Science.gov

Sample records for phase transitions volume

  1. QCD Phase Transitions, Volume 15

    SciTech Connect

    Schaefer, T.; Shuryak, E.

    1999-03-20

    The title of the workshop, ''The QCD Phase Transitions'', in fact happened to be too narrow for its real contents. It would be more accurate to say that it was devoted to different phases of QCD and QCD-related gauge theories, with strong emphasis on discussion of the underlying non-perturbative mechanisms which manifest themselves as all those phases. Before we go to specifics, let us emphasize one important aspect of the present status of non-perturbative Quantum Field Theory in general. It remains true that its studies do not get attention proportional to the intellectual challenge they deserve, and that the theorists working on it remain very fragmented. The efforts to create Theory of Everything including Quantum Gravity have attracted the lion share of attention and young talent. Nevertheless, in the last few years there was also a tremendous progress and even some shift of attention toward emphasis on the unity of non-perturbative phenomena. For example, we have seen some efforts to connect the lessons from recent progress in Supersymmetric theories with that in QCD, as derived from phenomenology and lattice. Another example is Maldacena conjecture and related development, which connect three things together, string theory, super-gravity and the (N=4) supersymmetric gauge theory. Although the progress mentioned is remarkable by itself, if we would listen to each other more we may have chance to strengthen the field and reach better understanding of the spectacular non-perturbative physics.

  2. QCD PHASE TRANSITIONS-VOLUME 15.

    SciTech Connect

    SCHAFER,T.

    1998-11-04

    The title of the workshop, ''The QCD Phase Transitions'', in fact happened to be too narrow for its real contents. It would be more accurate to say that it was devoted to different phases of QCD and QCD-related gauge theories, with strong emphasis on discussion of the underlying non-perturbative mechanisms which manifest themselves as all those phases. Before we go to specifics, let us emphasize one important aspect of the present status of non-perturbative Quantum Field Theory in general. It remains true that its studies do not get attention proportional to the intellectual challenge they deserve, and that the theorists working on it remain very fragmented. The efforts to create Theory of Everything including Quantum Gravity have attracted the lion share of attention and young talent. Nevertheless, in the last few years there was also a tremendous progress and even some shift of attention toward emphasis on the unity of non-perturbative phenomena. For example, we have seen some. efforts to connect the lessons from recent progress in Supersymmetric theories with that in QCD, as derived from phenomenology and lattice. Another example is Maldacena conjecture and related development, which connect three things together, string theory, super-gravity and the (N=4) supersymmetric gauge theory. Although the progress mentioned is remarkable by itself, if we would listen to each other more we may have chance to strengthen the field and reach better understanding of the spectacular non-perturbative physics.

  3. Volume phase transitions of cholesteric liquid crystalline gels.

    PubMed

    Matsuyama, Akihiko

    2015-05-01

    We present a mean field theory to describe anisotropic deformations of a cholesteric elastomer without solvent molecules and a cholesteric liquid crystalline gel immersed in isotropic solvents at a thermal equilibrium state. Based on the neoclassical rubber theory of nematic elastomers, we derive an elastic energy and a twist distortion energy, which are important to determine the shape of a cholesteric elastomer (or gel). We demonstrate that when the elastic energy dominates in the free energy, the cholesteric elastomer causes a spontaneous compression in the pitch axis and elongates along the director on the plane perpendicular to the pitch axis. Our theory can qualitatively describe the experimental results of a cholesteric elastomer. We also predict the first-order volume phase transitions and anisotropic deformations of a gel at the cholesteric-isotropic phase transition temperature. Depending on a chirality of a gel, we find a prolate or oblate shape of cholesteric gels. PMID:25956120

  4. Volume phase transitions of cholesteric liquid crystalline gels

    SciTech Connect

    Matsuyama, Akihiko

    2015-05-07

    We present a mean field theory to describe anisotropic deformations of a cholesteric elastomer without solvent molecules and a cholesteric liquid crystalline gel immersed in isotropic solvents at a thermal equilibrium state. Based on the neoclassical rubber theory of nematic elastomers, we derive an elastic energy and a twist distortion energy, which are important to determine the shape of a cholesteric elastomer (or gel). We demonstrate that when the elastic energy dominates in the free energy, the cholesteric elastomer causes a spontaneous compression in the pitch axis and elongates along the director on the plane perpendicular to the pitch axis. Our theory can qualitatively describe the experimental results of a cholesteric elastomer. We also predict the first-order volume phase transitions and anisotropic deformations of a gel at the cholesteric-isotropic phase transition temperature. Depending on a chirality of a gel, we find a prolate or oblate shape of cholesteric gels.

  5. Volume phase transitions of cholesteric liquid crystalline gels

    NASA Astrophysics Data System (ADS)

    Matsuyama, Akihiko

    2015-05-01

    We present a mean field theory to describe anisotropic deformations of a cholesteric elastomer without solvent molecules and a cholesteric liquid crystalline gel immersed in isotropic solvents at a thermal equilibrium state. Based on the neoclassical rubber theory of nematic elastomers, we derive an elastic energy and a twist distortion energy, which are important to determine the shape of a cholesteric elastomer (or gel). We demonstrate that when the elastic energy dominates in the free energy, the cholesteric elastomer causes a spontaneous compression in the pitch axis and elongates along the director on the plane perpendicular to the pitch axis. Our theory can qualitatively describe the experimental results of a cholesteric elastomer. We also predict the first-order volume phase transitions and anisotropic deformations of a gel at the cholesteric-isotropic phase transition temperature. Depending on a chirality of a gel, we find a prolate or oblate shape of cholesteric gels.

  6. Salt effect on volume phase transition of a gel.

    PubMed

    Annaka, Masahiko; Amo, Yuko; Sasaki, Shigeo; Tominaga, Yasunori; Motokawa, Keiko; Nakahira, Takayuki

    2002-03-01

    The salt effect on the phase transition of N-isopropylacrylamide (NIPA) gel was studied for alkali-metal chlorides (NaCl, KCl, and CsCl). Low-frequency Raman scattering experiment was conducted to know the dynamic state of water molecule under the presence of salt and its correlation to macroscopic phase behavior of the gel was investigated together with the thermodynamic activities of water molecule of aqueous alkali-metal chloride solutions. The series of swelling experiment reveal that the change in the gel volume phase transition strongly depends on the salt concentration and is related to the dehydration with respect to hydrophobic hydration. From the analysis of the reduced low-frequency Raman spectra in water and aqueous alkali-metal chlorides solutions by the use of the relaxation mode that takes into account the inertia and the non-white effects, the characteristic values of aqueous salt solutions (i.e., relaxation time and modulation speed) indicate that the addition of alkali-metal chloride to gel fluid affects the disruption of water molecules in the hydration shell around the NIPA gel and the formation of the hydrogen-bonded network structure of water around themselves, as a result of which the gel collapses. The chemical potential and the dynamic nature of water molecule at the transition points are well correlated: the chemical potentials at the transition points are almost constant whereas the structure of bulk water is changed by addition of alkali-metal chlorides or change in temperature. These results strongly suggest that the swelling ratio of N-isopropylacrylamide gel is a function of hydration degree, which is regulated by the chemical potential of water. PMID:11909100

  7. Deconfinement phase transition in a finite volume in the presence of massive particles

    SciTech Connect

    Ait El Djoudi, A.; Ghenam, L.

    2012-06-27

    We study the QCD deconfinement phase transition from a hadronic gas to a Quark-Gluon Plasma, in the presence of massive particles. Especially, the influence of some parameters as the finite volume, finite mass, flavors number N{sub f} on the transition point and on the order of the transition is investigated.

  8. Effects of strongly selective additives on volume phase transition in gels

    NASA Astrophysics Data System (ADS)

    Uematsu, Yuki; Araki, Takeaki

    2012-07-01

    We investigate volume phase transition in gels immersed in mixture solvents, on the basis of a three-component Flory-Rehner theory. When the selectivity of the minority solvent component to the polymer network is strong, the gel tends to shrink with an increasing concentration of the additive, regardless of whether it is good or poor. This behavior originates from the difference of the additive concentration between inside and outside the gel. We also found the gap of the gel volume at the transition point can be controlled by adding the strongly selective solutes. By dissolving a strongly poor additive, for instance, the discontinuous volume phase transition can be extinguished. Furthermore, we observed that another volume phase transition occurs far from the original transition point. These behaviors can be well explained by a simplified theory neglecting the nonlinearity of the additive concentration.

  9. Temperature-dependent phase transitions of a complex biological membrane in zeptoliter volumes

    SciTech Connect

    Nikiforov, Maxim; Hohlbauch, Sophia; King, William P; Voitchovsky, K; Contera, S Antoranz; Jesse, Stephen; Kalinin, Sergei V; Proksch, Roger

    2011-01-01

    Phase transitions in purple membrane have been a topic of debate for the past two decades. In this work we present studies of a reversible transition of purple membrane in the 50 60 C range in zeptoliter volumes under different heating regimes (global heating and local heating). The temperature of the reversible phase transition is 52 5 C for both local and global heating, supporting the hypothesis that this transition is mainly due to a structural rearrangement of bR molecules and trimers. To achieve high resolution measurements of temperature-dependent phase transitions, a new scanning probe microscopy-based method was developed. We believe that our new technique can be extended to other biological systems and can contribute to the understanding of inhomogeneous phase transitions in complex systems.

  10. Study of the deconfinement phase transition in a finite volume with massive particles: Hydrodynamics of the system near the transition

    SciTech Connect

    Ghenam, L.; Djoudi, A. Ait El

    2012-06-27

    We study the finite size and finite mass effects for the thermal deconfinement phase transition in Quantum Chromodynamics (QCD), using a simple model of coexistence of hadronic (H) gas and quark-gluon plasma (QGP) phases in a finite volume. We consider the equations of state of the two phases with the QGP containing two massless u and d quarks and massive s quarks, and a hadronic gas of massive pions, and we probe the system near the transition. For this, we examine the behavior of the most important hydrodynamical quantities describing the system, at a vanishing chemical potential ({mu}= 0), with temperature and energy density.

  11. Open volume defects and magnetic phase transition in Fe{sub 60}Al{sub 40} transition metal aluminide

    SciTech Connect

    Liedke, M. O. Anwand, W.; Butterling, M.; Wagner, A.; Bali, R.; Cornelius, S.; Potzger, K.; Trinh, T. T.; Salamon, S.; Walecki, D.; Smekhova, A.; Wende, H.

    2015-04-28

    Magnetic phase transition in the Fe{sub 60}Al{sub 40} transition metal aluminide from the ferromagnetic disordered A2-phase to the paramagnetic ordered B2-phase as a function of annealing up to 1000 °C has been investigated by means of magneto-optical and spectroscopy techniques, i.e., Kerr effect, positron annihilation, and Mössbauer spectroscopy. The positron annihilation spectroscopy has been performed in-situ sequentially after each annealing step at the Apparatus for In-situ Defect Analysis that is a unique tool combining positron annihilation spectroscopy with temperature treatment, material evaporation, ion irradiation, and sheet resistance measurement techniques. The overall goal was to investigate the importance of the open volume defects onto the magnetic phase transition. No evidence of variation in the vacancy concentration in matching the magnetic phase transition temperature range (400–600 °C) has been found, whereas higher temperatures showed an increase in the vacancy concentration.

  12. Phases and Phase Transitions

    NASA Astrophysics Data System (ADS)

    Gitterman, Moshe

    2014-09-01

    In discussing phase transitions, the first thing that we have to do is to define a phase. This is a concept from thermodynamics and statistical mechanics, where a phase is defined as a homogeneous system. As a simple example, let us consider instant coffee. This consists of coffee powder dissolved in water, and after stirring it we have a homogeneous mixture, i.e., a single phase. If we add to a cup of coffee a spoonful of sugar and stir it well, we still have a single phase -- sweet coffee. However, if we add ten spoonfuls of sugar, then the contents of the cup will no longer be homogeneous, but rather a mixture of two homogeneous systems or phases, sweet liquid coffee on top and coffee-flavored wet sugar at the bottom...

  13. Anomalous Volume Phase Transition Temperature of Thermosensitive Semi-Interpenetrating Polymer Network Microgel Suspension by Dielectric Spectroscopy.

    PubMed

    Yang, Man; Zhao, Kongshuang

    2015-10-15

    A new experimental result from dielectric spectroscopy of poly(N-isopropylacrylamide)/poly(acrylic acid) semi-interpenetrating polymer network (PNIPAM/PAA SIPN) microgel, which undergoes significant volume phase transition, is reported. Two significant dielectric relaxations were observed around 0.1-0.5 MHz and 1-5 MHz, respectively. The high-frequency relaxation is attributed to the migration of counterions tangentially and radially along the domain formed by linear PAA chains (counterion polarization). The temperature dependence of the domain size obtained from this relaxation shows that the SIPN microgel with higher content of PAA has better thermal response and swelling property. The low-frequency relaxation shows two separate mechanisms below and above the volume phase transition temperature (VPTT), which are dominated by different relaxation processes, respectively: micro-Brownian movement of solvated side groups of PNIPAM dominates when T < VPTT, while the interfacial polarization does when T > VPTT. A dielectric model was proposed to describe the collapsed microspheres suspension, from which the electrical parameters of microgel were calculated. The permittivity of microgel shows that a special ordered arrangement of water molecules is formed in microgel with less PAA. Thermodynamic parameters obtained from Eyring equation reveal that the difference in PAA content has a great influence on the thermodynamics of the phase transition process. Besides, it was found that the VPTT of the SIPN microgel was significantly increased compared with pure PNIPAM hydrogel microspheres. The essence of anomalous VPTT revealed by relaxation mechanism is the difference in composition content leading to different hydrophilic/hydrophobic and electrostatic interaction. Determining the reason for anomalous VPTT is of instructive significance to understand the volume phase transition of complex polymer materials. PMID:26401730

  14. Holographic magnetic phase transition

    SciTech Connect

    Lifschytz, Gilad; Lippert, Matthew

    2009-09-15

    We study four-dimensional interacting fermions in a strong magnetic field, using the holographic Sakai-Sugimoto model of intersecting D4- and D8-branes in the deconfined, chiral-symmetric parallel phase. We find that as the magnetic field is varied, while staying in the parallel phase, the fermions exhibit a first-order phase transition in which their magnetization jumps discontinuously. Properties of this transition are consistent with a picture in which some of the fermions jump to the lowest Landau level. Similarities to known magnetic phase transitions are discussed.

  15. Photoinduced phase transitions.

    PubMed

    Bennemann, K H

    2011-02-23

    Optically induced ultrafast electronic excitations with sufficiently long lifetimes may cause strong effects on phase transitions like structural and nonmetal→metal ones and on supercooling, supersaturation, etc. Examples are the transitions diamond→graphite, graphite→graphene, non-metal→metal, solid→liquid and vapor→liquid, solid. Photoinduced formation of graphene and water condensation of saturated or supersaturated vapor due to increased bonding amongst water molecules are of particular interest. These nonequilibrium transitions are an ultrafast response, on a few hundred fs time scale, to the fast low to large energy electronic excitations. The energy of the photons is converted into electronic energy via electronic excitations changing the cohesive energy. This changes the chemical potential controlling the phase transition. In view of the advances in laser optics photon induced transitions are expected to become an active area in nonequilibrium physics and phase transition dynamics. Conservation laws like energy or angular momentum conservation control the time during which the transitions occur. Since the photon induced effects result from weakening or strengthening of the bonding between the atoms or molecules transitions like solid/liquid, etc can be shifted in both directions. Photoinduced transitions will be discussed from a unified point of view. PMID:21411879

  16. Electroweak Phase Transitions

    NASA Astrophysics Data System (ADS)

    Anderson, Gregory Wayne

    An analytic treatment of the one Higgs doublet, electroweak phase transition is given. The phase transition is first order, occurs by the nucleation of thin walled bubbles, and completes at a temperature where the order parameter, _ {T}, is significantly smaller than it is when the origin becomes absolutely unstable. The rate of anomalous baryon number violation is an exponentially sensitive function of T. In very minimal extensions of the standard model it is quite easy to increase T so that anomalous baryon number violation is suppressed after completion of the phase transition. Hence baryogenesis at the electroweak phase transition is tenable in minimal extensions of the standard model. In some cases additional phase transitions are possible. For a light Higgs boson, when the top quark mass is sufficiently large, the state where the Higgs field has a vacuum expectation value = 246 GeV is not the true minimum of the Higgs potential. When this is the case, and when the top quark mass exceeds some critical value, thermal fluctuations in the early universe would have rendered the state = 246 GeV unstable. The requirement that the state = 246 GeV is sufficiently long lived constrains the masses of the Higgs boson and the top quark. Finally, we consider whether local phase transitions can be induced by heavy particles which act as seeds for deformations in the scalar field. Semi-classical reasoning suggests that, when a particle receives a contribution to its mass from the vacuum expectation value of a scalar, under certain conditions, the ground state of particle number one contains a 'dimple' or shallow scalar field condensate around the particle. We argue that this is not the case. A careful analysis, taking into account quantum mechanics, shows that the semi-classical approximation is a poor one. We find that there are no energetically favored one-particle dimple solutions for perturbative couplings.

  17. Electroweak phase transitions

    SciTech Connect

    Anderson, G.W.

    1991-09-16

    An analytic treatment of the one Higgs doublet, electroweak phase transition is given. The phase transition is first order, occurs by the nucleation of thin walled bubbles and completes at a temperature where the order parameter, {l angle}{phi}{r angle}{sub T} is significantly smaller than it is when the origin becomes absolutely unstable. The rate of anomalous baryon number violation is an exponentially function of {l angle}{phi}{r angle}{sub T}. In very minimal extensions of the standard model it is quite easy to increase {l angle}{phi}{r angle}{sub T} so that anomalous baryon number violation is suppressed after completion of the phase transition. Hence baryogenesis at the electroweak phase transition is tenable in minimal of the standard model. In some cases additional phase transitions are possible. For a light Higgs boson, when the top quark mass is sufficiently large, the state where the Higgs field has a vacuum expectation value {l angle}{phi}{r angle} = 246 GeV is not the true minimum of the Higgs potential. When this is the case, and when the top quark mass exceeds some critical value, thermal fluctuations in the early universe would have rendered the state {l angle}{phi}{r angle} = 246 GeV unstable. The requirement that the state {l angle}{phi}{r angle} = 246 GeV is sufficiently long lived constrains the masses of the Higgs boson and the top quark. Finally, we consider whether local phase transitions can be induced by heavy particles which act as seeds for deformations in the scalar field.

  18. Electroweak phase transitions

    SciTech Connect

    Anderson, G.W.

    1991-09-16

    An analytic treatment of the one Higgs doublet, electroweak phase transition is given. The phase transition is first order, occurs by the nucleation of thin walled bubbles and completes at a temperature where the order parameter, {l_angle}{phi}{r_angle}{sub T} is significantly smaller than it is when the origin becomes absolutely unstable. The rate of anomalous baryon number violation is an exponentially function of {l_angle}{phi}{r_angle}{sub T}. In very minimal extensions of the standard model it is quite easy to increase {l_angle}{phi}{r_angle}{sub T} so that anomalous baryon number violation is suppressed after completion of the phase transition. Hence baryogenesis at the electroweak phase transition is tenable in minimal of the standard model. In some cases additional phase transitions are possible. For a light Higgs boson, when the top quark mass is sufficiently large, the state where the Higgs field has a vacuum expectation value {l_angle}{phi}{r_angle} = 246 GeV is not the true minimum of the Higgs potential. When this is the case, and when the top quark mass exceeds some critical value, thermal fluctuations in the early universe would have rendered the state {l_angle}{phi}{r_angle} = 246 GeV unstable. The requirement that the state {l_angle}{phi}{r_angle} = 246 GeV is sufficiently long lived constrains the masses of the Higgs boson and the top quark. Finally, we consider whether local phase transitions can be induced by heavy particles which act as seeds for deformations in the scalar field.

  19. String mediated phase transitions

    NASA Technical Reports Server (NTRS)

    Copeland, ED; Haws, D.; Rivers, R.; Holbraad, S.

    1988-01-01

    It is demonstrated from first principles how the existence of string-like structures can cause a system to undergo a phase transition. In particular, the role of topologically stable cosmic string in the restoration of spontaneously broken symmetries is emphasized. How the thermodynamic properties of strings alter when stiffness and nearest neighbor string-string interactions are included is discussed.

  20. Phase Transitions of PYR14-TFSI as a Function of Pressure and Temperature: the Competition between Smaller Volume and Lower Energy Conformer.

    PubMed

    Capitani, F; Trequattrini, F; Palumbo, O; Paolone, A; Postorino, P

    2016-03-24

    A detailed Raman study has been carried out on the ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR14-TFSI) over a wide pressure (0-8 GPa) and temperature (100-300 K) range. The explored thermodynamic region allowed us to study the evolution of the system across different solid and liquid phases. Calculated Raman spectra remarkably helped in the spectral data analysis. In particular, the pressure behavior of the most intense Raman peak and the shape analysis of the ruby fluorescence (used as a local pressure gauge) allowed us to identify a liquid-solid transition around 2.2 GPa at T = 300 K. The low-frequency Raman signal as well as the absence of remarkable spectral shape modifications on crossing the above threshold and the comparison with the spectra of the crystalline phase suggest a glassy nature of the high-pressure phase. A detailed analysis of the pressure dependence of the relative concentration of two conformers of TFSI allowed us to obtain an estimate of the volume variation between trans-TFSI and the smaller cis-TFSI, which is the favored configuration on applying the pressure. Finally, the combined use of both visual inspection and Raman spectroscopy confirmed the peculiar sequence of phase transitions observed as a function of temperature at ambient pressure and the different spectral/morphological characteristics of the two crystalline phases. PMID:26937556

  1. Emergence and Phase Transitions

    NASA Astrophysics Data System (ADS)

    Sikkema, Arnold

    2006-05-01

    Phase transitions are well defined in physics through concepts such as spontaneous symmetry breaking, order parameter, entropy, and critical exponents. But emergence --- also exhibiting whole-part relations (such as top-down influence), unpredictability, and insensitivity to microscopic detail --- is a loosely-defined concept being used in many disciplines, particularly in psychology, biology, philosophy, as well as in physics[1,2]. I will review the concepts of emergence as used in the various fields and consider the extent to which the methods of phase transitions can clarify the usefulness of the concept of emergence both within the discipline of physics and beyond.1. Robert B. Laughlin, A Different Universe: Reinventing Physics from the Bottom Down (New York: Basic Books, 2005). 2. George F.R. Ellis, ``Physics and the Real World'', Physics Today, vol. 58, no. 7 (July 2005) pp. 49-54.

  2. A Novel In-situ Electrochemical Cell for Neutron Diffraction Studies of Phase Transitions in Small Volume Electrodes of Li-ion Batteries

    SciTech Connect

    Vadlamani, Bhaskar S; An, Ke; Jagannathan, M.; Ravi Chandran, K.

    2014-01-01

    The design and performance of a novel in-situ electrochemical cell that greatly facilitates the neutron diffraction study of complex phase transitions in small volume electrodes of Li-ion cells, is presented in this work. Diffraction patterns that are Rietveld-refinable could be obtained simultaneously for all the electrodes, which demonstrates that the cell is best suited to explore electrode phase transitions driven by the lithiation and delithiation processes. This has been facilitated by the use of single crystal (100) Si sheets as casing material and the planar cell configuration, giving improved signal-to-noise ratio relative to other casing materials. The in-situ cell has also been designed for easy assembly and to facilitate rapid experiments. The effectiveness of cell is demonstrated by tracking the neutron diffraction patterns during the charging of graphite/LiCoO2 and graphite/LiMn2O4 cells. It is shown that good quality neutron diffraction data can be obtained and that most of the finer details of the phase transitions, and the associated changes in crystallographic parameters in these electrodes, can be captured.

  3. Giant Volume Change and Topological Gaps in Temperature- and Pressure-Induced Phase Transitions: Experimental and Computational Study of ThMo2 O8.

    PubMed

    Xiao, Bin; Kegler, Philip; Gesing, Thorsten M; Robben, Lars; Blanca-Romero, Ariadna; Kowalski, Piotr M; Li, Yan; Klepov, Vladislav; Bosbach, Dirk; Alekseev, Evgeny V

    2016-01-18

    By applying high temperature (1270 K) and high pressure (3.5 GPa), significant changes occur in the structural volume and crystal topology of ThMo2 O8 , allowing the formation of an unexpected new ThMo2 O8 polymorph (high-temperature/high-pressure (HT/HP) orthorhombic ThMo2 O8 ). Compared with the other three ThMo2 O8 polymorphs prepared at the ambient pressure (monoclinic, orthorhombic, and hexagonal phases), the molar volume for the quenched HT/HP-orthorhombic ThMo2 O8 is decreased by almost 20 %. As a result of such a dramatic structural transformation, a permanent high-pressure quenchable state is able to be sustained when the pressure is released. The crystal structures of the three ambient ThMo2 O8 phases are based on three-dimensional (3D) frameworks constructed from corner-sharing ThOx (x=6, 8, or 9) polyhedra and MoO4 tetrahedra. The HT/HP-orthorhombic ThMo2 O8 , however, crystallizes in a novel structural topology, exhibiting very dense arrangements of ThO11 and MoO4+1 polyhedra connecting along the crystallographic c axis. The phase transitions among all four of these ThMo2 O8 polymorphs are unveiled and fully characterized with regard to the structural transformation, thermal stability, and vibrational properties. The complementary first principles calculations of Gibbs free energies reveal the underlying energetics of the phase transition, which support the experimental findings. PMID:26626413

  4. On the nature of volume-phase transitions in photo-cross-linked poly(cyclopropylacrylamide) and poly(N-vinylisobutyramide) coatings

    SciTech Connect

    Patra, Leena; Messman, Jamie M; Toomey, Ryan G

    2013-01-01

    Ellipsometry in an inverted configuration was used to characterize the temperature-dependent swelling of thin (100 nm) coatings of photo-cross-linked poly(cyclopropylacrylamide), or poly(CPAAm), and poly(vinylisobutyramide), or poly(NVIBAm). Both polymers contained 3 mole % of methacroylaminobenzophenone (MnBP) as the photo-cross-linking unit. Poly(CPAAm-co-MnBP) showed a continuous, 2nd order deswelling transition between 10 and 70 oC with no hysteresis. Poly(NVIBAm), on the other hand showed a discontinuous, 1st order deswelling transition at 45 oC with a hysteresis in the swelling curve. The differences in the swelling transitions can be interpreted within the context of the cloud-point measurements of the uncross-linked polymers. Whereas poly(NVIBAm-co-MnBP) has a significant off-zero critical point (>10 wt% polymer) at 36oC, poly(CPAAm-co-MnBP) has a critical point at zero concentration and 23 oC. Concurrent measurements of the infrared vibrations of the amide groups in both polymers further revealed that the amide group in poly(CPAAm-co-MnBP) maintains a constant hydrogen-bonding environment throughout the volume-phase transition. Poly(NVIBAm-co-MnBP), on the other hand, has a concentration dependent hydrogen bonding environment around the carbonyl group, which is consistent with an off-zero concentration in the cloud point curve.

  5. Phase transition phenomenon: A compound measure analysis

    NASA Astrophysics Data System (ADS)

    Kang, Bo Soo; Park, Chanhi; Ryu, Doojin; Song, Wonho

    2015-06-01

    This study investigates the well-documented phenomenon of phase transition in financial markets using combined information from both return and volume changes within short time intervals. We suggest a new measure for the phase transition behaviour of markets, calculated as a return distribution conditional on local variance in volume imbalance, and show that this measure successfully captures phase transition behaviour under various conditions. We analyse the intraday trade and quote dataset from the KOSPI 200 index futures, which includes detailed information on the original order size and the type of each initiating investor. We find that among these two competing factors, the submitted order size yields more explanatory power on the phenomenon of market phase transition than the investor type.

  6. Quantum phase transition in space

    SciTech Connect

    Damski, Bogdan; Zurek, Wojciech H

    2008-01-01

    A quantum phase transition between the symmetric (polar) phase and the phase with broken symmetry can be induced in a ferromagnetic spin-1 Bose-Einstein condensate in space (rather than in time). We consider such a phase transition and show that the transition region in the vicinity of the critical point exhibits scalings that reflect a compromise between the rate at which the transition is imposed (i.e., the gradient of the control parameter) and the scaling of the divergent healing length in the critical region. Our results suggest a method for the direct measurement of the scaling exponent {nu}.

  7. Theory of antiferroelectric phase transitions

    NASA Astrophysics Data System (ADS)

    Tolédano, Pierre; Guennou, Mael

    2016-07-01

    At variance with structural ferroic phase transitions which give rise to macroscopic tensors coupled to macroscopic fields, criteria defining antiferroelectric (AFE) phase transitions are still under discussion due to the absence of specific symmetry properties characterizing their existence. They are recognized by the proximity of a ferroelectric (FE) phase induced under applied electric field, with a double hysteresis loop relating the induced polarization to the electric field and a typical anomaly of the dielectric permittivity. Here, we show that there exist indeed symmetry criteria defining AFE transitions. They relate the local symmetry of the polar crystallographic sites emerging at an AFE phase transition with the macroscopic symmetry of the AFE phase. The dielectric properties of AFE transitions are deduced from a Landau theoretical model in which ferroelectric and ferrielectric phases are shown to stabilize as the result of specific symmetry-allowed couplings of the AFE order parameter with the field-induced polarization.

  8. Phase Transitions for Suspension Flows

    NASA Astrophysics Data System (ADS)

    Iommi, Godofredo; Jordan, Thomas

    2013-06-01

    This paper is devoted to studying the thermodynamic formalism for suspension flows defined over countable alphabets. We are mostly interested in the regularity properties of the pressure function. We establish conditions for the pressure function to be real analytic or to exhibit a phase transition. We also construct an example of a potential for which the pressure has countably many phase transitions.

  9. Phase transitions in disordered systems

    NASA Astrophysics Data System (ADS)

    Hrahsheh, Fawaz Y.

    Disorder can have a wide variety of consequences for the physics of phase transitions. Some transitions remain unchanged in the presence of disorder while others are completely destroyed. In this thesis we study the effects of disorder on several classical and quantum phase transitions in condensed matter systems. After a brief introduction, we study the ferromagnetic phase transition in a randomly layered Heisenberg magnet using large-scale Monte-Carlo simulations. Our results provide numerical evidence for the exotic infinite-randomness scenario. We study classical and quantum smeared phase transitions in substitutional alloys A1-xBx. Our results show that the disorder completely destroys the phase transition with a pronounced tail of the ordered phase developing for all compositions x < 1. In addition, we find that short-ranged disorder correlations can have a dramatic effect on the transition. Moreover, we show an experimental realization of the composition-tuned ferromagnetic-to-paramagnetic quantum phase transition in Sr1-xCa xRuO3. We investigate the effects of disorder on first-order quantum phase transitions on the example of the N-color quantum Ashkin-Teller model. By means of a strong disorder renormalization group, we demonstrate that disorder rounds the first-order transition to a continuous one for both weak and strong coupling between the colors. Finally, we investigate the superfluid-insulator quantum phase transition of one-dimensional bosons with off-diagonal disorder by means of large-scale Monte-Carlo simulations. Beyond a critical disorder strength, we find nonuniversal, disorder dependent critical behavior.

  10. Fluctuation driven electroweak phase transition

    NASA Technical Reports Server (NTRS)

    Gleiser, Marcelo; Kolb, Edward W.

    1991-01-01

    We examine the dynamics of the electroweak phase transition in the early Universe. For Higgs masses in the range 46 less than or = M sub H less than or = 150 GeV and top quark masses less than 200 GeV, regions of symmetric and asymmetric vacuum coexist to below the critical temperature, with thermal equilibrium between the two phases maintained by fluctuations of both phases. We propose that the transition to the asymmetric vacuum is completed by percolation of these subcritical fluctuations. Our results are relevant to scenarios of baryogenesis that invoke a weakly first-order phase transition at the electroweak scale.

  11. Transition of Bery Phase and Pancharatnam Phase and Phase Change

    NASA Astrophysics Data System (ADS)

    Fu, Guolan; Pan, Hui; Wang, Zisheng

    2016-07-01

    Berry Phase and time-dependent Pancharatnam phase are investigated for nuclear spin polarization in a liquid by a rotation magnetic field, where two-state mixture effect is exactly included in the geometric phases. We find that when the system of nuclear spin polarization is in the unpolarized state, the transitive phenomena of both Berry phase and Pancharatnam phase are taken place. For the polarized system, in contrast, such a transition is not taken place. It is obvious that the transitions of geometric phase correspond to the phase change of physical system.

  12. Hadron-Quark Phase Transition

    SciTech Connect

    Cavagnoli, Rafael; Menezes, Debora P.; Providencia, Constanca

    2009-06-03

    In the present work we study the hadron-quarkphase transition with boson condensation by investigating the binodal surface and extending it to finite temperature in order to mimic the QCD phase diagram.

  13. Holographic approach to phase transitions

    SciTech Connect

    Franco, Sebastian; Garcia-Garcia, Antonio M.; Rodriguez-Gomez, Diego

    2010-02-15

    We provide a description of phase transitions at finite temperature in strongly coupled field theories using holography. For this purpose, we introduce a general class of gravity duals to superconducting theories that exhibit various types of phase transitions (first or second order with both mean and non-mean field behavior) as parameters in their Lagrangian are changed. Moreover the size and strength of the conductivity coherence peak can also be controlled. Our results suggest that certain parameters in the gravitational dual control the interactions responsible for binding the condensate and the magnitude of its fluctuations close to the transition.

  14. Phase transition of holographic entanglement entropy in massive gravity

    NASA Astrophysics Data System (ADS)

    Zeng, Xiao-Xiong; Zhang, Hongbao; Li, Li-Fang

    2016-05-01

    The phase structure of holographic entanglement entropy is studied in massive gravity for the quantum systems with finite and infinite volumes, which in the bulk is dual to calculating the minimal surface area for a black hole and black brane respectively. In the entanglement entropy-temperature plane, we find for both the black hole and black brane there is a Van der Waals-like phase transition as the case in thermal entropy-temperature plane. That is, there is a first order phase transition for the small charge and a second order phase transition at the critical charge. For the first order phase transition, the equal area law is checked and for the second order phase transition, the critical exponent of the heat capacity is obtained. All the results show that the phase structure of holographic entanglement entropy is the same as that of thermal entropy regardless of the volume of the spacetime on the boundary.

  15. Phase transitions in nuclear matter

    SciTech Connect

    Glendenning, N.K.

    1984-11-01

    The rather general circumstances under which a phase transition in hadronic matter at finite temperature to an abnormal phase in which baryon effective masses become small and in which copious baryon-antibaryon pairs appear is emphasized. A preview is also given of a soliton model of dense matter, in which at a density of about seven times nuclear density, matter ceases to be a color insulator and becomes increasingly color conducting. 22 references.

  16. Non-equilibrium phase transitions

    SciTech Connect

    Mottola, E.; Cooper, F.M.; Bishop, A.R.; Habib, S.; Kluger, Y.; Jensen, N.G.

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Non-equilibrium phase transitions play a central role in a very broad range of scientific areas, ranging from nuclear, particle, and astrophysics to condensed matter physics and the material and biological sciences. The aim of this project was to explore the path to a deeper and more fundamental understanding of the common physical principles underlying the complex real time dynamics of phase transitions. The main emphasis was on the development of general theoretical tools to deal with non-equilibrium processes, and of numerical methods robust enough to capture the time-evolving structures that occur in actual experimental situations. Specific applications to Laboratory multidivisional efforts in relativistic heavy-ion physics (transition to a new phase of nuclear matter consisting of a quark-gluon plasma) and layered high-temperature superconductors (critical currents and flux flow at the National High Magnetic Field Laboratory) were undertaken.

  17. Phase Transitions in Dipalmitoylphosphatidylcholine Monolayers.

    PubMed

    Zuo, Yi Y; Chen, Rimei; Wang, Xianju; Yang, Jinlong; Policova, Zdenka; Neumann, A Wilhelm

    2016-08-23

    A self-assembled phospholipid monolayer at an air-water interface is a well-defined model system for studying surface thermodynamics, membrane biophysics, thin-film materials, and colloidal soft matter. Here we report a study of two-dimensional phase transitions in the dipalmitoylphosphatidylcholine (DPPC) monolayer at the air-water interface using a newly developed methodology called constrained drop surfactometry (CDS). CDS is superior to the classical Langmuir balance in its capacity for rigorous temperature control and leak-proof environments, thus making it an ideal alternative to the Langmuir balance for studying lipid polymorphism. In addition, we have developed a novel Langmuir-Blodgett (LB) transfer technique that allows the direct transfer of lipid monolayers from the droplet surface under well-controlled conditions. This LB transfer technique permits the direct visualization of phase coexistence in the DPPC monolayer. With these technological advances, we found that the two-dimensional phase behavior of the DPPC monolayer is analogous to the three-dimensional phase transition of a pure substance. This study has implications in the fundamental understanding of surface thermodynamics as well as applications such as self-assembled monolayers and pulmonary surfactant biophysics. PMID:27479299

  18. Pressure induced phase transitions in ceramic compounds containing tetragonal zirconia

    SciTech Connect

    Sparks, R.G.; Pfeiffer, G.; Paesler, M.A.

    1988-12-01

    Stabilized tetragonal zirconia compounds exhibit a transformation toughening process in which stress applied to the material induces a crystallographic phase transition. The phase transition is accompanied by a volume expansion in the stressed region thereby dissipating stress and increasing the fracture strength of the material. The hydrostatic component of the stress required to induce the phase transition can be investigated by the use of a high pressure technique in combination with Micro-Raman spectroscopy. The intensity of Raman lines characteristic for the crystallographic phases can be used to calculate the amount of material that has undergone the transition as a function of pressure. It was found that pressures on the order of 2-5 kBar were sufficient to produce an almost complete transition from the original tetragonal to the less dense monoclinic phase; while a further increase in pressure caused a gradual reversal of the transition back to the original tetragonal structure.

  19. Polarized gravitational waves from cosmological phase transitions

    NASA Astrophysics Data System (ADS)

    Kisslinger, Leonard; Kahniashvili, Tina

    2015-08-01

    We estimate the degree of circular polarization for the gravitational waves generated during the electroweak and QCD phase transitions from the kinetic and magnetic helicity generated by bubble collisions during those cosmological phase transitions.

  20. Acoustic Detection of Phase Transitions at the Nanoscale

    DOE PAGESBeta

    Vasudevan, Rama K.; Khassaf, Hamidreza; Cao, Ye; Zhang, Shujun; Tselev, Alexander; Carmichael, Ben D.; Okatan, Mahmut Baris; Jesse, Stephen; Chen, Long-Qing; Alpay, S. Pamir; et al

    2016-01-25

    On page 478, N. Bassiri-Gharb and co-workers demonstrate acoustic detection in nanoscale volumes by use of an atomic force microscope tip technique. Elastic changes in volume are measured by detecting changes in resonance of the cantilever. Also, the electric field in this case causes a phase transition, which is modeled by Landau theory.

  1. Phase transition dynamics and gravitational waves

    SciTech Connect

    Megevand, Ariel

    2009-04-20

    During a first-order phase transition, gravitational radiation is generated either by bubble collisions or by turbulence. For phase transitions which took place at the electroweak scale and beyond, the signal is expected to be within the sensitivity range of planned interferometers such as LISA or BBO. We review the generation of gravitational waves in a first-order phase transition and discuss the dependence of the spectrum on the dynamics of the phase transition.

  2. Brain Performance versus Phase Transitions

    NASA Astrophysics Data System (ADS)

    Torres, Joaquín J.; Marro, J.

    2015-07-01

    We here illustrate how a well-founded study of the brain may originate in assuming analogies with phase-transition phenomena. Analyzing to what extent a weak signal endures in noisy environments, we identify the underlying mechanisms, and it results a description of how the excitability associated to (non-equilibrium) phase changes and criticality optimizes the processing of the signal. Our setting is a network of integrate-and-fire nodes in which connections are heterogeneous with rapid time-varying intensities mimicking fatigue and potentiation. Emergence then becomes quite robust against wiring topology modification—in fact, we considered from a fully connected network to the Homo sapiens connectome—showing the essential role of synaptic flickering on computations. We also suggest how to experimentally disclose significant changes during actual brain operation.

  3. Work and quantum phase transitions: quantum latency.

    PubMed

    Mascarenhas, E; Bragança, H; Dorner, R; França Santos, M; Vedral, V; Modi, K; Goold, J

    2014-06-01

    We study the physics of quantum phase transitions from the perspective of nonequilibrium thermodynamics. For first-order quantum phase transitions, we find that the average work done per quench in crossing the critical point is discontinuous. This leads us to introduce the quantum latent work in analogy with the classical latent heat of first order classical phase transitions. For second order quantum phase transitions the irreversible work is closely related to the fidelity susceptibility for weak sudden quenches of the system Hamiltonian. We demonstrate our ideas with numerical simulations of first, second, and infinite order phase transitions in various spin chain models. PMID:25019721

  4. Nonequilibrium dynamics of phase transitions

    NASA Astrophysics Data System (ADS)

    Gagne, Carmen Jeanne

    2001-11-01

    Phase transitions occur in such diverse and important systems as ferromagnets, liquid crystals and the early Universe. The dynamics of phase transitions such as these have been studied for decades, but the analytical models still need a great deal of improvement before they can adequately describe all time stages and regions under the coexistence curve. Numerical studies can supplement these analytical theories, but they need to accurately describe the continuum equations that they are intended to solve. This thesis describes a method for removing the lattice- spacing and renormalization-mass dependence of Langevin simulations of phase mixing in (2 + 1)-dimensional asymmetric Ginzburg-Landau models with short-ranged interactions. Also, the spread in the order parameter near the critical value of the control parameter due to critical slowing down is used to more accurately determine this value of the control parameter in these simulations. In addition, a new method is proposed for quantifying the departure from equilibrium. The method explores the behavior of the rate of change of the momentum-integrated structure function, ΔStot( t), as it evolves in time. As an illustration, we examine a (1 + 1)-dimensional model of a stochastic Ginzburg-Landau model at varying cooling rates. We show that ΔStot(t) displays a peak which scales with cooling time-scale as t1/2q in the over-damped limit and t1/3q in the underdamped limit. The peak amplitude was found to scale with cooling time-scale as t6/5q in all viscosities studied.

  5. Analysis of the Influence of the Molecular Volume to Predict Experimental Pressure-Temperature Behavior in the Isotropic-Nematic Phase Transition of PAP, 5CB, MBBA and EBBA

    NASA Astrophysics Data System (ADS)

    García-Sánchez, Eduardo; Mendoza-Huizar, Luis H.; Ramírez-García, Uriel; Sustaita, Ireri A.; Alvarado, Francisco

    2015-04-01

    In this work, we have analyzed the experimental pressure-temperature behavior at the isotropic-nematic phase transition of the liquid crystals PAP, 5CB, MBBA, and EBBA at 1 atm by using the HERSW Convex Peg model in conjunction with the IPCM model. We have calculated the molecular volume values for the hard and attractive cores from theoretical quantum calculations at the PM3, PM6, B3LYP/6-311++G(d,p)//PM6, and M06/6-311++G(d,p)//PM6 levels of theory. The results suggest that the best theoretical prediction of the experimental pressure-temperature behavior is obtained when the molecular volume is evaluated at the DFT level.

  6. X-ray study of the critical behavior of V(2)H near the beta(,2)-beta(,2) phase transition in a defective near-surface volume and in the bulk

    NASA Astrophysics Data System (ADS)

    Trenkler, Johann

    We have observed two length scales in the critical x-ray diffuse scattering (CDS) from a VH0.525 crystal above the beta1-beta 2 phase transition where a sharp Lorentzian profile in the CDS was superimposed on a broader one. While no sharp component appeared in transmission geometry with high-energy x-rays, no broad component was detected in an experiment confined to a near-surface volume. Based on HERDA- and SNMS-measurements, the decay of the mosaic spread with increasing penetration, a larger d-spacing in the skin layer than in the bulk, and the above x-ray experiments, we conclude that the sharp component arises in the presence of a "defective" near-surface volume, while the broad component is associated with the pure bulk. For the defective skin layer, we observed a continuous phase transition allowing us to extract a tricritical exponent beta below TC, and tricritical exponents nu1 and gamma 1 for small reduced temperatures t = T/ TC -- 1. For larger t, the exponents nu and gamma are altered within the experimental range of t. Furthermore, the CDS of the defective skin layer is very anisotropic . The bulk, however, displays a strong discontinuous phase transition. This is not associated with a crossing of a two-phase region, nor with the small concentration H/V gradient within the upper 200 A, nor with a local (near-surface) ternary phase diagram due to an oxygen gradient in this region. The bulk displays an almost isotropic diffuse intensity above TC. In this work, we discuss the scaling and crossover behavior in the skin layer, the change of the order of the phase transition from the bulk to the skin layer associated with a change in the sign of the fourth order term in the Landau free energy expansion and the change of the correlation length with temperature, crystallographic direction and penetration. Furthermore, we qualitatively simulate the short-range order via Krivoglaz-Clapp-Moss and the Chepulskii-Bugaev RING approximations, taking into account the

  7. Dynamics of a Quantum Phase Transition

    SciTech Connect

    Zurek, Wojciech H.; Dorner, Uwe; Zoller, Peter

    2005-09-02

    We present two approaches to the dynamics of a quench-induced phase transition in the quantum Ising model. One follows the standard treatment of thermodynamic second order phase transitions but applies it to the quantum phase transitions. The other approach is quantum, and uses Landau-Zener formula for transition probabilities in avoided level crossings. We show that predictions of the two approaches of how the density of defects scales with the quench rate are compatible, and discuss the ensuing insights into the dynamics of quantum phase transitions.

  8. Phase Transition of Diluted Magnetic Semiconductor

    NASA Astrophysics Data System (ADS)

    Li, M. K.; Lee, S. J.; Yuldashev, S. U.; Ihm, G.; Kang, T. W.

    2011-12-01

    Three types of phase transitions in diluted magnetic semiconductor, first-order, second-order and mixed-order, are found in theory. Especially the mixed type transition shows two steps transition and novel specific heat property. Specific heat properties disclose a possible meta ferromagnetic phase confirmed by the experimental qualitative result.

  9. Cloud regimes as phase transitions

    NASA Astrophysics Data System (ADS)

    Stechmann, Samuel N.; Hottovy, Scott

    2016-06-01

    Clouds are repeatedly identified as a leading source of uncertainty in future climate predictions. Of particular importance are stratocumulus clouds, which can appear as either (i) closed cells that reflect solar radiation back to space or (ii) open cells that allow solar radiation to reach the Earth's surface. Here we show that these clouds regimes -- open versus closed cells -- fit the paradigm of a phase transition. In addition, this paradigm characterizes pockets of open cells as the interface between the open- and closed-cell regimes, and it identifies shallow cumulus clouds as a regime of higher variability. This behavior can be understood using an idealized model for the dynamics of atmospheric water as a stochastic diffusion process. With this new conceptual viewpoint, ideas from statistical mechanics could potentially be used for understanding uncertainties related to clouds in the climate system and climate predictions.

  10. Swarms, phase transitions, and collective intelligence

    SciTech Connect

    Millonas, M.M.

    1992-12-31

    A model of the collective behavior of a large number of locally acting organisms is proposed. The model is intended to be realistic, but turns out to fit naturally into the category of connectionist models, Like all connectionist models, its properties can be divided into the categories of structure, dynamics, and learning. The space in which the organisms move is discretized, and is modeled by a lattice of nodes, or cells. Each cell hag a specified volume, and is connected to other cells in the space in a definite way. Organisms move probabilistically between local cells in this space, but with weights dependent on local morphogenic substances, or morphogens. The morphogens are in turn are effected by the passage of an organism. The evolution of the morphogens, and the corresponding constitutes of the organisms constitutes the collective behavior of the group. The generic properties of such systems are analyzed, and a number of results are obtained. The model has various types of phase transitions and self-organizing properties controlled both by the level of the noise, and other parameters. It is hoped that the present mode; might serve as a paradigmatic example of a complex cooperative system in nature. In particular this model can be used to explore the relation of phase transitions to at least three important issues encountered in artificial life. Firstly, that of emergence as complex adaptive behavior. Secondly, as an exploration of second order phase transitions in biological systems. Lastly, to derive behavioral criteria for the evolution of collective behavior in social organisms. The model is then applied to the specific case of ants moving on a lattice. The local behavior of the ants is inspired by the actual behavior observed in the laboratory, and analytic results for the collective behavior are compared to the corresponding laboratory results. Monte carlo simulations are used as illustrations.

  11. Swarms, phase transitions, and collective intelligence

    SciTech Connect

    Millonas, M.M. . Dept. of Physics)

    1992-01-01

    A model of the collective behavior of a large number of locally acting organisms is proposed. The model is intended to be realistic, but turns out to fit naturally into the category of connectionist models, Like all connectionist models, its properties can be divided into the categories of structure, dynamics, and learning. The space in which the organisms move is discretized, and is modeled by a lattice of nodes, or cells. Each cell hag a specified volume, and is connected to other cells in the space in a definite way. Organisms move probabilistically between local cells in this space, but with weights dependent on local morphogenic substances, or morphogens. The morphogens are in turn are effected by the passage of an organism. The evolution of the morphogens, and the corresponding constitutes of the organisms constitutes the collective behavior of the group. The generic properties of such systems are analyzed, and a number of results are obtained. The model has various types of phase transitions and self-organizing properties controlled both by the level of the noise, and other parameters. It is hoped that the present mode; might serve as a paradigmatic example of a complex cooperative system in nature. In particular this model can be used to explore the relation of phase transitions to at least three important issues encountered in artificial life. Firstly, that of emergence as complex adaptive behavior. Secondly, as an exploration of second order phase transitions in biological systems. Lastly, to derive behavioral criteria for the evolution of collective behavior in social organisms. The model is then applied to the specific case of ants moving on a lattice. The local behavior of the ants is inspired by the actual behavior observed in the laboratory, and analytic results for the collective behavior are compared to the corresponding laboratory results. Monte carlo simulations are used as illustrations.

  12. Phase transitions in semidefinite relaxations

    PubMed Central

    Javanmard, Adel; Montanari, Andrea; Ricci-Tersenghi, Federico

    2016-01-01

    Statistical inference problems arising within signal processing, data mining, and machine learning naturally give rise to hard combinatorial optimization problems. These problems become intractable when the dimensionality of the data is large, as is often the case for modern datasets. A popular idea is to construct convex relaxations of these combinatorial problems, which can be solved efficiently for large-scale datasets. Semidefinite programming (SDP) relaxations are among the most powerful methods in this family and are surprisingly well suited for a broad range of problems where data take the form of matrices or graphs. It has been observed several times that when the statistical noise is small enough, SDP relaxations correctly detect the underlying combinatorial structures. In this paper we develop asymptotic predictions for several detection thresholds, as well as for the estimation error above these thresholds. We study some classical SDP relaxations for statistical problems motivated by graph synchronization and community detection in networks. We map these optimization problems to statistical mechanics models with vector spins and use nonrigorous techniques from statistical mechanics to characterize the corresponding phase transitions. Our results clarify the effectiveness of SDP relaxations in solving high-dimensional statistical problems. PMID:27001856

  13. Phase transitions in semidefinite relaxations.

    PubMed

    Javanmard, Adel; Montanari, Andrea; Ricci-Tersenghi, Federico

    2016-04-19

    Statistical inference problems arising within signal processing, data mining, and machine learning naturally give rise to hard combinatorial optimization problems. These problems become intractable when the dimensionality of the data is large, as is often the case for modern datasets. A popular idea is to construct convex relaxations of these combinatorial problems, which can be solved efficiently for large-scale datasets. Semidefinite programming (SDP) relaxations are among the most powerful methods in this family and are surprisingly well suited for a broad range of problems where data take the form of matrices or graphs. It has been observed several times that when the statistical noise is small enough, SDP relaxations correctly detect the underlying combinatorial structures. In this paper we develop asymptotic predictions for several detection thresholds, as well as for the estimation error above these thresholds. We study some classical SDP relaxations for statistical problems motivated by graph synchronization and community detection in networks. We map these optimization problems to statistical mechanics models with vector spins and use nonrigorous techniques from statistical mechanics to characterize the corresponding phase transitions. Our results clarify the effectiveness of SDP relaxations in solving high-dimensional statistical problems. PMID:27001856

  14. High pressure phase transition in Pr-monopnictides

    SciTech Connect

    Raypuria, Gajendra Singh E-mail: gsraypuria@gmail.com; Gupta, Dinesh Chandra

    2015-06-24

    The Praseodymium-monopnictides compounds have been found to undergo transition from their initial NaCl-type structure to high pressure body centered tetragonal (BCT) structure (distorted CsCl-type P4/mmm) using CTIP model. The calculated values of cohesive energy, lattice constant, phase transition pressure, relative volume collapse agree well with the available measured data and better than those computed by earlier workers.

  15. Phase transition of La- chalcogenides under high pressure

    SciTech Connect

    Gupta, Dinesh Chandra; Raypuria, Gajendra Singh

    2014-04-24

    The lanthanum compounds have been found to undergo transition from their initial NaCl-type structure to high pressure body centered tetragonal (BCT) structure (distorted CsCl-type P4/mmm) using CTIP model. The calculated values of cohesive energy, lattice constant, phase transition pressure, relative volume collapse agree well with the available measured data and better than those computed by earlier workers.

  16. Phase transitions in the web of science

    NASA Astrophysics Data System (ADS)

    Phillips, J. C.

    2015-06-01

    The Internet age is changing the structure of science, and affecting interdisciplinary interactions. Publication profiles connecting mathematics with molecular biology and condensed matter physics over the last 40 years exhibit common phase transitions indicative of the critical role played by specific interdisciplinary interactions. The strengths of the phase transitions quantify the importance of interdisciplinary interactions.

  17. The impacts of mantle phase transitions and the iron spin crossover in ferropericlase on convective mixing—is the evidence for compositional convection definitive? New results from a Yin-Yang overset grid-based control volume model

    NASA Astrophysics Data System (ADS)

    Shahnas, M. H.; Peltier, W. R.

    2015-08-01

    High-resolution seismic tomographic images from several subduction zones provide evidence for the inhibition of the downwelling of subducting slabs at the level of the 660 km depth seismic discontinuity. Furthermore, the inference of old (~140 Myr) sinking slabs below fossil subduction zones in the lower mantle has yet to be explained. We employ a control volume methodology to develop a new anelastically compressible model of three-dimensional thermal convection in the "mantle" of a terrestrial planet that fully incorporates the influence of large variations in material properties. The model also incorporates the influence of (1) multiple solid-solid pressure-induced phase transitions, (2) transformational superplasticity at 660 km depth, and (3) the high spin-low spin iron spin transition in ferropericlase at midmantle pressures. The message passing interface-parallelized code is successfully tested against previously published benchmark results. The high-resolution control volume models exhibit the same degree of radial layering as previously shown to be characteristic of otherwise identical 2-D axisymmetric spherical models. The layering is enhanced by the presence of moderate transformational superplasticity, and in the presence of the spin crossover in ferropericlase, stagnation of cold downwellings occurs in the range of spin crossover depths (~1700 km). Although this electronic spin transition has been suggested to be invisible seismically, recent high-pressure ab initio calculations suggest it to have a clear signature in body wave velocities which could provide an isochemical explanation of a seismological signature involving the onset of decorrelation between Vp and Vs that has come to be interpreted as requiring compositional layering.

  18. Analysis of Nuclear Quantum Phase Transitions

    SciTech Connect

    Li, Z. P.; Meng, J.; Niksic, T.; Vretenar, D.; Lalazissis, G. A.; Ring, P.

    2009-08-26

    A microscopic analysis, based on nuclear energy density functionals, is presented for shape phase transitions in Nd isotopes. Low-lying excitation spectra and transition probabilities are calculated starting from a five-dimensional Hamiltonian, with parameters determined by constrained relativistic mean-field calculations for triaxial shapes. The results reproduce available data, and show that there is an abrupt change of structure at N = 90, that corresponds to a first-order quantum phase transition between spherical and axially deformed shapes.

  19. Quantum phase transitions in disordered magnets

    NASA Astrophysics Data System (ADS)

    Nozadze, David

    We study the effects of quenched weak disorder on quantum phase transitions in disordered magnets. The presence of disorder in the system can lead to a variety of exotic phenomena, e.g., the smearing of transitions or quantum Griffiths singularities. Phase transitions are smeared if individual spatial regions can order independently of the bulk system. In paper I, we study smeared quantum phase transitions in binary alloys A1-xBx that are tuned by changing the composition x. We show that in this case the ordered phase is extended over all compositions x < 1. We also study the composition dependence of observables. In paper II, we investigate the influence of spatial disorder correlations on smeared phase transitions. As an experimental example, we demonstrate in paper III, that the composition-driven ferromagnetic-toparamagnetic quantum phase transition in Sr1-xCaxRuO3 is smeared. When individual spatial regions cannot order but fluctuate slowly, the phase transition is characterized by strong singularities in the quantum Griffiths phase. In paper IV, we develop a theory of the quantum Griffiths phases in disordered ferromagnetic metals. We show that the quantum Griffiths singularities are stronger than the usual power-law quantum Griffiths singularities in insulating magnets. In paper V, we present an efficient numerical method for studying quantum phase transitions in disordered systems with O(N) order parameter symmetry in the large-N limit. Our algorithm solves iteratively the large-N self-consistent equations for the renormalized distances from criticality. Paper VI is devoted to the study of transport properties in the quantum Griffiths phase associated with the antiferromagnetic quantum phase transition in a metal. We find unusual behavior of transport properties which is in contrast to the normal Fermi-liquid behavior.

  20. Exploring structural phase transitions of ion crystals

    PubMed Central

    Yan, L. L.; Wan, W.; Chen, L.; Zhou, F.; Gong, S. J.; Tong, X.; Feng, M.

    2016-01-01

    Phase transitions have been a research focus in many-body physics over past decades. Cold ions, under strong Coulomb repulsion, provide a repealing paradigm of exploring phase transitions in stable confinement by electromagnetic field. We demonstrate various conformations of up to sixteen laser-cooled 40Ca+ ion crystals in a home-built surface-electrode trap, where besides the usually mentioned structural phase transition from the linear to the zigzag, two additional phase transitions to more complicated two-dimensional configurations are identified. The experimental observation agrees well with the numerical simulation. Heating due to micromotion of the ions is analysed by comparison of the numerical simulation with the experimental observation. Our investigation implies very rich and complicated many-body behaviour in the trapped-ion systems and provides effective mechanism for further exploring quantum phase transitions and quantum information processing with ultracold trapped ions. PMID:26865229

  1. Pressure-induced phase transition in pentacene

    NASA Astrophysics Data System (ADS)

    Farina, L.; Brillante, A.; Della Valle, R. G.; Venuti, E.; Amboage, M.; Syassen, K.

    2003-07-01

    We have recently studied two solid phases of bulk pentacene (polymorphs H and C) by means of lattice phonon Raman spectroscopy. The assignment, previously based on lattice dynamics calculations alone, is now verified by X-ray diffraction measurements, conclusively confirming the existence of both polymorphs. Furthermore, Raman phonon spectra indicate a pressure-induced phase transition where the polymorph C (lower density phase) transforms to the H form (higher density phase). The onset pressure for the phase transition is only 0.2 GPa. The phase change is irreversible.

  2. Microscopic Description of Nuclear Quantum Phase Transitions

    SciTech Connect

    Niksic, T.; Vretenar, D.; Lalazissis, G. A.; Ring, P.

    2007-08-31

    The relativistic mean-field framework, extended to include correlations related to restoration of broken symmetries and to fluctuations of the quadrupole deformation, is applied to a study of shape transitions in Nd isotopes. It is demonstrated that the microscopic self-consistent approach, based on global effective interactions, can describe not only general features of transitions between spherical and deformed nuclei, but also the singular properties of excitation spectra and transition rates at the critical point of quantum shape phase transition.

  3. Phase transitions in QCD and string theory

    NASA Astrophysics Data System (ADS)

    Campell, Bruce A.; Ellis, John; Kalara, S.; Nanopoulos, D. V.; Olive, Keith A.

    1991-02-01

    We develop a unified effective field theory approach to the high-temperature phase transitions in QCD and string theory, incorporating winding modes (time-like Polyakov loops, vortices) as well as low-mass states (pseudoscalar mesons and glueballs, matter and dilaton supermultiplets). Anomalous scale invariance and the Z3 structure of the centre of SU(3) decree a first-order phase transition with simultaneous deconfinement and Polyakov loop condensation in QCD, whereas string vortex condensation is a second-order phase transition breaking a Z2 symmetry. We argue that vortex condensation is accompanied by a dilaton phase transition to a strong coupling regime, and comment on the possible role of soliton degrees of freedom in the high-temperature string phase. On leave of absence from the School of Physics & Astronomy, University of Minnesota, Minneapolis, Minnesota, USA.

  4. Topological phase transitions in the gauged BPS baby Skyrme model

    NASA Astrophysics Data System (ADS)

    Adam, C.; Naya, C.; Romanczukiewicz, T.; Sanchez-Guillen, J.; Wereszczynski, A.

    2015-05-01

    We demonstrate that the gauged BPS baby Skyrme model with a double vacuum potential allows for phase transitions from a non-solitonic to a solitonic phase, where the latter corresponds to a ferromagnetic liquid. Such a transition can be generated by increasing the external pressure P or by turning on an external magnetic field H. As a consequence, the topological phase where gauged BPS baby skyrmions exist, is a higher density phase. For smaller densities, obtained for smaller values of P and H, a phase without solitons is reached. We find the critical line in the P, H parameter space. Furthermore, in the soliton phase, we find the equation of state for the baby skyrmion matter V = V( P,H) at zero temperature, where V is the "volume", i.e., area of the solitons.

  5. Automatic contrast phase estimation in CT volumes.

    PubMed

    Sofka, Michal; Wu, Dijia; Sühling, Michael; Liu, David; Tietjen, Christian; Soza, Grzegorz; Zhou, S Kevin

    2011-01-01

    We propose an automatic algorithm for phase labeling that relies on the intensity changes in anatomical regions due to the contrast agent propagation. The regions (specified by aorta, vena cava, liver, and kidneys) are first detected by a robust learning-based discriminative algorithm. The intensities inside each region are then used in multi-class LogitBoost classifiers to independently estimate the contrast phase. Each classifier forms a node in a decision tree which is used to obtain the final phase label. Combining independent classification from multiple regions in a tree has the advantage when one of the region detectors fail or when the phase training example database is imbalanced. We show on a dataset of 1016 volumes that the system correctly classifies native phase in 96.2% of the cases, hepatic dominant phase (92.2%), hepatic venous phase (96.7%), and equilibrium phase (86.4%) in 7 seconds on average. PMID:22003696

  6. Magnetic Phase Transition in V2O3 Nanocrystals

    SciTech Connect

    V Blagojevic; J Carlo; L Brus; M Steigerwald; Y Uemura; S Billinge; W Zhou; P Stephens; A Aczel; G Luke

    2011-12-31

    V{sub 2}O{sub 3} nanocrystals can be synthesized through hydrothermal reduction in VO(OH){sub 2} using hydrazine as a reducing agent. Addition of different ligands to the reaction produces nanoparticles, nanorods, and nanoplatelets of different sizes. Small nanoparticles synthesized in this manner show suppression of the magnetic phase transition to lower temperatures. Using muon spin relaxation spectroscopy and synchrotron x-ray diffraction, we have determined that the volume fraction of the high-temperature phase, characterized by a rhombohedral structure and paramagnetism, gradually declines with decreasing temperature, in contrast to the sharp transition observed in bulk V{sub 2}O{sub 3}.

  7. Magnetic Phase Transition in V2O3 Nanocrystals

    SciTech Connect

    Billinge, S.; Blagojevic, V.A.; Carlo, J.P.; Brus, L.E.; Steigerwald, M.L.; Uemura, Y.J.; Billinge, S.J.L.; Zhou, W.; Stephens, P.W.; Aczel, A.A.; Luke, G.M.

    2010-09-30

    V{sub 2}O{sub 3} nanocrystals can be synthesized through hydrothermal reduction in VO(OH){sub 2} using hydrazine as a reducing agent. Addition of different ligands to the reaction produces nanoparticles, nanorods, and nanoplatelets of different sizes. Small nanoparticles synthesized in this manner show suppression of the magnetic phase transition to lower temperatures. Using muon spin relaxation spectroscopy and synchrotron x-ray diffraction, we have determined that the volume fraction of the high-temperature phase, characterized by a rhombohedral structure and paramagnetism, gradually declines with decreasing temperature, in contrast to the sharp transition observed in bulk V{sub 2}O{sub 3}.

  8. Phase transitions and convection in icy satellites

    NASA Technical Reports Server (NTRS)

    Bercovici, D.; Schubert, G.; Reynolds, R. T.

    1986-01-01

    The effects of solid-solid phase changes on subsolidus convection in the large icy moons of the outer solar system are considered. Phase transitions affect convection via processes that distort the phase change boundary and/or influence buoyancy through thermal expansion. Linear stability analyses are carried out for ice layers with a phase change at the midplane. Two exothermic phase transitions (ice I - ice II, ice VI - ice VIII) and two endothermic transitions (ice I - ice III, ice II - ice V) are considered. For the exothermic cases, the phase change can either impede or enhance whole-layer convection. For the endothermic cases, the phse change always inhibits whole-layer convective overturn and tends to enforce two-layer convection. These results play some constraints on possible models of icy satellite evolution and structure.

  9. Critical behaviours of contact near phase transitions

    PubMed Central

    Chen, Y.-Y.; Jiang, Y.-Z.; Guan, X.-W.; Zhou, Qi

    2014-01-01

    A central quantity of importance for ultracold atoms is contact, which measures two-body correlations at short distances in dilute systems. It appears in universal relations among thermodynamic quantities, such as large momentum tails, energy and dynamic structure factors, through the renowned Tan relations. However, a conceptual question remains open as to whether or not contact can signify phase transitions that are insensitive to short-range physics. Here we show that, near a continuous classical or quantum phase transition, contact exhibits a variety of critical behaviours, including scaling laws and critical exponents that are uniquely determined by the universality class of the phase transition, and a constant contact per particle. We also use a prototypical exactly solvable model to demonstrate these critical behaviours in one-dimensional strongly interacting fermions. Our work establishes an intrinsic connection between the universality of dilute many-body systems and universal critical phenomena near a phase transition. PMID:25346226

  10. Thermal Phase Transitions in Finite Quantum Systems

    SciTech Connect

    Dean, D.J.

    2001-10-18

    In this Proceedings, the author will describe the behavior of two different quantum-mechanical systems as a function of increasing temperature. While these systems are somewhat different, the questions addressed are very similar, namely, how does one describe transitions in phase of a finite many-body system; how does one recognize these transitions in practical calculations; and how may one obtain the order of the transition.

  11. Phase transition model for community detection

    NASA Astrophysics Data System (ADS)

    Wu, Jianshe; Lu, Rui; Jiao, Licheng; Liu, Fang; Yu, Xin; Wang, Da; Sun, Bo

    2013-03-01

    Motivated by social and biological interactions, a novel type of phase transition model is provided in order to investigate the emergence of the clustering phenomenon in networks. The model has two types of interactions: one is attractive and the other is repulsive. In each iteration, the phase of a node (or an agent) moves toward the average phase of its neighbors and moves away from the average phase of its non-neighbors. The velocities of the two types of phase transition are controlled by two parameters, respectively. It is found that the phase transition phenomenon is closely related to the topological structure of the underlying network, and thus can be applied to identify its communities and overlapping groups. By giving each node of the network a randomly generated initial phase and updating these phases by the phase transition model until they reach stability, one or two communities will be detected according to the nodes’ stable phases, confusable nodes are moved into a set named Of. By removing the detected communities and the nodes in Of, another one or two communities will be detected by an iteration of the algorithm, …. In this way, all communities and the overlapping nodes are detected. Simulations on both real-world networks and the LFR benchmark graphs have verified the efficiency of the proposed scheme.

  12. Nuclear binding near a quantum phase transition

    NASA Astrophysics Data System (ADS)

    Lee, Dean

    2016-03-01

    I review recent ab initio results by the Nuclear Lattice Effective Field Theory Collaboration showing that nature lies close to a quantum phase transition between an alpha-particle gas and nuclear liquid. I discuss the control parameter of this transition and the implications for clustering in nuclei and improving ab initio nuclear structure calculations.

  13. Phase transitions three-component superfluid

    NASA Astrophysics Data System (ADS)

    Carlstrom, Johan; Babaev, Egor

    2014-03-01

    We discuss phase transitions in three-component models of superfluidity and superconductivity. We present Monte Carlo simulations showing that for certain types of inter-component interactions, these systems exhibit novel types of first order phase transitions that are driven by spin-waves. Supported by NSF CAREER Award DMR-0955902, Knut and Alice Wallenberg Foundation through the Royal Swedish Academy of Sciences andSwedish Research Council.

  14. Persistent homology analysis of phase transitions

    NASA Astrophysics Data System (ADS)

    Donato, Irene; Gori, Matteo; Pettini, Marco; Petri, Giovanni; De Nigris, Sarah; Franzosi, Roberto; Vaccarino, Francesco

    2016-05-01

    Persistent homology analysis, a recently developed computational method in algebraic topology, is applied to the study of the phase transitions undergone by the so-called mean-field XY model and by the ϕ4 lattice model, respectively. For both models the relationship between phase transitions and the topological properties of certain submanifolds of configuration space are exactly known. It turns out that these a priori known facts are clearly retrieved by persistent homology analysis of dynamically sampled submanifolds of configuration space.

  15. Modelling of phase transitions: do it yourself

    NASA Astrophysics Data System (ADS)

    Medved', I.; Huckaby, D. A.; Trník, A.; Valovičová, L'

    2013-01-01

    We present the basics of a powerful contemporary statistical mechanical technique that can be used by students to explore first-order phase transitions by themselves and for models of their own construction. The technique is a generalization of the well-known Peierls argument and is applicable to various models on a lattice. We illustrate the technique with the help of two simple models that were recently used to simulate phase transitions on surfaces.

  16. Higgs couplings and electroweak phase transition

    NASA Astrophysics Data System (ADS)

    Katz, Andrey; Perelstein, Maxim

    2014-07-01

    We argue that extensions of the Standard Model (SM) with a strongly first-order electroweak phase transition generically predict significant deviations of the Higgs couplings to gluons, photons, and Z bosons from their SM values. Precise experimental measurements of the Higgs couplings at the LHC and at the proposed next-generation facilities will allow for a robust test of the phase transition dynamics. To illustrate this point, in this paper we focus on the scenario in which loops of a new scalar field are responsible for the first-order phase transition, and study a selection of benchmark models with various SM gauge quantum numbers of the new scalar. We find that the current LHC measurement of the Higgs coupling to gluons already excludes the possibility of a first-order phase transition induced by a scalar in a sextet, or larger, representation of the SU(3) c . Future LHC experiments (including HL-LHC) will be able to definitively probe the case when the new scalar is a color triplet. If the new scalar is not colored, an electron-positron Higgs factory, such as the proposed ILC or TLEP, would be required to test the nature of the phase transition. The extremely precise measurement of the Higgsstrahlung cross section possible at such machines will allow for a comprehensive and definitive probe of the possibility of a first-order electroweak phase transition in all models we considered, including the case when the new scalar is a pure gauge singlet.

  17. Theoretical Predictions of Phase Transitions at Ultra-high Pressures

    NASA Astrophysics Data System (ADS)

    Boates, Brian

    2013-06-01

    We present ab initio calculations of the high-pressure phase diagrams of important planetary materials such as CO2, MgSiO3, and MgO. For CO2, we predict a series of distinct liquid phases over a wide pressure (P) and temperature (T) range, including a first-order transition to a dense polymer liquid. We have computed finite-temperature free energies of liquid and solid CO2 phases to determine the melting curve beyond existing measurements and investigate possible phase separation transitions. The interaction of these phase boundaries with the mantle geotherm will also be discussed. Furthermore, we find evidence for a vast pressure-temperature regime where molten MgSiO3 decomposes into liquid SiO2 and solid MgO, with a volume change of approximately 1.2 percent. The demixing transition is driven by the crystallization of MgO ? the reaction only occurs below the high-pressure MgO melting curve. The predicted transition pressure at 10,000 K is in close proximity to an anomaly reported in recent laser-driven shock experiments of MgSiO3. We also present new results for the high-pressure melting curve of MgO and its B1-B2 solid phase transition, with a triple point near 364 GPa and 12,000 K.

  18. Contemporary Research of Dynamically Induced Phase Transitions

    NASA Astrophysics Data System (ADS)

    Hull, Lawrence

    2015-06-01

    Dynamically induced phase transitions in metals, within the present discussion, are those that take place within a time scale characteristic of the shock waves and any reflections or rarefactions involved in the loading structure along with associated plastic flow. Contemporary topics of interest include the influence of loading wave shape, the effect of shear produced by directionality of the loading relative to the sample dimensions and initial velocity field, and the loading duration (kinetic effects, hysteresis) on the appearance and longevity of a transformed phase. These topics often arise while considering the loading of parts of various shapes with high explosives, are typically two or three-dimensional, and are often selected because of the potential of the transformed phase to significantly modify the motion. In this paper, we look at current work on phase transitions in metals influenced by shear reported in the literature, and relate recent work conducted at Los Alamos on iron's epsilon phase transition that indicates a significant response to shear produced by reflected elastic waves. A brief discussion of criteria for the occurrence of stress induced phase transitions is provided. Closing remarks regard certain physical processes, such as fragmentation and jet formation, which may be strongly influenced by phase transitions. Supported by the DoD/DOE Joint Munitions Technology Development Program.

  19. Supercooling and phase coexistence in cosmological phase transitions

    SciTech Connect

    Megevand, Ariel; Sanchez, Alejandro D.

    2008-03-15

    Cosmological phase transitions are predicted by particle physics models, and have a variety of important cosmological consequences, which depend strongly on the dynamics of the transition. In this work we investigate in detail the general features of the development of a first-order phase transition. We find thermodynamical constraints on some quantities that determine the dynamics, namely, the latent heat, the radiation energy density, and the false-vacuum energy density. Using a simple model with a Higgs field, we study numerically the amount and duration of supercooling and the subsequent reheating and phase coexistence. We analyze the dependence of the dynamics on the different parameters of the model, namely, the energy scale, the number of degrees of freedom, and the couplings of the scalar field with bosons and fermions. We also inspect the implications for the cosmological outcomes of the phase transition.

  20. Continuous and discontinuous topological quantum phase transitions

    NASA Astrophysics Data System (ADS)

    Roy, Bitan; Goswami, Pallab; Sau, Jay D.

    2016-07-01

    The continuous quantum phase transition between noninteracting, time-reversal symmetric topological and trivial insulators in three dimensions is described by the massless Dirac fermion. We address the stability of this quantum critical point against short range electronic interactions by using renormalization group analysis and mean field theory. For sufficiently weak interactions, we show that the nature of the direct transition remains unchanged. Beyond a critical strength of interactions we find that either (i) there is a direct first order transition between two time reversal symmetric insulators or (ii) the direct transition is eliminated by an intervening time reversal and inversion odd "axionic" insulator. We also demonstrate the existence of an interaction driven first order quantum phase transition between topological and trivial gapped states in lower dimensions.

  1. Monoclinic phases arising across thermal inter-ferroelectric phase transitions

    NASA Astrophysics Data System (ADS)

    Gu, Yijia; Xue, Fei; Lei, Shiming; Lummen, Tom T. A.; Wang, Jianjun; Gopalan, Venkatraman; Chen, Long-Qing

    2014-07-01

    Thermotropic phase boundaries (TPBs), as thermal analogs of morphotropic phase boundaries (MPBs), are associated with the thermal inter-ferroelectric phase transitions. Similar to an MPB, a TPB exhibits a characteristically flattened energy profile which favors polarization rotation, thus giving rise to a structurally bridging low-symmetry phase. We report on the kinetic process of thermal inter-ferroelectric phase transitions in BaTiO3 and KNbO3 using the phase-field method. The domain structures are found to play key roles in stabilizing the monoclinic phase. In simple domain structures, the monoclinic phase is a transient phase and cannot be stabilized into its neighboring phase regimes. However, by introducing structural inhomogeneity (orthogonal in-plane domain twins), we found that the monoclinic phase can be stabilized over a range of over 100 K across the transition. As a result, the piezoelectric properties are enhanced due to the stabilized monoclinic phase. In addition to the emergence of new piezoelectric components with monoclinic symmetry, most of the original components present in the tetragonal symmetry also show substantial enhancement with the rotation of polarization.

  2. Thermochromic phase transitions in two aromatic tetrachlorocuprates

    NASA Astrophysics Data System (ADS)

    Mostafa, M. Fareed; Abdel-Kader, M. M.; Arafat, S. S.; Kandeel, E. M.

    1991-06-01

    Bis(para-toluidinium)2 tetrachlorocuprate and bis(para-chloroanilinium)2 tetrachlorocuprate crystallize in a perovskite-related layer structure. The former crystallizes in an orthorhombic unit cell with a = 6.911 Å, b = 7.052 Å and c = 33.182 Å. It undergoes a thermochromic first order phase transition from a yellow low temperature phase to a dark orange high temperature phase at T = 300 ± 3K with a 10° thermal hysteresis. The latter compound undergoes two thermochromic transitions expressed by the relation. Orange Phase (I) rightleftarrows294 K Yellow Phase (II) rightleftarrows214K Green Phase (III). Both compounds are ferromagnetic at low temperture with exchange interactions J/k = 17.5° and 20° for the two compounds respectively.

  3. Random fields at a nonequilibrium phase transition.

    PubMed

    Barghathi, Hatem; Vojta, Thomas

    2012-10-26

    We study nonequilibrium phase transitions in the presence of disorder that locally breaks the symmetry between two equivalent macroscopic states. In low-dimensional equilibrium systems, such random-field disorder is known to have dramatic effects: it prevents spontaneous symmetry breaking and completely destroys the phase transition. In contrast, we show that the phase transition of the one-dimensional generalized contact process persists in the presence of random-field disorder. The ultraslow dynamics in the symmetry-broken phase is described by a Sinai walk of the domain walls between two different absorbing states. We discuss the generality and limitations of our theory, and we illustrate our results by large-scale Monte Carlo simulations. PMID:23215170

  4. Sensitivity analysis of volume scattering phase functions.

    PubMed

    Tuchow, Noah; Broughton, Jennifer; Kudela, Raphael

    2016-08-01

    To solve the radiative transfer equation and relate inherent optical properties (IOPs) to apparent optical properties (AOPs), knowledge of the volume scattering phase function is required. Due to the difficulty of measuring the phase function, it is frequently approximated. We explore the sensitivity of derived AOPs to the phase function parameterization, and compare measured and modeled values of both the AOPs and estimated phase functions using data from Monterey Bay, California during an extreme "red tide" bloom event. Using in situ measurements of absorption and attenuation coefficients, as well as two sets of measurements of the volume scattering function (VSF), we compared output from the Hydrolight radiative transfer model to direct measurements. We found that several common assumptions used in parameterizing the radiative transfer model consistently introduced overestimates of modeled versus measured remote-sensing reflectance values. Phase functions from VSF data derived from measurements at multiple wavelengths and a single scattering single angle significantly overestimated reflectances when using the manufacturer-supplied corrections, but were substantially improved using newly published corrections; phase functions calculated from VSF measurements using three angles and three wavelengths and processed using manufacture-supplied corrections were comparable, demonstrating that reasonable predictions can be made using two commercially available instruments. While other studies have reached similar conclusions, our work extends the analysis to coastal waters dominated by an extreme algal bloom with surface chlorophyll concentrations in excess of 100 mg m-3. PMID:27505819

  5. Phase transitions at high pressure in tetracyanoethylene

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, R.; Deb, S. K.; Das, Amitabh; Chaplot, S. L.

    2009-11-01

    We report in situ x-ray diffraction studies in tetracyanoethylene (TCNE) at high pressure using diamond anvil cell (DAC) at Elettra synchrotron source, Trieste, Italy. Experiments were performed with both the polymorphic phases (monoclinic and cubic) of TCNE as the starting phase. While starting with monoclinic (the high temperature stable) TCNE, it was found that the Bragg peaks get broadened with increase of pressure and above 5 GPa only few broad peaks remained to be observed. On release of pressure from 6.4 GPa, when the sample started turning black, the diffraction pattern at ambient pressure corresponds to cubic, the other crystalline phase of TCNE. Results reconfirm the monoclinic to cubic transition at high pressure but via an intermediate 'disordered' phase. This settles a number of conflicting issues. TCNE represents only system, which undergoes transition from one crystalline to another crystalline phase via a 'disordered' metastable phase at high pressure. When the starting phase was cubic (the low temperature stable) no apparent phase transition was observed up to 10.8 GPa.

  6. Shaping Crystal-Crystal Phase Transitions

    NASA Astrophysics Data System (ADS)

    Du, Xiyu; van Anders, Greg; Dshemuchadse, Julia; Glotzer, Sharon

    Previous computational and experimental studies have shown self-assembled structure depends strongly on building block shape. New synthesis techniques have led to building blocks with reconfigurable shape and it has been demonstrated that building block reconfiguration can induce bulk structural reconfiguration. However, we do not understand systematically how this transition happens as a function of building block shape. Using a recently developed ``digital alchemy'' framework, we study the thermodynamics of shape-driven crystal-crystal transitions. We find examples of shape-driven bulk reconfiguration that are accompanied by first-order phase transitions, and bulk reconfiguration that occurs without any thermodynamic phase transition. Our results suggest that for well-chosen shapes and structures, there exist facile means of bulk reconfiguration, and that shape-driven bulk reconfiguration provides a viable mechanism for developing functional materials.

  7. Phase transitions in multiplicative competitive processes

    SciTech Connect

    Shimazaki, Hideaki; Niebur, Ernst

    2005-07-01

    We introduce a discrete multiplicative process as a generic model of competition. Players with different abilities successively join the game and compete for finite resources. Emergence of dominant players and evolutionary development occur as a phase transition. The competitive dynamics underlying this transition is understood from a formal analogy to statistical mechanics. The theory is applicable to bacterial competition, predicting novel population dynamics near criticality.

  8. Friction forces on phase transition fronts

    SciTech Connect

    Mégevand, Ariel

    2013-07-01

    In cosmological first-order phase transitions, the microscopic interaction of the phase transition fronts with non-equilibrium plasma particles manifests itself macroscopically as friction forces. In general, it is a nontrivial problem to compute these forces, and only two limits have been studied, namely, that of very slow walls and, more recently, ultra-relativistic walls which run away. In this paper we consider ultra-relativistic velocities and show that stationary solutions still exist when the parameters allow the existence of runaway walls. Hence, we discuss the necessary and sufficient conditions for the fronts to actually run away. We also propose a phenomenological model for the friction, which interpolates between the non-relativistic and ultra-relativistic values. Thus, the friction depends on two friction coefficients which can be calculated for specific models. We then study the velocity of phase transition fronts as a function of the friction parameters, the thermodynamic parameters, and the amount of supercooling.

  9. Quantum phase transitions with dynamical flavors

    NASA Astrophysics Data System (ADS)

    Bea, Yago; Jokela, Niko; Ramallo, Alfonso V.

    2016-07-01

    We study the properties of a D6-brane probe in the Aharony-Bergman-Jafferis-Maldacena (ABJM) background with smeared massless dynamical quarks in the Veneziano limit. Working at zero temperature and nonvanishing charge density, we show that the system undergoes a quantum phase transition in which the topology of the brane embedding changes from a black hole to a Minkowski embedding. In the unflavored background the phase transition is of second order and takes place when the charge density vanishes. We determine the corresponding critical exponents and show that the scaling behavior near the quantum critical point has multiplicative logarithmic corrections. In the background with dynamical quarks the phase transition is of first order and occurs at nonzero charge density. In this case we compute the discontinuity of several physical quantities as functions of the number Nf of unquenched quarks of the background.

  10. The α–β phase transition in volcanic cristobalite

    PubMed Central

    Damby, David E.; Llewellin, Edward W.; Horwell, Claire J.; Williamson, Ben J.; Najorka, Jens; Cressey, Gordon; Carpenter, Michael

    2014-01-01

    Cristobalite is a common mineral in volcanic ash produced from dome-forming eruptions. Assessment of the respiratory hazard posed by volcanic ash requires understanding the nature of the cristobalite it contains. Volcanic cristobalite contains coupled substitutions of Al3+ and Na+ for Si4+; similar co-substitutions in synthetic cristobalite are known to modify the crystal structure, affecting the stability of the α and β forms and the observed transition between them. Here, for the first time, the dynamics and energy changes associated with the α–β phase transition in volcanic cristobalite are investigated using X-ray powder diffraction with simultaneous in situ heating and differential scanning calorimetry. At ambient temperature, volcanic cristobalite exists in the α form and has a larger cell volume than synthetic α-cristobalite; as a result, its diffraction pattern sits between ICDD α- and β-cristobalite library patterns, which could cause ambiguity in phase identification. On heating from ambient temperature, volcanic cristobalite exhibits a lower degree of thermal expansion than synthetic cristobalite, and it also has a lower α–β transition temperature (∼473 K) compared with synthetic cristobalite (upwards of 543 K); these observations are discussed in relation to the presence of Al3+ and Na+ defects. The transition shows a stable and reproducible hysteresis loop with α and β phases coexisting through the transition, suggesting that discrete crystals in the sample have different transition temperatures. PMID:25242910

  11. The α-β phase transition in volcanic cristobalite.

    PubMed

    Damby, David E; Llewellin, Edward W; Horwell, Claire J; Williamson, Ben J; Najorka, Jens; Cressey, Gordon; Carpenter, Michael

    2014-08-01

    Cristobalite is a common mineral in volcanic ash produced from dome-forming eruptions. Assessment of the respiratory hazard posed by volcanic ash requires understanding the nature of the cristobalite it contains. Volcanic cristobalite contains coupled substitutions of Al(3+) and Na(+) for Si(4+); similar co-substitutions in synthetic cristobalite are known to modify the crystal structure, affecting the stability of the α and β forms and the observed transition between them. Here, for the first time, the dynamics and energy changes associated with the α-β phase transition in volcanic cristobalite are investigated using X-ray powder diffraction with simultaneous in situ heating and differential scanning calorimetry. At ambient temperature, volcanic cristobalite exists in the α form and has a larger cell volume than synthetic α-cristobalite; as a result, its diffraction pattern sits between ICDD α- and β-cristobalite library patterns, which could cause ambiguity in phase identification. On heating from ambient temperature, volcanic cristobalite exhibits a lower degree of thermal expansion than synthetic cristobalite, and it also has a lower α-β transition temperature (∼473 K) compared with synthetic cristobalite (upwards of 543 K); these observations are discussed in relation to the presence of Al(3+) and Na(+) defects. The transition shows a stable and reproducible hysteresis loop with α and β phases coexisting through the transition, suggesting that discrete crystals in the sample have different transition temperatures. PMID:25242910

  12. High pressure phase transition in group III nitrides compounds

    NASA Astrophysics Data System (ADS)

    Soni, Shubhangi; Verma, S.; Kaurav, Netram; Choudhary, K. K.

    2016-05-01

    Using an effective interionic interaction potential (EIOP), the pressure induced structural phase transformation from ZnS-type (B3) to NaCl-type (B1) structure in group III Post-Transition Metal Nitrides [TMN; TM=Ga and Tl] were investigated. The long range Coulomb, van der Waals (vdW) interaction and the short-range repulsive interaction upto second-neighbor ions within the Hafemeister and Flygare approach with modified ionic charge are properly incorporated in the EIOP. The vdW coefficients are computed following the Slater-Kirkwood variational method, as both the ions are polarizable. The estimated value of the phase transition pressure (Pt) and the magnitude of the discontinuity in volume at the transition pressure are consistent as compared to the reported data.

  13. Late-time cosmological phase transitions

    SciTech Connect

    Schramm, D.N. Fermi National Accelerator Lab., Batavia, IL )

    1990-11-01

    It is shown that the potential galaxy formation and large-scale structure problems of objects existing at high redshifts (Z {approx gt} 5), structures existing on scales of 100M pc as well as velocity flows on such scales, and minimal microwave anisotropies ({Delta}T/T) {approx lt} 10{sup {minus}5} can be solved if the seeds needed to generate structure form in a vacuum phase transition after decoupling. It is argued that the basic physics of such a phase transition is no more exotic than that utilized in the more traditional GUT scale phase transitions, and that, just as in the GUT case, significant random gaussian fluctuations and/or topological defects can form. Scale lengths of {approximately}100M pc for large-scale structure as well as {approximately}1 M pc for galaxy formation occur naturally. Possible support for new physics that might be associated with such a late-time transition comes from the preliminary results of the SAGE solar neutrino experiment, implying neutrino flavor mixing with values similar to those required for a late-time transition. It is also noted that a see-saw model for the neutrino masses might also imply a tau neutrino mass that is an ideal hot dark matter candidate. However, in general either hot or cold dark matter can be consistent with a late-time transition. 47 refs., 2 figs.

  14. Late-time cosmological phase transitions

    NASA Technical Reports Server (NTRS)

    Schramm, David N.

    1991-01-01

    It is shown that the potential galaxy formation and large scale structure problems of objects existing at high redshifts (Z approx. greater than 5), structures existing on scales of 100 M pc as well as velocity flows on such scales, and minimal microwave anisotropies ((Delta)T/T) (approx. less than 10(exp -5)) can be solved if the seeds needed to generate structure form in a vacuum phase transition after decoupling. It is argued that the basic physics of such a phase transition is no more exotic than that utilized in the more traditional GUT scale phase transitions, and that, just as in the GUT case, significant random Gaussian fluctuations and/or topological defects can form. Scale lengths of approx. 100 M pc for large scale structure as well as approx. 1 M pc for galaxy formation occur naturally. Possible support for new physics that might be associated with such a late-time transition comes from the preliminary results of the SAGE solar neutrino experiment, implying neutrino flavor mixing with values similar to those required for a late-time transition. It is also noted that a see-saw model for the neutrino masses might also imply a tau neutrino mass that is an ideal hot dark matter candidate. However, in general either hot or cold dark matter can be consistent with a late-time transition.

  15. Shape phase transitions and critical points

    SciTech Connect

    Alonso, C. E.; Arias, J. M.; Fortunato, L.; Vitturi, A.

    2009-05-04

    We investigate different aspects connected with shape phase transitions in nuclei and the possible occurrence of dynamical symmetries at the critical points. We discuss in particular the behaviour of the neighbour odd nuclei at the vicinity of the critical points in the even nuclei. We consider both the case of the transition from the vibrational behaviour to the gamma-unstable deformation (characterized within the collective Bohr hamiltonian by the E(5) critical point symmetry) and the case of the transition from the vibrational behaviour to the stable axial deformation (characterized by the X(5) symmetry). The odd particle is assumed to be moving in the three single particle orbitals j = 1/2,3/2,5/2, a set of orbitals that is known to lead to possible supersymmetric cases. The coupling of the odd particle to the Bohr hamiltonian does lead in fact in the former case at the critical point to the E(5/12) boson-fermion dynamical symmetry. An alternative approach to the two shape transitions is based on the Interacting Boson Fermion Model. In this case suitably parametrized boson-fermion hamiltonians can describe the evolution of the odd system along the shape transitions. At the critical points both energy spectra and electromagnetic transitions were found to display characteristic patterns similar to those displayed by the even nuclei at the corresponding critical point. The behaviour of the odd nuclei can therefore be seen as necessary complementary signatures of the occurrence of the phase transitions.

  16. Network traffic behaviour near phase transition point

    NASA Astrophysics Data System (ADS)

    Lawniczak, A. T.; Tang, X.

    2006-03-01

    We explore packet traffic dynamics in a data network model near phase transition point from free flow to congestion. The model of data network is an abstraction of the Network Layer of the OSI (Open Systems Interconnect) Reference Model of packet switching networks. The Network Layer is responsible for routing packets across the network from their sources to their destinations and for control of congestion in data networks. Using the model we investigate spatio-temporal packets traffic dynamics near the phase transition point for various network connection topologies, and static and adaptive routing algorithms. We present selected simulation results and analyze them.

  17. Solid-liquid phase transition in argon

    NASA Technical Reports Server (NTRS)

    Tsang, T.; Tang, H. T.

    1978-01-01

    Starting from the Lennard-Jones interatomic potential, a modified cell theory has been used to describe the solid-liquid phase transition in argon. The cell-size variations may be evaluated by a self-consistent condition. With the inclusion of cell-size variations, the transition temperature, the solid and liquid densities, and the liquid-phase radial-distribution functions have been calculated. These ab initio results are in satisfactory agreement with molecular-dynamics calculations as well as experimental data on argon.

  18. Phase transition in loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Mäkelä, Jarmo

    2016-04-01

    We point out that with a specific counting of states loop quantum gravity implies that black holes perform a phase transition at a certain characteristic temperature TC . In this phase transition the punctures of the spin network on the stretched horizon of the black hole jump, in effect, from the vacuum to the excited states. The characteristic temperature TC may be regarded as the lowest possible temperature of the hole. From the point of view of a distant observer at rest with respect to the hole, the characteristic temperature TC corresponds to the Hawking temperature of the hole.

  19. Queueing phase transition: theory of translation.

    PubMed

    Romano, M Carmen; Thiel, Marco; Stansfield, Ian; Grebogi, Celso

    2009-05-15

    We study the current of particles on a lattice, where to each site a different hopping probability has been associated and the particles can move only in one direction. We show that the queueing of the particles behind a slow site can lead to a first-order phase transition, and derive analytical expressions for the configuration of slow sites for this to happen. We apply this stochastic model to describe the translation of mRNAs. We show that the first-order phase transition, uncovered in this work, is the process responsible for the classification of the proteins having different biological functions. PMID:19519001

  20. Holographic endpoint of spatially modulated phase transition

    SciTech Connect

    Ooguri, Hirosi; Park, Chang-Soon

    2010-12-15

    In a previous paper [S. Nakamura, H. Ooguri, and C. S. Park, Phys. Rev. D 81, 044018 (2010)], we showed that the Reissner-Nordstroem black hole in the five-dimensional anti-de Sitter space coupled to the Maxwell theory with the Chern-Simons term is unstable when the Chern-Simons coupling is sufficiently large. In the dual conformal field theory, the instability suggests a spatially modulated phase transition. In this paper, we construct and analyze nonlinear solutions which describe the endpoint of this phase transition. In the limit where the Chern-Simons coupling is large, we find that the phase transition is of the second order with the mean field critical exponent. However, the dispersion relation with the Van Hove singularity enhances quantum corrections in the bulk, and we argue that this changes the order of the phase transition from the second to the first. We compute linear response functions in the nonlinear solution and find an infinite off-diagonal DC conductivity in the new phase.

  1. Transition to turbulence in pipe flow as a phase transition

    NASA Astrophysics Data System (ADS)

    Vasudevan, Mukund; Hof, Björn

    2015-11-01

    In pipe flow, turbulence first arises in the form of localized turbulent patches called puffs. The flow undergoes a transition to sustained turbulence via spatio-temporal intermittency, with puffs splitting, decaying and merging in the background laminar flow. However, the due to mean advection of the puffs and the long timescales involved (~107 advective time units), it is not possible to study the transition in typical laboratory set-ups. So far, it has only been possible to indirectly estimate the critical point for the transition. Here, we exploit the stochastic memoryless nature of the puff decay and splitting processes to construct a pipe flow set-up, that is periodic in a statistical sense. It then becomes possible to study the flow for sufficiently long times and characterize the transition in detail. We present measurements of the turbulent fraction as a function of Reynolds number which in turn allows a direct estimate of the critical point. We present evidence that the transition has features of a phase transition of second order.

  2. Annotated Bibliography on Transition from School to Work. Volume 2.

    ERIC Educational Resources Information Center

    Leach, Lynda N.; Harmon, Adrienne S.

    This second volume of an annotated bibliography on transition from school to work focuses on evaluation methodology, efficacy of secondary and transitional services, and related topics. The bibliography's scope includes English-language journal articles, books, and reports, originally published from 1977 through 1987. For each of the 368 entries,…

  3. On configurational weak phase transitions in graphene

    NASA Astrophysics Data System (ADS)

    Sfyris, Dimitris

    2016-07-01

    We report a study on configurational weak phase transitions for a freestanding monolayer graphene. Firstly, we characterize weak transformation neighborhoods by suitably bounding the metric components. Then, we distinguish between structural and configurational phase changes and elaborate on the second class of them. We evaluate the irreducible invariant subspaces corresponding to these phase changes and lay down symmetry-breaking as well as symmetry-preserving stretches. In the reduced bifurcation diagram, symmetry-preserving stretches are related to a turning point with a change of stability but not of symmetry. Symmetry-breaking stretches are related to a first-order weak phase transition. We evaluate symmetry-breaking stretches as well as their generating cosets. The reduced bifurcation diagram consists of three transcritical bifurcating curves which are all unstable but can be stabilized producing a subcritical bifurcation. We, also, shortly comment on the hysteretical behavior that might appear in this case.

  4. Black Hole Phase Transition in Massive Gravity

    NASA Astrophysics Data System (ADS)

    Ning, Shou-Li; Liu, Wen-Biao

    2016-07-01

    In massive gravity, some new phenomena of black hole phase transition are found. There are more than one critical points under appropriate parameter values and the Gibbs free energy near critical points also has some new properties. Moreover, the Maxwell equal area rule is also investigated and the coexistence curve of the black hole is given.

  5. Hysteresis in the phase transition of chocolate

    NASA Astrophysics Data System (ADS)

    Ren, Ruilong; Lu, Qunfeng; Lin, Sihua; Dong, Xiaoyan; Fu, Hao; Wu, Shaoyi; Wu, Minghe; Teng, Baohua

    2016-01-01

    We designed an experiment to reproduce the hysteresis phenomenon of chocolate appearing in the heating and cooling process, and then established a model to relate the solidification degree to the order parameter. Based on the Landau-Devonshire theory, our model gave a description of the hysteresis phenomenon in chocolate, which lays the foundations for the study of the phase transition behavior of chocolate.

  6. Dual condensate and QCD phase transition

    SciTech Connect

    Zhang Bo; Bruckmann, Falk; Fodor, Zoltan; Szabo, Kalman K.; Gattringer, Christof

    2011-05-23

    The dual condensate is a new QCD phase transition order parameter, which connnects confinement and chiral symmetry breaking as different mass limits. We discuss the relation between the fermion spectrum at general boundary conditions and the dual condensate and show numerical results for the latter from unquenched SU(3) lattice configurations.

  7. Theory and phenomenology of electroweak phase transitions

    NASA Astrophysics Data System (ADS)

    Patel, Hiren H.

    An open problem in cosmology is to explain the origin of baryon abundance implied by observational cosmology. Among the many proposed explanations, electroweak baryogenesis is particularly attractive in that its ingredients is discoverable by modern experiments. The analysis of the electroweak phase transition in the early universe comprises an integral component within the larger study of electroweak baryogenesis. In this work, I make a detailed investigation of the conventional analysis of the electroweak phase transition commonly found in literature, and explicitly demonstrate that results are not independent of the choice of gauge. In its place, I provide a manifestly gauge-independent method for the analysis, review sources of theoretical and numerical uncertainties, and explore avenues for further development. Next, I explore the dynamics of the electroweak phase transition in two minimal extensions of the Standard Model of particle physics. Within these simple models, I describe a novel pattern of electroweak symmetry breaking favorable for baryogenesis that can serve as a paradigm for phase transition analysis in more complicated models.

  8. Chaos: Butterflies also Generate Phase Transitions

    NASA Astrophysics Data System (ADS)

    Leplaideur, Renaud

    2015-10-01

    We exhibit examples of mixing subshifts of finite type and of continuous potentials such that there are phase transitions but the pressure is always strictly convex. More surprisingly, we show that the pressure can be analytic on some interval although there exist several equilibrium states.

  9. Application of epidemic models to phase transitions

    NASA Astrophysics Data System (ADS)

    Bilge, A. H.; Pekcan, Ö.; Gürol, M. V.

    2012-11-01

    The Susceptible-Infected-Recovered (SIR) and Susceptible-Exposed-Infected-Recovered (SEIR) models describe the spread of epidemics in a society. In the typical case, the ratio of the susceptible individuals fall from a value S 0 close to 1 to a final value Sf , while the ratio of recovered individuals rise from 0 to Rf = 1 - Sf . The sharp passage from the level zero to the level Rf allows also the modeling of phase transitions by the number of "recovered" individuals R(t) of the SIR or SEIR model. In this article, we model the sol-gel transition for polyacrylamide-sodium alginate (SA) composite with different concentrations of SA as SIR and SEIR dynamical systems by solving the corresponding differential equations numerically and we show that the phase transitions of "classical" and "percolation" types are represented, respectively, by the SEIR and SIR models.

  10. Double-Diffusive Layers and Phase Transitions

    NASA Astrophysics Data System (ADS)

    Dude, Sabine; Hansen, Ulrich

    2015-04-01

    Researching the thermal evolution of the Earth's mantle on numerical base is very challenging. During the last decade different approaches are put forward in oder to understand the picture of the today's Earth's mantle. One way is to incorporate all the known features and physics (plate tectonics, phase transitions, CMB-topography, ...) into numerical models and make them as complex (or 'complete') as possible to capture Earth's mantle processes and surface signals. Another way is, to take a step back and look at less complex models which account for single processes and their interaction and evolution. With these 'simpler' models one is able look in detail into the physical processes and dependencies on certain parameters. Since the knowledge of slab stagnation in the transitions zone of the Earth's mantle the question whether the mantle is or at least has been layered to some degree is still under debate. On this basis we address two important features that lead to layered mantle convection and may affect each other and with this the thermal evolution of the mantle. It is commonly known the main mantle mineral olivine pass through various phase changes with depth [1]. Detailed numerical studies had been carried out to ascertain the influence on convective motion and planetary evolution [2]. It is still heavily discussed whether the endothermic phase change at 660km depth can lead an isolated lower mantle. Most of the numerical studies favour a model which has phases of layering that are disrupted by catastrophic events. In the last years double-diffusive convection has also been intensively studied with regard to planetary mantle evolution such as pile formation and core-mantle boundary topography [3]. However, another striking feature still posing open questions are evolving layers self-organised from a previous non layered state. Considering a chemical component that influences the density of a fluid in addition to the temperature leads to dynamical phenomena

  11. Nonuniversal surface behavior of dynamic phase transitions.

    PubMed

    Riego, Patricia; Berger, Andreas

    2015-06-01

    We have studied the dynamic phase transition (DPT) of the kinetic Ising model in systems with surfaces within the mean-field approximation. Varying the surface exchange coupling strength J(s), the amplitude of the externally applied oscillating field h(0), and its period P, we explore the dynamic behavior of the layer-dependent magnetization and the associated DPTs. The surface phase diagram shows several features that resemble those of the equilibrium case, with an extraordinary bulk transition and a surface transition for high J(s) values, independent from the value of h(0). For low J(s), however, h(0) is found to be a crucial parameter that leads to nonuniversal surface behavior at the ordinary bulk transition point. Specifically, we observed here a bulk-supported surface DPT for high field amplitudes h(0) and correspondingly short critical periods P(c), whereas this surface transition simultaneous to the bulk one is suppressed for slow critical dynamics occurring for low values of h(0). The suppression of the DPT for low h(0) not only occurs for the topmost surface layer, but also affects a significant number of subsurface layers. We find that the key physical quantity that explains this nonuniversal behavior is the time correlation between the dynamic surface and bulk magnetizations at the bulk critical point. This time correlation has to pass a threshold value to trigger a bulk-induced DPT in the surface layers. Otherwise, dynamic phase transitions are absent at the surface in stark contrast to the equilibrium behavior of the corresponding thermodynamic Ising model. Also, we have analyzed the penetration depth of the dynamically ordered phase for the surface DPT that occurs for large J(s) values. Here we find that the penetration depth depends strongly on J(s) and behaves identically to the corresponding equilibrium Ising model. PMID:26172695

  12. Multiscale Modeling of Shock-Induced Phase Transitions in Iron

    NASA Astrophysics Data System (ADS)

    Carter, Emily; Caspersen, Kyle; Lew, Adrian; Ortiz, Michael

    2004-03-01

    Multiscale Modeling of Shock-Induced Phase Transitions in Iron Emily Carter, Kyle Caspersen, Adrian Lew and Michael Ortiz We investigate the bcc to hcp phase transition in iron under both pressure and shear. We use DFT to map out the energy landscape of uniformly deformed iron, including its equation of state and its elastic moduli as a function of volume. >From these data we construct a nonlinear-elastic energy density which gives the energy density for arbitrary - not necessarily small - deformations. The energy density contains two wells corresponding to the bcc and hcp phases. We take this multi-well energy density as a basis for the investigation of the effect of shear on the phase diagram of iron. We allow for mixed states consisting alternating lamellae of bcc and hcp phases, and, for each macroscopic deformation, we determine the optimal microstructure of the mixed state by energy minimization using a sequential-lamination algorithm. We find that the superposition of shearing deformation on a volume change has the effect of inducing mixed states of varying spatial complexity, and of markedly lowering the critical transformation pressure. Indeed, we find that shear must be taken into consideration in order to obtain agreement with measured transformation pressures. Finally, we demonstrate how the microstructure model can be integrated into large-scale finite element calculations of shocked iron.

  13. The comfortable driving model revisited: traffic phases and phase transitions

    NASA Astrophysics Data System (ADS)

    Knorr, Florian; Schreckenberg, Michael

    2013-07-01

    We study the spatiotemporal patterns resulting from different boundary conditions for a microscopic traffic model and contrast them with empirical results. By evaluating the time series of local measurements, the local traffic states are assigned to the different traffic phases of Kerner’s three-phase traffic theory. For this classification we use the rule-based FOTO-method, which provides ‘hard’ rules for this assignment. Using this approach, our analysis shows that the model is indeed able to reproduce three qualitatively different traffic phases: free flow (F), synchronized traffic (S), and wide moving jams (J). In addition, we investigate the likelihood of transitions between the three traffic phases. We show that a transition from free flow to a wide moving jam often involves an intermediate transition: first from free flow to synchronized flow and then from synchronized flow to a wide moving jam. This is supported by the fact that the so-called F → S transition (from free flow to synchronized traffic) is much more likely than a direct F → J transition. The model under consideration has a functional relationship between traffic flow and traffic density. The fundamental hypothesis of the three-phase traffic theory, however, postulates that the steady states of synchronized flow occupy a two-dimensional region in the flow-density plane. Due to the obvious discrepancy between the model investigated here and the postulate of the three-phase traffic theory, the good agreement that we found could not be expected. For a more detailed analysis, we also studied vehicle dynamics at a microscopic level and provide a comparison of real detector data with simulated data of the identical highway segment.

  14. Phase transitions in nonequilibrium traffic theory

    SciTech Connect

    Zhang, H.M.

    2000-02-01

    This paper uses the center difference scheme of Lax-Friedrichs to numerically solve a newly developed continuum traffic flow theory and the kinematic theory of Lighthill and Whitham, and Richards, and it studies the flow-concentration phase transitions in flow containing both shock and rarefaction waves. A homogeneous road with finite length was modeled by both theories. Numerical simulations show that both theories yield nearly identical results for two representative Riemann problems--one has a shock solution and the other a rarefaction wave solution. Their phase transition curves, however, are different: those derived from the new theory have two branches--one for acceleration flow and one for deceleration flow, whereas those derived from the LWR theory comprise a single curve--the equilibrium curve. The phase transition curves in the shock case agree well with certain experimental observations but disagree with others. This disagreement may be resolved by studying transitions among nonequilibrium states, which awaits further development of a more accurate finite difference approximation of the nonequilibrium theory.

  15. Phase transition theory of sprite halo

    NASA Astrophysics Data System (ADS)

    Hiraki, Yasutaka

    2010-04-01

    We present the phase transition theory for sprite halo using measurable lightning parameters (charge moment and discharge time) on the basis of steady state thermodynamics. A halo is located at the upper part of the tree-like structure of a sprite and is produced through electron impact excitation of neutral species under the lightning-induced electric field. We proposed in our previous studies that the occurrence criteria for halos and sprites are characterized by the above lightning parameters, and additionally, the intensity of a halo weakens rapidly with an increase in the discharge time T. We assume that this phenomenon is quite similar to the phase transition between the vapor and the liquid states of water; here the analogy is between the accelerated electrons and the water molecules. We demonstrate analytically a phase transition for a simply modeled halo based on the quasistatic theory of lightning-induced electric field. Choosing the luminosity of a halo as an order parameter, we show that it has a dependence of T-0.25 - Tc-0.25 near the critical point Tc, which is characteristic of the phase transition. Furthermore, the critical time scale Tc ≈ 5.5 ms is provided naturally from our modeling and is somewhat larger than the typical time scale of the halo luminosity in observations. We consider that this kind of formalism is useful in understanding the detailed relationship between lightning activity and occurrence of halos. We discuss this point for future observations along with the possibilities of the transition model of column and carrot structures.

  16. Understanding topological phase transition in monolayer transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Choe, Duk-Hyun; Sung, Ha-Jun; Chang, K. J.

    2016-03-01

    Despite considerable interest in layered transition metal dichalcogenides (TMDs), such as M X2 with M =(Mo ,W ) and X =(S ,Se ,Te ) , the physical origin of their topological nature is still poorly understood. In the conventional view of topological phase transition (TPT), the nontrivial topology of electron bands in TMDs is caused by the band inversion between metal d - and chalcogen p -orbital bands where the former is pulled down below the latter. Here, we show that, in TMDs, the TPT is entirely different from the conventional speculation. In particular, M S2 and M S e2 exhibits the opposite behavior of TPT such that the chalcogen p -orbital band moves down below the metal d -orbital band. More interestingly, in M T e2 , the band inversion occurs between the metal d -orbital bands. Our findings cast doubts on the common view of TPT and provide clear guidelines for understanding the topological nature in new topological materials to be discovered.

  17. Topological phase transition in layered transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Choe, Duk-Hyun; Sung, Ha-Jun; Chang, Kee Joo

    Despite considerable interests in transition metal dichalcogenides (TMDs), such as MX2 with M = (Mo, W) and X = (S, Se, Te), the physical origin of their topological nature is still in its infancy. The conventional view of topological phase transition (TPT) in TMDs is that the band inversion occurs between the metal d and chalcogen p orbital bands. More precisely, the former is pulled down below the latter. Here we introduce an explicit scheme for analyzing TPT in topological materials and find that the TPT in TMDs is different from the conventional speculation. When the 1T phase undergoes a structural transformation to the 1T' phase in monolayer MX2, the band topology changes from trivial to non-trivial, leading to the TPT. We discuss the exact role of the metal d and chalcogen p orbital bands during the TPT. Our finding would provide clear guidelines for understanding the topological nature not only in TMDs but also in other topological materials yet to be explored.

  18. Phase Transitions in Models of Bird Flocking

    NASA Astrophysics Data System (ADS)

    Christodoulidi, H.; van der Weele, K.; Antonopoulos, Ch. G.; Bountis, T.

    2014-12-01

    The aim of the present paper is to elucidate the transition from collective to random behavior exhibited by various mathematical models of bird flocking. In particular, we compare Vicsek's model [Vicsek et al., Phys. Rev. Lett. 75, 1226-1229 (1995)] with one based on topological considerations. The latter model is found to exhibit a first order phase transition from flocking to decoherence, as the "noise parameter" of the problem is increased, whereas Vicsek's model gives a second order transition. Refining the topological model in such a way that birds are influenced mostly by the birds in front of them, less by the ones at their sides and not at all by those behind them (because they do not see them), we find a behavior that lies in between the two models. Finally, we propose a novel mechanism for preserving the flock's cohesion, without imposing artificial boundary conditions or attractive forces.

  19. Phase transition to turbulence in a pipe

    NASA Astrophysics Data System (ADS)

    Goldenfeld, Nigel

    Leo Kadanoff taught us much about phase transitions, turbulence and collective behavior. Here I explore the transition to turbulence in a pipe, showing how a collective mode determines the universality class. Near the transition, turbulent puffs decay either directly or through splitting, with characteristic time-scales that exhibit a super-exponential dependence on Reynolds number. Direct numerical simulations reveal that a collective mode, a so-called zonal flow emerges at large scales, activated by anisotropic turbulent fluctuations, as represented by Reynolds stress. This zonal flow imposes a shear on the turbulent fluctuations that tends to suppress their anisotropy, leading to a Landau theory of predator-prey type, in the directed percolation universality class. Stochastic simulations of this model reproduce the functional form and phenomenology of pipe flow experiments. Talk based on work performed with Hong-Yan Shih and Tsung-Lin Hsieh. This work was partially supported by the National Science Foundation through Grant NSF-DMR-1044901.

  20. Phase transitions in soft-committee machines

    NASA Astrophysics Data System (ADS)

    Biehl, M.; Schlösser, E.; Ahr, M.

    1998-10-01

    Equilibrium statistical physics is applied to the off-line training of layered neural networks with differentiable activation functions. A first analysis of soft-committee machines with an arbitrary number (K) of hidden units and continuous weights learning a perfectly matching rule is performed. Our results are exact in the limit of high training temperatures (β → 0). For K = 2 we find a second-order phase transition from unspecialized to specialized student configurations at a critical size P of the training set, whereas for K >= 3 the transition is first order. The limit K → ∞ can be performed analytically, the transition occurs after presenting on the order of NK/β examples. However, an unspecialized metastable state persists up to P propto NK2/β.

  1. Pressure induced structural phase transition in IB transition metal nitrides compounds

    NASA Astrophysics Data System (ADS)

    Soni, Shubhangi; Kaurav, Netram; Jain, A.; Shah, S.; Choudhary, K. K.

    2015-06-01

    Transition metal mononitrides are known as refractory compounds, and they have, relatively, high hardness, brittleness, melting point, and superconducting transition temperature, and they also have interesting optical, electronic, catalytic, and magnetic properties. Evolution of structural properties would be an important step towards realizing the potential technological scenario of this material of class. In the present study, an effective interionic interaction potential (EIOP) is developed to investigate the pressure induced phase transitions in IB transition metal nitrides TMN [TM = Cu, Ag, and Au] compounds. The long range Coulomb, van der Waals (vdW) interaction and the short-range repulsive interaction upto second-neighbor ions within the Hafemeister and Flygare approach with modified ionic charge are properly incorporated in the EIOP. The vdW coefficients are computed following the Slater-Kirkwood variational method, as both the ions are polarizable. The estimated value of the phase transition pressure (Pt) and the magnitude of the discontinuity in volume at the transition pressure are consistent as compared to the reported data.

  2. Pressure induced structural phase transition in IB transition metal nitrides compounds

    SciTech Connect

    Soni, Shubhangi; Kaurav, Netram Jain, A.; Shah, S.; Choudhary, K. K.

    2015-06-24

    Transition metal mononitrides are known as refractory compounds, and they have, relatively, high hardness, brittleness, melting point, and superconducting transition temperature, and they also have interesting optical, electronic, catalytic, and magnetic properties. Evolution of structural properties would be an important step towards realizing the potential technological scenario of this material of class. In the present study, an effective interionic interaction potential (EIOP) is developed to investigate the pressure induced phase transitions in IB transition metal nitrides TMN [TM = Cu, Ag, and Au] compounds. The long range Coulomb, van der Waals (vdW) interaction and the short-range repulsive interaction upto second-neighbor ions within the Hafemeister and Flygare approach with modified ionic charge are properly incorporated in the EIOP. The vdW coefficients are computed following the Slater-Kirkwood variational method, as both the ions are polarizable. The estimated value of the phase transition pressure (Pt) and the magnitude of the discontinuity in volume at the transition pressure are consistent as compared to the reported data.

  3. Gravitational Waves from a Dark Phase Transition.

    PubMed

    Schwaller, Pedro

    2015-10-30

    In this work, we show that a large class of models with a composite dark sector undergo a strong first order phase transition in the early Universe, which could lead to a detectable gravitational wave signal. We summarize the basic conditions for a strong first order phase transition for SU(N) dark sectors with n_{f} flavors, calculate the gravitational wave spectrum and show that, depending on the dark confinement scale, it can be detected at eLISA or in pulsar timing array experiments. The gravitational wave signal provides a unique test of the gravitational interactions of a dark sector, and we discuss the complementarity with conventional searches for new dark sectors. The discussion includes the twin Higgs and strongly interacting massive particle models as well as symmetric and asymmetric composite dark matter scenarios. PMID:26565451

  4. Phase transition in the countdown problem.

    PubMed

    Lacasa, Lucas; Luque, Bartolo

    2012-07-01

    We present a combinatorial decision problem, inspired by the celebrated quiz show called Countdown, that involves the computation of a given target number T from a set of k randomly chosen integers along with a set of arithmetic operations. We find that the probability of winning the game evidences a threshold phenomenon that can be understood in the terms of an algorithmic phase transition as a function of the set size k. Numerical simulations show that such probability sharply transitions from zero to one at some critical value of the control parameter, hence separating the algorithm's parameter space in different phases. We also find that the system is maximally efficient close to the critical point. We derive analytical expressions that match the numerical results for finite size and permit us to extrapolate the behavior in the thermodynamic limit. PMID:23005354

  5. Evolution of structure during phase transitions

    SciTech Connect

    Martin, J.E.; Wilcoxon, J.P.; Anderson, R.A.

    1996-03-01

    Nanostructured materials can be synthesized by utilizing the domain growth that accompanies first-order phase separation. Structural control can be achieved by appropriately selecting the quench depth and the quench time, but in order to do this in a mindful fashion one must understand the kinetics of domain growth. The authors have completed detailed light scattering studies of the evolution of structure in both temperature- and field-quenched phase transitions in two and three dimensional systems. They have studied these systems in the quiescent state and in shear and have developed theoretical models that account for the experimental results.

  6. Structural phase transitions in monolayer molybdenum dichalcogenides

    NASA Astrophysics Data System (ADS)

    Choe, Duk-Hyun; Sung, Ha June; Chang, Kee Joo

    2015-03-01

    The recent discovery of two-dimensional materials such as graphene and transition metal dichalcogenides (TMDs) has provided opportunities to develop ultimate thin channel devices. In contrast to graphene, the existence of moderate band gap and strong spin-orbit coupling gives rise to exotic electronic properties which vary with layer thickness, lattice structure, and symmetry. TMDs commonly appear in two structures with distinct symmetries, trigonal prismatic 2H and octahedral 1T phases which are semiconducting and metallic, respectively. In this work, we investigate the structural and electronic properties of monolayer molybdenum dichalcogenides (MoX2, where X = S, Se, Te) through first-principles density functional calculations. We find a tendency that the semiconducting 2H phase is more stable than the metallic 1T phase. We show that a spontaneous symmetry breaking of 1T phase leads to various distorted octahedral (1T') phases, thus inducing a metal-to-semiconductor transition. We discuss the effects of carrier doping on the structural stability and the modification of the electronic structure. This work was supported by the National Research Foundation of Korea (NRF) under Grant No. NRF-2005-0093845 and Samsung Science and Technology Foundation under Grant No. SSTFBA1401-08.

  7. Phase transitions in Nowak Sznajd opinion dynamics

    NASA Astrophysics Data System (ADS)

    Wołoszyn, Maciej; Stauffer, Dietrich; Kułakowski, Krzysztof

    2007-05-01

    The Nowak modification of the Sznajd opinion dynamics model on the square lattice assumes that with probability β the opinions flip due to mass-media advertising from down to up, and vice versa. Besides, with probability α the Sznajd rule applies that a neighbour pair agreeing in its two opinions convinces all its six neighbours of that opinion. Our Monte Carlo simulations and mean-field theory find sharp phase transitions in the parameter space.

  8. Phase Transitions in Delaunay Potts Models

    NASA Astrophysics Data System (ADS)

    Adams, Stefan; Eyers, Michael

    2016-01-01

    We establish phase transitions for certain classes of continuum Delaunay multi-type particle systems (continuum Potts models) with infinite range repulsive interaction between particles of different type. In one class of the Delaunay Potts models studied the repulsive interaction is a triangle (multi-body) interaction whereas in the second class the interaction is between pairs (edges) of the Delaunay graph. The result for the edge model is an extension of finite range results in Bertin et al. (J Stat Phys 114(1-2):79-100, 2004) for the Delaunay graph and in Georgii and Häggström (Commun Math Phys 181:507-528, 1996) for continuum Potts models to an infinite range repulsion decaying with the edge length. This is a proof of an old conjecture of Lebowitz and Lieb. The repulsive triangle interactions have infinite range as well and depend on the underlying geometry and thus are a first step towards studying phase transitions for geometry-dependent multi-body systems. Our approach involves a Delaunay random-cluster representation analogous to the Fortuin-Kasteleyn representation of the Potts model. The phase transitions manifest themselves in the percolation of the corresponding random-cluster model. Our proofs rely on recent studies (Dereudre et al. in Probab Theory Relat Fields 153:643-670, 2012) of Gibbs measures for geometry-dependent interactions.

  9. Generalized phase transitions in Lovelock gravity

    NASA Astrophysics Data System (ADS)

    Camanho, Xián O.; Edelstein, José D.; Giribet, Gastón; Gomberoff, Andrés

    2014-09-01

    We investigate a novel mechanism for phase transitions that is a distinctive feature of higher-curvature gravity theories. For definiteness, we bound ourselves to the case of Lovelock gravities. These theories are known to have several branches of asymptotically anti-de Sitter solutions. Here, extending our previous work, we show that phase transitions among some of these branches are driven by a thermalon configuration: a bubble separating two regions of different effective cosmological constants, generically hosting a black hole in the interior. Above some critical temperature, this thermalon configuration is preferred with respect to the finite-temperature anti-de Sitter space, triggering a sophisticated version of the Hawking-Page transition. After being created, the unstable bubble configuration can in general dynamically change the asymptotic cosmological constant. While this phenomenon already occurs in the case of a gravity action with square curvature terms, we point out that in the case of Lovelock theory with cubic (and higher) terms new effects appear. For instance, the theory may admit more than one type of bubble and branches that are in principle free of pathologies may also decay through the thermalon mechanism. We also find ranges of the gravitational couplings for which the theory becomes sick. These add up to previously found restrictions to impose tighter constraints on higher-curvature gravities. The results of this paper point to an intricate phase diagram which might accommodate similarly rich behavior in the dual conformal field theory side.

  10. Phase transitions in planar bilayer membranes.

    PubMed Central

    White, S H

    1975-01-01

    Temperature-dependent structural changes in planar bilayer membranes formed from glycerol monooleate (GMO) dispersed in various n-alkane solvents (C12-C17) have been studied using precise measurements of specific geometric capacitance (Cg). Cg generally increases as temperature (T) decreases. A change in the slope of Cg(T) occurs between 15 and 18 degrees C for all solvent systems examined. Measurements of the interfacial tension (gamma) of the bulk GMO-alkane dispersions against 0.1 M NaCl show that gamma generally decreases with decreasing temperature. The data can be fitted with two straight lines of different slope which intersect on the average at 17 degrees C. Pagano et al. (1973, Science (Wash. D.C.). 181:557) have shown using calorimetry that GMO has a phase transition at about 15 degrees C. Thus, the changes in Cg and gamma with temperature are likely to result from a GMO phase transition. A second structural change is observed to occur between 5 and 10 degrees C which has not been detected calorimetrically. Calculations of Cg based on various estimates of the hydrocarbon dielectric coefficient (epsilon-b) and/or hydrocarbon thickness (delta-b) leads to models for the structure of the bilayer above and below the phase transition temperature. PMID:1111634

  11. LDRD final report : raman spectroscopic measurements to monitor the HMX beta-delta phase transition.

    SciTech Connect

    Renlund, Anita Mariana; Tappan, Alexander Smith; Miller, Jill C.

    2000-11-01

    The HMX {beta}-{delta} solid-solid phase transition, which occurs as HMX is heated near 170 C, is linked to increased reactivity and sensitivity to initiation. Thermally damaged energetic materials (EMs) containing HMX therefore may present a safety concern. Information about the phase transition is vital to predictive safety models for HMX and HMX-containing EMs. We report work on monitoring the phase transition with real-time Raman spectroscopy aimed towards obtaining a better understanding of physical properties of HMX through the phase transition. HMX samples were confined in a cell of minimal free volume in a displacement-controlled or load-controlled arrangement. The cell was heated and then cooled at controlled rates while real-time Raman spectroscopic measurements were performed. Raman spectroscopy provides a clear distinction between the phases of HMX because the vibrational transitions of the molecule change with conformational changes associated with the phase transition. Temperature of phase transition versus load data are presented for both the heating and cooling cycles in the load-controlled apparatus, and general trends are discussed. A weak dependence of the temperature of phase transition on load was discovered during the heating cycle, with higher loads causing the phase transition to occur at a higher temperature. This was especially true in the temperature of completion of phase transition data as opposed to the temperature of onset of phase transition data. A stronger dependence on load was observed in the cooling cycle, with higher loads causing the reverse phase transitions to occur at a higher cooling temperature. Also, higher loads tended to cause the phase transition to occur over a longer period of time in the heating cycle and over a shorter period of time in the cooling cycle. All three of the pure HMX phases ({alpha}, {beta} and {delta}) were detected on cooling of the heated samples, either in pure form or as a mixture.

  12. Phase Transitions in Model Active Systems

    NASA Astrophysics Data System (ADS)

    Redner, Gabriel S.

    The amazing collective behaviors of active systems such as bird flocks, schools of fish, and colonies of microorganisms have long amazed scientists and laypeople alike. Understanding the physics of such systems is challenging due to their far-from-equilibrium dynamics, as well as the extreme diversity in their ingredients, relevant time- and length-scales, and emergent phenomenology. To make progress, one can categorize active systems by the symmetries of their constituent particles, as well as how activity is expressed. In this work, we examine two categories of active systems, and explore their phase behavior in detail. First, we study systems of self-propelled spherical particles moving in two dimensions. Despite the absence of an aligning interaction, this system displays complex emergent dynamics, including phase separation into a dense active solid and dilute gas. Using simulations and analytic modeling, we quantify the phase diagram and separation kinetics. We show that this nonequilibrium phase transition is analogous to an equilibrium vapor-liquid system, with binodal and spinodal curves and a critical point. We also characterize the dense active solid phase, a unique material which exhibits the structural signatures of a crystalline solid near the crystal-hexatic transition point, as well as anomalous dynamics including superdiffusive motion on intermediate timescales. We also explore the role of interparticle attraction in this system. We demonstrate that attraction drastically changes the phase diagram, which contains two distinct phase-separated regions and is reentrant as a function of propulsion speed. We interpret this complex situation with a simple kinetic model, which builds from the observed microdynamics of individual particles to a full description of the macroscopic phase behavior. We also study active nematics, liquid crystals driven out of equilibrium by energy-dissipating active stresses. The equilibrium nematic state is unstable in these

  13. Structural phase transition and electronic properties in samarium chalcogenides

    NASA Astrophysics Data System (ADS)

    Panwar, Y. S.; Aynyas, Mahendra; Pataiya, J.; Sanyal, Sankar P.

    2016-05-01

    The electronic structure and high pressure properties of samarium monochalcogenides SmS, SmSe and SmTe have been reported by using tight binding linear muffin-tin-orbital (TB-LMTO) method within the local density approximation (LDA). The total energy as a function of volume is evaluated. It is found that these monochalcogenides are stable in NaCl-type structure under ambient pressure. We predict a structural phase transition from NaCl-type (B1-phase) structure to CsCl-type (B2-type) structure for these compounds. Phase transition pressures were found to be 1.7, 4.4 and 6.6 GPa, for SmS, SmSe and SmTe respectively. Apart from this, the lattice parameter (a0), bulk modulus (B0), band structure (BS) and density of states (DOS) are calculated. From energy band diagram we observed that these compounds exhibit metallic character. The calculated values of equilibrium lattice parameter and phase transition pressure are in general good agreement with available data.

  14. Bottlebrush Copolymer Morphology Transition: Influence of Side Chain Length and Block Volume Fraction

    NASA Astrophysics Data System (ADS)

    Gai, Yue; Song, Dong-Po; Watkins, James

    Brush block copolymers synthesized via living ring-opening metathesis polymerization (ROMP) offer unique advantages as templates for functional hybrid materials. Unlike linear block copolymer, the bottlebrush polymer phase transition not only depends on volume fractions of the two blocks but also on side chain length. Here we report the morphology transitions of PS-b-PEO bottlebrush copolymer (BBCP) as a function of PEO side chain length and block volume fraction. For the BBCPs with similar side chain lengths, highly ordered lamellar morphologies were observed with PEO volume fractions in a wide range from 32 vol% to 72 vol%, which is significantly different from that of traditional linear block copolymers. This study will lay the groundwork for nanostructure fabrications using the BBCPs and provides new insights into the phase behavior of the new type of materials. This work was supported by NSF center for Hierarchical Manufacturing at the University of Massachusetts, Amherst.

  15. Structural phase transition in evolving networks.

    PubMed

    Kim, Sang-Woo; Noh, Jae Dong

    2009-08-01

    A network as a substrate for dynamic processes may have its own dynamics. We propose a model for networks which evolve together with diffusing particles through a coupled dynamics and investigate emerging structural property. The model consists of an undirected weighted network of fixed mean degree and randomly diffusing particles of fixed density. The weight w of an edge increases by the amount of traffics through its connecting nodes or decreases by a constant factor. Edges are removed with the probability P(rew)=1/(1+w) and replaced by new ones having w=0 at random locations. We find that the model exhibits a structural phase transition between the homogeneous phase characterized by an exponentially decaying degree distribution and the heterogeneous phase characterized by the presence of hubs. The hubs emerge as a consequence of a positive feedback between the particle and the edge dynamics. PMID:19792212

  16. Polymer physics of intracellular phase transitions

    NASA Astrophysics Data System (ADS)

    Brangwynne, Clifford P.; Tompa, Peter; Pappu, Rohit V.

    2015-11-01

    Intracellular organelles are either membrane-bound vesicles or membrane-less compartments that are made up of proteins and RNA. These organelles play key biological roles, by compartmentalizing the cell to enable spatiotemporal control of biological reactions. Recent studies suggest that membrane-less intracellular compartments are multicomponent viscous liquid droplets that form via phase separation. Proteins that have an intrinsic tendency for being conformationally heterogeneous seem to be the main drivers of liquid-liquid phase separation in the cell. These findings highlight the relevance of classical concepts from the physics of polymeric phase transitions for understanding the assembly of intracellular membrane-less compartments. However, applying these concepts is challenging, given the heteropolymeric nature of protein sequences, the complex intracellular environment, and non-equilibrium features intrinsic to cells. This provides new opportunities for adapting established theories and for the emergence of new physics.

  17. Phase transitions of ɛ-HNIW in compound systems

    NASA Astrophysics Data System (ADS)

    Zhang, Jing-yuan; Guo, Xue-yong; Jiao, Qing-jie; Zhang, Pu

    2016-05-01

    The heat-induced phase transitions of ɛ-HNIW, both neat and coated with various additives used in plastic bonded explosives, were investigated using powder X-ray diffraction and differential scanning calorimetry. It was found that ɛ-HNIW, after being held at 70°C for 60h, remained in the ɛ-phase. Applying other conditions, various phase transition parameters were determined, including Tc (the critical phase transition temperature), T50 (the temperature at which 50% of the phase transition is complete) and T180 (the percentage of γ-HNIW present in samples heated to 180°C). According to the above three parameters, additives were divided into three categories: those that delay phase transition, those that raise the critical temperature and the transition rate, and those that promote the phase transition. Based on the above data, a phase transition mechanism is proposed.

  18. Quantum Phase Transitions in Antiferromagnets and Superfluids

    NASA Astrophysics Data System (ADS)

    Sachdev, Subir

    2000-03-01

    A general introduction to the non-zero temperature dynamic and transport properties of low-dimensional systems near a quantum phase transition shall be presented. Basic results will be reviewed in the context of experiments on the spin-ladder compounds. Recent large N computations (M. Vojta and S. Sachdev, Phys. Rev. Lett. 83), 3916 (1999) on an extended t-J model motivate a global scenario of the quantum phases and transitions in the high temperature superconductors, and connections will be made to numerous experiments. A universal theory (S. Sachdev, C. Buragohain, and M. Vojta, Science, in press M. Vojta, C. Buragohain, and S. Sachdev, cond- mat/9912020) of quantum impurities in spin-gap antiferromagnets near a magnetic ordering transition will be compared quantitatively to experiments on Zn doped Y Ba2 Cu3 O7 (Fong et al.), Phys. Rev. Lett. 82, 1939 (1999)

  19. Thin film phase transition materials development program

    NASA Astrophysics Data System (ADS)

    Case, W. E.

    1985-04-01

    A number of application concepts have emerged based on the idea that a phase transition thin film such as vanadium dioxide provides a high resolution, two-dimensional format for switching, recording, and processing optical signals. These applications range from high density optical disk recording systems and optical data processing to laser protection devices, infrared FLIRS and seekers, laser radar systems and IR scene simulators. All application candidates have a potential for providing either a totally new capability, an improved performance, a lower cost, or combinations of the three. Probably of greatest significance is the emergence of agile sensor concepts arising out of some of the film's special properties. These are represented by the above FLIRs, seekers and laser radar systems. A three year research program has been completed to advance the state-of-the-art in the preparation and characterization of selected thin film phase transition materials. The objectives of the program were: (1) to expand the data base and improve operational characteristics of Vought prepared vanadium dioxide thin films, (2) to evolve process chemistry and subsequently characterize several new program materials, including rare-earth chalcogenides, organic semiconductor charge complexes, alloys of transition metal oxides, and metal-insulator cermets, and (3) to spin-off new applications and concepts.

  20. The transition to chaotic phase synchronization

    NASA Astrophysics Data System (ADS)

    Mosekilde, E.; Laugesen, J. L.; Zhusubaliyev, Zh. T.

    2012-08-01

    The transition to chaotic phase synchronization for a periodically driven spiral-type chaotic oscillator is known to involve a dense set of saddle-node bifurcations. By following the synchronization transition through the cascade of period-doubling bifurcations in a forced Rössler system, this paper describes how these saddle-node bifurcations arise and how their characteristic cyclic organisation develops. We identify the cycles that are involved in the various saddle-node bifurcations and descibe how the formation of multi-layered resonance cycles in the synchronization domain is related to the torus doubling bifurcations that take place outside this domain. By examining a physiology-based model of the blood flow regulation to the individual functional unit (nephron) of the kidney we demonstrate how a similar bifurcation structure may arise in this system as a response to a periodically varying arterial blood pressure. The paper finally discusses how an alternative transition to chaotic phase synchronization may occur in the mutual synchronization of two chaotically oscillating period-doubling systems.

  1. Transitional Bubble in Periodic Flow Phase Shift

    NASA Technical Reports Server (NTRS)

    Talan, M.; Hourmouziadis, Jean

    2004-01-01

    One particular characteristic observed in unsteady shear layers is the phase shift relative to the main flow. In attached boundary layers this will have an effect both on the instantaneous skin friction and heat transfer. In separation bubbles the contribution to the drag is dominated by the pressure distribution. However, the most significant effect appears to be the phase shift on the transition process. Unsteady transition behaviour may determine the bursting of the bubble resulting in an un-recoverable full separation. An early analysis of the phase shift was performed by Stokes for the incompressible boundary layer of an oscillating wall and an oscillating main flow. An amplitude overshoot within the shear layer as well as a phase shift were observed that can be attributed to the relatively slow diffusion of viscous stresses compared to the fast change of pressure. Experiments in a low speed facility with the boundary layer of a flat plate were evaluated in respect to phase shift. A pressure distribution similar to that on the suction surface of a turbomachinery aerofoil was superimposed generating a typical transitional separation bubble. A periodically unsteady main flow in the suction type wind tunnel was introduced via a rotating flap downstream of the test section. The experiments covered a range of the three similarity parameters of momentum-loss-thickness Reynolds-number of 92 to 226 and Strouhal-number (reduced frequency) of 0.0001 to 0.0004 at the separation point, and an amplitude range up to 19 %. The free stream turbulence level was less than 1% .Upstream of the separation point the phase shift in the laminar boundary layer does not appear to be affected significantly bay either of the three parameters. The trend perpendicular to the wall is similar to the Stokes analysis. The problem scales well with the wave velocity introduced by Stokes, however, the lag of the main flow near the wall is less than indicated analytically. The separation point

  2. Exploiting phase transitions for fusion optimization problems

    NASA Astrophysics Data System (ADS)

    Svenson, Pontus

    2005-05-01

    Many optimization problems that arise in multi-target tracking and fusion applications are known to be NP-complete, ie, believed to have worst-case complexities that are exponential in problem size. Recently, many such NP-complete problems have been shown to display threshold phenomena: it is possible to define a parameter such that the probability of a random problem instance having a solution jumps from 1 to 0 at a specific value of the parameter. It is also found that the amount of resources needed to solve the problem instance peaks at the transition point. Among the problems found to display this behavior are graph coloring (aka clustering, relevant for multi-target tracking), satisfiability (which occurs in resource allocation and planning problem), and the travelling salesperson problem. Physicists studying these problems have found intriguing similarities to phase transitions in spin models of statistical mechanics. Many methods previously used to analyze spin glasses have been used to explain some of the properties of the behavior at the transition point. It turns out that the transition happens because the fitness landscape of the problem changes as the parameter is varied. Some algorithms have been introduced that exploit this knowledge of the structure of the fitness landscape. In this paper, we review some of the experimental and theoretical work on threshold phenomena in optimization problems and indicate how optimization problems from tracking and sensor resource allocation could be analyzed using these results.

  3. Phase transitions in least-effort communications

    NASA Astrophysics Data System (ADS)

    Prokopenko, Mikhail; Ay, Nihat; Obst, Oliver; Polani, Daniel

    2010-11-01

    We critically examine a model that attempts to explain the emergence of power laws (e.g., Zipf's law) in human language. The model is based on the principle of least effort in communications—specifically, the overall effort is balanced between the speaker effort and listener effort, with some trade-off. It has been shown that an information-theoretic interpretation of this principle is sufficiently rich to explain the emergence of Zipf's law in the vicinity of the transition between referentially useless systems (one signal for all referable objects) and indexical reference systems (one signal per object). The phase transition is defined in the space of communication accuracy (information content) expressed in terms of the trade-off parameter. Our study explicitly solves the continuous optimization problem, subsuming a recent, more specific result obtained within a discrete space. The obtained results contrast Zipf's law found by heuristic search (that attained only local minima) in the vicinity of the transition between referentially useless systems and indexical reference systems, with an inverse-factorial (sub-logarithmic) law found at the transition that corresponds to global minima. The inverse-factorial law is observed to be the most representative frequency distribution among optimal solutions.

  4. Phase transitions of Dirac electrons in bismuth.

    PubMed

    Li, Lu; Checkelsky, J G; Hor, Y S; Uher, C; Hebard, A F; Cava, R J; Ong, N P

    2008-07-25

    The Dirac Hamiltonian, which successfully describes relativistic fermions, applies equally well to electrons in solids with linear energy dispersion, for example, in bismuth and graphene. A characteristic of these materials is that a magnetic field less than 10 tesla suffices to force the Dirac electrons into the lowest Landau level, with resultant strong enhancement of the Coulomb interaction energy. Moreover, the Dirac electrons usually come with multiple flavors or valley degeneracy. These ingredients favor transitions to a collective state with novel quantum properties in large field. By using torque magnetometry, we have investigated the magnetization of bismuth to fields of 31 tesla. We report the observation of sharp field-induced phase transitions into a state with striking magnetic anisotropy, consistent with the breaking of the threefold valley degeneracy. PMID:18653888

  5. Dynamical phase transitions in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Rotter, Ingrid

    2012-02-01

    The nucleus is described as an open many-body quantum system with a non-Hermitian Hamilton operator the eigenvalues of which are complex, in general. The eigenvalues may cross in the complex plane (exceptional points), the phases of the eigenfunctions are not rigid in approaching the crossing points and the widths bifurcate. By varying only one parameter, the eigenvalue trajectories usually avoid crossing and width bifurcation occurs at the critical value of avoided crossing. An analog spectroscopic redistribution takes place for discrete states below the particle decay threshold. By this means, a dynamical phase transition occurs in the many-level system starting at a critical value of the level density. Hence the properties of the low-lying nuclear states (described well by the shell model) and those of highly excited nuclear states (described by random ensembles) differ fundamentally from one another. The statement of Niels Bohr on the collective features of compound nucleus states at high level density is therefore not in contradiction to the shell-model description of nuclear (and atomic) states at low level density. Dynamical phase transitions are observed experimentally in different quantum mechanical systems by varying one or two parameters.

  6. Topological Phase Transition without Gap Closing

    PubMed Central

    Ezawa, Motohiko; Tanaka, Yukio; Nagaosa, Naoto

    2013-01-01

    Topological phase transition is accompanied with a change of topological numbers. According to the bulk-edge correspondence, the gap closing and the breakdown of the adiabaticity are necessary at the phase transition point to make the topological number ill-defined. However, the gap closing is not always needed. In this paper, we show that two topological distinct phases can be continuously connected without gap closing, provided the symmetry of the system changes during the process. Here we propose the generic principles how this is possible by demonstrating various examples such as 1D polyacetylene with the charge-density-wave order, 2D silicene with the antiferromagnetic order, 2D silicene or quantum well made of HgTe with superconducting proximity effects and 3D superconductor Cu doped Bi2Se3. It is argued that such an unusual phenomenon can occur when we detour around the gap closing point provided the connection of the topological numbers is lost along the detour path. PMID:24071900

  7. Finitely Generated Multifractals Can Display Phase Transitions

    NASA Astrophysics Data System (ADS)

    Huillet, Thierrey; Jeannet, Bernard

    1996-02-01

    A new class of multifractal objects (“skewed” multifractals) is introduced, the mutiplicative generator of which has a finite number of branches of different real-valued depths. Both microscopic and macroscopic scales are represented by such objects, each of these corresponding to a specific thermodynamical regime. In the “diluted” regime, the partition function Z_t is exactly renormalizable which means in the sequel, as is the case in the general multifractal theory, that t^{-1} log Z_t as a non trivial limit as t tends to infinity. In the “condensed” one the partition function converges. Details about the transition between these two regimes are given. Une nouvelle classe de “multifractales” est introduite, pour laquelle le générateur présente un nombre fini de branches de longueur variable à valeurs réelles. Les échelles macroscopiques et microscopiques sont représentables par de tels objets, chacune d'elles correspondant à un régime thermodynamique spécifique. Dans la phase “diluée”, la fonction de partition Z_t est exactement renormalisable, en ce sens (classique) que la limite quand trightarrow infty de t^{-1} log Z_t est non triviale. Dans la phase “condensée” la fonction de partition converge. Les détails thermodynamiques concernant cette transition de phase sont fournis.

  8. Phase transitions of nuclear matter beyond mean field theory

    SciTech Connect

    Tran Huu Phat; Nguyen Tuan Anh; Nguyen Van Long; Le Viet Hoa

    2007-10-15

    The Cornwall-Jackiw-Tomboulis (CJT) effective action approach is applied to study the phase transition of nuclear matter modeled by the four-nucleon interaction. It is shown that in the Hartree-Fock approximation (HFA) a first-order phase transition takes place at low temperature, whereas the phase transition is of second order at higher temperature.

  9. Jahn-Teller solitons, structural phase transitions, and phase separation.

    PubMed

    Clougherty, Dennis P

    2006-02-01

    It is demonstrated that under common conditions a molecular solid subject to Jahn-Teller interactions supports stable Q-ball-like nontopological solitons. Such solitons represent a localized lump of excess electric charge in periodic motion accompanied by a time-dependent shape distortion of a set of adjacent molecules. The motion of the distortion can correspond to a true rotation or to a pseudorotation about the symmetric shape configuration. These solitons are stable for Jahn-Teller coupling strengths below a critical value; however, as the Jahn-Teller coupling approaches this critical value, the size of the soliton diverges signaling an incipient structural phase transition. The soliton phase mimics features commonly attributed to phase separation in complex solids. PMID:16486846

  10. Jahn-Teller Solitons, Structural Phase Transitions, and Phase Separation

    NASA Astrophysics Data System (ADS)

    Clougherty, Dennis P.

    2006-02-01

    It is demonstrated that under common conditions a molecular solid subject to Jahn-Teller interactions supports stable Q-ball-like nontopological solitons. Such solitons represent a localized lump of excess electric charge in periodic motion accompanied by a time-dependent shape distortion of a set of adjacent molecules. The motion of the distortion can correspond to a true rotation or to a pseudorotation about the symmetric shape configuration. These solitons are stable for Jahn-Teller coupling strengths below a critical value; however, as the Jahn-Teller coupling approaches this critical value, the size of the soliton diverges signaling an incipient structural phase transition. The soliton phase mimics features commonly attributed to phase separation in complex solids.

  11. Phases and phase transitions in the algebraic microscopic shell model

    NASA Astrophysics Data System (ADS)

    Georgieva, A. I.; Drumev, K. P.

    2016-01-01

    We explore the dynamical symmetries of the shell model number conserving algebra, which define three types of pairing and quadrupole phases, with the aim to obtain the prevailing phase or phase transition for the real nuclear systems in a single shell. This is achieved by establishing a correspondence between each of the pairing bases with the Elliott's SU(3) basis that describes collective rotation of nuclear systems. This allows for a complete classification of the basis states of different number of particles in all the limiting cases. The probability distribution of the SU(3) basis states within theirs corresponding pairing states is also obtained. The relative strengths of dynamically symmetric quadrupole-quadrupole interaction in respect to the isoscalar, isovector and total pairing interactions define a control parameter, which estimates the importance of each term of the Hamiltonian in the correct reproduction of the experimental data for the considered nuclei.

  12. Pressure dependence of band-gap and phase transitions in bulk CuX (X = Cl, Br, I)

    NASA Astrophysics Data System (ADS)

    Azhikodan, Dilna; Nautiyal, Tashi; Sharma, S.

    2016-05-01

    Usually a phase transition, in theoretical studies, is explored or verified by studying the total energy as a function of the volume considering various plausible phases. The intersection point, if any, of the free energy vs. volume curves for the different phases is then the indicator of the phase transition(s). The question is, can the theoretical study of a single phase alone indicate a phase transition? i.e. can we look beyond the phase under consideration through such a study? Using density-functional theory, we report a novel approach to suggest phase transition(s) through theoretical study of a single phase. Copper halides have been engaged for this study. These are direct band-gap semiconductors, with zinc blende structure at ambient conditions, and are reported to exhibit many phase transitions. We show that the study of volume dependence of energy band-gap in a single phase facilitates looking beyond the phase under consideration. This, when translated to pressures, reflects the phase transition pressures for CuX (X = Cl, Br, I) with an encouraging accuracy. This work thus offers a simple, yet reliable, approach based on electronic structure calculations to investigate new semiconducting materials for phase changes under pressure.

  13. Is ``metamictization`` of zircon a phase transition?

    SciTech Connect

    Salje, E.K.H.; Chrosch, J.; Ewing, R.C.

    1999-07-01

    Metamictization is the transition from the crystalline to an aperiodic or amorphous state due to alpha-decay event damage from constituent radionuclides ({sup 238}U, {sup 235}U, and {sup 232}Th) and their daughters. However, this transformation in minerals is part of a larger class of radiation-induced transformations to the amorphous state that has received considerable recent attention as a result of ion- and electron-beam experiments on metals, intermetallics, simple oxides, and complex ceramics and minerals. Diffuse X-ray scattering from single crystals of metamict zircon reveals residual crystallinity even at high fluences (up to 7.2 {times} 10{sup 18} {alpha}-decay events/g). The experimental evidence does not suggest that radiation-induced amorphization is a phase transition. The observations are in good agreement with a nonconvergent, heterogeneous model of amorphization in which damage production is a random process of cascade formation and overlap at increasing fluence. Instead of an amorphization transition, the existence of a percolation transition is postulated. At the level of radiation damage near the percolation point, the heterogeneous strain broadening of X-ray diffraction profiles is reduced whereas the particle-size broadening increases. Simultaneously, the macroscopic swelling of the zircon becomes larger than the maximum expansion of the unit-cell parameters. A suitable empirical parameter that characterizes this transition is the flux, D{sub s}, at which the macroscopic expansion is identical to the maximum expansion of the crystallographic unit cell. In zircon, D{sub s} = 3.5{center_dot}10{sup 18} {alpha}-decay events/g.

  14. Evolutionary Phase Transitions in Random Environments.

    PubMed

    Skanata, Antun; Kussell, Edo

    2016-07-15

    We present analytical results for long-term growth rates of structured populations in randomly fluctuating environments, which we apply to predict how cellular response networks evolve. We show that networks which respond rapidly to a stimulus will evolve phenotypic memory exclusively under random (i.e., nonperiodic) environments. We identify the evolutionary phase diagram for simple response networks, which we show can exhibit both continuous and discontinuous transitions. Our approach enables exact analysis of diverse evolutionary systems, from viral epidemics to emergence of drug resistance. PMID:27472146

  15. Evolutionary Phase Transitions in Random Environments

    NASA Astrophysics Data System (ADS)

    Skanata, Antun; Kussell, Edo

    2016-07-01

    We present analytical results for long-term growth rates of structured populations in randomly fluctuating environments, which we apply to predict how cellular response networks evolve. We show that networks which respond rapidly to a stimulus will evolve phenotypic memory exclusively under random (i.e., nonperiodic) environments. We identify the evolutionary phase diagram for simple response networks, which we show can exhibit both continuous and discontinuous transitions. Our approach enables exact analysis of diverse evolutionary systems, from viral epidemics to emergence of drug resistance.

  16. Berry phase transition in twisted bilayer graphene

    NASA Astrophysics Data System (ADS)

    Rode, Johannes C.; Smirnov, Dmitri; Schmidt, Hennrik; Haug, Rolf J.

    2016-09-01

    The electronic dispersion of a graphene bilayer is highly dependent on rotational mismatch between layers and can be further manipulated by electrical gating. This allows for an unprecedented control over electronic properties and opens up the possibility of flexible band structure engineering. Here we present novel magnetotransport data in a twisted bilayer, crossing the energetic border between decoupled monolayers and coupled bilayer. In addition a transition in Berry phase between π and 2π is observed at intermediate magnetic fields. Analysis of Fermi velocities and gate induced charge carrier densities suggests an important role of strong layer asymmetry for the observed phenomena.

  17. Quantum coherence and quantum phase transitions

    PubMed Central

    Li, Yan-Chao; Lin, Hai-Qing

    2016-01-01

    We study the connections between local quantum coherence (LQC) based on Wigner-Yanase skew information and quantum phase transitions (QPTs). When applied on the one-dimensional Hubbard, XY spin chain with three-spin interaction, and Su-Schrieffer-Heeger models, the LQC and its derivatives are used successfully to detect different types of QPTs in these spin and fermionic systems. Furthermore, the LQC is effective as the quantum discord (QD) in detecting QPTs at finite temperatures, where the entanglement has lost its effectiveness. We also demonstrate that the LQC can exhibit different behaviors in many forms compared with the QD. PMID:27193057

  18. Bound entanglement in quantum phase transitions

    SciTech Connect

    Baghbanzadeh, S.; Alipour, S.; Rezakhani, A. T.

    2010-04-15

    We investigate quantum phase transitions in which a change in the type of entanglement from bound entanglement to either free entanglement or separability may occur. In particular, we present a theoretical method to construct a class of quantum spin-chain Hamiltonians that exhibit this type of quantum criticality. Given parameter-dependent two-site reduced density matrices (with prescribed entanglement properties), we lay out a reverse construction for a compatible pure state for the whole system, as well as a class of Hamiltonians for which this pure state is a ground state. This construction is illustrated through several examples.

  19. Quantum coherence and quantum phase transitions

    NASA Astrophysics Data System (ADS)

    Li, Yan-Chao; Lin, Hai-Qing

    2016-05-01

    We study the connections between local quantum coherence (LQC) based on Wigner-Yanase skew information and quantum phase transitions (QPTs). When applied on the one-dimensional Hubbard, XY spin chain with three-spin interaction, and Su-Schrieffer-Heeger models, the LQC and its derivatives are used successfully to detect different types of QPTs in these spin and fermionic systems. Furthermore, the LQC is effective as the quantum discord (QD) in detecting QPTs at finite temperatures, where the entanglement has lost its effectiveness. We also demonstrate that the LQC can exhibit different behaviors in many forms compared with the QD.

  20. Quantum coherence and quantum phase transitions.

    PubMed

    Li, Yan-Chao; Lin, Hai-Qing

    2016-01-01

    We study the connections between local quantum coherence (LQC) based on Wigner-Yanase skew information and quantum phase transitions (QPTs). When applied on the one-dimensional Hubbard, XY spin chain with three-spin interaction, and Su-Schrieffer-Heeger models, the LQC and its derivatives are used successfully to detect different types of QPTs in these spin and fermionic systems. Furthermore, the LQC is effective as the quantum discord (QD) in detecting QPTs at finite temperatures, where the entanglement has lost its effectiveness. We also demonstrate that the LQC can exhibit different behaviors in many forms compared with the QD. PMID:27193057

  1. Evaluation of proximity devices, volume 2, phase 3

    NASA Astrophysics Data System (ADS)

    Nixon, J. H.; Hipp, J. E.; Green, T. C.; Murch, G. H.; Cater, J. P.

    1982-12-01

    Phase 1 of this three phase program consisted of test evaluations of commercially available proximity warning devices. Phase 2 resulted in the design and development of a microprocessor based distributed sensor ac electrometer that measures the electrostatic field at locations along a crane boom. In volume 1 of phase 2 the electrostatic fields around a crane boom were measured by the instrument at high voltage powerlines of various voltages and geometries. Volume 2 of phase 2 contains the appendixes.

  2. Phase transitions in fluids and biological systems

    NASA Astrophysics Data System (ADS)

    Sipos, Maksim

    metric to 16S rRNA metagenomic studies of 6 vertebrate gastrointestinal microbiomes and find that they assembled through a highly non-neutral process. I then consider a phase transition that may occur in nutrient-poor environments such as ocean surface waters. In these systems, I find that the experimentally observed genome streamlining, specialization and opportunism may well be generic statistical phenomena.

  3. Raman Spectroscopic and Ultrasonic Measurements to Monitor the HMX ( ) Phase Transition

    SciTech Connect

    GIESKE,JOHN H.; MILLER,JILL C.; RENLUND,ANITA M.; TAPPAN,ALEXANDER S.

    1999-10-14

    The HMX {beta}-{delta} solid-solid phase transition, which occurs as HMX is heated near 170 C, is clearly linked to increased reactivity and sensitivity to initiation. Thermally damaged energetic materials (EMs) containing HMX therefore may present a safety concern. Information about the phase transition is vital to a predictive safety model for HMX and HMX-containing EMs. We report work in progress on monitoring the phase transition with real-time Raman spectroscopy and ultrasonic measurements aimed towards a better understanding of physical properties through the phase transition. HMX samples were confined with minimal free volume.in a cell with constant volume. The cell was heated at a controlled rate and real-time Raman spectroscopic or ultrasonic measurements were performed. Raman spectroscopy provides a clear distinction between the two phases because the vibrational transitions of the molecule change with confirmational changes associated with the phase transition. Ultrasonic time-of-flight measurements provide an additional method of distinguishing the two phases because the sound speed through the material changes with the phase transition. Ultrasonic attenuation measurements also provide information about microstructural changes such as increased porosity due to evolution of gaseous decomposition products.

  4. Phase Transitions of Single Semistiff Polymer Chains

    NASA Astrophysics Data System (ADS)

    Bastolla, Ugo; Grassberger, Peter

    1997-12-01

    We study numerically a lattice model of semiflexible homopolymers with nearest neighbor (nn) attraction and energetic preference for straight joints between bonded monomers. For this we use a new Monte Carlo algorithm, the “prunedenriched Rosenbluth Method” (PERM). It is very efficient both for relatively open configurations at high temperatures and for compact and frozen-in low- T states. This allows us to study in detail the phase diagram as a function of nn attraction ɛ and stiffness x. It shows a θ-collapse line with a transition from open coils (small ɛ) to molten compact globules (large ɛ) and a freezing transition toward a state with orientational global order (large stiffness x). Qualitatively this is similar to a recently studied mean-field theory [S. Doniach, T. Garel, and H. Orland (1996), J. Chem. Phys. 105(4), 1601], but there are important differences in details. In contrast to the mean-field theory and to naive expectations, the θ-temperature increases with stiffness x. The freezing temperature increases even faster, and reaches the θ-line at a finite value of x. For even stiffer chains, the freezing transition takes place directly, without the formation of an intermediate globular state. Although being in conflict with mean-field theory, the latter had been conjectured already by Doniach et al. on the basis of heuristic arguments and of low-statistics Monte Carlo simulations. Finally, we discuss the relevance of the present model as a very crude model for protein folding.

  5. Phase transitions in Thirring’s model

    NASA Astrophysics Data System (ADS)

    Campa, Alessandro; Casetti, Lapo; Latella, Ivan; Pérez-Madrid, Agustín; Ruffo, Stefano

    2016-07-01

    In his pioneering work on negative specific heat, Walter Thirring introduced a model that is solvable in the microcanonical ensemble. Here, we give a complete description of the phase-diagram of this model in both the microcanonical and the canonical ensemble, highlighting the main features of ensemble inequivalence. In both ensembles, we find a line of first-order phase transitions which ends in a critical point. However, neither the line nor the point have the same location in the phase-diagram of the two ensembles. We also show that the microcanonical and canonical critical points can be analytically related to each other using a Landau expansion of entropy and free energy, respectively, in analogy with what has been done in (Cohen and Mukamel 2012 J. Stat. Mech. P12017). Examples of systems with certain symmetries restricting the Landau expansion have been considered in this reference, while no such restrictions are present in Thirring’s model. This leads to a phase diagram that can be seen as a prototype for what happens in systems of particles with kinematic degrees of freedom dominated by long-range interactions.

  6. Phase transitions and doping in semiconductor nanocrystals

    NASA Astrophysics Data System (ADS)

    Sahu, Ayaskanta

    impurities (or doping) allows further control over the electrical and optical properties of nanocrystals. However, while impurity doping in bulk semiconductors is now routine, doping of nanocrystals remains challenging. In particular, evidence for electronic doping, in which additional electrical carriers are introduced into the nanocrystals, has been very limited. Here, we adopt a new approach to electronic doping of nanocrystals. We utilize a partial cation exchange to introduce silver impurities into cadmium selenide (CdSe) and lead selenide (PbSe) nanocrystals. Results indicate that the silver-doped CdSe nanocrystals show a significant increase in fluorescence intensity, as compared to pure CdSe nanocrystals. We also observe a switching from n- to p-type doping in the silver-doped CdSe nanocrystals with increased silver amounts. Moreover, the silver-doping results in a change in the conductance of both PbSe and CdSe nanocrystals and the magnitude of this change depends on the amount of silver incorporated into the nanocrystals. In the bulk, silver chalcogenides (Ag2E, E=S, Se, and Te) possess a wide array of intriguing properties, including superionic conductivity. In addition, they undergo a reversible temperature-dependent phase transition which induces significant changes in their electronic and ionic properties. While most of these properties have been examined extensively in bulk, very few studies have been conducted at the nanoscale. We have recently developed a versatile synthesis that yields colloidal silver chalcogenide nanocrystals. Here, we study the size dependence of their phase-transition temperatures. We utilize differential scanning calorimetry and in-situ X-ray diffraction analyses to observe the phase transition in nanocrystal assemblies. We observe a significant deviation from the bulk alpha (low-temperature) to beta (high-temperature) phase-transition temperature when we reduce their size to a few nanometers. Hence, these nanocrystals provide great

  7. Kinetics of silica-phase transitions

    SciTech Connect

    Duffy, C.J.

    1993-07-01

    In addition to the stable silica polymorph quartz, several metastable silica phases are present in Yucca Mountain. The conversion of these phases to quartz is accompanied by volume reduction and a decrease in the aqueous silica activity, which may destabilize clinoptilolite and mordenite. The primary reaction sequence for the silica phases is from opal or glass to disordered opal-CT, followed by ordering of the opal-CT and finally by the crystallization of quartz. The ordering of opal-CT takes place in the solid state, whereas the conversion of opal-CT takes place through dissolution-reprecipitation involving the aqueous phase. It is proposed that the rate of conversion of opal-CT to quartz is controlled by diffusion of defects out of a disordered surface layer formed on the crystallizing quartz. The reaction rates are observed to be dependent on temperature, pressure, degree of supersaturation, and pH. Rate equations selected from the literature appear to be consistent with observations at Yucca Mountain.

  8. Gravitational waves from the electroweak phase transition

    SciTech Connect

    Leitao, Leonardo; Mégevand, Ariel; Sánchez, Alejandro D. E-mail: megevand@mdp.edu.ar

    2012-10-01

    We study the generation of gravitational waves in the electroweak phase transition. We consider a few extensions of the Standard Model, namely, the addition of scalar singlets, the minimal supersymmetric extension, and the addition of TeV fermions. For each model we consider the complete dynamics of the phase transition. In particular, we estimate the friction force acting on bubble walls, and we take into account the fact that they can propagate either as detonations or as deflagrations preceded by shock fronts, or they can run away. We compute the peak frequency and peak intensity of the gravitational radiation generated by bubble collisions and turbulence. We discuss the detectability by proposed spaceborne detectors. For the models we considered, runaway walls require significant fine tuning of the parameters, and the gravitational wave signal from bubble collisions is generally much weaker than that from turbulence. Although the predicted signal is in most cases rather low for the sensitivity of LISA, models with strongly coupled extra scalars reach this sensitivity for frequencies f ∼ 10{sup −4} Hz, and give intensities as high as h{sup 2}Ω{sub GW} ∼ 10{sup −8}.

  9. Gravitational waves from the electroweak phase transition

    NASA Astrophysics Data System (ADS)

    Leitao, Leonardo; Mégevand, Ariel; Sánchez, Alejandro D.

    2012-10-01

    We study the generation of gravitational waves in the electroweak phase transition. We consider a few extensions of the Standard Model, namely, the addition of scalar singlets, the minimal supersymmetric extension, and the addition of TeV fermions. For each model we consider the complete dynamics of the phase transition. In particular, we estimate the friction force acting on bubble walls, and we take into account the fact that they can propagate either as detonations or as deflagrations preceded by shock fronts, or they can run away. We compute the peak frequency and peak intensity of the gravitational radiation generated by bubble collisions and turbulence. We discuss the detectability by proposed spaceborne detectors. For the models we considered, runaway walls require significant fine tuning of the parameters, and the gravitational wave signal from bubble collisions is generally much weaker than that from turbulence. Although the predicted signal is in most cases rather low for the sensitivity of LISA, models with strongly coupled extra scalars reach this sensitivity for frequencies f ~ 10-4 Hz, and give intensities as high as h2ΩGW ~ 10-8.

  10. Automated determination of volume phase hologram parameters

    NASA Astrophysics Data System (ADS)

    Brown, Robert D.; Stanley, James H.

    2015-03-01

    Commercially available ray tracing programs by themselves are not adequate for modelling optical systems with holographic gratings. In this paper, we describe a suite of tools that we have developed specifically for working with volume phase holograms. One tool measures the diffraction efficiency of a grating with respect to angle and position. Our automated measurement process is described. The measured diffraction data is analyzed to extract key grating parameters; such as, grating thickness and index modulation. The theoretical basis for this analysis is described. The extracted grating parameters can be used to ray trace expected performance for comparison with direct measurements. Such a methodology has allowed us to develop modelling capabilities that can be confidently used to compare design options and guide development activities. In our environment, data is collected and grating parameters are extracted using LabView; ray tracing is performed using Zemax. The concepts, however, are quite general. An example of measuring a grating recorded in a photopolymer and extracting its grating parameters is given. Results are compared to published datasheet specifications.

  11. Phase transitions in supercritical explosive percolation

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Nagler, Jan; Cheng, Xueqi; Jin, Xiaolong; Shen, Huawei; Zheng, Zhiming; D'Souza, Raissa M.

    2013-05-01

    Percolation describes the sudden emergence of large-scale connectivity as edges are added to a lattice or random network. In the Bohman-Frieze-Wormald model (BFW) of percolation, edges sampled from a random graph are considered individually and either added to the graph or rejected provided that the fraction of accepted edges is never smaller than a decreasing function with asymptotic value of α, a constant. The BFW process has been studied as a model system for investigating the underlying mechanisms leading to discontinuous phase transitions in percolation. Here we focus on the regime α∈[0.6,0.95] where it is known that only one giant component, denoted C1, initially appears at the discontinuous phase transition. We show that at some point in the supercritical regime C1 stops growing and eventually a second giant component, denoted C2, emerges in a continuous percolation transition. The delay between the emergence of C1 and C2 and their asymptotic sizes both depend on the value of α and we establish by several techniques that there exists a bifurcation point αc=0.763±0.002. For α∈[0.6,αc), C1 stops growing the instant it emerges and the delay between the emergence of C1 and C2 decreases with increasing α. For α∈(αc,0.95], in contrast, C1 continues growing into the supercritical regime and the delay between the emergence of C1 and C2 increases with increasing α. As we show, αc marks the minimal delay possible between the emergence of C1 and C2 (i.e., the smallest edge density for which C2 can exist). We also establish many features of the continuous percolation of C2 including scaling exponents and relations.

  12. Does sex induce a phase transition?

    NASA Astrophysics Data System (ADS)

    de Oliveira, P. M. C.; Moss de Oliveira, S.; Stauffer, D.; Cebrat, S.; Pękalski, A.

    2008-05-01

    We discovered a dynamic phase transition induced by sexual reproduction. The dynamics is a pure Darwinian rule applied to diploid bit-strings with both fundamental ingredients to drive Darwin's evolution: (1) random mutations and crossings which act in the sense of increasing the entropy (or diversity); and (2) selection which acts in the opposite sense by limiting the entropy explosion. Selection wins this competition if mutations performed at birth are few enough, and thus the wild genotype dominates the steady-state population. By slowly increasing the average number m of mutations, however, the population suddenly undergoes a mutational degradation precisely at a transition point mc. Above this point, the “bad” alleles (represented by 1-bits) spread over the genetic pool of the population, overcoming the selection pressure. Individuals become selectively alike, and evolution stops. Only below this point, m < mc, evolutionary life is possible. The finite-size-scaling behaviour of this transition is exhibited for large enough “chromosome” lengths L, through lengthy computer simulations. One important and surprising observation is the L-independence of the transition curves, for large L. They are also independent on the population size. Another is that mc is near unity, i.e. life cannot be stable with much more than one mutation per diploid genome, independent of the chromosome length, in agreement with reality. One possible consequence is that an eventual evolutionary jump towards larger L enabling the storage of more genetic information would demand an improved DNA copying machinery in order to keep the same total number of mutations per offspring.

  13. Ageneral approach to first order phase transitions and the anomalous behavior of coexisting phases in the magnetic case.

    SciTech Connect

    Gama, S.; de Campos, A.; Coelho, A. A.; Alves, C. S.; Ren, Y.; Garcia, F.; Brown, D. E.; da Silva, L. M.; Magnus, A.; Carvalho, G.; Gandra, G. C.; dos Santos, A. O.; Cardoso, L. P.; von Ranke, P. J.; X-Ray Science Division; Univ. Federal de Sao Paulo; Unv. Estadual de Champinas; Univ. Estadual de Maringa Lab. Nacional de Luz Sincrotron; Northern Univ.; Univ. de Estado do Rio de Janerio

    2009-01-01

    First order phase transitions for materials with exotic properties are usually believed to happen at fixed values of the intensive parameters (such as pressure, temperature, etc.) characterizing their properties. It is also considered that the extensive properties of the phases (such as entropy, volume, etc.) have discontinuities at the transition point, but that for each phase the intensive parameters remain constant during the transition. These features are a hallmark for systems described by two thermodynamic degrees of freedom. In this work it is shown that first order phase transitions must be understood in the broader framework of thermodynamic systems described by three or more degrees of freedom. This means that the transitions occur along intervals of the intensive parameters, that the properties of the phases coexisting during the transition may show peculiar behaviors characteristic of each system, and that a generalized Clausius-Clapeyron equation must be obeyed. These features for the magnetic case are confirmed, and it is shown that experimental calorimetric data agree well with the magnetic Clausius-Clapeyron equation for MnAs. An estimate for the point in the temperature-field plane where the first order magnetic transition turns to a second order one is obtained (the critical parameters) for MnAs and Gd{sub 5}Ge{sub 2}Si{sub 2} compounds. Anomalous behavior of the volumes of the coexisting phases during the magnetic first order transition is measured, and it is shown that the anomalies for the individual phases are hidden in the behavior of the global properties as the volume.

  14. Weyl semimetals and topological phase transitions

    NASA Astrophysics Data System (ADS)

    Murakami, Shuichi

    Weyl semimetals are semimetals with nondegenerate 3D Dirac cones in the bulk. We showed that in a transition between different Z2 topological phases, i.e. between the normal insulator (NI) and topological insulator (TI), the Weyl semimetal phase necessarily appears when inversion symmetry is broken. In the presentation we show that this scenario holds for materials with any space groups without inversion symmetry. Namely, let us take any band insulator without inversion symmetry, and assume that the gap is closed by a change of an external parameter. In such cases we found that the system runs either into (i) a Weyl semimetal or (ii) a nodal-line semimetal, but no insulator-to-insulator transition happens. This is confirmed by classifying the gap closing in terms of the space groups and the wavevector. In the case (i), the number of Weyl nodes produced at the gap closing ranges from 2 to 12 depending on the symmetry. In (ii) the nodal line is protected by mirror symmetry. In the presentation, we explain some Weyl semimetal and nodal-line semimetals which we find by using this classification. As an example, we explain our result on ab initio calculation on tellurium (Te). Tellurium consists of helical chains, and therefore lacks inversion and mirror symmetries. At high pressure the band gap of Te decreases and finally it runs into a Weyl semimetal phase, as confirmed by our ab initio calculation. In such chiral systems as tellurium, we also theoretically propose chiral transport in systems with such helical structures; namely, an orbital magnetization is induced by a current along the chiral axis, in analogy with a solenoid.

  15. High-pressure phase transitions of strontianite

    NASA Astrophysics Data System (ADS)

    Speziale, S.; Biedermann, N.; Reichmann, H. J.; Koch-Mueller, M.; Heide, G.

    2015-12-01

    Strontianite (SrCO3) is isostructural to aragonite, a major high-pressure polymorph of calcite. Thus it is a material of interest to investigate the high-pressure phase behavior of aragonite-group minerals. SrCO3 is a common component of natural carbonates and knowing its physical properties at high pressures is necessary to properly model the thermodynamic properties of complex carbonates, which are major crustal minerals but are also present in the deep Earth [Brenker et al., 2007] and control carbon cycling in the Earth's mantle. The few available high-pressure studies of SrCO3 disagree regarding both pressure stability and structure of the post-aragonite phase [Lin & Liu, 1997; Ono et al., 2005; Wang et al. 2015]. To clarify such controversies we investigated the high-pressure behavior of synthetic SrCO3 by Raman spectroscopy. Using a diamond anvil cell we compressed single-crystals or powder of strontianite (synthesized at 4 GPa and 1273 K for 24h in a multi anvil apparatus), and measured Raman scattering up to 78 GPa. SrCO3 presents a complex high-pressure behavior. We observe mode softening above 20 GPa and a phase transition at 25 - 26.9 GPa, which we interpret due to the CO3 groups rotation, in agreement with Lin & Liu [1997]. The lattice modes in the high-pressure phase show dramatic changes which may indicate a change from 9-fold coordinated Sr to a 12-fold-coordination [Ono, 2007]. Our results confirm that the high-pressure phase of strontianite is compatible with Pmmn symmetry. References Brenker, F.E. et al. (2007) Earth and Planet. Sci. Lett., 260, 1; Lin, C.-C. & Liu, L.-G. (1997) J. Phys. Chem. Solids, 58, 977; Ono, S. et al. (2005) Phys. Chem. Minerals, 32, 8; Ono, S. (2007) Phys. Chem. Minerals, 34, 215; Wang, M. et al. (2015) Phys Chem Minerals 42, 517.

  16. Quantum phase transitions in frustrated magnetic systems

    NASA Astrophysics Data System (ADS)

    Wölfle, P.; Schmitteckert, P.

    2015-07-01

    We review our recent work on quantum phase transitions in frustrated magnetic systems. In the first part a Pseudo Fermion Functional Renormalization Group (PFFRG) method is presented. By using an exact representation of spin 1/2 operators in terms of pseudofermions a quantum spin Hamiltonian may be mapped onto an interacting fermion system. For the latter an FRG treatment is employed. The results for the J1-J2 model and similar models of frustrated interaction show phase diagrams in agreement with those obtained by other methods, but give more detailed information on the nature of correlations, in particular in the non-magnetic phases. Applications of PFFRG to geometrically frustrated systems and to highly anisotropic Kitaev type models are also reported. In the second part the derivation of quantum spin models from the microscopic many-body Hamiltonian is discussed. The results for multiband systems with strong spin-orbit interaction encountered in the iridates class of compounds are shown to resolve some of the questions posed by experiment.

  17. Phase transitions in biogenic amorphous calcium carbonate

    NASA Astrophysics Data System (ADS)

    Gong, Yutao

    Geological calcium carbonate exists in both crystalline phases and amorphous phases. Compared with crystalline calcium carbonate, such as calcite, aragonite and vaterite, the amorphous calcium carbonate (ACC) is unstable. Unlike geological calcium carbonate crystals, crystalline sea urchin spicules (99.9 wt % calcium carbonate and 0.1 wt % proteins) do not present facets. To explain this property, crystal formation via amorphous precursors was proposed in theory. And previous research reported experimental evidence of ACC on the surface of forming sea urchin spicules. By using X-ray absorption near-edge structure (XANES) spectroscopy and photoelectron emission microscopy (PEEM), we studied cross-sections of fresh sea urchin spicules at different stages (36h, 48h and 72h after fertilization) and observed the transition sequence of three mineral phases: hydrated ACC → dehydrated ACC → biogenic calcite. In addition, we unexpectedly found hydrated ACC nanoparticles that are surrounded by biogenic calcite. This observation indicates the dehydration from hydrated ACC to dehydrated ACC is inhibited, resulting in stabilization of hydrated ACC nanoparticles. We thought that the dehydration was inhibited by protein matrix components occluded within the biomineral, and we designed an in vitro assay to test the hypothesis. By utilizing XANES-PEEM, we found that SM50, the most abundant occluded matrix protein in sea urchin spicules, has the function to stabilize hydrated ACC in vitro.

  18. Phase transitions in femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Povarnitsyn, Mikhail E.; Khishchenko, Konstantin V.; Levashov, Pavel R.

    2009-03-01

    In this study we simulate an interaction of femtosecond laser pulses (100 fs, 800 nm, 0.1-10 J/cm 2) with metal targets of Al, Au, Cu, and Ni. For analysis of laser-induced phase transitions, melting and shock waves propagation as well as material decomposition we use an Eulerian hydrocode in conjunction with a thermodynamically complete two-temperature equation of state with stable and metastable phases. Isochoric heating, material evaporation from the free surface of the target and fast propagation of the melting and shock waves are observed. On rarefaction the liquid phase becomes metastable and its lifetime is estimated using the theory of homogeneous nucleation. Mechanical spallation of the target material at high strain rates is also possible as a result of void growth and confluence. In our simulation several ablation mechanisms are taken into account but the main issue of the material is found to originate from the metastable liquid state. It can be decomposed either into a liquid-gas mixture in the vicinity of the critical point, or into droplets at high strain rates and negative pressure. The simulation results are in agreement with available experimental findings.

  19. Thermodynamics of the ferromagnetic phase transition in nearly half metallic CoS2 at high pressures

    NASA Astrophysics Data System (ADS)

    Elkin, F. S.; Zibrov, I. P.; Novikov, A. P.; Khasanov, S. S.; Sidorov, V. A.; Petrova, A. E.; Lograsso, T. A.; Thompson, J. D.; Stishov, S. M.

    2014-03-01

    The volume change and heat capacity at the ferromagnetic phase transition in CoS2 were measured at high pressures using X-rays generated by the Argonne synchrotron light source and by ac-calorimetry, respectively. The transition entropy, calculated on the basis of these experimental data, drops along the transition line due to quantum degradation, as required by Nernst's law. The volume change increases strongly along the transition line, which is explained by specifics of the compressibility difference of coexisting phases that results from nearly half metallic nature of the ferromagnetic phase of CoS2.

  20. Thermodynamics of the ferromagnetic phase transition in nearly half metallic CoS2 at high pressures

    SciTech Connect

    Elkin, F. S.; Zibrov, I. P.; Novikov, A. P.; Khasanov, S. S.; Sidorov, V. A.; Petrova, A. E.; Lograsso, Thomas A.; Thompson, J. D.; Stishov, S. M.

    2013-12-06

    The volume change and heat capacity at the ferromagnetic phase transition in COS2 were measured at high pressures using X-rays generated by the Argonne synchrotron light source and by ac-calorimetry, respectively. The transition entropy, calculated on the basis of these experimental data, drops along the transition line due to quantum degradation, as required by Nernst's law. The volume change increases strongly along the transition line, which is explained by specifics of the compressibility difference of coexisting phases that results from nearly half metallic nature of the ferromagnetic phase of COS2. (C) 2013 Elsevier Ltd. All rights reserved.

  1. Scaling theory of topological phase transitions.

    PubMed

    Chen, Wei

    2016-02-10

    Topologically ordered systems are characterized by topological invariants that are often calculated from the momentum space integration of a certain function that represents the curvature of the many-body state. The curvature function may be Berry curvature, Berry connection, or other quantities depending on the system. Akin to stretching a messy string to reveal the number of knots it contains, a scaling procedure is proposed for the curvature function in inversion symmetric systems, from which the topological phase transition can be identified from the flow of the driving energy parameters that control the topology (hopping, chemical potential, etc) under scaling. At an infinitesimal operation, one obtains the renormalization group (RG) equations for the driving energy parameters. A length scale defined from the curvature function near the gap-closing momentum is suggested to characterize the scale invariance at critical points and fixed points, and displays a universal critical behavior in a variety of systems examined. PMID:26790004

  2. Topological classification of dynamical phase transitions

    NASA Astrophysics Data System (ADS)

    Vajna, Szabolcs; Dóra, Balázs

    2015-04-01

    We study the nonequilibrium time evolution of a variety of one-dimensional (1D) and two-dimensional (2D) systems (including SSH model, Kitaev-chain, Haldane model, p +i p superconductor, etc.) following a sudden quench. We prove analytically that topology-changing quenches are always followed by nonanalytical temporal behavior of return rates (logarithm of the Loschmidt echo), referred to as dynamical phase transitions (DPTs) in the literature. Similarly to edge states in topological insulators, DPTs can be classified as being topologically protected or not. In 1D systems the number of topologically protected nonequilibrium time scales are determined by the difference between the initial and final winding numbers, while in 2D systems no such relation exists for the Chern numbers. The singularities of dynamical free energy in the 2D case are qualitatively different from those of the 1D case; the cusps appear only in the first time derivative.

  3. Shape phase transition in Nd-152144 isotopes

    NASA Astrophysics Data System (ADS)

    Gupta, J. B.

    2015-10-01

    Background: The Z =60 Nd-152144 isotopes span the spherical to the well-deformed collective nuclear structures. The shape phase transition at N =86 -88 and N =88 -90 is intermediate between (Ba,Ce) and (Sm,Gd). The role of the Z =64 subshell closure in this forms an interesting subject of study. Objective: To analyze these complex features of the Nd spectra and the effects of the Z =64 subshell by comparing with predictions from the microscopic dynamic pairing plus quadrupole model to explain the shape transition at N =86 -90 . Method: Empirical analysis of the Nd spectra is illustrated. The K -band structures of the collective Iπ=2+ states in Nd-152144 are described. The predicted B (E 2 ) values and the interband B (E 2 ) ratios are compared with experimental data. The potential-energy surfaces of Nd-152146 are illustrated, and the role of protons and neutrons filling the Nilsson orbits is described. Results: The different effects of the Z =64 subshell on the ground-state band and the excited vibrational bands of Nd-148146 are illustrated. Conclusion: The important role of the dynamics of the nucleus, besides the static features, is made more transparent.

  4. Phase transitions in Hidden Markov Models

    NASA Astrophysics Data System (ADS)

    Bechhoefer, John; Lathouwers, Emma

    In Hidden Markov Models (HMMs), a Markov process is not directly accessible. In the simplest case, a two-state Markov model ``emits'' one of two ``symbols'' at each time step. We can think of these symbols as noisy measurements of the underlying state. With some probability, the symbol implies that the system is in one state when it is actually in the other. The ability to judge which state the system is in sets the efficiency of a Maxwell demon that observes state fluctuations in order to extract heat from a coupled reservoir. The state-inference problem is to infer the underlying state from such noisy measurements at each time step. We show that there can be a phase transition in such measurements: for measurement error rates below a certain threshold, the inferred state always matches the observation. For higher error rates, there can be continuous or discontinuous transitions to situations where keeping a memory of past observations improves the state estimate. We can partly understand this behavior by mapping the HMM onto a 1d random-field Ising model at zero temperature. We also present more recent work that explores a larger parameter space and more states. Research funded by NSERC, Canada.

  5. Phase Transitions in Networks of Memristive Elements

    NASA Astrophysics Data System (ADS)

    Sheldon, Forrest; di Ventra, Massimiliano

    The memory features of memristive elements (resistors with memory), analogous to those found in biological synapses, have spurred the development of neuromorphic systems based on them (see, e.g.,). In turn, this requires a fundamental understanding of the collective dynamics of networks of memristive systems. Here, we study an experimentally-inspired model of disordered memristive networks in the limit of a slowly ramped voltage and show through simulations that these networks undergo a first-order phase transition in the conductivity for sufficiently high values of memory, as quantified by the memristive ON/OFF ratio. We provide also a mean-field theory that reproduces many features of the transition and particularly examine the role of boundary conditions and current- vs. voltage-controlled networks. The dynamics of the mean-field theory suggest a distribution of conductance jumps which may be accessible experimentally. We finally discuss the ability of these networks to support massively-parallel computation. Work supported in part by the Center for Memory and Recording Research at UCSD.

  6. Survey of CRISM Transition Phase Observations

    NASA Astrophysics Data System (ADS)

    Seelos, F. P.; Murchie, S. L.; Choo, T. H.; McGovern, J. A.

    2006-12-01

    The Mars Reconnaissance Orbiter (MRO) transition phase extends from the end of aerobraking (08/30/06) to the start of the Primary Science Phase (PSP) (11/08/2006). Within this timeframe, the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) will acquire Mars scene observations in association with the deployment of the telescope cover (09/27/06) and during the operational checkout of the full science payload (09/29/06 - 10/05/06). The CRISM cover opening sequence includes scene observations that will be used to verify deployment and to validate the on-orbit instrument wavelength calibration. The limited cover opening observation set consists of: 1. A hyperspectral nadir scan acquired as the cover is deployed (first light) 2. A single targeted (gimbaled) hyperspectral observation in the northern plains 3. A restricted duration nadir multispectral strip The high level objectives for the science payload checkout are to obtain observations in support of in-flight wavelength, radiometric, and geometric instrument calibration, to acquire data that will contribute to the development of a first-order hyperspectral atmospheric correction, and to exercise numerous spacecraft and instrument observing modes and strategies that will be employed during PSP. The science payload checkout also enables a unique collaboration between the Mars Express OMEGA and CRISM teams, with both spectrometers slated to observe common target locations with a minimal time offset for the purpose of instrument cross-calibration. The priority CRISM observations for the payload checkout include: 1. Multispectral nadir and hyperspectral off-nadir targeted observations in support of the cross-calibration experiment with OMEGA 2. Terminator-to-terminator multispectral data acquisition demonstrating the strategy that will be used to construct the global multispectral survey map 3. Terminator-to-terminator atmospheric emission phase function (EPF) data acquisition demonstrating the observation

  7. Pressure driven spin crossover and isostructural phase transition in LaFeO{sub 3}

    SciTech Connect

    Javaid, Saqib; Javed Akhtar, M. Younas, Muhammad; Ahmad, Irfan; Shah, Shafqat H.; Ahmad, Iftikhar

    2013-12-28

    We have studied the behavior of LaFeO{sub 3} under pressure (P) using density functional theory (DFT) and atomistic simulations. Ground state structural properties of LaFeO{sub 3} are correctly described by atomistic simulations. The effect of high pressure shows that there is an isotropic compression up to 100 GPa. However, DFT calculations show that within pressure range 0 < P < 32.4 GPa, LaFeO{sub 3} retains its ground state electronic structure. On the other hand, at P ∼32.4 GPa high to low spin magnetic phase transition is observed, which is accompanied by 6.9% volume collapse of LaFeO{sub 3} unit cell, while retaining the ground state orthorhombic crystal structure, i.e., isostructural phase transition. Furthermore, the band gap is closed leading insulator to metal transition. This differing behavior observed by the two techniques can be attributed to the omission of magnetic effects in static simulations. The simultaneous magnetic, electrical, and structural (volume collapse) phase transitions of LaFeO{sub 3} under compression as revealed by DFT calculations corroborate experimental findings. From these results, we can elaborate the mechanism of phase transition in LaFeO{sub 3}: increasing crystal field induces a high spin to low spin transition, which in turn drives the electrical transitions and volume collapse.

  8. Pseudo-critical behavior on the partial molar volume of solutes in the isotropic phase of liquid crystal

    NASA Astrophysics Data System (ADS)

    Matsuoka, Tatsuro; Nakamura, Shunsuke; Yamaguchi, Tsuyoshi; Koda, Shinobu

    2012-01-01

    Temperature dependence of partial molar volume of 4-amino-4‧-nitrobiphenyl (ANB) and 4,4‧-dinitrobiphenyl (DNB) in the isotropic phase of 4-n-pentyl-4‧-cyanobiphenyl (5CB) was determined. Addition of ANB to 5CB causes increase of isotropic-nematic phase transition temperature (TIN) [1]. The decrease of partial molar volume of ANB was observed while the increase of partial molar volume of DNB and triphenyl phosphite (TPP) [8] was observed with approaching TIN. The anomalous behavior of partial molar volume was discussed using treatments similar to that of other thermodynamic derivatives in the I-N transition.

  9. Structural phase transition of BaZrO{sub 3} under high pressure

    SciTech Connect

    Yang, Xue; Li, Quanjun; Liu, Ran; Liu, Bo; Zhang, Huafang; Jiang, Shuqing; Zou, Bo; Cui, Tian; Liu, Bingbing; Liu, Jing

    2014-03-28

    We studied the phase transition behavior of cubic BaZrO{sub 3} perovskite by in situ high pressure synchrotron X-ray diffraction experiments up to 46.4 GPa at room temperature. The phase transition from cubic phase to tetragonal phase was observed in BaZrO{sub 3} for the first time, which takes place at 17.2 GPa. A bulk modulus 189 (26) GPa for cubic BaZrO{sub 3} is derived from the pressure–volume data. Upon decompression, the high pressure phase transforms into the initial cubic phase. It is suggested that the unstable phonon mode caused by the rotation of oxygen octahedra plays a crucial role in the high pressure phase transition behavior of BaZrO{sub 3}.

  10. Volume-based considerations for the metal-insulator transition of CMR oxides

    SciTech Connect

    Neumeier, J.J.; Hundley, M.F.; Cornelius, A.L.; Andres, K.

    1998-03-01

    The sensitivity of {rho} [electrical resistivity] to changes in volume which occur through: (1) applied pressure, (2) variations in temperature, and (3) phase transitions, is evaluated for some selected CMR oxides. It is argued that the changes in volume associated with phase changes are large enough to produce self pressures in the range of 0.18 to 0.45 GPa. The extreme sensitivity of the electrical resistivity to pressure indicates that these self pressures are responsible for large features in the electrical resistivity and are an important component for occurrence the metallicity below {Tc}. It is suggested that this is related to a strong volume dependence of the electron phonon coupling in the CMR oxides.

  11. A Direct Method for Viewing Ferromagnetic Phase Transition.

    ERIC Educational Resources Information Center

    Lue, Chin-Shan

    1994-01-01

    Provides a method, using the Rowland ring as a specimen, to observe the phase transition process directly on the oscilloscope and even extract the critical exponent of ferromagnetic transition. Includes theory, experimental setup, and results. (MVL)

  12. Pressure-induced phase transition in CrO2.

    PubMed

    Alptekin, Sebahaddin

    2015-12-01

    The ab initio constant pressure molecular dynamics technique and density functional theory with generalized gradient approximation (GGA) was used to study the pressure-induced phase transition of CrO2. The phase transition of the rutile (P42/mnm) to the orthorhombic CaCl2 (Pnnm) structure at 30 GPa was determined successfully in a constant pressure simulation. This phase transition was analyzed from total energy calculations and, from the enthalpy calculation, occurred at around 17 GPa. Structural properties such as bulk modules, lattice parameters and phase transition were compared with experimental results. The phase transition at 12 ± 3 GPa was in good agreement with experimental results, as was the phase transition from the orthorhombic CaCl2 (Pnnm) to the monoclinic (P21/c) structure also found at 35 GPa. PMID:26541468

  13. Diffuse phase transition of Fe doped lead ytterbium tantalate ceramics

    NASA Astrophysics Data System (ADS)

    Rout, Dibyaranjan; Subramanian, V.; Hariharan, K.; Sivasubramanian, V.

    2006-02-01

    The effect of different concentration of Fe on the phase transition behavior of Lead ytterbium tantalate is investigated by dielectric and differential scanning calrimetry measurements. The samples are prepared through solid state reaction method and it has been found that the sintering temperature significantly lowered when the proportion of Pb(Fe 1/2Ta 1/2)O 3 increased. It has been observed that the doping in small amounts (0≤ x≤0.2) of Fe could meliorate the dielectric and ferroelectric properties. The diffuseness in the mode of phase transition increases and the phase transition temperature decreases as a function of Fe content. It is revealed that the dielectric data and heat capacity data follow a similar trend in the variation of the mode of phase transition and phase transition temperatures. The phase transition temperature values obtained from the heat capacity measurement well agreed with the values obtained from dielectric measurement.

  14. Hexagonal and nematic phases of chains. I - Correlation functions. II - Phase transitions

    NASA Technical Reports Server (NTRS)

    Selinger, Jonathan V.; Bruinsma, Robijn F.

    1991-01-01

    The statistical mechanics of a system of semiflexible chains, which can represent polymer liquid crystals, long-chain biomolecules, stiff wormlike micelles, or columns of discotic liquid crystals, are examined. A continuum theory is used to calculate static correlation functions in the hexagonal and nematic phases. Two correlation functions are considered: (1) the structure factor which describes fluctuations in the density; and (2) the director fluctuation spectrum, which describes fluctuations in the local optical axis. In addition, a model is developed for the phase transitions of a system of infinitely long, semiflexible chains which interact through a steric, excluded-volume repulsion. The model yields generic phase diagrams in terms of pressure or density vs. persistence length or temperature.

  15. The Roberge-Weiss phase transition and its endpoint

    NASA Astrophysics Data System (ADS)

    Kouno, Hiroaki; Sakai, Yuji; Kashiwa, Kouji; Yahiro, Masanobu

    2009-11-01

    The Roberge-Weiss (RW) phase transition in the imaginary chemical potential region is analyzed by the Polyakov-loop extended Nambu-Jona-Lasinio (PNJL) model. In the RW phase transition, the charge-conjugation symmetry is spontaneously broken, while the extended {\\mathbb Z}_{3} symmetry (the RW periodicity) is preserved. The RW transition is of second order at the endpoint. At the zero chemical potential, a crossover deconfinement transition appears as a remnant of the second-order RW phase transition at the endpoint, while the charge-conjugation symmetry is always preserved.

  16. Main phase transitions in supported lipid single-bilayer.

    PubMed

    Charrier, A; Thibaudau, F

    2005-08-01

    We have studied the phase transitions of a phospholipidic single-bilayer supported on a mica substrate by real-time temperature-controlled atomic force microscopy. We show the existence of two phase transitions in this bilayer that we attribute to two gel (L(beta))/fluid (L(alpha)) transitions, corresponding to the independent melting of each leaflet of the bilayer. The ratio of each phase with temperature and the large broadening of the transitions' widths have been interpreted through a basic thermodynamic framework in which the surface tension varies during the transitions. The experimental data can be fit with such a model using known thermodynamic parameters. PMID:15879467

  17. Gravitational waves from global second order phase transitions

    SciTech Connect

    Jr, John T. Giblin; Price, Larry R.; Siemens, Xavier; Vlcek, Brian E-mail: larryp@caltech.edu E-mail: bvlcek@uwm.edu

    2012-11-01

    Global second-order phase transitions are expected to produce scale-invariant gravitational wave spectra. In this manuscript we explore the dynamics of a symmetry-breaking phase transition using lattice simulations. We explicitly calculate the stochastic gravitational wave background produced during the transition and subsequent self-ordering phase. We comment on this signal as it compares to the scale-invariant spectrum produced during inflation.

  18. Quantum phase transition of condensed bosons in optical lattices

    SciTech Connect

    Liang Junjun; Liang, J.-Q.; Liu, W.-M.

    2003-10-01

    In this paper we study the superfluid-Mott-insulator phase transition of ultracold dilute gas of bosonic atoms in an optical lattice by means of Green function method and Bogliubov transformation as well. The superfluid-Mott-insulator phase transition condition is determined by the energy-band structure with an obvious interpretation of the transition mechanism. Moreover the superfluid phase is explained explicitly from the energy spectrum derived in terms of Bogliubov approach.

  19. Topological phase transition of a Josephson junction and its dynamics

    NASA Astrophysics Data System (ADS)

    Hutasoit, Jimmy; Marciani, Marco; Tarasinski, Brian; Beenakker, Carlo

    A Josephson junction formed by a superconducting ring interrupted by a semiconductor nanowire can realize a zero-dimensional class D topological superconductor. By coupling the Josephson junction to a ballistic wire and altering the strength of the coupling, one can drive this topological superconductor through a topological phase transition. We study the compressibility of the junction as a probe of the topological phase transition. We also study the dynamics of the phase transition by studying the current pulse injected into the wire.

  20. Theory of volume transition in polyelectrolyte gels with charge regularization.

    PubMed

    Hua, Jing; Mitra, Mithun K; Muthukumar, M

    2012-04-01

    We present a theory for polyelectrolyte gels that allow the effective charge of the polymer backbone to self-regulate. Using a variational approach, we obtain an expression for the free energy of gels that accounts for the gel elasticity, free energy of mixing, counterion adsorption, local dielectric constant, electrostatic interaction among polymer segments, electrolyte ion correlations, and self-consistent charge regularization on the polymer strands. This free energy is then minimized to predict the behavior of the system as characterized by the gel volume fraction as a function of external variables such as temperature and salt concentration. We present results for the volume transition of polyelectrolyte gels in salt-free solvents, solvents with monovalent salts, and solvents with divalent salts. The results of our theoretical analysis capture the essential features of existing experimental results and also provide predictions for further experimentation. Our analysis highlights the importance of the self-regularization of the effective charge for the volume transition of gels in particular, and for charged polymer systems in general. Our analysis also enables us to identify the dominant free energy contributions for charged polymer networks and provides a framework for further investigation of specific experimental systems. PMID:22482584

  1. Theory of volume transition in polyelectrolyte gels with charge regularization

    NASA Astrophysics Data System (ADS)

    Hua, Jing; Mitra, Mithun K.; Muthukumar, M.

    2012-04-01

    We present a theory for polyelectrolyte gels that allow the effective charge of the polymer backbone to self-regulate. Using a variational approach, we obtain an expression for the free energy of gels that accounts for the gel elasticity, free energy of mixing, counterion adsorption, local dielectric constant, electrostatic interaction among polymer segments, electrolyte ion correlations, and self-consistent charge regularization on the polymer strands. This free energy is then minimized to predict the behavior of the system as characterized by the gel volume fraction as a function of external variables such as temperature and salt concentration. We present results for the volume transition of polyelectrolyte gels in salt-free solvents, solvents with monovalent salts, and solvents with divalent salts. The results of our theoretical analysis capture the essential features of existing experimental results and also provide predictions for further experimentation. Our analysis highlights the importance of the self-regularization of the effective charge for the volume transition of gels in particular, and for charged polymer systems in general. Our analysis also enables us to identify the dominant free energy contributions for charged polymer networks and provides a framework for further investigation of specific experimental systems.

  2. Chiral phase transition in lattice QCD as a metal-insulator transition

    SciTech Connect

    Garcia-Garcia, Antonio M.; Osborn, James C.

    2007-02-01

    We investigate the lattice QCD Dirac operator with staggered fermions at temperatures around the chiral phase transition. We present evidence of a metal-insulator transition in the low lying modes of the Dirac operator around the same temperature as the chiral phase transition. This strongly suggests the phenomenon of Anderson localization drives the QCD vacuum to the chirally symmetric phase in a way similar to a metal-insulator transition in a disordered conductor. We also discuss how Anderson localization affects the usual phenomenological treatment of phase transitions a la Ginzburg-Landau.

  3. Raman study of thermochromic phase transition in tungsten trioxide nanowires

    NASA Astrophysics Data System (ADS)

    Lu, Dong Yu; Chen, Jian; Chen, Huan Jun; Gong, Li; Deng, Shao Zhi; Xu, Ning Sheng; Liu, Yu Long

    2007-01-01

    Tungsten trioxide (WO3) nanowires were synthesized by thermal evaporation of tungsten powder in two steps: tungsten suboxide (WO3-x) nanowires were synthesized, and then oxidized in O2 ambient and transformed into WO3 nanowires. Raman spectroscopy was applied to study the thermochromic phase transition of one-dimensional WO3 nanowires. From the temperature dependence of the characteristic mode at 33cm-1 in WO3, the phase transition temperature was determined. It was found that the phase transition of WO3 nanowires was reversible and the phase transition temperatures were even lower than that of WO3 nanopowder.

  4. Transitional liquid crystalline phases between the hexagonal and lamellar phases in ternary cesium N-tetradecanoate-water-additive mixtures

    SciTech Connect

    Blackburn, J.C.; Kilpatrick, P.K. )

    1993-04-01

    The effects of added salt (CsOH, CsCl), long-chain carboxylic acid, and long-chain alcohol on the lyotropic liquid crystalline phase behavior in the cesium n-tetradecanoate (CsTD)-water system is reported. The transitional region between the hexagonal (H) and lamellar (L) phases was the compositional range of focus. Three transitional phases were observed: (i) the ribbon (R) phase, a biaxial phase consisting of cylinders of ellipsoidal cross section; (ii) the viscous isotropic (VI) phase, an isotropic phase thought to consist of interconnected rods on an Ia3d lattice; and (iii) the intermediate (Int) phase, a uniaxial anisotropic phase thought to consist of interconnected rods on a planar lattice. The effect of the additives was to decrease the interfacial curvature of the surfactant head group layer by varying head group repulsion and by varying the surfactant tail volume relative to the surfactant head group area. These changes resulted in formation of transitional phases seeming to possess curvature between that of the cylindrical H phase and the planar L phase. The ionic repulsion between carboxylate head groups was reduced by the addition of CsOH or CsCl, and resulted in destabilization of the VI phase and the formation of the anisotropic Int phase. With the addition of cosurfactants, n-tetradecanoic acid (TDA) and 1-tetradecanol (TDOH), no Int phase was observed. With 7 wt% added TDA the R phase was stabilized up to temperatures of 336 K, above the 330 K temperature limit in the binary CsTD-D[sub 2]O system. In all four systems, sufficient additive (5-10 wt%) resulted in a transition to the L phase, which was stable over a large portion of the compositional range. In order of apparently decreasing mean curvature, the phase sequence is: hexagonal, ribbon, viscous isotropic, intermediate, and lamellar.

  5. QCD phase transition with chiral quarks and physical quark masses.

    PubMed

    Bhattacharya, Tanmoy; Buchoff, Michael I; Christ, Norman H; Ding, H-T; Gupta, Rajan; Jung, Chulwoo; Karsch, F; Lin, Zhongjie; Mawhinney, R D; McGlynn, Greg; Mukherjee, Swagato; Murphy, David; Petreczky, P; Renfrew, Dwight; Schroeder, Chris; Soltz, R A; Vranas, P M; Yin, Hantao

    2014-08-22

    We report on the first lattice calculation of the QCD phase transition using chiral fermions with physical quark masses. This calculation uses 2+1 quark flavors, spatial volumes between (4 fm)(3) and (11 fm)(3) and temperatures between 139 and 196 MeV. Each temperature is calculated at a single lattice spacing corresponding to a temporal Euclidean extent of N(t) = 8. The disconnected chiral susceptibility, χ(disc) shows a pronounced peak whose position and height depend sensitively on the quark mass. We find no metastability near the peak and a peak height which does not change when a 5 fm spatial extent is increased to 10 fm. Each result is strong evidence that the QCD "phase transition" is not first order but a continuous crossover for m(π) = 135 MeV. The peak location determines a pseudocritical temperature T(c) = 155(1)(8) MeV, in agreement with earlier staggered fermion results. However, the peak height is 50% greater than that suggested by previous staggered results. Chiral SU(2)(L) × SU(2)(R) symmetry is fully restored above 164 MeV, but anomalous U(1)(A) symmetry breaking is nonzero above T(c) and vanishes as T is increased to 196 MeV. PMID:25192088

  6. Phase transitions in a gas of anyons

    NASA Astrophysics Data System (ADS)

    MacKenzie, R.; Nebia-Rahal, F.; Paranjape, M. B.; Richer, J.

    2010-10-01

    We continue our numerical Monte Carlo simulation of a gas of closed loops on a 3 dimensional lattice, however, now in the presence of a topological term added to the action which corresponds to the total linking number between the loops. We compute the linking number using a novel approach employing certain notions from knot theory. Adding the topological term converts the particles into anyons. Interpreting the model as an effective theory that describes the 2+1-dimensional Abelian Higgs model in the asymptotic strong-coupling regime, the topological linking number simply corresponds to the addition to the action of the Chern-Simons term. The system continues to exhibit a phase transition as a function of the vortex mass as it becomes small. We find the following new results. The Chern-Simons term has no effect on the Wilson loop. On the other hand, it does effect the ’t Hooft loop of a given configuration, adding the linking number of the ’t Hooft loop with all of the dynamical vortex loops. We find the unexpected result that both the Wilson loop and the ’t Hooft loop exhibit a perimeter law even though there are no massless particles in the theory, in both phases of the theory. It should be noted that our method suffers from numerical instabilities if the coefficient of the Chern-Simons term is too large; thus, we have restricted our results to small values of this parameter. Furthermore, interpreting the lattice loop gas as an effective theory describing the Abelian Higgs model is only known to be true in the infinite coupling limit; for strong but finite coupling this correspondence is only a conjecture, the validity of which is beyond the scope of this article.

  7. Phase transitions in a gas of anyons

    SciTech Connect

    MacKenzie, R.; Nebia-Rahal, F.; Paranjape, M. B.; Richer, J.

    2010-10-01

    We continue our numerical Monte Carlo simulation of a gas of closed loops on a 3 dimensional lattice, however, now in the presence of a topological term added to the action which corresponds to the total linking number between the loops. We compute the linking number using a novel approach employing certain notions from knot theory. Adding the topological term converts the particles into anyons. Interpreting the model as an effective theory that describes the 2+1-dimensional Abelian Higgs model in the asymptotic strong-coupling regime, the topological linking number simply corresponds to the addition to the action of the Chern-Simons term. The system continues to exhibit a phase transition as a function of the vortex mass as it becomes small. We find the following new results. The Chern-Simons term has no effect on the Wilson loop. On the other hand, it does effect the 't Hooft loop of a given configuration, adding the linking number of the 't Hooft loop with all of the dynamical vortex loops. We find the unexpected result that both the Wilson loop and the 't Hooft loop exhibit a perimeter law even though there are no massless particles in the theory, in both phases of the theory. It should be noted that our method suffers from numerical instabilities if the coefficient of the Chern-Simons term is too large; thus, we have restricted our results to small values of this parameter. Furthermore, interpreting the lattice loop gas as an effective theory describing the Abelian Higgs model is only known to be true in the infinite coupling limit; for strong but finite coupling this correspondence is only a conjecture, the validity of which is beyond the scope of this article.

  8. Theoretical and experimental evidence for the post-cotunnite phase transition in zirconia at high pressure

    NASA Astrophysics Data System (ADS)

    Nishio-Hamane, Daisuke; Dekura, Haruhiko; Seto, Yusuke; Yagi, Takehiko

    2015-05-01

    A post-cotunnite phase transition in zirconia (ZrO2) at high pressure was investigated by synchrotron X-ray diffraction measurements and ab initio calculations based on density functional theory. This study successfully demonstrated a cotunnite- to Fe2P-type phase transition. Static enthalpy difference (Δ H) calculations predicted the appearance of the Fe2P phase at 124 GPa (LDA) and 143 GPa (GGA), and experimental trials demonstrated the coexistence of the Fe2P and cotunnite phases at 175 GPa after heating to 3,000 K. Both phases were quenchable to ambient conditions. The volume of the Fe2P phase was slightly less (~Δ 0.6 %) than that of the cotunnite phase over the experimental pressure range, indicating that the Fe2P phase is the higher pressure phase. The coexistence of both phases in this study may be attributed to the slow kinetics of the phase transition resulting from the close structural relationship of the two phases. An Fe2P-type structural model can be derived by applying a simple operation to the cotunnite-type structure, consisting of a 1/2 shift of several zirconium arrangements parallel to the b-axis of the cotunnite-type unit cell. It is concluded that the high-pressure cotunnite-to-Fe2P phase transition may be a common trend in many dioxides.

  9. Liquid-liquid phase transition in hydrogen by coupled electron-ion Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Pierleoni, Carlo; Morales, Miguel A.; Rillo, Giovanni; Holzmann, Markus

    2016-05-01

    The phase diagram of high-pressure hydrogen is of great interest for fundamental research, planetary physics, and energy applications. A first-order phase transition in the fluid phase between a molecular insulating fluid and a monoatomic metallic fluid has been predicted. The existence and precise location of the transition line is relevant for planetary models. Recent experiments reported contrasting results about the location of the transition. Theoretical results based on density functional theory are also very scattered. We report highly accurate coupled electron-ion Monte Carlo calculations of this transition, finding results that lie between the two experimental predictions, close to that measured in diamond anvil cell experiments but at 25-30 GPa higher pressure. The transition along an isotherm is signaled by a discontinuity in the specific volume, a sudden dissociation of the molecules, a jump in electrical conductivity, and loss of electron localization.

  10. Liquid-liquid phase transition in hydrogen by coupled electron-ion Monte Carlo simulations.

    PubMed

    Pierleoni, Carlo; Morales, Miguel A; Rillo, Giovanni; Holzmann, Markus; Ceperley, David M

    2016-05-01

    The phase diagram of high-pressure hydrogen is of great interest for fundamental research, planetary physics, and energy applications. A first-order phase transition in the fluid phase between a molecular insulating fluid and a monoatomic metallic fluid has been predicted. The existence and precise location of the transition line is relevant for planetary models. Recent experiments reported contrasting results about the location of the transition. Theoretical results based on density functional theory are also very scattered. We report highly accurate coupled electron-ion Monte Carlo calculations of this transition, finding results that lie between the two experimental predictions, close to that measured in diamond anvil cell experiments but at 25-30 GPa higher pressure. The transition along an isotherm is signaled by a discontinuity in the specific volume, a sudden dissociation of the molecules, a jump in electrical conductivity, and loss of electron localization. PMID:27099295

  11. Liquid–liquid phase transition in hydrogen by coupled electron–ion Monte Carlo simulations

    PubMed Central

    Morales, Miguel A.; Rillo, Giovanni; Holzmann, Markus; Ceperley, David M.

    2016-01-01

    The phase diagram of high-pressure hydrogen is of great interest for fundamental research, planetary physics, and energy applications. A first-order phase transition in the fluid phase between a molecular insulating fluid and a monoatomic metallic fluid has been predicted. The existence and precise location of the transition line is relevant for planetary models. Recent experiments reported contrasting results about the location of the transition. Theoretical results based on density functional theory are also very scattered. We report highly accurate coupled electron–ion Monte Carlo calculations of this transition, finding results that lie between the two experimental predictions, close to that measured in diamond anvil cell experiments but at 25–30 GPa higher pressure. The transition along an isotherm is signaled by a discontinuity in the specific volume, a sudden dissociation of the molecules, a jump in electrical conductivity, and loss of electron localization. PMID:27099295

  12. On the existence of vapor-liquid phase transition in dusty plasmas

    NASA Astrophysics Data System (ADS)

    Kundu, M.; Avinash, K.; Sen, A.; Ganesh, R.

    2014-10-01

    The phenomenon of phase transition in a dusty-plasma system (DPS) has attracted some attention in the past. Earlier Farouki and Hamaguchi [J. Chem. Phys. 101, 9876 (1994)] have demonstrated the existence of a liquid to solid transition in DPS where the dust particles interact through a Yukawa potential. However, the question of the existence of a vapor-liquid (VL) transition in such a system remains unanswered and relatively unexplored so far. We have investigated this problem by performing extensive molecular dynamics simulations which show that the VL transition does not have a critical curve in the pressure versus volume diagram for a large range of the Yukawa screening parameter κ and the Coulomb coupling parameter Γ. Thus, the VL phase transition is found to be super-critical, meaning that this transition is continuous in the dusty plasma model given by Farouki and Hamaguchi. We provide an approximate analytic explanation of this finding by means of a simple model calculation.

  13. On the existence of vapor-liquid phase transition in dusty plasmas

    SciTech Connect

    Kundu, M.; Sen, A.; Ganesh, R.; Avinash, K.

    2014-10-15

    The phenomenon of phase transition in a dusty-plasma system (DPS) has attracted some attention in the past. Earlier Farouki and Hamaguchi [J. Chem. Phys. 101, 9876 (1994)] have demonstrated the existence of a liquid to solid transition in DPS where the dust particles interact through a Yukawa potential. However, the question of the existence of a vapor-liquid (VL) transition in such a system remains unanswered and relatively unexplored so far. We have investigated this problem by performing extensive molecular dynamics simulations which show that the VL transition does not have a critical curve in the pressure versus volume diagram for a large range of the Yukawa screening parameter κ and the Coulomb coupling parameter Γ. Thus, the VL phase transition is found to be super-critical, meaning that this transition is continuous in the dusty plasma model given by Farouki and Hamaguchi. We provide an approximate analytic explanation of this finding by means of a simple model calculation.

  14. Electrical Dissipation Measurement of Polymer Phase Transitions

    NASA Technical Reports Server (NTRS)

    Long, E. R., R; Schuszler, A., II

    1983-01-01

    Technique measures solid/solid, glass/rubber, and liquid/liquid transition temperatures in polymers having dipole moments. Technique based on change in dipole packing that occurs with each transition and measured as change in electrical dissipation factor. Change in dipole packing occuring with each transition sensed by effect on dissipation factor.

  15. Consistent lattice Boltzmann equations for phase transitions.

    PubMed

    Siebert, D N; Philippi, P C; Mattila, K K

    2014-11-01

    Unlike conventional computational fluid dynamics methods, the lattice Boltzmann method (LBM) describes the dynamic behavior of fluids in a mesoscopic scale based on discrete forms of kinetic equations. In this scale, complex macroscopic phenomena like the formation and collapse of interfaces can be naturally described as related to source terms incorporated into the kinetic equations. In this context, a novel athermal lattice Boltzmann scheme for the simulation of phase transition is proposed. The continuous kinetic model obtained from the Liouville equation using the mean-field interaction force approach is shown to be consistent with diffuse interface model using the Helmholtz free energy. Density profiles, interface thickness, and surface tension are analytically derived for a plane liquid-vapor interface. A discrete form of the kinetic equation is then obtained by applying the quadrature method based on prescribed abscissas together with a third-order scheme for the discretization of the streaming or advection term in the Boltzmann equation. Spatial derivatives in the source terms are approximated with high-order schemes. The numerical validation of the method is performed by measuring the speed of sound as well as by retrieving the coexistence curve and the interface density profiles. The appearance of spurious currents near the interface is investigated. The simulations are performed with the equations of state of Van der Waals, Redlich-Kwong, Redlich-Kwong-Soave, Peng-Robinson, and Carnahan-Starling. PMID:25493907

  16. Phononic Crystal Tunable via Ferroelectric Phase Transition

    NASA Astrophysics Data System (ADS)

    Xu, Chaowei; Cai, Feiyan; Xie, Shuhong; Li, Fei; Sun, Rong; Fu, Xianzhu; Xiong, Rengen; Zhang, Yi; Zheng, Hairong; Li, Jiangyu

    2015-09-01

    Phononic crystals (PCs) consisting of periodic materials with different acoustic properties have potential applications in functional devices. To realize more smart functions, it is desirable to actively control the properties of PCs on demand, ideally within the same fabricated system. Here, we report a tunable PC made of Ba0.7Sr0.3Ti O3 (BST) ceramics, wherein a 20-K temperature change near room temperature results in a 20% frequency shift in the transmission spectra induced by a ferroelectric phase transition. The tunability phenomenon is attributed to the structure-induced resonant excitation of A0 and A1 Lamb modes that exist intrinsically in the uniform BST plate, while these Lamb modes are sensitive to the elastic properties of the plate and can be modulated by temperature in a BST plate around the Curie temperature. The study finds opportunities for creating tunable PCs and enables smart temperature-tuned devices such as the Lamb wave filter or sensor.

  17. Phase transitions in models of human cooperation

    NASA Astrophysics Data System (ADS)

    Perc, Matjaž

    2016-08-01

    If only the fittest survive, why should one cooperate? Why should one sacrifice personal benefits for the common good? Recent research indicates that a comprehensive answer to such questions requires that we look beyond the individual and focus on the collective behavior that emerges as a result of the interactions among individuals, groups, and societies. Although undoubtedly driven also by culture and cognition, human cooperation is just as well an emergent, collective phenomenon in a complex system. Nonequilibrium statistical physics, in particular the collective behavior of interacting particles near phase transitions, has already been recognized as very valuable for understanding counterintuitive evolutionary outcomes. However, unlike pairwise interactions among particles that typically govern solid-state physics systems, interactions among humans often involve group interactions, and they also involve a larger number of possible states even for the most simplified description of reality. Here we briefly review research done in the realm of the public goods game, and we outline future research directions with an emphasis on merging the most recent advances in the social sciences with methods of nonequilibrium statistical physics. By having a firm theoretical grip on human cooperation, we can hope to engineer better social systems and develop more efficient policies for a sustainable and better future.

  18. Highly birefringent crystal for Raman transitions with phase modulators

    NASA Astrophysics Data System (ADS)

    Arias, Nieves; Abediyeh, Vahide; Hamzeloui, Saeed; Jeronimo-Moreno, Yasser; Gomez, Eduardo

    2016-05-01

    We present a system to excite Raman transitions with minimum phase noise. The system uses a phase modulator to generate the phase locked beams required for the transition. We use a long calcite crystal to filter out one of the sidebands, avoiding the cancellation that appears at high detunings for phase modulation. The measured phase noise is limited by the quality of the microwave synthesizer. We use the calcite crystal a second time to produce a co-propagating Raman pair with perpendicular polarizations to drive velocity insensitive Raman transitions. Support from CONACYT and Fundacion Marcos Moshinsky.

  19. Interplay between micelle formation and waterlike phase transitions

    NASA Astrophysics Data System (ADS)

    Heinzelmann, G.; Figueiredo, W.; Girardi, M.

    2010-02-01

    A lattice model for amphiphilic aggregation in the presence of a structured waterlike solvent is studied through Monte Carlo simulations. We investigate the interplay between the micelle formation and the solvent phase transition in two different regions of temperature-density phase diagram of pure water. A second order phase transition between the gaseous (G) and high density liquid (HDL) phases that occurs at very high temperatures, and a first order phase transition between the low density liquid (LDL) and (HDL) phases that takes place at lower temperatures. In both cases, we find the aggregate size distribution curve and the critical micellar concentration as a function of the solvent density across the transitions. We show that micelle formation drives the LDL-HDL first order phase transition to lower solvent densities, while the transition G-HDL is driven to higher densities, which can be explained by the markedly different degrees of micellization in both cases. The diffusion coefficient of surfactants was also calculated in the LDL and HDL phases, changing abruptly its behavior due to the restructuring of waterlike solvent when we cross the first order LDL-HDL phase transition. To understand such behavior, we calculate the solvent density and the number of hydrogen bonds per water molecule close to micelles. The curves of the interfacial solvent density and the number of hydrogen bonds per water molecule in the first hydration signal a local phase change of the interfacial water, clarifying the diffusion mechanism of free surfactants in the solvent.

  20. Strain glass state as the boundary of two phase transitions

    NASA Astrophysics Data System (ADS)

    Zhou, Zhijian; Cui, Jian; Ren, Xiaobing

    2015-08-01

    A strain glass state was found to be located between B2-B19’ (cubic to monoclinic) phase transition and B2-R (cubic to rhombohedral) phase transition in Ti49Ni51 alloys after aging process. After a short time aging, strong strain glass transition was observed, because the size of the precipitates is small, which means the strain field induced by the precipitates is isotropic and point-defect-like, and the distribution of the precipitates is random. After a long time aging, the average size of the precipitates increases. The strong strain field induced by the precipitates around them forces the symmetry of the matrix materials to conform to the symmetry of the crystalline structure of the precipitates, which results in the new phase transition. The experiment shows that there exists no well-defined boundary in the evolution from the strain glass transition to the new phase transition. Due to its generality, this glass mediated phase transition divergence scheme can be applied to other proper material systems to induce a more important new phase transition path, which can be useful in the field of phase transition engineering.

  1. Strain glass state as the boundary of two phase transitions.

    PubMed

    Zhou, Zhijian; Cui, Jian; Ren, Xiaobing

    2015-01-01

    A strain glass state was found to be located between B2-B19' (cubic to monoclinic) phase transition and B2-R (cubic to rhombohedral) phase transition in Ti49Ni51 alloys after aging process. After a short time aging, strong strain glass transition was observed, because the size of the precipitates is small, which means the strain field induced by the precipitates is isotropic and point-defect-like, and the distribution of the precipitates is random. After a long time aging, the average size of the precipitates increases. The strong strain field induced by the precipitates around them forces the symmetry of the matrix materials to conform to the symmetry of the crystalline structure of the precipitates, which results in the new phase transition. The experiment shows that there exists no well-defined boundary in the evolution from the strain glass transition to the new phase transition. Due to its generality, this glass mediated phase transition divergence scheme can be applied to other proper material systems to induce a more important new phase transition path, which can be useful in the field of phase transition engineering. PMID:26307500

  2. Quantum phase transitions in the presence of disorder and dissipation

    NASA Astrophysics Data System (ADS)

    Kotabage, Chetan

    A quantum phase transition is a phase transition at absolute zero occurring under variations in an external non-thermal parameter such as magnetic field or pressure. Quantum phase transitions are one among the important topics currently investigated in condensed matter physics. They are observed in various systems, e.g., in the ferromagnetic-paramagnetic phase transition in LiHoF 4 or in the superconductor-metal phase transition in nanowires. A particular class of quantum phase transitions, which is phase transitions in the presence of disorder and dissipation, is investigated here. An example of this class is the ferromagnetic-paramagnetic phase transition in Ni 1-xVx or CePd 1-xRhx caused by variations in chemical composition. In these system, disorder is due to random positions of doping element and the dynamics of order-parameter fluctuations is dissipative due to conduction electrons. These quantum phase transitions are explained using the following approach: The Landau-Ginzberg-Wilson functional, which is derived from a microscopic Hamiltonian, is treated by the strong-disorder renormalization group method. For ohmic damping, phase transitions are strongly influenced by disorder and the critical point is an infinite-randomness fixed point, which is in the universality class same as that of the random transverse-field Ising model. The scaling form of observable quantities is activated type rather than conventional power-law type. For superohmic damping, the strong-disorder renormalization group method yields one of the recursion relationships different from ohmic damping. This difference indicates a more conventional transition for superohmic damping.

  3. Dynamics of a photoinduced phase transition in polydiacetylene crystals

    NASA Astrophysics Data System (ADS)

    Koshihara, S.; Tokura, Y.; Takeda, K.; Koda, T.

    1995-09-01

    The dynamical process of the photoinduced phase transition in polydiacetylene (PDA) single crystals has been investigated by time-resolved spectroscopy with varying temperature, excitation photon energy, and intensity. The photoinduced phase transition can be driven bidirectionally between the two (A and B) phases by dichromatic irradiation of a laser pulse, when the temperature of the PDA crystal is kept around the phase transition temperature (Tc). It was found that primary process of the photoinduced phase transition is mostly completed within 50 ns. In addition, occurrence of a transient domain injection has been confirmed at temperatures far below and above Tc. Together with the time-resolved measurement of photocurrent, we have found a close correlation between the photocurrent intensity and the phase conversion efficiency. This suggests that the domain walls separating the A and B phases can carry the charge.

  4. Method for identifying and probing phase transitions in materials

    DOEpatents

    Asay, Blaine W.; Henson, Bryan F.; Sander, Robert K.; Robinson, Jeanne M.; Son, Steven F.; Dickson, Peter M.

    2002-01-01

    The present invention includes a method for identifying and probing phase transitions in materials. A polymorphic material capable of existing in at least one non-centrosymmetric phase is interrogated with a beam of laser light at a chosen wavelength and frequency. A phase transition is induced in the material while it is interrogated. The intensity of light scattered by the material and having a wavelength equal to one half the wavelength of the interrogating laser light is detected. If the phase transition results in the production of a non-centrosymmetric phase, the intensity of this scattered light increases; if the phase transition results in the disappearance of a non-centrosymmetric phase, the intensity of this scattered light decreases.

  5. Liquid liquid phase transition in Stillinger Weber silicon

    NASA Astrophysics Data System (ADS)

    Beaucage, Philippe; Mousseau, Normand

    2005-04-01

    It was recently demonstrated that Stillinger-Weber silicon undergoes a liquid-liquid first-order phase transition deep into the supercooled region (Sastry and Angell 2003 Nat. Mater. 2 739). Here we study the effects of perturbations on this phase transition. We show that the order of the liquid-liquid transition changes with negative pressure. We also find that the liquid-liquid transition disappears when the three-body term of the potential is strengthened by as little as 5%. This implies that the details of the potential could affect strongly the nature and even the existence of the liquid-liquid phase.

  6. Transformation of phase transitions driven by an anisotropic random field

    NASA Astrophysics Data System (ADS)

    Popa-Nita, V.; Kralj, Samo

    2005-04-01

    We carry out a comparative study of the influence of a random anisotropy field on continuous and discontinuous phase transitions. The ordered phase, which is reached via a continuous symmetry breaking phase transition, is characterized by an order parameter and by a corresponding hydrodynamic continuum field. We assume that the response of the hydrodynamic field to the imposed disorder results in a domainlike pattern of the system. For a strong enough disorder both transitions become gradual. For weaker disorder strengths the disorder converts a second order transition into a discontinuous one.

  7. Bi-phase transition diagrams of metallic thin multilayers

    SciTech Connect

    Li, J.C.; Liu, W.; Jiang, Q. . E-mail: jiangq@jlu.edu.cn

    2005-02-01

    Phase transitions of metallic multilayers induced by differences in interface energy are considered thermodynamically, based on a thermodynamic model for interface energy and the Goldschmidt premise for lattice contraction. Bi-phase transition diagrams of Co/Cr, Zr/Nb, Ti/Nb and Ti/Al multilayers are constructed, which are in agreement with experimental results.

  8. Pressure-induced phase transitions and metallization in VO2

    NASA Astrophysics Data System (ADS)

    Bai, Ligang; Li, Quan; Corr, Serena A.; Meng, Yue; Park, Changyong; Sinogeikin, Stanislav V.; Ko, Changhyun; Wu, Junqiao; Shen, Guoyin

    2015-03-01

    We report the results of pressure-induced phase transitions and metallization in VO2 based on synchrotron x-ray diffraction, electrical resistivity, and Raman spectroscopy. Our isothermal compression experiments at room temperature and 383 K show that the room temperature monoclinic phase (M 1 ,P 21/c ) and the high-temperature rutile phase (R ,P 42/m n m ) of VO2 undergo phase transitions to a distorted M 1 monoclinic phase (M 1' ,P 21/c ) above 13.0 GPa and to an orthorhombic phase (CaCl2-like, P n n m ) above 13.7 GPa, respectively. Upon further compression, both high-pressure phases transform into a new phase (phase X ) above 34.3 and 38.3 GPa at room temperature and 383 K, respectively. The room temperature M 1 -M 1' phase transition structurally resembles the R -CaCl2 phase transition at 383 K, suggesting a second-order displacive type of transition. Contrary to previous studies, our electrical resistivity results, Raman measurements, as well as ab initio calculations indicate that the new phase X , rather than the M 1' phase, is responsible for the metallization under pressure. The metallization mechanism is discussed based on the proposed crystal structure.

  9. Critical linear thermal expansion in the smectic- A phase near the nematic-smectic phase transition

    NASA Astrophysics Data System (ADS)

    Anesta, E.; Iannacchione, G. S.; Garland, C. W.

    2004-10-01

    Recent high-resolution x-ray investigations of the smectic- A (SmA) phase near the nematic-to-SmA transition provide information about the critical behavior of the linear thermal expansion coefficient α‖ parallel to the director. Combining such data with available volume thermal expansion αV data yields the in-plane linear expansion coefficient α⊥ . The critical behaviors of α‖ and α⊥ are the same as those for αV and the heat capacity Cp . However, for any given liquid crystal, α‖(crit) and α⊥(crit) differ in sign. Furthermore, the quantity α‖(crit) is positive for SmAd partial bilayer smectics, while it is negative for nonpolar SmAm monomeric smectics. This feature is discussed in terms of the molecular structural aspects of these smectic phases.

  10. Phase transitions and domain structures in multiferroics

    NASA Astrophysics Data System (ADS)

    Vlahos, Eftihia

    2011-12-01

    Thin film ferroelectrics and multiferroics are two important classes of materials interesting both from a scientific and a technological prospective. The volatility of lead and bismuth as well as environmental issues regarding the toxicity of lead are two disadvantages of the most commonly used ferroelectric random access memory (FeRAM) materials such as Pb(Zr,Ti)O3 and SrBi2Ta2O9. Therefore lead-free thin film ferroelectrics are promising substitutes as long as (a) they can be grown on technologically important substrates such as silicon, and (b) their T c and Pr become comparable to that of well established ferroelectrics. On the other hand, the development of functional room temperature ferroelectric ferromagnetic multiferroics could lead to very interesting phenomena such as control of magnetism with electric fields and control of electrical polarization with magnetic fields. This thesis focuses on the understanding of material structure-property relations using nonlinear optical spectroscopy. Nonlinear spectroscopy is an excellent tool for probing the onset of ferroelectricity, and domain dynamics in strained ferroelectrics and multiferroics. Second harmonic generation was used to detect ferroelectricity and the antiferrodistortive phase transition in thin film SrTiO3. Incipient ferroelectric CaTiO3 has been shown to become ferroelectric when strained with a combination of SHG and dielectric measurements. The tensorial nature of the induced nonlinear polarization allows for probing of the BaTiO3 and SrTiO3 polarization contributions in nanoscale BaTiO3/SrTiO3 superlattices. In addition, nonlinear optics was used to demonstrate ferroelectricity in multiferroic EuTiO3. Finally, confocal SHG and Raman microscopy were utilized to visualize polar domains in incipient ferroelectric and ferroelastic CaTiO3.

  11. Replacing energy by von Neumann entropy in quantum phase transitions

    SciTech Connect

    Kopp, Angela; Jia Xun; Chakravarty, Sudip . E-mail: sudip@physics.ucla.edu

    2007-06-15

    We propose that quantum phase transitions are generally accompanied by non-analyticities of the von Neumann (entanglement) entropy. In particular, the entropy is non-analytic at the Anderson transition, where it exhibits unusual fractal scaling. We also examine two dissipative quantum systems of considerable interest to the study of decoherence and find that non-analyticities occur if and only if the system undergoes a quantum phase transition.

  12. Chiral phase transition in peripheral heavy-ion collisions

    SciTech Connect

    Ayala, Alejandro; Bashir, Adnan; Raya, Alfredo; Sanchez, Angel

    2009-04-20

    It has been recently realized that in peripheral heavy-ion collisions at high energies, a sizable magnetic field is produced in the interaction region. Although this field becomes weak at the proper times when the chiral phase transition is believed to occur, it is still significant so as to ask whether it influences such transition. We use the linear sigma model to study the chiral phase transition in the presence of weak magnetic fields.

  13. Reexamination of entanglement and the quantum phase transition

    SciTech Connect

    Yang, M.-F.

    2005-03-01

    We show that, for an exactly solvable quantum spin model, a discontinuity in the first derivative of the ground-state concurrence appears in the absence of a quantum phase transition. It is opposed to the popular belief that the nonanalyticity property of ground-state concurrence can be used to determine quantum phase transitions. We further point out that the analyticity property of the ground-state concurrence in general can be more intricate than that of the ground-state energy. Thus there is no one-to-one correspondence between quantum phase transitions and the nonanalyticity property of the concurrence. Moreover, we show that the von Neumann entropy, as another measure of entanglement, cannot reveal quantum phase transitions in the present model. Therefore, in order to link with quantum phase transitions, some other measures of entanglement are needed.

  14. The Condensation Phase Transition in Random Graph Coloring

    NASA Astrophysics Data System (ADS)

    Bapst, Victor; Coja-Oghlan, Amin; Hetterich, Samuel; Raßmann, Felicia; Vilenchik, Dan

    2016-01-01

    Based on a non-rigorous formalism called the "cavity method", physicists have put forward intriguing predictions on phase transitions in diluted mean-field models, in which the geometry of interactions is induced by a sparse random graph or hypergraph. One example of such a model is the graph coloring problem on the Erdős-Renyi random graph G( n, d/ n), which can be viewed as the zero temperature case of the Potts antiferromagnet. The cavity method predicts that in addition to the k-colorability phase transition studied intensively in combinatorics, there exists a second phase transition called the condensation phase transition (Krzakala et al. in Proc Natl Acad Sci 104:10318-10323, 2007). In fact, there is a conjecture as to the precise location of this phase transition in terms of a certain distributional fixed point problem. In this paper we prove this conjecture for k exceeding a certain constant k 0.

  15. Technical feasibility of transition phase tests in TREAT. [LMFBR

    SciTech Connect

    Stewart, R.R.; Bauer, T.H.; Hoff, O.I.; Koyama, K.; Stephenson, M.E.; Kraft, T.E.

    1982-01-01

    Understanding the behavior of molten fuel-steel mixtures subjected to fission heating within a HCDA environment is essential to continuing the mechanistic description of the whole-core accident into the transition phase, and further to a permanent subcritical and safe fuel debris configuration. Fundamentally, the RX1 TREAT test will simulte the transition phase of a HCDA (the accident phase in which the fuel in individual subassemblies melts and becomes a heat-generating pool of molten fuel and boiling steel). This assessment of the feasibility of such a test indicates that a transition phase test can be achieved in TREAT, at power levels simulating decay heat.

  16. Fluctuation-driven electroweak phase transition. [in early universe

    NASA Technical Reports Server (NTRS)

    Gleiser, Marcelo; Kolb, Edward W.

    1992-01-01

    We examine the dynamics of the electroweak phase transition in the early Universe. For Higgs masses in the range 46 less than or = M sub H less than or = 150 GeV and top quark masses less than 200 GeV, regions of symmetric and asymmetric vacuum coexist to below the critical temperature, with thermal equilibrium between the two phases maintained by fluctuations of both phases. We propose that the transition to the asymmetric vacuum is completed by percolation of these subcritical fluctuations. Our results are relevant to scenarios of baryogenesis that invoke a weakly first-order phase transition at the electroweak scale.

  17. Reentrant topological phase transitions in a disordered spinless superconducting wire

    NASA Astrophysics Data System (ADS)

    Rieder, Maria-Theresa; Brouwer, Piet W.; Adagideli, İnanç

    2013-08-01

    In a one-dimensional spinless p-wave superconductor with coherence length ξ, disorder induces a phase transition between a topologically nontrivial phase and a trivial insulating phase at the critical mean-free path l=ξ/2. Here, we show that a multichannel spinless p-wave superconductor goes through an alternation of topologically trivial and nontrivial phases upon increasing the disorder strength, the number of phase transitions being equal to the channel number N. The last phase transition, from a nontrivial phase into the trivial phase, takes place at a mean-free path l=ξ/(N+1), parametrically smaller than the critical mean-free path in one dimension. Our result is valid in the limit that the wire width W is much smaller than the superconducting coherence length ξ.

  18. Wetting transitions in two-, three-, and four-phase systems.

    PubMed

    Hejazi, Vahid; Nosonovsky, Michael

    2012-01-31

    We discuss wetting of rough surfaces with two-phase (solid-liquid), three-phase (solid-water-air and solid-oil-water), and four-phase (solid-oil-water-air) interfaces mimicking fish scales. We extend the traditional Wenzel and Cassie-Baxter models to these cases. We further present experimental observations of two-, three-, and four-phase systems in the case of metal-matrix composite solid surfaces immersed in water and in contact with oil. Experimental observations show that wetting transitions can occur in underwater oleophobic systems. We also discuss wetting transitions as phase transitions using the phase-field approach and show that a phenomenological gradient coefficient is responsible for wetting transition, energy barriers, and wetting/dewetting asymmetry (hysteresis). PMID:22054126

  19. Quantum phase transitions of topological insulators without gap closing.

    PubMed

    Rachel, Stephan

    2016-10-12

    We consider two-dimensional Chern insulators and time-reversal invariant topological insulators and discuss the effect of perturbations breaking either particle-number conservation or time-reversal symmetry. The appearance of trivial mass terms is expected to cause quantum phase transitions into trivial phases when such a perturbation overweighs the topological term. These phase transitions are usually associated with a bulk-gap closing. In contrast, the chiral Chern insulator is unaffected by particle-number breaking perturbations. Moreover, the [Formula: see text] topological insulator undergoes phase transitions into topologically trivial phases without bulk-gap closing in the presence of any of such perturbations. In certain cases, these phase transitions can be circumvented and the protection restored by another U(1) symmetry, e.g. due to spin conservation. These findings are discussed in the context of interacting topological insulators. PMID:27530509

  20. CO2 Capture from Flue Gas by Phase Transitional Absorption

    SciTech Connect

    Liang Hu

    2009-06-30

    A novel absorption process called Phase Transitional Absorption was invented. What is the Phase Transitional Absorption? Phase Transitional Absorption is a two or multi phase absorption system, CO{sub 2} rich phase and CO{sub 2} lean phase. During Absorption, CO{sub 2} is accumulated in CO{sub 2} rich phase. After separating the two phases, CO{sub 2} rich phase is forward to regeneration. After regeneration, the regenerated CO{sub 2} rich phase combines CO{sub 2} lean phase to form absorbent again to complete the cycle. The advantage for Phase Transitional Absorption is obvious, significantly saving on regeneration energy. Because CO{sub 2} lean phase was separated before regeneration, only CO{sub 2} rich phase was forward to regeneration. The absorption system we developed has the features of high absorption rate, high loading and working capacity, low corrosion, low regeneration heat, no toxic to environment, etc. The process evaluation shows that our process is able to save 80% energy cost by comparing with MEA process.

  1. Phase transition in the Jarzynski estimator of free energy differences.

    PubMed

    Suárez, Alberto; Silbey, Robert; Oppenheim, Irwin

    2012-05-01

    The transition between a regime in which thermodynamic relations apply only to ensembles of small systems coupled to a large environment and a regime in which they can be used to characterize individual macroscopic systems is analyzed in terms of the change in behavior of the Jarzynski estimator of equilibrium free energy differences from nonequilibrium work measurements. Given a fixed number of measurements, the Jarzynski estimator is unbiased for sufficiently small systems. In these systems the directionality of time is poorly defined and the configurations that dominate the empirical average, but which are in fact typical of the reverse process, are sufficiently well sampled. As the system size increases the arrow of time becomes better defined. The dominant atypical fluctuations become rare and eventually cannot be sampled with the limited resources that are available. Asymptotically, only typical work values are measured. The Jarzynski estimator becomes maximally biased and approaches the exponential of minus the average work, which is the result that is expected from standard macroscopic thermodynamics. In the proper scaling limit, this regime change has been recently described in terms of a phase transition in variants of the random energy model. In this paper this correspondence is further demonstrated in two examples of physical interest: the sudden compression of an ideal gas and adiabatic quasistatic volume changes in a dilute real gas. PMID:23004704

  2. Phase transition in the Jarzynski estimator of free energy differences

    NASA Astrophysics Data System (ADS)

    Suárez, Alberto; Silbey, Robert; Oppenheim, Irwin

    2012-05-01

    The transition between a regime in which thermodynamic relations apply only to ensembles of small systems coupled to a large environment and a regime in which they can be used to characterize individual macroscopic systems is analyzed in terms of the change in behavior of the Jarzynski estimator of equilibrium free energy differences from nonequilibrium work measurements. Given a fixed number of measurements, the Jarzynski estimator is unbiased for sufficiently small systems. In these systems the directionality of time is poorly defined and the configurations that dominate the empirical average, but which are in fact typical of the reverse process, are sufficiently well sampled. As the system size increases the arrow of time becomes better defined. The dominant atypical fluctuations become rare and eventually cannot be sampled with the limited resources that are available. Asymptotically, only typical work values are measured. The Jarzynski estimator becomes maximally biased and approaches the exponential of minus the average work, which is the result that is expected from standard macroscopic thermodynamics. In the proper scaling limit, this regime change has been recently described in terms of a phase transition in variants of the random energy model. In this paper this correspondence is further demonstrated in two examples of physical interest: the sudden compression of an ideal gas and adiabatic quasistatic volume changes in a dilute real gas.

  3. Metamagnetic Phase Transition in a Diruthenium Compound with Interpenetrating Sublattices

    SciTech Connect

    Fishman, Randy Scott; Miller, Joel S.

    2011-01-01

    The diruthenium compound [Ru2(O2CMe)4]3[Cr(CN)6] may be the only known material that con- tains two weakly-coupled, magnetically-ordered sublattices occupying the same three-dimensional volume. Due to the strong easy-plane anisotropy on each Ru2 complex, the moment of each sub- lattice is constrained to one of the eight cubic diagonals. At low fields, the two sublattices are antiferromagnetically aligned by weak dipolar and deformation energies. But above a metamagnetic critical field of about 1000 Oe, the sublattice moments become ferromagnetically aligned and the net magnetization increases dramatically. We have successfully modeled this metamagnetic tran- sition by assuming that the individual sublattice spin configurations are only weakly distorted by the magnetic field. This model suggests that the ground state of each sublattice undergoes a phase transition at a pressure of about 7 kbar. The drop in the sublattice moment and the rise in the sublattice susceptibility above 7 kbar can be explained by a high- to low-spin transition (S = 3/2 to 1/2) on the mixed-valent diruthenium complexes.

  4. The OCD phase transition and supernova core collapse

    SciTech Connect

    Gentile, N.A.; Mathews, G.J.; Wilson, J.R.

    1993-10-01

    We examine the implications for stellar core collapse of a phase transition occurring at densities of a few times nuclear matter density. We use an equation of state that describes a phase transition between bulk nuclear matter and a phase consisting of unbound quarks and gluons. We analyze the effect on the prompt shock, the production of strange matter, and the effect on the neutrino signal and the delayed mechanism.

  5. Phase transition in the assignment problem for random matrices

    NASA Astrophysics Data System (ADS)

    Esteve, J. G.; Falceto, F.

    2005-12-01

    We report an analytic and numerical study of a phase transition in a P problem (the assignment problem) that separates two phases whose representatives are the simple matching problem (an easy P problem) and the traveling-salesman problem (a NP-complete problem). Like other phase transitions found in combinatoric problems (K-satisfiability, number partitioning) this can help to understand the nature of the difficulties in solving NP problems an to find more accurate algorithms for them.

  6. Geodesics in information geometry: classical and quantum phase transitions.

    PubMed

    Kumar, Prashant; Mahapatra, Subhash; Phukon, Prabwal; Sarkar, Tapobrata

    2012-11-01

    We study geodesics on the parameter manifold for systems exhibiting second order classical and quantum phase transitions. The coupled nonlinear geodesic equations are solved numerically for a variety of models which show such phase transitions in the thermodynamic limit. It is established that both in the classical as well as in the quantum cases, geodesics are confined to a single phase and exhibit turning behavior near critical points. Our results are indicative of a geometric universality in widely different physical systems. PMID:23214748

  7. Generic finite size scaling for discontinuous nonequilibrium phase transitions into absorbing states.

    PubMed

    de Oliveira, M M; da Luz, M G E; Fiore, C E

    2015-12-01

    Based on quasistationary distribution ideas, a general finite size scaling theory is proposed for discontinuous nonequilibrium phase transitions into absorbing states. Analogously to the equilibrium case, we show that quantities such as response functions, cumulants, and equal area probability distributions all scale with the volume, thus allowing proper estimates for the thermodynamic limit. To illustrate these results, five very distinct lattice models displaying nonequilibrium transitions-to single and infinitely many absorbing states-are investigated. The innate difficulties in analyzing absorbing phase transitions are circumvented through quasistationary simulation methods. Our findings (allied to numerical studies in the literature) strongly point to a unifying discontinuous phase transition scaling behavior for equilibrium and this important class of nonequilibrium systems. PMID:26764651

  8. Micellar structures in lyotropic liquid crystals and phase transitions

    NASA Astrophysics Data System (ADS)

    Saupe, A.; Xu, S. Y.; Plumley, Sulakshana; Zhu, Y. K.; Photinos, P.

    1991-05-01

    The formation of micellar nematics is discussed with emphasis on the transitions between nematic phases and nematic-smectic transitions. Phase diagrams for MTAB/l-decanol/D,O systems show a direct transition between uniaxial nematics. Electrical conductivity and birefringence measurements on a mixture of sodium decylsulfate. 1-decanol, D,O demonstrate, on the other hand, the existence of a biaxial nemantic range that separates the Uniaxial nematics. On a mixture of cesium perflouroctanoate and H 2O the electrical conductivity and rotational viscosity are used to discuss the relevant features of nematic-lamellar-smectic transitions. The formation of elongated ribbon-like micelles at the nematic-smectic transition is suggested. Transitions between different nematic phases in the MTAB system may be connected with a structural change from long micelles with a fairly circular cross section to similar micelles with a more elliptical cross section.

  9. Explosive transitions to synchronization in networks of phase oscillators

    PubMed Central

    Leyva, I.; Navas, A.; Sendiña-Nadal, I.; Almendral, J. A.; Buldú, J. M.; Zanin, M.; Papo, D.; Boccaletti, S.

    2013-01-01

    The emergence of dynamical abrupt transitions in the macroscopic state of a system is currently a subject of the utmost interest. The occurrence of a first-order phase transition to synchronization of an ensemble of networked phase oscillators was reported, so far, for very particular network architectures. Here, we show how a sharp, discontinuous transition can occur, instead, as a generic feature of networks of phase oscillators. Precisely, we set conditions for the transition from unsynchronized to synchronized states to be first-order, and demonstrate how these conditions can be attained in a very wide spectrum of situations. We then show how the occurrence of such transitions is always accompanied by the spontaneous setting of frequency-degree correlation features. Third, we show that the conditions for abrupt transitions can be even softened in several cases. Finally, we discuss, as a possible application, the use of this phenomenon to express magnetic-like states of synchronization. PMID:23412391

  10. Magnetism and electronic phase transitions in monoclinic transition metal dichalcogenides with transition metal atoms embedded

    NASA Astrophysics Data System (ADS)

    Lin, Xianqing; Ni, Jun

    2016-08-01

    First-principles calculations have been performed to study the energetic, electronic, and magnetic properties of substitutional 3d transition metal dopants in monoclinic transition metal dichalcogenides (TMDs) as topological insulators ( 1 T ' - MX 2 with M = (Mo, W) and X = (S, Se)). We find various favorite features in these doped systems to introduce magnetism and other desirable electronic properties: (i) The Mn embedded monoclinic TMDs are magnetic, and the doped 1 T ' - MoS 2 still maintains the semiconducting character with high concentration of Mn, while an electronic phase transition occurs in other Mn doped monoclinic TMDs with an increasing concentration of Mn. Two Mn dopants prefer the ferromagnetic coupling except for substitution of the nearest Mo atoms in 1 T ' - MoS 2 , and the strength of exchange interaction shows anisotropic behavior with dopants along one Mo zigzag chain having much stronger coupling. (ii) The substitutional V is a promising hole dopant, which causes little change to the energy dispersion around the conduction and valence band edges in most systems. In contrast, parts of the conduction band drop for the electron dopants Co and Ni due to the large structural distortion. Moreover, closing band gaps of the host materials are observed with increasing carrier concentration. (iii) Single Fe dopant has a magnetic moment, but it also dopes electrons. When two Fe dopants have a small distance, the systems turn into nonmagnetic semiconductors. (iv) The formation energies of all dopants are much lower than those in hexagonal TMDs and are all negative in certain growth conditions, suggesting possible realization of the predicted magnetism, electronic phase transitions as well as carrier doping in 1 T ' - MX 2 based topological devices.

  11. Thermodynamic model of nonequilibrium phase transitions.

    PubMed

    Martyushev, L M; Konovalov, M S

    2011-07-01

    Within the scope of a thermodynamic description using the maximum entropy production principle, transitions from one nonequilibrium (kinetic) regime to another are considered. It is shown that in the case when power-law dependencies of thermodynamic flux on force are similar for two regimes, only a transition accompanied by a positive jump of thermodynamic flux is possible between them. It is found that the difference in powers of the dependencies of thermodynamic fluxes on forces results in a number of interesting nonequilibrium transitions between kinetic regimes, including the reentrant one with a negative jump of thermodynamic flux. PMID:21867119

  12. The electroweak phase transition in the Inert Doublet Model

    SciTech Connect

    Blinov, Nikita; Profumo, Stefano; Stefaniak, Tim

    2015-07-21

    We study the strength of a first-order electroweak phase transition in the Inert Doublet Model (IDM), where particle dark matter (DM) is comprised of the lightest neutral inert Higgs boson. We improve over previous studies in the description and treatment of the finite-temperature effective potential and of the electroweak phase transition. We focus on a set of benchmark models inspired by the key mechanisms in the IDM leading to a viable dark matter particle candidate, and illustrate how to enhance the strength of the electroweak phase transition by adjusting the masses of the yet undiscovered IDM Higgs states. We argue that across a variety of DM masses, obtaining a strong enough first-order phase transition is a generic possibility in the IDM. We find that due to direct dark matter searches and collider constraints, a sufficiently strong transition and a thermal relic density matching the universal DM abundance is possible only in the Higgs funnel regime.

  13. The effects of Venusian mantle convection with multiple phase transitions

    NASA Technical Reports Server (NTRS)

    Steinbach, V.; Yuen, D. A.; Christensen, U. R.

    1992-01-01

    Recently there was a flurry of activities in studying the effects of phase transitions in the Earth's mantle. From petrological and geophysical considerations, phase-transitions would also play an important role in venusian dynamics. The basic differences between the two planets are the surface boundary conditions, both thermally and mechanically. In this vein we have studied time-dependent mantle convection with multiple phase transitions and depth-dependent thermal expansivity (alpha is approximately rho(exp -6)), based on high-pressure and temperature measurements. Both the olivine-spinel and spinel-perovskite transitions were simulated by introducing an effective thermal expansivity, as described. Used together with the extended Boussinesq Approximation this method serves as a powerful tool to examine the effects of phase transitions on convection at relatively low computational costs.

  14. Chern-Simons diffusion rate across different phase transitions

    NASA Astrophysics Data System (ADS)

    Rougemont, Romulo; Finazzo, Stefano Ivo

    2016-05-01

    We investigate how the dimensionless ratio given by the Chern-Simons diffusion rate ΓCS divided by the product of the entropy density s and temperature T behaves across different kinds of phase transitions in the class of bottom-up nonconformal Einstein-dilaton holographic models originally proposed by Gubser and Nellore. By tuning the dilaton potential, one is able to holographically mimic a first order, a second order, or a crossover transition. In a first order phase transition, ΓCS/s T jumps at the critical temperature (as previously found in the holographic literature), while in a second order phase transition it develops an infinite slope. On the other hand, in a crossover, ΓCS/s T behaves smoothly, although displaying a fast variation around the pseudo-critical temperature. In all the cases, ΓCS/s T increases with decreasing T . The behavior of the Chern-Simons diffusion rate across different phase transitions is expected to play a relevant role for the chiral magnetic effect around the QCD critical end point, which is a second order phase transition point connecting a crossover band to a line of first order phase transition. Our findings in the present work add to the literature the first predictions for the Chern-Simons diffusion rate across second order and crossover transitions in strongly coupled nonconformal, non-Abelian gauge theories.

  15. Coyote series data report LLNL/NWC 1981 LNG spill tests dispersion, vapor burn, and rapid-phase-transition. Volume 1. [7 experiments with liquefied natural gas, 2 with liquid methane, and one with liquid nitrogen

    SciTech Connect

    Goldwire, H.C. Jr.; Rodean, H.C.; Cederwall, R.T.; Kansa, E.J.; Koopman, R.P.; McClure, J.W.; McRae, T.G.; Morris, L.K.; Kamppinen, L.; Kiefer, R.D.

    1983-10-01

    The Coyote series of liquefied natural gas (LNG) spill experiments was performed at the Naval Weapons Center (NWC), China Lake, California, during the summer and fall of 1981. These tests were a joint effort of the Lawrence Livermore National Laboratory (LLNL) and the NWC and were sponsored by the US Department of Energy (DOE) and the Gas Research Institute. There were ten Coyote experiments, five primarily for the study of vapor dispersion and burning vapor clouds, and five for investigating the occurrence of rapid-phase-transition (RPT) explosions. Each of the last four of the five RPT tests consisted of a series of three spills. Seven experiments were with LNG, two were with liquid methane (LCH/sub 4/), and one was with liquid nitrogen (LN/sub 2/). Three arrays of instrumentation were deployed. An array of RPT diagnostic instruments was concentrated at the spill pond and was operated during all of the tests, vapor burn as well as RPT. The wind-field array was operated during the last nine experiments to define the wind direction and speed in the area upwind and downwind of the spill pond. The gas-dispersion array was deployed mostly downwind of the spill pond to measure gas concentration, humidity, temperature, ground heat flux, infrared (IR) radiation, and flame-front passage during three of the vapor dispersion and burn experiments (Coyotes 3, 5, and 6). High-speed color motion pictures were taken during every test, and IR imagery (side and overhead) was obtained during some vapor-burn experiments. Data was obtained by radiometers during Coyotes 3, 6, and 7. This report presents a comprehensive selection of the data obtained. It does not include any data analysis except that required to determine the test conditions and the reliability of the data. Data analysis is to be reported in other publications. 19 references, 76 figures, 13 tables.

  16. Single crystal diffraction studies of phase transition of minerals across Fe high-low spin transition at high pressure

    NASA Astrophysics Data System (ADS)

    Merlini, M.; Hanfland, M.

    2011-12-01

    The spin state of Fe in structure of minerals relevant for the lower mantle mineralogy, is known to undergo a high to low spin state change. This phenomena is often coupled to a remarkable volume contraction and from a structural point of view, often is associated to isosymmetrical phase transition. Recent improvements at X-Ray beamlines for diffraction at extreme conditions at synchrotron facilities allow the possibility to perform single crystal diffraction and determine crystal structure of minerals at extreme conditions, including also structural studies across first or second order phase transition. The accurate knowledge of crystal structure and of phase behaviour at high pressure is a very important step in order to: 1-understand the physical properties; 2- have an accurate experimental constraint on numerical simulation. We report here three examples of structure determination by single crystal X-Ray diffraction at extreme conditions concerning phase transition related to Fe spin state change, measured at ID09A beamline (ESRF, France). CaFe2O4 undergoes a spin transition at 50 GPa. XRD before and after indicate the symmetry and crystal structure is the same. The transition is marked by 10 % volume contraction. The use of He as pressure transmitting media strongly reduced strain induced by pressure and let the crystal survive this transition, allowing for the first time direct determination of Fe-O bond length changes related to variation of spin state. The main structural difference between high and low spin structure is simply a collapse of FeO6 polyhedra. FeCO3 has been also investigated, and the results are also compared with already present in literature. FeCO3 undergoes a transition around 45 GPa, with a remarked hysteresis. In the pressure range 20-45 however an anomalous behaviour is noticed, probably related to a different spin interaction due to reduced Fe-Fe distances. Fe1-xS pyrrhotite has been investigated in two different structure (a

  17. Liquid-Liquid Phase Transitions of Phosphorus via Constant-Pressure First-Principles Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Morishita, Tetsuya

    2001-09-01

    Pressure-induced phase transitions in liquid phosphorus have been studied by constant-pressure first-principles molecular dynamics simulations. By compressing a low-pressure liquid which consists of the tetrahedral P4 molecules, a structural phase transition from the molecular to polymeric liquid (a high-pressure phase) observed in the recent experiment by Katayama et al. [Nature (London) 403, 170 (2000)] was successfully realized. It is found that this transition is caused by a breakup of the tetrahedral molecules with large volume contraction. The same transition is also realized by heating. This indicates that only the polymeric liquid can stably exist at high temperature.

  18. Deviatoric stress-induced phase transitions in diamantane

    SciTech Connect

    Yang, Fan; Lin, Yu; Dahl, Jeremy E. P.; Carlson, Robert M. K.; Mao, Wendy L.

    2014-10-21

    The high-pressure behavior of diamantane was investigated using angle-dispersive synchrotron x-ray diffraction (XRD) and Raman spectroscopy in diamond anvil cells. Our experiments revealed that the structural transitions in diamantane were extremely sensitive to deviatoric stress. Under non-hydrostatic conditions, diamantane underwent a cubic (space group Pa3) to a monoclinic phase transition at below 0.15 GPa, the lowest pressure we were able to measure. Upon further compression to 3.5 GPa, this monoclinic phase transformed into another high-pressure monoclinic phase which persisted to 32 GPa, the highest pressure studied in our experiments. However, under more hydrostatic conditions using silicone oil as a pressure medium, the transition pressure to the first high-pressure monoclinic phase was elevated to 7–10 GPa, which coincided with the hydrostatic limit of silicone oil. In another experiment using helium as a pressure medium, no phase transitions were observed to the highest pressure we reached (13 GPa). In addition, large hysteresis and sluggish transition kinetics were observed upon decompression. Over the pressure range where phase transitions were confirmed by XRD, only continuous changes in the Raman spectra were observed. This suggests that these phase transitions are associated with unit cell distortions and modifications in molecular packing rather than the formation of new carbon-carbon bonds under pressure.

  19. Deviatoric stress-induced phase transitions in diamantane

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Lin, Yu; Dahl, Jeremy E. P.; Carlson, Robert M. K.; Mao, Wendy L.

    2014-10-01

    The high-pressure behavior of diamantane was investigated using angle-dispersive synchrotron x-ray diffraction (XRD) and Raman spectroscopy in diamond anvil cells. Our experiments revealed that the structural transitions in diamantane were extremely sensitive to deviatoric stress. Under non-hydrostatic conditions, diamantane underwent a cubic (space group Pa3) to a monoclinic phase transition at below 0.15 GPa, the lowest pressure we were able to measure. Upon further compression to 3.5 GPa, this monoclinic phase transformed into another high-pressure monoclinic phase which persisted to 32 GPa, the highest pressure studied in our experiments. However, under more hydrostatic conditions using silicone oil as a pressure medium, the transition pressure to the first high-pressure monoclinic phase was elevated to 7-10 GPa, which coincided with the hydrostatic limit of silicone oil. In another experiment using helium as a pressure medium, no phase transitions were observed to the highest pressure we reached (13 GPa). In addition, large hysteresis and sluggish transition kinetics were observed upon decompression. Over the pressure range where phase transitions were confirmed by XRD, only continuous changes in the Raman spectra were observed. This suggests that these phase transitions are associated with unit cell distortions and modifications in molecular packing rather than the formation of new carbon-carbon bonds under pressure.

  20. High pressure structural phase transitions of PbPo

    NASA Astrophysics Data System (ADS)

    Bencherif, Y.; Boukra, A.; Zaoui, A.; Ferhat, M.

    2012-09-01

    First-principles calculations have been performed to investigate the high pressure phase transitions and dynamical properties of the less known lead polonium compound. The calculated ground state parameters for the NaCl phase show good agreement with the experimental data. The obtained results show that the intermediate phase transition for this compound is the orthorhombic Pnma phase. The PbPo undergoes from the rocksalt to Pnma phase at 4.20 GPa. Further structural phase transition from intermediate to CsCl phase has been found at 8.5 GPa. In addition, phonon dispersion spectra were derived from linear-response to density functional theory. In particular, we show that the dynamical properties of PbPo exhibit some peculiar features compared to other III-V compounds. Finally, thermodynamics properties have been also addressed from quasiharmonic approximation.

  1. Entanglement driven phase transitions in spin-orbital models

    NASA Astrophysics Data System (ADS)

    You, Wen-Long; Oleś, Andrzej M.; Horsch, Peter

    2015-08-01

    To demonstrate the role played by the von Neumann entropy (vNE) spectra in quantum phase transitions we investigate the one-dimensional anisotropic SU(2)\\otimes {XXZ} spin-orbital model with negative exchange parameter. In the case of classical Ising orbital interactions we discover an unexpected novel phase with Majumdar-Ghosh-like spin-singlet dimer correlations triggered by spin-orbital entanglement (SOE) and having k=π /2 orbital correlations, while all the other phases are disentangled. For anisotropic XXZ orbital interactions both SOE and spin-dimer correlations extend to the antiferro-spin/alternating-orbital phase. This quantum phase provides a unique example of two coupled order parameters which change the character of the phase transition from first-order to continuous. Hereby we have established the vNE spectral function as a valuable tool to identify the change of ground state degeneracies and of the SOE of elementary excitations in quantum phase transitions.

  2. Critical Phase Transitions in Vibrated Granular Media

    NASA Astrophysics Data System (ADS)

    Wortel, Geert; Dauchot, Olivier; van Hecke, Martin

    2013-03-01

    Granular media, such as sand, jam under low stresses but yield and flow when stressed sufficiently. We present experiments that uncover that weak vibrations qualitatively modify the nature of this yielding transition from 1st to 2nd order: when the vibration strength, which plays a role similar to temperature, is raised sufficiently, the yielding transition becomes continuous. At the critical point, we find diverging fluctuations, growing timescales and the emergence of a length scale: hallmarks of criticality never seen before in sand.

  3. Strain induced incommensurate structures in vicinity of reconstructive phase transitions

    NASA Astrophysics Data System (ADS)

    Korzhenevskii, A. L.; Dmitriev, V.

    2015-09-01

    General conditions controlling the formation of incommensurate phases in crystals undergoing reconstructive phase transitions are analyzed in the framework of a model-free phenomenological approach. A universal trend to stabilizing such intermediate phases in the vicinity of reconstructive phase transitions stems from the fact that certain high-order improper Lifshitz invariants reduce at such transformations to ones bi-linearly coupling critical displacement gradients and strains or even to the proper Lifshitz invariant. The approach developed here introduces a universal mechanism for the formation both of premartensite incommensurate phases and complex structures with giant unit cells, as found in some elemental crystals at high pressure.

  4. Superconductor-insulator phase transition in the boson Hubbard model

    SciTech Connect

    Kampf, A.P. ); Zimanyi, G.T. Department of Physics, University of California, Davis, California 95616 )

    1993-01-01

    We investigate the superconductor-insulator phase transition in the two-dimensional boson Hubbard system with short-range interactions. Fluctuations of [ital both] the phase and the amplitude of the superfluid order parameter are included in the determination of the phase diagram at zero and finite temperatures. The mean-field phase boundary is compared to quantum Monte Carlo results. We also calculate the frequency-dependent conductivity in the vicinity of the phase transition and find it universal at the multicritical point.

  5. High-pressure phase transitions - Examples of classical predictability

    NASA Astrophysics Data System (ADS)

    Celebonovic, Vladan

    1992-09-01

    The applicability of the Savic and Kasanin (1962-1967) classical theory of dense matter to laboratory experiments requiring estimates of high-pressure phase transitions was examined by determining phase transition pressures for a set of 19 chemical substances (including elements, hydrocarbons, metal oxides, and salts) for which experimental data were available. A comparison between experimental and transition points and those predicted by the Savic-Kasanin theory showed that the theory can be used for estimating values of transition pressures. The results also support conclusions obtained in previous astronomical applications of the Savic-Kasanin theory.

  6. Photothermoelectric (PTE) Versus Photopyroelectric (PPE) Detection of Phase Transitions

    NASA Astrophysics Data System (ADS)

    Dadarlat, D.; Guilmeau, E.; Hadj Sahraoui, A.; Tudoran, C.; Surducan, V.; Bourgès, C.; Lemoine, P.

    2016-05-01

    The photopyroelectric (PPE) technique is one of the photothermal (PT) methods mostly used for phase transitions investigations. In this paper, we want to compare the PPE results with those obtained using another, recently developed PT method [the photothermoelectric (PTE) calorimetry] for the same purpose of detecting phase transitions. The well-known ferro-paraelectric phase transition of TGS, taking place at a convenient temperature (about 49 {}^{circ }hbox {C}), has been selected for demonstration. A comparison of the two PPE and PTE methods, both in the back detection configuration (in the special case of optically opaque sample and thermally thick regime for both sensors and sample) shows that they are equally suitable for phase transitions detection. Performing a proper calibration, the amplitude and phase of the signals can be used in order to obtain the critical behaviour of all sample's static and dynamic thermal parameters.

  7. Extreme Flexibility in a Zeolitic Imidazolate Framework: Porous to Dense Phase Transition in Desolvated ZIF-4.

    PubMed

    Wharmby, Michael T; Henke, Sebastian; Bennett, Thomas D; Bajpe, Sneha R; Schwedler, Inke; Thompson, Stephen P; Gozzo, Fabia; Simoncic, Petra; Mellot-Draznieks, Caroline; Tao, Haizheng; Yue, Yuanzheng; Cheetham, Anthony K

    2015-05-26

    Desolvated zeolitic imidazolate framework ZIF-4(Zn) undergoes a discontinuous porous to dense phase transition on cooling through 140 K, with a 23 % contraction in unit cell volume. The structure of the non-porous, low temperature phase was determined from synchrotron X-ray powder diffraction data and its density was found to be slightly less than that of the densest ZIF phase, ZIF-zni. The mechanism of the phase transition involves a cooperative rotation of imidazolate linkers resulting in isotropic framework contraction and pore space minimization. DFT calculations established the energy of the new structure relative to those of the room temperature phase and ZIF-zni, while DSC measurements indicate the entropic stabilization of the porous room temperature phase at temperatures above 140 K. PMID:25873105

  8. Novel Quantum Phase Transition in the Frustrated Spin Nanotube

    NASA Astrophysics Data System (ADS)

    Sakai, Toru; Nakano, Hiroki

    The S=1/2 three-leg quantum spin tube is investigated using the numerical diagonalization. The study indicated a new quantum phase transition between the 1/3 magnetization plateau phase and the plateauless one, with respect to the spin anisotropy. The phase diagram is also presented.

  9. Capillary Condensation in Polymer Blends: an Analysis of Phase Transitions

    NASA Astrophysics Data System (ADS)

    Ilie, Carolina C.; Jira, Nicholas C.; Evans, Ian R.; Cohen, Matthew; D'Rozario, Julia R.; Romano, Marie T.; Sabirianov, Ildar

    We explore herein the capillary condensation for various geometries. Capillary condensation is studied in the presence of van der Waals forces. We derive the grand free energy, and we analyze the phase transitions, the absorption isotherms and the triple point. Phase transitions between full, empty and two films are investigated and the shape of the liquid is calculated. We also analyze an important application of wetting phenomena and capillary condensation in binary polymer blends and investigate the type of wetting transitions presented and the phase diagram. SUNY Oswego SCAC Grant, NSF Noyce Grant.

  10. Observation of topological phase transitions in photonic quasicrystals.

    PubMed

    Verbin, Mor; Zilberberg, Oded; Kraus, Yaacov E; Lahini, Yoav; Silberberg, Yaron

    2013-02-15

    Topological insulators and topological superconductors are distinguished by their bulk phase transitions and gapless states at a sharp boundary with the vacuum. Quasicrystals have recently been found to be topologically nontrivial. In quasicrystals, the bulk phase transitions occur in the same manner as standard topological materials, but their boundary phenomena are more subtle. In this Letter we directly observe bulk phase transitions, using photonic quasicrystals, by constructing a smooth boundary between topologically distinct one-dimensional quasicrystals. Moreover, we use the same method to experimentally confirm the topological equivalence between the Harper and Fibonacci quasicrystals. PMID:25166388

  11. Tunable Bragg filters with a phase transition material defect layer.

    PubMed

    Wang, Xi; Gong, Zilun; Dong, Kaichen; Lou, Shuai; Slack, Jonathan; Anders, Andre; Yao, Jie

    2016-09-01

    We propose an all-solid-state tunable Bragg filter with a phase transition material as the defect layer. Bragg filters based on a vanadium dioxide defect layer sandwiched between silicon dioxide/titanium dioxide Bragg gratings are experimentally demonstrated. Temperature dependent reflection spectroscopy shows the dynamic tunability and hysteresis properties of the Bragg filter. Temperature dependent Raman spectroscopy reveals the connection between the tunability and the phase transition of the vanadium dioxide defect layer. This work paves a new avenue in tunable Bragg filter designs and promises more applications by combining phase transition materials and optical cavities. PMID:27607643

  12. Problem of Phase Transition in Spin-fluctuation Theory

    NASA Astrophysics Data System (ADS)

    Melnikov, N. B.; Paradezhenko, G. V.

    A first-order phase transition is a characteristic feature of the Gaussian approximation in spin-fluctuation theory. We describe a method for taking into account the fourth-order terms of the free energy expansion using partial averaging. In the example of the Ising model, we show that renormalization of the magnetic susceptibility leads to the second-order phase transition, which is experimentally observed in metals. Near the phase transition, we use the parameter substitution method to compute temperature dependencies. We perform a qualitative analysis and explain the mechanism of the renormalization.

  13. Safety performance of traffic phases and phase transitions in three phase traffic theory.

    PubMed

    Xu, Chengcheng; Liu, Pan; Wang, Wei; Li, Zhibin

    2015-12-01

    Crash risk prediction models were developed to link safety to various phases and phase transitions defined by the three phase traffic theory. Results of the Bayesian conditional logit analysis showed that different traffic states differed distinctly with respect to safety performance. The random-parameter logit approach was utilized to account for the heterogeneity caused by unobserved factors. The Bayesian inference approach based on the Markov Chain Monte Carlo (MCMC) method was used for the estimation of the random-parameter logit model. The proposed approach increased the prediction performance of the crash risk models as compared with the conventional logit model. The three phase traffic theory can help us better understand the mechanism of crash occurrences in various traffic states. The contributing factors to crash likelihood can be well explained by the mechanism of phase transitions. We further discovered that the free flow state can be divided into two sub-phases on the basis of safety performance, including a true free flow state in which the interactions between vehicles are minor, and a platooned traffic state in which bunched vehicles travel in successions. The results of this study suggest that a safety perspective can be added to the three phase traffic theory. The results also suggest that the heterogeneity between different traffic states should be considered when estimating the risks of crash occurrences on freeways. PMID:26367463

  14. Effect of dimensionality on vapor-liquid phase transition

    NASA Astrophysics Data System (ADS)

    Singh, Sudhir Kumar

    2014-04-01

    Dimensionality play significant role on `phase transitions'. Fluids in macroscopic confinement (bulk or 3-Dimensional, 3D) do not show significant changes in their phase transition properties with extent of confinement, since the number of molecules away from the surrounding surfaces is astronomically higher than the number of molecules in close proximity of the confining surfaces. In microscopic confinement (quasi 3D to quasi-2D), however, the number of molecules away from the close proximity of the surface is not as high as is the case with macroscopic (3D) confinement. Hence, under the same thermodynamic conditions `phase transition' properties at microscopic confinement may not remain the same as the macroscopic or 3D values. Phase transitions at extremely small scale become very sensitive to the dimensions as well as the surface characteristics of the system. In this work our investigations reveal the effect of dimensionality on the phase transition from 3D to quasi-2D to 2D behavior. We have used grand canonical transition matrix Monte Carlo simulation to understand the vapor-liquid phase transitions from 3D to quasi-2D behavior. Such studies can be helpful in understanding and controlling the fluid film behaviour confined between solid surfaces of few molecular diameters, for example, in lubrication applications.

  15. Pontine respiratory activity involved in inspiratory/expiratory phase transition

    PubMed Central

    Mörschel, Michael; Dutschmann, Mathias

    2009-01-01

    Control of the timing of the inspiratory/expiratory (IE) phase transition is a hallmark of respiratory pattern formation. In principle, sensory feedback from pulmonary stretch receptors (Breuer–Hering reflex, BHR) is seen as the major controller for the IE phase transition, while pontine-based control of IE phase transition by both the pontine Kölliker–Fuse nucleus (KF) and parabrachial complex is seen as a secondary or backup mechanism. However, previous studies have shown that the BHR can habituate in vivo. Thus, habituation reduces sensory feedback, so the role of the pons, and specifically the KF, for IE phase transition may increase dramatically. Pontine-mediated control of the IE phase transition is not completely understood. In the present review, we discuss existing models for ponto-medullary interaction that may be involved in the control of inspiratory duration and IE transition. We also present intracellular recordings of pontine respiratory units derived from an in situ intra-arterially perfused brainstem preparation of rats. With the absence of lung inflation, this preparation generates a normal respiratory pattern and many of the recorded pontine units demonstrated phasic respiratory-related activity. The analysis of changes in membrane potentials of pontine respiratory neurons has allowed us to propose a number of pontine-medullary interactions not considered before. The involvement of these putative interactions in pontine-mediated control of IE phase transitions is discussed. PMID:19651653

  16. On the theory of phase transitions in magnetic fluids

    SciTech Connect

    Zubarev, A. Yu. Iskakova, L. Yu.

    2007-11-15

    Particles of magnetic fluids (ferrofluids), as is known from experiments, can condense to bulk dense phases at low temperatures (that are close to room temperature) in response to an external magnetic field. It is also known that a uniform external magnetic field increases the threshold temperature of the observed condensation, thus stimulating the condensation process. Within the framework of early theories, this phenomenon is interpreted as a classical gas-liquid phase transition in a system of individual particles involved in a dipole-dipole interaction. However, subsequent investigations have revealed that, before the onset of a bulk phase transition, particles can combine to form a chain cluster or, possibly, a topologically more complex heterogeneous cluster. In an infinitely strong magnetic field, the formation of chains apparently suppresses the onset of a gas-liquid phase transition and the condensation of magnetic particles most likely proceeds according to the scenario of a gas-solid phase transition with a wide gap between spinodal branches. This paper reports on the results of investigations into the specific features of the condensation of particles in the absence of an external magnetic field. An analysis demonstrates that, despite the formation of chains, the condensation of particles in this case can proceed according to the scenario of a gas-liquid phase transition with a critical point in the continuous binodal. Consequently, a uniform magnetic field not only can stimulate the condensation phase transition in a system of magnetic particles but also can be responsible for a qualitative change in the scenario of the phase transition. This inference raises the problem regarding a threshold magnetic field in which there occurs a change in the scenario of the phase transition.

  17. Coil-bridge transition in a single polymer chain as an unconventional phase transition: Theory and simulation

    NASA Astrophysics Data System (ADS)

    Klushin, Leonid I.; Skvortsov, Alexander M.; Polotsky, Alexey A.; Hsu, Hsiao-Ping; Binder, Kurt

    2014-05-01

    The coil-bridge transition in a self-avoiding lattice chain with one end fixed at height H above the attractive planar surface is investigated by theory and Monte Carlo simulation. We focus on the details of the first-order phase transition between the coil state at large height H ⩾ Htr and a bridge state at H ⩽ Htr, where Htr corresponds to the coil-bridge transition point. The equilibrium properties of the chain were calculated using the Monte Carlo pruned-enriched Rosenbluth method in the moderate adsorption regime at (H/Na)tr ⩽ 0.27 where N is the number of monomer units of linear size a. An analytical theory of the coil-bridge transition for lattice chains with excluded volume interactions is presented in this regime. The theory provides an excellent quantitative description of numerical results at all heights, 10 ⩽ H/a ⩽ 320 and all chain lengths 40 < N < 2560 without free fitting parameters. A simple theory taking into account the effect of finite extensibility of the lattice chain in the strong adsorption regime at (H/Na)tr ⩾ 0.5 is presented. We discuss some unconventional properties of the coil-bridge transition: the absence of phase coexistence, two micro-phases involved in the bridge state, and abnormal behavior in the microcanonical ensemble.

  18. Coil-bridge transition in a single polymer chain as an unconventional phase transition: theory and simulation.

    PubMed

    Klushin, Leonid I; Skvortsov, Alexander M; Polotsky, Alexey A; Hsu, Hsiao-Ping; Binder, Kurt

    2014-05-28

    The coil-bridge transition in a self-avoiding lattice chain with one end fixed at height H above the attractive planar surface is investigated by theory and Monte Carlo simulation. We focus on the details of the first-order phase transition between the coil state at large height H ⩾ Htr and a bridge state at H ⩽ Htr, where Htr corresponds to the coil-bridge transition point. The equilibrium properties of the chain were calculated using the Monte Carlo pruned-enriched Rosenbluth method in the moderate adsorption regime at (H/Na)tr ⩽ 0.27 where N is the number of monomer units of linear size a. An analytical theory of the coil-bridge transition for lattice chains with excluded volume interactions is presented in this regime. The theory provides an excellent quantitative description of numerical results at all heights, 10 ⩽ H/a ⩽ 320 and all chain lengths 40 < N < 2560 without free fitting parameters. A simple theory taking into account the effect of finite extensibility of the lattice chain in the strong adsorption regime at (H/Na)tr ⩾ 0.5 is presented. We discuss some unconventional properties of the coil-bridge transition: the absence of phase coexistence, two micro-phases involved in the bridge state, and abnormal behavior in the microcanonical ensemble. PMID:24880326

  19. Successive phase transitions in the orthovanadate TmVO3

    NASA Astrophysics Data System (ADS)

    Sarkar, Tapati; Ivanov, Sergey A.; Bazuev, G. V.; Nordblad, Per; Mathieu, Roland

    2015-09-01

    Synthesis and crystal structure, magnetization and heat capacity measurements of phase pure polycrystalline TmVO3 are reported. TmVO3 was stabilized in the orthorhombic structure by thermal treatment of the precursor TmVO4 in a reducing atmosphere. Magnetization and heat capacity measurements reveal the presence of several successive structural and magnetic phase transitions in this compound. At T = 108 K, the sample undergoes a transition from a paramagnetic state to an antiferromagnetic state, followed by a second transition at 78 K which is related to spin and orbital reorientation. The heat capacity measurements reveal the presence of a third transition in the paramagnetic state (at T = 175 K), which corresponds to a structural phase transition and orbital ordering. At low temperatures (~15 K) and weak fields, there is an anomaly in the magnetization, which may be associated with antiferromagnetic short range ordering of the Tm3+ ions.

  20. Pore volume accessibility of particulate and monolithic stationary phases.

    PubMed

    Urban, Jiří

    2015-05-29

    A chromatographic characterization of pore volume accessibility for both particulate and monolithic stationary phases is presented. Size-exclusion calibration curves have been used to determine the pore volume fraction that is accessible for six alkylbenzenes and twelve polystyrene standards in tetrahydrofuran as the mobile phase. Accessible porosity has been then correlated with the size of the pores from which individual compounds are just excluded. I have determined pore volume accessibility of commercially available columns packed with fully and superficially porous particles, as well as with silica-based monolithic stationary phase. I also have investigated pore accessibility of polymer-based monolithic stationary phases. Suggested protocol is used to characterize pore formation at the early stage of the polymerization, to evaluate an extent of hypercrosslinking during modification of pore surface, and to characterize the pore accessibility of monolithic stationary phases hypercrosslinked after an early termination of polymerization reaction. Pore volume accessibility was also correlated to column efficiency of both particulate and monolithic stationary phases. PMID:25892635

  1. Constant volume gas cell optical phase-shifter

    DOEpatents

    Phillion, Donald W.

    2002-01-01

    A constant volume gas cell optical phase-shifter, particularly applicable for phase-shifting interferometry, contains a sealed volume of atmospheric gas at a pressure somewhat different than atmospheric. An optical window is present at each end of the cell, and as the length of the cell is changed, the optical path length of a laser beam traversing the cell changes. The cell comprises movable coaxial tubes with seals and a volume equalizing opening. Because the cell is constant volume, the pressure, temperature, and density of the contained gas do not change as the cell changes length. This produces an exactly linear relationship between the change in the length of the gas cell and the change in optical phase of the laser beam traversing it. Because the refractive index difference between the gas inside and the atmosphere outside is very much the same, a large motion must be made to change the optical phase by the small fraction of a wavelength that is required by phase-shifting interferometry for its phase step. This motion can be made to great fractional accuracy.

  2. Intrinsic response of polymer liquid crystals in photochemical phase transition

    SciTech Connect

    Ikeda, Tomiki; Sasaki, Takeo; Kim, Haengboo )

    1991-01-24

    Time-resolved measurements were performed on the photochemically induced isothermal phase transition of polymer liquid crystals (PLC) with mesogenic side chains of phenyl benzoate (PAPB3) and cyanobiphenyl (PACB3) under conditions wherein the photochemical reaction of the doped photoresponsive molecule (4-butyl-4-{prime}-methoxyazobenzene, BMAB) was completed within {approximately} 10 ns, and the subsequent phase transition of the matrix PLC from nematic (N) to isotropic (I) state was followed by time-resolved measurements of the birefringence of the system. Formation of a sufficient amount of the cis isomer of BMAB with a single pulse of a laser lowered the N-I phase transition temperature of the mixture, inducing the N-I phase transition of PLCs isothermally in a time range of {approximately} 200 ms. This time range is comparable to that of low molecular weight liquid crystals, indicating that suppression in mobility of mesogens in PLCs does not affect significantly the thermodynamically controlled process.

  3. Depressed Phase Transition in Solution-Grown VO2 Nanostructures

    SciTech Connect

    Whittaker, L.; Jaye, C; Fu, Z; Fischer, D; Banerjee, S

    2009-01-01

    The first-order metal-insulator phase transition in VO{sub 2} is characterized by an ultrafast several-orders-of-magnitude change in electrical conductivity and optical transmittance, which makes this material an attractive candidate for the fabrication of optical limiting elements, thermochromic coatings, and Mott field-effect transistors. Here, we demonstrate that the phase-transition temperature and hysteresis can be tuned by scaling VO{sub 2} to nanoscale dimensions. A simple hydrothermal protocol yields anisotropic free-standing single-crystalline VO{sub 2} nanostructures with a phase-transition temperature depressed to as low as 32 C from 67 C in the bulk. The observations here point to the importance of carefully controlling the stochiometry and dimensions of VO{sub 2} nanostructures to tune the phase transition in this system.

  4. A Bayesian Interpretation of First-Order Phase Transitions

    NASA Astrophysics Data System (ADS)

    Davis, Sergio; Peralta, Joaquín; Navarrete, Yasmín; González, Diego; Gutiérrez, Gonzalo

    2016-03-01

    In this work we review the formalism used in describing the thermodynamics of first-order phase transitions from the point of view of maximum entropy inference. We present the concepts of transition temperature, latent heat and entropy difference between phases as emergent from the more fundamental concept of internal energy, after a statistical inference analysis. We explicitly demonstrate this point of view by making inferences on a simple game, resulting in the same formalism as in thermodynamical phase transitions. We show that analogous quantities will inevitably arise in any problem of inferring the result of a yes/no question, given two different states of knowledge and information in the form of expectation values. This exposition may help to clarify the role of these thermodynamical quantities in the context of different first-order phase transitions such as the case of magnetic Hamiltonians (e.g. the Potts model).

  5. Zero temperature phase transitions in quantum Heisenberg ferromagnets

    SciTech Connect

    Sachdev, S.; Senthil, T.

    1996-10-01

    The purpose of this work is to understand the zero temperature phases and the phase transitions of Heisenberg spin systems which can have an extensive, spontaneous magnetic moment, this entails a study of quantum transitions with an order parameter which is also a non-abelian conserved charge. To this end, we introduce and study a new class of lattice models of quantum rotors. We compute their mean-field phase diagrams and present continuum, quantum field-theoretic descriptions of their low energy properties in different regimes. We argue that, in spatial dimension {ital d}=1, the phase transitions in itinerant Fermi systems are in the same universality class as the corresponding transitions in certain rotor models. We discuss implications of our results for itinerant fermions systems in higher {ital d} and for other physical systems. Copyright {copyright} 1996 Academic Press, Inc.

  6. Thermodynamic properties and phase transitions in CO2 molecular clusters

    NASA Technical Reports Server (NTRS)

    Etters, R. D.; Flurchick, K.; Pan, R. P.; Chandrasekharan, V.

    1981-01-01

    The thermodynamic properties of (CO2)N molecular aggregates of size N between 2 and 13 have been investigated. These crystallites exhibit well defined orientational order-disorder rotational transitions accompanied by a structural transition into a plastic crystallite phase. In addition, they exhibit melting and disassociation transitions. It is shown that the interpretation of experimental data, based upon dimer properties, depends crucially on these results. Equilibrium structures and orientations are also given.

  7. Structure, Hydrodynamics, and Phase Transition of Freely Suspended Liquid Crystals

    NASA Technical Reports Server (NTRS)

    Clark, Noel A.

    2000-01-01

    Smectic liquid crystals are phases of rod shaped molecules organized into one dimensionally (1D) periodic arrays of layers, each layer being between one and two molecular lengths thick. In the least ordered smectic phases, the smectics A and C, each layer is a two dimensional (2D) liquid. Additionally there are a variety of more ordered smectic phases having hexatic short range translational order or 2D crystalline quasi long range translational order within the layers. The inherent fluid-layer structure and low vapor pressure of smectic liquid crystals enable the long term stabilization of freely suspended, single component, layered fluid films as thin as 30A, a single molecular layer. The layering forces the films to be an integral number of smectic layers thick, quantizing their thickness in layer units and forcing a film of a particular number of layers to be physically homogeneous with respect to its layer structure over its entire area. Optical reflectivity enables the precise determination of the number of layers. These ultrathin freely suspended liquid crystal films are structures of fundamental interest in condensed matter and fluid physics. They are the thinnest known stable condensed phase fluid structures and have the largest surface-to-volume ratio of any stable fluid preparation, making them ideal for the study of the effects of reduced dimensionality on phase behavior and on fluctuation and interface phenomena. Their low vapor pressure and quantized thickness enable the effective use of microgravity to extend the study of basic capillary phenomena to ultrathin fluid films. Freely suspended films have been a wellspring of new liquid crystal physics. They have been used to provide unique experimental conditions for the study of condensed phase transitions in two dimensions. They are the only system in which the hexatic has been unambiguously identified as a phase of matter, and the only physical system in which fluctuations of a 2D XY system and

  8. The QCD phase transitions: From mechanism to observables

    SciTech Connect

    Shuryak, E.V.

    1997-09-22

    This paper contains viewgraphs on quantum chromodynamic phase transformations during heavy ion collisions. Some topics briefly described are: finite T transitions of I molecule pairs; finite density transitions of diquarks polymers; and the softtest point of the equation of state as a source of discontinuous behavior as a function of collision energy or centrality.

  9. Exact Analytic Study of Nuclear Shape Phase Transitions

    SciTech Connect

    Levai, G.

    2009-08-26

    The application of the sextic oscillator is proposed in the Bohr Hamiltonian to describe the phase transition between the spherical and gamma-unstable shape phases. It is shown that exact results can be obtained for the energy eigenvalues and wave functions of the low-lying levels, as well as for electric quadrupole transition rates between them. The {sup 134}Ba nucleus and the even Ru isotope chain are considered as examples. Possible generalizations of the model are also outlined.

  10. Effect of point defects and disorder on structural phase transitions

    SciTech Connect

    Toulouse, J.

    1997-06-01

    Since the beginning in 1986, the object of this project has been Structural Phase Transitions (SPT) in real as opposed to ideal materials. The first stage of the study has been centered around the role of Point Defects in SPT`s. Our intent was to use the previous knowledge we had acquired in the study of point defects in non-transforming insulators and apply it to the study of point defects in insulators undergoing phase transitions. In non-transforming insulators, point defects, in low concentrations, marginally affect the bulk properties of the host. It is nevertheless possible by resonance or relaxation methods to study the point defects themselves via their local motion. In transforming solids, however, close to a phase transition, atomic motions become correlated over very large distances; there, even point defects far removed from one another can undergo correlated motions which may strongly affect the transition behavior of the host. Near a structural transition, the elastic properties win be most strongly affected so as to either raise or decrease the transition temperature, prevent the transition from taking place altogether, or simply modify its nature and the microstructure or domain structure of the resulting phase. One of the well known practical examples is calcium-stabilized zirconia in which the high temperature cubic phase is stabilized at room temperature with greatly improved mechanical properties.

  11. Overloaded phase-code multiplexing for volume holographic storage.

    PubMed

    Berger, Gernot; Dietz, Mathias; Denz, Cornelia

    2008-06-01

    Overloaded phase codes for volume holographic data storage are introduced. In contrast to any previous phase-code design, overloaded phase codes enable multiplexing of a number of data pages that exceeds the number of utilized reference beams. In this way the achievable data capacity can be augmented. Overloaded codes are generated by extending multilevel phase codes based on the discrete Fourier transform. We demonstrate multiplexing of 70 analog pages by means of 64 reference beams. The analysis of reconstructed digital data pages suggests that a capacity gain of up to 15% is reasonable. PMID:18516191

  12. The Electroweak Phase Transition: Corralling the Higgs with Colliders & Cosmology

    NASA Astrophysics Data System (ADS)

    Long, Andrew J.

    Through this thesis, I investigate the way in which the electroweak phase transition, and therefore the Higgs boson, bridges high energy particle physics and early universe cosmology; moreover, I argue that it is particularly interesting to explore this bridge today as experiments such as the Large Hadron Collider begin to uncover the nature of physics at the electroweak scale. I will discuss how measurements of the properties of the Higgs boson at the Large Hadron Collider allow one to determine the nature of the phase transition that was responsible for electroweak symmetry breaking in the early universe. That information in turn will allow one to assess whether the asymmetry between the abundances of matter and anti-matter in the universe may have been generated during the electroweak phase transition. Additionally, I will discuss the impact of the electroweak phase transition on another cosmological relic: namely, the dark matter. Precise measurements of the mass and abundance of dark matter today yield further information about the nature of the electroweak phase transition, in some scenarios. This information may be used to test the hypothesis that the cosmological constant, assumed to be a good model of dark energy, is finely tuned. In this way, I hope to demonstrate the importance of the electroweak phase transition as a bridge between terrestrial tests of high energy physics and cosmological tests of the physics of the early universe.

  13. Transitions of the propagation phases for non-Newtonian gravity currents

    NASA Astrophysics Data System (ADS)

    Chowdhury, Mijanur; Testik, Firat

    2011-11-01

    Transitions of the propagation phases for both two-dimensional and axisymmetric non-Newtonian gravity currents were investigated experimentally and theoretically. Fluid mud gravity currents, which exhibit power-law (shear thinning) rheological properties, were generated for constant-volume (in a flume) and constant-flux (in a flume and a three-dimensional tank) release configurations. Experimental observations indicated that, similar to their Newtonian counterparts (e.g. saline gravity currents), fluid mud gravity currents exhibit inertial and viscous propagation phases, preceded by either slumping (for the case of constant-volume release) or chaotic jet (for the case of constant-flux release) phase. When the currents make transitions from inertial to viscous phase, a thickening-thinning behavior was observed. Order-of-magnitude expressions for the transition time and position were derived and predictions of these expressions were compared to the experimental observations. A Moody-like diagram based upon a new friction factor and Reynolds number for power-law gravity currents is proposed to identify the transition from the inertial to viscous propagation phase.

  14. Phase control of nonadiabatic optical transitions

    NASA Astrophysics Data System (ADS)

    Hashmi, F. A.; Bouchene, M. A.

    2009-02-01

    We theoretically study the interaction of two time delayed, phase-locked, and nonresonant pulses with a two-level system in the strong field regime. The population transfer is shown to be extremely sensitive to the phase shift ϕ between the pulses, with efficient population transfer taking place only for ϕ close to π . This effect is explained in terms of nonadiabatic jump and rapid adiabatic passage phenomena.

  15. Liquid-Liquid Phase Transition and Glass Transition in a Monoatomic Model System

    PubMed Central

    Xu, Limei; Buldyrev, Sergey V.; Giovambattista, Nicolas; Stanley, H. Eugene

    2010-01-01

    We review our recent study on the polyamorphism of the liquid and glass states in a monatomic system, a two-scale spherical-symmetric Jagla model with both attractive and repulsive interactions. This potential with a parametrization for which crystallization can be avoided and both the glass transition and the liquid-liquid phase transition are clearly separated, displays water-like anomalies as well as polyamorphism in both liquid and glassy states, providing a unique opportunity to study the interplay between the liquid-liquid phase transition and the glass transition. Our study on a simple model may be useful in understanding recent studies of polyamorphism in metallic glasses. PMID:21614201

  16. Thermodynamic phase transitions in a frustrated magnetic metamaterial

    PubMed Central

    Anghinolfi, L.; Luetkens, H.; Perron, J.; Flokstra, M. G.; Sendetskyi, O.; Suter, A.; Prokscha, T.; Derlet, P. M.; Lee, S. L.; Heyderman, L. J.

    2015-01-01

    Materials with interacting magnetic degrees of freedom display a rich variety of magnetic behaviour that can lead to novel collective equilibrium and out-of-equilibrium phenomena. In equilibrium, thermodynamic phases appear with the associated phase transitions providing a characteristic signature of the underlying collective behaviour. Here we create a thermally active artificial kagome spin ice that is made up of a large array of dipolar interacting nanomagnets and undergoes phase transitions predicted by microscopic theory. We use low energy muon spectroscopy to probe the dynamic behaviour of the interacting nanomagnets and observe peaks in the muon relaxation rate that can be identified with the critical temperatures of the predicted phase transitions. This provides experimental evidence that a frustrated magnetic metamaterial can be engineered to admit thermodynamic phases. PMID:26387444

  17. Thermodynamic phase transitions in a frustrated magnetic metamaterial.

    PubMed

    Anghinolfi, L; Luetkens, H; Perron, J; Flokstra, M G; Sendetskyi, O; Suter, A; Prokscha, T; Derlet, P M; Lee, S L; Heyderman, L J

    2015-01-01

    Materials with interacting magnetic degrees of freedom display a rich variety of magnetic behaviour that can lead to novel collective equilibrium and out-of-equilibrium phenomena. In equilibrium, thermodynamic phases appear with the associated phase transitions providing a characteristic signature of the underlying collective behaviour. Here we create a thermally active artificial kagome spin ice that is made up of a large array of dipolar interacting nanomagnets and undergoes phase transitions predicted by microscopic theory. We use low energy muon spectroscopy to probe the dynamic behaviour of the interacting nanomagnets and observe peaks in the muon relaxation rate that can be identified with the critical temperatures of the predicted phase transitions. This provides experimental evidence that a frustrated magnetic metamaterial can be engineered to admit thermodynamic phases. PMID:26387444

  18. Giant elastic tunability in strained BiFeO3 near an electrically induced phase transition

    NASA Astrophysics Data System (ADS)

    Li, Q.; Cao, Y.; Yu, P.; Vasudevan, R. K.; Laanait, N.; Tselev, A.; Xue, F.; Chen, L. Q.; Maksymovych, P.; Kalinin, S. V.; Balke, N.

    2015-11-01

    Elastic anomalies are signatures of phase transitions in condensed matters and have traditionally been studied using various techniques spanning from neutron scattering to static mechanical testing. Here, using band-excitation elastic/piezoresponse spectroscopy, we probed sub-MHz elastic dynamics of a tip bias-induced rhombohedral-tetragonal phase transition of strained (001)-BiFeO3 (rhombohedral) ferroelectric thin films from ~103 nm3 sample volumes. Near this transition, we observed that the Young's modulus intrinsically softens by over 30% coinciding with two- to three-fold enhancement of local piezoresponse. Coupled with phase-field modelling, we also addressed the influence of polarization switching and mesoscopic structural heterogeneities (for example, domain walls) on the kinetics of this phase transition, thereby providing fresh insights into the morphotropic phase boundary in ferroelectrics. Furthermore, the giant electrically tunable elastic stiffness and corresponding electromechanical properties observed here suggest potential applications of BiFeO3 in next-generation frequency-agile electroacoustic devices, based on the utilization of the soft modes underlying successive ferroelectric phase transitions.

  19. Giant elastic tunability in strained BiFeO3 near an electrically induced phase transition

    PubMed Central

    Li, Q; Cao, Y.; Yu, P.; Vasudevan, R. K.; Laanait, N.; Tselev, A.; Xue, F.; Chen, L. Q.; Maksymovych, P.; Kalinin, S. V.; Balke, N.

    2015-01-01

    Elastic anomalies are signatures of phase transitions in condensed matters and have traditionally been studied using various techniques spanning from neutron scattering to static mechanical testing. Here, using band-excitation elastic/piezoresponse spectroscopy, we probed sub-MHz elastic dynamics of a tip bias-induced rhombohedral−tetragonal phase transition of strained (001)-BiFeO3 (rhombohedral) ferroelectric thin films from ∼103 nm3 sample volumes. Near this transition, we observed that the Young's modulus intrinsically softens by over 30% coinciding with two- to three-fold enhancement of local piezoresponse. Coupled with phase-field modelling, we also addressed the influence of polarization switching and mesoscopic structural heterogeneities (for example, domain walls) on the kinetics of this phase transition, thereby providing fresh insights into the morphotropic phase boundary in ferroelectrics. Furthermore, the giant electrically tunable elastic stiffness and corresponding electromechanical properties observed here suggest potential applications of BiFeO3 in next-generation frequency-agile electroacoustic devices, based on the utilization of the soft modes underlying successive ferroelectric phase transitions. PMID:26597483

  20. Giant elastic tunability in strained BiFeO3 near an electrically induced phase transition

    DOE PAGESBeta

    Yu, Pu; Vasudevan, Rama K.; Tselev, Alexander; Xue, Fei; Chen, Long -Qing; Maksymovych, Petro; Kalinin, Sergei V.; Balke, Nina; Li, Q.; Cao, Y.; et al

    2015-01-01

    Elastic anomalies are signatures of phase transitions in condensed matters and have traditionally been studied using various techniques spanning from neutron scattering to static mechanical testing. Here, using band-excitation elastic/piezoresponse spectroscopy, we probed sub-MHz elastic dynamics of a tip bias-induced rhombohedral–tetragonal phase transition of strained (001)-BiFeO3 (rhombohedral) ferroelectric thin films from ~103 nm3 sample volumes. Near this transition, we observed that the Young's modulus intrinsically softens by over 30% coinciding with 2-3 folds enhancement of local piezoresponse. Coupled with phase-field modeling, we also addressed the influence of polarization switching and mesoscopic structural heterogeneities (e.g., domain walls) on the kinetics ofmore » this phase transition, thereby providing fresh insights into the morphotropic phase boundary (MPB) in ferroelectrics. Moreover, the giant electrically tunable elastic stiffness and corresponding electromechanical properties observed here suggest potential applications of BiFeO3 in next-generation frequency-agile electroacoustic devices, based on utilization of the soft modes underlying successive ferroelectric phase transitions.« less

  1. Giant elastic tunability in strained BiFeO3 near an electrically induced phase transition.

    PubMed

    Li, Q; Cao, Y; Yu, P; Vasudevan, R K; Laanait, N; Tselev, A; Xue, F; Chen, L Q; Maksymovych, P; Kalinin, S V; Balke, N

    2015-01-01

    Elastic anomalies are signatures of phase transitions in condensed matters and have traditionally been studied using various techniques spanning from neutron scattering to static mechanical testing. Here, using band-excitation elastic/piezoresponse spectroscopy, we probed sub-MHz elastic dynamics of a tip bias-induced rhombohedral-tetragonal phase transition of strained (001)-BiFeO3 (rhombohedral) ferroelectric thin films from ∼10(3) nm(3) sample volumes. Near this transition, we observed that the Young's modulus intrinsically softens by over 30% coinciding with two- to three-fold enhancement of local piezoresponse. Coupled with phase-field modelling, we also addressed the influence of polarization switching and mesoscopic structural heterogeneities (for example, domain walls) on the kinetics of this phase transition, thereby providing fresh insights into the morphotropic phase boundary in ferroelectrics. Furthermore, the giant electrically tunable elastic stiffness and corresponding electromechanical properties observed here suggest potential applications of BiFeO3 in next-generation frequency-agile electroacoustic devices, based on the utilization of the soft modes underlying successive ferroelectric phase transitions. PMID:26597483

  2. Models for a liquid-liquid phase transition

    NASA Astrophysics Data System (ADS)

    Buldyrev, S. V.; Franzese, G.; Giovambattista, N.; Malescio, G.; Sadr-Lahijany, M. R.; Scala, A.; Skibinsky, A.; Stanley, H. E.

    2002-02-01

    We use molecular dynamics simulations to study two- and three-dimensional models with the isotropic double-step potential which in addition to the hard core has a repulsive soft core of larger radius. Our results indicate that the presence of two characteristic repulsive distances (hard core and soft core) is sufficient to explain liquid anomalies and a liquid-liquid phase transition, but these two phenomena may occur independently. Thus liquid-liquid transitions may exist in systems like liquid metals, regardless of the presence of the density anomaly. For 2D, we propose a model with a specific set of hard core and soft core parameters, that qualitatively reproduces the phase diagram and anomalies of liquid water. We identify two solid phases: a square crystal (high density phase), and a triangular crystal (low density phase) and discuss the relation between the anomalies of liquid and the polymorphism of the solid. Similarly to real water, our 2D system may have the second critical point in the metastable liquid phase beyond the freezing line. In 3D, we find several sets of parameters for which two fluid-fluid phase transition lines exist: the first line between gas and liquid and the second line between high-density liquid (HDL) and low-density liquid (LDL). In all cases, the LDL phase shows no density anomaly in 3D. We relate the absence of the density anomaly with the positive slope of the LDL-HDL phase transition line.

  3. Paraelectric-antiferroelectric phase transition in achiral liquid crystals

    NASA Astrophysics Data System (ADS)

    Pociecha, Damian; Gorecka, Ewa; Čepič, Mojca; Vaupotič, Nataša; Gomola, Kinga; Mieczkowski, Jozef

    2005-12-01

    Critical freezing of molecular rotation in an achiral smectic phase, which leads to polar ordering through the second order paraelectric-antiferroelectric (Sm-A→Sm-APA) phase transition is studied theoretically and experimentally. Strong softening of the polar mode in the Sm-A phase and highly intensive dielectric mode in the Sm-APA phase are observed due to weak antiferroelectric interactions in the system. In the Sm-APA phase the dielectric response behaves critically upon biasing by a dc electric field. Such a behavior is found general for the antiferroelectric smectic phase with significant quadrupolar interlayer coupling.

  4. Modeling liquid-liquid phase transitions and quasicrystal formation

    NASA Astrophysics Data System (ADS)

    Skibinsky, Anna

    In this thesis, studies which concern two different subjects related to phase transitions in fluids and crystalline solids are presented. Condensed matter formation, structure, and phase transitions are modeled using molecular dynamics simulations of simple discontinuous potentials with attractive and repulsive interactions. Novel phase diagrams are proposed for quasicrystals, crystals, and liquids. In the first part of the thesis, the formation of a quasicrystal in a two dimensional monodisperse system is investigated using molecular dynamics simulations of hard sphere particles interacting via a two-dimensional square-well potential. It is found that for certain values of the square-well parameters more than one stable crystalline phase can form. By quenching the liquid phase at a very low temperature, an amorphous phase is obtained. When this the amorphous phase is heated, a quasicrystalline structure with five-fold symmetry forms. From estimations of the Helmholtz potentials of the stable crystalline phases and of the quasicrystal, it is concluded that within a specific temperature range, the observed quasicrystal phase can be the stable phase. The second part of the thesis concerns a study of the liquid-liquid phase transition for a single-component system in three dimensions, interacting via an isotropic potential with a repulsive soft-core shoulder at short distance and an attractive well at an intermediate distance. The potential is similar to potentials used to describe such liquid systems as colloids, protein solutions, or liquid metals. It is shown that the phase diagram for such a potential can have two lines of first-order fluid-fluid phase transitions: one separating a gas and a low-density liquid (LDL), and another between the LDL and a high-density liquid (HDL). Both phase transition lines end in a critical point, a gas-LDL critical point and, depending on the potential parameters, either a gas-HDL critical point or a LDL-HDL critical point. A

  5. Phase Transitions in Antibody Solutions: from Pharmaceuticals to Human Disease

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Lomakin, Aleksey; Benedek, George; Dana Farber Cancer Institute Collaboration; Amgen Inc. Collaboration

    2014-03-01

    Antibodies are very important proteins. Natural antibodies play essential role in the immune system of human body. Pharmaceutical antibodies are used as drugs. Antibodies are also indispensable tools in biomedical research and diagnostics. Recently, a number of observations of phase transitions of pharmaceutical antibodies have been reported. These phase transitions are undesirable from the perspective of colloid stability of drug solutions in processing and storage, but can be used for protein purification, X-ray crystallography, and improving pharmokinetics of drugs. Phase transitions of antibodies can also take place in human body, particularly in multiple myeloma patients who overproduce monoclonal antibodies. These antibodies, in some cases, crystallize at body temperature and cause severe complications called cryoglobulinemia. I will present the results of our current studies on phase transitions of both pharmaceutical antibodies and cryoglobulinemia-associated antibodies. These studies have shown that different antibodies have different propensity to undergo phase transitions, but their phase behavior has universal features which are remarkably different from those of spherical proteins. I will discuss how studies of phase behavior can be useful in assessing colloid stability of pharmaceutical antibodies and in early diagnostics of cryoglobulinemia, as well as general implications of the fact that some antibodies can precipitate at physiological conditions.

  6. Pressure-induced shape change of phospholipid vesicles: implication of compression and phase transition.

    PubMed

    Perrier-Cornet, J-M; Baddóuj, K; Gervais, P

    2005-04-01

    A microscopic study has allowed the analysis of modifications of various shapes acquired by phospholipid vesicles during a hydrostatic pressure treatment of up to 300 MPa. Giant vesicles of dimyristoylphosphatidylcholine / phosphatidylserine (DMPC/PS) prepared at 40 degrees C mainly presented a shape change resembling budding during pressure release. This comportment was reinforced by the incorporation of 1,2-dioleyl-sn-glycero-3-phosphatidylethanolamine (DOPE) or by higher temperature (60 degrees C) processing. The thermotropic main phase transition (L alpha to P beta') of the different vesicles prepared was determined under pressure through a spectrofluorimetric study of 6-dodecanoyl-2-dimethylamino-naphtalene (Laurdan) incorporated into the vesicles' bilayer. This analysis was performed by microfluorescence observation of single vesicles. The phase transition was found to begin at about 80 MPa and 120 MPa for DMPC/PS vesicles at, respectively, 40 degrees C and 60 degrees C. At 60 degrees C the liquid-to-gel transition phase was not complete within 250 MPa. Addition of DMPE at 40 degrees C does not significantly shift the onset boundary of the phase transition but extends the transition region. At 40 degrees C, the gel phase was obtained at, respectively, 110 MPa and 160 MPa for DMPC/PS and DMPC/PS/DOPE vesicles. In comparing volume data obtained from image analysis and Laurdan signal, we assume the shape change is a consequence of the difference between lateral compressibility of the membrane and bulk water. The phase transition contributes to the membrane compression but seems not necessary to induce shape change of vesicles. The high compressibility of the L alpha phase at 60 degrees C allows induction on DMPC/PS vesicles of a morphological transition without phase change. PMID:16245032

  7. Unified transition path and universal transition state for ZB to RS or WZ to RS high pressure phase transition

    NASA Astrophysics Data System (ADS)

    Miao, Maosheng

    2005-07-01

    We show that the previously proposed transition paths for high pressure phase transitions for semiconductor from zinc blende (ZB) to rocksalt (RS) and from wurtzite (WZ) to rocksalt can be unified and can be extended to transitions from various tetrahedrally bonded polytypes to rocksalt [1]. Our first principle pseudopotential calculations with density functional and constrained relaxation methods on SiC showed that the ZB to RS transition has the lowest transition barrier. Our calculations on ZB to RS transition path for other semiconductors including II-VI, III-V and group IV semiconductors, show that the position and the geometry of the transition state, the state that correspond to the transition barrier, are universal and do not depend on the chemical components of the system [2]. We also extended the Landau phase transition model to a ZB to RS transition by using a cosine function of the atom displacement as order parameter. The model shows that the position of the transition state does not depend on the coupling between the atom displacement and the strains of the lattice, which is the key point that the transition state is independent of the chemical components. [1] M. S. Miao and Walter R. L. Lambrecht, Phys. Rev. B 68, 092103 (2003). [2] M. S. Miao and Walter R. L. Lambrecht, Phys. Rev. Lett., accepted

  8. Interlayer-glide-driven isosymmetric phase transition in compressed In2Se3

    NASA Astrophysics Data System (ADS)

    Ke, Feng; Liu, Cailong; Gao, Yang; Zhang, Junkai; Tan, Dayong; Han, Yonghao; Ma, Yanzhang; Shu, Jinfu; Yang, Wenge; Chen, Bin; Mao, Ho-Kwang; Chen, Xiao-Jia; Gao, Chunxiao

    2014-05-01

    We report an anomalous phase transition in compressed In2Se3. The high-pressure studies indicate that In2Se3 transforms to a new isosymmetric R-3m structure at 0.8 GPa whilst the volume collapses by ˜7%. This phase transition involves a pressure-induced interlayer shear glide with respect to one another. Consequently, the outer Se atoms of one sheet locate into the interstitial sites of three Se atoms in the neighboring sheets that are weakly connected by van der Waals interaction. Interestingly, this interlayer shear glide changes the stacking sequence significantly but leaves crystal symmetry unaffected. This study provides an insight to the mechanisms of the intriguing isosymmetric phase transition.

  9. Phase Transition to Bundles of Flexible Supramolecular Polymers

    NASA Astrophysics Data System (ADS)

    Huisman, B. A. H.; Bolhuis, P. G.; Fasolino, A.

    2008-05-01

    We report Monte Carlo simulations of the self-assembly of supramolecular polymers based on a model of patchy particles. We find a first-order phase transition, characterized by hysteresis and nucleation, toward a solid bundle of polymers, of length much greater than the average gas phase length. We argue that the bundling transition is the supramolecular equivalent of the sublimation transition, which results from a weak chain-chain interaction. We provide a qualitative equation of state that gives physical insight beyond the specific values of the parameters used in our simulations.

  10. Study of Phase Transitions in Cerium by Pressure Gauge PVDF

    NASA Astrophysics Data System (ADS)

    Zhernokletov, Mikhail; Simakov, Vladimir; Borissenok, Valery; Bragunets, Viacheslav; Volgin, Vasily; Cherne, Frank; Zocher, Marvin

    2007-06-01

    This paper examines phase transitions in cerium during shock compression using PVDF gauges. A two-wave structure was observed with loading pressures of 4GPa - 12GPa. The wave structure consists of leading isentropic compression wave followed by a shock wave. This wave structure was formed as a result of the isomorphic (γ-α) phase transition. The wave profiles exhibited no peculiarities resulting from the polymorphic transition (α-ɛ) as predicted by Elkin et. al [Proceedings of the International Conference VII Khariton Readings, Sarov 2005, p. 116].

  11. Molecular dynamics and the phase transition in solid C60

    NASA Astrophysics Data System (ADS)

    Tycko, R.; Dabbagh, G.; Fleming, R. M.; Haddon, R. C.; Makhija, A. V.; Zahurak, S. M.

    1991-09-01

    The molecular reorientational dynamics in two phases of solid C60 with C-13 NMR measurements are characterized. A change in the nature of the dynamics, indicated by a change in kinetic parameters extracted from spin-lattice relaxation data, occurs at the phase transition at 260 K. Above the transition, the molecules appear to execute continuous rotational diffusion; below the transition, they appear to jump between symmetry-equivalent orientations. This interpretation is consistent with the X-ray-diffraction results of Heiney et al. (1991) as well as the NMR relaxation and spectral data.

  12. Phase transition from poor to diverse ecosystems

    NASA Astrophysics Data System (ADS)

    Murase, Yohsuke; Shimada, Takashi; Yukawa, Satoshi; Ito, Nobuyasu

    A mathematical model of ecoevolution is studied. The model treats ecosystems as large dimensional dynamical systems. The preying interaction term between species have the scale invariant form of x i λ xj1-λ. In addition, simple rules for addition and elimination of species are included. This model is called the "scale-invariant" model. The model makes it possible to construct ecosystems with thousands of species with a totally random invasion process, although it is not impossible when the interaction terms are the quadratic form of xixj like Lotka-Volterra equation. We studied the relation between the number of species and the interspecies interactions. As a result, it is shown the model can describe both simple ecosystems and diverse ecosystems, because this model has two phases. In one phase, the number of species remains in finite range. In the other phase, the number of species grows without limit.

  13. Diffusionless γ⇄α phase transition in polycrystalline and single-crystal cerium.

    PubMed

    Decremps, F; Belhadi, L; Farber, D L; Moore, K T; Occelli, F; Gauthier, M; Polian, A; Antonangeli, D; Aracne-Ruddle, C M; Amadon, B

    2011-02-11

    The cerium γ⇄α transition was investigated using high-pressure, high-temperature angle-dispersive x-ray diffraction measurements on both poly- and single-crystalline samples, explicitly addressing symmetry change and transformation paths. The isomorphic hypothesis of the transition is confirmed, with a transition line ending at a solid-solid critical point. The critical exponent is determined, showing a universal behavior that can be pictured as a liquid-gas transition. We further report an isomorphic transition between two single crystals (with more than 14% of volume difference), an unparalleled observation in solid-state matter interpreted in terms of dislocation-induced diffusionless first-order phase transformation. PMID:21405478

  14. Diffusionless γ⇄α Phase Transition in Polycrystalline and Single-Crystal Cerium

    NASA Astrophysics Data System (ADS)

    Decremps, F.; Belhadi, L.; Farber, D. L.; Moore, K. T.; Occelli, F.; Gauthier, M.; Polian, A.; Antonangeli, D.; Aracne-Ruddle, C. M.; Amadon, B.

    2011-02-01

    The cerium γ⇄α transition was investigated using high-pressure, high-temperature angle-dispersive x-ray diffraction measurements on both poly- and single-crystalline samples, explicitly addressing symmetry change and transformation paths. The isomorphic hypothesis of the transition is confirmed, with a transition line ending at a solid-solid critical point. The critical exponent is determined, showing a universal behavior that can be pictured as a liquid-gas transition. We further report an isomorphic transition between two single crystals (with more than 14% of volume difference), an unparalleled observation in solid-state matter interpreted in terms of dislocation-induced diffusionless first-order phase transformation.

  15. Annotated Bibliography on Secondary Special Education and Transitional Services. Volume 10 (and Integrated Master Index for Volumes 7-10).

    ERIC Educational Resources Information Center

    Leach, Lynda Nash; Harmon, Adrienne Seccia

    This is the last volume of a 10-volume annotated bibliography documenting the literature in the field of secondary special education and transitional services. The 179 documents cited and abstracted include journal articles, conference proceedings, project reports and products, videocassette recordings, presentations, pamphlets, dissertations,…

  16. Space station accommodations for life sciences research facilities: Phase A conceptual design and programmatics studies for Missions SAAX0307, SAAX0302 and the transition from SAAX0307 to SAAX0302. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The conceptual designs and programmatics for a Space Station Nonhuman Life Sciences Research Facility (LSRF) are highlighted. Conceptual designs and programmatics encompass an Initial Orbital Capability (IOC) LSRF, a growth or Follow-on Orbital Capability (FOC), and the transitional process required to modify the IOC LSRF to the FOC LSRF.

  17. The formation of topological defects in phase transitions

    NASA Technical Reports Server (NTRS)

    Hodges, Hardy M.

    1989-01-01

    It was argued, and fought through numerical work that the results of non-dynamical Monte Carlo computer simulations cannot be applied to describe the formation of topological defects when the correlation length at the Ginzburg temperature is significantly smaller than the horizon size. To test the current hypothesis that infinite strings at formation are essentially described by Brownian walks of size the correlation length at the Ginzburg temperature, fields at the Ginzburg temperature were equilibrated. Infinite structure do not exist in equilibrium for reasonable definitions of the Ginzburg temperature, and horizons must be included in a proper treatment. A phase transition, from small-scale to large-scale string or domain wall structure, is found to occur very close to the Ginzburg temperature, in agreement with recent work. The formation process of domain walls and global strings were investigated through the breaking of initially ordered states. To mimic conditions in the early Universe, cooling times are chosen so that horizons exist in the sample volume when topological structure formation occurs. The classical fields are evolved in real-time by the numerical solution of Langevin equations of motion on a three dimensional spatial lattice. The results indicate that it is possible for most of the string energy to be in small loops, rather than in long strings, at formation.

  18. Microstructural fingerprints of phase transitions in shock-loaded iron

    PubMed Central

    Wang, S. J.; Sui, M. L.; Chen, Y. T.; Lu, Q. H.; Ma, E.; Pei, X. Y.; Li, Q. Z.; Hu, H. B.

    2013-01-01

    The complex structural transformation in crystals under static pressure or shock loading has been a subject of long-standing interest to materials scientists and physicists. The polymorphic transformation is of particular importance for iron (Fe), due to its technological and sociological significance in the development of human civilization, as well as its prominent presence in the earth's core. The martensitic transformation α→ε (bcc→hcp) in iron under shock-loading, due to its reversible and transient nature, requires non-trivial detective work to uncover its occurrence. Here we reveal refined microstructural fingerprints, needle-like colonies and three sets of {112}<111> twins with a threefold symmetry, with tell-tale features that are indicative of two sequential martensitic transformations in the reversible α→ε phase transition, even though no ε is retained in the post-shock samples. The signature orientation relationships are consistent with previously-proposed transformation mechanisms, and the unique microstructural fingerprints enable a quantitative assessment of the volume fraction transformed. PMID:23336068

  19. Microstructural fingerprints of phase transitions in shock-loaded iron

    NASA Astrophysics Data System (ADS)

    Wang, S. J.; Sui, M. L.; Chen, Y. T.; Lu, Q. H.; Ma, E.; Pei, X. Y.; Li, Q. Z.; Hu, H. B.

    2013-01-01

    The complex structural transformation in crystals under static pressure or shock loading has been a subject of long-standing interest to materials scientists and physicists. The polymorphic transformation is of particular importance for iron (Fe), due to its technological and sociological significance in the development of human civilization, as well as its prominent presence in the earth's core. The martensitic transformation α-->ɛ (bcc-->hcp) in iron under shock-loading, due to its reversible and transient nature, requires non-trivial detective work to uncover its occurrence. Here we reveal refined microstructural fingerprints, needle-like colonies and three sets of {112}<111> twins with a threefold symmetry, with tell-tale features that are indicative of two sequential martensitic transformations in the reversible α-->ɛ phase transition, even though no ɛ is retained in the post-shock samples. The signature orientation relationships are consistent with previously-proposed transformation mechanisms, and the unique microstructural fingerprints enable a quantitative assessment of the volume fraction transformed.

  20. Microstructural fingerprints of phase transitions in shock-loaded iron.

    PubMed

    Wang, S J; Sui, M L; Chen, Y T; Lu, Q H; Ma, E; Pei, X Y; Li, Q Z; Hu, H B

    2013-01-01

    The complex structural transformation in crystals under static pressure or shock loading has been a subject of long-standing interest to materials scientists and physicists. The polymorphic transformation is of particular importance for iron (Fe), due to its technological and sociological significance in the development of human civilization, as well as its prominent presence in the earth's core. The martensitic transformation α→ε (bcc→hcp) in iron under shock-loading, due to its reversible and transient nature, requires non-trivial detective work to uncover its occurrence. Here we reveal refined microstructural fingerprints, needle-like colonies and three sets of {112}<111> twins with a threefold symmetry, with tell-tale features that are indicative of two sequential martensitic transformations in the reversible α→ε phase transition, even though no ε is retained in the post-shock samples. The signature orientation relationships are consistent with previously-proposed transformation mechanisms, and the unique microstructural fingerprints enable a quantitative assessment of the volume fraction transformed. PMID:23336068

  1. First-order phase transitions in the real microcanonical ensemble

    NASA Astrophysics Data System (ADS)

    Schierz, Philipp; Zierenberg, Johannes; Janke, Wolfhard

    2016-08-01

    We present a simulation and data analysis technique to investigate first-order phase transitions and the associated transition barriers. The simulation technique is based on the real microcanonical ensemble where the sum of kinetic and potential energy is kept constant. The method is tested for the droplet condensation-evaporation transition in a Lennard-Jones system with up to 2048 particles at fixed density, using simple Metropolis-like sampling combined with a replica-exchange scheme. Our investigation of the microcanonical ensemble properties reveals that the associated transition barrier is significantly lower than in the canonical counterpart. Along the line of investigating the microcanonical ensemble behavior, we develop a framework for general ensemble evaluations. This framework is based on a clear separation between system-related and ensemble-related properties, which can be exploited to specifically tailor artificial ensembles suitable for first-order phase transitions.

  2. First-order phase transitions in the real microcanonical ensemble.

    PubMed

    Schierz, Philipp; Zierenberg, Johannes; Janke, Wolfhard

    2016-08-01

    We present a simulation and data analysis technique to investigate first-order phase transitions and the associated transition barriers. The simulation technique is based on the real microcanonical ensemble where the sum of kinetic and potential energy is kept constant. The method is tested for the droplet condensation-evaporation transition in a Lennard-Jones system with up to 2048 particles at fixed density, using simple Metropolis-like sampling combined with a replica-exchange scheme. Our investigation of the microcanonical ensemble properties reveals that the associated transition barrier is significantly lower than in the canonical counterpart. Along the line of investigating the microcanonical ensemble behavior, we develop a framework for general ensemble evaluations. This framework is based on a clear separation between system-related and ensemble-related properties, which can be exploited to specifically tailor artificial ensembles suitable for first-order phase transitions. PMID:27627238

  3. Exploring percolative landscapes: Infinite cascades of geometric phase transitions

    NASA Astrophysics Data System (ADS)

    Timonin, P. N.; Chitov, Gennady Y.

    2016-01-01

    The evolution of many kinetic processes in 1+1 (space-time) dimensions results in 2 D directed percolative landscapes. The active phases of these models possess numerous hidden geometric orders characterized by various types of large-scale and/or coarse-grained percolative backbones that we define. For the patterns originated in the classical directed percolation (DP) and contact process we show from the Monte Carlo simulation data that these percolative backbones emerge at specific critical points as a result of continuous phase transitions. These geometric transitions belong to the DP universality class and their nonlocal order parameters are the capacities of corresponding backbones. The multitude of conceivable percolative backbones implies the existence of infinite cascades of such geometric transitions in the kinetic processes considered. We present simple arguments to support the conjecture that such cascades of transitions are a generic feature of percolation as well as of many other transitions with nonlocal order parameters.

  4. Spin-current probe for phase transition in an insulator.

    PubMed

    Qiu, Zhiyong; Li, Jia; Hou, Dazhi; Arenholz, Elke; N'Diaye, Alpha T; Tan, Ali; Uchida, Ken-Ichi; Sato, Koji; Okamoto, Satoshi; Tserkovnyak, Yaroslav; Qiu, Z Q; Saitoh, Eiji

    2016-01-01

    Spin fluctuation and transition have always been one of the central topics of magnetism and condensed matter science. Experimentally, the spin fluctuation is found transcribed onto scattering intensity in the neutron-scattering process, which is represented by dynamical magnetic susceptibility and maximized at phase transitions. Importantly, a neutron carries spin without electric charge, and therefore it can bring spin into a sample without being disturbed by electric energy. However, large facilities such as a nuclear reactor are necessary. Here we show that spin pumping, frequently used in nanoscale spintronic devices, provides a desktop microprobe for spin transition; spin current is a flux of spin without an electric charge and its transport reflects spin excitation. We demonstrate detection of antiferromagnetic transition in ultra-thin CoO films via frequency-dependent spin-current transmission measurements, which provides a versatile probe for phase transition in an electric manner in minute devices. PMID:27573443

  5. Solid-solid phase transitions via melting in metals.

    PubMed

    Pogatscher, S; Leutenegger, D; Schawe, J E K; Uggowitzer, P J; Löffler, J F

    2016-01-01

    Observing solid-solid phase transitions in-situ with sufficient temporal and spatial resolution is a great challenge, and is often only possible via computer simulations or in model systems. Recently, a study of polymeric colloidal particles, where the particles mimic atoms, revealed an intermediate liquid state in the transition from one solid to another. While not yet observed there, this finding suggests that such phenomena may also occur in metals and alloys. Here we present experimental evidence for a solid-solid transition via the formation of a metastable liquid in a 'real' atomic system. We observe this transition in a bulk glass-forming metallic system in-situ using fast differential scanning calorimetry. We investigate the corresponding transformation kinetics and discuss the underlying thermodynamics. The mechanism is likely to be a feature of many metallic glasses and metals in general, and may provide further insight into phase transition theory. PMID:27103085

  6. Exploring percolative landscapes: Infinite cascades of geometric phase transitions.

    PubMed

    Timonin, P N; Chitov, Gennady Y

    2016-01-01

    The evolution of many kinetic processes in 1+1 (space-time) dimensions results in 2D directed percolative landscapes. The active phases of these models possess numerous hidden geometric orders characterized by various types of large-scale and/or coarse-grained percolative backbones that we define. For the patterns originated in the classical directed percolation (DP) and contact process we show from the Monte Carlo simulation data that these percolative backbones emerge at specific critical points as a result of continuous phase transitions. These geometric transitions belong to the DP universality class and their nonlocal order parameters are the capacities of corresponding backbones. The multitude of conceivable percolative backbones implies the existence of infinite cascades of such geometric transitions in the kinetic processes considered. We present simple arguments to support the conjecture that such cascades of transitions are a generic feature of percolation as well as of many other transitions with nonlocal order parameters. PMID:26871019

  7. Solid–solid phase transitions via melting in metals

    PubMed Central

    Pogatscher, S.; Leutenegger, D.; Schawe, J. E. K.; Uggowitzer, P. J.; Löffler, J. F.

    2016-01-01

    Observing solid–solid phase transitions in-situ with sufficient temporal and spatial resolution is a great challenge, and is often only possible via computer simulations or in model systems. Recently, a study of polymeric colloidal particles, where the particles mimic atoms, revealed an intermediate liquid state in the transition from one solid to another. While not yet observed there, this finding suggests that such phenomena may also occur in metals and alloys. Here we present experimental evidence for a solid–solid transition via the formation of a metastable liquid in a ‘real' atomic system. We observe this transition in a bulk glass-forming metallic system in-situ using fast differential scanning calorimetry. We investigate the corresponding transformation kinetics and discuss the underlying thermodynamics. The mechanism is likely to be a feature of many metallic glasses and metals in general, and may provide further insight into phase transition theory. PMID:27103085

  8. Spin-current probe for phase transition in an insulator

    DOE PAGESBeta

    Qiu, Zhiyong; Li, Jia; Hou, Dazhi; Arenholz, Elke; N’Diaye, Alpha T.; Tan, Ali; Uchida, Ken-ichi; Sato, Koji; Okamoto, Satoshi; Tserkovnyak, Yaroslav; et al

    2016-08-30

    Spin fluctuation and transition have always been one of the central topics of magnetism and condensed matter science. Experimentally, the spin fluctuation is found transcribed onto scattering intensity in the neutron-scattering process, which is represented by dynamical magnetic susceptibility and maximized at phase transitions. Importantly, a neutron carries spin without electric charge, and therefore it can bring spin into a sample without being disturbed by electric energy. However, large facilities such as a nuclear reactor are necessary. Here we present that spin pumping, frequently used in nanoscale spintronic devices, provides a desktop microprobe for spin transition; spin current is amore » flux of spin without an electric charge and its transport reflects spin excitation. Additionally, we demonstrate detection of antiferromagnetic transition in ultra-thin CoO films via frequency-dependent spin-current transmission measurements, which provides a versatile probe for phase transition in an electric manner in minute devices.« less

  9. Phase transition-like behavior of the magnetosphere during substorms

    NASA Astrophysics Data System (ADS)

    Sitnov, M. I.; Sharma, A. S.; Papadopoulos, K.; Vassiliadis, D.; Valdivia, J. A.; Klimas, A. J.; Baker, D. N.

    2000-06-01

    The behavior of substorms as sudden transitions of the magnetosphere is studied using the Bargatze et al. [1985] data set of the solar wind induced electric field vBs and the auroral electrojet index AL. The data set is divided into three subsets representing different levels of activity, and they are studied using the singular spectrum analysis. The points representing the evolution of the magnetosphere in the subspace of the eigenvectors corresponding to the three largest eigenvalues can be approximated by two-dimensional manifolds with a relative deviation of 10-20%. For the first two subsets corresponding to small and medium activity levels the manifolds have a pleated structure typical of the cusp catastrophe. The dynamics of the magnetosphere near these pleated structures resembles the hysteresis phenomenon typical of first-order phase transitions. The reconstructed manifold is similar to the ``temperature-pressure-density'' diagrams of equilibrium phase transitions. The singular spectra of vBs, AL, and combined data have the power law dependence typical of second-order phase transitions and self-organized criticality. The magnetosphere thus exhibits the signatures of both self-organization and self-organized criticality. It is concluded that the magnetospheric substorm is neither a pure catastrophe of the low-dimensional system nor a random set of avalanches of different scales described by the simple sandpile models. The substorms behave like nonequilibrium phase transitions, with features of both first- and second-order phase transitions.

  10. Approaching a topological phase transition in Majorana nanowires

    NASA Astrophysics Data System (ADS)

    Mishmash, Ryan V.; Aasen, David; Higginbotham, Andrew P.; Alicea, Jason

    2016-06-01

    Recent experiments have produced mounting evidence of Majorana zero modes in nanowire-superconductor hybrids. Signatures of an expected topological phase transition accompanying the onset of these modes nevertheless remain elusive. We investigate a fundamental question concerning this issue: Do well-formed Majorana modes necessarily entail a sharp phase transition in these setups? Assuming reasonable parameters, we argue that finite-size effects can dramatically smooth this putative transition into a crossover, even in systems large enough to support well-localized Majorana modes. We propose overcoming such finite-size effects by examining the behavior of low-lying excited states through tunneling spectroscopy. In particular, the excited-state energies exhibit characteristic field and density dependence, and scaling with system size, that expose an approaching topological phase transition. We suggest several experiments for extracting the predicted behavior. As a useful byproduct, the protocols also allow one to measure the wire's spin-orbit coupling directly in its superconducting environment.

  11. Pressure-induced reversible phase transition in thiourea dioxide crystal

    SciTech Connect

    Wang, Qinglei; Yan, Tingting; Zhu, Hongyang; Cui, Qiliang; Zou, Bo E-mail: zoubo@jlu.edu.cn; Wang, Kai E-mail: zoubo@jlu.edu.cn

    2015-06-28

    The effect of high pressure on the crystal structure of thiourea dioxide has been investigated by Raman spectroscopy and angle-dispersive X-ray diffraction (ADXRD) in a diamond anvil cell up to 10.3 GPa. The marked changes in the Raman spectra at 3.7 GPa strongly indicated a structural phase transition associated with the distortions of hydrogen bonding. There were no further changes up to the maximum pressure of 10.3 GPa and the observed transition was completely reversible when the system was brought back to ambient pressure. This transition was further confirmed by the changes of ADXRD spectra. The high-pressure phase was indexed and refined to an orthorhombic structure with a possible space group Pbam. The results from the first-principles calculations suggested that this phase transition was mainly related to the changes of hydrogen-bonded networks in thiourea dioxide.

  12. Phase transitions and molecular motion in the cell.

    PubMed

    Pollack, G H; Reitz, F B

    2001-07-01

    The cytoplasm exhibits all of the signature characteristics of a gel. The thesis put forth here is that the cytoplasm's gel-like character is central to the generation of biological movement. In artificial gels, a common vehicle for generating movement is the polymer-gel phase-transition. By undergoing phase-transition, gels produce motion of both solvent and solutes. It is argued that cells do the same. Three examples are given: the secretory system, the muscle contraction system and the biological streaming system. In each case it is shown that the characteristic motions may be created as proteins and water undergo transition from an expanded, hydrated state to a contracted, dehydrated state--or the reverse. These changes shift solutes and solvent in a characteristic way that depends on the respective organelle's structure. Phase-transitions are simple, powerful mechanisms that may be responsible for many, if not all, biological motions. PMID:11728101

  13. Domain wall formation in late-time phase transitions

    NASA Technical Reports Server (NTRS)

    Kolb, Edward W.; Wang, Yun

    1992-01-01

    We examine domain wall formulation in late time phase transitions. We find that in the invisible axion domain wall phenomenon, thermal effects alone are insufficient to drive different parts of the disconnected vacuum manifold. This suggests that domain walls do not form unless either there is some supplemental (but perhaps not unreasonable) dynamics to localize the scalar field responsible for the phase transition to the low temperature maximum (to an extraordinary precision) before the onset of the phase transition, or there is some non-thermal mechanism to produce large fluctuations in the scalar field. The fact that domain wall production is not a robust prediction of late time transitions may suggest future directions in model building.

  14. Structural phase transitions and topological defects in ion Coulomb crystals

    SciTech Connect

    Partner, Heather L.; Nigmatullin, Ramil; Burgermeister, Tobias; Keller, Jonas; Pyka, Karsten; Plenio, Martin B.; Retzker, Alex; Zurek, Wojciech Hubert; del Campo, Adolfo; Mehlstaubler, Tanja E.

    2014-11-19

    We use laser-cooled ion Coulomb crystals in the well-controlled environment of a harmonic radiofrequency ion trap to investigate phase transitions and defect formation. Topological defects in ion Coulomb crystals (kinks) have been recently proposed for studies of nonlinear physics with solitons and as carriers of quantum information. Defects form when a symmetry breaking phase transition is crossed non-adiabatically. For a second order phase transition, the Kibble-Zurek mechanism predicts that the formation of these defects follows a power law scaling in the rate of the transition. We demonstrate a scaling of defect density and describe kink dynamics and stability. We further discuss the implementation of mass defects and electric fields as first steps toward controlled kink preparation and manipulation.

  15. Hydration-Induced Phase Transitions in Surfactant and Lipid Films.

    PubMed

    Björklund, Sebastian; Kocherbitov, Vitaly

    2016-05-31

    For several surfactant and lipid systems, it is crucial to understand how hydration influences the physical and chemical properties. When humidity changes, it affects the degree of hydration by adding or removing water molecules. In many cases, this process induces transitions between liquid crystalline phases. This phenomenon is of general interest for numerous applications simply because of the fact that humidity variations are ubiquitous. Of particular interest are hydration-induced phase transitions in amphiphilic films, which in many cases appear as the frontier toward a vapor phase with changing humidity. Considering this, it is important to characterize the film thickness needed for the formation of 3D liquid crystalline phases and the lyotropic phase behavior of this kind of film. In this work, we study this issue by employing a recently developed method based on the humidity scanning quartz crystal microbalance with dissipation monitoring (HS QCM-D), which enables continuous scanning of the film hydration. We investigate five surfactants films (DDAO, DTAC, CTAC, SDS, and n-octylβ-d-glucoside) and one lipid film (monoolein) and show that HS QCM-D enables the fast characterization of hydration-induced phase transitions with small samples. Film thicknesses range from tens to hundreds of nanometers, and clear phase transitions are observed in all cases. It is shown that phase transitions in films occur at the same water activities as for corresponding bulk samples. This allows us to conclude that surfactant and lipid films, with a thickness of as low as 50 nm, are in fact assembled as 3D-structured liquid crystalline phases. Furthermore, liquid crystalline phases of surfactant films show liquidlike behavior, which decreases the accuracy of the absorbed water mass measurement. On the other hand, the monoolein lipid forms more rigid liquid crystalline films, allowing for an accurate determination of the water sorption isotherm, which is also true for the

  16. Kinetics of solid-solid phase transitions in metals using proton radiography (u)

    SciTech Connect

    Schwartz, Cynthia L; Rigg, Paulo A; Hixson, Rob S; Jensen, Brian J

    2011-01-25

    When a compressed material changes phase it doesn't do so instantly. Instead it transitions through a mixed phase as it transforms to the end state phase for a given pressure, volume and temperature. Common phase diagrams show the phase boundaries as sharp lines when compression has been slowly applied and held for an infinite amount of time. When the compression is applied with high strain rate, however, the phase boundaries are no longer crisp as the kinetic effects of the crystal reorientation delay the transitions, resulting in regions of mixed phase. This opens up the possibility that some degree of metastability exists for such transition in dynamic compression. The compression path can go past the equilibrium phase boundary and the transition happen from a metastable state because of the very short timescale of the compression process. Molecular dynamics (MD) simulations recently have been used to examine shock-induced phase transitions in single crystal materials illustrating an orientation dependence of the transition stress, mechanisms, kinetics, and Hugoniot response. For example, the [100] orientation of iron had a simulated transition stress higher than the experimentally determined polycrystalline value of 13 GPa by 2 GPa. Previously, dynamic experiments on iron have observed a non-zero transition time and width in the solid-solid {alpha}-{var_epsilon} phase transition. Using Proton Radiography at the Los Alamos Neutron Science Center, we have performed plate impact experiments on iron to further study the {alpha}-{var_epsilon} phase transition which occurs at 13 GPa. A 40mm bore powder gun was coupled to a proton radiography beam line and imaging system and synchronized to the impact of the projectile on the target sample with the proton beam pattern. A typical experimental configuration for the iron study, as shown below in 3 color-enhanced radiographs, is a 40mm diameter aluminum sabot impacting a 40mm diameter sample of polycrystalline ARMCO iron

  17. High pressure x-ray absorption studies of phase transitions

    SciTech Connect

    Tranquada, J.M.; Ingalls, R.; Crozier, E.D.

    1984-01-01

    High pressure generally changes all of the properties of substances, leading to phase transitions in many cases. This paper reviews how such phase changes reveal themselves in x-ray absorption spectra. Examples are given using the salts NaBr, RbCl, CuBr, and SnSe. (DLC)

  18. Substitution dependence of the valence phase transition in Yb 0.4In 0.6Cu 2

    NASA Astrophysics Data System (ADS)

    Felner, I.; Nowik, I.

    1987-01-01

    Magnetic susceptibility studies of the sharp Yb 2+→Yb 3+ valence phase transition in Yb xR yIn 1- x- yCu 2, cubic Laves phase systems, are reported. Whenever the substitute ion R is larger than Yb or In, R = Sn, La, Eu, the valence transition temperature, Tv, increases. Smaller ions, R = Y, Lu, Ga, decrease Tv. This is consistent with the expectation for strong correlation between valence and available volume.

  19. Phase transitions analogy for cavity flows

    NASA Astrophysics Data System (ADS)

    Fodor, Petru; Kaufman, Miron

    The fluid flow in cavity type systems, in which one of the walls is moving while the others are stationary, is analyzed using computational modeling, under the assumption of no-slip boundary conditions. By iteratively adapting the mesh used, we are able to map with high spatial resolution the complex flow structures that form at the two types of corners of the cavity, i.e. (i) corners defined by stationary walls, and (ii) corners defined by a stationary and the moving wall, respectively. For the structures that form in the vicinity of the fixed points defined by the corners, we observe that the flow magnitudes and spatial distributions follow scaling laws similar with critical phenomena. In particular, the behavior at the first type of corner is analogous to a to a first-order transition (discontinuity) point, while the behavior at the second one is analogous to a thermodynamic critical point (second-order transition). These results provide a unique insight into the solution to Navier-Stokes equations for cavity flows.

  20. Effect of dimensionality on vapor-liquid phase transition

    SciTech Connect

    Singh, Sudhir Kumar

    2014-04-24

    Dimensionality play significant role on ‘phase transitions’. Fluids in macroscopic confinement (bulk or 3-Dimensional, 3D) do not show significant changes in their phase transition properties with extent of confinement, since the number of molecules away from the surrounding surfaces is astronomically higher than the number of molecules in close proximity of the confining surfaces. In microscopic confinement (quasi 3D to quasi-2D), however, the number of molecules away from the close proximity of the surface is not as high as is the case with macroscopic (3D) confinement. Hence, under the same thermodynamic conditions ‘phase transition’ properties at microscopic confinement may not remain the same as the macroscopic or 3D values. Phase transitions at extremely small scale become very sensitive to the dimensions as well as the surface characteristics of the system. In this work our investigations reveal the effect of dimensionality on the phase transition from 3D to quasi-2D to 2D behavior. We have used grand canonical transition matrix Monte Carlo simulation to understand the vapor–liquid phase transitions from 3D to quasi-2D behavior. Such studies can be helpful in understanding and controlling the fluid film behaviour confined between solid surfaces of few molecular diameters, for example, in lubrication applications.

  1. Topological phase transition in quasi-one dimensional organic conductors

    PubMed Central

    Ye, Xiao-Shan; Liu, Yong-Jun; Zeng, Xiang-Hua; Wu, Guoqing

    2015-01-01

    We explore topological phase transition, which involves the energy spectra of field-induced spin-density-wave (FISDW) states in quasi-one dimensional (Q1D) organic conductors, using an extended Su-Schrieffer-Heeger (SSH) model. We show that, in presence of half magnetic-flux FISDW state, the system exhibits topologically nontrivial phases, which can be characterized by a nonzero Chern number. The nontrivial evolution of the bulk bands with chemical potential in a topological phase transition is discussed. We show that the system can have a similar phase diagram which is discussed in the Haldane’s model. We suggest that the topological feature should be tested experimentally in this organic system. These studies enrich the theoretical research on topologically nontrivial phases in the Q1D lattice system as compared to the Haldane topological phase appearing in the two-dimensional lattices. PMID:26612317

  2. Topological phase transition in quasi-one dimensional organic conductors.

    PubMed

    Ye, Xiao-Shan; Liu, Yong-Jun; Zeng, Xiang-Hua; Wu, Guoqing

    2015-01-01

    We explore topological phase transition, which involves the energy spectra of field-induced spin-density-wave (FISDW) states in quasi-one dimensional (Q1D) organic conductors, using an extended Su-Schrieffer-Heeger (SSH) model. We show that, in presence of half magnetic-flux FISDW state, the system exhibits topologically nontrivial phases, which can be characterized by a nonzero Chern number. The nontrivial evolution of the bulk bands with chemical potential in a topological phase transition is discussed. We show that the system can have a similar phase diagram which is discussed in the Haldane's model. We suggest that the topological feature should be tested experimentally in this organic system. These studies enrich the theoretical research on topologically nontrivial phases in the Q1D lattice system as compared to the Haldane topological phase appearing in the two-dimensional lattices. PMID:26612317

  3. Topological phase transition in quasi-one dimensional organic conductors

    NASA Astrophysics Data System (ADS)

    Ye, Xiao-Shan; Liu, Yong-Jun; Zeng, Xiang-Hua; Wu, Guoqing

    2015-11-01

    We explore topological phase transition, which involves the energy spectra of field-induced spin-density-wave (FISDW) states in quasi-one dimensional (Q1D) organic conductors, using an extended Su-Schrieffer-Heeger (SSH) model. We show that, in presence of half magnetic-flux FISDW state, the system exhibits topologically nontrivial phases, which can be characterized by a nonzero Chern number. The nontrivial evolution of the bulk bands with chemical potential in a topological phase transition is discussed. We show that the system can have a similar phase diagram which is discussed in the Haldane’s model. We suggest that the topological feature should be tested experimentally in this organic system. These studies enrich the theoretical research on topologically nontrivial phases in the Q1D lattice system as compared to the Haldane topological phase appearing in the two-dimensional lattices.

  4. Observing various phase transitions in the holographic model of superfluidity

    NASA Astrophysics Data System (ADS)

    Kuang, Xiao-Mei; Liu, Yunqi; Wang, Bin

    2012-08-01

    We study the gravity duals of supercurrent solutions in the anti-de Sitter (AdS) black hole background with general phase structure to describe both the first- and the second-order phase transitions at finite temperature in strongly interacting systems. We argue that the conductivity and the pair susceptibility can be possible phenomenological indications to distinguish the order of phase transitions. We extend our discussion to the AdS soliton configuration. Different from the black hole spacetime, in the probe limit, the first-order phase transition cannot be brought by introducing the spatial component of the vector potential of the gauge field in the AdS soliton background.

  5. Shear induced phase transitions induced in edible fats

    NASA Astrophysics Data System (ADS)

    Mazzanti, Gianfranco; Welch, Sarah E.; Marangoni, Alejandro G.; Sirota, Eric B.; Idziak, Stefan H. J.

    2003-03-01

    The food industry crystallizes fats under different conditions of temperature and shear to obtain products with desired crystalline phases. Milk fat, palm oil, cocoa butter and chocolate were crystallized from the melt in a temperature controlled Couette cell. Synchrotron x-ray diffraction studies were conducted to examine the role of shear on the phase transitions seen in edible fats. The shear forces on the crystals induced acceleration of the alpha to beta-prime phase transition with increasing shear rate in milk fat and palm oil. The increase was slow at low shear rates and became very strong above 360 s-1. In cocoa butter the acceleration between beta-prime-III and beta-V phase transition increased until a maximum of at 360 s-1, and then decreased, showing competition between enhanced heat transfer and viscous heat generation.

  6. Space station accommodations for life sciences research facilities. Phase 1: Conceptual design and programmatics studies for Missions SAAX0307, SAAX0302 and the transition from SAAX0307 to SAAX0302. Volume 2: Study results

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Lockheed Missiles and Space Company's conceptual designs and programmatics for a Space Station Nonhuman Life Sciences Research Facility (LSRF) are presented. Conceptual designs and programmatics encompass an Initial Orbital Capability (IOC) LSRF, a growth or follow-on Orbital Capability (FOC), and the transitional process required to modify the IOC LSFR to the FOC LSFR. The IOC and FOC LSFRs correspond to missions SAAX0307 and SAAX0302 of the Space Station Mission Requirements Database, respectively.

  7. Isotropic-nematic phase transition in amyloid fibrilization

    NASA Astrophysics Data System (ADS)

    Lee, Chiu Fan

    2009-09-01

    We carry out a theoretical study on the isotropic-nematic phase transition and phase separation in amyloid fibril solutions. Borrowing the thermodynamic model employed in the study of cylindrical micelles, we investigate the variations in the fibril length distribution and phase behavior with respect to changes in the protein concentration, fibril’s rigidity, and binding energy. We then relate our theoretical findings to the nematic ordering experimentally observed in Hen Lysozyme fibril solution.

  8. Three-dimensional mantle dynamics with an endothermic phase transition

    NASA Technical Reports Server (NTRS)

    Honda, S.; Balachandar, S.; Yuen, D. A.; Reuteler, D.

    1993-01-01

    3D convection for the spinel to perovskite phase change has been simulated numerically. Results for Rayleigh (Ra) numbers of 0(10 exp 6) show intermittent layering with a strong robust plume rising through the phase boundary. Many descending instabilities are deflected but merging cold sheets come together at a junction. A pool of cold material accumulates underneath in the phase-transition zone. A strong gravitational instability results, which precipitates a rapid and massive discharge of upper-mantle material.

  9. Dynamical Phase Transition in Dust Crystals

    NASA Astrophysics Data System (ADS)

    Schweigert, V. A.; Schweigert, I. V.; Nosenko, V.; Goree, J.

    2002-12-01

    Experiments and simulations are reported for a monolayer plasma crystal that is disturbed by an extra particle moving in a plane below the monolayer. Numerical simulations and experiments are performed to find an explanation for the motion of the extra particle. The simulations take into account the ion wakefield downstream of the monolayer of particles, in the presence of ion flow. In the experiment, the orbit is straight at low gas pressures, but with higher damping it is crooked and less energetic. The same trend is observed in the simulations, supporting a conclusion that the wakefield is responsible for the particle acceleration. The simulation reveals that the energy of the extra particle exhibits distinctive transitions, between three regimes.

  10. Talbot effect by a photorefractive volume phase grating.

    PubMed

    Forte, Gustavo; Lencina, Alberto; Tebaldi, Myrian; Bolognini, Néstor

    2012-02-01

    In our proposal a light intensity distribution generated by an incoherently illuminated planar amplitude grating is projected into a photorefractive crystal. This 3D distribution is mapped as an index refractive perturbation via the photorefractive effect thereby generating a volume phase grating. The self-imaging phenomenon in the Fresnel field of this volume phase grating coherently illuminated is theoretically and experimentally analyzed. A model to simulate this volume grating that considers the 3D light intensity distribution formed in the crystal combined with the photorefractive grating formation theory is proposed. A path-integral approach to calculate the self-image patterns which account for the inhomogeneous propagation through the photorefractive grating is employed. The experimental and theoretical results show that the self-images location coincides with that of the self-images generated by planar phase grating of the same period. Moreover, the self-images visibility depends on three parameters: the exit pupil diameter of the incoherent recording optical system, the external electric field applied on the crystal, and the crystal thickness. To study the visibility behavior, a phase parameter which includes the three mentioned parameters is proposed. The self-images visibility shows the typical sinusoidal dependence found in planar phase grating. A good agreement between theoretical and experimental results is observed. PMID:22307118

  11. Mapping the QCD Phase Transition with Accreting Compact Stars

    SciTech Connect

    Blaschke, D.; Poghosyan, G.; Grigorian, H.

    2008-10-29

    We discuss an idea for how accreting millisecond pulsars could contribute to the understanding of the QCD phase transition in the high-density nuclear matter equation of state (EoS). It is based on two ingredients, the first one being a ''phase diagram'' of rapidly rotating compact star configurations in the plane of spin frequency and mass, determined with state-of-the-art hybrid equations of state, allowing for a transition to color superconducting quark matter. The second is the study of spin-up and accretion evolution in this phase diagram. We show that the quark matter phase transition leads to a characteristic line in the {omega}-M plane, the phase border between neutron stars and hybrid stars with a quark matter core. Along this line a drop in the pulsar's moment of inertia entails a waiting point phenomenon in the accreting millisecond pulsar (AMXP) evolution: most of these objects should therefore be found along the phase border in the {omega}-M plane, which may be viewed as the AMXP analog of the main sequence in the Hertzsprung-Russell diagram for normal stars. In order to prove the existence of a high-density phase transition in the cores of compact stars we need population statistics for AMXPs with sufficiently accurate determination of their masses, spin frequencies and magnetic fields.

  12. Phase transitions in the assembly of multivalent signalling proteins

    SciTech Connect

    Li, Pilong; Banjade, Sudeep; Cheng, Hui-Chun; Kim, Soyeon; Chen, Baoyu; Guo, Liang; Llaguno, Marc; Hollingsworth, Javoris V.; King, David S.; Banani, Salman F.; Russo, Paul S.; Jiang, Qiu-Xing; Nixon, B. Tracy; Rosen, Michael K.

    2013-04-08

    Cells are organized on length scales ranging from angstrom to micrometers. However, the mechanisms by which angstrom-scale molecular properties are translated to micrometer-scale macroscopic properties are not well understood. Here we show that interactions between diverse synthetic, multivalent macromolecules (including multi-domain proteins and RNA) produce sharp liquid-liquid-demixing phase separations, generating micrometer-sized liquid droplets in aqueous solution. This macroscopic transition corresponds to a molecular transition between small complexes and large, dynamic supramolecular polymers. The concentrations needed for phase transition are directly related to the valency of the interacting species. In the case of the actin-regulatory protein called neural Wiskott-Aldrich syndrome protein (N-WASP) interacting with its established biological partners NCK and phosphorylated nephrin1, the phase transition corresponds to a sharp increase in activity towards an actin nucleation factor, the Arp2/3 complex. The transition is governed by the degree of phosphorylation of nephrin, explaining how this property of the system can be controlled to regulatory effect by kinases. The widespread occurrence of multivalent systems suggests that phase transitions may be used to spatially organize and biochemically regulate information throughout biology.

  13. Phase transitions in the assembly of multivalent signalling proteins.

    PubMed

    Li, Pilong; Banjade, Sudeep; Cheng, Hui-Chun; Kim, Soyeon; Chen, Baoyu; Guo, Liang; Llaguno, Marc; Hollingsworth, Javoris V; King, David S; Banani, Salman F; Russo, Paul S; Jiang, Qiu-Xing; Nixon, B Tracy; Rosen, Michael K

    2012-03-15

    Cells are organized on length scales ranging from ångström to micrometres. However, the mechanisms by which ångström-scale molecular properties are translated to micrometre-scale macroscopic properties are not well understood. Here we show that interactions between diverse synthetic, multivalent macromolecules (including multi-domain proteins and RNA) produce sharp liquid-liquid-demixing phase separations, generating micrometre-sized liquid droplets in aqueous solution. This macroscopic transition corresponds to a molecular transition between small complexes and large, dynamic supramolecular polymers. The concentrations needed for phase transition are directly related to the valency of the interacting species. In the case of the actin-regulatory protein called neural Wiskott-Aldrich syndrome protein (N-WASP) interacting with its established biological partners NCK and phosphorylated nephrin, the phase transition corresponds to a sharp increase in activity towards an actin nucleation factor, the Arp2/3 complex. The transition is governed by the degree of phosphorylation of nephrin, explaining how this property of the system can be controlled to regulatory effect by kinases. The widespread occurrence of multivalent systems suggests that phase transitions may be used to spatially organize and biochemically regulate information throughout biology. PMID:22398450

  14. Phase transitions, magnetism and surface adsorptions assessed by meta-GGA functionals and random phase approximation

    NASA Astrophysics Data System (ADS)

    Xiao, Bing

    investigated the electronic structures and magnetism of R-VO2 using exchange-correlation functionals of all five rungs on Jacob's ladder. Our calculations show that all semilocal functionals (LSDA, GGAs and meta-GGAs) and hybrid functionals (HSE06) stabilize the spin-polarized states (ferromagnetic and anti-ferromagnetic states) over non-magentic state, which are completely opposite to experimental observation. Suprisingly, LSDA gives the best energetic descriptions for magnetic and non-magnetic phases of R-VO2 among semilocal functionals and HSE06. Othwerwise, RPA calculations are highly dependent on the inputs in the spin polarized case. With PBE inputs, RPA also fails, giving lower energies for spin-polarized states than for the non-magnetic phase. Meawhile, the results are reversed using LSDA inputs. From the computed equilibrium cell volume, we observe the error cancellation in the exchange-correlation hole of most semilocal functionals in the spin-polarized calculations. LSDA and RPA do not fit to this picture. By analyzing the local magnetic moments of vanadium atoms, it is found that the magnetic property predicted from meta-GGA can be related to its exchange enhancement factor. The physisorption of a molecule on a transition metal surface is also another difficult problem in DFT because of the long-range van der Waals interactions. The recently developed MGGA_MS family of density functionals is able to capture a portion of intermediate range dispersion interactions. Therefore, we employed MGGA_MS2 to study the physisorption of CO2 on Pt (111) surface, and the results are compared to those of PBE, PBE+D2 and optB88-vdW methods. The computed binding curves comfirm that that MGGA_MS2 indeed captures the van der Waals interactions near the equilibrium binding distance, and the obtained binding distance is also in good agreement with PBE+D2 and optB88-vdW calculations. By computing the electron density difference map (EDDM), we find that the electron densities of CO2 and

  15. The microsecond old universe — Relics of QCD phase transition

    NASA Astrophysics Data System (ADS)

    Sinha, Bikash

    2014-07-01

    It is entirely plausible under reasonable conditions, that a first-order QCD phase transition occurred from quarks to hadrons when the universe was about a microsecond old. Relics, if there be any, after the quark-hadron phase transition are the most deciding signatures of the phase transition. It is shown in this paper that quark nuggets, the possible relics of first-order QCD phase transitions with baryon number larger than 1043 will survive the entire history of the universe up to now and can be considered as a candidate for the cold dark matter. The spin down core of the neutron star on the high density low temperature end of the QCD phase diagram initiates transition from hadrons to quarks. As the star spins down, the size of the core goes on increasing. Recently discovered massive Pulsar PSRJ 1614-2230 with a mass of 1.97 ± 0.04M⊙ most likely has a strongly interacting core. What possible observables can there be from these neutron stars?

  16. Calculation of binary phase diagrams between the actinide elements, rare earth elements, and transition metal elements

    SciTech Connect

    Selle, J E

    1992-06-26

    Attempts were made to apply the Kaufman method of calculating binary phase diagrams to the calculation of binary phase diagrams between the rare earths, actinides, and the refractory transition metals. Difficulties were encountered in applying the method to the rare earths and actinides, and modifications were necessary to provide accurate representation of known diagrams. To calculate the interaction parameters for rare earth-rare earth diagrams, it was necessary to use the atomic volumes for each of the phases: liquid, body-centered cubic, hexagonal close-packed, and face-centered cubic. Determination of the atomic volumes of each of these phases for each element is discussed in detail. In some cases, empirical means were necessary. Results are presented on the calculation of rare earth-rare earth, rare earth-actinide, and actinide-actinide diagrams. For rare earth-refractory transition metal diagrams and actinide-refractory transition metal diagrams, empirical means were required to develop values for the enthalpy of vaporization for rare earth elements and values for the constant (C) required when intermediate phases are present. Results of using the values determined for each element are presented.

  17. More is the Same; Phase Transitions and Mean Field Theories

    NASA Astrophysics Data System (ADS)

    Kadanoff, Leo P.

    2009-12-01

    This paper is the first in a series that will look at the theory of phase transitions from the perspectives of physics and the philosophy of science. The series will consider a group of related concepts derived from condensed matter and statistical physics. The key technical ideas go under the names of "singularity", "order parameter", "mean field theory", "variational method", "correlation length", "universality class", "scale changes", and "renormalization". The first four of these will be considered here. In a less technical vein, the question here is how can matter, ordinary matter, support a diversity of forms. We see this diversity each time we observe ice in contact with liquid water or see water vapor (steam) come up from a pot of heated water. Different phases can be qualitatively different in that walking on ice is well within human capacity, but walking on liquid water is proverbially forbidden to ordinary humans. These differences have been apparent to humankind for millennia, but only brought within the domain of scientific understanding since the 1880s. A phase transition is a change from one behavior to another. A first order phase transition involves a discontinuous jump in some statistical variable. The discontinuous property is called the order parameter. Each phase transition has its own order parameter. The possible order parameters range over a tremendous variety of physical properties. These properties include the density of a liquid-gas transition, the magnetization in a ferromagnet, the size of a connected cluster in a percolation transition, and a condensate wave function in a superfluid or superconductor. A continuous transition occurs when the discontinuity in the jump approaches zero. This article is about statistical mechanics and the development of mean field theory as a basis for a partial understanding of phase transition phenomena. Much of the material in this review was first prepared for the Royal Netherlands Academy of Arts and

  18. Non-equilibrium phase transitions in a liquid crystal

    NASA Astrophysics Data System (ADS)

    Dan, K.; Roy, M.; Datta, A.

    2015-09-01

    The present manuscript describes kinetic behaviour of the glass transition and non-equilibrium features of the "Nematic-Isotropic" (N-I) phase transition of a well known liquid crystalline material N-(4-methoxybenzylidene)-4-butylaniline from the effects of heating rate and initial temperature on the transitions, through differential scanning calorimetry (DSC), Fourier transform infrared and fluorescence spectroscopy. Around the vicinity of the glass transition temperature (Tg), while only a change in the baseline of the ΔCp vs T curve is observed for heating rate (β) > 5 K min-1, consistent with a glass transition, a clear peak for β ≤ 5 K min-1 and the rapid reduction in the ΔCp value from the former to the latter rate correspond to an order-disorder transition and a transition from ergodic to non-ergodic behaviour. The ln β vs 1000/T curve for the glass transition shows convex Arrhenius behaviour that can be explained very well by a purely entropic activation barrier [Dan et al., Eur. Phys. Lett. 108, 36007 (2014)]. Fourier transform infrared spectroscopy indicates sudden freezing of the out-of-plane distortion vibrations of the benzene rings around the glass transition temperature and a considerable red shift indicating enhanced coplanarity of the benzene rings and, consequently, enhancement in the molecular ordering compared to room temperature. We further provide a direct experimental evidence of the non-equilibrium nature of the N-I transition through the dependence of this transition temperature (TNI) and associated enthalpy change (ΔH) on the initial temperature (at fixed β-values) for the DSC scans. A plausible qualitative explanation based on Mesquita's extension of Landau-deGennes theory [O. N. de Mesquita, Braz. J. Phys. 28, 257 (1998)] has been put forward. The change in the molecular ordering from nematic to isotropic phase has been investigated through fluorescence anisotropy measurements where the order parameter, quantified by the

  19. Pressure-Induced Structural Phase Transition in CeNi: X-ray and Neutron Scattering Studies and First-Principles Calculations

    SciTech Connect

    Mirmelstein, A.; Podlesnyak, Andrey A.; dos Santos, Antonio M.; Ehlers, Georg; Kerbel, O.; Matvienko, V.; Sefat, A. S.; Saporov, B.; Halder, G. J.; Tobin, J. G.

    2015-08-03

    The pressure-induced structural phase transition in the intermediate-valence compound CeNi has been investigated by x-ray and neutron powder diffraction techniques. It is shown that the structure of the pressure-induced CeNi phase (phases) can be described in terms of the Pnma space group. Equations of state for CeNi on both sides of the phase transition are derived and an approximate P-T phase diagram is suggested for P<8 GPa and T<300 K. The observed Cmcm→Pnma structural transition is then analyzed using density functional theory calculations, which successfully reproduce the ground state volume, the phase transition pressure, and the volume collapse associated with the phase transition.

  20. Pressure-Induced Structural Phase Transition in CeNi: X-ray and Neutron Scattering Studies and First-Principles Calculations

    DOE PAGESBeta

    Mirmelstein, A.; Podlesnyak, Andrey A.; dos Santos, Antonio M.; Ehlers, Georg; Kerbel, O.; Matvienko, V.; Sefat, A. S.; Saporov, B.; Halder, G. J.; Tobin, J. G.

    2015-08-03

    The pressure-induced structural phase transition in the intermediate-valence compound CeNi has been investigated by x-ray and neutron powder diffraction techniques. It is shown that the structure of the pressure-induced CeNi phase (phases) can be described in terms of the Pnma space group. Equations of state for CeNi on both sides of the phase transition are derived and an approximate P-T phase diagram is suggested for P<8 GPa and T<300 K. The observed Cmcm→Pnma structural transition is then analyzed using density functional theory calculations, which successfully reproduce the ground state volume, the phase transition pressure, and the volume collapse associated withmore » the phase transition.« less

  1. Faraday rotation echo spectroscopy of phase transitions

    NASA Astrophysics Data System (ADS)

    Chen, Shaowen; Liu, Renbao

    2013-03-01

    Faraday rotation is widely used to study magnetic dynamics. We designed a scheme of Faraday rotation echo spectroscopy (FRES) that can be used to study spin noise dynamics in transparent materials by measuring the fluctuation of Faraday rotation angle. The FRES suppresses the static part of the noise and reveal the quantum fluctuations at relatively high temperature, which shares the same idea of the spin echo technique in nuclear magnetic resonance (NMR). We tested our theory on a rare-earth compound LiHoF4. The quantum fluctuations obtained by FRES give an enhanced feature at the phase boundary. The FRES can be straightforwardly generalized to more complicated configurations that correspond to more complex dynamical decoupling sequences in NMR and electron spin resonance, which may give us more extensive information on the structural and dynamical properties of magnetic materials. This work was supported by Hong Kong RGC 402410 and CUHK FIS.

  2. Microrheology close to an equilibrium phase transition

    SciTech Connect

    Reinhardt, J.; Scacchi, A.; Brader, J. M.

    2014-04-14

    We investigate the microstructural and microrheological response to a tracer particle of a two-dimensional colloidal suspension under thermodynamic conditions close to a liquid-gas phase boundary. On the liquid side of the binodal, increasing the velocity of the (repulsive) tracer leads to the development of a pronounced cavitation bubble, within which the concentration of colloidal particles is strongly depleted. The tendency of the liquid to cavitate is characterized by a dimensionless “colloidal cavitation” number. On the gas side of the binodal, a pulled (attractive) tracer leaves behind it an extended trail of colloidal liquid, arising from downstream advection of a wetting layer on its surface. For both situations the velocity dependent friction is calculated.

  3. Pulse control of sudden transition for two qubits in XY spin baths and quantum phase transition

    SciTech Connect

    Luo, Da-Wei; Xu, Jing-Bo; Lin, Hai-Qing; Yao, Dao-Xin

    2011-12-15

    We study the dynamics of two initially correlated qubits coupled to their own separate spin baths modeled by an XY spin chain and find the explicit expression of the quantum discord for the system. A sudden transition is found to exist between classical and quantum decoherence by choosing certain initial states. We show that the sudden transition happens near the critical point, which provides an alternative way to characterize the quantum phase transition. Furthermore, we propose a scheme to prolong the transition time of the quantum discord by applying the bang-bang pulses.

  4. Structural phase transition and antiferromagnetic transition of Tb{sub 3}RuO{sub 7}

    SciTech Connect

    Hinatsu, Yukio Doi, Yoshihiro

    2014-12-15

    Magnetic properties and structural phase transition of terbium ruthenate Tb{sub 3}RuO{sub 7} are investigated through magnetic susceptibility, specific heat, high-temperature X-ray diffraction and differential scanning calorimetry measurements. The structural phase transition from space group P2{sub 1}nb to Cmcm has been observed at 402 K. Tb{sub 3}RuO{sub 7} shows an antiferromagnetic transition at 17 K. In addition, another magnetic anomaly has been found at 10 K. Analysis of the magnetic specific heat for Tb{sub 3}RuO{sub 7} indicates that the magnetic transitions at 10 and 17 K are due to the magnetic ordering of Tb{sup 3+} and Ru{sup 5+} ions, respectively. - Graphical abstract: Temperature dependence of the magnetic specific heat divided by temperature (C{sub mag}/T) and the magnetic entropy (S{sub mag}) for Tb{sub 3}RuO{sub 7}. Two-step magnetic transition has been observed. - Highlights: • Tb{sub 3}RuO{sub 7} shows an antiferromagnetic transition at 17 K. • Specific heat measurements confirmed the occurrence of two-step magnetic transition. • The phase transition from space group P2{sub 1}nb to Cmcm has been observed at 402 K.

  5. Postperovskite phase transition of ZnGeO3: comparative crystal chemistry of postperovskite phase transition from germanate perovskites.

    PubMed

    Yusa, Hitoshi; Tsuchiya, Taku; Akaogi, Masaki; Kojitani, Hiroshi; Yamazaki, Daisuke; Hirao, Naohisa; Ohishi, Yasuo; Kikegawa, Takumi

    2014-11-01

    The postperovskite phase of ZnGeO3 was confirmed by laser heating experiments of the perovskite phase under 110-130 GPa at high temperature. Ab initio calculations indicated that the phase transition occurs at 133 GPa at 0 K. This postperovskite transition pressure is significantly higher than those reported for other germanates, such as MnGeO3 and MgGeO3. The comparative crystal chemistry of the perovskite-to-postperovskite transition suggests that a relatively elongated b-axis in the low-pressure range resulted in the delay in the transition to the postperovskite phase. Similar to most GdFeO3-type perovskites that transform to the CaIrO3-type postperovskite phase, ZnGeO3 perovskite eventually transformed to the CaIrO3-type postperovskite phase at a critical rotational angle of the GeO6 octahedron. The formation of the postperovskite structure at a very low critical rotational angle for MnGeO3 suggests that relatively large divalent cations likely break down the corner-sharing GeO6 frameworks without a large rotation of GeO6 to form the postperovskite phase. PMID:25310272

  6. Experimental First Order Pairing Phase Transition in Atomic Nuclei

    NASA Astrophysics Data System (ADS)

    Moretto, L. G.; Larsen, A. C.; Giacoppo, F.; Guttormsen, M.; Siem, S.

    2015-02-01

    The natural log of experimental nuclear level densities at low energy is linear with energy. This can be interpreted in terms of a nearly 1st order phase transition from a superfluid to an ideal gas of quasi particles. The transition temperature coincides with the BCS critical temperature and yields gap parameters in good agreement with the values extracted from even- odd mass differences from rotational states. This converging evidence supports the relevance of the BCS theory to atomic nuclei.

  7. Collective Motion and Phase Transitions of Symmetric Camphor Boats

    NASA Astrophysics Data System (ADS)

    Heisler, Eric; Suematsu, Nobuhiko J.; Awazu, Akinori; Nishimori, Hiraku

    2012-07-01

    The motion of several self-propelled boats in a narrow channel displays spontaneous pattern formation and kinetic phase transitions. In contrast with previous studies on self-propelled particles, this model does not require stochastic fluctuations and it is experimentally accessible. By varying the viscosity in the system, it is possible to form either a stationary state, correlated or uncorrelated oscillations, or unidirectional flow. Here, we describe and analyze these self organized patterns and their transitions.

  8. Nonequilibrium Dynamics and Phase Transitions in Holographic Models.

    PubMed

    Janik, Romuald A; Jankowski, Jakub; Soltanpanahi, Hesam

    2016-08-26

    We study the poles of the retarded Green's functions of strongly coupled field theories exhibiting a variety of phase structures from a crossover up to a first order phase transition. These theories are modeled by a dual gravitational description. The poles of the holographic Green's functions appear at the frequencies of the quasinormal modes of the dual black hole background. We establish that near the transition, in all cases considered, the applicability of a hydrodynamic description breaks down already at lower momenta than in the conformal case. We establish the appearance of the spinodal region in the case of the first order phase transition at temperatures for which the speed of sound squared is negative. An estimate of the preferential scale attained by the unstable modes is also given. We additionally observe a novel diffusive regime for sound modes for a range of wavelengths. PMID:27610844

  9. Local measurements of phase transitions in Bacteriorhodopsin membrane

    NASA Astrophysics Data System (ADS)

    Proksch, R.; Nikiforov, M. P.; Hohlbauch, S.; King, W. P.; Antoraz Contera, S.; Voïtchovsky, K.; Kalinin, S. V.

    2010-03-01

    Phase transitions play an important role in biology. Specifically the thermodynamic stability of internal membrane proteins is an important issue of biophysics. Purple membrane from Halobacterium halobium contain bacteriorhodopsin (bR), an integral protein 70-80% of whole mass is intramembraneous. There are heated debates in the field about the parameters of thermal denaturation of bR, such as the denaturation temperature, enthalpy etc. Recently, bR was proposed as a component of biomolecular electronics. Thus, reliable information about the phase transitions of supported samples of bR membranes is necessary. Phase transitions in polymer/biopolymer materials are associated with the large changes in mechanical properties of the samples. We developed the technique for the measurements of the temperature dependence of the mechanical properties with high spatial resolution. This technique is based on the measurements of the contact stiffness of the atomic force microscopy tip -- sample system as a function of temperature.

  10. Benford's law detects quantum phase transitions similarly as earthquakes

    NASA Astrophysics Data System (ADS)

    Sen(De, Aditi; Sen, Ujjwal

    2011-09-01

    A century ago, it was predicted that the first significant digit appearing in a data would be nonuniformly distributed, with the number one appearing with the highest frequency. This law goes by the name of Benford's law. It holds for data ranging from infectious-disease cases to national greenhouse gas emissions. Quantum phase transitions are cooperative phenomena where qualitative changes occur in many-body systems at zero temperature. We show that the century-old Benford's law can detect quantum phase transitions, much like it detects earthquakes. Therefore, being certainly of very different physical origins, seismic activity and quantum cooperative phenomena may be detected by similar methods. The result has immediate implications in precise measurements in experiments in general, and for realizable quantum computers in particular. It shows that estimation of the first significant digit of measured physical observables is enough to detect the presence of quantum phase transitions in macroscopic systems.

  11. Phase transitions of black holes in massive gravity

    NASA Astrophysics Data System (ADS)

    Fernando, Sharmanthie

    2016-05-01

    In this paper, we have studied thermodynamics of a black hole in massive gravity in the canonical ensemble. The massive gravity theory in consideration here has a massive graviton due to Lorentz symmetry breaking. The black hole studied here has a scalar charge due to the massive graviton and is asymptotically anti-de Sitter (AdS). We have computed various thermodynamical quantities such as temperature, specific heat and free energy. Both the local and global stability of the black hole are studied by observing the behavior of the specific heat and the free energy. We have observed that there is a first-order phase transition between small (SBH) and large black hole (LBH) for a certain range of the scalar charge. This phase transition is similar to the liquid/gas phase transition at constant temperature for a van der Waals fluid. The coexistence curves for the SBH and LBH branches are also discussed in detail.

  12. Gauge/gravity dualities and bulk phase transitions

    NASA Astrophysics Data System (ADS)

    Faedo, Anton F.; Piai, Maurizio; Schofield, Daniel

    2014-05-01

    We consider D7-branes probing several classes of Type IIB supergravity backgrounds, and study the classical problem of finding equilibrium configurations for the embedding functions. This is a method employed to model chiral symmetry breaking in the gravity dual of a strongly coupled, confining gauge theory. We unveil and discuss a new type of phase transition appearing in the gravity systems, which is similar in nature and meaning to bulk phase transitions on the lattice. The existence of this genre of phase transition puts a new, intrinsic limit on the region of parameter space which can be used to study the physics of the dual field theory. We complete the analysis of D7 embeddings in wrapped-D5 supergravity backgrounds, and explain in what cases chiral-symmetry breaking is sensibly modeled by the gravity construction.

  13. Gravitational radiation from first-order phase transitions

    SciTech Connect

    Child, Hillary L.; Giblin, John T. Jr. E-mail: giblinj@kenyon.edu

    2012-10-01

    It is believed that first-order phase transitions at or around the GUT scale will produce high-frequency gravitational radiation. This radiation is a consequence of the collisions and coalescence of multiple bubbles during the transition. We employ high-resolution lattice simulations to numerically evolve a system of bubbles using only scalar fields, track the anisotropic stress during the process and evolve the metric perturbations associated with gravitational radiation. Although the radiation produced during the bubble collisions has previously been estimated, we find that the coalescence phase enhances this radiation even in the absence of a coupled fluid or turbulence. We comment on how these simulations scale and propose that the same enhancement should be found at the Electroweak scale; this modification should make direct detection of a first-order electroweak phase transition easier.

  14. Phase transition in spin systems with various types of fluctuations.

    PubMed

    Miyashita, Seiji

    2010-01-01

    Various types ordering processes in systems with large fluctuation are overviewed. Generally, the so-called order-disorder phase transition takes place in competition between the interaction causing the system be ordered and the entropy causing a random disturbance. Nature of the phase transition strongly depends on the type of fluctuation which is determined by the structure of the order parameter of the system. As to the critical property of phase transitions, the concept "universality of the critical phenomena" is well established. However, we still find variety of features of ordering processes. In this article, we study effects of various mechanisms which bring large fluctuation in the system, e.g., continuous symmetry of the spin in low dimensions, contradictions among interactions (frustration), randomness of the lattice, quantum fluctuations, and a long range interaction in off-lattice systems. PMID:20689226

  15. A MATLAB GUI to study Ising model phase transition

    NASA Astrophysics Data System (ADS)

    Thornton, Curtislee; Datta, Trinanjan

    We have created a MATLAB based graphical user interface (GUI) that simulates the single spin flip Metropolis Monte Carlo algorithm. The GUI has the capability to study temperature and external magnetic field dependence of magnetization, susceptibility, and equilibration behavior of the nearest-neighbor square lattice Ising model. Since the Ising model is a canonical system to study phase transition, the GUI can be used both for teaching and research purposes. The presence of a Monte Carlo code in a GUI format allows easy visualization of the simulation in real time and provides an attractive way to teach the concept of thermal phase transition and critical phenomena. We will also discuss the GUI implementation to study phase transition in a classical spin ice model on the pyrochlore lattice.

  16. Nanoscale Phase Transitions under Extreme Conditions within an Ion Track

    SciTech Connect

    Zhang, Jiaming; Lang, Maik; Ewing, Rodney C.; Devanathan, R.; Weber, William; Toulemonde, M.

    2011-01-31

    The dynamics of track development due to the passage of relativistic heavy ions through solids is a long-standing issue relevant to nuclear materials, age dating of minerals, space exploration, and nanoscale fabrication of novel devices. We have integrated experimental and simulation approaches to investigate nanoscale phase transitions under the extreme conditions created within single tracks of relativistic ions in Gd{sub 2}O{sub 3}(TiO{sub 2}){sub x} and Gd{sub 2}Zr{sub 2–x} Ti{sub x} O{sub 7}. Track size and internal structure depend on energy density deposition, irradiation temperature, and material composition. Based on the inelastic thermal spike model, molecular dynamics simulations follow the time evolution of individual tracks and reveal the phase transition pathways to the concentric track structures observed experimentally. Individual ion tracks have nanoscale core-shell structures that provide a unique record of the phase transition pathways under extreme conditions.

  17. Dark matter as the trigger of strong electroweak phase transition

    SciTech Connect

    Chowdhury, Talal Ahmed; Nemevšek, Miha; Senjanović, Goran; Zhang, Yue E-mail: miha@ictp.it E-mail: yuezhang@ictp.it

    2012-02-01

    In this paper, we propose a new possible connection between dark matter relic density and baryon asymmetry of the universe. The portal between standard model sector and dark matter not only controls the relic density and detections of dark matter, but also allows the dark matter to trigger the first order electroweak phase transition. We discuss systematically possible scalar dark matter candidates, starting from a real singlet to arbitrary high representations. We show that the simplest realization is provided by a doublet, and that strong first-order electroweak phase transition implies a lower bound on the dark matter direct detection rate. The mass of dark matter lies between 45 and 80 GeV, allowing for an appreciable invisible decay width of the Standard Model Higgs boson, which is constrained to be lighter than 130 GeV for the sake of the strong phase transition.

  18. Structural phase transition and phonon instabilities in Cu12Sb4S13

    DOE PAGESBeta

    May, Andrew F.; Delaire, Olivier A.; Niedziela, Jennifer L.; Lara-Curzio, Edgar; Susner, Michael A.; Abernathy, Douglas L.; Kirkham, Melanie J.; McGuire, Michael A.

    2016-02-08

    In this study, a structural phase transition has been discovered in the synthetic tetrahedrite Cu12Sb4S13 at approximately 88 K. Upon cooling, the material transforms from its known cubic symmetry to a tetragonal unit cell that is characterized by an in-plane ordering that leads to a doubling of the unit cell volume. Specific heat capacity measurements demonstrate a hysteresis of more than two degrees in the associated anomaly. A similar hysteresis was observed in powder x-ray diffraction measurements, which also indicate a coexistence of the two phases, and together these results suggest a first-order transition. This structural transition coincides with amore » recently-reported metal-insulator transition, and the structural instability is related to the very low thermal conductivity κ in these materials. Inelastic neutron scattering was used to measure the phonon density of states in Cu12Sb4S13 and Cu10Zn2Sb4S13, both of which possess a localized, low-energy phonon mode associated with strongly anharmonic copper displacements that suppress κ. In Cu12Sb4S13, signatures of the phase transition are observed in the temperature dependence of the localized mode, which disappears at the structural transition. In contrast, in the cubic Zn-doped material, the mode is at slightly higher-energy but observable for all temperatures, though it softens upon cooling.« less

  19. Structural phase transition and phonon instability in Cu12Sb4S13

    DOE PAGESBeta

    May, Andrew F.; Delaire, Olivier A.; Niedziela, Jennifer L.; Lara-Curzio, Edgar; Susner, Michael A.; Abernathy, Douglas L.; Kirkham, Melanie J.; McGuire, Michael A.

    2016-02-08

    In this study, a structural phase transition has been discovered in the synthetic tetrahedrite Cu12Sb4S13 at approximately 88 K. Upon cooling, the material transforms from its known cubic symmetry to a tetragonal unit cell that is characterized by an in-plane ordering that leads to a doubling of the unit cell volume. Specific heat capacity measurements demonstrate a hysteresis of more than two degrees in the associated anomaly. A similar hysteresis was observed in powder x-ray diffraction measurements, which also indicate a coexistence of the two phases, and together these results suggest a first-order transition. This structural transition coincides with amore » recently-reported metal-insulator transition, and the structural instability is related to the very low thermal conductivity κ in these materials. Inelastic neutron scattering was used to measure the phonon density of states in Cu12Sb4S13 and Cu10Zn2Sb4S13, both of which possess a localized, low-energy phonon mode associated with strongly anharmonic copper displacements that suppress κ. In Cu12Sb4S13, signatures of the phase transition are observed in the temperature dependence of the localized mode, which disappears at the structural transition. In contrast, in the cubic Zn-doped material, the mode is at slightly higher-energy but observable for all temperatures, though it softens upon cooling.« less

  20. Structural and topological phase transitions on the German Stock Exchange

    NASA Astrophysics Data System (ADS)

    Wiliński, M.; Sienkiewicz, A.; Gubiec, T.; Kutner, R.; Struzik, Z. R.

    2013-12-01

    We find numerical and empirical evidence for dynamical, structural and topological phase transitions on the (German) Frankfurt Stock Exchange (FSE) in the temporal vicinity of the worldwide financial crash. Using the Minimal Spanning Tree (MST) technique, a particularly useful canonical tool of the graph theory, two transitions of the topology of a complex network representing the FSE were found. The first transition is from a hierarchical scale-free MST representing the stock market before the recent worldwide financial crash, to a superstar-like MST decorated by a scale-free hierarchy of trees representing the market’s state for the period containing the crash. Subsequently, a transition is observed from this transient, (meta)stable state of the crash to a hierarchical scale-free MST decorated by several star-like trees after the worldwide financial crash. The phase transitions observed are analogous to the ones we obtained earlier for the Warsaw Stock Exchange and more pronounced than those found by Onnela-Chakraborti-Kaski-Kertész for the S&P 500 index in the vicinity of Black Monday (October 19, 1987) and also in the vicinity of January 1, 1998. Our results provide an empirical foundation for the future theory of dynamical, structural and topological phase transitions on financial markets.

  1. Studies of phase transitions in the aripiprazole solid dosage form.

    PubMed

    Łaszcz, Marta; Witkowska, Anna

    2016-01-01

    Studies of the phase transitions in an active substance contained in a solid dosage form are very complicated but essential, especially if an active substance is classified as a BCS Class IV drug. The purpose of this work was the development of sensitive methods for the detection of the phase transitions in the aripiprazole tablets containing initially its form III. Aripiprazole exhibits polymorphism and pseudopolymorphism. Powder diffraction, Raman spectroscopy and differential scanning calorimetry methods were developed for the detection of the polymorphic transition between forms III and I as well as the phase transition of form III into aripiprazole monohydrate in tablets. The study involved the initial 10 mg and 30 mg tablets, as well as those stored in Al/Al blisters, a triplex blister pack and HDPE bottles (with and without desiccant) under accelerated and long term conditions. The polymorphic transition was not observed in the initial and stored tablets but it was visible on the DSC curve of the Abilify(®) 10 mg reference tablets. The formation of the monohydrate was observed in the diffractograms and Raman spectra in the tablets stored under accelerated conditions. The monohydrate phase was not detected in the tablets stored in the Al/Al blisters under long term conditions. The results showed that the Al/Al blisters can be recommended as the packaging of the aripiprazole tablets containing form III. PMID:26397209

  2. The quark-hadron phase transition and primordial nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Hogan, Craig J.

    1987-01-01

    After presenting the current view of the processes taking place during the cosmological transition from 'quark soup' to normal hadron matter, attention is given to what happens to cosmological nucleosynthesis in the presence of small-scale baryon inhomogeneities. The QCD phase transition is among the plausible sources of this inhomogeneity. It is concluded that the formation of primordial 'quark nuggets' and other cold exotica requires very low entropy regions at the outset, and that even the more modest nonlinearities perturbing nucleosynthesis probably require some ingredient in addition to a quiescent, mildly supercooled transition.

  3. High-temperature nuclear magnetic resonance study of phase transition kinetics in LiNaSO{sub 4}

    SciTech Connect

    Shakhovoy, R. A. E-mail: r.a.shakhovoy@gmail.com; Sarou-Kanian, V.; Rakhmatullin, A.; Véron, E.; Bessada, C.

    2015-12-28

    A new high-temperature NMR technique for measurements of the phase transition kinetics in solids has been developed. The technique allows measuring the time evolution of the volume of the appearing phase at controlled cooling rates. Developed method was applied to study the phase transition kinetics in the superionic conductor LiNaSO{sub 4}. It was revealed that the phase transition in LiNaSO{sub 4} is governed by the diffusion-controlled growth of nuclei (“germs”). An effect of the crystallite rearrangement in the LiNaSO{sub 4} powder after cooling through the phase transition was also revealed. This effect was studied by means of high-temperature XRD and NMR.

  4. Phase Transitions in Sexual Populations Subject to Stabilizing Selection

    NASA Astrophysics Data System (ADS)

    Rogers, A.

    2003-04-01

    We show that a simple model of an evolving sexual population, which dates back to some of the earliest work in theoretical population genetics, exhibits an unexpected and previously unobserved phase transition between ordered and disordered states. This behavior is not present in populations evolving asexually without recombination and is thus important in any comparison of sexual and asexual populations. In order to calculate the details of the phase transition, we use techniques from statistical physics. We introduce the correlation of the population as the order parameter of the system and use maximum entropy inference to find the state of the population at any time.

  5. Thermodynamics, phase transition and quasinormal modes with Weyl corrections

    NASA Astrophysics Data System (ADS)

    Mahapatra, Subhash

    2016-04-01

    We study charged black holes in D dimensional AdS space, in the presence of four derivative Weyl correction. We obtain the black hole solution perturbatively up to first as well as second order in the Weyl coupling, and show that first law of black hole thermodynamics is satisfied in all dimensions. We study its thermodynamic phase transition and then calculate the quasinormal frequencies of the massless scalar field perturbation. We find that, here too, the quasinormal frequencies capture the essence of black hole phase transition. Few subtleties near the second order critical point are discussed.

  6. The Dipole Model and Phase Transitions in Biological Membranes

    PubMed Central

    Almeida, Silverio P.; Bond, James D.; Ward, Thomas C.

    1971-01-01

    Assuming the dipole model for a membrane, approximate calculations are made which employ a dipole-dipole interaction energy. The calculations are based upon the assumption of cooperative coupling of membrane polar molecules and make use of the Bragg-Williams approximation. A theoretical estimate is made of the critical temperature at which phase changes might occur in certain biological membranes. Proposals are presented which explain how the dipole transition might relate to the sometimes observed thermal phase transitions in biological membranes. PMID:5134212

  7. Scaling and Topological Phase Transitions: Energy vs. Entropy

    NASA Astrophysics Data System (ADS)

    Wang, Yuting; Gulden, Tobias; Janas, Michael; Kamenev, Alex

    The critical point of a topological phase transition is described by a conformal field theory. Finite-size corrections give rise to a scaling function away from criticality for both energy and entanglement entropy of the system. While in the past the scaling function for the usual von Neumann entropy was found to be equal for the trivial and the topological side of the transition, we find that the scaling functions for energy and Renyi entropy with α > 1 are different for the two sides. This provides an easy tool to distinguish between the trivial and topological phases near criticality.

  8. Topological phase transition driven by a spatially periodic potential

    NASA Astrophysics Data System (ADS)

    Fu, Bo; Zheng, Huaixiu; Li, Qunxiang; Shi, Qinwei; Yang, Jinlong

    2014-12-01

    We propose a simple approach to realize a topological phase transition using a spatial periodic potential. As an example, we examine the electronic structures of HgTe/CdTe quantum wells, and demonstrate that their band structures can be effectively manipulated by the periodic potential. At a critical potential, we find that a conventional band insulator undergoes a topological phase transition into a quantum spin Hall system, which is characterized by an abrupt change of the spin Chern number and emerging edge states. Our proposal provides an interesting way to dynamically turn on or off topologically protected edge states for application in switching devices.

  9. Coherence susceptibility as a probe of quantum phase transitions

    NASA Astrophysics Data System (ADS)

    Chen, Jin-Jun; Cui, Jian; Zhang, Yu-Ran; Fan, Heng

    2016-08-01

    We introduce a coherence susceptibility method, based on the fact that it signals quantum fluctuations, for identifying quantum phase transitions, which are induced by quantum fluctuations. This method requires no prior knowledge of order parameter, and there is no need for careful considerations concerning the choice of a bipartition of the system. It can identify different types of quantum phase transition points exactly. At finite temperatures, where quantum criticality is influenced by thermal fluctuations, our method can pinpoint the temperature frame of quantum criticality, which perfectly coincides with recent experiments.

  10. Nontopological solitons as nucleation sites for cosmological phase transitions

    NASA Astrophysics Data System (ADS)

    Metaxas, D.

    2001-04-01

    I consider quantum field theories that admit charged nontopological solitons of the Q-ball type, and use the fact that in a first-order cosmological phase transition, below the critical temperature, there is a value of the soliton charge above which the soliton becomes unstable and expands, converting space to the true vacuum, much like a critical bubble in the case of ordinary tunneling. Using a simple model for the production rate of Q-balls through charge accretion during a random walk out of equilibrium, I calculate the probability for the formation of critical charge solitons and estimate the amount of supercooling needed for the phase transition to be completed.

  11. Turbulent diffusion phase transition is due to singular energy spectrum.

    PubMed Central

    Wallstrom, T C

    1995-01-01

    The phase transition for turbulent diffusion, reported by Avellaneda and Majda [Avellaneda, M. & Majda, A. J. (1994) Philos. Trans. R. Soc. London A 346, 205-233, and several earlier papers], is traced to a modeling assumption in which the energy spectrum of the turbulent fluid is singularly dependent on the viscosity in the inertial range. Phenomenological models of turbulence and intermittency, by contrast, require that the energy spectrum be independent of the viscosity in the inertial range. When the energy spectrum is assumed to be consistent with the phenomenological models, there is no phase transition for turbulent diffusion. Images Fig. 2 PMID:11607590

  12. High pressure phase transition and elastic properties of americium telluride

    NASA Astrophysics Data System (ADS)

    Aynyas, Mahendra; Rukmangad, Aditi; Arya, B. S.; Sanyal, S. P.

    2013-06-01

    The structural and elastic properties of Americium Telluride (AmTe) have been investigated by using a modified inter-ionic potential theory (MIPT). This theory is capable of explaining first order phase transition with a crystallographic change NaCl to CsCl structure for this compound. The values of optimized lattice constant, phase transition pressure, zero pressure bulk modulus and second order elastic constants (C11, C44) agree well with their corresponding experimental data. Debye temperature (θD) is also calculated for this compound for the first time.

  13. Cold dark matter and the cosmic phase transition

    NASA Astrophysics Data System (ADS)

    Sinha, Bikash

    2016-01-01

    It is entirely plausible that during the primordial quark- hadron phase transition in the universe, microseconds after the Big Bang, supercooling takes place, accompanied by miniinflation. With µ/T ∼ 1 (µ is chemical potential), leading to a first order phase transition from quarks to hadrons; there will be relics in the form of quark nuggets, and, that they consist of Strange Quark Matter. The possibility that these SQM nuggets may well be the candidates of cold dark matter is critically examined. A cursory comparison with the neutron star is presented at the end.

  14. Gravitational waves from first-order cosmological phase transitions

    NASA Technical Reports Server (NTRS)

    Kosowsky, Arthur; Turner, Michael S.; Watkins, Richard

    1992-01-01

    A first-order cosmological phase transition that proceeds through the nucleation and collision of true-vacuum bubbles is a potent source of gravitational radiation. Possibilities for such include first-order inflation, grand-unified-theory-symmetry breaking, and electroweak-symmetry breaking. We have calculated gravity-wave production from the collision of two scalar-field vacuum bubbles, and, using an approximation based upon these results, from the collision of 20 to 30 vacuum bubbles. We present estimates of the relic background of gravitational waves produced by a first-order phase transition.

  15. Phase Transition in a Healthy Human Heart Rate

    NASA Astrophysics Data System (ADS)

    Kiyono, Ken; Struzik, Zbigniew R.; Aoyagi, Naoko; Togo, Fumiharu; Yamamoto, Yoshiharu

    2005-07-01

    A healthy human heart rate displays complex fluctuations which share characteristics of physical systems in a critical state. We demonstrate that the human heart rate in healthy individuals undergoes a dramatic breakdown of criticality characteristics, reminiscent of continuous second order phase transitions. By studying the germane determinants, we show that the hallmark of criticality—highly correlated fluctuations—is observed only during usual daily activity, and a breakdown of these characteristics occurs in prolonged, strenuous exercise and sleep. This finding is the first reported discovery of the dynamical phase transition phenomenon in a biological control system and will be a key to understanding the heart rate control system in health and disease.

  16. Mechanism for direct graphite-to-diamond phase transition

    PubMed Central

    Xie, Hongxian; Yin, Fuxing; Yu, Tao; Wang, Jian-Tao; Liang, Chunyong

    2014-01-01

    Using classical molecular dynamics with a more reliable reactive LCBOPII potential, we have performed a detailed study on the direct graphite-to-diamond phase transition. Our results reveal a new so-called “wave-like buckling and slipping” mechanism, which controls the transformation from hexagonal graphite to cubic diamond. Based on this mechanism, we have explained how polycrystalline cubic diamond is converted from hexagonal graphite, and demonstrated that the initial interlayer distance of compressed hexagonal graphite play a key role to determine the grain size of cubic diamond. These results can broaden our understanding of the high pressure graphite-to-diamond phase transition. PMID:25088720

  17. The liquid to vapor phase transition in excited nuclei

    SciTech Connect

    Elliott, J.B.; Moretto, L.G.; Phair, L.; Wozniak, G.J.; Beaulieu, L.; Breuer, H.; Korteling, R.G.; Kwiatkowski, K.; Lefort, T.; Pienkowski, L.; Ruangma, A.; Viola, V.E.; Yennello, S.J.

    2001-05-08

    For many years it has been speculated that excited nuclei would undergo a liquid to vapor phase transition. For even longer, it has been known that clusterization in a vapor carries direct information on the liquid-vapor equilibrium according to Fisher's droplet model. Now the thermal component of the 8 GeV/c pion + 197 Au multifragmentation data of the ISiS Collaboration is shown to follow the scaling predicted by Fisher's model, thus providing the strongest evidence yet of the liquid to vapor phase transition.

  18. Entropy change and phase transitions in an expanding Universe

    NASA Astrophysics Data System (ADS)

    Iqbal, N.; Masood, T.; Demir, N.

    2015-12-01

    The work compiles a correlated study of a gravitational quasi equilibrium thermodynamic approach for establishing and signifying a unique behavior of the cosmological entropy and phase transitions in an expanding Universe. On the basis of prescribed boundary conditions for the cluster temperature a relation for the intra-cluster medium (ICM) of galaxy clusters has been derived. A more productive and signifying approach of the correlation functions used for galaxy clustering phenomena shows a unique behavior of the entropy change where a phenomenon known as the gravitational phase transition occurs. This unique behavior occurs with a symmetry breaking from mild clustering to low clustering and from mild clustering to high clustering which differs from a normal symmetry breaking in material sciences. We also derive results for the specific latent heat associated with the phase transitions of 3.20 T_c and 0.55 T_c for the mildly clustered phase to the low clustered phase and from the mildly clustered phase to the highly clustered phase, respectively.

  19. Pressure-Induced Irreversible Phase Transition in the Energetic Material Urea Nitrate

    NASA Astrophysics Data System (ADS)

    Li, Shourui; Zou, Bo

    2013-06-01

    The behavior of energetic material Urea Nitrate ((NH2)2 COH+ . NO3-,UN) has been investigated up to the pressure of ~26 GPa. UN exhibits the typical supramolecular structure with uronium cation and nitrate anion held together by multiple hydrogen bonds in the layer. Both Raman and XRD data provide obvious evidence for the distorted phase transition in the pressure range ~9-15 GPa. Further analysis indicates phase II has Pc symmetry. The mechanism for the phase transition involves collapse of the initial 2D supramolecular structure to 3D hydrogen-bonded networks in phase Pc. Importantly, the transition is irreversible and leads to a large reduction in volume on release of pressure. The density in phase Pc has been increased by ~11.8% compared to the phase P21/ c under ambient conditions and therefore phase Pc is expected to have much higher detonation power. This study opens new opportunities for preparing energetic materials with high density combining supramolecular chemistry with high-pressure techniques. Corresponding author. E-mail: zoubo@jlu.edu.cn This work is supported by National Science Foundation of China (NSFC) (Nos. 91227202, and 21073071).

  20. Quantum Phase Transitions of Antiferromagnets and the Cuprate Superconductors

    NASA Astrophysics Data System (ADS)

    Sachdev, Subir

    I begin with a proposed global phase diagram of the cuprate superconductors as a function of carrier concentration, magnetic field, and temperature, and highlight its connection to numerous recent experiments. The phase diagram is then used as a point of departure for a pedagogical review of various quantum phases and phase transitions of insulators, superconductors, and metals. The bond operator method is used to describe the transition of dimerized antiferromagnetic insulators between magnetically ordered states and spin-gap states. The Schwinger boson method is applied to frustrated square lattice antiferromagnets: phase diagrams containing collinear and spirally ordered magnetic states, Z_2 spin liquids, and valence bond solids are presented, and described by an effective gauge theory of spinons. Insights from these theories of insulators are then applied to a variety of symmetry breaking transitions in d-wave superconductors. The latter systems also contain fermionic quasiparticles with a massless Dirac spectrum, and their influence on the order parameter fluctuations and quantum criticality is carefully discussed. I conclude with an introduction to strong coupling problems associated with symmetry breaking transitions in two-dimensional metals, where the order parameter fluctuations couple to a gapless line of fermionic excitations along the Fermi surface.

  1. Phase transitions in traffic flow on multilane roads

    NASA Astrophysics Data System (ADS)

    Kerner, Boris S.; Klenov, Sergey L.

    2009-11-01

    Based on empirical and numerical analyses of vehicular traffic, the physics of spatiotemporal phase transitions in traffic flow on multilane roads is revealed. The complex dynamics of moving jams observed in single vehicle data measured by video cameras on American highways is explained by the nucleation-interruption effect in synchronized flow, i.e., the spontaneous nucleation of a narrow moving jam with the subsequent jam dissolution. We find that (i) lane changing, vehicle merging from on-ramps, and vehicle leaving to off-ramps result in different traffic phases—free flow, synchronized flow, and wide moving jams—occurring and coexisting in different road lanes as well as in diverse phase transitions between the traffic phases; (ii) in synchronized flow, the phase transitions are responsible for a non-regular moving jam dynamics that explains measured single vehicle data: moving jams emerge and dissolve randomly at various road locations in different lanes; (iii) the phase transitions result also in diverse expanded general congested patterns occurring at closely located bottlenecks.

  2. Effect of silver on the phase transition and wettability of titanium oxide films.

    PubMed

    Mosquera, Adolfo A; Albella, Jose M; Navarro, Violeta; Bhattacharyya, Debabrata; Endrino, Jose L

    2016-01-01

    The effect of silver on the phase transition and microstructure of titanium oxide films grown by pulsed cathodic arc had been investigated by XRD, SEM and Raman spectroscopy. Following successive thermal annealing up to 1000 °C, microstructural analysis of annealed Ag-TiO2 films reveals that the incorporation of Ag nanoparticles strongly affects the transition temperature from the initial metastable amorphous phase to anatase and stable rutile phase. An increase of silver content into TiO2 matrix inhibits the amorphous to anatase phase transition, raising its temperature boundary and, simultaneously reduces the transition temperature to promote rutile structure at lower value of 600 °C. The results are interpreted in terms of the steric effects produced by agglomeration of Ag atoms into larger clusters following annealing which hinders diffusion of Ti and O ions for anatase formation and constrains the volume available for the anatase lattice, thus disrupting its structure to form rutile phase. The effect of silver on the optical and wetting properties of TiO2 was evaluated to demonstrate its improved photocatalytic performance. PMID:27571937

  3. Effect of silver on the phase transition and wettability of titanium oxide films

    PubMed Central

    Mosquera, Adolfo A.; Albella, Jose M.; Navarro, Violeta; Bhattacharyya, Debabrata; Endrino, Jose L.

    2016-01-01

    The effect of silver on the phase transition and microstructure of titanium oxide films grown by pulsed cathodic arc had been investigated by XRD, SEM and Raman spectroscopy. Following successive thermal annealing up to 1000 °C, microstructural analysis of annealed Ag-TiO2 films reveals that the incorporation of Ag nanoparticles strongly affects the transition temperature from the initial metastable amorphous phase to anatase and stable rutile phase. An increase of silver content into TiO2 matrix inhibits the amorphous to anatase phase transition, raising its temperature boundary and, simultaneously reduces the transition temperature to promote rutile structure at lower value of 600 °C. The results are interpreted in terms of the steric effects produced by agglomeration of Ag atoms into larger clusters following annealing which hinders diffusion of Ti and O ions for anatase formation and constrains the volume available for the anatase lattice, thus disrupting its structure to form rutile phase. The effect of silver on the optical and wetting properties of TiO2 was evaluated to demonstrate its improved photocatalytic performance. PMID:27571937

  4. Two Phase Flow Mapping and Transition Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Parang, Masood; Chao, David F.

    1998-01-01

    In this paper, recent microgravity two-phase flow data for air-water, air-water-glycerin, and air- water-Zonyl FSP mixtures are analyzed for transition from bubbly to slug and from slug to annular flow. It is found that Weber number-based maps are inadequate to predict flow-pattern transition, especially over a wide range of liquid flow rates. It is further shown that slug to annular flow transition is dependent on liquid phase Reynolds number at high liquid flow rate. This effect may be attributed to growing importance of liquid phase inertia in the dynamics of the phase flow and distribution. As a result a new form of scaling is introduced to present data using liquid Weber number based on vapor and liquid superficial velocities and Reynolds number based on liquid superficial velocity. This new combination of the dimensionless parameters seem to be more appropriate for the presentation of the microgravity data and provides a better flow pattern prediction and should be considered for evaluation with data obtained in the future. Similarly, the analysis of bubble to slug flow transition indicates a strong dependence on both liquid inertia and turbulence fluctuations which seem to play a significant role on this transition at high values of liquid velocity. A revised mapping of data using a new group of dimensionless parameters show a better and more consistent description of flow transition over a wide range of liquid flow rates. Further evaluation of the proposed flow transition mapping will have to be made after a wider range of microgravity data become available.

  5. Weight-decay induced phase transitions in multilayer neural networks

    NASA Astrophysics Data System (ADS)

    Ahr, M.; Biehl, M.; Schlösser, E.

    1999-07-01

    We investigate layered neural networks with differentiable activation function and student vectors without normalization constraint by means of equilibrium statistical physics. We consider the learning of perfectly realizable rules and find that the length of student vectors becomes infinite, unless a proper weight decay term is added to the energy. Then, the system undergoes a first-order phase transition between states with very long student vectors and states where the lengths are comparable to those of the teacher vectors. Additionally, in both configurations there is a phase transition between a specialized and an unspecialized phase. An anti-specialized phase with long student vectors exists in networks with a small number of hidden units.

  6. Dirty Weyl semimetals: Stability, phase transition, and quantum criticality

    NASA Astrophysics Data System (ADS)

    Bera, Soumya; Sau, Jay D.; Roy, Bitan

    2016-05-01

    We study the stability of three-dimensional incompressible Weyl semimetals in the presence of random quenched charge impurities. Combining numerical analysis and scaling theory, we show that, in the presence of sufficiently weak randomness, (i) the Weyl semimetal remains stable, while (ii) the double-Weyl semimetal gives rise to compressible diffusive metal where the mean density of states at zero energy is finite. At stronger disorder, the Weyl semimetal undergoes a quantum phase transition and enter into a metallic phase. The mean density of states at zero energy serves as the order parameter and displays single-parameter scaling across such a disorder driven quantum phase transition. We numerically determine various exponents at the critical point, which appear to be insensitive to the number of Weyl pairs. We also extract the extent of the quantum critical regime in disordered Weyl semimetals and the phase diagram of dirty double-Weyl semimetals at finite energies.

  7. New Phase Transition of Solid Bromine under High Pressure

    SciTech Connect

    San-Miguel, A.; Libotte, H.; Gaspard, J.-P.; Gauthier, M.; Aquilanti, G.; Pascarelli, S.

    2007-07-06

    Solid bromine has been studied by x-ray absorption spectroscopy experiments up to a maximum pressure of 75 GPa. The data analysis of the extended fine structure reveals that the intramolecular distance first increases, reaching its maximum value at 25{+-}5 GPa. From this value the intramolecular distance abruptly begins to decrease evidencing a nonpreviously observed phase transformation taking place at 25{+-}5 GPa. A maximum variation of 0.08 A ring is observed at 65{+-}5 GPa where again a phase transition occurs. This last transformation could correspond with the recently observed change to an incommensurate modulated phase. We discuss the possible generalization of the observed new phase transition at 25{+-}5 GPa to the case of the other halogens.

  8. Dynamical phase transition in the open Dicke model

    PubMed Central

    Klinder, Jens; Keßler, Hans; Wolke, Matthias; Mathey, Ludwig; Hemmerich, Andreas

    2015-01-01

    The Dicke model with a weak dissipation channel is realized by coupling a Bose–Einstein condensate to an optical cavity with ultranarrow bandwidth. We explore the dynamical critical properties of the Hepp–Lieb–Dicke phase transition by performing quenches across the phase boundary. We observe hysteresis in the transition between a homogeneous phase and a self-organized collective phase with an enclosed loop area showing power-law scaling with respect to the quench time, which suggests an interpretation within a general framework introduced by Kibble and Zurek. The observed hysteretic dynamics is well reproduced by numerically solving the mean-field equation derived from a generalized Dicke Hamiltonian. Our work promotes the understanding of nonequilibrium physics in open many-body systems with infinite range interactions. PMID:25733892

  9. Dynamical phase transition in the open Dicke model.

    PubMed

    Klinder, Jens; Keßler, Hans; Wolke, Matthias; Mathey, Ludwig; Hemmerich, Andreas

    2015-03-17

    The Dicke model with a weak dissipation channel is realized by coupling a Bose-Einstein condensate to an optical cavity with ultranarrow bandwidth. We explore the dynamical critical properties of the Hepp-Lieb-Dicke phase transition by performing quenches across the phase boundary. We observe hysteresis in the transition between a homogeneous phase and a self-organized collective phase with an enclosed loop area showing power-law scaling with respect to the quench time, which suggests an interpretation within a general framework introduced by Kibble and Zurek. The observed hysteretic dynamics is well reproduced by numerically solving the mean-field equation derived from a generalized Dicke Hamiltonian. Our work promotes the understanding of nonequilibrium physics in open many-body systems with infinite range interactions. PMID:25733892

  10. Cooperativity or phase transition? Unfolding transition of DNA cationic surfactant complex

    NASA Astrophysics Data System (ADS)

    Mel'nikov, Sergey M.; Sergeyev, Vladimir G.; Yoshikawa, Kenichi; Takahashi, Hiroshi; Hatta, Ichiro

    1997-11-01

    We recently reported that single duplex DNA, with the size above the order of several tens kilobase pairs, undergoes a large discrete transition from an elongated coil into a collapsed globule with the addition of a cationic surfactant. In the present article, we describe the manner of the unfolding transition of compact long DNA, or globule DNA, complexed with cationic surfactants, cetyltrimethylammonium bromide (CTAB) and distearyldimethylammonium bromide (D18DAB), as is induced by the addition of sodium bromide. The conformational dynamics of individual single duplex T4DNA molecules was directly observed with the use of fluorescence microscopy. We found that on the level of individual DNAs, the salt-induced unfolding transition of the globules is largely discrete, or first-order phase transition for the both complexes with CTAB and D18DAB. On the other hand, for the ensemble average of the DNAs, the transition is discrete with CTAB but is continuous (sigmoidal) with D18DAB. The discreteness for the coil-globule transition in the ensemble of DNAs complexed with CTAB is attributed to the existence of the phase transition in whole over the bulk solution: the sphere-rod transition in surfactant micelles. On the other hand, for D18DAB such phase transition on the micelle structure in the bulk solution seems to be absent. In correspondence to such a large difference on the manner of the transition, x-ray diffraction analysis indicates marked difference on the structure of DNA complexes with CTAB and with D18DAB.

  11. Lipid Bilayer Phase Transition: Density Measurements and Theory

    PubMed Central

    Nagle, J. F.

    1973-01-01

    The overall change of density for dipalmitoyl lecithin bilayers agrees with a general order-disorder theory and yields about seven gauche rotations per molecule for the biologically relevant high-temperature phase. The shape of the curve of density against temperature is similar to the result of an exact calculation on a specific model, which gives a 3/2-order phase transition. PMID:4519637

  12. Study of expansion tube problems with phase transition

    NASA Astrophysics Data System (ADS)

    Goncalves, E.; Zeidan, D.

    2012-09-01

    In this work, a compressible multiphase one-fluid Euler solver has been developed to study one-dimensional expansion problems with cavitation process. A new model for the mass transfer between phases is proposed, and its efficiency in predicting phase transition is evaluated. Numerical simulations are compared with reference solutions computed with the two-fluid models type. The results suggest that the present model exhibits good robustness and accuracy.

  13. Information geometry and quantum phase transitions in the Dicke model.

    PubMed

    Dey, Anshuman; Mahapatra, Subhash; Roy, Pratim; Sarkar, Tapobrata

    2012-09-01

    We study information geometry of the Dicke model, in the thermodynamic limit. The scalar curvature R of the Riemannian metric tensor induced on the parameter space of the model is calculated. We analyze this both with and without the rotating wave approximation, and show that the parameter manifold is smooth even at the phase transition, and that the scalar curvature is continuous across the phase boundary. PMID:23030896

  14. Spectroscopic Study of the Effects of Pressure Media on High-Pressure Phase Transitions in Natrolite

    SciTech Connect

    D Liu; W Lei; Z Liu; Y Lee

    2011-12-31

    Structural phase transitions in natrolite have been investigated as a function of pressure and different hydrostatic media using micro-Raman scattering and synchrotron infrared (IR) spectroscopy. Natrolite undergoes two reversible phase transitions at 0.86 and 1.53 GPa under pure water pressure medium. These phase transitions are characterized by the changes in the vibrational frequencies of four- and eight-membered rings related to the variations in the bridging T-O-T angles and the geometry of the elliptical eight-ring channels under pressure. Concomitant to the changes in the framework vibrational modes, the number of the O-H stretching vibrational modes of natrolite changes as a result of the rearrangements of the hydrogen bonds in the channels caused by a successive increase in the hydration level under hydrostatic pressure. Similar phase transitions were also observed at relatively higher pressures (1.13 and 1.59 GPa) under alcohol-water pressure medium. Furthermore, no phase transition was found up to 2.52 GPa if a lower volume ratio of the alcohol-water to natrolite was employed. This indicates that the water content in the pressure media plays a crucial role in triggering the pressure-induced phase transitions in natrolite. In addition, the average of the mode Grueneisen parameters is calculated to be about 0.6, while the thermodynamic Grueneisen parameter is found to be 1.33. This might be attributed to the contrast in the rigidity between the TO{sub 4} tetrahedral primary building units and other flexible secondary building units in the natrolite framework upon compression and subsequent water insertion.

  15. Acoustic Phase Measurements from Volume Scatter in the Ocean.

    NASA Astrophysics Data System (ADS)

    Huston, Robert Delmar

    A primary goal of this thesis has been to demonstrate that stable, useful measurements of the orientation of the acoustic signal vector as a function of range and time can be obtained from ocean backscatter, and that this orientation, or acoustic phase, can be related to the local sound speed distribution. Consistent and useful measurement of absolute phase depends upon the positions of individual scatterers, which are normally random and sparse relative to the acoustic wavelength. This difficulty has been overcome by coherent super-position of echoes from successive transmissions, such that the effective density of acoustic targets progressively increases as the summation proceeds. The theoretical basis of this type of coherent processing has been developed and examined in the limiting case, in which it approximates a scatterer continuum for which an analytic expression has been found. The theory provides fundamental insights to the behaviour of both the amplitude and phase of volume scatter. As the ratio of coherent to incoherent signal increases with successive superposition of the echoes (coherent processing), the phase statistics evolve from a uniform to a nearly Gaussian distribution. Once the phase signal is bounded to within +/-45 ^circ, the basic requirement for a coherent 'volume mirror' has been met and reliable interferometric estimates are possible. The experimental work used a bistatic configuration with a multi-beam projector and narrow beam hydrophone operating at 215 kHz. The results confirm the theoretical concepts and demonstrate that within the quite limited range of environmental conditions that were studied, the coherently processed acoustic signals are consistent with independent measurements of the evolving sound speed profile. The main contribution of this thesis has been to lay a firm theoretical and experimental foundation for the use of volume backscatter in acoustic interferometer devices. Based on these results, the potential for new

  16. Solid-Solid Phase Transition Kinetics of FOX-7

    SciTech Connect

    Burnham, A K; Weese, R K; Wang, R; Kwok, Q M; Jones, D G

    2005-07-12

    Since it was developed in the late 1990s, 1,1-diamino-2,2-dinitroethene (FOX-7), with lower sensitivity and comparable performance to RDX, has received increasing interest. This paper will present our results for the phase changes of FOX-7 using DSC and HFC (Heat Flow Calorimetry). DSC thermal curves recorded at linear heating rates of 0.10, 0.35 and 1.0 C min{sup -1} show two endothermic peaks and two exothermic peaks. The two endothermic peaks represent solid-solid phase transitions, which have been observed in the literature at 114 C ({beta}-{gamma}) and 159 C ({gamma}-{delta}) by both DSC and XPD (X-ray powder diffraction) measurements. The first transition shifts from 114.5 to 115.8 C as the heating rate increases from 0.10 to 1.0 C min{sup -1}, while the second transition shifts from 158.5 to 160.4 C. Cyclical heating experiments show the endotherms and exotherms for a first heating through the {gamma} phase to the {delta} phase, a cooling and reversion to the {alpha} or {beta} phase, and a second heating to the {gamma} and {delta} phases. The data are interpreted using kinetic models with thermodynamic constraints.

  17. Chern-Simons-Higgs transitions out of topological superconducting phases

    NASA Astrophysics Data System (ADS)

    Clarke, David J.; Nayak, Chetan

    2015-10-01

    In this study, we examine effective field theories of superconducting phases with topological order, making a connection to proposed realizations of exotic topological phases (including those hosting Ising and Fibonacci anyons) in superconductor-quantum Hall heterostructures. Our effective field theories for the non-Abelian superconducting states are non-Abelian Chern-Simons theories in which the condensation of vortices carrying non-Abelian gauge flux leads to the associated Abelian quantum Hall states. This Chern-Simons-Higgs condensation process is dual to the emergence of superconducting non-Abelian topological phases in coupled chain constructions. In such transitions, the chiral central charge of the system generally changes, so they fall outside the description of bosonic condensation transitions put forth by Bais and Slingerland [F. A. Bais and J. K. Slingerland, Phys. Rev. B 79, 045316 (2009), 10.1103/PhysRevB.79.045316] (though the two approaches agree when the described transitions coincide). Our condensation process may be generalized to Chern-Simons theories based on arbitrary Lie groups, always describing a transition from a Lie algebra to its Cartan subalgebra. We include several instructive examples of such transitions.

  18. Universal dynamics across many-body localization phase transition

    NASA Astrophysics Data System (ADS)

    Serbyn, Maksym

    Many body localization allows quantum systems to evade thermalization owing to the emergence of extensive number of local conserved quantities. Many-body localized (MBL) systems exhibit universal dynamics, qualitatively distinct from dynamics in ergodic systems. In this talk I will survey recent progress in understanding the properties of the MBL phase, which follow from the picture of local conserved quantities. In particular, I will discuss the power-law relaxation of local observables, which gives an experimentally observable signatures of the MBL phase. In the second part of my talk, I will demonstrate how the delocalization transition can be probed by characterizing the breakdown of local conservation laws. Using statistics of matrix elements of local operators, I will introduce an analogue of many-body Thouless conductance which probes the response of the system to local perturbations. Its scaling allows one to locate the MBL transition, and predicts the onset of logarithmically slow transport at the MBL transition, consistent with results from the renormalization group. In addition, I will demonstrate how the properties of matrix elements govern the crossover of the level statistics across the MBL transition, and relate to the dynamics in the ergodic phase. I will conclude by discussing experimental implications and open challenges in understanding the MBL transition.

  19. Shock and Recovery of Polytetrafluoroethylene Above and Below the Phase II to Phase III Transition

    NASA Astrophysics Data System (ADS)

    Brown, Eric N.; Rae, Philip J.; Trujillo, Carl P.; Dattelbaum, Dana M.; Gray, George T.; Bourne, Neil K.

    2006-07-01

    Polytetrafluoroethylene (PTFE) is a semi-crystalline polymer exhibiting complicated pressure and temperature dependent phases. High strain rate applications in aerospace, defense, and automotive industries have lead to interest in the shock response of PTFE and resulting changes in the polymer structure. Experimental studies on pressure-induced phase transitions using shock-loading techniques and the resulting changes in crystalline structure are presented. Gas launcher experiments were performed on pedigreed PTFE 7C momentum trapped assemblies with impact pressures from 0.4 to 0.85 GPa to investigate the material response above and below the phase II to phase III crystalline transition. [LAUR-05-5945

  20. Lattice-gas models of phase separation: interfaces, phase transitions, and multiphase flow

    SciTech Connect

    Rothman, D.H. ); Zaleski, S. )

    1994-10-01

    Momentum-conserving lattice gases are simple, discrete, microscopic models of fluids. This review describes their hydrodynamics, with particular attention given to the derivation of macroscopic constitutive equations from microscopic dynamics. Lattice-gas models of phase separation receive special emphasis. The current understanding of phase transitions in these momentum-conserving models is reviewed; included in this discussion is a summary of the dynamical properties of interfaces. Because the phase-separation models are microscopically time irreversible, interesting questions are raised about their relationship to real fluid mixtures. Simulation of certain complex-fluid problems, such as multiphase flow through porous media and the interaction of phase transitions with hydrodynamics, is illustrated.

  1. Is there a sharp phase transition for deterministic cellular automata

    SciTech Connect

    Wootters, W.K. Los Alamos National Lab., NM Williams Coll., Williamstown, MA . Dept. of Physics); Langton, C.G. )

    1990-01-01

    Previous work has suggested that there is a kind of phase transition between deterministic automata exhibiting periodic behavior and those exhibiting chaotic behavior. However, unlike the usual phase transitions of physics, this transition takes place over a range of values of the parameter rather than at a specific value. The present paper asks whether the transition can be made sharp, either by taking the limit of an infinitely large rule table, or by changing the parameter in terms of which the space of automata is explored. We find strong evidence that, for the class of automata we consider, the transition does become sharp in the limit of an infinite number of symbols, the size of the neighborhood being held fixed. Our work also suggests an alternative parameter in terms of which it is likely that the transition will become fairly sharp even if one does not increase the number of symbols. In the course of our analysis, we find that mean field theory, which is our main tool, gives surprisingly good predictions of the statistical properties of the class of automata we consider. 18 refs., 6 figs.

  2. Phase transitions in semisupervised clustering of sparse networks.

    PubMed

    Zhang, Pan; Moore, Cristopher; Zdeborová, Lenka

    2014-11-01

    Predicting labels of nodes in a network, such as community memberships or demographic variables, is an important problem with applications in social and biological networks. A recently discovered phase transition puts fundamental limits on the accuracy of these predictions if we have access only to the network topology. However, if we know the correct labels of some fraction α of the nodes, we can do better. We study the phase diagram of this semisupervised learning problem for networks generated by the stochastic block model. We use the cavity method and the associated belief propagation algorithm to study what accuracy can be achieved as a function of α. For k=2 groups, we find that the detectability transition disappears for any α>0, in agreement with previous work. For larger k where a hard but detectable regime exists, we find that the easy/hard transition (the point at which efficient algorithms can do better than chance) becomes a line of transitions where the accuracy jumps discontinuously at a critical value of α. This line ends in a critical point with a second-order transition, beyond which the accuracy is a continuous function of α. We demonstrate qualitatively similar transitions in two real-world networks. PMID:25493829

  3. Quantum phase transitions in spin-1 compass chains

    NASA Astrophysics Data System (ADS)

    Liu, Guang-Hua; Kong, Long-Juan; You, Wen-Long

    2015-11-01

    The ground-state phase diagram and quantum phase transitions (QPTs) in a spin-1 compass chain are investigated by the infinite time-evolving block decimation (iTEBD) method. Various phases are discerned by energy densities, spin correlations and entanglement entropy. A generalized string correlator is found to be capable of describing the nonlocal string order in the disordered phase. Furthermore, in the noncritical disordered phase, the spin-spin correlations are found to decay exponentially. Except for a multicritical point ( J 1 = 0, J 2 = 0), the QPTs are determined to have second-order characters. In addition, the central charges on these critical phase boundaries are determined to be c = 1 / 2, therefore these QPTs belong to the Ising universality class.

  4. Phase transitions in fermionic systems with many-body interaction

    NASA Technical Reports Server (NTRS)

    Bozzolo, G.; Plastino, A.; Ferrante, J.

    1989-01-01

    A linearized version of the Hartree-Fock method is used as a probe to investigate phase transitions in fermionic systems with many-body interactions. An application to a new exactly solvable model which includes two- and three-body forces is shown.

  5. Cooling compact stars and phase transitions in dense QCD

    NASA Astrophysics Data System (ADS)

    Sedrakian, Armen

    2016-03-01

    We report new simulations of cooling of compact stars containing quark cores and updated fits to the Cas A fast cooling data. Our model is built on the assumption that the transient behaviour of the star in Cas A is due to a phase transition within the dense QCD matter in the core of the star. Specifically, the fast cooling is attributed to an enhancement in the neutrino emission triggered by a transition from a fully gapped, two-flavor, red-green color-superconducting quark condensate to a superconducting crystalline or an alternative gapless, color-superconducting phase. The blue-colored condensate is modeled as a Bardeen-Cooper-Schrieffer (BCS)-type color superconductor with spin-one pairing order parameter. We study the sensitivity of the fits to the phase transition temperature, the pairing gap of blue quarks and the timescale characterizing the phase transition (the latter modelled in terms of a width parameter). Relative variations in these parameter around their best-fit values larger than 10-3 spoil the fit to the data. We confirm the previous finding that the cooling curves show significant variations as a function of compact star mass, which allows one to account for dispersion in the data on the surface temperatures of thermally emitting neutron stars.

  6. Absorbing-state phase transitions with extremal dynamics

    NASA Astrophysics Data System (ADS)

    Dickman, Ronald; Garcia, Guilherme J. M.

    2005-06-01

    Extremal dynamics represents a path to self-organized criticality in which the order parameter is tuned to a value of zero. The order parameter is associated with a phase transition to an absorbing state. Given a process that exhibits a phase transition to an absorbing state, we define an “extremal absorbing” process, providing the link to the associated extremal (nonabsorbing) process. Stationary properties of the latter correspond to those at the absorbing-state phase transition in the former. Studying the absorbing version of an extremal dynamics model allows to determine certain critical exponents that are not otherwise accessible. In the case of the Bak-Sneppen (BS) model, the absorbing version is closely related to the “ f -avalanche” introduced by Paczuski, Maslov, and Bak [Phys. Rev. E 53, 414 (1996)], or, in spreading simulations to the “BS branching process” also studied by these authors. The corresponding nonextremal process belongs to the directed percolation universality class. We revisit the absorbing BS model, obtaining refined estimates for the threshold and critical exponents in one dimension. We also study an extremal version of the usual contact process, using mean-field theory and simulation. The extremal condition slows the spread of activity and modifies the critical behavior radically, defining an “extremal directed percolation” universality class of absorbing-state phase transitions. Asymmetric updating is a relevant perturbation for this class, even though it is irrelevant for the corresponding nonextremal class.

  7. Phenomena of solid state grain boundaries phase transition in technology

    NASA Astrophysics Data System (ADS)

    Minaev, Y. A.

    2015-03-01

    The results of study the phenomenon, discovered by author (1971), of the phase transition of grain boundary by the formation of two-dimensional liquid or quasi-liquid films have been done. The described phenomena of the first order phase transition (two-dimensional melting) at temperatures 0.6 - 0.9 TS0 (of the solid state melting point) is a fundamental property of solid crystalline materials, which has allowed to revise radically scientific representations about a solid state of substance. Using the mathematical tools of the film thermodynamics it has been obtained the generalized equation of Clausius - Clapeyron type for two-dimensional phase transition. The generalized equation has been used for calculating grain boundary phase transition temperature TSf of any metal, which value lies in the range of (0.55…0.86) TS0. Based on these works conclusions the develop strategies for effective forming of coatings (by thermo-chemical processing) on surface layers of functional alloys and hard metals have been made. The short overview of the results of some graded alloys characterization has been done.

  8. Fibrin polymerization as a phase transition wave: A mathematical model

    NASA Astrophysics Data System (ADS)

    Lobanov, A. I.

    2016-06-01

    A mathematical model of fibrin polymerization is described. The problem of the propagation of phase transition wave is reduced to a nonlinear Stefan problem. A one-dimensional discontinuity fitting difference scheme is described, and the results of one-dimensional computations are presented.

  9. Phenomena of solid state grain boundaries phase transition in technology

    SciTech Connect

    Minaev, Y. A.

    2015-03-30

    The results of study the phenomenon, discovered by author (1971), of the phase transition of grain boundary by the formation of two-dimensional liquid or quasi-liquid films have been done. The described phenomena of the first order phase transition (two-dimensional melting) at temperatures 0.6 – 0.9 T{sub S0} (of the solid state melting point) is a fundamental property of solid crystalline materials, which has allowed to revise radically scientific representations about a solid state of substance. Using the mathematical tools of the film thermodynamics it has been obtained the generalized equation of Clausius - Clapeyron type for two-dimensional phase transition. The generalized equation has been used for calculating grain boundary phase transition temperature T{sub Sf} of any metal, which value lies in the range of (0.55…0.86) T{sub S0}. Based on these works conclusions the develop strategies for effective forming of coatings (by thermo-chemical processing) on surface layers of functional alloys and hard metals have been made. The short overview of the results of some graded alloys characterization has been done.

  10. Spontaneous phase transitions in magnetic films with a modulated structure

    SciTech Connect

    Arzamastseva, G. V.; Evtikhov, M. G.; Lisovskii, F. V. Mansvetova, E. G.

    2011-09-15

    The influence of monoperiodic and biperiodic bias fields on the nucleation of domain structures in quasi-uniaxial magnetic films near the Curie point has been studied experimentally. The main types of observed nonuniform magnetic moment distributions have been established and chains of a devil's staircase phase transitions are shown to be realized when the films are slowly cooled.

  11. Phase Transition Behavior in a Neutral Evolution Model

    NASA Astrophysics Data System (ADS)

    King, Dawn; Scott, Adam; Maric, Nevena; Bahar, Sonya

    2014-03-01

    The complexity of interactions among individuals and between individuals and the environment make agent based modeling ideal for studying emergent speciation. This is a dynamically complex problem that can be characterized via the critical behavior of a continuous phase transition. Concomitant with the main tenets of natural selection, we allow organisms to reproduce, mutate, and die within a neutral phenotype space. Previous work has shown phase transition behavior in an assortative mating model with variable fitness landscapes as the maximum mutation size (μ) was varied (Dees and Bahar, 2010). Similarly, this behavior was recently presented in the work of Scott et al. (2013), even on a completely neutral landscape, for bacterial-like fission as well as for assortative mating. Here we present another neutral model to investigate the `critical' phase transition behavior of three mating types - assortative, bacterial, and random - in a phenotype space as a function of the percentage of random death. Results show two types of phase transitions occurring for the parameters of the population size and the number of clusters (an analogue of species), indicating different evolutionary dynamics for system survival and clustering. This research was supported by funding from: University of Missouri Research Board and James S. McDonnell Foundation.

  12. Thermodynamics and phase transitions in the Overhauser model

    NASA Astrophysics Data System (ADS)

    Duffield, N. G.; Pulé, J. V.

    1989-01-01

    We analyze the thermodynamics of the Overhauser model and demonstrate rigorously the existence of a phase transition. This is achieved by extending techniques previously developed to treat the BCS model in the quasi-spin formulation. Additionally, we compare the thermodynamics of the quasi-spin and full-trace BCS models. The results are identical up to a temperature rescaling.

  13. Femtosecond resolution of soft mode dynamics in structural phase transitions

    NASA Technical Reports Server (NTRS)

    Dougherty, Thomas P.; Wiederrecht, Gary P.; Nelson, Keith A.; Garrett, Mark H.; Jensen, Hans P.; Warde, Cardinal

    1992-01-01

    The microscopic pathway along which ions or molecules in a crystal move during structural phase transition can often be described in terms of a collective vibrational mode of the lattice. In many cases, this mode, called a 'soft' phonon mode because of its characteristically low frequency near the phase transition temperature, is difficult to characterize through conventional frequency-domain spectroscopies such as light or neutron scattering. A femtosecond time-domain analog of light-scattering spectroscopy called impulsive stimulated Raman scattering (ISRS) has been used to examine the soft modes of two perovskite ferroelectric crystals. The low-frequency lattice dynamics of KNbO3 and BaTiO3 are clarified in a manner that permits critical evaluation of microscopic models for their ferroelectric transitions. The results illustrate the advantages of ISRS over conventional Raman spectroscopy of low-frequency, heavily damped soft modes.

  14. Liquid-Liquid Phase Transition in Nanoconfined Silicon Carbide.

    PubMed

    Wu, Weikang; Zhang, Leining; Liu, Sida; Ren, Hongru; Zhou, Xuyan; Li, Hui

    2016-03-01

    We report theoretical evidence of a liquid-liquid phase transition (LLPT) in liquid silicon carbide under nanoslit confinement. The LLPT is characterized by layering transitions induced by confinement and pressure, accompanying the rapid change in density. During the layering transition, the proportional distribution of tetracoordinated and pentacoordinated structures exhibits remarkable change. The tricoordinated structures lead to the microphase separation between silicon (with the dominant tricoordinated, tetracoordinated, and pentacoordinated structures) and carbon (with the dominant tricoordinated structures) in the layer close to the walls. A strong layer separation between silicon atoms and carbon atoms is induced by strong wall-liquid forces. Importantly, the pressure confinement phase diagram with negative slopes for LLPT lines indicates that, under high pressure, the LLPT is mainly confinement-induced, but under low pressure, it becomes dominantly pressure-induced. PMID:26859609

  15. Phase transitions on random lattices: how random is topological disorder?

    PubMed

    Barghathi, Hatem; Vojta, Thomas

    2014-09-19

    We study the effects of topological (connectivity) disorder on phase transitions. We identify a broad class of random lattices whose disorder fluctuations decay much faster with increasing length scale than those of generic random systems, yielding a wandering exponent of ω=(d-1)/(2d) in d dimensions. The stability of clean critical points is thus governed by the criterion (d+1)ν>2 rather than the usual Harris criterion dν>2, making topological disorder less relevant than generic randomness. The Imry-Ma criterion is also modified, allowing first-order transitions to survive in all dimensions d>1. These results explain a host of puzzling violations of the original criteria for equilibrium and nonequilibrium phase transitions on random lattices. We discuss applications, and we illustrate our theory by computer simulations of random Voronoi and other lattices. PMID:25279615

  16. Aggregation and folding phase transitions of RNA molecules

    NASA Astrophysics Data System (ADS)

    Bundschuh, Ralf

    2007-03-01

    RNA is a biomolecule that is involved in nearly all aspects of cellular functions. In order to perform many of these functions, RNA molecules have to fold into specific secondary structures. This folding is driven by the tendency of the bases to form Watson-Crick base pairs. Beyond the biological importance of RNA, the relatively simple rules for structure formation of RNA make it a very interesting system from the statistical physics point of view. We will present examples of phase transitions in RNA secondary structure formation that are amenable to analytical descriptions. A special focus will be on aggregation between several RNA molecules which is important for some regulatory circuits based on RNA structure, triplet repeat diseases like Huntington's, and as a model for prion diseases. We show that depending on the relative strength of the intramolecular and the intermolecular base pairing, RNA molecules undergo a transition into an aggregated phase and quantitatively characterize this transition.

  17. Concentration fluctuations and phase transitions in coupled modulated bilayers

    NASA Astrophysics Data System (ADS)

    Hirose, Yuichi; Komura, Shigeyuki; Andelman, David

    2012-08-01

    We consider the formation of finite-size domains in lipid bilayers consisting of saturated and hybrid lipids. First, we describe a monolayer model that includes a coupling between a compositional scalar field and a two-dimensional vectorial order parameter. Such a coupling yields an effective two-dimensional microemulsion free energy for the lipid monolayer, and its characteristic length of compositional modulations can be considered as the origin of finite-size domains in biological membranes. Next, we consider a coupled bilayer composed of two modulated monolayers and discuss the static and dynamic properties of concentration fluctuations above the transition temperature. We also investigate the micro-phase separation below the transition temperature and compare the micro-phase separated structures with statics and dynamics of concentration fluctuations above the transition.

  18. UNIVERSALITY OF PHASE TRANSITION DYNAMICS: TOPOLOGICAL DEFECTS FROM SYMMETRY BREAKING

    SciTech Connect

    Zurek, Wojciech H.; Del Campo, Adolfo

    2014-02-13

    In the course of a non-equilibrium continuous phase transition, the dynamics ceases to be adiabatic in the vicinity of the critical point as a result of the critical slowing down (the divergence of the relaxation time in the neighborhood of the critical point). This enforces a local choice of the broken symmetry and can lead to the formation of topological defects. The Kibble-Zurek mechanism (KZM) was developed to describe the associated nonequilibrium dynamics and to estimate the density of defects as a function of the quench rate through the transition. During recent years, several new experiments investigating formation of defects in phase transitions induced by a quench both in classical and quantum mechanical systems were carried out. At the same time, some established results were called into question. We review and analyze the Kibble-Zurek mechanism focusing in particular on this surge of activity, and suggest possible directions for further progress.

  19. Iodization of rf sputter induced disordered Ag thin films reveals volume plasmon-exciton 'transition'

    SciTech Connect

    Bharathi Mohan, D.; Sunandana, C. S.

    2006-09-15

    Quasiamorphous Ag films of thicknesses ranging from 5 to 30 nm were prepared using rf magnetron sputtering technique and their controlled iodization was carried out for selected durations in the range of 15 min-60 h at room temperature. As deposited Ag and iodized films were characterized using x-ray diffraction (XRD), atomic force microscope (AFM), and optical absorption techniques. From XRD, {gamma} and {beta}+{gamma} (mixed) phases of AgI nanoparticles have been observed for 5-10 and 20-30 nm thick films, respectively. Lattice parameters (a and c) and average strain ({epsilon}) were calculated versus iodization time for {gamma} and {beta}-AgI nanoparticles. Uniform and nonuniform spherically shaped AgI nanoparticles ({approx}20-130 nm) are realized through AFM for 5-10 and 20-30 nm thick films. Optical absorption shows volume plasmons (classified as PR1) for short duration iodization, which ''decay'' upon further iodization to convert to Z{sub 1,2} and Z{sub 3} excitons at 420 and 330 nm, respectively, in the manner of a metal-semiconductor/dielectric phase transition. Ag 'colloidal' particles (classified as PR2) are formed for 5-10 nm thick films and thereby control the {gamma} phase--a significant and applicable effect attributed to critical film thickness. With increasing thickness, a surface strain field lifting the degeneracy of the valence band results in Z{sub 1,2} and Z{sub 3} exciton formation at room temperature. Blueshift in the exciton absorption with decreasing film thickness implies the progressive quantum confinement due to decrease in the particle size. A thickness induced phase transition from {gamma}-AgI to {beta}-AgI is discussed by means of x-ray diffraction and optical absorption studies.

  20. a Mathematical Description of the Critical Point in Phase Transitions

    NASA Astrophysics Data System (ADS)

    Bilge, Ayse Humeyra; Pekcan, Onder

    2013-10-01

    Let y(x) be a smooth sigmoidal curve, y(n) be its nth derivative and {xm,i} and {xa,i}, i = 1,2,…, be the set of points where respectively the derivatives of odd and even order reach their extreme values. We argue that if the sigmoidal curve y(x) represents a phase transition, then the sequences {xm,i} and {xa,i} are both convergent and they have a common limit xc that we characterize as the critical point of the phase transition. In this study, we examine the logistic growth curve and the Susceptible-Infected-Removed (SIR) epidemic model as typical examples of symmetrical and asymmetrical transition curves. Numerical computations indicate that the critical point of the logistic growth curve that is symmetrical about the point (x0, y0) is always the point (x0, y0) but the critical point of the asymmetrical SIR model depends on the system parameters. We use the description of the sol-gel phase transition of polyacrylamide-sodium alginate (SA) composite (with low SA concentrations) in terms of the SIR epidemic model, to compare the location of the critical point as described above with the "gel point" determined by independent experiments. We show that the critical point tc is located in between the zero of the third derivative ta and the inflection point tm of the transition curve and as the strength of activation (measured by the parameter k/η of the SIR model) increases, the phase transition occurs earlier in time and the critical point, tc, moves toward ta.

  1. Quantum phase transition of light in the resonator array

    NASA Astrophysics Data System (ADS)

    Wu, Chun-Wang; Gao, Ming; Deng, Zhi-Jiao; Dai, Hong-Yi; Chen, Ping-Xing; Li, Cheng-Zu; Quantum Computation Group of NUDT Team

    2015-03-01

    We give a concrete experimental scheme for engineering the insulator-superfluid transition of light in a one-dimensional (1-D) array of coupled superconducting stripline resonators. In our proposed architecture, the on-site interaction and the photon hopping rate can be tuned independently by adjusting the transition frequencies of the charge qubits inside the resonators and at the resonator junctions, respectively, which permits us to systematically study the quantum phase transition of light in a complete parameter space. By combining the techniques of photon-number-dependent qubit transition and fast read-out of the qubit state using a separate low-Q resonator mode, the statistical property of the excitations in each resonator can be obtained with a high efficiency. An analysis of the various decoherence sources and disorders shows that our scheme can serve as a guide to coming experiments involving a small number of coupled resonators.

  2. Electronic Griffiths phase of the d = 2 Mott transition.

    PubMed

    Andrade, E C; Miranda, E; Dobrosavljević, V

    2009-05-22

    We investigate the effects of disorder within the T = 0 Brinkman-Rice scenario for the Mott metal-insulator transition in two dimensions. For sufficiently weak disorder the transition retains the Mott character, as signaled by the vanishing of the local quasiparticle weights Z_{i} and strong screening of the renormalized site energies at criticality. In contrast to the behavior in high dimensions, here the local spatial fluctuations of quasiparticle parameters are strongly enhanced in the critical regime, with a distribution function P(Z) approximately Z;{alpha-1} and alpha --> 0 at the transition. This behavior indicates a robust emergence of an electronic Griffiths phase preceding the metal-insulator transition, in a fashion surprisingly reminiscent of the "infinite randomness fixed point" scenario for disordered quantum magnets. PMID:19519046

  3. Discontinuous phase transition in a dimer lattice gas

    NASA Astrophysics Data System (ADS)

    Dickman, Ronald

    2012-05-01

    I study a dimer model on the square lattice with nearest neighbor exclusion as the only interaction. Detailed simulations using tomographic entropic sampling show that as the chemical potential is varied, there is a strongly discontinuous phase transition, at which the particle density jumps by about 18% of its maximum value, 1/4. The transition is accompanied by the onset of orientational order, to an arrangement corresponding to the {1/2, 0, 1/2} structure identified by Phares et al. [Physica B 409, 1096 (2011)] in a dimer model with finite repulsion at fixed density. Using finite-size scaling and Binder's cumulant, the expected scaling behavior at a discontinuous transition is verified in detail. The discontinuous transition can be understood qualitatively given that the model possesses eight equivalent maximum-density configurations, so that its coarse-grained description corresponds to that of the q = 8 Potts model.

  4. Advanced studies of cooperative phase transitions in microgravity

    NASA Astrophysics Data System (ADS)

    Lipa, J. A.

    1993-07-01

    For the past 17 years we have been developing new technology to resolve cooperative phase transitions to the level of t = ¦T/Tc-1¦ ~ 10-10, where T is the temperature and Tc that of the transition. Samples of helium near the lambda point (2.1768 K) in microgravity conditions are expected to exhibit transitions at least this sharp. Currently we are approaching the launch of an experiment to measure the heat capacity singularity through the lambda transition with a resolution of about 4×10-10. This experiment involves an instrument developed by Stanford that will be flown in the JPL Low Temperature Research Facility. In this paper we describe the hardware for this program and some additional flight experiments that are currently being considered.

  5. Prediction of B1 to B10 phase transition in LuN under pressure: An ab-initio investigation

    NASA Astrophysics Data System (ADS)

    Sahoo, B. D.; Mukherjee, D.; Joshi, K. D.; Kaushik, T. C.; Gupta, Satish C.

    2016-05-01

    Ab-initio total energy calculations have been performed in lutetium nitride (LuN) as a function of hydrostatic compression to understand the high pressure behavior of this compound. Our calculations predict a phase transition from ambient rocksalt type structure (B1 phase) to a tetragonal structure (B10 phase) at ~ 240 GPa. The phase transition has been identified as first order in nature with volume discontinuity of ~ 6%. The predicted high pressure phase has been found to be stable up to at least 400 GPa, the maximum pressure up to which calculations have been performed.Further, to substantiate the results of static lattice calculations analysis of lattice dynamic stability of B1 and B10 phase has been carried out at different pressures. Apart from this, we have analyzed the lattice dynamic stability CsCl type (B2) phase around the 240 GPa, the pressure reported for B1 to B2 transition in previous all-electron calculations by Gupta et al. 2013. We find that the B2 structure is lattice dynamically unstable at this pressure and remains unstable up to ~ 400 GPa, ruling out the possibility of B1 to B2 phase transition at least up to ~ 400 GPa. Further, the theoretically determined equation of state has been utilized to derive various physical quantities such as zero pressure equilibrium volume, bulk modulus, and pressure derivative of bulk modulus of B1 phase at ambient conditions.

  6. Ab initio study of AlN: Anisotropic thermal expansion, phase diagram, and high-temperature rocksalt to wurtzite phase transition

    NASA Astrophysics Data System (ADS)

    Schmerler, Steve; Kortus, Jens

    2014-02-01

    We calculate the anisotropic thermal expansion of wurtzite AlN within the quasiharmonic approximation by sampling the volume as a function of two unit cell axes. From the derived Gibbs energy for the low pressure wurtzite phase and the high pressure rocksalt phase, we calculate the phase diagram. By applying ab initio molecular dynamics, we can confirm recent experimental findings regarding a temperature-driven rocksalt to wurtzite backward phase transition. We propose a detailed mechanism for the transition and predict the existence of a β-BeO type high-temperature modification of AlN. Furthermore, we find the h-MgO type intermediate structure previously reported for AlN and other compounds which show the wurtzite to rocksalt forward pressure-induced phase transition.

  7. Phase Transitions in a Model of Y-Molecules Abstract

    NASA Astrophysics Data System (ADS)

    Holz, Danielle; Ruth, Donovan; Toral, Raul; Gunton, James

    Immunoglobulin is a Y-shaped molecule that functions as an antibody to neutralize pathogens. In special cases where there is a high concentration of immunoglobulin molecules, self-aggregation can occur and the molecules undergo phase transitions. This prevents the molecules from completing their function. We used a simplified model of 2-Dimensional Y-molecules with three identical arms on a triangular lattice with 2-dimensional Grand Canonical Ensemble. The molecules were permitted to be placed, removed, rotated or moved on the lattice. Once phase coexistence was found, we used histogram reweighting and multicanonical sampling to calculate our phase diagram.

  8. Model of High Temperature Phase Transitions in Metals

    NASA Astrophysics Data System (ADS)

    Filippov, E. S.

    2016-04-01

    On the basis of the assumption of the electron density fluctuation at the band degradation, a calculation parameter (the radius R) of the half-width of the probability distribution over the coordinate R is identified at the level of the maximum electron density fluctuation (at a maximum of the Gaussian function). Based on an analysis of the crystallization process and high polymorphic transformations bcc → fcc, the reasons for the formation of bcc, fcc, hexagonal, and tetragonal structures from the liquid phase, as well as for the high temperature bcc → hcp transition in the solid phase are established using the calculated parameter (the radius R) in the solid and liquid phases.

  9. Ordering and phase transitions in random-field Ising systems

    NASA Technical Reports Server (NTRS)

    Maritan, Amos; Swift, Michael R.; Cieplak, Marek; Chan, Moses H. W.; Cole, Milton W.; Banavar, Jayanth R.

    1991-01-01

    An exact analysis of the Ising model with infinite-range interactions in a random field and a local mean-field theory in three dimensions is carried out leading to a phase diagram with several coexistence surfaces and lines of critical points. The results show that the phase diagram depends crucially on whether the distribution of random fields is symmetric or not. Thus, Ising-like phase transitions in a porous medium (the asymmetric case) are in a different universality class from the conventional random-field model (symmetric case).

  10. Phase transition in a stochastic prime-number generator.

    PubMed

    Luque, Bartolo; Lacasa, Lucas; Miramontes, Octavio

    2007-07-01

    We introduce a stochastic algorithm that acts as a prime-number generator. The dynamics of this algorithm gives rise to a continuous phase transition, which separates a phase where the algorithm is able to reduce a whole set of integers into primes and a phase where the system reaches a frozen state with low prime density. We present both numerical simulations and an analytical approach in terms of an annealed approximation, by means of which the data are collapsed. A critical slowing-down phenomenon is also outlined. PMID:17677398

  11. Twisting transition between crystalline and fibrillar phases of aggregated peptides.

    PubMed

    Knowles, Tuomas P J; De Simone, Alfonso; Fitzpatrick, Anthony W; Baldwin, Andrew; Meehan, Sarah; Rajah, Luke; Vendruscolo, Michele; Welland, Mark E; Dobson, Christopher M; Terentjev, Eugene M

    2012-10-12

    We study two distinctly ordered condensed phases of polypeptide molecules, amyloid fibrils and amyloidlike microcrystals, and the first-order twisting phase transition between these two states. We derive a single free-energy form which connects both phases. Our model identifies relevant degrees of freedom for describing the collective behavior of supramolecular polypeptide structures, reproduces accurately the results from molecular dynamics simulations as well as from experiments, and sheds light on the uniform nature of the dimensions of different peptide fibrils. PMID:23102370

  12. Impact of Phase Transitions on P Wave Velocities

    SciTech Connect

    D Weidner; L Li

    2011-12-31

    In regions where a high pressure phase is in equilibrium with a low pressure phase, the bulk modulus defined by the P-V relationship is greatly reduced. Here we evaluate the effect of such transitions on the P wave velocity. A model, where cation diffusion is the rate limiting factor, is used to project laboratory data to the conditions of a seismic wave propagating in the two-phase region. We demonstrate that for the minimum expected effect there is a significant reduction of the seismic velocity, as large as 10% over a narrow depth range.

  13. Quantum phases and phase transitions of frustrated hard-core bosons on a triangular ladder

    NASA Astrophysics Data System (ADS)

    Mishra, Tapan; Pai, Ramesh V.; Mukerjee, Subroto; Paramekanti, Arun

    2013-05-01

    Kinetically frustrated bosons at half filling in the presence of a competing nearest-neighbor repulsion support a wide supersolid regime on the two-dimensional triangular lattice. We study this model on a two-leg ladder using the finite-size density-matrix renormalization-group method, obtaining a phase diagram which contains three phases: a uniform superfluid (SF), an insulating charge density wave (CDW) crystal, and a bond ordered insulator (BO). We show that the transitions from SF to CDW and SF to BO are continuous in nature, with critical exponents varying continuously along the phase boundaries, while the transition from CDW to BO is found to be first order. The phase diagram is also found to contain an exactly solvable Majumdar Ghosh point, and reentrant SF to CDW phase transitions.

  14. Rescuing a Quantum Phase Transition with Quantum Noise

    NASA Astrophysics Data System (ADS)

    Zhang, Gu; Novais, Eduardo; Baranger, Harold

    We show that placing a quantum system in contact with an environment can enhance non-Fermi-liquid correlations, rather than destroying quantum effects as is typical. The system consists of two quantum dots in series with two leads; the highly resistive leads couple charge flow through the dots to the electromagnetic environment (noise). The similarity to the two impurity Kondo model suggests that there will be a quantum phase transition between a Kondo phase and a local singlet phase. However, this transition is destabilized by charge tunneling between the two leads. Our main result is that sufficiently strong quantum noise suppresses this charge transfer and leads to stabilization of the quantum phase transition. We present the phase diagram, the ground state degeneracy at the four fixed points, and the leading temperature dependence of the conductance near these points. Partially supported by (1) the U.S. DOE, Division of Materials Sciences and Engineering, under Grant No. DE-SC0005237 and (2) FAPESP (BRAZIL) under Grant 2014/26356-9.

  15. Phase transition and possible metallization in CeVO{sub 4} under pressure

    SciTech Connect

    Garg, Alka B.; Shanavas, K.V.; Wani, B.N.; Sharma, Surinder M.

    2013-07-15

    Phase stability of CeVO{sub 4} under pressure has been investigated using synchrotron based angle dispersive x-ray diffraction (ADXRD), electrical resistance and first principles calculations. The results indicate that the ambient zircon structure of the compound transforms to a low symmetry monoclinic monazite phase beyond 3.8 GPa with nearly 8.6% volume discontinuity. Beyond 11 GPa, the pattern could be fitted to a similar monazite structure which is about 12.7% denser and has a much larger monoclinic beta angle. On pressure release the first monoclinic phase is recovered. The electrical resistance data show a large drop in resistance with pressure indicating substantial narrowing down of the band gap. Electronic structure calculations support these observations and suggest possible pressure induced metallization in this material. - Pressure induced structural phase transition in CeVO{sub 4} as observed by x- ray diffraction (pressure vs. volume) and possible metallization in CeVO{sub 4} through electrical resistance and first principles electronic structure calculations. - Highlights: • Structural and electrical behavior of CeVO{sub 4} under pressure studied using x-ray diffraction and electrical resistance measurements and first principles calculations. • Two successive structural transitions confirmed by experiment and theory: zircon–monazite I–monazite II. • Band gap collapse and possible metallization is indicated by electrical resistance measurements and electronic structure calculations under pressure. • Novel observation of lower bulk modulus in the high pressure phase (both by experiment and calculations) explained through structural analysis.

  16. Characterization of quantum phase transition using holographic entanglement entropy

    NASA Astrophysics Data System (ADS)

    Ling, Yi; Liu, Peng; Wu, Jian-Pin

    2016-06-01

    The entanglement exhibits extremal or singular behavior near quantum critical points (QCPs) in many condensed matter models. These intriguing phenomena, however, still call for a widely accepted understanding. In this paper we study this issue in holographic framework. We investigate the connection between the holographic entanglement entropy (HEE) and the quantum phase transition (QPT) in a lattice-deformed Einstein-Maxwell-Dilaton theory. Novel backgrounds exhibiting metal-insulator transitions (MIT) have been constructed in which both metallic phase and insulating phase have vanishing entropy density in zero temperature limit. We find that the first order derivative of HEE with respect to lattice parameters exhibits extremal behavior near QCPs. We propose that it would be a universal feature that HEE or its derivatives with respect to system parameters can characterize QPT in a generic holographic system. Our work opens a window for understanding the relation between entanglement and the QPT from a holographic perspective.

  17. Phase transitions and their energetics in calcite biominerals

    NASA Astrophysics Data System (ADS)

    Gilbert, Pupa

    2013-03-01

    Biominerals include mollusk shells and the skeletons of algae, sponges, corals, sea urchins and most other animals. The function of biominerals are diverse: mechanical support, attack, defense, grinding, biting, and chewing, gravitational and magnetic field sensing, light focusing, and many others. The exquisite nanostructure of biominerals is directly controlled by the organisms, which have evolved to master the chemico-physical aspects of mineralization. By controlling the inorganic precursor nanoparticle size, packing, and phase transitions, organisms efficiently fill space, produce tough and hard structures, with micro- or macroscopic morphology optimized for their functions. Specifically, this talk will address two key questions: Q: How are the beautiful biomineral morphologies achieved? A: Using amorphous precursor phases, with phase transitions kinetically regulated (retarded) by proteins. Q: How do organisms co-orient their single-crystalline biominerals? A: Controlling the propagation of crystallinity one nanoparticle at a time, not atom-by-atom.

  18. The time of a photoinduced spin-Peierls phase transition

    SciTech Connect

    Semenov, A. L.

    2015-02-15

    The time τ of the spin-Peierls phase transition is analyzed theoretically as a function of the duration τ{sub p} of the exciting light pulse and the average number x{sub 0} of absorbed photons per magnetic ion after the transmission of the pulse. It is shown that the phase transition occurs at x{sub 0} > x{sub c}. The critical value x{sub c} is determined as a function of the duration τ{sub p} of the light pulse. A photoinduced variation in the optical reflection coefficient R is calculated as a function of time t. The results of calculation are compared with experimental data on ultrafast photoinduced melting of the low-temperature spin-Peierls phase into potassium tetracyanoquinodimethan (K-TCNQ)

  19. Liquid-gas phase transition in nuclear matter including strangeness

    SciTech Connect

    Wang, P.; Leinweber, D.B.; Williams, A.G.; Thomas, A.W.

    2004-11-01

    We apply the chiral SU(3) quark mean field model to study the properties of strange hadronic matter at finite temperature. The liquid-gas phase transition is studied as a function of the strangeness fraction. The pressure of the system cannot remain constant during the phase transition, since there are two independent conserved charges (baryon and strangeness number). In a range of temperatures around 15 MeV (precise values depending on the model used) the equation of state exhibits multiple bifurcates. The difference in the strangeness fraction f{sub s} between the liquid and gas phases is small when they coexist. The critical temperature of strange matter turns out to be a nontrivial function of the strangeness fraction.

  20. Quantum information-geometry of dissipative quantum phase transitions.

    PubMed

    Banchi, Leonardo; Giorda, Paolo; Zanardi, Paolo

    2014-02-01

    A general framework for analyzing the recently discovered phase transitions in the steady state of dissipation-driven open quantum systems is still lacking. To fill this gap, we extend the so-called fidelity approach to quantum phase transitions to open systems whose steady state is a Gaussian fermionic state. We endow the manifold of correlation matrices of steady states with a metric tensor g measuring the distinguishability distance between solutions corresponding to a different set of control parameters. The phase diagram can then be mapped out in terms of the scaling behavior of g and connections with the Liouvillean gap and the model correlation functions unveiled. We argue that the fidelity approach, thanks to its differential-geometric and information-theoretic nature, provides insights into dissipative quantum critical phenomena as well as a general and powerful strategy to explore them. PMID:25353417

  1. Structural Phase Transitions by Design in Monolayer Alloys.

    PubMed

    Duerloo, Karel-Alexander N; Reed, Evan J

    2016-01-26

    Two-dimensional monolayer materials are a highly anomalous class of materials under vigorous exploration. Mo- and W-dichalcogenides are especially unusual two-dimensional materials because they exhibit at least three different monolayer crystal structures with strongly differing electronic properties. This intriguing yet poorly understood feature, which is not present in graphene, may support monolayer phase engineering, phase change memory and other applications. However, knowledge of the relevant phase boundaries and how to engineer them is lacking. Here we show using alloy models and state-of-the-art density functional theory calculations that alloyed MoTe2-WTe2 monolayers support structural phase transitions, with phase transition temperatures tunable over a large range from 0 to 933 K. We map temperature-composition phase diagrams of alloys between pure MoTe2 and pure WTe2, and benchmark our methods to analogous experiments on bulk materials. Our results suggest applications for two-dimensional materials as phase change materials that may provide scale, flexibility, and energy consumption advantages. PMID:26647117

  2. Noise spectroscopy near phase transitions in nanoscale systems

    NASA Astrophysics Data System (ADS)

    Shi, Zhenzhong

    Strongly correlated electron systems manifest themselves in various phases, due to a delicate balance between many types of competing interactions, such as electron-electron interaction, electron-phonon interaction, and disorder induced interaction. Application of certain external stimuli, such as temperature, electric field, stress to such systems often breaks this balance, leading to phase transitions. Furthermore, in systems with reduced dimensions, confinement effects often play important roles in driving these phase transitions. Among the many experimental tools that have been used to study phase transitions in strongly correlated electron systems, resistance noise spectroscopy, assisted with conventional transport measurements, provides an unique perspective in exploring the microscopic dynamics near well-studied phase transitions in superconductors, magnetic materials, semiconductors, 2D electron systems etc.. In this thesis, using noise spectroscopy and transport measurements, two classes of strongly correlated electron systems in the nanoribbon form were studied: charge density wave systems (NbSe3 and o-TaS 3), and tungsten (W) doped vanadium dioxide (VO2) system. Due to the size of the samples, finite size effects were found to be important in the transport and noise measurements of both NbSe3 and o-TaS3. A model that treats the pinning by bulk, surface and contacts separately was proposed to explain an anomaly, which was observed in the differential resistance vs. electric field at temperatures below the Peierls transition in NbSe3. This model, combined with slow motions of the CDW due to the fast freezing of the thermal excitations over the Peierls gap, were suggested to account for discrete peaks in the Ohmic regime of o-TaS 3, at temperatures below 100 K. In addition, a nonmonotonic behaivor in the electric field dependence of noise magnitude was seen in NbSe 3 in certain temperature ranges, and can be explained as signatures of thermally activated

  3. Phase transitions in a 3 dimensional lattice loop gas

    NASA Astrophysics Data System (ADS)

    MacKenzie, Richard; Nebia-Rahal, F.; Paranjape, M. B.

    2010-06-01

    We investigate, via Monte Carlo simulations, the phase structure of a system of closed, nonintersecting but otherwise noninteracting, loops in 3 Euclidean dimensions. The loops correspond to closed trajectories of massive particles and we find a phase transition as a function of their mass. We identify the order parameter as the average length of the loops at equilibrium. This order parameter exhibits a sharp increase as the mass is decreased through a critical value, the behavior seems to be a crossover transition. We believe that the model represents an effective description of the broken-symmetry sector of the 2+1 dimensional Abelian Higgs model, in the extreme strong coupling limit. The massive gauge bosons and the neutral scalars are decoupled, and the relevant low-lying excitations correspond to vortices and antivortices. The functional integral can be approximated by a sum over simple, closed vortex loop configurations. We present a novel fashion to generate nonintersecting closed loops, starting from a tetrahedral tessellation of three space. The two phases that we find admit the following interpretation: the usual Higgs phase and a novel phase which is heralded by the appearance of effectively infinitely long loops. We compute the expectation value of the Wilson loop operator and that of the Polyakov loop operator. The Wilson loop exhibits perimeter law behavior in both phases implying that the transition corresponds neither to the restoration of symmetry nor to confinement. The effective interaction between external charges is screened in both phases, however there is a dramatic increase in the polarization cloud in the novel phase as shown by the energy shift introduced by the Wilson loop.

  4. Liquid plasmonics: manipulating surface plasmon polaritons via phase transitions.

    PubMed

    Vivekchand, S R C; Engel, Clifford J; Lubin, Steven M; Blaber, Martin G; Zhou, Wei; Suh, Jae Yong; Schatz, George C; Odom, Teri W

    2012-08-01

    This paper reports the manipulation of surface plasmon polaritons (SPPs) in a liquid plasmonic metal by changing its physical phase. Dynamic properties were controlled by solid-to-liquid phase transitions in 1D Ga gratings that were fabricated using a simple molding process. Solid and liquid phases were found to exhibit different plasmonic properties, where light coupled to SPPs more efficiently in the liquid phase. We exploited the supercooling characteristics of Ga to access plasmonic properties associated with the liquid phase over a wider temperature range (up to 30 °C below the melting point of bulk Ga). Ab initio density functional theory-molecular dynamic calculations showed that the broadening of the solid-state electronic band structure was responsible for the superior plasmonic properties of the liquid metal. PMID:22823536

  5. 2D ice from first principles: structures and phase transitions

    NASA Astrophysics Data System (ADS)

    Chen, Ji; Schusteritsch, Georg; Pickard, Chris J.; Salzmann, Christoph G.; Michaelides, Angelos

    Despite relevance to disparate areas such as cloud microphysics and tribology, major gaps in the understanding of the structures and phase transitions of low-dimensional water ice remain. Here we report a first principles study of confined 2D ice as a function of pressure. We find that at ambient pressure hexagonal and pentagonal monolayer structures are the two lowest enthalpy phases identified. Upon mild compression the pentagonal structure becomes the most stable and persists up to ca. 2 GPa at which point square and rhombic phases are stable. The square phase agrees with recent experimental observations of square ice confined within graphene sheets. We also find a double layer AA stacked square ice phase, which clarifies the difference between experimental observations and earlier force field simulations. This work provides a fresh perspective on 2D confined ice, highlighting the sensitivity of the structures observed to both the confining pressure and width.

  6. Anelastic loss mechanisms associated with phase transitions in perovskites

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Koppensteiner, J.; Schranz, W.; Carpenter, M. A.

    2009-12-01

    Seismic attenuation has become a topical issue in geophysics because of the potential information about temperature, as a function of depth in the earth, which it might convey. Aside from the expected role of grain boundaries, dislocations, etc., attenuation associated with phase transformations could be as marked and important as the changes in elastic moduli by which the latter are identified. In the present study, anelastic loss mechanisms associated with phase transitions in perovskites have been studied by Resonant Ultrasound Spectroscopy (10^5 - 10^6 Hz, relatively low stress and low strain ~10^-7), and by Dynamic Mechanical Analysis (10^-2 - 10^2 Hz, relatively high stress and high strain ~10^-5 - 10^-3), in the temperature range 10 - 1200 K. (Mg, Fe)SiO3 has the Pnma structure and CaSiO3 could have the Pm3m or I4/mcm structure under lower mantle conditions. In addition, a stability field for the Imma structure would be easy to miss. It is difficult to investigate transitions occurring in these directly, so use has been made of analogue phases. BeCeO3 and Sr(ZrxTi(1-x))O3 have been studied for dissipation effects associated with displacive phase transitions, and LaCoO3 has been investigated for the high spin/low spin behaviour of Co3+. The transitions in BaCeO3, i.e. Pm3m - R3c - Imma - Pnma, and the transitions in Sr(ZrxTi(1-x))O3, i.e. Pm3m - I4/mcm - Imma - Pnma, cover a wider variety of transitions than has been investigated in other analogue materials. The possible loss mechanisms identified in BeCeO3 are twin wall movement, two phase interface movement (perhaps around clusters of one structure in another close to a first order phase transition), and an unidentified process which gives to a Debye-like anomaly at low temperature in the stability field of the Pnma structure. Possible loss mechanisms in Sr(ZrxTi(1-x))O3 are twin wall movement and two phase interface movement. Associated with the high spin - intermediate spin transition in LaCoO3 near 500 K

  7. Comparing two tetraalkylammonium ionic liquids. II. Phase transitions.

    PubMed

    Lima, Thamires A; Paschoal, Vitor H; Faria, Luiz F O; Ribeiro, Mauro C C; Ferreira, Fabio F; Costa, Fanny N; Giles, Carlos

    2016-06-14

    Phase transitions of the ionic liquids n-butyl-trimethylammonium bis(trifluoromethanesulfonyl)imide, [N1114][NTf2], and methyl-tributylammonium bis(trifluoromethanesulfonyl)imide, [N1444][NTf2], were investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD) measurements, and Raman spectroscopy. XRD and Raman spectra were obtained as a function of temperature at atmospheric pressure, and also under high pressure at room temperature using a diamond anvil cell (DAC). [N1444][NTf2] experiences glass transition at low temperature, whereas [N1114][NTf2] crystallizes or not depending on the cooling rate. Both the ionic liquids exhibit glass transition under high pressure. XRD and low-frequency Raman spectra provide a consistent physical picture of structural ordering-disordering accompanying the thermal events of crystallization, glass transition, cold crystallization, pre-melting, and melting. Raman spectra in the high-frequency range of some specific cation and anion normal modes reveal conformational changes of the molecular structures along phase transitions. PMID:27306016

  8. Comparing two tetraalkylammonium ionic liquids. II. Phase transitions

    NASA Astrophysics Data System (ADS)

    Lima, Thamires A.; Paschoal, Vitor H.; Faria, Luiz F. O.; Ribeiro, Mauro C. C.; Ferreira, Fabio F.; Costa, Fanny N.; Giles, Carlos

    2016-06-01

    Phase transitions of the ionic liquids n-butyl-trimethylammonium bis(trifluoromethanesulfonyl)imide, [N1114][NTf2], and methyl-tributylammonium bis(trifluoromethanesulfonyl)imide, [N1444][NTf2], were investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD) measurements, and Raman spectroscopy. XRD and Raman spectra were obtained as a function of temperature at atmospheric pressure, and also under high pressure at room temperature using a diamond anvil cell (DAC). [N1444][NTf2] experiences glass transition at low temperature, whereas [N1114][NTf2] crystallizes or not depending on the cooling rate. Both the ionic liquids exhibit glass transition under high pressure. XRD and low-frequency Raman spectra provide a consistent physical picture of structural ordering-disordering accompanying the thermal events of crystallization, glass transition, cold crystallization, pre-melting, and melting. Raman spectra in the high-frequency range of some specific cation and anion normal modes reveal conformational changes of the molecular structures along phase transitions.

  9. Characterizing Phase Transitions in a Model of Neutral Evolutionary Dynamics

    NASA Astrophysics Data System (ADS)

    Scott, Adam; King, Dawn; Bahar, Sonya

    2013-03-01

    An evolutionary model was recently introduced for sympatric, phenotypic evolution over a variable fitness landscape with assortative mating (Dees & Bahar 2010). Organisms in the model are described by coordinates in a two-dimensional phenotype space, born at random coordinates with limited variation from their parents as determined by a mutation parameter, mutability. The model has been extended to include both neutral evolution and asexual reproduction in Scott et al (submitted). It has been demonstrated that a second order, non-equilibrium phase transition occurs for the temporal dynamics as the mutability is varied, for both the original model and for neutral conditions. This transition likely belongs to the directed percolation universality class. In contrast, the spatial dynamics of the model shows characteristics of an ordinary percolation phase transition. Here, we characterize the phase transitions exhibited by this model by determining critical exponents for the relaxation times, characteristic lengths, and cluster (species) mass distributions. Missouri Research Board; J.S. McDonnell Foundation

  10. Influence of pions on the hadron-quark phase transition

    SciTech Connect

    Lourenco, O.; Dutra, M.; Frederico, T.; Malheiro, M.; Delfino, A.

    2013-05-06

    In this work we present the features of the hadron-quark phase transition diagrams in which the pions are included in the system. To construct such diagrams we use two different models in the description of the hadronic and quark sectors. At the quark level, we consider two distinct parametrizations of the Polyakov-Nambu-Jona-Lasinio (PNJL) models. In the hadronic side, we use a well known relativistic mean-field (RMF) nonlinear Walecka model. We show that the effect of the pions on the hadron-quark phase diagrams is to move the critical end point (CEP) of the transitions lines. Such an effect also depends on the value of the critical temperature (T{sub 0}) in the pure gauge sector used to parametrize the PNJL models. Here we treat the phase transitions using two values for T{sub 0}, namely, T{sub 0}= 270 MeV and T{sub 0}= 190 MeV. The last value is used to reproduce lattice QCD data for the transition temperature at zero chemical potential.

  11. Gravitational waves from a very strong electroweak phase transition

    NASA Astrophysics Data System (ADS)

    Leitao, Leonardo; Mégevand, Ariel

    2016-05-01

    We investigate the production of a stochastic background of gravitational waves in the electroweak phase transition. We consider extensions of the Standard Model which can give very strongly first-order phase transitions, such that the transition fronts either propagate as detonations or run away. To compute the bubble wall velocity, we estimate the friction with the plasma and take into account the hydrodynamics. We track the development of the phase transition up to the percolation time, and we calculate the gravitational wave spectrum generated by bubble collisions, magnetohydrodynamic turbulence, and sound waves. For the kinds of models we consider, we find parameter regions for which the gravitational waves are potentially observable at the planned space-based interferometer eLISA. In such cases, the signal from sound waves is generally dominant, while that from bubble collisions is the least significant of them. Since the sound waves and turbulence mechanisms are diminished for runaway walls, the models with the best prospects of detection at eLISA are those which do not have such solutions. In particular, we find that heavy extra bosons provide stronger gravitational wave signals than tree-level terms.

  12. Partial information, market efficiency, and anomalous continuous phase transition

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Zheng, Wenzhi; Huang, Jiping

    2014-04-01

    It is a common belief in economics and social science that if there is more information available for agents to gather in a human system, the system can become more efficient. The belief can be easily understood according to the well-known efficient market hypothesis. In this work, we attempt to challenge this belief by investigating a complex adaptive system, which is modeled by a market-directed resource-allocation game with a directed random network. We conduct a series of controlled human experiments in the laboratory to show the reliability of the model design. As a result, we find that even under a small information concentration, the system can still almost reach the optimal (balanced) state. Furthermore, the ensemble average of the system’s fluctuation level goes through a continuous phase transition. This behavior means that in the second phase if too much information is shared among agents, the system’s stability will be harmed instead, which differs from the belief mentioned above. Also, at the transition point, the ensemble fluctuations of the fluctuation level remain at a low value. This phenomenon is in contrast to the textbook knowledge about continuous phase transitions in traditional physical systems, namely, fluctuations will rise abnormally around a transition point since the correlation length becomes infinite. Thus, this work is of potential value to a variety of fields, such as physics, economics, complexity science, and artificial intelligence.

  13. Chiral and deconfining phase transitions from holographic QCD study

    NASA Astrophysics Data System (ADS)

    Fang, Zhen; He, Song; Li, Danning

    2016-06-01

    A preliminary quantitative study to match the lattice QCD simulation on the chiral and deconfining phase transitions of QCD in the bottom-up holographic framework is given. We constrain the relation between dilaton field ϕ and metric warp factor Ae and get several reasonable models in the Einstein-Dilaton system. Using the potential reconstruction approach, we solve the corresponding gravity background. Then we fit the background-related parameters by comparing the equation of state with the two-flavor lattice QCD results. After that we study the temperature dependent behavior of Polyakov loop and chiral condensate under those background solutions. We find that the results are in good agreement with the two-flavor lattice results. All the studies about the equation of state, the Polyakov loop and the chiral condensate signal crossover behavior of the phase transitions, which are consistent with the current understanding on the QCD phase transitions with physical quark mass. Furthermore, the extracted transition temperatures are comparable with the two-flavor lattice QCD results.

  14. Accessing hidden isosymmetric phase transitions in perovskite thin films

    NASA Astrophysics Data System (ADS)

    Rondinelli, James; Coh, Sinisa

    2011-03-01

    Isosymmetric phase transitions (IPT), which show no change in occupied Wyckoff positions or crystallographic space group, are exceedingly rare in crystalline matter because most condensed systems respond to external stimuli by undergoing ``conventional'' symmetry-lowering displacive, martensitic or reconstructive transitions. In this work, we use first-principles density functional calculations to identify an elusive IPT in orthorhombic AB O3 perovskite oxides with tendency towards rhombohedral symmetry. Using perovskite LaGa O3 as our prototypical system, we show that the latent isosymmetric phase transition, which manifests as an abrupt change in the octahedral rotation axis, is accessible only with an external elastic constraint---bi-axial strain. We show the transition originates from a soft phonon that describes the geometric connectivity and relative phase of the Ga O6 polyhedra. By connecting the origin of IPT to a chemical and structural incompatibility between the lattice and the elastic constraints, we describe how subtle changes in bulk orthorhombic and monoclinic symmetries are critical to the complete engineering of structure-correlated electronic properties in thin films. Because bi-axial strain is the critical parameter controlling the IPT, we suggest heteroepitaxial synthesis of IPT materials is a plausible route to realize high- κ dielectric actuators with variable band gaps and dielectric anisotropies.

  15. 78 FR 30951 - SBIR/STTR Phase I to Phase II Transition Benchmarks

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-23

    ... INFORMATION: Section 4(a)(3)(iii) of the SBIR Policy Directive (77 FR 46806) and the STTR Policy Directive (77 FR 46855) require each agency to establish an SBA-approved Phase I-Phase II Transition Rate benchmark... benchmarks can take effect. As a result, on October 16, 2012, at 77 FR 63410, SBA published the...

  16. 77 FR 63410 - SBIR/STTR Phase I to Phase II Transition Benchmarks

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-16

    ... 4(a)(3)(iii) of the SBIR Policy Directive, which was published on August 6, 2012, at 77 FR 46806 and the STTR Policy Directive, which was published the same day at 77 FR 46855, requires each agency to... ADMINISTRATION SBIR/STTR Phase I to Phase II Transition Benchmarks AGENCY: U.S. Small Business...

  17. Ultrafast dynamics during the photoinduced phase transition in VO2

    NASA Astrophysics Data System (ADS)

    Wegkamp, Daniel; Stähler, Julia

    2015-12-01

    The phase transition of VO2 from a monoclinic insulator to a rutile metal, which occurs thermally at TC = 340 K, can also be driven by strong photoexcitation. The ultrafast dynamics during this photoinduced phase transition (PIPT) have attracted great scientific attention for decades, as this approach promises to answer the question of whether the insulator-to-metal (IMT) transition is caused by electronic or crystallographic processes through disentanglement of the different contributions in the time domain. We review our recent results achieved by femtosecond time-resolved photoelectron, optical, and coherent phonon spectroscopy and discuss them within the framework of a selection of latest, complementary studies of the ultrafast PIPT in VO2. We show that the population change of electrons and holes caused by photoexcitation launches a highly non-equilibrium plasma phase characterized by enhanced screening due to quasi-free carriers and followed by two branches of non-equilibrium dynamics: (i) an instantaneous (within the time resolution) collapse of the insulating gap that precedes charge carrier relaxation and significant ionic motion and (ii) an instantaneous lattice potential symmetry change that represents the onset of the crystallographic phase transition through ionic motion on longer timescales. We discuss the interconnection between these two non-thermal pathways with particular focus on the meaning of the critical fluence of the PIPT in different types of experiments. Based on this, we conclude that the PIPT threshold identified in optical experiments is most probably determined by the excitation density required to drive the lattice potential change rather than the IMT. These considerations suggest that the IMT can be driven by weaker excitation, predicting a transiently metallic, monoclinic state of VO2 that is not stabilized by the non-thermal structural transition and, thus, decays on ultrafast timescales.

  18. Universal energy transport law for dissipative and diffusive phase transitions

    NASA Astrophysics Data System (ADS)

    Nadkarni, Neel; Daraio, Chiara; Abeyaratne, Rohan; Kochmann, Dennis M.

    2016-03-01

    We present a scaling law for the energy and speed of transition waves in dissipative and diffusive media. By considering uniform discrete lattices and continuous solids, we show that—for arbitrary highly nonlinear many-body interactions and multistable on-site potentials—the kinetic energy per density transported by a planar transition wave front always exhibits linear scaling with wave speed and the ratio of energy difference to interface mobility between the two phases. We confirm that the resulting linear superposition applies to highly nonlinear examples from particle to continuum mechanics.

  19. A Phase Transition for Circle Maps and Cherry Flows

    NASA Astrophysics Data System (ADS)

    Palmisano, Liviana

    2013-07-01

    We study C 2 weakly order preserving circle maps with a flat interval. The main result of the paper is about a sharp transition from degenerate geometry to bounded geometry depending on the degree of the singularities at the boundary of the flat interval. We prove that the non-wandering set has zero Hausdorff dimension in the case of degenerate geometry and it has Hausdorff dimension strictly greater than zero in the case of bounded geometry. Our results about circle maps allow to establish a sharp phase transition in the dynamics of Cherry flows.

  20. Modeling non-equilibrium phase transitions in isentropically compressed Bi

    SciTech Connect

    Kane, J; Smith, R

    2005-09-19

    We report here on modeling of non-equilibrium phase transitions in Bi samples isentropically compressed to 120 GPa by a ramped drive, which is produced using the Janus laser. In the experiments, the Bi samples are attached to windows of LiF or sapphire, and the velocity history of the sample-window interface is recorded with line VISAR. The 1D response of the targets is modeled using a multiphase Bi EOS, the Andrews-Hayes method for non-equilibrium transitions, and a Boettger-Wallace kinetics model. The pressure drive is deduced by back integration of VISAR data from shots performed with Al samples.

  1. Characterization of the transition from defect to phase turbulence

    SciTech Connect

    Egolf, D.A.; Greenside, H.S. )

    1995-03-06

    For the complex Ginzburg-Landau equation on a large periodic interval, we show that the transition from defect to phase turbulence is more accurately described as a smooth crossover rather than as a sharp continuous transition. We obtain this conclusion by using a parallel computer to calculate various order parameters, especially the density of space-time defects, the Lyapunov dimension density, and correlation lengths. Remarkably, the correlation length of the field amplitude fluctuations is, within a constant factor, equal to the length scale defined by the dimension density.

  2. Atmospheric Convection as a Continuous Phase Transition:. Further Evidence

    NASA Astrophysics Data System (ADS)

    Peters, Ole; Neelin, J. David

    We present further methods to investigate in how far atmospheric precipitation can be described as a continuous phase transition. Previous work has shown a scale-free range in the rainfall event size distribution and a suggestive power-law pickup in the rain rate above a critical level of instability. Here we examine an additional technique for estimating critical parameters, we investigate the rain rate pickup for an example of an extreme event, namely satellite observations of Hurricane Katrina, and develop an analysis of fluctuations in the rain rate to estimate uncertainties in the tuning parameters relevant for the transition.

  3. Optical Properties in Non-equilibrium Phase Transitions

    SciTech Connect

    Ao, T; Ping, Y; Widmann, K; Price, D F; Lee, E; Tam, H; Springer, P T; Ng, A

    2006-01-05

    An open question about the dynamical behavior of materials is how phase transition occurs in highly non-equilibrium systems. One important class of study is the excitation of a solid by an ultrafast, intense laser. The preferential heating of electrons by the laser field gives rise to initial states dominated by hot electrons in a cold lattice. Using a femtosecond laser pump-probe approach, we have followed the temporal evolution of the optical properties of such a system. The results show interesting correlation to non-thermal melting and lattice disordering processes. They also reveal a liquid-plasma transition when the lattice energy density reaches a critical value.

  4. Holographic entanglement entropy close to quantum phase transitions

    NASA Astrophysics Data System (ADS)

    Ling, Yi; Liu, Peng; Niu, Chao; Wu, Jian-Pin; Xian, Zhuo-Yu

    2016-04-01

    We investigate the holographic entanglement entropy (HEE) of a strip geometry in four dimensional Q-lattice backgrounds, which exhibit metal-insulator transitions in the dual field theory. Remarkably, we find that the HEE always displays a peak in the vicinity of the quantum critical points. Our model provides the first direct evidence that the HEE can be used to characterize the quantum phase transition (QPT). We also conjecture that the maximization behavior of HEE at quantum critical points would be universal in general holographic models.

  5. High pressure phase transitions in tetrahedrally coordinated semiconducting compounds

    NASA Technical Reports Server (NTRS)

    Yu, S. C.; Spain, I. L.; Skelton, E. F.

    1978-01-01

    New experimental results are reported for structural transitions at high pressure in several III-V compounds and two II-VI compounds. These data, together with earlier results, are then compared with the predictions of model calculations of Van Vechten. Experimental transition pressures are often at variance with calculated values. However, his calculation assumes that the high pressure phase is metallic, with the beta-Sn structure. The present results show that several compounds assume an ionic NaCl structure at high pressure, while others have neither the beta-Sn nor NaCl structure.

  6. Solid solubility, phase transitions, thermal expansion, and compressibility in Sc1-xAlxF3

    NASA Astrophysics Data System (ADS)

    Morelock, Cody R.; Gallington, Leighanne C.; Wilkinson, Angus P.

    2015-02-01

    With the goal of thermal expansion control, the synthesis and properties of Sc1-xAlxF3 were investigated. The solubility limit of AlF3 in ScF3 at ~1340 K is ~50%. Solid solutions (x≤0.50) were characterized by synchrotron powder diffraction at ambient pressure between 100 and 900 K and at pressures <0.414 GPa while heating from 298 to 523 K. A phase transition from cubic to rhombohedral is observed. The transition temperature increases smoothly with Al3+ content, approaching 500 K at the solid solubility limit, and also upon compression at fixed Al3+ content. The slope of the pressure-temperature phase boundary is ~0.5 K MPa-1, which is steep relative to that for most symmetry-lowering phase transitions in perovskites. The volume coefficient of thermal expansion (CTE) for the rhombohedral phase is strongly positive, but the cubic-phase CTE varies from negative (x<0.15) to near-zero (x=0.15) to positive (x>0.20) between ~600 and 800 K. The cubic solid solutions elastically stiffen on heating, while Al3+ substitution causes softening at a given temperature.

  7. Strain relaxation and order-disorder phase transition in irradiated MgAl2O4.

    PubMed

    Kossoy, Anna

    2014-01-01

    MgAl2O4 spinel is widely studied in many fields of material science because of its variety of interesting properties and potential applications. The influence of cation disorder on the physical properties of MgAl2O4 makes understanding of the effects related to this disorder particularly important. It is known that, upon ion irradiation at low temperature, MgAl2O4 undergoes an order-disorder phase transition followed by amorphization. This paper reports a combined high resolution X-ray diffraction and transmission electron microscopy study elucidating the linkage between this phase transition and irradiation-induced elastic strain. Irradiations were carried out on [110] and [111]-oriented single crystals of MgAl2O4 at T = 77 K with 600 keV Xe ions over a wide range of doses. The data suggests that the beginning of the order-disorder phase transition coincides with the beginning of strain relaxation. This result indicates that the volume of the new phase is slightly smaller than that of the unirradiated spinel. The dose at which the phase transformation occurs is found to be dependent on the crystal orientation, which can be attributed to both elastic and crystallographic properties. PMID:24247735

  8. High-pressure phase transitions in rubidium and caesium hydroxides.

    PubMed

    Hermann, Andreas

    2016-06-28

    A computational investigation of the high-pressure phase sequence of the heaviest alkali hydroxides, RbOH and CsOH, shows that the phase diagram of both compounds is richer than hitherto thought. First-principles calculations suggest, based on energetics and comparisons to experimental diffraction and spectroscopy signatures, that the high-pressure phase RbOH-VI, stable above 6 GPa in experiment, should be assigned the KOH-VI structure type, and features localised hydrogen-bonded (OH)4 units. Meanwhile, a new high-pressure phase CsOH-VII is predicted to be stable above 10 GPa in an isosymmetric phase transition that, like RbOH-VI, marks the transition from layered to three-dimensional network structures under increased compression. Both new phases highlight an unexpected flexibility of hydrogen bond network formation in a series of compounds that seemingly only vary in the cation size, and potential consequences for similar systems, such as water-carrying minerals, are discussed briefly. PMID:27271485

  9. Structural phase transitions in EuNbO3 perovskite

    NASA Astrophysics Data System (ADS)

    Kususe, Yoshiro; Yoshida, Suguru; Fujita, Koji; Akamatsu, Hirofumi; Fukuzumi, Masafumi; Murai, Shunsuke; Tanaka, Katsuhisa

    2016-07-01

    The crystal structures of europium niobate, EuNbO3, have been examined over a wide temperature range between 20 and 500 K using synchrotron X-ray diffraction. We have observed two successive structural phase transitions at 360 and 460 K. Below 350 K, EuNbO3 adopts an orthorhombic perovskite structure (space group Imma), which is characterized by NbO6 octahedral tilting about the pseudocubic two-fold axis. The result differs from previous reports in which EuNbO3 was assigned to a cubic aristotype (space group Pm 3 barm) of perovskite at room temperature. At around 360 K, EuNbO3 undergoes a first-order phase transition to a tetragonal symmetry (space group I4/mcm) with the NbO6 octahedral tilting about the pseudocubic four-fold axis. As the temperature is further increased, the I4/mcm tetragonal phase changes into the Pm 3 barm cubic aristotype at 460 K. The tetragonal-to-cubic transformation is characterized as a continuous phase transition.

  10. Bending-induced phase transition in monolayer black phosphorus

    NASA Astrophysics Data System (ADS)

    Pan, Dou-Xing; Wang, Tzu-Chiang; Guo, Wan-Lin

    2015-08-01

    Bending-induced phase transition in monolayer black phosphorus is investigated through first principles calculations. By wrapping the layer into nanotubes along armchair and zigzag directions with different curvatures, it is found that phase transitions of the tubes occur when radius of curvature is smaller than 5 Å in bending along the zigzag direction, while the tubes remain stable along the armchair direction. Small zigzag tubes with odd numbered monolayer unit cells tend to transfer toward armchair-like phases, but the tubes with even numbered monolayer unit cells transfer into new complex bonding structures. The mechanism for the bending-induced phase transition is revealed by the comprehensive analyses of the bending strain energies, electron density distributions, and band structures. The results show significant anisotropic bending stability of black phosphorus and should be helpful for its mechanical cleavage fabrication in large size. Project supported by the National Natural Science Foundation of China (Grant Nos. 11021262, 11172303, and 11132011) and the National Basic Research Program of China (Grant No.2012CB937500).

  11. Coupled Structural, Thermal, Phase-Change and Electromagnetic Analysis for Superconductors. Volume 1

    NASA Technical Reports Server (NTRS)

    Felippa, C. A.; Farhat, C.; Park, K. C.; Militello, C.; Schuler, J. J.

    1996-01-01

    Described are the theoretical development and computer implementation of reliable and efficient methods for the analysis of coupled mechanical problems that involve the interaction of mechanical, thermal, phase-change and electromagnetic subproblems. The focus application has been the modeling of superconductivity and associated quantum-state phase-change phenomena. In support of this objective the work has addressed the following issues: (1) development of variational principles for finite elements, (2) finite element modeling of the electromagnetic problem, (3) coupling of thermal and mechanical effects, and (4) computer implementation and solution of the superconductivity transition problem. The main accomplishments have been: (1) the development of the theory of parametrized and gauged variational principles, (2) the application of those principled to the construction of electromagnetic, thermal and mechanical finite elements, and (3) the coupling of electromagnetic finite elements with thermal and superconducting effects, and (4) the first detailed finite element simulations of bulk superconductors, in particular the Meissner effect and the nature of the normal conducting boundary layer. The theoretical development is described in two volumes. This volume, Volume 1, describes mostly formulations for specific problems. Volume 2 describes generalization of those formulations.

  12. Selective properties of volume phase holograms in photorefractive crystals

    NASA Astrophysics Data System (ADS)

    Pencheva, T. G.; Petrov, M. P.; Stepanov, S. I.

    1982-01-01

    The paper deals with the selective properties (both angular and spectral) of volume phase holograms in birefringent and cubic optically active photorefractive crystals. It is shown that in birefringent crystals of LiNbO 3 type, the spectral selectivity of the grating depends remarkably on the type of diffraction (isotropic or anisotropic) and the polarization of the reconstructing plane light wave. In cubic optically active crystals the peculiarities of diffraction reveal themselves in a fine structure of differently polarized peaks in the Bragg maximum that can be easily observed, in particular in Bi 12SiO 20 samples with a thickness d ≈ 8 mm.

  13. Higher-order phase transitions on financial markets

    NASA Astrophysics Data System (ADS)

    Kasprzak, A.; Kutner, R.; Perelló, J.; Masoliver, J.

    2010-08-01

    Statistical and thermodynamic properties of the anomalous multifractal structure of random interevent (or intertransaction) times were thoroughly studied by using the extended continuous-time random walk (CTRW) formalism of Montroll, Weiss, Scher, and Lax. Although this formalism is quite general (and can be applied to any interhuman communication with nontrivial priority), we consider it in the context of a financial market where heterogeneous agent activities can occur within a wide spectrum of time scales. As the main general consequence, we found (by additionally using the Saddle-Point Approximation) the scaling or power-dependent form of the partition function, Z(q'). It diverges for any negative scaling powers q' (which justifies the name anomalous) while for positive ones it shows the scaling with the general exponent τ(q'). This exponent is the nonanalytic (singular) or noninteger power of q', which is one of the pilar of higher-order phase transitions. In definition of the partition function we used the pausing-time distribution (PTD) as the central one, which takes the form of convolution (or superstatistics used, e.g. for describing turbulence as well as the financial market). Its integral kernel is given by the stretched exponential distribution (often used in disordered systems). This kernel extends both the exponential distribution assumed in the original version of the CTRW formalism (for description of the transient photocurrent measured in amorphous glassy material) as well as the Gaussian one sometimes used in this context (e.g. for diffusion of hydrogen in amorphous metals or for aging effects in glasses). Our most important finding is the third- and higher-order phase transitions, which can be roughly interpreted as transitions between the phase where high frequency trading is most visible and the phase defined by low frequency trading. The specific order of the phase transition directly depends upon the shape exponent α defining the stretched

  14. Astrobiological Phase Transition: Towards Resolution of Fermi's Paradox

    NASA Astrophysics Data System (ADS)

    Ćirković, Milan M.; Vukotić, Branislav

    2008-12-01

    Can astrophysics explain Fermi’s paradox or the “Great Silence” problem? If available, such explanation would be advantageous over most of those suggested in literature which rely on unverifiable cultural and/or sociological assumptions. We suggest, instead, a general astrobiological paradigm which might offer a physical and empirically testable paradox resolution. Based on the idea of James Annis, we develop a model of an astrobiological phase transition of the Milky Way, based on the concept of the global regulation mechanism(s). The dominant regulation mechanisms, arguably, are γ-ray bursts, whose properties and cosmological evolution are becoming well-understood. Secular evolution of regulation mechanisms leads to the brief epoch of phase transition: from an essentially dead place, with pockets of low-complexity life restricted to planetary surfaces, it will, on a short (Fermi-Hart) timescale, become filled with high-complexity life. An observation selection effect explains why we are not, in spite of the very small prior probability, to be surprised at being located in that brief phase of disequilibrium. In addition, we show that, although the phase-transition model may explain the “Great Silence”, it is not supportive of the “contact pessimist” position. To the contrary, the phase-transition model offers a rational motivation for continuation and extension of our present-day Search for ExtraTerrestrial Intelligence (SETI) endeavours. Some of the unequivocal and testable predictions of our model include the decrease of extinction risk in the history of terrestrial life, the absence of any traces of Galactic societies significantly older than human society, complete lack of any extragalactic intelligent signals or phenomena, and the presence of ubiquitous low-complexity life in the Milky Way.

  15. Phase transitions in Group III-V and II-VI semiconductors at high pressure

    NASA Technical Reports Server (NTRS)

    Yu, S. C.; Liu, C. Y.; Spain, I. L.; Skelton, E. F.

    1979-01-01

    The structures and transition pressures of Group III-V and II-VI semiconductors and of a pseudobinary system (Ga/x/In/1-x/Sb) have been investigated. Results indicate that GaP, InSb, GaSb, GaAs and possible AlP assume Metallic structures at high pressures; a tetragonal, beta-Sn-like structure is adopted by only InSb and GaSb. The rocksalt phase is preferred in InP, InAs, AlSb, ZnO and ZnS. The model of Van Vechten (1973) gives transition pressures which are in good agreement with measured values, but must be refined to account for the occurrence of the ionic rocksalt structure in some compounds. In addition, discrepancies between the theoretical scaling values for volume changes at the semiconductor-to-metal transitions are observed.

  16. Pressure-induced phase transitions of exposed curved surface nano-TiO2 with high photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Huang, Yanwei; Chen, Fengjiao; Li, Xin; Yuan, Ye; Dong, Haini; Samanta, Sudeshna; Yu, Zhenhai; Rahman, Saqib; Zhang, Jun; Yang, Ke; Yan, Shuai; Wang, Lin

    2016-06-01

    We report a unique phase transition in compressed exposed curved surface nano-TiO2 with high photocatalytic activity using in situ synchrotron X-ray diffraction and Raman Spectroscopy. High-pressure studies indicate that the anatase phase starts to transform into baddeleyite phase upon compression at 19.4 GPa, and completely transforms into the baddeleyite phase above 24.6 GPa. Upon decompression, the baddeleyite phase was maintained until the pressure was released to 6.4 GPa and then transformed into the α-PbO2 phase at 2.7 GPa. Together with the results of high-resolution transmission electron microscopy and the pressure-volume relationship, this phase transition's characteristics during the compression-decompression cycle demonstrate that the truncated biconic morphology possessed excellent stability. This study may provide an insight to the mechanisms of stability for high photocatalytic activity of nano-TiO2.

  17. A Transition to Metallic Hydrogen: Evidence of the Plasma Phase Transition

    NASA Astrophysics Data System (ADS)

    Silvera, Isaac; Zaghoo, Mohamed; Salamat, Ashkan

    The insulator-metal transition in hydrogen is one of the most outstanding problems in condensed matter physics. The high-pressure metallic phase is now predicted to be liquid atomic from T =0 K to very high temperatures. We have conducted measurements of optical properties of hot dense hydrogen in the region of 1.1-1.7 Mbar and up to 2200 K in a diamond anvil cell using pulsed laser heating of the sample. We present evidence in two forms: a plateau in the heating curves (average laser power vs temperature) characteristic of a first-order phase transition with latent heat, and changes in transmittance and reflectance characteristic of a metal for temperatures above the plateau temperature. For thick films the reflectance saturates at ~0.5. The phase line of this transition has a negative slope in agreement with theories of the so-called plasma phase transition. The NSF, Grant DMR-1308641, the DOE Stockpile Stewardship Academic Alliance Program, Grant DE-FG52-10NA29656, and NASA Earth and Space Science Fellowship Program, Award NNX14AP17H supported this research.

  18. Localization Transition In Brittle Rocks Analyzed As A Continuous Phase Transition

    NASA Astrophysics Data System (ADS)

    Toussaint, R.; Pride, S.

    Rocks in shear compression in the quasibrittle regime present a deformation starting to be localized at the biggest scales around peak stress. We present some universal fea- tures of the mechanical load curves obtained in triaxial tests on many different rocks, namely a power-law with a common exponent in these curves around peak stress. Those features, salient of a continuous phase transition, are analytically derived as such in a theory relying on an approximate evaluation of the distribution over the con- figurations of the population of the developping microcracks in subsets of the rock, based on maximization of Shannon's entropy under constraints, and a micromechan- ical model for the elastic interactions between the defects. The localization transition around peak stress is shown in this framework to be a continuous phase transition, the power-law analyzed is recovered, and an approximate autocorrelation function between microcracks is predicted around peak stress, showing a diverging autocorre- lation length.

  19. Phase transition sequence in sodium bismuth titanate observed using high-resolution x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Aksel, Elena; Forrester, Jennifer S.; Kowalski, Benjamin; Jones, Jacob L.; Thomas, Pam A.

    2011-11-01

    High resolution powder x-ray diffraction patterns of Na0.5Bi0.5TiO3 at selected temperatures were examined to compare structural changes with observed piezoelectric thermal depoling temperatures. The depoling temperatures do not correlate with discrete phase transition temperatures, and therefore, a structural transition is not the origin of thermal depoling. Rather, a correlation is made with an increase in volume fraction of material which does not obey the long-range Cc space group. The origin of the thermal depoling behavior may be the loss of long-range ferroelectric order by a decreasing proportion of the Cc phase or the associated percolation of disordered nano-scale platelets.

  20. Phase transition sequence in sodium bismuth titanate observed using high-resolution x-ray diffraction

    SciTech Connect

    Aksel, Elena; Forrester, Jennifer S.; Kowalski, Benjamin; Jones, Jacob L.; Thomas, Pam A.

    2012-02-06

    High resolution powder x-ray diffraction patterns of Na{sub 0.5}Bi{sub 0.5}TiO{sub 3} at selected temperatures were examined to compare structural changes with observed piezoelectric thermal depoling temperatures. The depoling temperatures do not correlate with discrete phase transition temperatures, and therefore, a structural transition is not the origin of thermal depoling. Rather, a correlation is made with an increase in volume fraction of material which does not obey the long-range Cc space group. The origin of the thermal depoling behavior may be the loss of long-range ferroelectric order by a decreasing proportion of the Cc phase or the associated percolation of disordered nano-scale platelets.