr aperture patterns. From our experimental results, we confirm that the optical characteristics of the PSM are not degraded, and the phase angle can be controlled with an accuracy sufficient for gigabit-scale ULSI device fabrication. Improved PSMs with a thin Cr layer and SOG phase shifters were successfully used to fabricate several layers of experimental 1-Gbit dynamic random access memory (DRAM) devices with sufficient resolution capability.

  8. Gibbon (Hylobates lar) reintroduction success in Phuket, Thailand, and its conservation benefits.

    PubMed

    Osterberg, Petra; Samphanthamit, Phamon; Maprang, Owart; Punnadee, Suwit; Brockelman, Warren Y

    2015-05-01

    We summarize the results from a long-term gibbon reintroduction project in Phuket, Thailand, and evaluate its benefits to conservation. Between October 2002 and November 2012, eight breeding families of white-handed gibbons (Hylobates lar) were returned to the wild in Khao Phra Thaew non-hunting area (KPT). Wild gibbons were extirpated from Phuket Island by the early 1980s, but the illegal wildlife trade has continued to bring young gibbons from elsewhere to the island's popular tourist areas as pets and photo props. The Gibbon Rehabilitation Project (GRP) has rescued and rehabilitated confiscated and donated captive gibbons since 1992 and aims to repopulate the island's last sizable forest area. Following unsuccessful early attempts at translocation in the 1990s, GRP has now developed specific methods for gibbon reintroduction that have led to the establishment of a small independent, reproducing population of captive-raised and wild-born gibbons on Phuket. Eleven infants have been born wild within the reintroduced population, including a second generation wild-born gibbon in September 2012. Benefits of the GRP project include restoration of the gibbon population on Phuket, rescue of illegally kept gibbons, public education, training of personnel in gibbon conservation work, and gaining experience which may prove useful in saving more severely threatened species. It is unlikely that gibbon (and other large primate) translocations will make a significant contribution to conservation of the species as a whole, and primate translocation projects should not be judged solely by this criterion. PMID:25597291

  9. Formation of large voids in the amorphous phase-change memory Ge2Sb2Te5 alloy.

    PubMed

    Sun, Zhimei; Zhou, Jian; Blomqvist, Andreas; Johansson, Börje; Ahuja, Rajeev

    2009-02-20

    On the basis of ab initio molecular dynamics simulations, large voids mainly surrounded by Te atoms are observed in molten and amorphous Ge2Sb2Te5, which is due to the clustering of two- and threefold coordinated Te atoms. Furthermore, pressure shows a significant effect on the clustering of the under coordinated Te atoms and hence the formation of large voids. The present results demonstrate that both vacancies and Te play an important role in the fast reversible phase transition process. PMID:19257687

  10. Large-scale controlled fabrication of highly roughened flower-like silver nanostructures in liquid crystalline phase

    PubMed Central

    Yang, Chengliang; Xiang, Xiangjun; Zhang, Ying; Peng, Zenghui; Cao, Zhaoliang; Wang, Junlin; Xuan, Li

    2015-01-01

    Large-scale controllable fabrication of highly roughened flower-like silver nanostructures is demonstrated experimentally via electrodeposition in the liquid crystalline phase. Different sizes of silver flowers are fabricated by adjusting the deposition time and the concentration of the silver nitrate solution. The density of the silver flowers in the sample is also controllable in this work. The flower-like silver nanostructures can serve as effective surface-enhanced Raman scattering and surface-enhanced fluorescence substrates because of their local surface plasmon resonance, and they may have applications in photoluminescence and catalysis. This liquid crystalline phase is used as a soft template for fabricating flower-like silver nanostructures for the first time, and this approach is suitable for large-scale uniform fabrication up to several centimetres. PMID:26216669

  11. A Phase Locked High Speed Real-Time Interferometry System for Large Amplitude Unsteady Flows

    NASA Technical Reports Server (NTRS)

    Chandrasekhara, M. S.; Squires, D. D.; Wilder, M. C.; Carr, L. W.; Kutler, Paul (Technical Monitor)

    1994-01-01

    A high speed phase locked interferometry system has been designed and developed for real-time measurements of the dynamic stall flow over a pitching airfoil. Point diffraction interferograms of incipient flow separation over a sinusoidally oscillating airfoil have been obtained at rates of up to 20 KHz and for free stream Mach numbers of 0.3 and 0.45. The images were recorded on ASA 125 and ASA 400 film using a drum camera. Special electronic timing and synchronizing circuits were developed to trigger the laser light source from the camera, and to initiate acquisition of the interferogram sequence from any desired phase angle of oscillation. The airfoil instantaneous angle of attack data provided by an optical encoder was recorded via a FIFO and in EPROM into a microcomputer. The interferograms have been analyzed using software developed in-house to get quantitative flow density and pressure distributions.

  12. Measurement of wavefront structure from large aperture optical components by phase shifting interferometry

    SciTech Connect

    Wolfe, C.R.; Lawson, J.K.; Kellam, M.; Maney, R.T.; Demiris, A.

    1995-05-12

    This paper discusses the results of high spatial resolution measurement of the transmitted or reflected wavefront of optical components using phase shifting interferometry with a wavelength of 6328 {angstrom}. The optical components studied range in size from approximately 50 mm {times} 100 mm to 400 mm {times} 750 mm. Wavefront data, in the form of 3-D phase maps, have been obtained for three regimes of scale length: ``micro roughness``, ``mid-spatial scale``, and ``optical figure/curvature.`` Repetitive wavefront structure has been observed with scale lengths from 10 mm to 100 mm. The amplitude of this structure is typically {lambda}/100 to {lambda}/20. Previously unobserved structure has been detected in optical materials and on the surfaces of components. We are using this data to assist in optimizing laser system design, to qualify optical components and fabrication processes under study in our component development program.

  13. Two phase choke flow in tubes with very large L/D

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Simoneau, R. J.

    1977-01-01

    Data were obtained for two phase and gaseous choked flow nitrogen in a long constant area duct of 16200 L/D with a diverging diffuser attached to the exit. Flow rate data were taken along five isotherms (reduced temperature of 0.81, 0.96, 1.06, 1.12, and 2.34) for reduced pressures to 3. The flow rate data were mapped in the usual manner using stagnation conditions at the inlet mixing chamber upstream of the entrance length. The results are predictable by a two phase homogeneous equilibrium choking flow model which includes wall friction. A simplified theory which in essence decouples the long tube region from the high acceleration choking region also appears to predict the data resonably well, but about 15 percent low.

  14. Two phase choke flow in tubes with very large L/D

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Simoneau, R. J.

    1977-01-01

    Two phase and gaseous choked flow data for fluid nitrogen were obtained for a test section which was a long constant area duct of 16 200 L/D with a diverging diffuser attached to the exit. Flow rate data were taken along five isotherms (reduced temperature of 0.81, 0.96, 1.06, 1.12, and 2.34) for reduced pressures to 3. The flow rate data were mapped in the usual manner using stagnation conditions at the inlet mixing chamber upstream of the entrance length. The results are predictable by a two-phase homogeneous equilibrium choking flow model which includes wall fraction. A simplified theory which in essence decouples the long tube region from the high acceleration choking region also appears to predict the data reasonably well, but about 15 percent low.

  15. Preliminary results of the large experimental wind turbine phase of the national wind energy program

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Sholes, J. E.

    1975-01-01

    A major phase of the wind energy program is the development of reliable wind turbines for supplying cost-competitive electrical energy. This paper discusses the preliminary results of two projects in this phase of the program. First an experimental 100 kW wind turbine design and its status are reviewed. Also discussed are the results of two parallel design studies for determining the configurations and power levels for wind turbines with minimum energy costs. These studies show wind energy costs of 7 to 1.5 c/kWH for wind turbines produced in quantities of 100 to 1000 a year and located at sites having average winds of 12 to 18 mph.

  16. Why can't current large-scale models predict mixed-phase clouds correctly?

    NASA Astrophysics Data System (ADS)

    Barrett, Andrew; Hogan, Robin; Forbes, Richard

    2013-04-01

    Stratiform mid-level mixed-phase clouds have a significant radiative impact but are often missing from numerical model simulations for a number of reasons. This is particularly true more recently as models move towards treating cloud ice as a prognostic variable. This presentation will demonstrate three important findings that will help lead to better simulations of mixed-phase clouds by models in the future. Each is briefly covered in the paragraphs below. 1) The occurrence of mid-level mixed-phase clouds in models is compared with ground based remote sensors, finding an under-prediction of the supercooled liquid water content in the models of a factor of 2 or more. This is accompanied by a low bias in the liquid cloud fraction whilst the ice properties are better simulated. Models with more sophisticated microphysics schemes that include prognostic cloud ice are the worst performing models. 2) A new single column model is used to investigate which processes are important for the maintenance of supercooled liquid layers. By running the model over multiple days and exploring the parameter-space of numerous physical parameterizations it was determined that the most sensitive areas of the model are ice microphysical processes and vertical resolution. 3) Vertical resolutions finer than 200 metres are required to capture the thin liquid layers in these clouds and therefore their important radiative effect. Leading models are still far coarser than this in the mid-troposphere, limiting hope of simulating these clouds properly. A new parameterization of the vertical structure of these clouds is developed and allows their properties to be correctly simulated in a resolution independent way by numerical models with coarse vertical resolution. This parameterization is explained and demonstrated here and could enable significant improvement in model simulations of stratiform mixed-phase clouds.

  17. Quantum-Classical Phase Transition of the Escape Rate of Two-Sublattice Antiferromagnetic Large Spins

    NASA Astrophysics Data System (ADS)

    Owerre, Solomon Akaraka; Paranjape, M. B.

    2014-11-01

    The Hamiltonian of a two-sublattice antiferromagnetic spins, with single (hard-axis) and double ion anisotropies described by H = J {\\hat S}1...\\hatS 2-2Jz \\hat {S}1z\\hat {S}2z+K(\\hat {S}1z2 +\\hat {S}2z2) is investigated using the method of effective potential. The problem is mapped to a single particle quantum-mechanical Hamiltonian in terms of the relative coordinate and reduced mass. We study the quantum-classical phase transition of the escape rate of this model. We show that the first-order phase transition for this model sets in at the critical value Jc = (Kc+Jz, c)/2 while for the anisotropic Heisenberg coupling H = J(S1xS2x +S1yS2y) + JzS1zS2z + K(S1z2+ S2z2) we obtain Jc = (2Kc-Jz, c)/3. The phase diagrams of the transition are also studied.

  18. Nuclear liquid-gas phase transition at large N{sub c} in the van der Waals approximation

    SciTech Connect

    Torrieri, Giorgio; Mishustin, Igor

    2010-11-15

    We examine the nuclear liquid-gas phase transition at a large number of colors (N{sub c}) within the framework of the van der Waals (VdW) We argue that the VdW equation is appropriate for describing internucleon forces, and discuss how each parameter scales with N{sub c}. We demonstrate that N{sub c}=3 (our world) is not large with respect to the other dimensionless scale relevant to baryonic matter, the number of neighbors in a dense system N{sub N}. Consequently, we show that the liquid-gas phase transition looks dramatically different at N{sub c{yields}{infinity}} with respect to our world: The critical-point temperature becomes of the order of {Lambda}{sub QCD} rather than below it. The critical-point density becomes of the order of the baryonic density, rather than an order of magnitude below it. These are precisely the characteristics usually associated with the ''quarkyonic phase.'' We therefore conjecture that quarkyonic matter is simply the large-N{sub c} limit of the nuclear liquid, and the interplay between N{sub c} and N{sub N} is the reason that the nuclear liquid in our world is so different from quarkyonic matter. We conclude by suggesting ways in which our conjecture can be tested in future lattice measurements.

  19. Resonant X-Ray Diffraction Study of an Unusually Large Phase Coexistance in Smectic Liquid-Crystal Films

    SciTech Connect

    Pan L.; Pindak R.; Barois, P.; Liu, Z.Q.; McCoy, B.K. & Hyang, C.C.

    2012-01-19

    The recent discovery of the new smectic-C{sub d6}* (SmC{sub d6}*) phase [S. Wang et al. Phys. Rev. Lett. 104 027801 (2010)] also revealed the existence of a noisy region in the temperature window between the SmC{sub d6}* phase and the smectic-C{sub d4}* (SmC{sub d4}*) phase. Characterized by multiple resonant peaks spanning a wide region in Q{sub Z}, the corresponding structure of this temperature window has been a mystery. In this Letter, through a careful resonant x-ray diffraction study and simulations of the diffraction spectra, we show that this region is in fact an unusually large coexistence region of the SmC{sub d6}* phase and the SmC{sub d4}* phase. The structure of the noisy region is found to be a heterogeneous mixture of local SmC{sub d6}* and SmC{sub d4}* orders on the sub-{micro}m scale.

  20. Evaluation of large format electron bombarded virtual phase CCDs as ultraviolet imaging detectors

    NASA Technical Reports Server (NTRS)

    Opal, Chet B.; Carruthers, George R.

    1989-01-01

    In conjunction with an external UV-sensitive cathode, an electron-bombarded CCD may be used as a high quantum efficiency/wide dynamic range photon-counting UV detector. Results are presented for the case of a 1024 x 1024, 18-micron square pixel virtual phase CCD used with an electromagnetically focused f/2 Schmidt camera, which yields excellent simgle-photoevent discrimination and counting efficiency. Attention is given to the vacuum-chamber arrangement used to conduct system tests and the CCD electronics and data-acquisition systems employed.

  1. Preliminary results of the large experimental wind turbine phase of the national wind energy program

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Sholes, T.; Sholes, J. E.

    1975-01-01

    The preliminary results of two projects in the development phase of reliable wind turbines designed to supply cost-competitive electrical energy were discussed. An experimental 100 kW wind turbine design and its status are first reviewed. The results of two parallel design studies for determining the configurations and power levels for wind turbines with minimum energy costs are also discussed. These studies predict wind energy costs of 1.5 to 7 cents per kW-h for wind turbines produced in quantities of 100 to 1000 per year and located at sites having average winds of 12 to 18 mph.

  2. Climate phase drives canopy condition in a large semi-arid floodplain forest.

    PubMed

    Wen, Li; Saintilan, Neil

    2015-08-15

    To maintain and restore the ecological integrity of floodplains, allocating water for environmental benefits (i.e. environmental water) is widely practised globally. To efficiently manage the always limited environmental water, there is pressing need to advance our understanding of the ecological response to long-term climate cycles as evidence grows of intensification of extreme climatic events such as severe drought and heat waves. In this study, we assessed the alleviating effects of artificial flooding on drought impact using the canopy condition of the iconic river red gum forests in Australia's Murray Darling Basin (MDB). To achieve this, we jointly analysed spatial-temporal patterns of NDVI response and drought conditions for the period of 2000-2013, during which the MDB experienced an extreme dry-wet cycle. Our results indicated that while NDVI-derived canopy condition was better at the sites receiving environmental water during the dry phases, both watered and unwatered sites displayed great similarity in seasonality and trends. Furthermore, we did not find any significant difference in NDVI response of the canopy between the sites to suggest significant differences in ecosystem stability and resilience, with watered and unwatered sites showing similar responses to the extreme wet conditions as the drought broke. The highly significant relationship between long-term drought index and NDVI anomaly suggest that climate phase is the main forcing driving canopy condition in semi-arid floodplain forests. PMID:26027753

  3. Main-chain Chiral Smectic Polymers Showing a Large Electroclinic Effect in the SmA* Phase

    SciTech Connect

    Walba,D.; Yang, H.; Shoemaker, R.; Keller, P.; Shao, r.; Coleman, D.; Jones, C.; Nakata, M.; Clark, N.

    2006-01-01

    The synthesis and characterization of a main-chain smectic liquid-crystalline polymer system designed for development into electromechanical actuators is described. The chemical structure is chosen to provide a large electroclinic effect in the SmA* phase, with large concomitant layer shrinkage (a rare combination). The polymers are prepared by acyclic diene metathesis polymerization (ADMET) of liquid-crystalline ,-dienes. Oligomers with a degree of polymerization of {approx}10-30 are obtained using Grubbs first-generation catalyst, while oligomers with a degree of polymerization of {approx}200 are obtained using Grubbs second-generation catalyst. All polymer samples show the following phase sequence: I - SmA* - SmC* - Glass. X-ray analysis of polymer powder samples demonstrates the desired layer shrinkage at the SmA* - SmC* transition. The polymers form well-aligned fibers by pulling from the isotropic melt, and X-ray analysis of fibers in the SmA* phase shows that in the bulk of the fiber the layers are oriented perpendicular to the fiber axis, while at the surfaces there appears to be a thin sheath where the layers are parallel to the fiber/air interface. The desired layer shrinkage with tilt at the SmA* - SmC* transition in these fibers is seen as well, and in the SmC* phase the fibers exhibit an interesting conical chevron layer structure. Electro-optic investigation of aligned thin films of the polymer, prepared from quenched fiber glasses using a novel technique, exhibit a large electroclinic effect, with substantial degradation of alignment quality upon field-induced tilt. This degradation in alignment quality, coupled with the layer shrinkage at the SmA* - SmC* transition demonstrated by X-ray scattering, strongly suggests the desired layer shrinkage with electroclinic tilt is in fact occurring in the polymer films.

  4. Report on phase 1 of the Microprocessor Seminar. [and associated large scale integration

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Proceedings of a seminar on microprocessors and associated large scale integrated (LSI) circuits are presented. The potential for commonality of device requirements, candidate processes and mechanisms for qualifying candidate LSI technologies for high reliability applications, and specifications for testing and testability were among the topics discussed. Various programs and tentative plans of the participating organizations in the development of high reliability LSI circuits are given.

  5. Phase A reaction control system design for the Large Space Telescope (LST)

    NASA Technical Reports Server (NTRS)

    Price, W. B.

    1972-01-01

    The design of a reaction control system (RCS) for the Large Space Telescope is discussed. The primary requirement for the RCS is to serve as an emergency backup control system to the primary attitude control system. A regulated gaseous nitrogen RCS was selected. The operation of the system and its individual components is described. The principal design goals of the RCS were to minimize contamination effects, make use of existing components, and modularize the system to provide ease in manned orbital maintenance.

  6. Structure/property development in aPET during large strain, solid phase polymer processing

    NASA Astrophysics Data System (ADS)

    Martin, Peter; Mohamed, Raja Roslan Raja

    2015-12-01

    Amorphous Polyethylene terephthalate (aPET) is increasingly of interest for the polymer packaging industry due to its blend of excellent mechanical properties and most importantly its ease of recyclability. Among the major commercial polymers it is almost unique in the degree of improvement in mechanical properties that can be obtained through process-induced strain. For many years these unique properties have been very successfully exploited in the injection stretch blow molding process, where it is deliberately stretched to very large strains using extremely high pressures. However, the material is now also being used in much lower pressure processes such as thermoforming where its properties are often not fully exploited. In this work the change in structure and properties of aPET with strain is systematically investigated using a high speed biaxial stretching machine. The aim was to demonstrate how the properties of the material could be controlled by large strain, high temperature biaxial stretching processes such as thermoforming and blow molding. The results show that property changes in the material are driven by orientation and the onset of rapid strain hardening at large strains. This in turn is shown to vary strongly with process-induced parameters such as the strain rate and the mode and magnitude of biaxial deformation.

  7. NOVEL CONCEPTS FOR THE COMPRESSION OF LARGE VOLUMES OF CARBON DIOXIDE-PHASE III

    SciTech Connect

    Moore, J. Jeffrey; Allison, Timothy; Evans, Neal; Moreland, Brian; Hernandez, Augusto; Day, Meera; Ridens, Brandon

    2014-06-30

    In the effort to reduce the release of CO2 greenhouse gases to the atmosphere, sequestration of CO2 from Integrated Gasification Combined Cycle (IGCC) and Oxy-Fuel power plants is being pursued. This approach, however, requires significant compression power to boost the pressure to typical pipeline levels. The penalty can be as high as 8-12% on a typical IGCC plant. The goal of this research is to reduce this penalty through novel compression concepts and integration with existing IGCC processes. The primary objective of the study of novel CO2 compression concepts is to reliably boost the pressure of CO2 to pipeline pressures with the minimal amount of energy required. Fundamental thermodynamics were studied to explore pressure rise in both liquid and gaseous states. For gaseous compression, the project investigated novel methods to compress CO2 while removing the heat of compression internal to the compressor. The highpressure ratio, due to the delivery pressure of the CO2 for enhanced oil recovery, results in significant heat of compression. Since less energy is required to boost the pressure of a cooler gas stream, both upstream and inter-stage cooling is desirable. While isothermal compression has been utilized in some services, it has not been optimized for the IGCC environment. Phase I of this project determined the optimum compressor configuration and developed technology concepts for internal heat removal. Other compression options using liquefied CO2 and cryogenic pumping were explored as well. Preliminary analysis indicated up to a 35% reduction in power is possible with the new concepts being considered. In the Phase II program, two experimental test rigs were developed to investigate the two concepts further. A new pump loop facility was constructed to qualify a cryogenic turbopump for use on liquid CO2. Also, an internally cooled compressor diaphragm was developed and tested in a closed loop compressor facility using CO2. Both test programs

  8. Large Area Crop Inventory Experiment (LACIE). Accuracy assessment report phase 1A, November - December 1974. [Kansas

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The author has identified the following significant results. Results of the accuracy assessment activity for Phase IA of LACIE indicated that (1) The 90/90 criteria could be reached if the degree of accuracy of the LACIE performance in Kansas could be equaled in other areas. (2) The classification of both wheat and nonwheat fields was significantly accurate for the three ITS segments analyzed. The wheat field classification accuracy varied for the segments. However, this was not so with respect to nonwheat fields. (3) Biophase as well as its interaction with segment location turned out to be an important factor for the classification performance. Analyst interpretation of segments for training the classifier was a significant error-contributing factor in the estimation of wheat acreage at both the field and the segment levels.

  9. Phase-B activities for the Large Isotope Spectrometer for Astromag

    NASA Technical Reports Server (NTRS)

    Mewaldt, Richard A.; Stone, E. C.

    1995-01-01

    The scientific objectives of the LISA experiment are to (1) extend measurements of the isotopic composition of cosmic ray elements from Be to Ni (Z = 4 to 28) into the energy range beyond 1 GeV per nucleon; (2) to measure the energy spectra of heavy elements up to energies greater than 100 GeV/nucleon with good statistical accuracy; and (3) to search for heavy anti-matter with Z greater than 2 in cosmic rays. This grant focussed on defining the Cherenkov subsystem of the LISA experiment. The Phase-B efforts included the following activities: (1) definition of the LISA Cherenkov counters for the Space Station version of Astromag; (2) testing of the 5-inch fine mesh photomultipliers; (3) development of the aerogel radiator; and (4) study of a free-flyer version of Astromag.

  10. Large conversion of energy in dielectric elastomers by electromechanical phase transition

    NASA Astrophysics Data System (ADS)

    Lu, Tong-Qing; Suo, Zhi-Gang

    2012-08-01

    When air is pumped in, a tubular balloon initially inflates slightly and homogeneously. A short section of the balloon then forms a bulge, which coexists with the unbulged section of the balloon. As more air is pumped in, the bulged section elongates at the expense of the unbulged section, until the entire balloon is bulged. The phenomenon is analogous to the liquid-to-vapor phase transition. Here we study the bulging transition in a dielectric elastomer tube as air is pumped into the balloon and a voltage is applied through the thickness of the membrane. We formulate the condition for coexistent budged and unbulged sections, and identify allowable states set by electrical breakdown and mechanical rupture. We find that the bulging transition dramatically amplifies electromechanical energy conversion. Energy converted in an electromechanical cycle consisting of unbulged and bulged states is thousands of times that in an electromechanical cycle consisting of only unbulged states.

  11. Large Area Crop Inventory Experiment (LACIE). Phase 3 direct wheat study of North Dakota

    NASA Technical Reports Server (NTRS)

    Kinsler, M. C.; Nichols, J. D.; Ona, A. L. (Principal Investigator)

    1979-01-01

    The author has identified the following significant results. The green number and brightness scatter plots, channel plots of radiance values, and visual study of the imagery indicate separability between barley and spring wheat/oats during the wheat mid-heading to mid-ripe stages. In the LACIE Phase 3 North Dakota data set, the separation time is more specifically the wheat soft dough stage. At this time, the barley is ripening, and is therefore, less green and brighter than the wheat. Only 4 of the 18 segments studied indicate separation of barley/other spring small grain, even though 11 of the segments have acquisitions covering the wheat soft dough stage. The remaining seven segments had less than 5 percent barley based on ground truth data.

  12. Use of IAEA's phase-space files for virtual source model implementation: Extension to large fields.

    PubMed

    Rucci, Alexis; Carletti, Claudia; Cravero, Walter; Strbac, Bojan

    2016-08-01

    In a previous work, phase-space data files (phsp) provided by the International Atomic Energy Agency (IAEA) were used to develop a hybrid virtual source model (VSM) for clinical photon beams. Very good agreement with dosimetric measurements performed on linear accelerators was obtained for field sizes up to 15×15cm(2). In the present work we extend the VSM to larger field sizes, for which phsp are not available. We incorporate a virtual flattening filter to our model, which can be determined from dose measurements for larger fields. In this way a fully functional VSM can be built, from publicly available IAEA's phsps and standard dose measurements, for fields of any size and tailored to a particular linac. PMID:27423827

  13. Phase transitions and metastability in the distribution of the bipartite entanglement of a large quantum system

    SciTech Connect

    De Pasquale, A.; Facchi, P.; Parisi, G.; Pascazio, S.; Scardicchio, A.

    2010-05-15

    We study the distribution of the Schmidt coefficients of the reduced density matrix of a quantum system in a pure state. By applying general methods of statistical mechanics, we introduce a fictitious temperature and a partition function and translate the problem in terms of the distribution of the eigenvalues of random matrices. We investigate the appearance of two phase transitions, one at a positive temperature, associated with very entangled states, and one at a negative temperature, signaling the appearance of a significant factorization in the many-body wave function. We also focus on the presence of metastable states (related to two-dimensional quantum gravity) and study the finite size corrections to the saddle point solution.

  14. Large epitaxial bi-axial strain induces a Mott-like phase transition in VO{sub 2}

    SciTech Connect

    Kittiwatanakul, Salinporn; Wolf, Stuart A.; Lu, Jiwei

    2014-08-18

    The metal insulator transition (MIT) in vanadium dioxide (VO{sub 2}) has been an important topic for recent years. It has been generally agreed upon that the mechanism of the MIT in bulk VO{sub 2} is considered to be a collaborative Mott-Peierls transition, however, the effect of strain on the phase transition is much more complicated. In this study, the effect of the large strain on the properties of VO{sub 2} films was investigated. One remarkable result is that highly strained epitaxial VO{sub 2} thin films were rutile in the insulating state as well as in the metallic state. These highly strained VO{sub 2} films underwent an electronic phase transition without the concomitant Peierls transition. Our results also show that a very large tensile strain along the c-axis of rutile VO{sub 2} resulted in a phase transition temperature of ∼433 K, much higher than in any previous report. Our findings elicit that the metal insulator transition in VO{sub 2} can be driven by an electronic transition alone, rather the typical coupled electronic-structural transition.

  15. Yb-doped large-mode-area laser fiber fabricated by halide-gas-phase-doping technique

    NASA Astrophysics Data System (ADS)

    Peng, Kun; Wang, Yuying; Ni, Li; Wang, Zhen; Gao, Cong; Zhan, Huan; Wang, Jianjun; Jing, Feng; Lin, Aoxiang

    2015-06-01

    In this manuscript, we designed a rare-earth-halide gas-phase-doping setup to fabricate a large-mode-area fiber for high power laser applications. YbCl3 and AlCl3 halides are evaporated, carried respectively and finally mixed with usual host gas material SiCl4 at the hot zone of MCVD system. Owing to the all-gas-phasing reaction process and environment, the home-made Yb-doped fiber preform has a homogeneous large core and modulated refractive index profile to keep high beam quality. The drawn fiber core has a small numerical aperture of 0.07 and high Yb concentration of 9500 ppm. By using a master oscillator power amplifier system, nearly kW-level (951 W) laser output power was obtained with a slope efficiency of 83.3% at 1063.8 nm, indicating the competition and potential of the halide-gas-phase-doping technique for high power laser fiber fabrication.

  16. The topology of large-scale structure. I - Topology and the random phase hypothesis. [galactic formation models

    NASA Technical Reports Server (NTRS)

    Weinberg, David H.; Gott, J. Richard, III; Melott, Adrian L.

    1987-01-01

    Many models for the formation of galaxies and large-scale structure assume a spectrum of random phase (Gaussian), small-amplitude density fluctuations as initial conditions. In such scenarios, the topology of the galaxy distribution on large scales relates directly to the topology of the initial density fluctuations. Here a quantitative measure of topology - the genus of contours in a smoothed density distribution - is described and applied to numerical simulations of galaxy clustering, to a variety of three-dimensional toy models, and to a volume-limited sample of the CfA redshift survey. For random phase distributions the genus of density contours exhibits a universal dependence on threshold density. The clustering simulations show that a smoothing length of 2-3 times the mass correlation length is sufficient to recover the topology of the initial fluctuations from the evolved galaxy distribution. Cold dark matter and white noise models retain a random phase topology at shorter smoothing lengths, but massive neutrino models develop a cellular topology.

  17. Large-scale tectonic features induced by mantle avalanches with phase, temperature, and pressure lateral variations of viscosity

    NASA Astrophysics Data System (ADS)

    Brunei, David; Machetel, Philippe

    1998-03-01

    million years).The temporal evolution of the convection pattern during an avalanche allows us to propose self-consistent mechanisms for slab migration above the 670 km discontinuity for the birth and disappearance of ridges, the rising of powerful plumes from the CMB, and the creation of low-viscosity zones which may act as a lubricant under continents for fast migration. These results show that the main mantle phase changes, combined with temperature and pressure dependent viscosity, induce convective behavior which provides an explanation for most of the past and present large-scale dynamic behavior of the Earth's global tectonics.

  18. Phase Diagram and Density Large Deviations of a Nonconserving ABC Model

    NASA Astrophysics Data System (ADS)

    Cohen, O.; Mukamel, D.

    2012-02-01

    The effect of particle-nonconserving processes on the steady state of driven diffusive systems is studied within the context of a generalized ABC model. It is shown that in the limit of slow nonconserving processes, the large deviation function of the overall particle density can be computed by making use of the steady-state density profile of the conserving model. In this limit one can define a chemical potential and identify first order transitions via Maxwell’s construction, similarly to what is done in equilibrium systems. This method may be applied to other driven models subjected to slow nonconserving dynamics.

  19. Large aperture kinoform phase plates in fused silica for spatial beam smoothing on Nova and the Beamlet Lasers

    SciTech Connect

    Rushford, M.C.; Dixit, S.N.; Thomas, I.M.; Martin, A.M.; Perry, M.D.

    1997-03-01

    It is now widely recognized that spatial beam smoothing (homogenization) is essential in coupling the laser energy to the inertial confinement fusion (ICF) targets. For the indirect drive approach to ICF, it is desirable to distribute the laser energy into a uniformly speckled profile that has a flat-top super-Gaussian envelope (8th power or higher) and contains greater than 95% of the energy inside the super-Gaussian profile. Spatial smoothing is easily achieved by introducing a binary random phase plate (RPP) in the beam. This produces a homogenized far-field pattern which consists of an overall envelope function determined by the RPP element superimposed with a fine scale speckle pattern arising due to the interference among the various RPP elements. Although easy to fabricate and currently in routine use in many fusion laboratories, the binary RPPs do not meet the ICF requirements stated above since the far-field intensity profile is restricted to essentially an Airy function containing only 84% (an upper limit) of the energy inside the central spot. Approaches using lenslet arrays (refractive or diffractive) have limited use since they operate in the quasi-far-field and have a short depth of focus. The limitations of the RPPs can be overcome by relaxing the binary phase constraint. We have recently presented 5 continuously varying phase screens for tailoring the focal plane irradiance profiles. Called kinoform phase plates (KPPs), these phase screens offer complete flexibility in tailoring the focal plane envelope and, at the same time, increasing the energy efficiency inside the focal spot. In this paper we discuss the design and fabrication of such kinoform phase plates in fused silica for spatial beam smoothing on the Nova and the Beamlet lasers. Since the phase plates are used at the end of the laser chain, KPPs on Nova and Beamlet have to be fabricated on large aperture optics (65-cm diameter and 40-cm square substrates respectively). The following

  20. Phase II Study to Assess the Efficacy of Hypofractionated Stereotactic Radiotherapy in Patients With Large Cavernous Sinus Hemangiomas

    SciTech Connect

    Wang Xin; Liu Xiaoxia; Mei Guanghai; Dai Jiazhong; Pan Li; Wang Enmin

    2012-06-01

    Purpose: Cavernous sinus hemangioma is a rare vascular tumor. The direct microsurgical approach usually results in massive hemorrhage. Although radiosurgery plays an important role in managing cavernous sinus hemangiomas as a treatment alternative to microsurgery, the potential for increased toxicity with single-session treatment of large tumors is a concern. The purpose of this study was to assess the efficacy of hypofractionated stereotactic radiotherapy in patients with large cavernous sinus hemangiomas. Methods: Fourteen patients with large (volume >20 cm{sup 3}) cavernous sinus hemangiomas were enrolled in a prospective Phase II study between December 2007 and December 2010. The hypofractionated stereotactic radiotherapy dose was 21 Gy delivered in 3 fractions. Results: After a mean follow-up of 15 months (range, 6-36 months), the magnetic resonance images showed a mean of 77% tumor volume reduction (range, 44-99%). Among the 6 patients with cranial nerve impairments before hypofractionated stereotactic radiotherapy, 1 achieved symptomatic complete resolution and 5 had improvement. No radiotherapy-related complications were observed during follow-up. Conclusion: Our current experience, though preliminary, substantiates the role of hypofractionated stereotactic radiotherapy for large cavernous sinus hemangiomas. Although a longer and more extensive follow-up is needed, hypofractionated stereotactic radiotherapy of 21 Gy delivered in 3 fractions is effective in reducing the tumor volume without causing any new deficits and can be considered as a treatment modality for large cavernous sinus hemangiomas.

  1. Large magneto-optic enhancement in ultra-thin liquid-phase-epitaxy iron garnet films

    SciTech Connect

    Levy, Miguel; Chakravarty, A.; Huang, H.-C.; Osgood, R. M.

    2015-07-06

    Significant departures from bulk-like magneto-optic behavior are found in ultra-thin bismuth-substituted iron-garnet films grown by liquid-phase-epitaxy. These changes are due, at least in part, to geometrical factors and not to departures from bulk-composition in the transient layer at the film-substrate interface. A monotonic increase in specific Faraday rotation with reduced thickness is the signature feature of the observed phenomena. These are traced to size-dependent modifications in the diamagnetic transition processes responsible for the Faraday rotation. These processes correspond to the electronic transitions from singlet {sup 6}S ground states to spin-orbit split excited states of the Fe{sup 3+} ions in the garnet. A measurable reduction in the corresponding ferrimagnetic resonance linewidths is found, thus pointing to an increase in electronic relaxation times and longer lived excitations at reduced thicknesses. These changes together with a shift in vibrational frequency of the Bi-O bonds in the garnet at reduced thicknesses result in greatly enhanced magneto-optical performance. These studies were conducted on epitaxial monocrystalline Bi{sub 0.8}Gd{sub 0.2}Lu{sub 2}Fe{sub 5}O{sub 12} films.

  2. Improved method for rapid shape recovery of large specular surfaces based on phase measuring deflectometry.

    PubMed

    Zhou, Tian; Chen, Kun; Wei, Haoyun; Li, Yan

    2016-04-01

    Incorporating the modal and zonal estimation approaches into a unifying scheme, we introduce an improved three-dimensional shape reconstruction version of specular surfaces based on phase measuring deflectometry in this paper. The modal estimation is first implemented to derive the coarse height information of the measured surface as initial iteration values. Then the real shape can be recovered utilizing a modified zonal wavefront reconstruction algorithm to simultaneously achieve consistently high accuracy and dramatically rapid convergence. Moreover, the iterative process based on an advanced successive over-relaxation technique shows a consistent rejection of measurement errors, guaranteeing the stability and robustness in practical applications. The reconstruction results of numerical examples of the sphere, hyperbolic, and arbitrary surfaces, as well as an experimentally measured sphere mirror demonstrate the validity and efficiency of the proposed improved method. In the simulations, the proposed method increases the rate of convergence by fourfold compared with the existing zonal approach and realizes three orders of magnitude improvement in reconstruction accuracy compared with the modal technique when handling the sample points of 401×401  pixels of a sphere surface. Furthermore, the computation time decreases approximately 74.92% in contrast to the zonal estimation, and the surface error is about 6.68 μm with reconstruction points of 391×529  pixels of an experimentally measured sphere mirror. In general, this new method can be conducted with fast convergence speed and high accuracy, providing an efficient, stable, and real-time approach for shape reconstruction in practical situations. PMID:27139683

  3. Direct synthesis of large size ferromagnetic SmCo{sub 5} nanoparticles by a gas-phase condensation method

    SciTech Connect

    He Shihai; Jing Ying; Wang Jianping

    2013-04-07

    Ferromagnetic SmCo{sub 5} nanoparticles with large size have been directly synthesized by a magnetron-sputtering-based gas-phase condensation method. Based on this method, we studied the effect of thermodynamic environment for the growth of SmCo{sub 5} nanoparticles. It was found that the well-crystallized SmCo{sub 5} nanoparticle tends to form a hexagonal disk shape with its easy axis perpendicular to the disk plane. More importantly, under the condition of high sputtering current, well-crystallized nanoparticles were found to be formed through a three-stage growth process: aggregation, coalescence, and second crystallization.

  4. Fabrication of large-scale multilevel phase-type Fresnel zone plate arrays by femtosecond laser direct writing

    NASA Astrophysics Data System (ADS)

    Yu, Yan-Hao; Tian, Zhen-Nan; Jiang, Tong; Niu, Li-Gang; Gao, Bing-Rong

    2016-03-01

    We report on the fabrication of large-scale eight-level phase-type Fresnel zone plate arrays (FZPAs) by femtosecond-laser direct writing technology. A high-speed galvanometer scanning system was used to fabricate each Fresnel zone plate to realize high fabrication efficiency. To overcome the limited fabrication scale in the case of galvanometer scanning, inter-plate movements were controlled by multi-axis air-bearing precise positioning stages. With the system, FZPAs whose fill-factor was designed to be 100% realized a diffraction efficiency of 89%. The focusing and imaging properties of the FZPAs were also evaluated, and the FZPAs showed high fidelity.

  5. Photoresponse properties of large-area MoS{sub 2} atomic layer synthesized by vapor phase deposition

    SciTech Connect

    Luo, Siwei; Qi, Xiang E-mail: jxzhong@xtu.edu.cn; Ren, Long; Hao, Guolin; Fan, Yinping; Liu, Yundan; Han, Weijia; Zang, Chen; Li, Jun; Zhong, Jianxin E-mail: jxzhong@xtu.edu.cn

    2014-10-28

    Photoresponse properties of a large area MoS{sub 2} atomic layer synthesized by vapor phase deposition method without any catalyst are studied. Scanning electron microscopy, atomic force microscopy, Raman spectrum, and photoluminescence spectrum characterizations confirm that the two-dimensional microstructures of MoS{sub 2} atomic layer are of high quality. Photoelectrical results indicate that the as-prepared MoS{sub 2} devices have an excellent sensitivity and a good reproducibility as a photodetector, which is proposed to be ascribed to the potential-assisted charge separation mechanism.

  6. Photoresponse properties of large-area MoS2 atomic layer synthesized by vapor phase deposition

    NASA Astrophysics Data System (ADS)

    Luo, Siwei; Qi, Xiang; Ren, Long; Hao, Guolin; Fan, Yinping; Liu, Yundan; Han, Weijia; Zang, Chen; Li, Jun; Zhong, Jianxin

    2014-10-01

    Photoresponse properties of a large area MoS2 atomic layer synthesized by vapor phase deposition method without any catalyst are studied. Scanning electron microscopy, atomic force microscopy, Raman spectrum, and photoluminescence spectrum characterizations confirm that the two-dimensional microstructures of MoS2 atomic layer are of high quality. Photoelectrical results indicate that the as-prepared MoS2 devices have an excellent sensitivity and a good reproducibility as a photodetector, which is proposed to be ascribed to the potential-assisted charge separation mechanism.

  7. A Large Liquid Argon TPC for Off-axis NuMI Neutrino Physics

    SciTech Connect

    Menary, Scott

    2006-07-11

    The ICARUS collaboration has shown the power of the liquid argon time projection chamber (LArTPC) technique to image events with bubble-chamber-like quality. I will describe a proposed long-baseline {nu}e appearance experiment utilizing a large ({>=} 15 kton1) LArTPC placed off-axis of Fermilab's NuMI {nu}{mu} beam. The total LArTPC program as it presently stands, which includes a number of smaller R and D projects designed to examine the key design issues, will be outlined.

  8. 2- and 3-dimensional synthetic large-scale de novo patterning by mammalian cells through phase separation.

    PubMed

    Cachat, Elise; Liu, Weijia; Martin, Kim C; Yuan, Xiaofei; Yin, Huabing; Hohenstein, Peter; Davies, Jamie A

    2016-01-01

    Synthetic biology provides an opportunity for the construction and exploration of alternative solutions to biological problems - solutions different from those chosen by natural life. To this end, synthetic biologists have built new sensory systems, cellular memories, and alternative genetic codes. There is a growing interest in applying synthetic approaches to multicellular systems, especially in relation to multicellular self-organization. Here we describe a synthetic biological system that confers large-scale de novo patterning activity on 2-D and 3-D populations of mammalian cells. Instead of using the reaction-diffusion mechanisms common in real embryos, our system uses cadherin-mediated phase separation, inspired by the known phenomenon of cadherin-based sorting. An engineered self-organizing, large-scale patterning system requiring no prior spatial cue may be a significant step towards the construction of self-assembling synthetic tissues. PMID:26857385

  9. 2- and 3-dimensional synthetic large-scale de novo patterning by mammalian cells through phase separation

    PubMed Central

    Cachat, Elise; Liu, Weijia; Martin, Kim C.; Yuan, Xiaofei; Yin, Huabing; Hohenstein, Peter; Davies, Jamie A.

    2016-01-01

    Synthetic biology provides an opportunity for the construction and exploration of alternative solutions to biological problems - solutions different from those chosen by natural life. To this end, synthetic biologists have built new sensory systems, cellular memories, and alternative genetic codes. There is a growing interest in applying synthetic approaches to multicellular systems, especially in relation to multicellular self-organization. Here we describe a synthetic biological system that confers large-scale de novo patterning activity on 2-D and 3-D populations of mammalian cells. Instead of using the reaction-diffusion mechanisms common in real embryos, our system uses cadherin-mediated phase separation, inspired by the known phenomenon of cadherin-based sorting. An engineered self-organizing, large-scale patterning system requiring no prior spatial cue may be a significant step towards the construction of self-assembling synthetic tissues. PMID:26857385

  10. Talbot interferometry with curved quasi-periodic gratings: towards large field of view X-ray phase-contrast imaging.

    PubMed

    Sun, Yangyang; Cong, Wenxiang; Xi, Yan; Wang, Ge; Pang, Shuo

    2015-10-01

    X-ray phase-contrast imaging based on grating interferometry has become a common method due to its superior contrast in biological soft tissue imaging. The high sensitivity relies on the high-aspect ratio structures of the planar gratings, which prohibit the large field of view applications with a diverging X-ray source. Curved gratings allow a high X-ray flux for a wider angular range, but the interference fringes are only visible within ~10° range due to the geometrical mismatch with the commonly used flat array detectors. In this paper, we propose a design using a curved quasi-periodic grating for large field of view imaging with a flat detector array. Our scheme is numerically verified in the X-ray regime and experimentally verified in the visible optical regime. The interference fringe pattern is observed over 25°, with less than 10% of decrease in visibility in our experiments. PMID:26480170

  11. Regulation of Platelet Derived Growth Factor Signaling by Leukocyte Common Antigen-related (LAR) Protein Tyrosine Phosphatase: A Quantitative Phosphoproteomics Study.

    PubMed

    Sarhan, Adil R; Patel, Trushar R; Creese, Andrew J; Tomlinson, Michael G; Hellberg, Carina; Heath, John K; Hotchin, Neil A; Cunningham, Debbie L

    2016-06-01

    Intracellular signaling pathways are reliant on protein phosphorylation events that are controlled by a balance of kinase and phosphatase activity. Although kinases have been extensively studied, the role of phosphatases in controlling specific cell signaling pathways has been less so. Leukocyte common antigen-related protein (LAR) is a member of the LAR subfamily of receptor-like protein tyrosine phosphatases (RPTPs). LAR is known to regulate the activity of a number of receptor tyrosine kinases, including platelet-derived growth factor receptor (PDGFR). To gain insight into the signaling pathways regulated by LAR, including those that are PDGF-dependent, we have carried out the first systematic analysis of LAR-regulated signal transduction using SILAC-based quantitative proteomic and phosphoproteomic techniques. We haveanalyzed differential phosphorylation between wild-type mouse embryo fibroblasts (MEFs) and MEFs in which the LAR cytoplasmic phosphatase domains had been deleted (LARΔP), and found a significant change in abundance of phosphorylation on 270 phosphosites from 205 proteins because of the absence of the phosphatase domains of LAR. Further investigation of specific LAR-dependent phosphorylation sites and enriched biological processes reveal that LAR phosphatase activity impacts on a variety of cellular processes, most notably regulation of the actin cytoskeleton. Analysis of putative upstream kinases that may play an intermediary role between LAR and the identified LAR-dependent phosphorylation events has revealed a role for LAR in regulating mTOR and JNK signaling. PMID:27074791

  12. The phase curve of cometary dust: Observations of comet 96P/Machholz 1 at large phase angle with the SOHO LASCO C3 coronagraph

    NASA Astrophysics Data System (ADS)

    Grynko, Ye.; Jockers, K.; Schwenn, R.

    2004-11-01

    We have analyzed brightness and polarization data of comet 96P/Machholz, obtained with the SOHO-LASCO C3 coronagraph at phase angles up to 167° and 157°, respectively. The polarization data are characteristic of a typical dusty comet. Within error limits the corresponding trigonometric fit describes the new data measured at larger phase angles as well as those of the previously known range. In the phase angle range from 110° to 167° the brightness increases almost linearly by about two orders of magnitude. The gradient is independent of wavelength. From the absence of a diffraction spike we conclude that the grains contributing significantly to the scattered light must have a size parameter x = 2π r/λ ≥20, i.e. have a radius larger than 1 μm. Fits of the data with Mie calculations of particles having a power law distribution of power index ≈ 2.5 provide a best fit refractive index m = 1.2 + i0.004. In the framework of effective medium theory and on the assumption of a particle porosity P= 0.5 this leads to a complex refractive index of the porous medium m = 1.43 + i0.009. A higher refractive index is possible for more porous grains with very low absorption. The large particle sizes are in qualitative agreement with findings derived from the analysis of the motion of cometary dust under solar radiation pressure (Fulle and coworkers, see \\cite{fulle}; \\cite{jockers} 1997) and with the in-situ measurements of the dust of Halley's comet.

  13. Stages of rootless cone formation observed within the Raudhólar cone group, Iceland

    NASA Astrophysics Data System (ADS)

    Fitch, E. P.; Hamilton, C.; Fagents, S. A.; Thordarson, T.

    2013-12-01

    Secondary (rootless) cones form when lava interacts explosively with water contained in the substrate, and represent a largely degassed, end-member system that can elucidate mechanisms of magma-water interactions in the absence of primary degassing-induced fragmentation. Rootless cones are well documented in Iceland. The Raudhólar rootless cone group, located within the ~5200-year-old Ellidaá lava flow on the south-eastern outskirts of Reykjavík, was extensively quarried during the Second World War and now provides excellent cross-sections through the tephra sequences. Taking advantage of this exposure, we performed detailed stratigraphic, grain-size, and componentry analyses, which suggest that the energetics of rootless explosions vary substantially during cone formation. The lower unit contains the most substrate sediment and is characterized by dilute pyroclastic density current deposits. The middle unit is dominated by a succession of bed-pairs, each containing a finer-grained lower layer and coarser-grained upper layer. In the upper unit, the succession grades into a welded section that caps the cone. The abundance of substrate sediment generally decreases upwards within the cone, which suggests that the efficiency of lava-substrate mixing decreased with time. In addition, clast size generally increases upwards within the cone, implying that the fragmentation energy also decreased as the rootless eruption progressed. Both lines of evidence suggest that the explosions decreased in intensity with time, likely due to the depletion of available groundwater. However, alternating fine- and coarse-grained beds imply cycles of increased and decreased fragmentation efficiency, which we attribute to groundwater recharge and depletion during the event. Therefore, this study presents a detailed look at rootless cone formation and provides the foundation for future work on this important, yet understudied, system.

  14. Observations of Comet P/2003 T12 = 2012 A3 (SOHO) at large phase angle in STEREO-B

    NASA Astrophysics Data System (ADS)

    Hui, Man-To

    2014-11-01

    Comet P/2003 T12 = 2012 A3 (SOHO) was observed by the satellite STEREO-B during the period 2012 January 13-27. During its apparition, it ventured into the highest phase angle ever observed for a comet, and the forward-scattering enhancement in brightness was marked, as large as ˜8.5 mag. Therefore, it provided a precious opportunity to examine the compound Henyey-Greenstein (HG) comet-dust light-scattering model and it also offered valuable polarization data under an unprecedented observing geometry. Our analysis reveals that the compound HG model fits the observations very well until the phase angle exceeds ˜173°, where the brightness surge of the comet was obviously steeper than the prediction by the model. We have found that the reason for the greater steepness cannot be explained by contaminations from the proximal tail. Instead, the model of Mie spheres with radii greater than 1 μm, having a power-law distribution of power index ˜3, matches the observation very well, providing a best-fitting complex refractive index μ = 1.38 + i 0.006. The dust size was found to be consistent with the analysis of the comet's syndyne lines. The debiased polarization of the coma was ˜0 per cent in the phase angle range from 172.9° to 177.6°. No convincing evidence of temporal variation of the polarization was detected.

  15. Observations of Comet P/2003 T12 = 2012 A3 (SOHO) at large phase angle in STEREO-B

    NASA Astrophysics Data System (ADS)

    Hui, M.-T.

    2013-12-01

    Comet P/2003 T12 = 2012 A3 (SOHO) was observed by the satellite STEREO-B during the period 2012 January 13-27. During its apparition, it ventured into the highest phase angle ever observed for a comet, and the forward-scattering enhancement in brightness was marked, as large as ˜8.5 mag. Therefore, it provided a precious opportunity to examine the compound Henyey-Greenstein (HG) comet-dust light-scattering model and it also offered valuable polarization data under an unprecedented observing geometry. Our analysis reveals that the compound HG model fits the observations very well until the phase angle exceeds ˜173°, where the brightness surge of the comet was obviously steeper than the prediction by the model. We have found that the reason for the greater steepness cannot be explained by contaminations from the proximal tail. Instead, the model of Mie spheres with radii greater than 1 μm, having a power-law distribution of power index ˜3, matches the observation very well, providing a best-fitting complex refractive index μ = 1.38 + i 0.006. The dust size was found to be consistent with the analysis of the comet's syndyne lines. The debiased polarization of the coma was ˜0 per cent in the phase angle range from 172.9° to 177.6°. . No convincing evidence of temporal variation of the polarization was detected.

  16. Vapor-phase concentrations of PAHs and their derivatives determined in a large city: correlations with their atmospheric aerosol concentrations.

    PubMed

    Barrado, Ana Isabel; García, Susana; Sevillano, Marisa Luisa; Rodríguez, Jose Antonio; Barrado, Enrique

    2013-11-01

    Thirteen PAHs, five nitro-PAHs and two hydroxy-PAHs were determined in 55 vapor-phase samples collected in a suburban area of a large city (Madrid, Spain), from January 2008 to February 2009. The data obtained revealed correlations between the concentrations of these compounds and a series of meteorological factors (e.g., temperature, atmospheric pressure) and physical-chemical factors (e.g., nitrogen and sulfur oxides). As a consequence, seasonal trends were observed in the atmospheric pollutants. A "mean sample" for the 14-month period would contain a total PAH concentration of 13835±1625 pg m(-3) and 122±17 pg m(-3) of nitro-PAHs. When the data were stratified by season, it emerged that a representative sample of the coldest months would contain 18900±2140 pg m(-3) of PAHs and 150±97 pg m(-3) of nitro-PAHs, while in an average sample collected in the warmest months, these values drop to 9293±1178 pg m(-3) for the PAHs and to 97±13 pg m(-3) for the nitro-PAHs. Total vapor phase concentrations of PAHs were one order of magnitude higher than concentrations detected in atmospheric aerosol samples collected on the same dates. Total nitro-PAH concentrations were comparable to their aerosol concentrations whereas vapor phase OH-PAHs were below their limits of the detection, indicating these were trapped in airborne particles. PMID:23816454

  17. SER-LARS, Volume 4. Learning Objective History III. 1975-76 Edition.

    ERIC Educational Resources Information Center

    Montgomery County Intermediate Unit 23, Blue Bell, PA.

    The fourth volume in the SER-LARS (Special Education Resources Location Analysis and Retrieval System) series, a diagnostic-prescriptive instructional data bank for teachers of handicapped children, presents a continuation of learning objectives organized by content descriptions. Entrees give a history of the use of each objective along with…

  18. SER-LARS, Volume 6. Instructional Materials, Teacher Made and Commercially Adapted. 1975-76 Edition.

    ERIC Educational Resources Information Center

    Montgomery County Intermediate Unit 23, Blue Bell, PA.

    The sixth of nine volumes in the Special Education Resources Location Analysis and Retrieval System (SER-LARS), a diagnostic-prescriptive instructional data bank for teachers of handicapped children, presents an inventory of teacher-made and commercially adapted instructional materials. The instructional materials are organized by accession number…

  19. SER-LARS, Volume 3. Learning Objective History II. 1975-76 Edition.

    ERIC Educational Resources Information Center

    Montgomery County Intermediate Unit 23, Blue Bell, PA.

    The third of nine volumes in the SER-LARS (Special Education Resources Location Analysis and Retrieval System) series, a diagnostic-prescriptive instructional data bank for teachers of handicapped children, presents learning objectives organized by content descriptions. Entries give a history of the use of each objective along with information on…

  20. SER-LARS, Volume 1. User's Handbook. 1975-76 Edition.

    ERIC Educational Resources Information Center

    Montgomery County Intermediate Unit 23, Blue Bell, PA.

    The first of nine volumes in the SER-LARS (Special Education Resources Location Analysis and Retrieval System) Series presents an overview of the system's diagnostic-prescriptive instructional data bank. Information for the user is provided on resources needed, information generated, and procedures for the model's eight levels: initial referral…

  1. SER-LARS, Volume 2. Learning Objective History I. 1975-76 Edition.

    ERIC Educational Resources Information Center

    Montgomery County Intermediate Unit 23, Blue Bell, PA.

    The second of nine volumes in the SER-LARS (Special Education Resources Location Analysis and Retrieval System) series, a diagnostic-prescriptive instructional data bank for teachers of handicapped children, presents learning objectives organized by content descriptions. The volume is explained to give a history of the use of each objective along…

  2. SER-LARS, Volume 12. Instructional Methods III. 1975-76 Edition.

    ERIC Educational Resources Information Center

    Montgomery County Intermediate Unit 23, Blue Bell, PA.

    The book briefly describes several hundred instructional methods from the Special Education Resources Location Analysis and Retrieval System (SER-LARS), which are intended for use in developing and carrying out individualized programs for handicapped children. Each teaching method includes an accession number; title; author; source; teacher tasks;…

  3. SER-LARS, Volume 10. Instructional Methods I. 1975-76 Edition.

    ERIC Educational Resources Information Center

    Montgomery County Intermediate Unit 23, Blue Bell, PA.

    The book briefly describes several hundred instructional methods from the Special Education Resources Location Analysis and Retrieval System (SER-LARS), which are intended for use in developing and carrying out individualized programs for handicapped children. Each teaching method includes an accession number; title; author; source; teacher tasks;…

  4. SER-LARS, Volume 11. Instructional Methods II. 1975-76 Edition.

    ERIC Educational Resources Information Center

    Montgomery County Intermediate Unit 23, Blue Bell, PA.

    The book briefly describes several hundred instructional methods from the Special Education Resources Location Analysis and Retrieval System (SER LARS), which are intended for use in developing and carrying out individualized programs for handicapped children. Each teaching method includes an accession number; title; author; source; teacher tasks;…

  5. Two-level optimization approach for Mars orbital long-duration, large non-coplanar rendezvous phasing maneuvers

    NASA Astrophysics Data System (ADS)

    Yang, Zhen; Luo, Ya-Zhong; Zhang, Jin

    2013-09-01

    A relative dynamics equation-set based on orbital element differences with J2 effects is derived, based on which a two-level approach is proposed to optimize the Mars orbital rendezvous phasing with a large difference in the initial ascending node. The up-level problem uses the revolution deviation between the target spacecraft and the chaser as the design variable, and employs a linear search to find the optimum. The low-level problem uses the maneuver revolutions, locations, and impulses as the design variables, and is solved using a hybrid genetic algorithm combined with sequential quadratic programming. To improve the solution accuracy, an iteration method is developed to satisfy the terminal constraints of the absolute numerical integration trajectory. Test cases involving Mars sample return missions with large initial node differences are presented, which show that the relative dynamics, two-level optimization model, and hybrid optimization algorithm are efficient and robust. Compared with previously published results, the total velocity increment has been further reduced by utilizing this proposed approach. It is found that a five-impulse plan requires the least quantity of propellant, and a propellant-optimal minimum rendezvous duration exists for this long-duration, large non-coplanar rendezvous problem.

  6. Large-eddy simulation of three mixed-phase cloud events during ISDAC: Conditions for persistent heterogeneous ice formation

    NASA Astrophysics Data System (ADS)

    Savre, J.; Ekman, A. M. L.

    2015-08-01

    A Classical-Nucleation-Theory-based parameterization for heterogenous ice nucleation, including explicit dependencies of the nucleation rates on the number concentration, size, and composition of the ambient aerosol population, is implemented in a cloud-scale, large-eddy simulation model and evaluated against Arctic mixed-phase cloud events observed during Indirect and Semi-Direct Aerosol Campaign (ISDAC). An important feature of the parameterization is that the ice nucleation efficiency of each considered aerosol type is described using a contact angle distribution which evolves with time so that the model accounts for the inhibition of ice nucleation as the most efficient ice-forming particles are nucleated and scavenged. The model gives a reasonable representation of first-order (ice water paths) and second-order (ice crystal size distributions) ice microphysical properties. The production of new ice crystals in the upper part of the cloud, essential to guarantee sustained mixed-phase conditions, is found to be controlled mostly by the competition between radiative cooling (resulting in more aerosol particles becoming efficient ice nuclei as the temperature decreases), cloud-top entrainment (entraining fresh particles into the cloud), and nucleation scavenging of the ice+forming aerosol particles. The relative contribution of each process is mostly determined by the cloud-top temperature and the entrainment rates. Accounting for the evolution of the contact angle probability density function with time seems to be essential to capture the persistence of in-cloud ice production without having to, for example, increase the free tropospheric aerosol concentration. Although limited to only three cases and despite important limitations of the parameterization (e.g., the present version only considers dust and black carbon as potential ice nuclei), the results suggest that modeling the time evolution of the ice nuclei population ability to form ice is required to

  7. Two-dimensional wave-number spectral analysis techniques for phase contrast imaging turbulence imaging data on large helical device.

    PubMed

    Michael, C A; Tanaka, K; Vyacheslavov, L; Sanin, A; Kawahata, K

    2015-09-01

    An analysis method for unfolding the spatially resolved wave-number spectrum and phase velocity from the 2D CO2 laser phase contrast imaging system on the large helical device is described. This is based on the magnetic shear technique which identifies propagation direction from 2D spatial Fourier analysis of images detected by a 6 × 8 detector array. Because the strongest modes have wave-number at the lower end of the instrumental k range, high resolution spectral techniques are necessary to clearly resolve the propagation direction and hence the spatial distribution of fluctuations along the probing laser beam. Multiple-spatial point cross-correlation averaging is applied before calculating the spatial power spectrum. Different methods are compared, and it is found that the maximum entropy method (MEM) gives best results. The possible generation of artifacts from the over-narrowing of spectra are investigated and found not to be a significant problem. The spatial resolution Δρ (normalized radius) around the peak wave-number, for conventional Fourier analysis, is ∼0.5, making physical interpretation difficult, while for MEM, Δρ ∼ 0.1. PMID:26429439

  8. Radiation levels in the CERN Large Electron Positron collider during the LEP 2 phase (68 105 GeV)

    NASA Astrophysics Data System (ADS)

    Gaborit, J. C.; Silari, M.; Ulrici, L.

    2006-09-01

    The CERN Large Electron Positron (LEP) collider was in operation from 1989 to 2000. At the end of 1995 the LEP 2 phase began, with the progressive upgrade of the collider energy above the W pair production threshold, until the final energy of 105 GeV per beam. During the 11-year operation an extensive radiation survey program monitored the dose levels inside and around the installation. The radiation levels monitored in the underground areas and on the surface during 1989-1995 (LEP 1 phase) were discussed in a previous paper. The aim of this paper is to complete the data reported earlier. This paper first gives an overview of the radiation levels in the LEP tunnel and in other underground areas, and then discusses measurements of the photon radiation performed in the machine tunnel at each energy increase. An estimate of neutron sources, measurements of radiation streaming through ducts and shafts and some results of measurements of synchrotron radiation from the wigglers are given next. Residual dose rates are then briefly addressed. Finally, an overview is provided of the radiation levels recorded on ground surface during operation, both at the LEP access points and at some reference areas in the French and Swiss countryside.

  9. Two-dimensional wave-number spectral analysis techniques for phase contrast imaging turbulence imaging data on large helical device

    SciTech Connect

    Michael, C. A.; Tanaka, K.; Kawahata, K.; Vyacheslavov, L.; Sanin, A.

    2015-09-15

    An analysis method for unfolding the spatially resolved wave-number spectrum and phase velocity from the 2D CO{sub 2} laser phase contrast imaging system on the large helical device is described. This is based on the magnetic shear technique which identifies propagation direction from 2D spatial Fourier analysis of images detected by a 6 × 8 detector array. Because the strongest modes have wave-number at the lower end of the instrumental k range, high resolution spectral techniques are necessary to clearly resolve the propagation direction and hence the spatial distribution of fluctuations along the probing laser beam. Multiple-spatial point cross-correlation averaging is applied before calculating the spatial power spectrum. Different methods are compared, and it is found that the maximum entropy method (MEM) gives best results. The possible generation of artifacts from the over-narrowing of spectra are investigated and found not to be a significant problem. The spatial resolution Δρ (normalized radius) around the peak wave-number, for conventional Fourier analysis, is ∼0.5, making physical interpretation difficult, while for MEM, Δρ ∼ 0.1.

  10. Large-scale cubic InN nanocrystals by a combined solution- and vapor-phase method under silica confinement.

    PubMed

    Chen, Zhuo; Li, Yanan; Cao, Chuanbao; Zhao, Songrui; Fathololoumi, Saeed; Mi, Zetian; Xu, Xingyan

    2012-01-18

    Large-scale cubic InN nanocrystals were synthesized by a combined solution- and vapor-phase method under silica confinement. Nearly monodisperse cubic InN nanocrystals with uniform spherical shape were dispersed stably in various organic solvents after removal of the silica shells. The average size of InN nanocrystals is 5.7 ± 0.6 nm. Powder X-ray diffraction results indicate that the InN nanocrystals are of high crystallinity with a cubic phase. X-ray photoelectron spectroscopy and energy-dispersive spectroscopy confirm that the nanocrystals are composed of In and N elements. The InN nanocrystals exhibit infrared photoluminescence at room temperature, with a peak energy of ~0.62 eV, which is smaller than that of high-quality wurtzite InN (~0.65-0.7 eV) and is in agreement with theoretical calculations. The small emission peak energy of InN nanocrystals, as compared to other low-cost solution or vapor methods, reveals the superior crystalline quality of our samples, with low or negligible defect density. This work will significantly promote InN-based applications in IR optoelectronic device and biology. PMID:22224725