Science.gov

Sample records for phase space bias

  1. The Impact of Early Design Phase Risk Identification Biases on Space System Project Performance

    NASA Technical Reports Server (NTRS)

    Reeves, John D., Jr.; Eveleigh, Tim; Holzer, Thomas; Sarkani, Shahryar

    2012-01-01

    Risk identification during the early design phases of complex systems is commonly implemented but often fails to result in the identification of events and circumstances that truly challenge project performance. Inefficiencies in cost and schedule estimation are usually held accountable for cost and schedule overruns, but the true root cause is often the realization of programmatic risks. A deeper understanding of frequent risk identification trends and biases pervasive during space system design and development is needed, for it would lead to improved execution of existing identification processes and methods.

  2. Single-Receiver GPS Phase Bias Resolution

    NASA Technical Reports Server (NTRS)

    Bertiger, William I.; Haines, Bruce J.; Weiss, Jan P.; Harvey, Nathaniel E.

    2010-01-01

    Existing software has been modified to yield the benefits of integer fixed double-differenced GPS-phased ambiguities when processing data from a single GPS receiver with no access to any other GPS receiver data. When the double-differenced combination of phase biases can be fixed reliably, a significant improvement in solution accuracy is obtained. This innovation uses a large global set of GPS receivers (40 to 80 receivers) to solve for the GPS satellite orbits and clocks (along with any other parameters). In this process, integer ambiguities are fixed and information on the ambiguity constraints is saved. For each GPS transmitter/receiver pair, the process saves the arc start and stop times, the wide-lane average value for the arc, the standard deviation of the wide lane, and the dual-frequency phase bias after bias fixing for the arc. The second step of the process uses the orbit and clock information, the bias information from the global solution, and only data from the single receiver to resolve double-differenced phase combinations. It is called "resolved" instead of "fixed" because constraints are introduced into the problem with a finite data weight to better account for possible errors. A receiver in orbit has much shorter continuous passes of data than a receiver fixed to the Earth. The method has parameters to account for this. In particular, differences in drifting wide-lane values must be handled differently. The first step of the process is automated, using two JPL software sets, Longarc and Gipsy-Oasis. The resulting orbit/clock and bias information files are posted on anonymous ftp for use by any licensed Gipsy-Oasis user. The second step is implemented in the Gipsy-Oasis executable, gd2p.pl, which automates the entire process, including fetching the information from anonymous ftp

  3. Gymnastics in Phase Space

    SciTech Connect

    Chao, Alexander Wu; /SLAC

    2012-03-01

    As accelerator technology advances, the requirements on accelerator beam quality become increasingly demanding. Facing these new demands, the topic of phase space gymnastics is becoming a new focus of accelerator physics R&D. In a phase space gymnastics, the beam's phase space distribution is manipulated and precision tailored to meet the required beam qualities. On the other hand, all realization of such gymnastics will have to obey accelerator physics principles as well as technological limitations. Recent examples of phase space gymnastics include Emittance exchanges, Phase space exchanges, Emittance partitioning, Seeded FELs and Microbunched beams. The emittance related topics of this list are reviewed in this report. The accelerator physics basis, the optics design principles that provide these phase space manipulations, and the possible applications of these gymnastics, are discussed. This fascinating new field promises to be a powerful tool of the future.

  4. Biases in Visual, Auditory, and Audiovisual Perception of Space

    PubMed Central

    Odegaard, Brian; Wozny, David R.; Shams, Ladan

    2015-01-01

    Localization of objects and events in the environment is critical for survival, as many perceptual and motor tasks rely on estimation of spatial location. Therefore, it seems reasonable to assume that spatial localizations should generally be accurate. Curiously, some previous studies have reported biases in visual and auditory localizations, but these studies have used small sample sizes and the results have been mixed. Therefore, it is not clear (1) if the reported biases in localization responses are real (or due to outliers, sampling bias, or other factors), and (2) whether these putative biases reflect a bias in sensory representations of space or a priori expectations (which may be due to the experimental setup, instructions, or distribution of stimuli). Here, to address these questions, a dataset of unprecedented size (obtained from 384 observers) was analyzed to examine presence, direction, and magnitude of sensory biases, and quantitative computational modeling was used to probe the underlying mechanism(s) driving these effects. Data revealed that, on average, observers were biased towards the center when localizing visual stimuli, and biased towards the periphery when localizing auditory stimuli. Moreover, quantitative analysis using a Bayesian Causal Inference framework suggests that while pre-existing spatial biases for central locations exert some influence, biases in the sensory representations of both visual and auditory space are necessary to fully explain the behavioral data. How are these opposing visual and auditory biases reconciled in conditions in which both auditory and visual stimuli are produced by a single event? Potentially, the bias in one modality could dominate, or the biases could interact/cancel out. The data revealed that when integration occurred in these conditions, the visual bias dominated, but the magnitude of this bias was reduced compared to unisensory conditions. Therefore, multisensory integration not only improves the

  5. Compactification on phase space

    NASA Astrophysics Data System (ADS)

    Lovelady, Benjamin; Wheeler, James

    2016-03-01

    A major challenge for string theory is to understand the dimensional reduction required for comparison with the standard model. We propose reducing the dimension of the compactification by interpreting some of the extra dimensions as the energy-momentum portion of a phase-space. Such models naturally arise as generalized quotients of the conformal group called biconformal spaces. By combining the standard Kaluza-Klein approach with such a conformal gauge theory, we may start from the conformal group of an n-dimensional Euclidean space to form a 2n-dimensional quotient manifold with symplectic structure. A pair of involutions leads naturally to two n-dimensional Lorentzian manifolds. For n = 5, this leaves only two extra dimensions, with a countable family of possible compactifications and an SO(5) Yang-Mills field on the fibers. Starting with n=6 leads to 4-dimensional compactification of the phase space. In the latter case, if the two dimensions each from spacetime and momentum space are compactified onto spheres, then there is an SU(2)xSU(2) (left-right symmetric electroweak) field between phase and configuration space and an SO(6) field on the fibers. Such a theory, with minor additional symmetry breaking, could contain all parts of the standard model.

  6. Phase space quantum mechanics

    NASA Astrophysics Data System (ADS)

    Błaszak, Maciej; Domański, Ziemowit

    2012-02-01

    This paper develops an alternative formulation of quantum mechanics known as the phase space quantum mechanics or deformation quantization. It is shown that the quantization naturally arises as an appropriate deformation of the classical Hamiltonian mechanics. More precisely, the deformation of the point-wise product of observables to an appropriate noncommutative ⋆-product and the deformation of the Poisson bracket to an appropriate Lie bracket are the key elements in introducing the quantization of classical Hamiltonian systems. The formalism of the phase space quantum mechanics is presented in a very systematic way for the case of any smooth Hamiltonian function and for a very wide class of deformations. The considered class of deformations and the corresponding ⋆-products contains as a special case all deformations which can be found in the literature devoted to the subject of the phase space quantum mechanics. Fundamental properties of ⋆-products of observables, associated with the considered deformations are presented as well. Moreover, a space of states containing all admissible states is introduced, where the admissible states are appropriate pseudo-probability distributions defined on the phase space. It is proved that the space of states is endowed with a structure of a Hilbert algebra with respect to the ⋆-multiplication. The most important result of the paper shows that developed formalism is more fundamental than the axiomatic ordinary quantum mechanics which appears in the presented approach as the intrinsic element of the general formalism. The equivalence of two formulations of quantum mechanics is proved by observing that the Wigner-Moyal transform has all properties of the tensor product. This observation allows writing many previous results found in the literature in a transparent way, from which the equivalence of the two formulations of quantum mechanics follows naturally. In addition, examples of a free particle and a simple harmonic

  7. Phase Retrieval with Signal Bias. Section 7.3

    NASA Technical Reports Server (NTRS)

    Thurman, Samuel T.; Fienup, James R.

    2009-01-01

    The effect of a uniform measurement bias, due to background light, stray light, detector dark current, or detector offset, on phase retrieval wavefront sensing algorithms is analyzed. Simulation results indicate that the root-mean-square error of the retrieved phase can be more sensitive to an unaccounted-for signal bias than to random noise in practical scenarios. Three methods for reducing the impact of signal bias are presented

  8. Bias deconstructed: unravelling the scale dependence of halo bias using real-space measurements

    NASA Astrophysics Data System (ADS)

    Paranjape, Aseem; Sefusatti, Emiliano; Chan, Kwan Chuen; Desjacques, Vincent; Monaco, Pierluigi; Sheth, Ravi K.

    2013-11-01

    We explore the scale dependence of halo bias using real-space cross-correlation measurements in N-body simulations and in PINOCCHIO, an algorithm based on Lagrangian Perturbation Theory. Recent work has shown how to interpret such real-space measurements in terms of k-dependent bias in Fourier space, and how to remove the k-dependence to reconstruct the k-independent peak-background split halo bias parameters. We compare our reconstruction of the linear bias, which requires no free parameters, with previous estimates from N-body simulations which were obtained directly in Fourier space at large scales, and find very good agreement. Our reconstruction of the quadratic bias is similarly parameter-free, although in this case there are no previous Fourier space measurements to compare with. Our analysis of N-body simulations explicitly tests the predictions of the excursion set peaks (ESP) formalism of Paranjape et al. for the scale dependence of bias; we find that the ESP predictions accurately describe our measurements. In addition, our measurements in PINOCCHIO serve as a useful, successful consistency check between PINOCCHIO and N-body simulations that is not accessible to traditional measurements.

  9. Ion Phase Space Transport

    NASA Astrophysics Data System (ADS)

    Sheehan, Daniel Peter

    1987-09-01

    Experimental measurements are presented of ion phase space evolution in a collisionless magnetoplasma utilizing nonperturbing laser induced fluorescence (LIF) diagnostics. Ion configuration space and velocity space transport, and ion thermodynamic information were derived from the phase space diagrams for the following beam-plasma and obstacle-plasma systems:(UNFORMATTED TABLE OR EQUATION FOLLOWS) OBSTACLE & PLASMA SPECIES qquad disc & quad Ba ^+/e^ qquad disc & quad Ba^+/SF _6^-/e^ BEAM SPECIES & PLASMA SPECIES} qquad Ba^+ & quad Cs^+/e^ qquad Cs^+ & quad Ba^+/e^ qquad Ba^+ & quad Cs^+/SF_6 ^-/e^ qquad e^- & quad Ba^+ /e^ TABLE/EQUATION ENDS The ions were roughly mass symmetric. Plasma systems were reconstructed from multiple discrete Ba(II) ion velocity distributions with spatial, temporal, and velocity resolution of 1 mm^3, 2 musec, and 3 times 1010 cm ^3/sec^3 respectively. Phase space reconstructions indicated resonant ion response to the current-driven electrostatic ion cyclotron wave (EICW) in the case of an electron beam and to the ion cyclotron-cyclotron wave in the case of ion beams. Ion energization was observed in both systems. Local particle kinetic energy densities increase far above thermal levels in the presence of the EICW and ICCW. Time-resolved measurements of the EICW identified phase space particle bunching. The nonlinear evolution of f_{rm i}(x,v,t) was investigated for both beam systems. The near wake of conducting electrically floating disc obstacle was studied. Anomalous cross field diffusion (D_bot > 10 ^4 cm^2/sec) and ion energization were correlated with strong, low-frequency turbulence generated by the obstacle. Ion perpendicular kinetic energy densities doubled over thermal levels in the near wake. Upstream of the obstacle, l ~ 50 lambda_ {rm D}, a collisionless shock was indicated; far downstream, an ion flux peak was observed. Three negative ion plasma (NIP) sources were developed and characterized in the course of research: two

  10. An alternative method for determining GPS receiver phase biases

    NASA Astrophysics Data System (ADS)

    Kersten, Tobias; Schön, Steffen

    2015-04-01

    Precise Point Positioning (PPP) is used in a broad variety of applications to determine very economically high precision parameters for positioning, navigation and timing. In comparison to traditional differential approaches, PPP with undifferenced phase measurements is highly attractive, since the effort on the user side can be reduced to minimum, e.g. due to an unnecessary reference station. The quality of obtained position solutions is comparable to those obtained from a differential approach. One of the most important limiting factor is the long integration time to determine (float) ambiguities. Furthermore, it is critical to consider adequately all occurring error sources. In this context, receiver phase biases are one of the limiting factors and very complex to model. At least they are highly correlated with the ambiguities during the estimation process, (Laurichesse et al. 2009). This contribution presents an alternative method to estimate carrier phase biases of different GPS/GNSS receivers and signals w.r.t. a reference receiver. Receiver phase biases are estimated on a zero baseline and in combination with a very stable and precise clock (H-Maser) using single differences. The presented method will be discussed in detail. This includes a critical look to the estimability of bias values for several GPS/GNSS receivers as well as a discussion on the stability and universality of these bias values. Finally relative phase biases are quantified and it will be discussed how GPS/GNSS observation equations have to be extended, to take these bias values correctly into account. References: Laurichesse D., Mercier F., Berthias J.P., Broca P., Cerri L. (2009): Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determination, In: NAVIGATION, Journal of the Institute of Navigation, Volume 56, Number 2, pages: 135 - 149

  11. Emittance and Phase Space Exchange

    SciTech Connect

    Xiang, Dao; Chao, Alex; /SLAC

    2011-08-19

    Alternative chicane-type beam lines are proposed for exact emittance exchange between horizontal phase space (x; x{prime}) and longitudinal phase space (z; {delta}). Methods to achieve exact phase space exchanges, i.e. mapping x to z, x{prime} to {delta}, z to x and {delta} to x{prime} are suggested. Methods to mitigate the thick-lens effect of the transverse cavity on emittance exchange are discussed. Some applications of the phase space exchanger and the feasibility of an emittance exchange experiment with the proposed chicane-type beam line at SLAC are discussed.

  12. Phase space quantum mechanics - Direct

    SciTech Connect

    Nasiri, S.; Sobouti, Y.; Taati, F.

    2006-09-15

    Conventional approach to quantum mechanics in phase space (q,p), is to take the operator based quantum mechanics of Schroedinger, or an equivalent, and assign a c-number function in phase space to it. We propose to begin with a higher level of abstraction, in which the independence and the symmetric role of q and p is maintained throughout, and at once arrive at phase space state functions. Upon reduction to the q- or p-space the proposed formalism gives the conventional quantum mechanics, however, with a definite rule for ordering of factors of noncommuting observables. Further conceptual and practical merits of the formalism are demonstrated throughout the text.

  13. Phase microscope imaging in phase space

    NASA Astrophysics Data System (ADS)

    Sheppard, Colin J. R.; Mehta, Shalin B.

    2016-03-01

    Imaging in a bright field or phase contrast microscope is partially coherent. We have found that the image can be conveniently considered and modeled in terms of the Wigner distribution function (WDF) of the object transmission. The WDF of the object has a simple physical interpretation for the case of a slowly varying object. Basically, the image intensity is the spatial marginal of the spatial convolution of the object WDF with the phase space imager kernel (PSIkernel), a rotated version of the transmission cross-coefficient. The PSI-kernel can be regarded as a partially-coherent generalization of the point spread function. This approach can be extended to consider the partial coherence of the image itself. In particular, we can consider the mutual intensity, WDF or ambiguity function of the image. It is important to note that the spatial convolution of the object WDF with the PSI-kernel is not a WDF, and not the WDF of the image. The phase space representations of the image have relevance to phase reconstruction methods such as phase space tomography, or the transport of intensity equation approach, and to the three-dimensional image properties.

  14. Horizontal biases in rats’ use of three-dimensional space

    PubMed Central

    Jovalekic, Aleksandar; Hayman, Robin; Becares, Natalia; Reid, Harry; Thomas, George; Wilson, Jonathan; Jeffery, Kate

    2011-01-01

    Rodent spatial cognition studies allow links to be made between neural and behavioural phenomena, and much is now known about the encoding and use of horizontal space. However, the real world is three dimensional, providing cognitive challenges that have yet to be explored. Motivated by neural findings suggesting weaker encoding of vertical than horizontal space, we examined whether rats show a similar behavioural anisotropy when distributing their time freely between vertical and horizontal movements. We found that in two- or three-dimensional environments with a vertical dimension, rats showed a prioritization of horizontal over vertical movements in both foraging and detour tasks. In the foraging tasks, the animals executed more horizontal than vertical movements and adopted a “layer strategy” in which food was collected from one horizontal level before moving to the next. In the detour tasks, rats preferred the routes that allowed them to execute the horizontal leg first. We suggest three possible reasons for this behavioural bias. First, as suggested by Grobety and Schenk [5], it allows minimisation of energy expenditure, inasmuch as costly vertical movements are minimised. Second, it may be a manifestation of the temporal discounting of effort, in which animals value delayed effort as less costly than immediate effort. Finally, it may be that at the neural level rats encode the vertical dimension less precisely, and thus prefer to bias their movements in the more accurately encoded horizontal dimension. We suggest that all three factors are related, and all play a part. PMID:21419172

  15. Quantum phase transition in space

    SciTech Connect

    Damski, Bogdan; Zurek, Wojciech H

    2008-01-01

    A quantum phase transition between the symmetric (polar) phase and the phase with broken symmetry can be induced in a ferromagnetic spin-1 Bose-Einstein condensate in space (rather than in time). We consider such a phase transition and show that the transition region in the vicinity of the critical point exhibits scalings that reflect a compromise between the rate at which the transition is imposed (i.e., the gradient of the control parameter) and the scaling of the divergent healing length in the critical region. Our results suggest a method for the direct measurement of the scaling exponent {nu}.

  16. Phase nucleation in curved space

    NASA Astrophysics Data System (ADS)

    Gómez, Leopoldo; García, Nicolás; Vitelli, Vincenzo; Lorenzana, José; Daniel, Vega

    Nucleation and growth is the dominant relaxation mechanism driving first-order phase transitions. In two-dimensional flat systems, nucleation has been applied to a wide range of problems in physics, chemistry and biology. Here we study nucleation and growth of two-dimensional phases lying on curved surfaces and show that curvature modifies both critical sizes of nuclei and paths towards the equilibrium phase. In curved space, nucleation and growth becomes inherently inhomogeneous and critical nuclei form faster on regions of positive Gaussian curvature. Substrates of varying shape display complex energy landscapes with several geometry-induced local minima, where initially propagating nuclei become stabilized and trapped by the underlying curvature (Gómez, L. R. et al. Phase nucleation in curved space. Nat. Commun. 6:6856 doi: 10.1038/ncomms7856 (2015).).

  17. Self-biased magnetoelectric response in three-phase laminates

    NASA Astrophysics Data System (ADS)

    Yang, Su-Chul; Park, Chee-Sung; Cho, Kyung-Hoon; Priya, Shashank

    2010-11-01

    This study reports the experimental observation and analysis of self-biased magnetoelectric (ME) effect in three-phase laminates. The 2-2 L-T mode laminates were fabricated by attaching nickel (Ni) plates and ME particulate composite plates having 3-0 connectivity with 0.948Na0.5K0.5NbO3-0.052LiSbO3 (NKNLS) matrix and Ni0.8Zn0.2Fe2O4 (NZF) dispersant. The presence of two types of ferromagnetic materials, Ni and NZF, results in built-in magnetic bias due to difference in their magnetic susceptibilities and coercivity. This built-in bias (Hbias) provides finite ME effect at zero applied magnetic dc field. The ME response of bending mode trilayer laminate NKNLS-NZF/Ni/NKNLS-NZF in off-resonance and on-resonance conditions was shown to be mathematical combination of the trilayers with configuration NKNLS-NZF/Ni/NKNLS-NZF and NKNLS/Ni/NKNLS representing contributions from magnetic interaction and bending strain.

  18. Longitudinal phase space tomography with space charge

    NASA Astrophysics Data System (ADS)

    Hancock, S.; Lindroos, M.; Koscielniak, S.

    2000-12-01

    Tomography is now a very broad topic with a wealth of algorithms for the reconstruction of both qualitative and quantitative images. In an extension in the domain of particle accelerators, one of the simplest algorithms has been modified to take into account the nonlinearity of large-amplitude synchrotron motion. This permits the accurate reconstruction of longitudinal phase space density from one-dimensional bunch profile data. The method is a hybrid one which incorporates particle tracking. Hitherto, a very simple tracking algorithm has been employed because only a brief span of measured profile data is required to build a snapshot of phase space. This is one of the strengths of the method, as tracking for relatively few turns relaxes the precision to which input machine parameters need to be known. The recent addition of longitudinal space charge considerations as an optional refinement of the code is described. Simplicity suggested an approach based on the derivative of bunch shape with the properties of the vacuum chamber parametrized by a single value of distributed reactive impedance and by a geometrical coupling coefficient. This is sufficient to model the dominant collective effects in machines of low to moderate energy. In contrast to simulation codes, binning is not an issue since the profiles to be differentiated are measured ones. The program is written in Fortran 90 with high-performance Fortran extensions for parallel processing. A major effort has been made to identify and remove execution bottlenecks, for example, by reducing floating-point calculations and recoding slow intrinsic functions. A pointerlike mechanism which avoids the problems associated with pointers and parallel processing has been implemented. This is required to handle the large, sparse matrices that the algorithm employs. Results obtained with and without the inclusion of space charge are presented and compared for proton beams in the CERN protron synchrotron booster. Comparisons

  19. A general formalism for phase space calculations

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Deutchman, Philip A.; Townsend, Lawrence W.; Cucinotta, Francis A.

    1988-01-01

    General formulas for calculating the interactions of galactic cosmic rays with target nuclei are presented. Methods for calculating the appropriate normalization volume elements and phase space factors are presented. Particular emphasis is placed on obtaining correct phase space factors for 2-, and 3-body final states. Calculations for both Lorentz-invariant and noninvariant phase space are presented.

  20. Quantum phase-space representation for curved configuration spaces

    NASA Astrophysics Data System (ADS)

    Gneiting, Clemens; Fischer, Timo; Hornberger, Klaus

    2013-12-01

    We extend the Wigner-Weyl-Moyal phase-space formulation of quantum mechanics to general curved configuration spaces. The underlying phase space is based on the chosen coordinates of the manifold and their canonically conjugate momenta. The resulting Wigner function displays the axioms of a quasiprobability distribution, and any Weyl-ordered operator gets associated with the corresponding phase-space function, even in the absence of continuous symmetries. The corresponding quantum Liouville equation reduces to the classical curved space Liouville equation in the semiclassical limit. We demonstrate the formalism for a point particle moving on two-dimensional manifolds, such as a paraboloid or the surface of a sphere. The latter clarifies the treatment of compact coordinate spaces, as well as the relation of the presented phase-space representation to symmetry groups of the configuration space.

  1. Mining the Observational Phase Space

    NASA Astrophysics Data System (ADS)

    Norris, Ray

    2012-09-01

    Experience has shown that many great discoveries in astronomy have been made, not by testing a hypothesis, but by observing the sky in an innovative way. The necessary conditions for this to take place are (a) a telescope observing an unexplored part of the observational phase space (frequency, resolution, time-domain, area of sky, etc), (b) an intelligent observer who understands the instrument sufficiently well to distinguish between artefact and discovery, (c) a prepared and enthusiastic mind ready to accommodate and interpret a new discovery. Next generation survey telescopes will easily satisfy (a), if only in terms of the numbers of objects surveyed. However, their petabytes of data, and arms-length access, may prevent an observer from satisfying (b) and (c). We can only hope that someone will eventually stumble across any unexpected phenomena in the data. However the impenetrable size of the database implies dark corners that will never be fully explored. Discoveries may remain undiscovered, forever. What is the alternative? Can we harness data-mining techniques to help the intelligent observer search for the unexpected? I believe we can, and indeed we must if we are to reap the full scientific benefit of next-generation survey telescopes.

  2. Quantum Phase Space from Schwinger's Measurement Algebra

    NASA Astrophysics Data System (ADS)

    Watson, P.; Bracken, A. J.

    2014-07-01

    Schwinger's algebra of microscopic measurement, with the associated complex field of transformation functions, is shown to provide the foundation for a discrete quantum phase space of known type, equipped with a Wigner function and a star product. Discrete position and momentum variables label points in the phase space, each taking distinct values, where is any chosen prime number. Because of the direct physical interpretation of the measurement symbols, the phase space structure is thereby related to definite experimental configurations.

  3. Phase-space quantization of field theory.

    SciTech Connect

    Curtright, T.; Zachos, C.

    1999-04-20

    In this lecture, a limited introduction of gauge invariance in phase-space is provided, predicated on canonical transformations in quantum phase-space. Exact characteristic trajectories are also specified for the time-propagating Wigner phase-space distribution function: they are especially simple--indeed, classical--for the quantized simple harmonic oscillator. This serves as the underpinning of the field theoretic Wigner functional formulation introduced. Scalar field theory is thus reformulated in terms of distributions in field phase-space. This is a pedagogical selection from work published and reported at the Yukawa Institute Workshop ''Gauge Theory and Integrable Models'', 26-29 January, 1999.

  4. The Way to Phase Space Crystals

    NASA Astrophysics Data System (ADS)

    Guo, Lingzhen; Michael, Marthaler; Schön, Gerd

    A novel way to create a band structure of the quasienergy spectrum for driven systems is proposed based on the discrete symmetry in phase space. The system, e.g., an ion or ultracold atom trapped in a potential, shows no spatial periodicity, but it is driven by a time-dependent field. Under rotating wave approximation, the system can produce a periodic lattice structure in phase space. The band structure in quasienergy arises as a consequence of the n-fold discrete periodicity in phase space induced by this driving field. We propose explicit models to realize such a phase space crystal and analyze its band structure in the frame of a tightbinding approximation. The phase space lattice differs fundamentally from a lattice in real space, because its coordinate system, i.e., phase space, has a noncommutative geometry. The phase space crystal opens new ways to engineer energy band structures, with the added advantage that its properties can be changed in situ by tuning the driving field's parameters. Carl-Zeiss Stiftung.

  5. Investigating the mechanisms of seasonal ENSO phase locking bias in the ACCESS coupled model

    NASA Astrophysics Data System (ADS)

    Rashid, Harun A.; Hirst, Anthony C.

    2016-02-01

    The mechanisms of coupled model bias in seasonal ENSO phase locking are investigated using versions 1.0 and 1.3 of the CSIRO-BOM ACCESS coupled model (hereafter, ACCESS1.0 and ACCESS1.3, respectively). The two ACCESS coupled models are mostly similar in construction except for some differences, the most notable of which are in the cloud and land surface schemes used in the models. ACCESS1.0 simulates a realistic seasonal phase locking, with the ENSO variability peaking in December as in observations. On the other hand, the simulated ENSO variability in ACCESS1.3 peaks in March, a bias shown to be shared by many other CMIP5 models. To explore the mechanisms of this model bias, we contrast the atmosphere-ocean feedbacks associated with ENSO in both ACCESS model simulations and also compare the key feedbacks with those in other CMIP5 models. We find evidence that the ENSO phase locking bias in ACCESS1.3 is primarily caused by incorrect simulations of the shortwave feedback and the thermocline feedback in this model. The bias in the shortwave feedback is brought about by unrealistic SST-cloud interactions leading to a positive cloud feedback bias that is largest around March, in contrast to the strongest negative cloud feedback found in ACCESS1.0 simulations and observations at that time. The positive cloud feedback bias in ACCESS1.3 is the result of a dominant role played by the low-level clouds in its modeled SST-cloud interactions in the tropical eastern Pacific. Two factors appear to contribute to the dominance of low-level clouds in ACCESS1.3: the occurrence of a stronger mean descending motion bias and, to a lesser extent, a larger mean SST cold bias during March-April in ACCESS1.3 than in ACCESS1.0. A similar association is found between the positive cloud feedback bias and the biases in spring-time mean descending motion and SST for a group of CMIP5 models that show a seasonal phase locking bias similar to ACCESS1.3. Significant differences are also found

  6. RADON reconstruction in longitudinal phase space

    SciTech Connect

    Mane, V.; Peggs, S.; Wei, J.

    1997-07-01

    Longitudinal particle motion in circular accelerators is typically monitoring by one dimensional (1-D) profiles. Adiabatic particle motion in two dimensional (2-D) phase space can be reconstructed with tomographic techniques, using 1-D profiles. A computer program RADON has been developed in C++ to process digitized mountain range data and perform the phase space reconstruction for the AGS, and later for Relativistic Heavy Ion Collider (RHIC).

  7. Deep space LADAR, phase 1

    NASA Astrophysics Data System (ADS)

    Frey, Randy W.; Rawlins, Greg; Zepkin, Neil; Bohlin, John

    1989-03-01

    A pseudo-ranging laser radar (PRLADAR) concept is proposed to provide extended range capability to tracking LADAR systems meeting the long-range requirements of SDI mission scenarios such as the SIE midcourse program. The project will investigate the payoff of several transmitter modulation techniques and a feasibility demonstration using a breadboard implementation of a new receiver concept called the Phase Multiplexed Correlator (PMC) will be accomplished. The PRLADAR concept has specific application to spaceborne LADAR tracking missions where increased CNR/SNR performance gained by the proposed technique may reduce the laser power and/or optical aperture requirement for a given mission. The reduction in power/aperture has similar cost reduction advantages in commercial ranging applications. A successful Phase 1 program will lay the groundwork for a quick reaction upgrade to the AMOS/LASE system in support of near term SIE measurement objectives.

  8. Liquid crystal phase shifters for space applications

    NASA Astrophysics Data System (ADS)

    Woehrle, Christopher D.

    Space communication satellites have historically relied heavily on high gain gimbal dish antennas for performing communications. Reflector dish antennas lack flexibility in anti-jamming capabilities, and they tend to have a high risk associated to them given the need for mechanical mechanisms to beam steer. In recent years, a great amount of investment has been made into phased array antenna technologies. Phased arrays offer increased signal flexibility at reduced financial cost and in system risk. The problem with traditional phased arrays is the significant program cost and overall complexity added to the satellite by integrating antenna elements that require many dedicated components to properly perform adaptive beam steering. Several unique methods have been proposed to address the issues that plague traditional phase shifters slated for space applications. Proposed approaches range from complex mechanical switches (MEMS) and ferroelectric devices to more robust molecular changes. Nematic liquid crystals offer adaptive beam steering capabilities that traditional phased arrays have; however, with the added benefit of reduced system cost, complexity, and increased resilience to space environmental factors. The objective of the work presented is to investigate the feasibility of using nematic liquid crystals as a means of phase shifting individual phased array elements slated for space applications. Significant attention is paid to the survivability and performance of liquid crystal and associated materials in the space environment. Performance regarding thermal extremes and interactions with charged particles are the primary factors addressed.

  9. Single phase space laundry development

    NASA Technical Reports Server (NTRS)

    Colombo, Gerald V.; Putnam, David F.; Lunsford, Teddie D.; Streech, Neil D.; Wheeler, Richard R., Jr.; Reimers, Harold

    1993-01-01

    This paper describes a newly designed, 2.7 Kg (6 pound) capacity, laundry machine called the Single Phase Laundry (SPSL). The machine was designed to wash and dry crew clothing in a micro-gravity environment. A prototype unit was fabricated for NASA-JSC under a Small Business Innovated Research (SBIR) contract extending from September 1990 to January 1993. The unit employs liquid jet agitation, microwave vacuum drying, and air jet tumbling, which was perfected by KC-135 zero-g flight testing. Operation is completely automated except for loading and unloading clothes. The unit uses about 20 percent less power than a conventional household appliance.

  10. Electron Phase Shift at the Zero-Bias Anomaly of Quantum Point Contacts

    NASA Astrophysics Data System (ADS)

    Brun, B.; Martins, F.; Faniel, S.; Hackens, B.; Cavanna, A.; Ulysse, C.; Ouerghi, A.; Gennser, U.; Mailly, D.; Simon, P.; Huant, S.; Bayot, V.; Sanquer, M.; Sellier, H.

    2016-04-01

    The Kondo effect is the many-body screening of a local spin by a cloud of electrons at very low temperature. It has been proposed as an explanation of the zero-bias anomaly in quantum point contacts where interactions drive a spontaneous charge localization. However, the Kondo origin of this anomaly remains under debate, and additional experimental evidence is necessary. Here we report on the first phase-sensitive measurement of the zero-bias anomaly in quantum point contacts using a scanning gate microscope to create an electronic interferometer. We observe an abrupt shift of the interference fringes by half a period in the bias range of the zero-bias anomaly, a behavior which cannot be reproduced by single-particle models. We instead relate it to the phase shift experienced by electrons scattering off a Kondo system. Our experiment therefore provides new evidence of this many-body effect in quantum point contacts.

  11. Electron Phase Shift at the Zero-Bias Anomaly of Quantum Point Contacts.

    PubMed

    Brun, B; Martins, F; Faniel, S; Hackens, B; Cavanna, A; Ulysse, C; Ouerghi, A; Gennser, U; Mailly, D; Simon, P; Huant, S; Bayot, V; Sanquer, M; Sellier, H

    2016-04-01

    The Kondo effect is the many-body screening of a local spin by a cloud of electrons at very low temperature. It has been proposed as an explanation of the zero-bias anomaly in quantum point contacts where interactions drive a spontaneous charge localization. However, the Kondo origin of this anomaly remains under debate, and additional experimental evidence is necessary. Here we report on the first phase-sensitive measurement of the zero-bias anomaly in quantum point contacts using a scanning gate microscope to create an electronic interferometer. We observe an abrupt shift of the interference fringes by half a period in the bias range of the zero-bias anomaly, a behavior which cannot be reproduced by single-particle models. We instead relate it to the phase shift experienced by electrons scattering off a Kondo system. Our experiment therefore provides new evidence of this many-body effect in quantum point contacts. PMID:27081995

  12. Kondo phase shift at the zero-bias anomaly of quantum point contacts

    NASA Astrophysics Data System (ADS)

    Brun, Boris; Martins, Frederico; Faniel, Sébastien; Hackens, Benoit; Cavanna, Antonella; Ulysse, Christian; Ouerghi, Albdelkarim; Gennser, Ulf; Mailly, Dominique; Simon, Pascal; Huant, Serge; Bayot, Vincent; Sanquer, Marc; Sellier, Hermann

    The Kondo effect is the many-body screening of a local spin by a cloud of electrons at very low temperature. It has been proposed as an explanation of the zero-bias anomaly in quantum point contacts where interactions drive a spontaneous charge localization. However, the Kondo origin of this anomaly remains under debate, and additional experimental evidence is necessary. Here we report on the first phase-sensitive measurement of the zero-bias anomaly in quantum point contacts using a scanning gate microscope to create an electronic interferometer. We observe an abrupt shift of the interference fringes by half a period in the bias range of the zero-bias anomaly, a behavior which cannot be reproduced by single-particle models. We instead relate it to the phase shift experienced by electrons scattering off a Kondo system. Our experiment therefore provides new evidence of this many-body effect in quantum point contacts.

  13. Beam Tomography in Longitudinal Phase Space

    NASA Astrophysics Data System (ADS)

    Mane, V.; Wei, J.; Peggs, S.

    1997-05-01

    Longitudinal particle motion in circular accelerators is typically monitored by one dimensional (1-D) profiles. Adiabatic particle motion in 2-D phase space can be reconstructed with tomographic techniques, using 1-D profiles. In this paper, we discuss a filtered backprojection algorithm, with a high pass ramp or Hann filter, for phase space reconstruction. The algorithm uses several projections of the beam at equally spaced angles over half a synchrotron period. A computer program RADON has been developed to process digitized mountain range data and do the phase space reconstruction for the AGS, and later for Relativistic Heavy Ion Collider (RHIC). Analysis has been performed to determine the sensitivity to machine parameters and data acquisition errors. During the Sextant test of RHIC in early 1997, this program has been successfully employed to reconstruct the motion of Au^77+ beam in the AGS.

  14. Dual-phase self-biased magnetoelectric energy harvester

    NASA Astrophysics Data System (ADS)

    Zhou, Yuan; Apo, Daniel J.; Priya, Shashank

    2013-11-01

    We report a magnetoelectric energy harvester structure that can simultaneously scavenge magnetic and vibration energy in the absence of DC magnetic field. The structure consisted of a piezoelectric macro-fiber composite bonded to a Ni cantilever. Large magnetoelectric coefficient ˜50 V/cm Oe and power density ˜4.5 mW/cm3 (1 g acceleration) were observed at the resonance frequency. An additive effect was realized when the harvester operated under dual-phase mode. The increase in voltage output at the first three resonance frequencies under dual-phase mode was found to be 2.4%, 35.5%, and 360.7%. These results present significant advancement toward high energy density multimode energy harvesting system.

  15. Space Phase III - The commercial era dawns

    NASA Technical Reports Server (NTRS)

    Allnutt, R. F.

    1983-01-01

    After the 'Phase I' of space activities, the period bounded by Sputnik and Apollo, 'Phase II', has been entered, a phase in which concerns over the use and the protection of space assets which support national security predominate. However, it is only when the commercial motive becomes prominent that human activity in new regions truly prospers and enters periods of exponential growth. It is believed that there are increasing signs that such a period, called 'Space Phase III', may be coming soon. A description is presented of developments and results upon which this conclusion is based. Since 1980, there have been three developments of great importance for the future of space activities. Six highly successful flights have demonstrated that the Space Shuttle concept works. A series of Soviet missions are related to the emergence of a capability to construct and service modular space stations. Successful tests of the European Ariane 1 indicate an end to U.S. monopoly with respect to the provision of launch services to the Western World.

  16. Experimental Simulation of the Interaction of Biased Solar Arrays with the Space Plasma

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1981-01-01

    The phenomenon of unexpectedly large leakage currents collected by small exposed areas of high voltage solar arrays operating in a plasma environment was investigated. Polyimide (Kapton) was the insulating material used in all tests. Both positive bias (electron collection) and negative bias (ion collection) tests were performed. A mode change in the electron collection mechanism was associated with a glow discharge process and was found to be related to the neutral background density. Results indicate that the glow discharge collection mode does not occur in a space environment where the background density is considerably lower than that of the vacuum facility used.

  17. Neutral line chaos and phase space structure

    NASA Technical Reports Server (NTRS)

    Burkhart, Grant R.; Speiser, Theodore W.; Martin, Richard F., Jr.; Dusenbery, Paul B.

    1991-01-01

    Phase space structure and chaos near a neutral line are studied with numerical surface-of-section (SOS) techniques and analytic methods. Results are presented for a linear neutral line model with zero crosstail electric field. It was found that particle motion can be divided into three regimes dependening on the value of the conserved canonical momentum, Py, and the conserved Hamiltonian, h. The phase space structure, using Poincare SOS plots, is highly sensitive to bn = Bn/B0 variations, but not to h variations. It is verified that the slow motion preserves the action, Jz, as evaluated by Sonnerup (1971), when the period of the fast motion is smaller than the time scale of the slow motion. Results show that the phase space structure and particle chaos depend sensitively upon Py and bn, but are independent of h.

  18. Noether symmetries in the phase space

    NASA Astrophysics Data System (ADS)

    Díaz, Bogar; Galindo-Linares, Elizabeth; Ramírez-Romero, Cupatitzio; Silva-Ortigoza, Gilberto; Suárez-Xique, Román; Torres del Castillo, Gerardo F.; Velázquez, Mercedes

    2014-09-01

    The constants of motion of a mechanical system with a finite number of degrees of freedom are related to the variational symmetries of a Lagrangian constructed from the Hamiltonian of the original system. The configuration space for this Lagrangian is the phase space of the original system. The symmetries considered in this manner include transformations of the time and may not be canonical in the standard sense.

  19. Space Fence PDR Concept Development Phase

    NASA Astrophysics Data System (ADS)

    Haines, L.; Phu, P.

    2011-09-01

    The Space Fence, a major Air Force acquisition program, will become the dominant low-earth orbit uncued sensor in the space surveillance network (SSN). Its primary objective is to provide a 24/7 un-cued capability to find, fix, and track small objects in low earth orbit to include emerging and evolving threats, as well as the rapidly growing population of orbital debris. Composed of up to two geographically dispersed large-scale S-band phased array radars, this new system-of-systems concept will provide comprehensive Space Situational Awareness through net-centric operations and integrated decision support. Additionally, this program will facilitate cost saving force structure changes in the SSN, specifically including the decommissioning of very-high frequency VHF Air Force Space Surveillance System (AFSSS). The Space Fence Program Office entered a Preliminary Design Review (PDR) concept development phase in January 2011 to achieve the delivery of the Initial Operational Capability (IOC) expected in FY17. Two contractors were awarded to perform preliminary system design, conduct radar performance analyses and evaluations, and develop a functional PDR radar system prototype. The key objectives for the Phase A PDR effort are to reduce Space Fence total program technical, cost, schedule, and performance risk. The overall program objective is to achieve a preliminary design that demonstrates sufficient technical and manufacturing maturity and that represents a low risk, affordable approach to meet the Space Fence Technical Requirements Document (TRD) requirements for the final development and production phase to begin in 3QFY12. This paper provides an overview of the revised Space Fence program acquisition strategy for the Phase-A PDR phase to IOC, the overall program milestones and major technical efforts. In addition, the key system trade studies and modeling/simulation efforts undertaken during the System Design Requirement (SDR) phase to address and mitigate

  20. Phase-space contraction and quantum operations

    SciTech Connect

    Garcia-Mata, Ignacio; Spina, Maria Elena; Saraceno, Marcos; Carlo, Gabriel

    2005-12-15

    We give a criterion to differentiate between dissipative and diffusive quantum operations. It is based on the classical idea that dissipative processes contract volumes in phase space. We define a quantity that can be regarded as 'quantum phase space contraction rate' and which is related to a fundamental property of quantum channels: nonunitality. We relate it to other properties of the channel and also show a simple example of dissipative noise composed with a chaotic map. The emergence of attractor-like structures is displayed.

  1. Positive phase space distributions and uncertainty relations

    NASA Technical Reports Server (NTRS)

    Kruger, Jan

    1993-01-01

    In contrast to a widespread belief, Wigner's theorem allows the construction of true joint probabilities in phase space for distributions describing the object system as well as for distributions depending on the measurement apparatus. The fundamental role of Heisenberg's uncertainty relations in Schroedinger form (including correlations) is pointed out for these two possible interpretations of joint probability distributions. Hence, in order that a multivariate normal probability distribution in phase space may correspond to a Wigner distribution of a pure or a mixed state, it is necessary and sufficient that Heisenberg's uncertainty relation in Schroedinger form should be satisfied.

  2. Phase-space foundations of electron holography

    NASA Astrophysics Data System (ADS)

    Lubk, A.; Röder, F.

    2015-09-01

    We present a unified formalism for describing various forms of electron holography in quantum mechanical phase space including their extensions to quantum-state reconstructions. The phase-space perspective allows for taking into account partial coherence as well as the quantum mechanical detection process typically hampering the unique reconstruction of a wave function. We elaborate on the limitations imposed by the electron optical elements of the transmission electron microscope as well as the scattering at the target. The results provide the basis for vastly extending the scope of electron holographic techniques towards analyzing partially coherent signals such as inelastically scattered electrons or electron pulses used in ultrafast transmission electron microscopy.

  3. Particle emission from covariant phase space

    SciTech Connect

    Bambah, B.A. )

    1992-12-01

    Using Lorentz-covariant sources, we calculate the multiplicity distribution of {ital n} pair correlated particles emerging from a Lorentz-covariant phase-space volume. We use the Kim-Wigner formalism and identify these sources as the squeezed states of a relativistic harmonic oscillator. The applications of this to multiplicity distributions in particle physics is discussed.

  4. Characterizing maximally singular phase-space distributions

    NASA Astrophysics Data System (ADS)

    Sperling, J.

    2016-07-01

    Phase-space distributions are widely applied in quantum optics to access the nonclassical features of radiations fields. In particular, the inability to interpret the Glauber-Sudarshan distribution in terms of a classical probability density is the fundamental benchmark for quantum light. However, this phase-space distribution cannot be directly reconstructed for arbitrary states, because of its singular behavior. In this work, we perform a characterization of the Glauber-Sudarshan representation in terms of distribution theory. We address important features of such distributions: (i) the maximal degree of their singularities is studied, (ii) the ambiguity of representation is shown, and (iii) their dual space for nonclassicality tests is specified. In this view, we reconsider the methods for regularizing the Glauber-Sudarshan distribution for verifying its nonclassicality. This treatment is supported with comprehensive examples and counterexamples.

  5. Calibration of the clock-phase biases of GNSS networks: the closure-ambiguity approach

    NASA Astrophysics Data System (ADS)

    Lannes, A.; Prieur, J.-L.

    2013-08-01

    In global navigation satellite systems (GNSS), the problem of retrieving clock-phase biases from network data has a basic rank defect. We analyse the different ways of removing this rank defect, and define a particular strategy for obtaining these phase biases in a standard form. The minimum-constrained problem to be solved in the least-squares (LS) sense depends on some integer vector which can be fixed in an arbitrary manner. We propose to solve the problem via an undifferenced approach based on the notion of closure ambiguity. We present a theoretical justification of this closure-ambiguity approach (CAA), and the main elements for a practical implementation. The links with other methods are also established. We analyse all those methods in a unified interpretative framework, and derive functional relations between the corresponding solutions and our CAA solution. This could be interesting for many GNSS applications like real-time kinematic PPP for instance. To compare the methods providing LS estimates of clock-phase biases, we define a particular solution playing the role of reference solution. For this solution, when a phase bias is estimated for the first time, its fractional part is confined to the one-cycle width interval centred on zero; the integer-ambiguity set is modified accordingly. Our theoretical study is illustrated with some simple and generic examples; it could have applications in data processing of most GNSS networks, and particularly global networks using GPS, Glonass, Galileo, or BeiDou/Compass satellites.

  6. A space-fed phased array for surveillance from space

    NASA Astrophysics Data System (ADS)

    Hightower, Charles H.; Wong, Sam H.; Perkons, Alfred R.; Igwe, Christian I.

    1991-05-01

    A space-fed radar antenna called a venetian blind is proposed for all-weather wide-area surveillance from space. Radar requirements for tasked and untasked operation are discussed, and the process of selecting the venetian blind concept, which can support both, is described. In its untasked form (essentially a space-fed passive lens), it achieves off-axis squint angles of many beamwidths with negligible performance degradation. It is inherently insensitive to mechanical distortion and is a first step in the evolution to the more complex tasked system antenna. The antenna lens consists of easily manufactured slats with microstrip dipole radiating elements and matching networks on a dielectric substrate. Phase control is achieved with low-loss delay lines in the passive lens or active transmit/receive modules if electronic scan is desired.

  7. Temperature evolution of nickel sulphide phases from thiourea complex and their exchange bias effect

    SciTech Connect

    Kumar, Nitesh; Raman, N.; Sundaresan, A.

    2013-12-15

    Considering the very complex phase diagram of nickel sulphide, it is quite challenging to stabilize pure phases from a single precursor. Here, we obtain nanoparticles of various phases of nickel sulphide by decomposing nickel–thiourea complex at different temperatures. The first phase in the evolution is the one with the maximum sulphur content, namely, NiS{sub 2} nanoparticles obtained at 400 °C. As the temperature is increased, nanoparticles of phases with lesser sulphur content, NiS (600 °C) and Ni{sub 3}S{sub 2} (800 °C) are formed. NiS{sub 2} nanoparticles exhibit weak ferromagnetic transition at 30 K and show a large exchange bias at 2 K. NiS nanoparticles are antiferromagnetic and show relatively smaller exchange bias effect. On the other hand, Ni{sub 3}S{sub 2} nanoparticles exhibit very weak temperature dependent magnetization. Electrical measurements show that both NiS{sub 2} and NiS are semiconductors whereas Ni{sub 3}S{sub 2} is a metal. - Graphical abstract: Pure phases of NiS{sub 2}, NiS and Ni{sub 3}S{sub 2} have been obtained by thermal decomposition of nickel–thiourea complex wherein, NiS{sub 2} nanoparticles exhibit remarkable exchange bias effect at 2 K. - Highlights: • NiS{sub 2}, NiS and Ni{sub 3}S{sub 2} nanoparticles are obtained by thermal decomposition of nickel–thiourea complex at different temperatures. • As the temperature is increased, nickel sulphide phase with lesser sulphur content is obtained. • NiS{sub 2} nanoparticles show good exchange bias property which can be explained by antiferromagnetic core and ferromagnetic shell model. • NiS{sub 2} and NiS are semiconducting while Ni{sub 3}S{sub 2} shows metallic behavior.

  8. Space market model development project, phase 3

    NASA Technical Reports Server (NTRS)

    Bishop, Peter C.; Hamel, Gary P.

    1989-01-01

    The results of a research project investigating information needs for space commercialization is described. The Space Market Model Development Project (SMMDP) was designed to help NASA identify the information needs of the business community and to explore means to meet those needs. The activity of the SMMDP is reviewed and a report of its operation via three sections is presented. The first part contains a brief historical review of the project since inception. The next part reports results of Phase 3, the most recent stage of activity. Finally, overall conclusions and observations based on the SMMDP research results are presented.

  9. Rockstar: Phase-space halo finder

    NASA Astrophysics Data System (ADS)

    Behroozi, Peter; Wechsler, Risa; Wu, Hao-Yi

    2012-10-01

    Rockstar (Robust Overdensity Calculation using K-Space Topologically Adaptive Refinement) identifies dark matter halos, substructure, and tidal features. The approach is based on adaptive hierarchical refinement of friends-of-friends groups in six phase-space dimensions and one time dimension, which allows for robust (grid-independent, shape-independent, and noise-resilient) tracking of substructure. Our method is massively parallel (up to 10^5 CPUs) and runs on the largest current simulations (>10^10 particles) with high efficiency (10 CPU hours and 60 gigabytes of memory required per billion particles analyzed). Rockstar offers significant improvement in substructure recovery as compared to several other halo finders.

  10. Phase Space Tomography: A Simple, Portable and Accurate Technique to Map Phase Spaces of Beams with Space Charge

    SciTech Connect

    Stratakis, D.; Kishek, R. A.; Bernal, S.; Walter, M.; Haber, I.; Fiorito, R.; Thangaraj, J. C. T.; Quinn, B.; Reiser, M.; O'Shea, P. G.; Li, H.

    2006-11-27

    In order to understand the charged particle dynamics, e.g. the halo formation, emittance growth, x-y energy transfer and coupling, knowledge of the actual phase space is needed. Other the past decade there is an increasing number of articles who use tomography to map the beam phase space and measure the beam emittance. These studies where performed at high energy facilities where the effect of space charge was neglible and therefore not considered in the analysis. This work extends the tomography technique to beams with space charge. In order to simplify the analysis linear forces where assumed. By carefully modeling the tomography process using the particle-in-cell code WARP we test the validity of our assumptions and the accuracy of the reconstructed phase space. Finally, we report experimental results of phase space mapping at the University of Maryland Electron Ring (UMER) using tomography.

  11. Thermophotovoltaic space power system, phase 3

    NASA Technical Reports Server (NTRS)

    Horne, W. E.; Lancaster, C.

    1987-01-01

    Work performed on a research and development program to establish the feasibility of a solar thermophotovoltaic space power generation concept was summarized. The program was multiphased. The earlier work is summarized and the work on the current phase is detailed as it pertains to and extends the earlier work. Much of the experimental hardware and materials development was performed on the internal program. Experimental measurements and data evaluation were performed on the contracted effort. The objectives of the most recent phase were: to examine the thermal control design in order to optimize it for lightweight and low cost; to examine the concentrator optics in an attempt to relieve pointing accuracy requirements to + or - 2 degrees about the optical axis; and to use the results of the thermal and optical studies to synthesize a solar thermophotovoltaic (STPV) module design that is optimized for space application.

  12. Noncanonical phase-space noncommutative black holes

    NASA Astrophysics Data System (ADS)

    Bastos, Catarina; Bertolami, Orfeu; Dias, Nuno Costa; Prata, Joa~o. Nuno

    2012-07-01

    In this contribution we present a noncanonical phase-space noncommutative (NC) extension of a Kantowski Sachs (KS) cosmological model to describe the interior of a Schwarzschild black hole (BH). We evaluate the thermodynamical quantities inside this NC Schwarzschild BH and compare with the well known quantities. We find that for a NCBH the temperature and entropy have the same mass dependence as the Hawking quantities for a Schwarzschild BH.

  13. Analytical satellite theory in extended phase space

    NASA Technical Reports Server (NTRS)

    Bond, V.; Broucke, R.

    1980-01-01

    It is noted that a satellite theory, based on extended phase space and on the true anomaly, was introduced by Scheifele (1970). In the present paper a simple canonical transformation is shown that makes the transition from the classical Delaunay elements to the Scheifele variables. It is stressed that neither spherical coordinates nor Hamilton-Jacobi theory is used. Finally, attention is given to the meaning of the new variables, especially the use of the true anomaly as one of the variables.

  14. Bias-free spin-wave phase shifter for magnonic logic

    NASA Astrophysics Data System (ADS)

    Louis, Steven; Lisenkov, Ivan; Nikitov, Sergei; Tyberkevych, Vasyl; Slavin, Andrei

    2016-06-01

    A design of a magnonic phase shifter operating without an external bias magnetic field is proposed. The phase shifter uses a localized collective spin wave mode propagating along a domain wall "waveguide" in a dipolarly-coupled magnetic dot array with a chessboard antiferromagnetic (CAFM) ground state. It is demonstrated numerically that the remagnetization of a single magnetic dot adjacent to the domain wall waveguide introduces a controllable phase shift in the propagating spin wave mode without significant change to the mode amplitude. It is also demonstrated that a logic XOR gate can be realized in the same system.

  15. Chirp-driven giant phase space vortices

    NASA Astrophysics Data System (ADS)

    Trivedi, Pallavi; Ganesh, Rajaraman

    2016-06-01

    In a collisionless, unbounded, one-dimensional plasma, modelled using periodic boundary conditions, formation of steady state phase space coherent structures or phase space vortices (PSV) is investigated. Using a high resolution one-dimensional Vlasov-Poisson solver based on piecewise-parabolic advection scheme, the formation of giant PSV is addressed numerically. For an infinitesimal external drive amplitude and wavenumber k, we demonstrate the existence of a window of chirped external drive frequency that leads to the formation of giant PSV. The linear, small amplitude, external drive, when chirped, is shown to couple effectively to the plasma and increase both streaming of "untrapped" and "trapped" particle fraction. The steady state attained after the external drive is turned off and is shown to lead to a giant PSV with multiple extrema and phase velocities, with excess density fraction, defined as the deviation from the Maxwellian background, Δ n / n 0 ≃ 20 % - 25 % . It is shown that the process depends on the chirp time duration Δt. The excess density fraction Δn/n0, which contains both trapped and untrapped particle contribution, is also seen to scale with Δt, only inhibited by the gradient of the distribution in velocity space. Both single step drive and multistep chirp processes are shown to lead to steady state giant PSV, with multiple extrema due to embedded holes and clumps, long after the external drive is turned off.

  16. Code-Phase Clock Bias and Frequency Offset in PPP Clock Solutions.

    PubMed

    Defraigne, Pascale; Sleewaegen, Jean-Marie

    2016-07-01

    Precise point positioning (PPP) is a zero-difference single-station technique that has proved to be very effective for time and frequency transfer, enabling the comparison of atomic clocks with a precision of a hundred picoseconds and a one-day stability below the 1e-15 level. It was, however, noted that for some receivers, a frequency difference is observed between the clock solution based on the code measurements and the clock solution based on the carrier-phase measurements. These observations reveal some inconsistency either between the code and carrier phases measured by the receiver or between the data analysis strategy of codes and carrier phases. One explanation for this discrepancy is the time offset that can exist for some receivers between the code and the carrier-phase latching. This paper explains how a code-phase bias in the receiver hardware can induce a frequency difference between the code and the carrier-phase clock solutions. The impact on PPP is then quantified. Finally, the possibility to determine this code-phase bias in the PPP modeling is investigated, and the first results are shown to be inappropriate due to the high level of code noise. PMID:26595916

  17. Configurational bias Monte Carlo simulation of phase segregation in block copolymer networks.

    PubMed

    Palmer, Kent I; Lastoskie, Christian M

    2004-01-01

    Cross-linked block copolymers are used as adhesives in fiber-reinforced composite material manufactures for automotive applications. Good adhesion between the polymer matrix and fibers in the interphase region is required for the structural integrity of these materials. Experimental evidence indicates that superior adhesion is obtained when phase segregation occurs between the two matrix phase block copolymers. It is therefore desirable to predict the conditions under which phase segregation is expected to occur. Configurational bias Monte Carlo simulations of two-component, trifunctional block copolymer networks were carried out to investigate phase segregation in these materials. The effects of four principal parameters on phase segregation were examined: the weight fractions of the two components, the cross-link length, the connectivity of the network, and the ratio of the square-well interactions. The molecular simulation results confirmed trends observed in laboratory measurements. PMID:15267310

  18. Formation of phase space holes and clumps.

    PubMed

    Lilley, M K; Nyqvist, R M

    2014-04-18

    It is shown that the formation of phase space holes and clumps in kinetically driven, dissipative systems is not restricted to the near threshold regime, as previously reported and widely believed. Specifically, we observe hole-clump generation from the edges of an unmodulated phase space plateau, created via excitation, phase mixing and subsequent dissipative decay of a linearly unstable bulk plasma mode in the electrostatic bump-on-tail model. This has now allowed us to elucidate the underlying physics of the hole-clump formation process for the first time. Holes and clumps develop from negative energy waves that arise due to the sharp gradients at the interface between the plateau and the nearly unperturbed, ambient distribution and destabilize in the presence of dissipation in the bulk plasma. We confirm this picture by demonstrating that the formation of such nonlinear structures in general does not rely on a "seed" wave, only on the ability of the system to generate a plateau. In addition, we observe repetitive cycles of plateau generation and erosion, the latter due to hole-clump formation and detachment, which appear to be insensitive to initial conditions and can persist for a long time. We present an intuitive discussion of why this continual regeneration occurs. PMID:24785043

  19. Phase change water processing for Space Station

    NASA Technical Reports Server (NTRS)

    Zdankiewicz, E. M.; Price, D. F.

    1985-01-01

    The use of a vapor compression distillation subsystem (VCDS) for water recovery on the Space Station is analyzed. The self-contained automated system can process waste water at a rate of 32.6 kg/day and requires only 115 W of electric power. The improvements in the mechanical components of VCDS are studied. The operation of VCDS in the normal mode is examined. The VCDS preprototype is evaluated based on water quality, water production rate, and specific energy. The relation between water production rate and fluids pump speed is investigated; it is concluded that a variable speed fluids pump will optimize water production. Components development and testing currently being conducted are described. The properties and operation of the proposed phase change water processing system for the Space Station, based on vapor compression distillation, are examined.

  20. Optical image encryption in phase space

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Xu, Xiaobin; Situ, Guohai; Wu, Quanying

    2014-11-01

    In the field of optical information security, the research of double random phase encoding is becoming deeper with each passing day, however the encryption system is linear, and the dependencies between plaintext and ciphertext is not complicated, with leaving a great hidden danger to the security of the encryption system. In this paper, we encrypted the higher dimensional Wigner distribution function of low dimensional plaintext by using the bilinear property of Wigner distribution function. Computer simulation results show that this method can not only enlarge the key space, but also break through the linear characteristic of the traditional optical encryption technology. So it can significantly improve the safety of the encryption system.

  1. Weak values and the quantum phase space

    SciTech Connect

    Lobo, A. C.; Ribeiro, C. A.

    2009-07-15

    We address the issue of how to properly treat, and in a more general setting, the concept of a weak value of a weak measurement in quantum mechanics. We show that for this purpose, one must take in account the effects of the measuring process on the entire phase space of the measuring system. By using coherent states, we go a step further than Jozsa in a recent paper and we present an example where the result of the measurement is symmetrical in the position and momentum observables and seems to be much better suited for quantum optical implementation.

  2. Circuital characterisation of space-charge motion with a time-varying applied bias

    PubMed Central

    Kim, Chul; Moon, Eun-Yi; Hwang, Jungho; Hong, Hiki

    2015-01-01

    Understanding the behaviour of space-charge between two electrodes is important for a number of applications. The Shockley-Ramo theorem and equivalent circuit models are useful for this; however, fundamental questions of the microscopic nature of the space-charge remain, including the meaning of capacitance and its evolution into a bulk property. Here we show that the microscopic details of the space-charge in terms of resistance and capacitance evolve in a parallel topology to give the macroscopic behaviour via a charge-based circuit or electric-field-based circuit. We describe two approaches to this problem, both of which are based on energy conservation: the energy-to-current transformation rule, and an energy-equivalence-based definition of capacitance. We identify a significant capacitive current due to the rate of change of the capacitance. Further analysis shows that Shockley-Ramo theorem does not apply with a time-varying applied bias, and an additional electric-field-based current is identified to describe the resulting motion of the space-charge. Our results and approach provide a facile platform for a comprehensive understanding of the behaviour of space-charge between electrodes. PMID:26133999

  3. Circuital characterisation of space-charge motion with a time-varying applied bias.

    PubMed

    Kim, Chul; Moon, Eun-Yi; Hwang, Jungho; Hong, Hiki

    2015-01-01

    Understanding the behaviour of space-charge between two electrodes is important for a number of applications. The Shockley-Ramo theorem and equivalent circuit models are useful for this; however, fundamental questions of the microscopic nature of the space-charge remain, including the meaning of capacitance and its evolution into a bulk property. Here we show that the microscopic details of the space-charge in terms of resistance and capacitance evolve in a parallel topology to give the macroscopic behaviour via a charge-based circuit or electric-field-based circuit. We describe two approaches to this problem, both of which are based on energy conservation: the energy-to-current transformation rule, and an energy-equivalence-based definition of capacitance. We identify a significant capacitive current due to the rate of change of the capacitance. Further analysis shows that Shockley-Ramo theorem does not apply with a time-varying applied bias, and an additional electric-field-based current is identified to describe the resulting motion of the space-charge. Our results and approach provide a facile platform for a comprehensive understanding of the behaviour of space-charge between electrodes. PMID:26133999

  4. Circuital characterisation of space-charge motion with a time-varying applied bias

    NASA Astrophysics Data System (ADS)

    Kim, Chul; Moon, Eun-Yi; Hwang, Jungho; Hong, Hiki

    2015-07-01

    Understanding the behaviour of space-charge between two electrodes is important for a number of applications. The Shockley-Ramo theorem and equivalent circuit models are useful for this; however, fundamental questions of the microscopic nature of the space-charge remain, including the meaning of capacitance and its evolution into a bulk property. Here we show that the microscopic details of the space-charge in terms of resistance and capacitance evolve in a parallel topology to give the macroscopic behaviour via a charge-based circuit or electric-field-based circuit. We describe two approaches to this problem, both of which are based on energy conservation: the energy-to-current transformation rule, and an energy-equivalence-based definition of capacitance. We identify a significant capacitive current due to the rate of change of the capacitance. Further analysis shows that Shockley-Ramo theorem does not apply with a time-varying applied bias, and an additional electric-field-based current is identified to describe the resulting motion of the space-charge. Our results and approach provide a facile platform for a comprehensive understanding of the behaviour of space-charge between electrodes.

  5. Temperature evolution of nickel sulphide phases from thiourea complex and their exchange bias effect

    NASA Astrophysics Data System (ADS)

    Kumar, Nitesh; Raman, N.; Sundaresan, A.

    2013-12-01

    Considering the very complex phase diagram of nickel sulphide, it is quite challenging to stabilize pure phases from a single precursor. Here, we obtain nanoparticles of various phases of nickel sulphide by decomposing nickel-thiourea complex at different temperatures. The first phase in the evolution is the one with the maximum sulphur content, namely, NiS2 nanoparticles obtained at 400 °C. As the temperature is increased, nanoparticles of phases with lesser sulphur content, NiS (600 °C) and Ni3S2 (800 °C) are formed. NiS2 nanoparticles exhibit weak ferromagnetic transition at 30 K and show a large exchange bias at 2 K. NiS nanoparticles are antiferromagnetic and show relatively smaller exchange bias effect. On the other hand, Ni3S2 nanoparticles exhibit very weak temperature dependent magnetization. Electrical measurements show that both NiS2 and NiS are semiconductors whereas Ni3S2 is a metal.

  6. Grounding grammatical categories: attention bias in hand space influences grammatical congruency judgment of Chinese nominal classifiers

    PubMed Central

    Lobben, Marit; D’Ascenzo, Stefania

    2015-01-01

    Embodied cognitive theories predict that linguistic conceptual representations are grounded and continually represented in real world, sensorimotor experiences. However, there is an on-going debate on whether this also holds for abstract concepts. Grammar is the archetype of abstract knowledge, and therefore constitutes a test case against embodied theories of language representation. Former studies have largely focussed on lexical-level embodied representations. In the present study we take the grounding-by-modality idea a step further by using reaction time (RT) data from the linguistic processing of nominal classifiers in Chinese. We take advantage of an independent body of research, which shows that attention in hand space is biased. Specifically, objects near the hand consistently yield shorter RTs as a function of readiness for action on graspable objects within reaching space, and the same biased attention inhibits attentional disengagement. We predicted that this attention bias would equally apply to the graspable object classifier but not to the big object classifier. Chinese speakers (N = 22) judged grammatical congruency of classifier-noun combinations in two conditions: graspable object classifier and big object classifier. We found that RTs for the graspable object classifier were significantly faster in congruent combinations, and significantly slower in incongruent combinations, than the big object classifier. There was no main effect on grammatical violations, but rather an interaction effect of classifier type. Thus, we demonstrate here grammatical category-specific effects pertaining to the semantic content and by extension the visual and tactile modality of acquisition underlying the acquisition of these categories. We conclude that abstract grammatical categories are subjected to the same mechanisms as general cognitive and neurophysiological processes and may therefore be grounded. PMID:26379611

  7. Disentangling Redshift-Space Distortions and Nonlinear Bias using the 2D Power Spectrum

    SciTech Connect

    Jennings, Elise; Wechsler, Risa H.

    2015-08-07

    We present the nonlinear 2D galaxy power spectrum, P(k, µ), in redshift space, measured from the Dark Sky simulations, using galaxy catalogs constructed with both halo occupation distribution and subhalo abundance matching methods, chosen to represent an intermediate redshift sample of luminous red galaxies. We find that the information content in individual µ (cosine of the angle to the line of sight) bins is substantially richer then multipole moments, and show that this can be used to isolate the impact of nonlinear growth and redshift space distortion (RSD) effects. Using the µ < 0.2 simulation data, which we show is not impacted by RSD effects, we can successfully measure the nonlinear bias to an accuracy of ~ 5% at k < 0.6hMpc-1 . This use of individual µ bins to extract the nonlinear bias successfully removes a large parameter degeneracy when constraining the linear growth rate of structure. We carry out a joint parameter estimation, using the low µ simulation data to constrain the nonlinear bias, and µ > 0.2 to constrain the growth rate and show that f can be constrained to ~ 26(22)% to a kmax < 0.4(0.6)hMpc-1 from clustering alone using a simple dispersion model, for a range of galaxy models. Our analysis of individual µ bins also reveals interesting physical effects which arise simply from different methods of populating halos with galaxies. We also find a prominent turnaround scale, at which RSD damping effects are greater then the nonlinear growth, which differs not only for each µ bin but also for each galaxy model. These features may provide unique signatures which could be used to shed light on the galaxy–dark matter connection. Furthermore, the idea of separating nonlinear growth and RSD effects making use of the full information in the 2D galaxy power spectrum yields significant improvements in constraining cosmological parameters and may be a promising probe of galaxy formation models.

  8. Space Transportation Engine Program (STEP), phase B

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Space Transportation Engine Program (STEP) Phase 2 effort includes preliminary design and activities plan preparation that will allow smooth and time transition into a Prototype Phase and then into Phases 3, 4, and 5. A Concurrent Engineering approach using Total Quality Management (TQM) techniques, is being applied to define an oxygen-hydrogen engine. The baseline from Phase 1/1' studies was used as a point of departure for trade studies and analyses. Existing STME system models are being enhanced as more detailed module/component characteristics are determined. Preliminary designs for the open expander, closed expander, and gas generator cycles were prepared, and recommendations for cycle selection made at the Design Concept Review (DCR). As a result of July '90 DCR, and information subsequently supplied to the Technical Review Team, a gas generator cycle was selected. Results of the various Advanced Development Programs (ADP's) for the Advanced Launch Systems (ALS) were contributive to this effort. An active vehicle integration effort is supplying the NASA, Air Force, and vehicle contractors with engine parameters and data, and flowing down appropriate vehicle requirements. Engine design and analysis trade studies are being documented in a data base that was developed and is being used to organize information. To date, seventy four trade studies were input to the data base.

  9. Quantum mechanics on phase space and teleportation

    NASA Astrophysics Data System (ADS)

    Messamah, Juba; Schroeck, Franklin E.; Hachemane, Mahmoud; Smida, Abdallah; Hamici, Amel H.

    2015-03-01

    The formalism of quantum mechanics on phase space is used to describe the standard protocol of quantum teleportation with continuous variables in order to partially investigate the interplay between this formalism and quantum information. Instead of the Wigner quasi-probability distributions used in the standard protocol, we use positive definite true probability densities which account for unsharp measurements through a proper wave function representing a non-ideal quantum measuring device. This is based on a result of Schroeck and may be taken on any relativistic or nonrelativistic phase space. The obtained formula is similar to a known formula in quantum optics, but contains the effect of the measuring device. It has been applied in three cases. In the first case, the two measuring devices, corresponding to the two entangled parts shared by Alice and Bob, are not entangled and described by two identical Gaussian wave functions with respect to the Heisenberg group. They lead to a probability density identical to the function which is analyzed and compared with the Wigner formalism. A new expression of the teleportation fidelity for a coherent state in terms of the quadrature variances is obtained. In the second case, these two measuring devices are entangled in a two-mode squeezed vacuum state. In the third case, two Gaussian states are combined in an entangled squeezed state. The overall observation is that the state of the measuring devices shared by Alice and Bob influences the fidelity of teleportation through their unsharpness and entanglement.

  10. Phase space representation of quantum dynamics

    SciTech Connect

    Polkovnikov, Anatoli

    2010-08-15

    We discuss a phase space representation of quantum dynamics of systems with many degrees of freedom. This representation is based on a perturbative expansion in quantum fluctuations around one of the classical limits. We explicitly analyze expansions around three such limits: (i) corpuscular or Newtonian limit in the coordinate-momentum representation, (ii) wave or Gross-Pitaevskii limit for interacting bosons in the coherent state representation, and (iii) Bloch limit for the spin systems. We discuss both the semiclassical (truncated Wigner) approximation and further quantum corrections appearing in the form of either stochastic quantum jumps along the classical trajectories or the nonlinear response to such jumps. We also discuss how quantum jumps naturally emerge in the analysis of non-equal time correlation functions. This representation of quantum dynamics is closely related to the phase space methods based on the Wigner-Weyl quantization and to the Keldysh technique. We show how such concepts as the Wigner function, Weyl symbol, Moyal product, Bopp operators, and others automatically emerge from the Feynmann's path integral representation of the evolution in the Heisenberg representation. We illustrate the applicability of this expansion with various examples mostly in the context of cold atom systems including sine-Gordon model, one- and two-dimensional Bose-Hubbard model, Dicke model and others.

  11. Quantum state engineering with flux-biased Josephson phase qubits by rapid adiabatic passages

    SciTech Connect

    Nie, W.; Huang, J. S.; Shi, X.; Wei, L. F.

    2010-09-15

    In this article, the scheme of quantum computing based on the Stark-chirped rapid adiabatic passage (SCRAP) technique [L. F. Wei, J. R. Johansson, L. X. Cen, S. Ashhab, and F. Nori, Phys. Rev. Lett. 100, 113601 (2008)] is extensively applied to implement quantum state manipulations in flux-biased Josephson phase qubits. The broken-parity symmetries of bound states in flux-biased Josephson junctions are utilized to conveniently generate the desirable Stark shifts. Then, assisted by various transition pulses, universal quantum logic gates as well as arbitrary quantum state preparations can be implemented. Compared with the usual {pi}-pulse operations widely used in experiments, the adiabatic population passages proposed here are insensitive to the details of the applied pulses and thus the desirable population transfers can be satisfyingly implemented. The experimental feasibility of the proposal is also discussed.

  12. Effect of sensor bias on space-based bearing-only tracker

    NASA Astrophysics Data System (ADS)

    Clemons, T. M., III; Chang, K. C.

    2008-04-01

    This paper examines the effect of sensor bias error on the tracking quality of a space-based infrared (IR) tracking system that utilizes a Linearized Kalman Filter (LKF) for the highly non-linear problem of tracking a ballistic missile. The tracking system consists of two satellites flying in a lead-follower formation tracking a ballistic target. Each satellite is equipped with an IR sensor that provides azimuth and bearing to the target. The tracking problem is made more difficult due to a constant, non-varying or slowly varying bias error present in each sensor's line of sight measurements. The effect of this error on the state vector estimation is explored using different values for sensor accuracy and various degrees of uncertainty of the target and platform dynamic. Scenarios are created using Satellite Toolkit for trajectories with associated sensor observations. Mean Square Error results are given for tracking during the period when the target is in view of the satellite IR sensors. The results of this research provide insight into the accuracy requirements of the sensors and the suitability of the LKF estimator.

  13. Uncertainty relations for general phase spaces

    NASA Astrophysics Data System (ADS)

    Werner, Reinhard F.

    2016-04-01

    We describe a setup for obtaining uncertainty relations for arbitrary pairs of observables related by a Fourier transform. The physical examples discussed here are the standard position and momentum, number and angle, finite qudit systems, and strings of qubits for quantum information applications. The uncertainty relations allow for an arbitrary choice of metric for the outcome distance, and the choice of an exponent distinguishing, e.g., absolute and root mean square deviations. The emphasis of this article is on developing a unified treatment, in which one observable takes on values in an arbitrary locally compact Abelian group and the other in the dual group. In all cases, the phase space symmetry implies the equality of measurement and preparation uncertainty bounds. There is also a straightforward method for determining the optimal bounds.

  14. Reanalysis of relativistic electron phase space density

    NASA Astrophysics Data System (ADS)

    Shprits, Yuri; Chen, Yue; Kondrashov, Dmitri

    In this study we perform a reanalysis of the sparse relativistic electron data using a relatively simple one-dimensional radial diffusion model and a Kalman filtering approach. The results of the reanalysis clearly show pronounced peaks in the electron phase space density (PSD), which can not be explained by the variations in the outer boundary, and can only be produced by a local acceleration processes. The location of the innovation vector shows that local acceleration is most efficient at L* = 5.5. To verify that our results are not affected by the limitations of the satellite orbit and coverage, we performed an "identical twin" experiments with synthetic data specified only at the locations for which CRRES observations are available. Our results indicate that the model with data assimilation can accurately reproduce the underlying structure of the PSD even when data is sparse.

  15. Space-time geometry of topological phases

    SciTech Connect

    Burnell, F.J.; Simon, Steven H.

    2010-11-15

    The 2 + 1 dimensional lattice models of Levin and Wen (2005) provide the most general known microscopic construction of topological phases of matter. Based heavily on the mathematical structure of category theory, many of the special properties of these models are not obvious. In the current paper, we present a geometrical space-time picture of the partition function of the Levin-Wen models which can be described as doubles (two copies with opposite chiralities) of underlying anyon theories. Our space-time picture describes the partition function as a knot invariant of a complicated link, where both the lattice variables of the microscopic Levin-Wen model and the terms of the Hamiltonian are represented as labeled strings of this link. This complicated link, previously studied in the mathematical literature, and known as Chain-Mail, can be related directly to known topological invariants of 3-manifolds such as the so-called Turaev-Viro invariant and the Witten-Reshitikhin-Turaev invariant. We further consider quasi-particle excitations of the Levin-Wen models and we see how they can be understood by adding additional strings to the Chain-Mail link representing quasi-particle world-lines. Our construction gives particularly important new insight into how a doubled theory arises from these microscopic models.

  16. Disentangling redshift-space distortions and non-linear bias using the 2D power spectrum

    NASA Astrophysics Data System (ADS)

    Jennings, Elise; Wechsler, Risa H.; Skillman, Samuel W.; Warren, Michael S.

    2016-03-01

    We present the 2D redshift-space galaxy power spectrum, P(k, μ), measured from the Dark Sky simulations, using catalogues constructed with halo occupation distribution and subhalo abundance matching methods, chosen to represent an intermediate redshift sample of luminous red galaxies. We find that the information content in individual μ (cosine of the angle to the line of sight) bins is substantially richer then multipole moments, and show that this can be used to isolate the impact of non-linear growth and redshift-space distortion (RSD) effects. Using the μ < 0.2 simulation data, which is not impacted by RSD, we can successfully measure the non-linear bias to ˜5 per cent at k < 0.6 h Mpc-1. Using the low μ simulation data to constrain the non-linear bias, and μ ≥ 0.2 to constrain the growth rate, we show that f can be constrained to ˜26(22) per cent to a kmax < 0.4(0.6) h Mpc-1 from clustering alone using a dispersion model, for a range of galaxy models. Our analysis of individual μ bins reveals interesting physical effects which arise from different methods of populating haloes with galaxies. We find a prominent turnaround scale, at which RSD damping effects are greater than the non-linear growth, which differs for each galaxy model. The idea of separating non-linear growth and RSD effects making use of the full information in the 2D galaxy power spectrum yields significant improvements in constraining cosmological parameters and may be a promising probe of galaxy formation models.

  17. Disentangling Redshift-Space Distortions and Nonlinear Bias using the 2D Power Spectrum

    DOE PAGESBeta

    Jennings, Elise; Wechsler, Risa H.

    2015-08-07

    We present the nonlinear 2D galaxy power spectrum, P(k, µ), in redshift space, measured from the Dark Sky simulations, using galaxy catalogs constructed with both halo occupation distribution and subhalo abundance matching methods, chosen to represent an intermediate redshift sample of luminous red galaxies. We find that the information content in individual µ (cosine of the angle to the line of sight) bins is substantially richer then multipole moments, and show that this can be used to isolate the impact of nonlinear growth and redshift space distortion (RSD) effects. Using the µ < 0.2 simulation data, which we show ismore » not impacted by RSD effects, we can successfully measure the nonlinear bias to an accuracy of ~ 5% at k < 0.6hMpc-1 . This use of individual µ bins to extract the nonlinear bias successfully removes a large parameter degeneracy when constraining the linear growth rate of structure. We carry out a joint parameter estimation, using the low µ simulation data to constrain the nonlinear bias, and µ > 0.2 to constrain the growth rate and show that f can be constrained to ~ 26(22)% to a kmax < 0.4(0.6)hMpc-1 from clustering alone using a simple dispersion model, for a range of galaxy models. Our analysis of individual µ bins also reveals interesting physical effects which arise simply from different methods of populating halos with galaxies. We also find a prominent turnaround scale, at which RSD damping effects are greater then the nonlinear growth, which differs not only for each µ bin but also for each galaxy model. These features may provide unique signatures which could be used to shed light on the galaxy–dark matter connection. Furthermore, the idea of separating nonlinear growth and RSD effects making use of the full information in the 2D galaxy power spectrum yields significant improvements in constraining cosmological parameters and may be a promising probe of galaxy formation models.« less

  18. Phase-slip states in the normal-superconducting relaxation of current-biased microstrips

    SciTech Connect

    Butler, D.P.; Hsiang, T.Y.

    1987-03-01

    The authors have solved the generalized time-dependent Ginzburg-Landau (TDGL) equations of Kramer and Watts-Tobin numerically. The solutions are used to predict the relaxation behavior of a microstrip biased below its dc critical current and excited into the resistive state by the application of a supercritical current pulse of a fixed duration. They have studied the relaxation behavior of the gap parameter and voltage along the microstrip as a function of the current pulse amplitude and bias magnitude. The relaxation is found to occur through a succession of phase-slip oscillations. The relaxation behavior is determined by the initial phase-slip state created by the current pulse. The maximum resistance attained increases rapidly, then saturates at a value less than the normal state resistance. The numerical solutions exhibit a region in which a relaxation time anomaly occurs with respect to the current pulse amplitude. In this region, the more highly excited states were found to relax faster. These features of the resistive relaxation behavior are found to be in qualitative agreement with their previous experimental measurements.

  19. Space market model development project, phase 2

    NASA Technical Reports Server (NTRS)

    Bishop, Peter C.

    1988-01-01

    The results of the prototype operations of the Space Business Information Center are presented. A clearinghouse for space business information for members of the U.S. space industry composed of public, private, and academic sectors was conducted. Behavioral and evaluation statistics were recorded from the clearinghouse and the conclusions from these statistics are presented. Business guidebooks on major markets in space business are discussed. Proprietary research and briefings for firms and agencies in the space industry are also discussed.

  20. Constructing Phase Space Distributions within the Heliosheath

    NASA Astrophysics Data System (ADS)

    Roelof, E. C.

    2014-12-01

    The key function in the description of the dynamics of the heliosheath (HS) is the phase space distribution (PSD) of the protons, i.e., how the interaction between the thermal and non-thermal (heated pick-up) proton populations evolves from the termination shock to the heliopause (HP) in this high-beta plasma. Voyager 1 found the heliopause to be essentially a (compound) magnetic separatrix, because the intensity of the non-thermal particle population became undetectably small beyond the HP, whereas the anisotropy characteristics of the galactic cosmic rays were consistent with no re-entry of the magnetic field lines into the HS (at either end). This paper attempts to synthesize in situ observations from Voyagers 1 and 2 (thermal plasma, magnetic field, energetic ions, and cosmic rays) with global ENA images from IBEX and Cassini/INCA into a self-consistent representation of the PSD within the noseward HS from thermal energies to several MeV/nuc. The interpretation of the ENA images requires assumptions on the global behavior of the bulk plasma flow throughout the HS that are self-consistent with all the available data (e.g., the spatial and energy dependence of the IBEX ribbon), because the Compton-Getting effects produced by the flows strongly affect the intensities (and thereby the partial densities and pressures) inferred from the ENA images.

  1. Stabilizer information inequalities from phase space distributions

    NASA Astrophysics Data System (ADS)

    Gross, David; Walter, Michael

    2013-08-01

    The Shannon entropy of a collection of random variables is subject to a number of constraints, the best-known examples being monotonicity and strong subadditivity. It remains an open question to decide which of these "laws of information theory" are also respected by the von Neumann entropy of many-body quantum states. In this article, we consider a toy version of this difficult problem by analyzing the von Neumann entropy of stabilizer states. We find that the von Neumann entropy of stabilizer states satisfies all balanced information inequalities that hold in the classical case. Our argument is built on the fact that stabilizer states have a classical model, provided by the discrete Wigner function: The phase-space entropy of the Wigner function corresponds directly to the von Neumann entropy of the state, which allows us to reduce to the classical case. Our result has a natural counterpart for multi-mode Gaussian states, which sheds some light on the general properties of the construction. We also discuss the relation of our results to recent work by Linden, Ruskai, and Winter ["The quantum entropy cone of stabiliser states," e-print arXiv:1302.5453].

  2. Overview of Phase Space Manipulations of Relativistic Electron Beams

    SciTech Connect

    Xiang, Dao; /SLAC

    2012-08-31

    Phase space manipulation is a process to rearrange beam's distribution in 6-D phase space. In this paper, we give an overview of the techniques for tailoring beam distribution in 2D, 4D, and 6D phase space to meet the requirements of various applications. These techniques become a new focus of accelerator physics R&D and very likely these advanced concepts will open up new opportunities in advanced accelerators and the science enabled by them.

  3. Bias-field controlled phasing and power combination of gyromagnetic nonlinear transmission lines

    SciTech Connect

    Reale, D. V. Bragg, J.-W. B.; Gonsalves, N. R.; Johnson, J. M.; Neuber, A. A.; Dickens, J. C.; Mankowski, J. J.

    2014-05-15

    Gyromagnetic Nonlinear Transmission Lines (NLTLs) generate microwaves through the damped gyromagnetic precession of the magnetic moments in ferrimagnetic material, and are thus utilized as compact, solid-state, frequency agile, high power microwave (HPM) sources. The output frequency of a NLTL can be adjusted by control of the externally applied bias field and incident voltage pulse without physical alteration to the structure of the device. This property provides a frequency tuning capability not seen in many conventional e-beam based HPM sources. The NLTLs developed and tested are mesoband sources capable of generating MW power levels in the L, S, and C bands of the microwave spectrum. For an individual NLTL the output power at a given frequency is determined by several factors including the intrinsic properties of the ferrimagnetic material and the transmission line structure. Hence, if higher power levels are to be achieved, it is necessary to combine the outputs of multiple NLTLs. This can be accomplished in free space using antennas or in a transmission line via a power combiner. Using a bias-field controlled delay, a transient, high voltage, coaxial, three port, power combiner was designed and tested. Experimental results are compared with the results of a transient COMSOL simulation to evaluate combiner performance.

  4. Bias-field controlled phasing and power combination of gyromagnetic nonlinear transmission lines.

    PubMed

    Reale, D V; Bragg, J-W B; Gonsalves, N R; Johnson, J M; Neuber, A A; Dickens, J C; Mankowski, J J

    2014-05-01

    Gyromagnetic Nonlinear Transmission Lines (NLTLs) generate microwaves through the damped gyromagnetic precession of the magnetic moments in ferrimagnetic material, and are thus utilized as compact, solid-state, frequency agile, high power microwave (HPM) sources. The output frequency of a NLTL can be adjusted by control of the externally applied bias field and incident voltage pulse without physical alteration to the structure of the device. This property provides a frequency tuning capability not seen in many conventional e-beam based HPM sources. The NLTLs developed and tested are mesoband sources capable of generating MW power levels in the L, S, and C bands of the microwave spectrum. For an individual NLTL the output power at a given frequency is determined by several factors including the intrinsic properties of the ferrimagnetic material and the transmission line structure. Hence, if higher power levels are to be achieved, it is necessary to combine the outputs of multiple NLTLs. This can be accomplished in free space using antennas or in a transmission line via a power combiner. Using a bias-field controlled delay, a transient, high voltage, coaxial, three port, power combiner was designed and tested. Experimental results are compared with the results of a transient COMSOL simulation to evaluate combiner performance. PMID:24880394

  5. Bias-field controlled phasing and power combination of gyromagnetic nonlinear transmission lines

    NASA Astrophysics Data System (ADS)

    Reale, D. V.; Bragg, J.-W. B.; Gonsalves, N. R.; Johnson, J. M.; Neuber, A. A.; Dickens, J. C.; Mankowski, J. J.

    2014-05-01

    Gyromagnetic Nonlinear Transmission Lines (NLTLs) generate microwaves through the damped gyromagnetic precession of the magnetic moments in ferrimagnetic material, and are thus utilized as compact, solid-state, frequency agile, high power microwave (HPM) sources. The output frequency of a NLTL can be adjusted by control of the externally applied bias field and incident voltage pulse without physical alteration to the structure of the device. This property provides a frequency tuning capability not seen in many conventional e-beam based HPM sources. The NLTLs developed and tested are mesoband sources capable of generating MW power levels in the L, S, and C bands of the microwave spectrum. For an individual NLTL the output power at a given frequency is determined by several factors including the intrinsic properties of the ferrimagnetic material and the transmission line structure. Hence, if higher power levels are to be achieved, it is necessary to combine the outputs of multiple NLTLs. This can be accomplished in free space using antennas or in a transmission line via a power combiner. Using a bias-field controlled delay, a transient, high voltage, coaxial, three port, power combiner was designed and tested. Experimental results are compared with the results of a transient COMSOL simulation to evaluate combiner performance.

  6. Using the DC self-bias effect for simultaneous ion-electron beam generation in space thruster applications

    NASA Astrophysics Data System (ADS)

    Rafalskyi, Dmytro; Aanesland, Ane

    2014-10-01

    In this work we discuss ways to use the self-bias effect for broad ion-electron beam generation and present recent experimental results. In asymmetrical systems the self-bias effect leads to rectification of the applied RF voltage to a DC voltage dropped across the space charge sheath near to the electrode having smaller area. Thus, continuous ion acceleration is possible towards the smaller electrode with periodical electron extraction due to the RF plasma potential oscillations. We propose a new concept of neutralizer-free gridded space thruster called NEPTUNE. In this concept, the RF electrodes in contact with the plasma are replaced by a two-grid system such that ``the smaller electrode'' is now the external grid. The grids are biased with RF power across a capacitor. This allows to locate RF space charge sheath between the acceleration grids while still keeping the possibility of a DC self-bias generation. Here we present first proof-of-concept of the NEPTUNE thruster prototype and give basic parameters spacing for such thruster. Comparison of the main parameters of the beam generated using RF and a classical ``DC with neutralizer'' acceleration method shows several advantages of the NEPTUNE concept. This work was supported by a Marie Curie International Incoming Fellowships within the 7th European Community Framework (NEPTUNE PIIF-GA-2012-326054).

  7. Initial phase zone for phase locking to the resonance, using “main condition” of phase stability in DC-biased single-sided multipactor

    SciTech Connect

    Mostajeran, M.

    2014-05-15

    In the present work, the concept of accurate phase stability is employed to study a DC-biased single-sided multipactor. A “main condition” of phase stability was introduced in our previous studies of two-sided multipactors [M. Mostajeran, J. Instrum. 8, P04024 (2013); M. Mostajeran and M. Lamehi Rachti, Nucl. Instrum. Methods Phys. Res. A 615, 1–5 (2010)]. Using the same condition and assuming zero initial velocity for the secondary electrons, a regime of multipactors outside the resonance zones is found. The theoretical results are then verified by numerical simulation.

  8. Space shuttle phase B study plan

    NASA Technical Reports Server (NTRS)

    Hello, B.

    1971-01-01

    Phase B emphasis was directed toward development of data which would facilitate selection of the booster concept, and main propulsion system for the orbiter. A shuttle system is also defined which will form the baseline for Phase C program activities.

  9. Space Shuttle aerothermodynamic data report, phase C

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Space shuttle aerothermodynamic data, collected from a continuing series of wind tunnel tests, are permanently stored with the Data Management Services (DMS) system. Information pertaining to current baseline configuration definition is also stored. Documentation of DMS processed data arranged sequentially and by space shuttle configuration are included. An up-to-date record of all applicable aerothermodynamic data collected, processed, or summarized during the space shuttle program is provided. Tables are designed to provide suvery information to the various space shuttle managerial and technical levels.

  10. Quasi-Hermitian quantum mechanics in phase space

    SciTech Connect

    Curtright, Thomas; Veitia, Andrzej

    2007-10-15

    We investigate quasi-Hermitian quantum mechanics in phase space using standard deformation quantization methods: Groenewold star products and Wigner transforms. We focus on imaginary Liouville theory as a representative example where exact results are easily obtained. We emphasize spatially periodic solutions, compute various distribution functions and phase-space metrics, and explore the relationships between them.

  11. Space law information system design, phase 2

    NASA Technical Reports Server (NTRS)

    Morenoff, J.; Roth, D. L.; Singleton, J. W.

    1973-01-01

    Design alternatives were defined for the implementation of a Space Law Information System for the Office of the General Counsel, NASA. A thesaurus of space law terms was developed and a selected document sample indexed on the basis of that thesaurus. Abstracts were also prepared for the sample document set.

  12. Perceptual-Attentional and Motor-Intentional Bias in Near and Far Space

    ERIC Educational Resources Information Center

    Garza, John P.; Eslinger, Paul J.; Barrett, Anna M.

    2008-01-01

    Spatial bias demonstrated in tasks such as line-bisection may stem from perceptual-attentional (PA) "where" and motor-intentional (MI) "aiming" influences. We tested normal participants' line bisection performance in the presence of an asymmetric visual distracter with a video apparatus designed to dissociate PA from MI bias. An experimenter stood…

  13. Phase partitioning in space and on earth

    NASA Technical Reports Server (NTRS)

    Van Alstine, James M.; Karr, Laurel J.; Snyder, Robert S.; Matsos, Helen C.; Curreri, Peter A.; Harris, J. Milton; Bamberger, Stephan B.; Boyce, John; Brooks, Donald E.

    1987-01-01

    The influence of gravity on the efficiency and quality of the impressive separations achievable by bioparticle partitioning is investigated by demixing polymer phase systems in microgravity. The study involves the neutral polymers dextran and polyethylene glycol, which form a two-phase system in aqueous solution at low concentrations. It is found that demixing in low-gravity occurs primarily by coalescence, whereas on earth the demixing occurs because of density differences between the phases.

  14. Real-space Berry phases: Skyrmion soccer (invited)

    SciTech Connect

    Everschor-Sitte, Karin Sitte, Matthias

    2014-05-07

    Berry phases occur when a system adiabatically evolves along a closed curve in parameter space. This tutorial-like article focuses on Berry phases accumulated in real space. In particular, we consider the situation where an electron traverses a smooth magnetic structure, while its magnetic moment adjusts to the local magnetization direction. Mapping the adiabatic physics to an effective problem in terms of emergent fields reveals that certain magnetic textures, skyrmions, are tailormade to study these Berry phase effects.

  15. Real-space Berry phases: Skyrmion soccer (invited)

    NASA Astrophysics Data System (ADS)

    Everschor-Sitte, Karin; Sitte, Matthias

    2014-05-01

    Berry phases occur when a system adiabatically evolves along a closed curve in parameter space. This tutorial-like article focuses on Berry phases accumulated in real space. In particular, we consider the situation where an electron traverses a smooth magnetic structure, while its magnetic moment adjusts to the local magnetization direction. Mapping the adiabatic physics to an effective problem in terms of emergent fields reveals that certain magnetic textures, skyrmions, are tailormade to study these Berry phase effects.

  16. Tracing the dark matter sheet in phase space

    NASA Astrophysics Data System (ADS)

    Abel, Tom; Hahn, Oliver; Kaehler, Ralf

    2012-11-01

    The primordial velocity dispersion of dark matter is small compared to the velocities attained during structure formation. The initial density distribution is close to uniform, and it occupies an initial sheet in phase space that is single valued in velocity space. Because of gravitational forces, this 3D manifold evolves in phase space without ever tearing, conserving phase-space volume and preserving the connectivity of nearby points. N-body simulations already follow the motion of this sheet in phase space. This fact can be used to extract full fine-grained phase-space structure information from existing cosmological N-body simulations. Particles are considered as the vertices of an unstructured 3D mesh moving in 6D phase space. On this mesh, mass density and momentum are uniquely defined. We show how to obtain the space density of the fluid, detect caustics and count the number of streams as well as their individual contributions to any point in configuration space. We calculate the bulk velocity, local velocity dispersions and densities from the sheet - all without averaging over control volumes. This gives a wealth of new information about dark matter fluid flow which had previously been thought of as inaccessible to N-body simulations. We outline how this mapping may be used to create new accurate collisionless fluid simulation codes that may be able to overcome the sparse sampling and unphysical two-body effects that plague current N-body techniques.

  17. Groundwater Monitoring Network Design Using a Space-Filling/ Bias-Reduction Heuristic

    NASA Astrophysics Data System (ADS)

    Yan, T.; Singh, A.; Kelley, V.; Deeds, N.

    2012-12-01

    Groundwater monitoring network design is one of the primary goals of groundwater management. In this study, a heuristic method for selecting wells to monitor groundwater flow is developed. The approach selects wells to a) maximize spread within the monitoring area (space-filling objective), b) reduce bias in estimate of groundwater level (drawdown objective) by selecting pairs of well proximal and distant from pumping areas. By selecting pairs of monitoring wells, this method is able to capture the largest and smallest drawdown in the study area while ensuring the newly added monitoring wells are at the greatest distance from existing monitoring wells. One of the advantages of this method is that it does not require water level information, obtained either from field measurements or groundwater model runs, which might be unavailable at the time of the monitoring network design; instead, this method utilizes pumping rates and locations thus can take future planning into consideration. If water level data is available then that may be included by considering it in the drawdown objective. A FORTRAN code is developed to implement this method. By changing the weighting factors, users have the flexibility on deciding the importance of pumping and spatial information to their network designs. The method has been successfully applied to monitoring network design in Upper Trinity County Groundwater Conservation District in Texas. Monitoring wells were selected from thousands of existing wells and added to the current monitoring network. The results support the decision maker on the number and distribution of a new groundwater network using existing wells. The study can be extended to improve the application of desired future condition (DFC) for Groundwater Conservation Districts in Texas.

  18. Cognitive Bias in the Verification and Validation of Space Flight Systems

    NASA Technical Reports Server (NTRS)

    Larson, Steve

    2012-01-01

    Cognitive bias is generally recognized as playing a significant role in virtually all domains of human decision making. Insight into this role is informally built into many of the system engineering practices employed in the aerospace industry. The review process, for example, typically has features that help to counteract the effect of bias. This paper presents a discussion of how commonly recognized biases may affect the verification and validation process. Verifying and validating a system is arguably more challenging than development, both technically and cognitively. Whereas there may be a relatively limited number of options available for the design of a particular aspect of a system, there is a virtually unlimited number of potential verification scenarios that may be explored. The probability of any particular scenario occurring in operations is typically very difficult to estimate, which increases reliance on judgment that may be affected by bias. Implementing a verification activity often presents technical challenges that, if they can be overcome at all, often result in a departure from actual flight conditions (e.g., 1-g testing, simulation, time compression, artificial fault injection) that may raise additional questions about the meaningfulness of the results, and create opportunities for the introduction of additional biases. In addition to mitigating the biases it can introduce directly, the verification and validation process must also overcome the cumulative effect of biases introduced during all previous stages of development. A variety of cognitive biases will be described, with research results for illustration. A handful of case studies will be presented that show how cognitive bias may have affected the verification and validation process on recent JPL flight projects, identify areas of strength and weakness, and identify potential changes or additions to commonly used techniques that could provide a more robust verification and validation of

  19. 4D phase-space multiplexing for fluorescent microscopy

    NASA Astrophysics Data System (ADS)

    Liu, Hsiou-Yuan; Zhong, Jingshan; Waller, Laura

    2016-03-01

    Phase-space measurements enable characterization of second-order spatial coherence properties and can be used for digital aberration removal or 3D position reconstruction. Previous methods use a scanning aperture to measure the phase space spectrogram, which is slow and light inefficient, while also attenuating information about higher-order correlations. We demonstrate a significant improvement of speed and light throughput by incorporating multiplexing techniques into our phase-space imaging system. The scheme implements 2D coded aperture patterning in the Fourier (pupil) plane of a microscope using a Spatial Light Modulator (SLM), while capturing multiple intensity images in real space. We compare various multiplexing schemes to scanning apertures and show that our phase-space reconstructions are accurate for experimental data with biological samples containing many 3D fluorophores.

  20. Coincident ion acceleration and electron extraction for space propulsion using the self-bias formed on a set of RF biased grids bounding a plasma source

    NASA Astrophysics Data System (ADS)

    Rafalskyi, D.; Aanesland, A.

    2014-11-01

    We propose an alternative method to accelerate ions in classical gridded ion thrusters and ion sources such that co-extracted electrons from the source may provide beam space charge neutralization. In this way there is no need for an additional electron neutralizer. The method consists of applying RF voltage to a two-grid acceleration system via a blocking capacitor. Due to the unequal effective area of the two grids in contact with the plasma, a dc self-bias is formed, rectifying the applied RF voltage. As a result, ions are continuously accelerated within the grid system while electrons are emitted in brief instants within the RF period when the RF space charge sheath collapses. This paper presents the first experimental results and a proof-of-principle. Experiments are carried out using the Neptune thruster prototype which is a gridded Inductively Coupled Plasma (ICP) source operated at 4 MHz, attached to a larger beam propagation chamber. The RF power supply is used both for the ICP discharge (plasma generation) and powering the acceleration grids via a capacitor for ion acceleration and electron extraction without any dc power supplies. The ion and electron energies, particle flux and densities are measured using retarding field energy analyzers (RFEA), Langmuir probes and a large beam target. The system operates in Argon and N2. The dc self-bias is found to be generated within the gridded extraction system in all the range of operating conditions. Broad quasi-neutral ion-electron beams are measured in the downstream chamber with energies up to 400 eV. The beams from the RF acceleration method are compared with classical dc acceleration with an additional external electron neutralizer. It is found that the two acceleration techniques provide similar performance, but the ion energy distribution function from RF acceleration is broader, while the floating potential of the beam is lower than for the dc accelerated beam.

  1. Selected tether applications in space: Phase 2

    NASA Technical Reports Server (NTRS)

    Thorsen, M. H.; Lippy, L. J.

    1985-01-01

    System characteristics and design requirements are assessed for tether deployment. Criteria are established for comparing alternate concepts for: (1) deployment of 220 klb space shuttle from the space station; (2) tether assisted launch of a 20,000 lb payload to geosynchronous orbit; (3) placement of the 20,000 lb AXAF into 320 nmi orbit via orbiter; (4) retrieval of 20,000 lb AXAF from 205 nmi circular orbit for maintenance and reboost to 320 nmi; and (5) tethered OMV rendezvous and retrieval of OTV returning from a geosynchronous mission. Tether deployment systems and technical issues are discussed.

  2. A Simple, Low Cost Longitudinal Phase Space Diagnostic

    SciTech Connect

    Bertsche, Kirk; Emma, Paul; Shevchenko, Oleg; /Novosibirsk, IYF

    2009-05-15

    For proper operation of the LCLS [1] x-ray free-electron laser (FEL), and other similar machines, measurement and control of the electron bunch longitudinal phase space is critical. The LCLS accelerator includes two bunch compressor chicanes to magnify the peak current. These magnetic chicanes can generate significant coherent synchrotron radiation (CSR), which can distort the phase space distribution. We propose a diagnostic scheme by exciting a weak skew quadrupole at an energy-chirped, high dispersion point in the first LCLS bunch compressor (BC1) to reconstruct longitudinal phase space on an OTR screen after BC1, allowing a time-resolved characterization of CSR effects.

  3. Leptons, Quarks, and Their Antiparticles: A Phase-Space View

    NASA Astrophysics Data System (ADS)

    Żenczykowski, Piotr

    2010-09-01

    Recently, a correspondence has been shown to exist between the structure of a single Standard Model generation of elementary particles and the properties of the Clifford algebra of nonrelativistic phase space. Here, this correspondence is spelled out in terms of phase-space variables. Thus, a phase-space interpretation of the connections between leptons, quarks and their antiparticles is proposed, in particular providing a timeless alternative to the standard Stückelberg-Feynman interpretation. The issue of the additivity of canonical momenta is raised and argued to be intimately related to the unobservability of free quarks and the emergence of mesons and baryons.

  4. Longitudinal phase space experiments on the ELSA photoinjector

    SciTech Connect

    Dowell, D.H.; Joly, S.; Brion, J.P. de

    1995-12-31

    The excellent beam quality produced by RF photocathode injectors is well established, andhas been verified by numerous measurements of the transverse emittance. However, there are few experimental determinations of the longitudinal phase space. This paper reports on experiments performed at the ELSA FEL facility to emasure the longitudinal phase space distribution at the exit of the 144 MHz photoinjector cavity. Phase spaces were determined by the analysis of beam energy spectra and pulse shapes at 17.5 MeV for micropulse charges between 0.5 and 5 nC.

  5. Phase Space Distribution Near the Self-Excited Oscillation Threshold

    NASA Astrophysics Data System (ADS)

    Dhayalan, Yuvaraj; Baskin, Ilya; Shlomi, Keren; Buks, Eyal

    2014-05-01

    We study the phase space distribution of an optomechanical cavity near the threshold of self-excited oscillation. A fully on-fiber optomechanical cavity is fabricated by patterning a suspended metallic mirror on the tip of the fiber. Optically induced self-excited oscillation of the suspended mirror is observed above a threshold value of the injected laser power. A theoretical analysis based on the Fokker-Planck equation evaluates the expected phase space distribution near threshold. A tomography technique is employed for extracting phase space distribution from the measured reflected optical power vs time in steady state. Comparison between theory and experimental results allows the extraction of the device parameters.

  6. The space transportation main engine phase A' study

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Space Transportation Main Engine Phase A prime study was conducted over a 7 month period as an extension to the Phase A study. The Phase A prime program was designed to expand the study effort completed in Phase A, focusing on the baseline engine configuration selected. Analysis and trade studies were conducted to further optimize some of the major engine subsystems. These changes resulted in improvements to the baseline engine. Several options were evaluated for consideration by vehicle contractors.

  7. Relative position determination of a lunar rover using the biased differential phase delay of same-beam VLBI

    NASA Astrophysics Data System (ADS)

    Chen, Ming; Liu, Qinghui; Wu, Yajun; Zhao, Rongbing; Dai, Zhiqiang

    2011-12-01

    When only data transmission signals with a bandwidth of 1 MHz exist in the rover, the position can be obtained using the differential group delay data of the same-beam very long baseline interferometry (VLBI). The relative position between a lunar rover and a lander can be determined with an error of several hundreds of meters. When the guidance information of the rover is used to determine relative position, the rover's wheel skid behavior and integral movement may influence the accuracy of the determined position. This paper proposes a new method for accurately determining relative position. The differential group delay and biased differential phase delay are obtained from the same-beam VLBI observation, while the modified biased differential phase delay is obtained using the statistic mean value of the differential group delay and the biased phase delay as basis. The small bias in the modified biased phase delay is estimated together with other parameters when the relative position of the rover is calculated. The effectiveness of the proposed method is confirmed using the same-beam VLBI observation data of SELENE. The radio sources onboard the rover and the lander are designed for same-beam VLBI observations. The results of the simulations of the differential delay of the same-beam VLBI observation between the rover and the lander show that the differential delay is sensitive to relative position. An approach to solving the relative position and a strategy for tracking are also introduced. When the lunar topography data near the rover are used and the observations are scheduled properly, the determined relative position of the rover may be nearly as accurate as that solved using differential phase delay data.

  8. Bias and Evolution of the Mutationally Accessible Phenotypic Space in a Developmental System

    PubMed Central

    Braendle, Christian; Baer, Charles F.; Félix, Marie-Anne

    2010-01-01

    Genetic and developmental architecture may bias the mutationally available phenotypic spectrum. Although such asymmetries in the introduction of variation may influence possible evolutionary trajectories, we lack quantitative characterization of biases in mutationally inducible phenotypic variation, their genotype-dependence, and their underlying molecular and developmental causes. Here we quantify the mutationally accessible phenotypic spectrum of the vulval developmental system using mutation accumulation (MA) lines derived from four wild isolates of the nematodes Caenorhabditis elegans and C. briggsae. The results confirm that on average, spontaneous mutations degrade developmental precision, with MA lines showing a low, yet consistently increased, proportion of developmental defects and variants. This result indicates strong purifying selection acting to maintain an invariant vulval phenotype. Both developmental system and genotype significantly bias the spectrum of mutationally inducible phenotypic variants. First, irrespective of genotype, there is a developmental bias, such that certain phenotypic variants are commonly induced by MA, while others are very rarely or never induced. Second, we found that both the degree and spectrum of mutationally accessible phenotypic variation are genotype-dependent. Overall, C. briggsae MA lines exhibited a two-fold higher decline in precision than the C. elegans MA lines. Moreover, the propensity to generate specific developmental variants depended on the genetic background. We show that such genotype-specific developmental biases are likely due to cryptic quantitative variation in activities of underlying molecular cascades. This analysis allowed us to identify the mutationally most sensitive elements of the vulval developmental system, which may indicate axes of potential evolutionary variation. Consistent with this scenario, we found that evolutionary trends in the vulval system concern the phenotypic characters that

  9. Liquid phase sintered compacts in space

    NASA Technical Reports Server (NTRS)

    Mookherji, T. K.; Mcanelly, W. B.

    1974-01-01

    A model that will explain the effect of gravity on liquid phase sintering was developed. Wetting characteristics and density segregation which are the two important phenomena in liquid phase sintering are considered in the model development. Experiments were conducted on some selected material combinations to study the gravity effects on liquid phase sintering, and to verify the validity of the model. It is concluded that: (1) The surface tension forces acting on solid particles in a one-g environment are not appreciably different from those anticipated in a 0.00001g/g sub 0 (or lower) environment. (2) The capillary forces are dependent on the contact angle, the quantity of the liquid phase, and the distance between solid particles. (3) The pores (i.e., bubbles) do not appear to be driven to the surface by gravity-produced buoyancy forces. (4) The length of time to produce the same degree of settling in a low-gravity environment will be increased significantly. (5) A low gravity environment would appear to offer a unique means of satisfactorily infiltrating a larger and/or complex shaped compact.

  10. Constraining the halo bispectrum in real and redshift space from perturbation theory and non-linear stochastic bias

    NASA Astrophysics Data System (ADS)

    Kitaura, Francisco-Shu; Gil-Marín, Héctor; Scóccola, Claudia G.; Chuang, Chia-Hsun; Müller, Volker; Yepes, Gustavo; Prada, Francisco

    2015-06-01

    We present a method to produce mock galaxy catalogues with efficient perturbation theory schemes, which match the number density, power spectra and bispectra in real and in redshift space from N-body simulations. The essential contribution of this work is the way in which we constrain the bias parameters of the PATCHY-code. In addition to aiming at reproducing the two-point statistics, we seek the set of bias parameters, which constrain the univariate halo probability distribution function (PDF) encoding higher order correlation functions. We demonstrate that halo catalogues based on the same underlying dark matter field with a fix halo number density, and accurately matching the power spectrum (within 2 per cent) can lead to very different bispectra depending on the adopted halo bias model. A model ignoring the shape of the halo PDF can lead to deviations up to factors of 2. The catalogues obtained additionally constraining the shape of the halo PDF can significantly lower the discrepancy in the three-point statistics, yielding closely unbiased bispectra both in real and in redshift space; which are in general compatible with those corresponding to an N-body simulation within 10 per cent (deviating at most up to 20 per cent). Our calculations show that the constant linear bias of ˜2 for luminous red galaxy (LRG) like galaxies found in the power spectrum, mainly comes from sampling haloes in high-density peaks, choosing a high-density threshold rather than from a factor multiplying the dark matter density field. Our method contributes towards an efficient modelling of the halo/galaxy distribution required to estimate uncertainties in the clustering measurements from galaxy redshift surveys. We have also demonstrated that it represents a powerful tool to test various bias models.

  11. Phase I Space Station power system development

    SciTech Connect

    Price, R.O.

    1988-10-01

    The development of the electric power system (EPS) for the Space Station is discussed. The EPS requirements related to station size, operational lifetime, operational autonomy, and technology evolution are considered. It is suggested that environmental control and life support will require 55 kWe of power. The possible use of solar photovoltaic, solar thermal dynamic, or a hybrid combination of the two are examined.

  12. Phase Space Structures Explain Hydrogen Atom Roaming in Formaldehyde Decomposition.

    PubMed

    Mauguière, Frédéric A L; Collins, Peter; Kramer, Zeb C; Carpenter, Barry K; Ezra, Gregory S; Farantos, Stavros C; Wiggins, Stephen

    2015-10-15

    We re-examine the prototypical roaming reaction--hydrogen atom roaming in formaldehyde decomposition--from a phase space perspective. Specifically, we address the question "why do trajectories roam, rather than dissociate through the radical channel?" We describe and compute the phase space structures that define and control all possible reactive events for this reaction, as well as provide a dynamically exact description of the roaming region in phase space. Using these phase space constructs, we show that in the roaming region, there is an unstable periodic orbit whose stable and unstable manifolds define a conduit that both encompasses all roaming trajectories exiting the formaldehyde well and shepherds them toward the H2···CO well. PMID:26499774

  13. An extensive phase space for the potential martian biosphere.

    PubMed

    Jones, Eriita G; Lineweaver, Charles H; Clarke, Jonathan D

    2011-12-01

    We present a comprehensive model of martian pressure-temperature (P-T) phase space and compare it with that of Earth. Martian P-T conditions compatible with liquid water extend to a depth of ∼310 km. We use our phase space model of Mars and of terrestrial life to estimate the depths and extent of the water on Mars that is habitable for terrestrial life. We find an extensive overlap between inhabited terrestrial phase space and martian phase space. The lower martian surface temperatures and shallower martian geotherm suggest that, if there is a hot deep biosphere on Mars, it could extend 7 times deeper than the ∼5 km depth of the hot deep terrestrial biosphere in the crust inhabited by hyperthermophilic chemolithotrophs. This corresponds to ∼3.2% of the volume of present-day Mars being potentially habitable for terrestrial-like life. PMID:22149914

  14. Kac Moody theories for colored phase space (quantum Hall) droplets

    NASA Astrophysics Data System (ADS)

    Polychronakos, Alexios P.

    2005-04-01

    We derive the canonical structure and Hamiltonian for arbitrary deformations of a higher-dimensional (quantum Hall) droplet of fermions with spin or color on a general phase space manifold. Gauge fields are introduced via a Kaluza-Klein construction on the phase space. The emerging theory is a nonlinear higher-dimensional generalization of the gauged Kac-Moody algebra. To leading order in ℏ this reproduces the edge state chiral Wess-Zumino-Witten action of the droplets.

  15. Wigner function and Schroedinger equation in phase-space representation

    SciTech Connect

    Chruscinski, Dariusz; Mlodawski, Krzysztof

    2005-05-15

    We discuss a family of quasidistributions (s-ordered Wigner functions of Agarwal and Wolf [Phys. Rev. D 2, 2161 (1970); Phys. Rev. D 2, 2187 (1970); Phys. Rev. D 2, 2206 (1970)]) and its connection to the so-called phase space representation of the Schroedinger equation. It turns out that although Wigner functions satisfy the Schroedinger equation in phase space, they have a completely different interpretation.

  16. Group theoretical construction of planar noncommutative phase spaces

    SciTech Connect

    Ngendakumana, Ancille Todjihoundé, Leonard; Nzotungicimpaye, Joachim

    2014-01-15

    Noncommutative phase spaces are generated and classified in the framework of centrally extended anisotropic planar kinematical Lie groups as well as in the framework of noncentrally abelian extended planar absolute time Lie groups. Through these constructions the coordinates of the phase spaces do not commute due to the presence of naturally introduced fields giving rise to minimal couplings. By symplectic realizations methods, physical interpretations of generators coming from the obtained structures are given.

  17. Tracing, Analyzing and Visualizing Dark Matter in Phase Space

    NASA Astrophysics Data System (ADS)

    Hahn, Oliver; Abel, Tom; Kaehler, Ralf

    2015-01-01

    In a Universe dominated by cold dark matter, structure forms from foldings of a three-dimensional sheet permeating six-dimensional phase space. The dynamics of the sheet is governed by gravity alone, and it never tears or intersects itself in phase space. In position space, these foldings lead to the formation of pancakes, filaments and finally dark matter halos: the cosmic web. N-body simulations already follow the motion of this sheet in phase space. This fact can be used to extract full fine-grained phase-space-structure information from existing cosmological N-body simulations. Particles are considered as the vertices of an unstructured three dimensional mesh, moving in six dimensional phase-space. On this mesh, mass density and momentum are uniquely defined. We show how to obtain the space density of the fluid, local velocity dispersion and detect caustics. We also discuss how information about the sheet can be used to create highly accurate volume visualizations and devise new simulation codes to evolve cold collisionless fluids under self-gravity.

  18. Phase space variations of near equatorially mirroring ring current ions

    NASA Technical Reports Server (NTRS)

    Williams, D. J.

    1981-01-01

    Observations of near equatorially mirroring ring current ions before and after a magnetic storm are presented in the form of phase space densities with respect to the first adiabatic invariant. Particle densities were obtained from the medium energy particles instrument covering the energy range 24-2081 keV on ISEE 1 at L values between 3 and 8 earth radii and ratios of the magnetic field at the satellite position to the magnetic field at the magnetic equator less than 1.2. Analysis of the phase space densities through the magnetosphere reveals a well-defined high magnetic moment peak in the prestorm near-equatorial ring current ion phase space density distribution, with the magnetic storm resulting from an enhancement of phase space densities at magnetic moment values below the peak and phase space densities remaining constant above the peak. Results are found to be in good agreement with those obtained by Explorer 45 six years previously, indicating that the observed phase space density variations are characteristic of energetic ion behavior during magnetic storms.

  19. Symmetry of quantum phase space in a degenerate Hamiltonian system

    NASA Astrophysics Data System (ADS)

    Berman, G. P.; Demikhovskii, V. Ya.; Kamenev, D. I.

    2000-09-01

    The structure of the global "quantum phase space" is analyzed for the harmonic oscillator perturbed by a monochromatic wave in the limit when the perturbation amplitude is small. Usually, the phenomenon of quantum resonance was studied in nondegenerate [G. M. Zaslavsky, Chaos in Dynamic Systems (Harwood Academic, Chur, 1985)] and degenerate [Demikhovskii, Kamenev, and Luna-Acosta, Phys. Rev. E 52, 3351 (1995)] classically chaotic systems only in the particular regions of the classical phase space, such as the center of the resonance or near the separatrix. The system under consideration is degenerate, and even an infinitely small perturbation generates in the classical phase space an infinite number of the resonant cells which are arranged in the pattern with the axial symmetry of the order 2μ (where μ is the resonance number). We show analytically that the Husimi functions of all Floquet states (the quantum phase space) have the same symmetry as the classical phase space. This correspondence is demonstrated numerically for the Husimi functions of the Floquet states corresponding to the motion near the elliptic stable points (centers of the classical resonance cells). The derived results are valid in the resonance approximation when the perturbation amplitude is small enough, and the stochastic layers in the classical phase space are exponentially thin. The developed approach can be used for studying a global symmetry of more complicated quantum systems with chaotic behavior.

  20. The diffusion of stars through phase space

    NASA Technical Reports Server (NTRS)

    Binney, James; Lacey, Cedric

    1988-01-01

    An orbit-averaged Fokker-Planck equation has been derived to study the secular evolution of stellar systems with regular orbits and the heating of stellar disks. It is shown that a population of stars with an initially Maxwellian peculiar-velocity distribution will remain Maxwellian as it diffuses through orbit space only if: (1) a second-order diffusion tensor is proportional to epicycle energy; and (2) the population's velocity dispersion grows as the square root of time. Scattering by ephemeral spiral waves is able to account for the observed kinematics of the solar neighborhood only if the waves have wavelengths in excess of 9 kpc and constantly drifting pattern speeds.

  1. Statistical bias and variance for the regularized inverse problem: Application to space-based atmospheric CO2 retrievals

    NASA Astrophysics Data System (ADS)

    Cressie, N.; Wang, R.; Smyth, M.; Miller, C. E.

    2016-05-01

    Remote sensing of the atmosphere is typically achieved through measurements that are high-resolution radiance spectra. In this article, our goal is to characterize the first-moment and second-moment properties of the errors obtained when solving the regularized inverse problem associated with space-based atmospheric CO2 retrievals, specifically for the dry air mole fraction of CO2 in a column of the atmosphere. The problem of estimating (or retrieving) state variables is usually ill posed, leading to a solution based on regularization that is often called Optimal Estimation (OE). The difference between the estimated state and the true state is defined to be the retrieval error; error analysis for OE uses a linear approximation to the forward model, resulting in a calculation where the first moment of the retrieval error (the bias) is identically zero. This is inherently unrealistic and not seen in real or simulated retrievals. Nonzero bias is expected since the forward model of radiative transfer is strongly nonlinear in the atmospheric state. In this article, we extend and improve OE's error analysis based on a first-order, multivariate Taylor series expansion, by inducing the second-order terms in the expansion. Specifically, we approximate the bias through the second derivative of the forward model, which results in a formula involving the Hessian array. We propose a stable estimate of it, from which we obtain a second-order expression for the bias and the mean square prediction error of the retrieval.

  2. Manual Optical Attitude Re-initialization of a Crew Vehicle in Space Using Bias Corrected Gyro Data

    NASA Astrophysics Data System (ADS)

    Gioia, Christopher J.

    NASA and other space agencies have shown interest in sending humans on missions beyond low Earth orbit. Proposed is an algorithm that estimates the attitude of a manned spacecraft using measured line-of-sight (LOS) vectors to stars and gyroscope measurements. The Manual Optical Attitude Reinitialization (MOAR) algorithm and corresponding device draw inspiration from existing technology from the Gemini, Apollo and Space Shuttle programs. The improvement over these devices is the capability of estimating gyro bias completely independent from re-initializing attitude. It may be applied to the lost-in-space problem, where the spacecraft's attitude is unknown. In this work, a model was constructed that simulated gyro data using the Farrenkopf gyro model, and LOS measurements from a spotting scope were then computed from it. Using these simulated measurements, gyro bias was estimated by comparing measured interior star angles to those derived from a star catalog and then minimizing the difference using an optimization technique. Several optimization techniques were analyzed, and it was determined that the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm performed the best when combined with a grid search technique. Once estimated, the gyro bias was removed and attitude was determined by solving the Wahba Problem via the Singular Value Decomposition (SVD) approach. Several Monte Carlo simulations were performed that looked at different operating conditions for the MOAR algorithm. These included the effects of bias instability, using different constellations for data collection, sampling star measurements in different orders, and varying the time between measurements. A common method of estimating gyro bias and attitude in a Multiplicative Extended Kalman Filter (MEKF) was also explored and disproven for use in the MOAR algorithm. A prototype was also constructed to validate the proposed concepts. It was built using a simple spotting scope, MEMS grade IMU, and a Raspberry

  3. Space power demonstrator engine, phase 1

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The design, analysis, and preliminary test results for a 25 kWe Free-Piston Stirling engine with integral linear alternators are described. The project is conducted by Mechanical Technology under the direction of LeRC as part of the SP-100 Nuclear Space Power Systems Program. The engine/alternator system is designed to demonstrate the following performance: (1) 25 kWe output at a specific weight less than 8 kg/kW; (2) 25 percent efficiency at a temperature ratio of 2.0; (3) low vibration (amplitude less than .003 in); (4) internal gas bearings (no wear, no external pump); and (5) heater temperature/cooler temperature from 630 to 315 K. The design approach to minimize vibration is a two-module engine (12.5 kWe per module) in a linearly-opposed configuration with a common expansion space. The low specific weight is obtained at high helium pressure (150 bar) and high frequency (105 Hz) and by using high magnetic strength (samarium cobalt) alternator magnets. Engine tests began in June 1985; 16 months following initiation of engine and test cell design. Hydrotest and consequent engine testing to date has been intentionally limited to half pressure, and electrical power output is within 15 to 20 percent of design predictions.

  4. A robust approach for space based sensor bias estimation in the presence of data association uncertainty

    NASA Astrophysics Data System (ADS)

    Belfadel, Djedjiga; Osborne, Richard; Bar-Shalom, Yaakov

    2015-06-01

    In this paper, an approach to bias estimation in the presence of measurement association uncertainty using common targets of opportunity, is developed. Data association is carried out before the estimation of sensor angle measurement biases. Consequently, the quality of data association is critical to the overall tracking performance. Data association becomes especially challenging if the sensors are passive. Mathematically, the problem can be formulated as a multidimensional optimization problem, where the objective is to maximize the generalized likelihood that the associated measurements correspond to common targets, based on target locations and sensor bias estimates. Applying gating techniques significantly reduces the size of this problem. The association likelihoods are evaluated using an exhaustive search after which an acceptance test is applied to each solution in order to obtain the optimal (correct) solution. We demonstrate the merits of this approach by applying it to a simulated tracking system, which consists of two satellites tracking a ballistic target. We assume the sensors are synchronized, their locations are known, and we estimate their orientation biases together with the unknown target locations.

  5. Space transfer concepts and analyses for exploration missions, phase 3

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon R.

    1993-01-01

    This report covers the third phase of a broad-scoped and systematic study of space transfer concepts for human lunar and Mars missions. The study addressed issues that were raised during Phase 2, developed generic Mars missions profile analysis data, and conducted preliminary analysis of the Mars in-space transportation requirements and implementation from Stafford Committee Synthesis Report. The major effort of the study was the development of the first Lunar Outpost (FLO) baseline which evolved from the Space Station Freedom Hab Module. Modifications for the First Lunar Outpost were made to meet mission requirements and technology advancements.

  6. Application of dc and mark-space bias differential electrolytic potentiometry for determination of cyanide using a programmable syringe pump

    NASA Astrophysics Data System (ADS)

    Saleh, Tawfik A.; Abulkibash, A. M.

    2011-09-01

    This paper describes a rapid sequential injection titration method for the determination of cyanide in aqueous solutions. Mercuric nitrate was used as a titrant and a pair of gold-amalgam electrodes as an indicating system. The technique of differential electrolytic potentiometry using both mark-space bias (m.s.b.) and dc current for polarization was employed. The optimum values of current and percentage bias were 5 μA and 13%, respectively. The effects of dispense time, volume of analyte, supporting electrolyte, and the concentration of titrant were investigated. The results obtained are in agreement with those of the standard method (APHA), with a relative standard deviation of 1.43%, t = 0.783, F = 1.713. A sampling rate of about 20 samples per hour was achieved with good reproducibility and lower consumption of reagents.

  7. Phase-Space Detection of Cyber Events

    SciTech Connect

    Hernandez Jimenez, Jarilyn M; Ferber, Aaron E; Prowell, Stacy J; Hively, Lee M

    2015-01-01

    Energy Delivery Systems (EDS) are a network of processes that produce, transfer and distribute energy. EDS are increasingly dependent on networked computing assets, as are many Industrial Control Systems. Consequently, cyber-attacks pose a real and pertinent threat, as evidenced by Stuxnet, Shamoon and Dragonfly. Hence, there is a critical need for novel methods to detect, prevent, and mitigate effects of such attacks. To detect cyber-attacks in EDS, we developed a framework for gathering and analyzing timing data that involves establishing a baseline execution profile and then capturing the effect of perturbations in the state from injecting various malware. The data analysis was based on nonlinear dynamics and graph theory to improve detection of anomalous events in cyber applications. The goal was the extraction of changing dynamics or anomalous activity in the underlying computer system. Takens' theorem in nonlinear dynamics allows reconstruction of topologically invariant, time-delay-embedding states from the computer data in a sufficiently high-dimensional space. The resultant dynamical states were nodes, and the state-to-state transitions were links in a mathematical graph. Alternatively, sequential tabulation of executing instructions provides the nodes with corresponding instruction-to-instruction links. Graph theorems guarantee graph-invariant measures to quantify the dynamical changes in the running applications. Results showed a successful detection of cyber events.

  8. Quantum de Finetti theorem in phase-space representation

    SciTech Connect

    Leverrier, Anthony; Cerf, Nicolas J.

    2009-07-15

    The quantum versions of de Finetti's theorem derived so far express the convergence of n-partite symmetric states, i.e., states that are invariant under permutations of their n parties, toward probabilistic mixtures of independent and identically distributed (IID) states of the form {sigma}{sup xn}. Unfortunately, these theorems only hold in finite-dimensional Hilbert spaces, and their direct generalization to infinite-dimensional Hilbert spaces is known to fail. Here, we address this problem by considering invariance under orthogonal transformations in phase space instead of permutations in state space, which leads to a quantum de Finetti theorem particularly relevant to continuous-variable systems. Specifically, an n-mode bosonic state that is invariant with respect to this continuous symmetry in phase space is proven to converge toward a probabilistic mixture of IID Gaussian states (actually, n identical thermal states)

  9. MMIC linear-phase and digital modulators for deep space spacecraft X-band transponder applications

    NASA Technical Reports Server (NTRS)

    Mysoor, Narayan R.; Ali, Fazal

    1991-01-01

    The design concepts, analyses, and development of GaAs monolithic microwave integrated circuit (MMIC) linear-phase and digital modulators for the next generation of space-borne communications systems are summarized. The design approach uses a compact lumped element quadrature hybrid and Metal Semiconductor Field Effect Transistors (MESFET)-varactors to provide low loss and well-controlled phase performance for deep space transponder (DST) applications. The measured results of the MESFET-diode show a capacitance range of 2:1 under reverse bias, and a Q of 38 at 10 GHz. Three cascaded sections of hybrid-coupled reflection phase shifters were modeled and simulations performed to provide an X-band (8415 +/- 50 MHz) DST phase modulator with +/- 2.5 radians of peak phase deviation. The modulator will accommodate downlink signal modulation with composite telemetry and ranging data, with a deviation linearity tolerance of +/- 8 percent and insertion loss of less than 8 +/- 0.5 dB. The MMIC digital modulator is designed to provide greater than 10 Mb/s of bi-phase modulation at X-band.

  10. Scale dependence of halo and galaxy bias: Effects in real space

    SciTech Connect

    Smith, Robert E.; Scoccimarro, Roman; Sheth, Ravi K.

    2007-03-15

    We examine the scale dependence of dark matter halo and galaxy clustering on very large scales (0.01bias. We pursue a two line offensive: high-resolution numerical simulations are used to establish some old and some new results, and an analytic model is developed to understand their origins. Our simulations show: (i) that the z=0 dark matter power spectrum is suppressed relative to linear theory by {approx}5% on scales 0.05bias is nonlinear over the scales we probe and that the scale dependence is a strong function of halo mass. High mass haloes show no suppression of power on scales k<0.07[h Mpc{sup -1}], and only show amplification on smaller scales, whereas low mass haloes show strong, {approx}5%-10%, suppression over the range 0.05

  11. Multivariable Hermite polynomials and phase-space dynamics

    NASA Technical Reports Server (NTRS)

    Dattoli, G.; Torre, Amalia; Lorenzutta, S.; Maino, G.; Chiccoli, C.

    1994-01-01

    The phase-space approach to classical and quantum systems demands for advanced analytical tools. Such an approach characterizes the evolution of a physical system through a set of variables, reducing to the canonically conjugate variables in the classical limit. It often happens that phase-space distributions can be written in terms of quadratic forms involving the above quoted variables. A significant analytical tool to treat these problems may come from the generalized many-variables Hermite polynomials, defined on quadratic forms in R(exp n). They form an orthonormal system in many dimensions and seem the natural tool to treat the harmonic oscillator dynamics in phase-space. In this contribution we discuss the properties of these polynomials and present some applications to physical problems.

  12. Phase-space approach to continuous variable quantum teleportation

    SciTech Connect

    Ban, Masashi

    2004-05-01

    The phase-space method is applied for considering continuous variable quantum teleportation. It is found that the continuous variable quantum teleportation transforms the s-parametrized phase-space function of an input state into the (s+{delta})-parametrized phase-space function, where the parameter {delta} is determined by the shared quantum entanglement. It is shown from this result that the Wigner function of the teleported state is always non-negative for F{sub c}{<=}2/3 and the Glauber-Sudarshan P function non-negative for F{sub c}{<=}1/2, where F{sub c} is the fidelity of the coherent-state teleportation. Furthermore the fidelity between input and output states is calculated when Gaussian states are teleported.

  13. Explicit methods in extended phase space for inseparable Hamiltonian problems

    NASA Astrophysics Data System (ADS)

    Pihajoki, Pauli

    2015-03-01

    We present a method for explicit leapfrog integration of inseparable Hamiltonian systems by means of an extended phase space. A suitably defined new Hamiltonian on the extended phase space leads to equations of motion that can be numerically integrated by standard symplectic leapfrog (splitting) methods. When the leapfrog is combined with coordinate mixing transformations, the resulting algorithm shows good long term stability and error behaviour. We extend the method to non-Hamiltonian problems as well, and investigate optimal methods of projecting the extended phase space back to original dimension. Finally, we apply the methods to a Hamiltonian problem of geodesics in a curved space, and a non-Hamiltonian problem of a forced non-linear oscillator. We compare the performance of the methods to a general purpose differential equation solver LSODE, and the implicit midpoint method, a symplectic one-step method. We find the extended phase space methods to compare favorably to both for the Hamiltonian problem, and to the implicit midpoint method in the case of the non-linear oscillator.

  14. κ-Deformed Phase Space, Hopf Algebroid and Twisting

    NASA Astrophysics Data System (ADS)

    Jurić; , Tajron; Kovačević, Domagoj; Meljanac, Stjepan

    2014-11-01

    Hopf algebroid structures on the Weyl algebra (phase space) are presented. We define the coproduct for the Weyl generators from Leibniz rule. The codomain of the coproduct is modified in order to obtain an algebra structure. We use the dual base to construct the target map and antipode. The notion of twist is analyzed for κ-deformed phase space in Hopf algebroid setting. It is outlined how the twist in the Hopf algebroid setting reproduces the full Hopf algebra structure of κ-Poincaré algebra. Several examples of realizations are worked out in details.

  15. MUB Entanglement Patterns by Transformations in Phase Space

    NASA Astrophysics Data System (ADS)

    Lawrence, Jay

    2011-03-01

    All possible MUB entanglement patterns for systems of N prime-state particles are obtained from standard ones by unitary transformations in the Hilbert space, thus preserving the relationships between the generalized Pauli operators, the phase point operators, and the MUB projectors. The transformations are described geometrically in discrete phase space. Illustrative examples show the invariance of the total entanglement content and the connection of entanglement with Galois fields. Different field representations for the same dimension may produce inequivalent MUB sets. This work provides alternative constructions and generalizes previous work on qubit systems [1,2].

  16. Towards Removing the Southern Ocean Short Wave Bias in HadGEM3: Mixed-phase Cloud Improvements.

    NASA Astrophysics Data System (ADS)

    Field, P.; Furtado, K.

    2014-12-01

    Many IPCC models suffer from significant Sea Surface Temperature (SST) biases in the Southern Ocean that adversely affects the representation of the cryosphere and global circulation in these models. Evidence suggests that much of this error is linked to Short Wave (SW) radiation, sensible and latent heat biases. Flaws in the representation of clouds and a deficit of supercooled liquid water in mixed-phase clouds are suspected as a likely source of the SW error. A physically based method that uses subgrid turbulence to control a new liquid production term has been developed. Comparisons between theory, based on a stochastic differential equation used to represent supersaturation fluctuations, and decametre resolution Large Eddy Simulations will be presented. An implementation of this approach in a GCM shows an increased prevalance of supercooled liquid water and a reduction in the magnitude of the Southern Ocean SW bias. To conclude, we will summarize the complete package of changes that have been made to tackle the Southern Ocean SST bias in a physically meaningful way.

  17. BeiDou phase bias estimation and its application in precise point positioning with triple-frequency observable

    NASA Astrophysics Data System (ADS)

    Gu, Shengfeng; Lou, Yidong; Shi, Chuang; Liu, Jingnan

    2015-10-01

    At present, the BeiDou system (BDS) enables the practical application of triple-frequency observable in the Asia-Pacific region, of many possible benefits from the additional signal; this study focuses on exploiting the contribution of zero difference (ZD) ambiguity resolution (AR) to the precise point positioning (PPP). A general modeling strategy for multi-frequency PPP AR is presented, in which, the least squares ambiguity decorrelation adjustment (LAMBDA) method is employed in ambiguity fixing based on the full variance-covariance ambiguity matrix generated from the raw data processing model. Because of the reliable fixing of BDS L1 ambiguity faces more difficulty, the LAMBDA method with partial ambiguity fixing is proposed to enable the independent and instantaneous resolution of extra wide-lane (EWL) and wide-lane (WL). This mechanism of sequential ambiguity fixing is demonstrated for resolving ZD satellite phase bias and performing triple-frequency PPP AR with two reference station networks with a typical baseline of up to 400 and 800 km, respectively. Tests show that about of the EWL and WL phase bias of BDS has a consistency of better than 0.1 cycle, and this value decreases to 80 % for L1 phase bias for Experiment I, while all the solutions of Experiment II have a similar RMS of about 0.12 cycles. In addition, the repeatability of the daily mean phase bias agree to 0.093 cycles and 0.095 cycles for EWL and WL on average, which is much smaller than 0.20 cycles of L1. To assess the improvement of fixed PPP brought by applying the third frequency signal as well as the above phase bias, various ambiguity fixing strategy are considered in the numerical demonstration. It is shown that the impact of the additional signal is almost negligible when only float solution involved. It is also shown that by fixing EWL and WL together, as opposed to the single ambiguity fixing, will leads to an improvement in PPP accuracy by about on average. Attributed to the efficient

  18. The solidification of monotectic alloys - Microstructures and phase spacings

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.; Hellawell, A.; Lograsso, T. A.

    1984-01-01

    The microstructures of directionally grown monotectic alloys in metallic and organic systems fall into two categories those which can form aligned fibrous composite structures with even phase spacings and fiber sections, and those in which the phase distribution is coarser and less regular. This division appears to relate to the form of the phase diagram and has been rationalized by Cahn (1977, 1979) in terms of the relative surface energies between solid and two liquids to give steady state or nonsteady state profiles. The transition in growth behavior occurs when the ratio of the monotectic temperature to that of the upper consolute temperature is approximately 0.9. Differences in phase spacings between a range of monotectic and eutectic systems are discussed in terms of the expected growth interface shapes and the factors which will influence them.

  19. Adaptive optics and phase diversity imaging for responsive space applications.

    SciTech Connect

    Smith, Mark William; Wick, David Victor

    2004-11-01

    The combination of phase diversity and adaptive optics offers great flexibility. Phase diverse images can be used to diagnose aberrations and then provide feedback control to the optics to correct the aberrations. Alternatively, phase diversity can be used to partially compensate for aberrations during post-detection image processing. The adaptive optic can produce simple defocus or more complex types of phase diversity. This report presents an analysis, based on numerical simulations, of the efficiency of different modes of phase diversity with respect to compensating for specific aberrations during post-processing. It also comments on the efficiency of post-processing versus direct aberration correction. The construction of a bench top optical system that uses a membrane mirror as an active optic is described. The results of characterization tests performed on the bench top optical system are presented. The work described in this report was conducted to explore the use of adaptive optics and phase diversity imaging for responsive space applications.

  20. An upwind-biased space marching algorithm for supersonic viscous flow

    NASA Technical Reports Server (NTRS)

    Greene, Francis A.

    1991-01-01

    The modifications are documented which were made to the Langley Aerothermodynamic Upwind Relaxation Algorithm which allow it to compute solutions in a space marching manner. The space marching flux is formulated to be either first- or second-order accurate, using Roe's upwind differencing or Symmetric Total Variation Diminishing differencing, respectively. The algorithm solves the thin layer Navier-Stokes equations, and is subject to the same flow restrictions as a parabolized Navier-Stokes solver. Each cross flow plane is locally iterated in time until converged, then marched in space to the next station. The algorithm is tested on a sphere-cone geometry and a geometry which models the windward side of the Space Shuttle Orbiter. Computational results for surface heating are compared to ground based experimental data. In addition, space marching predictions for surface pressure are compared against values from the original algorithm.

  1. Optimized Biasing of Pump Laser Diodes in a Highly Reliable Metrology Source for Long-Duration Space Missions

    NASA Technical Reports Server (NTRS)

    Poberezhskiy, Ilya; Chang, Daniel; Erlig, Hernan

    2011-01-01

    Non Planar Ring Oscillator (NPRO) lasers are highly attractive for metrology applications. NPRO reliability for prolonged space missions is limited by reliability of 808 nm pump diodes. Combined laser farm aging parameter allows comparing different bias approaches. Monte-Carlo software developed to calculate the reliability of laser pump architecture, perform parameter sensitivity studies To meet stringent Space Interferometry Mission (SIM) Lite lifetime reliability / output power requirements, we developed a single-mode Laser Pump Module architecture that: (1) provides 2 W of power at 808 nm with >99.7% reliability for 5.5 years (2) consists of 37 de-rated diode lasers operating at -5C, with outputs combined in a very low loss 37x1 all-fiber coupler

  2. Phase-field study of spacing evolution during transient growth

    NASA Astrophysics Data System (ADS)

    Gurevich, Sebastian; Amoorezaei, Morteza; Provatas, Nikolas

    2010-11-01

    The primary spacing of a dendritic array grown under transient growth conditions displays a distribution of wavelengths. The average primary spacing is shown, both experimentally and numerically, to evolve between characteristic incubation periods during which the distribution of wavelengths remains essentially stable. Our primary spacing results display a gradual transition period from one spacing range to another, consistent with the fact that the abrupt doubling of spacing predicted by Warren and Langer for an idealized periodic array affects different wavelengths of the distribution at different times. This transition is shown to depend on the rate of change in growth speed using phase-field simulations of directional solidification where the pulling speed is ramped at different rates. In particular, for high rates of change of the pulling speed we observe temporary marginally stable array configurations separated by relatively short lived transitions, while for lower rates of change of the pulling speed the distinction between incubation and transition periods disappears.

  3. Naval Space Surveillance Center uses of time, frequency, and phase

    NASA Technical Reports Server (NTRS)

    Hayden, Carroll C.; Knowles, Stephen H.

    1992-01-01

    The Naval Space Surveillance Center (NAVSPASUR) is an operational naval command that has the mission of determining the location of all manmade objects in space and transmitting information on objects of interest to the fleet. NAVSPASUR operates a 217 MHz radar fence that has 9 transmitting and receiving stations deployed in a line across southern Continental United States (CONUS). This surveillance fence provides unalerted detection of satellites overflying CONUS. NAVSPASUR also maintains a space catalog of all orbiting space objects. NAVSPASUR plays an important role as operational alternate to the primary national Space Surveillance Center (SSC) and Space Defence Operations Center (SPADOC). In executing these responsibilities, NAVSPASUR needs precise and/or standardized time and frequency in a number of applications. These include maintenance of the radar fence references to specification, and coordination with other commands and agencies for data receipt and dissemination. Precise time and frequency must be maintained within each site to enable proper operation of the interferometry phasing technique used. Precise time-of-day clocking must exist between sites for proper intersite coordination. Phase may be considered a derivative of time and frequency. Its control within each transmitter or receiver site is of great importance to NAVSPASUR because of the operation of the sensor as an interferometer system, with source direction angles as the primary observable. Determination of the angular position of a satellite is directly dependent on the accuracy with which the differential phase between spaced subarrays can be measured at each receiver site. Various aspects of the NAVSPASUR are discussed with respect to time, frequency, and phase.

  4. Two Phase Flow and Space-Based Applications

    NASA Technical Reports Server (NTRS)

    McQuillen, John

    1999-01-01

    A reduced gravity environment offers the ability to remove the effect of buoyancy on two phase flows whereby density differences that normally would promote relative velocities between the phases and also alter the shape of the interface are removed. However, besides being a potent research tool, there are also many space-based technologies that will either utilize or encounter two-phase flow behavior, and as a consequence, several questions must be addressed. This paper presents some of these technologies missions. Finally, this paper gives a description of web-sites for some funding.

  5. Dimension of quantum phase space measured by photon correlations

    NASA Astrophysics Data System (ADS)

    Leuchs, Gerd; Glauber, Roy J.; Schleich, Wolfgang P.

    2015-06-01

    We show that the different values 1, 2 and 3 of the normalized second-order correlation function {g}(2)(0) corresponding to a coherent state, a thermal state and a highly squeezed vacuum originate from the different dimensionality of these states in phase space. In particular, we derive an exact expression for {g}(2)(0) in terms of the ratio of the moments of the classical energy evaluated with the Wigner function of the quantum state of interest and corrections proportional to the reciprocal of powers of the average number of photons. In this way we establish a direct link between {g}(2)(0) and the shape of the state in phase space. Moreover, we illuminate this connection by demonstrating that in the semi-classical limit the familiar photon statistics of a thermal state arise from an area in phase space weighted by a two-dimensional Gaussian, whereas those of a highly squeezed state are governed by a line-integral of a one-dimensional Gaussian. We dedicate this article to Margarita and Vladimir Man’ko on the occasion of their birthdays. The topic of our contribution is deeply rooted in and motivated by their love for non-classical light, quantum mechanical phase space distribution functions and orthogonal polynomials. Indeed, through their articles, talks and most importantly by many stimulating discussions and intensive collaborations with us they have contributed much to our understanding of physics. Happy birthday to you both!

  6. Geometrical Series and Phase Space in a Finite Oscillatory Motion

    ERIC Educational Resources Information Center

    Mareco, H. R. Olmedo

    2006-01-01

    This article discusses some interesting physical properties of oscillatory motion of a particle on two joined inclined planes. The geometrical series demonstrates that the particle will oscillate during a finite time. Another detail is the converging path to the origin of the phase space. Due to its simplicity, this motion may be used as a…

  7. Quantum particles from coarse grained classical probabilities in phase space

    SciTech Connect

    Wetterich, C.

    2010-07-15

    Quantum particles can be obtained from a classical probability distribution in phase space by a suitable coarse graining, whereby simultaneous classical information about position and momentum can be lost. For a suitable time evolution of the classical probabilities and choice of observables all features of a quantum particle in a potential follow from classical statistics. This includes interference, tunneling and the uncertainty relation.

  8. Strong Field Double Ionization: The Phase Space Perspective

    SciTech Connect

    Mauger, F.; Chandre, C.; Uzer, T.

    2009-05-01

    We identify the phase-space structures that regulate atomic double ionization in strong ultrashort laser pulses. The emerging dynamical picture complements the recollision scenario by clarifying the distinct roles played by the recolliding and core electrons, and leads to verifiable predictions on the characteristic features of the 'knee', a hallmark of the nonsequential process.

  9. Phase space flow of particles in squeezed states

    NASA Technical Reports Server (NTRS)

    Ceperley, Peter H.

    1994-01-01

    The manipulation of noise and uncertainty in squeezed states is governed by the wave nature of the quantum mechanical particles in these states. This paper uses a deterministic model of quantum mechanics in which real guiding waves control the flow of localized particles. This model will be used to examine the phase space flow of particles in typical squeezed states.

  10. Depositing spacing layers on magnetic film with liquid phase epitaxy

    NASA Technical Reports Server (NTRS)

    Moody, J. W.; Shaw, R. W.; Sanfort, R. M.

    1975-01-01

    Liquid phase epitaxy spacing layer is compatible with systems which are hard-bubble proofed by use of second magnetic garnet film as capping layer. Composite is superior in that: circuit fabrication time is reduced; adherence is superior; visibility is better; and, good match of thermal expansion coefficients is provided.

  11. Phase-space reconstruction of focused x-ray fields

    SciTech Connect

    Tran, Chanh Q.; Mancuso, Adrian P.; Dhal, Bipin B.; Nugent, Keith A.; Peele, Andrew G.; Cai, Zhonghou; Paterson, David

    2006-01-01

    The phase-space tomography is used to reconstruct x-ray beams focused using a compound refractive lens, showing that it is possible to decouple the effect of aberrations in the optical system from the field and therefore measure both them and the original field. The complex coherence function is recovered and found to be consistent with expectations.

  12. Twisted geometries: A geometric parametrization of SU(2) phase space

    SciTech Connect

    Freidel, Laurent; Speziale, Simone

    2010-10-15

    A cornerstone of the loop quantum gravity program is the fact that the phase space of general relativity on a fixed graph can be described by a product of SU(2) cotangent bundles per edge. In this paper we show how to parametrize this phase space in terms of quantities describing the intrinsic and extrinsic geometry of the triangulation dual to the graph. These are defined by the assignment to each face of its area, the two unit normals as seen from the two polyhedra sharing it, and an additional angle related to the extrinsic curvature. These quantities do not define a Regge geometry, since they include extrinsic data, but a looser notion of discrete geometry which is twisted in the sense that it is locally well-defined, but the local patches lack a consistent gluing among each other. We give the Poisson brackets among the new variables, and exhibit a symplectomorphism which maps them into the Poisson brackets of loop gravity. The new parametrization has the advantage of a simple description of the gauge-invariant reduced phase space, which is given by a product of phase spaces associated to edges and vertices, and it also provides an Abelianization of the SU(2) connection. The results are relevant for the construction of coherent states and, as a byproduct, contribute to clarify the connection between loop gravity and its subset corresponding to Regge geometries.

  13. Painting the Phase Space Portrait of an Integrable Dynamical System

    NASA Astrophysics Data System (ADS)

    Coffey, Shannon; Deprit, Andre; Deprit, Etienne; Healy, Liam

    1990-02-01

    For an integrable dynamical system with one degree of freedom, "painting" the integral over the phase space proves to be very effective for uncovering the global flow down to minute details. Applied to the main problem in artificial satellite theory, for instance, the technique reveals an intricate configuration of equilibria and bifurcations when the polar component of the angular momentum approaches zero.

  14. Phase-locked injection laser arrays with variable stripe spacing

    NASA Technical Reports Server (NTRS)

    Ackley, Donald E.; Butler, Jerome K.; Ettenberg, Michael

    1986-01-01

    A phase-locked injection laser array is described which utilizes variations in spacing of identical lasing elements to vary the coupling between them. A coupled-mode analysis indicates that excellent matching of fundamental array mode to a uniform gain distribution can be obtained. Observation of the array emission patterns confirms the results of the coupled-mode analysis.

  15. Exploring Empathic Space: Correlates of Perspective Transformation Ability and Biases in Spatial Attention

    PubMed Central

    Thakkar, Katharine N.; Brugger, Peter; Park, Sohee

    2009-01-01

    Separate lines of research have noted recruitment of parietal cortex during tasks involving visuo-spatial processes and empathy. To explore the relationship between these two functions, a self-other perspective transformation task and a task of spatial attention (line bisection) were administered to 40 healthy participants (19 women). Performance on these tasks was examined in relation to self-reported empathy. Rightward biases in line bisection correlated positively with trait-level self-reported empathic concern, suggesting a left hemisphere mediation of this prosocial personality trait. Unexpectedly, speed of perspective taking in the self-other transformation task correlated negatively with empathic concern, but only in women, which we interpret in light of gender differences in empathy and strategies for egocentric mental transformations. Together, the findings partially support the commonalities in visuo-spatial attention, perspective-taking and empathy. More broadly, they shed additional light on the relationship between basic cognitive functions and complex social constructs. PMID:19516894

  16. Robotic action acquisition with cognitive biases in coarse-grained state space.

    PubMed

    Uragami, Daisuke; Kohno, Yu; Takahashi, Tatsuji

    2016-07-01

    Some of the authors have previously proposed a cognitively inspired reinforcement learning architecture (LS-Q) that mimics cognitive biases in humans. LS-Q adaptively learns under uniform, coarse-grained state division and performs well without parameter tuning in a giant-swing robot task. However, these results were shown only in simulations. In this study, we test the validity of the LS-Q implemented in a robot in a real environment. In addition, we analyze the learning process to elucidate the mechanism by which the LS-Q adaptively learns under the partially observable environment. We argue that the LS-Q may be a versatile reinforcement learning architecture, which is, despite its simplicity, easily applicable and does not require well-prepared settings. PMID:27195484

  17. Vital phase of space science. [solar terrestrial interactions

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1994-01-01

    Space science began with the indirect phase where the activity in space was inferred from such terrestrial phenomena as geomagnetic storms, ionospheric variations, and fluctuations in the cosmic ray intensity. The direct phase was initiated with spaceflight placing instruments directly in space and permitting the direct observation of UV and X rays, as well as precision observations of solar luminosity variations. The evidence from these many direct studies, together with the historical record of terrestrial conditions, shows that the variations of the luminosity of the Sun affect the terrestrial atmosphere at all levels, with devastating changes in climate tracking the major changes in the activity level and luminosity of the Sun. The quantification and understanding of this vital connection should be the first priority of space science and geophysics, from oceans and atmosphere through the ionosphere, magnetosphere, and all the way to the convective zone of the Sun. It becomes the vital phase of space science, focused on the basic science of the changing habitability of Earth.

  18. Phase-space exploration in nuclear giant resonance decay

    SciTech Connect

    Drozdz, S.; Nishizaki, S.; Wambach, J.; Speth, J. Institute of Nuclear Physics, PL-31-342 Krakow Department of Physics, University of Illinois at Urbana, Illinois 61801 College of Humanities and Social Sciences, Iwate University, Ueda 3-18-34, Morioka 020 )

    1995-02-13

    The rate of phase-space exploration in the decay of isovector and isoscalar giant quadrupole resonances in [sup 40]Ca is analyzed. The study is based on the time dependence of the survival probability and of the spectrum of generalized entropies evaluated in the space of one-particle--one-hole (1p-1h) and 2p-2h states. Three different cases for the level distribution of 2p-2h background states, corresponding to (a) high degeneracy, (b) classically regular motion, and (c) classically chaotic motion, are studied. In the latter case the isovector excitation evolves almost statistically while the isoscalar excitation remains largely localized, even though it penetrates the whole available phase space.

  19. Extended phase space description of human-controlled systems dynamics

    NASA Astrophysics Data System (ADS)

    Zgonnikov, Arkady; Lubashevsky, Ihor

    2014-03-01

    Humans are often incapable of precisely identifying and implementing the desired control strategy in controlling unstable dynamical systems. That is, the operator of a dynamical system treats the current control effort as acceptable even if it deviates slightly from the desired value, and starts correcting the actions only when the deviation has become evident. We argue that the standard Newtonian approach does not allow such behavior to be modeled. Instead, the physical phase space of a controlled system should be extended with an independent phase variable characterizing the motivated actions of the operator. The proposed approach is illustrated via a simple non-Newtonian model capturing the operators' fuzzy perception of their own actions. The properties of the model are investigated analytically and numerically; the results confirm that the extended phase space may aid in capturing the intricate dynamical properties of human-controlled systems.

  20. Phase-space Dynamics of Runaway Electrons In Tokamaks

    SciTech Connect

    Xiaoyin Guan, Hong Qin, and Nathaniel J. Fisch

    2010-08-31

    The phase-space dynamics of runaway electrons is studied, including the influence of loop voltage, radiation damping, and collisions. A theoretical model and a numerical algorithm for the runaway dynamics in phase space are developed. Instead of standard integrators, such as the Runge-Kutta method, a variational symplectic integrator is applied to simulate the long-term dynamics of a runaway electron. The variational symplectic integrator is able to globally bound the numerical error for arbitrary number of time-steps, and thus accurately track the runaway trajectory in phase space. Simulation results show that the circulating orbits of runaway electrons drift outward toward the wall, which is consistent with experimental observations. The physics of the outward drift is analyzed. It is found that the outward drift is caused by the imbalance between the increase of mechanical angular momentum and the input of toroidal angular momentum due to the parallel acceleration. An analytical expression of the outward drift velocity is derived. The knowledge of trajectory of runaway electrons in configuration space sheds light on how the electrons hit the first wall, and thus provides clues for possible remedies.

  1. Gender hierarchy in the space: the role of gender status in shaping the spatial agency bias.

    PubMed

    Carnaghi, Andrea; Piccoli, Valentina; Brambilla, Marco; Bianchi, Mauro

    2014-01-01

    According to the Spatial Agency Bias (SAB), more agentic groups (men) are envisioned to the left of less agentic groups (women). This research investigated the role of social status in shaping the spatial representation of gender couples. Participants were presented pairs consisting of one male and one female target who confirmed gender stereotypes. The status of the targets in each pair was systematically varied (high-status vs. low-status job). Participants chose the target order (female/male vs. male/female) they preferred. In line with gender-status expectations (male: high-status, female: low-status), a male in a high-status job led to a spatial arrangement that favored the male/female order, regardless of the status of the female target. The female/male order was favored only when the female had a high-status job and the male a low-status job. No SAB occurred for pairs in which both targets displayed low-status jobs. The implications of status for the SAB are discussed. PMID:24765816

  2. Kinetic solvers with adaptive mesh in phase space

    NASA Astrophysics Data System (ADS)

    Arslanbekov, Robert R.; Kolobov, Vladimir I.; Frolova, Anna A.

    2013-12-01

    An adaptive mesh in phase space (AMPS) methodology has been developed for solving multidimensional kinetic equations by the discrete velocity method. A Cartesian mesh for both configuration (r) and velocity (v) spaces is produced using a “tree of trees” (ToT) data structure. The r mesh is automatically generated around embedded boundaries, and is dynamically adapted to local solution properties. The v mesh is created on-the-fly in each r cell. Mappings between neighboring v-space trees is implemented for the advection operator in r space. We have developed algorithms for solving the full Boltzmann and linear Boltzmann equations with AMPS. Several recent innovations were used to calculate the discrete Boltzmann collision integral with dynamically adaptive v mesh: the importance sampling, multipoint projection, and variance reduction methods. We have developed an efficient algorithm for calculating the linear Boltzmann collision integral for elastic and inelastic collisions of hot light particles in a Lorentz gas. Our AMPS technique has been demonstrated for simulations of hypersonic rarefied gas flows, ion and electron kinetics in weakly ionized plasma, radiation and light-particle transport through thin films, and electron streaming in semiconductors. We have shown that AMPS allows minimizing the number of cells in phase space to reduce the computational cost and memory usage for solving challenging kinetic problems.

  3. Kinetic solvers with adaptive mesh in phase space.

    PubMed

    Arslanbekov, Robert R; Kolobov, Vladimir I; Frolova, Anna A

    2013-12-01

    An adaptive mesh in phase space (AMPS) methodology has been developed for solving multidimensional kinetic equations by the discrete velocity method. A Cartesian mesh for both configuration (r) and velocity (v) spaces is produced using a "tree of trees" (ToT) data structure. The r mesh is automatically generated around embedded boundaries, and is dynamically adapted to local solution properties. The v mesh is created on-the-fly in each r cell. Mappings between neighboring v-space trees is implemented for the advection operator in r space. We have developed algorithms for solving the full Boltzmann and linear Boltzmann equations with AMPS. Several recent innovations were used to calculate the discrete Boltzmann collision integral with dynamically adaptive v mesh: the importance sampling, multipoint projection, and variance reduction methods. We have developed an efficient algorithm for calculating the linear Boltzmann collision integral for elastic and inelastic collisions of hot light particles in a Lorentz gas. Our AMPS technique has been demonstrated for simulations of hypersonic rarefied gas flows, ion and electron kinetics in weakly ionized plasma, radiation and light-particle transport through thin films, and electron streaming in semiconductors. We have shown that AMPS allows minimizing the number of cells in phase space to reduce the computational cost and memory usage for solving challenging kinetic problems. PMID:24483578

  4. Probabilistic Q-function distributions in fermionic phase-space

    NASA Astrophysics Data System (ADS)

    Rosales-Zárate, Laura E. C.; Drummond, P. D.

    2015-03-01

    We obtain a positive probability distribution or Q-function for an arbitrary fermionic many-body system. This is different to previous Q-function proposals, which were either restricted to a subspace of the overall Hilbert space, or used Grassmann methods that do not give probabilities. The fermionic Q-function obtained here is constructed using normally ordered Gaussian operators, which include both non-interacting thermal density matrices and BCS states. We prove that the Q-function exists for any density matrix, is real and positive, and has moments that correspond to Fermi operator moments. It is defined on a finite symmetric phase-space equivalent to the space of real, antisymmetric matrices. This has the natural SO(2M) symmetry expected for Majorana fermion operators. We show that there is a physical interpretation of the Q-function: it is the relative probability for observing a given Gaussian density matrix. The distribution has a uniform probability across the space at infinite temperature, while for pure states it has a maximum value on the phase-space boundary. The advantage of probabilistic representations is that they can be used for computational sampling without a sign problem.

  5. Space transfer vehicle concepts and requirements study, phase 2

    NASA Technical Reports Server (NTRS)

    Cannon, Jeffrey H.; Vinopal, Tim; Andrews, Dana; Richards, Bill; Weber, Gary; Paddock, Greg; Maricich, Peter; Bouton, Bruce; Hagen, Jim; Kolesar, Richard

    1992-01-01

    This final report is a compilation of the Phase 1 and Phase 2 study findings and is intended as a Space Transfer Vehicle (STV) 'users guide' rather than an exhaustive explanation of STV design details. It provides a database for design choices in the general areas of basing, reusability, propulsion, and staging; with selection criteria based on cost, performance, available infrastructure, risk, and technology. The report is organized into the following three parts: (1) design guide; (2) STV Phase 1 Concepts and Requirements Study Summary; and (3) STV Phase 2 Concepts and Requirements Study Summary. The overall objectives of the STV study were to: (1) define preferred STV concepts capable of accommodating future exploration missions in a cost-effective manner; (2) determine the level of technology development required to perform these missions in the most cost effective manner; and (3) develop a decision database of programmatic approaches for the development of an STV concept.

  6. Optimized Biasing of Pump Laser Diodes in a Highly Reliable Metrology Source for Long-Duration Space Missions

    NASA Technical Reports Server (NTRS)

    Poberezhskiy, Ilya Y; Chang, Daniel H.; Erlig, Herman

    2011-01-01

    Optical metrology system reliability during a prolonged space mission is often limited by the reliability of pump laser diodes. We developed a metrology laser pump module architecture that meets NASA SIM Lite instrument optical power and reliability requirements by combining the outputs of multiple single-mode pump diodes in a low-loss, high port count fiber coupler. We describe Monte-Carlo simulations used to calculate the reliability of the laser pump module and introduce a combined laser farm aging parameter that serves as a load-sharing optimization metric. Employing these tools, we select pump module architecture, operating conditions, biasing approach and perform parameter sensitivity studies to investigate the robustness of the obtained solution.

  7. Asteroid orbital inversion using uniform phase-space sampling

    NASA Astrophysics Data System (ADS)

    Muinonen, K.; Pentikäinen, H.; Granvik, M.; Oszkiewicz, D.; Virtanen, J.

    2014-07-01

    We review statistical inverse methods for asteroid orbit computation from a small number of astrometric observations and short time intervals of observations. With the help of Markov-chain Monte Carlo methods (MCMC), we present a novel inverse method that utilizes uniform sampling of the phase space for the orbital elements. The statistical orbital ranging method (Virtanen et al. 2001, Muinonen et al. 2001) was set out to resolve the long-lasting challenges in the initial computation of orbits for asteroids. The ranging method starts from the selection of a pair of astrometric observations. Thereafter, the topocentric ranges and angular deviations in R.A. and Decl. are randomly sampled. The two Cartesian positions allow for the computation of orbital elements and, subsequently, the computation of ephemerides for the observation dates. Candidate orbital elements are included in the sample of accepted elements if the χ^2-value between the observed and computed observations is within a pre-defined threshold. The sample orbital elements obtain weights based on a certain debiasing procedure. When the weights are available, the full sample of orbital elements allows the probabilistic assessments for, e.g., object classification and ephemeris computation as well as the computation of collision probabilities. The MCMC ranging method (Oszkiewicz et al. 2009; see also Granvik et al. 2009) replaces the original sampling algorithm described above with a proposal probability density function (p.d.f.), and a chain of sample orbital elements results in the phase space. MCMC ranging is based on a bivariate Gaussian p.d.f. for the topocentric ranges, and allows for the sampling to focus on the phase-space domain with most of the probability mass. In the virtual-observation MCMC method (Muinonen et al. 2012), the proposal p.d.f. for the orbital elements is chosen to mimic the a posteriori p.d.f. for the elements: first, random errors are simulated for each observation, resulting in

  8. On the Landau system in noncommutative phase-space

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Sunandan; Saha, Anirban; Halder, Aslam

    2015-12-01

    We consider the Landau system in a canonically noncommutative phase-space. A set of generalized transformations containing scaling parameters is derived which maps the NC problem to an equivalent commutative problem. The energy spectrum admits NC corrections which are computed using the explicit NC variables as well as the commutative-equivalent variables. Their exact matching solidifies the evidence of the equivalence of the two approaches. We also obtain the magnetic length and level degeneracy, which admit NC corrections. We further study the Aharonov-Bohm effect where the phase-shift is found to alter due to noncommutativity and also depends on the scaling parameters.

  9. Giant zero field cooled spontaneous exchange bias effect in phase separated La1.5Sr0.5CoMnO6

    NASA Astrophysics Data System (ADS)

    Krishna Murthy, J.; Venimadhav, A.

    2013-12-01

    We report a giant zero field cooled exchange bias (ZEB) effect (˜0.65 T) in La1.5Sr0.5CoMnO6 sample. Magnetic study has revealed a reentrant spin glass ˜90 K, phase separation to spin glass and ferromagnetic phases below 50 K and canted antiferromagnetic transition ˜10 K. A small conventional exchange bias (CEB) is established with the advent of spontaneous phase separation down to 10 K. Giant ZEB and enhanced CEB effects are found only below 10 K and are attributed to the large unidirectional anisotropy at the interface of isothermally field induced ferromagnetic phase and canted antiferromagnetic background.

  10. Order parameter aided phase space exploration under extreme conditions

    NASA Astrophysics Data System (ADS)

    Samanta, Amit; Hamel, Sebastian; Schwegler, Eric

    Efficient exploration of configuration space and identification of metastable structures in condensed phase systems are challenging from both computational as well as algorithmic perspectives. In this talk I will illustrate how we can extend the recently proposed order-parameter aided temperature accelerated sampling schemes to efficiently and systematically explore free energy surfaces, and search for metastable states and reaction pathways within the framework of density functional theory based molecular dynamics. I will illustrate how this sampling scheme can be used to explore the relevant parts of configuration space in prototypical materials, like SiO2 and identify the different metastable structures, transition pathways and phase boundaries. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  11. Nonclassicality phase-space functions: more insight with fewer detectors.

    PubMed

    Luis, Alfredo; Sperling, Jan; Vogel, Werner

    2015-03-13

    Systems of on-off detectors are well established for measuring radiation fields in the regime of small photon numbers. We propose to combine these detector systems with unbalanced homodyning with a weak local oscillator. This approach yields phase-space functions, which represent the click counterpart of the s parametrized quasiprobabilities of standard photoelectric detection theory. This introduced class of distributions can be directly sampled from the measured click-counting statistics. Therefore, our technique visualizes nonclassical effects without further data processing. Surprisingly, a small number of on-off diodes can yield more insight than perfect photon number resolution. Quantum signatures in the particle and wave domain of the quantized radiation field, as shown by photon number and squeezed states, respectively, will be uncovered in terms of negativities of the sampled phase-space functions. Application in the vast fields of quantum optics and quantum technology will benefit from our efficient nonclassicality characterization approach. PMID:25815932

  12. On a quantum algebraic approach to a generalized phase space

    NASA Astrophysics Data System (ADS)

    Bohm, D.; Hiley, B. J.

    1981-04-01

    We approach the relationship between classical and quantum theories in a new way, which allows both to be expressed in the same mathematical language, in terms of a matrix algebra in a phase space. This makes clear not only the similarities of the two theories, but also certain essential differences, and lays a foundation for understanding their relationship. We use the Wigner-Moyal transformation as a change of representation in phase space, and we avoid the problem of “negative probabilities” by regarding the solutions of our equations as constants of the motion, rather than as statistical weight factors. We show a close relationship of our work to that of Prigogine and his group. We bring in a new nonnegative probability function, and we propose extensions of the theory to cover thermodynamic processes involving entropy changes, as well as the usual reversible processes.

  13. Large space telescope, phase A. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Phase A study of the Large Space Telescope (LST) is reported. The study defines an LST concept based on the broad mission guidelines provided by the Office of Space Science (OSS), the scientific requirements developed by OSS with the scientific community, and an understanding of long range NASA planning current at the time the study was performed. The LST is an unmanned astronomical observatory facility, consisting of an optical telescope assembly (OTA), scientific instrument package (SIP), and a support systems module (SSM). The report consists of five volumes. The report describes the constraints and trade off analyses that were performed to arrive at a reference design for each system and for the overall LST configuration. A low cost design approach was followed in the Phase A study. This resulted in the use of standard spacecraft hardware, the provision for maintenance at the black box level, growth potential in systems designs, and the sharing of shuttle maintenance flights with other payloads.

  14. Space shuttle phase B wind tunnel test database

    NASA Technical Reports Server (NTRS)

    Glynn, J. L.; Poucher, D. E.

    1988-01-01

    Archived wind tunnel test data are available for flyback booster or other alternate recoverable configurations as well as reusable orbiters studied during initial development (Phase B) of the Space Shuttle. Considerable wind tunnel data were acquired by competing contractors and NASA centers for an extensive variety of configurations with an array of wing and body planforms. This wind tunnel test data has been compiled into a database and are available for application to current winged flyback or recoverable booster aerodynamic studies. The Space Shuttle Phase B Wind Tunnel Database is structured by vehicle component and configuration type. Basic components include the booster, the orbiter and the launch vehicle. Booster configuration types include straight and delta wings, canard, cylindrical, retro-glide and twin body. Orbiter configuration types include straight and delta wings, lifting body, drop tanks and double delta wings.

  15. Communication: Phase space wavelets for solving Coulomb problems.

    PubMed

    Shimshovitz, Asaf; Tannor, David J

    2012-09-14

    Recently we introduced a phase space approach for solving the time-independent Schrödinger equation using a periodic von Neumann basis with bi-orthogonal exchange (pvb) [A. Shimshovitz and D. J. Tannor, Phys. Rev. Lett. 109, 070402 (2012)]. Here we extend the approach to allow a wavelet scaling of the phase space Gaussians. The new basis set, which we call the wavelet pvb basis, is simple to implement and provides an appealing alternative to other wavelet approaches. For the 1D Coulomb problems tested in this paper, the method reduces the size of the basis relative to the Fourier grid method by a factor of 13-60. The savings in basis set size is predicted to grow steeply as the dimensionality increases. PMID:22979843

  16. Visualizing the quantum interaction picture in phase space

    NASA Astrophysics Data System (ADS)

    Mehmani, Bahar; Aiello, Andrea

    2012-09-01

    We present a graphical example of the interaction picture-time evolution. Our aim is to help students understand in a didactic manner the simplicity that this picture provides. Visualizing the interaction picture unveils its advantages, which are hidden behind the involved mathematics. Specifically, we show that the time evolution of a driven harmonic oscillator in the interaction picture corresponds to a local transformation of a phase space-reference frame into the one that is co-rotating with the Wigner function.

  17. Phase space representation of spatially partially coherent imaging.

    PubMed

    Castaneda, Roman

    2008-08-01

    The phase space representation of imaging with optical fields in any state of spatial coherence is developed by using spatial coherence wavelets. It leads to new functions for describing the optical transfer and response of imaging systems when the field is represented by Wigner distribution functions. Specific imaging cases are analyzed in this context, and special attention is devoted to the imaging of two point sources. PMID:18670542

  18. The ESA Virtual Space Weather Modelling Centre - Phase 1

    NASA Astrophysics Data System (ADS)

    Poedts, Stefaan

    The ESA ITT project (AO/1-6738/11/NL/AT) to develop Phase 1 of a Virtual Space Weather Modelling Centre has the following objectives and scope: 1. The construction of a long term (~10 yrs) plan for the future development of a European virtual space weather modelling centre consisting of a new ‘open’ and distributed framework for the coupling of physics based models for space weather phenomena; 2. The assessment of model capabilities and the amount of work required to make them operational by integrating them in this framework and the identification of computing and networking requirements to do so. 3. The design of a system to enable models and other components to be installed locally or geographically distributed and the creation of a validation plan including a system of metrics for testing results. The consortium that took up this challenge involves: 1)the Katholieke Universiteit Leuven (Prime Contractor, coordinator: Prof. S. Poedts); 2) the Belgian Institute for Space Aeronomy (BIRA-IASB); 3) the Royal Observatory of Belgium (ROB); 4) the Von Karman Institute (VKI); 5) DH Consultancy (DHC); 6) Space Applications Services (SAS). The project started on May 14 2012, and will finish in May 2014. Thus, by the time of the meeting, both Phase 1A and Phase 1B (the development of the prototype) will be finished. The final report will be presented incl. the architecture decisions made, the framework, the current models integrated already as well as the model couplers installed. The prototype VSWMC will be demonstrated.

  19. Medical care capabilities for Space Station Freedom: A phase approach

    NASA Technical Reports Server (NTRS)

    Doarn, C. R.; Lloyd, C. W.

    1992-01-01

    As a result of Congressional mandate Space Station Freedom (SSF) was restructured. This restructuring activity has affected the capabilities for providing medical care on board the station. This presentation addresses the health care facility to be built and used on the orbiting space station. This unit, named the Health Maintenance Facility (HMF) is based on and modeled after remote, terrestrial medical facilities. It will provide a phased approach to health care for the crews of SSF. Beginning with a stabilization and transport phase, HMF will expand to provide the most advanced state of the art therapeutic and diagnostic capabilities. This presentation details the capabilities of such a phased HMF. As Freedom takes form over the next decade there will be ever-increasing engineering and scientific developmental activities. The HMF will evolve with this process until it eventually reaches a mature, complete stand-alone health care facility that provides a foundation to support interplanetary travel. As man's experience in space continues to grow so will the ability to provide advanced health care for Earth-orbital and exploratory missions as well.

  20. Relativistic algebraic spinors and quantum motions in phase space

    SciTech Connect

    Holland, P.R.

    1986-08-01

    Following suggestions of Schonberg and Bohm, we study the tensorial phase space representation of the Dirac and Feynman-Gell-Mann equations in terms of the complex Dirac algebra C/sub 4/, a Jordan-Wigner algebra G/sub 4/, and Wigner transformations. To do this we solve the problem of the conditions under which elements in C/sub 4/ generate minimal ideals, and extend this to G/sub 4/. This yields the linear theory of Dirac spin spaces and tensor representations of Dirac spinors, and the spin-1/2 wave equations are represented through fermionic state vectors in a higher space as a set of interconnected tensor relations.

  1. Calculation of a fluctuating entropic force by phase space sampling.

    PubMed

    Waters, James T; Kim, Harold D

    2015-07-01

    A polymer chain pinned in space exerts a fluctuating force on the pin point in thermal equilibrium. The average of such fluctuating force is well understood from statistical mechanics as an entropic force, but little is known about the underlying force distribution. Here, we introduce two phase space sampling methods that can produce the equilibrium distribution of instantaneous forces exerted by a terminally pinned polymer. In these methods, both the positions and momenta of mass points representing a freely jointed chain are perturbed in accordance with the spatial constraints and the Boltzmann distribution of total energy. The constraint force for each conformation and momentum is calculated using Lagrangian dynamics. Using terminally pinned chains in space and on a surface, we show that the force distribution is highly asymmetric with both tensile and compressive forces. Most importantly, the mean of the distribution, which is equal to the entropic force, is not the most probable force even for long chains. Our work provides insights into the mechanistic origin of entropic forces, and an efficient computational tool for unbiased sampling of the phase space of a constrained system. PMID:26274308

  2. Quantum-mechanical cumulant expansions and their application to phase-space and to phase distributions

    NASA Astrophysics Data System (ADS)

    Wünsche, A.

    2015-06-01

    Starting from the characteristic function of an operator, we investigate cumulant expansions in quantum optics and apply them to two-dimensional distributions for the canonical variables of the phase space in the case of one degree of freedom (Wigner quasiprobability and its Fourier transform, uncertainty matrix) and to one-dimensional distributions (phase operator, time evolution operator to Hamiltonian). In the relations between cumulants and moments, we make emphasis on the central moments of an operator. It is shown that the determinant of the uncertainty matrix (modified uncertainty product) is invariant with respect to rotation and squeezing of the state in the phase space, whereas the uncertainty sum is only invariant with respect to rotations. We examine some problems for exponentials of the phase operator and show how mean values and variances are connected with the cumulants. The Hilbert-Schmidt distance of a state during time evolution to an initial state is discussed by cumulants.

  3. Deep Space Habitat Team: HEFT Phase 2 Effects

    NASA Technical Reports Server (NTRS)

    Toups, Larry D.; Smitherman, David; Shyface, Hilary; Simon, Matt; Bobkill, Marianne; Komar, D. R.; Guirgis, Peggy; Bagdigian, Bob; Spexarth, Gary

    2011-01-01

    HEFT was a NASA-wide team that performed analyses of architectures for human exploration beyond LEO, evaluating technical, programmatic, and budgetary issues to support decisions at the highest level of the agency in HSF planning. HEFT Phase I (April - September, 2010) and Phase II (September - December, 2010) examined a broad set of Human Exploration of Near Earth Objects (NEOs) Design Reference Missions (DRMs), evaluating such factors as elements, performance, technologies, schedule, and cost. At end of HEFT Phase 1, an architecture concept known as DRM 4a represented the best available option for a full capability NEO mission. Within DRM4a, the habitation system was provided by Deep Space Habitat (DSH), Multi-Mission Space Exploration Vehicle (MMSEV), and Crew Transfer Vehicle (CTV) pressurized elements. HEFT Phase 2 extended DRM4a, resulting in DRM4b. Scrubbed element-level functionality assumptions and mission Concepts of Operations. Habitation Team developed more detailed concepts of the DSH and the DSH/MMSEV/CTV Conops, including functionality and accommodations, mass & volume estimates, technology requirements, and DDT&E costs. DRM 5 represented an effort to reduce cost by scaling back on technologies and eliminating the need for the development of an MMSEV.

  4. Liquid crystal terahertz phase shifters with functional indium-tin-oxide nanostructures for biasing and alignment

    SciTech Connect

    Yang, Chan-Shan; Tang, Tsung-Ta; Pan, Ru-Pin; Yu, Peichen; Pan, Ci-Ling

    2014-04-07

    Indium Tin Oxide (ITO) nanowhiskers (NWhs) obliquely evaporated by electron-beam glancing-angle deposition can serve simultaneously as transparent electrodes and alignment layer for liquid crystal (LC) devices in the terahertz (THz) frequency range. To demonstrate, we constructed a THz LC phase shifter with ITO NWhs. Phase shift exceeding π/2 at 1.0 THz was achieved in a ∼517 μm-thick cell. The phase shifter exhibits high transmittance (∼78%). The driving voltage required for quarter-wave operation is as low as 5.66 V (rms), compatible with complementary metal-oxide-semiconductor (CMOS) and thin-film transistor (TFT) technologies.

  5. A method for evaluating bias in global measurements of CO{sub 2} total columns from space

    SciTech Connect

    Wunch, D.; Wennberg, P. O.; Toon, G. C.; Connor, B. J.; Fisher, B.; Osterman, G. B.; Frankenberg, C.; Mandrake, L.; O?Dell, C.; Ahonen, P.; Biraud, S. C.; Castano, R.; Cressie, N.; Crisp, D.; Deutscher, N. M.; Eldering, A.; Fisher, M. L.; Griffith, D. W.T.; Gunson, M.; Heikkinen, P.; Keppel-Aleks, G.; Kyro, E.; Lindenmaier, R.; Macatangay, R.; Mendonca, J.; Messerschmidt, J.; Miller, C. E.; Morino, I.; Notholt, J.; Oyafuso, F. A.; Rettinger, M.; Robinson, J.; Roehl, C. M.; Salawitch, R. J.; Sherlock, V.; Strong, K.; Sussmann, R.; Tanaka, T.; Thompson, D. R.; Uchino, O.; Warneke, T.; Wofsy, S. C.

    2011-08-01

    We describe a method of evaluating systematic errors in measurements of total column dry-air mole fractions of CO{sub 2} (X{sub CO{sub 2}} ) from space, and we illustrate the method by applying it to the Atmospheric CO{sub 2} Observations from Space retrievals of the Greenhouse Gases Observing Satellite (ACOS-GOSAT) v2.8. The approach exploits the lack of large gradients in X{sub CO{sub 2}} south of 25{degree} S to identify large-scale offsets and other biases in the ACOS-GOSAT data with several retrieval parameters and errors in instrument calibration. We demonstrate the effectiveness of the method by comparing the ACOS-GOSAT data in the Northern Hemisphere with ground truth provided by the Total Carbon Column Observing Network (TCCON). We use the correlation between free-tropospheric temperature and X{sub CO{sub 2}} in the Northern Hemisphere to define a dynamically informed coincidence criterion between the ground-based TCCON measurements and the ACOS-GOSAT measurements. We illustrate that this approach provides larger sample sizes, hence giving a more robust comparison than one that simply uses time, latitude and longitude criteria. Our results show that the agreement with the TCCON data improves after accounting for the systematic errors. A preliminary evaluation of the improved v2.9 ACOS-GOSAT data is also discussed.

  6. Grassmann phase space methods for fermions. I. Mode theory

    NASA Astrophysics Data System (ADS)

    Dalton, B. J.; Jeffers, J.; Barnett, S. M.

    2016-07-01

    In both quantum optics and cold atom physics, the behaviour of bosonic photons and atoms is often treated using phase space methods, where mode annihilation and creation operators are represented by c-number phase space variables, with the density operator equivalent to a distribution function of these variables. The anti-commutation rules for fermion annihilation, creation operators suggest the possibility of using anti-commuting Grassmann variables to represent these operators. However, in spite of the seminal work by Cahill and Glauber and a few applications, the use of Grassmann phase space methods in quantum-atom optics to treat fermionic systems is rather rare, though fermion coherent states using Grassmann variables are widely used in particle physics. The theory of Grassmann phase space methods for fermions based on separate modes is developed, showing how the distribution function is defined and used to determine quantum correlation functions, Fock state populations and coherences via Grassmann phase space integrals, how the Fokker-Planck equations are obtained and then converted into equivalent Ito equations for stochastic Grassmann variables. The fermion distribution function is an even Grassmann function, and is unique. The number of c-number Wiener increments involved is 2n2, if there are n modes. The situation is somewhat different to the bosonic c-number case where only 2 n Wiener increments are involved, the sign of the drift term in the Ito equation is reversed and the diffusion matrix in the Fokker-Planck equation is anti-symmetric rather than symmetric. The un-normalised B distribution is of particular importance for determining Fock state populations and coherences, and as pointed out by Plimak, Collett and Olsen, the drift vector in its Fokker-Planck equation only depends linearly on the Grassmann variables. Using this key feature we show how the Ito stochastic equations can be solved numerically for finite times in terms of c-number stochastic

  7. Crossmodal visual-tactile extinction: Modulation by posture implicates biased competition in proprioceptively reconstructed space

    PubMed Central

    Kennett, Steffan; Rorden, Chris; Husain, Masud; Driver, Jon

    2010-01-01

    Extinction is a common consequence of unilateral brain injury: contralesional events can be perceived in isolation, yet are missed when presented concurrently with competing events on the ipsilesional side. This can arise crossmodally, where a contralateral touch is extinguished by an ipsilateral visual event. Recent studies showed that repositioning the hands in visible space, or making visual events more distant, can modulate such crossmodal extinction. Here, in a detailed single-case study, we implemented a novel spatial manipulation when assessing crossmodal extinction. This was designed not only to hold somatosensory inputs and hand/arm-posture constant, but also to hold (retinotopic) visual inputs constant, yet while still changing the spatial relationship of tactile and visual events in the external world. Our right hemisphere patient extinguished left-hand touches due to visual stimulation of the right visual field (RVF) when tested in the usual default posture with eyes/head directed straight ahead. But when her eyes/head were turned to the far left (and any visual events shifted along with this), such that the identical RVF retinal stimulation now fell at the same external location as the left-hand touch, crossmodal extinction was eliminated. Since only proprioceptive postural cues could signal this changed spatial relationship for the critical condition, our results show for the first time that such postural cues alone are sufficient to modulate crossmodal extinction. Identical somatosensory and retinal inputs can lead to severe crossmodal extinction, or none, depending on current posture. PMID:19822034

  8. Phase space analysis of bulk viscous matter dominated universe

    NASA Astrophysics Data System (ADS)

    Sasidharan, Athira; Mathew, Titus K.

    2016-06-01

    We consider a Friedmann model of the universe with bulk viscous matter and radiation as the cosmic components. We study the asymptotic properties in the equivalent phase space by considering the three cases for the bulk viscous coefficient as (i) ζ = ζ 0, a constant (ii) ζ ={ζ}_0+{ζ}_1overset{\\cdot /a}{a} , depending on velocity of the expansion of the universe and (iii) ζ ={ζ}_0+{ζ}_1overset{\\cdot /a}{a}+{ζ}_2overset{\\cdot \\cdot /a}{overset{\\cdot }{a}} , depending both on velocity and acceleration of the expansion of the universe. It is found that all the three cases predicts the late acceleration of the universe. However, a conventional realistic behaviour of the universe, i.e., a universe having an initial radiation dominated phase, followed by decelerated matter dominated phase and then finally evolving to accelerated epoch, is shown only when ζ = ζ 0, a constant. For the other two cases, it does not show either a prior conventional radiation dominated phase or a matter dominated phase of the universe.

  9. Linearization of the longitudinal phase space without higher harmonic field

    NASA Astrophysics Data System (ADS)

    Zeitler, Benno; Floettmann, Klaus; Grüner, Florian

    2015-12-01

    Accelerator applications like free-electron lasers, time-resolved electron diffraction, and advanced accelerator concepts like plasma acceleration desire bunches of ever shorter longitudinal extent. However, apart from space charge repulsion, the internal bunch structure and its development along the beam line can limit the achievable compression due to nonlinear phase space correlations. In order to improve such a limited longitudinal focus, a correction by properly linearizing the phase space is required. At large scale facilities like Flash at Desy or the European Xfel, a higher harmonic cavity is installed for this purpose. In this paper, another method is described and evaluated: Expanding the beam after the electron source enables a higher order correction of the longitudinal focus by a subsequent accelerating cavity which is operated at the same frequency as the electron gun. The elaboration of this idea presented here is based on a ballistic bunching scheme, but can be extended to bunch compression based on magnetic chicanes. The core of this article is an analytic model describing this approach, which is verified by simulations, predicting possible bunch length below 1 fs at low bunch charge. Minimizing the energy spread down to σE/E <1 0-5 while keeping the bunch long is another interesting possibility, which finds applications, e.g., in time resolved transmission electron microscopy concepts.

  10. Tomographic measurement of the phase space distribution of a space-charge-dominated beam

    NASA Astrophysics Data System (ADS)

    Stratakis, Diktys

    Many applications of accelerators, such as free electron lasers, pulsed neutron sources, and heavy ion fusion, require a good quality beam with high intensity. In practice, the achievable intensity is often limited by the dynamics at the low-energy, space-charge dominated end of the machine. Because low-energy beams can have complex distribution functions, a good understanding of their detailed evolution is needed. To address this issue, we have developed a simple and accurate tomographic method to map the beam phase using quadrupole magnets, which includes the effects from space charge. We extend this technique to use also solenoidal magnets which are commonly used at low energies, especially in photoinjectors, thus making the diagnostic applicable to most machines. We simulate our technique using a particle in cell code (PIC), to ascertain accuracy of the reconstruction. Using this diagnostic we report a number of experiments to study and optimize injection, transport and acceleration of intense space charge dominated beams. We examine phase mixing, by studying the phase-space evolution of an intense beam with a transversely nonuniform initial density distribution. Experimental measurements, theoretical predictions and PIC simulations are in good agreement each other. Finally, we generate a parabolic beam pulse to model those beams from photoinjectors, and combine tomography with fast imaging techniques to investigate the time-sliced parameters of beam current, size, energy spread and transverse emittance. We found significant differences between the slice emittance profiles and slice orientation as the beam propagates downstream. The combined effect of longitudinal nonuniform profiles and fast imaging of the transverse phase space provided us with information about correlations between longitudinal and transverse dynamics that we report within this dissertation.

  11. Method of phase space beam dilution utilizing bounded chaos generated by rf phase modulation

    NASA Astrophysics Data System (ADS)

    Pham, Alfonse N.; Lee, S. Y.; Ng, K. Y.

    2015-12-01

    This paper explores the physics of chaos in a localized phase-space region produced by rf phase modulation applied to a double rf system. The study can be exploited to produce rapid particle bunch broadening exhibiting longitudinal particle distribution uniformity. Hamiltonian models and particle-tracking simulations are introduced to understand the mechanism and applicability of controlled particle diffusion. When phase modulation is applied to the double rf system, regions of localized chaos are produced through the disruption and overlapping of parametric resonant islands and configured to be bounded by well-behaved invariant tori to prevent particle loss. The condition of chaoticity and the degree of particle dilution can be controlled by the rf parameters. The method has applications in alleviating adverse space-charge effects in high-intensity beams, particle bunch distribution uniformization, and industrial radiation-effects experiments.

  12. Multimegawatt space nuclear power supply, Phase 1 Final report

    SciTech Connect

    Not Available

    1989-02-17

    This Specification establishes the performance, design, development, and test requirements for the Boeing Multimegawatt Space Nuclear Power System (MSNPS). The Boeing Multimegawatt Space Power System is part of the DOE/SDIO Multimegawatt Space Nuclear Power Program. The purpose of this program is to provide a space-based nuclear power system to meet the needs of SDIO missions. The Boeing MSNPS is a category 1 concept which is capable of delivering 10's of MW(e) for 100's of seconds with effluent permitted. A design goal is for the system to have growth or downscale capability for other power system concepts. The growth objective is to meet the category 3 capability of 100's of MW(e) for 100's of seconds, also with effluent permitted. The purpose of this preliminary document is to guide the conceptual design effort throughout the Phase 1 study effort. This document will be updated through out the study. It will thus result in a record of the development of the design effort.

  13. Phase space analysis of multipactor saturation in rectangular waveguide

    NASA Astrophysics Data System (ADS)

    Lingwood, C. J.; Burt, G.; Dexter, A. C.; Smith, J. D. A.; Goudket, P.; Stoltz, P. H.

    2012-03-01

    In certain high power RF systems multipactor cannot be avoided for all operating points, but its existence places limits on performance, efficiency, lifetime, and reliability. As an example multipactor in the input couplers of superconducting RF cavities can be a major limitation to the maximum RF power. Several studies have concentrated on rectangular waveguide input couplers which are used in many light sources. Most of these studies neglect space charge assuming that the effect of space charge is simply to defocus the electron bunches. Modelling multipactor to saturation is of interest in determining the performance of waveguide under a range of conditions. Particle-in-cell modelling including space charge has been performed for 500 MHz half-height rectangular waveguide. Phase plots of electron trajectories can aid understanding the processes taking place in the multipactor. Results strongly suggest that the multipacting trajectories are strongly perturbed by space charge causing the electrons to transition from two-surface to single-surface trajectories as the multipactor approaches saturation.

  14. A gauge theory of gravity in curved phase-spaces

    NASA Astrophysics Data System (ADS)

    Castro, Carlos

    2016-06-01

    After a cursory introduction of the basic ideas behind Born’s Reciprocal Relativity theory, the geometry of the cotangent bundle of spacetime is studied via the introduction of nonlinear connections associated with certain nonholonomic modifications of Riemann-Cartan gravity within the context of Finsler geometry. A novel gauge theory of gravity in the 8D cotangent bundle T∗M of spacetime is explicitly constructed and based on the gauge group SO(6, 2) ×sR8 which acts on the tangent space to the cotangent bundle T(x,p)T∗M at each point (x,p). Several gravitational actions involving curvature and torsion tensors and associated with the geometry of curved phase-spaces are presented. We conclude with a brief discussion of the field equations, the geometrization of matter, quantum field theory (QFT) in accelerated frames, T-duality, double field theory, and generalized geometry.

  15. Phase space view of quantum mechanical systems and Fisher information

    NASA Astrophysics Data System (ADS)

    Nagy, Á.

    2016-06-01

    Pennini and Plastino showed that the form of the Fisher information generated by the canonical distribution function reflects the intrinsic structure of classical mechanics. Now, a quantum mechanical generalization of the Pennini-Plastino theory is presented based on the thermodynamical transcription of the density functional theory. Comparing to the classical case, the phase-space Fisher information contains an extra term due to the position dependence of the temperature. However, for the special case of constant temperature, the expression derived bears resemblance to the classical one. A complete analogy to the classical case is demonstrated for the linear harmonic oscillator.

  16. Phase-space rotations and orbital Stokes parameters.

    PubMed

    Alieva, Tatiana; Bastiaans, Martin J

    2009-02-15

    We introduce the orbital Stokes parameters as a linear combination of a beam's second-order moments. Similar to the ones describing the field polarization and associated with beam energy and its spin angular momentum, the orbital Stokes parameters are related to the total beam width and its orbital angular momentum. We derive the transformation laws for these parameters during beam propagation through first-order optical systems associated with phase-space rotations. The values of the orbital Stokes parameters for Gaussian modes and arbitrary fields expressed as their linear superposition are obtained. PMID:19373324

  17. Testing gravity with the stacked phase space around galaxy clusters.

    PubMed

    Lam, Tsz Yan; Nishimichi, Takahiro; Schmidt, Fabian; Takada, Masahiro

    2012-08-01

    In general relativity, the average velocity field of dark matter around galaxy clusters is uniquely determined by the mass profile. The latter can be measured through weak lensing. We propose a new method of measuring the velocity field (phase space density) by stacking redshifts of surrounding galaxies from a spectroscopic sample. In combination with lensing, this yields a direct test of gravity on scales of 1-30 Mpc. Using N-body simulations, we show that this method can improve upon current constraints on f(R) and Dvali-Gabadadze-Porrati model parameters by several orders of magnitude when applied to upcoming imaging and redshift surveys. PMID:23006162

  18. Space shuttle phase B. Volume 2: Technical summary, addendum A

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A study was conducted to analyze the characteristics and performance data for the booster vehicles to be used with the space shuttle operations. It was determined that the single pressure-fed booster offered the lowest program cost per flight of the pressure-fed booster arrangements studied. The fly back booster required the highest peak annual funding and highest program cost. It was recommended that the pressure-fed booster, series burn with liquid oxygen phase, be continued for further study. The flyback booster study was discontinued. Both solid and liquid propelled booster vehicles with 14 by 45 foot and 15 by 60 foot payload orbiters were considered.

  19. The Helmholtz Hierarchy: phase space statistics of cold dark matter

    SciTech Connect

    Tassev, Svetlin V.

    2011-10-01

    We present a new formalism to study large-scale structure in the universe. The result is a hierarchy (which we call the ''Helmholtz Hierarchy'') of equations describing the phase space statistics of cold dark matter (CDM). The hierarchy features a physical ordering parameter which interpolates between the Zel'dovich approximation and fully-fledged gravitational interactions. The results incorporate the effects of stream crossing. We show that the Helmholtz hierarchy is self-consistent and obeys causality to all orders. We present an interpretation of the hierarchy in terms of effective particle trajectories.

  20. Values of the phase space factors for double beta decay

    SciTech Connect

    Stoica, Sabin Mirea, Mihai

    2015-10-28

    We report an up-date list of the experimentally most interesting phase space factors for double beta decay (DBD). The electron/positron wave functions are obtained by solving the Dirac equations with a Coulomb potential derived from a realistic proton density distribution in nucleus and with inclusion of the finite nuclear size (FNS) and electron screening (ES) effects. We build up new numerical routines which allow us a good control of the accuracy of calculations. We found several notable differences as compared with previous results reported in literature and possible sources of these discrepancies are discussed.

  1. Nonlinear bulk viscosity in FRW cosmology: a phase space analysis.

    NASA Astrophysics Data System (ADS)

    Acquaviva, G.; Beesham, A.

    2015-11-01

    We consider a Friedmann-Robertson-Walker spacetime filled with both viscous radiation and nonviscous dust. The former has a bulk viscosity that is proportional to an arbitrary power of the energy density, i.e. \\zeta \\propto {ρ }{{v}}ν , and viscous pressure satisfying a nonlinear evolution equation. The analysis is carried out in the context of dynamical systems and the properties of solutions corresponding to the fixed points are discussed. For some ranges of the relevant parameter ν we find that the trajectories in the phase space evolve from a FRW singularity towards an asymptotic de Sitter attractor, confirming and extending previous analysis in the literature.

  2. Spatial coherence wavelets and phase-space representation of diffraction.

    PubMed

    Castañeda, Román; Carrasquilla, Juan

    2008-08-01

    The phase-space representation of the Fresnel-Fraunhofer diffraction of optical fields in any state of spatial coherence is based on the marginal power spectrum carried by the spatial coherence wavelets. Its structure is analyzed in terms of the classes of source pairs and the spot of the field, which is treated as the hologram of the map of classes. Negative values of the marginal power spectrum are interpreted as negative energies. The influence of the aperture edge on diffraction is stated in terms of the distortion of the supports of the complex degree of spatial coherence near it. Experimental results are presented. PMID:18670545

  3. Advanced microelectronics research for space applications, phase 2

    NASA Technical Reports Server (NTRS)

    Gaertner, W. W.

    1971-01-01

    Negative-resistance circuits with possible space flight applications are discussed. The basic design approach is to use impedance rotation, i.e., the conversion from capacitance to negative resistance, and from resistance to inductance by the phase shift of the transistor current gain at high frequencies. The subjects discussed in detail are the following: hybrid fabrication of VHF and UHF negative-resistance stages with lumped passive elements; formulation of measurement techniques to characterize transistors and to extend the frequency of negative-resistance transistor amplifiers to higher microwave frequencies; and derivation of transistor characteristics required to increase the frequency range of negative-resistance transistor stages.

  4. Efficient computations of quantum canonical Gibbs state in phase space

    NASA Astrophysics Data System (ADS)

    Bondar, Denys I.; Campos, Andre G.; Cabrera, Renan; Rabitz, Herschel A.

    2016-06-01

    The Gibbs canonical state, as a maximum entropy density matrix, represents a quantum system in equilibrium with a thermostat. This state plays an essential role in thermodynamics and serves as the initial condition for nonequilibrium dynamical simulations. We solve a long standing problem for computing the Gibbs state Wigner function with nearly machine accuracy by solving the Bloch equation directly in the phase space. Furthermore, the algorithms are provided yielding high quality Wigner distributions for pure stationary states as well as for Thomas-Fermi and Bose-Einstein distributions. The developed numerical methods furnish a long-sought efficient computation framework for nonequilibrium quantum simulations directly in the Wigner representation.

  5. The Simpsons program 6-D phase space tracking with acceleration

    NASA Astrophysics Data System (ADS)

    Machida, S.

    1993-12-01

    A particle tracking code, Simpsons, in 6-D phase space including energy ramping has been developed to model proton synchrotrons and storage rings. We take time as the independent variable to change machine parameters and diagnose beam quality in a quite similar way as real machines, unlike existing tracking codes for synchrotrons which advance a particle element by element. Arbitrary energy ramping and rf voltage curves as a function of time are read as an input file for defining a machine cycle. The code is used to study beam dynamics with time dependent parameters. Some of the examples from simulations of the Superconducting Super Collider (SSC) boosters are shown.

  6. Solution of phase space diffusion equations using interacting trajectory ensembles

    NASA Astrophysics Data System (ADS)

    Donoso, Arnaldo; Martens, Craig C.

    2002-06-01

    In this paper, we present a new method for simulating the evolution of the phase space distribution function describing a system coupled to a Markovian thermal bath. The approach is based on the propagation of ensembles of trajectories. Instead of incorporating environmental perturbations as stochastic forces, however, the present method includes these effects by additional deterministic interactions between the ensemble members. The general formalism is developed and tested on model systems describing one-dimensional diffusion, relaxation of a coherently excited harmonic oscillator coupled to a thermal bath, and activated barrier crossing in a bistable potential. Excellent agreement with exact results or approximate theories is obtained in all cases. The method provides an entirely deterministic trajectory-based approach to the solution of condensed phase dynamics and chemical reactions.

  7. Dynamical Evolution of Quintessence Cosmology in a Physical Phase Space

    NASA Astrophysics Data System (ADS)

    Qi, Jing-Zhao; Zhang, Ming-Jian; Liu, Wen-Biao

    2016-04-01

    The phase space analysis of cosmological parameters Ω ϕ and γ ϕ is given. Based on this, the well-known quintessence cosmology is studied with an exponential potential V(φ )=V0exp (-λ φ ). Given observational data, the current state of universe could be pinpointed in the phase diagrams, thus making the diagrams more informative. The scaling solution of quintessence usually is not supposed to give the cosmic accelerating expansion, but we prove it could educe the transient acceleration. We also find that the differential equations of system used widely in study of scalar field are incomplete, and then a numerical method is used to figure out the range of application.

  8. Dynamical Evolution of Quintessence Cosmology in a Physical Phase Space

    NASA Astrophysics Data System (ADS)

    Qi, Jing-Zhao; Zhang, Ming-Jian; Liu, Wen-Biao

    2016-08-01

    The phase space analysis of cosmological parameters Ω ϕ and γ ϕ is given. Based on this, the well-known quintessence cosmology is studied with an exponential potential V(φ )=V0exp (-λ φ ). Given observational data, the current state of universe could be pinpointed in the phase diagrams, thus making the diagrams more informative. The scaling solution of quintessence usually is not supposed to give the cosmic accelerating expansion, but we prove it could educe the transient acceleration. We also find that the differential equations of system used widely in study of scalar field are incomplete, and then a numerical method is used to figure out the range of application.

  9. Fast-phase space computation of multiple arrivals.

    PubMed

    Fomel, S; Sethian, J A

    2002-05-28

    We present a fast, general computational technique for computing the phase-space solution of static Hamilton-Jacobi equations. Starting with the Liouville formulation of the characteristic equations, we derive "Escape Equations" which are static, time-independent Eulerian PDEs. They represent all arrivals to the given boundary from all possible starting configurations. The solution is numerically constructed through a "one-pass" formulation, building on ideas from semi-Lagrangian methods, Dijkstra-like methods for the Eikonal equation, and Ordered Upwind Methods. To compute all possible trajectories corresponding to all possible boundary conditions, the technique is of computational order O(N log N), where N is the total number of points in the computational phase-space domain; any particular set of boundary conditions then is extracted through rapid post-processing. Suggestions are made for speeding up the algorithm in the case when the particular distribution of sources is provided in advance. As an application, we apply the technique to the problem of computing first, multiple, and most energetic arrivals to the Eikonal equation. PMID:12032282

  10. An Absolute Phase Space for the Physicality of Matter

    NASA Astrophysics Data System (ADS)

    Valentine, John S.

    2010-12-01

    We define an abstract and absolute phase space ("APS") for sub-quantum intrinsic wave states, in three axes, each mapping directly to a duality having fundamental ontological basis. Many aspects of quantum physics emerge from the interaction algebra and a model deduced from principles of `unique solvability' and `identifiable entity', and we reconstruct previously abstract fundamental principles and phenomena from these new foundations. The physical model defines bosons as virtual continuous waves pairs in the APS, and fermions as real self-quantizing snapshots of those waves when simple conditions are met. The abstraction and physical model define a template for the constitution of all fermions, a template for all the standard fundamental bosons and their local interactions, in a common framework and compactified phase space for all forms of real matter and virtual vacuum energy, and a distinct algebra for observables and unobservables. To illustrate our scheme's potential, we provide examples of slit experiment variations (where the model finds theoretical basis for interference only occurring between two final sources), QCD (where we may model most attributes known to QCD, and a new view on entanglement), and we suggest approaches for other varied applications. We believe this is a viable candidate for further exploration as a foundational proposition for physics.

  11. An Absolute Phase Space for the Physicality of Matter

    SciTech Connect

    Valentine, John S.

    2010-12-22

    We define an abstract and absolute phase space (''APS'') for sub-quantum intrinsic wave states, in three axes, each mapping directly to a duality having fundamental ontological basis. Many aspects of quantum physics emerge from the interaction algebra and a model deduced from principles of 'unique solvability' and 'identifiable entity', and we reconstruct previously abstract fundamental principles and phenomena from these new foundations. The physical model defines bosons as virtual continuous waves pairs in the APS, and fermions as real self-quantizing snapshots of those waves when simple conditions are met. The abstraction and physical model define a template for the constitution of all fermions, a template for all the standard fundamental bosons and their local interactions, in a common framework and compactified phase space for all forms of real matter and virtual vacuum energy, and a distinct algebra for observables and unobservables. To illustrate our scheme's potential, we provide examples of slit experiment variations (where the model finds theoretical basis for interference only occurring between two final sources), QCD (where we may model most attributes known to QCD, and a new view on entanglement), and we suggest approaches for other varied applications. We believe this is a viable candidate for further exploration as a foundational proposition for physics.

  12. Coherent quantum squeezing due to the phase space noncommutativity

    NASA Astrophysics Data System (ADS)

    Bernardini, Alex E.; Mizrahi, Salomon S.

    2015-06-01

    The effects of general noncommutativity of operators on producing deformed coherent squeezed states is examined in phase space. A two-dimensional noncommutative (NC) quantum system supported by a deformed mathematical structure, similar to that of Hadamard billiard, is obtained and the components behaviour is monitored in time. It is assumed that the independent degrees of freedom are two free 1D harmonic oscillators (HOs), so the system Hamiltonian does not contain interaction terms. Through the NC deformation parameterized by a Seiberg-Witten transform on the original canonical variables, one gets the standard commutation relations for the new ones, such that the obtained, new, Hamiltonian represents two interacting 1D HOs. By admitting that one HO is inverted relatively to the other, we show that their effective interaction induces a squeezing dynamics for initial coherent states imaged in the phase space. A suitable pattern of logarithmic spirals is obtained and some relevant properties are discussed in terms of Wigner functions, which are essential to put in evidence the effects of the noncommutativity.

  13. Phase space lattices and integrable nonlinear wave equations

    NASA Astrophysics Data System (ADS)

    Tracy, Eugene; Zobin, Nahum

    2003-10-01

    Nonlinear wave equations in fluids and plasmas that are integrable by Inverse Scattering Theory (IST), such as the Korteweg-deVries and nonlinear Schrodinger equations, are known to be infinite-dimensional Hamiltonian systems [1]. These are of interest physically because they predict new phenomena not present in linear wave theories, such as solitons and rogue waves. The IST method provides solutions of these equations in terms of a special class of functions called Riemann theta functions. The usual approach to the theory of theta functions tends to obscure the underlying phase space structure. A theory due to Mumford and Igusa [2], however shows that the theta functions arise naturally in the study of phase space lattices. We will describe this theory, as well as potential applications to nonlinear signal processing and the statistical theory of nonlinear waves. 1] , S. Novikov, S. V. Manakov, L. P. Pitaevskii and V. E. Zakharov, Theory of solitons: the inverse scattering method (Consultants Bureau, New York, 1984). 2] D. Mumford, Tata lectures on theta, Vols. I-III (Birkhauser); J. Igusa, Theta functions (Springer-Verlag, New York, 1972).

  14. Fast-phase space computation of multiple arrivals

    PubMed Central

    Fomel, S.; Sethian, J. A.

    2002-01-01

    We present a fast, general computational technique for computing the phase-space solution of static Hamilton–Jacobi equations. Starting with the Liouville formulation of the characteristic equations, we derive “Escape Equations” which are static, time-independent Eulerian PDEs. They represent all arrivals to the given boundary from all possible starting configurations. The solution is numerically constructed through a “one-pass” formulation, building on ideas from semi-Lagrangian methods, Dijkstra-like methods for the Eikonal equation, and Ordered Upwind Methods. To compute all possible trajectories corresponding to all possible boundary conditions, the technique is of computational order O(N log N), where N is the total number of points in the computational phase-space domain; any particular set of boundary conditions then is extracted through rapid post-processing. Suggestions are made for speeding up the algorithm in the case when the particular distribution of sources is provided in advance. As an application, we apply the technique to the problem of computing first, multiple, and most energetic arrivals to the Eikonal equation. PMID:12032282

  15. Laser Interferometer Space Antenna (LISA) Far Field Phase Patterns

    NASA Technical Reports Server (NTRS)

    Waluschka, Eugene; Obenschain, Arthur F. (Technical Monitor)

    2000-01-01

    The Laser Interferometer Space Antenna (LISA) consists of three spacecraft in orbit about the sun. The orbits are chosen such that the three spacecraft are always at (roughly) the vertices of a equilateral triangle with 5 million kilometer leg lengths. Even though the distances between the three spacecraft are 5 million kilometers, the expected phase shifts between any two beams, due to a gravitational wave, only correspond to a distance change of about 10 pico meters, which is about 10(exp -5) waves for a laser wavelength of 1064 nm. To obtain the best signal-to-noise ratio, noise sources such as changes in the apparent distances due to pointing jitter must be controlled carefully. This is the main reason for determining the far-field phase patterns of a LISA type telescope. Because of torque on the LISA spacecraft and other disturbances, continuous adjustments to the pointing of the telescopes are required. These pointing adjustments will be a "jitter" source. If the transmitted wave is perfectly spherical then rotations (Jitter) about its geometric center will not produce any effect at the receiving spacecraft. However, if the outgoing wave is not perfectly spherical, then pointing jitter will produce a phase variation at the receiving spacecraft. The following sections describe the "brute force" computational approach used to determine the scalar wave front as a function of exit pupil (Zernike) aberrations and to show the results (mostly graphically) of the computations. This approach is straightforward and produces believable phase variations to sub-pico meter accuracy over distances on the order of 5 million kilometers. As such this analyzes the far field phase sensitivity to exit pupil aberrations.

  16. Volumic omit maps in ab initio dual-space phasing.

    PubMed

    Oszlányi, Gábor; Sütő, András

    2016-07-01

    Alternating-projection-type dual-space algorithms have a clear construction, but are susceptible to stagnation and, thus, inefficient for solving the phase problem ab initio. To improve this behaviour new omit maps are introduced, which are real-space perturbations applied periodically during the iteration process. The omit maps are called volumic, because they delete some predetermined subvolume of the unit cell without searching for atomic regions or analysing the electron density in any other way. The basic algorithms of positivity, histogram matching and low-density elimination are tested by their solution statistics. It is concluded that, while all these algorithms based on weak constraints are practically useless in their pure forms, appropriate volumic omit maps can transform them to practically useful methods. In addition, the efficiency of the already useful reflector-type charge-flipping algorithm can be further improved. It is important that these results are obtained by using non-sharpened structure factors and without any weighting scheme or reciprocal-space perturbation. The mathematical background of volumic omit maps and their expected applications are also discussed. PMID:27357850

  17. Constraining neutron guide optimizations with phase-space considerations

    NASA Astrophysics Data System (ADS)

    Bertelsen, Mads; Lefmann, Kim

    2016-09-01

    We introduce a method named the Minimalist Principle that serves to reduce the parameter space for neutron guide optimization when the required beam divergence is limited. The reduced parameter space will restrict the optimization to guides with a minimal neutron intake that are still theoretically able to deliver the maximal possible performance. The geometrical constraints are derived using phase-space propagation from moderator to guide and from guide to sample, while assuming that the optimized guides will achieve perfect transport of the limited neutron intake. Guide systems optimized using these constraints are shown to provide performance close to guides optimized without any constraints, however the divergence received at the sample is limited to the desired interval, even when the neutron transport is not limited by the supermirrors used in the guide. As the constraints strongly limit the parameter space for the optimizer, two control parameters are introduced that can be used to adjust the selected subspace, effectively balancing between maximizing neutron transport and avoiding background from unnecessary neutrons. One parameter is needed to describe the expected focusing abilities of the guide to be optimized, going from perfectly focusing to no correlation between position and velocity. The second parameter controls neutron intake into the guide, so that one can select exactly how aggressively the background should be limited. We show examples of guides optimized using these constraints which demonstrates the higher signal to noise than conventional optimizations. Furthermore the parameter controlling neutron intake is explored which shows that the simulated optimal neutron intake is close to the analytically predicted, when assuming that the guide is dominated by multiple scattering events.

  18. Evolution of classical and quantum phase-space distributions: A new trajectory approach for phase space hydrodynamics

    NASA Astrophysics Data System (ADS)

    Trahan, Corey J.; Wyatt, Robert E.

    2003-10-01

    Recently, Donoso and Martens described a method for evolving both classical and quantum phase-space distribution functions, W(q,p,t), that involves the propagation of an ensemble of correlated trajectories. The trajectories are linked into a unified whole by spatial and momentum derivatives of density dependent terms in the equations of motion. On each time step, these nonlocal terms were evaluated by fitting the density around each trajectory to an assumed functional form. In the present study, we develop a different trajectory method for propagating phase-space distribution functions. A hierarchy of coupled analytic equations of motion are derived for the q and p derivatives of the density and a truncated set of these are integrated along each trajectory concurrently with the equation of motion for the density. The advantage of this approach is that individual trajectories can be propagated, one at a time, and function fitting is not required to evaluate the nonlocal terms. Regional nonlocality can be incorporated at various levels of approximation to "dress" what would otherwise be "thin" locally propagating trajectories. This derivative propagation method is used to obtain trajectory solutions for the Klein-Kramers equation, the Husimi equation, and for a smoothed version of the Caldeira-Leggett equation derived by the Diosi. Trajectory solutions are obtained for the relaxation of an oscillator in contact with a thermal bath and for the decay of a metastable state.

  19. Mapping Bias Overestimates Reference Allele Frequencies at the HLA Genes in the 1000 Genomes Project Phase I Data

    PubMed Central

    Brandt, Débora Y. C.; Aguiar, Vitor R. C.; Bitarello, Bárbara D.; Nunes, Kelly; Goudet, Jérôme; Meyer, Diogo

    2015-01-01

    Next-generation sequencing (NGS) technologies have become the standard for data generation in studies of population genomics, as the 1000 Genomes Project (1000G). However, these techniques are known to be problematic when applied to highly polymorphic genomic regions, such as the human leukocyte antigen (HLA) genes. Because accurate genotype calls and allele frequency estimations are crucial to population genomics analyses, it is important to assess the reliability of NGS data. Here, we evaluate the reliability of genotype calls and allele frequency estimates of the single-nucleotide polymorphisms (SNPs) reported by 1000G (phase I) at five HLA genes (HLA-A, -B, -C, -DRB1, and -DQB1). We take advantage of the availability of HLA Sanger sequencing of 930 of the 1092 1000G samples and use this as a gold standard to benchmark the 1000G data. We document that 18.6% of SNP genotype calls in HLA genes are incorrect and that allele frequencies are estimated with an error greater than ±0.1 at approximately 25% of the SNPs in HLA genes. We found a bias toward overestimation of reference allele frequency for the 1000G data, indicating mapping bias is an important cause of error in frequency estimation in this dataset. We provide a list of sites that have poor allele frequency estimates and discuss the outcomes of including those sites in different kinds of analyses. Because the HLA region is the most polymorphic in the human genome, our results provide insights into the challenges of using of NGS data at other genomic regions of high diversity. PMID:25787242

  20. A phase-space beam position monitor for synchrotron radiation

    PubMed Central

    Samadi, Nazanin; Bassey, Bassey; Martinson, Mercedes; Belev, George; Dallin, Les; de Jong, Mark; Chapman, Dean

    2015-01-01

    The stability of the photon beam position on synchrotron beamlines is critical for most if not all synchrotron radiation experiments. The position of the beam at the experiment or optical element location is set by the position and angle of the electron beam source as it traverses the magnetic field of the bend-magnet or insertion device. Thus an ideal photon beam monitor would be able to simultaneously measure the photon beam’s position and angle, and thus infer the electron beam’s position in phase space. X-ray diffraction is commonly used to prepare monochromatic beams on X-ray beamlines usually in the form of a double-crystal monochromator. Diffraction couples the photon wavelength or energy to the incident angle on the lattice planes within the crystal. The beam from such a monochromator will contain a spread of energies due to the vertical divergence of the photon beam from the source. This range of energies can easily cover the absorption edge of a filter element such as iodine at 33.17 keV. A vertical profile measurement of the photon beam footprint with and without the filter can be used to determine the vertical centroid position and angle of the photon beam. In the measurements described here an imaging detector is used to measure these vertical profiles with an iodine filter that horizontally covers part of the monochromatic beam. The goal was to investigate the use of a combined monochromator, filter and detector as a phase-space beam position monitor. The system was tested for sensitivity to position and angle under a number of synchrotron operating conditions, such as normal operations and special operating modes where the photon beam is intentionally altered in position and angle at the source point. The results are comparable with other methods of beam position measurement and indicate that such a system is feasible in situations where part of the synchrotron beam can be used for the phase-space measurement. PMID:26134798

  1. Capture into resonance and phase space dynamics in optical centrifuge

    NASA Astrophysics Data System (ADS)

    Armon, Tsafrir; Friedland, Lazar

    2016-05-01

    The process of capture of a molecular enesemble into rotational resonance in the optical centrifuge is investigated. The adiabaticity and phase space incompressibility are used to find the resonant capture probability in terms of two dimensionless parameters P1 , 2 characterising the driving strength and the nonlinearity, and related to three characteristic time scales in the problem. The analysis is based on the transformation to action-angle variables and the single resonance approximation, yielding reduction of the three-dimensional rotation problem to one degree of freedom. The analytic results for capture probability are in a good agreement with simulations. The existing experiments satisfy the validity conditions of the theory. This work was supported by the Israel Science Foundation Grant 30/14.

  2. Nonclassicality indicator for the real phase-space distribution functions

    SciTech Connect

    Sadeghi, Parvin; Khademi, Siamak; Nasiri, Sadollah

    2010-07-15

    Benedict et al. and Kenfack et al. advocated nonclassicality indicators based on the measurement of negativity of the Wigner distribution functions. These indicators have some applications in quantum mechanics and quantum optics. In this paper we define a nonclassicality indicator in terms of the interference in phase space, which is applicable to some real distribution functions including those of Wigner. As a special case one may reproduce the previous results using our indicator for the Wigner distribution functions. This indicator is examined for cases of the Schroedinger cat state and the thermal states and the results are compared with those obtained by previous methods. It seems that the physical behavior of nonclassicality indicators originates in the uncertainty principle. This is shown by an onto correspondence between these indicators and the uncertainty principle.

  3. Space shuttle electromagnetic environment experiment. Phase A: Definition study

    NASA Technical Reports Server (NTRS)

    Haber, F.; Showers, R. M.; Taheri, S. H.; Forrest, L. A., Jr.; Kocher, C.

    1974-01-01

    A program is discussed which develops a concept for measuring the electromagnetic environment on earth with equipment on board an orbiting space shuttle. Earlier work on spaceborne measuring experiments is reviewed, and emissions to be expected are estimated using, in part, previously gathered data. General relations among system parameters are presented, followed by a proposal on spatial and frequency scanning concepts. The methods proposed include a nadir looking measurement with small lateral scan and a circularly scanned measurement looking tangent to the earth's surface at the horizon. Antenna requirements are given, assuming frequency coverage from 400 MHz to 40 GHz. For the low frequency range, 400-1000 MHz, a processed, thinned array is proposed which will be more fully analyzed in the next phase of the program. Preliminary hardware and data processing requirements are presented.

  4. Tailoring phase-space in neutron beam extraction

    NASA Astrophysics Data System (ADS)

    Weichselbaumer, S.; Brandl, G.; Georgii, R.; Stahn, J.; Panzner, T.; Böni, P.

    2015-09-01

    In view of the trend towards smaller samples and experiments under extreme conditions it is important to deliver small and homogeneous neutron beams to the sample area. For this purpose, elliptic and/or Montel mirrors are ideally suited as the phase space of the neutrons can be defined far away from the sample. Therefore, only the useful neutrons will arrive at the sample position leading to a very low background. We demonstrate the ease of designing neutron transport systems using simple numeric tools, which are verified using Monte-Carlo simulations that allow taking into account effects of gravity and finite beam size. It is shown that a significant part of the brilliance can be transferred from the moderator to the sample. Our results may have a serious impact on the design of instruments at spallation sources such as the European Spallation Source (ESS) in Lund, Sweden.

  5. Production of Coherent Phase Space Islands in Trapped Plasma

    NASA Astrophysics Data System (ADS)

    Hunter, Eric; Povilus, Alex; Belmore, Nathan; Lewis, Nicole; Shanman, Sabrina; Fajans, Joel

    2015-11-01

    Particles are coherently extracted from a cold Maxwellian distribution into phase space islands by applying a fixed-frequency RF drive while the plasma bounce frequency is swept downward by lowering the potential confining the plasma. These objects can appear spontaneously in pure electron and mixed ion plasma experiments during particle extraction when the noise power spectrum of the confining potential has peaks in the rf band, as is often the case in a laboratory environment. Interestingly, the particles in these islands have been observed to form tight energy distributions, making the mechanism potentially useful for low energy/monoenergetic plasma injection devices. In particular, these features would be useful for antimatter spectroscopy and mixing for antihydrogen formation. This work is supported by DoE, Grant DE-FG02-06ER54904.

  6. Transverse - longitudinal phase-space manipulations and correlations.

    SciTech Connect

    Kim, K.-J.; Sessler, A.; Accelerator Systems Division; LBNL

    2006-01-01

    Manipulations on transverse and longitudinal phase-space distribution of an electron beam are discussed within the constraints imposed by symplectic conditions. A few examples are presented: transverse-longitudinal emittance exchange to improve performance of a high-gain free-electron laser (FEL) for hard x-rays, and the flat beam technique and its application to compact Terahertz devices and ultrashort-pulse generation. It is shown that emittance transfer to some degree would be advantageous for FELs and that introducing correlations would allow just such transfers. Also, it is shown that transverse-longitudinal correlations would be distinctly advantageous for FELs. Conventional and exotic methods of producing such correlations are described. Practical difficulties associated with each of the conventional methods are described, although the nonconventional methods appear to hold promise.

  7. Transverse-Longitudinal Phase-Space Manipulations and Correlations

    SciTech Connect

    Kim, Kwang-Je; Sessler, Andrew

    2006-03-20

    Manipulations on transverse and longitudinal phase-space distribution of an electron beam are discussed within the constraints imposed by symplectic conditions. A few examples are presented: transverse-longitudinal emittance exchange to improve performance of a high-gain free-electron laser (FEL) for hard x-rays, and the flat beam technique and its application to compact Terahertz devices and ultrashort-pulse generation. It is shown that emittance transfer to some degree would be advantageous for FELs and that introducing correlations would allow just such transfers. Also, it is shown that transverse-longitudinal correlations would be distinctly advantageous for FELs. Conventional and exotic methods of producing such correlations are described. Practical difficulties associated with each of the conventional methods are described, although the nonconventional methods appear to hold promise.

  8. Phase-space noncommutative formulation of Ozawa's uncertainty principle

    NASA Astrophysics Data System (ADS)

    Bastos, Catarina; Bernardini, Alex E.; Bertolami, Orfeu; Costa Dias, Nuno; Prata, João Nuno

    2014-08-01

    Ozawa's measurement-disturbance relation is generalized to a phase-space noncommutative extension of quantum mechanics. It is shown that the measurement-disturbance relations have additional terms for backaction evading quadrature amplifiers and for noiseless quadrature transducers. Several distinctive features appear as a consequence of the noncommutative extension: measurement interactions which are noiseless, and observables which are undisturbed by a measurement, or of independent intervention in ordinary quantum mechanics, may acquire noise, become disturbed by the measurement, or no longer be an independent intervention in noncommutative quantum mechanics. It is also found that there can be states which violate Ozawa's universal noise-disturbance trade-off relation, but verify its noncommutative deformation.

  9. Generalizing the Boltzmann equation in complex phase space.

    PubMed

    Zadehgol, Abed

    2016-08-01

    In this work, a generalized form of the BGK-Boltzmann equation is proposed, where the velocity, position, and time can be represented by real or complex variables. The real representation leads to the conventional BGK-Boltzmann equation, which can recover the continuity and Navier-Stokes equations. We show that the complex representation yields a different set of equations, and it can also recover the conservation and Navier-Stokes equations, at low Mach numbers, provided that the imaginary component of the macroscopic mass can be neglected. We briefly review the Constant Speed Kinetic Model (CSKM), which was introduced in Zadehgol and Ashrafizaadeh [J. Comp. Phys. 274, 803 (2014)JCTPAH0021-999110.1016/j.jcp.2014.06.053] and Zadehgol [Phys. Rev. E 91, 063311 (2015)PLEEE81539-375510.1103/PhysRevE.91.063311]. The CSKM is then used as a basis to show that the complex-valued equilibrium distribution function of the present model can be identified with a simple singularity in the complex phase space. The virtual particles, in the present work, are concentrated on virtual "branes" which surround the computational nodes. Employing the Cauchy integral formula, it is shown that certain variations of the "branes," in the complex phase space, do not affect the local kinetic states. This property of the new model, which is referred to as the "apparent jumps" in the present work, is used to construct new models. The theoretical findings have been tested by simulating three benchmark flows. The results of the present simulations are in excellent agreement with the previous results reported by others. PMID:27627421

  10. Nonlinear instabilities driven by coherent phase-space structures

    NASA Astrophysics Data System (ADS)

    Lesur, Maxime

    2012-10-01

    Coherent phase-space (PS) structures are an important feature of plasma turbulence. They can drive nonlinear instabilities [1], intermittency in drift-wave turbulence [2], and transport [3]. We aim at a comprehensive understanding of turbulence, not just as an ensemble of waves, as quasilinear theory implies, but as a mixture of coupled waves and localized structures. This work, which focuses on isolated PS structures, is a fundamental advance in this direction. We analyze the effects of self-binding negative fluctuations (PS holes) on stability, intermittency and anomalous resistivity, both analytically and numerically. We present a new theory which describes the growth of a hole or clump [4]. We find that PS holes grow nonlinearly, independently of linear stability. Numerical simulations clarify the physics of nonlinear instabilities in both subcritical and supercritical conditions. When many resonances are unstable, several holes can coalesce into one main macro-scale structure, which survives much longer than a quasilinear diffusion time, suggesting that it may be crucial to resolve phase-space turbulence in analytical and numerical studies of transport. These findings are applied to two fundamental paradigms of plasma physics: bump-on-tail instabilities in 1D electronic plasma and current-driven ion-acoustic instabilities electron-ion plasma. Our results expose important limits of routinely-used linear and quasilinear theories.[4pt] [1] T.H. Dupree, Phys. Fluids 15, 334 (1972); R.H. Berman et al., Phys. Rev. Lett. 48, 1249 (1982).[0pt] [2] P.W. Terry, P.H. Diamond, and T.S. Hahm, Phys. Fluids B 2, 2048 (1990).[0pt] [3] H. Biglari et al., Phys. Fluids 31, 2644 (1988); Y. Kosuga et al., Phys. Plasmas 18, 122305 (2011).[0pt] [4] M. Lesur, P.H. Diamond, submitted to Phys. Rev. Lett.

  11. Wigner phase space distribution via classical adiabatic switching

    SciTech Connect

    Bose, Amartya; Makri, Nancy

    2015-09-21

    Evaluation of the Wigner phase space density for systems of many degrees of freedom presents an extremely demanding task because of the oscillatory nature of the Fourier-type integral. We propose a simple and efficient, approximate procedure for generating the Wigner distribution that avoids the computational difficulties associated with the Wigner transform. Starting from a suitable zeroth-order Hamiltonian, for which the Wigner density is available (either analytically or numerically), the phase space distribution is propagated in time via classical trajectories, while the perturbation is gradually switched on. According to the classical adiabatic theorem, each trajectory maintains a constant action if the perturbation is switched on infinitely slowly. We show that the adiabatic switching procedure produces the exact Wigner density for harmonic oscillator eigenstates and also for eigenstates of anharmonic Hamiltonians within the Wentzel-Kramers-Brillouin (WKB) approximation. We generalize the approach to finite temperature by introducing a density rescaling factor that depends on the energy of each trajectory. Time-dependent properties are obtained simply by continuing the integration of each trajectory under the full target Hamiltonian. Further, by construction, the generated approximate Wigner distribution is invariant under classical propagation, and thus, thermodynamic properties are strictly preserved. Numerical tests on one-dimensional and dissipative systems indicate that the method produces results in very good agreement with those obtained by full quantum mechanical methods over a wide temperature range. The method is simple and efficient, as it requires no input besides the force fields required for classical trajectory integration, and is ideal for use in quasiclassical trajectory calculations.

  12. Wigner phase space distribution via classical adiabatic switching.

    PubMed

    Bose, Amartya; Makri, Nancy

    2015-09-21

    Evaluation of the Wigner phase space density for systems of many degrees of freedom presents an extremely demanding task because of the oscillatory nature of the Fourier-type integral. We propose a simple and efficient, approximate procedure for generating the Wigner distribution that avoids the computational difficulties associated with the Wigner transform. Starting from a suitable zeroth-order Hamiltonian, for which the Wigner density is available (either analytically or numerically), the phase space distribution is propagated in time via classical trajectories, while the perturbation is gradually switched on. According to the classical adiabatic theorem, each trajectory maintains a constant action if the perturbation is switched on infinitely slowly. We show that the adiabatic switching procedure produces the exact Wigner density for harmonic oscillator eigenstates and also for eigenstates of anharmonic Hamiltonians within the Wentzel-Kramers-Brillouin (WKB) approximation. We generalize the approach to finite temperature by introducing a density rescaling factor that depends on the energy of each trajectory. Time-dependent properties are obtained simply by continuing the integration of each trajectory under the full target Hamiltonian. Further, by construction, the generated approximate Wigner distribution is invariant under classical propagation, and thus, thermodynamic properties are strictly preserved. Numerical tests on one-dimensional and dissipative systems indicate that the method produces results in very good agreement with those obtained by full quantum mechanical methods over a wide temperature range. The method is simple and efficient, as it requires no input besides the force fields required for classical trajectory integration, and is ideal for use in quasiclassical trajectory calculations. PMID:26395694

  13. Wigner phase space distribution via classical adiabatic switching

    NASA Astrophysics Data System (ADS)

    Bose, Amartya; Makri, Nancy

    2015-09-01

    Evaluation of the Wigner phase space density for systems of many degrees of freedom presents an extremely demanding task because of the oscillatory nature of the Fourier-type integral. We propose a simple and efficient, approximate procedure for generating the Wigner distribution that avoids the computational difficulties associated with the Wigner transform. Starting from a suitable zeroth-order Hamiltonian, for which the Wigner density is available (either analytically or numerically), the phase space distribution is propagated in time via classical trajectories, while the perturbation is gradually switched on. According to the classical adiabatic theorem, each trajectory maintains a constant action if the perturbation is switched on infinitely slowly. We show that the adiabatic switching procedure produces the exact Wigner density for harmonic oscillator eigenstates and also for eigenstates of anharmonic Hamiltonians within the Wentzel-Kramers-Brillouin (WKB) approximation. We generalize the approach to finite temperature by introducing a density rescaling factor that depends on the energy of each trajectory. Time-dependent properties are obtained simply by continuing the integration of each trajectory under the full target Hamiltonian. Further, by construction, the generated approximate Wigner distribution is invariant under classical propagation, and thus, thermodynamic properties are strictly preserved. Numerical tests on one-dimensional and dissipative systems indicate that the method produces results in very good agreement with those obtained by full quantum mechanical methods over a wide temperature range. The method is simple and efficient, as it requires no input besides the force fields required for classical trajectory integration, and is ideal for use in quasiclassical trajectory calculations.

  14. An analytical phase-space model for tidal caustics

    NASA Astrophysics Data System (ADS)

    Sanderson, Robyn E.; Helmi, Amina

    2013-10-01

    The class of tidal features around galaxies known as `shells' or `umbrellas' comprises debris that has arisen from high-mass-ratio mergers with low-impact parameter; the nearly radial orbits of the debris give rise to a unique morphology, a universal density profile and a tight correlation between positions and velocities of the material. As such they are accessible to analytical treatment, and can provide a relatively clean system for probing the gravitational potential of the host galaxy. In this work, we present a simple analytical model that describes the density profile, phase-space distribution, and geometry of a shell and whose parameters are directly related to physical characteristics of the interacting galaxies. The model makes three assumptions: the orbit of the interacting galaxies is radial, the potential of the host galaxy at the shell radius is spherical and the satellite galaxy's initial velocity distribution is Maxwellian. We quantify the error introduced by the first two assumptions and show that selecting shells by their appearance on the sky is a sufficient basis to assume that these simplifications are valid. We further demonstrate that (1) given only an image of a shell, the radial gravitational force at the shell edge and the phase-space density of the satellite are jointly constrained, (2) combining the image with measurements of either point line-of-sight velocities or integrated-light spectra will yield an independent estimate of the gravitational force at a shell and (3) an independent measurement of this force is obtained for each shell observed around a given galaxy, potentially enabling a determination of the galactic mass distribution.

  15. Dynamics of Structures in Configuration Space and Phase Space: An Introductory Tutorial

    NASA Astrophysics Data System (ADS)

    Diamond, P. H.; Kosuga, Y.; Lesur, M.

    2015-12-01

    Some basic ideas relevant to the dynamics of phase space and real space structures are presented in a pedagogical fashion. We focus on three paradigmatic examples, namely; G. I. Taylor's structure based re-formulation of Rayleigh's stability criterion and its implications for zonal flow momentum balance relations; Dupree's mechanism for nonlinear current driven ion acoustic instability and its implication for anomalous resistivity; and the dynamics of structures in drift and gyrokinetic turbulence and their relation to zonal flow physics. We briefly survey the extension of mean field theory to calculate evolution in the presence of localized structures for regimes where Kubo number K ≃ 1 rather than K ≪ 1, as is usual for quasilinear theory.

  16. Effect of standard phase differences between gas and liquid and the resulting experimental bias in the analysis of gaseous volatile organic compounds.

    PubMed

    Kim, Yong-Hyun; Kim, Ki-Hyun

    2012-02-10

    Liquid- or gas-phase standards can be used for the analysis of VOCs in air. Once the accuracy is secured in the standard preparation stage, the use of gas-phase standard should be more reliable with the least matrix effect. However, it is not difficult to find that the liquid-phase standard is used more preferably in many laboratories for several reasons (e.g., low expense, easy handling, etc.). As such, one needs to accurately evaluate any possible bias stemming from the use of different standard phases. To this end, standards for 8 VOCs consisting of 4 aromatic compounds (benzene (B), toluene (T), styrene (S) and p-xylene (p-X)) and 4 others (methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), butyl acetate (BuAc), and isobutyl alcohol (i-BuAl)) were prepared in both liquid and gas phases. Each standard was analyzed by the initial collection on the adsorption tube and by the combined application of thermal-desorption-gas chromatography-mass spectrometry (TD/GC/MS). The results indicated that experimental bias between the two phases, if expressed in terms of percent difference (PD), was very low in many target VOCs (B (1.09%), T (2.41%), p-X (3.64%), MEK (6.76%), and MIBK (0.17%)), while it was not in some targets (e.g., >10%: e.g., S, i-BuAl, and BuAc). In an ancillary experiment, biases were evaluated further by (1) calibrating gaseous samples against liquid phase standard and via (2) comparison between two different types of gas phase standards. In conclusion, treatment of different standards (e.g., between the same or different phases) will inevitably induce biases in most VOCs, although certain volatiles (e.g., benzene, MIBK, etc.) are virtually unaffected by such variables in a practical sense. PMID:22244142

  17. Influence of a phase-locked RF substrate bias on the E- to H-mode transition in an inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Ahr, P.; Schüngel, E.; Schulze, J.; Tsankov, Ts V.; Czarnetzki, U.

    2015-08-01

    The effect of a capacitive radio frequency (RF) substrate bias on the E- to H-mode transition and electron-heating dynamics in a low-pressure inductively coupled plasma (ICP) operated in hydrogen is investigated by phase-resolved optical emission spectroscopy (PROES) and Langmuir probe measurements. The inductive and capacitive power sources are driven at the same frequency and operated in a phase-locked mode with fixed but adjustable phase between them, as well as without a phase lock. For both operations, when the discharge is in the E-mode, the plasma density is significantly influenced by the choice of capacitive power. This directly affects the mode transition power: already low values of bias power can substantially reduce the threshold for the E- to H-mode transition. This coupling between both power sources is strongly dependent on the adjustable phase between them and is attributed to a phase-sensitive confinement mechanism for the highly energetic electrons produced by the expanding sheaths at the substrate and at the ICP coil. At higher pressures the beam electrons do not interact with the opposing sheath and, consequently, the effect diminishes. Using phase-unlocked operation reduces the overall beam confinement and also results in less pronounced coupling effects. In contrast, by using electrodes with ring-shaped trenches the initial energy of the beam electrons is enhanced, increasing the influence of the RF bias on the operation of the ICP discharge.

  18. Auditory-Nerve Responses to Clicks at Low Levels, and the Initial Peak at High Levels, are Suppressed at Opposite Bias-Tone Phases

    NASA Astrophysics Data System (ADS)

    Nam, Hui; Guinan, John J.

    2011-11-01

    Apical auditory nerve (AN) fibers show two click-response regions that are both strongly inhibited by medial olivocochlear (MOC) efferents: (1) ringing responses from low- level (LL) clicks that are thought to be enhanced by a "cochlear amplifier," and (2) AN initial peak (ANIPr) responses from moderate-to-high level (˜70-100 dB pSPL) rarefaction clicks. Since MOC fibers synapse and act on outer hair cells (OHCs), the MOC inhibition of these responses indicates that OHC processes are heavily involved in the production of both LL and ANIPr responses. Using AN recordings in anesthetized cats, we explored the role of OHC stereocilia position in the production of these click-response regions by presenting rarefaction clicks at different phases of 50 Hz, 70-110 dB SPL bias tones. Bias effects on LL responses followed the traditional biasing pattern of twice-a-bias-tone-cycle suppression with more suppression at one phase than the other. This suppression is attributable to the bias tone moving the OHC stereocilia toward low-slope, saturation regions of the mechano-electric transduction function with the rest position being closer to one saturation region. A somewhat similar pattern was found for ANIPr responses except that the bias phases of the largest suppressions were different in ANIPr versus LL responses, usually by ˜180 degrees. The data are consistent with the LL and ANIPr responses both being due to active processes in OHCs that are controlled by OHC stereocilia position. The different phases of the LL and ANIPr suppressions indicate that different mechanisms, and perhaps different vibration patterns in the organ of Corti, are involved in the production of LL and ANIPr responses.

  19. A varying polytropic gas universe and phase space analysis

    NASA Astrophysics Data System (ADS)

    Khurshudyan, M.

    2016-05-01

    In this paper, we will consider a phenomenological model of a dark fluid that is able to explain an accelerated expansion of our low redshift universe and the phase transition to this accelerated expanding universe. Recent developments in modern cosmology towards understanding of the accelerated expansion of the large scale universe involve various scenarios and approaches. Among these approaches, one of well-known and accepted practice is modeling of the content of our universe via dark fluid. There are various models of dark energy fluid actively studied in recent literature and polytropic gas is among them. In this work, we will consider a varying polytropic gas which is a phenomenological modification of polytropic gas. Our model of varying polytropic dark fluid has been constructed to analogue to a varying Chaplygin gas actively discussed in the literature. We will consider interacting models, where dark matter is a pressureless fluid, to have a comprehensive picture. Phase space analysis is an elegant mathematical tool to earn general understanding of large scale universe and easily see an existence of a solution to cosmological coincidence problem. Imposing some constraints on parameters of the models, we found late time attractors for each case analytically. Cosmological consequences for the obtained late time attractors are discussed.

  20. Quantum trajectories in complex phase space: multidimensional barrier transmission.

    PubMed

    Wyatt, Robert E; Rowland, Brad A

    2007-07-28

    The quantum Hamilton-Jacobi equation for the action function is approximately solved by propagating individual Lagrangian quantum trajectories in complex-valued phase space. Equations of motion for these trajectories are derived through use of the derivative propagation method (DPM), which leads to a hierarchy of coupled differential equations for the action function and its spatial derivatives along each trajectory. In this study, complex-valued classical trajectories (second order DPM), along which is transported quantum phase information, are used to study low energy barrier transmission for a model two-dimensional system involving either an Eckart or Gaussian barrier along the reaction coordinate coupled to a harmonic oscillator. The arrival time for trajectories to reach the transmitted (product) region is studied. Trajectories launched from an "equal arrival time surface," defined as an isochrone, all reach the real-valued subspace in the transmitted region at the same time. The Rutherford-type diffraction of trajectories around poles in the complex extended Eckart potential energy surface is described. For thin barriers, these poles are close to the real axis and present problems for computing the transmitted density. In contrast, for the Gaussian barrier or the thick Eckart barrier where the poles are further from the real axis, smooth transmitted densities are obtained. Results obtained using higher-order quantum trajectories (third order DPM) are described for both thick and thin barriers, and some issues that arise for thin barriers are examined. PMID:17672677

  1. Local Polarization Dynamics and Bias-Induced Phase Transitions in Ferroelectric Relaxors: Time-resolved Spectroscopy and Ergodic Gap Mapping

    NASA Astrophysics Data System (ADS)

    Kalinin, S. V.; Rodriguez, B.; Nikiforov, M. P.; Balke, N.; Jesse, S.; Ovchinnikov, O. S.; Bokov, A. A.; Ye, Z.-G.

    2009-03-01

    Mesoscopic domain structure and dynamics in PMN-PT solis solutions is studied using spatially resolved time- and voltage spectroscopic imaging modes. For compositions close to the MPB, we observe the formation of classical ferroelectric domains with rough self-affine boundaries. In the ergodic phase (PMN and PMN-10PT), the formation of non-classical labyrinthine domain patterns characterized by a single characteristic length scale is observed. The (a) persistence of these patterns well above Tc and (b) the fact that cannot be switched by tip bias suggest that they can be attributed to the frozen polarization component. Spatial variability of polarization relaxation dynamics in PMN-10PT is studied. Local relaxation attributed to the reorientation of polar nanoregions was found to follow stretched exponential dependence, with β 0.4, much larger than the macroscopic value determined from dielectric spectra (β 0.09). The spatial inhomogeneity of relaxation time distribution with the presence of 100-200 nm ``fast'' and ``slow'' regions is observed. The results are analyzed to map the Vogel-Fulcher temperatures on the nanoscale. The applicability of this technique to map ``ergodic gap'' distribution on the surface is discussed. Research supported by the Division of Materials Science and Engineering, Basic Energy Sciences, U.S. Department of Energy at Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC.

  2. Phase space analysis for dynamics of three vortices of pure electron plasma trapped with Penning trap

    SciTech Connect

    Sanpei, Akio; Soga, Yukihiro; Ito, Kiyokazu; Himura, Haruhiko

    2015-06-29

    A trilinear phase space analysis is applied for dynamics of three electron clumps confined with a Penning-Malmberg trap. We show that the Aref’s concept of phase space describe the observed features of the dynamics of three point vortices qualitatively. In vacuum, phase point P moves to physical region boundary in phase space, i.e. triangular configuration cannot be kept. With the addition of a low level background vorticity distribution (BGVD), the excursion of the clumps is reduced and the distance between P and stable point does not extend in the phase space.

  3. Nonlinear Phase Mixing and Phase-Space Cascade of Entropy in Gyrokinetic Plasma Turbulence

    SciTech Connect

    Tatsuno, T.; Dorland, W.; Plunk, G. G.; Schekochihin, A. A.; Barnes, M.

    2009-07-03

    Electrostatic turbulence in weakly collisional, magnetized plasma can be interpreted as a cascade of entropy in phase space, which is proposed as a universal mechanism for dissipation of energy in magnetized plasma turbulence. When the nonlinear decorrelation time at the scale of the thermal Larmor radius is shorter than the collision time, a broad spectrum of fluctuations at sub-Larmor scales is numerically found in velocity and position space, with theoretically predicted scalings. The results are important because they identify what is probably a universal Kolmogorov-like regime for kinetic turbulence; and because any physical process that produces fluctuations of the gyrophase-independent part of the distribution function may, via the entropy cascade, result in turbulent heating at a rate that increases with the fluctuation amplitude, but is independent of the collision frequency.

  4. Quantum dynamics in phase space: Moyal trajectories 2

    SciTech Connect

    Braunss, G.

    2013-01-15

    Continuing a previous paper [G. Braunss, J. Phys. A: Math. Theor. 43, 025302 (2010)] where we had calculated Planck-Constant-Over-Two-Pi {sup 2}-approximations of quantum phase space viz. Moyal trajectories of examples with one and two degrees of freedom, we present in this paper the calculation of Planck-Constant-Over-Two-Pi {sup 2}-approximations for four examples: a two-dimensional Toda chain, the radially symmetric Schwarzschild field, and two examples with three degrees of freedom, the latter being the nonrelativistic spherically Coulomb potential and the relativistic cylinder symmetrical Coulomb potential with a magnetic field H. We show in particular that an Planck-Constant-Over-Two-Pi {sup 2}-approximation of the nonrelativistic Coulomb field has no singularity at the origin (r= 0) whereas the classical trajectories are singular at r= 0. In the third example, we show in particular that for an arbitrary function {gamma}(H, z) the expression {beta}{identical_to}p{sub z}+{gamma}(H, z) is classically ( Planck-Constant-Over-Two-Pi = 0) a constant of motion, whereas for Planck-Constant-Over-Two-Pi {ne} 0 this holds only if {gamma}(H, z) is an arbitrary polynomial of second order in z. This statement is shown to extend correspondingly to a cylinder symmetrical Schwarzschild field with a magnetic field. We exhibit in detail a number of properties of the radially symmetric Schwarzschild field. We exhibit finally the problems of the nonintegrable Henon-Heiles Hamiltonian and give a short review of the regular Hilbert space representation of Moyal operators.

  5. Phase Space Dissimilarity Measures for Structural Health Monitoring

    SciTech Connect

    Bubacz, Jacob A; Chmielewski, Hana T; Pape, Alexander E; Depersio, Andrew J; Hively, Lee M; Abercrombie, Robert K; Boone, Shane

    2011-11-01

    A novel method for structural health monitoring (SHM), known as the Phase Space Dissimilarity Measures (PSDM) approach, is proposed and developed. The patented PSDM approach has already been developed and demonstrated for a variety of equipment and biomedical applications. Here, we investigate SHM of bridges via analysis of time serial accelerometer measurements. This work has four aspects. The first is algorithm scalability, which was found to scale linearly from one processing core to four cores. Second, the same data are analyzed to determine how the use of the PSDM approach affects sensor placement. We found that a relatively low-density placement sufficiently captures the dynamics of the structure. Third, the same data are analyzed by unique combinations of accelerometer axes (vertical, longitudinal, and lateral with respect to the bridge) to determine how the choice of axes affects the analysis. The vertical axis is found to provide satisfactory SHM data. Fourth, statistical methods were investigated to validate the PSDM approach for this application, yielding statistically significant results.

  6. Phase space optics: an engineering tool for illumination design

    NASA Astrophysics Data System (ADS)

    Herkommer, Alois M.; Rausch, Denise

    2012-06-01

    For imaging design aberration theory provides solid ground for the layout and development of optical systems. Together with general design rules it will guide the optical engineer towards a valid starting point for his system. Illumination design is quite different: Often first system layouts are based on experience, rather than on a systematic approach. In addition radiometric nomenclature and definitions can be quite confusing, due to the variety of radiant performance definitions. Also at a later stage in the design, the performance evaluation usually requires extensive statistical raytracing, in order to confirm the specified energetic quantities. In general it would therefore be helpful for illumination designers, especially beginners, to have an engineering tool, which allows a fast, systematic and illustrative access to illumination design problems. We show that phase space methods can provide such a tool and moreover allow a consistent approach to radiometry. Simple illustrative methods can be used to layout and understand even complex illumination components like integrator rods and optical arrays.

  7. Phase-space estimate of satellite coverage time

    SciTech Connect

    Canavan, G.H.

    1992-05-01

    This note derives a phase-space estimate of the overlap in satellite coverage and evaluates its impact on the time for a constellation to cover some specified area. The satellites` motion is treated as random in the calculation of the overlaps. Enough passes are prescribed to assure that an adequate probability of observing each area is accumulated. For 0.9--0.99 probabilities of coverage, overlaps increase the time for coverage by factors of 2--4 over no-overlap estimates. This model also gives the probability of different vintages of data. If a given constellation covers the whole Earth in the no-overlap time T{sub 0}, the average vintage of the data over the earth will then be the average , which is essentially the same as T{sub 0}. Overlap over the poles might be wasteful, but overlap in areas of interest by inclined orbits just causes measurements to be more current in areas of interest.

  8. Phase-space estimate of satellite coverage time

    SciTech Connect

    Canavan, G.H.

    1992-05-01

    This note derives a phase-space estimate of the overlap in satellite coverage and evaluates its impact on the time for a constellation to cover some specified area. The satellites' motion is treated as random in the calculation of the overlaps. Enough passes are prescribed to assure that an adequate probability of observing each area is accumulated. For 0.9--0.99 probabilities of coverage, overlaps increase the time for coverage by factors of 2--4 over no-overlap estimates. This model also gives the probability of different vintages of data. If a given constellation covers the whole Earth in the no-overlap time T{sub 0}, the average vintage of the data over the earth will then be the average , which is essentially the same as T{sub 0}. Overlap over the poles might be wasteful, but overlap in areas of interest by inclined orbits just causes measurements to be more current in areas of interest.

  9. Influence of a phase-locked RF substrate bias on the E- to H-mode transition in an inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Ahr, Philipp; Schuengel, Edmund; Schulze, Julian; Tsankov, Tsanko V.; Czarnetzki, Uwe

    2015-09-01

    The influence of a capacitive radio frequency substrate bias on the E- to H-mode transition and the electron heating dynamics in a low pressure inductively coupled plasma (ICP) in hydrogen is investigated. The inductive and capacitive power sources are driven at the same frequency and can be operated in a phase-locked mode with a fixed, but adjustable phase between them. This approach of phase-locked discharge operation is a new feature which enables time-resolved studies of both the inductive and the capacitive energy coupling by phase-resolved optical emission spectroscopy (PROES). The inductive power at which the mode transition occurs, Pmtp, is determined by PROES and from probe measurements of the electron density. For both, phase-locked and phase-unlocked operation, the plasma density in the E-mode is significantly influenced by the applied capacitive power: Already low values of bias power can reduce the value of Pmtp. This coupling between the power sources is dependent on the adjustable phase between them and is attributed to a phase sensitive confinement mechanism for the energetic electrons produced by the expanding sheaths at the substrate and at the ICP coil. At higher pressures the effect diminishes. In contrast, by using electrodes with ring-shaped trenches the coupling is enhanced.

  10. Computational methods for microfluidic microscopy and phase-space imaging

    NASA Astrophysics Data System (ADS)

    Pegard, Nicolas Christian Richard

    Modern optical devices are made by assembling separate components such as lenses, objectives, and cameras. Traditionally, each part is optimized separately, even though the trade-offs typically limit the performance of the system overall. This component-based approach is particularly unfit to solve the new challenges brought by modern biology: 3D imaging, in vivo environments, and high sample throughput. In the first part of this thesis, we introduce a general method to design integrated optical systems. The laws of wave propagation, the performance of available technology, as well as other design parameters are combined as constraints into a single optimization problem. The solution provides qualitative design rules to improve optical systems as well as quantitative task-specific methods to minimize loss of information. Our results have applications in optical data storage, holography, and microscopy. The second part of this dissertation presents a direct application. We propose a more efficient design for wide-field microscopy with coherent light, based on double transmission through the sample. Historically, speckle noise and aberrations caused by undesired interferences have made coherent illumination unpopular for imaging. We were able to dramatically reduce speckle noise and unwanted interferences using optimized holographic wavefront reconstruction. The resulting microscope not only yields clear coherent images with low aberration---even in thick samples---but also increases contrast and enables optical filtering and in-depth sectioning. In the third part, we develop new imaging techniques that better respond to the needs of modern biology research through implementing optical design optimization. Using a 4D phase-space distribution, we first represent the state and propagation of incoherent light. We then introduce an additional degree of freedom by putting samples in motion in a microfluidic channel, increasing image diversity. From there, we develop a