Science.gov

Sample records for phase noise measurements

  1. Olympus receiver evaluation and phase noise measurements

    NASA Technical Reports Server (NTRS)

    Campbell, Richard L.; Wang, Huailiang; Sweeney, Dennis

    1990-01-01

    A set of measurements performed by the Michigan Tech Sensing and Signal Processing Group on the analog receiver built by the Virginia Polytechnic Institute (VPI) and the Jet Propulsion Laboratory (JPL) for propagation measurements using the Olympus Satellite is described. Measurements of local oscillator (LO) phase noise were performed for all of the LOs supplied by JPL. In order to obtain the most useful set of measurements, LO phase noise measurements were made using the complete VPI receiver front end. This set of measurements demonstrates the performance of the receiver from the Radio Frequency (RF) input through the high Intermediate Frequency (IF) output. Three different measurements were made: LO phase noise with DC on the voltage controlled crystal oscillator (VCXO) port; LO phase noise with the 11.381 GHz LO locked to the reference signal generator; and a reference measurement with the JPL LOs out of the system.

  2. A Gaussian measure of quantum phase noise

    NASA Technical Reports Server (NTRS)

    Schleich, Wolfgang P.; Dowling, Jonathan P.

    1992-01-01

    We study the width of the semiclassical phase distribution of a quantum state in its dependence on the average number of photons (m) in this state. As a measure of phase noise, we choose the width, delta phi, of the best Gaussian approximation to the dominant peak of this probability curve. For a coherent state, this width decreases with the square root of (m), whereas for a truncated phase state it decreases linearly with increasing (m). For an optimal phase state, delta phi decreases exponentially but so does the area caught underneath the peak: all the probability is stored in the broad wings of the distribution.

  3. Phase noise measurement of phase modulation microwave photonic links

    NASA Astrophysics Data System (ADS)

    Ye, Quanyi; Chen, Zhengyu; Xu, Zhiguo; Gao, Yingjie

    2015-10-01

    Microwave photonic links (MPLs) can provide many advantages over traditional coaxial and waveguide solutions due to its low loss, small size, lightweight, large bandwidth, superior stability and immunity to external interference. It has been considered in various applications such as: the transmission of radio frequency (RF) signal over optical carriers, video television transmission, radar and communication systems. Stability of phase of the microwave photonic links is a critical issue in several realistic applications. The delay line technique for phase noise measurement of phase modulation microwave photonic links is measured for the first time. Using this approach, the input signal noise and power supply noise can be effectively cancelled, and it does not require phase locking. The phase noise of a microwave photonic links with a 10 GHz sinusoidal signal is experimentally demonstrated.

  4. AM noise impact on low level phase noise measurements.

    PubMed

    Cibiel, Gilles; Régis, Myrianne; Tournier, Eric; Llopis, Oliver

    2002-06-01

    The influence of the source AM noise in microwave residual phase noise experiments is investigated. The noise floor degradation problem, caused by the parasitic detection of this type of noise by an unperfectly balanced mixer, is solved thanks to a refinement of the quadrature condition. The parasitic noise contribution attributable to the AM to PM (phase modulation) conversion occurring in the device under test is minimized through the development of a dedicated microwave source featuring an AM noise level as low as -170 dBc/Hz at 10 kHz offset from a 3.5 GHz carrier. PMID:12075970

  5. Phase Noise Measurement in PEP II and the Linac

    SciTech Connect

    Getaneh, Mesfin

    2003-09-05

    The Goal of this project is to provide a measurement of the phase of the radio frequency (RF) relative to electron beam traveling down the Stanford Linear Accelerator Center (SLAC). Because the Main Drive Line (MDL) supplies the RF drive and phase reference for the entire accelerator system, the phase accuracy and amount of phase noise present in the MDL are very critical to the functionality of the accelerator. Therefore, a Phase Noise Measurement System was built to measure the phase noise in the liner accelerator (Linac) and PEP II. The system was used to determine the stability of the PEP II RF reference system. In this project a low noise Phase Locked Loop system (PLL) was built to measure timing jitter about sub picoseconds level. The phase noise measured in Master Oscillator using PLL indicates that phase noise is low enough for PEP II to run.

  6. Phase-Noise and Amplitude-Noise Measurement of Low-Power Signals

    NASA Technical Reports Server (NTRS)

    Rubiola, Enrico; Salik, Ertan; Yu, Nan; Maleki, Lute

    2004-01-01

    Measuring the phase fluctuation between a pair of low-power microwave signals, the signals must be amplified before detection. In such cases the phase noise of the amplifier pair is the main cause of 1/f background noise of the instrument. this article proposes a scheme that makes amplification possible while rejecting the close in 1/f (flicker) noise of the two amplifiers. Noise rejection, which relies upon the understanding of the amplifier noise mechanism does not require averaging. Therefore, our scheme can also be the detector of a closed loop noise reduction system. the first prototype, compared to a traditional saturated mixer system under the same condition, show a 24 dB noise reduction of the 1/f region.

  7. A novel phase noise measurement of phase modulation microwave photonic links

    NASA Astrophysics Data System (ADS)

    Ye, Quanyi; Gao, Yingjie; Yang, Chun

    2016-07-01

    Microwave photonic links can provide many advantages over traditional coaxial due to its low loss, small size, lightweight, large bandwidth and immunity to external interference. In this paper, a novel phase noise measurement system is built, since the input signal and the power supply noise can be effectively cancelled by a two-arm configuration without the phase locking. Using this approach, the phase noise performance of the 10-GHz phase modulation photonic link has been measured for the first time, evaluated the values of -124 dBc/Hz at 1 kHz offset and -132 dBc/Hz at 10 kHz offset is obtained. Theoretical analysis on the phase noise measurement system calibration is also discussed.

  8. Two-Phase Mass Flow Measurement Using Noise Analysis

    SciTech Connect

    Evans, Robert Pugmire; Keller, Joseph George; Stephens, A. G.; Blotter, J.

    1999-05-01

    The purpose of this work is to develop a low cost, non-intrusive, mass flow measurement sensor for two-phase flow conditions in geothermal applications. The emphasis of the work to date has been on a device that will monitor two-phase flow in the above-ground piping systems. The flashing brines have the potential for excessive scaling and corrosion of exposed surfaces, which can reduce the effectiveness of any measurement device. A major objective in the work has been the development of an instrument that is less susceptible to the scaling and corrosion effects. The focus of the project efforts has been on transducer noise analysis, a technology initiated at the INEEL. A transducer sensing a process condition will have, in addition to its usual signal, various noise components superimposed upon the primary signal that can be related to flow. Investigators have proposed that this technique be applied to steam and liquid water flow mixtures where the signal from an accelerometer mounted on an external pipe surface is evaluated to determine flow rate.

  9. Experimental clean combustor program noise measurement addendum, phase 1

    NASA Technical Reports Server (NTRS)

    Emmerling, J. J.

    1975-01-01

    The test results of combustor noise measurements taken with waveguide probes are presented. Waveguide probes were shown to be a viable measurement technique for determining high sound pressure level broadband noise. A total of six full-scale annular combustors were tested and included the three advanced combustor designs: swirl-can, radial/axial, and double annular.

  10. Residual phase noise measurements of the input section in a receiver

    SciTech Connect

    Mavric, Uros; Chase, Brian; /Fermilab

    2007-10-01

    If not designed properly, the input section of an analog down-converter can introduce phase noise that can prevail over other noise sources in the system. In the paper we present residual phase noise measurements of a simplified input section of a classical receiver that is composed of various commercially available mixers and driven by an LO amplifier.

  11. Frequency-resolved noise figure measurements of phase (in)sensitive fiber optical parametric amplifiers.

    PubMed

    Malik, R; Kumpera, A; Lorences-Riesgo, A; Andrekson, P A; Karlsson, M

    2014-11-17

    We measure the frequency-resolved noise figure of fiber optical parametric amplifiers both in phase-insensitive and phase-sensitive modes in the frequency range from 0.03 to 3 GHz. We also measure the variation in noise figure due to the degradation in pump optical signal to noise ratio and also as a function of the input signal powers. Noise figure degradation due to stimulated Brillouin scattering is observed. PMID:25402025

  12. Experimental clean combustor program; noise measurement addendum, Phase 2

    NASA Technical Reports Server (NTRS)

    Emmerling, J. J.; Bekofske, K. L.

    1976-01-01

    Combustor noise measurements were performed using wave guide probes. Test results from two full scale annular combustor configurations in a combustor test rig are presented. A CF6-50 combustor represented a current design, and a double annular combustor represented the advanced clean combustor configuration. The overall acoustic power levels were found to correlate with the steady state heat release rate and inlet temperature. A theoretical analysis for the attenuation of combustor noise propagating through a turbine was extended from a subsonic relative flow condition to include the case of supersonic flow at the discharge side. The predicted attenuation from this analysis was compared to both engine data and extrapolated component combustor data. The attenuation of combustor noise through the CF6-50 turbine was found to be greater than 14 dB by both the analysis and the data.

  13. Measurement of Allan variance and phase noise at fractions of a millihertz

    NASA Technical Reports Server (NTRS)

    Conroy, Bruce L.; Le, Duc

    1990-01-01

    Although the measurement of Allan variance of oscillators is well documented, there is a need for a simplified system for finding the degradation of phase noise and Allan variance step-by-step through a system. This article describes an instrumentation system for simultaneous measurement of additive phase noise and degradation in Allan variance through a transmitter system. Also included are measurements of a 20-kW X-band transmitter showing the effect of adding a pass tube regulator.

  14. Low noise buffer amplifiers and buffered phase comparators for precise time and frequency measurement and distribution

    NASA Technical Reports Server (NTRS)

    Eichinger, R. A.; Dachel, P.; Miller, W. H.; Ingold, J. S.

    1982-01-01

    Extremely low noise, high performance, wideband buffer amplifiers and buffered phase comparators were developed. These buffer amplifiers are designed to distribute reference frequencies from 30 KHz to 45 MHz from a hydrogen maser without degrading the hydrogen maser's performance. The buffered phase comparators are designed to intercompare the phase of state of the art hydrogen masers without adding any significant measurement system noise. These devices have a 27 femtosecond phase stability floor and are stable to better than one picosecond for long periods of time. Their temperature coefficient is less than one picosecond per degree C, and they have shown virtually no voltage coefficients.

  15. Phase noise measurement of wideband microwave sources based on a microwave photonic frequency down-converter.

    PubMed

    Zhu, Dengjian; Zhang, Fangzheng; Zhou, Pei; Pan, Shilong

    2015-04-01

    An approach for phase noise measurement of microwave signal sources based on a microwave photonic frequency down-converter is proposed. Using the same optical carrier, the microwave signal under test is applied to generate two +1st-order optical sidebands by two stages of electro-optical modulations. A time delay is introduced between the two sidebands through a span of fiber. By beating the two +1st-order sidebands at a photodetector, frequency down-conversion is implemented, and phase noise of the signal under test can be calculated thereafter. The system has a very large operation bandwidth thanks to the frequency conversion in the optical domain, and good phase noise measurement sensitivity can be achieved since the signal degradation caused by electrical amplifiers is avoided. An experiment is carried out. The phase noise measured by the proposed system agrees well with that measured by a commercial spectrum analyzer or provided by the datasheet. A large operation bandwidth of 5-40 GHz is demonstrated using the proposed system. Moreover, good phase noise floor is achieved (-123  dBc/Hz at 1 kHz and -137  dBc/Hz at 10 kHz at 10 GHz), which is nearly constant over the full measurement range. PMID:25831324

  16. Quantum phase noise reduction in soliton collisions and application to nondemolition measurements

    SciTech Connect

    Rand, Darren; Prucnal, Paul R.; Steiglitz, Ken

    2005-10-15

    We show that soliton collisions can reduce propagation-induced quantum phase noise. This effect originates from a negative correlation between self- and cross-phase-modulation-induced phase fluctuations. Furthermore, we show how this effect can be applied directly to improve the quality of soliton-based quantum nondemolition measurements, simply by adjusting the parameter regime in which the measurement is performed. Optimal implementation, which we show to be technologically feasible, favors short propagation distances, small wavelength separation between solitons, and approximately equal soliton amplitudes.

  17. Reflectometry measurements of 1/f noise in SQUID phase qubits at mK temperatures

    NASA Astrophysics Data System (ADS)

    Cooper, B. K.; Lewis, R. M.; Palmer, B. S.; Zaretskey, V.; Przybysz, A. J.; Kwon, H.; Anderson, J. R.; Lobb, C. J.; Wellstood, F. C.

    2009-03-01

    We measure 1/f noise spectra in dc SQUID phase qubits using a microwave reflectometry technique. One of the SQUID junctions is shunted by a large capacitor, forming a microwave frequency resonator biased and driven to show nonlinear response, typically at 1.5 GHz. This nonlinearity means small current or flux fluctuations produce large changes in reflected phase which we can measure using homodyne detection. Measurements from aluminum qubits on sapphire are compared to previous measurements of 1/f flux noise in SQUIDs and a similarly designed Nb/AlOx/Nb on silicon dc SQUID qubit fabricated by Hypres; data was taken at temperatures ranging from 50 mK to 500 mK.

  18. Phased Array Noise Source Localization Measurements Made on a Williams International FJ44 Engine

    NASA Technical Reports Server (NTRS)

    Podboy, Gary G.; Horvath, Csaba

    2010-01-01

    A 48-microphone planar phased array system was used to acquire noise source localization data on a full-scale Williams International FJ44 turbofan engine. Data were acquired with the array at three different locations relative to the engine, two on the side and one in front of the engine. At the two side locations the planar microphone array was parallel to the engine centerline; at the front location the array was perpendicular to the engine centerline. At each of the three locations, data were acquired at eleven different engine operating conditions ranging from engine idle to maximum (take off) speed. Data obtained with the array off to the side of the engine were spatially filtered to separate the inlet and nozzle noise. Tones occurring in the inlet and nozzle spectra were traced to the low and high speed spools within the engine. The phased array data indicate that the Inflow Control Device (ICD) used during this test was not acoustically transparent; instead, some of the noise emanating from the inlet reflected off of the inlet lip of the ICD. This reflection is a source of error for far field noise measurements made during the test. The data also indicate that a total temperature rake in the inlet of the engine is a source of fan noise.

  19. Truly random number generation based on measurement of phase noise of a laser.

    PubMed

    Guo, Hong; Tang, Wenzhuo; Liu, Yu; Wei, Wei

    2010-05-01

    We present a simple approach to realize truly random number generator based on measuring the phase noise of a single-mode vertical cavity surface emitting laser. The true randomness of the quantum phase noise originates from the spontaneous emission of photons and the random bit generation rate is ultimately limited only by the laser linewidth. With the final bit generation rate of 20 Mbit/s, the truly random bit sequence guaranteed by the uncertainty principle of quantum mechanics passes the three standard randomness tests (ENT, Diehard, and NIST Statistical Test Suites). Moreover, a continuously generated random bit sequence, with length up to 14 Gbit, is verified by two additional criteria for its true randomness. PMID:20866215

  20. Phase noise measurements of the 400-kW, 2.115-GHz (S-band) transmitter

    NASA Technical Reports Server (NTRS)

    Boss, P.; Hoppe, D.; Bhanji, A.

    1987-01-01

    The measurement theory is described and a test method to perform phase noise verification using off-the-shelf components and instruments is presented. The measurement technique described consists of a double-balanced mixer used as phase detector, followed by a low noise amplifier. An FFT spectrum analyzer is then used to view the modulation components. A simple calibration procedure is outlined that ensures accurate measurements. A block diagram of the configuration is presented as well as actual phase noise data from the 400 kW, 2.115 GHz (S-band) klystron transmitter.

  1. Simple digital phase-measuring algorithm for low-noise heterodyne interferometry

    NASA Astrophysics Data System (ADS)

    Kokuyama, Wataru; Nozato, Hideaki; Ohta, Akihiro; Hattori, Koichiro

    2016-08-01

    We present a digital algorithm for measuring the phase of a sinusoidal signal that combines the modified digital fringe-counting method with two-sample zero crossing to enable sequential signal processing. This technique can be applied to a phase meter for measuring dynamic phase differences between two sinusoidal signals with high resolution, particularly for heterodyne interferometry. The floor noise obtained from a demonstration with an electrical apparatus is 5× {{10}-8} \\text{rad}\\text{/}{{\\sqrt{\\text{Hz}}}{}} at frequencies above approximately 0.1 Hz for 80 kHz signal frequency. In addition, by applying this method to a commercial heterodyne interferometer with a modulation frequency of 80 MHz, the floor-noise level is confirmed to be 7× {{10}-14}\\text{m}\\text{/}{{\\sqrt{\\text{Hz}}}{}} from 4 kHz to 1 MHz. We also confirm the validity of the algorithm by comparing its results with those from a standard homodyne interferometer for measuring shock-motion peak acceleration greater than 5000 \\text{m} {{\\text{s}}-2} and a 10 mm stroke.

  2. Rayleigh and Love waves phase velocity measurements in central Europe from seismic ambient noise

    NASA Astrophysics Data System (ADS)

    Verbeke, J.; Fry, B.; Boschi, L.; Kissling, E. H.

    2009-12-01

    We present a new database of surface-wave phase-velocity dispersion curves derived from seismic ambient noise, cross-correlating continuous seismic recordings from the Swiss Network, the German Regional Seismological Network (GRSN), and from the Italian national broadband network operated by the the Istituto Nazionale di Geofisica e Vulcanologia (INGV), plus some stations from the Mediterranean Very Broadband Seismographic Network (MedNet) and from the Austrian Central Institute for Meteorology and Geodynamics (ZAMG). In order to increase the aperture of the station array, additional measurements from the French, Bulgarian, Hungarian, Romanian and Greek stations obtained throught Orfeus are also included. The ambient noise we are using to assemble our database was recorded at the mentioned stations between January 2006 and December 2007. The Green function method, applied to continuous signal recorded at pairs of stations allows to extract from ambient noise coherent surface-wave signal travelling between the two stations. Usually the ambient-noise cross-correlation technique allows to have infomation at periods of 30 s or shorter. Our efforts are focused on extending this technique to longer periods. At this point we are able to obtain coherent dispersion curves at periods from 8 to 35 s. At a second stage, the data set of phase delays associated with a certain frequency of Rayleigh or Love waves are inverted, to determine 2-dimensional phase-velocity maps of the European region. Inversions are conducted by means of a linearized tomographic inversion algorithm. We are now able to obtain 2D Rayleighs and Loves waves phase-velocity maps at periods between 8 and 35 s. We compare these maps with those that we obtain from teleseismic measurements made at the same stations, and with independantly observed geological features in Europe and the Moho depth. Combining ambient-noise and teleseismic observations, our efforts will help to determine a 3D consensus model of the

  3. Measurement and simulation of surface roughness noise using phased microphone arrays

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Dowling, A. P.; Shin, H.-C.

    2008-07-01

    A turbulent boundary-layer flow over a rough wall generates a dipole sound field as the near-field hydrodynamic disturbances in the turbulent boundary-layer scatter into radiated sound at small surface irregularities. In this paper, phased microphone arrays are applied to the measurement and simulation of surface roughness noise. The radiated sound from two rough plates and one smooth plate in an open jet is measured at three streamwise locations, and the beamforming source maps demonstrate the dipole directivity. Higher source strengths can be observed on the rough plates which also enhance the trailing-edge noise. A prediction scheme in previous theoretical work is used to describe the strength of a distribution of incoherent dipoles and to simulate the sound detected by the microphone array. Source maps of measurement and simulation exhibit satisfactory similarities in both source pattern and source strength, which confirms the dipole nature and the predicted magnitude of roughness noise. However, the simulations underestimate the streamwise gradient of the source strengths and overestimate the source strengths at the highest frequency.

  4. Quantum phase slip noise

    NASA Astrophysics Data System (ADS)

    Semenov, Andrew G.; Zaikin, Andrei D.

    2016-07-01

    Quantum phase slips (QPSs) generate voltage fluctuations in superconducting nanowires. Employing the Keldysh technique and making use of the phase-charge duality arguments, we develop a theory of QPS-induced voltage noise in such nanowires. We demonstrate that quantum tunneling of the magnetic flux quanta across the wire yields quantum shot noise which obeys Poisson statistics and is characterized by a power-law dependence of its spectrum SΩ on the external bias. In long wires, SΩ decreases with increasing frequency Ω and vanishes beyond a threshold value of Ω at T →0 . The quantum coherent nature of QPS noise yields nonmonotonous dependence of SΩ on T at small Ω .

  5. Measurement of Integrated Low Frequency Flux Noise in Superconducting Flux/Phase Qubits

    SciTech Connect

    Mao Bo; Qiu Wei; Han Siyuan

    2008-11-07

    We measured the integrated low frequency flux noise ({approx}1 m{phi}{sub 0}) of an rf SQUID as a flux qubit by fitting the resonant peaks from photon assistant tunneling (PAT). The energy relaxation time Tl between the ground and first excited states in the same potential well, measured directly in time domain, is 3 ns. From these results we identified low frequency flux noise as the dominant source of decoherence. In addition, we found that the measured values of integrated flux noise in three qubits of various sizes differ more than an order of magnitude.

  6. Experimental clean combustor program, phase 3: Noise measurement addendum. [CF6-50 high bypass turbofan engine noise

    NASA Technical Reports Server (NTRS)

    Doyle, V. L.

    1978-01-01

    The acoustic characteristics of the double annular combustor in a CF6-50 high bypass turbofan engine were investigated. Internal fluctuating pressure measurements were made in the combustor region and in the core exhaust. The transmission loss across the turbine and nozzle was determined from the measurements and compared to previous component results and present theory. The primary noise source location in the combustor was investigated. Spectral comparisons of test rig results were made with the engine results. The measured overall power level was compared with component and engine correlating parameters.

  7. Investigation of ferroelectric phase transitions of water in nanoporous silicates in simultaneous electrical noise and calorimetric measurements

    NASA Astrophysics Data System (ADS)

    Bordonskiy, G. S.; Orlov, A. O.

    2014-08-01

    The phase transitions of water in the nanoporous silicate materials SBA-15 and MCM-41 with an ordered system of cylindrical pores have been investigated. Measurements of low-frequency electrical noises (Barkhausen noises) in the frequency range of 1-100 Hz have been performed simultaneously with relative calorimetric measurements. It has been found that the voltage of electrical fluctuations increases approximately 100 times in the temperature range from -30 to -50°C, which is associated with the first-order and second-order ferroelectric phase transitions. It has been assumed that the ferroelectric ice XI can be formed in capillary pores of the materials under investigations.

  8. Detailed calculation of spectral noise caused by measurement errors of Mach-Zehnder interferometer optical path phases in a spatial heterodyne spectrometer with a phase shift scheme.

    PubMed

    Takada, Kazumasa; Seino, Mitsuyoshi; Chiba, Akito; Okamoto, Katsunari

    2013-04-20

    We calculate the root mean square (rms) value of the spectral noise caused by optical path phase measurement errors in a spatial heterodyne spectrometer (SHS) featuring a complex Fourier transformation. In our calculation the deviated phases of each Mach-Zehnder interferometer in the in-phase and quadrature states are treated as statistically independent random variables. We show that the rms value is proportional to the rms error of the phase measurement and that the proportionality coefficient is given analytically. The relationship enables us to estimate the potential performance of the SHS such as the sidelobe suppression ratio for a given measurement error. PMID:23669661

  9. Measurements and simulations analysing the noise behaviour of grating-based X-ray phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    Weber, T.; Bartl, P.; Durst, J.; Haas, W.; Michel, T.; Ritter, A.; Anton, G.

    2011-08-01

    In the last decades, phase-contrast imaging using a Talbot-Lau grating interferometer is possible even with a low-brilliance X-ray source. With the potential of increasing the soft-tissue contrast, this method is on its way into medical imaging. For this purpose, the knowledge of the underlying physics of this technique is necessary.With this paper, we would like to contribute to the understanding of grating-based phase-contrast imaging by presenting results on measurements and simulations regarding the noise behaviour of the differential phases.These measurements were done using a microfocus X-ray tube with a hybrid, photon-counting, semiconductor Medipix2 detector. The additional simulations were performed by our in-house developed phase-contrast simulation tool “SPHINX”, combining both wave and particle contributions of the simulated photons.The results obtained by both of these methods show the same behaviour. Increasing the number of photons leads to a linear decrease of the standard deviation of the phase. The number of used phase steps has no influence on the standard deviation, if the total number of photons is held constant.Furthermore, the probability density function (pdf) of the reconstructed differential phases was analysed. It turned out that the so-called von Mises distribution is the physically correct pdf, which was also confirmed by measurements.This information advances the understanding of grating-based phase-contrast imaging and can be used to improve image quality.

  10. The Autonomous Cryocooled Sapphire Oscillator: A Reference for Frequency Stability and Phase Noise Measurements

    NASA Astrophysics Data System (ADS)

    Giordano, V.; Grop, S.; Fluhr, C.; Dubois, B.; Kersalé, Y.; Rubiola, E.

    2016-06-01

    The Cryogenic Sapphire Oscillator (CSO) is the microwave oscillator which feature the highest short-term stability. Our best units exhibit Allan deviation σy (τ) of 4.5x10-16 at 1s, ≈ 1.5x10-16 at 100 s ≤ t ≤ 5,000 s (floor), and ≤ 5x10-15 at one day. The use of a Pulse-Tube cryocooler enables full two year operation with virtually no maintenance. Starting with a short history of the CSO in our lab, we go through the architecture and we provide more details about the resonator, the cryostat, the oscillator loop, and the servo electronics. We implemented three similar oscillators, which enable the evaluation of each with the three- cornered hat method, and provide the potential for Allan deviation measurements at parts of 10-17 level. One of our CSOs (ULISS) is transportable, and goes with a small customized truck. The unique feature of ULISS is that its σy (τ) can be validated at destination by measuring before and after the roundtrip. To this extent, ULISS can be regarded as a traveling standard of frequency stability. The CSOs are a part of the Oscillator IMP project, a platform dedicated to the measurement of noise and short-term stability of oscillators and devices in the whole radio spectrum (from MHz to THz), including microwave photonics. The scope spans from routine measurements to the research on new oscillators, components, and measurement methods.

  11. Measurement of static and vibration-induced phase noise in UHF thin-film resonator (TFR) filters.

    PubMed

    Birdsall, Steven A; Dever, Patrick B; Donovan, Joseph B; Driscoll, Michael M; Lakin, Kenneth M; Pham, Trang H

    2002-05-01

    Measurements of the static phase noise and vibration sensitivity of thin-film resonator (TFR) filters operating at 640 and 2110 MHz have been made. They show that the short-term frequency instability of the filters is small compared with that induced in the oscillator signal by the sustaining stage amplifier PM (phase modulation) noise. In-oscillator measurement of filter performance under vibration indicates that fractional frequency vibration sensitivities (deltafo/fo) are on the order of several parts in 10(-9)/g. Because the percentage bandwidth and order (number of poles) of the filters was fairly constant, so was the product of the center frequency and group delay. Thus, the fractional frequency vibration sensitivity of the filters can be expressed alternatively as carrier signal phase sensitivity to vibration. The tau-omega0 product for the filters that were tested was on the order of 300 rad, so that the equivalent phase sensitivity to vibration was approximately 1 microrad/g. PMID:12046940

  12. Phased Array Noise Source Localization Measurements of an F404 Nozzle Plume at Both Full and Model Scale

    NASA Technical Reports Server (NTRS)

    Podboy, Gary G.; Bridges, James E.; Henderson, Brenda S.

    2010-01-01

    A 48-microphone planar phased array system was used to acquire jet noise source localization data on both a full-scale F404-GE-F400 engine and on a 1/4th scale model of a F400 series nozzle. The full-scale engine test data show the location of the dominant noise sources in the jet plume as a function of frequency for the engine in both baseline (no chevron) and chevron configurations. Data are presented for the engine operating both with and without afterburners. Based on lessons learned during this test, a set of recommendations are provided regarding how the phased array measurement system could be modified in order to obtain more useful acoustic source localization data on high-performance military engines in the future. The data obtained on the 1/4th scale F400 series nozzle provide useful insights regarding the full-scale engine jet noise source mechanisms, and document some of the differences associated with testing at model-scale versus fullscale.

  13. Shot-noise-limited measurement of sub-parts-per-trillion birefringence phase shift in a high-finesse cavity

    SciTech Connect

    Durand, Mathieu; Morville, Jerome; Romanini, Daniele

    2010-09-15

    We report on a promising approach to high-sensitivity anisotropy measurements using a high-finesse cavity locked by optical feedback to a diode laser. We provide a simple and effective way to decouple the weak anisotropy of interest from the inherent mirror's birefringence whose drift may be identified as the key limiting parameter in cavity-based techniques. We demonstrate a shot-noise-limited phase shift resolution previously inaccessible in an optical cavity, readily achieving the state-of-the-art level of 3x10{sup -13} rad.

  14. Development and Calibration of a Field-Deployable Microphone Phased Array for Propulsion and Airframe Noise Flyover Measurements

    NASA Technical Reports Server (NTRS)

    Humphreys, William M., Jr.; Lockard, David P.; Khorrami, Mehdi R.; Culliton, William G.; McSwain, Robert G.; Ravetta, Patricio A.; Johns, Zachary

    2016-01-01

    A new aeroacoustic measurement capability has been developed consisting of a large channelcount, field-deployable microphone phased array suitable for airframe noise flyover measurements for a range of aircraft types and scales. The array incorporates up to 185 hardened, weather-resistant sensors suitable for outdoor use. A custom 4-mA current loop receiver circuit with temperature compensation was developed to power the sensors over extended cable lengths with minimal degradation of the signal to noise ratio and frequency response. Extensive laboratory calibrations and environmental testing of the sensors were conducted to verify the design's performance specifications. A compact data system combining sensor power, signal conditioning, and digitization was assembled for use with the array. Complementing the data system is a robust analysis system capable of near real-time presentation of beamformed and deconvolved contour plots and integrated spectra obtained from array data acquired during flyover passes. Additional instrumentation systems needed to process the array data were also assembled. These include a commercial weather station and a video monitoring / recording system. A detailed mock-up of the instrumentation suite (phased array, weather station, and data processor) was performed in the NASA Langley Acoustic Development Laboratory to vet the system performance. The first deployment of the system occurred at Finnegan Airfield at Fort A.P. Hill where the array was utilized to measure the vehicle noise from a number of sUAS (small Unmanned Aerial System) aircraft. A unique in-situ calibration method for the array microphones using a hovering aerial sound source was attempted for the first time during the deployment.

  15. Phase discrepancy induced from least squares wavefront reconstruction of wrapped phase measurements with high noise or large localized wavefront gradients

    NASA Astrophysics Data System (ADS)

    Steinbock, Michael J.; Hyde, Milo W.

    2012-10-01

    Adaptive optics is used in applications such as laser communication, remote sensing, and laser weapon systems to estimate and correct for atmospheric distortions of propagated light in real-time. Within an adaptive optics system, a reconstruction process interprets the raw wavefront sensor measurements and calculates an estimate for the unwrapped phase function to be sent through a control law and applied to a wavefront correction device. This research is focused on adaptive optics using a self-referencing interferometer wavefront sensor, which directly measures the wrapped wavefront phase. Therefore, its measurements must be reconstructed for use on a continuous facesheet deformable mirror. In testing and evaluating a novel class of branch-point- tolerant wavefront reconstructors based on the post-processing congruence operation technique, an increase in Strehl ratio compared to a traditional least squares reconstructor was noted even in non-scintillated fields. To investigate this further, this paper uses wave-optics simulations to eliminate many of the variables from a hardware adaptive optics system, so as to focus on the reconstruction techniques alone. The simulation results along with a discussion of the physical reasoning for this phenomenon are provided. For any applications using a self-referencing interferometer wavefront sensor with low signal levels or high localized wavefront gradients, understanding this phenomena is critical when applying a traditional least squares wavefront reconstructor.

  16. Beamforming for aircraft noise measurements

    NASA Astrophysics Data System (ADS)

    Dougherty, Robert P.

    2003-10-01

    Phased array beamforming for aircraft noise source location has a long history, including early work on jet noise, wind tunnel measurements, and flyover testing. In the last 10 years, advancements in sparse 2-D and 3-D arrays, wind tunnel test techniques, and computer power have made phased array measurements almost common. Large aerospace companies and national research institutes have an advantage in access to major facilities and hundreds of measurement microphones, but universities and even consulting companies can perform tests with electret microphones and PC data acquisition systems. The type of testing remains a blend of science and art. A complex noise source is approximated by a mathematical model, and the microphones are deployed to evaluate the parameters of the model. For example, the simplest, but often the best, approach is to assume a distribution of mutually incoherent monopoles. This leads to an imaging process analogous to photography. Other models include coherent distributions of multipoles or duct modes. It is sometimes important to simulate the results that would have been obtained from single microphone measurements of part of the airplane in an ideal environment, had such measurements been feasible.

  17. Measurements of Electronic Noise in Gyroklystrons

    NASA Astrophysics Data System (ADS)

    Calame, J. P.

    1999-11-01

    The noise properties of millimeter-wave gyroklystron amplifiers are an important issue in the design of advanced radar and communication systems. Therefore, experimental measurements of electron beam shot noise in a 35 GHz, 225 kW, 30 dB gain, three-cavity gyroklystron have been obtained from both the input and output cavities. This intrinsic noise was initially studied without an applied carrier (i.e. at zero drive power). The noise spectrum emitted by the input cavity has a Lorentzian shape, with peak noise power densities typically reaching 6.3x10-15 W/Hz (-112 dBm/Hz), and typical 3 dB bandwidths of 160 MHz. The output cavity noise spectrum is found to be equal to the input cavity noise spectrum multiplied by the measured linear frequency response of the gyroklystron. The input cavity noise power exhibits complex variations as a function of beam current, beam velocity ratio, and circuit magnetic field. Overall, the measured noise levels at the input cavity are 0 to 5 dB lower than theoretical predictions for shot noise unaltered by collective effects, with the largest reductions occurring at high currents. This implies that space charge has a role in shielding the shot noise. The measurements also fail to show noise growth from electrostatic cyclotron instabilities; analytic theory indicates that the lack of growth is due to the finite velocity spread of the beam and operation at a modest detuning from the cyclotron frequency. Experimental measurements of phase noise in a 4 cavity, 50 dB gain, 35 GHz gyroklystron producing a saturated 200 kW carrier are also under way. Contributions to the phase noise spectrum from shot noise, 1/f noise, and extrinsic noise have been observed.

  18. Phase-velocity measurement of surface waves beneath the Philippine Sea from the ambient seismic noise interferometry

    NASA Astrophysics Data System (ADS)

    Takeo, A.; Nishida, K.; Kawakatsu, H.; Isse, T.; Shiobara, H.; Kanazawa, T.; Sugioka, H.

    2010-12-01

    The radial anisotropy within the oceanic lithosphere appears weaker than that in the asthenosphere, and various origins for this difference are proposed, such as high shear (Nettles and Dziewonski, 2008) or thin melt layers (Kawakatsu et al., 2009) in the asthenosphere. Tomography studies using surface waves, however, usually analyze periods longer than 35-40 sec, and have limited resolution for the lithosphere. To measure phase velocities of Love and Rayleigh waves at shorter periods, we apply the ambient seismic noise interferometry to continuous data of three-component broadband ocean bottom seismometers operated for 2-3 years at 11 stations in the Philippine Sea. We first calculate time-averaged cross-correlation functions between all pairs of stations, and plot them against the separation distances between pairs of stations. As a result, three types of surface waves are identified from three combinations of components: (1) the fundamental mode of Love wave from transverse component pairs, (2) the first higher mode of Rayleigh wave from radial component pairs, and (3) the fundamental mode of Rayleigh wave from vertical component pairs. We then select seven stations in Shikoku Basin, Philippine Sea, and search for an optimum phase velocity by fitting the Bessel function to cross-spectra for each frequency (Aki, 1957; Nishida et al., 2008). The period of resultant phase velocities ranges 8-25 sec for the Love wave, 7-11 sec for the first higher mode Rayleigh wave, and 12-50 sec for the fundamental mode Rayleigh wave. For example, the phase velocities of Love wave vary from 4.3 km/s (at 8 sec) to 4.6 km/s (at 25 sec). These values are 0.2-0.3 km/s higher than those predicted by one-dimensional model of Philippine Sea, PHB3 (Kato and Jordan, 1998), indicating an additional constraint on the shallow structure. Combining these data with long-period phase velocities derived from seismic event analysis, we will present a one-dimensional model of the radial anisotropy

  19. Acoustical measurement separates core noise and jet noise

    NASA Technical Reports Server (NTRS)

    Parthasarathy, S. P.

    1980-01-01

    Measuring technique discriminates between jet noise and core noise of jet engine. Results of experimentation confirmed that core noise and jet noise can be separated by examining cross-correlation of far-field microphone signals and that crossover point between core noise and jet noise moves toward higher velocities at higher angles with respect to jet axis.

  20. High Precision Noise Measurements at Microwave Frequencies

    SciTech Connect

    Ivanov, Eugene; Tobar, Michael

    2009-04-23

    We describe microwave noise measurement system capable of detecting the phase fluctuations of rms amplitude of 2{center_dot}10{sup -11} rad/{radical}(Hz). Such resolution allows the study of intrinsic fluctuations in various microwave components and materials, as well as precise tests of fundamental physics. Employing this system we discovered a previously unknown phenomenon of down-conversion of pump oscillator phase noise into the low-frequency voltage fluctuations.

  1. Cosmological flux noise and measured noise power spectra in SQUIDs

    PubMed Central

    Beck, Christian

    2016-01-01

    The understanding of the origin of 1/f magnetic flux noise commonly observed in superconducting devices such as SQUIDs and qubits is still a major unsolved puzzle. Here we discuss the possibility that a significant part of the observed low-frequency flux noise measured in these devices is ultimately seeded by cosmological fluctuations. We consider a theory where a primordial flux noise field left over in unchanged form from an early inflationary or quantum gravity epoch of the universe intrinsically influences the phase difference in SQUIDs and qubits. The perturbation seeds generated by this field can explain in a quantitatively correct way the form and amplitude of measured low-frequency flux noise spectra in SQUID devices if one takes as a source of fluctuations the primordial power spectrum of curvature fluctuations as measured by the Planck collaboration. Our theoretical predictions are in excellent agreement with recent low-frequency flux noise measurements of various experimental groups. Magnetic flux noise, so far mainly considered as a nuisance for electronic devices, may thus contain valuable information about fluctuation spectra in the very early universe. PMID:27320418

  2. Cosmological flux noise and measured noise power spectra in SQUIDs

    NASA Astrophysics Data System (ADS)

    Beck, Christian

    2016-06-01

    The understanding of the origin of 1/f magnetic flux noise commonly observed in superconducting devices such as SQUIDs and qubits is still a major unsolved puzzle. Here we discuss the possibility that a significant part of the observed low-frequency flux noise measured in these devices is ultimately seeded by cosmological fluctuations. We consider a theory where a primordial flux noise field left over in unchanged form from an early inflationary or quantum gravity epoch of the universe intrinsically influences the phase difference in SQUIDs and qubits. The perturbation seeds generated by this field can explain in a quantitatively correct way the form and amplitude of measured low-frequency flux noise spectra in SQUID devices if one takes as a source of fluctuations the primordial power spectrum of curvature fluctuations as measured by the Planck collaboration. Our theoretical predictions are in excellent agreement with recent low-frequency flux noise measurements of various experimental groups. Magnetic flux noise, so far mainly considered as a nuisance for electronic devices, may thus contain valuable information about fluctuation spectra in the very early universe.

  3. Cosmological flux noise and measured noise power spectra in SQUIDs.

    PubMed

    Beck, Christian

    2016-01-01

    The understanding of the origin of 1/f magnetic flux noise commonly observed in superconducting devices such as SQUIDs and qubits is still a major unsolved puzzle. Here we discuss the possibility that a significant part of the observed low-frequency flux noise measured in these devices is ultimately seeded by cosmological fluctuations. We consider a theory where a primordial flux noise field left over in unchanged form from an early inflationary or quantum gravity epoch of the universe intrinsically influences the phase difference in SQUIDs and qubits. The perturbation seeds generated by this field can explain in a quantitatively correct way the form and amplitude of measured low-frequency flux noise spectra in SQUID devices if one takes as a source of fluctuations the primordial power spectrum of curvature fluctuations as measured by the Planck collaboration. Our theoretical predictions are in excellent agreement with recent low-frequency flux noise measurements of various experimental groups. Magnetic flux noise, so far mainly considered as a nuisance for electronic devices, may thus contain valuable information about fluctuation spectra in the very early universe. PMID:27320418

  4. A study of noise phenomena in microwave components using an advanced noise measurement system.

    PubMed

    Ivanov, E N; Tobar, M E; Woode, R A

    1997-01-01

    A novel 9 GHz measurement system with thermal noise limited sensitivity has been developed for studying the fluctuations in passive microwave components. The noise floor of the measurement system is flat at offset frequencies above 1 kHz and equal to -193 dBc/Hz. The developed system is capable of measuring the noise in the quietest microwave components in real time. We discuss the results of phase and amplitude noise measurements in precision voltage controlled phase shifters and attenuators. The first reliable experimental evidences regarding the intrinsic flicker phase noise in microwave isolators are also presented. PMID:18244113

  5. Measuring Excess Noise in SDL's

    NASA Technical Reports Server (NTRS)

    Katzberg, S. J.; Kowitz, H. R.; Rowland, C. W.; Shull, T. A.; Ruggles, S. L.; Matthews, L. F.

    1983-01-01

    New instrument gives quantitive information on "excess noise" in semiconductor-diode laser (SDL's). By proper selection of detector, instrument tests any SDL from visible wavelengths through thermal infrared. Lasers determine excess noise in SKL source by measuring photocurrent generated in photodetector exposed first to reference laser then to SKL under test.

  6. Phase noise in RF and microwave amplifiers.

    PubMed

    Boudot, Rodolphe; Rubiola, Enrico

    2012-12-01

    Understanding amplifier phase noise is a critical issue in many fields of engineering and physics, such as oscillators, frequency synthesis, telecommunication, radar, and spectroscopy; in the emerging domain of microwave photonics; and in exotic fields, such as radio astronomy, particle accelerators, etc. Focusing on the two main types of base noise in amplifiers, white and flicker, the power spectral density of the random phase φ(t) is Sφ(f) = b(0) + b(-1)/f. White phase noise results from adding white noise to the RF spectrum in the carrier region. For a given RF noise level, b(0) is proportional to the reciprocal of the carrier power P(0). By contrast, flicker results from a near-dc 1/f noise-present in all electronic devices-which modulates the carrier through some parametric effect in the semiconductor. Thus, b(-1) is a parameter of the amplifier, constant in a wide range of P(0). The consequences are the following: Connecting m equal amplifiers in parallel, b(-1) is 1/m times that of one device. Cascading m equal amplifiers, b(-1) is m times that of one amplifier. Recirculating the signal in an amplifier so that the gain increases by a power of m (a factor of m in decibels) as a result of positive feedback (regeneration), we find that b(-1) is m(2) times that of the amplifier alone. The feedforward amplifier exhibits extremely low b(-1) because the carrier is ideally nulled at the input of its internal error amplifier. Starting with an extensive review of the literature, this article introduces a system-oriented model which describes the phase flickering. Several amplifier architectures (cascaded, parallel, etc.) are analyzed systematically, deriving the phase noise from the general model. There follow numerous measurements of amplifiers using different technologies, including some old samples, and in a wide frequency range (HF to microwaves), which validate the theory. In turn, theory and results provide design guidelines and give suggestions for CAD and

  7. Low Noise Performance Perspectives Of Wideband Aperture Phased Arrays

    NASA Astrophysics Data System (ADS)

    Woestenburg, E. E. M.; Kuenen, J. C.

    2004-06-01

    A general analysis of phased array noise properties and measurements, applied to one square meter tiles of the Thousand Element Array (THEA), has resulted in a procedure to define the noise budget for a THEA-tile (Woestenburg and Dijkstra, 2003). The THEA system temperature includes LNA and receiver noise, antenna connecting loss, noise coupling between antenna elements and other possible contributions. This paper discusses the various noise contributions to the THEA system temperature and identifies the areas where improvement can be realized. We will present better understanding of the individual noise contributions using measurements and analysis of single antenna/receiver elements. An improved design for a 1-m2 Low Noise Tile (LNT) will be discussed and optimized low noise performance for the LNT is presented. We will also give future perspectives of the noise performance for such tiles, in relation to the requirements for SKA in the 1 GHz frequency range.

  8. Frequency resolving power measured by rippled noise.

    PubMed

    Supin AYa; Popov, V V; Milekhina, O N; Tarakanov, M B

    1994-07-01

    Frequency resolving power (FRP) was measured in normal humans using rippled noise with a phase-reversal test. The principle of the test was to find the highest ripple density at which an interchange of mutual peak and trough position (the phase reversal) in the rippled spectrum is detectable. In the frequency range below 0.5 kHz FRP was found to be about 21 ripples per kHz when tested by both broad-band and narrow-band rippled noise. In the frequency range above 2 kHz, FRP measured by the narrow-band rippled noise was 22 to 23 relative units (relation of the noise central frequency to the ripple frequency spacing). PMID:7961175

  9. Phase Noise Reduction of Laser Diode

    NASA Technical Reports Server (NTRS)

    Zhang, T. C.; Poizat, J.-Ph.; Grelu, P.; Roch, J.-F.; Grangier, P.; Marin, F.; Bramati, A.; Jost, V.; Levenson, M. D.; Giacobino, E.

    1996-01-01

    Phase noise of single mode laser diodes, either free-running or using line narrowing technique at room temperature, namely injection-locking, has been investigated. It is shown that free-running diodes exhibit very large excess phase noise, typically more than 80 dB above shot-noise at 10 MHz, which can be significantly reduced by the above-mentioned technique.

  10. Measurement of noise from toys

    NASA Astrophysics Data System (ADS)

    Altkorn, Robert; Milkovich, Scott M.; Rider, Gene

    2005-09-01

    Noise from toys is an issue receiving increasing attention in the toy and consumer product safety communities. Concern over loud toys is motivated both by reports of increasing hearing loss among children (the U.S. CDC estimated in 2001 that 12.5% of U.S. children 6 to 19 years old have permanent or temporary noise induced threshold shift in one or both ears) and by technological advances enabling sound and noise producing toys of increased play value at lower and lower cost. Consumer watchdog groups such as PIRG routinely identify excessively loud toys in their yearly lists of most dangerous toys. In 2003 ASTM revised its toy safety standard (F963-03) to include A and C weighted sound pressure level measurements and specific play or use dependent measurement geometries. RAM Consulting measures noise from toys as part of a comprehensive product safety program. Sound measurement equipment, geometries, and procedures used at RAM for different types of toys will be discussed. Unusual problems in noise measurement will be considered, as will the appropriateness of A and C weighting for the youngest age groups.

  11. Phase noise in cryogenic microwave HEMT and MESFET oscillators

    SciTech Connect

    Llopis, O.; Plana, R.; Amine, H.; Escotte, L.; Graffeuil, J. )

    1993-03-01

    This paper addresses the influence of cooling on the phase noise of HEMT and MESFET oscillators. The initial measurements of the device dc characteristics and low frequency noise (0.1 kHz-100 kHz) under cooling give indications on the suitability of a given device for use in low phase noise cooled oscillators. Cooled pseudomorphic AlGaAs/GaInAs/GaAs HEMT's (PHEMT's) turn out to be particularly well-suited as they are free of collapse and they are free of g-r noise in the frequency range of interest. The authors report on 4 GHz oscillators operated at 110 K and featuring a phase noise below [minus] 100 dBc/Hz at 10 kHz from the carrier in spite of a very modest loaded Q (160). It is suggested that high temperature superconductor resonators could greatly enhance the spectral purity of PHEMT's oscillators.

  12. PHASE NOISE COMPARISON OF SHORT PULSE LASER SYSTEMS

    SciTech Connect

    Shukui Zhang; Stephen Benson; John Hansknecht; David Hardy; George Neil; Michelle D. Shinn

    2006-08-27

    This paper describes phase noise measurements of several different laser systems that have completely different gain media and configurations including a multi-kW free-electron laser. We will focus on state-of-the-art short pulse lasers, especially drive lasers for photocathode injectors. Phase noise comparison of the FEL drive laser, electron beam and FEL laser output also will be presented.

  13. Phase Noise Comparision of Short Pulse Laser Systems

    SciTech Connect

    S. Zhang; S. V. Benson; J. Hansknecht; D. Hardy; G. Neil; Michelle D. Shinn

    2006-12-01

    This paper describes the phase noise measurement on several different mode-locked laser systems that have completely different gain media and configurations including a multi-kW free-electron laser. We will focus on the state of the art short pulse lasers, especially the drive lasers for photocathode injectors. A comparison between the phase noise of the drive laser pulses, electron bunches and FEL pulses will also be presented.

  14. PTA en route noise measurements

    NASA Technical Reports Server (NTRS)

    Willshire, William L., Jr.; Garber, Donald P.

    1990-01-01

    A long-range advanced turboprop en route noise database was obtained with weather, tracking, and onboard measurements. In-flight noise directivity measurements were made. Data repeatability within a test day was excellent. Day-to-day variability existed and is not completely understood and therefore not predicted. Comparison of a two-dimensional ray-tracing propagation model with the ensemble average ground-measured data was good; however, as stated above, the day-to-day data variability was not completely predicted. Future research will include looking at alternative propagation models. Three-dimensional ray tracing, fast field program, and the parabolic equation are possibilities. The effect of turbulence needs to be accessed.

  15. Low phase-noise sapphire crystal microwave oscillators: current status.

    PubMed

    Ivanov, Eugene N; Tobar, Michael E

    2009-02-01

    This work demonstrates that ultra-low phase-noise oscillators with a single-sideband phase-noise spectral density approaching -160 dBc/Hz at Fourier frequency of 1 kHz can be constructed at microwave frequencies (8 to 10 GHz). Such noise performance has been achieved by frequency locking a conventional loop oscillator to a temperature-stabilized sapphire dielectric resonator operating at a relatively high level of dissipated microwave power (approximately 0.5 W). Principles of microwave circuit interferometry have been employed to generate the error signal for the oscillator frequency control system. No cryogens were used. Two almost identical oscillators were built to perform the classical 2-oscillator phase noise measurements. The phase referencing of one oscillator to another was achieved by varying microwave power dissipated in the sapphire resonator. PMID:19251513

  16. Multipurpose exciter with low phase noise

    NASA Technical Reports Server (NTRS)

    Conroy, B.; Le, D.

    1989-01-01

    Results of an effort to develop a lower-cost exciter with high stability, low phase noise, and controllable phase and frequency for use in Deep Space Network and Goldstone Solar System Radar applications are discussed. Included is a discussion of the basic concept, test results, plans, and concerns.

  17. Noise in phase-preserving linear amplifiers

    SciTech Connect

    Pandey, Shashank; Jiang, Zhang; Combes, Joshua; Caves, Carlton M.

    2014-12-04

    The purpose of a phase-preserving linear amplifier is to make a small signal larger, so that it can be perceived by instruments incapable of resolving the original signal, while sacrificing as little as possible in signal-to-noise. Quantum mechanics limits how well this can be done: the noise added by the amplifier, referred to the input, must be at least half a quantum at the operating frequency. This well-known quantum limit only constrains the second moments of the added noise. Here we provide the quantum constraints on the entire distribution of added noise: any phasepreserving linear amplifier is equivalent to a parametric amplifier with a physical state σ for the ancillary mode; σ determines the properties of the added noise.

  18. Noise in phase-preserving linear amplifiers

    NASA Astrophysics Data System (ADS)

    Pandey, Shashank; Jiang, Zhang; Combes, Joshua; Caves, Carlton M.

    2014-12-01

    The purpose of a phase-preserving linear amplifier is to make a small signal larger, so that it can be perceived by instruments incapable of resolving the original signal, while sacrificing as little as possible in signal-to-noise. Quantum mechanics limits how well this can be done: the noise added by the amplifier, referred to the input, must be at least half a quantum at the operating frequency. This well-known quantum limit only constrains the second moments of the added noise. Here we provide the quantum constraints on the entire distribution of added noise: any phasepreserving linear amplifier is equivalent to a parametric amplifier with a physical state σ for the ancillary mode; σ determines the properties of the added noise.

  19. Cross-spectrum measurement of thermal-noise limited oscillators.

    PubMed

    Hati, A; Nelson, C W; Howe, D A

    2016-03-01

    Cross-spectrum analysis is a commonly used technique for the detection of phase and amplitude noise of a signal in the presence of interfering uncorrelated noise. Recently, we demonstrated that the phase-inversion (anti-correlation) effect due to amplitude noise leakage can cause complete or partial collapse of the cross-spectral function. In this paper, we discuss the newly discovered effect of anti-correlated thermal noise that originates from the common-mode power divider (splitter), an essential component in a cross-spectrum noise measurement system. We studied this effect for different power splitters and discuss its influence on the measurement of thermal-noise limited oscillators. We provide theory, simulation and experimental results. In addition, we expand this study to reveal how the presence of ferrite-isolators and amplifiers at the output ports of the power splitters can affect the oscillator noise measurements. Finally, we discuss a possible solution to overcome this problem. PMID:27036804

  20. Cross-spectrum measurement of thermal-noise limited oscillators

    NASA Astrophysics Data System (ADS)

    Hati, A.; Nelson, C. W.; Howe, D. A.

    2016-03-01

    Cross-spectrum analysis is a commonly used technique for the detection of phase and amplitude noise of a signal in the presence of interfering uncorrelated noise. Recently, we demonstrated that the phase-inversion (anti-correlation) effect due to amplitude noise leakage can cause complete or partial collapse of the cross-spectral function. In this paper, we discuss the newly discovered effect of anti-correlated thermal noise that originates from the common-mode power divider (splitter), an essential component in a cross-spectrum noise measurement system. We studied this effect for different power splitters and discuss its influence on the measurement of thermal-noise limited oscillators. We provide theory, simulation and experimental results. In addition, we expand this study to reveal how the presence of ferrite-isolators and amplifiers at the output ports of the power splitters can affect the oscillator noise measurements. Finally, we discuss a possible solution to overcome this problem.

  1. Low phase noise digital frequency divider

    NASA Technical Reports Server (NTRS)

    Lutes, G. F., Jr. (Inventor)

    1973-01-01

    A low phase noise frequency divider composed of a grating arrangement is disclosed. The grating arrangement supplies selected portions of an input reference signal to be divided to a tuned circuit without any phase noise due to the grating action. The arrangement which in one embodiment consists of an FET is connected to the tuned circuit input to short out the input except when the input reference signal amplitude crosses ground level in a positive direction and a gate enabling signal is present at the gate electrode of the FET. The gate enabling signal alone does not decouple the tuned circuit input from ground, therefore phase noise, due to the leading and trailing edges of each gate-enabling signal, is substantially eliminated.

  2. System Measures Thermal Noise In A Microphone

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J.; Ngo, Kim Chi T.

    1994-01-01

    Vacuum provides acoustic isolation from environment. System for measuring thermal noise of microphone and its preamplifier eliminates some sources of error found in older systems. Includes isolation vessel and exterior suspension, acting together, enables measurement of thermal noise under realistic conditions while providing superior vibrational and accoustical isolation. System yields more accurate measurements of thermal noise.

  3. Should helicopter noise be measured differently from other aircraft noise? A review of the psychoacoustic literature

    NASA Technical Reports Server (NTRS)

    Molino, J. A.

    1982-01-01

    A review of 34 studies indicates that several factors or variables might be important in providing a psychoacoustic foundation for measurements of the noise from helicopters. These factors are phase relations, tail rotor noise, repetition rate, crest level, and generic differences between conventional aircraft and helicopters. Particular attention was given to the impulsive noise known as blade slap. Analysis of the evidence for and against each factor reveals that, for the present state of scientific knowledge, none of these factors should be regarded as the basis for a significant noise measurement correction due to impulsive blade slap. The current method of measuring effective perceived noise level for conventional aircraft appears to be adequate for measuring helicopter noise as well.

  4. Measurement of hearing aid internal noise1

    PubMed Central

    Lewis, James D.; Goodman, Shawn S.; Bentler, Ruth A.

    2010-01-01

    Hearing aid equivalent input noise (EIN) measures assume the primary source of internal noise to be located prior to amplification and to be constant regardless of input level. EIN will underestimate internal noise in the case that noise is generated following amplification. The present study investigated the internal noise levels of six hearing aids (HAs). Concurrent with HA processing of a speech-like stimulus with both adaptive features (acoustic feedback cancellation, digital noise reduction, microphone directionality) enabled and disabled, internal noise was quantified for various stimulus levels as the variance across repeated trials. Changes in noise level as a function of stimulus level demonstrated that (1) generation of internal noise is not isolated to the microphone, (2) noise may be dependent on input level, and (3) certain adaptive features may contribute to internal noise. Quantifying internal noise as the variance of the output measures allows for noise to be measured under real-world processing conditions, accounts for all sources of noise, and is predictive of internal noise audibility. PMID:20370034

  5. 14 CFR 36.801 - Noise measurement.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Noise measurement. 36.801 Section 36.801 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT NOISE STANDARDS: AIRCRAFT TYPE AND AIRWORTHINESS CERTIFICATION Helicopters § 36.801 Noise measurement. For primary,...

  6. 14 CFR 36.801 - Noise measurement.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Noise measurement. 36.801 Section 36.801 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT NOISE STANDARDS: AIRCRAFT TYPE AND AIRWORTHINESS CERTIFICATION Helicopters § 36.801 Noise measurement. For primary,...

  7. 14 CFR 36.801 - Noise measurement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Noise measurement. 36.801 Section 36.801 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT NOISE STANDARDS: AIRCRAFT TYPE AND AIRWORTHINESS CERTIFICATION Helicopters § 36.801 Noise measurement. For primary,...

  8. 14 CFR 36.801 - Noise measurement.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Noise measurement. 36.801 Section 36.801 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT NOISE STANDARDS: AIRCRAFT TYPE AND AIRWORTHINESS CERTIFICATION Helicopters § 36.801 Noise measurement. For primary,...

  9. 14 CFR 36.801 - Noise measurement.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Noise measurement. 36.801 Section 36.801 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT NOISE STANDARDS: AIRCRAFT TYPE AND AIRWORTHINESS CERTIFICATION Helicopters § 36.801 Noise measurement. For primary,...

  10. Engine Validation of Noise and Emission Reduction Technology Phase I

    NASA Technical Reports Server (NTRS)

    Weir, Don (Editor)

    2008-01-01

    This final report has been prepared by Honeywell Aerospace, Phoenix, Arizona, a unit of Honeywell International, Inc., documenting work performed during the period December 2004 through August 2007 for the NASA Glenn Research Center, Cleveland, Ohio, under the Revolutionary Aero-Space Engine Research (RASER) Program, Contract No. NAS3-01136, Task Order 8, Engine Validation of Noise and Emission Reduction Technology Phase I. The NASA Task Manager was Dr. Joe Grady of the NASA Glenn Research Center. The NASA Contract Officer was Mr. Albert Spence of the NASA Glenn Research Center. This report is for a test program in which NASA funded engine validations of integrated technologies that reduce aircraft engine noise. These technologies address the reduction of engine fan and jet noise, and noise associated with propulsion/airframe integration. The results of these tests will be used by NASA to identify the engineering tradeoffs associated with the technologies that are needed to enable advanced engine systems to meet stringent goals for the reduction of noise. The objectives of this program are to (1) conduct system engineering and integration efforts to define the engine test-bed configuration; (2) develop selected noise reduction technologies to a technical maturity sufficient to enable engine testing and validation of those technologies in the FY06-07 time frame; (3) conduct engine tests designed to gain insight into the sources, mechanisms and characteristics of noise in the engines; and (4) establish baseline engine noise measurements for subsequent use in the evaluation of noise reduction.

  11. Physical measures of sound and noise

    NASA Astrophysics Data System (ADS)

    1984-07-01

    The physical measurement of sound is examined through basic definitions and measuring techniques. The terminology of acoustics is presented with noise characterization, graphs, and mathematical formulas included.

  12. Physical measures of sound and noise

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The physical measurement of sound is examined through basic definitions and measuring techniques. The terminology of acoustics is presented with noise characterization, graphs, and mathematical formulas included.

  13. Removing Background Noise with Phased Array Signal Processing

    NASA Technical Reports Server (NTRS)

    Podboy, Gary; Stephens, David

    2015-01-01

    Preliminary results are presented from a test conducted to determine how well microphone phased array processing software could pull an acoustic signal out of background noise. The array consisted of 24 microphones in an aerodynamic fairing designed to be mounted in-flow. The processing was conducted using Functional Beam forming software developed by Optinav combined with cross spectral matrix subtraction. The test was conducted in the free-jet of the Nozzle Acoustic Test Rig at NASA GRC. The background noise was produced by the interaction of the free-jet flow with the solid surfaces in the flow. The acoustic signals were produced by acoustic drivers. The results show that the phased array processing was able to pull the acoustic signal out of the background noise provided the signal was no more than 20 dB below the background noise level measured using a conventional single microphone equipped with an aerodynamic forebody.

  14. Ultra-Low Phase Noise Microwaves from Optical Signals

    NASA Astrophysics Data System (ADS)

    Taylor, Jennifer A.

    Continuous-wave lasers locked to high-finesse optical reference cavities are oscillators that produce ˜500 THz optical signals with unprecedented stability. Indeed, sub-femtosecond fractional frequency instability at one second averaging can now be achieved. A self-referenced femtosecond laser frequency comb (FLFC) is used as a frequency divider to provide a phase-coherent link between optical and microwave domains, dividing the frequency down to the gigahertz range while also transferring the stability of the original signal. Photodetectors then convert the optical pulses into electronic signals. The resultant 10 GHz microwave signals have ultra-low phase noise below -100 dBc/Hz at 1 Hz offset, surpassing that of traditional microwave oscillators. This new approach offers significant improvement for many applications that rely on stable microwave signals, and may even create new measurement technologies otherwise unachievable with current signal sources. In reality, fundamental and technical sources of noise in each stage of the optical-to-microwave generation process limit the ultimate achievable stability of the signal. Optical reference cavities are limited by environmental effects and thermal fluctuations, and FLFC dividers suffer from intrinsic timing jitter, amplitude noise, and limited stabilization servo bandwidth. However, it is the seemingly straightforward photodetection of optical pulses that proves to be the limiting factor in the ultimate noise floor of these signals. In this thesis, I describe the noise limitations of each part of the optical-to-microwave scheme, particularly focusing on the noise limitations of photodetection. I will give a basic representation of these photodetection noise phenomena in terms of the physical behavior of optically-generated electrons in semiconductor photodiodes. The two main photodetection noise phenomena---shot noise and amplitude-to-phase conversion---will be thoroughly characterized in the context of generation

  15. Minimizing noise-temperature measurement errors

    NASA Technical Reports Server (NTRS)

    Stelzried, C. T.

    1992-01-01

    An analysis of noise-temperature measurement errors of low-noise amplifiers was performed. Results of this analysis can be used to optimize measurement schemes for minimum errors. For the cases evaluated, the effective noise temperature (Te) of a Ka-band maser can be measured most accurately by switching between an ambient and a 2-K cooled load without an isolation attenuator. A measurement accuracy of 0.3 K was obtained for this example.

  16. A uniform phase noise QVCO with a feedback current source

    NASA Astrophysics Data System (ADS)

    Chunyuan, Zhou; Lei, Zhang; He, Qian

    2012-07-01

    A novel integrated quadrature voltage controlled oscillator (QVCO) with a feedback current source is presented in this paper. Benefiting from the current adjusting function of the feedback current source, the proposed QVCO exhibits a uniform phase noise over the entire tuning range. This QVCO is implemented in 65-nm CMOS technology. The measurement results show that it draws less than 3-mA average current from a 1.2-V supply and the phase noise is less than -110 dBc/Hz @1MHz offset over the entire tuning range. The fluctuation of phase noise @1MHz offset from the center frequency of 2.84-GHz to 3.27-GHz is less than 1 dBc/Hz, which validates the correctness of the proposed current source feedback technique.

  17. General Aviation Interior Noise. Part 3; Noise Control Measure Evaluation

    NASA Technical Reports Server (NTRS)

    Unruh, James F.; Till, Paul D.; Palumbo, Daniel L. (Technical Monitor)

    2002-01-01

    The work reported herein is an extension to the work accomplished under NASA Grant NAG1-2091 on the development of noise/source/path identification techniques for single engine propeller driven General Aviation aircraft. The previous work developed a Conditioned Response Analysis (CRA) technique to identify potential noise sources that contributed to the dominating tonal responses within the aircraft cabin. The objective of the present effort was to improve and verify the findings of the CRA and develop and demonstrate noise control measures for single engine propeller driven General Aviation aircraft.

  18. Advanced noise reduction techniques for ultra-low phase noise optical-to-microwave division with femtosecond fiber combs.

    PubMed

    Zhang, Wei; Xu, Zhenyu; Lours, Michel; Boudot, Rodolphe; Kersalé, Yann; Luiten, Andre N; Le Coq, Yann; Santarelli, Giorgio

    2011-05-01

    We report what we believe to be the lowest phase noise optical-to-microwave frequency division using fiber-based femtosecond optical frequency combs: a residual phase noise of -120 dBc/Hz at 1 Hz offset from an 11.55 GHz carrier frequency. Furthermore, we report a detailed investigation into the fundamental noise sources which affect the division process itself. Two frequency combs with quasi-identical configurations are referenced to a common ultrastable cavity laser source. To identify each of the limiting effects, we implement an ultra-low noise carrier-suppression measurement system, which avoids the detection and amplification noise of more conventional techniques. This technique suppresses these unwanted sources of noise to very low levels. In the Fourier frequency range of ∼200 Hz to 100 kHz, a feed-forward technique based on a voltage-controlled phase shifter delivers a further noise reduction of 10 dB. For lower Fourier frequencies, optical power stabilization is implemented to reduce the relative intensity noise which causes unwanted phase noise through power-to-phase conversion in the detector. We implement and compare two possible control schemes based on an acousto-optical modulator and comb pump current. We also present wideband measurements of the relative intensity noise of the fiber comb. PMID:21622045

  19. Optomechanical entanglement in the presence of laser phase noise

    SciTech Connect

    Ghobadi, R.; Bahrampour, A. R.; Simon, C.

    2011-12-15

    We study the simplest optomechanical system in the presence of laser phase noise (LPN) using the covariance matrix formalism. We show that for any LPN model with a finite correlation time, the destructive effect of the phase noise is especially strong in the bistable regime. This explains why ground-state cooling is still possible in the presence of phase noise, as it happens far away from the bistable regime. We also show that the optomechanical entanglement is strongly affected by phase noise.

  20. Phase retrieval tomography in the presence of noise

    NASA Astrophysics Data System (ADS)

    Arhatari, B. D.; Gates, W. P.; Eshtiaghi, N.; Peele, A. G.

    2010-02-01

    We describe the use of single-plane phase retrieval tomography using a laboratory-based x-ray source, under conditions where the retrieval is not formally valid, to present images of the internal structure of an Aerosil granule and a hydrated bentonite gel. The technique provides phase images for samples that interact weakly with the x-ray beam. As the method is less affected by noise than an alternative two-plane phase retrieval method that is otherwise formally valid, object structure can be observed that would not otherwise be seen. We demonstrate our results for phase imaging in tomographic measurements.

  1. Optimal Colored Noise for Estimating Phase Response Curves

    NASA Astrophysics Data System (ADS)

    Morinaga, Kazuhiko; Miyata, Ryota; Aonishi, Toru

    2015-09-01

    The phase response curve (PRC) is an important measure representing the interaction between oscillatory elements. To understand synchrony in biological systems, many research groups have sought to measure PRCs directly from biological cells including neurons. Ermentrout et al. and Ota et al. showed that PRCs can be identified through measurement of white-noise spike-triggered averages. The disadvantage of this method is that one has to collect more than ten-thousand spikes to ensure the accuracy of the estimate. In this paper, to achieve a more accurate estimation of PRCs with a limited sample size, we use colored noise, which has recently drawn attention because of its unique effect on dynamical systems. We numerically show that there is an optimal colored noise to estimate PRCs in the most rigorous fashion.

  2. Low Noise Borehole Triaxial Seismometer Phase II

    SciTech Connect

    Kerr, James D; McClung, David W

    2006-11-06

    This report describes the preliminary design and the effort to date of Phase II of a Low Noise Borehole Triaxial Seismometer for use in networks of seismic stations for monitoring underground nuclear explosions. The design uses the latest technology of broadband seismic instrumentation. Each parameter of the seismometer is defined in terms of the known physical limits of the parameter. These limits are defined by the commercially available components, and the physical size constraints. A theoretical design is proposed, and a preliminary prototype model of the proposed instrument has been built. This prototype used the sensor module of the KS2000. The installation equipment (hole locks, etc.) has been designed and one unit has been installed in a borehole. The final design of the sensors and electronics and leveling mechanism is in process. Noise testing is scheduled for the last quarter of 2006.

  3. Psychophysical measurement of night vision goggle noise

    NASA Astrophysics Data System (ADS)

    Glasgow, Rachael L.; Marasco, Peter L.; Havig, Paul R.; Martinsen, Gary L.; Reis, George A.; Heft, Eric L.

    2003-09-01

    Pilots, developers, and other users of night-vision goggles (NVGs) have pointed out that different NVG image intensifier tubes have different subjective noise characteristics. Currently, no good model of the visual impact of NVG noise exists. Because it is very difficult to objectively measure the noise of a NVG, a method for assessing noise subjectively using simple psychophysical procedures was developed. This paper discusses the use of a computer program to generate noise images similar to what an observer sees through an NVG, based on filtered white noise. The images generated were based on 1/f (where f is frequency) filtered white noise with several adjustable parameters. Adjusting each of these parameters varied different characteristics of the noise. This paper discusses a study where observers compared the computer-generated noise images to true NVG noise and were asked to determine which computer-generated image was the best representation of the true noise. This method was repeated with different types of NVGs and at different luminance levels to study what NVG parameters cause variations in NVG noise.

  4. Low phase noise operation of microwave oscillator circuits.

    PubMed

    Nallatamby, J C; Prigent, M; Vaury, E; Laloue, A; Camiade, M; Obregon, J

    2000-01-01

    In this paper, we describe a theoretical basis, leading to new results, on the general conditions to be fulfilled by oscillator circuits to achieve a very low phase noise. Three main conditions must be fulfilled by a transistor oscillator circuit to reach the minimum phase noise. The energy stored in the resonator must be maximum. Its transfer to the controlling voltage port of the transistor current source must be first maximized. A possible conversion noise at the transistor output port will be also minimized by maximizing the energy transferred to that port. The proposed method has been applied to an experimental oscillator set up with a PHEMT transistor. A state-of-the-art phase noise of -80 dBc/Hz at 100 Hz offset from carrier with a 1/f(3) slope has been measured at room temperature with a 9.2 GHz, oscillator. The application of these new results to free-running oscillator circuits with one-stage then multistage transistor amplifiers demonstrate clearly the validity of the design method. The efficiency of this design method and its ease of use represent a real breakthrough in the field of low noise transistor oscillator circuit design. PMID:18238558

  5. Quantum noise in parametric amplification under phase-mismatched conditions

    NASA Astrophysics Data System (ADS)

    Inoue, K.

    2016-05-01

    This paper studies quantum noise in parametric amplification under phase-mismatched conditions. The equations of motion of the quantum-mechanical field operators, which include phase mismatch under unsaturated conditions are first derived from the Heisenberg equation. Next, the noise figure is evaluated using the solutions of the derived equations. The results indicate that phase mismatch scarcely affects noise property in phase-insensitive amplification while it has a notable effect in case of phase-sensitive amplification.

  6. Landing approach airframe noise measurements and analysis

    NASA Technical Reports Server (NTRS)

    Lasagna, P. L.; Mackall, K. G.; Burcham, F. W., Jr.; Putnam, T. W.

    1980-01-01

    Flyover measurements of the airframe noise produced by the AeroCommander, JetStar, CV-990, and B-747 airplanes are presented for various landing approach configurations. Empirical and semiempirical techniques are presented to correlate the measured airframe noise with airplane design and aerodynamic parameters. Airframe noise for the jet-powered airplanes in the clean configuration (flaps and gear retracted) was found to be adequately represented by a function of airplane weight and the fifth power of airspeed. Results show the airframe noise for all four aircraft in the landing configuration (flaps extended and gear down) also varied with the fifth power of airspeed, but this noise level could not be represented by the addition of a constant to the equation for clean-configuration airframe noise.

  7. Phase-Locked Loop Noise Reduction via Phase Detector Implementation for Single-Phase Systems

    SciTech Connect

    Thacker, Timothy; Boroyevich, Dushan; Burgos, Rolando; Wang, Fei

    2011-01-01

    A crucial component of grid-connected converters is the phase-locked loop (PLL) control subsystem that tracks the grid voltage's frequency and phase angle. Therefore, accurate fast-responding PLLs for control and protection purposes are required to provide these measurements. This paper proposes a novel feedback mechanism for single-phase PLL phase detectors using the estimated phase angle. Ripple noise appearing in the estimated frequency, most commonly the second harmonic under phase-lock conditions, is reduced or eliminated without the use of low-pass filters, which can cause delays to occur and limits the overall performance of the PLL response to dynamic changes in the system. The proposed method has the capability to eliminate the noise ripple entirely and, under extreme line distortion conditions, can reduce the ripple by at least half. Other modifications implemented through frequency feedback are shown to decrease the settling time of the PLL up to 50%. Mathematical analyses with the simulated and experimental results are provided to confirm the validity of the proposed methods.

  8. Noise spectroscopy near phase transitions in nanoscale systems

    NASA Astrophysics Data System (ADS)

    Shi, Zhenzhong

    Strongly correlated electron systems manifest themselves in various phases, due to a delicate balance between many types of competing interactions, such as electron-electron interaction, electron-phonon interaction, and disorder induced interaction. Application of certain external stimuli, such as temperature, electric field, stress to such systems often breaks this balance, leading to phase transitions. Furthermore, in systems with reduced dimensions, confinement effects often play important roles in driving these phase transitions. Among the many experimental tools that have been used to study phase transitions in strongly correlated electron systems, resistance noise spectroscopy, assisted with conventional transport measurements, provides an unique perspective in exploring the microscopic dynamics near well-studied phase transitions in superconductors, magnetic materials, semiconductors, 2D electron systems etc.. In this thesis, using noise spectroscopy and transport measurements, two classes of strongly correlated electron systems in the nanoribbon form were studied: charge density wave systems (NbSe3 and o-TaS 3), and tungsten (W) doped vanadium dioxide (VO2) system. Due to the size of the samples, finite size effects were found to be important in the transport and noise measurements of both NbSe3 and o-TaS3. A model that treats the pinning by bulk, surface and contacts separately was proposed to explain an anomaly, which was observed in the differential resistance vs. electric field at temperatures below the Peierls transition in NbSe3. This model, combined with slow motions of the CDW due to the fast freezing of the thermal excitations over the Peierls gap, were suggested to account for discrete peaks in the Ohmic regime of o-TaS 3, at temperatures below 100 K. In addition, a nonmonotonic behaivor in the electric field dependence of noise magnitude was seen in NbSe 3 in certain temperature ranges, and can be explained as signatures of thermally activated

  9. Frequency-temporal resolution of hearing measured by rippled noise.

    PubMed

    Supin AYa; Popov, V V; Milekhina, O N; Tarakanov, M B

    1997-06-01

    Frequency-temporal resolution of hearing was measured in normal hearers using rippled noise stimulation in conjunction with a phase-reversal test. The principle of the test was to interchange peak and trough positions (the phase reversal) and to find the highest ripple density at which such interchange is detectable depending on reversal rate. The measurements were made using narrow-band noises with center frequencies of 0.5-4 kHz. The ripple-density resolution limits were constant at phase-reversal rates below 2-3/s and diminished at higher phase-reversal rates. A model is proposed to explain the data based on the envelope fluctuations inherent in noise; these fluctuations are supposed to limit detection of frequency-temporal sound patterns. PMID:9213118

  10. An analytical formulation for phase noise in MEMS oscillators.

    PubMed

    Agrawal, Deepak; Seshia, Ashwin

    2014-12-01

    In recent years, there has been much interest in the design of low-noise MEMS oscillators. This paper presents a new analytical formulation for noise in a MEMS oscillator encompassing essential resonator and amplifier nonlinearities. The analytical expression for oscillator noise is derived by solving a second-order nonlinear stochastic differential equation. This approach is applied to noise modeling of an electrostatically addressed MEMS resonator-based square-wave oscillator in which the resonator and oscillator circuit nonlinearities are integrated into a single modeling framework. By considering the resulting amplitude and phase relations, we derive additional noise terms resulting from resonator nonlinearities. The phase diffusion of an oscillator is studied and the phase diffusion coefficient is proposed as a metric for noise optimization. The proposed nonlinear phase noise model provides analytical insight into the underlying physics and a pathway toward the design optimization for low-noise MEMS oscillators. PMID:25474770

  11. Analysis of phase noise in a spin torque oscillator stabilized by phase locked loop

    NASA Astrophysics Data System (ADS)

    Tamaru, Shingo; Kubota, Hitoshi; Yakushiji, Kay; Fukushima, Akio; Yuasa, Shinji

    2016-05-01

    This study analyses phase noise in a spin torque oscillator (STO) stabilized by phase locked loop (PLL). Time domain measurement showed that phase error of the 6.996 GHz signal generated by a STO, which exhibited a random-walk type fluctuation under free running, was suppressed within a standard deviation of 0.408 rad by the PLL. Power spectrum under phase locked oscillation indicated that the PLL had a loop bandwidth of approximately 16 MHz, thus effectively suppressing phase error below 10 MHz. However, it was also found that power spectrum of the residual phase error was distributed much higher than the loop bandwidth.

  12. Understanding the amplitudes of noise correlation measurements

    USGS Publications Warehouse

    Tsai, Victor C.

    2011-01-01

    Cross correlation of ambient seismic noise is known to result in time series from which station-station travel-time measurements can be made. Part of the reason that these cross-correlation travel-time measurements are reliable is that there exists a theoretical framework that quantifies how these travel times depend on the features of the ambient noise. However, corresponding theoretical results do not currently exist to describe how the amplitudes of the cross correlation depend on such features. For example, currently it is not possible to take a given distribution of noise sources and calculate the cross correlation amplitudes one would expect from such a distribution. Here, we provide a ray-theoretical framework for calculating cross correlations. This framework differs from previous work in that it explicitly accounts for attenuation as well as the spatial distribution of sources and therefore can address the issue of quantifying amplitudes in noise correlation measurements. After introducing the general framework, we apply it to two specific problems. First, we show that we can quantify the amplitudes of coherency measurements, and find that the decay of coherency with station-station spacing depends crucially on the distribution of noise sources. We suggest that researchers interested in performing attenuation measurements from noise coherency should first determine how the dominant sources of noise are distributed. Second, we show that we can quantify the signal-to-noise ratio of noise correlations more precisely than previous work, and that these signal-to-noise ratios can be estimated for given situations prior to the deployment of seismometers. It is expected that there are applications of the theoretical framework beyond the two specific cases considered, but these applications await future work.

  13. Phase Noise Improvement Techniques for Oscillator Circuit Using External Crystal Resonant Circuit

    NASA Astrophysics Data System (ADS)

    Imaike, Takeshi; Sakuta, Yukinori; Sekine, Yoshifumi

    This paper describes a new techniques of reducing phase noise in oscillator circuits. Our method uses an external crystal resonant circuit that acts as a frequency reference and is based on correlation with negative feedback control. We present the circuit configuration and the transfer function used in this method, as well as measured single sideband (SSB) phase noise characteristics. Our experiments show that phase noise can be decreased as it is a theoretical value when using LC oscillator. Furthermore, we examine application for voltage controlled crystal oscillator (VCXO). As a results, we can improve that the phase noise characteristics more than that of original VCXO without spoiling frequency tuning range of VCXO.

  14. Noise performance of phase-insensitive frequency multicasting in parametric mixer with finite dispersion.

    PubMed

    Tong, Zhi; Wiberg, Andreas O J; Myslivets, Evgeny; Huynh, Chris K; Kuo, Bill P P; Alic, Nikola; Radic, Stojan

    2013-07-29

    Noise performance of dual-pump, multi-sideband parametric mixer operated in phase-insensitive mode is investigated theoretically and experimentally. It is shown that, in case when a large number of multicasting idlers are generated, the noise performance is strictly dictated by the dispersion characteristics of the mixer. We find that the sideband noise performance is significantly degraded in anomalous dispersion region permitting nonlinear noise amplification. In contrast, in normal dispersion region, the noise performance converges to the level of four-sideband parametric process, rather than deteriorates with increased sideband creation. Low noise generation mandates precise dispersion-induced phase mismatch among pump and sideband waves in order to control the noise coupling. We measure the noise performance improvement for a many-sideband, multi-stage mixer by incorporating new design technique. PMID:23938638

  15. Noise characteristics of passive components for phased array applications

    NASA Technical Reports Server (NTRS)

    Sonmez, M. Kemal; Trew, Robert J.

    1991-01-01

    The results of a comparative study on noise characteristics of basic power combining/dividing and phase shifting schemes are presented. The theoretical basics of thermal noise in a passive linear multiport are discussed. A new formalism is presented to describe the noise behavior of the passive circuits, and it is shown that the fundamental results are conveniently achieved using this description. The results of analyses concerning the noise behavior of basic power combining/dividing structures (the Wilkinson combiner, 90 deg hybrid coupler, hybrid ring coupler, and the Lange coupler) are presented. Three types of PIN-diode switch phase shifters are analyzed in terms of noise performance.

  16. Carrier envelope phase noise in stabilized amplifier systems.

    PubMed

    Gohle, Christoph; Rauschenberger, Jens; Fuji, Takao; Udem, Thomas; Apolonski, Alexander; Krausz, Ferenc; Hänsch, Theodor W

    2005-09-15

    At present most laser systems for generating phase-stabilized high-energy pulses are chirped pulse amplifier systems that involve the selection and subsequent amplification of pulses from a phase-stabilized seed oscillator. We investigate the effect of the picking process on the carrier envelope phase stability and how the phase noise of the picked pulse sequence can be estimated from the phase noise properties of the seed oscillator. All noise components from the original pulse train above the picking frequency are aliased into the picked pulse train and therefore cannot be neglected. PMID:16196361

  17. Measuring signal-to-noise ratio automatically

    NASA Technical Reports Server (NTRS)

    Bergman, L. A.; Johnston, A. R.

    1980-01-01

    Automated method of measuring signal-to-noise ratio in digital communication channels is more precise and 100 times faster than previous methods used. Method based on bit-error-rate (B&R) measurement can be used with cable, microwave radio, or optical links.

  18. Measured Noise from Small Unmanned Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Cabell, Randolph; McSwain, Robert; Grosveld, Ferdinand

    2016-01-01

    Proposed uses of small unmanned aerial vehicles (UAVs), including home package delivery, have the potential to expose large portions of communities to a new noise source. This paper discusses results of flyover noise measurements of four small UAVs, including an internal combustion-powered model airplane and three battery-powered multicopters. Basic noise characteristics of these vehicles are discussed, including spectral properties and sound level metrics such as sound pressure level, effective perceived noise level, and sound exposure level. The size and aerodynamic characteristics of the multicopters in particular make their flight path susceptible to atmospheric disturbances such as wind gusts. These gusts, coupled with a flight control system that varies rotor speed to maintain vehicle stability, create an unsteady acoustic signature. The spectral variations resulting from this unsteadiness are explored, in both hover and flyover conditions for the multicopters. The time varying noise, which differs from the relatively steady noise generated by large transport aircraft, may complicate the prediction of human annoyance using conventional sound level metrics.

  19. Amplitude and phase noise of magnetic tunnel junction oscillators

    NASA Astrophysics Data System (ADS)

    Quinsat, M.; Gusakova, D.; Sierra, J. F.; Michel, J. P.; Houssameddine, D.; Delaet, B.; Cyrille, M.-C.; Ebels, U.; Dieny, B.; Buda-Prejbeanu, L. D.; Katine, J. A.; Mauri, D.; Zeltser, A.; Prigent, M.; Nallatamby, J.-C.; Sommet, R.

    2010-11-01

    The microwave emission linewidth of spin transfer torque nano-oscillators is closely related to their phase and amplitude noise that can be extracted from the magnetoresistive voltage signal V(t ) using single shot time domain techniques. Here we report on phase and amplitude noise studies for MgO based magnetic tunnel junction oscillators. The analysis of the power spectral densities allows one to separate the linear and nonlinear contributions to the phase noise, the nonlinear contribution being due to the coupling between phase and amplitude. The coupling strength as well as the amplitude relaxation rate can be directly extracted.

  20. Electrochemical noise measurement for corrosion applications

    SciTech Connect

    Kearns, J.R.; Scully, J.R.; Roberge, P.R.; Reichert, D.L.; Dawson, J.L.

    1996-12-31

    The First International Symposium on Electrochemical Noise Measurement for Corrosion Applications was held in Montreal, Quebec, Canada on 15--16 May 1994. Electrochemical noise measurement (ENM) is a controversial subject. There are no established test methods, and there is no consensus on a theoretical framework for interpreting data. The ASTM Committee G-1 Task Group on ENM and the symposium authors were charged with the task of developing consensus on three basic issues: (1) how should a measurement be made so that it can be compared with confidence to others, (2) what electric measurement capabilities and calibration procedures are necessary to make a valid measurement, and (3) how can the data be most efficiently analyzed and reliably interpreted. The presentations covered data analysis, industrial applications, pitting corrosion, methods of measurement, and standardization. Twenty five papers were processed separately for inclusion on the data base.

  1. Aviation noise: Costs of phasing out noisy aircraft

    NASA Astrophysics Data System (ADS)

    1991-07-01

    In Sept. 1990 this group testified on the costs of phasing out older, relatively noisy aircraft and on how these costs would be affected by the independent adoption of noise restrictions by airports. In Nov. 1990 the Airport Noise and Capacity Act of 1990 was enacted. This act phased out the noisiest jets currently in use by the year 2000 and limits the discretion of airports to adopt their own noise restrictions. This report briefly describes the likely effects of this Act on the costs to the airline industry of aviation noise restrictions.

  2. The Advanced Noise Control Fan Baseline Measurements

    NASA Technical Reports Server (NTRS)

    McAllister, Joseph; Loew, Raymond A.; Lauer, Joel T.; Stuliff, Daniel L.

    2009-01-01

    The NASA Glenn Research Center s (NASA Glenn) Advanced Noise Control Fan (ANCF) was developed in the early 1990s to provide a convenient test bed to measure and understand fan-generated acoustics, duct propagation, and radiation to the farfield. As part of a complete upgrade, current baseline and acoustic measurements were documented. Extensive in-duct, farfield acoustic, and flow field measurements are reported. This is a follow-on paper to documenting the operating description of the ANCF.

  3. Noise measurement in wind tunnels, workshop summary

    NASA Technical Reports Server (NTRS)

    Hickley, D. H.; Williams, J.

    1982-01-01

    In reviewing the progress made in acoustic measurements in wind tunnels over the 5-yr span of the workshops, it is evident that a great deal of progress has occurred. Specialized facilities are now on line, special measurement techniques were developed, and corrections were devised and proven. This capability is in the process of creating a new and more correct data bank on acoustic phenomena, and represents a major step forward in acoustics technology. Additional work is still required, but now, rather than concentrating on facilities and techniques, researchers may more profitably concentrate on noise-source modeling, with the simulation of propulsor noise source (in flight) and of propulsor/airframe airflow characteristics. Promising developments in directional acoustic receivers and other discrimination/correlation techniques should now be regularly exploited, in part for model noise-source diagnosis, but also to expedite extraction of the lone source signal from any residual background noise and reverberation in the working chamber and from parasitic noise due to essential rigs or instrumentation inside the airstream.

  4. EDFA-based coupled opto-electronic oscillator and its phase noise

    NASA Technical Reports Server (NTRS)

    Salik, Ertan; Yu, Nan; Tu, Meirong; Maleki, Lute

    2004-01-01

    EDFA-based coupled opto-electronic oscillator (COEO), an integrated optical and microwave oscillator that can generate picosecond optical pulses, is presented. the phase noise measurements of COEO show better performance than synthesizer-driven mode-locked laser.

  5. Simulation of phase noise for coherent beam combination

    NASA Astrophysics Data System (ADS)

    Hu, Qi-qi; Huang, Zhi-meng; Tang, Xuan; Luo, Yong-quan; Zhang, Da-yong

    2015-02-01

    Active coherent beam combination has been a hot area of research for several years. Particular algorithm module is used to stabilize the phase difference between beamlets, and make them coherent. The phase noise increases with the raising power of laser output. Under low power condition, we simulate the phase noise of high power laser amplifier by the Arbitrary Function Generators (AFGs), and send them to the phase modulators to destabilize the phase, to test the performance of the phase lock algorithm. The experimental results show the feasibility.

  6. Uncertainty in outdoor noise measurement and prediction

    NASA Astrophysics Data System (ADS)

    Wilson, D. Keith

    2005-09-01

    Standards for outdoor noise are intended to ensure that (1) measurements are representative of actual exposure and (2) noise prediction procedures are consistent and scientifically defensible. Attainment of these worthwhile goals is hindered by the many complexities of sound interaction with the local atmosphere and terrain. The paradigm predominant in current standards might be described as measuring/predicting ``somewhat worse than average'' conditions. Measurements/predictions are made for moderate downward refraction conditions, since that is when noise annoyance is most often expected to occur. This paradigm is reasonable and practical, although one might argue that current standards could implement it better. A different, potentially more rigorous, paradigm is to explicitly treat the statistical nature of noise imissions as produced by variability in the atmospheric environment and by uncertainties in its characterization. For example, measurements and prediction techniques could focus on exceedance levels. For this to take place, a better conceptual framework must be developed for predictions that are averaged over environmental states, frequency bands, and various time intervals. Another increasingly important issue is the role of computer models. As these models continue to grow in fidelity and capability, there will be increasing pressure to abandon standard calculations in many applications.

  7. ASTM standardization of electrochemical noise measurement

    SciTech Connect

    Kearns, J.R.; Eden, D.A.; Yaffe, M.R.; Fahey, J.V.; Reichert, D.L.; Silverman, D.C.

    1996-12-31

    The increased utilization of electrochemical noise measurement in corrosion research and industrial process monitoring prompted the formation in 1991 of an ASTM Task Group within the G1 Corrosion of Metals Committee. The scope of the task group was to develop standards that describe instruments and methods for making and analyzing electrochemical noise measurements. Task group activities are focused exclusively on measurements to be made in the laboratory. The initial goal has been to develop consensus on: (a) terminology, (b) specifications and configurations for laboratory instrumentation, (c) laboratory apparatus, and (d) data analysis methods. A round robin was also organized to develop a body of data on different material/environment systems using a variety of instrument configurations and data analysis techniques. A guide for making valid electrochemical noise results is being prepared based on the round robin results. The status of the effort to address these and other standardization issues within the ASTM G1.11.04 Task Group on Electrochemical Noise Measurement will be presented.

  8. Transportable setup for amplifier phase fidelity measurements

    NASA Astrophysics Data System (ADS)

    Tröbs, M.; Bogan, C.; Barke, S.; Kühn, G.; Reiche, J.; Heinzel, G.; Danzmann, K.

    2015-05-01

    One possible laser source for the Laser Interferometer Space Antenna (LISA) consists of an Ytterbium-doped fiber amplifier originally developed for inter-satellite communication, seeded by the laser used for the technology demonstrator mission LISA Pathfinder. LISA needs to transmit clock information between its three spacecraft to correct for phase noise between the clocks on the individual spacecraft. For this purpose phase modulation sidebands at GHz frequencies will be imprinted on the laser beams between spacecraft. Differential phase noise between the carrier and a sideband introduced within the optical chain must be very low. We report on a transportable setup to measure the phase fidelity of optical amplifiers.

  9. Combat aircraft noise reduction by technical measures

    NASA Astrophysics Data System (ADS)

    Wegner, M.; Kennepohl, F.; Heinig, K.

    1992-04-01

    The noise of combat aircraft during low level flight is dominated by the jet. Technical noise reduction measures must therefore reduce the specific thrust of the engine. This can be achieved by altering the engine cycle or by using secondary air to increase the mass flow though the nozzle. In the first part the influence of nozzle area, bypass ratio and variable cycle features on the specific thrust of modern fighter engines is shown. The effects on noise, thrust and fuel consumption are discussed. In the second part ejector-mixer nozzles and the aft-fan are considered. Both reduce the jet velocity by entraining air through secondary inlets and expelling it together with the engine's exhaust flow through a common nozzle.

  10. Recurrent noise-induced phase singularities in drifting patterns

    NASA Astrophysics Data System (ADS)

    Clerc, M. G.; Coulibaly, S.; del Campo, F.; Garcia-Nustes, M. A.; Louvergneaux, E.; Wilson, M.

    2015-11-01

    We show that the key ingredients for creating recurrent traveling spatial phase defects in drifting patterns are a noise-sustained structure regime together with the vicinity of a phase transition, that is, a spatial region where the control parameter lies close to the threshold for pattern formation. They both generate specific favorable initial conditions for local spatial gradients, phase, and/or amplitude. Predictions from the stochastic convective Ginzburg-Landau equation with real coefficients agree quite well with experiments carried out on a Kerr medium submitted to shifted optical feedback that evidence noise-induced traveling phase slips and vortex phase-singularities.

  11. Electrochemical noise measurement for determining corrosion rates

    SciTech Connect

    Reichert, D.L.

    1996-12-31

    Electrochemical noise measurements (ENM), linear polarization tests and mass loss measurements were performed in sulfuric acid, acetic acid and other solutions. The ENM data were converted to corrosion rates by calculating the noise resistance, R{sub n} = {sigma}V/{sigma}I where {sigma}V and {sigma}I are the standard deviations of the potential and current. Good correlation among the three methods was obtained for low to moderate corrosion rates, but poor correlation was observed for high rates. ENM has proven valuable for determining corrosion rates in low-conductivity solutions, which are not suitable for linear polarization resistance (LPR) testing, and for measuring very low corrosion rates in which mass loss tests would have required at least 30 days exposure to provide meaningful results.

  12. Method for suppressing noise in measurements

    NASA Technical Reports Server (NTRS)

    Carson, Paul J. (Inventor); Madsen, Louis A. (Inventor); Leskowitz, Garett M. (Inventor); Weitekamp, Daniel P. (Inventor)

    2000-01-01

    Techniques of combining separate but correlated measurements to form a second-order or higher order correlation function to suppress the effects of noise in the initial condition of a system capable of retaining memory of an initial state of the system with a characteristic relaxation time. At least two separate measurements are obtained from the system. The temporal separation between the two separate measurements is preferably comparable to or less than the characteristic relaxation time and is adjusted to allow for a correlation between two measurements.

  13. Quantitative appraisal for noise reduction in digital holographic phase imaging.

    PubMed

    Montresor, Silvio; Picart, Pascal

    2016-06-27

    This paper discusses on a quantitative comparison of the performances of different advanced algorithms for phase data de-noising. In order to quantify the performances, several criteria are proposed: the gain in the signal-to-noise ratio, the Q index, the standard deviation of the phase error, and the signal to distortion ratio. The proposed methodology to investigate de-noising algorithms is based on the use of a realistic simulation of noise-corrupted phase data. A database including 25 fringe patterns divided into 5 patterns and 5 different signal-to-noise ratios was generated to evaluate the selected de-noising algorithms. A total of 34 algorithms divided into different families were evaluated. Quantitative appraisal leads to ranking within the considered criteria. A fairly good correlation between the signal-to-noise ratio gain and the quality index has been observed. There exists an anti-correlation between the phase error and the quality index which indicates that the phase errors are mainly structural distortions in the fringe pattern. Experimental results are thoroughly discussed in the paper. PMID:27410587

  14. Power dependence of phase noise in microwave kinetic inductance detectors

    NASA Astrophysics Data System (ADS)

    Gao, Jiansong; Mazin, Benjamin; Daal, Miguel; Day, Peter; LeDuc, Henry; Zmuidzinas, Jonas

    2006-06-01

    Excess phase noise has been observed in microwave kinetic inductance detectors (MKIDs) which prevents the noise-equivalent power (NEP) of current detectors from reaching theoretical limits. One characteristic of this excess noise is its dependence on the power of the readout signal: the phase noise decreases as the readout power increases. We investigated this power dependence in a variety of devices, varying the substrate (silicon and sapphire), superconductor (aluminum and niobium) and resonator parameters (resonant frequency, quality factor and resonator geometry). We find that the phase noise has a power law dependence on the readout power, and that the exponent is -1/2 in all our devices. We suggest that this phase noise is caused by coupling between the high-Q microwave resonator that forms the sensitive element of the MKID and two-level systems associated with disorder in the dielectric material of the resonator. The physical situation is analogous to the resonance fluorescence in quantum optics, and we are investigating the application of resonance fluorescence theory to MKID phase noise.

  15. Voltage controlled oscillator is easily aligned, has low phase noise

    NASA Technical Reports Server (NTRS)

    Sydnor, R. L.

    1965-01-01

    Voltage Controlled Oscillator /VCO/, represented by an equivalent RF circuit, is easily adjusted for optimum performance by varying the circuit parameter. It contains a crystal drive level which is also easily adjusted to obtain minimum phase noise.

  16. Development of rotorcraft interior noise control concepts. Phase 3: Development of noise control concepts

    NASA Astrophysics Data System (ADS)

    Yoerkie, Charles A.; Gintoli, P. J.; Ingraham, S. T.; Moore, J. A.

    1986-07-01

    The goal of this research is the understanding of helicopter internal noise mechanisms and the development, design, and testing of noise control concepts which will produce significant reductions in the acoustic environment to which passengers are exposed. The Phase 3 effort involved the identification and evaluation of current and advanced treatment concepts, including isolation of structure-borne paths. In addition, a plan was devised for the full-scale evaluation of an isolation concept. Specific objectives were as follows: (1) identification and characterization of various noise control concepts; (2) implementation of noise control concepts within the S-76 SEA (statistical energy analysis) model; (3) definition and evaluation of a preliminary acoustic isolation design to reduce structure-borne transmission of acoustic frequency main gearbox gear clash vibrations into the airframe; (4) formulation of a plan for the full-scale validation of the isolation concept; and (5) prediction of the cabin noise environment with various noise control concepts installed.

  17. Development of rotorcraft interior noise control concepts. Phase 3: Development of noise control concepts

    NASA Technical Reports Server (NTRS)

    Yoerkie, Charles A.; Gintoli, P. J.; Ingraham, S. T.; Moore, J. A.

    1986-01-01

    The goal of this research is the understanding of helicopter internal noise mechanisms and the development, design, and testing of noise control concepts which will produce significant reductions in the acoustic environment to which passengers are exposed. The Phase 3 effort involved the identification and evaluation of current and advanced treatment concepts, including isolation of structure-borne paths. In addition, a plan was devised for the full-scale evaluation of an isolation concept. Specific objectives were as follows: (1) identification and characterization of various noise control concepts; (2) implementation of noise control concepts within the S-76 SEA (statistical energy analysis) model; (3) definition and evaluation of a preliminary acoustic isolation design to reduce structure-borne transmission of acoustic frequency main gearbox gear clash vibrations into the airframe; (4) formulation of a plan for the full-scale validation of the isolation concept; and (5) prediction of the cabin noise environment with various noise control concepts installed.

  18. Noise Measurements of the VAIIPR Fan

    NASA Technical Reports Server (NTRS)

    Mendoza, Jeff; Weir, Don

    2012-01-01

    This final report has been prepared by Honeywell Aerospace, Phoenix, Arizona, a unit of Honeywell International, Inc., documenting work performed during the period September 2004 through November 2005 for the National Aeronautics and Space Administration (NASA) Glenn Research Center, Cleveland, Ohio, under the Revolutionary Aero-Space Engine Research (RASER) Program, Contract No. NAS3- 01136, Task Order 6, Noise Measurements of the VAIIPR Fan. The NASA Task Manager was Dr. Joe Grady, NASA Glenn Research Center, Mail Code 60-6, Cleveland, Ohio 44135. The NASA Contract Officer was Mr. Albert Spence, NASA Glenn Research Center, Mail Code 60-6, Cleveland, Ohio 44135. This report focuses on the evaluation of internal fan noise as generated from various inflow disturbances based on measurements made from a circumferential array of sensors located near the fan and sensors upstream of a serpentine inlet.

  19. Simultaneous de-noising in phase contrast tomography

    NASA Astrophysics Data System (ADS)

    Koehler, Thomas; Roessl, Ewald

    2012-07-01

    In this work, we investigate methods for de-noising of tomographic differential phase contrast and absorption contrast images. We exploit the fact that in grating-based differential phase contrast imaging (DPCI), first, several images are acquired simultaneously in exactly the same geometry, and second, these different images can show very different contrast-to-noise-ratios. These features of grating-based DPCI are used to generalize the conventional bilateral filter. Experiments using simulations show a superior de-noising performance of the generalized algorithm compared with the conventional one.

  20. LHC Beam Diffusion Dependence on RF Noise: Models And Measurements

    SciTech Connect

    Mastorides, T.; Rivetta, C.; Fox, J.D.; Van Winkle, D.; Baudrenghien, P.; Butterworth, A.; Molendijk, J.; /CERN

    2010-09-14

    Radio Frequency (RF) accelerating system noise and non-idealities can have detrimental impact on the LHC performance through longitudinal motion and longitudinal emittance growth. A theoretical formalism has been developed to relate the beam and RF loop dynamics with the bunch length growth [1]. Measurements were conducted at LHC to validate the formalism, determine the performance limiting RF components, and provide the foundation for beam diffusion estimates for higher energies and intensities. A brief summary of these results is presented in this work. During a long store, the relation between the energy lost to synchrotron radiation and the noise injected to the beam by the RF accelerating voltage determines the growth of the bunch energy spread and longitudinal emittance. Since the proton synchrotron radiation in the LHC is very low, the beam diffusion is extremely sensitive to RF perturbations. The theoretical formalism presented in [1], suggests that the noise experienced by the beam depends on the cavity phase noise power spectrum, filtered by the beam transfer function, and aliased due to the periodic sampling of the accelerating voltage signal V{sub c}. Additionally, the dependence of the RF accelerating cavity noise spectrum on the Low Level RF (LLRF) configurations has been predicted using time-domain simulations and models [2]. In this work, initial measurements at the LHC supporting the above theoretical formalism and simulation predictions are presented.

  1. Ultralow-phase-noise oscillators based on BAW resonators.

    PubMed

    Li, Mingdong; Seok, Seonho; Rolland, Nathalie; Rolland, Paul; El Aabbaoui, Hassan; de Foucauld, Emeric; Vincent, Pierre; Giordano, Vincent

    2014-06-01

    This paper presents two 2.1-GHz low-phase noise oscillators based on BAW resonators. Both a single-ended common base structure and a differential Colpitts structure have been implemented in a 0.25-μm BiCMOS process. The detailed design methods including the realization, optimization, and test are reported. The differential Colpitts structure exhibits a phase noise 6.5 dB lower than the single-ended structure because of its good performance of power noise immunity. Comparison between the two structures is also carried out. The differential Colpitts structure shows a phase noise level of -87 dBc/Hz at 1-kHz offset frequency and a phase noise floor of -162 dBc/Hz, with an output power close to -6.5 dBm and a core consumption of 21.6 mW. Furthermore, with the proposed optimization methods, both proposed devices have achieved promising phase noise performance compared with state-of-the-art oscillators described in the literature. Finally, we briefly present the application of the proposed BAW oscillator to a micro-atomic clock. PMID:24859654

  2. Phase noise in oscillators as differential-algebraic systems with colored noise sources

    NASA Astrophysics Data System (ADS)

    Demir, Alper

    2004-05-01

    Oscillators are key components of many kinds of systems, particularly electronic and opto-electronic systems. Undesired perturbations, i.e. noise, in practical systems adversely affect the spectral and timing properties of the signals generated by oscillators resulting in phase noise and timing jitter, which are key performance limiting factors, being major contributors to bit-error-rate (BER) of RF and possibly optical communication systems, and creating synchronization problems in clocked and sampled-data electronic systems. In this paper, we review our work on the theory and numerical methods for nonlinear perturbation and noise analysis of oscillators described by a system of differential-algebraic equations (DAEs) with white and colored noise sources. The bulk of the work reviewed in this paper first appeared in [1], then in [2] and [3]. Prior to the work mentioned above, we developed a theory and numerical methods for nonlinear perturbation and noise analysis of oscillators described by a system of ordinary differential equations (ODEs) with white noise sources only [4, 5]. In this paper, we also discuss some open problems and issues in the modeling and analysis of phase noise both in free running oscillators and in phase/injection-locked ones.

  3. Spectral density measurements of gyro noise

    NASA Technical Reports Server (NTRS)

    Truncale, A.; Koenigsberg, W.; Harris, R.

    1972-01-01

    Power spectral density (PSD) was used to analyze the outputs of several gyros in the frequency range from 0.01 to 200 Hz. Data were accumulated on eight inertial quality instruments. The results are described in terms of input angle noise (arcsec 2/Hz) and are presented on log-log plots of PSD. These data show that the standard deviation of measurement noise was 0.01 arcsec or less for some gyros in the passband from 1 Hz down 10 0.01 Hz and probably down to 0.001 Hz for at least one gyro. For the passband between 1 and 100 Hz, uncertainties in the 0.01 and 0.05 arcsec region were observed.

  4. Final Report on DE-FG02-04ER46107: Glasses, Noise and Phase Transitions

    SciTech Connect

    Yu, Clare C.

    2011-12-31

    We showed that noise has distinct signatures at phase transitions in spin systems. We also studied charge noise, critical current noise, and flux noise in superconducting qubits and Josephson junctions.

  5. Nordic Standards for measurement of aircraft noise immission in residential areas and noise reduction of dwellings

    NASA Astrophysics Data System (ADS)

    Svane, Christian; Plovsing, Birger

    Quantification by measurement of aircraft noise in residential areas and air traffic noise reduction of dwellings suffer from sensibility to the measurement technique used. Around the Copenhagen Airport (200.000 opr./year) 3.500 families have been granted from 50% to 90% of sound insulation costs by the Danish Government. Based on experience from evaluation measurements carried out by the Danish Acoustical Institute, the authors have proposed standardized measurement methods for the outdoor aircraft noise in residential areas and for the noise reduction of dwellings. In 1989 both noise measurement methods were accepted as Nordic Standards (NORDTEST ACOU 074 and 075) by Denmark, Finland, Iceland, Norway and Sweden.

  6. Very low-phase noise, coherent 94GHz radar for micro-Doppler and vibrometry studies

    NASA Astrophysics Data System (ADS)

    Robertson, Duncan A.; Brooker, Graham M.; Beasley, Patrick D. L.

    2014-05-01

    Micro-Doppler and vibrometry measurements require coherent radars with low phase noise. We report the development of a novel, very low phase noise 94 GHz radar, called T-220, which offers superior performance for micro-Doppler and vibrometry studies compared with our previous work. The radar uses a combination of direct digital synthesis (DDS) chirp generation, frequency upconversion and frequency multiplication to yield very low phase noise and rapid, contiguous chirps, necessary for Doppler studies and other coherent processing applications. Dual fan beam antennas are used to achieve negligible transmit-receive leakage, with fine azimuth resolution and modest elevation coverage. The resulting PPI imagery is very high fidelity with little or no evidence of phase noise effects.

  7. Measured and calculated characteristics of wind turbine noise

    NASA Technical Reports Server (NTRS)

    Greene, G. C.

    1981-01-01

    The results of an analytical and experimental investigation of wind turbine noise are presented. Noise calculations indicate that for configurations with the rotor downwind of the support tower, the primary source of noise is the rapid change in rotor loadings which occurs as the rotor passes through the tower wake. Noise measurements are presented for solid and truss type tower models with both upwind and downwind rotors. Upwind rotor configurations are shown to be significantly quieter than downwind configurations. The model data suggest that averaged noise measurements and noise calculations based on averaged tower wake characteristics may not accurately represent the impulsive noise characteristics of downwind rotor configurations.

  8. Bosonic Amplification of Noise-Induced Suppression of Phase Diffusion

    SciTech Connect

    Khodorkovsky, Y.; Vardi, A.; Kurizki, G.

    2008-06-06

    We study the effect of noise-induced dephasing on collisional phase diffusion in the two-site Bose-Hubbard model. Dephasing of the quasimomentum modes may slow down phase diffusion in the quantum Zeno limit. Remarkably, the degree of suppression is enhanced by a bosonic factor of order N/logN as the particle number N increases.

  9. Noise addendum experimental clean combustor program, phase 1

    NASA Technical Reports Server (NTRS)

    Sofrin, T. G.; Ross, D. A.

    1975-01-01

    The development of advanced CTOL aircraft engines with reduced exhaust emissions is discussed. Combustor noise information provided during the basic emissions program and used to advantage in securing reduced levels of combustion noise is included. Results are presented of internal pressure transducer measurements made during the scheduled emissions test program on ten configurations involving variations of three basic combustor designs.

  10. Effects of the Noises' Statistics and Spectrum on Noise-Induced Phase Transitions

    NASA Astrophysics Data System (ADS)

    Deza, Roberto R.; Fuentes, Miguel A.; Wio, Horacio S.

    2007-07-01

    The study of the effect of the noises' statistics and spectrum on second-order, purely noise-induced phase transition (NIPT) is of wide interest: It is simplified if the noises are dynamically generated by means of stochastic differential equations driven by white noises, a well known case being that of Ornstein-Uhlenbeck noises with a self-correlation time τ whose effect on the NIPT phase diagram has been studied some time ago. Another case is when the stationary pdf is a (colored) q-Gaussian which, being a fat-tail distribution for q > 1 and a compact-support one for q < 1, allows for a controlled study of the effects of the departure from Gaussian statistics. As done with stochastic resonance and other phenomena, we exploit this tool to study—within a simple mean-field approximation—the combined effect on NIPT of the noises' statistics and spectrum. Even for relatively small τ, it is shown that whereas for fat-tail noise distributions counteract the effect of self-correlation, compact-support ones enhance it.

  11. Edge-type connectors evaluated by electrical noise measurement

    NASA Technical Reports Server (NTRS)

    Brummett, S. L.

    1967-01-01

    Electrical noise measurement system measures noise generated by edge-type connectors and circuit cards when they are subjected to sinusoidal vibration. It provides a signal across the contact area and monitors the signal change during vibration. Noise measured can be expressed as a varying change in total contact resistance.

  12. Noise-Enhanced Phase Synchronization in Excitable Media

    SciTech Connect

    Neiman, Alexander; Schimansky-Geier, Lutz; Cornell-Bell, Ann

    1999-12-06

    We study the response of one- and two-dimensional excitable media to external spatiotemporal noise in terms of synchronization. The media are modeled by a finite-size lattice of locally coupled nonidentical units of the FitzHugh-Nagumo type driven by additive noise. We show that at nonzero noise level the behavior of the system becomes extremely ordered which is manifested by entrainment of the mean frequencies and by stochastic phase locking of distant oscillators in the lattice. (c) 1999 The American Physical Society.

  13. Microwave regenerative frequency dividers with low phase noise.

    PubMed

    Ferre-Pikal, E S; Walls, F L

    1999-01-01

    We demonstrate regenerative divide-by-two (halver) circuits with very low phase modulation (PM) noise at input frequencies of 18.4 GHz and 39.8 GHz. The PM noise of the 18.4 to 9.2 GHz divider pair was L(10 Hz)=-134 dB below the carrier in a 1 Hz bandwidth (dBc/Hz) and L(10 MHz)=-166 dBc/Hz, and the PM noise of the 39.8 GHz to 19.9 GHz divider pair was L(10 Hz)=-122 dBc/Hz and L(10 MHz)=-167 dBc/Hz. PMID:18238416

  14. Reduction of nonlinear phase noise using optical phase conjugation in quasi-linear optical transmission systems.

    PubMed

    Kumar, Shiva; Liu, Ling

    2007-03-01

    An analytical expression for the variance of nonlinear phase noise for a quasi-linear system using the midpoint optical phase conjugation (OPC) is obtained. It is shown that the the system with OPC and dispersion inversion (DI) can exactly cancel the nonlinear phase noise up to the first order in nonlinear coefficient if the amplifier and the end point of the system are equidistant from the OPC. It is found that the nonlinear phase noise variance of the midpoint phase-conjugated optical transmission system with DI is smaller than that of the system without DI. PMID:19532453

  15. Jet-Surface Interaction Test: Phased Array Noise Source Localization Results

    NASA Technical Reports Server (NTRS)

    Podboy, Gary G.

    2012-01-01

    An experiment was conducted to investigate the effect that a planar surface located near a jet flow has on the noise radiated to the far-field. Two different configurations were tested: 1) a shielding configuration in which the surface was located between the jet and the far-field microphones, and 2) a reflecting configuration in which the surface was mounted on the opposite side of the jet, and thus the jet noise was free to reflect off the surface toward the microphones. Both conventional far-field microphone and phased array noise source localization measurements were obtained. This paper discusses phased array results, while a companion paper discusses far-field results. The phased array data show that the axial distribution of noise sources in a jet can vary greatly depending on the jet operating condition and suggests that it would first be necessary to know or be able to predict this distribution in order to be able to predict the amount of noise reduction to expect from a given shielding configuration. The data obtained on both subsonic and supersonic jets show that the noise sources associated with a given frequency of noise tend to move downstream, and therefore, would become more difficult to shield, as jet Mach number increases. The noise source localization data obtained on cold, shock-containing jets suggests that the constructive interference of sound waves that produces noise at a given frequency within a broadband shock noise hump comes primarily from a small number of shocks, rather than from all the shocks at the same time. The reflecting configuration data illustrates that the law of reflection must be satisfied in order for jet noise to reflect off of a surface to an observer, and depending on the relative locations of the jet, the surface, and the observer, only some of the jet noise sources may satisfy this requirement.

  16. Phase-noise limitations on single-photon cross-phase modulation with differing group velocities

    NASA Astrophysics Data System (ADS)

    Dove, Justin; Chudzicki, Christopher; Shapiro, Jeffrey H.

    2014-12-01

    A framework is established for evaluating cphase gates that use single-photon cross-phase modulation (XPM) originating from the Kerr nonlinearity. Prior work [J. H. Shapiro, Phys. Rev. A 73, 062305 (2006), 10.1103/PhysRevA.73.062305], which assumed that the control and target pulses propagated at the same group velocity, showed that the causality-induced phase noise required by a noninstantaneous XPM response function precluded the possibility of high-fidelity π -radian conditional phase shifts. The framework presented herein incorporates the more realistic case of group-velocity disparity between the control and target pulses, as employed in existing XPM-based fiber-optical switches. Nevertheless, the causality-induced phase noise identified by Shapiro [J. H. Shapiro, Phys. Rev. A 73, 062305 (2006), 10.1103/PhysRevA.73.062305] still rules out high-fidelity π -radian conditional phase shifts. This is shown to be so for both a reasonable theoretical model for the XPM response function and for the experimentally measured XPM response function of silica-core fiber.

  17. Measurement with verification of stationary signals and noise in extremely quiet environments: Measuring below the noise floor

    PubMed Central

    Ellingson, Roger M.; Gallun, Frederick J.; Bock, Guillaume

    2015-01-01

    It can be problematic to measure stationary acoustic sound pressure level in any environment when the target level approaches or lies below the minimum measureable sound pressure level of the measurement system itself. This minimum measureable level, referred to as the inherent measurement system noise floor, is generally established by noise emission characteristics of measurement system components such as microphones, preamplifiers, and other system circuitry. In this paper, methods are presented and shown accurate measuring stationary levels within 20 dB above and below this system noise floor. Methodology includes (1) measuring inherent measurement system noise, (2) subtractive energy based, inherent noise adjustment of levels affected by system noise floor, and (3) verifying accuracy of inherent noise adjustment technique. While generalizable to other purposes, the techniques presented here were specifically developed to quantify ambient noise levels in very quiet rooms used to evaluate free-field human hearing thresholds. Results obtained applying the methods to objectively measure and verify the ambient noise level in an extremely quiet room, using various measurement system noise floors and analysis bandwidths, are presented and discussed. The verified results demonstrate the adjustment method can accurately extend measurement range to 20 dB below the measurement system noise floor, and how measurement system frequency bandwidth can affect accuracy of reported noise levels. PMID:25786932

  18. Measurement with verification of stationary signals and noise in extremely quiet environments: measuring below the noise floor.

    PubMed

    Ellingson, Roger M; Gallun, Frederick J; Bock, Guillaume

    2015-03-01

    It can be problematic to measure stationary acoustic sound pressure level in any environment when the target level approaches or lies below the minimum measureable sound pressure level of the measurement system itself. This minimum measureable level, referred to as the inherent measurement system noise floor, is generally established by noise emission characteristics of measurement system components such as microphones, preamplifiers, and other system circuitry. In this paper, methods are presented and shown accurate measuring stationary levels within 20 dB above and below this system noise floor. Methodology includes (1) measuring inherent measurement system noise, (2) subtractive energy based, inherent noise adjustment of levels affected by system noise floor, and (3) verifying accuracy of inherent noise adjustment technique. While generalizable to other purposes, the techniques presented here were specifically developed to quantify ambient noise levels in very quiet rooms used to evaluate free-field human hearing thresholds. Results obtained applying the methods to objectively measure and verify the ambient noise level in an extremely quiet room, using various measurement system noise floors and analysis bandwidths, are presented and discussed. The verified results demonstrate the adjustment method can accurately extend measurement range to 20 dB below the measurement system noise floor, and how measurement system frequency bandwidth can affect accuracy of reported noise levels. PMID:25786932

  19. Method for suppressing noise in measurements

    NASA Technical Reports Server (NTRS)

    Carson, Paul L. (Inventor); Madsen, Louis A. (Inventor); Leskowitz, Garett M. (Inventor); Weitekamp, Daniel P. (Inventor)

    2000-01-01

    Methods for suppressing noise in measurements by correlating functions based on at least two different measurements of a system at two different times. In one embodiment, a measurement operation is performed on at least a portion of a system that has a memory. A property of the system is measured during a first measurement period to produce a first response indicative of a first state of the system. Then the property of the system is measured during a second measurement period to produce a second response indicative of a second state of the system. The second measurement is performed after an evolution duration subsequent to the first measurement period when the system still retains a degree of memory of an aspect of the first state. Next, a first function of the first response is combined with a second function of the second response to form a second-order correlation function. Information of the system is then extracted from the second-order correlation function.

  20. Recommendations for field measurements of aircraft noise

    NASA Technical Reports Server (NTRS)

    Marsh, A. H.

    1982-01-01

    Specific recommendations for environmental test criteria, data acquisition procedures, and instrument performance requirements for measurement of noise levels produced by aircraft in flight are provided. Recommendations are also given for measurement of associated airplane and engine parameters and atmospheric conditions. Recommendations are based on capabilities which were available commercially in 1981; they are applicable to field tests of aircraft flying subsonically past microphones located near the surface of the ground either directly under or to the side of a flight path. Aircraft types covered by the recommendations include fixed-wing airplanes powered by turbojet or turbofan engines or by propellers. The recommended field-measurement procedures are consistent with assumed requirements for data processing and analysis.

  1. Adaptive optimization for pilot-tone aided phase noise compensation

    NASA Astrophysics Data System (ADS)

    Cui, Sheng; Xu, Mengran; Xia, Wenjuan; Ke, Chanjian; Xia, Zijie; Liu, Deming

    2015-11-01

    Pilot-tone (PT) aided phase noise compensation algorithm is very simple and effective, especially for flexible optical networks, because the phase noise coming from both Tx/Rx lasers and nonlinear cross phase modulation (XPM) during transmission can be adaptively compensated without high computational cost nonlinear operations, or the information of the neighboring channels and the optical link configuration. But to achieve the best performance the two key parameters, i.e. the pilot to signal power ratio and pilot bandpass filter bandwidth need to be optimized. In this paper it is demonstrated that constellation information can be used to adjust the two parameters adaptively to achieve the minimum BER in both homogenous and hybrid single carrier transmission systems with different LPN, XPM and amplified spontaneous emission (ASE) noise distortions.

  2. Jet-Surface Interaction Test: Phased Array Noise Source Localization Results

    NASA Technical Reports Server (NTRS)

    Podboy, Gary

    2012-01-01

    Subsonic jets are relatively simple. The peak noise source location gradually moves upstream toward the nozzle as frequency increases. 2) Supersonic jets are more complicated. The peak noise source location moves downstream as frequency increases through a BBSN hump. 3) In both subsonic and supersonic jets the peak noise source location corresponding to a given frequency of noise moves downstream as jet Mach number increases. 4) The noise generated at a given frequency in a BBSN hump is generated by a small number of shocks, not from all the shocks at the same time. 5) Single microphone spectrum levels decrease when the noise source locations measured with the phased array are blocked by a shielding surface. This consistency validates the phased array data and the stationary monopole source model used to process it. 6) Reflecting surface data illustrate that the law of reflection must be satisfied for noise to reflect off a surface toward an observer. Depending on the relative locations of the jet, the surface and the observer only some of the jet noise sources may satisfy this requirement. 7) The low frequency noise created when a jet flow impinges on a surface comes primarily from the trailing edge regardless of the axial extent impacted by the flow.

  3. Phase-unwrapping algorithm for images with high noise content based on a local histogram

    NASA Astrophysics Data System (ADS)

    Meneses, Jaime; Gharbi, Tijani; Humbert, Philippe

    2005-03-01

    We present a robust algorithm of phase unwrapping that was designed for use on phase images with high noise content. We proceed with the algorithm by first identifying regions with continuous phase values placed between fringe boundaries in an image and then phase shifting the regions with respect to one another by multiples of 2pi to unwrap the phase. Image pixels are segmented between interfringe and fringe boundary areas by use of a local histogram of a wrapped phase. The algorithm has been used successfully to unwrap phase images generated in a three-dimensional shape measurement for noninvasive quantification of human skin structure in dermatology, cosmetology, and plastic surgery.

  4. Ranking of Reactions Based on Sensitivity of Protein Noise Depends on the Choice of Noise Measure.

    PubMed

    Gokhale, Sucheta; Gadgil, Chetan

    2015-01-01

    Gene expression is a stochastic process. Identification of the step maximally affecting noise in the protein level is an important aspect of investigation of gene product distribution. There are numerous experimental and theoretical studies that seek to identify this important step. However, these studies have used two different measures of noise, viz. coefficient of variation and Fano factor, and have compared different processes leading to contradictory observations regarding the important step. In this study, we performed systematic global and local sensitivity analysis on two models of gene expression to investigate relative contribution of reaction rate parameters to steady state noise in the protein level using both the measures of noise. We analytically and computationally showed that the ranking of parameters based on the sensitivity of the noise to variation in a given parameter is a strong function of the choice of the noise measure. If the Fano factor is used as the noise measure, translation is the important step whereas for coefficient of variation, transcription is the important step. We derived an analytical expression for local sensitivity and used it to explain the distinct contributions of each reaction parameter to the two measures of noise. We extended the analysis to a generic linear catalysis reaction system and observed that the reaction network topology was an important factor influencing the local sensitivity of the two measures of noise. Our study suggested that, for the analysis of contributions of reactions to the noise, consideration of both the measures of noise is important. PMID:26625133

  5. Ranking of Reactions Based on Sensitivity of Protein Noise Depends on the Choice of Noise Measure

    PubMed Central

    Gokhale, Sucheta; Gadgil, Chetan

    2015-01-01

    Gene expression is a stochastic process. Identification of the step maximally affecting noise in the protein level is an important aspect of investigation of gene product distribution. There are numerous experimental and theoretical studies that seek to identify this important step. However, these studies have used two different measures of noise, viz. coefficient of variation and Fano factor, and have compared different processes leading to contradictory observations regarding the important step. In this study, we performed systematic global and local sensitivity analysis on two models of gene expression to investigate relative contribution of reaction rate parameters to steady state noise in the protein level using both the measures of noise. We analytically and computationally showed that the ranking of parameters based on the sensitivity of the noise to variation in a given parameter is a strong function of the choice of the noise measure. If the Fano factor is used as the noise measure, translation is the important step whereas for coefficient of variation, transcription is the important step. We derived an analytical expression for local sensitivity and used it to explain the distinct contributions of each reaction parameter to the two measures of noise. We extended the analysis to a generic linear catalysis reaction system and observed that the reaction network topology was an important factor influencing the local sensitivity of the two measures of noise. Our study suggested that, for the analysis of contributions of reactions to the noise, consideration of both the measures of noise is important. PMID:26625133

  6. Reduction of phase noise to amplitude noise conversion in silicon waveguide-based phase-sensitive amplification.

    PubMed

    Ma, Yonghua; Liu, Hongjun; Sun, Qibing; Huang, Nan; Wang, Zhaolu

    2016-04-20

    We use a vector phase sensitive amplification (PSA) scheme, which can eliminate the inherent phase noise (PN) to amplitude noise (AN) conversion in a conventional PSA process. A dispersion-engineered silicon strip waveguide is used to investigate the vector PSA scheme at the telecom wavelengths. The phase-dependent gain and phase-to-phase transfer functions as well as constellation diagram at different signal polarization states (SPSs) are numerically analyzed. It is found that the PN to AN conversion is completely suppressed when the SPS is identical to one of the pump polarization states. Moreover, the binary phase shift keying signal is regenerated by the proposed vector PSA scheme, and the error vector magnitude is calculated to assess the regeneration capacity. Our results have potential application in all-optical signal processing. PMID:27140079

  7. A Low-Noise Delta-Sigma Phase Modulator for Polar Transmitters

    PubMed Central

    Zhou, Bo

    2014-01-01

    A low-noise phase modulator, using finite-impulse-response (FIR) filtering embedded delta-sigma (ΔΣ) fractional-N phase-locked loop (PLL), is fabricated in 0.18 μm CMOS for GSM/EDGE polar transmitters. A simplified digital compensation filter with inverse-FIR and -PLL features is proposed to trade off the transmitter noise and linearity. Experimental results show that the presented architecture performs RF phase modulation well with 20 mW power dissipation from 1.6 V supply and achieves the root-mean-square (rms) and peak phase errors of 4° and 8.5°, respectively. The measured and simulated phase noises of −104 dBc/Hz and −120 dBc/Hz at 400-kHz offset from 1.8-GHz carrier frequency are observed, respectively. PMID:24719578

  8. A low-noise delta-sigma phase modulator for polar transmitters.

    PubMed

    Zhou, Bo

    2014-01-01

    A low-noise phase modulator, using finite-impulse-response (FIR) filtering embedded delta-sigma (ΔΣ) fractional-N phase-locked loop (PLL), is fabricated in 0.18 μ m CMOS for GSM/EDGE polar transmitters. A simplified digital compensation filter with inverse-FIR and -PLL features is proposed to trade off the transmitter noise and linearity. Experimental results show that the presented architecture performs RF phase modulation well with 20 mW power dissipation from 1.6 V supply and achieves the root-mean-square (rms) and peak phase errors of 4° and 8.5°, respectively. The measured and simulated phase noises of -104 dBc/Hz and -120 dBc/Hz at 400-kHz offset from 1.8-GHz carrier frequency are observed, respectively. PMID:24719578

  9. Noise performance of phase-insensitive multicasting in multi-stage parametric mixers.

    PubMed

    Huynh, Christopher K; Tong, Zhi; Myslivets, Evgeny; Wiberg, Andreas O J; Adleman, James R; Zlatanovic, Sanja; Jacobs, Everett W; Radic, Stojan

    2013-01-14

    Noise properties of large-count spectral multicasting in a phase-insensitive parametric mixer were investigated. Scalable multicasting was achieved using two-tone continuous-wave seeded mixers capable of generating more than 20 frequency non-degenerate copies. The mixer was constructed using a multistage architecture to simultaneously manage high Figure-of-Merit frequency generation and suppress noise generation. The performance was characterized by measuring the conversion efficiency and noise figure of all signal copies. Minimum noise figure of 8.09dB was measured. Experimental findings confirm that noise of the multicasted signal does not grow linearly with copy count and that it can be suppressed below this limit. PMID:23388973

  10. Determination of parameters of a nuclear reactor through noise measurements

    DOEpatents

    Cohn, C.E.

    1975-07-15

    A method of measuring parameters of a nuclear reactor by noise measurements is described. Noise signals are developed by the detectors placed in the reactor core. The polarity coincidence between the noise signals is used to develop quantities from which various parameters of the reactor can be calculated. (auth)

  11. 14 CFR 36.101 - Noise measurement and evaluation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Noise measurement and evaluation. 36.101... AIRCRAFT NOISE STANDARDS: AIRCRAFT TYPE AND AIRWORTHINESS CERTIFICATION Transport Category Large Airplanes and Jet Airplanes § 36.101 Noise measurement and evaluation. For transport category large...

  12. 14 CFR 36.101 - Noise measurement and evaluation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Noise measurement and evaluation. 36.101... AIRCRAFT NOISE STANDARDS: AIRCRAFT TYPE AND AIRWORTHINESS CERTIFICATION Transport Category Large Airplanes and Jet Airplanes § 36.101 Noise measurement and evaluation. For transport category large...

  13. Suppression of amplitude-to-phase noise conversion in balanced optical-microwave phase detectors.

    PubMed

    Lessing, Maurice; Margolis, Helen S; Brown, C Tom A; Gill, Patrick; Marra, Giuseppe

    2013-11-01

    We demonstrate an amplitude-to-phase (AM-PM) conversion coefficient for a balanced optical-microwave phase detector (BOM-PD) of 0.001 rad, corresponding to AM-PM induced phase noise 60 dB below the single-sideband relative intensity noise of the laser. This enables us to generate 8 GHz microwave signals from a commercial Er-fibre comb with a single-sideband residual phase noise of -131 dBc Hz(-1) at 1 Hz offset frequency and -148 dBc Hz(-1) at 1 kHz offset frequency. PMID:24216929

  14. Low power low phase noise phase locked loop frequency synthesizer with fast locking mode for 2.4 GHz applications

    NASA Astrophysics Data System (ADS)

    Liu, Xiaodong; Feng, Peng; Liu, Liyuan; Wu, Nanjian

    2014-01-01

    We designed a low power low phase noise phase locked loop (PLL) frequency synthesizer for 2.4 GHz wireless communication applications. Current reusing technique and triple-well NMOS transistors are applied to reduce power consumption and improve phase noise performance of the voltage controlled oscillator (VCO), respectively. The synthesizer has a fast locking mode that uses frequency presetting technique to greatly shorten the locking time. The synthesizer was implemented in 0.18 µm CMOS process. The chip core area is 1.49 mm2. Measured results show that the output frequency tuning range is 2.16-2.55 GHz. The phase noise is -124.18 dBc/Hz at 1 MHz from a 2.4 GHz carrier. The power consumption is 4.98 mW and the locking time in fast locking mode is about 4 µs.

  15. Extraction of triplicated PKP phases from noise correlations

    NASA Astrophysics Data System (ADS)

    Xia, Han H.; Song, Xiaodong; Wang, Tao

    2016-04-01

    Ambient noise correlation method has been widely used to extract surface waves and tomography. The extraction of body waves has been very limited, but recent reports have suggested promises for deep incident waves. Here we report our first observations of triplicated PKP phases (important phases for studying the Earth's core) and confirm observations of other body-wave core phases from noise correlations. We use dense seismic arrays in South America and China Regional Seismic Networks at distances from 145° to the antipode. We can clearly observe different PKP branches (df, bc and ab) in stacks of the station-station correlations. Both ambient noise and earthquake coda contribute to PKP phases. However, the contributions vary with frequency and with body-wave phases. At shorter periods (5-20 s), three branches of PKP (df, bc and ab) can be extracted from ambient noise and the ab phase from earthquake coda. At longer periods (15-50 s), earthquake coda are effective in generating the df branch, but not the ab branch. The generation of the PKIKP phase (df branch) from earthquake coda does not depend on earthquake focal mechanisms or focal depths. However, earthquakes far from the stations contribute more than events closer by. The best coda window is around 10 000-40 000 s and the best magnitude threshold is Mw greater than 6.8 or 6.9. The observation of triplicated PKP branches from noise correlations provides a new type of data for studying the Earth's deep interior, in particularly the inner core anisotropy, which overcomes some of the limitations of traditional earthquake-based studies (such as limited source distributions and source location errors).

  16. Measurement of core coolant flow velocities in PWRs using temperature: neutron noise cross correlation

    SciTech Connect

    Sweeney, F.J.; Upadhyaya, B.R.

    1982-01-01

    To study the relationship between the time delay inferred from this phase angle and core coolant flow velocities, noise measurements were performed at the Loss of Fluid Test Facility (LOFT) reactor and at a commercial PWR. In-core, self-powered neutron detector (SPND) noise at LOFT and ex-core ionization chamber noise at the commercial PWR were cross correlated with core exit temperature noise. Time delays were inferred from the slope of the phase angle versus frequency plots over the frequency range from 0.05 to 2.0 Hz.

  17. Noise-Induced Phase Transitions: Effects of the Noises' Statistics and Spectrum

    NASA Astrophysics Data System (ADS)

    Deza, Roberto R.; Wio, Horacio S.; Fuentes, Miguel A.

    2007-05-01

    The local, uncorrelated multiplicative noises driving a second-order, purely noise-induced, ordering phase transition (NIPT) were assumed to be Gaussian and white in the model of [Phys. Rev. Lett. 73, 3395 (1994)]. The potential scientific and technological interest of this phenomenon calls for a study of the effects of the noises' statistics and spectrum. This task is facilitated if these noises are dynamically generated by means of stochastic differential equations (SDE) driven by white noises. One such case is that of Ornstein-Uhlenbeck noises which are stationary, with Gaussian pdf and a variance reduced by the self-correlation time τ, and whose effect on the NIPT phase diagram has been studied some time ago. Another such case is when the stationary pdf is a (colored) Tsallis' q-Gaussian which, being a fat-tail distribution for q > 1 and a compact-support one for q < 1, allows for a controlled exploration of the effects of the departure from Gaussian statistics. As done before with stochastic resonance and other phenomena, we now exploit this tool to study—within a simple mean-field approximation and with an emphasis on the order parameter and the "susceptibility"—the combined effect on NIPT of the noises' statistics and spectrum. Even for relatively small τ, it is shown that whereas fat-tail noise distributions (q > 1) counteract the effect of self-correlation, compact-support ones (q < 1) enhance it. Also, an interesting effect on the susceptibility is seen in the last case.

  18. Noise properties of grating-based x-ray phase contrast computed tomography

    SciTech Connect

    Koehler, Thomas; Juergen Engel, Klaus; Roessl, Ewald

    2011-05-15

    Purpose: To investigate the properties of tomographic grating-based phase contrast imaging with respect to its noise power spectrum and the energy dependence of the achievable contrast to noise ratio. Methods: Tomographic simulations of an object with 11 cm diameter constituted of materials of biological interest were conducted at different energies ranging from 25 to 85 keV by using a wave propagation approach. Using a Monte Carlo simulation of the x-ray attenuation within the object, it is verified that the simulated measurement deposits the same dose within the object at each energy. Results: The noise in reconstructed phase contrast computed tomography images shows a maximum at low spatial frequencies. The contrast to noise ratio reaches a maximum around 45 keV for the simulated object. The general dependence of the contrast to noise on the energy appears to be independent of the material. Compared with reconstructed absorption contrast images, the reconstructed phase contrast images show sometimes better, sometimes worse, and sometimes similar contrast to noise, depending on the material and the energy. Conclusions: Phase contrast images provide additional information to the conventional absorption contrast images and might thus be useful for medical applications. However, the observed noise power spectrum in reconstructed phase contrast images implies that the usual trade-off between noise and resolution is less efficient for phase contrast imaging compared with absorption contrast imaging. Therefore, high-resolution imaging is a strength of phase contrast imaging, but low-resolution imaging is not. This might hamper the clinical application of the method, in cases where a low spatial resolution is sufficient for diagnosis.

  19. A technique for noise measurement optimization with spectrum analyzers

    NASA Astrophysics Data System (ADS)

    Carniti, P.; Cassina, L.; Gotti, C.; Maino, M.; Pessina, G.

    2015-08-01

    Measuring low noise of electronic devices with a spectrum analyzer requires particular care as the instrument could add significant contributions. A Low Noise Amplifier, LNA, is therefore necessary to be connected between the source to be measured and the instrument, to mitigate its effect at the LNA input. In the present work we suggest a technique for the implementation of the LNA that allows to optimize both low frequency noise and white noise, obtaining outstanding performance in a very broad frequency range.

  20. Phase-Measuring System

    NASA Technical Reports Server (NTRS)

    Davis, W. T.

    1986-01-01

    System developed and used at Langley Research Center measures phase between two signals of same frequency or between two signals, one of which is harmonic multiple of other. Simple and inexpensive device combines digital and analog components to give accurate phase measurements. One signal at frequency f fed to pulse shaper, produces negative pulse at time t4. Pulse applied to control input of sample-and-hold module 1. Second signal, at frequency nf, fed to zero-crossover amplifier, producing square wave at time t. Signal drives first one-shot producing narrow negative pulse at t1. Signal then drives second one-shot producing narrow positive pulse at time t2. This pulse used to turn on solid-state switch and reset integrator circuit to zero.

  1. Measurement by phase severance

    SciTech Connect

    Noyes, H.P.

    1987-03-01

    It is claimed that the measurement process is more accurately described by ''quasi-local phase severance'' than by ''wave function collapse''. The approach starts from the observation that the usual route to quantum mechanics starting from the Hamilton-Jacobi equations throws away half the degrees of freedom, namely, the classical initial state parameters. To overcome this difficulty, the full set of Hamilton-Jacobi equations is interpreted as operator equations acting on a state vector. The measurement theory presented is based on the conventional S-matrix boundary condition of N/sub A/ free particles in the distant past and N/sub B/ free particles in the distant future and taking the usual free particle wave functions, multiplied by phase factors.

  2. Impact of Gas-liquid Two-phase Flow on Fluid Borne Noise

    NASA Astrophysics Data System (ADS)

    Taniwaki, Mitsuhiro; Shimomura, Nobuo

    In pipe lines such as those found in refrigeration cycle, a gas-liquid two-phase flow may occur because of a pressure change in the pipe. This flow causes noise. A vapor phase ratio in a fluid and the behavior of bubbles are related to the outbreak of noise. This experimental study investigated the fluid borne noise caused by gas-liquid two-phase flow passing through a contracted section in horizontal pipe. In the experiment, sound pressure was measured for two purposes: to see the influence of the air-water ratio on sound pressure and to see the change in sound pressure when a single bubble passed through a contracted section in horizontal pipe. The experiment showed that the fluid borne noise of gas-liquid two-phase flow grew louder than that of a liquid single-phase flow. As for the frequency distribution of the fluid borne noise, the sound pressure level was higher in the high frequency band. Furthermore, the fluid borne noise grew louder with increasing bubble diameter.

  3. A low phase noise microwave source for atomic spin squeezing experiments in 87Rb

    NASA Astrophysics Data System (ADS)

    Chen, Zilong; Bohnet, Justin G.; Weiner, Joshua M.; Thompson, James K.

    2012-04-01

    We describe and characterize a simple, low cost, low phase noise microwave source that operates near 6.800 GHz for agile, coherent manipulation of ensembles of 87Rb. Low phase noise is achieved by directly multiplying a low phase noise 100 MHz crystal to 6.8 GHz using a nonlinear transmission line and filtering the output with custom band-pass filters. The fixed frequency signal is single sideband modulated with a direct digital synthesis frequency source to provide the desired phase, amplitude, and frequency control. Before modulation, the source has a single sideband phase noise near -140 dBc/Hz in the range of 10 kHz-1 MHz offset from the carrier frequency and -130 dBc/Hz after modulation. The resulting source is estimated to contribute added spin-noise variance 16 dB below the quantum projection noise level during quantum nondemolition measurements of the clock transition in an ensemble 7 × 105 87Rb atoms.

  4. A low phase noise microwave source for atomic spin squeezing experiments in {sup 87}Rb

    SciTech Connect

    Chen Zilong; Bohnet, Justin G.; Weiner, Joshua M.; Thompson, James K.

    2012-04-15

    We describe and characterize a simple, low cost, low phase noise microwave source that operates near 6.800 GHz for agile, coherent manipulation of ensembles of {sup 87}Rb. Low phase noise is achieved by directly multiplying a low phase noise 100 MHz crystal to 6.8 GHz using a nonlinear transmission line and filtering the output with custom band-pass filters. The fixed frequency signal is single sideband modulated with a direct digital synthesis frequency source to provide the desired phase, amplitude, and frequency control. Before modulation, the source has a single sideband phase noise near -140 dBc/Hz in the range of 10 kHz-1 MHz offset from the carrier frequency and -130 dBc/Hz after modulation. The resulting source is estimated to contribute added spin-noise variance 16 dB below the quantum projection noise level during quantum nondemolition measurements of the clock transition in an ensemble 7 x 10{sup 5} {sup 87}Rb atoms.

  5. A low phase noise microwave source for atomic spin squeezing experiments in 87Rb.

    PubMed

    Chen, Zilong; Bohnet, Justin G; Weiner, Joshua M; Thompson, James K

    2012-04-01

    We describe and characterize a simple, low cost, low phase noise microwave source that operates near 6.800 GHz for agile, coherent manipulation of ensembles of (87)Rb. Low phase noise is achieved by directly multiplying a low phase noise 100 MHz crystal to 6.8 GHz using a nonlinear transmission line and filtering the output with custom band-pass filters. The fixed frequency signal is single sideband modulated with a direct digital synthesis frequency source to provide the desired phase, amplitude, and frequency control. Before modulation, the source has a single sideband phase noise near -140 dBc/Hz in the range of 10 kHz-1 MHz offset from the carrier frequency and -130 dBc/Hz after modulation. The resulting source is estimated to contribute added spin-noise variance 16 dB below the quantum projection noise level during quantum nondemolition measurements of the clock transition in an ensemble 7 × 10(5) (87)Rb atoms. PMID:22559559

  6. Phased Array Radiometer Calibration Using a Radiated Noise Source

    NASA Technical Reports Server (NTRS)

    Srinivasan, Karthik; Limaye, Ashutoch S.; Laymon, Charles A.; Meyer, Paul J.

    2010-01-01

    Electronic beam steering capability of phased array antenna systems offer significant advantages when used in real aperture imaging radiometers. The sensitivity of such systems is limited by the ability to accurately calibrate variations in the antenna circuit characteristics. Passive antenna systems, which require mechanical rotation to scan the beam, have stable characteristics and the noise figure of the antenna can be characterized with knowledge of its physical temperature [1],[2]. Phased array antenna systems provide the ability to electronically steer the beam in any desired direction. Such antennas make use of active components (amplifiers, phase shifters) to provide electronic scanning capability while maintaining a low antenna noise figure. The gain fluctuations in the active components can be significant, resulting in substantial calibration difficulties [3]. In this paper, we introduce two novel calibration techniques that provide an end-to-end calibration of a real-aperture, phased array radiometer system. Empirical data will be shown to illustrate the performance of both methods.

  7. Frequency noise measurement of diode-pumped Nd:YAG ring lasers

    NASA Technical Reports Server (NTRS)

    Chen, Chien-Chung; Win, Moe Zaw

    1990-01-01

    The combined frequency noise spectrum of two model 120-01A nonplanar ring oscillator lasers was measured by first heterodyne detecting the IF signal and then measuring the IF frequency noise using an RF frequency discriminator. The results indicated the presence of a 1/f-squared noise component in the power-spectral density of the frequency fluctuations between 1 Hz and 1 kHz. After incorporating this 1/f-squared into the analysis of the optical phase tracking loop, the measured phase error variance closely matches the theoretical predictions.

  8. Optimization of an ultra low-phase noise sapphire--SiGe HBT oscillator using nonlinear CAD.

    PubMed

    Cibiel, Gilles; Régis, Myrianne; Llopis, Olivier; Rennane, Abdelali; Bary, Laurent; Plana, Robert; Kersalé, Yann; Giordano, Vincent

    2004-01-01

    In this paper, the electrical and noise performances of a 0.8 microm silicon germanium (SiGe) transistor optimized for the design of low phase-noise circuits are described. A nonlinear model developed for the transistor and its use for the design of a low-phase noise C band sapphire resonator oscillator are also reported. The best measured phase noise (at ambient temperature) is -138 dBc/Hz at 1 kHz offset from a 4.85 GHz carrier frequency, with a loaded QL factor of 75,000. PMID:14995014

  9. Evaluation of noise pollution in urban traffic hubs—Noise maps and measurements

    SciTech Connect

    Fiedler, Paulo Eduardo Kirrian; Zannin, Paulo Henrique Trombetta

    2015-02-15

    A study was made of some of the main traffic hubs in a Latin American metropolis, in order to determine the presence or absence of noise by means of noise measurements and acoustic mapping. To characterize noise in the evaluated road stretches, 232 measurements were taken at different points. The Predictor software package was used for the noise mapping calculations. Noise sensitive areas, e.g., hospitals, were identified in the evaluated road stretches. Noise maps were calculated for two hospitals, showing the current levels of noise that reach their facades. Hypothetical scenarios were simulated by making changes in the composition of traffic and total number of vehicles, and an assessment was made of the potential influence of these modifications in reducing the noise levels reaching the facades of the buildings in question. The simulations indicated that a 50% reduction in total traffic flow, or a 50% reduction in heavy vehicle traffic flow, would reduce the noise levels by about 3 dB(A). - Highlights: • Evaluation of noise pollution in urban traffic hubs • Street systems • Environmental noise impacts • Noise mapping.

  10. Development of Field Measurement Systems for Flight Vehicle Noise

    NASA Technical Reports Server (NTRS)

    Yu, James C.; Wright, Kenneth D.; Preisser, John S.; Marcolini, Michael A.

    1999-01-01

    Field measurement of noise radiated from flight vehicles is an important element of aircraft noise research programs. At NASA Langley, a dedicated effort that spans over two decades was devoted to the development of acoustic measurement systems to support the NASA noise research programs. The new challenge for vehicle operational noise reduction through varying glide slope and flight path require noise measurement to be made over a very large area under the vehicle flight path. Such a challenge can be met through the digital remote system currently under final development at NASA Langley.

  11. Low phase noise high power handling InGaAs photodiodes for precise timing applications

    NASA Astrophysics Data System (ADS)

    Datta, Shubhashish; Joshi, Abhay; Becker, Don

    2009-05-01

    Time is the most precisely measured physical quantity. Such precision is achieved by optically probing hyperfine atomic transitions. These high Q-factor resonances demonstrate frequency instability of ~10-18 over 1 s observation time. Conversion of such a stable optical clock signal to an electrical clock through photodetection introduces additional phase noise, thereby resulting in a significant degradation in the frequency stability. This excess phase noise is primarily caused by the conversion of optical intensity noise into electrical phase noise by the phase non-linearity of the photodetector, characterized by its power-to-phase conversion factor. It is necessary to minimize this phase nonlinearity in order to develop the next generation of ultra-high precision electronic clocks. Reduction in excess phase noise must be achieved while ensuring a large output RF signal generated by the photodetector. The phase linearity in traditional system designs that employ a photoreceiver, namely a photodiode followed by a microwave amplifier, is limited by the phase non-linearity of the amplifier. Utilizing high-power handling photodiodes eliminates the need of microwave amplifiers. In this work, we present InGaAs p-i-n photodiodes that display a power-to-phase conversion factor <6 rad/W at a peak-to-peak RF output amplitude of 2 V. In comparison, the photodiode coupled to a transimpedance amplifier demonstrates >44 rad/W at a peak-to-peak RF output amplitude of 0.5 V. These results are supported by impulse response measurements at 1550 nm wavelength at 1 GHz repetition rate. These photodiodes are suitable of applications such as optical clock distribution networks, photonic analog-to-digital converters, and phased array radars.

  12. A measurement model for general noise reaction in response to aircraft noise.

    PubMed

    Kroesen, Maarten; Schreckenberg, Dirk

    2011-01-01

    In this paper a measurement model for general noise reaction (GNR) in response to aircraft noise is developed to assess the performance of aircraft noise annoyance and a direct measure of general reaction as indicators of this concept. For this purpose GNR is conceptualized as a superordinate latent construct underlying particular manifestations. This conceptualization is empirically tested through estimation of a second-order factor model. Data from a community survey at Frankfurt Airport are used for this purpose (N=2206). The data fit the hypothesized factor structure well and support the conceptualization of GNR as a superordinate construct. It is concluded that noise annoyance and a direct measure of general reaction to noise capture a large part of the negative feelings and emotions in response to aircraft noise but are unable to capture all relevant variance. The paper concludes with recommendations for the valid measurement of community reaction and several directions for further research. PMID:21303002

  13. Measurements of intrinsic shot noise in a 35 GHz gyroklystron

    NASA Astrophysics Data System (ADS)

    Calame, J. P.; Danly, B. G.; Garven, M.

    1999-07-01

    Experimental measurements of electron beam shot noise in a 35 GHz, 225 kW, three-cavity gyroklystron have been obtained from both the input and output cavities. This intrinsic noise was studied in the absence of an applied carrier (i.e., at zero drive power). The spectrum of the noise emitted by the input cavity is found to have a Lorentzian shape, with peak noise power densities from the input cavity typically reaching 6.3×10-15 W/Hz (-112 dBm/Hz), and typical 3 dB bandwidths of 160 MHz. The output cavity noise spectrum is found to be equal to the input cavity noise spectrum multiplied by the measured linear frequency response of the gyroklystron. The measured noise levels at the input cavity are 0-5 dB lower than theoretical predictions for shot noise unaltered by collective effects. Furthermore, the input cavity noise power exhibits complex variations as a function of beam current, beam velocity ratio, and circuit magnetic field that are not predicted by present theory. Noise-to-carrier ratios expected in the input cavity during full power amplifier operation are inferred from the noise measurements and known values of drive power required to saturate the gyroklystron. The noise-to-carrier ratio, with typical values of -90 to -80 dBc, is found to be a strong function of the operating parameters.

  14. Jet Noise Source Localization Using Linear Phased Array

    NASA Technical Reports Server (NTRS)

    Agboola, Ferni A.; Bridges, James

    2004-01-01

    A study was conducted to further clarify the interpretation and application of linear phased array microphone results, for localizing aeroacoustics sources in aircraft exhaust jet. Two model engine nozzles were tested at varying power cycles with the array setup parallel to the jet axis. The array position was varied as well to determine best location for the array. The results showed that it is possible to resolve jet noise sources with bypass and other components separation. The results also showed that a focused near field image provides more realistic noise source localization at low to mid frequencies.

  15. Identification of Noise Sources and Design of Noise Reduction Measures for a Pneumatic Nail Gun

    PubMed Central

    Jayakumar, Vignesh; Zechmann, Edward

    2015-01-01

    An experimental-analytical procedure was implemented to reduce the operating noise level of a nail gun, a commonly found power tool in a construction site. The procedure is comprised of preliminary measurements, identification and ranking of major noise sources and application of noise controls. Preliminary measurements show that the impact noise transmitted through the structure and the exhaust related noise were found to be the first and second major contributors. Applying a noise absorbing foam on the outside of the nail gun body was found to be an effective noise reduction technique. One and two-volume small mufflers were designed and applied to the exhaust side of the nail gun which reduced not only the exhaust noise but also the impact noise. It was shown that the overall noise level could be reduced by as much as 3.5 dB, suggesting that significant noise reduction is possible in construction power tools without any significant increase of the cost. PMID:26366038

  16. Core noise measurements on a YF-102 turbofan engine

    NASA Technical Reports Server (NTRS)

    Reshotko, M.; Karchmer, A. M.; Penko, P. F.; Mcardle, J. G.

    1977-01-01

    Core noise from a YF-102 high bypass ratio turbofan engine was investigated through the use of simultaneous measurements of internal fluctuating pressures and far field noise. Acoustic waveguide probes, located in the engine at the compressor exit, in the combustor, at the turbine exit, and in the core nozzle, were employed to measure internal fluctuating pressures. Spectra showed that the internal signals were free of tones, except at high frequency where machinery noise was present. Data obtained over a wide range of engine conditions suggest that below 60% of maximum fan speed the low frequency core noise contributes significantly to the far field noise.

  17. Charting environmental pollution. [by noise measurements

    NASA Technical Reports Server (NTRS)

    Halpert, E.; Bizo, F.; Karacsonyi, Z.

    1974-01-01

    It is found that areas affected by different noxious agents are within the limits traced for high noise level areas; consequently, it is suggested that high noise pressure levels should be used as the primary indication of environmental pollution. A complex methodology is reported for charting environmental pollution due to physical, chemical and biological noxious agents on the scale of an industrial district.

  18. Design of phase-only, binary phase-only, and complex ternary matched filters with increased signal-to-noise ratios for colored noise

    NASA Technical Reports Server (NTRS)

    Kumar, B. V. K. V.; Juday, Richard D.

    1991-01-01

    An algorithm is provided for treating nonwhite additive noise in determining regions of support for phase-only filters, binary phase-only filters, and complex ternary matched filters. It is analytically shown to be optimal in the signal-to-noise ratio sense. It extends earlier research that assumed white noise.

  19. Estimation of the uncertainty for a phase noise optoelectronic metrology system

    NASA Astrophysics Data System (ADS)

    Salzenstein, P.; Pavlyuchenko, E.; Hmima, A.; Cholley, N.; Zarubin, M.; Galliou, S.; Chembo, Y. K.; Larger, L.

    2012-05-01

    The configuration of the phase noise measurement system operating in the X-band (8.2-12.4 GHz) using a photonic delay line as a frequency discriminator is presented in this paper. This system does not need any excellent frequency reference and works for any frequency in this band. Oscillator frequency fluctuation is converted into phase frequency fluctuation through the delay line. The measured phase noise includes the device under test noise and the instrument background. Then the use of a cross correlation decreases the cross spectrum terms of uncommon phase noise as √(1/m), where m is the average number. Using cross correlation on 500 averages, the noise floor of the instrument £(f) becomes, respectively, -150 and -170 dBc Hz-1 at 101 and 104 Hz from the 10 GHz carrier (-90 and -170 dBc Hz-1 including 2 km delay lines). We then focus on determining the uncertainty. There are two categories of uncertainty terms: 'type A', statistic contributions such as repeatability and experimental standard deviation; 'type B' due to various components and temperature control. The elementary term of uncertainty for repeatability is found to be equal to 0.68 dB. Other elementary terms still have lower contributions. This leads to a global uncertainty of 1.58 dB at 2σ.

  20. Development of a torsion balance for measuring charging noise

    NASA Astrophysics Data System (ADS)

    Campsie, P.; Hammond, G. D.; Hough, J.; Rowan, S.

    2012-06-01

    Noise due to surface charge on gravitational wave detector test masses could potentially become a limiting low frequency noise source in future detectors. It is therefore very important that the behavior of charging noise is experimentally verified so that accurate predictions of charging noise can be made. A torsion balance that is sensitive to small forces has been constructed at the University of Glasgow in order to measure charging noise. In this article the torsion balance apparatus being developed will be described in detail. There will also be a description of the calibration of the instrument and preliminary measurements that have been taken. These measurements show that it is possible to distinguish between the surface charge and polarisation charge on a silica sample. From this measurement it was possible to estimate the surface charge on the silica disc. The remainder of the article will discuss the improvements in sensitivity that have been made which will allow initial measurements of charging noise to begin.

  1. Phase noise optimization in temporal phase-shifting digital holography with partial coherence light sources and its application in quantitative cell imaging.

    PubMed

    Remmersmann, Christian; Stürwald, Stephan; Kemper, Björn; Langehanenberg, Patrik; von Bally, Gert

    2009-03-10

    In temporal phase-shifting-based digital holographic microscopy, high-resolution phase contrast imaging requires optimized conditions for hologram recording and phase retrieval. To optimize the phase resolution, for the example of a variable three-step algorithm, a theoretical analysis on statistical errors, digitalization errors, uncorrelated errors, and errors due to a misaligned temporal phase shift is carried out. In a second step the theoretically predicted results are compared to the measured phase noise obtained from comparative experimental investigations with several coherent and partially coherent light sources. Finally, the applicability for noise reduction is demonstrated by quantitative phase contrast imaging of pancreas tumor cells. PMID:19277078

  2. 14 CFR 36.1101 - Noise measurement and evaluation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Noise measurement and evaluation. 36.1101 Section 36.1101 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... measurement and evaluation. For tiltrotors, the noise generated must be measured and evaluated under...

  3. A comparison of de-noising methods for differential phase shift and associated rainfall estimation

    NASA Astrophysics Data System (ADS)

    Hu, Zhiqun; Liu, Liping; Wu, Linlin; Wei, Qing

    2015-04-01

    Measured differential phase shift UDP is known to be a noisy unstable polarimetric radar variable, such that the quality of UDP data has direct impact on specific differential phase shift KDP estimation, and subsequently, the KDP-based rainfall estimation. Over the past decades, many UDP de-noising methods have been developed; however, the de-noising effects in these methods and their impact on KDP-based rainfall estimation lack comprehensive comparative analysis. In this study, simulated noisy UDP data were generated and de-noised by using several methods such as finite-impulse response (FIR), Kalman, wavelet, traditional mean, and median filters. The biases were compared between KDP from simulated and observed UDP radial profiles after de-noising by these methods. The results suggest that the complicated FIR, Kalman, and wavelet methods have a better de-noising effect than the traditional methods. After UDP was de-noised, the accuracy of the KDP-based rainfall estimation increased significantly based on the analysis of three actual rainfall events. The improvement in estimation was more obvious when KDP was estimated with UDP de-noised by Kalman, FIR, and wavelet methods when the average rainfall was heavier than 5 mm h ≥1. However, the improved estimation was not significant when the precipitation intensity further increased to a rainfall rate beyond 10 mm h ≥1. The performance of wavelet analysis was found to be the most stable of these filters.

  4. The role of amplitude-to-phase conversion in the generation of oscillator flicker phase noise

    NASA Technical Reports Server (NTRS)

    Hearn, C. P.

    1985-01-01

    The role of amplitude-to-phase conversion as a factor in feedback oscillator flicker phase noise is examined. A limiting stage consisting of parallel-connected opposite polarity diodes operating in a circuit environment contining reactance is shown to exhibit amplitude-to-phase conversion. This mechanism coupled with resistive upconversion provides an indirect route for very low frequency flicker noise to be transferred into the phase of an oscillator signal. It is concluded that this effect is more significant in the lower frequency regimes where the onlinear reactances associated with active devices are overwhelmed by linear reactive elements.

  5. Laser phase noise effects on the dynamics of optomechanical resonators

    NASA Astrophysics Data System (ADS)

    Phelps, Gregory; Meystre, Pierre

    2011-05-01

    We present a theoretical analysis of the effects of laser phase noise on the sideband cooling of opto-mechanical oscillators, demonstrating how it limits the minimum occupation number of the phonon mode being cooled and how it modifies optical cooling rate and mechanical frequency shift of the mechanical element. We also comment on the effects of laser phase noise on coherent oscillations of the mechanical element in the blue detuned regime and on the back-action evasion detection method where an additional drive is used to prevent heating of one quadrature of motion of the oscillator. This work was supported by the US Office of Naval Research, the US National Science Foundation, the US Army Research Office and the DARPA ORCHID program through a grant from AFOSR.

  6. Fast measurement of temporal noise of digital camera's photosensors

    NASA Astrophysics Data System (ADS)

    Cheremkhin, Pavel A.; Evtikhiev, Nikolay N.; Krasnov, Vitaly V.; Rodin, Vladislav G.; Starikov, Rostislav S.; Starikov, Sergey N.

    2015-10-01

    Currently photo- and videocameras are widespread parts of both scientific experimental setups and consumer applications. They are used in optics, radiophysics, astrophotography, chemistry, and other various fields of science and technology such as control systems and video-surveillance monitoring. One of the main information limitations of photoand videocameras are noises of photosensor pixels. Camera's photosensor noise can be divided into random and pattern components. Temporal noise includes random noise component while spatial noise includes pattern noise component. Spatial part usually several times lower in magnitude than temporal. At first approximation spatial noises might be neglected. Earlier we proposed modification of the automatic segmentation of non-uniform targets (ASNT) method for measurement of temporal noise of photo- and videocameras. Only two frames are sufficient for noise measurement with the modified method. In result, proposed ASNT modification should allow fast and accurate measurement of temporal noise. In this paper, we estimated light and dark temporal noises of four cameras of different types using the modified ASNT method with only several frames. These cameras are: consumer photocamera Canon EOS 400D (CMOS, 10.1 MP, 12 bit ADC), scientific camera MegaPlus II ES11000 (CCD, 10.7 MP, 12 bit ADC), industrial camera PixeLink PLB781F (CMOS, 6.6 MP, 10 bit ADC) and video-surveillance camera Watec LCL-902C (CCD, 0.47 MP, external 8 bit ADC). Experimental dependencies of temporal noise on signal value are in good agreement with fitted curves based on a Poisson distribution excluding areas near saturation. We measured elapsed time for processing of shots used for temporal noise estimation. The results demonstrate the possibility of fast obtaining of dependency of camera full temporal noise on signal value with the proposed ASNT modification.

  7. Distributions of Conductance and Shot Noise and Associated Phase Transitions

    SciTech Connect

    Vivo, Pierpaolo; Majumdar, Satya N.; Bohigas, Oriol

    2008-11-21

    For a chaotic cavity with two identical leads each supporting N channels, we compute analytically, for large N, the full distribution of the conductance and the shot noise power and show that in both cases there is a central Gaussian region flanked on both sides by non-Gaussian tails. The distribution is weakly singular at the junction of Gaussian and non-Gaussian regimes, a direct consequence of two phase transitions in an associated Coulomb gas problem.

  8. DAMAS Processing for a Phased Array Study in the NASA Langley Jet Noise Laboratory

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Humphreys, William M.; Plassman, Gerald e.

    2010-01-01

    A jet noise measurement study was conducted using a phased microphone array system for a range of jet nozzle configurations and flow conditions. The test effort included convergent and convergent/divergent single flow nozzles, as well as conventional and chevron dual-flow core and fan configurations. Cold jets were tested with and without wind tunnel co-flow, whereas, hot jets were tested only with co-flow. The intent of the measurement effort was to allow evaluation of new phased array technologies for their ability to separate and quantify distributions of jet noise sources. In the present paper, the array post-processing method focused upon is DAMAS (Deconvolution Approach for the Mapping of Acoustic Sources) for the quantitative determination of spatial distributions of noise sources. Jet noise is highly complex with stationary and convecting noise sources, convecting flows that are the sources themselves, and shock-related and screech noise for supersonic flow. The analysis presented in this paper addresses some processing details with DAMAS, for the array positioned at 90 (normal) to the jet. The paper demonstrates the applicability of DAMAS and how it indicates when strong coherence is present. Also, a new approach to calibrating the array focus and position is introduced and demonstrated.

  9. Jet-Surface Interaction Test: Phased Array Noise Source Localization Results

    NASA Technical Reports Server (NTRS)

    Podboy, Gary G.

    2013-01-01

    An experiment was conducted to investigate the effect that a planar surface located near a jet flow has on the noise radiated to the far-field. Two different configurations were tested: 1) a shielding configuration in which the surface was located between the jet and the far-field microphones, and 2) a reflecting configuration in which the surface was mounted on the opposite side of the jet, and thus the jet noise was free to reflect off the surface toward the microphones. Both conventional far-field microphone and phased array noise source localization measurements were obtained. This paper discusses phased array results, while a companion paper (Brown, C.A., "Jet-Surface Interaction Test: Far-Field Noise Results," ASME paper GT2012-69639, June 2012.) discusses far-field results. The phased array data show that the axial distribution of noise sources in a jet can vary greatly depending on the jet operating condition and suggests that it would first be necessary to know or be able to predict this distribution in order to be able to predict the amount of noise reduction to expect from a given shielding configuration. The data obtained on both subsonic and supersonic jets show that the noise sources associated with a given frequency of noise tend to move downstream, and therefore, would become more difficult to shield, as jet Mach number increases. The noise source localization data obtained on cold, shock-containing jets suggests that the constructive interference of sound waves that produces noise at a given frequency within a broadband shock noise hump comes primarily from a small number of shocks, rather than from all the shocks at the same time. The reflecting configuration data illustrates that the law of reflection must be satisfied in order for jet noise to reflect off of a surface to an observer, and depending on the relative locations of the jet, the surface, and the observer, only some of the jet noise sources may satisfy this requirement.

  10. Phase noise performance of microwave analog frequency dividers: application to the characterization of oscillators up to the millimeter-wave range.

    PubMed

    Llopis, O; Regis, M; Desgrez, S; Graffeuil, J

    1999-01-01

    The phase noise performance of two different microwave analog frequency dividers is characterized and compared with the values obtained using simple theories of noise in injection-locked systems. The direct measurement of the divider noise with a low phase noise synthesizer is not accurate enough, and the residual noise technique is used. The noise levels observed using this technique, between -120 and -155 dBc/Hz at a 10 kHz offset frequency, demonstrate that this divider noise is much lower than the phase noise of most microwave free running oscillators, even if this noise is still high with respect to the residual noise of amplifiers realized with the same active devices. The down conversion of microwave sources up to 40 GHz, is proposed as an application example. PMID:18238498

  11. Rescuing a Quantum Phase Transition with Quantum Noise

    NASA Astrophysics Data System (ADS)

    Zhang, Gu; Novais, Eduardo; Baranger, Harold

    We show that placing a quantum system in contact with an environment can enhance non-Fermi-liquid correlations, rather than destroying quantum effects as is typical. The system consists of two quantum dots in series with two leads; the highly resistive leads couple charge flow through the dots to the electromagnetic environment (noise). The similarity to the two impurity Kondo model suggests that there will be a quantum phase transition between a Kondo phase and a local singlet phase. However, this transition is destabilized by charge tunneling between the two leads. Our main result is that sufficiently strong quantum noise suppresses this charge transfer and leads to stabilization of the quantum phase transition. We present the phase diagram, the ground state degeneracy at the four fixed points, and the leading temperature dependence of the conductance near these points. Partially supported by (1) the U.S. DOE, Division of Materials Sciences and Engineering, under Grant No. DE-SC0005237 and (2) FAPESP (BRAZIL) under Grant 2014/26356-9.

  12. Measured and predicted noise of the Avco-Lycoming YF-102 turbofan noise

    NASA Technical Reports Server (NTRS)

    Clark, B. J.; Mcardle, J. G.; Homyak, L.

    1979-01-01

    Acoustic testing of the AVCO-Lycoming YF-102 turbofan engine was done on a static test stand in support of the quiet short-haul research aircraft acoustic design. Overall noise levels were dominated by the fan noise emanating from the exhaust duct, except at high power settings when combination tones were generated in the fan inlet. Component noise levels, calculated by noise prediction methods were in reasonable agreement with the measured results. Far-field microphones placed at ground level were found superior to those at engine centerline height, even at high frequencies.

  13. Modulation transfer function measurement using spatial noise targets

    NASA Astrophysics Data System (ADS)

    Boreman, Glenn D.

    1995-06-01

    In this paper, we consider the measurement of modulation transfer function (MTF) by means of spatially random, noise-like targets. We begin our discussion with the concept of shift- invariance and the measurement of MTF in pixelated systems. We then proceed to the methods for generation of these noise targets, using both laser speckle and transparency-based techniques.

  14. 14 CFR 36.101 - Noise measurement and evaluation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Noise measurement and evaluation. 36.101 Section 36.101 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... and Jet Airplanes § 36.101 Noise measurement and evaluation. For transport category large...

  15. 14 CFR 36.101 - Noise measurement and evaluation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Noise measurement and evaluation. 36.101 Section 36.101 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... and Jet Airplanes § 36.101 Noise measurement and evaluation. For transport category large...

  16. 14 CFR 36.101 - Noise measurement and evaluation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Noise measurement and evaluation. 36.101 Section 36.101 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... and Jet Airplanes § 36.101 Noise measurement and evaluation. For transport category large...

  17. Noise levels near streets, effectiveness and cost abatement measures

    NASA Technical Reports Server (NTRS)

    Lang, J.

    1980-01-01

    During the years 1975-1978, research was carried concerning the current noise levels near streets, the annoyance felt by the population, possible noise abatement measures for these streets, and the economic impact of such measures. The results of the research are summarized.

  18. Automatic measuring device for octave analysis of noise

    NASA Technical Reports Server (NTRS)

    Memnonov, D. L.; Nikitin, A. M.

    1973-01-01

    An automatic decoder is described that counts noise levels by pulse counters and forms audio signals proportional in duration to the total or to one of the octave noise levels. Automatic ten fold repetition of the measurement cycle is provided at each measurement point before the transition to a new point is made.

  19. Thermodynamics aspects of noise-induced phase synchronization

    NASA Astrophysics Data System (ADS)

    Pinto, Pedro D.; Oliveira, Fernando A.; Penna, André L. A.

    2016-05-01

    In this article, we present an approach for the thermodynamics of phase oscillators induced by an internal multiplicative noise. We analytically derive the free energy, entropy, internal energy, and specific heat. In this framework, the formulation of the first law of thermodynamics requires the definition of a synchronization field acting on the phase oscillators. By introducing the synchronization field, we have consistently obtained the susceptibility and analyzed its behavior. This allows us to characterize distinct phases in the system, which we have denoted as synchronized and parasynchronized phases, in analogy with magnetism. The system also shows a rich complex behavior, exhibiting ideal gas characteristics for low temperatures and susceptibility anomalies that are similar to those present in complex fluids such as water.

  20. Thermodynamics aspects of noise-induced phase synchronization.

    PubMed

    Pinto, Pedro D; Oliveira, Fernando A; Penna, André L A

    2016-05-01

    In this article, we present an approach for the thermodynamics of phase oscillators induced by an internal multiplicative noise. We analytically derive the free energy, entropy, internal energy, and specific heat. In this framework, the formulation of the first law of thermodynamics requires the definition of a synchronization field acting on the phase oscillators. By introducing the synchronization field, we have consistently obtained the susceptibility and analyzed its behavior. This allows us to characterize distinct phases in the system, which we have denoted as synchronized and parasynchronized phases, in analogy with magnetism. The system also shows a rich complex behavior, exhibiting ideal gas characteristics for low temperatures and susceptibility anomalies that are similar to those present in complex fluids such as water. PMID:27300893

  1. Characterization of a DFG comb showing quadratic scaling of the phase noise with frequency.

    PubMed

    Puppe, Thomas; Sell, Alexander; Kliese, Russell; Hoghooghi, Nazanin; Zach, Armin; Kaenders, Wilhelm

    2016-04-15

    We characterize an Er:fiber laser frequency comb that is passively carrier envelope phase-stabilized via difference frequency generation at a wavelength of 1550 nm. A generic method to measure the comb linewidth at different wavelengths is demonstrated. By transferring the properties of a comb line to a cw external cavity diode laser, the phase noise is subsequently measured by tracking the delayed self-heterodyne beat note. This relatively simple characterization method is suitable for a broad range of optical frequencies. Here, it is used to characterize our difference frequency generation (DFG) comb over nearly an optical octave. With repetition-rate stabilization, a radiofrequency reference oscillator limited linewidth is achieved. A lock to an optical reference shows out-of-loop linewidths of the comb at the hertz level. The phase noise measurements are in excellent agreement with the elastic tape model with a fix point at zero frequency. PMID:27082368

  2. Noise sensitivity in frequency-resolved optical-gating measurements of ultrashort pulses

    SciTech Connect

    Fittinghoff, D.N.; DeLong, K.W.; Trebino, R.; Ladera, C.L.

    1995-10-01

    Frequency-resolved optical gating (FROG), a technique for measuring ultrashort laser pulses, involves producing a spectrogram of the pulse and then retrieving the pulse intensity and phase with an iterative algorithm. We study how several types of noise---multiplicative, additive, and quantization---affect pulse retrieval. We define a convergence criterion and find that the algorithm converges to a reasonable pulse field, even in the presence of 10% noise. Specifically, with appropriate filtering, 1% rms retrieval error is achieved for 10% multiplicative noise, 10% additive noise, and as few as 8 bits of resolution. For additive and multiplicative noise the retrieval errors decrease roughly as the square root of the amount of noise. In addition, the background induced in the wings of the pulse by additive noise is equal to the amount of additive noise on the trace. Thus the dynamic range of the measured intensity and phase is limited by a noise floor equal to the amount of additive noise on the trace. We also find that, for best results, a region of zero intensity should surround the nonzero region of the trace. Consequently, in the presence of additive noise, baseline subtraction is important. We also find that Fourier low-pass filtering improves pulse retrieval without introducing significant distortion, especially in high-noise cases. We show that the field errors in the temporal and the spectral domains are equal. Overall, the algorithm performs well because the measured trace contains {ital N}{sup 2} data points for a pulse that has only 2{ital N} degrees of freedom; FROG has built in redundancy. {copyright} {ital 1995} {ital Optical} {ital Society} {ital of} {ital America}.

  3. Rotor noise measurement using a directional microphone array

    NASA Technical Reports Server (NTRS)

    Marcolini, Michael A.; Brooks, Thomas F.

    1987-01-01

    A directional array of microphones was used to measure the noise from a 40 percent scale model rotor in a large aeroacoustic wind tunnel. The development and design of this directional array is described. A design goal was that the array focus on a constant sensing area over a broad frequency range. The implementation of the array design is presented, followed by sample results for several different rotor test conditions. The directional array spectral results are compared with predictions of broadband self noise, and with total rotor noise measurements obtained from individual microphones of the array. The directional array is demonstrated to be a useful tool in examining noise source distributions.

  4. Phase synchronization of neuronal noise in mouse hippocampal epileptiform dynamics.

    PubMed

    Serletis, Demitre; Carlen, Peter L; Valiante, Taufik A; Bardakjian, Berj L

    2013-02-01

    Organized brain activity is the result of dynamical, segregated neuronal signals that may be used to investigate synchronization effects using sophisticated neuroengineering techniques. Phase synchrony analysis, in particular, has emerged as a promising methodology to study transient and frequency-specific coupling effects across multi-site signals. In this study, we investigated phase synchronization in intracellular recordings of interictal and ictal epileptiform events recorded from pairs of cells in the whole (intact) mouse hippocampus. In particular, we focused our analysis on the background noise-like activity (NLA), previously reported to exhibit complex neurodynamical properties. Our results show evidence for increased linear and nonlinear phase coupling in NLA across three frequency bands [theta (4-10 Hz), beta (12-30 Hz) and gamma (30-80 Hz)] in the ictal compared to interictal state dynamics. We also present qualitative and statistical evidence for increased phase synchronization in the theta, beta and gamma frequency bands from paired recordings of ictal NLA. Overall, our results validate the use of background NLA in the neurodynamical study of epileptiform transitions and suggest that what is considered "neuronal noise" is amenable to synchronization effects in the spatiotemporal domain. PMID:23273129

  5. Experimental measurements and noise analysis of a cryogenic radiometer

    SciTech Connect

    Carr, S. M.; Woods, S. I.; Jung, T. M.; Carter, A. C.; Datla, R. U.

    2014-07-15

    A cryogenic radiometer device, intended for use as part of an electrical-substitution radiometer, was measured at low temperature. The device consists of a receiver cavity mechanically and thermally connected to a temperature-controlled stage through a thin-walled polyimide tube which serves as a weak thermal link. With the temperature difference between the receiver and the stage measured in millikelvin and the electrical power measured in picowatts, the measured responsivity was 4700 K/mW and the measured thermal time constant was 14 s at a stage temperature of 1.885 K. Noise analysis in terms of Noise Equivalent Power (NEP) was used to quantify the various fundamental and technical noise contributions, including phonon noise and Johnson-Nyquist noise. The noise analysis clarifies the path toward a cryogenic radiometer with a noise floor limited by fundamental phonon noise, where the magnitude of the phonon NEP is 6.5 fW/√(Hz) for the measured experimental parameters.

  6. Experimental measurements and noise analysis of a cryogenic radiometer.

    PubMed

    Carr, S M; Woods, S I; Jung, T M; Carter, A C; Datla, R U

    2014-07-01

    A cryogenic radiometer device, intended for use as part of an electrical-substitution radiometer, was measured at low temperature. The device consists of a receiver cavity mechanically and thermally connected to a temperature-controlled stage through a thin-walled polyimide tube which serves as a weak thermal link. With the temperature difference between the receiver and the stage measured in millikelvin and the electrical power measured in picowatts, the measured responsivity was 4700 K/mW and the measured thermal time constant was 14 s at a stage temperature of 1.885 K. Noise analysis in terms of Noise Equivalent Power (NEP) was used to quantify the various fundamental and technical noise contributions, including phonon noise and Johnson-Nyquist noise. The noise analysis clarifies the path toward a cryogenic radiometer with a noise floor limited by fundamental phonon noise, where the magnitude of the phonon NEP is 6.5 fW/√Hz for the measured experimental parameters. PMID:25085171

  7. Thermo-elastic induced phase noise in the LISA Pathfinder spacecraft

    NASA Astrophysics Data System (ADS)

    Gibert, F.; Nofrarias, M.; Karnesis, N.; Gesa, L.; Martín, V.; Mateos, I.; Lobo, A.; Flatscher, R.; Gerardi, D.; Burkhardt, J.; Gerndt, R.; Robertson, D. I.; Ward, H.; McNamara, P. W.; Guzmán, F.; Hewitson, M.; Diepholz, I.; Reiche, J.; Heinzel, G.; Danzmann, K.

    2015-02-01

    During the on-station thermal test campaign of the LISA Pathfinder, the diagnostics subsystem was tested in nearly space conditions for the first time after integration in the satellite. The results showed the compliance of the temperature measurement system, obtaining temperature noise around {{10}-4} K H{{z}-1/2} in the frequency band 1-30 mHz. In addition, controlled injection of heat signals to the suspension struts anchoring the LISA Technology Package (LTP) core assembly to the satellite structure allowed us to experimentally estimate, for the first time, the phase noise contribution through thermo-elastic distortion of the LTP interferometer, the satellite's main instrument. Such contribution was found to be at {{10}-12} mH{{z}-1/2}, a factor of 30 below the measured noise at the lower end of the measurement bandwidth (1 mHz).

  8. A novel crystal-analyzer phase retrieval algorithm and its noise property.

    PubMed

    Bao, Yuan; Wang, Yan; Li, Panyun; Wu, Zhao; Shao, Qigang; Gao, Kun; Wang, Zhili; Ju, Zaiqiang; Zhang, Kai; Yuan, Qingxi; Huang, Wanxia; Zhu, Peiping; Wu, Ziyu

    2015-05-01

    A description of the rocking curve in diffraction enhanced imaging (DEI) is presented in terms of the angular signal response function and a simple multi-information retrieval algorithm based on the cosine function fitting. A comprehensive analysis of noise properties of DEI is also given considering the noise transfer characteristic of the X-ray source. The validation has been performed with synchrotron radiation experimental data and Monte Carlo simulations based on the Geant4 toolkit combined with the refractive process of X-rays, which show good agreement with each other. Moreover, results indicate that the signal-to-noise ratios of the refraction and scattering images are about one order of magnitude better than that of the absorption image at the edges of low-Z samples. The noise penalty is drastically reduced with the increasing photon flux and visibility. Finally, this work demonstrates that the analytical method can build an interesting connection between DEI and GDPCI (grating-based differential phase contrast imaging) and is widely suitable for a variety of measurement noise in the angular signal response imaging prototype. The analysis significantly contributes to the understanding of noise characteristics of DEI images and may allow improvements to the signal-to-noise ratio in biomedical and material science imaging. PMID:25931098

  9. Airframe noise measurements by acoustic imaging

    NASA Technical Reports Server (NTRS)

    Kendall, J. M.

    1977-01-01

    Studies of the noise produced by flow past wind tunnel models are presented. The central objective of these is to find the specific locations within a flow which are noisy, and to identify the fluid dynamic processes responsible, with the expectation that noise reduction principles will be discovered. The models tested are mostly simple shapes which result in types of flow that are similar to those occurring on, for example, aircraft landing gear and wheel cavities. A model landing gear and a flap were also tested. Turbulence has been intentionally induced as appropriate in order to simulate full-scale effects more closely. The principal technique involves use of a highly directional microphone system which is scanned about the flow field to be analyzed. The data so acquired are presented as a pictorial image of the noise source distribution. An important finding is that the noise production is highly variable within a flow field and that sources can be attributed to various fluid dynamic features of the flow. Flow separation was not noisy, but separation closure usually was.

  10. What Do Contrast Threshold Equivalent Noise Studies Actually Measure? Noise vs. Nonlinearity in Different Masking Paradigms

    PubMed Central

    Baldwin, Alex S.; Baker, Daniel H.; Hess, Robert F.

    2016-01-01

    The internal noise present in a linear system can be quantified by the equivalent noise method. By measuring the effect that applying external noise to the system’s input has on its output one can estimate the variance of this internal noise. By applying this simple “linear amplifier” model to the human visual system, one can entirely explain an observer’s detection performance by a combination of the internal noise variance and their efficiency relative to an ideal observer. Studies using this method rely on two crucial factors: firstly that the external noise in their stimuli behaves like the visual system’s internal noise in the dimension of interest, and secondly that the assumptions underlying their model are correct (e.g. linearity). Here we explore the effects of these two factors while applying the equivalent noise method to investigate the contrast sensitivity function (CSF). We compare the results at 0.5 and 6 c/deg from the equivalent noise method against those we would expect based on pedestal masking data collected from the same observers. We find that the loss of sensitivity with increasing spatial frequency results from changes in the saturation constant of the gain control nonlinearity, and that this only masquerades as a change in internal noise under the equivalent noise method. Part of the effect we find can be attributed to the optical transfer function of the eye. The remainder can be explained by either changes in effective input gain, divisive suppression, or a combination of the two. Given these effects the efficiency of our observers approaches the ideal level. We show the importance of considering these factors in equivalent noise studies. PMID:26953796

  11. Infinite-noise criticality: Nonequilibrium phase transitions in fluctuating environments

    NASA Astrophysics Data System (ADS)

    Vojta, Thomas; Hoyos, Jose

    We study the effects of time-varying environmental noise on nonequilibrium phase transitions in spreading and growth processes. Using the examples of the logistic evolution equation as well as the contact process, we show that such temporal disorder gives rise to a distinct type of critical points at which the effective noise amplitude diverges on long time scales. This leads to enormous density fluctuations characterized by an infinitely broad probability distribution at criticality. We develop a real-time renormalization-group theory that provides a general framework for the effects of temporal disorder on nonequilibrium processes. We also discuss how general this exotic critical behavior is, we illustrate the results by computer simulations, and we touch upon experimental applications of our theory. Supported by the NSF under Grant No. DMR-1205803, by Simons Foundation, by FAPESP under Grant No. 2013/09850-7, and by CNPq under Grant Nos. 590093/2011-8 and 305261/2012-6.

  12. Phase noise of whispering gallery photonic hyper-parametric microwave oscillators.

    PubMed

    Savchenkov, Anatoliy A; Rubiola, Enrico; Matsko, Andrey B; Ilchenko, Vladimir S; Maleki, Lute

    2008-03-17

    We report on the experimental study of phase noise properties of a high frequency photonic microwave oscillator based on four wave mixing in calcium fluoride whispering gallery mode resonators. Specifically, the oscillator generates approximately 8.5 GHz signals with -120 dBc/Hz at 100 kHz from the carrier. The floor of the phase noise is limited by the shot noise of the signal received at the photodetector. We argue that the performance of the oscillator can be significantly improved if one uses extremely high finesse resonators, increases the input optical power, supersaturates the oscillator, and suppresses the residual stimulated Raman scattering in the resonator. We also disclose a method of extremely sensitive measurement of the integral dispersion of millimeter scale dielectric resonators. PMID:18542510

  13. Design optimizations of phase noise, power consumption and frequency tuning for VCO

    NASA Astrophysics Data System (ADS)

    Nan, Chen; Shengxi, Diao; Lu, Huang; Xuefei, Bai; Fujiang, Lin

    2013-09-01

    To meet the requirements of the low power Zigbee system, VCO design optimizations of phase noise, power consumption and frequency tuning are discussed in this paper. Both flicker noise of tail bias transistors and up-conversion of flicker noise from cross-coupled pair are reduced by improved self-switched biasing technology, leading to low close-in phase noise. Low power is achieved by low supply voltage and triode region biasing. To linearly tune the frequency and get constant gain, distributed varactor structure is adopted. The proposed VCO is fabricated in SMIC 0.18-μm CMOS process. The measured linear tuning range is from 2.38 to 2.61 GHz. The oscillator exhibits low phase noise of -77.5 dBc/Hz and -122.8 dBc/Hz at 10 kHz and 1 MHz offset, respectively, at 2.55 GHz oscillation frequency while dissipating 2.7 mA from 1.2 V supply voltage, which well meet design specifications.

  14. Noise in x-ray grating-based phase-contrast imaging

    SciTech Connect

    Weber, Thomas; Bartl, Peter; Bayer, Florian; Durst, Juergen; Haas, Wilhelm; Michel, Thilo; Ritter, Andre; Anton, Gisela

    2011-07-15

    Purpose: Grating-based x-ray phase-contrast imaging is a fast developing new modality not only for medical imaging, but as well for other fields such as material sciences. While these many possible applications arise, the knowledge of the noise behavior is essential. Methods: In this work, the authors used a least squares fitting algorithm to calculate the noise behavior of the three quantities absorption, differential phase, and dark-field image. Further, the calculated error formula of the differential phase image was verified by measurements. Therefore, a Talbot interferometer was setup, using a microfocus x-ray tube as source and a Timepix detector for photon counting. Additionally, simulations regarding this topic were performed. Results: It turned out that the variance of the reconstructed phase is only dependent of the total number of photons used to generate the phase image and the visibility of the experimental setup. These results could be evaluated in measurements as well as in simulations. Furthermore, the correlation between absorption and dark-field image was calculated. Conclusions: These results provide the understanding of the noise characteristics of grating-based phase-contrast imaging and will help to improve image quality.

  15. Prediction of Landing Gear Noise Reduction and Comparison to Measurements

    NASA Technical Reports Server (NTRS)

    Lopes, Leonard V.

    2010-01-01

    Noise continues to be an ongoing problem for existing aircraft in flight and is projected to be a concern for next generation designs. During landing, when the engines are operating at reduced power, the noise from the airframe, of which landing gear noise is an important part, is equal to the engine noise. There are several methods of predicting landing gear noise, but none have been applied to predict the change in noise due to a change in landing gear design. The current effort uses the Landing Gear Model and Acoustic Prediction (LGMAP) code, developed at The Pennsylvania State University to predict the noise from landing gear. These predictions include the influence of noise reduction concepts on the landing gear noise. LGMAP is compared to wind tunnel experiments of a 6.3%-scale Boeing 777 main gear performed in the Quiet Flow Facility (QFF) at NASA Langley. The geometries tested in the QFF include the landing gear with and without a toboggan fairing and the door. It is shown that LGMAP is able to predict the noise directives and spectra from the model-scale test for the baseline configuration as accurately as current gear prediction methods. However, LGMAP is also able to predict the difference in noise caused by the toboggan fairing and by removing the landing gear door. LGMAP is also compared to far-field ground-based flush-mounted microphone measurements from the 2005 Quiet Technology Demonstrator 2 (QTD 2) flight test. These comparisons include a Boeing 777-300ER with and without a toboggan fairing that demonstrate that LGMAP can be applied to full-scale flyover measurements. LGMAP predictions of the noise generated by the nose gear on the main gear measurements are also shown.

  16. Fundamental Noise-Limited Optical Phase Locking at Femtowatt Light Levels

    NASA Technical Reports Server (NTRS)

    Dick, John; Tu, Meirong; Birnbaum, Kevin; Strekalov, Dmitry; Yu, Nan

    2008-01-01

    We describe an optical phase lock loop (PLL) designed to recover an optical carrier at powers below one picowatt in a Deep Space optical transponder. Previous low power optical phase lock has been reported with powers down to about 1 pW. We report the demonstration and characterization of the optical phase locking at femtowatt levels. We achieved a phase slip rate below one cycle-slip/second at powers down to 60 femtowatts. This phase slip rate corresponds to a frequency stability of 1 10(exp -14) at 1 s, a value better than any frequency standard available today for measuring times equal to a typical two-way delay between Earth and Mars. The PLL shows very robust stability at these power levels. We developed simulation software to optimize parameters of the second order PLL loop in the presence of laser flicker frequency noise and white phase (photon) noise, and verified the software with a white phase noise model by Viterbi. We also demonstrated precise Doppler tracking at femtowatt levels.

  17. Noise Analysis of Spatial Phase coding in analog Acoustooptic Processors

    NASA Technical Reports Server (NTRS)

    Gary, Charles K.; Lum, Henry, Jr. (Technical Monitor)

    1994-01-01

    Optical beams can carry information in their amplitude and phase; however, optical analog numerical calculators such as an optical matrix processor use incoherent light to achieve linear operation. Thus, the phase information is lost and only the magnitude can be used. This limits such processors to the representation of positive real numbers. Many systems have been devised to overcome this deficit through the use of digital number representations, but they all operate at a greatly reduced efficiency in contrast to analog systems. The most widely accepted method to achieve sign coding in analog optical systems has been the use of an offset for the zero level. Unfortunately, this results in increased noise sensitivity for small numbers. In this paper, we examine the use of spatially coherent sign coding in acoustooptical processors, a method first developed for digital calculations by D. V. Tigin. This coding technique uses spatial coherence for the representation of signed numbers, while temporal incoherence allows for linear analog processing of the optical information. We show how spatial phase coding reduces noise sensitivity for signed analog calculations.

  18. Problems associated with noise measurements in the mining industry

    NASA Astrophysics Data System (ADS)

    Bauer, Eric R.; Vipperman, Jeffrey S.

    2002-05-01

    In response to the continuing problem of noise-induced hearing loss (NIHL) among mine workers, the National Institute for Occupational Safety and Health (NIOSH) has been conducting numerous noise- and hearing-loss research efforts in the mining industry. Research is underway to determine worker noise exposure, equipment noise, hearing loss and hearing protection use, and to evaluate engineering controls. Issues that are peculiar to the mining industry have complicated these efforts. A few of the issues that must be overcome to conduct meaningful research include constantly moving equipment, changing work environments, confined space, varying production rates, multiple noise sources, and electronic permissibility of instrumentation. This presentation will address the factors that affect the measurement and analysis of noise in the mining industry and how these factors are managed. In addition, some examples of research results will be included.

  19. Correction of phase velocity bias caused by strong directional noise sources in high-frequency ambient noise tomography: a case study in Karamay, China

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Luo, Yinhe; Yang, Yingjie

    2016-05-01

    We collect two months of ambient noise data recorded by 35 broad-band seismic stations in a 9 × 11 km area (1-3 km station interval) near Karamay, China, and do cross-correlation of noise data between all station pairs. Array beamforming analysis of the ambient noise data shows that ambient noise sources are unevenly distributed and the most energetic ambient noise mainly comes from azimuths of 40°-70°. As a consequence of the strong directional noise sources, surface wave components of the cross-correlations at 1-5 Hz show clearly azimuthal dependence, and direct dispersion measurements from cross-correlations are strongly biased by the dominant noise energy. This bias renders that the dispersion measurements from cross-correlations do not accurately reflect the interstation velocities of surface waves propagating directly from one station to the other, that is, the cross-correlation functions do not retrieve empirical Green's functions accurately. To correct the bias caused by unevenly distributed noise sources, we adopt an iterative inversion procedure. The iterative inversion procedure, based on plane-wave modeling, includes three steps: (1) surface wave tomography, (2) estimation of ambient noise energy and biases and (3) phase velocities correction. First, we use synthesized data to test the efficiency and stability of the iterative procedure for both homogeneous and heterogeneous media. The testing results show that: (1) the amplitudes of phase velocity bias caused by directional noise sources are significant, reaching ˜2 and ˜10 per cent for homogeneous and heterogeneous media, respectively; (2) phase velocity bias can be corrected by the iterative inversion procedure and the convergence of inversion depends on the starting phase velocity map and the complexity of the media. By applying the iterative approach to the real data in Karamay, we further show that phase velocity maps converge after 10 iterations and the phase velocity maps obtained using

  20. The influence of noise on image quality in phase-diverse coherent diffraction imaging

    NASA Astrophysics Data System (ADS)

    Wittler, H. P. A.; van Riessen, G. A.; Jones, M. W. M.

    2016-02-01

    Phase-diverse coherent diffraction imaging provides a route to high sensitivity and resolution with low radiation dose. To take full advantage of this, the characteristics and tolerable limits of measurement noise for high quality images must be understood. In this work we show the artefacts that manifest in images recovered from simulated data with noise of various characteristics in the illumination and diffraction pattern. We explore the limits at which images of acceptable quality can be obtained and suggest qualitative guidelines that would allow for faster data acquisition and minimize radiation dose.

  1. Cancellation of simulated environmental noise as a tool for measuring vocal performance during noise exposure.

    PubMed

    Ternström, Sten; Södersten, Maria; Bohman, Mikael

    2002-06-01

    It can be difficult for the voice clinician to observe or measure how a patient uses his voice in a noisy environment. We consider here a novel method for obtaining this information in the laboratory. Worksite noise and filtered white noise were reproduced over high-fidelity loudspeakers. In this noise, 11 subjects read an instructional text of 1.5 to 2 minutes duration, as if addressing a group of people. Using channel estimation techniques, the site noise was suppressed from the recording, and the voice signal alone was recovered. The attainable noise rejection is limited only by the precision of the experimental setup, which includes the need for the subject to remain still so as not to perturb the estimated acoustic channel. This feasibility study, with 7 female and 4 male subjects, showed that small displacements of the speaker's body, even breathing, impose a practical limit on the attainable noise rejection. The noise rejection was typically 30 dB and maximally 40 dB down over the entire voice spectrum. Recordings thus processed were clean enough to permit voice analysis with the long-time average spectrum and the computerized phonetogram. The effects of site noise on voice sound pressure level, fundamental frequency, long-term average spectrum centroid, phonetogram area, and phonation time were much as expected, but with some interesting differences between females and males. PMID:12150372

  2. Real Time Phase Noise Meter Based on a Digital Signal Processor

    NASA Technical Reports Server (NTRS)

    Angrisani, Leopoldo; D'Arco, Mauro; Greenhall, Charles A.; Schiano Lo Morille, Rosario

    2006-01-01

    A digital signal-processing meter for phase noise measurement on sinusoidal signals is dealt with. It enlists a special hardware architecture, made up of a core digital signal processor connected to a data acquisition board, and takes advantage of a quadrature demodulation-based measurement scheme, already proposed by the authors. Thanks to an efficient measurement process and an optimized implementation of its fundamental stages, the proposed meter succeeds in exploiting all hardware resources in such an effective way as to gain high performance and real-time operation. For input frequencies up to some hundreds of kilohertz, the meter is capable both of updating phase noise power spectrum while seamlessly capturing the analyzed signal into its memory, and granting as good frequency resolution as few units of hertz.

  3. Recommended procedures for measuring aircraft noise and associated parameters

    NASA Technical Reports Server (NTRS)

    Marsh, A. H.

    1977-01-01

    Procedures are recommended for obtaining experimental values of aircraft flyover noise levels (and associated parameters). Specific recommendations are made for test criteria, instrumentation performance requirements, data-acquisition procedures, and test operations. The recommendations are based on state-of-the-art measurement capabilities available in 1976 and are consistent with the measurement objectives of the NASA Aircraft Noise Prediction Program. The recommendations are applicable to measurements of the noise produced by an airplane flying subsonically over (or past) microphones located near the surface of the ground. Aircraft types covered by the recommendations are fixed-wing airplanes powered by turbojet or turbofan engines and using conventional aerodynamic means for takeoff and landing. Various assumptions with respect to subsequent data processing and analysis were made (and are described) and the recommended measurement procedures are compatible with the assumptions. Some areas where additional research is needed relative to aircraft flyover noise measurement techniques are also discussed.

  4. Phased-Array Study of Dual-Flow Jet Noise: Effect of Nozzles and Mixers

    NASA Technical Reports Server (NTRS)

    Soo Lee, Sang; Bridges, James

    2006-01-01

    A 16-microphone linear phased-array installed parallel to the jet axis and a 32-microphone azimuthal phased-array installed in the nozzle exit plane have been applied to identify the noise source distributions of nozzle exhaust systems with various internal mixers (lobed and axisymmetric) and nozzles (three different lengths). Measurements of velocity were also obtained using cross-stream stereo particle image velocimetry (PIV). Among the three nozzle lengths tested, the medium length nozzle was the quietest for all mixers at high frequency on the highest speed flow condition. Large differences in source strength distributions between nozzles and mixers occurred at or near the nozzle exit for this flow condition. The beamforming analyses from the azimuthal array for the 12-lobed mixer on the highest flow condition showed that the core flow and the lobe area were strong noise sources for the long and short nozzles. The 12 noisy spots associated with the lobe locations of the 12-lobed mixer with the long nozzle were very well detected for the frequencies 5 KHz and higher. Meanwhile, maps of the source strength of the axisymmetric splitter show that the outer shear layer was the most important noise source at most flow conditions. In general, there was a good correlation between the high turbulence regions from the PIV tests and the high noise source regions from the phased-array measurements.

  5. Review of Subcritical Source-Driven Noise Analysis Measurements

    SciTech Connect

    Valentine, T.E.

    1999-11-24

    Subcritical source-driven noise measurements are simultaneous Rossi-{alpha} and randomly pulsed neutron measurements that provide measured quantities that can be related to the subcritical neutron multiplication factor. In fact, subcritical source-driven noise measurements should be performed in lieu of Rossi-{alpha} measurements because of the additional information that is obtained from noise measurements such as the spectral ratio and the coherence functions. The basic understanding of source-driven noise analysis measurements can be developed from a point reactor kinetics model to demonstrate how the measured quantities relate to the subcritical neutron multiplication factor. More elaborate models can also be developed using a generalized stochastic model. These measurements can be simulated using Monte Carlo codes to determine the subcritical neutron multiplication factor or to determine the sensitivity of calculations to nuclear cross section data. The interpretation of the measurement using a Monte Carlo method is based on a perturbation model for the relationship between the spectral ratio and the subcritical neutron multiplication factor. The subcritical source-driven noise measurement has advantages over other subcritical measurement methods in that reference measurements at delayed critical are not required for interpreting the measurements. Therefore, benchmark or in-situ subcritical measurements can be performed outside a critical experiment facility. Furthermore, a certain ratio of frequency spectra has been shown to be independent of detection efficiency thereby making the measurement more robust and unaffected by drifts or changes in instrumentation during the measurement. Criteria have been defined for application of this measurement method for benchmarks and in-situ subcritical measurements. An extension of the source-driven subcritical noise measurement has also been discussed that eliminates the few technical challenges for in-situ applications.

  6. Noise levels from a model turbofan engine with simulated noise control measures applied

    NASA Technical Reports Server (NTRS)

    Hall, David G.; Woodward, Richard P.

    1993-01-01

    A study of estimated full-scale noise levels based on measured levels from the Advanced Ducted Propeller (ADP) sub-scale model is presented. Testing of this model was performed in the NASA Lewis Low Speed Anechoic Wind Tunnel at a simulated takeoff condition of Mach 0.2. Effective Perceived Noise Level (EPNL) estimates for the baseline configuration are documented, and also used as the control case in a study of the potential benefits of two categories of noise control. The effect of active noise control is evaluated by artificially removing various rotor-stator interaction tones. Passive noise control is simulated by applying a notch filter to the wind tunnel data. Cases with both techniques are included to evaluate hybrid active-passive noise control. The results for EPNL values are approximate because the original source data was limited in bandwidth and in sideline angular coverage. The main emphasis is on comparisons between the baseline and configurations with simulated noise control measures.

  7. Noise properties of HF radar measurement of ocean surface currents

    NASA Astrophysics Data System (ADS)

    Forget, Philippe

    2015-08-01

    High-frequency (HF) radars are commonly used for coastal circulation monitoring. The objective of the study is to assess what is the minimum timescale of variability of the geophysical surface currents that are accessible to the radar measurement given the intrinsic noise of this measurement. Noise properties are derived from the power density spectra (PDSs) of radial current records, which are compared to a model of the PDS of idealized currents contaminated by an additive white noise. The data were collected by two radar systems operating in the Northwestern Mediterranean. Periods of 3 weeks to 7 months are considered. Most of measured currents are affected by a white noise effect. Noise properties vary in time and space and are not specific to a particular radar station or to the radar signal processing method used (beam forming or direction finding). An increase of the noise level reduces the effective temporal resolution of radar-derived currents and then increases the minimum observable timescale of variability of geophysical currents. Our results are consistent with results of comparison found in literature between in situ sensors and radar measurements as well as between two radars operating along a same base line. The study suggests a self-sufficient method, requiring no external data, to estimate the minimum sampling period to consider for getting data sets having a minimized contamination by instrumental noise. This period can also be taken for smoothing or filtering measured currents.

  8. Improving the accuracy of smart devices to measure noise exposure.

    PubMed

    Roberts, Benjamin; Kardous, Chucri; Neitzel, Richard

    2016-11-01

    Occupational noise exposure is one of the most frequent hazards present in the workplace; up to 22 million workers have potentially hazardous noise exposures in the U.S. As a result, noise-induced hearing loss is one of the most common occupational injuries in the U.S. Workers in manufacturing, construction, and the military are at the highest risk for hearing loss. Despite the large number of people exposed to high levels of noise at work, many occupations have not been adequately evaluated for noise exposure. The objective of this experiment was to investigate whether or not iOS smartphones and other smart devices (Apple iPhones and iPods) could be used as reliable instruments to measure noise exposures. For this experiment three different types of microphones were tested with a single model of iPod and three generations of iPhones: the internal microphones on the device, a low-end lapel microphone, and a high-end lapel microphone marketed as being compliant with the International Electrotechnical Commission's (IEC) standard for a Class 2-microphone. All possible combinations of microphones and noise measurement applications were tested in a controlled environment using several different levels of pink noise ranging from 60-100 dBA. Results were compared to simultaneous measurements made using a Type 1 sound level measurement system. Analysis of variance and Tukey's honest significant difference (HSD) test were used to determine if the results differed by microphone or noise measurement application. Levels measured with external microphones combined with certain noise measurement applications did not differ significantly from levels measured with the Type 1 sound measurement system. Results showed that it may be possible to use iOS smartphones and smart devices, with specific combinations of measurement applications and calibrated external microphones, to collect reliable, occupational noise exposure data under certain conditions and within the limitations of the

  9. Geometric phase of a qubit driven by a phase noise laser under non-Markovian dynamics

    SciTech Connect

    Berrada, K.

    2014-01-15

    Robustness of the geometric phase (GP) with respect to the environmental effects is a basic condition for an effective quantum computation. Here, we study quantitatively the GP of a two-level atom system driven by a phase noise laser under non-Markovian dynamics in terms of different parameters involved in the whole system. We find that with the change of the damping coupling, the GP is very sensitive to its properties exhibiting long collapse and revival phenomena, which play a significant role in enhancing the stabilization and control of the system dynamics. Moreover, we show that the GP can be considered as a tool for testing and characterizing the nature of the qubit–environment coupling. Due to the significance of how a system is quantum correlated with its environment in the construction of a scalable quantum computer, the entanglement dynamics between the qubit with its environment under external classical noise is evaluated and investigated during the time evolution. -- Highlights: •Geometric phase under noise phase laser. •Dynamics of the geometric phase under non-Markovian dynamics in the presence of classical noise. •Solution of master equation of the system in terms atomic inversion. •Nonlocal correlation between the system and its environment under non-Markovianity.

  10. Measurement of Trailing Edge Noise Using Directional Array and Coherent Output Power Methods

    NASA Technical Reports Server (NTRS)

    Hutcheson, Florence V.; Brooks, Thomas F.

    2002-01-01

    The use of a directional (or phased) array of microphones for the measurement of trailing edge (TE) noise is described and tested. The capabilities of this method arc evaluated via measurements of TE noise from a NACA 63-215 airfoil model and from a cylindrical rod. This TE noise measurement approach is compared to one that is based on thc cross spectral analysis of output signals from a pair of microphones placed on opposite sides of an airframe model (COP method). Advantages and limitations of both methods arc examined. It is shown that the microphone array can accurately measures TE noise and captures its two-dimensional characteristic over a large frequency range for any TE configuration as long as noise contamination from extraneous sources is within bounds. The COP method is shown to also accurately measure TE noise but over a more limited frequency range that narrows for increased TE thickness. Finally, the applicability and generality of an airfoil self-noise prediction method was evaluated via comparison to the experimental data obtained using the COP and array measurement methods. The predicted and experimental results are shown to agree over large frequency ranges.

  11. Design and analysis of a K-band low-phase-noise phase-locked loop with subharmonically injection-locked technique.

    PubMed

    Yeh, Yen-Liang; Chang, Hong-Yeh

    2014-12-01

    In this paper, we present design and analysis of a K-band (18 to 26.5 GHz) low-phase-noise phase-locked loop (PLL) with the subharmonically injection-locked (SIL) technique. The phase noise of the PLL with subharmonic injection is investigated, and a modified phase noise model of the PLL with SIL technique is proposed. The theoretical calculations agree with the experimental results. Moreover, the phase noise of the PLL can be improved with the subharmonic injection. To achieve K-band operation with low dc power consumption, a divide-by-3 injection-locked frequency divider (ILFD) is used as a frequency prescaler. The measured phase noise of the PLL without injection is -110 dBc/Hz at 1 MHz offset at the operation frequency of 23.08 GHz. With the subharmonic injection, the measured phase noises at 1 MHz offset are -127, -127, and -119 dBc/Hz for the subharmonic injection number NINJ = 2, 3, and 4, respectively. Moreover, the performance of the proposed PLL with and without SIL technique can be compared with the reported advanced CMOS PLLs. PMID:25474769

  12. Nonlinear phase noise mitigation in phase-sensitive amplified transmission systems.

    PubMed

    Olsson, Samuel L I; Karlsson, Magnus; Andrekson, Peter A

    2015-05-01

    We investigate the impact of in-line amplifier noise in transmission systems amplified by two-mode phase-sensitive amplifiers (PSAs) and present the first experimental demonstration of nonlinear phase noise (NLPN) mitigation in a modulation format independent PSA-amplified transmission system. The NLPN mitigation capability is attributed to the correlated noise on the signal and idler waves at the input of the transmission span. We study a single-span system with noise loading in the transmitter but the results are expected to be applicable also in multi-span systems. The experimental investigation is supported by numerical simulations showing excellent agreement with the experiments. In addition to demonstrating NLPN mitigation we also present a record high sensitivity receiver, enabled by low-noise PSA-amplification, requiring only 4.1 photons per bit to obtain a bit error ratio (BER) of 1 × 10(-3) with 10 GBd quadrature phase-shift keying (QPSK) data. PMID:25969263

  13. Impulsive noise reduction in digital phase-sensitive demodulation by nonlinear filtering

    NASA Astrophysics Data System (ADS)

    Cui, Ziqiang; Wang, Huaxiang; Yin, Wuliang; Yang, Wuqiang

    2015-07-01

    Phase-sensitive demodulation is widely used in many systems, e.g. impedance measurement, communication, sonar and radar. In most cases, white noise is assumed in system design and analysis. However, impulsive noise is often encountered in many applications, which imposes challenges for a phase-sensitive demodulator (PSD). This paper presents a nonlinear filter for removing impulsive noise prior to the PSD. Unlike its linear counterparts, it is analysed in the time domain rather than in the frequency domain, making it easier to implement. The performance of the proposed method is compared to a standard PSD with a low-pass filter to suppress the impulsive noise and the theoretical limits of the signal-to-noise ratio (SNR) is analysed. The theoretical prediction has been validated by numerical simulation and experiment. Experimental results show that the proposed method can achieve SNR improvement of 10.8 dB or greater when impulse rate α = 0.01. Statistical analysis shows that 97.2% of the impulses can be rejected by the median filter of length 3 when impulse rate is less than or equal to 0.1.

  14. Limitations of Phased Array Beamforming in Open Rotor Noise Source Imaging

    NASA Technical Reports Server (NTRS)

    Horvath, Csaba; Envia, Edmane; Podboy, Gary G.

    2013-01-01

    Phased array beamforming results of the F31/A31 historical baseline counter-rotating open rotor blade set were investigated for measurement data taken on the NASA Counter-Rotating Open Rotor Propulsion Rig in the 9- by 15-Foot Low-Speed Wind Tunnel of NASA Glenn Research Center as well as data produced using the LINPROP open rotor tone noise code. The planar microphone array was positioned broadside and parallel to the axis of the open rotor, roughly 2.3 rotor diameters away. The results provide insight as to why the apparent noise sources of the blade passing frequency tones and interaction tones appear at their nominal Mach radii instead of at the actual noise sources, even if those locations are not on the blades. Contour maps corresponding to the sound fields produced by the radiating sound waves, taken from the simulations, are used to illustrate how the interaction patterns of circumferential spinning modes of rotating coherent noise sources interact with the phased array, often giving misleading results, as the apparent sources do not always show where the actual noise sources are located. This suggests that a more sophisticated source model would be required to accurately locate the sources of each tone. The results of this study also have implications with regard to the shielding of open rotor sources by airframe empennages.

  15. Downhole seismic noise measurements in the Beowawe geothermal field, Nevada

    SciTech Connect

    Rutledge, J.T.; Albright, J.N.; Batra, R.

    1985-01-01

    A downhole seismic noise study was conducted at The Geysers area of Chevron's Beowawe geothermal field. Four wells were acoustically monitored with sensors placed simultaneously downhole and at the wellhead. Analyses included the correlation of downhole to surficial noise characteristics, well-to-well data correlations for noise source location or direction, and testing for the presence of borehole acoustic coupling between downhole and wellhead receivers. Intrawell cross-correlations in cased or lined boreholes clearly indicate acoustic coupling between wellhead and downhole receivers. Mean-integrated power values calculated over three frequency intervals indicate that the coupled signal is in the frequency interval 30 to 85 Hz and is the dominant component of signal downhole. Surficial variations of noise intensity in the frequency interval 0.5 to 15 Hz show little relation to simultaneously monitored downhole noise integrity. Downhole noise measurement appears to be predominantly a function of near-borehole phenomena in lined or cased holes. Measurements in an uncased borehole showed good correlations with surficial variations. Interwell correlations of noise could not be found. Reservoir noise in the Beowawe field indicated by conventional geophysical surveys could not be corroborated. 8 refs., 4 figs.

  16. Data Quality Assurance for Supersonic Jet Noise Measurements

    NASA Technical Reports Server (NTRS)

    Brown, Clifford A.; Henderson, Brenda S.; Bridges, James E.

    2010-01-01

    The noise created by a supersonic aircraft is a primary concern in the design of future high-speed planes. The jet noise reduction technologies required on these aircraft will be developed using scale-models mounted to experimental jet rigs designed to simulate the exhaust gases from a full-scale jet engine. The jet noise data collected in these experiments must accurately predict the noise levels produced by the full-scale hardware in order to be a useful development tool. A methodology has been adopted at the NASA Glenn Research Center s Aero-Acoustic Propulsion Laboratory to insure the quality of the supersonic jet noise data acquired from the facility s High Flow Jet Exit Rig so that it can be used to develop future nozzle technologies that reduce supersonic jet noise. The methodology relies on mitigating extraneous noise sources, examining the impact of measurement location on the acoustic results, and investigating the facility independence of the measurements. The methodology is documented here as a basis for validating future improvements and its limitations are noted so that they do not affect the data analysis. Maintaining a high quality jet noise laboratory is an ongoing process. By carefully examining the data produced and continually following this methodology, data quality can be maintained and improved over time.

  17. CryoTHOR: measuring thermal noise in optical coatings

    NASA Astrophysics Data System (ADS)

    Ciani, Giacomo; Eichholz, Johannes; Hartman, Michael; Mueller, Guido

    2016-03-01

    Brownian thermal noise in the optical coatings of the test mirrors is expected to be one of dominant noise sources in the most sensitive frequency band of the Advanced LIGO detectors, from a few tens to a few hundreds Hz. Together with thermo-optic noise, it is also envisioned to be one of the main obstacles to improving the sensitivity of future gravitational wave observatories, including cryogenic ones. Many groups are currently engaged in the development of advanced coatings designs with reduced noise. Expected performances of such coatings are usually calculated using independent measurements of material properties which enters in the modeling of thermal noise. However, these properties are often highly dependent on the material history and specific geometric arrangement, and their measured values affected by relatively big uncertainties. Furthermore, their temperature dependence is not always well studied. A direct measurement of the thermal noise over a wide range of temperatures is clearly the preferred way of assessing a coating design viability. We report on the design, performance and latest results of cryoTHOR, an experiment developed for the direct measurements of coating thermal noise over the entire LIGO frequency band, both at room and cryogenic temperatures.

  18. Improved Measurement of Coherence in Presence of Instrument Noise

    NASA Technical Reports Server (NTRS)

    Merceret, Francis J.

    2003-01-01

    A method for correcting measured coherence spectra for the effect of incoherent instrument noise has been developed and demonstrated. Coherence measurements are widely used in engineering and science to determine the extent to which two signals are alike. The signals may come from two different sources or from the same source at different times. The coherence of time-lagged signals from a single source is an excellent indication of the effective lifetime of the signal components as a function of their frequency. Unfortunately, incoherent instrument noise will bias the measurement to lower values and may lead the user of the data to false conclusions about the longevity of significant features. The new method may be used whenever both the signal and noise power spectra are known and the noise is incoherent both with the signal and with itself at the applicable time delays. It provides a corrected coherence spectrum given the measured coherence and power spectra. For powerlaw signal spectra and instrumental white noise, the correction formula takes a particularly simple and explicit form. Since many geophysical signals exhibit powerlaw behavior and most instrument noise spectra approach white noise, the simplified form should be widely applicable in meteorology, oceanography, geology, and planetary geophysics.

  19. A computer based ionospheric sounding and HF noise measuring system

    NASA Astrophysics Data System (ADS)

    Earl, G. F.

    1980-09-01

    A system for the automated collection of ionospheric backscatter sounding and HF noise measurement data is described. The system was configured around a PDP 11/40 minicomputer and modified Barry Research FMCW sounding equipment. The real time digital signal processing associated with the backscatter sounder and noise measurement systems is discussed. The data are displayed and recorded in a calibrated mode, and examples are presented.

  20. Prediction of helicopter rotor noise from measured blade surface pressure

    NASA Astrophysics Data System (ADS)

    Succi, G. P.; Brieger, J. T.

    The current techniques of helicopter rotor noise prediction attempt to describe the details of the noise field precisely and remove the empiricisms and restrictions inherent in previous methods. These techniques require detailed inputs of the rotor geometry, operating conditions, and blade surface pressure distribution. The purpose of this paper is to review those techniques in general and the Farassat/Nystrom analysis in particular. The predictions of the Farassat/Nystrom noise computer program, using both measured and calculated blade surface pressure data, are compared to measured noise level data. This study is based on a contract from NASA to Bolt Beranek and Newman Inc. (BBN) with measured data from the AH-lG Helicopter Operational Loads Survey flight test program supplied by Bell Helicopter Textron.

  1. Noise characteristics of heterodyne/homodyne frequency-domain measurements

    NASA Astrophysics Data System (ADS)

    Kang, Dongyel; Kupinski, Matthew A.

    2012-01-01

    We theoretically develop and experimentally validate the noise characteristics of heterodyne and/or homodyne measurements that are widely used in frequency-domain diffusive imaging. The mean and covariance of the modulated heterodyne output are derived by adapting the random amplification of a temporal point process. A multinomial selection rule is applied to the result of the temporal noise analysis to additionally model the spatial distribution of intensified photons measured by a charge-coupled device (CCD), which shows that the photon detection efficiency of CCD pixels plays an important role in the noise property of detected photons. The approach of using a multinomial probability law is validated from experimental results. Also, experimentally measured characteristics of means and variances of homodyne outputs are in agreement with the developed theory. The developed noise model can be applied to all photon amplification processes.

  2. Wide band low phase noise QVCO based on superharmonic injection locking

    NASA Astrophysics Data System (ADS)

    Yalan, Xu; Jinguang, Jiang; Jianghua, Liu

    2016-01-01

    A wide band, injection-coupled LC quadrature voltage control oscillator is presented. In the proposed circuit, two oscillators are injection locked by coupling their second-order harmonics in anti-phase, forcing the outputs of two oscillators into a quadrature phase state. As the common-mode point sampling the second harmonic frequency, flicker noise of the tail current is suppressed, the phase noise is reduced. The proposed design accomplishes a wide tuning frequency range by a combination of using a 5-bit switch capacitor array (SCA) for discrete tuning in addition to linearly varying AMOS varactors for continuous tuning. The proposed design has been fabricated and verified in a 0.18 μm TSMC CMOS technology process. The measurement indicates that the quadrature voltage controlled oscillator has a 41.7% tuning range from 3.53 to 5.39 GHz. The measured phase noise is 127.98 dBc/Hz at 1 MHz offset at a 1.8 V supply voltage with a power consumption of 12 mW at a carrier frequency of 4.85 GHz. Project supporteded by the National Natural Science Foundation of China (No. 41274047) and the Guangdong Province Science and Technology Program (No. 2013B090500049).

  3. A bootstrapped, low-noise, and high-gain photodetector for shot noise measurement

    SciTech Connect

    Zhou, Haijun; Yang, Wenhai; Li, Zhixiu; Li, Xuefeng; Zheng, Yaohui

    2014-01-15

    We presented a low-noise, high-gain photodetector based on the bootstrap structure and the L-C (inductance and capacitance) combination. Electronic characteristics of the photodetector, including electronic noise, gain and frequency response, and dynamic range, were verified through a single-frequency Nd:YVO{sub 4} laser at 1064 nm with coherent output. The measured shot noise of 50 μW laser was 13 dB above the electronic noise at the analysis frequency of 2 MHz, and 10 dB at 3 MHz. And a maximum clearance of 28 dB at 2 MHz was achieved when 1.52 mW laser was illuminated. In addition, the photodetector showed excellent linearities for both DC and AC amplifications in the laser power range between 12.5 μW and 1.52 mW.

  4. Time domain phase measuring apparatus

    NASA Technical Reports Server (NTRS)

    Reinhardt, V. S. (Inventor)

    1978-01-01

    The phase and/or period stability of a device is determined by connecting the device in one orthogonal arm of a phase detector having a mixer. In the other arm is an adjustable, variable phase shift device. The output of the mixer is fed through an active low pass filter to derive a DC voltage indicative of the phase shift. The variable phase device is adjusted so that the DC voltage will nullify the phase shift of the tested device under normal conditions. The DC voltage level is converted into a time interval indicative of the phase change of the tested device by determining when the level equals the amplitude of a low frequency ramp voltage. The interval between adjacent equality points can be measured or the period between a reference point on the ramp voltage and the quality be measured.

  5. Noise in two-color electronic distance meter measurements revisited

    USGS Publications Warehouse

    Langbein, J.

    2004-01-01

    Frequent, high-precision geodetic data have temporally correlated errors. Temporal correlations directly affect both the estimate of rate and its standard error; the rate of deformation is a key product from geodetic measurements made in tectonically active areas. Various models of temporally correlated errors are developed and these provide relations between the power spectral density and the data covariance matrix. These relations are applied to two-color electronic distance meter (EDM) measurements made frequently in California over the past 15-20 years. Previous analysis indicated that these data have significant random walk error. Analysis using the noise models developed here indicates that the random walk model is valid for about 30% of the data. A second 30% of the data can be better modeled with power law noise with a spectral index between 1 and 2, while another 30% of the data can be modeled with a combination of band-pass-filtered plus random walk noise. The remaining 10% of the data can be best modeled as a combination of band-pass-filtered plus power law noise. This band-pass-filtered noise is a product of an annual cycle that leaks into adjacent frequency bands. For time spans of more than 1 year these more complex noise models indicate that the precision in rate estimates is better than that inferred by just the simpler, random walk model of noise.

  6. Ultralow phase noise microwave generation with an Er:fiber-based optical frequency divider.

    PubMed

    Quinlan, Franklyn; Fortier, Tara M; Kirchner, Matthew S; Taylor, Jennifer A; Thorpe, Michael J; Lemke, Nathan; Ludlow, Andrew D; Jiang, Yanyi; Diddams, Scott A

    2011-08-15

    We present an optical frequency divider based on a 200 MHz repetition rate Er:fiber mode-locked laser that, when locked to a stable optical frequency reference, generates microwave signals with absolute phase noise that is equal to or better than cryogenic microwave oscillators. At 1 Hz offset from a 10 GHz carrier, the phase noise is below -100 dBc/Hz, limited by the optical reference. For offset frequencies >10 kHz, the phase noise is shot noise limited at -145 dBc/Hz. An analysis of the contribution of the residual noise from the Er:fiber optical frequency divider is also presented. PMID:21847227

  7. Installation noise measurements of model SR and CR propellers

    NASA Astrophysics Data System (ADS)

    Block, P. J. W.

    1984-05-01

    Noise measurements on a 0.1 scale SR-2 propeller in a single and counter rotation mode, in a pusher and tractor configuration, and operating at non-zero angles of attack are summarized. A measurement scheme which permitted 143 measurements of each of these configurations in the Langley 4- by 7-meter low speed tunnel is also described.

  8. Installation noise measurements of model SR and CR propellers

    NASA Technical Reports Server (NTRS)

    Block, P. J. W.

    1984-01-01

    Noise measurements on a 0.1 scale SR-2 propeller in a single and counter rotation mode, in a pusher and tractor configuration, and operating at non-zero angles of attack are summarized. A measurement scheme which permitted 143 measurements of each of these configurations in the Langley 4- by 7-meter low speed tunnel is also described.

  9. YF 102 in-duct combustor noise measurement, volume 1

    NASA Technical Reports Server (NTRS)

    Wilson, C. A.

    1977-01-01

    The combustion chamber from a YF 102 gas turbine engine was instrumented with semi-infinite acoustic wave guide probes and installed in a test rig to complement the combustor noise test. These combustor rig tests are described and the recorded data are listed. Internal dynamic pressure level measurements were made at the same locations and at the same operating conditions of the NASA YF 102 test. In addition, the combustor was operated at various off-designed points where one parameter at a time was varied. Background noise recordings were made to determine the magnitude of facility or test rig noise present.

  10. Quantum noise in the position measurement of a cavity mirror undergoing Brownian motion

    NASA Astrophysics Data System (ADS)

    Jacobs, K.; Tittonen, I.; Wiseman, H. M.; Schiller, S.

    1999-07-01

    We perform a quantum theoretical calculation of the noise power spectrum for a phase measurement of the light output from a coherently driven optical cavity with a freely moving rear mirror. We examine how the noise resulting from the quantum back action appears among the various contributions from other noise sources. We do not assume an ideal (homodyne) phase measurement, but rather consider phase-modulation detection, which we show has a different shot noise level. We also take into account the effects of thermal damping of the mirror, losses within the cavity, and classical laser noise. We relate our theoretical results to experimental parameters, so as to make direct comparisons with current experiments simple. We also show that in this situation, the standard Brownian motion master equation is inadequate for describing the thermal damping of the mirror, as it produces a spurious term in the steady-state phase-fluctuation spectrum. The corrected Brownian motion master equation [L. Diosi, Europhys. Lett. 22, 1 (1993)] rectifies this inadequacy.

  11. Phase noise in collective binary phase shift keying with Hadamard words.

    PubMed

    Jarzyna, Marcin; Lipińska, Victoria; Klimek, Aleksandra; Banaszek, Konrad; Paris, Matteo G A

    2016-01-25

    We analyze the effect of phase fluctuations in an optical communication scheme based on collective detection of sequences of binary coherent state symbols using linear optics and photon counting. When the phase noise is absent, the scheme offers qualitatively improved nonlinear scaling of the spectral efficiency with the mean photon number in the low-power regime compared to individual detection. We show that this feature, providing a demonstration of superaddivitity of accessible information in classical communication over quantum channels, is preserved if random phases imprinted on transmitted symbols fluctuate around a reference fixed over the sequence length. PMID:26832548

  12. Noise power spectrum measurements under nonuniform gains and their compensations

    NASA Astrophysics Data System (ADS)

    Kim, Dong Sik; Kim, Eun; Shin, Choul Woo

    2016-03-01

    The fixed pattern noise, which is due to the nonuniform amplifier gains and scintillator sensitivities, should be alleviated in radiography imaging and should have less influence on measuring the noise power spectrum (NPS) of the radiography detector. In order to reduce the influence, background trend removing methods, which are based on low-pass filtering, polynomial fitting, and subtracting the average image of the uniform exposure images, are traditionally employed in the literature. In terms of removing the fixed pattern noise, the subtraction method shows a good performance. However, the number of images to be averaged is practically finite and thus the noise contained in the average image contaminates the image difference and inflates the NPS curve. In this paper, an image formation model considering the nonuniform gain is constructed and two measuring methods, which are based on the subtraction and gain correction, respectively, are considered. In order to accurately measure a normalized NPS (NNPS) in the measuring methods, the number of images to be averaged is considered for NNPS compensations. For several flat-panel radiography detectors, the NNPS measurements are conducted and compared with conventional approaches, which have no compensation stages. Through experiments it is shown that the compensation can provide accurate NNPS measurements less influenced by the fixed pattern noise.

  13. Geometric Phases, Noise and Non-adiabatic Effects in Multi-level Superconducting Systems

    NASA Astrophysics Data System (ADS)

    Berger, S.; Pechal, M.; Abdumalikov, A. A.; Steffen, L.; Fedorov, A.; Wallraff, A.; Filipp, S.

    2012-02-01

    Geometric phases depend neither on time nor on energy, but only on the trajectory of the quantum system in state space. In previous studies [1], we have observed them in a Cooper pair box qubit, a system with large anharmonicity. We now make use of a superconducting transmon-type qubit with low anharmonicity to study geometric phases in a multi-level system. We measure the contribution of the second excited state to the geometric phase and find very good agreement with theory treating higher levels perturbatively. Furthermore, we quantify non-adiabatic corrections by decreasing the manipulation time in order to optimize our geometric gate. Geometric phases have also been shown to be resilient against adiabatic field fluctuations [2]. Here, we analyze the effect of artificially added noise on the geometric phase for different system trajectories. [1] P. J. Leek et al., Science 318, 1889 (2007) [2] S. Filipp et al., Phys. Rev. Lett. 102, 030404 (2009)

  14. Optical frequency comb-based local oscillator phase noise cancellation in time-delay-interferometer for gravitational wave detection

    NASA Astrophysics Data System (ADS)

    Yu, Nan

    Time-delay-interferometer (TDI) is well established as an effective technique to mitigate laser phase noises in laser interferometer gravitational wave detection (GWD). Just as important in the TDI scheme is the ability to suppress the rf local oscillator noise (LO) in the optical heterodyne measurements. We show that LO noises can be effectively and elegantly cancelled by employing optical frequency combs in which the rf signal phases are coherent with the optical phases. In addition, the deployment of optical combs eliminates the need for separate ultra-stable oscillators. This is a simpler and more reliable approach than the modulation scheme, and it can be applied to the most generalized TDI combinations. In this proposed effort, we will investigate the application of optical combs in TDI and demonstrate in a test bed simultaneous noise cancellations in both ranging lasers and rf LOs in a generalized TDI configuration.

  15. Effect of phase noise on the generation of stationary entanglement in cavity optomechanics

    SciTech Connect

    Abdi, M.; Barzanjeh, Sh.; Tombesi, P.; Vitali, D.

    2011-09-15

    We study the effect of laser phase noise on the generation of stationary entanglement between an intracavity optical mode and a mechanical resonator in a generic cavity optomechanical system. We show that one can realize robust stationary optomechanical entanglement even in the presence of non-negligible laser phase noise. We also show that the explicit form of the laser phase noise spectrum is relevant, and discuss its effect on both optomechanical entanglement and ground-state cooling of the mechanical resonator.

  16. A low-phase-noise digitally controlled crystal oscillator for DVB TV tuners

    NASA Astrophysics Data System (ADS)

    Wei, Zhao; Lei, Lu; Zhangwen, Tang

    2010-07-01

    This paper presents a 25-MHz fully-integrated digitally controlled crystal oscillator (DCXO) with automatic amplitude control (AAC). The DCXO is based on Colpitts topology for one-pin solution. The AAC circuit is introduced to optimize the phase noise performance. The automatic frequency control is realized by a 10-bit thermometer-code segmental tapered MOS capacitor array, ensuring a ~ 35 ppm tuning range and ~ 0.04 ppm frequency step. The measured phase noise results are -139 dBc/Hz at 1 kHz and -151 dBc/Hz at 10 kHz frequency offset, respectively. The chip consumes 1 mA at 1.8V supply and occupies 0.4 mm2 in a 0.18-μm CMOS process.

  17. Low-phase-noise frequency synthesizer for the trapped atom clock on a chip.

    PubMed

    Ramirez-Martinez, Fernando; Lours, Michel; Rosenbusch, Peter; Reinhard, Friedemann; Reichel, Jakob

    2010-01-01

    We report on the realization of a 6.834-GHz synthesis chain for the trapped atom clock on a chip (TACC) that is being developed at LNE-SYRTE. The chain is based on the frequency multiplication of a 100-MHz reference signal to obtain a signal at 6.4 GHz. It uses a comb generator based on a monolithic GaAs nonlinear transmission line. This is a novelty in the fabrication of high-stability microwave synthesizers. Measurements give a low flicker phase noise of -85 dBrad(2)/Hz at 1-Hz offset frequency and a white phase noise floor < -115 dBrad(2)/Hz. Based on these results, we estimate that the performance of the synthesizer is at least one order of magnitude better than the stability goal of TACC. This ensures that the synthesizer will not be limiting the clock performance. PMID:20040431

  18. HBAR-based 3.6 GHz oscillator with low power consumption and low phase noise.

    PubMed

    Yu, Hongyu; Lee, Chuang-yuan; Pang, Wei; Zhang, Hao; Brannon, Alan; Kitching, John; Kim, Eun Sok

    2009-02-01

    We have designed and built 2 oscillators at 1.2 and 3.6 GHz based on high-overtone bulk acoustic resonators (HBARs) for application in chip-scale atomic clocks (CSACs). The measured phase noise of the 3.6 GHz oscillator is -67 dBc/Hz at 300 Hz offset and -100 dBc/Hz at 10 kHz offset. The Allan deviation of the free-running oscillator is 1.5 x 10(-9) at one second integration time and the power consumption is 3.2 mW. The low phase noise allows the oscillator to be locked to a CSAC physics package without significantly degrading the clock performance. PMID:19251528

  19. Optical Coatings and Thermal Noise in Precision Measurement

    NASA Astrophysics Data System (ADS)

    Harry, Gregory; Bodiya, Timothy P.; DeSalvo, Riccardo

    2012-01-01

    1. Theory of thermal noise in optical mirrors Y. Levin; 2. Coating technology S. Chao; 3. Compendium of thermal noises in optical mirrors V. B. Braginsky, M. L. Gorodetsky and S. P. Vyatchanin; 4. Coating thermal noise I. Martin and S. Reid; 5. Direct measurements of coating thermal noise K. Numata; 6. Methods of improving thermal noise S. Ballmer and K. Somiya; 7. Substrate thermal noise S. Rowan and I. Martin; 8. Cryogenics K. Numata and K. Yamamoto; 9. Thermo-optic noise M. Evans and G. Ogin; 10. Absorption and thermal issues P. Willems, D. Ottaway and P. Beyersdorf; 11. Optical scatter J. R. Smith and M. E. Zucker; 12. Reflectivity and thickness optimisation I. M. Pinto, M. Principe and R. DeSalvo; 13. Beam shaping A. Freise; 14. Gravitational wave detection D. Ottaway and S. D. Penn; 15. High-precision laser stabilisation via optical cavities M. J. Martin and J. Ye; 16. Quantum optomechanics G. D. Cole and M. Aspelmeyer; 17. Cavity quantum electrodynamics T. E. Northup.

  20. Structureborne noise measurements on a small twin-engine aircraft

    NASA Astrophysics Data System (ADS)

    Cole, J. E., III; Martini, K. F.

    1988-06-01

    Structureborne noise measurements performed on a twin-engine aircraft (Beechcraft Baron) are reported. There are two overall objectives of the test program. The first is to obtain data to support the development of analytical models of the wing and fuselage, while the second is to evaluate effects of structural parameters on cabin noise. Measurements performed include structural and acoustic responses to impact excitation, structural and acoustic loss factors, and modal parameters of the wing. Path alterations include added mass to simulate fuel, variations in torque of bolts joining wing and fuselage, and increased acoustic absorption. Conclusions drawn regarding these measurements are presented.

  1. Structureborne noise measurements on a small twin-engine aircraft

    NASA Technical Reports Server (NTRS)

    Cole, J. E., III; Martini, K. F.

    1988-01-01

    Structureborne noise measurements performed on a twin-engine aircraft (Beechcraft Baron) are reported. There are two overall objectives of the test program. The first is to obtain data to support the development of analytical models of the wing and fuselage, while the second is to evaluate effects of structural parameters on cabin noise. Measurements performed include structural and acoustic responses to impact excitation, structural and acoustic loss factors, and modal parameters of the wing. Path alterations include added mass to simulate fuel, variations in torque of bolts joining wing and fuselage, and increased acoustic absorption. Conclusions drawn regarding these measurements are presented.

  2. Transition from double coherence resonances to single coherence resonance in a neuronal network with phase noise.

    PubMed

    Jia, Yanbing; Gu, Huaguang

    2015-12-01

    The effect of phase noise on the coherence dynamics of a neuronal network composed of FitzHugh-Nagumo (FHN) neurons is investigated. Phase noise can induce dissimilar coherence resonance (CR) effects for different coupling strength regimes. When the coupling strength is small, phase noise can induce double CRs. One corresponds to the average frequency of phase noise, and the other corresponds to the intrinsic firing frequency of the FHN neuron. When the coupling strength is large enough, phase noise can only induce single CR, and the CR corresponds to the intrinsic firing frequency of the FHN neuron. The results show a transition from double CRs to single CR with the increase in the coupling strength. The transition can be well interpreted based on the dynamics of a single neuron stimulated by both phase noise and the coupling current. When the coupling strength is small, the coupling current is weak, and phase noise mainly determines the dynamics of the neuron. Moreover, the phase-noise-induced double CRs in the neuronal network are similar to the phase-noise-induced double CRs in an isolated FHN neuron. When the coupling strength is large enough, the coupling current is strong and plays a key role in the occurrence of the single CR in the network. The results provide a novel phenomenon and may have important implications in understanding the dynamics of neuronal networks. PMID:26723163

  3. Improved configuration and reduction of phase noise in a narrow linewidth ultrawideband optical RF source.

    PubMed

    Grund, David W; Shi, Shouyuan; Schneider, Garrett J; Murakowski, Janusz; Prather, Dennis W

    2014-08-15

    In this Letter, we report on the improved configuration of a widely tunable optical RF generation system, particularly for the generation of low-frequency RF, as well as the reduction of phase noise in that same system. Using an amplitude modulator, a simplified system design was demonstrated with fewer components and improved phase noise performance, especially at RF frequencies below ∼36 GHz. Excess phase noise due to acoustic vibrations of the optical fibers was also successfully eliminated by mechanical isolation. A minimum phase noise of -124 dBc/Hz at 10 kHz offset was demonstrated at 4 GHz. PMID:25121844

  4. Noise Measurements of High Aspect Ratio Distributed Exhaust Systems

    NASA Technical Reports Server (NTRS)

    Bridges, James

    2015-01-01

    This paper covers far-field acoustic measurements of a family of rectangular nozzles with aspect ratio 8, in the high subsonic flow regime. Several variations of nozzle geometry, commonly proposed for embedded exhaust systems, are explored, including bevels, slants, single broad chevrons and notches, and internal septae. Far-field acoustic results, presented previously for the simple rectangular nozzle, showed that increasing aspect ratio increases the high frequency noise, especially directed in the plane containing the minor axis of the nozzle. Detailed changes to the nozzle geometry generally made little difference in the noise, and the differences were greatest at low speed. Having an extended lip on one broad side ('bevel') did produce up to 3dB more noise in all directions, while extending the lip on the narrow side ('slant') produced up to 2dB more noise, primarily on the side with the extension. Adding a single, non-intrusive chevron, made no significant change to the noise, while inverting the chevron ('notch') produced up to 2dB increase in the noise. Having internal walls ('septae') within the nozzle, such as would be required for structural support or when multiple fan ducts are aggregated, reduced the noise of the rectangular jet, but could produce a highly directional shedding tone from the septae trailing edges. Finally, a nozzle with both septae and a beveled nozzle, representative of the exhaust system envisioned for a distributed propulsion aircraft with a common rectangular duct, produced almost as much noise as the beveled nozzle, with the septae not contributing much reduction in noise.

  5. Noise Measurements of High Aspect Ratio Distributed Exhaust Systems

    NASA Technical Reports Server (NTRS)

    Bridges, James E.

    2015-01-01

    This paper covers far-field acoustic measurements of a family of rectangular nozzles with aspect ratio 8, in the high subsonic flow regime. Several variations of nozzle geometry, commonly found in embedded exhaust systems, are explored, including bevels, slants, single broad chevrons and notches, and internal septae. Far-field acoustic results, presented previously for the simple rectangular nozzle, showed that increasing aspect ratio increases the high frequency noise, especially directed in the plane containing the minor axis of the nozzle. Detailed changes to the nozzle geometry generally made little difference in the noise, and the differences were greatest at low speed. Having an extended lip on one broad side (bevel) did produce up to 3 decibels more noise in all directions, while extending the lip on the narrow side (slant) produced up to 2 decibels more noise, primarily on the side with the extension. Adding a single, non-intrusive chevron, made no significant change to the noise, while inverting the chevron (notch) produced up to 2decibels increase in the noise. Having internal walls (septae) within the nozzle, such as would be required for structural support or when multiple fan ducts are aggregated, reduced the noise of the rectangular jet, but could produce a highly directional shedding tone from the septae trailing edges. Finally, a nozzle with both septae and a beveled nozzle, representative of the exhaust system envisioned for a distributed electric propulsion aircraft with a common rectangular duct, produced almost as much noise as the beveled nozzle, with the septae not contributing much reduction in noise.

  6. Shot noise measurement in a strongly correlated material

    NASA Astrophysics Data System (ADS)

    Zhou, Panpan; Hardy, Will; Cho, Ethan; Cybart, Shane; Dynes, Robert; Natelson, Douglas

    In strongly correlated materials, the motion of an electron is strongly affected by interactions with other electrons, leading to many interesting phenomena including metal-insulator transitions, colossal magnetoresistance, and high temperature superconductivity. Shot noise is one experimental probe for electronic correlations beyond simple electronic transport. Shot noise, which originates from the discrete nature of the charge-carrying particles, can be strongly affected by electronic correlations. Here we report initial shot noise measurements in tunnel junctions prepared from a YBa2Cu3O7-x film sample, with nanoscale junctions written by focused helium ion beam. We will discuss a comparison of the shot noise between the YBCO film sample and standard tunnel junctions, as a function of temperature and bias, and the implications of these results.

  7. Radiometric absolute noise-temperature measurement system features improved accuracy and calibration ease

    NASA Technical Reports Server (NTRS)

    Brown, W.; Ewen, H.; Haroules, G.

    1970-01-01

    Radiometric receiver system, which measures noise temperatures in degrees Kelvin, does not require cryogenic noise sources for routine operation. It eliminates radiometer calibration errors associated with RF attenuation measurements. Calibrated noise source is required only for laboratory adjustment and calibration.

  8. Laser noise measurement techniques and applications of femtosecond encoding in the frequency domain

    NASA Astrophysics Data System (ADS)

    Scott, Ryan Patrick

    This dissertation investigates mode-locked laser noise measurement techniques, the concept and measurement of a laser's noise transfer function, and then two applications of spectral encoding of optical pulses. The one application is optical code division multiple access (O-CDMA) and the other is optical arbitrary waveform generation (OAWG). The relationship between source stability, encoding, and overall system performance in O-CDMA is also discussed. Techniques for making sensitive and high-dynamic-range measurements of laser amplitude and envelope phase noise (timing jitter) in the frequency domain at the shot-noise limit are described. The short term stability of a Kerr-lens modelocked (KLM) Ti:sapphire laser is shown to be close to that of the precision crystal oscillators used in its characterization. The amplitude and envelope phase noise of a KLM Ti:sapphire laser are shown to depend directly on the pump laser amplitude stability. The sensitivity of this process is described by a noise transfer function (NTF) which represents the magnitude of the amplitude-to-amplitude modulation and amplitude-to-phase modulation conversion gain of the pump-induced amplitude and phase noise, respectively. A spectral phase-encoded time-spreading (SPECTS) O-CDMA testbed is described. The testbed employs a fiber-pigtailed, bulk-optics arrangement that utilizes a two-dimensional spatial light phase modulator for encoding multiple channels. The time-gated SPECTS O-CDMA receiver is composed of a nonlinear optical loop mirror (NOLM) and a nonlinear thresholder Experimentally measured performance is compared to numerical simulations. Finally, an optical frequency comb with 20-GHz spacing is shaped by an integrated silica arrayed-waveguide grating (AWG) pair to produce optical waveforms with high fidelity. Characterization of both the intensity and phase of the crafted opitical fields is accomplished with cross-correlation frequency-resolved optical gating (XFROG) which has been

  9. Measuring Gaussian noise using a lock-in amplifier

    NASA Astrophysics Data System (ADS)

    Kouh, T.; Kemiktarak, U.; Basarir, O.; Lissandrello, C.; Ekinci, K. L.

    2014-08-01

    Gaussian fluctuations (or Gaussian noise) appear in almost all measurements in physics. Here, a concise and self-contained introduction to thermal Gaussian noise is presented. Our analysis in the frequency domain centers on thermal fluctuations of the position of a particle bound in a one-dimensional harmonic potential, which in this case is a microcantilever immersed in a bath of room-temperature gas. Position fluctuations of the microcantilever, detected by the optical beam deflection technique, are then fed into a lock-in amplifier to measure the probability distribution and spectral properties of the fluctuations. The lock-in amplifier measurement is designed to emphasize the frequency-domain properties of Gaussian noise. The discussion here can be complementary to a discussion of Gaussian fluctuations in the time domain.

  10. Atomic multiwave interferometer for Aharonov-Casher-phase measurements

    NASA Astrophysics Data System (ADS)

    Zhou, Min-Kang; Zhang, Ke; Duan, Xiao-Chun; Ke, Yi; Shao, Cheng-Gang; Hu, Zhong-Kun

    2016-02-01

    We present an atomic multiwave interferometer with magnetic sublevels to precisely determine the Aharonov-Casher (AC) geometric phase. Simulations show that this interferometer has sharper fringes than a normal two-wave interferometer, which means a higher phase resolution can be achieved. Moreover, atoms evolving in a single hyperfine structure state make the interferometer insensitive to the dc Stark phase shift. This dc Stark shift is one of the main noise sources in AC phase measurements. The constraint of the photon rest mass is also discussed when using this atomic interferometer to measure the Aharonov-Casher phase.

  11. Adaptive anisotropic diffusion for noise reduction of phase images in Fourier domain Doppler optical coherence tomography.

    PubMed

    Xia, Shaoyan; Huang, Yong; Peng, Shizhao; Wu, Yanfeng; Tan, Xiaodi

    2016-08-01

    Phase image in Fourier domain Doppler optical coherence tomography offers additional flow information of investigated samples, which provides valuable evidence towards accurate medical diagnosis. High quality phase images are thus desirable. We propose a noise reduction method for phase images by combining a synthetic noise estimation criteria based on local noise estimator (LNE) and distance median value (DMV) with anisotropic diffusion model. By identifying noise and signal pixels accurately and diffusing them with different coefficients respectively and adaptive iteration steps, we demonstrated the effectiveness of our proposed method in both phantom and mouse artery images. Comparison with other methods such as filtering method (mean, median filtering), wavelet method, probabilistic method and partial differential equation based methods in terms of peak signal-to-noise ratio (PSNR), equivalent number of looks (ENL) and contrast-to-noise ratio (CNR) showed the advantages of our method in reserving image energy and removing noise. PMID:27570687

  12. Adaptive anisotropic diffusion for noise reduction of phase images in Fourier domain Doppler optical coherence tomography

    PubMed Central

    Xia, Shaoyan; Huang, Yong; Peng, Shizhao; Wu, Yanfeng; Tan, Xiaodi

    2016-01-01

    Phase image in Fourier domain Doppler optical coherence tomography offers additional flow information of investigated samples, which provides valuable evidence towards accurate medical diagnosis. High quality phase images are thus desirable. We propose a noise reduction method for phase images by combining a synthetic noise estimation criteria based on local noise estimator (LNE) and distance median value (DMV) with anisotropic diffusion model. By identifying noise and signal pixels accurately and diffusing them with different coefficients respectively and adaptive iteration steps, we demonstrated the effectiveness of our proposed method in both phantom and mouse artery images. Comparison with other methods such as filtering method (mean, median filtering), wavelet method, probabilistic method and partial differential equation based methods in terms of peak signal-to-noise ratio (PSNR), equivalent number of looks (ENL) and contrast-to-noise ratio (CNR) showed the advantages of our method in reserving image energy and removing noise. PMID:27570687

  13. Measurements of the tonal component of cavity noise and comparison with theory. [aircraft noise

    NASA Technical Reports Server (NTRS)

    Block, P. J. W.

    1977-01-01

    The frequency of the tonal noise generated by a flow-excited rectangular cavity was measured using Mach numbers ranging from 0.05 to 0.40, and cavity length-to-depth ratios varying from 0.1 to 8. The data are used to evaluate a current prediction method, and good agreement is shown. Measurements of the minimum streamwise cavity length required for oscillation were also made.

  14. Unsteady 2-phase flow instrumentation and measurement

    NASA Astrophysics Data System (ADS)

    Bernier, R. J.

    The performance of a transverse field electromagnetic flowmeter in a steady two phase flow was investigated analytically for a disperse and an annular flow regime. The flowmeter output voltage was found to be proportional to the mean velocity of the liquid phase. Experiments in a steady air water mixture showed good agreement with the analysis. An impedance void fraction meter was designed and built to conduct measurements of unsteady void fractions. Short electrodes excited by voltages of opposite polarity were used in combination with a highly sensitive signal processor. The steady state calibration indicated that the meter was somewhat sensitive to the void fraction distribution for the bubbly flow regime. However, the transition to a churn turbulent regime greatly affected the meer steady state response. The dynamic capability of the void fraction meter was estimated by comparison of the statistical properties of the voltage fluctuations in a nominally steady bubbly flow with those of a shot noise process.

  15. Prediction of blade vortex interaction noise from measured blade pressure

    NASA Technical Reports Server (NTRS)

    Nakamura, Y.

    1981-01-01

    The impulsive nature of noise due to the interaction of a rotor blade with a tip vortex is studied. The time signature of this noise is calculated theoretically based on the measured blade surface pressure fluctuation of an operational load survey rotor in slow descending flight and is compared with the simultaneous microphone measurement. Particularly, the physical understanding of the characteristic features of a waveform is extensively studied in order to understand the generating mechanism and to identify the important parameters. The interaction trajectory of a tip vortex on an acoustic planform is shown to be a very important parameter for the impulsive shape of the noise. The unsteady nature of the pressure distribution at the very leading edge is also important to the pulse shape. The theoretical model using noncompact linear acoustics predicts the general shape of interaction impulse pretty well except for peak amplitude which requires more continuous pressure information along the span at the leading edge.

  16. Measurements of noise produced by flow past lifting surfaces

    NASA Technical Reports Server (NTRS)

    Kendall, J. M.

    1978-01-01

    Wind tunnel studies have been conducted to determine the specific locations of aerodynamic noise production within the flow field about various lifting-surface configurations. The models tested included low aspect ratio shapes intended to represent aircraft flaps, a finite aspect ratio NACA 0012 wing, and a multi-element wing section consisting of a main section, a leading edge flap, and dual trailing edge flaps. Turbulence was induced on the models by surface roughness. Lift and drag were measured for the flap models. Hot-wire anemometry was used for study of the flap-model vortex roll-up. Apparent noise source distributions were measured by use of a directional microphone system, located outside the tunnel, which was scanned about the flow region to be analyzed under computer control. These distributions exhibited a diversity of pattern, suggesting that several flow processes are important to lifting-surface noise production. Speculation concerning these processes is offered.

  17. Equalization-enhanced phase noise for 100 Gb/s transmission and beyond with coherent detection.

    PubMed

    Lau, Alan Pak Tao; Shen, Thomas Shun Rong; Shieh, William; Ho, Keang-Po

    2010-08-01

    The probability density function and impact of equalizationenhanced phase noise (EEPN) is analytically investigated and simulated for 100 Gb/s coherent systems using electronic dispersion compensation. EEPN impairment induces both phase noise and amplitude noise with the former twice as much as the latter. The effects of transmitter phase noise on EEPN are negligible for links with residual dispersion in excess of 700 ps/nm. Optimal linear equalizer in the presence of EEPN is derived but show only marginal performance improvement, indicating that EEPN is difficult to mitigate using simple DSP techniques. In addition, the effects of EEPN on carrier recovery techniques and corresponding cycle slip probabilities are studied. PMID:20721112

  18. Laser phase induced intensity noise in fiber-optic signal processing and sensing systems

    NASA Astrophysics Data System (ADS)

    Arie, Ady

    1991-03-01

    The effects of random phase fluctuations in laser output on the performance of optical systems was studied. The statistical nature of phase induced intensity noise (PIIN) was measured and analysed by studying its probability density function and the second and fourth moments of the optical field at the output of several multiple path systems. The properties of the semiconductor laser, including broad spectral linewidth and non-Lorentzian line shape were shown to have significant influence on the generated PIIN. The PIIN statistics was first studied via the probability density function (PDF) of the beat signal obtained from a two-beam interferometer fed by the laser. Two distinct operating regimes could be defined, according to the ratio between the interferometer delay and the laser coherence time. Analytical expressions were obtained for statistical averages of the PIIN at the output of a general multiple path system; they represent the variance and autocovariance, and the power spectral density of the PIIN at the system output. The non-Lorentzian lineshape of the semiconductor laser was taken into account and the results obtained were found to differ from the Lorentzian model predictions; power spectrum measurements by means of a Mach-Zehnder interferometer confirmed the theoretical model. Analysis of the PIIN for complex signal processing systems comprising several subsystems showed that the PIIN spectrum was determined by two mechanisms: noise generation and noise filtration.

  19. A Low Phase Noise Fully Monolithic 6 GHz Differential Coupled NMOS LC-VCO

    NASA Astrophysics Data System (ADS)

    Moalla, Dorra Mellouli; Cordeau, David; Mnif, Hassene; Paillot, Jean-Marie; Loulou, Mourad

    2016-01-01

    A fully monolithic 6 GHz low-phase noise Voltage-Controlled-Oscillator (VCO) is presented in this paper. It consists in two LC-NMOS differential VCOs coupled through a resistive network and is implemented on a 0.25 µm BiCMOS SiGe process. This proposed integrated VCO can be used also for phased-array applications to steer the beam over the entire spatial range. In this case, the radiation pattern of the phased antenna array is steered in a particular direction by establishing a constant phase progression in the oscillator chain which can be obtained by detuning the free-running frequencies of the two oscillators in the array. At 2.5 V power supply voltage and a power dissipation of 62.5 mW, the coupled VCO array features a measured worst case phase noise of -102.4 dBc/Hz and -125.64 dBc/Hz at 100 kHz and 1 MHz frequency offset respectively from a 6 GHz carrier. The tuning range is about 400 MHz, from 5.85 to 6.25 GHz, for a tuning voltage varying from 0 to 2.5 V.

  20. Johnson Noise Thermometry For Space Reactor Temperature Measurement

    NASA Astrophysics Data System (ADS)

    Holcomb, David E.; Kisner, Roger A.; Roberts, Michael J.

    2004-02-01

    A primary difference between terrestrial and remotely located reactors is the ability to periodically recalibrate and replace the instrumentation. Because of this, space reactors place a premium on self-calibrating, long-term reliable instrumentation. The primary temperature measurements for the SP-100 reactor were to be made using W/W-Re thermocouples. However, the large gamma and neutron dose expected at the coolant outlet (>1 MGy γ 3×1015 fast neutron fluence) combined with the high temperature (1375 K nominal; 1650 K maximum) meant that the thermocouples would drift significantly over the lifetime of the reactor. A combined Johnson noise resistance thermometer capable of performing under these extreme conditions was developed by ORNL (Carroll, 1994). Johnson noise is a fundamental representation of temperature-it is the vibration of the electronic field surrounding atoms as they thermally vibrate. Johnson noise, however, is fundamentally a small signal (~4×10-7 Vrms for a 100 Ω resistor at 300 K, using a 100 kHz bandwidth) spread throughout the frequency spectrum. Creating the electronics and signal processing required to effectively measure and interpret the noise signal remains challenging. ORNL has recently developed closely related Johnson Noise Thermometry (JNT) electronics and signal processing capabilities under a DOE International Nuclear Energy Research Initiative Project with the Korean Atomic Energy Research Institute (U.S. DOE, 2002). An overview of the application of JNT to space nuclear power and the current status of the ORNL JNT capabilities is the subject of this paper.

  1. Helicopter rotor rotational noise predictions based on measured high-frequency blade loads

    NASA Technical Reports Server (NTRS)

    Hosier, R. N.; Ramakrishnan, R.

    1974-01-01

    In tests conducted at the Langley helicopter rotor test facility, simultaneous measurements of up to 200 harmonics of the fluctuating aerodynamic blade surface pressures and far-field radiated noise were made on a full-scale nontranslating rotor system. After their characteristics were determined, the measured blade surface pressures were converted to loading coefficients and used in an existing theory to predict the far-field rotational noise. A comparison of the calculated and measured noise shows generally good agreement up to 300 to 600 Hz, depending on the discreteness of the loading spectrum. Specific attention is given to the effects of the blade loading coefficients, chordwise loading distributions, blade loading phases, and observer azimuthal position on the calculations.

  2. Reduction of phase noise in nanowire spin orbit torque oscillators

    NASA Astrophysics Data System (ADS)

    Yang, Liu; Verba, Roman; Tiberkevich, Vasil; Schneider, Tobias; Smith, Andrew; Duan, Zheng; Youngblood, Brian; Lenz, Kilian; Lindner, Jürgen; Slavin, Andrei N.; Krivorotov, Ilya N.

    2015-11-01

    Spin torque oscillators (STOs) are compact, tunable sources of microwave radiation that serve as a test bed for studies of nonlinear magnetization dynamics at the nanometer length scale. The spin torque in an STO can be created by spin-orbit interaction, but low spectral purity of the microwave signals generated by spin orbit torque oscillators hinders practical applications of these magnetic nanodevices. Here we demonstrate a method for decreasing the phase noise of spin orbit torque oscillators based on Pt/Ni80Fe20 nanowires. We experimentally demonstrate that tapering of the nanowire, which serves as the STO active region, significantly decreases the spectral linewidth of the generated signal. We explain the observed linewidth narrowing in the framework of the Ginzburg-Landau auto-oscillator model. The model reveals that spatial non-uniformity of the spin current density in the tapered nanowire geometry hinders the excitation of higher order spin-wave modes, thus stabilizing the single-mode generation regime. This non-uniformity also generates a restoring force acting on the excited self-oscillatory mode, which reduces thermal fluctuations of the mode spatial position along the wire. Both these effects improve the STO spectral purity.

  3. Reduction of phase noise in nanowire spin orbit torque oscillators

    PubMed Central

    Yang, Liu; Verba, Roman; Tiberkevich, Vasil; Schneider, Tobias; Smith, Andrew; Duan, Zheng; Youngblood, Brian; Lenz, Kilian; Lindner, Jürgen; Slavin, Andrei N.; Krivorotov, Ilya N.

    2015-01-01

    Spin torque oscillators (STOs) are compact, tunable sources of microwave radiation that serve as a test bed for studies of nonlinear magnetization dynamics at the nanometer length scale. The spin torque in an STO can be created by spin-orbit interaction, but low spectral purity of the microwave signals generated by spin orbit torque oscillators hinders practical applications of these magnetic nanodevices. Here we demonstrate a method for decreasing the phase noise of spin orbit torque oscillators based on Pt/Ni80Fe20 nanowires. We experimentally demonstrate that tapering of the nanowire, which serves as the STO active region, significantly decreases the spectral linewidth of the generated signal. We explain the observed linewidth narrowing in the framework of the Ginzburg-Landau auto-oscillator model. The model reveals that spatial non-uniformity of the spin current density in the tapered nanowire geometry hinders the excitation of higher order spin-wave modes, thus stabilizing the single-mode generation regime. This non-uniformity also generates a restoring force acting on the excited self-oscillatory mode, which reduces thermal fluctuations of the mode spatial position along the wire. Both these effects improve the STO spectral purity. PMID:26592432

  4. Phase noise reduction and photoelectron acceleration in a high-Q RF gun

    SciTech Connect

    Landahl, E.C.; Hartemann, F.V.; Baldis, H.A. |; Le Sage, G.P.; White, W.E.; Bennett, C.V.; Heritage, J.P.; Luhmann, N.C. Jr.; Ho, C.H.

    1998-06-01

    The phase noise and jitter characteristics of the laser and RF systems of a high-gradient X-band photoinjector have been measured experimentally. The laser oscillator is a self-mode-locked titanium: sapphire system operating at the 108th subharmonic of the RF gun. The X-band signal is produced from the laser by a phase-locked dielectric resonance oscillator and amplified by a pulsed TWT and klystron. A comparison between the klystron and TWT amplifier phase noise and the fields excited in the RF gun demonstrates the filtering effect of the high-Q structure, thus indicating that the RF gun can be used as a master oscillator and could be energized by either an RF oscillator, such as a magnetron, or a compact source, such as a cross-field amplifier. In particular, the RF gun can play the role of a pulsed RF clock to synchronize the photocathode laser system; direct drive of a synchronously mode-locked AlGaAs quantum well laser has been achieved using the X-band gun RF fields. This novel, gigahertz repetition rate, laser system is being developed to replace the more conventional femtosecond Ti:Al{sub 2}O{sub 3} system. Some advantages include pumping this laser with a stabilized current source instead of a costly, low-efficiency pump laser. Finally, dark current measurements and initial photoelectron measurements are reported.

  5. Sediment-generated noise (SGN): Laboratory determination of measurement volume

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Passive acoustic technology has the potential to allow continuous measurement of bedload moving through streams by recording Sediment-Generated Noise (SGN) from interactions between coarse bedload particles. The technology is relatively economical and is amenable to automated operation. While the ...

  6. Vibration and noise measuring instruments built in the RSR

    NASA Technical Reports Server (NTRS)

    Georgescu, I.

    1974-01-01

    The demands placed upon vibration and noise measuring instruments are discussed. The instruments that are now being manufactured in the RSR are described, as well as those that are being made ready for manufacture, namely: the VP-3 portable vibrometer, the N2103 precision electronic vibrometer, the N2103 B sonometric preamplifier, as well as vibration transducers of the electrodynamic and piezoelectric types.

  7. Estimation of Noise-Free Variance to Measure Heterogeneity

    PubMed Central

    Winkler, Tilo; Melo, Marcos F. Vidal; Degani-Costa, Luiza H.; Harris, R. Scott; Correia, John A.; Musch, Guido; Venegas, Jose G.

    2015-01-01

    Variance is a statistical parameter used to characterize heterogeneity or variability in data sets. However, measurements commonly include noise, as random errors superimposed to the actual value, which may substantially increase the variance compared to a noise-free data set. Our aim was to develop and validate a method to estimate noise-free spatial heterogeneity of pulmonary perfusion using dynamic positron emission tomography (PET) scans. On theoretical grounds, we demonstrate a linear relationship between the total variance of a data set derived from averages of n multiple measurements, and the reciprocal of n. Using multiple measurements with varying n yields estimates of the linear relationship including the noise-free variance as the constant parameter. In PET images, n is proportional to the number of registered decay events, and the variance of the image is typically normalized by the square of its mean value yielding a coefficient of variation squared (CV2). The method was evaluated with a Jaszczak phantom as reference spatial heterogeneity (CVr2) for comparison with our estimate of noise-free or ‘true’ heterogeneity (CVt2). We found that CVt2 was only 5.4% higher than CVr2. Additional evaluations were conducted on 38 PET scans of pulmonary perfusion using 13NN-saline injection. The mean CVt2 was 0.10 (range: 0.03–0.30), while the mean CV2 including noise was 0.24 (range: 0.10–0.59). CVt2 was in average 41.5% of the CV2 measured including noise (range: 17.8–71.2%). The reproducibility of CVt2 was evaluated using three repeated PET scans from five subjects. Individual CVt2 were within 16% of each subject's mean and paired t-tests revealed no difference among the results from the three consecutive PET scans. In conclusion, our method provides reliable noise-free estimates of CVt2 in PET scans, and may be useful for similar statistical problems in experimental data. PMID:25906374

  8. Measurements of nuclear spin dynamics by spin-noise spectroscopy

    SciTech Connect

    Ryzhov, I. I.; Poltavtsev, S. V.; Kozlov, G. G.; Zapasskii, V. S.; Kavokin, K. V.; Glazov, M. M.; Vladimirova, M.; Scalbert, D.; Cronenberger, S.; Lemaître, A.; Bloch, J.

    2015-06-15

    We exploit the potential of the spin noise spectroscopy (SNS) for studies of nuclear spin dynamics in n-GaAs. The SNS experiments were performed on bulk n-type GaAs layers embedded into a high-finesse microcavity at negative detuning. In our experiments, nuclear spin polarisation initially prepared by optical pumping is monitored in real time via a shift of the peak position in the electron spin noise spectrum. We demonstrate that this shift is a direct measure of the Overhauser field acting on the electron spin. The dynamics of nuclear spin is shown to be strongly dependent on the electron concentration.

  9. Sub-shot-noise interferometry from measurements of the one-body density

    NASA Astrophysics Data System (ADS)

    Chwedeńczuk, J.; Hyllus, P.; Piazza, F.; Smerzi, A.

    2012-09-01

    We derive the asymptotic maximum-likelihood phase estimation uncertainty for any interferometric protocol where the positions of the probe particles are measured to infer the phase, but where correlations between the particles are not accessible. First, we apply our formula to the estimation of the phase acquired in the Mach-Zehnder interferometer and recover the well-known momentum formula for the phase sensitivity. Then, we apply our results to interferometers with two spatially separated modes, which could be implemented with a Bose-Einstein condensate trapped in a double-well potential. We show that in a simple protocol which estimates the phase from an interference pattern, a sub-shot-noise phase uncertainty of up to Δθ∝N-2/3 can be achieved. One important property of this estimation protocol is that its sensitivity does not depend on the value of the phase θ, contrary to the sensitivity given by the momentum formula for the Mach-Zehnder transformation. Finally, we study the experimental implementation of the above protocol in detail, by numerically simulating the full statistics as well as by considering the main sources of detection noise, and argue that the shot-noise limit could be surpassed with current technology.

  10. Noise

    MedlinePlus

    Noise is all around you, from televisions and radios to lawn mowers and washing machines. Normally, you ... sensitive structures of the inner ear and cause noise-induced hearing loss. More than 30 million Americans ...

  11. Impact of laser phase and amplitude noises on streak camera temporal resolution

    SciTech Connect

    Wlotzko, V.; Uhring, W.; Summ, P.

    2015-09-15

    Streak cameras are now reaching sub-picosecond temporal resolution. In cumulative acquisition mode, this resolution does not entirely rely on the electronic or the vacuum tube performances but also on the light source characteristics. The light source, usually an actively mode-locked laser, is affected by phase and amplitude noises. In this paper, the theoretical effects of such noises on the synchronization of the streak system are studied in synchroscan and triggered modes. More precisely, the contribution of band-pass filters, delays, and time walk is ascertained. Methods to compute the resulting synchronization jitter are depicted. The results are verified by measurement with a streak camera combined with a Ti:Al{sub 2}O{sub 3} solid state laser oscillator and also a fiber oscillator.

  12. Ultra-low-phase-noise cryocooled microwave dielectric-sapphire-resonator oscillators

    NASA Astrophysics Data System (ADS)

    Hartnett, John G.; Nand, Nitin R.; Lu, Chuan

    2012-04-01

    Two nominally identical ultra-stable microwave oscillators are compared. Each incorporates a sapphire resonator cooled to near 6 K in an ultra-low vibration cryostat using a pulse-tube cryocooler. The phase noise for a single oscillator is measured at -105 dBc/Hz at 1 Hz offset on the 11.2 GHz carrier. The oscillator fractional frequency stability, after subtracting a linear frequency drift of 3.5×10-14/day, is characterized by 5.3×10-16τ-1/2+9×10-17 for integration times 0.1s<τ<1000s and is limited by a flicker frequency noise floor near 1×10-16.

  13. Measurement noise 100 times lower than the quantum-projection limit using entangled atoms.

    PubMed

    Hosten, Onur; Engelsen, Nils J; Krishnakumar, Rajiv; Kasevich, Mark A

    2016-01-28

    Quantum metrology uses quantum entanglement--correlations in the properties of microscopic systems--to improve the statistical precision of physical measurements. When measuring a signal, such as the phase shift of a light beam or an atomic state, a prominent limitation to achievable precision arises from the noise associated with the counting of uncorrelated probe particles. This noise, commonly referred to as shot noise or projection noise, gives rise to the standard quantum limit (SQL) to phase resolution. However, it can be mitigated down to the fundamental Heisenberg limit by entangling the probe particles. Despite considerable experimental progress in a variety of physical systems, a question that persists is whether these methods can achieve performance levels that compare favourably with optimized conventional (non-entangled) systems. Here we demonstrate an approach that achieves unprecedented levels of metrological improvement using half a million (87)Rb atoms in their 'clock' states. The ensemble is 20.1 ± 0.3 decibels (100-fold) spin-squeezed via an optical-cavity-based measurement. We directly resolve small microwave-induced rotations 18.5 ± 0.3 decibels (70-fold) beyond the SQL. The single-shot phase resolution of 147 microradians achieved by the apparatus is better than that achieved by the best engineered cold atom sensors despite lower atom numbers. We infer entanglement of more than 680 ± 35 particles in the atomic ensemble. Applications include atomic clocks, inertial sensors, and fundamental physics experiments such as tests of general relativity or searches for electron electric dipole moment. To this end, we demonstrate an atomic clock measurement with a quantum enhancement of 10.5 ± 0.3 decibels (11-fold), limited by the phase noise of our microwave source. PMID:26751056

  14. Measurement noise 100 times lower than the quantum-projection limit using entangled atoms

    NASA Astrophysics Data System (ADS)

    Hosten, Onur; Engelsen, Nils J.; Krishnakumar, Rajiv; Kasevich, Mark A.

    2016-01-01

    Quantum metrology uses quantum entanglement—correlations in the properties of microscopic systems—to improve the statistical precision of physical measurements. When measuring a signal, such as the phase shift of a light beam or an atomic state, a prominent limitation to achievable precision arises from the noise associated with the counting of uncorrelated probe particles. This noise, commonly referred to as shot noise or projection noise, gives rise to the standard quantum limit (SQL) to phase resolution. However, it can be mitigated down to the fundamental Heisenberg limit by entangling the probe particles. Despite considerable experimental progress in a variety of physical systems, a question that persists is whether these methods can achieve performance levels that compare favourably with optimized conventional (non-entangled) systems. Here we demonstrate an approach that achieves unprecedented levels of metrological improvement using half a million 87Rb atoms in their ‘clock’ states. The ensemble is 20.1 ± 0.3 decibels (100-fold) spin-squeezed via an optical-cavity-based measurement. We directly resolve small microwave-induced rotations 18.5 ± 0.3 decibels (70-fold) beyond the SQL. The single-shot phase resolution of 147 microradians achieved by the apparatus is better than that achieved by the best engineered cold atom sensors despite lower atom numbers. We infer entanglement of more than 680 ± 35 particles in the atomic ensemble. Applications include atomic clocks, inertial sensors, and fundamental physics experiments such as tests of general relativity or searches for electron electric dipole moment. To this end, we demonstrate an atomic clock measurement with a quantum enhancement of 10.5 ± 0.3 decibels (11-fold), limited by the phase noise of our microwave source.

  15. Reprint of : Measuring the Luttinger liquid parameter with shot noise

    NASA Astrophysics Data System (ADS)

    Kühne, J. K.; Protopopov, I. V.; Oreg, Y.; Mirlin, A. D.

    2016-08-01

    We explore the low-frequency noise of interacting electrons in a one-dimensional structure (quantum wire or interaction-coupled edge states) with counterpropagating modes, assuming a single channel in each direction. The system is driven out of equilibrium by a quantum point contact (QPC) with an applied voltage, which induces a double-step energy distribution of incoming electrons on one side of the device. A second QPC serves to explore the statistics of outgoing electrons. We show that measurement of a low-frequency noise in such a setup allows one to extract the Luttinger liquid constant K which is the key parameter characterizing an interacting 1D system. We evaluate the dependence of the zero-frequency noise on K and on parameters of both QPCs (transparencies and voltages).

  16. Quantification of noise sources for amperometric measurement of quantal exocytosis using microelectrodes

    PubMed Central

    Yao, Jia

    2016-01-01

    Electrochemical microelectrodes are commonly used to record amperometric spikes of current that result from oxidation of transmitter released from individual vesicles during exocytosis. Whereas the exquisite sensitivity of these measurements is well appreciated, a better understanding of the noise sources that limit the resolution of the technique is needed to guide the design of next-generation devices. We measured the current power spectral density (SI) of electrochemical microelectrodes to understand the physical basis of dominant noise sources and to determine how noise varies with the electrode material and geometry. We find that the current noise is thermal in origin in that SI is proportional to the real part of the admittance of the electrode. The admittance of microelectrodes is well described by a constant phase element model such that both the real and imaginary admittance increase with frequency raised to a power of 0.84 – 0.96. Our results demonstrate that the current standard deviation is proportional to the square root of the area of the working electrode, increases ~linearly with the bandwidth of the recording, and varies with the choice of the electrode material with Au ≈ carbon fiber > nitrogen-doped diamond-like carbon > indium-tin-oxide. Contact between a cell and a microelectrode does not appreciably increase noise. Surface-patterned microchip electrodes can have a noise performance that is superior to that of carbon-fiber microelectrodes of the same area. PMID:22540116

  17. Sensor Selection for Estimation with Correlated Measurement Noise

    NASA Astrophysics Data System (ADS)

    Liu, Sijia; Chepuri, Sundeep Prabhakar; Fardad, Makan; Masazade, Engin; Leus, Geert; Varshney, Pramod K.

    2016-07-01

    In this paper, we consider the problem of sensor selection for parameter estimation with correlated measurement noise. We seek optimal sensor activations by formulating an optimization problem, in which the estimation error, given by the trace of the inverse of the Bayesian Fisher information matrix, is minimized subject to energy constraints. Fisher information has been widely used as an effective sensor selection criterion. However, existing information-based sensor selection methods are limited to the case of uncorrelated noise or weakly correlated noise due to the use of approximate metrics. By contrast, here we derive the closed form of the Fisher information matrix with respect to sensor selection variables that is valid for any arbitrary noise correlation regime, and develop both a convex relaxation approach and a greedy algorithm to find near-optimal solutions. We further extend our framework of sensor selection to solve the problem of sensor scheduling, where a greedy algorithm is proposed to determine non-myopic (multi-time step ahead) sensor schedules. Lastly, numerical results are provided to illustrate the effectiveness of our approach, and to reveal the effect of noise correlation on estimation performance.

  18. Voltage noise, multiple phase-slips, and switching rates in moderately damped Josephson junctions

    NASA Astrophysics Data System (ADS)

    Žonda, Martin; Belzig, Wolfgang; Novotný, Tomáš

    2015-04-01

    We study the voltage noise properties including the statistics of phase-slips and switching rates in moderately damped Josephson junctions by using a novel efficient numerical approach that combines the matrix continued-fraction method with the full counting statistics. By analyzing the noise results obtained for the resistively and capacitively shunted junction (RCSJ) model we identify different dominating components; namely, the thermal noise close to equilibrium (small-current-bias regime), the shot noise of (multiple) phase-slips in the intermediate range of biases, and the switching noise for yet higher bias currents. We extract thus far inaccessible characteristic rates of phase-slips in the shot-noise regime as well as the escape and retrapping rates in the switching regime as functions of various junction parameters. The method can be extended and applied to other experimentally relevant Josephson junction circuits as well as to optical trap setups.

  19. SPECTRON, a neutron noise measurement system in frequency domain

    SciTech Connect

    Izarra, G. de; Jammes, C. Destouches, C.; Geslot, B.; Di Salvo, J.

    2015-11-15

    This paper is dedicated to the presentation and validation of SPECTRON, a novel neutron noise measurement system developed at CEA Cadarache. The device is designed for the measurement of the β{sub eff} parameter (effective fraction of delayed neutrons) of experimental nuclear reactors using the Cohn-α method. An integrated electronic system is used to record the current from fission chambers. Spectra computed from measurement data are processed by a dedicated software in order to estimate the reactor transfer function and then the effective fraction of delayed neutrons as well as the prompt neutron generation time. After a review of the pile noise measurement method in current mode, the SPECTRON architecture is presented. Then, the validation procedure is described and experimental results are shown, supporting the proper functioning of this new measurement system. It is shown that every technical requirement needed for correct measurement of neutron noise is fulfilled. Measurements performed at MINERVE and EOLE, two experimental nuclear reactors at CEA Cadarache, in real conditions allowed us to validate SPECTRON.

  20. SPECTRON, a neutron noise measurement system in frequency domain

    NASA Astrophysics Data System (ADS)

    de Izarra, G.; Jammes, C.; Geslot, B.; Di Salvo, J.; Destouches, C.

    2015-11-01

    This paper is dedicated to the presentation and validation of SPECTRON, a novel neutron noise measurement system developed at CEA Cadarache. The device is designed for the measurement of the βeff parameter (effective fraction of delayed neutrons) of experimental nuclear reactors using the Cohn-α method. An integrated electronic system is used to record the current from fission chambers. Spectra computed from measurement data are processed by a dedicated software in order to estimate the reactor transfer function and then the effective fraction of delayed neutrons as well as the prompt neutron generation time. After a review of the pile noise measurement method in current mode, the SPECTRON architecture is presented. Then, the validation procedure is described and experimental results are shown, supporting the proper functioning of this new measurement system. It is shown that every technical requirement needed for correct measurement of neutron noise is fulfilled. Measurements performed at MINERVE and EOLE, two experimental nuclear reactors at CEA Cadarache, in real conditions allowed us to validate SPECTRON.

  1. SPECTRON, a neutron noise measurement system in frequency domain.

    PubMed

    de Izarra, G; Jammes, C; Geslot, B; Di Salvo, J; Destouches, C

    2015-11-01

    This paper is dedicated to the presentation and validation of SPECTRON, a novel neutron noise measurement system developed at CEA Cadarache. The device is designed for the measurement of the β(eff) parameter (effective fraction of delayed neutrons) of experimental nuclear reactors using the Cohn-α method. An integrated electronic system is used to record the current from fission chambers. Spectra computed from measurement data are processed by a dedicated software in order to estimate the reactor transfer function and then the effective fraction of delayed neutrons as well as the prompt neutron generation time. After a review of the pile noise measurement method in current mode, the SPECTRON architecture is presented. Then, the validation procedure is described and experimental results are shown, supporting the proper functioning of this new measurement system. It is shown that every technical requirement needed for correct measurement of neutron noise is fulfilled. Measurements performed at MINERVE and EOLE, two experimental nuclear reactors at CEA Cadarache, in real conditions allowed us to validate SPECTRON. PMID:26628176

  2. Anatomical background noise power spectrum in differential phase contrast breast images

    NASA Astrophysics Data System (ADS)

    Garrett, John; Ge, Yongshuai; Li, Ke; Chen, Guang-Hong

    2015-03-01

    In x-ray breast imaging, the anatomical noise background of the breast has a significant impact on the detection of lesions and other features of interest. This anatomical noise is typically characterized by a parameter, β, which describes a power law dependence of anatomical noise on spatial frequency (the shape of the anatomical noise power spectrum). Large values of β have been shown to reduce human detection performance, and in conventional mammography typical values of β are around 3.2. Recently, x-ray differential phase contrast (DPC) and the associated dark field imaging methods have received considerable attention as possible supplements to absorption imaging for breast cancer diagnosis. However, the impact of these additional contrast mechanisms on lesion detection is not yet well understood. In order to better understand the utility of these new methods, we measured the β indices for absorption, DPC, and dark field images in 15 cadaver breast specimens using a benchtop DPC imaging system. We found that the measured β value for absorption was consistent with the literature for mammographic acquisitions (β = 3.61±0.49), but that both DPC and dark field images had much lower values of β (β = 2.54±0.75 for DPC and β = 1.44±0.49 for dark field). In addition, visual inspection showed greatly reduced anatomical background in both DPC and dark field images. These promising results suggest that DPC and dark field imaging may help provide improved lesion detection in breast imaging, particularly for those patients with dense breasts, in whom anatomical noise is a major limiting factor in identifying malignancies.

  3. A phase-modulated laser system of ultra-low phase noise for compact atom interferometers

    NASA Astrophysics Data System (ADS)

    Lee, Ki-Se; Kim, Jaewan; Lee, Sang-Bum; Park, Sang Eon; Kwon, Taek Yong

    2015-07-01

    A compact and robust laser system is essential for mobile atom interferometers. Phase modulation can provide the two necessary phase-coherent frequencies without sophisticated phase-locking between two different lasers. However, the additional laser frequencies generated can perturb the atom interferometer. In this article, we report on a novel method to produce a single high-power laser beam composed of two phase-coherent sidebands without the perturbing carrier mode. Light from a diode laser is phase-modulated by using a fiber-coupled electro-optic modulator driven at 3.4 GHz and passes through a Fabry-Perot cavity with a 6.8 GHz free spectral range. The cavity filters the carrier mode to leave the two first-order sidebands for the two-photon Raman transition between the two hyperfine ground states of 87Rb. The laser beam is then fed to a single tapered amplifier, and the two sidebands are both amplified without mode competition. The phase noise is lower than that of a state-of-the-art optically phase-locked external-cavity diode laser (-135 dBrad2/Hz at 10 kHz) at frequencies above 10 Hz. This technique can be used in all-fiber-based laser systems for future mobile atom interferometers.

  4. Quasi-thermal noise measurements on STEREO: Kinetic temperature deduction using electron shot noise model

    NASA Astrophysics Data System (ADS)

    Martinović, M. M.; Zaslavsky, A.; Maksimović, M.; Meyer-Vernet, N.; Å egan, S.; Zouganelis, I.; Salem, C.; Pulupa, M.; Bale, S. D.

    2016-01-01

    Quasi-thermal noise (QTN) spectroscopy is an accurate technique for in situ measurements of electron density and temperature in space plasmas. A QTN spectrum is determined by plasma and antenna properties. On STEREO/WAVES, since the antennas are relatively short and thick, the QTN spectrum is dominated by electron shot noise, especially at low frequencies, which reduces the accuracy of the method. Here we use the STEREO low-frequency receiver, proton density measured by Plasma and Suprathermal Ion Composition instrument, and a QTN and shot noise models to provide electron temperature data from both STEREO A and B spacecraft. This derivation is important since no reliable measurements of electron temperature exist on board these spacecraft. We compare the results of our analysis with the electron temperature provided by the Wind spacecraft during the period when Wind and STEREO B were close to each other. The comparison shows that our technique is reliable when results are integrated on a time scale of the order of 50 to 60 min.

  5. Effect of phase noise on quantum correlations in Bose-Josephson junctions

    SciTech Connect

    Ferrini, G.; Minguzzi, A.; Hekking, F. W. J.; Spehner, D.

    2011-10-15

    In a two-mode Bose-Josephson junction the dynamics induced by a sudden quench of the tunnel amplitude leads to the periodic formation of entangled states. For instance, squeezed states are formed at short times and macroscopic superpositions of phase states at later times. In atom interferometry, the two modes of the junction play the role of the two arms of a Mach-Zehnder interferometer; use of multiparticle entangled states allows the enhancement of phase sensitivity with respect to that obtained from uncorrelated atoms. Decoherence due to the presence of noise degrades quantum correlations between atoms, thus reducing phase sensitivity. We consider decoherence due to stochastic fluctuations of the energies of the two modes of the junction. We analyze its effect on squeezed states and macroscopic superpositions and calculate the squeezing parameter and the quantum Fisher information during the quenched dynamics. The latter quantity measures the amount of quantum correlations useful in interferometry. For moderate noise intensities, we show that it increases on time scales beyond the squeezing regime. This suggests multicomponent superpositions of phase states as interesting candidates for high-precision atom interferometry.

  6. Phase measurement system using a dithered clock

    DOEpatents

    Fairley, C.R.; Patterson, S.R.

    1991-05-28

    A phase measurement system is disclosed which measures the phase shift between two signals by dithering a clock signal and averaging a plurality of measurements of the phase differences between the two signals. 8 figures.

  7. Microwave generation with low residual phase noise from a femtosecond fiber laser with an intracavity electro-optic modulator.

    PubMed

    Swann, William C; Baumann, Esther; Giorgetta, Fabrizio R; Newbury, Nathan R

    2011-11-21

    Low phase-noise microwave generation has previously been demonstrated using self-referenced frequency combs to divide down a low noise optical reference. We demonstrate an approach based on a fs Er-fiber laser that avoids the complexity of self-referenced stabilization of the offset frequency. Instead, the repetition rate of the femtosecond Er-fiber laser is phase locked to two cavity-stabilized cw fiber lasers that span 3.74 THz by use of an intracavity electro-optic modulator with over 2 MHz feedback bandwidth. The fs fiber laser effectively divides the 3.74 THz difference signal to produce microwave signals at harmonics of the repetition rate. Through comparison of two identical dividers, we measure a residual phase noise on a 1.5 GHz carrier of -120 dBc/Hz at 1 Hz offset. PMID:22109466

  8. High optical efficiency and photon noise limited sensitivity of microwave kinetic inductance detectors using phase readout

    NASA Astrophysics Data System (ADS)

    Janssen, R. M. J.; Baselmans, J. J. A.; Endo, A.; Ferrari, L.; Yates, S. J. C.; Baryshev, A. M.; Klapwijk, T. M.

    2013-11-01

    We demonstrate photon noise limited performance in both phase and amplitude readout in microwave kinetic inductance detectors (MKIDs) consisting of NbTiN and Al, down to 100 fW of optical power. We simulate the far field beam pattern of the lens-antenna system used to couple radiation into the MKID and derive an aperture efficiency of 75%. This is close to the theoretical maximum of 80% for a single-moded detector. The beam patterns are verified by a detailed analysis of the optical coupling within our measurement setup.

  9. High optical efficiency and photon noise limited sensitivity of microwave kinetic inductance detectors using phase readout

    SciTech Connect

    Janssen, R. M. J. Endo, A.; Baselmans, J. J. A.; Ferrari, L.; Yates, S. J. C.; Baryshev, A. M.; Klapwijk, T. M.

    2013-11-11

    We demonstrate photon noise limited performance in both phase and amplitude readout in microwave kinetic inductance detectors (MKIDs) consisting of NbTiN and Al, down to 100 fW of optical power. We simulate the far field beam pattern of the lens-antenna system used to couple radiation into the MKID and derive an aperture efficiency of 75%. This is close to the theoretical maximum of 80% for a single-moded detector. The beam patterns are verified by a detailed analysis of the optical coupling within our measurement setup.

  10. Laser phase noise compensation in long-range OFDR by using an optical fiber delay loop

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Fan, Xinyu; Wang, Shuai; Yang, Guangyao; Liu, Qingwen; He, Zuyuan

    2016-04-01

    We propose and experimentally demonstrate a novel technique to compensate the laser phase noise in long-range OFDR by using an optical fiber delay loop, which mainly consists of a delay fiber and a frequency shifter. The delay fiber is used to shorten the optical path difference between two arms of the interferometer, and the frequency shifter works as a counter for taking the number of lightwave circulated in the loop. The preliminary experiment shows a successful compensation effect, and a 10 cm spatial resolution over 30 km measurement range is realized by using this method.

  11. Microwave oscillator with reduced phase noise by negative feedback incorporating microwave signals with suppressed carrier

    NASA Technical Reports Server (NTRS)

    Dick, G. J.; Saunders, J.

    1989-01-01

    Oscillator configurations which reduce the effect of 1/f noise sources for both direct feedback and stabilized local oscillator (STALO) circuits are developed and analyzed. By appropriate use of carrier suppression, a small signal is generated which suffers no loss of loop phase information or signal-to-noise ratio. This small signal can be amplified without degradation by multiplicative amplifier noise, and can be detected without saturation of the detector. Together with recent advances in microwave resonator Qs, these circuit improvements will make possible lower phase noise than can be presently achieved without the use of cryogenic devices.

  12. Quantum-noise-limited interferometric measurement of atomic noise: Towards spin squeezing on the Cs clock transition

    SciTech Connect

    Oblak, Daniel; Tittel, Wolfgang; Vershovski, Anton K.; Mikkelsen, Jens K.; Soerensen, Jens L.; Petrov, Plamen G.; Garrido Alzar, Carlos L.; Polzik, Eugene S.

    2005-04-01

    We investigate theoretically and experimentally a nondestructive interferometric measurement of the state population of an ensemble of laser-cooled and trapped atoms. This study is a step toward generation of (pseudo)spin squeezing of cold atoms targeted at the improvement of the cesium clock performance beyond the limit set by the quantum projection noise of atoms. We calculate the phase shift and the quantum noise of a near-resonant optical probe pulse propagating through a cloud of cold {sup 133}Cs atoms. We analyze the figure of merit for a quantum nondemolition (QND) measurement of the collective pseudospin and show that it can be expressed simply as a product of the ensemble optical density and the pulse-integrated rate of the spontaneous emission caused by the off-resonant probe light. Based on this, we propose a protocol for the sequence of operations required to generate and utilize spin squeezing for the improved atomic clock performance via a QND measurement on the probe light. In the experimental part we demonstrate that the interferometric measurement of the atomic population can reach a sensitivity of the order of {radical}(N{sub at}) in a cloud of N{sub at} cold atoms, which is an important benchmark toward the experimental realization of the theoretically analyzed protocol.

  13. Correlation spectrum analyzer for direct measurement of device current noise

    NASA Astrophysics Data System (ADS)

    Ferrari, Giorgio; Sampietro, Marco

    2002-07-01

    This article analyzes the realization and the performance of a correlation spectrum analyzer specifically conceived to directly measure the current noise produced by electronic devices with maximum sensitivity. The text describes in detail and gives the design rules of the instrument input amplifiers taking into consideration noise, dynamic range, stability, and bandwidth, together with the effects that a device under test (DUT) having complex impedance introduce. This article shows that the proposed scheme may allow current noise measurements with a sensitivity improved by few orders of magnitude with respect to a standard spectrum analyzer and to a correlation analyzer in voltage scheme whenever the DUT has an impedance larger than few 10 kOmega. Such a sensitivity makes the proposed instrument ideal for the characterization of advanced devices, such as ultrashort channel metal-oxide-semiconductor field effect transistors, mesoscopic junctions, or spin dependent electron transfer devices where it may be necessary to detect noise levels as low as fA/RADICAL:[[RADICAND:[Hz

  14. Flap noise characteristics measured by pressure cross correlation techniques

    NASA Astrophysics Data System (ADS)

    Miller, W. R.

    1980-03-01

    The aerodynamic sound generated by a realistic aircraft flap system was investigated through the use of cross correlations between surface pressure fluctuations and far field sound. Measurements were conducted in two subsonic wind tunnel studies to determine the strength, distribution, and directivity of the major sources of flap noise at speeds up to 79.0 m/sec. A pilot study was performed on a single flap model to test the measurement technique and provide initial data on the characteristics of flap noise. The major portion of this investigation studied the sound radiated by a realistic large scale model of a triple slotted flap system mounted on a sweptback 6.7 meter semispan model wing. The results of this investigation have identified the major sources of flap generated noise and their dependence of flow defining parameters. In addition, a possible avenue toward the reduction of flap generated noise has been identified via the placement of the flap actuator fairings on the flap system.

  15. Trailing edge noise prediction from measured surface pressures

    NASA Technical Reports Server (NTRS)

    Brooks, T. F.; Hodgson, T. H.

    1981-01-01

    Trailing edge (TE) noise is investigated for the case of a two-dimensional airfoil embedded in a uniform low Mach number flow, and the usefulness of several TE noise theories is examined by applying them to the measured data. The TE noise spectra and directivity are quantitatively determined for the case of a high Reynolds number and a fully turbulent boundary layer. Parameters include angle of attack, flow velocity and TE bluntness. Evanescent wave theories by Chase (1975) and Chandiramani (1974) are compared to the present results and show good agreement. Agreement of the near field pressure scatter phenomenon analysis with measurements implies that the basic assumptions used in the analysis are correct, i.e., the turbulent boundary layer (TBL) flow passes the trailing edge into the wake region. No hydrodynamic wake shedding activity is confirmed for the two-sided TBL flow, and a method incorporating the principles of the coherent output power method is used to determine the sound field. The near field edge scatter model is found to not only establish optimum sizing of edge treatment for noise control, but also to separate and identify the scattered field from the incident hydrodynamic field.

  16. Trailing edge noise prediction from measured surface pressures

    NASA Astrophysics Data System (ADS)

    Brooks, T. F.; Hodgson, T. H.

    1981-09-01

    Trailing edge (TE) noise is investigated for the case of a two-dimensional airfoil embedded in a uniform low Mach number flow, and the usefulness of several TE noise theories is examined by applying them to the measured data. The TE noise spectra and directivity are quantitatively determined for the case of a high Reynolds number and a fully turbulent boundary layer. Parameters include angle of attack, flow velocity and TE bluntness. Evanescent wave theories by Chase (1975) and Chandiramani (1974) are compared to the present results and show good agreement. Agreement of the near field pressure scatter phenomenon analysis with measurements implies that the basic assumptions used in the analysis are correct, i.e., the turbulent boundary layer (TBL) flow passes the trailing edge into the wake region. No hydrodynamic wake shedding activity is confirmed for the two-sided TBL flow, and a method incorporating the principles of the coherent output power method is used to determine the sound field. The near field edge scatter model is found to not only establish optimum sizing of edge treatment for noise control, but also to separate and identify the scattered field from the incident hydrodynamic field.

  17. Measuring the effectiveness of methods for evaluating noise jammers

    NASA Astrophysics Data System (ADS)

    Hu, Fang; Huang, Jian-Guo

    2007-09-01

    Reliable evaluations of a noise jammer’s effectiveness are necessary to properly design, manufacture, and operate one, so it is important to have an evaluation model. Based on their characteristics and principles, relevant factors were classified in terms of their contribution to a unit’s effectiveness. In this way an evaluation index system was established. In the proposed mathematical model a noise jammer is analyzed by combining the model of system effectiveness with the method of analytic hierarchical process. A simulation of underwater acoustic countermeasures was used to test the rationality and feasibility of the model. The results showed that this model is an effective way to solve the challenge of evaluating the effectiveness of non-offensive weapons under single working phase.

  18. Noise texture and signal detectability in propagation-based x-ray phase-contrast tomography

    SciTech Connect

    Chou, Cheng-Ying; Anastasio, Mark A.

    2010-01-15

    Purpose: X-ray phase-contrast tomography (PCT) is a rapidly emerging imaging modality for reconstructing estimates of an object's three-dimensional x-ray refractive index distribution. Unlike conventional x-ray computed tomography methods, the statistical properties of the reconstructed images in PCT remain unexplored. The purpose of this work is to quantitatively investigate noise propagation in PCT image reconstruction. Methods: The authors derived explicit expressions for the autocovariance of the reconstructed absorption and refractive index images to characterize noise texture and understand how the noise properties are influenced by the imaging geometry. Concepts from statistical detection theory were employed to understand how the imaging geometry-dependent statistical properties affect the signal detection performance in a signal-known-exactly/background-known-exactly task. Results: The analytical formulas for the phase and absorption autocovariance functions were implemented numerically and compared to the corresponding empirical values, and excellent agreement was found. They observed that the reconstructed refractive images are highly spatially correlated, while the absorption images are not. The numerical results confirm that the strength of the covariance is scaled by the detector spacing. Signal detection studies were conducted, employing a numerical observer. The detection performance was found to monotonically increase as the detector-plane spacing was increased. Conclusions: The authors have conducted the first quantitative investigation of noise propagation in PCT image reconstruction. The reconstructed refractive images were found to be highly spatially correlated, while absorption images were not. This is due to the presence of a Fourier space singularity in the reconstruction formula for the refraction images. The statistical analysis may facilitate the use of task-based image quality measures to further develop and optimize this emerging

  19. Wavelet-based coherence measures of global seismic noise properties

    NASA Astrophysics Data System (ADS)

    Lyubushin, A. A.

    2015-04-01

    The coherent behavior of four parameters characterizing the global field of low-frequency (periods from 2 to 500 min) seismic noise is studied. These parameters include generalized Hurst exponent, multifractal singularity spectrum support width, the normalized entropy of variance, and kurtosis. The analysis is based on the data from 229 broadband stations of GSN, GEOSCOPE, and GEOFON networks for a 17-year period from the beginning of 1997 to the end of 2013. The entire set of stations is subdivided into eight groups, which, taken together, provide full coverage of the Earth. The daily median values of the studied noise parameters are calculated in each group. This procedure yields four 8-dimensional time series with a time step of 1 day with a length of 6209 samples in each scalar component. For each of the four 8-dimensional time series, a multiple correlation measure is estimated, which is based on computing robust canonical correlations for the Haar wavelet coefficients at the first detail level within a moving time window of the length 365 days. These correlation measures for each noise property demonstrate essential increasing starting from 2007 to 2008 which was continued till the end of 2013. Taking into account a well-known phenomenon of noise correlation increasing before catastrophes, this increasing of seismic noise synchronization is interpreted as indicators of the strongest (magnitudes not less than 8.5) earthquakes activation which is observed starting from the Sumatra mega-earthquake of 26 Dec 2004. This synchronization continues growing up to the end of the studied period (2013), which can be interpreted as a probable precursor of the further increase in the intensity of the strongest earthquakes all over the world.

  20. A low phase noise microwave frequency synthesis for a high-performance cesium vapor cell atomic clock

    NASA Astrophysics Data System (ADS)

    François, B.; Calosso, C. E.; Danet, J. M.; Boudot, R.

    2014-09-01

    We report the development, absolute phase noise, and residual phase noise characterization of a 9.192 GHz microwave frequency synthesis chain devoted to be used as a local oscillator in a high-performance cesium vapor cell atomic clock based on coherent population trapping (CPT). It is based on frequency multiplication of an ultra-low phase noise 100 MHz oven-controlled quartz crystal oscillator using a nonlinear transmission line-based chain. Absolute phase noise performances of the 9.192 GHz output signal are measured to be -42, -100, -117 dB rad2/Hz and -129 dB rad2/Hz at 1 Hz, 100 Hz, 1 kHz, and 10 kHz offset frequencies, respectively. Compared to current results obtained in a state-of-the-art CPT-based frequency standard developed at LNE-SYRTE, this represents an improvement of 8 dB and 10 dB at f = 166 Hz and f = 10 kHz, respectively. With such performances, the expected Dick effect contribution to the atomic clock short term frequency stability is reported at a level of 6.2 × 10-14 at 1 s integration time, that is a factor 3 higher than the atomic clock shot noise limit. Main limitations are pointed out.

  1. A low phase noise microwave frequency synthesis for a high-performance cesium vapor cell atomic clock

    SciTech Connect

    François, B.; Boudot, R.; Calosso, C. E.; Danet, J. M.

    2014-09-15

    We report the development, absolute phase noise, and residual phase noise characterization of a 9.192 GHz microwave frequency synthesis chain devoted to be used as a local oscillator in a high-performance cesium vapor cell atomic clock based on coherent population trapping (CPT). It is based on frequency multiplication of an ultra-low phase noise 100 MHz oven-controlled quartz crystal oscillator using a nonlinear transmission line-based chain. Absolute phase noise performances of the 9.192 GHz output signal are measured to be −42, −100, −117 dB rad{sup 2}/Hz and −129 dB rad{sup 2}/Hz at 1 Hz, 100 Hz, 1 kHz, and 10 kHz offset frequencies, respectively. Compared to current results obtained in a state-of-the-art CPT-based frequency standard developed at LNE-SYRTE, this represents an improvement of 8 dB and 10 dB at f = 166 Hz and f = 10 kHz, respectively. With such performances, the expected Dick effect contribution to the atomic clock short term frequency stability is reported at a level of 6.2 × 10{sup −14} at 1 s integration time, that is a factor 3 higher than the atomic clock shot noise limit. Main limitations are pointed out.

  2. A low phase noise microwave frequency synthesis for a high-performance cesium vapor cell atomic clock.

    PubMed

    François, B; Calosso, C E; Danet, J M; Boudot, R

    2014-09-01

    We report the development, absolute phase noise, and residual phase noise characterization of a 9.192 GHz microwave frequency synthesis chain devoted to be used as a local oscillator in a high-performance cesium vapor cell atomic clock based on coherent population trapping (CPT). It is based on frequency multiplication of an ultra-low phase noise 100 MHz oven-controlled quartz crystal oscillator using a nonlinear transmission line-based chain. Absolute phase noise performances of the 9.192 GHz output signal are measured to be -42, -100, -117 dB rad(2)/Hz and -129 dB rad(2)/Hz at 1 Hz, 100 Hz, 1 kHz, and 10 kHz offset frequencies, respectively. Compared to current results obtained in a state-of-the-art CPT-based frequency standard developed at LNE-SYRTE, this represents an improvement of 8 dB and 10 dB at f = 166 Hz and f = 10 kHz, respectively. With such performances, the expected Dick effect contribution to the atomic clock short term frequency stability is reported at a level of 6.2 × 10(-14) at 1 s integration time, that is a factor 3 higher than the atomic clock shot noise limit. Main limitations are pointed out. PMID:25273756

  3. Analysis of a Shock-Associated Noise Prediction Model Using Measured Jet Far-Field Noise Data

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.; Sharpe, Jacob A.

    2014-01-01

    A code for predicting supersonic jet broadband shock-associated noise was assessed using a database containing noise measurements of a jet issuing from a convergent nozzle. The jet was operated at 24 conditions covering six fully expanded Mach numbers with four total temperature ratios. To enable comparisons of the predicted shock-associated noise component spectra with data, the measured total jet noise spectra were separated into mixing noise and shock-associated noise component spectra. Comparisons between predicted and measured shock-associated noise component spectra were used to identify deficiencies in the prediction model. Proposed revisions to the model, based on a study of the overall sound pressure levels for the shock-associated noise component of the measured data, a sensitivity analysis of the model parameters with emphasis on the definition of the convection velocity parameter, and a least-squares fit of the predicted to the measured shock-associated noise component spectra, resulted in a new definition for the source strength spectrum in the model. An error analysis showed that the average error in the predicted spectra was reduced by as much as 3.5 dB for the revised model relative to the average error for the original model.

  4. 23 CFR 772.9 - Analysis of traffic noise impacts and abatement measures.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 23 Highways 1 2011-04-01 2011-04-01 false Analysis of traffic noise impacts and abatement measures... AND ENVIRONMENT PROCEDURES FOR ABATEMENT OF HIGHWAY TRAFFIC NOISE AND CONSTRUCTION NOISE § 772.9 Analysis of traffic noise impacts and abatement measures. (a) The highway agency shall determine...

  5. High-resolution low-noise 360-degree digital solid reconstruction using phase-stepping profilometry.

    PubMed

    Servin, Manuel; Garnica, Guillermo; Estrada, Julio C; Padilla, J M

    2014-05-01

    In this paper we describe a high-resolution, low-noise phase-shifting algorithm applied to 360 degree digitizing of solids with diffuse light scattering surface. A 360 degree profilometer needs to rotate the object a full revolution to digitize a three-dimensional (3D) solid. Although 360 degree profilometry is not new, we are proposing however a new experimental set-up which permits full phase-bandwidth phase-measuring algorithms. The first advantage of our solid profilometer is: it uses base-band, phase-stepping algorithms providing full data phase-bandwidth. This contrasts with band-pass, spatial-carrier Fourier profilometry which typically uses 1/3 of the fringe data-bandwidth. In addition phase-measuring is generally more accurate than single line-projection, non-coherent, intensity-based line detection algorithms. Second advantage: new fringe-projection set-up which avoids self-occluding fringe-shadows for convex solids. Previous 360 degree fringe-projection profilometers generate self-occluding shadows because of the elevation illumination angles. Third advantage: trivial line-by-line fringe-data assembling based on a single cylindrical coordinate system shared by all 360-degree perspectives. This contrasts with multi-view overlapping fringe-projection systems which use iterative closest point (ICP) algorithms to fusion the 3D-data cloud within a single coordinate system (e.g. Geomagic). Finally we used a 400 steps/rotation turntable, and a 640x480 pixels CCD camera. Higher 3D digitized surface resolutions and less-noisy phase measurements are trivial by increasing the angular-spatial resolution and phase-steps number without any substantial change on our 360 degree profilometer. PMID:24921790

  6. Noise characteristics of the Skylab S-193 altimeter altitude measurements

    NASA Technical Reports Server (NTRS)

    Hatch, W. E.

    1975-01-01

    The statistical characteristics of the SKYLAB S-193 altimeter altitude noise are considered. These results are reported in a concise format for use and analysis by the scientific community. In most instances the results have been grouped according to satellite pointing so that the effects of pointing on the statistical characteristics can be readily seen. The altimeter measurements and the processing techniques are described. The mathematical descriptions of the computer programs used for these results are included.

  7. Measurement of Acceptable Noise Level with Background Music

    PubMed Central

    Ahn, Hyun-Jung; Bahng, Junghwa

    2015-01-01

    Background and Objectives Acceptable noise level (ANL) is a measure of the maximum background noise level (BNL) that a person is willing to tolerate while following a target story. Although researchers have used various sources of target sound in ANL measures, a limited type of background noise has been used. Extending the previous study of Gordon-Hickey & Moore (2007), the current study determined the effect of music genre and tempo on ANLs as possible factors affecting ANLs. We also investigated the relationships between individual ANLs and the familiarity of music samples and between music ANLs and subjective preference. Subjects and Methods Forty-one participants were seperated into two groups according to their ANLs, 29 low-ANL listeners and 12 high-ANL listeners. Using Korean ANL material, the individual ANLs were measured based on the listeners' most comfortable listening level and BNL. The ANLs were measured in six conditions, with different music tempo (fast, slow) and genre (K-pop, pop, classical) in a counterbalanced order. Results Overall, ANLs did not differ by the tempo of background music, but music genre significantly affected individual ANLs. We observed relatively higher ANLs with K-pop music and relatively lower ANLs with classical music. This tendency was similar in both low-ANL and high-ANL groups. However, the subjective ratings of music familiarity and preference affected ANLs differently for low-ANL and high-ANL groups. In contrast to the low-ANL listeners, the ANLs of the high-ANL listeners were significantly affected by music familiarity and preference. Conclusions The genre of background music affected ANLs obtained using background music. The degree of music familiarity and preference appears to be associated with individual susceptibility to background music only for listeners who are greatly annoyed by background noise (high-ANL listeners). PMID:26413573

  8. Instrumentation for measuring aircraft noise and sonic boom

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J. (Inventor)

    1976-01-01

    Improved instrumentation suitable for measuring aircraft noise and sonic booms is described. An electric current proportional to the sound pressure level at a condenser microphone is produced and transmitted over a cable and amplified by a zero drive amplifier. The converter consists of a local oscillator, a dual-gate field-effect transistor mixer, and a voltage regulator/impedance translator. The improvements include automatic tuning compensation against changes in static microphone capacitance and means for providing a remote electrical calibration capability.

  9. Phase velocity tomography of surface waves using ambient noise cross correlation and array processing

    NASA Astrophysics Data System (ADS)

    Boué, Pierre; Roux, Philippe; Campillo, Michel; Briand, Xavier

    2014-01-01

    Continuous recordings of ambient seismic noise across large seismic arrays allows a new type of processing using the cross-correlation technique on broadband data. We propose to apply double beamforming (DBF) to cross correlations to extract a particular wave component of the reconstructed signals. We focus here on the extraction of the surface waves to measure phase velocity variations with great accuracy. DBF acts as a spatial filter between two distant subarrays after cross correlation of the wavefield between each single receiver pair. During the DBF process, horizontal slowness and azimuth are used to select the wavefront on both subarray sides. DBF increases the signal-to-noise ratio, which improves the extraction of the dispersive wave packets. This combination of cross correlation and DBF is used on the Transportable Array (USArray), for the central U.S. region. A standard model of surface wave propagation is constructed from a combination of the DBF and cross correlations at different offsets and for different frequency bands. The perturbation (phase shift) between each beam and the standard model is inverted. High-resolution maps of the phase velocity of Rayleigh and Love waves are then constructed. Finally, the addition of azimuthal information provided by DBF is discussed, to construct curved rays that replace the classical great-circle path assumption.

  10. Use of a Microphone Phased Array to Determine Noise Sources in a Rocket Plume

    NASA Technical Reports Server (NTRS)

    Panda, J.; Mosher, R.

    2010-01-01

    A 70-element microphone phased array was used to identify noise sources in the plume of a solid rocket motor. An environment chamber was built and other precautions were taken to protect the sensitive condenser microphones from rain, thunderstorms and other environmental elements during prolonged stay in the outdoor test stand. A camera mounted at the center of the array was used to photograph the plume. In the first phase of the study the array was placed in an anechoic chamber for calibration, and validation of the indigenous Matlab(R) based beamform software. It was found that the "advanced" beamform methods, such as CLEAN-SC was partially successful in identifying speaker sources placed closer than the Rayleigh criteria. To participate in the field test all equipments were shipped to NASA Marshal Space Flight Center, where the elements of the array hardware were rebuilt around the test stand. The sensitive amplifiers and the data acquisition hardware were placed in a safe basement, and 100m long cables were used to connect the microphones, Kulites and the camera. The array chamber and the microphones were found to withstand the environmental elements as well as the shaking from the rocket plume generated noise. The beamform map was superimposed on a photo of the rocket plume to readily identify the source distribution. It was found that the plume made an exceptionally long, >30 diameter, noise source over a large frequency range. The shock pattern created spatial modulation of the noise source. Interestingly, the concrete pad of the horizontal test stand was found to be a good acoustic reflector: the beamform map showed two distinct source distributions- the plume and its reflection on the pad. The array was found to be most effective in the frequency range of 2kHz to 10kHz. As expected, the classical beamform method excessively smeared the noise sources at lower frequencies and produced excessive side-lobes at higher frequencies. The "advanced" beamform

  11. An intelligent subsurface buoy design for measuring ocean ambient noise

    NASA Astrophysics Data System (ADS)

    Li, Bing; Wang, Lei

    2012-11-01

    A type of ultra-low power subsurface buoy system is designed to measure and record ocean ambient noise data. The buoy utilizes a vector hydrophone (pass band 20Hz-1.2kHz) and a 6-element vertical hydrophone array (pass band 20Hz-2kHz) to measure ocean ambient noise. The acoustic signals are passed through an automatically modified gain, a band pass filter, and an analog-to-digital (A/D) conversion module. They are then stored in high-capacity flash memory. In order to identify the direction of noise source, the vector sensor measuring system has integrated an electric-magnetic compass. The system provides a low-rate underwater acoustic communication system which is used to report the buoy state information and a high-speed USB interface which is used to retrieve the recorded data on deck. The whole system weighs about 125kg and can operate autonomously for more than 72 hours. The system's main architecture and the sea-trial test results are provided in this paper.

  12. How to measure community tolerance levels for noise.

    PubMed

    Taraldsen, Gunnar; Gelderblom, Femke B; Gjestland, Truls T

    2016-07-01

    Relationships between noise exposure and transportation noise induced annoyance have been studied extensively for several decades. The annoyance due to aircraft noise exposure is in the present paper assumed to be influenced by the day-night yearly average sound level (DNL). It has long been recognized that the annoyance also depends on non-DNL factors, but this is complicated-resulting in a variety of different modeling strategies. Motivated by this, the community tolerance level (CTL) was introduced in 2011 for a loudness-based psychometric function. It is a single parameter that accounts for the aggregate influence of other factors. This paper suggests and investigates different methods for the measurement of the CTL. The methods are illustrated on data found in the literature, on recent surveys around two Norwegian airports, and on simulated data. The results from the presented methods differ significantly. An elementary method is shown to give a measurement of the CTL with smaller uncertainty, and is recommended as a replacement for the originally suggested least-squares method. Methods for evaluating the measurement uncertainty are also presented. PMID:27475190

  13. Optimal bandpass sampling strategies for enhancing the performance of a phase noise meter

    NASA Astrophysics Data System (ADS)

    Angrisani, Leopoldo; Schiano Lo Moriello, Rosario; D'Arco, Mauro; Greenhall, Charles

    2008-10-01

    Measurement of phase noise affecting oscillators or clocks is a fundamental practice whenever the need of a reliable time base is of primary concern. In spite of the number of methods or techniques either available in the literature or implemented as personalities in general-purpose equipment, very accurate measurement results can be gained only through expensive, dedicated instruments. To offer a cost-effective alternative, the authors have already realized a DSP-based phase noise meter, capable of assuring good performance and real-time operation. The meter, however, suffers from a reduced frequency range (about 250 kHz), and needs an external time base for input signal digitization. To overcome these drawbacks, the authors propose the use of bandpass sampling strategies to enlarge the frequency range, and of an internal time base to make standalone operation much more feasible. After some remarks on the previous version of the meter, key features of the adopted time base and proposed sampling strategies are described in detail. Results of experimental tests, carried out on sinusoidal signals provided both by function and arbitrary waveform generators, are presented and discussed; evidence of the meter's reliability and efficacy is finally given.

  14. Analyses and Measures of GPR Signal with Superimposed Noise

    NASA Astrophysics Data System (ADS)

    Chicarella, Simone; Ferrara, Vincenzo; D'Atanasio, Paolo; Frezza, Fabrizio; Pajewski, Lara; Pavoncello, Settimio; Prontera, Santo; Tedeschi, Nicola; Zambotti, Alessandro

    2014-05-01

    The influence of EM noises and environmental hard conditions on the GPR surveys has been examined analytically [1]. In the case of pulse radar GPR, many unwanted signals as stationary clutter, non-stationary clutter, random noise, and time jitter, influence the measurement signal. When GPR is motionless, stationary clutter is the most dominant signal component due to the reflections of static objects different from the investigated target, and to the direct antenna coupling. Moving objects like e.g. persons and vehicles, and the swaying of tree crown, produce non-stationary clutter. Device internal noise and narrowband jamming are e.g. two potential sources of random noises. Finally, trigger instabilities generate random jitter. In order to estimate the effective influence of these noise signal components, we organized some experimental setup of measurement. At first, we evaluated for the case of a GPR basic detection, simpler image processing of radargram. In the future, we foresee experimental measurements for detection of the Doppler frequency changes induced by movements of targets (like physiological movements of survivors under debris). We obtain image processing of radargram by using of GSSI SIR® 2000 GPR system together with the UWB UHF GPR-antenna (SUB-ECHO HBD 300, a model manufactured by Radarteam company). Our work includes both characterization of GPR signal without (or almost without) a superimposed noise, and the effect of jamming originated from the coexistence of a different radio signal. For characterizing GPR signal, we organized a measurement setup that includes the following instruments: mod. FSP 30 spectrum analyser by Rohde & Schwarz which operates in the frequency range 9 KHz - 30 GHz, mod. Sucoflex 104 cable by Huber Suhner (10 MHz - 18 GHz), and HL050 antenna by Rohde & Schwarz (bandwidth: from 850 MHz to 26.5 GHz). The next analysis of superimposed jamming will examine two different signal sources: by a cellular phone and by a

  15. Phase noise induced due to amplitude fluctuations in dynamic force microscopy

    NASA Astrophysics Data System (ADS)

    Rast, S.; Gysin, U.; Meyer, E.

    2009-02-01

    In dynamic force microscopy, the force sensor is driven on its resonance frequency and the amplitude of the cantilever is sustained at a constant value. The amplitude typically ranges between 0.1 and 30 nm. If a large amplitude is set, the cantilever tip senses both long-range and short-range interaction forces provided that the tip is close to the sample surface. The short-range interactions are decisive for the atomic contrast in atomic force microscopy (AFM) images. They can be separated from the long-range interactions by setting an amplitude which encompasses the typical range of the interaction force, i.e., the subangstrom regime for van der Waals contribution. It is distinctive for cantilevers operated at small driving amplitudes that the cantilever deflection can be considered as a sinusoidal signal superimposed with a quasimonochromatic random signal originating from fluctuations. If one measures experimentally the standard deviation of the phase σφ of the signal with respect to a monochromatic reference signal, a universal relationship between the standard deviation of the phase σφ and the cantilever amplitude x0 is found. The smaller the ratio of rms amplitude of the sinusoidal signal and the rms value of random signal is, the larger the phase fluctuations are. Phase fluctuations are of importance for measurements at small amplitudes, since they determine the limit of phase-sensitive measurements or the lateral imaging resolution in the so-called pendulum mode of AFM operation. In this paper we develop a heuristic model, which provides an analytical formula for the probability density of phase noise of a sinusoidal signal superimposed by a quasimonochromatic one with respect to a reference oscillator. The variance of the phase noise can be deduced from the distribution functions. The suggested model is verified experimentally and is compared with theoretical predictions. The amplitude-dependent phase fluctuations are a powerful tool to determine the

  16. How to Address Measurement Noise in Bayesian Model Averaging

    NASA Astrophysics Data System (ADS)

    Schöniger, A.; Wöhling, T.; Nowak, W.

    2014-12-01

    When confronted with the challenge of selecting one out of several competing conceptual models for a specific modeling task, Bayesian model averaging is a rigorous choice. It ranks the plausibility of models based on Bayes' theorem, which yields an optimal trade-off between performance and complexity. With the resulting posterior model probabilities, their individual predictions are combined into a robust weighted average and the overall predictive uncertainty (including conceptual uncertainty) can be quantified. This rigorous framework does, however, not yet explicitly consider statistical significance of measurement noise in the calibration data set. This is a major drawback, because model weights might be instable due to the uncertainty in noisy data, which may compromise the reliability of model ranking. We present a new extension to the Bayesian model averaging framework that explicitly accounts for measurement noise as a source of uncertainty for the weights. This enables modelers to assess the reliability of model ranking for a specific application and a given calibration data set. Also, the impact of measurement noise on the overall prediction uncertainty can be determined. Technically, our extension is built within a Monte Carlo framework. We repeatedly perturb the observed data with random realizations of measurement error. Then, we determine the robustness of the resulting model weights against measurement noise. We quantify the variability of posterior model weights as weighting variance. We add this new variance term to the overall prediction uncertainty analysis within the Bayesian model averaging framework to make uncertainty quantification more realistic and "complete". We illustrate the importance of our suggested extension with an application to soil-plant model selection, based on studies by Wöhling et al. (2013, 2014). Results confirm that noise in leaf area index or evaporation rate observations produces a significant amount of weighting

  17. A consideration of the signal-to-noise ratio in phase contrast mammography

    NASA Astrophysics Data System (ADS)

    Kato, Yuri; Fujita, Naotoshi; Kodera, Yoshie

    2010-04-01

    Recently, with developments in medicine, digital systems such as computed radiography (CR) and flat-panel detector (FPD) systems are being employed for mammography instead of analog systems such as the screen-film system. Phase-contrast mammography (PCM) is a commercially available digital system that uses images with a magnification of 1.75x. To study the effect of the air gap in PCM, we measured the scatter fraction ratio (SFR) and calculated the signal-to-noise ratio (SNR) in PCM, and compared it to that in conventional mammography (CM). Then, to extend the SNR to the spatial frequency domain, we calculated the noise equivalent quanta (NEQ) and detective quantum efficiency (DQE) used by the modulation transfer function (MTF), noise power spectrum of the pixel value (NPSΔPV), gradient of the digital characteristic curve, and number of X-ray photons. The obtained results indicated that the SFR of the PCM was as low as that of the CM with a grid. When the exposure dose was constant, the SNR of the PCM was the highest in all systems. Moreover, the NEQ and DQE for the PCM were higher than those for the CM (G-) in the spatial frequency domain over 2.5 cycles/mm. These results showed that the number of scattered X-rays was reduced sufficiently by the air gap in the PCM and the NEQ and DQE for PCM were influenced by the presampled MTF in the high-spatial-frequency domain.

  18. Electrochemical noise measurements during exfoliation of aluminum alloys

    SciTech Connect

    Damborenea, J. de; Fernandez, B.

    1996-12-31

    Aluminum alloys are one of the most widely used materials in the aerospace industry because of their intrinsic low density, high mechanical strength, and corrosion resistance. The performance of aircraft is improved by the use of lighter materials. Electrochemical noise measurements (ENMs) have been carried out during exfoliation corrosion of an aluminum-lithium alloy (8090) in the EXCO (ASTM Test Method for Exfoliation Corrosion Susceptibility in 2XXX and 7XXX Series Aluminum Alloys [EXCO Test] [G 34]) test solution. By means of the maximum entropy method (MEM), the potential and current fluctuations were converted into power spectral density (PSD) plots to study the specific variables related to electrochemical noise (low frequency amplitude, slopes). Noise resistance obtained from the standard deviation of potential and current was compared with the charge transference resistance (R{sub ct}) from electrochemical impedance spectroscopy (EIS) measurements. The results show that ENM can be used to detect early stages in localized corrosion. However, when the solution is very aggressive, indications of localized corrosion can be masked by uniform corrosion.

  19. Application of MEMS Microphone Array Technology to Airframe Noise Measurements

    NASA Technical Reports Server (NTRS)

    Humphreys, William M., Jr.; Shams, Qamar A.; Graves, Sharon S.; Sealey, Bradley S.; Bartram, Scott M.; Comeaux, Toby

    2005-01-01

    Current generation microphone directional array instrumentation is capable of extracting accurate noise source location and directivity data on a variety of aircraft components, resulting in significant gains in test productivity. However, with this gain in productivity has come the desire to install larger and more complex arrays in a variety of ground test facilities, creating new challenges for the designers of array systems. To overcome these challenges, a research study was initiated to identify and develop hardware and fabrication technologies which could be used to construct an array system exhibiting acceptable measurement performance but at much lower cost and with much simpler installation requirements. This paper describes an effort to fabricate a 128-sensor array using commercially available Micro-Electro-Mechanical System (MEMS) microphones. The MEMS array was used to acquire noise data for an isolated 26%-scale high-fidelity Boeing 777 landing gear in the Virginia Polytechnic Institute and State University Stability Tunnel across a range of Mach numbers. The overall performance of the array was excellent, and major noise sources were successfully identified from the measurements.

  20. Aerodynamic Performance Measurements for a Forward Swept Low Noise Fan

    NASA Technical Reports Server (NTRS)

    Fite, E. Brian

    2006-01-01

    One source of noise in high tip speed turbofan engines, caused by shocks, is called multiple pure tone noise (MPT's). A new fan, called the Quiet High Speed Fan (QHSF), showed reduced noise over the part speed operating range, which includes MPT's. The QHSF showed improved performance in most respects relative to a baseline fan; however, a partspeed instability discovered during testing reduced the operating range below acceptable limits. The measured QHSF adiabatic efficiency on the fixed nozzle acoustic operating line was 85.1 percent and the baseline fan 82.9 percent, a 2.2 percent improvement. The operating line pressure rise at design point rotational speed and mass flow was 1.764 and 1.755 for the QHSF and baseline fan, respectively. Weight flow at design point speed was 98.28 lbm/sec for the QHSF and 97.97 lbm/sec for the baseline fan. The operability margin for the QHSF approached 0 percent at the 75 percent speed operating condition. The baseline fan maintained sufficient margin throughout the operating range as expected. Based on the stage aerodynamic measurements, this concept shows promise for improved performance over current technology if the operability limitations can be solved.

  1. Noise measurements as proxies for traffic parameters in monitoring networks.

    PubMed

    Can, A; Dekoninck, L; Rademaker, M; Van Renterghem, T; De Baets, B; Botteldooren, D

    2011-12-01

    The present research describes how microphones could be used as proxies for traffic parameter measurements for the estimation of airborne pollutant emissions. We consider two distinct measurement campaigns of 7 and 12 days, at two different locations along the urban ring road in Antwerp, Belgium, where sound pressure levels and traffic parameters were measured simultaneously. Noise indicators are calculated and used to construct models to estimate traffic parameters. It is found that relying on different statistical levels and selecting specific sound frequencies permits an accurate estimation of traffic intensities and mean vehicle speeds, both for light and heavy vehicles. Estimations of R(2) values ranging between 0.81 and 0.92 are obtained, depending on the location and traffic parameters. Furthermore, the usefulness of these estimated traffic parameters in a monitoring strategy is assessed. Carbon monoxide, hydrocarbon and nitrogen oxide emissions are calculated with the airborne pollutant emission model Artemis. The Artemis outputs fed with directly measured and estimated traffic parameters (based on noise measurements) are very similar. Finally, a method is proposed to enable using a model calibrated at one location at another location without the need for new calibration, making it straightforward to include new measurement locations in a monitoring network. PMID:22000916

  2. Analysis of a Shock-Associated Noise Prediction Model Using Measured Jet Far-Field Noise Data

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.; Sharpe, Jacob A.

    2014-01-01

    A code for predicting supersonic jet broadband shock-associated noise was assessed us- ing a database containing noise measurements of a jet issuing from a convergent nozzle. The jet was operated at 24 conditions covering six fully expanded Mach numbers with four total temperature ratios. To enable comparisons of the predicted shock-associated noise component spectra with data, the measured total jet noise spectra were separated into mixing noise and shock-associated noise component spectra. Comparisons between predicted and measured shock-associated noise component spectra were used to identify de ciencies in the prediction model. Proposed revisions to the model, based on a study of the overall sound pressure levels for the shock-associated noise component of the mea- sured data, a sensitivity analysis of the model parameters with emphasis on the de nition of the convection velocity parameter, and a least-squares t of the predicted to the mea- sured shock-associated noise component spectra, resulted in a new de nition for the source strength spectrum in the model. An error analysis showed that the average error in the predicted spectra was reduced by as much as 3.5 dB for the revised model relative to the average error for the original model.

  3. A mathematical framework for amplitude and phase noise analysis of coupled oscillators

    NASA Astrophysics Data System (ADS)

    Bonnin, M.; Corinto, F.; Lanza, V.

    2016-02-01

    Synchronization of coupled oscillators is a paradigm for complexity in many areas of science and engineering. Any realistic network model should include noise effects. We present a description in terms of phase and amplitude deviation for nonlinear oscillators coupled together through noisy interactions. In particular, the coupling is assumed to be modulated by white Gaussian noise. The equations derived for the amplitude deviation and the phase are rigorous, and their validity is not limited to the weak noise limit. We show that using Floquet theory, a partial decoupling between the amplitude and the phase is obtained. The decoupling can be exploited to describe the oscillator's dynamics solely by the phase variable. We discuss to what extent the reduced model is appropriate and some implications on the role of noise on the frequency of the oscillators.

  4. Prediction, Measurement, and Suppression of High Temperature Supersonic Jet Noise

    NASA Technical Reports Server (NTRS)

    Seiner, John M.; Bhat, T. R. S.; Jansen, Bernard J.

    1999-01-01

    The photograph in figure 1 displays a water cooled round convergent-divergent supersonic nozzle operating slightly overexpanded near 2460 F. The nozzle is designed to produce shock free flow near this temperature at Mach 2. The exit diameter of this nozzle is 3.5 inches. This nozzle is used in the present study to establish properties of the sound field associated with high temperature supersonic jets operating fully pressure balanced (i.e. shock free) and to evaluate capability of the compressible Rayleigh model to account for principle physical features of the observed sound emission. The experiment is conducted statically (i.e. M(sub f) = 0.) in the NASA/LaRC Jet Noise Laboratory. Both aerodynamic and acoustic measurements are obtained in this study along with numerical plume simulation and theoretical prediction of jet noise. Detailed results from this study are reported previously by Seiner, Ponton, Jansen, and Lagen.

  5. A neural network for the identification of measured helicopter noise

    NASA Technical Reports Server (NTRS)

    Cabell, R. H.; Fuller, C. R.; O'Brien, W. F.

    1991-01-01

    The results of a preliminary study of the components of a novel acoustic helicopter identification system are described. The identification system uses the relationship between the amplitudes of the first eight harmonics in the main rotor noise spectrum to distinguish between helicopter types. Two classification algorithms are tested; a statistically optimal Bayes classifier, and a neural network adaptive classifier. The performance of these classifiers is tested using measured noise of three helicopters. The statistical classifier can correctly identify the helicopter an average of 67 percent of the time, while the neural network is correct an average of 65 percent of the time. These results indicate the need for additional study of the envelope of harmonic amplitudes as a component of a helicopter identification system. Issues concerning the implementation of the neural network classifier, such as training time and structure of the network, are discussed.

  6. The effects of solution resistance on electrochemical noise resistance measurements: A theoretical analysis

    SciTech Connect

    Cottis, R.A.; Turgoose, S.; Mendoza-Flores, J.

    1996-12-31

    The theoretical basis of electrochemical noise resistance measurements in the presence of significant solution resistance is examined with a simple linear circuit model. A shot noise model of the noise generation process is assumed to develop the dependence of electrochemical potential and current noise on corrosion rate, although the conclusions in respect to electrochemical noise resistance do not depend on this. It is concluded that the electrochemical noise resistance method measures essentially the same resistance as is measured by a conventional linear polarization resistance measurement, although it is found to be capable of making measurements in higher resistance systems.

  7. Phase noise management of spin-wave delay-line oscillators

    NASA Astrophysics Data System (ADS)

    Drozdovskii, A. V.; Ustinov, A. B.

    2015-12-01

    A phase noise of microwave oscillators having an active ring circuitry with a spin- wave delay line is theoretically and experimentally investigated. The delay line was made with yttrium iron garnet (YIG) film epitaxially grown on gadolinium gallium garnet substrate. Obtained results demonstrate a management of the oscillator phase noise with a variation of the distance between antennas used for excitation and reception of spin waves in the YIG film.

  8. Neutron noise measurements at the Delphi subcritical assembly

    SciTech Connect

    Szieberth, M.; Klujber, G.; Kloosterman, J. L.; De Haas, D.

    2012-07-01

    The paper presents the results and evaluations of a comprehensive set of neutron noise measurements on the Delphi subcritical assembly of the Delft Univ. of Technology. The measurements investigated the effect of different source distributions (inherent spontaneous fission and {sup 252}Cf) and the position of the detectors applied (both radially and vertically). The evaluation of the measured data has been performed by the variance-to-mean ratio (VTMR, Feynman-{alpha}), the autocorrelation (ACF, Rossi-{alpha}) and the cross-correlation (CCF) methods. The values obtained for the prompt decay constant show a strong bias, which depends both on the detector position and on the source distribution. This is due to the presence of higher modes in the system. It has been observed that the {alpha} value fitted is higher when the detector is close to the boundary of the core or to the {sup 252}Cf point-source. The higher alpha-modes have also been observed by fitting functions describing two alpha-modes. The successful set of measurement also provides a good basis for further theoretical investigations including the Monte Carlo simulation of the noise measurements and the calculation of the alpha-modes in the Delphi subcritical assembly. (authors)

  9. Large step-phase measurement by a reduced-phase triple-illumination interferometer.

    PubMed

    Tayebi, Behnam; Jafarfard, Mohammad Reza; Sharif, Farnaz; Song, Young Sik; Har, Dongsoo; Kim, Dug Young

    2015-05-01

    We present a reduced-phase triple-illumination interferometer (RPTII) as a novel single-shot technique to increase the precision of dual-illumination optical phase unwrapping techniques. The technique employs two measurement ranges to record both low-precision unwrapped and high-precision wrapped phases. To unwrap the high-precision phase, a hierarchical optical phase unwrapping algorithm is used with the low-precision unwrapped phase. The feasibility of this technique is demonstrated by measuring a stepped object with a height 2100 times greater than the wavelength of the source. The phase is reconstructed without applying any numerical unwrapping algorithms, and its noise level is decreased by a factor of ten. PMID:25969222

  10. Intensity- and phase-noise correlations in a dual-frequency vertical-external-cavity surface-emitting laser operating at telecom wavelength

    NASA Astrophysics Data System (ADS)

    De, Syamsundar; Baili, Ghaya; Bouchoule, Sophie; Alouini, Mehdi; Bretenaker, Fabien

    2015-05-01

    The amplitude and phase noises of a dual-frequency vertical-external-cavity surface-emitting laser (DF-VECSEL) operating at telecom wavelength are theoretically and experimentally investigated in detail. In particular, the spectral behavior of the correlation between the intensity noises of the two modes of the DF-VECSEL is measured. Moreover, the correlation between the phase noise of the radio-frequency beat note generated by optical mixing of the two laser modes with the intensity noises of the two modes is investigated. All these spectral behaviors of noise correlations are analyzed for two different values of the nonlinear coupling between the laser modes. We find that to describe the spectral behavior of noise correlations between the laser modes, it is of utmost importance to have precise knowledge about the spectral behavior of the pump noise, which is the dominant source of noise in the frequency range of interest (10 kHz to 35 MHz). Moreover, it is found that the noise correlation also depends on how the spatially separated laser modes of the DF-VECSEL intercept the noise from a multimode fiber-coupled laser diode used for pumping both the laser modes. To this aim, a specific experiment is reported which aims at measuring the correlations between different spatial regions of the pump beam. The experimental results are in excellent agreement with a theoretical model based on modified rate equations.

  11. Effect of noise on Frequency-Resolved Optical Gating measurements of ultrashort pulses

    SciTech Connect

    Fittinghoff, D.N.; DeLong, K.W.; Ladera, C.L.; Trebino, R.

    1995-02-01

    We study the effects of noise in Frequency-Resolved Optical Gating measurements of ultrashort pulses. We quantify the measurement accuracy in the presence of additive, muliplicative, and quantization noise, and discuss filtering and pre-processing of the data.

  12. Determination of surface-wave phase velocities across USArray from noise and Aki's spectral formulation

    NASA Astrophysics Data System (ADS)

    Ekström, Göran; Abers, Geoffrey A.; Webb, Spahr C.

    2009-09-01

    We use expressions for the cross-correlation of stochastic surface waves originally derived by Aki (1957) to develop an algorithm for determining inter-station phase-velocity measurements from continuous seismic data. In the frequency domain, the cross correlation of azimuthally isotropic noise is described by a Bessel function, and we associate zeros in the observed spectrum with zeros of the Bessel function to obtain phase-velocity estimates at discrete frequencies. Phase velocities derived in this way at several frequencies are joined to form a dispersion curve, which is then sampled to obtain phase-velocity estimates at arbitrary frequencies. We collect a set of dispersion curves for more than 30,000 station pairs of the transportable component of USArray, and derive Rayleigh wave phase-velocity maps at periods of 12 and 24 s for the western United States. The spectral method lends itself well to automation, and avoids limitations at short inter-station distances associated with time-domain methods.

  13. Photonic microwave quadrature filter with low phase imbalance and high signal-to-noise ratio performance.

    PubMed

    Cao, Yuan; Chan, Erwin H W; Wang, Xudong; Feng, Xinhuan; Guan, Bai-ou

    2015-10-15

    A photonic microwave quadrature filter is presented. It has a very simple structure, very low phase imbalance, and high signal-to-noise ratio performance. Experimental results are presented that demonstrate a photonic microwave quadrature filter with a 3 dB operating frequency range of 10.5-26.5 GHz, an amplitude and phase imbalance of less than ±0.3  dB and ±0.15°, and a signal-to-noise ratio of more than 121 dB in a 1 Hz noise bandwidth. PMID:26469589

  14. Measurement of Model Noise in a Hard-Wall Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Soderman, Paul T.

    2006-01-01

    Identification, analysis, and control of fluid-mechanically-generated sound from models of aircraft and automobiles in special low-noise, semi-anechoic wind tunnels are an important research endeavor. Such studies can also be done in aerodynamic wind tunnels that have hard walls if phased microphone arrays are used to focus on the noise-source regions and reject unwanted reflections or background noise. Although it may be difficult to simulate the total flyover or drive-by noise in a closed wind tunnel, individual noise sources can be isolated and analyzed. An acoustic and aerodynamic study was made of a 7-percent-scale aircraft model in a NASA Ames 7-by-10-ft (about 2-by-3-m) wind tunnel for the purpose of identifying and attenuating airframe noise sources. Simulated landing, takeoff, and approach configurations were evaluated at Mach 0.26. Using a phased microphone array mounted in the ceiling over the inverted model, various noise sources in the high-lift system, landing gear, fins, and miscellaneous other components were located and compared for sound level and frequency at one flyover location. Numerous noise-alleviation devices and modifications of the model were evaluated. Simultaneously with acoustic measurements, aerodynamic forces were recorded to document aircraft conditions and any performance changes caused by geometric modifications. Most modern microphone-array systems function in the frequency domain in the sense that spectra of the microphone outputs are computed, then operations are performed on the matrices of microphone-signal cross-spectra. The entire acoustic field at one station in such a system is acquired quickly and interrogated during postprocessing. Beam-forming algorithms are employed to scan a plane near the model surface and locate noise sources while rejecting most background noise and spurious reflections. In the case of the system used in this study, previous studies in the wind tunnel have identified noise sources up to 19 d

  15. Field-Deployable Acoustic Digital Systems for Noise Measurement

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Wright, Kenneth D.; Lunsford, Charles B.; Smith, Charlie D.

    2000-01-01

    Langley Research Center (LaRC) has for years been a leader in field acoustic array measurement technique. Two field-deployable digital measurement systems have been developed to support acoustic research programs at LaRC. For several years, LaRC has used the Digital Acoustic Measurement System (DAMS) for measuring the acoustic noise levels from rotorcraft and tiltrotor aircraft. Recently, a second system called Remote Acquisition and Storage System (RASS) was developed and deployed for the first time in the field along with DAMS system for the Community Noise Flight Test using the NASA LaRC-757 aircraft during April, 2000. The test was performed at Airborne Airport in Wilmington, OH to validate predicted noise reduction benefits from alternative operational procedures. The test matrix was composed of various combinations of altitude, cutback power, and aircraft weight. The DAMS digitizes the acoustic inputs at the microphone site and can be located up to 2000 feet from the van which houses the acquisition, storage and analysis equipment. Digitized data from up to 10 microphones is recorded on a Jaz disk and is analyzed post-test by microcomputer system. The RASS digitizes and stores acoustic inputs at the microphone site that can be located up to three miles from the base station and can compose a 3 mile by 3 mile array of microphones. 16-bit digitized data from the microphones is stored on removable Jaz disk and is transferred through a high speed array to a very large high speed permanent storage device. Up to 30 microphones can be utilized in the array. System control and monitoring is accomplished via Radio Frequency (RF) link. This paper will present a detailed description of both systems, along with acoustic data analysis from both systems.

  16. A study of GPS measurement errors due to noise and multipath interference for CGADS

    NASA Technical Reports Server (NTRS)

    Axelrad, Penina; MacDoran, Peter F.; Comp, Christopher J.

    1996-01-01

    This report describes a study performed by the Colorado Center for Astrodynamics Research (CCAR) on GPS measurement errors in the Codeless GPS Attitude Determination System (CGADS) due to noise and multipath interference. Preliminary simulation models fo the CGADS receiver and orbital multipath are described. The standard FFT algorithms for processing the codeless data is described and two alternative algorithms - an auto-regressive/least squares (AR-LS) method, and a combined adaptive notch filter/least squares (ANF-ALS) method, are also presented. Effects of system noise, quantization, baseband frequency selection, and Doppler rates on the accuracy of phase estimates with each of the processing methods are shown. Typical electrical phase errors for the AR-LS method are 0.2 degrees, compared to 0.3 and 0.5 degrees for the FFT and ANF-ALS algorithms, respectively. Doppler rate was found to have the largest effect on the performance.

  17. Noise robustness of the incompatibility of quantum measurements

    NASA Astrophysics Data System (ADS)

    Heinosaari, Teiko; Kiukas, Jukka; Reitzner, Daniel

    2015-08-01

    The existence of incompatible measurements is a fundamental phenomenon having no explanation in classical physics. Intuitively, one considers given measurements to be incompatible within a framework of a physical theory, if their simultaneous implementation on a single physical device is prohibited by the theory itself. In the mathematical language of quantum theory, measurements are described by POVMs (positive operator valued measures), and given POVMs are by definition incompatible if they cannot be obtained via coarse-graining from a single common POVM; this notion generalizes noncommutativity of projective measurements. In quantum theory, incompatibility can be regarded as a resource necessary for manifesting phenomena such as Clauser-Horne-Shimony-Holt (CHSH) Bell inequality violations or Einstein-Podolsky-Rosen (EPR) steering which do not have classical explanation. We define operational ways of quantifying this resource via the amount of added classical noise needed to render the measurements compatible, i.e., useless as a resource. In analogy to entanglement measures, we generalize this idea by introducing the concept of incompatibility measure, which is monotone in local operations. In this paper, we restrict our consideration to binary measurements, which are already sufficient to explicitly demonstrate nontrivial features of the theory. In particular, we construct a family of incompatibility monotones operationally quantifying violations of certain scaled versions of the CHSH Bell inequality, prove that they can be computed via a semidefinite program, and show how the noise-based quantities arise as special cases. We also determine maximal violations of the new inequalities, demonstrating how Tsirelson's bound appears as a special case. The resource aspect is further motivated by simple quantum protocols where our incompatibility monotones appear as relevant figures of merit.

  18. Vibration modes and acoustic noise in a 4-phase switched reluctance motor

    SciTech Connect

    Colby, R.S.; Mottier, F.; Miller, T.J.E.

    1995-12-31

    Acoustic noise in the switched reluctance motor is caused primarily by the deformation of the stator lamination stack. Acoustic noise is most severe when the periodic excitation of the SRM phases excites a natural vibration mode of the stack. The natural vibration modes and frequencies of a 4-phase, 8/6 switched reluctance motor are examined. Structural finite element analysis is used to compute the natural modes and frequencies. Impulse tests on the stator stack verify the calculations and show which modes are excited. Heuristic arguments are developed to predict the operating conditions that will excite the natural modes. Measurement of vibration while the machine is under load shows which operating conditions excite the natural modes and verifies the predictions. An approximate formula is derived to predict the frequency of the fundamental vibration mode in terms of lamination dimensions and material properties. The formula is validated by comparison with finite element calculations for several laminations, and hence is shown to be useful in design trade-off studies.

  19. JT8D-100 turbofan engine, phase 1. [noise reduction

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The JT8D turbofan engine, widely used in short and medium range transport aircraft, contributes substantially to airport community noise. The jet noise is predominant in the JT8D engine and may be reduced in a modified engine, without loss of thrust, by increasing the airflow to reduce jet velocity. A configuration study evaluated the effects of fan airflow, fan pressure ratio, and bypass ratio on noise, thrust, and fuel comsumption. The cycle selected for the modified engine was based upon an increased diameter, single-stage fan and two additional core engine compressor stages, which replace the existing two-stage fan. Modifications were also made to the low pressure turbine to provide the increased torque required by the larger diameter fan. The resultant JT8D-100 engine models have the following characteristics at take-off thrust, compared to the current JT8D engine: Airflow and bypass ratio are increased, and fan pressure ratio and engine speed are reduced. The resultant engine is also longer, larger in diameter, and heavier than the JT8D base model, but these latter changes are compensated by the increased thrust and decreased fuel comsumption of the modified engine, thus providing the capability for maintaining the performance of the current JT8D-powered aircraft.

  20. GMTI Direction of Arrival Measurements from Multiple Phase Centers.

    SciTech Connect

    Doerry, Armin W.; Bickel, Douglas L.

    2015-03-01

    Ground Moving Target Indicator (GMTI) radar attempts to detect and locate targets with unknown motion. Very slow-moving targets are difficult to locate in the presence of surrounding clutter. This necessitates multiple antenna phase centers (or equivalent) to offer independent Direction of Arrival (DOA) measurements. DOA accuracy and precision generally remains dependent on target Signal-to-Noise Ratio (SNR), Clutter-toNoise Ratio (CNR), scene topography, interfering signals, and a number of antenna parameters. This is true even for adaptive techniques like Space-Time-AdaptiveProcessing (STAP) algorithms.

  1. Challenges and Techniques in Measurements of Noise, Cryogenic Noise and Power in Millimeter-Wave and Submillimeter-Wave Amplifiers

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene

    2014-01-01

    We will present the topic of noise measurements, including cryogenic noise measurements, of Monolithic Microwave Integrated Circuit (MMIC) and Sub-Millimeter-Wave Monolithic Microwave Integrated Circuit (S-MMIC) amplifiers, both on-wafer, and interfaced to waveguide modules via coupling probes. We will also present an overview of the state-of-the-art in waveguide probe techniques for packaging amplifier chips, and discuss methods to obtain the lowest loss packaging techniques available to date. Linearity in noise measurements will be discussed, and experimental methods for room temperature and cryogenic noise measurements will be presented. We will also present a discussion of power amplifier measurements for millimeter-wave and submillimeter-wave amplifiers, and the tools and hardware needed for this characterization.

  2. Experimental observation of excess noise in a detuned phase-modulation harmonic mode-locking laser

    SciTech Connect

    Yang Shiquan; Bao Xiaoyi

    2006-09-15

    The intracavity phase-modulated laser can work in two distinct stages: 1) phase mode-locking when the applied modulation frequency is equal to the cavity's fundamental frequency or one of its harmonics, and 2) the FM laser oscillation at a moderate detuned modulation frequency. In this paper, we experimentally studied the noise buildup process in the transition from FM laser oscillation to phase mode-locking in a phase-modulated laser. We found that the relaxation oscillation frequency varies with the modulation frequency detuning and the relaxation oscillation will occur twice in the transition region. Between these two relaxation oscillations, the supermode noise can be significantly enhanced, which is evidence of excess noise in laser systems. All of these results can be explained by the theory of Floquet modes in a phase-modulated laser cavity.

  3. Extended Kalman filtering for joint mitigation of phase and amplitude noise in coherent QAM systems.

    PubMed

    Pakala, Lalitha; Schmauss, Bernhard

    2016-03-21

    We numerically investigate our proposed carrier phase and amplitude noise estimation (CPANE) algorithm using extend Kalman filter (EKF) for joint mitigation of linear and non-linear phase noise as well as amplitude noise on 4, 16 and 64 polarization multiplexed (PM) quadrature amplitude modulation (QAM) 224 Gb/s systems. The results are compared to decision directed (DD) carrier phase estimation (CPE), DD phase locked loop (PLL) and universal CPE (U-CPE) algorithms. Besides eliminating the necessity of phase unwrapping function, EKF-CPANE shows improved performance for both back-to-back (BTB) and transmission scenarios compared to the aforementioned algorithms. We further propose a weighted innovation approach (WIA) of the EKF-CPANE which gives an improvement of 0.3 dB in the Q-factor, compared to the original algorithm. PMID:27136830

  4. Temporal phase mask encrypted optical steganography carried by amplified spontaneous emission noise.

    PubMed

    Wu, Ben; Wang, Zhenxing; Shastri, Bhavin J; Chang, Matthew P; Frost, Nicholas A; Prucnal, Paul R

    2014-01-13

    A temporal phase mask encryption method is proposed and experimentally demonstrated to improve the security of the stealth channel in an optical steganography system. The stealth channel is protected in two levels. In the first level, the data is carried by amplified spontaneous emission (ASE) noise, which cannot be detected in either the time domain or spectral domain. In the second level, even if the eavesdropper suspects the existence of the stealth channel, each data bit is covered by a fast changing phase mask. The phase mask code is always combined with the wide band noise from ASE. Without knowing the right phase mask code to recover the stealth data, the eavesdropper can only receive the noise like signal with randomized phase. PMID:24515055

  5. ICI mitigation in concurrent multi-band receiver due to the phase noise and IQ imbalance

    NASA Astrophysics Data System (ADS)

    Lee, Hui-Kyu; Ryu, Heung-Gyoon

    2012-06-01

    For the next generation long-term evolution (LTE) advanced mobile communication system, 100 MHz bandwidth and 1 Gbit/s data speed are needed. However, there is not enough and wide vacant frequency band. Therefore, spectrum aggregation method has been studied to extend available frequency bands. Frequency synthesiser and power amplifier of transceiver should cover this wide bandwidth. The phase noise and In-phase and quadrature (IQ) imbalance would increase, which would be a serious problem in this transceiver. Also, signal-to-noise ratio becomes degraded because of nonlinearity and the quantisation noises of the Analog-to-digital conversion (ADC) in the receiver. Uplink of LTE-advanced uses Aggregated DFT-spread (NxDFT-S) orthogonal frequency division multiplexing (OFDM) signals. Since the effect of the phase noise and IQ imbalance are more serious in the multi-band Discrete Fourier transform (DFT)-spreading OFDM system, we like to analyse the effect of inter-carrier interference in frequency domain of receiver and the degradation of bit error rate (BER) performance. Also, by the channel response in frequency domain of the uplink system, we separate phase noise and IQ imbalance effect. Finally, we like to propose a compensation method that estimates the channel exactly and removes IQ imbalance and phase noise. Simulation result shows that the proposed method achieves the 2 dB performance gain of BER = 10-4.

  6. Extremely low-phase-noise SAW resonators and oscillators: design and performance.

    PubMed

    Montress, G K; Parker, T E; Loboda, M J; Greer, J A

    1988-01-01

    The authors describe prototype low-noise SAW (surface acoustic wave) resonator oscillators which have demonstrated state-of-the-art phase-noise performance not only at their fundamental operating frequencies in the 400- to 600-MHz range but also after 16x frequency multiplication to X-band as well. SAW resonator designs with overmoded cavities, very wide apertures, and dual apertures, as well as modified fabrication techniques, have been used to realize an overall reduction in an oscillator's phase-noise spectrum, i.e. white phiM, flicker FM, and random-walk FM. The S resonators can typically handle incident RF power in excess of +20 dBm, a key requirement to achieving an extremely low oscillator-phase-noise floor. A novel burn-in procedure at relatively high incident-RF-power levels (>27 dBm) was used to reduce both the flicker FM and random-walk FM phase-noise levels. Using these various techniques, a 5- to 15-dB improvement in the overall phase-noise spectrum for several prototype oscillators was demonstrated. PMID:18290201

  7. Phase noise in pulsed Doppler lidar and limitations on achievable single-shot velocity accuracy

    NASA Technical Reports Server (NTRS)

    Mcnicholl, P.; Alejandro, S.

    1992-01-01

    The smaller sampling volumes afforded by Doppler lidars compared to radars allows for spatial resolutions at and below some sheer and turbulence wind structure scale sizes. This has brought new emphasis on achieving the optimum product of wind velocity and range resolutions. Several recent studies have considered the effects of amplitude noise, reduction algorithms, and possible hardware related signal artifacts on obtainable velocity accuracy. We discuss here the limitation on this accuracy resulting from the incoherent nature and finite temporal extent of backscatter from aerosols. For a lidar return from a hard (or slab) target, the phase of the intermediate frequency (IF) signal is random and the total return energy fluctuates from shot to shot due to speckle; however, the offset from the transmitted frequency is determinable with an accuracy subject only to instrumental effects and the signal to noise ratio (SNR), the noise being determined by the LO power in the shot noise limited regime. This is not the case for a return from a media extending over a range on the order of or greater than the spatial extent of the transmitted pulse, such as from atmospheric aerosols. In this case, the phase of the IF signal will exhibit a temporal random walk like behavior. It will be uncorrelated over times greater than the pulse duration as the transmitted pulse samples non-overlapping volumes of scattering centers. Frequency analysis of the IF signal in a window similar to the transmitted pulse envelope will therefore show shot-to-shot frequency deviations on the order of the inverse pulse duration reflecting the random phase rate variations. Like speckle, these deviations arise from the incoherent nature of the scattering process and diminish if the IF signal is averaged over times greater than a single range resolution cell (here the pulse duration). Apart from limiting the high SNR performance of a Doppler lidar, this shot-to-shot variance in velocity estimates has a

  8. Noise measurements of turboprop airplanes at different overflight elevations

    NASA Technical Reports Server (NTRS)

    Mueller, K.

    1990-01-01

    In order to establish criteria for the regulation of propfan aircraft engine noise emissions, measurement tests of overhead flights of a METRO-3 and a FOKKER-50 aircraft were performed. The decibel levels captured by the ground car microphone are tabulated according to the height of the microphone from the ground as the recording vehicle followed the aircraft through the test flight patterns. Microphone heights of 1.5 and 10 meters from the ground are recorded and correlated to the flight altitudes of the aircraft, which ranged from 5182-6401 meters.

  9. Impact of plasma noise on a direct thrust measurement system.

    PubMed

    Pottinger, S J; Lamprou, D; Knoll, A K; Lappas, V J

    2012-03-01

    In order to evaluate the accuracy and sensitivity of a pendulum-type thrust measurement system, a linear variable differential transformer (LVDT) and a laser optical displacement sensor have been used simultaneously to determine the displacement resulting from an applied thrust. The LVDT sensor uses an analog interface, whereas the laser sensor uses a digital interface to communicate the displacement readings to the data acquisition equipment. The data collected by both sensors show good agreement for static mass calibrations and validation with a cold gas thruster. However, the data obtained using the LVDT deviate significantly from that of the laser sensor when operating two varieties of plasma thrusters: a radio frequency (RF) driven plasma thruster, and a DC powered plasma thruster. Results establish that even with appropriate shielding and signal filtering the LVDT sensor is subject to plasma noise and radio frequency interactions which result in anomalous thrust readings. Experimental data show that the thrust determined using the LVDT system in a direct current plasma environment and a RF discharge is approximately a factor of three higher than the thrust values obtained using a laser sensor system for the operating conditions investigated. These findings are of significance to the electric propulsion community as LVDT sensors are often utilized in thrust measurement systems and accurate thrust measurement and the reproducibility of thrust data is key to analyzing thruster performance. Methods are proposed to evaluate system susceptibility to plasma noise and an effective filtering scheme presented for DC discharges. PMID:22462919

  10. Extremely low frequency band station for natural electromagnetic noise measurement

    NASA Astrophysics Data System (ADS)

    Fornieles-Callejón, J.; Salinas, A.; Toledo-Redondo, S.; Portí, J.; Méndez, A.; Navarro, E. A.; Morente-Molinera, J. A.; Soto-Aranaz, C.; Ortega-Cayuela, J. S.

    2015-03-01

    A new permanent ELF measurement station has been deployed in Sierra Nevada, Spain. It is composed of two magnetometers, oriented NS and EW, respectively. At 10 Hz, their sensitivity is 19 μV/pT and the signal-to-noise ratio (SNR) is 28 dB for a time-varying signal of 1 pT, the expected field amplitude in Sierra Nevada. The station operates for frequencies below 24 Hz. The magnetometers, together with their corresponding electronics, have been specifically designed to achieve such an SNR for small signals. They are based on high-resolution search coils with ferromagnetic core and 106 turns, operating in limited geometry configuration. Different system noise sources are considered, and a study of the SNR is also included. Finally, some initial Schumann resonance measurements are presented in order to validate the performance of the measurement station, including 1 h length spectra, daily variations of resonance amplitudes and frequencies for the different seasons, and a 3 day spectrogram.

  11. Temporal averaging of phase measurements in the presence of spurious phase drift - Application to phase-stepped real-time holographic interferometry

    NASA Technical Reports Server (NTRS)

    Ovryn, B.; Haacke, E. M.

    1993-01-01

    A technique that compensates for low spatial frequency spurious phase changes during an interference experiment is developed; it permits temporal averaging of multiple-phase measurements, made before and after object displacement. The method is tested with phase-stepped real-time holographic interferometry applied to cantilever bending of a piezoelectric bimorph ceramic. Results indicate that temporal averaging of the corrected data significantly reduces the white noise in a phase measurement without incurring systematic errors or sacrificing spatial resolution. White noise is reduced from 3 deg to less than 1 deg using these methods.

  12. Stability and Phase Noise Tests of Two Cryo-Cooled Sapphire Oscillators

    NASA Technical Reports Server (NTRS)

    Dick, G. John; Wang, Rabi T.

    1998-01-01

    A cryocooled Compensated Sapphire Oscillator (CSO), developed for the Cassini Ka-band Radio Science experiment, and operating in the 8K - 10K temperature range was previously demonstrated to show ultra-high stability of sigma(sub y) = 2.5 x 10 (exp -15) for measuring times 200 seconds less than or equal to tau less than or equal to 600 seconds using a hydrogen maser as reference. We present here test results for a second unit which allows CSO short-term stability and phase noise to be measured for the first time. Also included are design details of a new RF receiver and an intercomparison with the first CSO unit. Cryogenic oscillators operating below about 10K offer the highest possible short term stability of any frequency sources. However, their use has so far been restricted to research environments due to the limited operating periods associated with liquid helium consumption. The cryocooled CSO is being built in support of the Cassini Ka-band Radio Science experiment and is designed to operate continuously for periods of a year or more. Performance targets are a stability of 3-4 x 10 (exp -15) (1 second less than or equal to tau less than or equal to 100 seconds) and phase noise of -73dB/Hz @ 1Hz measured at 34 GHz. Installation in 5 stations of NASA's deep space network (DSN) is planned in the years 2000 - 2002. In the previous tests, actual stability of the CSO for measuring times tau less than or equal to 200 seconds could not be directly measured, being masked by short-term fluctuations of the H-maser reference. Excellent short-term performance, however, could be inferred by the success of an application of the CSO as local oscillator (L.O.) to the JPL LITS passive atomic standard, where medium-term stability showed no degradation due to L.O. instabilities at a level of (sigma)y = 3 x 10 (exp -14)/square root of tau. A second CSO has now been constructed, and all cryogenic aspects have been verified, including a resonator turn-over temperature of 7.907 K

  13. A new approach to control noise from entertainment facilities: Active control and measurement of amplified community noise

    NASA Astrophysics Data System (ADS)

    Peppin, Richard J.; Casamajó, Joan

    2003-04-01

    While traffic noise is perhaps the most pervasive of community noises, much of the contribution now comes from amplified sound: live music, discos, theme parks, and exercise studios. Those producing the sound or music want it loud and those not interested want to be protected against noise. Noise limits at the receiving or producing property line must be met for the minimum community acceptance. However the time-, and perhaps the spatially-, varying sound in entertainment facilities is often constantly modified (and maybe monitored) near the source of the sound. Hence it is hard to relate and to control the sound at the property line. This paper presents a unique noise control device. It is based on the octave band ``transfer function'' between the sound produced in the entertainment area and the noise received at the property line. The overall insulation can be measured and is input to the instrument. When a noise level limit is exceeded at the receiver, due to the amplified interior noise at the facility, the sound output of the device is automatically controlled to reduce the noise. The paper provides details of the design and possible abatement scenarios with examples.

  14. Peculiarities of the relaxation to an invariant probability measure of nonhyperbolic chaotic attractors in the presence of noise

    NASA Astrophysics Data System (ADS)

    Anishchenko, Vadim S.; Vadivasova, Tatjana E.; Kopeikin, Andrey S.; Kurths, Jürgen; Strelkova, Galina I.

    2002-03-01

    We study the relaxation to an invariant probability measure on quasihyperbolic and nonhyperbolic chaotic attractors in the presence of noise. We also compare different characteristics of the rate of mixing and show numerically that the rate of mixing for nonhyperbolic chaotic attractors can significantly change under the influence of noise. A mechanism of the noise influence on mixing is presented, which is associated with the dynamics of the instantaneous phase of chaotic trajectories. We also analyze how the synchronization effect can influence the rate of mixing in a system of two coupled chaotic oscillators.

  15. New technique for the direct measurement of core noise from aircraft engines

    NASA Astrophysics Data System (ADS)

    Krejsa, E. A.

    The core noise levels from gas turbine aircraft engines were measured using a technique which requires that fluctuating pressures be measured in the far field and at two locations within the engine core. The cross spectra of these measurements are used to determine the levels of the far-field noise that propagated from the engine vore. The technique makes it possible to measure core noise levels even when other noise sources dominate. The technique was applied to signals measured from an Avco Lycoming YF102 turbofan engine. Core noise levels as a function of frequency and radiation angle were measured and are presented over a range of power settings.

  16. New technique for the direct measurement of core noise from aircraft engines. [YF 102 turbofan engine

    NASA Technical Reports Server (NTRS)

    Krejsa, E. A.

    1981-01-01

    The core noise levels from gas turbine aircraft engines were measured using a technique which requires that fluctuating pressures be measured in the far field and at two locations within the engine core. The cross spectra of these measurements are used to determine the levels of the far-field noise that propagated from the engine vore. The technique makes it possible to measure core noise levels even when other noise sources dominate. The technique was applied to signals measured from an Avco Lycoming YF102 turbofan engine. Core noise levels as a function of frequency and radiation angle were measured and are presented over a range of power settings.

  17. Micro-phase measuring profilometry: Its sensitivity analysis and phase unwrapping

    NASA Astrophysics Data System (ADS)

    Tang, Suming; Zhang, Xu; Tu, Dawei

    2015-09-01

    Global illumination affects shape measurement accuracy, and phase unwrapping is an important problem in phase measuring profilometry. In this paper, a micro-phase measuring profilometry is proposed to reduce the effects of global illumination. The wrapped phase error level of the proposed method is lower than that of the traditional micro-phase shifting method. First, a frequency selection rule is developed in combination with the micro-phase rule to design the frequencies of the proposed phase measuring profilometry. The frequency rule is obtained by analysing the uncertainty of the wrapped phase caused by intensity noise. Then, phase unwrapping is regarded as a congruence problem, and the closed-form robust Chinese remainder theorem algorithm is adopted to determine the correspondence. Finally, the comparative experiments are conducted on a projector-camera system. Experimental results show that the effects of global illumination can be effectively reduced with the proposed phase measuring profilometry, and the proposed frequency selection rule is valid. In addition, the performance of the robust Chinese remainder theorem in addressing the phase error is better than that of traditional Chinese remainder theorem. Furthermore, the unwrapping accuracy can nearly reach 100% if the frequency selection rule is satisfied. Otherwise, the performance degrades.

  18. JOHNSON NOISE THERMOMETRY FOR DRIFT-FREE MEASUREMENTS

    SciTech Connect

    Britton Jr, Charles L; Ezell, N Dianne Bull; Roberts, Michael; Holcomb, David Eugene; Wood, Richard Thomas

    2014-01-01

    In order for Johnson Noise Thermometry (JNT) to be beneficial to SMR designers, it must offer advantages beyond the current state-of-the-art technology. Comparisons to traditional RTDs and thermocouples will involve life-cycle costs, installation footprint, reliability, and accuracy. With JNT, there is additional equipment beyond what is required for the traditional RTD measurement. Therefore, the JNT-RTD system will involve additional complexity and this additional complexity must be justified. Operators will want to know that the measurement is reliable and trustworthy. It is also important that the sensor involve little, if any, additional ongoing maintenance work and that it has a low probability of causing any malfunction of the primary measurement channel. If these features can be successfully demonstrated, the JNT-RTD system could potentially save money and increase plant reliability.

  19. Low phase noise oscillator using two parallel connected amplifiers

    NASA Technical Reports Server (NTRS)

    Kleinberg, Leonard L.

    1987-01-01

    A high frequency oscillator is provided by connecting two amplifier circuits in parallel where each amplifier circuit provides the other amplifier circuit with the conditions necessary for oscillation. The inherent noise present in both amplifier circuits causes the quiescent current, and in turn, the generated frequency, to change. The changes in quiescent current cause the transconductance and the load impedance of each amplifier circuit to vary, and this in turn results in opposing changes in the input susceptance of each amplifier circuit. Because the changes in input susceptance oppose each other, the changes in quiescent current also oppose each other. The net result is that frequency stability is enhanced.

  20. Reduction of phase-induced intensity noise in a fiber-based coherent Doppler lidar using polarization control.

    PubMed

    Rodrigo, Peter John; Pedersen, Christian

    2010-03-01

    Optimization of signal-to-noise ratio is an important aspect in the design of optical heterodyne detection systems such as a coherent Doppler lidar (CDL). In a CDL, optimal performance is achieved when the noise in the detector signal is dominated by local oscillator shot-noise. Most modern CDL systems are built using rugged and cost-efficient fiber optic components. Unfortunately, leakage signals such as residual reflections inherent within fiber components (e.g. circulator) can introduce phase-induced intensity noise (PIIN) to the Doppler spectrum in a CDL. Such excess noise may be a few orders of magnitude above the shot-noise level within the relevant CDL frequency bandwidth--corrupting the measurement of typically weak backscattered signals. In this study, observation of PIIN in a fiber-based CDL with a master-oscillator power-amplifier tapered semiconductor laser source is reported. Furthermore, we experimentally demonstrate what we believe is a newly proposed method using a simple polarization scheme to reduce PIIN by more than an order of magnitude. PMID:20389545

  1. Suppressing technical noise in weak measurements by entanglement

    NASA Astrophysics Data System (ADS)

    Pang, Shengshi; Brun, Todd A.

    2015-07-01

    Postselected weak measurement has aroused broad interest for its distinctive ability to amplify small physical quantities. However, the low postselection efficiency to obtain a large weak value has been a big obstacle to its application in practice since it may waste resources, and reduce the measurement precision. An improved protocol was proposed in Pang et al., Phys. Rev. Lett. 113, 030401 (2014), 10.1103/PhysRevLett.113.030401 to make the postselected weak measurement dramatically more efficient by using entanglement. Such a protocol can increase the Fisher information of the measurement to approximately saturate the well-known Heisenberg limit. In this paper, we review the entanglement-assisted protocol of postselected weak measurement in detail, and study its robustness against technical noises. We focus on readout errors. Readout errors can greatly degrade the performance of postselected weak measurement, especially when the readout error probability is comparable to the postselection probability. We show that entanglement can significantly reduce the two main detrimental effects of readout errors: inaccuracy in the measurement result and the loss of Fisher information. We extend the protocol by introducing a majority vote scheme to postselection to further compensate for readout errors. With a proper threshold, almost no Fisher information will be lost. These results demonstrate the effectiveness of entanglement in protecting postselected weak measurement against readout errors.

  2. Laboratory studies of scales for measuring helicopter noise

    NASA Technical Reports Server (NTRS)

    Ollerhead, J. B.

    1982-01-01

    The adequacy of the effective perceived noise level (EPNL) procedure for rating helicopter noise annoyance was investigated. Recordings of 89 helicopters and 30 fixed wing aircraft (CTOL) flyover sounds were rated with respect to annoyance by groups of approximately 40 subjects. The average annoyance scores were transformed to annoyance levels defined as the equally annoying sound levels of a fixed reference sound. The sound levels of the test sounds were measured on various scales, with and without corrections for duration, tones, and impulsiveness. On average, the helicopter sounds were judged equally annoying to CTOL sounds when their duration corrected levels are approximately 2 dB higher. Multiple regression analysis indicated that, provided the helicopter/CTOL difference of about 2 dB is taken into account, the particular linear combination of level, duration, and tone corrections inherent in EPNL is close to optimum. The results reveal no general requirement for special EPNL correction terms to penalize helicopter sounds which are particularly impulsive; impulsiveness causes spectral and temporal changes which themselves adequately amplify conventionally measured sound levels.

  3. Fan Noise Source Diagnostic Test: LDV Measured Flow Field Results

    NASA Technical Reports Server (NTRS)

    Podboy, Gary C.; Krupar, Martin J.; Hughes, Christopher E.; Woodward, Richard P.

    2003-01-01

    Results are presented of an experiment conducted to investigate potential sources of noise in the flow developed by two 22-in. diameter turbofan models. The R4 and M5 rotors that were tested were designed to operate at nominal take-off speeds of 12,657 and 14,064 RPMC, respectively. Both fans were tested with a common set of swept stators installed downstream of the rotors. Detailed measurements of the flows generated by the two were made using a laser Doppler velocimeter system. The wake flows generated by the two rotors are illustrated through a series of contour plots. These show that the two wake flows are quite different, especially in the tip region. These data are used to explain some of the differences in the rotor/stator interaction noise generated by the two fan stages. In addition to these wake data, measurements were also made in the R4 rotor blade passages. These results illustrate the tip flow development within the blade passages, its migration downstream, and (at high rotor speeds) its merging with the blade wake of the adjacent (following) blade. Data also depict the variation of this tip flow with tip clearance. Data obtained within the rotor blade passages at high rotational speeds illustrate the variation of the mean shock position across the different blade passages.

  4. Weak-value Metrology and Shot-Noise Limited Measurements

    NASA Astrophysics Data System (ADS)

    Viza, Gerardo Ivan

    This thesis contains a subset of the research in which I have participated in during my studies at the University of Rochester. It contains three projects and one overarching theme of weak-value metrology. We start with chapter 1 where we cover the historical background leading up to quantum optics, which we use for precision metrology. We also introduce the weak-value formulation and give examples of metrological implementations for parameter estimation. Chapter 2 introduces two experiments to measure a longitudinal velocity and a transverse momentum kick. We show that weak-value based techniques are shot-noise limited because we saturate the Cramer-Rao bound for the estimator used, and efficient because we experimentally demonstrate there is virtually no loss of Fisher information of the parameter of interest from the discarded events. In Chapter 3 we present a comparison of two experiments that measure a beam deflection. One experiment is a weak-value based technique, while the other is the standard focusing technique. We set up the two experiments in the presence of simulated technical noise sources and show how the weak-value based technique out performs the standard technique in both visibility and in deviation of the transverse momentum kick. Chapter 4 contains work of the exploration of concatenated postselection for weak-value amplification. We demonstrate an optimization and conditions where postselecting on two degrees of freedom can be beneficial to enhance the weak-value amplification.

  5. Mechanical monolithic horizontal sensor for low frequency seismic noise measurement.

    PubMed

    Acernese, Fausto; Giordano, Gerardo; Romano, Rocco; De Rosa, Rosario; Barone, Fabrizio

    2008-07-01

    This paper describes a mechanical monolithic horizontal sensor for geophysical applications developed at the University of Salerno. The instrument is basically a monolithic tunable folded pendulum, shaped with precision machining and electric discharge machining, that can be used both as seismometer and, in a force-feedback configuration, as accelerometer. The monolithic mechanical design and the introduction of laser interferometric techniques for the readout implementation makes it a very compact instrument, very sensitive in the low frequency seismic noise band, with a very good immunity to environmental noises. Many changes have been produced since last version (2007), mainly aimed to the improvement of the mechanics and of the optical readout of the instrument. In fact, we have developed and tested a prototype with elliptical hinges and mechanical tuning of the resonance frequency together with a laser optical lever and a new laser interferometer readout system. The theoretical sensitivity curve for both laser optical lever and laser interferometric readouts, evaluated on the basis of suitable theoretical models, shows a very good agreement with the experimental measurements. Very interesting scientific result is the measured natural resonance frequency of the instrument of 70 mHz with a Q=140 in air without thermal stabilization. This result demonstrates the feasibility of a monolithic folded pendulum sensor with a natural resonance frequency of the order of millihertz with a more refined mechanical tuning. PMID:18681722

  6. Numerical Verification of an Analytical Model for Phase Noise in MEMS Oscillators.

    PubMed

    Agrawal, D K; Bizzarri, F; Brambilla, A; Seshia, A A

    2016-08-01

    A new analytical formulation for phase noise in MEMS oscillators was recently presented encompassing the role of essential nonlinearities in the electrical and mechanical domains. In this paper, we validate the effectiveness of the proposed analytical formulation with respect to the unified theory developed by Demir et al. describing phase noise in oscillators. In particular, it is shown that, over a range of the second-order mechanical nonlinear stiffness of the MEMS resonator, both models exhibit an excellent match in the phase diffusion coefficient calculation for a square-wave MEMS oscillator. PMID:27295660

  7. On estimating the phase of periodic waveform in additive Gaussian noise, part 2

    NASA Astrophysics Data System (ADS)

    Rauch, L. L.

    1984-11-01

    Motivated by advances in signal processing technology that support more complex algorithms, a new look is taken at the problem of estimating the phase and other parameters of a periodic waveform in additive Gaussian noise. The general problem was introduced and the maximum a posteriori probability criterion with signal space interpretation was used to obtain the structures of optimum and some suboptimum phase estimators for known constant frequency and unknown constant phase with an a priori distribution. Optimal algorithms are obtained for some cases where the frequency is a parameterized function of time with the unknown parameters and phase having a joint a priori distribution. In the last section, the intrinsic and extrinsic geometry of hypersurfaces is introduced to provide insight to the estimation problem for the small noise and large noise cases.

  8. Digital coherent superposition of optical OFDM subcarrier pairs with Hermitian symmetry for phase noise mitigation.

    PubMed

    Yi, Xingwen; Chen, Xuemei; Sharma, Dinesh; Li, Chao; Luo, Ming; Yang, Qi; Li, Zhaohui; Qiu, Kun

    2014-06-01

    Digital coherent superposition (DCS) provides an approach to combat fiber nonlinearities by trading off the spectrum efficiency. In analogy, we extend the concept of DCS to the optical OFDM subcarrier pairs with Hermitian symmetry to combat the linear and nonlinear phase noise. At the transmitter, we simply use a real-valued OFDM signal to drive a Mach-Zehnder (MZ) intensity modulator biased at the null point and the so-generated OFDM signal is Hermitian in the frequency domain. At receiver, after the conventional OFDM signal processing, we conduct DCS of the optical OFDM subcarrier pairs, which requires only conjugation and summation. We show that the inter-carrier-interference (ICI) due to phase noise can be reduced because of the Hermitain symmetry. In a simulation, this method improves the tolerance to the laser phase noise. In a nonlinear WDM transmission experiment, this method also achieves better performance under the influence of cross phase modulation (XPM). PMID:24921539

  9. Effect of Directional Array Size on the Measurement of Airframe Noise Components

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Humphreys, William M., Jr.

    1999-01-01

    A study was conducted to examine the effects of overall size of directional (or phased) arrays on the measurement of aeroacoustic components. An airframe model was mounted in the potential core of an open-jet windtunnel, with the directional arrays located outside the flow in an anechoic environment. Two array systems were used; one with a solid measurement angle that encompasses 31.6 deg.of source directivity and a smaller one that encompasses 7.2 deg. The arrays, and sub-arrays of various sizes, measured noise from a calibrator source and flap edge model setups. In these cases, noise was emitted from relatively small, but finite size source regions, with intense levels compared to other sources. Although the larger arrays revealed much more source region detail, the measured source levels were substantially reduced due to finer resolution compared to that of the smaller arrays. To better understand the measurements quantitatively, an analytical model was used to define the basic relationships between array to source region sizes and measured output level. Also, the effect of noise scattering by shear layer turbulence was examined using the present data and those of previous studies. Taken together, the two effects were sufficient to explain spectral level differences between arrays of different sizes. An important result of this study is that total (integrated) noise source levels are retrievable and the levels are independent of the array size as long as certain experimental and processing criteria are met. The criteria for both open and closed tunnels are discussed. The success of special purpose diagonal-removal processing in obtaining integrated results is apparently dependent in part on source distribution. Also discussed is the fact that extended sources are subject to substantial measurement error, especially for large arrays.

  10. Low frequency wind noise contributions in measurement microphones.

    PubMed

    Raspet, Richard; Yu, Jiao; Webster, Jeremy

    2008-03-01

    In a previous paper [R. Raspet, et al., J. Acoust. Soc. Am. 119, 834-843 (2006)], a method was introduced to predict upper and lower bounds for wind noise measured in spherical wind-screens from the measured incident velocity spectra. That paper was restricted in that the predictions were only valid within the inertial range of the incident turbulence, and the data were from a measurement not specifically designed to test the predictions. This paper extends the previous predictions into the source region of the atmospheric wind turbulence, and compares the predictions to measurements made with a large range of wind-screen sizes. Predictions for the turbulence-turbulence interaction pressure spectrum as well as the stagnation pressure fluctuation spectrum are calculated from a form fit to the velocity fluctuation spectrum. While the predictions for turbulence-turbulence interaction agree well with measurements made within large (1.0 m) wind-screens, and the stagnation pressure predictions agree well with unscreened gridded microphone measurements, the mean shear-turbulence interaction spectra do not consistently appear in measurements. PMID:18345815

  11. Modeling and measuring self-noise in velocity and acceleration sensors

    SciTech Connect

    Gabrielson, T.B.

    1996-04-01

    Evaluation of the inherent noise levels of high-responsivity sensors is critical for good design but this area is often treated casually until testing reveals a problem. Careful noise analysis early in the design process can save time, effort, and much frustration and reveal options for better performance. Once the sensor is fabricated, careful measurement of its noise can uncover deficiencies in the design or construction. In fact, serious examination of sensor noise can often reveal more about the fundamental workings of the sensor than can measurement of its transduction response. The usual assumption that the preamplifier dominates the noise of a sensor system, while sometimes true over limited bands, often leads either to suboptimal performance or to unrealistic expectations. This paper contains a discussion of noise resulting from thermal-equilibrium agitation of mechanical elements, internal Johnson noise, equilibrium and non-equilibrium shot noise, 1/f noise, stress-induced noise in piezoceramics, various optical noise sources in fiber sensors, and preamplifier voltage and current noise. In addition, several measurement techniques are presented. These include effective isolation techniques for sub-nano-g resolution in ordinary laboratory spaces; coherence measurement; use of resistors as primary noise sources; and evaluation of preamplifier noise. {copyright} {ital 1996 American Institute of Physics.}

  12. High Resolution Viscosity Measurement by Thermal Noise Detection

    PubMed Central

    Aguilar Sandoval, Felipe; Sepúlveda, Manuel; Bellon, Ludovic; Melo, Francisco

    2015-01-01

    An interferometric method is implemented in order to accurately assess the thermal fluctuations of a micro-cantilever sensor in liquid environments. The power spectrum density (PSD) of thermal fluctuations together with Sader’s model of the cantilever allow for the indirect measurement of the liquid viscosity with good accuracy. The good quality of the deflection signal and the characteristic low noise of the instrument allow for the detection and corrections of drawbacks due to both the cantilever shape irregularities and the uncertainties on the position of the laser spot at the fluctuating end of the cantilever. Variation of viscosity below 0.03 mPa·s was detected with the alternative to achieve measurements with a volume as low as 50 μL. PMID:26540061

  13. High Resolution Viscosity Measurement by Thermal Noise Detection.

    PubMed

    Sandoval, Felipe Aguilar; Sepúlveda, Manuel; Bellon, Ludovic; Melo, Francisco

    2015-01-01

    An interferometric method is implemented in order to accurately assess the thermal fluctuations of a micro-cantilever sensor in liquid environments. The power spectrum density (PSD) of thermal fluctuations together with Sader's model of the cantilever allow for the indirect measurement of the liquid viscosity with good accuracy. The good quality of the deflection signal and the characteristic low noise of the instrument allow for the detection and corrections of drawbacks due to both the cantilever shape irregularities and the uncertainties on the position of the laser spot at the fluctuating end of the cantilever. Variation of viscosity below 0:03mPa·s was detected with the alternative to achieve measurements with a volume as low as 50 µL. PMID:26540061

  14. Noise-and delay-induced phase transitions of the dimer-monomer surface reaction model

    NASA Astrophysics Data System (ADS)

    Zeng, Chunhua; Wang, Hua

    2012-06-01

    The effects of noise and time-delayed feedback in the dimer-monomer (DM) surface reaction model are investigated. Applying small delay approximation, we construct a stochastic delayed differential equation and its Fokker-Planck equation to describe the state evolution of the DM reaction model. We show that the noise can only induce first-order irreversible phase transition (IPT) characteristic of the DM model, however the combination of the noise and time-delayed feedback can simultaneously induce first- and second-order IPT characteristics of the DM model. Therefore, it is shown that the well-known first- and second-order IPT characteristics of the DM model may be viewed as noise-and delay-induced phase transitions.

  15. Measurement of thermal noise in multilayer coatings with optimized layer thickness

    SciTech Connect

    Villar, Akira E.; Black, Eric D.; DeSalvo, Riccardo; Libbrecht, Kenneth G.; Michel, Christophe; Morgado, Nazario; Pinard, Laurent; Pinto, Innocenzo M.; Pierro, Vincenzo; Galdi, Vincenzo; Principe, Maria; Taurasi, Ilaria

    2010-06-15

    A standard quarter-wavelength multilayer optical coating will produce the highest reflectivity for a given number of coating layers, but in general it will not yield the lowest thermal noise for a prescribed reflectivity. Coatings with the layer thicknesses optimized to minimize thermal noise could be useful in future generation interferometric gravitational wave detectors where coating thermal noise is expected to limit the sensitivity of the instrument. We present the results of direct measurements of the thermal noise of a standard quarter-wavelength coating and a low noise optimized coating. The measurements indicate a reduction in thermal noise in line with modeling predictions.

  16. Noise and measurement errors in a practical two-state quantum bit commitment protocol

    NASA Astrophysics Data System (ADS)

    Loura, Ricardo; Almeida, Álvaro J.; André, Paulo S.; Pinto, Armando N.; Mateus, Paulo; Paunković, Nikola

    2014-05-01

    We present a two-state practical quantum bit commitment protocol, the security of which is based on the current technological limitations, namely the nonexistence of either stable long-term quantum memories or nondemolition measurements. For an optical realization of the protocol, we model the errors, which occur due to the noise and equipment (source, fibers, and detectors) imperfections, accumulated during emission, transmission, and measurement of photons. The optical part is modeled as a combination of a depolarizing channel (white noise), unitary evolution (e.g., systematic rotation of the polarization axis of photons), and two other basis-dependent channels, namely the phase- and bit-flip channels. We analyze quantitatively the effects of noise using two common information-theoretic measures of probability distribution distinguishability: the fidelity and the relative entropy. In particular, we discuss the optimal cheating strategy and show that it is always advantageous for a cheating agent to add some amount of white noise—the particular effect not being present in standard quantum security protocols. We also analyze the protocol's security when the use of (im)perfect nondemolition measurements and noisy or bounded quantum memories is allowed. Finally, we discuss errors occurring due to a finite detector efficiency, dark counts, and imperfect single-photon sources, and we show that the effects are the same as those of standard quantum cryptography.

  17. An integrated low phase noise radiation-pressure-driven optomechanical oscillator chipset

    PubMed Central

    Luan, Xingsheng; Huang, Yongjun; Li, Ying; McMillan, James F.; Zheng, Jiangjun; Huang, Shu-Wei; Hsieh, Pin-Chun; Gu, Tingyi; Wang, Di; Hati, Archita; Howe, David A.; Wen, Guangjun; Yu, Mingbin; Lo, Guoqiang; Kwong, Dim-Lee; Wong, Chee Wei

    2014-01-01

    High-quality frequency references are the cornerstones in position, navigation and timing applications of both scientific and commercial domains. Optomechanical oscillators, with direct coupling to continuous-wave light and non-material-limited f × Q product, are long regarded as a potential platform for frequency reference in radio-frequency-photonic architectures. However, one major challenge is the compatibility with standard CMOS fabrication processes while maintaining optomechanical high quality performance. Here we demonstrate the monolithic integration of photonic crystal optomechanical oscillators and on-chip high speed Ge detectors based on the silicon CMOS platform. With the generation of both high harmonics (up to 59th order) and subharmonics (down to 1/4), our chipset provides multiple frequency tones for applications in both frequency multipliers and dividers. The phase noise is measured down to −125 dBc/Hz at 10 kHz offset at ~400 μW dropped-in powers, one of the lowest noise optomechanical oscillators to date and in room-temperature and atmospheric non-vacuum operating conditions. These characteristics enable optomechanical oscillators as a frequency reference platform for radio-frequency-photonic information processing. PMID:25354711

  18. Phase noise effects on turbulent weather radar spectrum parameter estimation

    NASA Technical Reports Server (NTRS)

    Lee, Jonggil; Baxa, Ernest G., Jr.

    1990-01-01

    Accurate weather spectrum moment estimation is important in the use of weather radar for hazardous windshear detection. The effect of the stable local oscillator (STALO) instability (jitter) on the spectrum moment estimation algorithm is investigated. Uncertainty in the stable local oscillator will affect both the transmitted signal and the received signal since the STALO provides transmitted and reference carriers. The proposed approach models STALO phase jitter as it affects the complex autocorrelation of the radar return. The results can therefore by interpreted in terms of any source of system phase jitter for which the model is appropriate and, in particular, may be considered as a cumulative effect of all radar system sources.

  19. Note: Precise phase and frequency comparator based on direct phase-time measurements.

    PubMed

    Prochazka, Ivan; Panek, Petr; Kodet, Jan

    2014-12-01

    We are reporting on the design, performance, and application results of a phase and frequency comparator based on the direct phase-time measurement using a high performance event timer. The advantages of this approach are the simple implementation, a broad frequency range, and the clear interpretation of the measured results. Primarily we analyzed the background instability of the instrument in a common-clock test when a 200 MHz clock signal was connected to both inputs and the noise bandwidth was kept at 5 Hz by a preprocessing of the measured data. The results show that the Allan deviation of the background instability follows 4 × 10(-14)/τ for a wide range of averaging intervals from 0.1 s up to 10(4) s. These results are better than background instability of commercially available state-of-the-art instruments based on the phase difference multiplication. Finally the instrument was used for comparison of two H-masers. This experiment proofed that one of possible applications is a comparison of low-noise highly stable frequency sources and measurement of their frequency stability in the time-domain. The noise background of the instrument was negligible for averaging intervals longer than 100 ms. PMID:25554346

  20. Note: Precise phase and frequency comparator based on direct phase-time measurements

    NASA Astrophysics Data System (ADS)

    Prochazka, Ivan; Panek, Petr; Kodet, Jan

    2014-12-01

    We are reporting on the design, performance, and application results of a phase and frequency comparator based on the direct phase-time measurement using a high performance event timer. The advantages of this approach are the simple implementation, a broad frequency range, and the clear interpretation of the measured results. Primarily we analyzed the background instability of the instrument in a common-clock test when a 200 MHz clock signal was connected to both inputs and the noise bandwidth was kept at 5 Hz by a preprocessing of the measured data. The results show that the Allan deviation of the background instability follows 4 × 10-14/τ for a wide range of averaging intervals from 0.1 s up to 104 s. These results are better than background instability of commercially available state-of-the-art instruments based on the phase difference multiplication. Finally the instrument was used for comparison of two H-masers. This experiment proofed that one of possible applications is a comparison of low-noise highly stable frequency sources and measurement of their frequency stability in the time-domain. The noise background of the instrument was negligible for averaging intervals longer than 100 ms.

  1. Shot noise limit of the optical 3D measurement methods for smooth surfaces

    NASA Astrophysics Data System (ADS)

    Pavliček, Pavel; Pech, Miroslav

    2016-03-01

    The measurement uncertainty of optical 3D measurement methods for smooth surfaces caused by shot noise is investigated. The shot noise is a fundamental property of the quantum nature of light. If all noise sources are eliminated, the shot noise represents the ultimate limit of the measurement uncertainty. The measurement uncertainty is calculated for several simple model methods. The analysis shows that the measurement uncertainty depends on the wavelength of used light, the number of photons used for the measurement, and on a factor that is connected with the geometric arrangement of the measurement setup.

  2. Adaptive multidirectional frequency domain filter for noise removal in wrapped phase patterns.

    PubMed

    Liu, Guixiong; Chen, Dongxue; Peng, Yanhua; Zeng, Qilin

    2016-08-01

    In order to avoid the detrimental effects of excessive noise in the phase fringe patterns of a laser digital interferometer over the accuracy of phase unwrapping and the successful detection of mechanical fatigue defects, an effective method of adaptive multidirectional frequency domain filtering is introduced based on the characteristics of the energy spectrum of localized wrapped phase patterns. Not only can this method automatically set the cutoff frequency, but it can also effectively filter out noise while preserving the image edge information. Compared with the sine and cosine transform filtering and the multidirectional frequency domain filtering, the experimental results demonstrate that the image filtered by our method has the fewest number of residues and is the closest to the noise-free image, compared to the two aforementioned methods, demonstrating the effectiveness of this adaptive multidirectional frequency domain filter. PMID:27505376

  3. Microwave photonic link with improved phase noise using a balanced detection scheme

    NASA Astrophysics Data System (ADS)

    Hu, Jingjing; Gu, Yiying; Tan, Wengang; Zhu, Wenwu; Wang, Linghua; Zhao, Mingshan

    2016-07-01

    A microwave photonic link (MPL) with improved phase noise performance using a dual output Mach-Zehnder modulator (DP-MZM) and balanced detection is proposed and experimentally demonstrated. The fundamental concept of the approach is based on the two complementary outputs of DP-MZM and the destructive combination of the photocurrent in balanced photodetector (BPD). Theoretical analysis is performed to numerical evaluate the additive phase noise performance and shows a good agreement with the experiment. Experimental results are presented for 4 GHz, 8 GHz and 12 GHz transmission link and an 11 dB improvement of phase noise performance at 10 MHz offset is achieved compared to the conventional intensity-modulation and direct-detection (IMDD) MPL.

  4. Phase noise analysis of injected gain switched comb source for coherent communications.

    PubMed

    Zhou, Rui; Huynh, Tam N; Vujicic, Vidak; Anandarajah, Prince M; Barry, Liam P

    2014-04-01

    We present experimentally and analytically the phase noise characterization of an externally injected gain switched comb source. The results reveal the residual high frequency FM noise in the comb lines, which stays unnoticed in the optical linewidth value but leads to an increased phase-error variance. The potential impact of the residual phase noise is investigated in a 10.7 GBaud optical DQPSK system where a 2 dB power penalty is recorded at BER of 10(-9). In a 10.7 GBaud digital coherent QPSK system no penalty is observed but with 5 GBaud 16-QAM format a 3 dBpenalty exists at the FEC limit of 4.4e-3. PMID:24718188

  5. Cavity optomechanics with micromirrors: Progress towards the measurement of quantum radiation pressure noise and ponderomotive squeezing

    NASA Astrophysics Data System (ADS)

    Cripe, Jonathan; Singh, Robinjeet; Corbitt, Thomas; LIGO Collaboration

    2016-03-01

    Advanced LIGO is predicted to be limited by quantum noise at intermediate and high frequencies when it reaches design sensitivity. The quantum noise, including radiation pressure noise at intermediate frequencies, will need to be reduced in order to increase the sensitivity of future gravitational wave interferometers. We report recent progress towards measuring quantum radiation pressure noise in a cryogenic optomechanical cavity. The low noise microfabricated mechanical oscillator and cryogenic apparatus allow direct broadband thermal noise measurements which test thermal noise models and damping mechanisms. We also progress toward the measurement of the ponderomotive squeezing produced by the optomechanical cavity and the reduction of radiation pressure noise using squeezed light. These techniques may be applicable to an upgrade of Advanced LIGO or the next generation of gravitational wave detectors.

  6. Instrumentation for measurement of aircraft noise and sonic boom

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J. (Inventor)

    1975-01-01

    A jet aircraft noise and sonic boom measuring device which converts sound pressure into electric current is described. An electric current proportional to the sound pressure level at a condenser microphone is produced and transmitted over a cable, amplified by a zero drive amplifier and recorded on magnetic tape. The converter is comprised of a local oscillator, a dual-gate field-effect transistor (FET) mixer and a voltage regulator/impedance translator. A carrier voltage that is applied to one of the gates of the FET mixer is generated by the local oscillator. The microphone signal is mixed with the carrier to produce an electrical current at the frequency of vibration of the microphone diaphragm by the FET mixer. The voltage of the local oscillator and mixer stages is regulated, the carrier at the output is eliminated, and a low output impedance at the cable terminals is provided by the voltage regulator/impedance translator.

  7. Calculation of atmospheric loss from microwave radiometric noise temperature measurements

    NASA Technical Reports Server (NTRS)

    Stelzried, C.; Slobin, S. D.

    1981-01-01

    Microwave propagation loss in the atmosphere can be inferred from microwave radiometric noise temperature measurements. The relevant equations are given and a derivation and calculation is made assuming various physical models. Comparison is made with the commonly used lumped element atmospheric model (isothermal and uniform loss) and the model with linear temperature and exponential loss distributions. The results are useful for estimating the integral inversion differences due to the model selection. This indicates that the commonly used lumped element atmospheric model is a very good approximation with judicious choice of the effective physical temperature. For the worst case comparison, the lumped element model agrees with the variable parameter model within 0.2 dB up to a propagation loss of 3 dB.

  8. Novel Rx IQ mismatch compensation considering laser phase noise for CO-OFDM system

    NASA Astrophysics Data System (ADS)

    Ma, Xiurong; Ding, Zhaocai; Li, Kun; Wang, Xiao

    2015-08-01

    In this paper, a novel compensation scheme for receiver (Rx) in-phase/quadrature (IQ) mismatch is proposed in coherent optical orthogonal frequency division multiplexing (CO-OFDM) system in the presence of laser phase noise. In this scheme, laser phase noise and channel distortion were combined as a new channel transfer factor, the IQ mismatch factor and initial channel transfer factor can be estimated independently based on the relationship of IQ mismatch factors. And the channel transfer factor can be updated on a symbol-by-symbol basis which retrieves an estimation of the phase noise value by extracting and averaging the phase drift of all OFDM sub-channels. Numerical results indicate that when the phase and amplitude mismatch are 10° and 2 dB respectively, a 1.6 dB optical signal-to noise ratio is improved at laser linewidth of 60 kHz. Furthermore, the complexity of the proposed method is analyzed in terms of the number of required complex multiplications per bit.

  9. Real-time full bandwidth measurement of spectral noise in supercontinuum generation

    PubMed Central

    Wetzel, B.; Stefani, A.; Larger, L.; Lacourt, P. A.; Merolla, J. M.; Sylvestre, T.; Kudlinski, A.; Mussot, A.; Genty, G.; Dias, F.; Dudley, J. M.

    2012-01-01

    The ability to measure real-time fluctuations of ultrashort pulses propagating in optical fiber has provided significant insights into fundamental dynamical effects such as modulation instability and the formation of frequency-shifting rogue wave solitons. We report here a detailed study of real-time fluctuations across the full bandwidth of a fiber supercontinuum which directly reveals the significant variation in measured noise statistics across the spectrum, and which allows us to study correlations between widely separated spectral components. For two different propagation distances corresponding to the onset phase of spectral broadening and the fully-developed supercontinuum, we measure real time noise across the supercontinuum bandwidth, and we quantify the supercontinuum noise using statistical higher-order moments and a frequency-dependent intensity correlation map. We identify correlated spectral regions within the supercontinuum associated with simultaneous sideband generation, as well as signatures of pump depletion and soliton-like pump dynamics. Experimental results are in excellent agreement with simulations. PMID:23193436

  10. Measuring the signal-to-noise ratio of a neuron

    PubMed Central

    Czanner, Gabriela; Sarma, Sridevi V.; Ba, Demba; Eden, Uri T.; Wu, Wei; Eskandar, Emad; Lim, Hubert H.; Temereanca, Simona; Suzuki, Wendy A.; Brown, Emery N.

    2015-01-01

    The signal-to-noise ratio (SNR), a commonly used measure of fidelity in physical systems, is defined as the ratio of the squared amplitude or variance of a signal relative to the variance of the noise. This definition is not appropriate for neural systems in which spiking activity is more accurately represented as point processes. We show that the SNR estimates a ratio of expected prediction errors and extend the standard definition to one appropriate for single neurons by representing neural spiking activity using point process generalized linear models (PP-GLM). We estimate the prediction errors using the residual deviances from the PP-GLM fits. Because the deviance is an approximate χ2 random variable, we compute a bias-corrected SNR estimate appropriate for single-neuron analysis and use the bootstrap to assess its uncertainty. In the analyses of four systems neuroscience experiments, we show that the SNRs are −10 dB to −3 dB for guinea pig auditory cortex neurons, −18 dB to −7 dB for rat thalamic neurons, −28 dB to −14 dB for monkey hippocampal neurons, and −29 dB to −20 dB for human subthalamic neurons. The new SNR definition makes explicit in the measure commonly used for physical systems the often-quoted observation that single neurons have low SNRs. The neuron’s spiking history is frequently a more informative covariate for predicting spiking propensity than the applied stimulus. Our new SNR definition extends to any GLM system in which the factors modulating the response can be expressed as separate components of a likelihood function. PMID:25995363

  11. A 3 to 5 GHz low-phase-noise fractional-N frequency synthesizer with adaptive frequency calibration for GSM/PCS/DCS/WCDMA transceivers

    NASA Astrophysics Data System (ADS)

    Yaohua, Pan; Niansong, Mei; Hu, Chen; Yumei, Huang; Zhiliang, Hong

    2012-01-01

    A low-phase-noise Σ—Δ fractional-N frequency synthesizer for GSM/PCS/DCS/WCDMA transceivers is presented. The voltage controlled oscillator is designed with a modified digital controlled capacitor array to extend the tuning range and minimize phase noise. A high-resolution adaptive frequency calibration technique is introduced to automatically choose frequency bands and increase phase-noise immunity. A prototype is implemented in 0.13 μm CMOS technology. The experimental results show that the designed 1.2 V wideband frequency synthesizer is locked from 3.05 to 5.17 GHz within 30 μs, which covers all five required frequency bands. The measured in-band phase noise are -89, -95.5 and -101 dBc/Hz for 3.8 GHz, 2 GHz and 948 MHz carriers, respectively, and accordingly the out-of-band phase noise are -121, -123 and -132 dBc/Hz at 1 MHz offset, which meet the phase-noise-mask requirements of the above-mentioned standards.

  12. Flocking of multi-agent systems with multiplicative and independent measurement noises

    NASA Astrophysics Data System (ADS)

    Sun, Yongzheng; Wang, Yajun; Zhao, Donghua

    2015-12-01

    We investigate the effect of noise and group density on the emergence of flocking in a stochastic Cucker-Smale type system. We consider the independent and multiplicative measurement noise and derive sufficient conditions for flocking and non-flocking in terms of the noise intensity and group density. We report that, in noise environments, it is rather easy for the group with high density to form and maintain ordered group motion. Moreover, we find that, under the perturbation of multiplicative noise, systems with weak coupling can tolerate relatively strong perturbation of noise.

  13. Ground noise measurements during static and flyby operations of the Cessna 02-T turbine powered airplane

    NASA Technical Reports Server (NTRS)

    Hilton, D. A.; Henderson, H. R.; Lawton, B. W.

    1975-01-01

    The field noise measurements on the Cessna 02-T turbine powered propeller aircraft are presented. The objective of the study was to obtain the basic noise characteristics of the aircraft during static ground runs and flyover tests, to identify the sources of the noise, and to correlate the noises with the aircraft operating conditions. The results are presented in the form of a overall noise levels, radiation patterns, and frequency spectra. The noise characteristics of the turbine powered aircraft are compared with those of the reciprocating engine powered aircraft.

  14. Phase noise and squeezing spectra of the output field of an optical cavity containing an interacting Bose–Einstein condensate

    NASA Astrophysics Data System (ADS)

    Dalafi, A.; Naderi, M. H.

    2016-07-01

    We present a theoretical study of the phase noise, intensity and quadrature squeezing power spectra of the transmitted field of a driven optical cavity containing an interacting one-dimensional Bose–Einstein condensate. We show how the pattern of the output power spectrum of the cavity changes due to the nonlinear effect of atomic collisions. Furthermore, it is shown that due to a one-to-one correspondence between the splitting of the peaks in the phase noise power spectrum of the cavity output field and the s-wave scattering frequency of the atom–atom interaction, one can measure the strength of interatomic interaction. In addition, we show how the atomic collisions affect the squeezing behavior of the output field.

  15. Procedure for Separating Noise Sources in Measurements of Turbofan Engine Core Noise

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey Hilton

    2006-01-01

    The study of core noise from turbofan engines has become more important as noise from other sources like the fan and jet have been reduced. A multiple microphone and acoustic source modeling method to separate correlated and uncorrelated sources has been developed. The auto and cross spectrum in the frequency range below 1000 Hz is fitted with a noise propagation model based on a source couplet consisting of a single incoherent source with a single coherent source or a source triplet consisting of a single incoherent source with two coherent point sources. Examples are presented using data from a Pratt & Whitney PW4098 turbofan engine. The method works well.

  16. Improving Phase Measurement Procedures for Pump-Probe Experiments

    SciTech Connect

    Perkins, Cara P.; /Merrimack Coll. /SLAC

    2011-06-22

    Pump-probe experiments use a visible laser to excite an atom or molecule, while an X-ray pulse measures its shape. The phases and pulse times of each beam are used to calculate the object's positing at a given time - a moving picture of the chemical reaction. Currently, the fastest X-ray pulses can travel a time-length of five femtoseconds. However, present-day phase measurements can only be done as quickly as 50 femtoseconds. The purpose of this research is to explore ways in which phase-timing measurements can be improved. Three experiments are undergone to find the key factors in phase-timing. Different frequency mixers, the radio frequency (RF) components used for phase measurement, are tested for the highest sensitivity. These same mixers are then tested using two different power splitters for the lowest noise-to-sensitivity ratio. Lastly, the temperature dependency of phase is explored by testing each component at a range of temperatures to see how the phase is affected. This research demonstrated that certain mixers were more sensitive than others; on average, one mixer performed the best with a sensitivity of 0.0230 V/ps. The results also showed that same mixer combined with one splitter gave the best noise-to-sensitivity ratio overall with an average of 6.95E-04 fs/{radical}(Hz). All the components tested exhibited a temperature-dependent phase change (ranging from 1.69 to 81.6 fs/{sup o}C); the same mixer that performed at the highest sensitivity with the least noise had a significantly greater phase change than the other two. In conclusion, the experiments showed that a temperature-controlled environment is most appropriate for phase measurement. They also demonstrated that mixers are not significantly noisy and that certain types of mixers may perform better than others, which could be accounted for in their construction. The results of this research encourage further investigation into the study of different mixers and other RF components used in pump

  17. A fully integrated W-band push-push CMOS VCO with low phase noise and wide tuning range.

    PubMed

    Wang, To-Po

    2011-07-01

    A circuit topology suitable for a low-phase-noise wide-tuning-range push-push voltage-controlled oscillator (VCO) is proposed in this paper. By applying varactors connected between drain and source terminations of the cross-coupled pair, the tuning range is effectively increased and the phase noise is improved. Moreover, a small capacitor is inserted between the VCO core and testing buffer to reduce loading effects on the VCO core. Furthermore, the enhanced second-harmonic output signal is extracted at middle of the varactors, leading to the elimination of RF choke at VCO's second-harmonic output port and a reduced chip size. Based on the proposed architecture, this VCO fabricated in 0.18-μm CMOS exhibits a measured 6.35% tuning range. Operating at a supply voltage of 1.2 V, the VCO core consumes 7.5-mW dc power, and the measured phase noise is -75 dBc/Hz and -91.5 dBc/Hz at 100-kHz and 1-MHz offsets from the 77.8-GHz carrier, respectively. Compared with previously published silicon-based VCOs over 70 GHz, this work can simultaneously achieve low phase noise, wide tuning range, and low dc power consumption, leading to a superior figure of merit (FOM), and better figure of merit considering the tuning range (FOM(T)). In addition, this fully integrated VCO also demonstrates the highest operation frequency among previously published 0.18-μm CMOS VCOs. PMID:21768016

  18. A technique for quantitatively measuring microstructurally induced ultrasonic noise

    NASA Astrophysics Data System (ADS)

    Margetan, F. J.; Gray, T. A.; Thompson, R. B.

    A method for quantifying backscattered grain noise amplitudes in pulse/echo inspections is presented. The technique employs positional averaging to extract the rms grain noise as a function of time, or equivalently, as a function of depth in the specimen. This technique has been demonstrated for focussed transducer inspections of titanium alloys. A simple grain noise model that assumes incoherent single scattering by the individual metal grains is presented as a first step toward the development of a comprehensive theory.

  19. Measurement of mode-locked laser timing jitter by use of phase-encoded optical sampling.

    PubMed

    Juodawlkis, P W; Twichell, J C; Wasserman, J L; Betts, G E; Williamson, R C

    2001-03-01

    The phase-noise characteristics of a harmonically mode-locked fiber laser are investigated with a new measurement technique called phase-encoded optical sampling. A polarization-maintaining ring laser is mode locked by use of the short-pulse electrical output of a resonant-tunneling diode oscillator, enabling it to produce 30-ps pulses at a 208-MHz repetition rate. The interferometric phase-encoded sampling technique provides 60-dB suppression of amplitude-jitter noise and allows supermode phase noise to be observed and quantified. The white-noise pulse-to-pulse timing jitter and the rms supermode timing jitter of the laser are measured to be less than 50 and 70 fs, respectively. PMID:18040304

  20. Noise generated by quiet engine fans. 2: Fan A. [measurement of power spectra and sideline perceived noise levels

    NASA Technical Reports Server (NTRS)

    Montegani, F. J.; Schaefer, J. W.; Stakolich, E. G.

    1974-01-01

    A significant effort within the NASA Quiet Engine Program has been devoted to acoustical evaluation at the Lewis Research Center noise test facility of a family of full-scale fans. This report, documents the noise results obtained with fan A - a 1.5-pressure-ratio, 1160-ft/sec-tip-speed fan. The fan is described and some aerodynamic operating data are given. Far-field noise around the fan was measured for a variety of configurations pertaining to acoustical treatment and over a range of operating conditions. Complete results of 1/3-octave band analysis of the data are presented in tabular form. Included also are power spectra and sideline perceived noise levels. Some representative 1/3-octave band data are presented graphically, and sample graphs of continuous narrow-band spectra are also provided.

  1. Long-term effects of noise reduction measures on noise annoyance and sleep disturbance: the Norwegian facade insulation study.

    PubMed

    Amundsen, Astrid H; Klæboe, Ronny; Aasvang, Gunn Marit

    2013-06-01

    The Norwegian facade insulation study includes one pre-intervention and two post-intervention surveys. The facade-insulating measures reduced indoor noise levels by 7 dB on average. Before the intervention, 43% of the respondents were highly annoyed by noise. Half a year after the intervention, the proportion of respondents who were highly annoyed by road traffic noise had been significantly reduced to 15%. The second post-intervention study (2 yr after the first post-intervention study) showed that the proportion of highly annoyed respondents had not changed since the first post-intervention study. The reduction in the respondents' self-reported sleep disturbances (due to traffic noise) also remained relatively stable from the first to the second post-intervention study. In the control group, there were no statistically significant differences in annoyance between the pre-intervention and the two post-intervention studies. Previous studies of traffic changes have reported that people "overreact" to noise changes. This study indicated that when considering a receiver measure, such as facade insulation, the effect of reducing indoor noise levels could be predicted from exposure-response curves based on previous studies. Thus no evidence of an "overreaction" was found. PMID:23742346

  2. Optical-fiber pulse rate multiplier for ultralow phase-noise signal generation.

    PubMed

    Haboucha, A; Zhang, W; Li, T; Lours, M; Luiten, A N; Le Coq, Y; Santarelli, G

    2011-09-15

    In this Letter we report on an all optical-fiber approach to the synthesis of ultralow-noise microwave signals by photodetection of femtosecond laser pulses. We use a cascade of Mach-Zehnder fiber interferometers to realize stable and efficient repetition rate multiplication. This technique increases the signal level of the photodetected microwave signal by close to 18 dB. That in turn allows us to demonstrate a residual phase-noise level of -118 dBc/Hz at 1 Hz and -160 dBc/Hz at 10 MHz from a 12 GHz signal. The residual noise floor of the fiber multiplier and photodetection system alone is around -164 dBc/Hz at the same offset frequency, which is very close to the fundamental shot-noise floor. PMID:21931422

  3. Measurement, analysis, and prediction of aircraft interior noise

    NASA Technical Reports Server (NTRS)

    Howlett, J. T.; Williams, L. H.; Catherines, J. J.; Jha, S. K.

    1976-01-01

    Considerations of comfort of passengers and crew in light aircraft and helicopters indicate substantial benefits may be obtained by the reduction of interior noise levels. This paper discusses an ongoing research effort to reduce interior noise in such vehicles. Data from both field and laboratory studies for a light aircraft are presented. The laboratory data indicate that structural vibration is an efficient source of interior noise and should be considered in the reduction of interior noise. Flight data taken on a helicopter before and after installation of acoustic treatment demonstrate that over 30 dB of noise reduction can be obtained in certain portions of the spectra. However, subjective evaluations of the treated vehicle indicate that further reductions in interior noise are desirable. An existing interior noise prediction method which was developed for large jet transports was applied to study low-frequency noise in a light aircraft fuselage. The results indicate that improvements in the analytical model may be necessary for the prediction of interior noise of light aircraft.

  4. Application of global phase filtering method in multi frequency measurement.

    PubMed

    Song, Limei; Chang, Yulan; Li, Zongyan; Wang, Pengqiang; Xing, Guangxin; Xi, Jiangtao

    2014-06-01

    In reverse engineering, reconstruction of 3D point cloud data is the key step to acquire the final profile of the object. However, the quality of 3D reconstruction is influenced by noise in the three-dimensional measurement. This paper aims to tackle the issue of removing the noisy data from the complex point cloud data. The 3D-GPF (Three Dimensional Global Phase Filtering) global phase filtering method is proposed based on the study of phase filtering method, consisting of the steps below. Firstly, the six-step phase shift profilometry is used to obtain the local phase information, and encoding the obtained phase information. Through the global phase unwrapping method, the global phase can be acquired. Secondly, 3D-GPF method is used for the obtained global phase. Finally, the effect of 3D reconstruction is analyzed after the global phase filtering. Experimental results indicate that the noisy points of three-dimensional graphics is reduced 98.02%, the speed of 3D reconstruction is raised 12%.The effect of the proposed global phase filtering method is better than DCT and GSM methods. It is high precision and fast speed, and can be widely used in other 3D reconstruction application. PMID:24921558

  5. Measurement of infinitesimal phase response curves from noisy real neurons

    NASA Astrophysics Data System (ADS)

    Ota, Keisuke; Omori, Toshiaki; Watanabe, Shigeo; Miyakawa, Hiroyoshi; Okada, Masato; Aonishi, Toru

    2011-10-01

    We sought to measure infinitesimal phase response curves (iPRCs) from rat hippocampal CA1 pyramidal neurons. It is difficult to measure iPRCs from noisy neurons because of the dilemma that either the linearity or the signal-to-noise ratio of responses to external perturbations must be sacrificed. To overcome this difficulty, we used an iPRC measurement model formulated as the Langevin phase equation (LPE) to extract iPRCs in the Bayesian scheme. We then simultaneously verified the effectiveness of the measurement model and the reliability of the estimated iPRCs by demonstrating that LPEs with the estimated iPRCs could predict the stochastic behaviors of the same neurons, whose iPRCs had been measured, when they were perturbed by periodic stimulus currents. Our results suggest that the LPE is an effective model for real oscillating neurons and that many theoretical frameworks based on it may be applicable to real nerve systems.

  6. Potential Misidentification of Love-Wave Phase Velocity Based on Three-Component Ambient Seismic Noise

    NASA Astrophysics Data System (ADS)

    Xu, Zongbo; Xia, Jianghai; Luo, Yinhe; Cheng, Feng; Pan, Yudi

    2016-04-01

    People have calculated Rayleigh-wave phase velocities from vertical component of ambient seismic noise for several years. Recently, researchers started to extract Love waves from transverse component recordings of ambient noise, where "transverse" is defined as the direction perpendicular to a great-circle path or a line in small scale through observation sensors. Most researches assumed Rayleigh waves could be negligible, but Rayleigh waves can exist in the transverse component when Rayleigh waves propagate in other directions besides radial direction. In study of data acquired in western Junggar Basin near Karamay city, China, after processing the transverse component recordings of ambient noise, we obtain two energy trends, which are distinguished with Rayleigh-wave and Love-wave phase velocities, in the frequency-velocity domain using multichannel analysis of surface waves (MASW). Rayleigh waves could be also extracted from the transverse component data. Because Rayleigh-wave and Love-wave phase velocities are close in high frequencies (>0.1 Hz), two kinds of surface waves might be merged in the frequency-velocity domain. Rayleigh-wave phase velocities may be misidentified as Love-wave phase velocities. To get accurate surface-wave phase velocities from the transverse component data using seismic interferometry in investigating the shallow geology, our results suggest using MASW to calculate real Love-wave phase velocities.

  7. Some aspects of sound discomfort caused by streetcar traffic. [noise intensity measurements and health aspects

    NASA Technical Reports Server (NTRS)

    Ursoniu, C.; Puca, N.; Dankner, A.; Moise, G.; Sirbu, A.

    1974-01-01

    Streetcar noise was investigated on different lines and inside different types by sonometer measurements. The results showed variations of the total noise intensity between 88-97 db. In some squares with heavy traffic the total noise intensity reached 106 db. Noise intensity measurements inside different types of streetcars brought to light high values between 101-106 db, while in the case of the new silent type of streetcar the values were 86-87 db. The importance of the sound discomfort produced by streetcar traffic is emphasized, inasmuch as the noise intensity exceeds by far the values recommended by communal hygiene.

  8. Aircraft measurement of radio frequency noise at 121.5 MHz, 243MHz and 406MHz

    NASA Technical Reports Server (NTRS)

    Taylor, R. E.; Hill, J. S.

    1977-01-01

    An airborne survey measurement of terrestrial radio-frequency noise over U.S. metropolitan areas has been made at 121.5, 243 and 406 MHz with horizontal-polarization monopole antennas. Flights were at 25,000 feet altitude during the period from December 30, 1976 to January 8, 1977. Radio-noise measurements, expressed in equivalent antenna-noise temperature, indicate a steady-background noise temperature of 572,000 K, at 121.5 MHz, during daylight over New York City. This data is helpful in compiling radio-noise temperature maps; in turn useful for designing satellite-aided, emergency-distress search and rescue communication systems.

  9. Contrast-to-noise ratio optimization for a prototype phase-contrast computed tomography scanner

    SciTech Connect

    Müller, Mark Yaroshenko, Andre; Velroyen, Astrid; Tapfer, Arne; Bech, Martin; Pauwels, Bart; Bruyndonckx, Peter; Sasov, Alexander; Pfeiffer, Franz

    2015-12-15

    In the field of biomedical X-ray imaging, novel techniques, such as phase-contrast and dark-field imaging, have the potential to enhance the contrast and provide complementary structural information about a specimen. In this paper, a first prototype of a preclinical X-ray phase-contrast CT scanner based on a Talbot-Lau interferometer is characterized. We present a study of the contrast-to-noise ratios for attenuation and phase-contrast images acquired with the prototype scanner. The shown results are based on a series of projection images and tomographic data sets of a plastic phantom in phase and attenuation-contrast recorded with varying acquisition settings. Subsequently, the signal and noise distribution of different regions in the phantom were determined. We present a novel method for estimation of contrast-to-noise ratios for projection images based on the cylindrical geometry of the phantom. Analytical functions, representing the expected signal in phase and attenuation-contrast for a circular object, are fitted to individual line profiles of the projection data. The free parameter of the fit function is used to estimate the contrast and the goodness of the fit is determined to assess the noise in the respective signal. The results depict the dependence of the contrast-to-noise ratios on the applied source voltages, the number of steps of the phase stepping routine, and the exposure times for an individual step. Moreover, the influence of the number of projection angles on the image quality of CT slices is investigated. Finally, the implications for future imaging purposes with the scanner are discussed.

  10. Contrast-to-noise ratio optimization for a prototype phase-contrast computed tomography scanner.

    PubMed

    Müller, Mark; Yaroshenko, Andre; Velroyen, Astrid; Bech, Martin; Tapfer, Arne; Pauwels, Bart; Bruyndonckx, Peter; Sasov, Alexander; Pfeiffer, Franz

    2015-12-01

    In the field of biomedical X-ray imaging, novel techniques, such as phase-contrast and dark-field imaging, have the potential to enhance the contrast and provide complementary structural information about a specimen. In this paper, a first prototype of a preclinical X-ray phase-contrast CT scanner based on a Talbot-Lau interferometer is characterized. We present a study of the contrast-to-noise ratios for attenuation and phase-contrast images acquired with the prototype scanner. The shown results are based on a series of projection images and tomographic data sets of a plastic phantom in phase and attenuation-contrast recorded with varying acquisition settings. Subsequently, the signal and noise distribution of different regions in the phantom were determined. We present a novel method for estimation of contrast-to-noise ratios for projection images based on the cylindrical geometry of the phantom. Analytical functions, representing the expected signal in phase and attenuation-contrast for a circular object, are fitted to individual line profiles of the projection data. The free parameter of the fit function is used to estimate the contrast and the goodness of the fit is determined to assess the noise in the respective signal. The results depict the dependence of the contrast-to-noise ratios on the applied source voltages, the number of steps of the phase stepping routine, and the exposure times for an individual step. Moreover, the influence of the number of projection angles on the image quality of CT slices is investigated. Finally, the implications for future imaging purposes with the scanner are discussed. PMID:26724040

  11. Contrast-to-noise ratio optimization for a prototype phase-contrast computed tomography scanner

    NASA Astrophysics Data System (ADS)

    Müller, Mark; Yaroshenko, Andre; Velroyen, Astrid; Bech, Martin; Tapfer, Arne; Pauwels, Bart; Bruyndonckx, Peter; Sasov, Alexander; Pfeiffer, Franz

    2015-12-01

    In the field of biomedical X-ray imaging, novel techniques, such as phase-contrast and dark-field imaging, have the potential to enhance the contrast and provide complementary structural information about a specimen. In this paper, a first prototype of a preclinical X-ray phase-contrast CT scanner based on a Talbot-Lau interferometer is characterized. We present a study of the contrast-to-noise ratios for attenuation and phase-contrast images acquired with the prototype scanner. The shown results are based on a series of projection images and tomographic data sets of a plastic phantom in phase and attenuation-contrast recorded with varying acquisition settings. Subsequently, the signal and noise distribution of different regions in the phantom were determined. We present a novel method for estimation of contrast-to-noise ratios for projection images based on the cylindrical geometry of the phantom. Analytical functions, representing the expected signal in phase and attenuation-contrast for a circular object, are fitted to individual line profiles of the projection data. The free parameter of the fit function is used to estimate the contrast and the goodness of the fit is determined to assess the noise in the respective signal. The results depict the dependence of the contrast-to-noise ratios on the applied source voltages, the number of steps of the phase stepping routine, and the exposure times for an individual step. Moreover, the influence of the number of projection angles on the image quality of CT slices is investigated. Finally, the implications for future imaging purposes with the scanner are discussed.

  12. Comparison of the polynomial model against explicit measurements of noise components for different mammography systems

    NASA Astrophysics Data System (ADS)

    Monnin, P.; Bosmans, H.; Verdun, F. R.; Marshall, N. W.

    2014-10-01

    Given the adverse impact of image noise on the perception of important clinical details in digital mammography, routine quality control measurements should include an evaluation of noise. The European Guidelines, for example, employ a second-order polynomial fit of pixel variance as a function of detector air kerma (DAK) to decompose noise into quantum, electronic and fixed pattern (FP) components and assess the DAK range where quantum noise dominates. This work examines the robustness of the polynomial method against an explicit noise decomposition method. The two methods were applied to variance and noise power spectrum (NPS) data from six digital mammography units. Twenty homogeneously exposed images were acquired with PMMA blocks for target DAKs ranging from 6.25 to 1600 µGy. Both methods were explored for the effects of data weighting and squared fit coefficients during the curve fitting, the influence of the additional filter material (2 mm Al versus 40 mm PMMA) and noise de-trending. Finally, spatial stationarity of noise was assessed. Data weighting improved noise model fitting over large DAK ranges, especially at low detector exposures. The polynomial and explicit decompositions generally agreed for quantum and electronic noise but FP noise fraction was consistently underestimated by the polynomial method. Noise decomposition as a function of position in the image showed limited noise stationarity, especially for FP noise; thus the position of the region of interest (ROI) used for noise decomposition may influence fractional noise composition. The ROI area and position used in the Guidelines offer an acceptable estimation of noise components. While there are limitations to the polynomial model, when used with care and with appropriate data weighting, the method offers a simple and robust means of examining the detector noise components as a function of detector exposure.

  13. A bidirectional microphone for the measurement of duct noise

    NASA Astrophysics Data System (ADS)

    La Fontaine, R. F.; Shepherd, I. C.; Cabelli, A.

    1985-08-01

    A bidirectional microphone which resolves acoustic plane waves in ducts into forward and backward propagating components is described. The microphone has a flat frequency response and finds applications in the analysis of duct noise and in the determination of reflection coefficients for various duct configurations. It can also be employed as a unidirectional microphone in active noise attenuators.

  14. Analytical and experimental studies of an optimum multisegment phased liner noise suppression concept

    NASA Technical Reports Server (NTRS)

    Sawdy, D. T.; Beckemeyer, R. J.; Patterson, J. D.

    1976-01-01

    Results are presented from detailed analytical studies made to define methods for obtaining improved multisegment lining performance by taking advantage of relative placement of each lining segment. Properly phased liner segments reflect and spatially redistribute the incident acoustic energy and thus provide additional attenuation. A mathematical model was developed for rectangular ducts with uniform mean flow. Segmented acoustic fields were represented by duct eigenfunction expansions, and mode-matching was used to ensure continuity of the total field. Parametric studies were performed to identify attenuation mechanisms and define preliminary liner configurations. An optimization procedure was used to determine optimum liner impedance values for a given total lining length, Mach number, and incident modal distribution. Optimal segmented liners are presented and it is shown that, provided the sound source is well-defined and flow environment is known, conventional infinite duct optimum attenuation rates can be improved. To confirm these results, an experimental program was conducted in a laboratory test facility. The measured data are presented in the form of analytical-experimental correlations. Excellent agreement between theory and experiment verifies and substantiates the analytical prediction techniques. The results indicate that phased liners may be of immediate benefit in the development of improved aircraft exhaust duct noise suppressors.

  15. Resolving small signal measurements in experimental plasma environments using calibrated subtraction of noise signals

    SciTech Connect

    Fimognari, P. J. Demers, D. R.; Chen, X.; Schoch, P. M.

    2014-11-15

    The performance of many diagnostic and control systems within fusion and other fields of research are often detrimentally affected by spurious noise signals. This is particularly true for those (such as radiation or particle detectors) working with very small signals. Common sources of radiated and conducted noise in experimental fusion environments include the plasma itself and instrumentation. The noise complicates data analysis, as illustrated by noise on signals measured with the heavy ion beam probe (HIBP) installed on the Madison Symmetric Torus. The noise is time-varying and often exceeds the secondary ion beam current (in contrast with previous applications). Analysis of the noise identifies the dominant source as photoelectric emission from the detectors induced by ultraviolet light from the plasma. This has led to the development of a calibrated subtraction technique, which largely removes the undesired temporal noise signals from data. The advantages of the technique for small signal measurement applications are demonstrated through improvements realized on HIBP fluctuation measurements.

  16. Acoustic Environment of Admiralty Inlet: Broadband Noise Measurements

    SciTech Connect

    Xu, Jinshan; Deng, Zhiqun; Martinez, Jayson J.; Carlson, Thomas J.; Myers, Joshua R.; Weiland, Mark A.; Jones, Mark E.

    2011-09-30

    Admiralty Inlet has been selected as a potential tidal energy site. It is located near shipping lanes, is a highly variable acoustic environment, and is frequented by the highly endangered southern resident killer whale (SRKW). Resolving environmental impacts is the first step to receiving approval to deploy tidal turbines at Admiralty Inlet. Of particular concern is the potential for blade strike or other negative interactions between the SRKW and the tidal turbine. A variety of technologies including passive and active monitoring systems are being considered as potential tools to determine the presence of SRKW in the vicinity of the turbines. Broadband noise level measurements are critical for the determination of design and operation specifications of all marine and hydrokinetic energy capture technologies. Acoustic environment data at the proposed site was acquired at different depths using a cabled vertical line array (VLA) with four calibrated hydrophones. The sound pressure level (SPL) power spectrum density was estimated based on the fast Fourier transform. This study describes the first broadband SPL measurements for this site at different depths with frequency ranging from 10 kHz to 480 kHz in combination with other information. To understand the SPL caused by this bedload transport, three different pressure sensors with temperature and conductivity were also assembled on the VLA to measure the conditions at the hydrophone deployment depth. The broadband SPL levels at frequency ranges of 3 kHz to 7 kHz as a function of depth were estimated. Only the hydrophone at an average depth of 40 m showed the strong dependence of SPL with distance from the bottom, which was possibly caused by the cobbles shifting on the seabed. Automatic Identification System data were also studied to understand the SPL measurements.

  17. Analysis of satellite measurements of terrestrial radio noise

    NASA Technical Reports Server (NTRS)

    Bakalyar, G.; Caruso, J. A.; Vargas-Vila, R.; Ziemba, E.

    1974-01-01

    Worldwide distributions of terrestrial radio noise as monitored by Radio Astronomy Explorer 1 (RAE 1) generated and compared with CCIR predictions. These contour maps show the global morphology of radio noise at 6.55 and 9.18 MHz for fall, winter, spring and summer during the local time blocks of 00-08 LT and 16-24 LT. These computer produced maps show general agreement with CCIR predictions over large land masses. The RAE and CCIR maps diverge at high latitudes over Asia and frequently over ocean regions. Higher noise levels observed by RAE at high latitudes are attributed to magnetospheric emission while higher noise levels observed by RAE over Asia are attributable to high power transmitters. Analysis of RAE noise observations in conjunction with various geophysical phenomena showed no obvious correlation.

  18. Measurement-based auralization methodology for the assessment of noise mitigation measures

    NASA Astrophysics Data System (ADS)

    Thomas, Pieter; Wei, Weigang; Van Renterghem, Timothy; Botteldooren, Dick

    2016-09-01

    The effect of noise mitigation measures is generally expressed by noise levels only, neglecting the listener's perception. In this study, an auralization methodology is proposed that enables an auditive preview of noise abatement measures for road traffic noise, based on the direction dependent attenuation of a priori recordings made with a dedicated 32-channel spherical microphone array. This measurement-based auralization has the advantage that all non-road traffic sounds that create the listening context are present. The potential of this auralization methodology is evaluated through the assessment of the effect of an L-shaped mound. The angular insertion loss of the mound is estimated by using the ISO 9613-2 propagation model, the Pierce barrier diffraction model and the Harmonoise point-to-point model. The realism of the auralization technique is evaluated by listening tests, indicating that listeners had great difficulty in differentiating between a posteriori recordings and auralized samples, which shows the validity of the followed approaches.

  19. Intensity noise reduction in semiconductor lasers by amplitude-phase decorrelation

    NASA Technical Reports Server (NTRS)

    Vahala, Kerry J.; Newkirk, Michael A.

    1990-01-01

    Detuned operation of a laser results in coupling of field amplitude and phase fluctuations. In a semiconductor laser, this coupling is known to be very large. Here it is demonstrated that it can be used to significantly reduce intensity noise below its intrinsic limit.

  20. Implementation of measure of relative tendency to phase image filtering spacial based

    NASA Astrophysics Data System (ADS)

    Syakrani, Nurjannah; Baskoro, Edy T.; Mengko, Tati L. R.; Suksmono, A. B.

    2014-03-01

    Complex image can split to magnitudo and phase images. The phase of complex function is uniquely defined only in the principal or wrapped value range (-π, π]. Complex image is producted by special equipment as MRI, InSAR and Optics. Image acquisition has noise mostly. The noise come from modality, transmission media or object of image. Generally, the noise has two classification that are additive as Gaussian or multiplicative as speckle. The noise make image processing effectiveless. One of measure of relative tendency in Statistics is quartile consist of low, middle (median) and upper quartiles. Until now, basic spatial filtering method is constructed mean based that linear category or median based that simple nonlinear category. There is different formulation to get measure of central or relatif tendency between magnitudo and phase data. This paper propose a new filtering method base on quartile to phase image specially. Using 3×3 window to implementation of quartile algorithm in Matlab is tested to simulation phase image named Peak2XY by two kind of noises that are Gaussian and Speckle. For example, PSNR of upper quartile filtering to Peak2XY by Gaussian noise with mean =0, variance=0.01, are LoQu = +20.2622; MidQu = +23.7045; UpQu = +21.3528. The quartile filtering method also tested to head phase image of Magnetics Resonance Imaging and Fuji of InSAR phase image.

  1. Repeat Measurements of Seismic Noise at the Waiotapu Geothermal Area, North Island, NZ

    SciTech Connect

    Whiteford, P.C.

    1995-01-01

    The amplitudes of seismic ground noise were remeasured at 66 sites in the Waiotapu and Reporoa geothermal areas in 1995 to determine whether amplitudes had changed since the first survey in 1970. In both 1995 and 1970 high levels of seismic noise occurred in two localities, one at Waiotapu and one at Reporoa. The elevated levels of seismic noise at most sites are thought to be caused by surface or near-surface geothermal activity. At seven sites in the Waiotapu area seismic noise levels were almost the same in 1995 as in 1970, indicating no change in the intensity of the source of the geothermal seismic noise. At most other sites the 1995 seismic noise levels were different to those measured in 1970, although at sites with high levels of seismic noise the differences were usually less than at sites with low levels of seismic noise.

  2. Protecting a quantum state from environmental noise by an incompatible finite-time measurement

    SciTech Connect

    Brasil, Carlos Alexandre; Castro, L. A. de; Napolitano, R. d. J.

    2011-08-15

    We show that measurements of finite duration performed on an open two-state system can protect the initial state from a phase-noisy environment, provided the measured observable does not commute with the perturbing interaction. When the measured observable commutes with the environmental interaction, the finite-duration measurement accelerates the rate of decoherence induced by the phase noise. For the description of the measurement of an observable that is incompatible with the interaction between system and environment, we have found an approximate analytical expression, valid at zero temperature and weak coupling with the measuring device. We have tested the validity of the analytical predictions against an exact numerical approach, based on the superoperator-splitting method, that confirms the protection of the initial state of the system. When the coupling between the system and the measuring apparatus increases beyond the range of validity of the analytical approximation, the initial state is still protected by the finite-time measurement, according with the exact numerical calculations.

  3. The Deep Space Network: Noise temperature concepts, measurements, and performance

    NASA Technical Reports Server (NTRS)

    Stelzried, C. T.

    1982-01-01

    The use of higher operational frequencies is being investigated for improved performance of the Deep Space Network. Noise temperature and noise figure concepts are used to describe the noise performance of these receiving systems. The ultimate sensitivity of a linear receiving system is limited by the thermal noise of the source and the quantum noise of the receiver amplifier. The atmosphere, antenna and receiver amplifier of an Earth station receiving system are analyzed separately and as a system. Performance evaluation and error analysis techniques are investigated. System noise temperature and antenna gain parameters are combined to give an overall system figure of merit G/T. Radiometers are used to perform radio ""star'' antenna and system sensitivity calibrations. These are analyzed and the performance of several types compared to an idealized total power radiometer. The theory of radiative transfer is applicable to the analysis of transmission medium loss. A power series solution in terms of the transmission medium loss is given for the solution of the noise temperature contribution.

  4. Ultra-low phase-noise microwave generation using a diode-pumped solid-state laser based frequency comb and a polarization-maintaining pulse interleaver.

    PubMed

    Portuondo-Campa, Erwin; Buchs, Gilles; Kundermann, Stefan; Balet, Laurent; Lecomte, Steve

    2015-12-14

    We report ultra-low phase-noise microwave generation at a 9.6 GHz carrier frequency from optical frequency combs based on diode-pumped solid-state lasers emitting at telecom wavelength and referenced to a common cavity-stabilized continuous-wave laser. Using a novel fibered polarization-maintaining pulse interleaver, a single-oscillator phase-noise floor of -171 dBc/Hz at 10 MHz offset frequency has been measured with commercial PIN InGaAs photodiodes, constituting a record for this type of detector. Also, a direct optical measurement of the stabilized frequency combs' timing jitter was performed using a balanced optical cross correlator, allowing for an identification of the origin of the phase-noise limitations in the system. PMID:26699033

  5. A low-phase-noise 18 GHz Kerr frequency microcomb phase-locked over 65 THz.

    PubMed

    Huang, S-W; Yang, J; Lim, J; Zhou, H; Yu, M; Kwong, D-L; Wong, C W

    2015-01-01

    Laser frequency combs are coherent light sources that simultaneously provide pristine frequency spacings for precision metrology and the fundamental basis for ultrafast and attosecond sciences. Recently, nonlinear parametric conversion in high-Q microresonators has been suggested as an alternative platform for optical frequency combs, though almost all in 100 GHz frequencies or more. Here we report a low-phase-noise on-chip Kerr frequency comb with mode spacing compatible with high-speed silicon optoelectronics. The waveguide cross-section of the silicon nitride spiral resonator is designed to possess small and flattened group velocity dispersion, so that the Kerr frequency comb contains a record-high number of 3,600 phase-locked comb lines. We study the single-sideband phase noise as well as the long-term frequency stability and report the lowest phase noise floor achieved to date with -130 dBc/Hz at 1 MHz offset for the 18 GHz Kerr comb oscillator, along with feedback stabilization to achieve frequency Allan deviations of 7 × 10(-11) in 1 s. The reported system is a promising compact platform for achieving self-referenced Kerr frequency combs and also for high-capacity coherent communication architectures. PMID:26311406

  6. A low-phase-noise 18 GHz Kerr frequency microcomb phase-locked over 65 THz

    PubMed Central

    Huang, S.-W.; Yang, J.; Lim, J.; Zhou, H.; Yu, M.; Kwong, D.-L.; Wong, C. W.

    2015-01-01

    Laser frequency combs are coherent light sources that simultaneously provide pristine frequency spacings for precision metrology and the fundamental basis for ultrafast and attosecond sciences. Recently, nonlinear parametric conversion in high-Q microresonators has been suggested as an alternative platform for optical frequency combs, though almost all in 100 GHz frequencies or more. Here we report a low-phase-noise on-chip Kerr frequency comb with mode spacing compatible with high-speed silicon optoelectronics. The waveguide cross-section of the silicon nitride spiral resonator is designed to possess small and flattened group velocity dispersion, so that the Kerr frequency comb contains a record-high number of 3,600 phase-locked comb lines. We study the single-sideband phase noise as well as the long-term frequency stability and report the lowest phase noise floor achieved to date with −130 dBc/Hz at 1 MHz offset for the 18 GHz Kerr comb oscillator, along with feedback stabilization to achieve frequency Allan deviations of 7 × 10−11 in 1 s. The reported system is a promising compact platform for achieving self-referenced Kerr frequency combs and also for high-capacity coherent communication architectures. PMID:26311406

  7. A low-phase-noise 18 GHz Kerr frequency microcomb phase-locked over 65 THz

    NASA Astrophysics Data System (ADS)

    Huang, S.-W.; Yang, J.; Lim, J.; Zhou, H.; Yu, M.; Kwong, D.-L.; Wong, C. W.

    2015-08-01

    Laser frequency combs are coherent light sources that simultaneously provide pristine frequency spacings for precision metrology and the fundamental basis for ultrafast and attosecond sciences. Recently, nonlinear parametric conversion in high-Q microresonators has been suggested as an alternative platform for optical frequency combs, though almost all in 100 GHz frequencies or more. Here we report a low-phase-noise on-chip Kerr frequency comb with mode spacing compatible with high-speed silicon optoelectronics. The waveguide cross-section of the silicon nitride spiral resonator is designed to possess small and flattened group velocity dispersion, so that the Kerr frequency comb contains a record-high number of 3,600 phase-locked comb lines. We study the single-sideband phase noise as well as the long-term frequency stability and report the lowest phase noise floor achieved to date with -130 dBc/Hz at 1 MHz offset for the 18 GHz Kerr comb oscillator, along with feedback stabilization to achieve frequency Allan deviations of 7 × 10-11 in 1 s. The reported system is a promising compact platform for achieving self-referenced Kerr frequency combs and also for high-capacity coherent communication architectures.

  8. Quality and noise measurements in mobile phone video capture

    NASA Astrophysics Data System (ADS)

    Petrescu, Doina; Pincenti, John

    2011-02-01

    The quality of videos captured with mobile phones has become increasingly important particularly since resolutions and formats have reached a level that rivals the capabilities available in the digital camcorder market, and since many mobile phones now allow direct playback on large HDTVs. The video quality is determined by the combined quality of the individual parts of the imaging system including the image sensor, the digital color processing, and the video compression, each of which has been studied independently. In this work, we study the combined effect of these elements on the overall video quality. We do this by evaluating the capture under various lighting, color processing, and video compression conditions. First, we measure full reference quality metrics between encoder input and the reconstructed sequence, where the encoder input changes with light and color processing modifications. Second, we introduce a system model which includes all elements that affect video quality, including a low light additive noise model, ISP color processing, as well as the video encoder. Our experiments show that in low light conditions and for certain choices of color processing the system level visual quality may not improve when the encoder becomes more capable or the compression ratio is reduced.

  9. Measurement resolution of noise directivity patterns from acoustic flight tests

    NASA Technical Reports Server (NTRS)

    Conner, David A.

    1989-01-01

    The measurement resolution of noise directivity patterns from acoustic flight tests was investigated. Directivity angle resolution is affected by the data reduction parameters, the aircraft velocity and flyover altitude, and by deviations of the aircraft from the desired flight path. Equations are developed which determine bounds for the lateral and longitudinal directivity angle resolution as a function of the nominal directivity angle. The equations are applied to a flight test data base and the effects of several flight conditions and data reduction parameters on the directivity angle resolution are presented. The maximum directivity angle resolution typically occurs when the aircraft is at or near the overhead position. In general, directivity angle resolution improves with decreasing velocity, increasing altitude, increasing sampling rate, decreasing block size, and decreasing block averages. Deviations from the desired ideal flight path will increase the resolution. For the flight experiment considered in this study, an average of two flyovers were required at each test condition to obtain an acceptable flight path. The ability of the pilot to maintain the flight track improved with decreasing altitude, decreasing velocity, and practice. Due to the prevailing wind conditions, yaw angles of as much as 20 deg were required to maintain the desired flight path.

  10. Investigation of ground reflection and impedance from flyover noise measurements

    NASA Technical Reports Server (NTRS)

    Chapkis, R. L.; Marsh, A. H.

    1978-01-01

    An extensive series of flyover noise tests was conducted for the primary purpose of studying meteorological effects on propagation of aircraft noise. The test airplane, a DC 9-10, flew several level-flight passes at various heights over a taxiway. Two microphone stations were located under the flight path. A total of 37 runs was selected for analysis and processed to obtain a consistant set of 1/3 octave band sound pressure levels at half-second intervals. The goal of the present study was to use the flyover noise data to deduce acoustical reflection coefficients and hence, acoustical impedances.

  11. Results of the flight noise measurement program using a standard and modified SH-3A helicopter

    NASA Technical Reports Server (NTRS)

    Pegg, R. J.; Henderson, H. R.; Hilton, D. A.

    1973-01-01

    A field noise measurement program has been conducted using both a standard SH-3A helicopter and an SH-3A helicopter modified to reduce external noise levels. Modifications included reducing rotor speed, increasing the number of rotor blades, modifying the blade-tip shapes, and acoustically treating the engine air intakes and exhaust. The purpose of this study was to document the noise characteristics recorded on the ground of each helicopter during flyby, hover, landing, and take-off operations. Based on an analysis of the measured results, the average of the overhead, overall, ontrack noise levels was approximately 4 db lower for the modified helicopter than for the standard helicopter. The improved in-flight noise characteristics, and associated small footprint areas and time durations, were judged to be mainly due to tail-rotor noise reductions. The noise reductions were obtained at the expense of required power increases at airspeeds greater than 70 knots for the modified helicopter.

  12. Objective Measures of Listening Effort: Effects of Background Noise and Noise Reduction

    ERIC Educational Resources Information Center

    Sarampalis, Anastasios; Kalluri, Sridhar; Edwards, Brent; Hafter, Ervin

    2009-01-01

    Purpose: This work is aimed at addressing a seeming contradiction related to the use of noise-reduction (NR) algorithms in hearing aids. The problem is that although some listeners claim a subjective improvement from NR, it has not been shown to improve speech intelligibility, often even making it worse. Method: To address this, the hypothesis…

  13. Robust shot-noise measurement for continuous-variable quantum key distribution

    NASA Astrophysics Data System (ADS)

    Kunz-Jacques, Sébastien; Jouguet, Paul

    2015-02-01

    We study a practical method to measure the shot noise in real time in continuous-variable quantum key distribution systems. The amount of secret key that can be extracted from the raw statistics depends strongly on this quantity since it affects in particular the computation of the excess noise (i.e., noise in excess of the shot noise) added by an eavesdropper on the quantum channel. Some powerful quantum hacking attacks relying on faking the estimated value of the shot noise to hide an intercept and resend strategy were proposed. Here, we provide experimental evidence that our method can defeat the saturation attack and the wavelength attack.

  14. Phase-noise reduction in surface wave oscillators by using nonlinear sustaining amplifiers.

    PubMed

    Avramov, Ivan D

    2006-04-01

    Nonlinear sustaining amplifier operation has been investigated and applied to high-power negative resistance oscillators (NRO), using single-port surface transverse wave (STW) resonators, and single-transistor sustaining amplifiers for feedback-loop STW oscillators (FLSO) stabilized with two-port STW devices. In all cases, self-limiting, silicon (Si)-bipolar sustaining amplifiers that operate in the highly nonlinear AB-, B-, or C-class modes are implemented. Phase-noise reduction is based on the assumption that a sustaining amplifier, operating in one of these modes, uses current limiting and remains cut off over a significant portion of the wave period. Therefore, it does not generate 1/f noise over the cut-off portion of the radio frequency (RF) cycle, and this reduces the close-in oscillator phase noise significantly. The proposed method has been found to provide phase-noise levels in the -111 to -119 dBc/Hz range at 1 KHz carrier offset in 915 MHz C-class power NRO and FLSO generating up to 23 dBm of RF-power at RF versus dc (RF/dc) efficiencies exceeding 40%. C-class amplifier design techniques are used for adequate matching and high RF/dc efficiency. PMID:16615574

  15. Chromatic dispersion and nonlinear phase noise compensation based on KLMS method

    NASA Astrophysics Data System (ADS)

    Nouri, Mahdi; Shayesteh, Mahrokh G.; Farhangian, Nooshin

    2015-09-01

    In this study, kernel least mean square (KLMS) algorithm with fractionally spaced equalizing structure is proposed for electrical compensation of chromatic dispersion (CD) and nonlinear phase noise (NLPN) in a dual polarization optical communications system with coherent detection. We consider single mode fiber channel. At the receiver, the additive optical noise is represented as additive white Gaussian noise. Phase modification is utilized at high signal powers to maintain the validity of Gaussian model of noise. We consider QAM and PSK modulations and evaluate the performance of the proposed method in terms of error rate, phase error, and error vector magnitude (EVM). The results are obtained in both linear and nonlinear regimes. In the linear region, the KLMS algorithm can compensate CD and NLPN effectively and outperforms the existing compensation methods such as LMS, minimum mean square error (MMSE), and time domain FIR filter. In nonlinear regime, where the input power is higher, NLPN is stronger which results in compensation performance degradation. However, KLMS still achieves better results than the above algorithms.

  16. Optimized tracking of RF carriers with phase noise, including Pioneer 10 results

    NASA Technical Reports Server (NTRS)

    Vilnrotter, V. A.; Hurd, W. J.; Brown, D. H.

    1987-01-01

    The ability to track very weak signals from distant spacecraft is limited by the phase instabilities of the received signal and of the local oscillator employed by the receiver. These instabilities ultimately limit the minimum loop bandwidth that can be used in a phase-coherent receiver, and hence limit the ratio of received carrier power to noise spectral density which can be tracked phase coherently. A method is presented for near real time estimation of the received carrier phase and additive noise spectrum, and optimization of the phase locked loop bandwidth. The method was used with the breadboard Deep Space Network (DSN) Advanced Receiver to optimize tracking of very weak signals from the Pioneer 10 spacecraft, which is now more distant that the edge of the solar system. Tracking with bandwidths of 0.1 Hz to 1.0 Hz reduces tracking signal threshold and increases carrier loop signal to noise ratio (SNR) by 5 dB to 15 dB compared to the 3 Hz bandwidth of the receivers now used operationally in the DSN. This will enable the DSN to track Pioneer 10 until its power sources fails near the end of the century.

  17. Understanding of Phase Noise Squeezing Under Fractional Synchronization of a Nonlinear Spin Transfer Vortex Oscillator.

    PubMed

    Lebrun, R; Jenkins, A; Dussaux, A; Locatelli, N; Tsunegi, S; Grimaldi, E; Kubota, H; Bortolotti, P; Yakushiji, K; Grollier, J; Fukushima, A; Yuasa, S; Cros, V

    2015-07-01

    We investigate experimentally the synchronization of vortex based spin transfer nano-oscillators to an external rf current whose frequency is at multiple integers, as well as at an integer fraction, of the oscillator frequency. Through a theoretical study of the locking mechanism, we highlight the crucial role of both the symmetries of the spin torques and the nonlinear properties of the oscillator in understanding the phase locking mechanism. In the locking regime, we report a phase noise reduction down to -90  dBc/Hz at 1 kHz offset frequency. Our demonstration that the phase noise of these nanoscale nonlinear oscillators can be tuned and eventually lessened, represents a key achievement for targeted radio frequency applications using spin torque devices. PMID:26182117

  18. Low phase noise GaAs HBT VCO in Ka-band

    NASA Astrophysics Data System (ADS)

    Ting, Yan; Yuming, Zhang; Hongliang, Lü; Yimen, Zhang; Yue, Wu; Yifeng, Liu

    2015-02-01

    Design and fabrication of a Ka-band voltage-controlled oscillator (VCO) using commercially available 1-μm GaAs heterojunction bipolar transistor technology is presented. A fully differential common-emitter configuration with a symmetric capacitance with a symmetric inductance tank structure is employed to reduce the phase noise of the VCO, and a novel π-feedback network is applied to compensate for the 180° phase shift. The on-wafer test shows that the VCO exhibits a phase noise of -96.47 dBc/Hz at a 1 MHz offset and presents a tuning range from 28.312 to 28.695 GHz. The overall dc current consumption of the VCO is 18 mA with a supply voltage of -6 V The chip area of the VCO is 0.7 × 0.7 mm2.

  19. Dual photo-detector system for low phase noise microwave generation with femtosecond lasers.

    PubMed

    Zhang, Wei; Seidelin, Signe; Joshi, Abhay; Datta, Shubo; Santarelli, Giorgio; Le Coq, Yann

    2014-03-01

    Low phase noise microwave signals can be generated by photo-detecting the pulse train of an optical frequency comb locked to a high spectral purity continuous-wave optical reference. Amplitude-to-phase noise conversion is, however, a well-known limitation to this technique. Great care is usually required to overcome this constraint due to its strong dependence on the impinging optical power. Here we demonstrate the combined use of "magic point" operating conditions of photodetectors, pulse repetition rate multipliers, and coherent addition of microwave signals to realize a microwave extraction device largely immune to amplitude-to-phase conversion effects over a large range of impinging optical powers. PMID:24690707

  20. Phase shift errors in the theory and practice of surface intensity measurements

    NASA Technical Reports Server (NTRS)

    Mcgary, M. C.; Crocker, M. J.

    1982-01-01

    The surface acoustical intensity method (sometimes known as the microphone-accelerometer cross-spectral method) is a relatively new noise source/path identification tool. Several researchers have had difficulties implementing this method because of instrumentation phase mis-match. A simple technique for measuring and correcting instrumentation phase mis-match has been developed. This new technique has been tested recently on a noise source identification problem of practical interest. The results of the experiments indicate that the surface acoustic intensity method produces reliable data and can be applied to a variety of noise source/path problems.

  1. Jet Measurements for Development of Jet Noise Prediction Tools

    NASA Technical Reports Server (NTRS)

    Bridges, James E.

    2006-01-01

    The primary focus of my presentation is the development of the jet noise prediction code JeNo with most examples coming from the experimental work that drove the theoretical development and validation. JeNo is a statistical jet noise prediction code, based upon the Lilley acoustic analogy. Our approach uses time-average 2-D or 3-D mean and turbulent statistics of the flow as input. The output is source distributions and spectral directivity.

  2. Bilateral filtering using the full noise covariance matrix applied to x-ray phase-contrast computed tomography

    NASA Astrophysics Data System (ADS)

    Allner, S.; Koehler, T.; Fehringer, A.; Birnbacher, L.; Willner, M.; Pfeiffer, F.; Noël, P. B.

    2016-05-01

    The purpose of this work is to develop an image-based de-noising algorithm that exploits complementary information and noise statistics from multi-modal images, as they emerge in x-ray tomography techniques, for instance grating-based phase-contrast CT and spectral CT. Among the noise reduction methods, image-based de-noising is one popular approach and the so-called bilateral filter is a well known algorithm for edge-preserving filtering. We developed a generalization of the bilateral filter for the case where the imaging system provides two or more perfectly aligned images. The proposed generalization is statistically motivated and takes the full second order noise statistics of these images into account. In particular, it includes a noise correlation between the images and spatial noise correlation within the same image. The novel generalized three-dimensional bilateral filter is applied to the attenuation and phase images created with filtered backprojection reconstructions from grating-based phase-contrast tomography. In comparison to established bilateral filters, we obtain improved noise reduction and at the same time a better preservation of edges in the images on the examples of a simulated soft-tissue phantom, a human cerebellum and a human artery sample. The applied full noise covariance is determined via cross-correlation of the image noise. The filter results yield an improved feature recovery based on enhanced noise suppression and edge preservation as shown here on the example of attenuation and phase images captured with grating-based phase-contrast computed tomography. This is supported by quantitative image analysis. Without being bound to phase-contrast imaging, this generalized filter is applicable to any kind of noise-afflicted image data with or without noise correlation. Therefore, it can be utilized in various imaging applications and fields.

  3. Bilateral filtering using the full noise covariance matrix applied to x-ray phase-contrast computed tomography.

    PubMed

    Allner, S; Koehler, T; Fehringer, A; Birnbacher, L; Willner, M; Pfeiffer, F; Noël, P B

    2016-05-21

    The purpose of this work is to develop an image-based de-noising algorithm that exploits complementary information and noise statistics from multi-modal images, as they emerge in x-ray tomography techniques, for instance grating-based phase-contrast CT and spectral CT. Among the noise reduction methods, image-based de-noising is one popular approach and the so-called bilateral filter is a well known algorithm for edge-preserving filtering. We developed a generalization of the bilateral filter for the case where the imaging system provides two or more perfectly aligned images. The proposed generalization is statistically motivated and takes the full second order noise statistics of these images into account. In particular, it includes a noise correlation between the images and spatial noise correlation within the same image. The novel generalized three-dimensional bilateral filter is applied to the attenuation and phase images created with filtered backprojection reconstructions from grating-based phase-contrast tomography. In comparison to established bilateral filters, we obtain improved noise reduction and at the same time a better preservation of edges in the images on the examples of a simulated soft-tissue phantom, a human cerebellum and a human artery sample. The applied full noise covariance is determined via cross-correlation of the image noise. The filter results yield an improved feature recovery based on enhanced noise suppression and edge preservation as shown here on the example of attenuation and phase images captured with grating-based phase-contrast computed tomography. This is supported by quantitative image analysis. Without being bound to phase-contrast imaging, this generalized filter is applicable to any kind of noise-afflicted image data with or without noise correlation. Therefore, it can be utilized in various imaging applications and fields. PMID:27100408

  4. Quantum Phase Space from Schwinger's Measurement Algebra

    NASA Astrophysics Data System (ADS)

    Watson, P.; Bracken, A. J.

    2014-07-01

    Schwinger's algebra of microscopic measurement, with the associated complex field of transformation functions, is shown to provide the foundation for a discrete quantum phase space of known type, equipped with a Wigner function and a star product. Discrete position and momentum variables label points in the phase space, each taking distinct values, where is any chosen prime number. Because of the direct physical interpretation of the measurement symbols, the phase space structure is thereby related to definite experimental configurations.

  5. The Development and Implementation of Noise Control Measures on AN Urban Railway

    NASA Astrophysics Data System (ADS)

    Fitzgerald, B. M.

    1996-05-01

    This paper describes the development and implementation of noise control measures by Docklands Light Railway (DLR), London, to meet obligations set out in its Noise and Vibration Policy, adherence to which is set by an Act of the U. K. Parliament. Noise levels from the operational railway exceeded targets given in the policy at two noise-sensitive urban residential sites. Following diagnosis by noise survey of the problems specific to each site and by noise reduction predictions, acoustic absorbent screens were installed which, it was subsequently demonstrated, succeeded in providing the required level of noise reduction. These schemes needed to accommodate the requirements of the railway for maintenance (leading to the barriers having to be fully demountable), safe trackside walking routes and easy passenger evacuation from trains. During construction, liaison was developed with the local authority for the control of environmental pollution (primarily noise) and hours of working (which had to suit railway possessions) and good relations were fostered with local residents through regular contact. Fulfilment of project objectives was demonstrated by a programme of post-installation noise measurements. The paper concludes with an evaluation of noise mitigation performance achieved together with a suggested alternative strategy for addressing the noise problem from a system-wide perspective.

  6. Measurements and predictions of flyover and static noise of a TF30 afterburning turbofan engine

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Lasagna, P. L.; Oas, S. C.

    1978-01-01

    The noise of the TF30 afterburning turbofan engine in an F-111 airplane was determined from static (ground) and flyover tests. A survey was made to measure the exhaust temperature and velocity profiles for a range of power settings. Comparisons were made between predicted and measured jet mixing, internal, and shock noise. It was found that the noise produced at static conditions was dominated by jet mixing noise, and was adequately predicted by current methods. The noise produced during flyovers exhibited large contributions from internally generated noise in the forward arc. For flyovers with the engine at nonafterburning power, the internal noise, shock noise, and jet mixing noise were accurately predicted. During flyovers with afterburning power settings, however, additional internal noise believed to be due to the afterburning process was evident; its level was as much as 8 decibels above the nonafterburning internal noise. Power settings that produced exhausts with inverted velocity profiles appeared to be slightly less noisy than power settings of equal thrust that produced uniform exhaust velocity profiles both in flight and in static testing.

  7. Automated measurement of CT noise in patient images with a novel structure coherence feature

    NASA Astrophysics Data System (ADS)

    Chun, Minsoo; Choi, Young Hun; Hyo Kim, Jong

    2015-12-01

    While the assessment of CT noise constitutes an important task for the optimization of scan protocols in clinical routine, the majority of noise measurements in practice still rely on manual operation, hence limiting their efficiency and reliability. This study presents an algorithm for the automated measurement of CT noise in patient images with a novel structure coherence feature. The proposed algorithm consists of a four-step procedure including subcutaneous fat tissue selection, the calculation of structure coherence feature, the determination of homogeneous ROIs, and the estimation of the average noise level. In an evaluation with 94 CT scans (16 517 images) of pediatric and adult patients along with the participation of two radiologists, ROIs were placed on a homogeneous fat region at 99.46% accuracy, and the agreement of the automated noise measurements with the radiologists’ reference noise measurements (PCC  =  0.86) was substantially higher than the within and between-rater agreements of noise measurements (PCCwithin  =  0.75, PCCbetween  =  0.70). In addition, the absolute noise level measurements matched closely the theoretical noise levels generated by a reduced-dose simulation technique. Our proposed algorithm has the potential to be used for examining the appropriateness of radiation dose and the image quality of CT protocols for research purposes as well as clinical routine.

  8. Automated measurement of CT noise in patient images with a novel structure coherence feature.

    PubMed

    Chun, Minsoo; Choi, Young Hun; Kim, Jong Hyo

    2015-12-01

    While the assessment of CT noise constitutes an important task for the optimization of scan protocols in clinical routine, the majority of noise measurements in practice still rely on manual operation, hence limiting their efficiency and reliability. This study presents an algorithm for the automated measurement of CT noise in patient images with a novel structure coherence feature. The proposed algorithm consists of a four-step procedure including subcutaneous fat tissue selection, the calculation of structure coherence feature, the determination of homogeneous ROIs, and the estimation of the average noise level. In an evaluation with 94 CT scans (16 517 images) of pediatric and adult patients along with the participation of two radiologists, ROIs were placed on a homogeneous fat region at 99.46% accuracy, and the agreement of the automated noise measurements with the radiologists' reference noise measurements (PCC  =  0.86) was substantially higher than the within and between-rater agreements of noise measurements (PCCwithin  =  0.75, PCCbetween  =  0.70). In addition, the absolute noise level measurements matched closely the theoretical noise levels generated by a reduced-dose simulation technique. Our proposed algorithm has the potential to be used for examining the appropriateness of radiation dose and the image quality of CT protocols for research purposes as well as clinical routine. PMID:26561914

  9. New technique for the direct measurement of core noise from aircraft engines

    NASA Astrophysics Data System (ADS)

    Krejsa, E. A.

    1981-07-01

    A new technique is presented for directly measuring the core noise levels from gas turbine aircraft engines. The technique requires that fluctuating pressures be measured in the far-field and at two locations within the engine core. The cross-spectra of these measurements are used to determine the levels of the far-field noise that propagated from the engine core. The technique makes it possible to measure core noise levels even when other noise sources dominate. The technique was applied to signals measured from an AVCO Lycoming YF102 turbofan engine. Core noise levels as a function of frequency and radiation angle were measured and are presented over a range of power settings.

  10. New technique for the direct measurement of core noise from aircraft engines

    NASA Technical Reports Server (NTRS)

    Krejsa, E. A.

    1981-01-01

    A new technique is presented for directly measuring the core noise levels from gas turbine aircraft engines. The technique requires that fluctuating pressures be measured in the far-field and at two locations within the engine core. The cross-spectra of these measurements are used to determine the levels of the far-field noise that propagated from the engine core. The technique makes it possible to measure core noise levels even when other noise sources dominate. The technique was applied to signals measured from an AVCO Lycoming YF102 turbofan engine. Core noise levels as a function of frequency and radiation angle were measured and are presented over a range of power settings.

  11. A study of noise source location on a model scale augmentor wing using correlation techniques. [noise measurement of far field noise by wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Wilby, J. F.; Scharton, T. D.

    1975-01-01

    An experimental investigation, conducted on a model-scale augmentor wing to identify the sources of far-field noise, is examined. The measurement procedure followed in the investigation involved the cross-correlation of far field sound pressures with fluctuating pressures on the surface of the augmentor flap and shroud. In addition pressures on the surfaces of the augmentor were cross-correlated. The results are interpreted as showing that the surface pressure fluctuations are mainly aerodynamic in character and are convected in the downstream direction with a velocity which is dependent on the jet exhaust velocity. However the far field sound levels in the mid and high frequency ranges are dominated by jet noise. There is an indication that in the low frequency range trailing edge noise, associated with interaction of the jet flow and the flap trailing edge, plays a significant role in the radiated sound field.

  12. 23 CFR 772.9 - Analysis of traffic noise impacts and abatement measures.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Analysis of traffic noise impacts and abatement measures... Analysis of traffic noise impacts and abatement measures. (a) The highway agency shall determine and..., giving weight to the benefits and cost of abatement, and to the overall social, economic...

  13. Results of the noise measurement program on a standard and modified OH-6A helicopter

    NASA Technical Reports Server (NTRS)

    Henderson, H. R.; Peegg, R. J.; Hilton, D. A.

    1973-01-01

    A field noise measurement program has been conducted on a standard OH-6A helicopter and one that had been modified by reducing the rotor speed, altering rotor tip shape, and treating the engine exhaust and inlet to reduce the external noise levels. The modifications consisted of extensive aircraft design changes resulting in substantial noise reductions following state-of-art noise reduction techniques. The purpose of this study was to document the ground noise characteristics of each helicopter during flyover, hover, landing, and take-off operations. Based on an analysis of the measured results, the average of the overall on-track noise levels of the final modified helicopter was approximately 14 db lower than that for the standard helicopter. Narrow-band-spectra data of the hovering helicopter show a reduction in the overall noise due to the reductions achieved for the lifting main and antitorque tail rotor, engine exhaust, and gear box noise for the modified helicopter. The noise results of the test program are found to correlate generally with noise measurements made previously on this type of aircraft.

  14. Using phase information to enhance speckle noise reduction in the ultrasonic NDE of coarse grain materials

    NASA Astrophysics Data System (ADS)

    Lardner, Timothy; Li, Minghui; Gachagan, Anthony

    2014-02-01

    Materials with a coarse grain structure are becoming increasingly prevalent in industry due to their resilience to stress and corrosion. These materials are difficult to inspect with ultrasound because reflections from the grains lead to high noise levels which hinder the echoes of interest. Spatially Averaged Sub-Aperture Correlation Imaging (SASACI) is an advanced array beamforming technique that uses the cross-correlation between images from array sub-apertures to generate an image weighting matrix, in order to reduce noise levels. This paper presents a method inspired by SASACI to further improve imaging using phase information to refine focusing and reduce noise. A-scans from adjacent array elements are cross-correlated using both signal amplitude and phase to refine delay laws and minimize phase aberration. The phase-based and amplitude-based corrected images are used as inputs to a two-dimensional cross-correlation algorithm that will output a weighting matrix that can be applied to any conventional image. This approach was validated experimentally using a 5MHz array a coarse grained Inconel 625 step wedge, and compared to the Total Focusing Method (TFM). Initial results have seen SNR improvements of over 20dB compared to TFM, and a resolution that is much higher.

  15. Using phase information to enhance speckle noise reduction in the ultrasonic NDE of coarse grain materials

    SciTech Connect

    Lardner, Timothy; Gachagan, Anthony; Li, Minghui

    2014-02-18

    Materials with a coarse grain structure are becoming increasingly prevalent in industry due to their resilience to stress and corrosion. These materials are difficult to inspect with ultrasound because reflections from the grains lead to high noise levels which hinder the echoes of interest. Spatially Averaged Sub-Aperture Correlation Imaging (SASACI) is an advanced array beamforming technique that uses the cross-correlation between images from array sub-apertures to generate an image weighting matrix, in order to reduce noise levels. This paper presents a method inspired by SASACI to further improve imaging using phase information to refine focusing and reduce noise. A-scans from adjacent array elements are cross-correlated using both signal amplitude and phase to refine delay laws and minimize phase aberration. The phase-based and amplitude-based corrected images are used as inputs to a two-dimensional cross-correlation algorithm that will output a weighting matrix that can be applied to any conventional image. This approach was validated experimentally using a 5MHz array a coarse grained Inconel 625 step wedge, and compared to the Total Focusing Method (TFM). Initial results have seen SNR improvements of over 20dB compared to TFM, and a resolution that is much higher.

  16. Turbulent phase noise on asymmetric two-way ground-satellite coherent optical links

    NASA Astrophysics Data System (ADS)

    Robert, Clélia; Conan, Jean-Marc; Wolf, Peter

    2015-10-01

    Bidirectional ground-satellite laser links suffer from turbulence-induced scintillation and phase distortion. We study how turbulence impacts on coherent detection capacity and on the associated phase noise that restricts clock transfer precision. We evaluate the capacity to obtain a two-way cancellation of atmospheric effects despite the asymmetry between up and down link that limits the link reciprocity. For ground-satellite links, the asymmetry is induced by point-ahead angle and possibly the use, for the ground terminal, of different transceiver diameters, in reception and emission. The quantitative analysis is obtained thanks to refined end-to-end simulations under realistic turbulence and wind conditions as well as satellite cinematic. Simulations make use of the reciprocity principle to estimate both down and up link performance from wave-optics propagation of descending plane waves. These temporally resolved simulations allow characterising the coherent detection in terms of time series of heterodyne efficiency for different system parameters. We show Tip/Tilt correction on ground is mandatory at reception for the down link and as a pre-compensation of the up link. Good correlation between up and down phase noise is obtained even with asymmetric apertures of the ground transceiver and in spite of pointing ahead angle. The reduction to less than 1 rad2 of the two-way differential phase noise is very promising for clock transfer.

  17. Self-Stabilizing Measurement of Phase

    NASA Astrophysics Data System (ADS)

    Vinjanampathy, Sai

    2014-05-01

    Measuring phase accurately constitutes one of the most important task in precision measurement science. Such measurements can be deployed to measure everything from fundamental constants to measuring detuning and tunneling rates of atoms more precisely. Quantum mechanics enhances the ultimate bounds on the precision of such measurements possible, and exploit coherence and entanglement to reduce the phase uncertainty. In this work, we will describe a method to stabilize a decohering two-level atom and use the stabilizing measurements to learn the unknown phase acquired by the atom. Such measurements will employ a Bayesian learner to do active feedback control on the atom. We will discuss some ultimate bounds employed in precision metrology and an experimental proposal for the implementation of this scheme. Financial support from Ministry of Education, Singapore.

  18. Signal-Induced Noise Effects in a Photon Counting System for Stratospheric Ozone Measurement

    NASA Technical Reports Server (NTRS)

    Harper, David B.; DeYoung, Russell J.

    1998-01-01

    A significant source of error in making atmospheric differential absorption lidar ozone measurements is the saturation of the photomultiplier tube by the strong, near field light return. Some time after the near field light signal is gone, the photomultiplier tube gate is opened and a noise signal, called signal-induced noise, is observed. Research reported here gives experimental results from measurement of photomultiplier signal-induced noise. Results show that signal-induced noise has several decaying exponential signals, suggesting that electrons are slowly emitted from different surfaces internal to the photomultiplier tube.

  19. Measurement of noise and its correlation to performance and geometry of small aircraft propellers

    NASA Astrophysics Data System (ADS)

    Štorch, Vít; Nožička, Jiří; Brada, Martin; Gemperle, Jiří; Suchý, Jakub

    2016-03-01

    A set of small model and UAV propellers is measured both in terms of aerodynamic performance and acoustic noise under static conditions. Apart from obvious correlation of noise to tip speed and propeller diameter the influence of blade pitch, blade pitch distribution, efficiency and shape of the blade is sought. Using the measured performance data a computational model for calculation of aerodynamic noise of propellers will be validated. The range of selected propellers include both propellers designed for nearly static conditions and propellers that are running at highly offdesign conditions, which allows to investigate i.e. the effect of blade stall on both noise level and performance results.

  20. Phase transitions in the majority-vote model with two types of noises

    NASA Astrophysics Data System (ADS)

    Vieira, Allan R.; Crokidakis, Nuno

    2016-05-01

    In this work we study the majority-vote model with the presence of two distinct noises. The first one is the usual noise q, that represents the probability that a given agent follows the minority opinion of his/her social contacts. On the other hand, we consider the independent behavior, such that an agent can choose his/her own opinion + 1 or - 1 with equal probability, independent of the group's norm. We study the impact of the presence of such two kinds of stochastic driving in the phase transitions of the model, considering the mean field and the square lattice cases. Our results suggest that the model undergoes a nonequilibrium order-disorder phase transition even in the absence of the noise q, due to the independent behavior, but this transition may be suppressed. In addition, for both topologies analyzed, we verified that the transition is in the same universality class of the equilibrium Ising model, i.e., the critical exponents are not affected by the presence of the second noise, associated with independence.

  1. On the use of mobile phones and wearable microphones for noise exposure measurements: Calibration and measurement accuracy

    NASA Astrophysics Data System (ADS)

    Dumoulin, Romain

    Despite the fact that noise-induced hearing loss remains the number one occupational disease in developed countries, individual noise exposure levels are still rarely known and infrequently tracked. Indeed, efforts to standardize noise exposure levels present disadvantages such as costly instrumentation and difficulties associated with on site implementation. Given their advanced technical capabilities and widespread daily usage, mobile phones could be used to measure noise levels and make noise monitoring more accessible. However, the use of mobile phones for measuring noise exposure is currently limited due to the lack of formal procedures for their calibration and challenges regarding the measurement procedure. Our research investigated the calibration of mobile phone-based solutions for measuring noise exposure using a mobile phone's built-in microphones and wearable external microphones. The proposed calibration approach integrated corrections that took into account microphone placement error. The corrections were of two types: frequency-dependent, using a digital filter and noise level-dependent, based on the difference between the C-weighted noise level minus A-weighted noise level of the noise measured by the phone. The electro-acoustical limitations and measurement calibration procedure of the mobile phone were investigated. The study also sought to quantify the effect of noise exposure characteristics on the accuracy of calibrated mobile phone measurements. Measurements were carried out in reverberant and semi-anechoic chambers with several mobiles phone units of the same model, two types of external devices (an earpiece and a headset with an in-line microphone) and an acoustical test fixture (ATF). The proposed calibration approach significantly improved the accuracy of the noise level measurements in diffuse and free fields, with better results in the diffuse field and with ATF positions causing little or no acoustic shadowing. Several sources of errors

  2. Automated acoustic intensity measurements and the effect of gear tooth profile on noise

    NASA Technical Reports Server (NTRS)

    Atherton, William J.; Pintz, Adam; Lewicki, David G.

    1987-01-01

    Acoustic intensity measurements were made at NASA Lewis Research Center on a spur gear test apparatus. The measurements were obtained with the Robotic Acoustic Intensity Measurement System developed by Cleveland State University. This system provided dense spatial positioning, and was calibrated against a high quality acoustic intensity system. The measured gear noise compared gearsets having two different tooth profiles. The tests evaluated the sound field of the different gears for two speeds and three loads. The experimental results showed that gear tooth profile had a major effect on measured noise. Load and speed were found to have an effect on noise also.

  3. Measurement of BSR noise of cockpit module materials for automobiles

    NASA Astrophysics Data System (ADS)

    Woo, C.; Park, H.

    2016-04-01

    Today, the interior noise perceived by occupants is becoming an important factor driving design standards for the design of most of interior assemblies in an automotive vehicles. BSR(Buzz, Squeak and Rattle) is a major contributor towards the perceived noise of annoyance to vehicle occupants. One method of minimizing the possibility of squeak and rattle is by making use of the judicious selection of mating materials pairs. In this paper, the BSR test system was designed and built. Also described is a test instrument that has been developed for such material pair compatibility studies.

  4. Measurement of Mechanical Excess Noise from the Stressed Silicate Bonding

    NASA Astrophysics Data System (ADS)

    Pashentseva, Maria; Bilenko, Igor

    2015-01-01

    The main goal of this work is an experimental search for excess mechanical noise which might be generated in a contact area of parts glued to each other by silicate bonding technique under external stress. This technique is an important method developed for the second generation of the ground based gravitational wave detectors. Although this technique is already used in AdvLIGO for the attachment of "ears" with suspension fibers to the test masses, the absence of additional non-gaussian noise caused by the bond area subjected by heavy load wasn't proved yet.

  5. Rayleigh and Love wave phase velocity maps of Iceland from combined ambient noise and teleseismic surface wave analysis.

    NASA Astrophysics Data System (ADS)

    Harmon, N.

    2014-12-01

    Iceland is one of the few regions where ridge-plume interaction can be examined with a terrestrial seismic array. Velocity structure from broadband surface wave dispersion measurements can be used to constrain the complicated crustal and upper mantle structure caused by the plume enhanced rifting activity. Here I use data from the ICEMELT and HOTSPOT arrays on Iceland to generate phase velocity dispersion maps of both Rayleigh and Love waves from ambient noise cross correlation and teleseismic events. I invert Rayleigh and Love wave dispersion observed from ambient noise for tomographic velocity structure. For teleseismic Rayleigh waves I use the two-plane wave approximation array-based method of Forsyth and Li [2005]. I also develop and adapt this method for teleseismic Love waves. This requires additional preprocessing of the data to estimate the amplitude and phase for teleseismic Love waves. Specifically, for each station, the vertical component phase observation of the fundamental mode Rayleigh is used to predict and remove the horizontal components of Rayleigh waves. Then I invert for the maximum amplitude and apparent back azimuth at each period of interest of the Love wave from the transverse and radial components. The amplitude and phase measurement is then inverted for phase velocity structure using a modified version of the two plane-wave approximation. Preliminary results indicate a low velocity region at short periods (8-15 s) in both the Rayleigh and Love wave phase velocity maps beneath the active volcanic centers in the middle of the island. At longer periods (20-125 s) a low velocity region is visible beneath central Iceland. The velocity minimum is located to the north of Iceland in the Rayleigh wave maps. These observations are consistent with previous studies in the region.

  6. Method to Measure Total Noise Temperature of a Wireless Receiver During Operation

    NASA Technical Reports Server (NTRS)

    Young, Lawrence E. (Inventor); Turbiner, Dmitry (Inventor); Esterhuizen, Stephan X. (Inventor)

    2014-01-01

    An electromagnetic signal receiver and methods for determining the noise level and signal power in a signal of interest while the receiver is operating. In some embodiments, the signal of interest is a GPS signal. The receiver includes a noise source that provides a noise signal of known power during intervals while the signal of interest is observed. By measuring a signal-to-noise ratio for the signal of interest and the noise power in the signal of interest, the noise level and signal power of the signal of interest can be computed. Various methods of making the measurements and computing the power of the signal of interest are described. Applications of the system and method are described.

  7. Phase Selective Oscillations in Two Noise Driven Synaptically Coupled Spiking Neurons

    NASA Astrophysics Data System (ADS)

    Prokin, Ilya; Tyukin, Ivan; Kazantsev, Victor

    2015-06-01

    The work investigates the influence of spike-timing dependent plasticity (STDP) mechanisms on the dynamics of two synaptically coupled neurons driven by additive external noise. In this setting, the noise signal models synaptic inputs that the pair receives from other neurons in a larger network. We show that in the absence of STDP feedbacks the pair of neurons exhibit oscillations and intermittent synchronization. When the synapse connecting the neurons is supplied with a phase selective feedback mechanism simulating STDP, induced dynamics of spikes in the coupled system resembles a phase locked mode with time lags between spikes oscillating about a specific value. This value, as we show by extensive numerical simulations, can be set arbitrary within a broad interval by tuning parameters of the STDP feedback.

  8. Low-noise multiple watermarks technology based on complex double random phase encoding method

    NASA Astrophysics Data System (ADS)

    Zheng, Jihong; Lu, Rongwen; Sun, Liujie; Zhuang, Songlin

    2010-11-01

    Based on double random phase encoding method (DRPE), watermarking technology may provide a stable and robust method to protect the copyright of the printing. However, due to its linear character, DRPE exist the serious safety risk when it is attacked. In this paper, a complex coding method, which means adding the chaotic encryption based on logistic mapping before the DRPE coding, is provided and simulated. The results testify the complex method will provide better security protection for the watermarking. Furthermore, a low-noise multiple watermarking is studied, which means embedding multiple watermarks into one host printing and decrypt them with corresponding phase keys individually. The Digital simulation and mathematic analysis show that with the same total embedding weight factor, multiply watermarking will improve signal noise ratio (SNR) of the output printing image significantly. The complex multiply watermark method may provide a robust, stability, reliability copyright protection with higher quality printing image.

  9. A New Technique for Reduction the Phase Induced Intensity Noise in SAC-OCDMA Systems

    NASA Astrophysics Data System (ADS)

    Abd, Thanaa Hussein; Aljunid, Syed Alwee; Fadhil, Hilal Adnan

    2011-12-01

    A new code for reduction the phase induced intensity noise has been presented. The new code is proposed for Spectral Amplitude-Coding Optical Code Division Multiple Accesses (SAC-OCDMA). This new code family we call it Dynamic Cyclic Shift (DCS) code. The DCS code reduced the effect of Multi Access Interference (MAI) due to it is the property of variable cross correlation. We find that the performance of the DCS code is a batter than other SAC-OCDMA codes such as; Random Diagonal (RD) code, Modified Quadratic Congruence (MQC) code and Modified Frequency Hopping (MFH) code. Through the mathematical calculation and simulation analysis, for the bit-error rate of DCS code is significantly better than other SAC-OCDMA codes, the effect of Phase Induced Intensity Noise is reduced. In addition, proofof-principle simulations of 10 Gb/s for 20 km have been successfully demonstrated and achieved low BER compared to the other codes.

  10. Effect of electrode density and measurement noise on the spatial resolution of cortical potential distribution.

    PubMed

    Ryynänen, Outi R M; Hyttinen, Jari A K; Laarne, Päivi H; Malmivuo, Jaakko A

    2004-09-01

    The purpose of the present study was to examine the spatial resolution of electroencephalography (EEG) by means of inverse cortical EEG solution. The main interest was to study how the number of measurement electrodes and the amount of measurement noise affects the spatial resolution. A three-layer spherical head model was used to obtain the source-field relationship of cortical potentials and scalp EEG field. Singular value decomposition was used to evaluate the spatial resolution with various measurement noise estimates. The results suggest that as the measurement noise increases the advantage of dense electrode systems is decreased. With low realistic measurement noise, a more accurate inverse cortical potential distribution can be obtained with an electrode system where the distance between two electrodes is as small as 16 mm, corresponding to as many as 256 measurement electrodes. In clinical measurement environments, it is always beneficial to have at least 64 measurement electrodes. PMID:15376503

  11. Analysis of input-polarization-induced phase noise in interferometric fiber-optic sensors and its reduction using polarization scrambling

    NASA Astrophysics Data System (ADS)

    Kersey, Alan D.; Marrone, Michael J.; Dandridge, Anthony

    1990-06-01

    The dependence of the phase shift of an interferometric fiber sensor on the input state of polarization is analyzed, and it is shown that fluctuations in the input polarization to a fiber interferometer can lead to the generation of excess phase noise. The relationship between this effect and the variation in visibility with input polarization is described and theoretically confirmed. The use of depolarized source light to eliminate input-polarization-induced excess phase noise is theoretically and experimentally demonstrated.

  12. The application of wavelet shrinkage denoising to magnetic Barkhausen noise measurements

    SciTech Connect

    Thomas, James

    2014-02-18

    The application of Magnetic Barkhausen Noise (MBN) as a non-destructive method of defect detection has proliferated throughout the manufacturing community. Instrument technology and measurement methodology have matured commensurately as applications have moved from the R and D labs to the fully automated manufacturing environment. These new applications present a new set of challenges including a bevy of error sources. A significant obstacle in many industrial applications is a decrease in signal to noise ratio due to (i) environmental EMI and (II) compromises in sensor design for the purposes of automation. The stochastic nature of MBN presents a challenge to any method of noise reduction. An application of wavelet shrinkage denoising is proposed as a method of decreasing extraneous noise in MBN measurements. The method is tested and yields marked improvement on measurements subject to EMI, grounding noise, and even measurements in ideal conditions.

  13. Analysis of VIIRS TEB noise using solar diffuser measurements

    NASA Astrophysics Data System (ADS)

    Choi, Taeyoung; Cao, Changyong; Weng, Fuzhong

    2015-09-01

    The Soumi-NPP Visible Infrared Imaging Radiometer Suite (VIIRS) was launched on October 28th, 2011 and its Sensor Data Record (SDR) product reached maturity status in March of 2014. Although the VIIRS SDR products are declared at the validated maturity level, there remain issues such as residual stripings in some thermal bands along with the scan direction. These horizontal striping issues in the Thermal Emissive Bands (TEB) were reflected in the sea surface temperature (SST) products. The observed striping magnitude can reach to 0.2 K, especially at the band M14 and M15. As an independent source of calibration, the Solar Diffuser (SD) is utilized in this study. The SD is originally designed for the Reflective Solar Band (RSB), however, it is assumed to be thermally stable at the time of SD observation. For each detector, a linear slope is developed by Integrated Calibration and Validation System (ICVS), which is applied on converting digital number (DN) to radiance unit. After the conversion, detector based noise analyses in VIIRS band M15 and M16 are performed on in-scan and scan-by-scan SD responses. Since SD radiance varies within an orbit, the noise calculation must be derived from the neighborhood Allan deviation. The noise derived Allan deviation shows that detector 1 and 2 in band M15 and detector 9 in band M16 have higher noise content compared to other detectors.

  14. Noise analysis in bolometer detector for microwave power measurements.

    PubMed

    Mario, Petrizzelli; Brunetti, Luciano

    2003-01-01

    A study of noise related with a thermal detector used as power standard on the 26.5-40GHz frequency band, is presented. This study starts with electromagnetic and thermal analysis, and is based on a cryogenic resistive thermometer functioning at liquid-He temperatures. In addition, the study fixes the theoretical limit of sensitivity. PMID:15916174

  15. Cruise noise measurements of a scale model advanced ducted propulsor

    NASA Technical Reports Server (NTRS)

    Dittmar, James H.; Hughes, Christopher E.; Bock, Lawrence A.; Hall, David G.

    1993-01-01

    A scale model Advanced Ducted Propulsor (ADP) was tested in NASA Lewis Research Center's 8- by 6-Foot Wind Tunnel to obtain acoustic data at cruise conditions. The model, designed and manufactured by Pratt & Whitney Division of United Technologies, was tested with three inlet lengths. The model has 16 rotor blades and 22 stator vanes, which results in a cut-on condition with respect to rotor-stator interaction noise. Comparisons of the noise directivity of the ADP with that of a previously tested high-speed, unducted propeller showed that the ADP peak blade passing tone was about 30 dB below that of the propeller, and therefore, should not present a cabin or enroute noise problem. The maximum blade passing tone first increased with increasing helical tip Mach number, peaked, and then decreased at a higher Mach number. The ADP tests with the shortest inlet showed more noise in the inlet arc than did tests with either of the other two inlet lengths.

  16. Subsampling phase retrieval for rapid thermal measurements of heated microstructures.

    PubMed

    Taylor, Lucas N; Talghader, Joseph J

    2016-07-15

    A subsampling technique for real-time phase retrieval of high-speed thermal signals is demonstrated with heated metal lines such as those found in microelectronic interconnects. The thermal signals were produced by applying a current through aluminum resistors deposited on soda-lime-silica glass, and the resulting refractive index changes were measured using a Mach-Zehnder interferometer with a microscope objective and high-speed camera. The temperatures of the resistors were measured both by the phase-retrieval method and by monitoring the resistance of the aluminum lines. The method used to analyze the phase is at least 60× faster than the state of the art but it maintains a small spatial phase noise of 16 nm, remaining comparable to the state of the art. For slowly varying signals, the system is able to perform absolute phase measurements over time, distinguishing temperature changes as small as 2 K. With angular scanning or structured illumination improvements, the system could also perform fast thermal tomography. PMID:27420492

  17. Ultra-stable, low phase noise dielectric resonator stabilized oscillators for military and commercial systems

    NASA Technical Reports Server (NTRS)

    Mizan, Muhammad; Higgins, Thomas; Sturzebecher, Dana

    1993-01-01

    EPSD has designed, fabricated and tested, ultra-stable, low phase noise microwave dielectric resonator oscillators (DRO's) at S, X, Ku, and K-bands, for potential application to high dynamic range and low radar cross section target detection radar systems. The phase noise and the temperature stability surpass commercially available DROs. Low phase noise signals are critical for CW Doppler radars, at both very close-in and large offset frequencies from the carrier. The oscillators were built without any temperature compensation techniques and exhibited a temperature stability of 25 parts per million (ppm) over an extended temperature range. The oscillators are lightweight, small and low cost compared to BAW & SAW oscillators, and can impact commercial systems such as telecommunications, built-in-test equipment, cellular phone and satellite communications systems. The key to obtaining this performance was a high Q factor resonant structure (RS) and careful circuit design techniques. The high Q RS consists of a dielectric resonator (DR) supported by a low loss spacer inside a metal cavity. The S and the X-band resonant structures demonstrated loaded Q values of 20,300 and 12,700, respectively.

  18. On-road and wind-tunnel measurement of motorcycle helmet noise.

    PubMed

    Kennedy, J; Carley, M; Walker, I; Holt, N

    2013-09-01

    The noise source mechanisms involved in motorcycling include various aerodynamic sources and engine noise. The problem of noise source identification requires extensive data acquisition of a type and level that have not previously been applied. Data acquisition on track and on road are problematic due to rider safety constraints and the portability of appropriate instrumentation. One way to address this problem is the use of data from wind tunnel tests. The validity of these measurements for noise source identification must first be demonstrated. In order to achieve this extensive wind tunnel tests have been conducted and compared with the results from on-track measurements. Sound pressure levels as a function of speed were compared between on track and wind tunnel tests and were found to be comparable. Spectral conditioning techniques were applied to separate engine and wind tunnel noise from aerodynamic noise and showed that the aerodynamic components were equivalent in both cases. The spectral conditioning of on-track data showed that the contribution of engine noise to the overall noise is a function of speed and is more significant than had previously been thought. These procedures form a basis for accurate experimental measurements of motorcycle noise. PMID:23967933

  19. Measurements of Intrinsic Shot Noise in a Ka-Band Gyroklystron

    NASA Astrophysics Data System (ADS)

    Calame, J. P.; Danly, B. G.; Antonsen, T. M., Jr.; Garven, M.

    1998-11-01

    Experimental measurements of electron beam shot noise in a 35 GHz, 225 kW, 3-cavity gyroklystron have been obtained in both the input and output cavities. This intrinsic amplitude noise was studied in the absence of an applied carrier (i.e. at zero drive power). The noise power spectrum of the input cavity is found to have a lorentzian shape, with peak noise power densities from the input cavity typically reaching 6.3x10-15 W/Hz (-112 dBm/Hz). (This level would correspond to -165 dBc/Hz when referenced to the 200 W of input power required to saturate the amplifier). The output noise spectrum is generally found to be equal to the input cavity noise spectrum multiplied by the linear frequency response of the gyroklystron. The overall measured noise levels at the input cavity are 0 to 5 dB lower than theoretical predictions [1] for shot noise unaltered by collective effects. The measured input cavity noise power exhibits complex variations as a function of beam current and pitch angle. Data illustrating these various effects and possible explanations will be presented. [1] T.M. Antonsen, Jr. and W.M. Manheimer, IEEE Trans. Plasma Sci. 26, 444 (1998).

  20. Direct Measurement of the Fluid Phase Diagram.

    PubMed

    Bao, Bo; Riordon, Jason; Xu, Yi; Li, Huawei; Sinton, David

    2016-07-19

    The thermodynamic phase of a fluid (liquid, vapor or supercritical) is fundamental to all chemical processes, and the critical point is particularly important for supercritical chemical extraction. Conventional phase measurement methods require hours to obtain a single datum on the pressure and temperature diagram. Here, we present the direct measurement of the full pressure-temperature phase diagram, with 10 000 microwells. Orthogonal, linear, pressure and temperature gradients are obtained with 100 parallel microchannels (spanning the pressure range), each with 100 microwells (spanning the temperature range). The phase-mapping approach is demonstrated with both a pure substance (CO2) and a mixture (95% CO2 + 5% N2). Liquid, vapor, and supercritical regions are clearly differentiated, and the critical pressure is measured at 1.2% error with respect to the NIST standard. This approach provides over 100-fold improvement in measurement speed over conventional methods. PMID:27331613