Science.gov

Sample records for phenol-formaldehyde p-f copolymer

  1. Structure/function studies of resorcinol-formaldehyde (R-F) and phenol-formaldehyde (P-F) copolymer ion-exchange resins

    SciTech Connect

    Hubler, T.L.; Franz, J.A.; Shaw, W.J.; Hogan, M.O.; Hallen, R.T.; Brown, G.N.; Linehan, J.C.

    1996-09-01

    he U.S. Department of Energy`s (DOE) Hanford Site was established to produce plutonium for the U.S. defense mission. Over the course of decades, hazardous, toxic, and radioactive chemical wastes were generated and disposed of in a variety of ways including storage in underground tanks. An estimated 180 million tons of high-level radioactive wastes are stored in 177 underground storage tanks. During production of fissile plutonium, large quantities of 90Sr and 137CS were produced. The high abundance and intermediate length half- lives of these fission products are the reason that effort is directed toward selective removal of these radionuclides from the bulk waste stream before final tank waste disposal is effected. Economically, it is desirable to remove the highly radioactive fraction of the tank waste for vitrification. Ion-exchange technology is being evaluated for removing cesium from Hanford Site waste tanks. This report summarizes data and analysis performed by Pacific Northwest National Laboratory (PNNL)for both resorcinol-formaldehyde (R-F) and phenol-formaldehyde (P-F) resins and relates their observed differences in performance and chemical stability to their structure. The experimental approach used to characterize the resins was conducted using primarily two types of data: batch distribution coefficients (Kds) and solid-state 13C NMR. Comparison of these data for a particular resin allowed correlation of resin performance to resin structure. Additional characterization techniques included solid-state 19F NMR, and elemental analyses.

  2. Chemical Characterization of Phenol/Formaldehyde Resins

    NASA Technical Reports Server (NTRS)

    Brayden, T. H.

    1986-01-01

    Report discusses tests of commercial phenol/formaldehyde resins to establish relationships among composition before use, behavior during curing, and strength after curing. Resin used in carbon/carbon laminates. In curing process, two molecules of phenol joined together in sequence of reactions involving molecule of formaldehyde. Last step of sequence, molecule of water released. Sequence repeats until one of ingredients used up, leaving solidified thermoset plastic. Issues to be resolved: number and relative abundances of ingredients, presence of certain chemical groups, heat-producing ability of resin, and range of molecular weights present.

  3. 40 CFR 721.10232 - N-arylamino-phenol-formaldehyde condensate (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false N-arylamino-phenol-formaldehyde... Specific Chemical Substances § 721.10232 N-arylamino-phenol-formaldehyde condensate (generic). (a) Chemical... as n-arylamino-phenol-formaldehyde condensate (PMN P-08-694) is subject to reporting under...

  4. 40 CFR 721.10232 - N-arylamino-phenol-formaldehyde condensate (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false N-arylamino-phenol-formaldehyde... Specific Chemical Substances § 721.10232 N-arylamino-phenol-formaldehyde condensate (generic). (a) Chemical... as n-arylamino-phenol-formaldehyde condensate (PMN P-08-694) is subject to reporting under...

  5. 40 CFR 721.10232 - N-arylamino-phenol-formaldehyde condensate (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false N-arylamino-phenol-formaldehyde... Specific Chemical Substances § 721.10232 N-arylamino-phenol-formaldehyde condensate (generic). (a) Chemical... as n-arylamino-phenol-formaldehyde condensate (PMN P-08-694) is subject to reporting under...

  6. Biodegradation of polystyrene, poly(metnyl methacrylate), and phenol formaldehyde.

    PubMed Central

    Kaplan, D L; Hartenstein, R; Sutter, J

    1979-01-01

    The biodegradation of three synthetic 14C-labeled polymers, poly(methyl methacrylate), phenol formaldehyde, and polystyrene, was studied with 17 species of fungi in axenic cultures, five groups of soil invertebrates, and a variety of mixed microbial communities including sludges, soils, manures, garbages, and decaying plastics. Extremely low decomposition rates were found. The addition of cellulose and mineral failed to increase decomposition rates significantly. PMID:533278

  7. Process for preparing phenolic formaldehyde resole resin products derived from fractionated fast-pyrolysis oils

    DOEpatents

    Chum, Helena L.; Kreibich, Roland E.

    1992-01-01

    A process for preparing phenol-formaldehyde resole resins and adhesive compositions in which portions of the phenol normally contained in said resins are replaced by a phenol/neutral fractions extract obtained from fractionating fast-pyrolysis oils.

  8. 40 CFR 721.10209 - Epoxy terminated, hydrolyzed trialkoxysilane and glycidyl ether of phenol-formaldehyde resin...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... trialkoxysilane and glycidyl ether of phenol-formaldehyde resin (generic). 721.10209 Section 721.10209 Protection... Epoxy terminated, hydrolyzed trialkoxysilane and glycidyl ether of phenol-formaldehyde resin (generic... identified generically as epoxy terminated, hydrolyzed trialkoxysilane and glycidyl ether of...

  9. 40 CFR 721.10209 - Epoxy terminated, hydrolyzed trialkoxysilane and glycidyl ether of phenol-formaldehyde resin...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... trialkoxysilane and glycidyl ether of phenol-formaldehyde resin (generic). 721.10209 Section 721.10209 Protection... Epoxy terminated, hydrolyzed trialkoxysilane and glycidyl ether of phenol-formaldehyde resin (generic... identified generically as epoxy terminated, hydrolyzed trialkoxysilane and glycidyl ether of...

  10. 40 CFR 721.10209 - Epoxy terminated, hydrolyzed trialkoxysilane and glycidyl ether of phenol-formaldehyde resin...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... trialkoxysilane and glycidyl ether of phenol-formaldehyde resin (generic). 721.10209 Section 721.10209 Protection... Epoxy terminated, hydrolyzed trialkoxysilane and glycidyl ether of phenol-formaldehyde resin (generic... identified generically as epoxy terminated, hydrolyzed trialkoxysilane and glycidyl ether of...

  11. 40 CFR 721.10209 - Epoxy terminated, hydrolyzed trialkoxysilane and glycidyl ether of phenol-formaldehyde resin...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... trialkoxysilane and glycidyl ether of phenol-formaldehyde resin (generic). 721.10209 Section 721.10209 Protection... Epoxy terminated, hydrolyzed trialkoxysilane and glycidyl ether of phenol-formaldehyde resin (generic... identified generically as epoxy terminated, hydrolyzed trialkoxysilane and glycidyl ether of...

  12. Phenol-formaldehyde resin substitutes from biomass tars

    SciTech Connect

    Himmelblau, D.A.

    1995-11-01

    Approximately 320,000 tonnes of phenol and formaldehyde are currently used annually in North America to make adhesive resins that are used to make exterior-grade structural panels. The demand for phenol-formaldehyde (PF) resins is growing faster than the demand for panels, because more adhesive is required to join/coat the surface of wood flakes (for oriented strand board - OSB) than is required to join veneer; OSB is replacing plywood as logs large enough for veneer become scarcer. Also, competitive uses for phenol and methanol (for making formaldehyde) have increased raw materials cost and threatened availability. Production of adhesive resins from biomass to reduce reliance on raw materials derived from commodity petrochemicals and to lower resin cost looks attractive. A simple fluidized-bed reactor system can be used to produce tars that can substitute for a major portion of the phenol and formaldehyde in PF resin adhesives. This can be done in an air-fluidized, single-bed reactor; no inert gas or dual-bed system is required. The key is recognizing that optimum phenolic character in the tar is not produced at the maximum tar yield, but at reactor temperatures around 600{degrees}C and short gas-phase residence times that produce a yield of about 25 to 30 weight percent. A wide range of phenols, aldehydes and other compounds capable of polymerization are produced. Feedstock can be any wood waste larger than sander dust; low cost agricultural wastes such as bagasse are also suitable. Adhesive resin is produced from the entire tar product by shifting the pH from acidic to basic with NaOH, and combining and heating the resulting resole with phenol and formaldehyde, similarly to conventional resins. Approximately half of the phenol and formaldehyde by weight can be replaced with tar. A plant producing 13,865,000 kg (30,566,000 lb) annually from 308 tonnes (340 tons) per day of green wood chips would cost approximately $8,400,000.

  13. Thermal Properties of Capparis Decidua (ker) Fiber Reinforced Phenol Formaldehyde Composites

    SciTech Connect

    Singh, G. P.; Mangal, Ravindra; Bhojak, N.; Dixit, Manasvi; Saxena, N. S.

    2010-06-29

    Simultaneous measurement of effective thermal conductivity ({lambda}), effective thermal diffusivity ({kappa}) and specific heat of Ker fiber reinforced phenol formaldehyde composites have been studied by transient plane source (TPS) technique. The samples of different weight percentage typically (5, 10, 15, 20 and 25%) have been taken. It is found that values of effective thermal conductivity and effective thermal diffusivity of the composites decrease, as compared to pure phenol formaldehyde, as the fraction of fiber loading increases. Experimental data is fitted on Y. Agari model. Values of thermal conductivity of composites are calculated with two models (Rayleigh, Maxwell and Meredith-Tobias model). Good agreement between theoretical and experimental result has been found.

  14. HPLC Characterization of Phenol-Formaldehyde Resole Resin Used in Fabrication of Shuttle Booster Nozzles

    NASA Technical Reports Server (NTRS)

    Young, Philip R.

    1999-01-01

    A reverse phase High Performance Liquid Chromatographic method was developed to rapidly fingerprint a phenol-formaldehyde resole resin similar to Durite(R) SC-1008. This resin is used in the fabrication of carbon-carbon composite materials from which Space Shuttle Solid Rocket Booster nozzles are manufactured. A knowledge of resin chemistry is essential to successful composite processing and performance. The results indicate that a high quality separation of over 35 peaks in 25 minutes were obtained using a 15 cm Phenomenex LUNA C8 bonded reverse phase column, a three-way water-acetonitrile-methanol nonlinear gradient, and LTV detection at 280 nm.

  15. Hydrothermal degradation of lignin: products analysis for phenol formaldehyde adhesive synthesis.

    PubMed

    Yang, Sheng; Yuan, Tong-Qi; Li, Ming-Fei; Sun, Run-Cang

    2015-01-01

    Corncob lignin was treated with pressurized hot water in a cylindrical autoclave in current investigation. With the aim of investigating the effect of reaction temperature and retention time on the distribution of degradation products, the products were divided into five fractions including gas, volatile organic compounds, water-soluble oil, heavy oil, and solid residue. It was found that hydrothermal degradation of corncob lignin in pressurized hot water produced a large amount of phenolic compounds with lower molecular weight than the raw lignin. Some phenolic and benzene derivatives monomers such as vanillin, 2-methoxy-phenol, 2-ethyl-phenol, p-xylene, and 1, 3-dimethyl-benzene were also identified in the degradation products. The products were further analyzed by GC-MS, GPC, 2D-HSQC, and (31)P-NMR to investigate their suitability for partial incorporation into phenol formaldehyde adhesive as a substitution of phenol. The results indicated that the reaction temperature had more effect on the products distribution than the retention time. The optimal condition for heavy oil production appeared at 290 °C with retention time 0 min. The compounds of heavy oil had more active sites than the raw lignin, suggesting that the heavy oil obtained from hydrothermal degradation of lignin is a promising material for phenol formaldehyde adhesive synthesis. PMID:25109457

  16. Fluorescent glutathione probe based on MnO2-phenol formaldehyde resin nanocomposite.

    PubMed

    Wang, Xudong; Wang, Dan; Guo, Yali; Yang, Chengduan; Liu, Xiaoyu; Iqbal, Anam; Liu, Weisheng; Qin, Wenwu; Yan, Dan; Guo, Huichen

    2016-03-15

    MnO2-phenol formaldehyde resin (MnO2-PFR) nanocomposite is successfully prepared by a simple chemical reduction process. The resultant MnO2-PFR nanocomposite is well characterized. The absorption band of non-fluorescent MnO2 nanosheets overlaps well with the fluorescence emission of PFR nanoparticles. The green fluorescence of PFR in this nanocomposite can be effectively quenched by fluorescence resonance energy transfer from PFR to MnO2. In the presence of glutathione (GSH), the fluorescence of PFR could be recovered due to MnO2 was reduced to Mn(2+) by GSH. The nanocomposite can be use for detecting glutathione in blood serum. PMID:26426853

  17. Examination of the chemical changes in cured phenol-formaldehyde resins during storage.

    PubMed

    Strzemiecka, B; Zięba-Palus, J; Voelkel, A; Lachowicz, T; Socha, E

    2016-04-01

    Chemical changes occurring within cured phenol-formaldehyde resins (resite and novolak type) during their storage were investigated by FT-NIR, py-GCMS and inverse gas chromatography. It was shown that a mixture of resite with novolak was less stable than resite or novolak itself as regards bulk properties. This aging phenomenon is mainly due to reaction of ammonia (product of hexa decomposition) with CH2OH groups present in resite. FT-NIR technique seems to be the least sensitive method for assessment chemical changes occurring during cured resins storage. Applications of py-GCMS and IGC method made able to indicate that more significant changes were for bulk samples (py-GCMS results) than on their surface (IGC results). PMID:26961916

  18. A microfluidic chip using phenol formaldehyde resin for uniform-sized polycaprolactone and chitosan microparticle generation.

    PubMed

    Lin, Yung-Sheng; Yang, Chih-Hui; Wu, Chin-Tung; Grumezescu, Alexandru Mihai; Wang, Chih-Yu; Hsieh, Wan-Chen; Chen, Szu-Yu; Huang, Keng-Shiang

    2013-01-01

    This study develops a new solvent-compatible microfluidic chip based on phenol formaldehyde resin (PFR). In addition to its solvent-resistant characteristics, this microfluidic platform also features easy fabrication, organization, decomposition for cleaning, and reusability compared with conventional chips. Both solvent-dependent (e.g., polycaprolactone) and nonsolvent-dependent (e.g., chitosan) microparticles were successfully prepared. The size of emulsion droplets could be easily adjusted by tuning the flow rates of the dispersed/continuous phases. After evaporation, polycaprolactone microparticles ranging from 29.3 to 62.7 μm and chitosan microparticles ranging from 215.5 to 566.3 μm were obtained with a 10% relative standard deviation in size. The proposed PFR microfluidic platform has the advantages of active control of the particle size with a narrow size distribution as well as a simple and low cost process with a high throughput. PMID:23736788

  19. Preparation and characterization of phenol-formaldehyde adhesives modified with enzymatic hydrolysis lignin.

    PubMed

    Jin, Yanqiao; Cheng, Xiansu; Zheng, Zuanbin

    2010-03-01

    Phenol-formaldehyde (PF) adhesives modified with enzymatic hydrolysis lignin (EHL) were synthesized by a one-step process. The phenol component of the PF adhesives was partially substituted by EHL extracted from the residues of cornstalks used to produce bio-ethanol. The EHL-PF adhesives were used to prepare plywoods by hot-pressing. The pH value, viscosity, solid content, free phenol content, free formaldehyde content and brominable substance content of EHL-PF resins were investigated. The bonding strengths of the plywoods were determined, and the influences of the replacement percentage of phenol by EHL (a) and the NaOH content (b) on the properties of the adhesives were investigated. The results showed that the performance of the modified adhesives and the plywoods glued with them almost met the Chinese National Standard (GB/T 14732-2006) for first grade plywood when 20 wt% of the phenol was replaced by EHL. PMID:19854642

  20. Effect of nano BaCO3 on pyrolytic reaction of phenol-formaldehyde resin

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Ma, Qing-zhi; Zhang, Zhong-feng; Peng, Wan-xi; Zhang, Ming-long

    2009-07-01

    Phenol-formaldehyde resin is used as the most adhesive to produce waterproof plant-based composite. However, this product contains phenol and formaldehyde which can be easily released to pollute air and water. Based on the single-factor method, the effect of nano BaCO3 on situabtion of pyrolytic reaction of PF resin was studied by Py-GC/MS. There were components including carbon dioxide, D,.alpha.-tocopherol, 1,3-bis(trimethylsilyl) benzene, phenol from PF resin in 590(see manuscript) He gas. However, the 17 compounds including phenol, 2-methyl-, phenol, carbon dioxide, p-xylene, toluene, phenol, 2-ethyl-, phenol, 2,3-dimethyl-, benzene, 1,2,3-trimethyl-, etc were identified by Py-GC/MS after PF/BaCO3 composite was pyrolyzed in 590(see manuscript) He gas, and phenol and phenol derivants were found in the compounds. The result showed that nano BaCO3 could effectively delay the pyrolysis of PF resin.

  1. Physico-chemical characterization of lignins from different sources for use in phenol-formaldehyde resin synthesis.

    PubMed

    Tejado, A; Peña, C; Labidi, J; Echeverria, J M; Mondragon, I

    2007-05-01

    During the last decades lignin has been investigated as a promising natural alternative to petrochemicals in phenol-formaldehyde (PF) resin production, due to their structural similarity. Physico-chemical characterization of three types of lignin, namely kraft pine lignin (L1), soda-anthraquinone flax lignin (L2), and ethanol-water wild tamarind lignin (L3) has been evaluated to determine which one is the most suitable chemical structure for above purpose. Characterization has been performed using Fourier transform infrared spectroscopy (FT-IR) and proton nuclear magnetic resonance spectrometry ((1)H NMR) to analyse the chemical structure, gel permeation chromatography (GPC) for determining molecular weight (MW) and molecular weight distribution (MWD), differential scanning calorimetry (DSC) to measure the glass transition temperature and thermogravimetric analysis (TGA) to follow the thermal degradation. Both structural and thermal characteristics suggest that kraft pine lignin (L1) would be a better phenol (P) substitute in the synthesis of lignin-phenol-formaldehyde (LPF) resins, as it presents higher amounts of activated free ring positions, higher MW and higher thermal decomposition temperature. PMID:16843657

  2. Study on the structural evolution of modified phenol formaldehyde resin adhesive for the high-temperature bonding of graphite

    NASA Astrophysics Data System (ADS)

    Wang, Jigang; Jiang, Nan; Guo, Quangui; Liu, Lang; Song, Jinren

    2006-01-01

    A novel adhesive for carbon materials composed of phenol-formaldehyde resin, boron carbide and fumed silica, was prepared. The adhesive property of graphite joints bonded by the above adhesive treated at high-temperatures was tested. Results showed that the adhesive was found to have outstanding high-temperature bonding properties for graphite. The adhesive structure was dense and uniform even after the graphite joints were heat-treated at 1500 °C. Bonding strength was 17.1 MPa. The evolution of adhesive structure was investigated. The results indicated that the addition of the secondary additive, fumed silica, improved the bonding performance greatly. Borosilicate phase with better stability was formed during the heat-treatment process, and the volume shrinkage was restrained effectively, which was responsible for the satisfactory high-temperature bonding performance of graphite.

  3. Effect of veneer side wettability on bonding quality of Eucalyptus globulus plywoods prepared using a tannin-phenol-formaldehyde adhesive.

    PubMed

    Vázquez, G; González-Alvarez, J; López-Suevos, F; Antorrena, G

    2003-05-01

    The influence of rotary peeling on the different behaviour of tight and loose sides of Eucalyptus globulus veneers has been studied. The presence of lathe checks on the loose sides favours wettability, the contact angle decreasing more rapidly on these sides than on tight sides. Additionally, pine bark tannins improved wettability due to their surfactant character. Bonding quality tests carried out on plywoods prepared using a tannin-phenol-formaldehyde adhesive showed that fracture almost invariably occurred in a glue line with at least one loose side, where wood failure appeared. This behaviour, confirmed by analysing the glue lines by means of fluorescence microscopy, was due to the large surface alterations of the loose sides which reduced mechanical strength but allowed greater penetration of the adhesive giving rise to high wood failure. PMID:12507878

  4. Active sites in char gasification. Quarterly technical progress report, 1 January 1984-31 March 1984. [Polymers of phenol-formaldehyde family; chars produced from model compounds

    SciTech Connect

    Calo, J.M.; Suubers, E.M.; Wojtowicz, M.; Lilly, W.

    1984-05-01

    This project is concerned with the study of the nature and behavior of active sites in gasification of chars produced from synthesized model compounds, primarily of the phenol-formaldehyde family of resins. The current technical progress report presents further developments on resin synthesis and characterization and the design of a pyro-gasifier reactor for transient kinetic studies of the chars produced from the model compounds. 7 references, 12 figures, 2 tables.

  5. [Modified Mechanism of Cell Walls from Chinese Fir Treated with Low-Molecular-Weight Phenol Formaldehyde Resin].

    PubMed

    Huang, Yan-hui; Fei, Ben-hua; Zhao, Rong-jun

    2015-12-01

    Study on the modified mechanism of wood cell walls, it is very important for improving treatment reagents, optimizing treatment technology, and enhancing wood density, mechanical properties, dimensional stability, and so on. Samples of plantation Chinese fir were treated gradually with synthesized water-soluble low-molecular-weight phenol formaldehyde (PF) resins under vacuum and pressure. The correlated physical and chemical properties of the treated and untreated reference samples were determined by X-ray diffractometer (XRD), Fourier transform infrared spectrometer (FTIR), and nuclear magnetic resonance spectrometer(NMR) (Using method of Cross Polarization/Magic Angle Spinning for continuous testing) with high precision and resolution. The results showed that, after treated with water-soluble low-molecular-weight PF resin, the average values of crystallinity from the treated samples were decreased obviously, and the average reduction rate was 12.67%, 11.91% and 6.26%, respectively. Comparing water-soluble, low-molecular-weight PF resin modified Chinese fir with untreated reference samples, no new chemical shifts and characteristic peaks of functional groups from esters, ethers, etc. were present by using FTIR and ¹³C NMR spectrum. It was considered that there was no distinct chemical reaction between the water-soluble low-molecular-weight PF resin and Chinese Fir cell walls. But water-soluble low-molecular-weight PF resin could enter into the structure relatively loose, large size spaces, relatively area large amorphous regions in cell walls of Chinese fir tracheids, and form physical filling, which resulting in the decreasing of relative crystallinity. This study has important reference value for the development of new wood modification reagents and the optimization of wood modification process. The findings also provide important theoretical foundation for further proving the modification mechanisms of wood cell walls and enriching the modified theories of

  6. Assessment of the chemical changes during storage of phenol-formaldehyde resins pyrolysis gas chromatography mass spectrometry, inverse gas chromatography and Fourier transform infra red methods.

    PubMed

    Strzemiecka, B; Voelkel, A; Zięba-Palus, J; Lachowicz, T

    2014-09-12

    The chemical changes occurring in the phenol-formaldehyde resins (resol and novolac type) during their storage were investigated. In this paper the FT-IR, py-GCMS and inverse gas chromatography methods were applied for assessment of the changes occurring during storage of the phenolic resins. We have found that during storage some examined resins occurred partial curing. The results from all techniques applied are consistent. Py-GCMS is useful technique for screening the storage processes but IGC seems to be most sensitive one. PMID:25092596

  7. Multilayer Hydrophilic Poly(phenol-formaldehyde resin)-Coated Magnetic Graphene for Boronic Acid Immobilization as a Novel Matrix for Glycoproteome Analysis.

    PubMed

    Wang, Jiaxi; Wang, Yanan; Gao, Mingxia; Zhang, Xiangmin; Yang, Pengyuan

    2015-07-29

    Capturing glycopeptides selectively and efficiently from mixed biological samples has always been critical for comprehensive and in-depth glycoproteomics analysis, but the lack of materials with superior capture capacity and high specificity still makes it a challenge. In this work, we introduce a way first to synthesize a novel boronic-acid-functionalized magnetic graphene@phenolic-formaldehyde resin multilayer composites via a facile process. The as-prepared composites gathered excellent characters of large specific surface area and strong magnetic responsiveness of magnetic graphene, biocompatibility of resin, and enhanced affinity properties of boronic acid. Furthermore, the functional graphene composites were shown to have low detection limit (1 fmol) and good selectivity, even when the background nonglycopeptides has a concentration 100 fold higher. Additionally, enrichment efficiency of the composites was still retained after being used repeatedly (at least three times). Better yet, the practical applicability of this approach was evaluated by the enrichment of human serum with a low sample volume of 1 μL. All the results have illustrated that the magG@PF@APB has a great potential in glycoproteome analysis of complex biological samples. PMID:26161682

  8. Synchrotron-based X-ray fluorescence microscopy in conjunction with nanoindentation to study molecular-scale interactions of phenol-formaldehyde in wood cell walls.

    PubMed

    Jakes, Joseph E; Hunt, Christopher G; Yelle, Daniel J; Lorenz, Linda; Hirth, Kolby; Gleber, Sophie-Charlotte; Vogt, Stefan; Grigsby, Warren; Frihart, Charles R

    2015-04-01

    Understanding and controlling molecular-scale interactions between adhesives and wood polymers are critical to accelerate the development of improved adhesives for advanced wood-based materials. The submicrometer resolution of synchrotron-based X-ray fluorescence microscopy (XFM) was found capable of mapping and quantifying infiltration of Br-labeled phenol-formaldehyde (BrPF) into wood cell walls. Cell wall infiltration of five BrPF adhesives with different average molecular weights (MWs) was mapped. Nanoindentation on the same cell walls was performed to assess the effects of BrPF infiltration on cell wall hygromechanical properties. For the same amount of weight uptake, lower MW BrPF adhesives were found to be more effective at decreasing moisture-induced mechanical softening. This greater effectiveness of lower MW phenolic adhesives likely resulted from their ability to more intimately associate with water sorption sites in the wood polymers. Evidence also suggests that a BrPF interpenetrating polymer network (IPN) formed within the wood polymers, which might also decrease moisture sorption by mechanically restraining wood polymers during swelling. PMID:25756624

  9. Synthesis of Fe3O4@phenol formaldehyde resin core-shell nanospheres loaded with Au nanoparticles as magnetic FRET nanoprobes for detection of thiols in living cells.

    PubMed

    Yang, Ping; Xu, Qi-Zhi; Jin, Sheng-Yu; Zhao, Yang; Lu, Yang; Xu, Xue-Wei; Yu, Shu-Hong

    2012-01-23

    A magnetic, sensitive, and selective fluorescence resonance energy transfer (FRET) probe for detection of thiols in living cells was designed and prepared. The FRET probe consists of an Fe(3)O(4) core, a green-luminescent phenol formaldehyde resin (PFR) shell, and Au nanoparticles (NPs) as FRET quenching agent on the surface of the PFR shell. The Fe(3)O(4) NPs were used as the core and coated with green-luminescent PFR nanoshells by a simple hydrothermal approach. Au NPs were then loaded onto the surface of the PFR shell by electric charge absorption between Fe(3)O(4)@PFR and Au NPs after modifying the Fe(3)O(4)@PFR nanocomposites with polymers to alter the charge of the PFR shell. Thus, a FRET probe can be designed on the basis of the quenching effect of Au NPs on the fluorescence of Fe(3)O(4)@PFR nanocomposites. This magnetic and sensitive FRET probe was used to detect three kinds of primary biological thiols (glutathione, homocysteine, and cysteine) in cells. Such a multifunctional fluorescent probe shows advantages of strong magnetism for sample separation, sensitive response for sample detection, and low toxicity without injury to cellular components. PMID:22190410

  10. Fractionation of oil obtained by pyrolysis of lignocellulosic materials to recover a phenolic fraction for use in making phenol-formaldehyde resins

    SciTech Connect

    Gallivan, R.M.; Matschei, P.K.

    1980-06-24

    A method is provided for fractionation of oil obtained by pyrolysis of lignocellulosic materials to obtain useful chemical fractions, including a phenolic fraction which is suitable as a total or partial replacement for phenol in making phenolformaldehyde resins. The method comprises mixing the oil with a strong base such as sodium hydroxide to a ph level at which the neutral fraction of the oil is selectively soluble in a solvent such as methylene chloride or ether, and the mixture is extracted with the solvent to obtain a first extract containing the solvent and the neutral fraction, and a first raffinate containing the remaining fractions of the oil, I.E., the phenolic fraction, the organic acids fraction and an amorphous residue. The neutral fraction is recovered by distillation and the first raffinate is mixed with sulfuric acid to lower its ph to a level at which the phenolic fraction is selectively soluble in the solvent. This raffinate is extracted with the solvent to obtain a second extract containing the solvent and the phenolic fraction and a second raffinate containing the organic acids and the residues. The phenolic fraction is recovered by distillation and the second raffinate is mixed with sulfuric acid to lower its ph to a level at which the organic acids are selectively soluble in the solvent. After separation of the residues, the second raffinate is extracted with the solvent to obtain a third extract which is distilled to recover the organic acids fraction of the oil. The phenolic fraction may be used as partial or total replacement for pure phenol in making phenol-formaldehyde resins.

  11. Bonding exterior grade structural panels with copolymer resins of biomass residue components, phenol, and formaldehyde

    SciTech Connect

    Chen, C.M.

    1993-12-31

    Components of various forest and agricultural residue biomass-including the polyphenolic compounds-were converted into aqueous solution and/or suspension by extraction and digestion. Some biomass components reacted vigorously under alkaline catalysis with formaldehyde and initially showed a high degree of exothermic reaction; however, other components did not react as vigorously under these conditions, indicating that different biomass materials require different methods to obtain optimum reactivity for the copolymerization with phenol. Our primary goal is to develop adhesives capable of producing acceptable bond quality, as determined by the wood products industries` standards, under a reasonable range of gluing conditions. Copolymer resins of phenol, formaldehyde, and biomass components were synthesized and evaluated for gluability of bonding exterior grade structural replaced with chemicals derived from peanut hulls, pecan shell flour, pecan pith, southern pine bark, and pine needle required shorter press times. These resins also tolerated a broader range of gluing conditions. In summary, it appears that the technology of the fast curing copolymer resins of biomass components as adhesives for wood products has been developed and is ready to be transferred to industrial practice.

  12. Arylenesiloxane copolymers

    NASA Technical Reports Server (NTRS)

    Breed, L. W.; Elliott, R. L.

    1967-01-01

    Arylenesiloxane copolymers with regularly ordered structures were discovered during efforts to develop organosilicon polymers. Arylenesilane and siloxane monomers were both synthesized in these experiments.

  13. Challenges in Fabrication of Mesoporous Carbon Films with Ordered Cylindrical Pores via Phenolic Oligomer Self-Assembly with Triblock Copolymers

    SciTech Connect

    Song, Lingyan; Feng, Dan; Fredin, Nathaniel J.; Yager, Kevin G.; Jones, Ronald L.; Wu, Quanyan; Zhao, Dongyuan; Vogt, Bryan D.

    2010-06-22

    Mesoporous phenol formaldehyde (PF) polymer resin and carbon films are prepared by a solution self-assembly of PF oligomers with amphiphilic triblock copolymers. After thermopolymerization of the PF to cross-link the network, the films show an ordered morphology as determined by X-ray diffraction and grazing incidence small-angle X-ray scattering (GISAXS). Our results show that the amphiphilic triblock copolymer template greatly influences the stability of the final porous mesostructures. The pyrolysis of the two-dimensional (2-D) hexagonal films with p6mm symmetry templated by Pluronic F127 yields a disordered porous structure following the template removal. Conversely, films templated by Pluronic P123 can exhibit well-ordered cylindrical pores after the template removal, but the solution composition range to yield ordered cylindrical mesopores is significantly reduced (nearly 70%) for thin films in comparison to bulk powders. We propose two dominant difficulties in fabricating well-ordered cylindrical mesopores in films: first, the stress from contraction during the pyrolysis can lead to a collapse of the mesostructure if the wall thickness is insufficient, and second, the surface wetting behavior in thin films leads to a small compositional range.

  14. Phenol-formaldehyde intumescent coating composition and coating prepared therefrom

    NASA Technical Reports Server (NTRS)

    Salyer, Ival O. (Inventor); Fox, Bernard L. (Inventor)

    1986-01-01

    Intumescent coatings which form a thick, uniform, fine celled, low density foam upon exposure to a high intensity heat flux or flame are disclosed, the invention coatings comprise phenolic resin prepolymer containing a blowing agent and a nucleating agent; in the preferred embodiments the coatings also contains a silicone surfactant, the coatings are useful in thermal and fire protection systems.

  15. Phase separations in a copolymer copolymer mixture

    NASA Astrophysics Data System (ADS)

    Zhang, Jin-Jun; Jin, Guojun; Ma, Yuqiang

    2006-01-01

    We propose a three-order-parameter model to study the phase separations in a diblock copolymer-diblock copolymer mixture. The cell dynamical simulations provide rich information about the phase evolution and structural formation, especially the appearance of onion-rings. The parametric dependence and physical reason for the domain growth of onion-rings are discussed.

  16. Protein based Block Copolymers

    PubMed Central

    Rabotyagova, Olena S.; Cebe, Peggy; Kaplan, David L.

    2011-01-01

    Advances in genetic engineering have led to the synthesis of protein-based block copolymers with control of chemistry and molecular weight, resulting in unique physical and biological properties. The benefits from incorporating peptide blocks into copolymer designs arise from the fundamental properties of proteins to adopt ordered conformations and to undergo self-assembly, providing control over structure formation at various length scales when compared to conventional block copolymers. This review covers the synthesis, structure, assembly, properties, and applications of protein-based block copolymers. PMID:21235251

  17. Silicone/Acrylate Copolymers

    NASA Technical Reports Server (NTRS)

    Dennis, W. E.

    1982-01-01

    Two-step process forms silicone/acrylate copolymers. Resulting acrylate functional fluid is reacted with other ingredients to produce copolymer. Films of polymer were formed by simply pouring or spraying mixture and allowing solvent to evaporate. Films showed good weatherability. Durable, clear polymer films protect photovoltaic cells.

  18. Confinement of block copolymers

    SciTech Connect

    1995-12-31

    The following were studied: confinement of block copolymers, free surface confinement, effects of substrate interactions, random copolymers at homopolymer interfaces, phase separation in thin film polymer mixtures, buffing of polymer surfaces, and near edge x-ray absorption fine structure spectroscopy.

  19. Antimicrobial Graft Copolymer Gels.

    PubMed

    Harvey, Amanda C; Madsen, Jeppe; Douglas, C W Ian; MacNeil, Sheila; Armes, Steven P

    2016-08-01

    In view of the growing worldwide rise in microbial resistance, there is considerable interest in designing new antimicrobial copolymers. The aim of the current study was to investigate the relationship between antimicrobial activity and copolymer composition/architecture to gain a better understanding of their mechanism of action. Specifically, the antibacterial activity of several copolymers based on 2-(methacryloyloxy)ethyl phosphorylcholine [MPC] and 2-hydroxypropyl methacrylate (HPMA) toward Staphylococcus aureus was examined. Both block and graft copolymers were synthesized using either atom transfer radical polymerization or reversible addition-fragmentation chain transfer polymerization and characterized via (1)H NMR, gel permeation chromatography, rheology, and surface tensiometry. Antimicrobial activity was assessed using a range of well-known assays, including direct contact, live/dead staining, and the release of lactate dehydrogenase (LDH), while transmission electron microscopy was used to study the morphology of the bacteria before and after the addition of various copolymers. As expected, PMPC homopolymer was biocompatible but possessed no discernible antimicrobial activity. PMPC-based graft copolymers comprising PHPMA side chains (i.e. PMPC-g-PHPMA) significantly reduced both bacterial growth and viability. In contrast, a PMPC-PHPMA diblock copolymer comprising a PMPC stabilizer block and a hydrophobic core-forming PHPMA block did not exhibit any antimicrobial activity, although it did form a biocompatible worm gel. Surface tensiometry studies and LDH release assays suggest that the PMPC-g-PHPMA graft copolymer exhibits surfactant-like activity. Thus, the observed antimicrobial activity is likely to be the result of the weakly hydrophobic PHPMA chains penetrating (and hence rupturing) the bacterial membrane. PMID:27409712

  20. Bismaleimide Copolymer Matrix Resins

    NASA Technical Reports Server (NTRS)

    Parker, John A.; Heimbuch, Alvin H.; Hsu, Ming-Ta S.; Chen, Timothy S.

    1987-01-01

    Graphite composites, prepared from 1:1 copolymer of two new bismaleimides based on N,N'-m-phenylene-bis(m-amino-benzamide) structure have mechanical properties superior to those prepared from other bismaleimide-type resins. New heat-resistant composites replace metal in some structural applications. Monomers used to form copolymers with superior mechanical properties prepared by reaction of MMAB with maleic or citraconic anhydride.

  1. Impacts of P-f & Q-V Droop Control on MicroGrids Transient Stability

    NASA Astrophysics Data System (ADS)

    Zhao-xia, Xiao; Hong-wei, Fang

    Impacts of P-f & Q-V droop control on MicroGrid transient stability was investigated with a wind unit of asynchronous generator in the MicroGrid. The system frequency stability was explored when the motor load starts and its load power changes, and faults of different types and different locations occurs. The simulations were done by PSCAD/EMTDC.

  2. Final report: COOMET supplementary comparison of capacitance at 10 pF and 100 pF (COOMET.EM-S13)

    NASA Astrophysics Data System (ADS)

    Velychko, Oleh; Shevkun, Sergii

    2015-01-01

    An intercomparison of 10 pF and 100 pF capacitance standards has taken place within the framework of COOMET. The intercomparison, piloted by State Enterprise 'Ukrmetrteststandard'—UMTS (Ukraine), has involved tree laboratories, including one who is a member of another regional metrological organization—EURAMET (GUM, Poland). The results presented in this report appear to show that there are significant differences between some laboratories' representations of the farad. However, the agreement demonstrated by the intercomparison provides confidence in maintaining traceability for the farad either via a calculable capacitor or via the quantum Hall reference standard of the BIPM. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCEM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  3. Bactericidal block copolymer micelles.

    PubMed

    Vyhnalkova, Renata; Eisenberg, Adi; van de Ven, Theo

    2011-05-12

    Block copolymer micelles with bactericidal properties were designed to deactivate pathogens such as E. coli bacteria. The micelles of PS-b-PAA and PS-b-P4VP block copolymers were loaded with biocides TCMTB or TCN up to 20 or 30 wt.-%, depending on the type of antibacterial agent. Bacteria were exposed to loaded micelles and bacterial deactivation was evaluated. The micelles loaded with TCN are bactericidal; bacteria are killed in less than two minutes of exposure. The most likely interpretation of the data is that the biocide is transferred to the bacteria by repeated micelle/bacteria contacts, and not via the solution. PMID:21275041

  4. Block coordination copolymers

    DOEpatents

    Koh, Kyoung Moo; Wong-Foy, Antek G.; Matzger, Adam J.; Benin, Annabelle I.; Willis, Richard R.

    2012-12-04

    The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.

  5. Block coordination copolymers

    DOEpatents

    Koh, Kyoung Moo; Wong-Foy, Antek G; Matzger, Adam J; Benin, Annabelle I; Willis, Richard R

    2012-11-13

    The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.

  6. Block coordination copolymers

    DOEpatents

    Koh, Kyoung Moo; Wong-Foy, Antek G; Matzger, Adam J; Benin, Annabelle I; Willis, Richard R

    2014-11-11

    The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.

  7. Ultraviolet absorbing copolymers

    DOEpatents

    Gupta, Amitava; Yavrouian, Andre H.

    1982-01-01

    Photostable and weather stable absorping copolymers have been prepared from acrylic esters such as methyl methacrylate containing 0.1 to 5% of an 2-hydroxy-allyl benzophenone, preferably the 4,4' dimethoxy derivative thereof. The pendant benzophenone chromophores protect the acrylic backbone and when photoexcited do not degrade the ester side chain, nor abstract hydrogen from the backbone.

  8. Imide/arylene ether copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J. (Inventor); Hergenrother, Paul M. (Inventor); Bass, Robert G. (Inventor)

    1992-01-01

    Imide/arylene ether block copolymers are prepared by reacting anhydride terminated poly(amic acids) with amine terminated poly(arylene ethers) in polar aprotic solvents and by chemically or thermally cyclodehydrating the resulting intermediate poly(amic acids). The resulting block copolymers have one glass transition temperature or two, depending upon the particular structure and/or the compatibility of the block units. Most of these block copolymers form tough, solvent resistant films with high tensile properties.

  9. Block copolymer battery separator

    DOEpatents

    Wong, David; Balsara, Nitash Pervez

    2016-04-26

    The invention herein described is the use of a block copolymer/homopolymer blend for creating nanoporous materials for transport applications. Specifically, this is demonstrated by using the block copolymer poly(styrene-block-ethylene-block-styrene) (SES) and blending it with homopolymer polystyrene (PS). After blending the polymers, a film is cast, and the film is submerged in tetrahydrofuran, which removes the PS. This creates a nanoporous polymer film, whereby the holes are lined with PS. Control of morphology of the system is achieved by manipulating the amount of PS added and the relative size of the PS added. The porous nature of these films was demonstrated by measuring the ionic conductivity in a traditional battery electrolyte, 1M LiPF.sub.6 in EC/DEC (1:1 v/v) using AC impedance spectroscopy and comparing these results to commercially available battery separators.

  10. Partial Miscibility in Copolymer Blends

    NASA Astrophysics Data System (ADS)

    Clark, Elizabeth; Lipson, Jane

    2011-03-01

    Copolymers can be used to affect the miscibility of otherwise immiscible polymer blends by acting as compatibilizers. To better understand the energetics of these types of systems, we use a simple lattice model to study phase separation in binary copolymer/homopolymer blends. We focus on a copolymer that contains both A and B type monomers and a homopolymer that contains purely A type monomer. An example of a system that we are investigating is polyethylene mixed with either random or alternating poly(ethylene-co-propylene). The sequence effect on miscibility as the copolymer microstructure is varied from random to alternating is investigated as well. The support of GAANN is gratefully acknowledged.

  11. Imide/Arylene Ether Copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J.; Hergenrother, Paul M.; Bass, Robert G.

    1991-01-01

    New imide/arylene ether copolymers prepared by reacting anhydride-terminated poly(amic acids) with amine-terminated poly(arylene ethers) in polar aprotic solvents. Each resulting copolymer may have one glass-transition temperature or two, depending on chemical structure and/or compatibility of block units. Most of copolymers form tough, solvent-resistant films with high tensile properties. Films cast from solution tough and flexible, and exhibit useful thermal and mechanical properties. Potentially useful as moldings, adhesives, or composite matrices. Because of flexible arylene ether blocks, these copolymers easier to process than polyimides.

  12. Block copolymer investigations

    NASA Astrophysics Data System (ADS)

    Yufa, Nataliya A.

    The research presented in this thesis deals with various aspects of block copolymers on the nanoscale: their behavior at a range of temperatures, their use as scaffolds, or for creation of chemically striped surfaces, as well as the behavior of metals on block copolymers under the influence of UV light, and the healing behavior of copolymers. Invented around the time of World War II, copolymers have been used for decades due to their macroscopic properties, such as their ability to be molded without vulcanization, and the fact that, unlike rubber, they can be recycled. In recent years, block copolymers (BCPs) have been used for lithography, as scaffolds for nano-objects, to create a magnetic hard drive, as well as in photonic and other applications. In this work we used primarily atomic force microscopy (AFM) and transmission electron microscopy (TEM), described in Chapter II, to conduct our studies. In Chapter III we demonstrate a new and general method for positioning nanoparticles within nanoscale grooves. This technique is suitable for nanodots, nanocrystals, as well as DNA. We use AFM and TEM to demonstrate selective decoration. In Chapters IV and V we use AFM and TEM to study the structure of polymer surfaces coated with metals and self-assembled monolayers. We describe how the surfaces were created, exhibit their structure on the nanoscale, and prove that their macroscopic wetting properties have been altered compared to the original polymer structures. Finally, Chapters VI and VII report out in-situ AFM studies of BCP at high temperatures, made possible only recently with the invention of air-tight high-temperature AFM imaging cells. We locate the transition between disordered films and cylinders during initial ordering. Fluctuations of existing domains leading to domain coarsening are also described, and are shown to be consistent with reptation and curvature minimization. Chapter VII deals with the healing of PS-b-PMMA following AFM-tip lithography or

  13. Polyether/Polyester Graft Copolymers

    NASA Technical Reports Server (NTRS)

    Bell, Vernon L., Jr.; Wakelyn, N.; Stoakley, D. M.; Proctor, K. M.

    1986-01-01

    Higher solvent resistance achieved along with lower melting temperature. New technique provides method of preparing copolymers with polypivalolactone segments grafted onto poly (2,6-dimethyl-phenylene oxide) backbone. Process makes strong materials with improved solvent resistance and crystalline, thermally-reversible crosslinks. Resulting graft copolymers easier to fabricate into useful articles, including thin films, sheets, fibers, foams, laminates, and moldings.

  14. Neutron Skins and Halo Orbits in the s d and p f Shells

    NASA Astrophysics Data System (ADS)

    Bonnard, J.; Lenzi, S. M.; Zuker, A. P.

    2016-05-01

    The strong dependence of Coulomb energies on nuclear radii makes it possible to extract the latter from calculations of the former. The resulting estimates of neutron skins indicate that two mechanisms are involved. The first one—isovector monopole polarizability—amounts to noting that when a particle is added to a system it drives the radii of neutrons and protons in different directions, tending to equalize the radii of both fluids independently of the neutron excess. This mechanism is well understood and the Duflo-Zuker (small) neutron skin values derived 14 years ago are consistent with recent measures and estimates. The alternative mechanism involves halo orbits whose huge sizes tend to make the neutron skins larger and have a subtle influence on the radial behavior of s d and p f shell nuclei. In particular, they account for the sudden rise in the isotope shifts of nuclei beyond N =28 and the near constancy of radii in the A =40 - 56 region. This mechanism, detected here for the first time, is not well understood and may well go beyond the Efimov physics usually associated with halo orbits.

  15. Skin delivery by block copolymer nanoparticles (block copolymer micelles).

    PubMed

    Laredj-Bourezg, Faiza; Bolzinger, Marie-Alexandrine; Pelletier, Jocelyne; Valour, Jean-Pierre; Rovère, Marie-Rose; Smatti, Batoule; Chevalier, Yves

    2015-12-30

    Block copolymer nanoparticles often referred to as "block copolymer micelles" have been assessed as carriers for skin delivery of hydrophobic drugs. Such carriers are based on organic biocompatible and biodegradable materials loaded with hydrophobic drugs: poly(lactide)-block-poly(ethylene glycol) copolymer (PLA-b-PEG) nanoparticles that have a solid hydrophobic core made of glassy poly(d,l-lactide), and poly(caprolactone)-block-poly(ethylene glycol) copolymer (PCL-b-PEG) nanoparticles having a liquid core of polycaprolactone. In vitro skin absorption of all-trans retinol showed a large accumulation of retinol in stratum corneum from both block copolymer nanoparticles, higher by a factor 20 than Polysorbate 80 surfactant micelles and by a factor 80 than oil solution. Additionally, skin absorption from PLA-b-PEG nanoparticles was higher by one order of magnitude than PCL-b-PEG, although their sizes (65nm) and external surface (water-swollen PEG layer) were identical as revealed by detailed structural characterizations. Fluorescence microscopy of histological skin sections provided a non-destructive picture of the storage of Nile Red inside stratum corneum, epidermis and dermis. Though particle cores had a different physical states (solid or liquid as measured by (1)H NMR), the ability of nanoparticles for solubilization of the drug assessed from their Hildebrand solubility parameters appeared the parameter of best relevance regarding skin absorption. PMID:26602293

  16. Imide/arylene ether copolymers. I

    NASA Technical Reports Server (NTRS)

    Jensen, B. J.; Hergenrother, P. M.; Bass, R. G.

    1991-01-01

    The preparation of a series of novel imide/arylene ether copolymers is described together with the results of viscosity and DSC Tg(Tm) measurements. The copolymers were synthesized from an arylene ether block and either an amorphous or semicrystalline imide block. One block copolymer was end-capped, and the molecular weight was controlled to improve compression moldability. The paper also presents results of mechanical properties tests on copolymer samples.

  17. [Efficiency of KAT-quick P.f. test (KAT medical, SAR) among the populations of drug-resistant parasites].

    PubMed

    Rabinovich, S A; Le, Dines Kong; Nguen, Van Ha; Morozov, E N; Toropov, D E; Kukina, I V; Maksakovskaia, E V; Iakovenko, M A; Chalyĭ, V F; Fandeev, V A; Pozdniakova, E A; Nikitiuk, Iu E; Sergiev, V P

    2006-01-01

    The KAT-Quick P.f. test (KAT Medical, South African Republic) is based on the detection of protein HPR II produced by trophozoites and young gametocytes of P. falciparum. This test was conducted by the authors in the distribution areas of P. falciparum strains differing in the spectrum of drug resistance. Five hundred and forty-nine blood samples from febrile patients in Vietnam (n=84), Sierra Leone (n=41), Nigeria (n=14), Tanzania (n=8), Kenya (n=5), and Tadjikistan (n=397) were tested. Microscopy served as a primary control. Detection of P. falciparum DNA, using polymerase chain reaction (PCR) with included primers (nested PCR) of the most sensitive modification of PCR was a final control. The efficiency of the KAT-Quick P.f. test was estimated as a ratio of the number of its positive results to those of PCR. It was equal to 98-95%. The KAT-Quick P.f. test revealed no false-positive case associated with the genome of the parasite. The specificity of the test was determined as a ratio of the number of its negative (no P. falciparum) results to those of PCR. The blood samples from patients with vivax malaria and from those with nonmalarial fever were investigated. There was no cross reaction of the KAT-Quick P.f. test system for P. falciparum with that for P. vivax. The KAT-Quick P.f. test yielded no positive reaction with the blood from patients with non-malarial fever. Drug resistance depending on the spectrum of specific drugs caused its emergence may be determined by one or several mechanisms that are ultimately determined by one, the key mechanism. Thus, the findings suggest that multidrug resistance of P. falciparum does not trigger the occurrence of changes in its surface antigen--HRPII that is responsible for the efficiency of the KAT-Quick P.f. test. These may be also extrapolated to other rapid tests patterned after the same principle. PMID:16813240

  18. Copolymers For Capillary Gel Electrophoresis

    DOEpatents

    Liu, Changsheng; Li, Qingbo

    2005-08-09

    This invention relates to an electrophoresis separation medium having a gel matrix of at least one random, linear copolymer comprising a primary comonomer and at least one secondary comonomer, wherein the comonomers are randomly distributed along the copolymer chain. The primary comonomer is an acrylamide or an acrylamide derivative that provides the primary physical, chemical, and sieving properties of the gel matrix. The at least one secondary comonomer imparts an inherent physical, chemical, or sieving property to the copolymer chain. The primary and secondary comonomers are present in a ratio sufficient to induce desired properties that optimize electrophoresis performance. The invention also relates to a method of separating a mixture of biological molecules using this gel matrix, a method of preparing the novel electrophoresis separation medium, and a capillary tube filled with the electrophoresis separation medium.

  19. Suspended Solid-state Membranes on Glass Chips with Sub 1-pF Capacitance for Biomolecule Sensing Applications

    NASA Astrophysics Data System (ADS)

    Chien, Chen-Chi; Balan, Adrian; Engelke, Rebecca; Drndic, Marija

    Solid-state membranes are finding use in many applications in nanoelectronics and nanomedicine, from single molecule sensors to water filtration, and yet many of their electronics applications are limited by the current noise and low bandwidth stemming from the relatively high capacitance (more than 10 pF) of the membrane chips. To address this problem, we devised an integrated fabrication process to grow and define circular silicon nitride membranes on glass chips that successfully lower the chip capacitance to below 1 pF. We use these devices to demonstrate low-noise, high-bandwidth DNA translocation measurements. We also make use of this versatile, low-capacitance platform to suspend other thin, two-dimensional membranes such as graphene.

  20. Suspended Solid-state Membranes on Glass Chips with Sub 1-pF Capacitance for Biomolecule Sensing Applications

    PubMed Central

    Balan, Adrian; Chien, Chen-Chi; Engelke, Rebecca; Drndić, Marija

    2015-01-01

    Solid-state membranes are finding use in many applications in nanoelectronics and nanomedicine, from single molecule sensors to water filtration, and yet many of their electronics applications are limited by the relatively high current noise and low bandwidth stemming from the relatively high capacitance (>10 pF) of the membrane chips. To address this problem, we devised an integrated fabrication process to grow and define circular silicon nitride membranes on glass chips that successfully lower the chip capacitance to below 1 pF. We use these devices to demonstrate low-noise, high-bandwidth DNA translocation measurements. We also make use of this versatile, low-capacitance platform to suspend other thin, two-dimensional membrane such as graphene. PMID:26644307

  1. Suspended Solid-state Membranes on Glass Chips with Sub 1-pF Capacitance for Biomolecule Sensing Applications

    NASA Astrophysics Data System (ADS)

    Balan, Adrian; Chien, Chen-Chi; Engelke, Rebecca; Drndić, Marija

    2015-12-01

    Solid-state membranes are finding use in many applications in nanoelectronics and nanomedicine, from single molecule sensors to water filtration, and yet many of their electronics applications are limited by the relatively high current noise and low bandwidth stemming from the relatively high capacitance (>10 pF) of the membrane chips. To address this problem, we devised an integrated fabrication process to grow and define circular silicon nitride membranes on glass chips that successfully lower the chip capacitance to below 1 pF. We use these devices to demonstrate low-noise, high-bandwidth DNA translocation measurements. We also make use of this versatile, low-capacitance platform to suspend other thin, two-dimensional membrane such as graphene.

  2. Crystalline imide/arylene ether copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J. (Inventor); Hergenrother, Paul M. (Inventor); Bass, Robert G. (Inventor)

    1995-01-01

    Crystalline imide/arylene ether block copolymers are prepared by reacting anhydride terminated poly(amic acids) with amine terminated poly)arylene ethers) in polar aprotic solvents and chemically or thermally cyclodehydrating the resulting intermediate poly(amic acids). The block copolymers of the invention have one glass transition temperature or two, depending on the particular structure and/or the compatibility of the block units. Most of these crystalline block copolymers for tough, solvent resistant films with high tensile properties. While all of the copolymers produced by the present invention are crystalline, testing reveals that copolymers with longer imide blocks or higher imide content have increased crystallinity.

  3. pF3d simulations of nonlinear backward stimulated Raman scatter in a multi-speckle environment

    NASA Astrophysics Data System (ADS)

    Dodd, E. S.; Bezzerides, B.; Dubois, D. F.; Vu, H. X.

    2008-11-01

    Kinetic simulations of backward stimulated Raman scattering (BSRS) have shown that, in regimes of strong Landau damping of the BSRS Langmuir wave (LW), the reflectivity can exceed that predicted by linear analysis [1]. This is a result of electron trapping in the LW, which decreases Landau damping, and creates a frequency shift. Above a threshold, determined by the competition of trapping and collisional diffusion, the frequency shift becomes the dominant saturation mechanism for BSRS. This includes the transverse modulational instability [2]. However, one must use a code that models the nonlinear microscopic behavior along with the macroscopic evolution of the laser beam and background plasma. Here, we discuss work on implementing an empirical model for this effect in the pF3d code [3]. The model has been tested by comparing pF3d single-hot-spot simulations against theoretical calculations of the inflation threshold. We will discuss our current effort, using pF3d, to understand how the onset of nonlinear LW behavior is affected by inter-speckle interactions. [1] H. X. Vu, et al., Phys. Plasmas 14 012702 (2007). [2] H. A. Rose, and L. Yin, Phys. Plasmas 15 042311 (2008). [3] R. L. Berger, et al., Phys Plasmas 5 4337 (1998).

  4. 40 CFR 721.7220 - Polymer of substituted phenol, formaldehyde, epichlorohydrin, and disubstituted benzene.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., formaldehyde, epichlorohydrin, and disubstituted benzene. 721.7220 Section 721.7220 Protection of Environment..., formaldehyde, epichlorohydrin, and disubstituted benzene. (a) Chemical substance and significant new uses..., formaldehyde, epichlorohydrin, and disubstituted benzene (PMN P-89-1104) is subject to reporting under...

  5. 40 CFR 721.7220 - Polymer of substituted phenol, formaldehyde, epichlorohydrin, and disubstituted benzene.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., formaldehyde, epichlorohydrin, and disubstituted benzene. 721.7220 Section 721.7220 Protection of Environment..., formaldehyde, epichlorohydrin, and disubstituted benzene. (a) Chemical substance and significant new uses..., formaldehyde, epichlorohydrin, and disubstituted benzene (PMN P-89-1104) is subject to reporting under...

  6. 40 CFR 721.7220 - Polymer of substituted phenol, formaldehyde, epichlorohydrin, and disubstituted benzene.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., formaldehyde, epichlorohydrin, and disubstituted benzene. 721.7220 Section 721.7220 Protection of Environment..., formaldehyde, epichlorohydrin, and disubstituted benzene. (a) Chemical substance and significant new uses..., formaldehyde, epichlorohydrin, and disubstituted benzene (PMN P-89-1104) is subject to reporting under...

  7. 40 CFR 721.7220 - Polymer of substituted phenol, formaldehyde, epichlorohydrin, and disubstituted benzene.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polymer of substituted phenol... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.7220 Polymer of substituted phenol... subject to reporting. (1) The chemical substance identified generically as polymer of substituted...

  8. 40 CFR 721.7220 - Polymer of substituted phenol, formaldehyde, epichlorohydrin, and disubstituted benzene.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polymer of substituted phenol... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.7220 Polymer of substituted phenol... subject to reporting. (1) The chemical substance identified generically as polymer of substituted...

  9. Polyether-polyester graft copolymer

    NASA Technical Reports Server (NTRS)

    Bell, Vernon L. (Inventor)

    1987-01-01

    Described is a polyether graft polymer having improved solvent resistance and crystalline thermally reversible crosslinks. The copolymer is prepared by a novel process of anionic copolymerization. These polymers exhibit good solvent resistance and are well suited for aircraft parts. Previous aromatic polyethers, also known as polyphenylene oxides, have certain deficiencies which detract from their usefulness. These commercial polymers are often soluble in common solvents including the halocarbon and aromatic hydrocarbon types of paint thinners and removers. This limitation prevents the use of these polyethers in structural articles requiring frequent painting. In addition, the most popular commercially available polyether is a very high melting plastic. This makes it considerably more difficult to fabricate finished parts from this material. These problems are solved by providing an aromatic polyether graft copolymer with improved solvent resistance and crystalline thermally reversible crosslinks. The graft copolymer is formed by converting the carboxyl groups of a carboxylated polyphenylene oxide polymer to ionic carbonyl groups in a suitable solvent, reacting pivalolactone with the dissolved polymer, and adding acid to the solution to produce the graft copolymer.

  10. 21 CFR 177.1060 - n-Alkylglutarimide/acrylic copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .../acrylic copolymers shall not be used as polymer modifiers in vinyl chloride homo- or copolymers. (e... (other than articles composed of vinyl chloride homo- or copolymers) intended for use in contact with...

  11. Crystalline Imide/Arylene Ether Copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J.; Hergenrother, Paul M.; Bass, Robert G.

    1991-01-01

    Series of imide/arylene ether block copolymers prepared by using arylene ether blocks to impart low melt viscosity, and imide blocks to provide high strength and other desirable mechanical properties. Work represents extension of LAR-14159 on imide/arylene ether copolymers in form of films, moldings, adhesives, and composite matrices. Copolymers potentially useful in variety of high-temperature aerospace and microelectronic applications.

  12. Segmented polyether-ester copolymers

    SciTech Connect

    Souffie, R.D.

    1982-08-01

    This article touches on the chemistry of manufacture and structure of thermoplastic elastomers. The physical properties and environmental resistance characteristics of these copolymers are related to their molecular makeup. Results indicate that segmented polyether esters, because of their basic chemical structure, are resistant to a wide range of oils, solvents and chemicals. They are also highly elastic, resilient polymers which can be both cost and performance effective when used in a number of industrial applications.

  13. Self-assembly of Random Copolymers

    PubMed Central

    Li, Longyu; Raghupathi, Kishore; Song, Cunfeng; Prasad, Priyaa; Thayumanavan, S.

    2014-01-01

    Self-assembly of random copolymers has attracted considerable attention recently. In this feature article, we highlight the use of random copolymers to prepare nanostructures with different morphologies and to prepare nanomaterials that are responsive to single or multiple stimuli. The synthesis of single-chain nanoparticles and their potential applications from random copolymers are also discussed in some detail. We aim to draw more attention to these easily accessible copolymers, which are likely to play an important role in translational polymer research. PMID:25036552

  14. Copolymers of fluorinated polydienes and sulfonated polystyrene

    DOEpatents

    Mays, Jimmy W.; Gido, Samuel P.; Huang, Tianzi; Hong, Kunlun

    2009-11-17

    Copolymers of fluorinated polydienes and sulfonated polystyrene and their use in fuel cell membranes, batteries, breathable chemical-biological protective materials, and templates for sol-gel polymerization.

  15. Phase Behavior of Symmetric Sulfonated Block Copolymers

    SciTech Connect

    Park, Moon Jeong; Balsara, Nitash P.

    2008-08-21

    Phase behavior of poly(styrenesulfonate-methylbutylene) (PSS-PMB) block copolymers was studied by varying molecular weight, sulfonation level, and temperature. Molecular weights of the copolymers range from 2.9 to 117 kg/mol. Ordered lamellar, gyroid, hexagonally perforated lamellae, and hexagonally packed cylinder phases were observed in spite of the fact that the copolymers are nearly symmetric with PSS volume fractions between 0.45 and 0.50. The wide variety of morphologies seen in our copolymers is inconsistent with current theories on block copolymer phase behavior such as self-consistent field theory. Low molecular weight PSS-PMB copolymers (<6.2 kg/mol) show order-order and order-disorder phase transitions as a function of temperature. In contrast, the phase behavior of high molecular weight PSS-PMB copolymers (>7.7 kg/mol) is independent of temperature. Due to the large value of Flory-Huggins interaction parameter, x, between the sulfonated and non-sulfonated blocks, PSS-PMB copolymers with PSS and PMB molecular weights of 1.8 and 1.4 kg/mol, respectively, show the presence of an ordered gyroid phase with a 2.5 nm diameter PSS network. A variety of methods are used to estimate x between PSS and PMB chains as a function of sulfonation level. Some aspects of the observed phase behavior of PSS-PMB copolymers can be rationalized using x.

  16. The P.F.C. sigma RP-F TKA designed for improved performance: a matched-pair study.

    PubMed

    Gupta, Sanjay K; Ranawat, Amar S; Shah, Vineet; Zikria, Bashir A; Zikria, Joseph F; Ranawat, Chitranjan S

    2006-09-01

    The press fit condylar P.F.C. Sigma RP-F (rotating-platform, high flexion) knee is designed to provide a range of motion (ROM) of 155 degrees without compromising wear, polyethylene contact stresses, patellofemoral tracking, or stability. The first 50 TKA surgeries using the Sigma RP-F knee performed at the author's institution were matched to 50 rotating-platform knees for age, sex, body mass index, preoperative diagnosis, duration of follow-up, and preoperative ROM to determine the effect of design on postoperative ROM. The mean increase in active ROM in the Sigma RP-F group was 17 degrees, compared with 6 degrees in the rotating-platform group (P =.0011). The mean increase in active ROM in patients who had less than 120 degrees of preoperative motion was 27 degrees in the Sigma RP-F group, compared with 16 degrees in the rotating-platform group (P = .006). With the new P.F.C. Sigma RP-F design, greater ROM can be achieved independent of preoperative ROM. PMID:17002149

  17. Role of the P-F bond in fluoride-promoted aqueous VX hydrolysis: an experimental and theoretical study.

    PubMed

    Marciano, Daniele; Columbus, Ishay; Elias, Shlomi; Goldvaser, Michael; Shoshanim, Ofir; Ashkenazi, Nissan; Zafrani, Yossi

    2012-11-16

    Following our ongoing studies on the reactivity of the fluoride ion toward organophosphorus compounds, we established that the extremely toxic and environmentally persistent chemical warfare agent VX (O-ethyl S-2-(diisopropylamino)ethyl methylphosphonothioate) is exclusively and rapidly degraded to the nontoxic product EMPA (ethyl methylphosphonic acid) even in dilute aqueous solutions of fluoride. The unique role of the P-F bond formation in the reaction mechanism was explored using both experimental and computational mechanistic studies. In most cases, the "G-analogue" (O-ethyl methylphosphonofluoridate, Et-G) was observed as an intermediate. Noteworthy and of practical importance is the fact that the toxic side product desethyl-VX, which is formed in substantial quantities during the slow degradation of VX in unbuffered water, is completely avoided in the presence of fluoride. A computational study on a VX-model, O,S-diethyl methylphosphonothioate (1), clarifies the distinctive tendency of aqueous fluoride ions to react with such organophosphorus compounds. The facility of the degradation process even in dilute fluoride solutions is due to the increased reactivity of fluoride, which is caused by the significant low activation barrier for the P-F bond formation. In addition, the unique nucleophilicity of fluoride versus hydroxide toward VX, in contrast to their relative basicity, is discussed. Although the reaction outcomes were similar, much slower reaction rates were observed experimentally for the VX-model (1) in comparison to VX. PMID:23083335

  18. 21 CFR 175.210 - Acrylate ester copolymer coating.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) The acrylate ester copolymer is a fully polymerized copolymer of ethyl acrylate, methyl methacrylate... emulsion defoamer. Disodium hydrogen phosphate Do. Formaldehyde Glyceryl monostearate Methyl...

  19. 21 CFR 175.210 - Acrylate ester copolymer coating.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) The acrylate ester copolymer is a fully polymerized copolymer of ethyl acrylate, methyl methacrylate... emulsion defoamer. Disodium hydrogen phosphate Do. Formaldehyde Glyceryl monostearate Methyl...

  20. Interfaces between Block Copolymer Domains

    NASA Astrophysics Data System (ADS)

    Kim, Jaeup; Jeong, Seong-Jun; Kim, Sang Ouk

    2011-03-01

    Block copolymers naturally form nanometer scale structures which repeat their geometry on a larger scale. Such a small scale periodic pattern can be used for various applications such as storage media, nano-circuits and optical filters. However, perfect alignment of block copolymer domains in the macroscopic scale is still a distant dream. The nanostructure formation usually occurs with spontaneously broken symmetry; hence it is easily infected by topological defects which sneak in due to entropic fluctuation and incomplete annealing. Careful annealing can gradually reduce the number of defects, but once kinetically trapped, it is extremely difficult to remove all the defects. One of the main reasons is that the defect finds a locally metastable morphology whose potential depth is large enough to prohibit further morphology evolution. In this work, the domain boundaries between differently oriented lamellar structures in thin film are studied. For the first time, it became possible to quantitatively study the block copolymer morphology in the transitional region, and it was shown that the twisted grain boundary is energetically favorable compared to the T-junction grain boundary. [Nano Letters, 9, 2300 (2010)]. This theoretical method successfully explained the experimental results.

  1. Effect of chain topology of block copolymer on micellization: ring vs linear block copolymer

    NASA Astrophysics Data System (ADS)

    Kim, Kwang Hee; Huh, June; Jo, Won Ho

    2003-03-01

    The aggregation of amphiphilic block copolymers in solution to form micelles has attracted great interest in recent years because of its importance in industrial applications. Many studies on these systems have mainly focused on a di- or triblock copolymer and much less attention was given to other architectures such as ring block copolymer. Recent experimental work has extended those works to include ring block copolymer, made by end-linking the triblock copolymer. Although the micellization of the ring block copolymer seemed to be favored over that of the linear triblock copolymer, two block copolymers showed similar values of cmc in experiments. In the present work, micellization of ring block copolymer (ring-B9A8) was simulated by Brownian dyanmics and micellar behavior is compared with triblock copolymer (A4B9A4) to investigate more systematically the effect of molecular architecture. Critical micelle concentration (cmc), average aggregation number and micellar distribution are compared with corresponding quantities measured for linear triblock copolymers having the same chain length and composition. Simulation results show that the cmc of ring-B9A8 is smaller than that of A4B9A4. The difference is explained by simple mean-field type theory.

  2. 21 CFR 180.22 - Acrylonitrile copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADDITIVES PERMITTED IN FOOD OR IN CONTACT WITH FOOD ON AN INTERIM BASIS PENDING ADDITIONAL STUDY Specific Requirements for Certain Food Additives § 180.22 Acrylonitrile copolymers. Acrylonitrile copolymers may be... uses subject to the denial are thereafter unapproved food additives and consequently unlawful. (3)...

  3. Dimensionally Stable Ether-Containing Polyimide Copolymers

    NASA Technical Reports Server (NTRS)

    Fay, Catharine C. (Inventor); St.Clair, Anne K. (Inventor)

    1999-01-01

    Novel polyimide copolymers containing ether linkages were prepared by the reaction of an equimolar amount of dianhydride and a combination of diamines. The polyimide copolymers described herein possess the unique features of low moisture uptake, dimensional stability, good mechanical properties, and moderate glass transition temperatures. These materials have potential application as encapsulants and interlayer dielectrics.

  4. Imide/arylene ether block copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, B. J.; Hergenrother, P. M.; Bass, R. G.

    1991-01-01

    Two series of imide/arylene either block copolymers were prepared using an arylene ether block and either an amorphous or semi-crystalline imide block. The resulting copolymers were characterized and selected physical and mechanical properties were determined. These results, as well as comparisons to the homopolymer properties, are discussed.

  5. Thermochemical characteristics of chitosan-polylactide copolymers

    NASA Astrophysics Data System (ADS)

    Goruynova, P. E.; Larina, V. N.; Smirnova, N. N.; Tsverova, N. E.; Smirnova, L. A.

    2016-05-01

    The energies of combustion of chitosan and its block-copolymers with different polylactide contents are determined in a static bomb calorimeter. Standard enthalpies of combustion and formation are calculated for these substances. The dependences of the thermochemical characteristics on block-copolymer composition are determined and discussed.

  6. 21 CFR 173.65 - Divinylbenzene copolymer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Adjuvants for Food Treatment § 173.65 Divinylbenzene copolymer. Divinylbenzene copolymer may be used for the... extraction with a water soluble alcohol until the level of divinylbenzene in the extract is less than 50... is then treated with water according to the manufacturer's recommendation to remove the...

  7. A Novel SRY Gene Mutation p.F109L in a 46,XY Female with Complete Gonadal Dysgenesis.

    PubMed

    Andonova, Silvia; Robeva, Ralitsa; Sirakov, Milko; Mainhard, Karela; Tomova, Analia; Ledig, Susanne; Kumanov, Philip; Savov, Alexey

    2015-01-01

    46,XY complete gonadal dysgenesis (CGD) is a disorder of sexual development that can result from different mutations in genes associated with sex determination. Patients are phenotypically females, and the disease is often diagnosed in late adolescence because of delayed puberty. Here, we present the clinical and molecular data of a 46,XY female CGD patient with gonadoblastoma with dysgerminoma and incidentally found inherited thrombophilia. The clinical significance of the described de novo SRY gene mutation c.325T>C (p.F109L) is discussed. This case report supports the critical role of the HGM domain in the SRY gene and the need of a multidisciplinary approach for CGD patients. PMID:26871559

  8. Processible Polyaniline Copolymers and Complexes.

    NASA Astrophysics Data System (ADS)

    Liao, Yun-Hsin

    1995-01-01

    Polyaniline (PANI) is an intractable polymer due to the difficulty of melt processing or dissolving it in common solvents. The purpose of the present investigation was to prepare a new class of conducting polyanilines with better solubility both in base and dope forms by (1) adding external salt to break aggregated chains, (2) introducing ring substituted units onto the backbone without disturbing the coplanar structure, and (3) complexing with polymeric dopants to form a soluble polymer complex. Aggregation of PANI chains in dilute solution was investigated in N-methyl-2-pyrrolidinone (NMP) by light scattering, gel permeation chromatography, and viscosity measurements. The aggregation of chains resulted in a negative second virial coefficient in light scattering measurement, a bimodal molecular weight distribution in gel permeation chromatography, and concave reduced viscosity curves. The aggregates can be broken by adding external salt, which resulting in a higher reduced viscosity. The driving force for aggregation is assumed to be a combination of hydrogen bonding between the imine and amine groups, and the rigidity of backbone. The aggregation was modeled to occur via side-on packing of PANI chains. The ring substituted PANI copolymers, poly(aniline -co-phenetidine) were synthesized by chemical oxidation copolymerization using ammonium persulfate as an oxidant. The degree of copolymerization declined with an increasing feed of o-phenetidine in the reaction mixture. The o-phenetidine had a higher reactivity than aniline in copolymerization resulting in a higher content of o-phenetidine in copolymers. The resulting copolymers can be readily dissolved in NMP up to 20% (w/w), and other common solvents, and solutions possess a longer gelation time. The highly soluble copolymer with 20 mole % o-phenetidine in the backbone has same order of conductivity as the unsubstituted PANI after it is doped by HCl. Complexation of PANI and polymeric dopant, poly

  9. Pattern transfer using block copolymers.

    PubMed

    Gu, Xiaodan; Gunkel, Ilja; Russell, Thomas P

    2013-10-13

    To meet the increasing demand for patterning smaller feature sizes, a lithography technique is required with the ability to pattern sub-20 nm features. While top-down photolithography is approaching its limit in the continued drive to meet Moore's law, the use of directed self-assembly (DSA) of block copolymers (BCPs) offers a promising route to meet this challenge in achieving nanometre feature sizes. Recent developments in BCP lithography and in the DSA of BCPs are reviewed. While tremendous advances have been made in this field, there are still hurdles that need to be overcome to realize the full potential of BCPs and their actual use. PMID:24000358

  10. Rapid self-assembly of block copolymers to photonic crystals

    DOEpatents

    Xia, Yan; Sveinbjornsson, Benjamin R; Grubbs, Robert H; Weitekamp, Raymond; Miyake, Garret M; Atwater, Harry A; Piunova, Victoria; Daeffler, Christopher Scot; Hong, Sung Woo; Gu, Weiyin; Russell, Thomas P.

    2016-07-05

    The invention provides a class of copolymers having useful properties, including brush block copolymers, wedge-type block copolymers and hybrid wedge and polymer block copolymers. In an embodiment, for example, block copolymers of the invention incorporate chemically different blocks comprising polymer size chain groups and/or wedge groups that significantly inhibit chain entanglement, thereby enhancing molecular self-assembly processes for generating a range of supramolecular structures, such as periodic nanostructures and microstructures. The present invention also provides useful methods of making and using copolymers, including block copolymers.

  11. Injectible bodily prosthetics employing methacrylic copolymer gels

    DOEpatents

    Mallapragada, Surya K.; Anderson, Brian C.

    2007-02-27

    The present invention provides novel block copolymers as structural supplements for injectible bodily prosthetics employed in medical or cosmetic procedures. The invention also includes the use of such block copolymers as nucleus pulposus replacement materials for the treatment of degenerative disc disorders and spinal injuries. The copolymers are constructed by polymerization of a tertiary amine methacrylate with either a (poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) polymer, such as the commercially available Pluronic.RTM. polymers, or a poly(ethylene glycol) methyl ether polymer.

  12. Block Copolymer Membranes for Biofuel Purification

    NASA Astrophysics Data System (ADS)

    Evren Ozcam, Ali; Balsara, Nitash

    2012-02-01

    Purification of biofuels such as ethanol is a matter of considerable concern as they are produced in complex multicomponent fermentation broths. Our objective is to design pervaporation membranes for concentrating ethanol from dilute aqueous mixtures. Polystyrene-b-polydimethylsiloxane-b-polystyrene block copolymers were synthesized by anionic polymerization. The polydimethylsiloxane domains provide ethanol-transporting pathways, while the polystyrene domains provide structural integrity for the membrane. The morphology of the membranes is governed by the composition of the block copolymer while the size of the domains is governed by the molecular weight of the block copolymer. Pervaporation data as a function of these two parameters will be presented.

  13. LaRC-ITPI/arylene ether copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J.; Working, Dennis C.

    1991-01-01

    As part of an effort to develop high performance structural resins for aerospace applications, work has continued on block copolymers containing imide and arylene ether segments. The arylene ether block used in this study contains a bulky fluorene group in the polymer backbone while the imide block contains an arylene ketone segment similar to that in the arylene ether block and has been named LaRC-ITPI. A series of imide/arylene ether block and segmented copolymers were prepared and characterized. Films were prepared from these copolymers and mechanical properties were measured.

  14. An in-situ study of structure evolution in block copolymer thin films of PS-PEO during solvent vapor annealing

    NASA Astrophysics Data System (ADS)

    Mokarian-Tabari, Parvaneh; Collins, Timothy W.; Morris, Michael A.

    2010-03-01

    Thin films of block copolymers are promising candidates for producing nano scale structures in the electronic industry such as sub-30 nm templates for nanolithography [1]. To be able to produce structures with desired morphologies and minimum defects, it is important to have a deep understanding of the ordering mechanism. We have carried out a systematic study on spin cast films made of poly(styrene-b-ethylene oxide) block copolymers during solvent and thermal annealing. The swelling behavior of the films were studied by using an environmental cell to control the vapor pressure of the gas and equipped with small angle light scattering apparatus. Our results show that the swelling starts within seconds of exposure to toluene vapor and the domains form within minutes. Cyclic transition between perpendicular and horizontal arrays is observed. [1] Ruiz R, Kang H M, Detcheverry F A, Dobisz E, Kercher D S, Albrecht T R, de Pablo J J and Nealey P F, 2008, 321, 936

  15. pF3D Simulations of Large Outer-Beam Brillouin Scattering from NIF Rugby Hohlraums

    NASA Astrophysics Data System (ADS)

    Langer, Steven; Strozzi, David; Chapman, Thomas; Amendt, Peter

    2015-11-01

    We assess the cause of large outer-beam stimulated Brillouin scattering (SBS) in a NIF shot with a rugby-shaped hohlraum, which has less wall surface loss and thus higher x-ray drive than a cylindrical hohlraum of the same radius. This shot differed from a prior rugby shot with low SBS in three ways: outer beam pointing, split-pointing of the four beams within each outer-beam quadruplet, and a small amount of neon added to the hohlraum helium fill gas. We use pF3D, a massively-parallel, paraxial-envelope laser plasma interaction code, with plasma profiles from the radiation-hydrodynamics code Lasnex. We determine which change between the two shots increased the SBS by adding them one at a time to the simulations. We compare the simulations to experimental data for total SBS power, its spatial distribution at the lens, and the SBS spectrum. For each shot, we use profiles from Lasnex simulations with and without a model for mix at the hohlraum wall-gas interface. Work performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344. Release number LLNL-ABS-674893.

  16. Block Copolymers with a Twist

    SciTech Connect

    Ho, R.; Chiang, Y; Chen, C; Wang, H; Hasegawa, H; Akasaka, S; Thomas, E; Burger, C; Hsiao, B

    2009-01-01

    Chiral block copolymers (BCPs*) comprising chiral entities were designed to fabricate helical architectures (i.e., twisted morphologies) from self-assembly. A new helical phase (H*) with P622 symmetry was discovered in the self-assembly of poly(styrene)-b-poly(l-lactide) (PS-PLLA) BCPs*. Hexagonally packed, interdigitated PLLA helical microdomains in a PS matrix were directly visualized by electron tomography. The phase diagram of the PS-PLLA BCPs* was also established. Phase transitions from the H* phase to the stable cylinder and gyroid phases were found after long-time annealing, suggesting that the H* is a long-lived metastable phase. In contrast to racemic poly(styrene)-b-poly(d,l-lactide) BCPs, chiral interaction significantly enhances the incompatibility between achiral PS and chiral PLLA blocks in the PS-PLLA BCPs* and can be estimated through the determination of the interaction parameter.

  17. Arbitrary lattice symmetries via block copolymer nanomeshes

    PubMed Central

    Majewski, Pawel W.; Rahman, Atikur; Black, Charles T.; Yager, Kevin G.

    2015-01-01

    Self-assembly of block copolymers is a powerful motif for spontaneously forming well-defined nanostructures over macroscopic areas. Yet, the inherent energy minimization criteria of self-assembly give rise to a limited library of structures; diblock copolymers naturally form spheres on a cubic lattice, hexagonally packed cylinders and alternating lamellae. Here, we demonstrate multicomponent nanomeshes with any desired lattice symmetry. We exploit photothermal annealing to rapidly order and align block copolymer phases over macroscopic areas, combined with conversion of the self-assembled organic phase into inorganic replicas. Repeated photothermal processing independently aligns successive layers, providing full control of the size, symmetry and composition of the nanoscale unit cell. We construct a variety of symmetries, most of which are not natively formed by block copolymers, including squares, rhombuses, rectangles and triangles. In fact, we demonstrate all possible two-dimensional Bravais lattices. Finally, we elucidate the influence of nanostructure on the electrical and optical properties of nanomeshes. PMID:26100566

  18. Block copolymer structures in nano-pores

    NASA Astrophysics Data System (ADS)

    Pinna, Marco; Guo, Xiaohu; Zvelindovsky, Andrei

    2010-03-01

    We present results of coarse-grained computer modelling of block copolymer systems in cylindrical and spherical nanopores on Cell Dynamics Simulation. We study both cylindrical and spherical pores and systematically investigate structures formed by lamellar, cylinders and spherical block copolymer systems for various pore radii and affinity of block copolymer blocks to the pore walls. The obtained structures include: standing lamellae and cylinders, ``onions,'' cylinder ``knitting balls,'' ``golf-ball,'' layered spherical, ``virus''-like and mixed morphologies with T-junctions and U-type defects [1]. Kinetics of the structure formation and the differences with planar films are discussed. Our simulations suggest that novel porous nano-containers can be formed by confining block copolymers in pores of different geometries [1,2]. [4pt] [1] M. Pinna, X. Guo, A.V. Zvelindovsky, Polymer 49, 2797 (2008).[0pt] [2] M. Pinna, X. Guo, A.V. Zvelindovsky, J. Chem. Phys. 131, 214902 (2009).

  19. Phase behaviors of cyclic diblock copolymers.

    PubMed

    Zhang, Guojie; Fan, Zhongyong; Yang, Yuliang; Qiu, Feng

    2011-11-01

    A spectral method of self-consistent field theory has been applied to AB cyclic block copolymers. Phase behaviors of cyclic diblock copolymers, such as order-disorder transition, order-order transition, and domain spacing size, have been studied, showing good consistency with previous experimental and theoretical results. Compared to linear diblocks, cyclic diblocks are harder to phase separate due to the topological constraint of the ring structure. A direct disorder-to-cylinder transition window is observed in the phase diagram, which is significantly different from the mean field phase diagram of linear diblock copolymers. The domain spacing size ratio between cyclic and linear diblock copolymers is typically close to 0.707, indicating in segregation that the cyclic polymer can be considered to be made up of linear diblocks with half of the original chain length. PMID:22070321

  20. Electrostatic control of block copolymer morphology

    NASA Astrophysics Data System (ADS)

    Sing, Charles E.; Zwanikken, Jos W.; Olvera de La Cruz, Monica

    2014-07-01

    Energy storage is at present one of the foremost issues society faces. However, material challenges now serve as bottlenecks in technological progress. Lithium-ion batteries are the current gold standard to meet energy storage needs; however, they are limited owing to the inherent instability of liquid electrolytes. Block copolymers can self-assemble into nanostructures that simultaneously facilitate ion transport and provide mechanical stability. The ions themselves have a profound, yet previously unpredictable, effect on how these nanostructures assemble and thus the efficiency of ion transport. Here we demonstrate that varying the charge of a block copolymer is a powerful mechanism to predictably tune nanostructures. In particular, we demonstrate that highly asymmetric charge cohesion effects can induce the formation of nanostructures that are inaccessible to conventional uncharged block copolymers, including percolated phases desired for ion transport. This vastly expands the design space for block copolymer materials and is informative for the versatile design of battery electrolyte materials.

  1. Method for making block siloxane copolymers

    DOEpatents

    Butler, Nora; Jessop, Edward S.; Kolb, John R.

    1982-01-01

    A method for synthesizing block polysiloxane copolymers. Diorganoscyclosiloxanes and an end-blocking compound are interacted in the presence of a ring opening polymerization catalyst, producing a blocked prepolymer. The prepolymer is then interacted with a silanediol, resulting in condensation polymerization of the prepolymers. A second end-blocking compound is subsequently introduced to end-cap the polymers and copolymers formed from the condensation polymerization.

  2. Method for making block siloxane copolymers

    DOEpatents

    Butler, N.L.; Jessop, E.S.; Kolb, J.R.

    1981-02-25

    A method for synthesizing block polysiloxane copolymers is disclosed. Diorganoscyclosiloxanes and an end-blocking compound are interacted in the presence of a ring opening polymerization catalyst, producing a blocked prepolymer. The prepolymer is then interacted with a silanediol, resulting in condensation polymerization of the prepolymers. A second end-blocking compound is subsequently introduced to end-cap the polymers and copolymers formed from the condensation polymerization.

  3. Responsive Copolymers for Enhanced Petroleum Recovery

    SciTech Connect

    McCormick, C.; Hester, R.

    2001-02-27

    The objectives of this work was to: synthesize responsive copolymer systems; characterize molecular structure and solution behavior; measure rheological properties of aqueous fluids in fixed geometry flow profiles; and to tailor final polymer compositions for in situ rheology control under simulated conditions. This report focuses on the synthesis and characterization of novel stimuli responsive copolymers, the investigation of dilute polymer solutions in extensional flow and the design of a rheometer capable of measuring very dilute aqueous polymer solutions at low torque.

  4. Ion and temperature sensitive polypeptide block copolymer.

    PubMed

    Joo, Jae Hee; Ko, Du Young; Moon, Hyo Jung; Shinde, Usha Pramod; Park, Min Hee; Jeong, Byeongmoon

    2014-10-13

    A poly(ethylene glycol)/poly(L-alanine) multiblock copolymer incorporating ethylene diamine tetraacetic acid ([PA-PEG-PA-EDTA(m)) was synthesized as an ion/temperature dual stimuli-sensitive polymer, where the effect of different metal ions (Cu(2+), Zn(2+), and Ca(2+)) on the thermogelation of the polymer aqueous solution was investigated. The dissociation constants between the metal ions and the multiblock copolymer were calculated to be 1.2 × 10(-7), 6.6 × 10(-6), and 1.2 × 10(-4) M for Cu(2+), Zn(2+), and Ca(2+), respectively, implying that the binding affinity of the multiblock copolymer for Cu(2+) is much greater than that for Zn(2+) or Ca(2+). Atomic force microscopy and dynamic light scattering of the multiblock copolymer containing metal ions suggested micelle formation at low temperature, which aggregated as the temperature increased. Circular dichroism spectra suggested that changes in the α-helical secondary structure of the multiblock copolymer were more pronounced by adding Cu(2+) than other metal ions. The thermogelation of the multiblock copolymer aqueous solution containing Cu(2+) was observed at a lower temperature, and the modulus of the gel was significantly higher than that of the system containing Ca(2+) or Zn(2+), in spite of the same concentration of the metal ions and their same ionic valence of +2. The above results suggested that strong ionic complexes between Cu(2+) and the multiblock copolymer not only affected the secondary structure of the polymer but also facilitated the thermogelation of the polymer aqueous solution through effective salt-bridge formation even in a millimolar range of the metal ion concentration. Therefore, binding affinity of metal ions for polymers should be considered first in designing an effective ion/temperature dual stimuli-sensitive polymer. PMID:25178662

  5. 21 CFR 177.1060 - n-Alkylglutarimide/acrylic copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... vinyl chloride homo- or copolymers. (e) Conditions of use. The n-alkylglutarimide/acrylic copolymers are used as articles or components of articles (other than articles composed of vinyl chloride homo-...

  6. 21 CFR 177.1060 - n-Alkylglutarimide/acrylic copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... vinyl chloride homo- or copolymers. (e) Conditions of use. The n-alkylglutarimide/acrylic copolymers are used as articles or components of articles (other than articles composed of vinyl chloride homo-...

  7. 21 CFR 177.1060 - n-Alkylglutarimide/acrylic copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... vinyl chloride homo- or copolymers. (e) Conditions of use. The n-alkylglutarimide/acrylic copolymers are used as articles or components of articles (other than articles composed of vinyl chloride homo-...

  8. 21 CFR 177.1060 - n-Alkylglutarimide/acrylic copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... vinyl chloride homo- or copolymers. (e) Conditions of use. The n-alkylglutarimide/acrylic copolymers are used as articles or components of articles (other than articles composed of vinyl chloride homo-...

  9. Initiator Effects in Reactive Extrusion of Starch Graft Copolymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Graft copolymers of starch with water-soluble polymers such as polyacrylamide have potential applications including hydrogels, superabsorbents, and thickening agents. Reactive extrusion is a rapid, continuous method for production of starch graft copolymers with high reaction and grafting efficienc...

  10. Hydrogen-bonded aggregates in precise acid copolymers

    SciTech Connect

    Lueth, Christopher A.; Bolintineanu, Dan S.; Stevens, Mark J. Frischknecht, Amalie L.

    2014-02-07

    We perform atomistic molecular dynamics simulations of melts of four precise acid copolymers, two poly(ethylene-co-acrylic acid) (PEAA) copolymers, and two poly(ethylene-co-sulfonic acid) (PESA) copolymers. The acid groups are spaced by either 9 or 21 carbons along the polymer backbones. Hydrogen bonding causes the acid groups to form aggregates. These aggregates give rise to a low wavevector peak in the structure factors, in agreement with X-ray scattering data for the PEAA materials. The structure factors for the PESA copolymers are very similar to those for the PEAA copolymers, indicating a similar distance between aggregates which depends on the spacer length but not on the nature of the acid group. The PEAA copolymers are found to form more dimers and other small aggregates than do the PESA copolymers, while the PESA copolymers have both more free acid groups and more large aggregates.

  11. Diblock Copolymers for Nanoscale Patterning

    NASA Astrophysics Data System (ADS)

    Russell, Thomas

    2006-03-01

    As the size scale of device features becomes increasingly smaller, conventional lithographic processes become increasingly more difficult and expensive, especially at a minimum feature size of less than 50 nm. Consequently, to achieve higher density circuits, storage devices or displays, it is evident that alternative routes need to be developed to circumvent both cost and manufacturing issues. An ideal process would be compatible with existing technological processes/manufacturing techniques and these strategies, together with novel materials, could allow significant advances to be made in meeting both short-term and long-term demands for higher density and faster devices. The self-assembly of block copolymers (BCP), two polymer chains covalently linked together at one end, provides a robust solution to these challenges. As thin films, immiscible BCP self-assemble into a range of highly-ordered morphologies where with size scale of the features is limited to the size of the polymers chains and are, therefore, nanoscopic in size. While self-assembly alone is sufficient for a number of applications in fabricating advanced microelectronics, directed self-orienting self-assembly processes are also required to produce complex devices with the required density and addressability of elements to meet future demands. By combining tailored self-assembly processes, a bottom-up approach, with micro-fabrication processes, a top-down approach, the ever-present thirst of the consumer for faster, better and cheaper devices can be met in very simple, yet robust, ways.

  12. Random Copolymer: Gaussian Variational Approach

    NASA Astrophysics Data System (ADS)

    Moskalenko, A.; Kuznetsov, Yu. A.; Dawson, K. A.

    1997-03-01

    We study the phase transitions of a random copolymer chain with quenched disorder. We calculate the average over the quenched disorder in replica space and apply a Gaussian variational approach based on a generic quadratic trial Hamiltonian in terms of the correlation functions of monomer Fourier coordinates. This has the advantage that it allows us to incorporate fluctuations of the density, determined self-consistently, and to study collapse, phase separation transitions and the onset of the freezing transition within the same mean field theory. The effective free energy of the system is derived analytically and analyzed numerically in the one-step Parisi scheme. Such quantities as the radius of gyration, end-to-end distance or the average value of the overlap between different replicas are treated as observables and evaluated by introducing appropriate external fields to the Hamiltonian. As a result we obtain the phase diagram in terms of model parameters, scaling for the freezing transition and the dependence of correlation functions on the chain index.

  13. Dynamic Processes in Diblock Copolymer Micelles

    NASA Astrophysics Data System (ADS)

    Robertson, Megan; Singh, Avantika

    2013-03-01

    Diblock copolymers, which form micelle structures in selective solvents, offer advantages of robustness and tunability of micelle characteristics as compared to small molecule surfactants. Diblock copolymer micelles in water have been a subject of great interest in drug delivery applications based on their high loading capacity and targeted drug delivery. The aim of this work is to understand the dynamic processes which underlie the self-assembly of diblock copolymer micelle systems which have a semi-crystalline core. Due to the large size of the molecules, the self-assembly of block copolymer micelles occurs on significantly longer time scales than small molecule analogues. The present work focuses on amphiphilic diblock copolymers containing blocks of poly(ethylene oxide) (a hydrophilic polymer) and polycaprolactone (a hydrophobic, semi-crystalline polymer), which spontaneously self-assemble into spherical micelles in water. A variety of experimental techniques are used to probe the kinetic processes relevant to micelle self-assembly, including time-resolved neutron scattering, dynamic light scattering, pulsed field gradient nuclear magnetic resonance, and fluorescence resonance energy transfer experiments.

  14. 21 CFR 175.210 - Acrylate ester copolymer coating.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylate ester copolymer coating. 175.210 Section... COATINGS Substances for Use as Components of Coatings § 175.210 Acrylate ester copolymer coating. Acrylate ester copolymer coating may safely be used as a food-contact surface of articles intended for...

  15. pH-sensitive methacrylic copolymers and the production thereof

    DOEpatents

    Mallapragada, Surya K.; Anderson, Brian C.; Bloom, Paul D.; Sheares Ashby, Valerie V.

    2006-02-14

    The present invention provides novel multi-functional methacrylic copolymers that exhibit cationic pH-sensitive behavior as well as good water solubility under acidic conditions. The copolymers are constructed from tertiary amine methacrylates and poly(ethylene glycol) containing methacrylates. The copolymers are useful as gene vectors, pharmaceutical carriers, and in protein separation applications.

  16. 21 CFR 177.1820 - Styrene-maleic anhydride copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... sieve No. 20. 2. Styrene-maleic anhydride copolymer modified with butadiene, (CAS Reg. No. 27288-99-9... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Styrene-maleic anhydride copolymers. 177.1820... Use Food Contact Surfaces § 177.1820 Styrene-maleic anhydride copolymers. Styrene-maleic...

  17. 21 CFR 177.1820 - Styrene-maleic anhydride copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... units by weight and not more than 20 percent styrene-butadiene and/or butadiene rubber units by weight... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Styrene-maleic anhydride copolymers. 177.1820... copolymers. Styrene-maleic anhydride copolymers identified in paragraph (a) of this section may be...

  18. 21 CFR 177.1820 - Styrene-maleic anhydride copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... units by weight and not more than 20 percent styrene-butadiene and/or butadiene rubber units by weight... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Styrene-maleic anhydride copolymers. 177.1820... copolymers. Styrene-maleic anhydride copolymers identified in paragraph (a) of this section may be...

  19. pH-sensitive methacrylic copolymers and the production thereof

    DOEpatents

    Mallapragada, Surya K.; Anderson, Brian C.; Bloom, Paul D.; Sheares Ashby, Valerie V.

    2007-01-09

    The present invention provides novel multi-functional methacrylic copolymers that exhibit cationic pH-sensitive behavior as well as good water solubility under acidic conditions. The copolymers are constructed from tertiary amine methacrylates and poly(ethylene glycol) containing methacrylates. The copolymers are useful as gene vectors, pharmaceutical carriers, and in protein separation applications.

  20. 40 CFR 721.484 - Fluorinated acrylic copolymer (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Fluorinated acrylic copolymer (generic... Specific Chemical Substances § 721.484 Fluorinated acrylic copolymer (generic name). (a) Chemical substance... fluorinated acrylic copolymer (PMN P-95-1208) is subject to reporting under this section for the...

  1. 40 CFR 721.484 - Fluorinated acrylic copolymer (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fluorinated acrylic copolymer (generic... Specific Chemical Substances § 721.484 Fluorinated acrylic copolymer (generic name). (a) Chemical substance... fluorinated acrylic copolymer (PMN P-95-1208) is subject to reporting under this section for the...

  2. 21 CFR 172.775 - Methacrylic acid-divinylbenzene copolymer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Methacrylic acid-divinylbenzene copolymer. 172.775... HUMAN CONSUMPTION Other Specific Usage Additives § 172.775 Methacrylic acid-divinylbenzene copolymer. Methacrylic acid-divinylbenzene copolymer may be safely used in food in accordance with the...

  3. 21 CFR 172.775 - Methacrylic acid-divinylbenzene copolymer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Methacrylic acid-divinylbenzene copolymer. 172.775... Additives § 172.775 Methacrylic acid-divinylbenzene copolymer. Methacrylic acid-divinylbenzene copolymer may... produced by the polymerization of methacrylic acid and divinylbenzene. The divinylbenzene functions as...

  4. 21 CFR 172.775 - Methacrylic acid-divinylbenzene copolymer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Methacrylic acid-divinylbenzene copolymer. 172.775... HUMAN CONSUMPTION Other Specific Usage Additives § 172.775 Methacrylic acid-divinylbenzene copolymer. Methacrylic acid-divinylbenzene copolymer may be safely used in food in accordance with the...

  5. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be...

  6. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be...

  7. 21 CFR 172.775 - Methacrylic acid-divinylbenzene copolymer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methacrylic acid-divinylbenzene copolymer. 172.775... HUMAN CONSUMPTION Other Specific Usage Additives § 172.775 Methacrylic acid-divinylbenzene copolymer. Methacrylic acid-divinylbenzene copolymer may be safely used in food in accordance with the...

  8. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be...

  9. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be...

  10. 21 CFR 173.60 - Dimethylamine-epichlorohydrin copolymer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Dimethylamine-epichlorohydrin copolymer. 173.60... HUMAN CONSUMPTION Polymer Substances and Polymer Adjuvants for Food Treatment § 173.60 Dimethylamine-epichlorohydrin copolymer. Dimethylamine-epichlorohydrin copolymer (CAS Reg. No. 25988-97-0) may be safely used...

  11. 21 CFR 173.60 - Dimethylamine-epichlorohydrin copolymer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Dimethylamine-epichlorohydrin copolymer. 173.60... HUMAN CONSUMPTION Polymer Substances and Polymer Adjuvants for Food Treatment § 173.60 Dimethylamine-epichlorohydrin copolymer. Dimethylamine-epichlorohydrin copolymer (CAS Reg. No. 25988-97-0) may be safely used...

  12. 21 CFR 173.60 - Dimethylamine-epichlorohydrin copolymer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Dimethylamine-epichlorohydrin copolymer. 173.60... HUMAN CONSUMPTION Polymer Substances and Polymer Adjuvants for Food Treatment § 173.60 Dimethylamine-epichlorohydrin copolymer. Dimethylamine-epichlorohydrin copolymer (CAS Reg. No. 25988-97-0) may be safely used...

  13. Block copolymer blend phase behavior: Binary diblock blends and amphiphilic block copolymer/epoxy mixtures

    NASA Astrophysics Data System (ADS)

    Lipic, Paul Martin

    The phase behavior of block copolymers and block copolymer blends has provided an extensive amount of exciting research and industrial applications for over thirty years. However, the unique nanoscale morphologies of microphase separated block copolymer systems is still not completely understood. This thesis examines the phase behavior of diblock copolymers and binary diblock copolymer blends in the strong segregation limit (SSL), and blends of an amphiphilic diblock copolymer with an epoxy resin. Studies of high molecular weight (˜84,000 g/mole) poly(ethylene)-poly(ethyl ethylene) (PE-PEE) diblock copolymers probed the ability of block copolymers to reach equilibrium in the SSL. Samples of pure diblocks or binary diblock blends prepared using different preparation techniques (solvent casting or precipitation) had different phase behaviors, as identified with transmission electron microscopy (TEM) and small-angle x-ray scattering (SAXS), confirming non-equilibrium phase behavior. This non-equilibrium behavior was metastable, and these results identify the caution that should be used when claiming equilibrium phase behavior in the SSL. Blends of an amphiphilic diblock copolymer, poly(ethylene oxide)-poly(ethylene-alt-propylene) (PEO-PEP) with a polymerizable epoxy resin selectively miscible with PEO, poly(Bisphenol-A-co-epichlorohydrin), supported theoretical calculations and increased the understanding of block copolymer/homopolymer blends. These blends formed different ordered structures (lamellae, bicontinuous cubic gyroid, hexagonally packed cylinders, cubic and hexagonally packed spheres) as well as a disordered spherical micellar structure, identified with SAXS and rheological measurements. Addition of hardener, methylene dianiline, to the system resulted in cross-linking of the epoxy resin and formation of a thermoset material. Macrophase separation between the epoxy and block copolymer did not occur, but local expulsion of the PEO from the epoxy was

  14. Thermodynamic Interactions in Organometallic Block Copolymers

    SciTech Connect

    Pople, John A

    2002-08-06

    The thermodynamic interactions in anionically synthesized poly(styrene-block-ferrocenyldimethylsilane) (SF) copolymers were examined using birefringence, small angle X-ray and neutron scattering (SAXS and SANS). We show that birefringence detection of the order-disorder transition is possible in colored samples provided the wavelength of the incident beam is in the tail of the absorption spectrum. The location of the order-disorder transition was confirmed by SAXS. The temperature-dependence of the Flory-Huggins parameter, {chi}, of SF copolymers, determined by SAXS, is similar in magnitude to that between polystyrene and polyisoprene chains. We find that {chi} is independent of block copolymer composition (within experimental error). We also demonstrate that the neutron scattering length densities of styrene and ferrocenyldimethylsilane moieties are identical due to a surprising cancellation of factors related to density and atomic composition.

  15. Rod-Coil Block Polyimide Copolymers

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B. (Inventor); Kinder, James D. (Inventor)

    2005-01-01

    This invention is a series of rod-coil block polyimide copolymers that are easy to fabricate into mechanically resilient films with acceptable ionic or protonic conductivity at a variety of temperatures. The copolymers consist of short-rigid polyimide rod segments alternating with polyether coil segments. The rods and coil segments can be linear, branched or mixtures of linear and branched segments. The highly incompatible rods and coil segments phase separate, providing nanoscale channels for ion conduction. The polyimide segments provide dimensional and mechanical stability and can be functionalized in a number of ways to provide specialized functions for a given application. These rod-coil black polyimide copolymers are particularly useful in the preparation of ion conductive membranes for use in the manufacture of fuel cells and lithium based polymer batteries.

  16. Graft copolymer separators — development and use

    NASA Astrophysics Data System (ADS)

    Lovell, K. V.; Adams, L. B.

    Graft copolymer membranes have been used for a number of years as interelectrode separators in alkaline batteries either singly, laminated to cellophane, or in conjunction with other materials such as felts. The preparation details of some of the Royal Military College of Science's copolymers are summarised with emphasis on the production of commercial quantities having a high degree of uniformity and reproducibility. Important properties in a battery environment are discussed and, where possible, compared with other separator materials; notably cellophane. The use of graft copolymers in a number of primary and secondary alkaline battery systems is reported and test data given. Conclusions are drawn relating the properties of these separators to their performance in cells.

  17. Polyimide nanofoams from aliphatic polyester based copolymers

    SciTech Connect

    Hedrick, J.L.; Carter, K.R.; Richter, R.; Russell, T.P.

    1996-10-01

    High temperature polymer foams were prepared using microphase separated block copolymers where the major component is thermally stable block and the minor component is thermally labile. Upon thermal treatment, the dispersed minor component undergoes thermolysis leaving pores the size and shape of which are dictated by the initial copolymer morphology. The driving force behind the survey of aliphatic polyesters as possible labile blocks stems from their quantitative degradation into low boiling, polar degradation products via a backbiting process. Block copolymers were prepared using either a monofunctional caprolactone or a valerolactone oligomer and a high T. polyimide. Microphase morphologies were observed in each case. Thermal decomposition of the polyester blocks was accomplished by a thermal treatment at 370{degrees}C for 5 h. Significant density reductions were measured, and the resulting foams showed pore sizes in the 60-70 {Angstrom} range.

  18. [Hydrodynamic properties of exopolysaccharide-acrylamide copolymer].

    PubMed

    Votselko, S K

    2000-01-01

    The method for producing copolymer EPAA of exopolysaccharide (EPS)--polyacrylamide (PAA) has been presented which was based on microbial exopolysaccharides (enposane, xampane), their mixture and model EPS (xanthane sigma, rodopol P-23). The copolymer was produced by acrylamide polymerization in 1-2% water solutions of polysaccharides, the concentration of acrylamide in the reaction mixture being 4.7-2% and that of polysaccharides 0.1-1% of the weight. Hydrodynamic parameters of the studied polymers have been determined, their heterogenity as to molecular-weight characteristics has been demonstrated. Molecular-weight distribution of copolymers showed that the content of low-molecular fractions decreased, thus the Mw values were (0.08-0.2) x 10(6) Da in contrast to that of exopolysaccharides possessing Mw (1.2-0.4) x 10(6) Da and of polyacrylamide possessing Mw within (2-30) x 10(6) Da. The value of efficient viscosity of copolymers ranged from 120 to 131 mPa.s that was lower than that of polyacrylamide (500 mPa.s), and higher than that of exopolysaccharides (42 mPa.s), and it depended on the sample, raw material, production conditions. A possibility has been shown to produce a new copolymer based on microbial polysaccharides enposane and xampane in the process of acrylamide polymerization. It has been found out that the studied copolymers EPAA differ from initial ones as to their hydrodynamical properties, which determines their preference: better solubility, good glueing properties, prolonged term of preservation, resistance to bacterial pollution. PMID:11300081

  19. Morphologies of poly(cyclohexadiene) diblock copolymers

    SciTech Connect

    Kumar, Rajeev; Mays, Jimmy; Sides, Scott; Goswami, Monojoy; Sumpter, Bobby G; Hong, Kunlun; Avgeropoulos, Apostolos; Russell, Thomas P; Gido, Samuel; Tsoukatos, Thodoris; Beyer, Fredrick

    2012-01-01

    Concerted experimental and theoretical investigations have been carried out to understand the micro-phase separation in diblock copolymer melts containing poly (1,3-cyclohexadiene), PCHD, as one of the constituents. In particular, we have studied diblock copolymer melts containing polystyrene (PS), polybutadiene (PB), and polyisoprene (PI) as the second block. We have systematically varied the ratio of 1,2- /1,4-microstructures of poly (1,3-cyclohexadiene) to tune the conformational asymmetry between the two blocks and characterized the effects of these changes on the morphologies using transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS). Our experimental investigations reveal that the melts of PCHD-b-PB, PCHD-b-PS and PCHD-b-PI containing nearly equal fractions of each component and high percentage of 1,4-microstructures in the PCHD block form cylindrical rather than lamellar morphologies as expected in symmetric diblock copolymers. In contrast, the morphologies of PCHD-b-PB, PCHD-b-PS and PCHD-b-PI containing PCHD block with higher 1,2-microstructure are found to be disordered at 110 C. The change in the morphological behavior is in good agreement with our numerical calculations using the random phase approximation and self-consistent field theory for conformationally asymmetric diblock copolymer melts. Also, the effects of composition fluctuations are studied by extending the Brazovskii-Leibler-Fredrickson-Helfand (J. Chem. Phys. 87, 697 (1987)) theory to conformationally asymmetric diblock copolymer melts. These results allow the understanding of the underlying self-assembly process that highlights the importance of the conformational asymmetry in tuning the morphologies in block copolymers.

  20. Dynamics of Block Copolymer Nanocomposites

    SciTech Connect

    Mochrie, Simon G. J.

    2014-09-09

    A detailed study of the dynamics of cadmium sulfide nanoparticles suspended in polystyrene homopolymer matrices was carried out using X-ray photon correlation spectroscopy for temperatures between 120 and 180 °C. For low molecular weight polystyrene homopolymers, the observed dynamics show a crossover from diffusive to hyper-diffusive behavior with decreasing temperatures. For higher molecular weight polystyrene, the nanoparticle dynamics appear hyper-diffusive at all temperatures studied. The relaxation time and characteristic velocity determined from the measured hyper-diffusive dynamics reveal that the activation energy and underlying forces determined are on the order of 2.14 × 10-19 J and 87 pN, respectively. We also carried out a detailed X-ray scattering study of the static and dynamic behavior of a styrene– isoprene diblock copolymer melt with a styrene volume fraction of 0.3468. At 115 and 120 °C, we observe splitting of the principal Bragg peak, which we attribute to phase coexistence of hexagonal cylindrical and cubic double- gyroid structure. In the disordered phase, above 130 °C, we have characterized the dynamics of composition fluctuations via X-ray photon correlation spectroscopy. Near the peak of the static structure factor, these fluctuations show stretched-exponential relaxations, characterized by a stretching exponent of about 0.36 for a range of temperatures immediately above the MST. The corresponding characteristic relaxation times vary exponentially with temperature, changing by a factor of 2 for each 2 °C change in temperature. At low wavevectors, the measured relaxations are diffusive with relaxation times that change by a factor of 2 for each 8 °C change in temperature.

  1. Microphase separation in a model graft copolymer

    SciTech Connect

    Dozier, W.D.; Thiyagarajan, P.; Peiffer, D.G.

    1993-10-01

    We present a preliminary overview of our work on a series of graft copolymers having poly(ethyl acrylate) backbones with pendant chains of polystyrene (PS). The copolymer system appeared to be in the strong segregation limit and exhibited evidence of ordered structures. The morphology of these structures can apparently be very different from what would be expected. For instance, we observed a lamellar structure in a material containing 28 wt.% PS grafts. Samples under uniaxial strain showed either conventional (i.e., affine deformation) and anomalous ({open_quotes}butterfly{close_quotes} isointensity patterns) behavior in small-angle neutron scattering.

  2. Substrate tolerant direct block copolymer nanolithography.

    PubMed

    Li, Tao; Wang, Zhongli; Schulte, Lars; Ndoni, Sokol

    2016-01-01

    Block copolymer (BC) self-assembly constitutes a powerful platform for nanolithography. However, there is a need for a general approach to BC lithography that critically considers all the steps from substrate preparation to the final pattern transfer. We present a procedure that significantly simplifies the main stream BC lithography process, showing a broad substrate tolerance and allowing for efficient pattern transfer over wafer scale. PDMS-rich poly(styrene-b-dimethylsiloxane) (PS-b-PDMS) copolymers are directly applied on substrates including polymers, silicon and graphene. A single oxygen plasma treatment enables formation of the oxidized PDMS hard mask, PS block removal and polymer or graphene substrate patterning. PMID:26606904

  3. Co-polymer Films for Sensors

    NASA Technical Reports Server (NTRS)

    Ryan, Margaret A. (Inventor); Homer, Margie L. (Inventor); Yen, Shiao-Pin S. (Inventor); Kisor, Adam (Inventor); Jewell, April D. (Inventor); Shevade, Abhijit V. (Inventor); Manatt, Kenneth S. (Inventor); Taylor, Charles (Inventor); Blanco, Mario (Inventor); Goddard, William A. (Inventor)

    2012-01-01

    Embodiments include a sensor comprising a co-polymer, the co-polymer comprising a first monomer and a second monomer. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is polystyrene and the second monomer is poly-2-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium benzylamine chloride. Other embodiments are described and claimed.

  4. Co-polymer films for sensors

    NASA Technical Reports Server (NTRS)

    Ryan, Margaret A. (Inventor); Homer, Margie L. (Inventor); Yen, Shiao-Pin S. (Inventor); Kisor, Adam (Inventor); Jewell, April D. (Inventor); Shevade, Abhijit V. (Inventor); Manatt, Kenneth S. (Inventor); Taylor, Charles (Inventor); Blanco, Mario (Inventor); Goddard, William A. (Inventor)

    2010-01-01

    Embodiments include a sensor comprising a co-polymer, the co-polymer comprising a first monomer and a second monomer. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is polystyrene and the second monomer is poly-2-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium benzylamine chloride. Other embodiments are described and claimed.

  5. Synthesis of amphiphilic diblock copolymer for surface modification of Ethylene-Norbornene Copolymers

    NASA Astrophysics Data System (ADS)

    Levinsen, Simon; Svendsen, Winnie Edith; Horsewell, Andy; Almdal, Kristoffer

    2014-03-01

    The aim of this work is to produce polymer modifiers in order to develop hydrophilic polymeric surfaces for use in microfluidics. The use of hydrophilic polymers in microfluidics will have many advantages e.g. preventing protein absorbance. Here we present an amphiphilic diblock copolymer consisting of a bulk material compatible block and a hydrophilic block. To utilize the possibility of incorporating diblock copolymers into ethylene-norbornene copolymers, we have in this work developed a model poly(ethylene-1-butene) polymer compatible with the commercial available ethylene-norbornene copolymer TOPAS. Through matching of the radius of gyration for the model polymer and TOPAS the miscibility was achieved. The poly(ethylene-1-butene) polymer was synthesized from a hydrogenated anionic polymerized polybutadiene polymer. As hydrophilic block poly(ethylene oxide) was subsequently added also with anionic polymerization. Recent miscibility results between the model polymer and TOPAS will be presented, as well ongoing efforts to study the hydrophilic surface.

  6. Molecular Interaction Control in Diblock Copolymer Blends and Multiblock Copolymers with Opposite Phase Behaviors

    NASA Astrophysics Data System (ADS)

    Cho, Junhan

    2014-03-01

    Here we show how to control molecular interactions via mixing AB and AC diblock copolymers, where one copolymer exhibits upper order-disorder transition and the other does lower disorder-order transition. Linear ABC triblock copolymers possessing both barotropic and baroplastic pairs are also taken into account. A recently developed random-phase approximation (RPA) theory and the self-consistent field theory (SCFT) for general compressible mixtures are used to analyze stability criteria and morphologies for the given systems. It is demonstrated that the copolymer systems can yield a variety of phase behaviors in their temperature and pressure dependence upon proper mixing conditions and compositions, which is caused by the delicate force fields generated in the systems. We acknowledge the financial support from National Research Foundation of Korea and Center for Photofunctional Energy Materials.

  7. Water-soluble copolymers. IV. Random copolymers of acrylamide with sulfonated comonomers

    SciTech Connect

    McCormick, C.L.; Chen, G.S.

    1982-03-01

    Random copolymers of acrylamide with sodium-2-sulfoethyl methacrylate and with sodium-2-acrylamido-2-methylpropane sulfonate were synthesized in aqueous solutions utilizing persulfate initiators. Copolymer compositions were determined by elemental analysis and by infrared spectroscopic methods. Monomer reactivity ratios were calculated using Fineman-Ross, Kelen-Tuedos, and/or Mayo-Lewis techniques at appropriate conversions. The copolymer microstructure, including mean sequence length distributions, was calculated from reactivity ratios. Membrane osmometry and viscometry measurements were utilized to estimate molecular weight and size. The large dimensions of these polyelectrolytes in aqueous solutions, as well as their inherent hydrogen bonding capacity and pseudoplasticity, make these copolymers excellent candidates for application as mobility control agents in enhanced oil recovery.

  8. Mixing thermodynamics of block-random copolymers

    NASA Astrophysics Data System (ADS)

    Beckingham, Bryan Scott

    Random copolymerization of A and B monomers represents a versatile method to tune interaction strengths between polymers, as ArB random copolymers will exhibit a smaller effective Flory interaction parameter chi; (or interaction energy density X) upon mixing with A or B homopolymers than upon mixing A and B homopolymers with each other, and the ArB composition can be tuned continuously. Thus, the incorporation of a random copolymer block into the classical block copolymer architecture to yield "block-random" copolymers introduces an additional tuning mechanism for the control of structure-property relationships, as the interblock interactions and physical properties can be tuned continuously through the random block's composition. However, typical living or controlled polymerizations produce compositional gradients along the "random" block, which can in turn influence the phase behavior. This dissertation demonstrates a method by which narrow-distribution copolymers of styrene and isoprene of any desired composition, with no measurable down-chain gradient, are synthesized. This synthetic method is then utilized to incorporate random copolymers of styrene and isoprene as blocks into block-random copolymers in order to examine the resulting interblock mixing thermodynamics. A series of well-defined near-symmetric block and block-random copolymers (S-I, Bd-S, I-SrI, S-SrI and Bd-S rI diblocks, where S is polystyrene, I is polyisoprene and Bd is polybutadiene), with varying molecular weight and random-block composition are synthesized and the mixing thermodynamics---via comparison of their interaction energy densities, X---of their hydrogenated derivatives is examined through measurement of the order-disorder transition (ODT) temperature. Hydrogenated derivatives of I-SrI and S-SrI block-random copolymers, both wherein the styrene aromaticity is retained and derivatives wherein the styrene units are saturated to vinylcyclohexane (VCH), are found to hew closely to the

  9. Block copolymer nanolithography for the fabrication of patterned media.

    SciTech Connect

    Warke, Vishal V; Bakker, Martin G; Hong, Kunlun; Mays, Jimmy; Britt, Phillip F; Li, Xuefa; Wang, Jin

    2008-01-01

    Abstract Bit patterned perpendicular media has the potential to increase the density of magnetic recording beyond what can be achieved by granular media. Self assembling diblock copolymers are of interest as templates for patterned media, as they potentially provide a low cost fabrication route. A method to fabricate the desired pattern using cylinder forming diblock copolymers of (PS-b-PMMA) as template is reported. Upon phase separation hexagonally packed cylinders of the minority phase (PMMA) surrounded by the continuous majority phase (PS) are obtained. The processing sequence began with spin coating the block copolymer on a suitable substrate, followed by annealing the block copolymer thin film in vacuum to orient it perpendicular to the substrate. Block copolymer templates were obtained by glacial acetic acid treatment which opened the pores in the block copolymer thin film. Ni was electrodeposited in the block copolymer templates and this pattern was then transferred onto the underlying substrate by ion milling

  10. Copolymer sealant compositions and method for making

    NASA Technical Reports Server (NTRS)

    Singh, Navjot (Inventor); Leman, John Thomas (Inventor); Whitney, John M. (Inventor); Krabbenhoft, Herman Otto (Inventor)

    2002-01-01

    Condensation curable poly(fluoroorgano)siloxane-poly(silarylene)siloxane block copolymer compositions having a glass transition temperature not exceeding about -54.degree. C. and excellent solvent resistance have been found useful as sealants. Polyalkoxysilylorgano compounds, such as 1,4-bis[trimethoxysilyl(ethyl)]benzene have been found to be effective as cross-linkers.

  11. Copolymer sealant compositions and method for making

    NASA Technical Reports Server (NTRS)

    Singh, Navjot (Inventor); Leman, John Thomas (Inventor); Whitney, John M. (Inventor); Krabbenhoft, Herman Otto (Inventor)

    2004-01-01

    Condensation curable poly(fluoroorgano)siloxane-poly(silarylene)siloxane block copolymer compositions having a glass transition temperature not exceeding about -54.degree. C. and excellent solvent resistance have been found useful as sealants. Polyalkoxysilylorgano compounds, such as 1,4-bis[trimethoxysilyl(ethyl)]benzene have been found to be effective as cross-linkers.

  12. Copolymer sealant compositions and method for making

    NASA Technical Reports Server (NTRS)

    Singh, Navjot (Inventor); Leman, John Thomas (Inventor); Whitney, John M. (Inventor); Krabbenhoft, Herman Otto (Inventor)

    2003-01-01

    Condensation curable poly(fluoroorgano)siloxane-poly(silarylene)siloxane block copolymer compositions having a glass transition temperature not exceeding about -54.degree. C. and excellent solvent resistance have been found useful as sealants. Polyalkoxysilylorgano compounds, such as 1,4-bis[trimethoxysilyl(ethyl)]benzene have been found to be effective as cross-linkers.

  13. 21 CFR 173.65 - Divinylbenzene copolymer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Divinylbenzene copolymer. 173.65 Section 173.65 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Polymer Substances and Polymer Adjuvants...

  14. 21 CFR 173.65 - Divinylbenzene copolymer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Divinylbenzene copolymer. 173.65 Section 173.65 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Polymer Substances and Polymer Adjuvants...

  15. 21 CFR 173.65 - Divinylbenzene copolymer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Divinylbenzene copolymer. 173.65 Section 173.65 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Polymer Substances and Polymer Adjuvants...

  16. Fungal biodegradation of lignopolystyrene graft copolymers.

    PubMed Central

    Milstein, O; Gersonde, R; Huttermann, A; Chen, M J; Meister, J J

    1992-01-01

    White rot basidiomycetes were able to biodegrade styrene (1-phenylethene) graft copolymers of lignin containing different proportions of lignin and polystyrene [poly(1-phenylethylene)]. The biodegradation tests were run on lignin-styrene copolymerization products which contained 10.3, 32.2, and 50.4% (wt/wt) lignin. The polymer samples were incubated with the white rot fungi Pleurotus ostreatus, Phanerochaete chrysosporium, and Trametes versicolor and the brown rot fungus Gloeophyllum trabeum. White rot fungi degraded the plastic samples at a rate which increased with increasing lignin content in the copolymer sample. Both polystyrene and lignin components of the copolymer were readily degraded. Polystyrene pellets were not degradable in these tests. Degradation was verified for both incubated and control samples by weight loss, quantitative UV spectrophotometric analysis of both lignin and styrene residues, scanning electron microscopy of the plastic surface, and the presence of enzymes active in degradation during incubation. Brown rot fungus did not affect any of the plastics. White rot fungi produced and secreted oxidative enzymes associated with lignin degradation in liquid media during incubation with lignin-polystyrene copolymer. Images PMID:1444360

  17. 21 CFR 177.2470 - Polyoxymethylene copolymer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ....2470 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only as... copolymer identified in this section may be safely used as an article or component of articles intended...

  18. 21 CFR 177.2470 - Polyoxymethylene copolymer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ....2470 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only as... copolymer identified in this section may be safely used as an article or component of articles intended...

  19. Block copolymers for enhanced oil recovery

    SciTech Connect

    Wu, M.M.; Ball, L.E.

    1987-05-19

    A water soluble block copolymer is described comprising two or more water soluble polymer blocks, wherein the water soluble polymer blocks comprise polymerized monomers. The monomers are selected from the group consisting of acrylamide, methacrylamide, vinyl methyl ether, acrylic and methacrylic acid and their water soluble salts and N-substituted acrylamides.

  20. Molecular transfer printing using block copolymers.

    PubMed

    Ji, Shengxiang; Liu, Chi-Chun; Liu, Guoliang; Nealey, Paul F

    2010-02-23

    Soft lithographic techniques augment or enhance the capabilities of traditional patterning processes and expand the diversity of materials that can be patterned. Realization of robust parallel techniques for creating chemical patterns at the nanoscale has been challenging. Here we present a method for creating and replicating chemical patterns that uses functionalized homopolymer inks that are preferentially segregated into the nanodomains of phase-separated diblock copolymer films. The inks are transferred by reaction to substrates that are brought into contact with block copolymer films, creating chemical patterns on the substrate that mirror the domain structure present at the film surface with high fidelity and resolution. In addition to printing from self-assembled domain structures, we can also direct the assembly of the block copolymer films from which transfer occurs using lithographically defined masters so as to replicate and transfer patterns of inks with controlled and well-defined geometries. The transferred patterns may be at higher resolution than the lithographically defined master, and the process can be repeated to create multiple copies of identical replicas. Transfer of one ink from one block of the copolymer is also possible, and filling the interspatial regions of the pattern with a second ink provides a pathway toward creating patterns with diverse chemical functionalities. PMID:20041629

  1. Amphiphilic block copolymer nanocontainers as bioreactors

    NASA Astrophysics Data System (ADS)

    Nardin, C.; Widmer, J.; Winterhalter, M.; Meier, W.

    2001-04-01

    Self-assembly of an amphiphilic triblock copolymer carrying polymerizable end-groups is used to prepare nanometer-sized vesicular structures in aqueous solution. The triblock copolymer shells of the vesicles can be regarded as a mimetic of biological membranes although they are 2 to 3 times thicker than a conventional lipid bilayer. Nevertheless, they can serve as a matrix for membrane-spanning proteins. Surprisingly, the proteins remain functional despite the extreme thickness of the membranes and that even after polymerization of the reactive triblock copolymers. This opens a new field to create mechanically stable protein/polymer hybrid membranes. As a representative example we functionalize (polymerized) triblock copolymer vesicles by reconstituting a channel-forming protein from the outer cell wall of Gram-negative bacteria. The protein used (OmpF) acts as a size-selective filter, which allows only for passage of molecules with a molecular weight below 400 g mol^{-1}. Therefore substrates may still have access to enzymes encapsulated in such protein/polymer hybrid nanocontainers. We demonstrate this using the enzyme β -lactamase which is able to hydrolyze the antibiotic ampicillin. In addition, a transmembrane voltage above a given threshold causes a reversible gating transition of OmpF. This can be used to reversibly activate or deactivate the resulting nanoreactors.

  2. Block copolymer/ferroelectric nanoparticle nanocomposites

    NASA Astrophysics Data System (ADS)

    Pang, Xinchang; He, Yanjie; Jiang, Beibei; Iocozzia, James; Zhao, Lei; Guo, Hanzheng; Liu, Jin; Akinc, Mufit; Bowler, Nicola; Tan, Xiaoli; Lin, Zhiqun

    2013-08-01

    Nanocomposites composed of diblock copolymer/ferroelectric nanoparticles were formed by selectively constraining ferroelectric nanoparticles (NPs) within diblock copolymer nanodomains via judicious surface modification of ferroelectric NPs. Ferroelectric barium titanate (BaTiO3) NPs with different sizes that are permanently capped with polystyrene chains (i.e., PS-functionalized BaTiO3NPs) were first synthesized by exploiting amphiphilic unimolecular star-like poly(acrylic acid)-block-polystyrene (PAA-b-PS) diblock copolymers as nanoreactors. Subsequently, PS-functionalized BaTiO3 NPs were preferentially sequestered within PS nanocylinders in the linear cylinder-forming polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) diblock copolymer upon mixing the BaTiO3 NPs with PS-b-PMMA. The use of PS-b-PMMA diblock copolymers, rather than traditional homopolymers, offers the opportunity for controlling the spatial organization of PS-functionalized BaTiO3 NPs in the PS-b-PMMA/BaTiO3 NP nanocomposites. Selective solvent vapor annealing was utilized to control the nanodomain orientation in the nanocomposites. Vertically oriented PS nanocylinders containing PS-functionalized BaTiO3 NPs were yielded after exposing the PS-b-PMMA/BaTiO3 NP nanocomposite thin film to acetone vapor, which is a selective solvent for PMMA block. The dielectric properties of nanocomposites in the microwave frequency range were investigated. The molecular weight of PS-b-PMMA and the size of BaTiO3 NPs were found to exert an apparent influence on the dielectric properties of the resulting nanocomposites.Nanocomposites composed of diblock copolymer/ferroelectric nanoparticles were formed by selectively constraining ferroelectric nanoparticles (NPs) within diblock copolymer nanodomains via judicious surface modification of ferroelectric NPs. Ferroelectric barium titanate (BaTiO3) NPs with different sizes that are permanently capped with polystyrene chains (i.e., PS-functionalized BaTiO3NPs) were

  3. EFFECTS OF ETHANOL, PHENOL, FORMALDEHYDE, AND SELECTED METABOLITES ON METABOLIC COOPERATION BETWEEN CHINESE HAMSTER V79 LUNG FIBROBLASTS

    EPA Science Inventory

    The discovery that phorbol ester tumor promoters inhibit metabolic cooperation between cultured cells in proportion to their promoting activity in vivo suggests that such inhibition may be a mechanism in tumor promotion. Because metabolic cooperation appears to be essential for n...

  4. Solvent enhanced block copolymer ordering in thin films

    NASA Astrophysics Data System (ADS)

    Misner, Matthew J.

    Diblock copolymer self-assembly of materials is emerging as a key element in the fabrication of functional nanostructured materials. By solvent casting or solvent annealing block copolymer thin films, we have demonstrated methods to produce diblock copolymer films with highly oriented, close-packed arrays of nanoscopic cylindrical domains with a high degree of long-range lateral order with few defects. The solvent imparts a high degree of mobility in the microphase-separated copolymer that enables a rapid removal of defects and a high degree of lateral order. Though the use of a selective cosolvent during solvent casting, it was found that the microdomain size and spacing could be increased, leading to a size-tunable system. Additionally, the presence of water also led to the ability to control the microdomain orientation during solvent annealing. Ionic complexation within cylinder-forming PS- b-EO block copolymer thin films was also investigated, where added salts bind PEO block as the minor component. Small amounts of added salts, on the order a few ions per chain, show large effects on the ordering of the copolymer films during solvent annealing. By using gold or cobalt salts, well-organized patterns of nanoparticles can be generated in the copolymer microdomains. Topographically and chemically patterned surfaces were used as a route to sectorizing and controlling the lattice orientation of copolymer films. Topographically patterned surfaces allow well-defined boundaries to confine the copolymer microdomains on a surface and effectively direct the ordering and grain orientation of the copolymer microdomains. Chemically patterned surfaces provide a route to direct the block copolymer ordering on completely flat surface, which may have advantages in applications where adding additional topography may be undesirable. To generate nanoporous templates from PS-b-PEO bases materials several routs were followed. The first route was through the addition and selective

  5. Structure property relations in glassy-semicrystalline block copolymers

    NASA Astrophysics Data System (ADS)

    Khanna, Vikram

    The ability of block copolymers to segregate into nanoscale morphologies makes them a versatile class of engineering materials. This work investigates the relation between the block copolymer structure and its mechanical properties, film dynamics and diffusion kinetics. The first part investigates the influence of structure on the mechanical properties of poly(cyclohexylethylene)-poly(ethylene) (PCHE-PE) block copolymer films. For lamellar block copolymers the mechanical properties depend significantly on the chain architecture (diblock, triblock and pentablock). Diblock copolymer films show complete failure at small strains and pentablock copolymer films show the toughest, response. Moreover, the orientation of the cylinders in a cylinder forming pentablock copolymer affects the toughness of the block copolymer films. In the second part, the effect of surface energy and chain architecture on the orientation of microdomains in the same block copolymer films is investigated. Cylindrical and lamellar triblock copolymers with a PE midblock orient their microdomains normal to the surface. However, a lamellar diblock copolymer prefers a parallel orientation of the sheets with an E surface. Moreover, a cylindrical triblock copolymer with a reduced surface energy poly(ethylene-butylene) midblock orders with the cylinder domains oriented parallel to the surface. Self-consistent field theory calculations suggest that the entropic cost of forming a wetting layer comprised entirely of looping blocks for the triblock architecture, a constraint absent in diblock copolymers, stabilizes the perpendicular orientation. Thus in triblock copolymers, parallel orientations are only stabilized when the surface energy of the midblock is small enough to compensate for this conformational penalty. Finally, a study of the diffusion kinetics of cylinder forming poly(styrene)-poly(ethylene) triblock (SES) and pentablock (SESES) copolymers suggests that for similar molecular weights SESES

  6. Phase behavior of model ABC triblock copolymers

    NASA Astrophysics Data System (ADS)

    Chatterjee, Joon

    The phase behavior of poly(isoprene-b-styrene- b-ethylene oxide) (ISO), a model ABC triblock copolymer has been studied. This class of materials exhibit self-assembly, forming a large array of ordered morphologies at length scales of 5-100 nm. The formation of stable three-dimensionally continuous network morphologies is of special interest in this study. Since these nanostructures considerably impact the material properties, fundamental knowledge for designing ABC systems have high technological importance for realizing applications in the areas of nanofabrication, nanoporous media, separation membranes, drug delivery and high surface area catalysts. A comprehensive framework was developed to describe the phase behavior of the ISO triblock copolymers at weak to intermediate segregation strengths spanning a wide range of composition. Phases were characterized through a combination of characterization techniques, including small angle x-ray scattering, dynamic mechanical spectroscopy, transmission electron microscopy, and birefringence measurements. Combined with previous investigations on ISO, six different stable ordered state symmetries have been identified: lamellae (LAM), Fddd orthorhombic network (O70), double gyroid (Q230), alternating gyroid (Q214), hexagonal (HEX), and body-centered cubic (BCC). The phase map was found to be somewhat asymmetric around the fI = fO isopleth. This work provides a guide for theoretical studies and gives insight into the intricate effects of various parameters on the self-assembly of ABC triblock copolymers. Experimental SAXS data evaluated with a simple scattering intensity model show that local mixing varies continuously across the phase map between states of two- and three-domain segregation. Strategies of blending homopolymers with ISO triblock copolymer were employed for studying the swelling properties of a lamellar state. Results demonstrate that lamellar domains swell or shrink depending upon the type of homopolymer that

  7. Examination of the role of the O14(α,p)F17 reaction rate in type-I x-ray bursts

    NASA Astrophysics Data System (ADS)

    Hu, J.; He, J. J.; Parikh, A.; Xu, S. W.; Yamaguchi, H.; Kahl, D.; Ma, P.; Su, J.; Wang, H. W.; Nakao, T.; Wakabayashi, Y.; Teranishi, T.; Hahn, K. I.; Moon, J. Y.; Jung, H. S.; Hashimoto, T.; Chen, A. A.; Irvine, D.; Lee, C. S.; Kubono, S.

    2014-08-01

    The O14(α,p)F17 reaction is one of the key reactions involved in the breakout from the hot-CNO cycle to the rp-process in type-I x-ray bursts (XRBs). The resonant properties in the compound nucleus Ne18 have been investigated through resonant elastic scattering of F17+p. The radioactive F17 beam was separated by the Center for Nuclear Study radioactive ion beam separator (CRIB) and bombarded a thick H2 gas target at 3.6 MeV/nucleon. The recoiling light particles were measured by three ΔE-E silicon telescopes at laboratory angles of θlab≈3∘,10∘, and 18∘. Five resonances at Ex=6.15, 6.28, 6.35, 6.85, and 7.05 MeV were observed in the excitation functions, and their spin-parities have been determined based on an R-matrix analysis. In particular, Jπ=1- was firmly assigned to the 6.15-MeV state which dominates the thermonuclear O14(α ,p)F17 rate below 2 GK. As well, a possible new excited state in Ne18 was observed at Ex=6.85±0.11 MeV with tentative J =0 assignment. This state could be the analog state of the 6.880 MeV (0-) level in the mirror nucleus O18, or a bandhead state (0+) of the six-particle four-hole (6p-4h) band. A new thermonuclear O14(α ,p)F17 rate has been determined, and the astrophysical impact of multiple recent rates has been examined using an XRB model. Contrary to previous expectations, we find only a modest impact on predicted nuclear energy generation rates from using reaction rates differing by up to several orders of magnitude.

  8. 40 CFR 721.10523 - Perfluoroalkylethyl methacrylate copolymer with hydroxymethyl acrylamide, vinyl chloride and long...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... copolymer with hydroxymethyl acrylamide, vinyl chloride and long chain fatty alkyl acrylate (generic). 721... methacrylate copolymer with hydroxymethyl acrylamide, vinyl chloride and long chain fatty alkyl acrylate (PMN P... Substances § 721.10523 Perfluoroalkylethyl methacrylate copolymer with hydroxymethyl acrylamide,...

  9. 40 CFR 721.10523 - Perfluoroalkylethyl methacrylate copolymer with hydroxymethyl acrylamide, vinyl chloride and long...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... copolymer with hydroxymethyl acrylamide, vinyl chloride and long chain fatty alkyl acrylate (generic). 721... methacrylate copolymer with hydroxymethyl acrylamide, vinyl chloride and long chain fatty alkyl acrylate (PMN P... Substances § 721.10523 Perfluoroalkylethyl methacrylate copolymer with hydroxymethyl acrylamide,...

  10. 21 CFR 872.3500 - Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive is a device composed of polyvinylmethylether maleic anhydride, acid copolymer, and... maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture...

  11. 21 CFR 872.3500 - Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive is a device composed of polyvinylmethylether maleic anhydride, acid copolymer, and... maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture...

  12. 21 CFR 872.3500 - Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive is a device composed of polyvinylmethylether maleic anhydride, acid copolymer, and... maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture...

  13. Theory of Chirality Transfer in Block Copolymer Melts

    NASA Astrophysics Data System (ADS)

    Prasad, Ishan; Grason, Gregory

    Block copolymers assemble into a rich spectrum of ordered phases, with complexity driven by asymmetry in copolymer architecture. Despite decades of study, influence of intrinsic chirality on equilibrium mesophase assembly of block copolymers is not well understood and largely unexplored. Self-consistent field theory has been largely instrumental in prediction of physical properties of polymeric systems. Recently, a polar orientational self-consistent field (oSCF) theory was adopted to model chiral block copolymers having a thermodynamic preference for cholesteric ordering in chiral segments, and which confirmed the equilibrium stability of a helical cylinder morphology observed for chiral diblocks. Here, I describe a newly developed oSCF theory for chiral nematic copolymers, where segment orientations are characterized by quadrupolar interactions, and focus our study on intra-domain nematic ordering in flexible block copolymer assemblies, and in particular, mechanisms of transfer of segment chirality to mesochiral symmetries of self-assembled bicontinuous network morphologies.

  14. Synthesis and Characterization of New Poly(silole-fluorene) Copolymers.

    PubMed

    Lee, Yun-Ji; Park, Jeong Cheol; Yun, Hui-Jun; Park, Jong-Man; Kim, Yun-Hi

    2015-02-01

    New poly(silole-fluorene) copolymers were designed and synthesized. Copolymers were obtained by Suzuki coupling reaction with different ratio of fluorene and silole. The obtained copolymers were characterized by the spectroscopic methods such as FT-IR and 1H-NMR spectroscopies. The resulting copolymers were soluble in common organic solvents such as toluene, tetrahydrofurane, chloroform, chlorobenzene, etc. The obtained copolymers showed thermal stabilities, which were characterized by TGA and DSC. PLEDs with device configurations of ITO/PEDOT:PSS/Copolymer I~VI/LiF/AI. The best device performances, with maximum brightness of 231.5 cd/m2 at a current density (J) of 408.3 mA/cm2, and a maximum luminance efficiency of 0.115 cd/A, were achieved in the composition of fluorene and silole moiety (0.9:0.1). PMID:26353724

  15. Oxygen plasma resistant phosphine oxide containing imide/arylene copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J.

    1993-01-01

    A series of oxygen plasma resistant imide/arylene ether copolymers were prepared by reacting anhydride-terminated poly(amide acids) and amine-terminated polyarylene ethers containing phosphine oxide units. Inherent viscosities for these copolymers ranged from 0.42 to 0.80 dL/g. After curing, the resulting copolymers had glass transition temperatures ranging from 224 C to 228 C. Solution cast films of the block copolymers were tough and flexible with tensile strength, tensile moduli, and elongation at break up to 16.1 ksi, 439 ksi, and 23 percent, respectively at 25 C and 9.1 ksi, 308 ksi and 97 percent, respectively at 150 C. The copolymers show a significant improvement in resistance to oxygen plasma when compared to the commercial polyimide Kapton. The imide/arylene ether copolymers containing phosphine oxide units are suitable as coatings, films, adhesives, and composite matrices.

  16. Phase Behavior of Neat Triblock Copolymers and Copolymer/Homopolymer Blends Near Network Phase Windows

    SciTech Connect

    M Tureau; L Rong; B Hsiao; T Epps

    2011-12-31

    The phase behavior of poly(isoprene-b-styrene-b-methyl methacrylate) (ISM) copolymers near the styrene-rich network phase window was examined through the use of neat triblock copolymers and copolymer/homopolymer blends. Both end-block and middle-block blending protocols were employed using poly(isoprene) (PI), poly(methyl methacrylate) (PMMA), and poly(styrene) (PS) homopolymers. Blended specimens exhibited phase transformations to well-ordered nanostructures (at homopolymer loadings up to 26 vol % of the total blend volume). Morphological consistency between neat and blended specimens was established at various locations in the ISM phase space. Copolymer/homopolymer blending permitted the refinement of lamellar, hexagonally packed cylinder, and disordered melt phase boundaries as well as the identification of double gyroid (Q{sup 230}), alternating gyroid (Q{sup 214}), and orthorhombic (O{sup 70}) network regimes. Additionally, the experimental phase diagram exhibited similar trends to those found in a theoretical ABC triblock copolymer phase diagram with symmetric interactions and statistical segments lengths generated by Tyler et al.

  17. On the birefringence of multilayered symmetric diblock copolymer films

    SciTech Connect

    Kim, J.; Chin, I.; Smith, B.A.; Russell, T.P. ); Mays, J.W. . Dept. of Chemistry)

    1993-09-27

    The chain extension at lamellar interfaces was studied in thin films of symmetric diblock copolymers on gold substrates. The first copolymer consisted of blocks of polystyrene (PS) and poly(2-vinylpyridine) (P2VP), denoted P(S-b-2VP). The second was a diblock copolymer of PS and poly(methyl methacrylate) (PMMA), denoted P(S-b-MMA), on a gold substrate. Using attenuated total reflectance spectroscopy, the refractive indices parallel, n[sub [parallel

  18. Reversible geling co-polymer and method of making

    DOEpatents

    Gutowska, Anna

    2005-12-27

    The present invention is a thereapeutic agent carrier having a thermally reversible gel or geling copolymer that is a linear random copolymer of an [meth-]acrylamide derivative and a hydrophilic comonomer, wherein the linear random copolymer is in the form of a plurality of linear chains having a plurality of molecular weights greater than or equal to a minimum geling molecular weight cutoff and a therapeutic agent.

  19. Diblock Copolymers under Nano-Confinement

    NASA Astrophysics Data System (ADS)

    Meng, Dong; Yin, Yuhua; Wang, Qiang

    2009-03-01

    Nano-confinement strongly affects and can thus be used to control the self-assembled morphology of block copolymers. Understanding such effects is of both fundamental and practical interest. In this work, we use real-space self-consistent field calculations with high accuracy to study the self-assembled morphology of diblock copolymers (DBC) under nano-confinement for several systems, including 1D lamellae-forming DBC confined between two homogeneous and parallel surfaces, in nano-pores, and on topologically patterned substrates; 2D cylinder-forming DBC on chemically strip-patterned substrates; and 3D gyroid- forming DBC confined between two homogeneous and parallel surfaces. The stable phases are identified through free-energy comparison, and our SCF results are compared with available experiments and Monte Carlo simulations in each case.

  20. Photothermal degradation of ethylene/vinylacetate copolymer

    NASA Technical Reports Server (NTRS)

    Liang, R. H.; Chung, S.; Clayton, A.; Di Stefano, S.; Oda, K.; Hong, S. D.; Gupta, A.

    1983-01-01

    Photothermal degradation studies were conducted on a 'stabilized' formulation of ethylene/vinyl acetate copolymer (EVA) in the temperature range 25-105 C under three different oxygen environments (in open air, with limited access to O2, and in a dark closed stagnant oven). These studies were performed in order to evaluate the utility of EVA as an encapsulation material for photovoltaic modules. Results showed that at low temperature (25 C), slow photooxidation of the polymer occurred via electronic energy transfer involving the UV absorber incorporated in the polymer. However, no changes in the physical properties of the bulk polymer were detected up to 1500 hours of irradiation. At elevated temperatures, leaching and evaporation of the additives occurred, which ultimately resulted in the chemical crosslinking of the copolymer and the formation of volatile photoproducts such as acetic acid.

  1. Rapid ordering of block copolymer thin films.

    PubMed

    Majewski, Pawel W; Yager, Kevin G

    2016-10-12

    Block-copolymers self-assemble into diverse morphologies, where nanoscale order can be finely tuned via block architecture and processing conditions. However, the ultimate usage of these materials in real-world applications may be hampered by the extremely long thermal annealing times-hours or days-required to achieve good order. Here, we provide an overview of the fundamentals of block-copolymer self-assembly kinetics, and review the techniques that have been demonstrated to influence, and enhance, these ordering kinetics. We discuss the inherent tradeoffs between oven annealing, solvent annealing, microwave annealing, zone annealing, and other directed self-assembly methods; including an assessment of spatial and temporal characteristics. We also review both real-space and reciprocal-space analysis techniques for quantifying order in these systems. PMID:27537062

  2. Hierarchical porous polymer scaffolds from block copolymers.

    PubMed

    Sai, Hiroaki; Tan, Kwan Wee; Hur, Kahyun; Asenath-Smith, Emily; Hovden, Robert; Jiang, Yi; Riccio, Mark; Muller, David A; Elser, Veit; Estroff, Lara A; Gruner, Sol M; Wiesner, Ulrich

    2013-08-01

    Hierarchical porous polymer materials are of increasing importance because of their potential application in catalysis, separation technology, or bioengineering. Examples for their synthesis exist, but there is a need for a facile yet versatile conceptual approach to such hierarchical scaffolds and quantitative characterization of their nonperiodic pore systems. Here, we introduce a synthesis method combining well-established concepts of macroscale spinodal decomposition and nanoscale block copolymer self-assembly with porosity formation on both length scales via rinsing with protic solvents. We used scanning electron microscopy, small-angle x-ray scattering, transmission electron tomography, and nanoscale x-ray computed tomography for quantitative pore-structure characterization. The method was demonstrated for AB- and ABC-type block copolymers, and resulting materials were used as scaffolds for calcite crystal growth. PMID:23908232

  3. Phase Behavior of Gradient Copolymer Solution

    NASA Astrophysics Data System (ADS)

    Pandav, Gunja; Gallow, Keith; Loo, Yueh-Lin; Ganesan, Venkat

    2012-02-01

    We study the behavior of amphiphilic linear gradient copolymer chains under poor solvent conditions. Using Bond Fluctuation model and parallel tempering algorithm, we explore qualitative behavior of this class of polymers with varying gradient strength; which is the largest difference in the instantaneous composition along the polymer chain. Under poor solvent conditions, the chains collapse to form micelles. We find a linear dependence of hydrophilic to hydrophobic transition temperature on gradient strength. Systematic analysis of these clusters reveals a strong dependence of micelle properties on gradient strength. Also, we discuss our results with reference to recent experiments on synthesis and cloud point depression in gradient copolymers confirming gradient strength as key parameter in tuning micelle properties.

  4. Multigraft Copolymer Superelastomers: Synthesis Morphology, and Properties

    SciTech Connect

    Uhrig, David; Schlegel, Ralf; Weidisch, Roland; Mays, Jimmy

    2011-01-01

    The synthesis of well-defined multigraft copolymers having a polydiene backbone with polystyrene side chains is briefly reviewed, with particular focus on controlling branch point spacing and branch point functionality. Use of living anionic polymerization and chlorosilane linking chemistry has led to the synthesis of series of materials having regularly spaced trifunctional (comb), tetrafunctional (centipede), and hexafunctional (barbwire) branch points. The morphologies of these materials were characterized by transmission electron microscopy and small-angle X-ray scattering, and it was found that the morphologies were controlled by the local architectural asymmetry associated with each branch point. Mechanical properties studies revealed that such multigraft copolymers represent a new class of thermoplastic elastomers (TPEs) with superior elongation at break and low residual strains as compared to conventional TPEs.

  5. Structure Formation of Block Copolymer Membranes

    NASA Astrophysics Data System (ADS)

    Abetz, Volker

    2013-03-01

    Isoporous membranes have received increasing attention during the last couple of years. The advantage of these materials is to give access to membranes with a very high number density of pores with controlled diameters, thus leading to ultrafiltration membranes with a very high permeability, and simultaneously also with a very high selectivity in terms of size exclusion. Different approaches have been reported, which typically involve the transfer of a thin block copolymer film from a solid to a porous support, eventually followed by an edging step. An alternative strategy is to form integral asymmetric membranes, where the thin top layer is continuously changing into a spongy support layer, thus avoiding the build-up of mechanical stresses. This happens by subjecting the cast polymer solution film into a precipitant, inducing the so-called phase inversion by exchange of solvent with the non-solvent. Here it is important to have a system where solvent and nonsolvent are fully miscible. This strategy also enables the direct formation of open pores without a subsequent edging step, if the solvents and nonsolvents are appropriately chosen. Different types of amphiphilic block copolymers based on styrene, 2- or 4-vinyl pyridine, and ethylene oxide with various compositions and molecular weights will be discussed. These block copolymers were dissolved at different concentrations in various solvent mixtures, and then cast on a non-woven support, which was either pretreated with a liquid, or not. Varying the time before the cast solution was subjected to phase inversion, as well as choosing the temperature of the precipitation bath, are further parameters having strong influence on the obtained membrane film structure. Membranes with pore forming blocks showing pH or temperature sensitive behaviour can be reversibly switched from an open state to a closed state. The size of the pores can be controlled by both molecular weight and composition of the block copolymers.

  6. Critical adsorption of copolymer tethered on selective surfaces

    NASA Astrophysics Data System (ADS)

    Li, Hong; Qian, Chang-Ji; Luo, Meng-Bo

    2016-04-01

    Critical adsorption behaviors of flexible copolymer chains tethered to a flat homogeneous surface are studied by using Monte Carlo simulations. We have compared the critical adsorption temperature Tc, estimated by a finite-size scaling method, for different AB copolymer sequences with A the attractive monomer and B the inert monomer. We find that Tc increases with an increase in the fraction of monomers A, fA, in copolymers, and it increases with an increase in the length of block A for the same fA. In particular, Tc of copolymer (AnBn)r can be expressed as a function of the block length, n, and Tc of copolymer (AnB)r and (ABm)r can be expressed as a linear function of fA. Tc of random copolymer chains also can be expressed as a linear function of fA and it can be estimated by using weight-average of Tc of different diblocks in the random copolymer. However, the crossover exponent is roughly independent of AB sequence distributions either for block copolymers or for random copolymers.

  7. Effective Interactions and Miscibility of Nanoparticles in Multiblock Copolymer Melts

    DOE PAGESBeta

    Banerjee, Debapriya; Schweizer, Kenneth S

    2015-01-01

    The microscopic Polymer Reference Interaction Site Model theory is employed to study, for the first time, the effective interactions, spatial organization, and miscibility of dilute spherical nanoparticles in non-microphase separating, chemically heterogeneous, compositionally symmetric AB multiblock copolymer melts of varying monomer sequence or architecture. The dependence of nanoparticle wettability on copolymer sequence and chemistry results in interparticle potentials-of-mean force that are qualitatively different from homopolymers. An important prediction is the ability to improve nanoparticle dispersion via judicious choice of block length and monomer adsorption-strengths which control both local surface segregation and chain connectivity induced packing constraints and frustration. The degreemore » of dispersion also depends strongly on nanoparticle diameter relative to the block contour length. Small particles in copolymers with longer block lengths experience a more homopolymer-like environment which renders them relatively insensitive to copolymer chemical heterogeneity and hinders dispersion. Larger particles (sufficiently larger than the monomer diameter) in copolymers of relatively short block lengths provide better dispersion than either a homopolymer or random copolymer. The theory also predicts a novel widening of the miscibility window for large particles upon increasing the overall molecular weight of copolymers composed of relatively long blocks. The influence of a positive chi-parameter in the pure copolymer melt is briefly studied. Quantitative application to fullerenes in specific copolymers of experimental interest is performed, and miscibility predictions are made.« less

  8. 21 CFR 175.210 - Acrylate ester copolymer coating.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... polymerized copolymer of ethyl acrylate, methyl methacrylate, and methacrylic acid applied in emulsion form to... Glyceryl monostearate Methyl cellulose Mineral oil Paraffin wax Potassium hydroxide Potassium...

  9. Effective Interactions and Miscibility of Nanoparticles in Multiblock Copolymer Melts

    SciTech Connect

    Banerjee, Debapriya; Schweizer, Kenneth S

    2015-01-01

    The microscopic Polymer Reference Interaction Site Model theory is employed to study, for the first time, the effective interactions, spatial organization, and miscibility of dilute spherical nanoparticles in non-microphase separating, chemically heterogeneous, compositionally symmetric AB multiblock copolymer melts of varying monomer sequence or architecture. The dependence of nanoparticle wettability on copolymer sequence and chemistry results in interparticle potentials-of-mean force that are qualitatively different from homopolymers. An important prediction is the ability to improve nanoparticle dispersion via judicious choice of block length and monomer adsorption-strengths which control both local surface segregation and chain connectivity induced packing constraints and frustration. The degree of dispersion also depends strongly on nanoparticle diameter relative to the block contour length. Small particles in copolymers with longer block lengths experience a more homopolymer-like environment which renders them relatively insensitive to copolymer chemical heterogeneity and hinders dispersion. Larger particles (sufficiently larger than the monomer diameter) in copolymers of relatively short block lengths provide better dispersion than either a homopolymer or random copolymer. The theory also predicts a novel widening of the miscibility window for large particles upon increasing the overall molecular weight of copolymers composed of relatively long blocks. The influence of a positive chi-parameter in the pure copolymer melt is briefly studied. Quantitative application to fullerenes in specific copolymers of experimental interest is performed, and miscibility predictions are made.

  10. Gyroid nickel nanostructures from diblock copolymer supramolecules.

    PubMed

    Vukovic, Ivana; Punzhin, Sergey; Voet, Vincent S D; Vukovic, Zorica; de Hosson, Jeff Th M; ten Brinke, Gerrit; Loos, Katja

    2014-01-01

    Nanoporous metal foams possess a unique combination of properties - they are catalytically active, thermally and electrically conductive, and furthermore, have high porosity, high surface-to-volume and strength-to-weight ratio. Unfortunately, common approaches for preparation of metallic nanostructures render materials with highly disordered architecture, which might have an adverse effect on their mechanical properties. Block copolymers have the ability to self-assemble into ordered nanostructures and can be applied as templates for the preparation of well-ordered metal nanofoams. Here we describe the application of a block copolymer-based supramolecular complex - polystyrene-block-poly(4-vinylpyridine)(pentadecylphenol) PS-b-P4VP(PDP) - as a precursor for well-ordered nickel nanofoam. The supramolecular complexes exhibit a phase behavior similar to conventional block copolymers and can self-assemble into the bicontinuous gyroid morphology with two PS networks placed in a P4VP(PDP) matrix. PDP can be dissolved in ethanol leading to the formation of a porous structure that can be backfilled with metal. Using electroless plating technique, nickel can be inserted into the template's channels. Finally, the remaining polymer can be removed via pyrolysis from the polymer/inorganic nanohybrid resulting in nanoporous nickel foam with inverse gyroid morphology. PMID:24797367

  11. Crystallization in Ordered Polydisperse Polyolefin Diblock Copolymers

    SciTech Connect

    Li, Sheng; Register, Richard A.; Landes, Brian G.; Hustad, Phillip D.; Weinhold, Jeffrey D.

    2010-12-07

    The morphologies of polydisperse ethylene-octene diblock copolymers, synthesized via a novel coordinative chain transfer polymerization process, are examined using two-dimensional synchrotron small-angle and wide-angle X-ray scattering on flow-aligned specimens. The diblock copolymers comprise one amorphous block with high 1-octene content and one semicrystalline block with relatively low 1-octene content, and each block ideally exhibits the most-probable distribution. Near-symmetric diblocks with a sufficiently large octene differential between the amorphous and semicrystalline blocks show well-ordered lamellar domain structures with long periods exceeding 100 nm. Orientation of these domain structures persists through multiple melting/recrystallization cycles, reflecting a robust structure which self-assembles in the melt. The domain spacings are nearly 3-fold larger than those in near-monodisperse polyethylene block copolymers of similar molecular weights. Although the well-ordered lamellar domain structure established in the melt is preserved in the solid state, the crystallites are isotropic in orientation. These materials display crystallization kinetics consistent with a spreading growth habit, indicating that the lamellae do not confine or template the growing crystals. The exceptionally large domain spacings and isotropic crystal growth are attributed to interblock mixing resulting from the large polydispersity; short hard blocks dissolved in the soft-block-rich domains swell the domain spacing in the melt and allow hard block crystallization to proceed across the lamellar domain interfaces.

  12. Sulfonated Polymerized Ionic Liquid Block Copolymers.

    PubMed

    Meek, Kelly M; Elabd, Yossef A

    2016-07-01

    The successful synthesis of a new diblock copolymer, referred to as sulfonated polymerized ionic liquid (PIL) block copolymer, poly(SS-Li-b-AEBIm-TFSI), is reported, which contains both sulfonated blocks (sulfonated styrene: SS) and PIL blocks (1-[(2-acryloyloxy)ethyl]-3-butylimidazolium: AEBIm) with both mobile cations (lithium: Li(+) ) and mobile anions (bis(trifluoromethylsulfonyl)imide: TFSI(-) ). Synthesis consists of polymerization via reversible addition-fragmentation chain transfer, followed by post-functionalization reactions to covalently attach the imidazolium cations and sulfonic acid anions to their respective blocks, followed by ion exchange metathesis resulting in mobile Li(+) cations and mobile TFSI(-) anions. Solid-state films containing 1 m Li-TFSI salt dissolved in ionic liquid result in an ion conductivity of >1.5 mS cm(-1) at 70 °C, where small-angle X-ray scattering data indicate a weakly ordered microphase-separated morphology. These results demonstrate a new ion-conducting block copolymer containing both mobile cations and mobile anions. PMID:27125600

  13. Block and Graft Copolymers of Polyhydroxyalkanoates

    NASA Astrophysics Data System (ADS)

    Marchessault, Robert H.; Ravenelle, François; Kawada, Jumpei

    2004-03-01

    Polyhydroxyalkanoates (PHAs) were modified for diblock copolymer and graft polymer by catalyzed transesterification in the melt and by chemical synthesis to extend the side chains of the PHAs, and the polymers were studied by transmission electron microscopy (TEM) X-ray diffraction, thermal analysis and nuclear magnetic resonance (NMR). Catalyzed transesterification in the melt is used to produce diblock copolymers of poly[3-hydroxybutyrate] (PHB) and monomethoxy poly[ethylene glycol] (mPEG) in a one-step process. The resulting diblock copolymers are amphiphilic and self-assemble into sterically stabilized colloidal suspensions of PHB crystalline lamellae. Graft polymer was synthesized in a two-step chemical synthesis from biosynthesized poly[3-hydroxyoctanoate-co-3-hydroxyundecenoate] (PHOU) containing ca. 25 mol chains. 11-mercaptoundecanoic acid reacts with the side chain alkenes of PHOU by the radical addition creating thioether linkage with terminal carboxyl functionalities. The latter groups were subsequently transformed into the amide or ester linkage by tridecylamine or octadecanol, respectively, producing new graft polymers. The polymers have different physical properties than poly[3-hydroxyoctanoate] (PHO) which is the main component of the PHOU, such as non-stickiness and higher thermal stability. The combination of biosynthesis and chemical synthesis produces a hybrid thermoplastic elastomer with partial biodegradability.

  14. Regulating block copolymer phases via selective homopolymers.

    PubMed

    Yang, Shuang; Lei, Zhen; Hu, Nan; Chen, Er-Qiang; Shi, An-Chang

    2015-03-28

    The phase behavior of strongly segregated AB diblock copolymer and selective C homopolymer blends is examined theoretically using a combination of strong stretching theory (SST) and self-consistent field theory (SCFT). The C-homopolymer is immiscible with the B-blocks but strongly attractive with the A-blocks. The effect of homopolymer content on the order-order phase transitions is analyzed. It is observed that, for AB diblock copolymers with majority A-blocks, the addition of the C-homopolymers results in lamellar to cylindrical to spherical phase transitions because of the A/C complexation. For diblock copolymers with minor A-blocks, adding C-homopolymers leads to transitions from spherical or cylindrical morphology with A-rich core to lamellae to inverted cylindrical and spherical morphologies with B-rich core. The results from analytical SST and numerical SCFT are in good agreement within most regions of the phase diagram. But the deviation becomes more obvious when the composition of A-blocks is too small and the content of added C-homopolymers is large enough, where the SCFT predicts a narrow co-existence region between different ordered phases. Furthermore, it is found that the phase behavior of the system is insensitive to the molecular weight of C-homopolymer. PMID:25833605

  15. Gyroid Nickel Nanostructures from Diblock Copolymer Supramolecules

    PubMed Central

    Vukovic, Ivana; Punzhin, Sergey; Voet, Vincent S. D.; Vukovic, Zorica; de Hosson, Jeff Th. M.; ten Brinke, Gerrit; Loos, Katja

    2014-01-01

    Nanoporous metal foams possess a unique combination of properties - they are catalytically active, thermally and electrically conductive, and furthermore, have high porosity, high surface-to-volume and strength-to-weight ratio. Unfortunately, common approaches for preparation of metallic nanostructures render materials with highly disordered architecture, which might have an adverse effect on their mechanical properties. Block copolymers have the ability to self-assemble into ordered nanostructures and can be applied as templates for the preparation of well-ordered metal nanofoams. Here we describe the application of a block copolymer-based supramolecular complex - polystyrene-block-poly(4-vinylpyridine)(pentadecylphenol) PS-b-P4VP(PDP) - as a precursor for well-ordered nickel nanofoam. The supramolecular complexes exhibit a phase behavior similar to conventional block copolymers and can self-assemble into the bicontinuous gyroid morphology with two PS networks placed in a P4VP(PDP) matrix. PDP can be dissolved in ethanol leading to the formation of a porous structure that can be backfilled with metal. Using electroless plating technique, nickel can be inserted into the template's channels. Finally, the remaining polymer can be removed via pyrolysis from the polymer/inorganic nanohybrid resulting in nanoporous nickel foam with inverse gyroid morphology. PMID:24797367

  16. Regulating block copolymer phases via selective homopolymers

    SciTech Connect

    Yang, Shuang E-mail: eqchen@pku.edu.cn; Lei, Zhen; Hu, Nan; Chen, Er-Qiang E-mail: eqchen@pku.edu.cn; Shi, An-Chang

    2015-03-28

    The phase behavior of strongly segregated AB diblock copolymer and selective C homopolymer blends is examined theoretically using a combination of strong stretching theory (SST) and self-consistent field theory (SCFT). The C-homopolymer is immiscible with the B-blocks but strongly attractive with the A-blocks. The effect of homopolymer content on the order-order phase transitions is analyzed. It is observed that, for AB diblock copolymers with majority A-blocks, the addition of the C-homopolymers results in lamellar to cylindrical to spherical phase transitions because of the A/C complexation. For diblock copolymers with minor A-blocks, adding C-homopolymers leads to transitions from spherical or cylindrical morphology with A-rich core to lamellae to inverted cylindrical and spherical morphologies with B-rich core. The results from analytical SST and numerical SCFT are in good agreement within most regions of the phase diagram. But the deviation becomes more obvious when the composition of A-blocks is too small and the content of added C-homopolymers is large enough, where the SCFT predicts a narrow co-existence region between different ordered phases. Furthermore, it is found that the phase behavior of the system is insensitive to the molecular weight of C-homopolymer.

  17. Comparing Fluid and Elastic Block Copolymer Shells

    NASA Astrophysics Data System (ADS)

    Rozairo, Damith; Croll, Andrew B.

    2014-03-01

    Emulsions can be stabilized with the addition of an amphiphilic diblock copolymer, resulting in droplets surrounded and protected by a polymer monolayer. Such droplets show considerable promise as advanced cargo carriers in pharmaceuticals or cosmetics due to their strength and responsiveness. Diblock copolymer interfaces remain mostly fluid and may not be able to attain the mechanical performance desired by industry. To strengthen block copolymer emulsion droplets we have developed a novel method for creating thin elastic shells using polystyrene-b-poly(acrylic acid)-b-polystyrene (PS-PAA-PS). Characterization of the fluid filled elastic shells is difficult with traditional means which lead us to develop a new and general method of mechanical measurement. Specifically, we use laser scanning confocal microscopy to achieve a high resolution measure of the deformation of soft spheres under the influence of gravity. To prove the resilience of the technique we examine both a polystyrene-b-poly(ethylene oxide) (PS-PEO) stabilized emulsion and the PS-PAA-PS emulsion. The mechanical measurement allows the physics of the polymer at the interface to be examined, which will ultimately lead to the rational development of these technologies.

  18. Sulfur copolymers for infrared optical imaging

    NASA Astrophysics Data System (ADS)

    Namnabat, S.; Gabriel, J. J.; Pyun, J.; Norwood, R. A.; Dereniak, E. L.; van der Laan, J.

    2014-06-01

    The development of organic polymers with low infrared absorption has been investigated as a possible alternative to inorganic metal oxide, semiconductor, or chalcogenide-based materials for a variety of optical devices and components, such as lenses, goggles, thermal imaging cameras and optical fibers. In principle, organic-based polymers are attractive for these applications because of their low weight, ease of processing, mechanical toughness, and facile chemical variation using commercially available precursors. Herein we report on the optical characterization of a new class of sulfur copolymers that are readily moldable, transparent above 500 nm, possess high refractive index (n > 1.8) and take advantage of the low infrared absorption of S-S bonds for potential use in the mid-infrared at 3-5 microns. These materials are largely made from elemental sulfur by an inverse vulcanization process; in the current study we focus on the properties of a chemically stable, branched copolymer of poly(sulfur-random-1,3-diisopropenylbenzene) (poly(S-r- DIB). Copolymers with elemental sulfur content ranging from 50% to 80% by weight were studied by UV-VIS spectroscopy, FTIR, and prism coupling for refractive index measurement. Clear correlation between material composition and the optical properties was established, confirming that the high polarizability of the sulfur atom leads to high refractive index while also maintaining low optical loss in the infrared.

  19. Are block copolymer worms more effective Pickering emulsifiers than block copolymer spheres?

    PubMed

    Thompson, K L; Mable, C J; Cockram, A; Warren, N J; Cunningham, V J; Jones, E R; Verber, R; Armes, S P

    2014-11-21

    RAFT-mediated polymerisation-induced self-assembly (PISA) is used to prepare six types of amphiphilic block copolymer nanoparticles which were subsequently evaluated as putative Pickering emulsifiers for the stabilisation of n-dodecane-in-water emulsions. It was found that linear poly(glycerol monomethacrylate)-poly(2-hydroxypropyl methacrylate) (PGMA-PHPMA) diblock copolymer spheres and worms do not survive the high shear homogenisation conditions used for emulsification. Stable emulsions are obtained, but the copolymer acts as a polymeric surfactant; individual chains rather than particles are adsorbed at the oil-water interface. Particle dissociation during emulsification is attributed to the weakly hydrophobic character of the PHPMA block. Covalent stabilisation of these copolymer spheres or worms can be readily achieved by addition of ethylene glycol dimethacrylate (EGDMA) during the PISA synthesis. TEM studies confirm that the resulting cross-linked spherical or worm-like nanoparticles survive emulsification and produce genuine Pickering emulsions. Alternatively, stabilisation can be achieved by either replacing or supplementing the PHPMA block with the more hydrophobic poly(benzyl methacrylate) (PBzMA). The resulting linear spheres or worms also survive emulsification and produce stable n-dodecane-in-water Pickering emulsions. The intrinsic advantages of anisotropic worms over isotropic spheres for the preparation of Pickering emulsions are highlighted. The former particles are more strongly adsorbed at similar efficiencies compared to spheres and also enable smaller oil droplets to be produced for a given copolymer concentration. The scalable nature of PISA formulations augurs well for potential applications of anisotropic block copolymer nanoparticles as Pickering emulsifiers. PMID:25254485

  20. Piezoelectric Properties of Non-Polar Block Copolymers

    SciTech Connect

    Pester, Christian; Ruppel, Markus A; Schoberth, Heiko; Schmidt, K.; Liedel, Clemens; Van Rijn, Patrick; Littrell, Ken; Schindler, Kerstin; Hiltl, Stephanie; Czubak, Thomas; Mays, Jimmy; Urban, Volker S; Boker, Alexander

    2011-01-01

    Piezoelectric properties in non-polar block copolymers are a novelty in the field of electroactive polymers. The piezoelectric susceptibility of poly(styrene-b-isoprene) block copolymer lamellae is found to be up to an order of magnitude higher when compared to classic piezoelectric materials. The electroactive response increases with temperature and is found to be strongest in the disordered phase.

  1. Morphological studies on block copolymer modified PA 6 blends

    SciTech Connect

    Poindl, M. E-mail: christian.bonten@ikt.uni-stuttgart.de; Bonten, C. E-mail: christian.bonten@ikt.uni-stuttgart.de

    2014-05-15

    Recent studies show that compounding polyamide 6 (PA 6) with a PA 6 polyether block copolymers made by reaction injection molding (RIM) or continuous anionic polymerization in a reactive extrusion process (REX) result in blends with high impact strength and high stiffness compared to conventional rubber blends. In this paper, different high impact PA 6 blends were prepared using a twin screw extruder. The different impact modifiers were an ethylene propylene copolymer, a PA PA 6 polyether block copolymer made by reaction injection molding and one made by reactive extrusion. To ensure good particle matrix bonding, the ethylene propylene copolymer was grafted with maleic anhydride (EPR-g-MA). Due to the molecular structure of the two block copolymers, a coupling agent was not necessary. The block copolymers are semi-crystalline and partially cross-linked in contrast to commonly used amorphous rubbers which are usually uncured. The combination of different analysis methods like atomic force microscopy (AFM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) gave a detailed view in the structure of the blends. Due to the partial cross-linking, the particles of the block copolymers in the blends are not spherical like the ones of ethylene propylene copolymer. The differences in molecular structure, miscibility and grafting of the impact modifiers result in different mechanical properties and different blend morphologies.

  2. 40 CFR 721.10213 - Polyether polyester copolymer phosphate (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... phosphate (generic). 721.10213 Section 721.10213 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10213 Polyether polyester copolymer phosphate (generic). (a) Chemical... as polyether polyester copolymer phosphate (PMN P-09-253) is subject to reporting under this...

  3. Morphological studies on block copolymer modified PA 6 blends

    NASA Astrophysics Data System (ADS)

    Poindl, M.; Bonten, C.

    2014-05-01

    Recent studies show that compounding polyamide 6 (PA 6) with a PA 6 polyether block copolymers made by reaction injection molding (RIM) or continuous anionic polymerization in a reactive extrusion process (REX) result in blends with high impact strength and high stiffness compared to conventional rubber blends. In this paper, different high impact PA 6 blends were prepared using a twin screw extruder. The different impact modifiers were an ethylene propylene copolymer, a PA PA 6 polyether block copolymer made by reaction injection molding and one made by reactive extrusion. To ensure good particle matrix bonding, the ethylene propylene copolymer was grafted with maleic anhydride (EPR-g-MA). Due to the molecular structure of the two block copolymers, a coupling agent was not necessary. The block copolymers are semi-crystalline and partially cross-linked in contrast to commonly used amorphous rubbers which are usually uncured. The combination of different analysis methods like atomic force microscopy (AFM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) gave a detailed view in the structure of the blends. Due to the partial cross-linking, the particles of the block copolymers in the blends are not spherical like the ones of ethylene propylene copolymer. The differences in molecular structure, miscibility and grafting of the impact modifiers result in different mechanical properties and different blend morphologies.

  4. 40 CFR 721.484 - Fluorinated acrylic copolymer (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fluorinated acrylic copolymer (generic name). 721.484 Section 721.484 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.484 Fluorinated acrylic copolymer (generic name). (a) Chemical...

  5. 40 CFR 721.4700 - Metalated alkylphenol copolymer (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Metalated alkylphenol copolymer (generic name). 721.4700 Section 721.4700 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.4700 Metalated alkylphenol copolymer (generic name). (a)...

  6. 40 CFR 721.4700 - Metalated alkylphenol copolymer (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Metalated alkylphenol copolymer (generic name). 721.4700 Section 721.4700 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.4700 Metalated alkylphenol copolymer (generic name). (a)...

  7. 40 CFR 721.336 - Perfluoroalkylethyl acrylate copolymer (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Perfluoroalkylethyl acrylate copolymer (generic name). 721.336 Section 721.336 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.336 Perfluoroalkylethyl acrylate copolymer (generic name). (a)...

  8. 21 CFR 177.1211 - Cross-linked polyacrylate copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... weight of aqueous sodium chloride solution at 20 °C for 24 hours. The low molecular weight extractives... applied mass). The solvent used shall be at least 60 milliliters aqueous sodium chloride solution per gram... polyacrylate copolymers consist of: (1) The grafted copolymer of cross-linked sodium polyacrylate identified...

  9. 21 CFR 177.1211 - Cross-linked polyacrylate copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... weight of aqueous sodium chloride solution at 20 °C for 24 hours. The low molecular weight extractives... applied mass). The solvent used shall be at least 60 milliliters aqueous sodium chloride solution per gram... polyacrylate copolymers consist of: (1) The grafted copolymer of cross-linked sodium polyacrylate identified...

  10. 21 CFR 177.1211 - Cross-linked polyacrylate copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... weight of aqueous sodium chloride solution at 20 °C for 24 hours. The low molecular weight extractives... applied mass). The solvent used shall be at least 60 milliliters aqueous sodium chloride solution per gram... polyacrylate copolymers consist of: (1) The grafted copolymer of cross-linked sodium polyacrylate identified...

  11. 21 CFR 177.1211 - Cross-linked polyacrylate copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... weight of aqueous sodium chloride solution at 20 °C for 24 hours. The low molecular weight extractives... applied mass). The solvent used shall be at least 60 milliliters aqueous sodium chloride solution per gram... polyacrylate copolymers consist of: (1) The grafted copolymer of cross-linked sodium polyacrylate identified...

  12. 21 CFR 181.32 - Acrylonitrile copolymers and resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Acrylonitrile copolymers and resins. 181.32 Section 181.32 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) PRIOR-SANCTIONED FOOD INGREDIENTS Specific Prior-Sanctioned Food Ingredients § 181.32 Acrylonitrile copolymers and resins. (a)...

  13. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section... Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid... for use in contact with food subject to the provisions of this section. (a) The ethylene-acrylic...

  14. Computer simulations of block copolymer tethered nanoparticle self-assembly

    NASA Astrophysics Data System (ADS)

    Chan, Elaine R.; Ho, Lin C.; Glotzer, Sharon C.

    2006-08-01

    We perform molecular simulations to study the self-assembly of block copolymer tethered cubic nanoparticles. Minimal models of the tethered nanoscale building blocks (NBBs) are utilized to explore the structures arising from self-assembly. We demonstrate that attaching a rigid nanocube to a diblock copolymer affects the typical equilibrium morphologies exhibited by the pure copolymer. Lamellar and cylindrical phases are observed in both systems but not at the corresponding relative copolymer tether block fractions. The effect of nanoparticle geometry on phase behavior is investigated by comparing the self-assembled structures formed by the tethered NBBs with those of their linear ABC triblock copolymer counterparts. The tethered nanocubes exhibit the conventional triblock copolymer lamellar and cylindrical phases when the repulsive interactions between different blocks are symmetric. The rigid and bulky nature of the cube induces interfacial curvature in the tethered NBB phases compared to their linear ABC triblock copolymer counterparts. We compare our results with those structures obtained from ABC diblock copolymer tethered nanospheres to further elucidate the role of cubic nanoparticle geometry on self-assembly.

  15. 21 CFR 177.1312 - Ethylene-carbon monoxide copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from the American Society for... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ethylene-carbon monoxide copolymers. 177.1312... Use Food Contact Surfaces § 177.1312 Ethylene-carbon monoxide copolymers. The ethylene-carbon...

  16. 21 CFR 173.60 - Dimethylamine-epichlorohydrin copolymer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Polymer Adjuvants for Food Treatment § 173.60 Dimethylamine-epichlorohydrin copolymer. Dimethylamine... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Dimethylamine-epichlorohydrin copolymer. 173.60... epichlorohydrin in which not more than 5 mole-percent of dimethylamine may be replaced by an equimolar amount...

  17. Imide/arylene ether copolymers with pendent trifluoromethyl groups

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J.; Havens, Stephen J.

    1992-01-01

    A series of imide/arylene ether block copolymers were prepared using an arylene ether block containing a hexafluoroisopropylidene group and an imide block containing a hexafluoroisopropylidene and a trifluoromethyl group in the polymer backbone. The copolymers were characterized and mechanical properties were determined and compared to the homopolymers.

  18. 40 CFR 721.10213 - Polyether polyester copolymer phosphate (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... phosphate (generic). 721.10213 Section 721.10213 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10213 Polyether polyester copolymer phosphate (generic). (a) Chemical... as polyether polyester copolymer phosphate (PMN P-09-253) is subject to reporting under this...

  19. 40 CFR 721.10213 - Polyether polyester copolymer phosphate (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... phosphate (generic). 721.10213 Section 721.10213 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10213 Polyether polyester copolymer phosphate (generic). (a) Chemical... as polyether polyester copolymer phosphate (PMN P-09-253) is subject to reporting under this...

  20. 40 CFR 721.10213 - Polyether polyester copolymer phosphate (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... phosphate (generic). 721.10213 Section 721.10213 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10213 Polyether polyester copolymer phosphate (generic). (a) Chemical... as polyether polyester copolymer phosphate (PMN P-09-253) is subject to reporting under this...

  1. Block Copolymer Templates for Optical Materials and Devices

    NASA Astrophysics Data System (ADS)

    Urbas, Augustine; Martin, Maldovan; Carter, W. C.; Thomas, E. L.; Fasolka, Michael; Fraser, Cassandra

    2002-03-01

    Block copolymers can act as super-lattices for creating novel optical structures. We have fabricated block copolymer photonic crystals from one, two and three dimensionally periodic systems and have enhanced their dielectric properties towards creating complete 3D band gaps. By using carefully selected blends of linear and star block copolymers, we are able to create hierarchical blends which exhibit precise molecular positioning of fluorescent molecules. We are exploring these unique patterning capabilities of block copolymer systems for the formation of ordered arrays of optically active components within a photonic crystal. Precise location of both fluorescent and nonlinear components within block copolymer photonic crystals affords new opportunities for creating low threshold, upconverting and array lasers as well as optical modulators and other photonic devices.

  2. Light-emitting block copolymers composition, process and use

    DOEpatents

    Ferraris, John P.; Gutierrez, Jose J.

    2006-11-14

    Generally, and in one form, the present invention is a composition of light-emitting block copolymer. In another form, the present invention is a process producing a light-emitting block copolymers that intends polymerizing a first di(halo-methyl) aromatic monomer compound in the presence of an anionic initiator and a base to form a polymer and contacting a second di(halo-methyl) aromatic monomer compound with the polymer to form a homopolymer or block copolymer wherein the block copolymer is a diblock, triblock, or star polymer. In yet another form, the present invention is an electroluminescent device comprising a light-emitting block copolymer, wherein the electroluminescent device is to be used in the manufacturing of optical and electrical devices.

  3. Crystallization and Solid State Structure of Poly(lactide) Copolymers

    NASA Astrophysics Data System (ADS)

    Baratian, S.; Runt, J.; Hall, E.; Lin, J. S.

    2000-03-01

    A series of random poly(lactide) copolymers was synthesized from L-lactide and D,L lactide using a tin (II) octanoate catalyst. The copolymers contained from 1.7 to 6.2 percent R stereochemical defects in otherwise S stereoisomer chains. Small-angle x-ray scattering experiments were used to determine the final lamellar microstructure of the copolymers. Lamellar thicknesses were strongly dependent on R co-unit concentration and it was concluded that the final structure contains significant pockets of non-crystalline material between spherulite fibrils. Equilibrium melting temperatures were estimated using the Gibbs-Thomson approach and their variation with comonomer content suggests that there is significant exclusion of R stereochemical defects from crystalline regions. Spherulite growth rates of the D-lactide copolymers were found to be larger than L-lactide/meso-lactide copolymers at equivalent optical composition.

  4. Preparation and Morphology of ABn Mictoarm Block Copolymers

    NASA Astrophysics Data System (ADS)

    Takano, Atsushi; Watanabe, Momoka; Asai, Yusuke; Suzuki, Jiro; Matsushita, Yushu

    A series of ABn mictoarm block copolymers (bottle brush copolymers) consisting of polystyrene (S) as a backbone and polyisoprenes (I) as grafts were precisely synthesized by an anionic polymerization, and their microphase-separated structures were investigated by transmission electron microscopy (TEM) and small-angle X-ray scattering(SAXS). A copolymer with composition of φS =0.57 and number of grafts(n) of 10 shows characteristic cylindrical structure, where microdomains of S reveals hexagonal cross section with non-constant mean curvature interface. While a sample with composition of φS =0.37 and number of grafts(n) of 40 shows spherical structure with rather large S isolated domains and characteristic domain packing manner was found. Furthermore composition dependence of microphase-separated structures for SIn mictoarm block copolymers were investigated and compared to SI diblock copolymer system.

  5. SUPPLEMENTARY COMPARISON: Final report on the APMP comparison of capacitance at 100 pF (APMP supplementary comparison APMP.EM-S7)

    NASA Astrophysics Data System (ADS)

    Johnson, Leigh; Chua, Wey; Corney, Andrew; Hsu, Jimmy; Sardjono, Hadi; Lee, Rae Duk; Zhonghua, Zhang; Charoensook, Ajchara; Coogan, Peter; Nakamura, Yasuhiro; Moodley, Alan; Saxena, A. K.; Yan, Y. K.; Zainal Abidin, Abdul Rashid Bin; Lee, Jinni; Semenov, Yuri

    2008-01-01

    A comparison of capacitance at 100 pF was conducted between thirteen participating laboratories from the Asia-Pacific region. Measurements were made over the period 2004 to 2006. The behaviour of the travelling artefact was consistent with a steady linear drift at a rate of less than 0.1 µF/F per year. Despite the wide range of capabilities within the region, the results showed good agreement between all participating laboratories. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the APMP, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  6. KEY COMPARISON: Final report on the APMP comparison of capacitance at 10 pF: APMP.EM-K4.1

    NASA Astrophysics Data System (ADS)

    Johnson, Leigh; Chua, Wey; Corney, Andrew; Hsu, Jimmy; Sardjono, Hadi; Lee, Rae Duk; Zhonghua, Zhang; Charoensook, Ajchara; Coogan, Peter; Nakamura, Yasuhiro; Moodley, Alan; Saxena, A. K.; Yan, Y. K.; Zainal Abidin, Abdul Rashid Bin; Lee, Jinni; Semenov, Yuri

    2009-01-01

    A comparison of capacitance at 10 pF was conducted between thirteen participating laboratories from the Asia-Pacific region. Measurements were made between 2004 and 2006. The behaviour of the travelling artefact was consistent with a steady linear drift at a rate of approximately 0.1 µF/F per year. Despite the wide range of capabilities within the region, the results showed good agreement between all but one of the participating laboratories. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCEM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  7. Materials Design for Block Copolymer Lithography

    NASA Astrophysics Data System (ADS)

    Sweat, Daniel Patrick

    Block copolymers (BCPs) have attracted a great deal of scientific and technological interest due to their ability to spontaneously self-assemble into dense periodic nanostructures with a typical length scale of 5 to 50 nm. The use of self-assembled BCP thin-films as templates to form nanopatterns over large-area is referred to as BCP lithography. Directed self-assembly of BCPs is now viewed as a viable candidate for sub-20 nm lithography by the semiconductor industry. However, there are multiple aspects of assembly and materials design that need to be addressed in order for BCP lithography to be successful. These include substrate modification with polymer brushes or mats, tailoring of the block copolymer chemistry, understanding thin-film assembly and developing epitaxial like methods to control long range alignment. The rational design, synthesis and self-assembly of block copolymers with large interaction parameters (chi) is described in the first part of this dissertation. Two main blocks were chosen for introducing polarity into the BCP system, namely poly(4-hydroxystyrene) and poly(2-vinylpyridine). Each of these blocks are capable of ligating Lewis acids which can increase the etch contrast between the blocks allowing for facile pattern transfer to the underlying substrate. These BCPs were synthesized by living anionic polymerization and showed excellent control over molecular weight and dispersity, providing access to sub 5-nm domain sizes. Polymer brushes consist of a polymer chain with one end tethered to the surface and have wide applicability in tuning surface energy, forming responsive surfaces and increasing biocompatibility. In the second part of the dissertation, we present a universal method to grow dense polymer brushes on a wide range of substrates and combine this chemistry with BCP assembly to fabricate nanopatterned polymer brushes. This is the first demonstration of introducing additional functionality into a BCP directing layer and opens up

  8. Fluctuation Dynamics of Block Copolymer Vesicles

    SciTech Connect

    Falus, P.; Borthwick, M.A.; Mochrie, S.G.J.

    2010-07-13

    X-ray photon correlation spectroscopy was used to characterize the wave-vector- and temperature-dependent dynamics of spontaneous thermal fluctuations in a vesicle (L4) phase that occurs in a blend of a symmetric poly(styrene-ethylene/butylene-styrene) triblock copolymer with a polystyrene homopolymer. Measurements of the intermediate scattering function reveal stretched-exponential behavior versus time, with a stretching exponent slightly larger than 2/3. The corresponding relaxation rates show an approximate q{sup 3} dependence versus wave vector. Overall, the experimental measurements are well described by theories that treat the dynamics of independent membrane plaquettes.

  9. Oriented Protein Nanoarrays on Block Copolymer Template.

    PubMed

    Shen, Lei; Zhu, Jintao

    2016-03-01

    Here, a simple yet robust method is developed to fabricate oriented protein nanoarrays by employing a block copolymer (BCP) template, which presents nano-scaled spot areas at high-density arrays. Unlike the conventional BCP nanolithography, the BCP platform described here resists nonspecific protein adsorption and prevents the denaturation of immobilized proteins in aqueous solution. The orderly arranged array areas are functionalized by linking chemistry which allows for the precise control of protein orientation. This approach allows us to generate potentially oriented protein nanoarrays at high-density array spots, which is useful for miniaturized nanoarrays within high-throughput proteomic applications. PMID:26785818

  10. A amphoteric copolymer profile modification agent

    SciTech Connect

    Wang HongGuan; Yu LianCheng; Tian HongKun

    1995-11-01

    This report provides a new gel profile modification agent prepared by an amphoteric copolymer (FT-213) and a novel crosslinking agent (BY), and introduces the preparations of the amphoteric polymer, the crosslinking agent and the profile modification agent, the action mechanism, the test conditions and the evaluations of the performance of the agent. The 45 well treatments in oilfields demonstrate that the agent can be prepared conveniently, the agent has better compatibility and application performances, and the treatment life is longer with the use of the agent. 80,000 tons incremental oil and 60,000 m{sup 3} decreasing water production have been achieved.

  11. 21 CFR 175.365 - Vinylidene chloride copolymer coatings for polycarbonate film.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Vinylidene chloride copolymer coatings for... chloride copolymer coatings for polycarbonate film. Vinylidene chloride copolymer coatings identified in... chapter. (b) The coatings are prepared from vinylidene chloride copolymers produced by...

  12. 21 CFR 175.365 - Vinylidene chloride copolymer coatings for polycarbonate film.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Vinylidene chloride copolymer coatings for... chloride copolymer coatings for polycarbonate film. Vinylidene chloride copolymer coatings identified in... chapter. (b) The coatings are prepared from vinylidene chloride copolymers produced by...

  13. 21 CFR 175.365 - Vinylidene chloride copolymer coatings for polycarbonate film.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Vinylidene chloride copolymer coatings for... chloride copolymer coatings for polycarbonate film. Vinylidene chloride copolymer coatings identified in... chapter. (b) The coatings are prepared from vinylidene chloride copolymers produced by...

  14. Anomalous Micellization of Pluronic Block Copolymers

    NASA Astrophysics Data System (ADS)

    Leonardi, Amanda; Ryu, Chang Y.

    2014-03-01

    Poly(ethylene oxide) - poly(propylene oxide) - poly(ethylene oxide) (PEO-PPO-PEO) block copolymers, commercially known as Pluronics, are a unique family of amphiphilic triblock polymers, which self-assemble into micelles in aqueous solution. These copolymers have shown promise in therapeutic, biomedical, cosmetic, and nanotech applications. As-received samples of Pluronics contain low molecular weight impurities (introduced during the manufacturing and processing), that are ignored in most applications. It has been observed, however, that in semi-dilute aqueous solutions, at concentrations above 1 wt%, the temperature dependent micellization behavior of the Pluronics is altered. Anomalous behavior includes a shift of the critical micellization temperature and formation of large aggregates at intermediate temperatures before stable sized micelles form. We attribute this behavior to the low molecular weight impurities that are inherent to the Pluronics which interfere with the micellization process. Through the use of Dynamic Light Scattering and HPLC, we compared the anomalous behavior of different Pluronics of different impurity levels to their purified counterparts.

  15. Block copolymer ion gels for gas separation

    NASA Astrophysics Data System (ADS)

    Gu, Yuanyan; Lodge, Timothy

    2012-02-01

    Carbon dioxide removal from light gases (eg. N2, CH4, and H2) is a very important technology for industrial applications such as natural gas sweetening, CO2 capture from coal-fire power plant exhausts and hydrogen production. Current CO2 separation method uses amine-absorption, which is energy-intensive and requires frequent maintenance. Membrane separation is a cost-effective solution to this problem, especially in small-scale applications. Ionic liquids have recently received increasing interest in this area because of their selective solubility for CO2 and non-volatility. However, ionic liquid itself lacks the persistent structure and mechanical integrity to withstand the high pressure for gas separation. Here, we report the development and gas separation performances of physically crosslinked ion gels based on self-assembly of ABA-triblock copolymers in ionic liquids. Three different types of polymers was used to achieve gelation in ionic liquids. Specifically, a triblock copolymer ion gel with a polymerized ionic liquid mid-block shows performances higher than the upper bound of well-known ``Robeson Plot'' for CO2/N2.

  16. Chain exchange in triblock copolymer micelles

    NASA Astrophysics Data System (ADS)

    Lu, Jie; Lodge, Timothy; Bates, Frank

    2015-03-01

    Block polymer micelles offer a host of technological applications including drug delivery, viscosity modification, toughening of plastics, and colloidal stabilization. Molecular exchange between micelles directly influences the stability, structure and access to an equilibrium state in such systems and this property recently has been shown to be extraordinarily sensitive to the core block molecular weight in diblock copolymers. The dependence of micelle chain exchange dynamics on molecular architecture has not been reported. The present work conclusively addresses this issue using time-resolved small-angle neutron scattering (TR-SANS) applied to complimentary S-EP-S and EP-S-EP triblock copolymers dissolved in squalane, a selective solvent for the EP blocks, where S and EP refer to poly(styrene) and poly(ethylenepropylene), respectively. Following the overall SANS intensity as a function of time from judiciously deuterium labelled polymer and solvent mixtures directly probes the rate of molecular exchange. Remarkably, the two triblocks display exchange rates that differ by approximately ten orders of magnitude, even though the solvophobic S blocks are of comparable size. This discovery is considered in the context of a model that successfully explains S-EP diblock exchange dynamics.

  17. Interface-enforced complexation between copolymer blocks.

    PubMed

    Steinschulte, Alexander A; Xu, Weinan; Draber, Fabian; Hebbeker, Pascal; Jung, Andre; Bogdanovski, Dimitri; Schneider, Stefanie; Tsukruk, Vladimir V; Plamper, Felix A

    2015-05-14

    Binary diblock copolymers and corresponding ternary miktoarm stars are studied at oil-water interfaces. All polymers contain oil-soluble poly(propylene oxide) PPO, water-soluble poly(dimethylaminoethyl methacrylate) PDMAEMA and/or poly(ethylene oxide) PEO. The features of their Langmuir compression isotherms are well related to the ones of the corresponding homopolymers. Within the Langmuir-trough, PEO-b-PPO acts as the most effective amphiphile compared to the other PPO-containing copolymers. In contrast, the compression isotherms show a complexation of PPO and PDMAEMA for PPO-b-PDMAEMA and the star, reducing their overall amphiphilicity. Such complex formation between the blocks of PPO-b-PDMAEMA is prevented in bulk water but facilitated at the interface. The weakly-interacting blocks of PPO-b-PDMAEMA form a complex due to their enhanced proximity in such confined environments. Scanning force microscopy and Monte Carlo simulations with varying confinement support our results, which are regarded as compliant with the mathematical random walk theorem by Pólya. Finally, the results are expected to be of relevance for e.g. emulsion formulation and macromolecular engineering. PMID:25807174

  18. Controlling Structure in Sulfonated Block Copolymer Membranes

    NASA Astrophysics Data System (ADS)

    Truong, Phuc; Stein, Gila; Strzalka, Joe

    2015-03-01

    In many ionic block copolymer systems, the strong incompatibility between ionic and non-ionic segments will trap non-equilibrium structures in the film, making it difficult to engineer the optimal domain sizes and transport pathways. The goal of this work is to establish a framework for controlling the solid-state structure of sulfonated pentablock copolymer membranes. They have ABCBA block sequence, where A is poly(t-butyl styrene), B is poly(hydrogenated isoprene), and C is poly(styrene sulfonate). To process into films, the polymer is dissolved in toluene/n-propanol solvent mixtures, where the solvent proportions and the polymer loading were both varied. Solution-state structure was measured with small angle X-ray scattering (SAXS). We detected micelles with radii that depend on the solvent composition and polymer loading. Film structure was measured with grazing-incidence SAXS, which shows (i) domain periodicity is constant throughout film thickness; (ii) domain periodicity depends on solvent composition and polymer loading, and approximately matches the micelle radii in solutions. The solid-state packing is consistent with a hard sphere structure factor. Results suggest that solid-state structure can be tuned by manipulating the solution-state self-assembly.

  19. Sequence-Specific Copolymer Compatibilizers designed via a Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Meenakshisundaram, Venkatesh; Patra, Tarak; Hung, Jui-Hsiang; Simmons, David

    For several decades, block copolymers have been employed as surfactants to reduce interfacial energy for applications from emulsification to surface adhesion. While the simplest approach employs symmetric diblocks, studies have examined asymmetric diblocks, multiblock copolymers, gradient copolymers, and copolymer-grafted nanoparticles. However, there exists no established approach to determining the optimal copolymer compatibilizer sequence for a given application. Here we employ molecular dynamics simulations within a genetic algorithm to identify copolymer surfactant sequences yielding maximum reductions the interfacial energy of model immiscible polymers. The optimal copolymer sequence depends significantly on surfactant concentration. Most surprisingly, at high surface concentrations, where the surfactant achieves the greatest interfacial energy reduction, specific non-periodic sequences are found to significantly outperform any regularly blocky sequence. This emergence of polymer sequence-specificity within a non-sequenced environment adds to a recent body of work suggesting that specific sequence may have the potential to play a greater role in polymer properties than previously understood. We acknowledge the W. M. Keck Foundation for financial support of this research.

  20. Using Tapered Block Copolymers to Create Conducting Nanomaterials

    NASA Astrophysics Data System (ADS)

    Epps, Thomas, III

    2014-03-01

    Soft materials, such as polymers, colloids, surfactants, and liquid crystals, are a technologically important class of matter employed in a variety of applications. One sub-class of soft material, block copolymers, provides the opportunity to design materials with attractive chemical and mechanical properties based on the ability to assemble into periodic structures with nanoscale domain spacings. Several applications for block copolymers currently under investigation in my group include battery and fuel cell membranes, analytical separations membranes, nano-tool templates, precursors to electronic arrays, and drug delivery vehicles. One area of recent progress in the group focuses on the behavior of conventional block copolymer and tapered block copolymer systems for lithium battery membrane applications. We find that we can tune poly(styrene- b-ethylene oxide) diblock copolymer nanostructures by adjusting the lithium counterion and lithium salt concentration, as well as the taper volume fraction and composition. Additionally, we can estimate the effective interaction parameters (χeff) for the salt-doped copolymers to determine the overall influence of tapering on the energetics of copolymer assembly. These tapered materials allow us to design nanostructured membrane systems with increased conductivity and improved mechanical properties in ion transport devices. We gratefully acknowledge AFOSR-PECASE (FA9550-09-1-0706) and NSF-CAREER (DMR-0645586) for financial support.

  1. Effects of Blockiness on the phase behavior of random copolymers

    NASA Astrophysics Data System (ADS)

    Vanderwoude, Gordon; Shi, An-Chang

    Theoretical study of random block copolymers remains a challenging topic due in part to the sheer enormity of their phase space. In this study we use the self-consistent field theory to investigate the phase behaviour of linear (AB)n-type and (AB)n-C-type multiblock copolymers with randomly distributed A and B blocks. In particular, we examine the effect of ``blockiness'' of the random copolymers on the formation of ordered phases. The blockiness can be quantified by the average length of individual A or B blocks, which can be taken as a measure of the heterogeneity of the random copolymers. We observed that the critical value of the χ parameter, at which the order-disorder transition occurs, decreases with increasing blockiness in the (AB)n copolymers. We also observed that the phase behaviour of the (AB)n-C copolymers depends strongly on the blockiness of the random chain. In particular, the blockiness governs whether or not the A/B blocks can phase separate within the A/B domains, thus dictating whether the (AB)n-C behaves as A/B-C diblock copolymers or as ABC terpolymers. The theoretical phase diagrams will be compared with available experiments.

  2. Tribological Behavior of Aqueous Copolymer Lubricant in Mixed Lubrication Regime.

    PubMed

    Ta, Thi D; Tieu, A Kiet; Zhu, Hongtao; Zhu, Qiang; Kosasih, Prabouno B; Zhang, Jie; Deng, Guanyu

    2016-03-01

    Although a number of experiments have been attempted to investigate the lubrication of aqueous copolymer lubricant, which is applied widely in metalworking operations, a comprehensive theoretical investigation at atomistic level is still lacking. This study addresses the influence of loading pressure and copolymer concentration on the structural properties and tribological performance of aqueous copolymer solution of poly(propylene oxide)-poly(ethylene oxide)-poly(propylene oxide) (PPO-PEO-PPO) at mixed lubrication using a molecular dynamic (MD) simulation. An effective interfacial potential, which has been derived from density functional theory (DFT) calculations, was employed for the interactions between the fluid's molecules and iron surface. The simulation results have indicated that the triblock copolymer is physisorption on iron surface. Under confinement by iron surfaces, the copolymer molecules form lamellar structure in aqueous solution and behave differently from its bulk state. The lubrication performance of aqueous copolymer lubricant increases with concentration, but the friction reduction is insignificant at high loading pressure. Additionally, the plastic deformation of asperity is dependent on both copolymer concentration and loading pressure, and the wear behavior shows a linear dependence of friction force on the number of transferred atoms between contacting asperities. PMID:26828119

  3. Manipulating Ordering Transitions in Interfacially Modified Block Copolymers

    SciTech Connect

    Singh, N.; Tureau, M; Epps, T

    2009-01-01

    We report a synthetic strategy that allows us to manipulate the interfacial region between blocks and control ordering transitions in poly(isoprene-b-styrene) [P(I-S)] block copolymers. This interfacial modification is accomplished by combining a semi-batch feed with anionic polymerization techniques. Using this approach, we are able to control the segmental composition and molecular interactions in our phase-separated block copolymers, independent of molecular weight and block constituents. A library of copolymers is prepared with various interfacial modifications to examine the effect of interfacial composition on copolymer self-assembly. The morphological characteristics of the self-assembled structures are investigated using small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM), and dynamic mechanical analysis (DMA). Normal and inverse tapered block copolymers, containing approximately 15-35 vol% tapered material, show a measurable decrease in the order-disorder transition temperature (TODT) relative to the corresponding non-tapered diblock copolymers, with the inverse tapered materials showing the greatest deviation in TODT. Additionally, TODT was inversely related to the volume fraction of the tapered region in both normal and inverse tapered copolymer materials.

  4. Nanopatterning of recombinant proteins and viruses using block copolymer templates

    NASA Astrophysics Data System (ADS)

    Cresce, Arthur Von Wald

    The study of interfaces is important in understanding biological interactions, including cellular signaling and virus infection. This thesis is an original effort to examine the interaction between a block copolymer and both a protein and a virus. Block copolymers intrinsically form nanometer-scale structures over large areas without expensive processing, making them ideal for the synthesis of the nanopatterned surfaces used in this study. The geometry of these nanostructures can be easily tuned for different applications by altering the block ratio and composition of the block copolymer. Block copolymers can be used for controlled uptake of metal ions, where one block selectively binds metal ions while the other does not. 5-norbornene-2,3-dicarboxylic acid is synthesized through ring-opening metathesis polymerization. It formed spherical domains with spheres approximately 30 nm in diameter, and these spheres were then subsequently loaded with nickel ion. This norbornene block copolymer was tested for its ability to bind histidine-tagged green fluorescent protein (hisGFP), and it was found that the nickel-loaded copolymer was able to retain hisGFP through chelation between the histidine tag and the metal-containing portions of the copolymer surface. Poly(styrene-b-4-vinylpyridine) (PS/P4VP) was also loaded with nickel, forming a cylindrical microstructure. The binding of Tobacco mosaic virus and Tobacco necrosis virus was tested through Tween 20 detergent washes. Electron microscopy allowed for observation of both block copolymer nanostructures and virus particles. Results showed that Tween washes could not remove bound Tobacco mosaic virus from the surface of PS/P4VP. It was also seen that the size and tunability of block copolymers and the lack of processing needed to attain different structures makes them attractive for many applications, including microfluidic devices, surfaces to influence cellular signaling and growth, and as a nanopatterning surface for

  5. Universality of elasticity on PAAM-NIPA copolymer gels

    NASA Astrophysics Data System (ADS)

    Akin Evingür, Gülşen; Pekcan, Önder

    2015-01-01

    Polyacrylamide (PAAm)-N-isopropylacrylamide (NIPA) copolymers were prepared via free radical crosslinking copolymerization with different molar of NIPA varying in the range between 0 and 2 M. The mechanical properties of swollen PAAm-NIPA copolymers were characterized by the compressive testing technique. It is understood that the compressive elastic modulus was found to increase by increasing NIPA contents, keeping temperature constant at 30 °C. The critical exponent of elasticity, y above the critical NIPA concentration is found to be as 0.74, which is consistent with the suggestions of percolation for superelastic percolation network (SEPN) and the critical theory for PAAm-NIPA copolymers.

  6. Transparent zero-birefringence copolymer and its optical properties.

    PubMed

    Iwata, S; Tsukahara, H; Nihei, E; Koike, Y

    1997-07-01

    Birefringence is caused by both orientation of polymer chains and photoelasticity. These birefringences were compensated by random copolymerization of negative birefringent methyl methacrylate and positive birefringent benzyl methacrylate, but orientational and photoelastic zero birefringences were achieved with quite different compositions of the copolymers. Note that the birefringence of the copolymer that occurred in the process of injection molding was almost completely eliminated with a composition for orientational zero birefringence. The orientational and photoelastic zero-birefringence copolymers possessed enough transparency as optical materials that the total scattering losses were 30.4 and 19.5 dB/km, respectively, competing with the transparency of homopolymers. PMID:18259249

  7. Macroscopic phase decomposition in block copolymers driven by thermooxidative reactions

    NASA Astrophysics Data System (ADS)

    Fan, Shaobin

    Macroscopic phase separations have been observed in a commercial styrene- block-butadiene-block-styrene (SBS) triblock copolymer (Kraton 1102), an as-synthesized SBS triblock copolymer, an as-synthesized styrene-block-butadiene (SB) diblock copolymer and a commercial styrene-block-isoprene-block-styrene (SIS) triblock copolymer (Kraton 1107) at elevated temperatures. To the best of our knowledge, this is the first report on macroscopic phase separations in neat copolymers, including block copolymers. The temporal evolution of the structure, growth dynamics, origin and mechanism of the macroscopic phase separations have been investigated. A theoretical model has been established to describe such phase separation in SB diblock copolymer and numerical simulations have been undertaken to predict the structure evolution and growth dynamics. For styrene-butadiene block copolymers, the phase transition process consists of the first and second phase separations. The origin of such phase separations is attributed to chain scission and crosslinking reactions due to thermooxidative degradation. The formation of phase separated domains is the result of separation of polystyrene-rich domains from polybutadiene-rich domains. A mechanism, termed secondary spinodal decomposition, has been proposed to explain second phase separation. It has also demonstrated that the theoretical model and numerical simulations capture the essential features of the experimental observations. Growth rate was seen to depend on phase separation as well as reaction kinetics. The universal scaling laws have been shown to be invalid in macroscopic phase separations of styrene-butadiene block copolymers. The macroscopic phase separation process is more complex in the SIS triblock copolymer. It consists of a first phase separation, phase dissolution and a second phase separation. The origin of such phase decompositions has been shown to be a progressive chain scission reaction during thermal oxidative

  8. Thin membranes of new hard/soft segment copolymers

    SciTech Connect

    Ho, W.S.; Sartori, G.; Thaler, W.A.

    1996-12-31

    Thin membranes of new hard/soft segment copolymers have been synthesized for the separation of aromatics from saturates through high temperature pervaporation. In the membranes, hard segments provide temperature stability and solvent resistance, while soft segments govern aromatic/saturate selectivity and flux. We have synthesized new chlorinated polyurethane/polyester and polyimide/polyester copolymers. Based on a polyimide copolymer membrane, a new technology has been developed recently to separate heavy catalytically cracked naphtha into an aromatics-rich permeate and an aromatics-lean retentate.

  9. Electrically conductive doped block copolymer of polyacetylene and polyisoprene

    DOEpatents

    Aldissi, Mahmoud

    1985-01-01

    An electrically conductive block copolymer of polyisoprene and polyacetyl and a method of making the same are disclosed. The polymer is prepared by first polymerizing isoprene with n-butyllithium in a toluene solution to form an active isoprenyllithium polymer. The active polymer is reacted with an equimolar amount of titanium butoxide and subsequently exposed to gaseous acetylene. A block copolymer of polyisoprene and polyacetylene is formed. The copolymer is soluble in common solvents and may be doped with I.sub.2 to give it an electrical conductivity in the metallic regime.

  10. Photocrosslinkable copolymers for non-linear optical applications

    SciTech Connect

    Kawatsuki, N.; Pakbaz, K.; Schmidt, H.W.

    1993-12-31

    New photocrosslinkable copolymers have been synthesized and applied as non-linear optical materials. The copolymers are based on methyl methacrylate, a photo-excitable benzophenone monomer, a non-linear optical active 4`-[(2-hydroxyethyl)ethylamino]-4-nitro-azobenzene (disperse red 1) side chain monomer and a crosslinkable 2-butenyl monomer. These copolymers can be crosslinked by UV light at 366 nm in the poled state and show a stable alignment of NLO chromophore by monitoring the adsorption spectra. The crosslinked and poled film did not change its alignment after storing 4 weeks at room temperature.

  11. Patchy micelles based on coassembly of block copolymer chains and block copolymer brushes on silica particles.

    PubMed

    Zhu, Shuzhe; Li, Zhan-Wei; Zhao, Hanying

    2015-04-14

    Patchy particles are a type of colloidal particles with one or more well-defined patches on the surfaces. The patchy particles with multiple compositions and functionalities have found wide applications from the fundamental studies to practical uses. In this research patchy micelles with thiol groups in the patches were prepared based on coassembly of free block copolymer chains and block copolymer brushes on silica particles. Thiol-terminated and cyanoisopropyl-capped polystyrene-block-poly(N-isopropylacrylamide) block copolymers (PS-b-PNIPAM-SH and PS-b-PNIPAM-CIP) were synthesized by reversible addition-fragmentation chain transfer polymerization and chemical modifications. Pyridyl disulfide-functionalized silica particles (SiO2-SS-Py) were prepared by four-step surface chemical reactions. PS-b-PNIPAM brushes on silica particles were prepared by thiol-disulfide exchange reaction between PS-b-PNIPAM-SH and SiO2-SS-Py. Surface micelles on silica particles were prepared by coassembly of PS-b-PNIPAM-CIP and block copolymer brushes. Upon cleavage of the surface micelles from silica particles, patchy micelles with thiol groups in the patches were obtained. Dynamic light scattering, transmission electron microscopy, and zeta-potential measurements demonstrate the preparation of patchy micelles. Gold nanoparticles can be anchored onto the patchy micelles through S-Au bonds, and asymmetric hybrid structures are formed. The thiol groups can be oxidized to disulfides, which results in directional assembly of the patchy micelles. The self-assembly behavior of the patchy micelles was studied experimentally and by computer simulation. PMID:25811763

  12. Characterization of copolymer latexes by capillary electrophoresis.

    PubMed

    Anik, Nadia; Airiau, Marc; Labeau, Marie-Pierre; Bzducha, Wojciech; Cottet, Hervé

    2010-02-01

    Latexes are widely used for industrial applications, including decorative paints, binders for the papermaking industry, and drilling fluids for oil-field applications. In this work, the interest of capillary zone electrophoresis (CE) for the characterization of hydrophobic block copolymer latexes obtained by the conventional emulsion polymerization technique consisting of a core of polystyrene (PS) surrounded by a layer of poly(ethyl acrylate) (PEA) has been investigated. The PEA part of the copolymer can be partially hydrolyzed in poly(acrylic acid) (PAA) leading to PS-PEA-AA water-soluble amphiphilic copolymer having high viscosifying properties. The main purpose of this work was to evaluate the potential of CE for the characterization of the latexes at the different stages of the synthesis (PS core, PS-PEA diblock latex, and hydrolyzed PS-PEA-AA gel). The main analytical issues were to state (i) if there was free PS or PEA homopolymer latexes in the PS-PEA latex sample and (ii) if there was free PS, PEA, PS-PEA latexes, or free PAA chains in the PS-PEA-AA gel. Within this scope, this work describes the optimization of the selectivity of the separation between the different species (PS, PEA particles in the not hydrolyzed diblock latex and PS, PEA, PS-PEA particles as well as the polymer PAA chains in the PS-PEA-AA diblock gel sample obtained by latter latex hydrolysis). For that purpose, several experimental parameters were investigated such as pH and ionic strength of the background electrolyte (BGE) or the concentration of neutral surfactant added in the BGE. A challenging issue was to overcome the high viscosity of the PS-PEA-AA gel. This was resolved by the addition of 10 mM neutral surfactant in the gel sample and in the BGE. Finally, it is demonstrated that, within the detection limits, CE is a suitable analytical tool for controlling and monitoring the syntheses of these latexes and for intrinsically characterizing the distribution in charge density of

  13. Final report: Interamerican Metrology System (SIM) Regional Metrology Organization (RMO) capacitance comparison. SIM.EM-K4.1, 10 pF fused-silica standard capacitor at 1000 Hz and SIM.EM-S4.1, 100 pF fused-silica standard capacitor at 1000 Hz

    NASA Astrophysics Data System (ADS)

    Sanchez, H.; Castro, B. I.; Koffman, A. D.; Zhang, N. F.; Wang, Y.; Shields, S.

    2015-01-01

    Two bilateral capacitance comparisons between the National Institute of Standards and Technology (NIST) and the Instituto Costarricense de Electricidad (ICE) were carried out to demonstrate the significant improvements achieved in capacitance metrology by ICE. These comparisons were a follow-up to the 2006 SIM.EM-K4, -S3, and -S4 capacitance comparisons. These bilateral activities consist of capacitance comparison SIM.EM-K4.1, comparing a 10 pF fused-silica standard at 1000 Hz, and comparison SIM.EM-S4.1, comparing a 100 pF fused-silica standard at 1000 Hz. The result of these bilateral comparisons have provided improved degrees of equivalence between ICE and the participants of the SIM.EM-K4, -S3, and -S4 capacitance comparisons. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCEM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  14. Equilibrium and Kinetics of Block Copolymers Micelles

    NASA Astrophysics Data System (ADS)

    Mysona, Joshua; Morse, David

    Both equilibrium properties of micelles, such as the critical micelle concentration (CMC), and dynamical properties such as the micelle lifetime are difficult to study in simulations because of the slow dynamics of the processes by which micelles are created and destroyed. We first discuss a method of precisely identifying the CMC in a simple model of block copolymer micelles in a homopolymer matrix, which makes use of thermodynamic integration to compute the free energy of formation. We then examine the free energy barriers to competing mechanisms for creating and destroying micelles, which could occur predominantly either by a step-wise process involving insertion and extraction of single molecules or by fission and fusion of entire micelles.

  15. Cationic vinyl pyridine copolymers and products thereof

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor)

    1978-01-01

    Quaternized, cross-linked, insoluble copolymers of unsubstituted and substituted vinyl pyridines and a dihalo organic compound are spontaneously formed at ambient temperature on mixing the two monomers in bulk, in solution or in suspension. The amount of cross-linking may be varied according to the composition and reaction conditions. The polymer product exhibits ion exchange capacity and undergoes a reversible color change from black at a pH above 7 to yellow at a pH below 7. The polymer may be formed in the presence of preformed polymers, substrates such as porous or impervious particles or films to deposit an ion exchange film in situ or on the surface of the substrate. The coated or resin impregnated substrate may be utilized for separation of anionic species from aqueous solution.

  16. Surface photodegradation of a polyolefin copolymer

    NASA Astrophysics Data System (ADS)

    Brandon, J. Ph.; Cabala, R.; Chambaudet, A.; Jaffiol, F.

    1988-05-01

    Methods and data concerning the morphological and microstructural characterizations of the surface of a polypropylene copolymer (PP-PE) are presented: samples of this polymer were moulded under different temperature conditions; some were subjected to UV irradiation in conditioning chambers such as the Xenotest apparatus. Scanning electron microscopy (SEM) gives pictures of a surface morphologies before and after irradiation and shows the emergence of microcracks resulting from polymer photodegradation. Methods such as mercury microporosimetry provide quantitative analyses of these cracks. Selective surface etching of samples reveals crystalline areas in the microstructure of the polymer. Infrared (attenuated total reflection) spectroscopy and X-ray diffraction permit determining the crystallinity ratios of the samples before and after degradation.

  17. Log-rolling block copolymers cylinders

    NASA Astrophysics Data System (ADS)

    Kim, So Youn; Kim, Ye Chan; Kim, Dong Hyup; Kwon, Na Kyung; Register, Richard A.

    Shear has been the most effective method to create long range order of micro- or nano- structures in soft materials. When shear is applied, soft particles or polymers tend to align along the shear direction to minimize the viscous dissipation, thus transverse (so-called ``log-rolling'') alignment is unfavored. In this study, for the first time we report the transverse alignment of cylinder-forming block copolymers. Poly(styrene-b-methyl methacrylate), PS-PMMA, can form a metastable hemicylinder structure when confined in a thin film, and this hemicylinder structure can align either along the shear direction, or transverse to the shear direction (``log-rolling''), depending on the shearing temperature. This unusual ``log-rolling'' behavior is explained by the different chain mobility of the two blocks in PS-PMMA; the rigidity of core cylinder is the critical parameter determining the direction of shear alignment.

  18. Orientation Distribution for Thin Film Block Copolymers

    NASA Astrophysics Data System (ADS)

    Jones, Ronald; Zhang, Xiaohua; Kim, Sangcheol; Karim, Alamgir; Briber, Robert; Kim, Ho-Cheol

    2008-03-01

    The directed self-assembly of nanostructured films with vertically oriented morphologies is a potential solution for manufacture of next generation data storage platforms, microelectronic devices, and nanoporous membranes. In many of these applications, the distribution of orientation must be tightly controlled to enable pattern transfer. This parameter is expected to depend on factors such as the Flory-Huggins chi parameter, but little data has been reported to date. We present results from tomographic small angle scattering on a series of block copolymer films whose assembly has been directed through solvent annealing. Films of poly(styrene-b-ethylene oxide) are cast as a function of annealing time and their orientation distribution reported. The results provide significant insight into the fundamental limits of line edge roughness and defect control possible using this fabrication technique.

  19. Computational engineering of low bandgap copolymers

    PubMed Central

    Wykes, Michael; Milián-Medina, Begoña; Gierschner, Johannes

    2013-01-01

    We present a conceptual approach to low bandgap copolymers, in which we clarify the physical parameters which control the optical bandgap, develop a fundamental understanding of bandgap tuning, unify the terminology, and outline the minimum requirements for accurate prediction of polymer bandgaps from those of finite length oligomers via extrapolation. We then test the predictive power of several popular hybrid and long-range corrected (LC) DFT functionals when applied to this task by careful comparison to experimental studies of homo- and co-oligomer series. These tests identify offset-corrected M06HF, with 100% HF exchange, as a useful alternative to the poor performance of tested hybrid and LC functionals with lower fractions of HF exchange (B3LYP, CAM-B3LYP, optimally-tuned LC-BLYP, BHLYP), which all significantly overestimate changes in bandgap as a function of system size. PMID:24790963

  20. Robust method for TALEN-edited correction of pF508del in patient-specific induced pluripotent stem cells.

    PubMed

    Camarasa, María Vicenta; Gálvez, Víctor Miguel

    2016-01-01

    Cystic fibrosis is one of the most frequent inherited rare diseases, caused by mutations in the cystic fibrosis transmembrane conductance regulator gene. Apart from symptomatic treatments, therapeutic protocols for curing the disease have not yet been established. The regeneration of genetically corrected, disease-free epithelia in cystic fibrosis patients is envisioned by designing a stem cell/genetic therapy in which patient-derived pluripotent stem cells are genetically corrected, from which target tissues are derived. In this framework, we present an efficient method for seamless correction of pF508del mutation in patient-specific induced pluripotent stem cells by gene edited homologous recombination. Gene edition has been performed by transcription activator-like effector nucleases and a homologous recombination donor vector which contains a PiggyBac transposon-based double selectable marker cassette.This new method has been designed to partially avoid xenobiotics from the culture system, improve cell culture efficiency and genome stability by using a robust culture system method, and optimize timings. Overall, once the pluripotent cells have been amplified for the first nucleofection, the procedure can be completed in 69 days, and can be easily adapted to edit and change any gene of interest. PMID:26861665

  1. Synthesis of Amylose-b-P2 VP Block Copolymers.

    PubMed

    Kumar, Kamlesh; Woortman, Albert J J; Loos, Katja

    2015-12-01

    A new class of rod-coil block copolymers is synthesized by chemoenzymatic polymerization. In the first step, maltoheptaose, which acts as a primer for the synthesis of amylose, is attached to poly(2-vinyl pyridine) (P2 VP). The enzymatic polymerization of maltoheptaose is carried out by phosphorylase to obtain amylose-b-P2 VP block copolymers. The block copolymer is characterized by Fourier transform infrared spectroscopy, nuclear magnetic resonance, gel permeation chromatography, and wide-angle X-ray scattering techniques. The designed molecules combine the inclusion complexation ability of amylose with the supramolecular complexation ability of P2 VP and therefore this kind of rod-coil block copolymers can be used to generate well-organized novel self-assembled structures. PMID:26437256

  2. Deformation studies of near single-crystal triblock copolymers

    SciTech Connect

    Honeker, C.; Villar, M.A.; Thomas, E.L.

    1993-12-31

    The mechanical behavior of block copolymers is being studied in order to determine the evolution of the microphase-separation morphologies with deformation. To facilitate analysis a novel processing technique termed {open_quotes}roll-casting{close_quotes} is used to orient the copolymers. Large, near single-crystal macroscopically oriented films are produced by applying a shear field on a homogeneous solution and allowing the solvent to evaporate until the copolymer has microphase separated. Deformation behavior is studied with in situ small angle x-ray diffraction and TEM studies of films deformed up to 700% extension. Initial studies on poly(styrene-butadiene-styrene) triblock copolymers with a cylindrical morphology indicate a break-up of the morphology at low deformations and a development of a characteristic 4 point pattern at high deformations. Hysteresis is observed in deformation directions of 0 and 90 degrees.

  3. Insensitive explosive composition of halogenated copolymer and triaminotrinitrobenzene

    DOEpatents

    Benziger, Theodore M.

    1976-01-01

    A highly insensitive and heat resistant plastic-bonded explosive containing 90 wt % triaminotrinitrobenzene and 10 wt % of a fully saturated copolymer of chlorotrifluoroethylene and vinylidene fluoride is readily manufactured by the slurry process.

  4. HPMA copolymers: Origins, early developments, present, and future☆

    PubMed Central

    Kopeček, Jindřich; Kopečková, Pavla

    2010-01-01

    The overview covers the discovery of N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers, initial studies on their synthesis, evaluation of biological properties, and explorations of their potential as carriers of biologically active compounds in general and anticancer drugs in particular. The focus is on the research in the authors’ laboratory – the development of macromolecular therapeutics for the treatment of cancer and musculoskeletal diseases. In addition, the evaluation of HPMA (co)polymers as building blocks of mod and new biomaterials is presented: the utilization of semitelechelic poly(HPMA) and HPMA copolymers for the modification of biomaterial and protein surfaces and the design of hybrid block and graft HPMA copolymers that self-assemble into smart hydrogels. Finally, suggestions for the design of second-generation macromolecular therapeutics are portrayed. PMID:19919846

  5. Stimuli-Responsive Peptide-based Triblock and Star Copolymers

    NASA Astrophysics Data System (ADS)

    Ray, Jacob; Naik, Sandeep; Johnson, Ashley; Ly, Jack; Savin, Daniel

    2011-03-01

    Stimuli-responsive copolymers demonstrate diverse aggregation behavior in aqueous solution. In general, the molecular architecture and the balance of hydrophilic and hydrophobic volumes influence morphology. This study involves polypeptide-based ABA linear triblock and AB2 star copolymer (which structurally resemble phospholipids) amphiphiles. Model systems for this study are poly(L-lysine)-b-poly(propylene oxide)-b-poly(L-lysine) (KPK) triblocks and poly(L-glutamate) (PE) based star copolymers. Extensive studies with KPK systems have resulted in morphological transitions by modifying pH, and we hypothesize that a change in individual chain conformation is the driving force for these transitions. Preliminary results for PE-based star copolymers with various hydrophobic moieties suggest polymersome (vesicle) formation. Light scattering (dynamic and static) and TEM were used to determine aggregate size and morphology as a function of pH; furthermore, circular dichroism (CD) spectroscopy was used to measure helix-to-coil transitions of the polypeptide blocks.

  6. Syntheses of Gradient pi-Conjugated Copolymers of Thiophene

    SciTech Connect

    Locke, Jonas R.; McNeil, Anne J.

    2010-11-09

    we prepared the first gradient π-conjugated copolymers via Ni-catalyzed chain-growth copolymerization of 3-hexylthiophene and 3-((hexyloxy)methyl)thiophene. Because rate studies indicated little difference in monomer reactivities, one monomer was gradually added to the polymerization over time to form gradient copolymers. Now that controlled sequence π-conjugated copolymers can be synthesized, the next goal is to identify their unique properties, including phase-compatibilizing abilities in homopolymer blends. Preliminary data reported herein suggest that the solid-state optical and physical properties are influenced by the copolymer sequence. Finally, although the Ni-catalyzed copolymerizations are chain growth under the conditions reported herein, our preliminary attempts to expand the substrate scope by examining the copolymerization of monomers with varying steric and electronic properties has highlighted a need for developing improved catalysts.

  7. Thermal analytical study of polyamide copolymer/Surlyn Ionomers Blends

    SciTech Connect

    Qin, C.; Ding, Y.P.

    1993-12-31

    Thermal analytical technique was used as a screening method to study polyamide(Nylon)/ethylene-co-methacrylic acid copolymer-based ionomer(Surlyn)blends. The retardation of crystallization process from molten state of Nylon-12 by the existence of the ionomer was observed, but the crystallization of Nylon-12 can not be thwarted even at high concentration of ionomers. Zinc ionomers shows stronger effect than sodium ionomers. A Nylon copolymer, polyamide-6,6-co-polyamide-6,10, was used to blend with different ionomers and the crystallization process from molten state of Nylon copolymer could be thwarted at high concentration of zinc ionomer even at very cooling rate. Interesting cold crystallization behavior of polyamide copolymer was observed during second DSC heating cycle in the temperature range of the melting process of ionomer.

  8. Nanopatterned articles produced using surface-reconstructed block copolymer films

    DOEpatents

    Russell, Thomas P.; Park, Soojin; Wang, Jia-Yu; Kim, Bokyung

    2016-06-07

    Nanopatterned surfaces are prepared by a method that includes forming a block copolymer film on a substrate, annealing and surface reconstructing the block copolymer film to create an array of cylindrical voids, depositing a metal on the surface-reconstructed block copolymer film, and heating the metal-coated block copolymer film to redistribute at least some of the metal into the cylindrical voids. When very thin metal layers and low heating temperatures are used, metal nanodots can be formed. When thicker metal layers and higher heating temperatures are used, the resulting metal structure includes nanoring-shaped voids. The nanopatterned surfaces can be transferred to the underlying substrates via etching, or used to prepare nanodot- or nanoring-decorated substrate surfaces.

  9. Multicompartmental Microcapsules from Star Copolymer Micelles

    SciTech Connect

    Choi, Ikjun; Malak, Sidney T.; Xu, Weinan; Heller, William T.; Tsitsilianis, Constantinos; Tsukruk, Vladimir V.

    2013-02-26

    We present the layer-by-layer (LbL) assembly of amphiphilic heteroarm pH-sensitive star-shaped polystyrene-poly(2-pyridine) (PSnP2VPn) block copolymers to fabricate porous and multicompartmental microcapsules. Pyridine-containing star molecules forming a hydrophobic core/hydrophilic corona unimolecular micelle in acidic solution (pH 3) were alternately deposited with oppositely charged linear sulfonated polystyrene (PSS), yielding microcapsules with LbL shells containing hydrophobic micelles. The surface morphology and internal nanopore structure of the hollow microcapsules were comparatively investigated for shells formed from star polymers with a different numbers of arms (9 versus 22) and varied shell thickness (5, 8, and 11 bilayers). The successful integration of star unimers into the LbL shells was demonstrated by probing their buildup, surface segregation behavior, and porosity. The larger arm star copolymer (22 arms) with stretched conformation showed a higher increment in shell thickness due to the effective ionic complexation whereas a compact, uniform grainy morphology was observed regardless of the number of deposition cycles and arm numbers. Small-angle neutron scattering (SANS) revealed that microcapsules with hydrophobic domains showed different fractal properties depending upon the number of bilayers with a surface fractal morphology observed for the thinnest shells and a mass fractal morphology for the completed shells formed with the larger number of bilayers. Moreover, SANS provides support for the presence of relatively large pores (about 25 nm across) for the thinnest shells as suggested from permeability experiments. The formation of robust microcapsules with nanoporous shells composed of a hydrophilic polyelectrolyte with a densely packed hydrophobic core based on star amphiphiles represents an intriguing and novel case of compartmentalized microcapsules with an ability to simultaneously store different hydrophilic, charged, and hydrophobic

  10. Counit Inclusion in Hydrogenated Polynorbornene Copolymer Crystals

    NASA Astrophysics Data System (ADS)

    Burns, Adam; Showak, Michael; Stella, Andrew; Register, Richard

    2014-03-01

    Crystallization in poly(A-co-B) random copolymers, where homopolymer A is crystalline but B is not, is dictated by the degree to which crystals of A can include B units. Typically, B units are strongly excluded from the A crystals, drastically reducing the degree of crystallinity wc and crystal thickness tc even at modest comonomer contents. However, in some cases, B units can be incorporated into the crystals as defects, significantly diminishing the counits' impact on wc and tc. The extent and consequences of counit inclusion have been investigated in hydrogenated polynorbornene (hPN) with alkylnorbornene counits, synthesized by living ring-opening metathesis polymerization followed by hydrogenation. In the case of 5-hexylnorbornene (HxN) counits, a steep decline in wc and tc with counit content is found, indicative of strong exclusion. In contrast, when the counits are 5-methylnorbornene (MeN), extensive inclusion of MeN units into the crystals is observed. hP(N-co-MeN) copolymers maintain appreciable crystallinity above 30 mol% MeN, and the dependence of the melting point Tm on tc tracks that of the hPN homopolymer. Four times as much MeN as HxN (molar basis) is required to produce a comparable drop in wc. Therefore, copolymerization with MeN can be used to tune Tm without drastically reducing wc. Additionally, hPN exhibits a polymorphic transition to a rotationally disordered (RD) crystal at temperature Tcc

  11. Melt structure and self-nucleation of ethylene copolymers

    NASA Astrophysics Data System (ADS)

    Alamo, Rufina G.

    A strong memory effect of crystallization has been observed in melts of random ethylene copolymers well above the equilibrium melting temperature. These studies have been carried out by DSC, x-ray, TEM and optical microscopy on a large number of model, narrow, and broad copolymers with different comonomer types and contents. Melt memory is correlated with self-seeds that increase the crystallization rate of ethylene copolymers. The seeds are associated with molten ethylene sequences from the initial crystals that remain in close proximity and lower the nucleation barrier. Diffusion of all sequences to a randomized melt state is a slow process, restricted by topological chain constraints (loops, knots, and other entanglements) that build in the intercrystalline region during crystallization. Self-seeds dissolve above a critical melt temperature that demarcates homogeneity of the copolymer melt. There is a critical threshold level of crystallinity to observe the effect of melt memory on crystallization rate, thus supporting the correlation between melt memory and the change in melt structure during copolymer crystallization. Unlike binary blends, commercial ethylene-1-alkene copolymers with a range in inter-chain comonomer composition between 1 and about 15 mol % display an inversion of the crystallization rate in a range of melt temperatures where narrow copolymers show a continuous acceleration of the rate. With decreasing the initial melt temperature, broadly distributed copolymers show enhanced crystallization followed by a decrease of crystallization rate. The inversion demarcates the onset of liquid-liquid phase separation (LLPS) and a reduction of self-nuclei due to the strong thermodynamic drive for molecular segregation inside the binodal. The strong effect of melt memory on crystallization rate can be used to identify liquid-liquid phase separation in broadly distributed copolymers, and offers strategies to control the state of copolymer melts in ways of

  12. Microphase Ordering in Melts of Randomly Grafted Copolymers

    SciTech Connect

    Qi, S.; Chakraborty, A.K.; Wang, H.; Lefebvre, A.A.; Balsara, N.P.; Shakhnovich, E.I.; Xenidou, M.; Hadjichristidis, N.

    1999-04-01

    Using optical birefringence, small-angle neutron scattering, and field-theoretic methods, we study the effects of frustrating quenched randomness and connectivity on microphase ordering in copolymer melts. Our results show that randomly grafted copolymers are good model systems to examine these effects, and we find that these materials exhibit behavior different from that observed heretofore for other types of molten polymers. {copyright} {ital 1999} {ital The American Physical Society}

  13. Double-Gyroid Network Morphology in Tapered Diblock Copolymers

    SciTech Connect

    R Roy; J Park; W Young; S Mastroianni; M Tureau; T Epps III

    2011-12-31

    We report the formation of a double-gyroid network morphology in normal-tapered poly(isoprene-b-isoprene/styrene-b-styrene) [P(I-IS-S)] and inverse-tapered poly(isoprene-b-styrene/isoprene-b-styrene) [P(I-SI-S)] diblock copolymers. Our tapered diblock copolymers with overall poly(styrene) volume fractions of 0.65 (normal-tapered) and 0.67 (inverse-tapered), and tapered regions comprising 30 vol % of the total polymer, were shown to self-assemble into the double-gyroid network morphology through a combination of small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). The block copolymers were synthesized by anionic polymerization, where the tapered region between the pure poly(isoprene) and poly(styrene) blocks was generated using a semibatch feed with programmed syringe pumps. The overall composition of these tapered copolymers lies within the expected network-forming region for conventional poly(isoprene-b-styrene) [P(I-S)] diblock copolymers. Dynamic mechanical analysis (DMA) clearly demonstrated that the order-disorder transition temperatures (T{sub ODT}'s) of the network-forming tapered block copolymers were depressed when compared to the T{sub ODT} of their nontapered counterpart, with the P(I-SI-S) showing the greater drop in T{sub ODT}. These results indicate that it is possible to manipulate the copolymer composition profile between blocks in a diblock copolymer, allowing significant control over the T{sub ODT}, while maintaining the ability to form complex network structures.

  14. Double-Gyroid Network Morphology in Tapered Diblock Copolymers

    SciTech Connect

    Roy, Raghunath; Park, Jong Keun; Young, Wen-Shiue; Mastroianni, Sarah E.; Tureau, Maeva S.; Epps, III, Thomas H.

    2012-11-14

    We report the formation of a double-gyroid network morphology in normal-tapered poly(isoprene-b-isoprene/styrene-b-styrene) [P(I-IS-S)] and inverse-tapered poly(isoprene-b-styrene/isoprene-b-styrene) [P(I-SI-S)] diblock copolymers. Our tapered diblock copolymers with overall poly(styrene) volume fractions of 0.65 (normal-tapered) and 0.67 (inverse-tapered), and tapered regions comprising 30 vol % of the total polymer, were shown to self-assemble into the double-gyroid network morphology through a combination of small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). The block copolymers were synthesized by anionic polymerization, where the tapered region between the pure poly(isoprene) and poly(styrene) blocks was generated using a semibatch feed with programmed syringe pumps. The overall composition of these tapered copolymers lies within the expected network-forming region for conventional poly(isoprene-b-styrene) [P(I-S)] diblock copolymers. Dynamic mechanical analysis (DMA) clearly demonstrated that the order-disorder transition temperatures (T{sub ODT}'s) of the network-forming tapered block copolymers were depressed when compared to the T{sub ODT} of their nontapered counterpart, with the P(I-SI-S) showing the greater drop in T{sub ODT}. These results indicate that it is possible to manipulate the copolymer composition profile between blocks in a diblock copolymer, allowing significant control over the T{sub ODT}, while maintaining the ability to form complex network structures.

  15. Orientation of Microdomains of Block Copolymers by Zone casting

    NASA Astrophysics Data System (ADS)

    Tang, Chuanbing; Matyjaszewski, Krzysztof; Kowalewski, Tomasz

    2007-03-01

    As a ``bottom up'' method, the self-assembly of block copolymers plays a vital role in the development of soft lithography for the fabrication of microelectronic devices. A variety of methods have been developed toward better and more precise controlled patterns on solid substrates. This presentation will describe a novel solution casting technique, ``zone casting'', to induce orientation of cylindrical and lamellar microphase-separated domains of various block copolymers.

  16. Photooxidative degradation of clear ultraviolet absorbing acrylic copolymer surfaces

    NASA Technical Reports Server (NTRS)

    Gupta, A.; Liang, R. H.; Vogl, O.; Pradellok, W.; Huston, A. L.; Scott, G. W.

    1983-01-01

    Photodegradation of copolymer of methyl methacrylate and 2(2'-hydroxy 5'vinyl-phenyl) 2H-benzotriazole has been investigated in order to determine the changes in the chemical composition of the surface of the copolymer on photooxidation. An electronic energy transfer mechanism has been postulated in order to interpret the observed photochemical changes in the polymer. Preliminary examination of the photophysical properties of the chromophore provides support for such a mechanism.

  17. Immobilization of enzymes on alginic acid-polyacrylamide copolymers

    SciTech Connect

    Kumaraswamy, M.D.K.; Panduranga R.K.; Thomas J.K.; Santappa, M.

    1981-08-01

    In this report, the authors present initial results and limitations of a polymeric system for the immobilization of enzymes. Enzymes attached to insoluble polymers of natural and synthetic origin are gaining importance in many industrial and biomedical applications. Graft copolymers are used as enzyme supports and in this study a novel polymeric system of alginic acid-polyacrylamide graft copolymer is described which was used for immobilizing enzymes. (Refs. 4).

  18. Biodegradable copolymers carrying cell-adhesion peptide sequences.

    PubMed

    Proks, Vladimír; Machová, Lud'ka; Popelka, Stepán; Rypácek, Frantisek

    2003-01-01

    Amphiphilic block copolymers are used to create bioactive surfaces on biodegradable polymer scaffolds for tissue engineering. Cell-selective biomaterials can be prepared using copolymers containing peptide sequences derived from extracellular-matrix proteins (ECM). Here we discuss alternative ways for preparation of amphiphilic block copolymers composed of hydrophobic polylactide (PLA) and hydrophilic poly(ethylene oxide) (PEO) blocks with cell-adhesion peptide sequences. Copolymers PLA-b-PEO were prepared by a living polymerisation of lactide in dioxane with tin(II)2-ethylhexanoate as a catalyst. The following approaches for incorporation of peptides into copolymers were elaborated. (a) First, a side-chain protected Gly-Arg-Gly-Asp-Ser-Gly (GRGDSG) peptide was prepared by solid-phase peptide synthesis (SPPS) and then coupled with delta-hydroxy-Z-amino-PEO in solution. In the second step, the PLA block was grafted to it via a controlled polymerisation of lactide initiated by the hydroxy end-groups of PEO in the side-chain-protected GRGDSG-PEO. Deprotection of the peptide yielded a GRGDSG-b-PEO-b-PLA copolymer, with the peptide attached through its C-end. (b) A protected GRGDSG peptide was built up on a polymer resin and coupled with Z-carboxy-PEO using a solid-phase approach. After cleavage of the delta-hydroxy-PEO-GRGDSG copolymer from the resin, polymerisation of lactide followed by deprotection of the peptide yielded a PLA-b-PEO-b-GRGDSG block copolymer, in which the peptide is linked through its N-terminus. PMID:12903721

  19. Block copolymer adhesion promoters via ring-opening metathesis polymerization

    DOEpatents

    Kent, Michael S.; Saunders, Randall

    1997-01-01

    Coupling agents based on functionalized block copolymers for bonding thermoset polymers to solid materials. These are polymers which possess at least two types of functional groups, one which is able to attach to and react with solid surfaces, and another which can react with a thermoset resin, which are incorporated as pendant groups in monomers distributed in blocks (typically two) along the backbone of the chain. The block copolymers in this invention are synthesized by living ring-opening metathesis polymerization.

  20. Oligoaniline-containing supramolecular block copolymer nanodielectric materials.

    PubMed

    Hardy, Christopher G; Islam, Md Sayful; Gonzalez-Delozier, Dioni; Ploehn, Harry J; Tang, Chuanbing

    2012-05-14

    We report a new generation of nanodielectric energy storage materials based on supramolecular block copolymers. In our approach, highly polarizable, conducting nanodomains are embedded within an insulating matrix through block copolymer microphase separation. An applied electric field leads to electronic polarization of the conducting domains. The high interfacial area of microphase-separated domains amplifies the polarization, leading to high dielectric permittivity. Specifically, reversible addition fragmentation transfer (RAFT) polymerization was used to prepare block copolymers with poly(methyl acrylate) (PMA) as the insulating segment and a strongly acidic dopant moiety, poly-(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPSA), as the basis for the conducting segment. The PAMPSA block was complexed with an oligoaniline trimer to form a dopant-conjugated moiety complex that is electronically conductive after oxidation. For the undoped neat block copolymers, the increase of the PMA block length leads to a transition in dielectric properties from ionic conductor to dielectric capacitor with polarization resulting from migration of protons within the isolated PAMPSA domains. The oligoaniline-doped copolymers show remarkably different dielectric properties. At frequencies above 200 kHz, they exhibit characteristics of dielectric capacitors with much higher permittivity and lower dielectric loss than the corresponding undoped copolymers. PMID:22331602

  1. Theory for the aggregation of proteins and copolymers

    SciTech Connect

    Fields, G.B.; Alonso, D.O.V.; Stigter, D.; Dill, K.A.

    1992-05-14

    We develop mean-field lattice statistical mechanics theory for the equilibrium between denatured and aggregated states of proteins and other random copolymers of hydrophobic and polar monomers in aqueous solution. We suppose that the aggregated state is a mixture of amorphous polymer plus solvent and that the driving forces are the hydrophobic interaction, which favors aggregation, and conformational and translational entropies, which favor disaggregation. The theory predicts that the phase diagram for thermal aggregation is an asymmetric closed loop, and for denaturants (guanidinium hydrochloride of urea) it is asymmetric with an upper consolute point. The theory predicts that a copolymer in a poor solvent will expand with increasing polymer concentration because of {open_quotes}screening{close_quotes} of the solvent interactions by the other chains; the chain ultimately reaches a theta-like state in the absence of solvent. The screening concentration depends strongly on the copolymer composition. We find two striking features of these copolymer phase diagrams. First, they are extraordinarily sensitive to the copolymer composition; a change of one amino acid can substantially change the aggregation behavior. Second, relative to homopolymers, copolymers should be stable against aggregation at concentrations that are higher by many orders of magnitude. 43 refs., 13 figs.

  2. Thermoresponsive copolymer nanofilms for controlling cell adhesion, growth, and detachment.

    PubMed

    Yang, Lei; Pan, Fang; Zhao, Xiubo; Yaseen, Mohammed; Padia, Faheem; Coffey, Paul; Freund, Amy; Yang, Luyuan; Liu, Tianqing; Ma, Xuehu; Lu, Jian R

    2010-11-16

    This study reports the development and use of a novel thermoresponsive polymeric nanofilm for controlling cell adhesion and growth at 37 °C, and then cell detachment for cell recovery by subsequent temperature drop to the ambient temperature, without enzymatic cleavage or mechanical scraping. A copolymer, poly(N-isopropylacrylamide-co-hydroxypropyl methacrylate-co-3-(trimethoxysilyl)propyl methacrylate) (abbreviated PNIPAAm copolymer), was synthesized by free radical polymerization. The thermoresponses of the copolymer in aqueous solution were demonstrated by dynamic light scattering (DLS) through detecting the sensitive changes of copolymer aggregation against temperature. The DLS measurements revealed the lower critical solution temperature (LCST) at approximately 30 °C. The PNIPAAm film stability and robustness was provided through silyl cross-linking within the film and with the hydroxyl groups on the substrate surface. Film thickness, stability, and reversibility with respect to temperature switches were examined by spectroscopic ellipsometry (SE), atomic force microscopy (AFM), and contact angle measurements. The results confirmed the high extent of thermosensitivity and structural restoration based on the alterations of film thickness and surface wettability. The effective control of adhesion, growth, and detachment of HeLa and HEK293 cells demonstrated the physical controllability and cellular compatibility of the copolymer nanofilms. These PNIPAAm copolymer nanofilms could open up a convenient interfacial mediation for cell film production and cell expansion by nonenzymatic and nonmechanical cell recovery. PMID:20964301

  3. Complex nanostructured materials from segmented copolymers prepared by ATRP

    NASA Astrophysics Data System (ADS)

    Kowalewski, T.; McCullough, R. D.; Matyjaszewski, K.

    2003-01-01

    The development of new controlled/living radical polymerization processes, such as Atom Transfer Radical Polymerization (ATRP) and other techniques such as nitroxide mediated polymerization and degenerative transfer processes, including RAFT, opened the way to the use of radical polymerization for the synthesis of well-defined, complex functional nanostructures. The development of such nanostructures is primarily dependent on self-assembly of well-defined segmented copolymers. This article describes the fundamentals of ATRP, relevant to the synthesis of such systems. The self-assembly of block copolymers prepared by ATRP is illustrated by three examples. In the first, block copolymers of poly(butyl acrylate) with polyacrylonitrile phase separate, leading to spherical, cylindrical or lamellar morphologies, depending on the block copolymer composition. At a higher temperature, polyacrylonitrile block converts to nanostructured carbon clusters, whereas poly(butyl acrylate) block serves as a sacrificial block, aiding the development of designed nanostructures. In the second example, conductive nanoribbons of poly(n-hexylthiophene) surrounded by a matrix of organic polymers are formed from block copolymers prepared by ATRP. The third example describes an inorganic-organic hybrid system consisting of hard nanocolloidal silica particles (sim 20 nm) grafted by ATRP with well-defined polystyrene-poly(benzyl acrylate) block copolymer chains (sim 1000 chains per particle). Silica cores in this system are surrounded by a rigid polystyrene inner shell and softer polyacrylate outer shell.

  4. Chemical force microscopy of stimuli-responsive adhesive copolymers

    NASA Astrophysics Data System (ADS)

    Beaussart, Audrey; Ngo, T. Chinh; Derclaye, Sylvie; Kalinova, Radostina; Mincheva, Rosica; Dubois, Philippe; Leclère, Philippe; Dufrêne, Yves F.

    2013-12-01

    Atomic force microscopy with chemically sensitive tips was used to investigate the hydrophobic and electrostatic interaction forces of a stimuli-responsive adhesive polymer, and their dynamic changes in response to water immersion and salt concentration. Block copolymer-filled coatings were obtained by incorporating an amphiphilic block copolymer containing a polydimethylsiloxane (PDMS) block and a poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) block in a PDMS matrix. Topographic images of fresh samples revealed the presence of nanoscale domains associated with the presence of copolymers, covered by a thin layer of PDMS. Prolonged (30 days) immersion in aqueous solution led to the exposure of the hydrophilic PDMAEMA chains on the surface. Using adhesion force mapping with hydrophobic tips, we showed that fresh samples were uniformly hydrophobic, while aged samples exhibited lower surface hydrophobicity and featured nanoscale hydrophilic copolymer domains. Force mapping with negatively charged tips revealed remarkable salt-dependent force plateau signatures reflecting desorption of polyelectrolyte copolymer chains. These nanoscale experiments show how solvent-induced conformational changes of stimuli-responsive copolymers can be used to modulate surface adhesion.

  5. Radical-cured block copolymer-modified thermosets

    SciTech Connect

    Redline, Erica M.; Francis, Lorraine F.; Bates, Frank S.

    2013-01-10

    Poly(ethylene-alt-propylene)-b-poly(ethylene oxide) (PEP-PEO) diblock copolymers were synthesized and added at 4 wt % to 2,2-bis[4-(2-hydroxy-3-methacryloxypropoxy)phenyl]propane (BisGMA), a monomer that cures using free radical chemistry. In separate experiments, poly(ethylene glycol) dimethacrylate (PEGDMA) was combined as a secondary monomer with BisGMA and the monomers were loaded with 4 wt % PEP-PEO. The diblock copolymers self-assembled into well-dispersed spherical micelles with PEP cores and PEO coronas. No appreciable change in the final extent of cure of the thermosets was caused by the addition of diblock copolymer, except in the case of BisGMA, where the addition of the block copolymer increased extent of cure by 12%. Furthermore, the extent of cure was increased by 29% and 37% with the addition of 25 and 50 wt % PEGDMA, respectively. Elastic modulus and fracture resistance were also determined, and the values indicate that the addition of block copolymers does not significantly toughen the thermoset materials. This finding is surprising when compared with the large increase in fracture resistance seen in block copolymer-modified epoxies, and an explanation is proposed.

  6. Complex nanostructured materials from segmented copolymers prepared by ATRP.

    PubMed

    Kowalewski, T; McCullough, R D; Matyjaszewski, K

    2003-01-01

    The development of new controlled/living radical polymerization processes, such as Atom Transfer Radical Polymerization (ATRP) and other techniques such as nitroxide mediated polymerization and degenerative transfer processes, including RAFT, opened the way to the use of radical polymerization for the synthesis of well-defined, complex functional nanostructures. The development of such nanostructures is primarily dependent on self-assembly of well-defined segmented copolymers. This article describes the fundamentals of ATRP, relevant to the synthesis of such systems. The self-assembly of block copolymers prepared by ATRP is illustrated by three examples. In the first, block copolymers of poly(butyl acrylate) with polyacrylonitrile phase separate, leading to spherical, cylindrical or lamellar morphologies, depending on the block copolymer composition. At a higher temperature, polyacrylonitrile block converts to nanostructured carbon clusters, whereas poly(butyl acrylate) block serves as a sacrificial block, aiding the development of designed nanostructures. In the second example, conductive nanoribbons of poly(n-hexylthiophene) surrounded by a matrix of organic polymers are formed from block copolymers prepared by ATRP. The third example describes an inorganic-organic hybrid system consisting of hard nanocolloidal silica particles (approximately 20 nm) grafted by ATRP with well-defined polystyrene-poly(benzyl acrylate) block copolymer chains (approximately 1000 chains per particle). Silica cores in this system are surrounded by a rigid polystyrene inner shell and softer polyacrylate outer shell. PMID:15011074

  7. Response behavior of diblock copolymer brushes in explicit solvent

    NASA Astrophysics Data System (ADS)

    Gong, Kai; Marshall, Bennett D.; Chapman, Walter G.

    2012-10-01

    The understanding of phase behavior of copolymer brushes is of fundamental importance for the design of smart materials. In this paper, we have performed classical density functional theory calculations to study diblock copolymer brushes (A-B) in an explicit solvent which prefers the A block to B block. With increasing B-block length (NB), we find a structural transition of the copolymer brush from mixed to collapsed, partial-exposed, and exposed structure, which is qualitatively consistent with experiments. The phase transitions are attributed to the interplay between entropic cost of folding copolymer brushes and enthalpic effect of contact between unlike components. In addition, we examine the effect of different parameters, such as grafting density (ρg), the bottom block length (NA), and the chain length of solvent (NS) on the solvent response of copolymer brushes. The transition chain length (NB) increases with decreasing ρg and NA, and a smaller solvent molecule makes the collapsed structure less stable due to its lower penetration cost. Our results provide the insight to phase behavior of copolymer brushes in selective solvents from a molecular view.

  8. Method of forming oriented block copolymer line patterns, block copolymer line patterns formed thereby, and their use to form patterned articles

    SciTech Connect

    Russell, Thomas P.; Hong, Sung Woo; Lee, Doug Hyun; Park, Soojin; Xu, Ting

    2015-10-13

    A block copolymer film having a line pattern with a high degree of long-range order is formed by a method that includes forming a block copolymer film on a substrate surface with parallel facets, and annealing the block copolymer film to form an annealed block copolymer film having linear microdomains parallel to the substrate surface and orthogonal to the parallel facets of the substrate. The line-patterned block copolymer films are useful for the fabrication of magnetic storage media, polarizing devices, and arrays of nanowires.

  9. Dually responsive multiblock copolymers via RAFT polymerization: Synthesis of temperature- and redox-responsive copolymers of PNIPAM and PDMAEMA.

    PubMed

    You, Ye-Zi; Zhou, Qing-Hui; Manickam, Devika Soundara; Wan, Lei; Mao, Guang-Zhao; Oupický, David

    2007-01-01

    We report synthesis of temperature- and redox-responsive multiblock copolymers by reversible addition-fragmentation chain transfer (RAFT) polymerization. Well-defined α,ω-bis(dithioester)-functionalized poly(N-isopropylacrylamide) (PNIPAM) and poly(2-(dimethylamino) ethyl methacrylate) (PDMAEMA) were prepared using 1,4-bis(thiobenzoylthiomethyl)benzene and 1,4-bis(2-(thiobenzoylthio)prop-2-yl)benzene as RAFT agents, respectively. Dually responsive multiblock copolymers were synthesized in a single aminolysis/oxidation step from the α,ω-bis(dithioester)-terminated PNIPAM and PDMAEMA. The copolymers and their stimulus-responsive behavior were characterized by size exclusion chromatography, NMR, light scattering and atomic force microscopy. Due to the presence of redox-sensitive disulfide bonds between the blocks, the copolymers were readily reduced to the starting polymer blocks. The presence of temperature-responsive PNIPAM blocks provided the copolymers with the ability to assemble into core-shell nanostructures with hydrophobic PNIPAM as a core and cationic PDMAEMA as stabilizing shell when above the phase transition temperatures of PNIPAM. The temperature-induced assembly of the copolymers also showed substantial pH sensitivity. The phase transition temperature increased with decreasing pH, while molecular weight of the assemblies decreased. PMID:18779877

  10. Dually responsive multiblock copolymers via RAFT polymerization: Synthesis of temperature- and redox-responsive copolymers of PNIPAM and PDMAEMA

    PubMed Central

    You, Ye-Zi; Zhou, Qing-Hui; Manickam, Devika Soundara; Wan, Lei; Mao, Guang-Zhao; Oupický, David

    2008-01-01

    We report synthesis of temperature- and redox-responsive multiblock copolymers by reversible addition-fragmentation chain transfer (RAFT) polymerization. Well-defined α,ω-bis(dithioester)-functionalized poly(N-isopropylacrylamide) (PNIPAM) and poly(2-(dimethylamino) ethyl methacrylate) (PDMAEMA) were prepared using 1,4-bis(thiobenzoylthiomethyl)benzene and 1,4-bis(2-(thiobenzoylthio)prop-2-yl)benzene as RAFT agents, respectively. Dually responsive multiblock copolymers were synthesized in a single aminolysis/oxidation step from the α,ω-bis(dithioester)-terminated PNIPAM and PDMAEMA. The copolymers and their stimulus-responsive behavior were characterized by size exclusion chromatography, NMR, light scattering and atomic force microscopy. Due to the presence of redox-sensitive disulfide bonds between the blocks, the copolymers were readily reduced to the starting polymer blocks. The presence of temperature-responsive PNIPAM blocks provided the copolymers with the ability to assemble into core-shell nanostructures with hydrophobic PNIPAM as a core and cationic PDMAEMA as stabilizing shell when above the phase transition temperatures of PNIPAM. The temperature-induced assembly of the copolymers also showed substantial pH sensitivity. The phase transition temperature increased with decreasing pH, while molecular weight of the assemblies decreased. PMID:18779877

  11. Ion Transport in Nanostructured Block Copolymer/Ionic Liquid Membranes

    NASA Astrophysics Data System (ADS)

    Hoarfrost, Megan Lane

    Incorporating an ionic liquid into one block copolymer microphase provides a platform for combining the outstanding electrochemical properties of ionic liquids with a number of favorable attributes provided by block copolymers. In particular, block copolymers thermodynamically self-assemble into well-ordered nanostructures, which can be engineered to provide a durable mechanical scaffold and template the ionic liquid into continuous ion-conducting nanochannels. Understanding how the addition of an ionic liquid affects the thermodynamic self-assembly of block copolymers, and how the confinement of ionic liquids to block copolymer nanodomains affects their ion-conducting properties is essential for predictable structure-property control. The lyotropic phase behavior of block copolymer/ionic liquid mixtures is shown to be reminiscent of mixtures of block copolymers with selective molecular solvents. A variety of ordered microstructures corresponding to lamellae, hexagonally close-packed cylinders, body-centered cubic, and face-centered cubic oriented micelles are observed in a model system composed of mixtures of imidazolium bis(trifluoromethylsulfonyl)imide ([Im][TFSI]) and poly(styrene- b-2-vinyl pyridine) (PS-b-P2VP). In contrast to block copolymer/molecular solvent mixtures, the interfacial area occupied by each PS-b-P2VP chain decreases upon the addition of [Im][TFSI], indicating a considerable increase in the effective segregation strength of the PS-b-P2VP copolymer with ionic liquid addition. The relationship between membrane structure and ionic conductivity is illuminated through the development of scaling relationships that describe the ionic conductivity of block copolymer/ionic liquid mixtures as a function of membrane composition and temperature. It is shown that the dominant variable influencing conductivity is the overall volume fraction of ionic liquid in the mixture, which means there

  12. Disulfide-Functionalized Diblock Copolymer Worm Gels.

    PubMed

    Warren, Nicholas J; Rosselgong, Julien; Madsen, Jeppe; Armes, Steven P

    2015-08-10

    Two strategies for introducing disulfide groups at the outer surface of RAFT-synthesized poly(glycerol monomethacrylate)-poly(2-hydroxypropyl methacrylate) (PGMA-PHPMA, or Gx-Hy for brevity) diblock copolymer worms are investigated. The first approach involved statistical copolymerization of GMA with a small amount of disulfide dimethacrylate (DSDMA, or D) comonomer to afford a G54-D0.50 macromolecular chain transfer agent (macro-CTA); this synthesis was conducted in relatively dilute solution in order to ensure mainly intramolecular cyclization and hence the formation of linear chains. Alternatively, a new disulfide-based bifunctional RAFT agent (DSDB) was used to prepare a G45-S-S-G45 (or (G45-S)2) macro-CTA. A binary mixture of a non-functionalized G55 macro-CTA was utilized with each of these two disulfide-based macro-CTAs in turn for the RAFT aqueous dispersion polymerization of 2-hydroxypropyl methacrylate (HPMA). By targeting a PHPMA DP of 130 and systematically varying the molar ratio of the two macro-CTAs, a series of disulfide-functionalized diblock copolymer worm gels were obtained. For both formulations, oscillatory rheology studies confirmed that higher disulfide contents led to stronger gels, presumably as a result of inter-worm covalent bond formation via disulfide/thiol exchange. Using the DSDB-based macro-CTA led to the strongest worm gels, and this formulation also proved to be more effective in suppressing the thermosensitive behavior that is observed for the nondisulfide-functionalized control worm gel. However, macroscopic precipitation occurred when the proportion of DSDB-based macro-CTA was increased to 50 mol %, whereas the DSDMA-based macro-CTA could be utilized at up to 80 mol %. Finally, the worm gel modulus could be reduced to that of a nondisulfide-containing worm gel by reductive cleavage of the inter-worm disulfide bonds using excess tris(2-carboxyethyl)phosphine (TCEP) to yield thiol groups. These new biomimetic worm gels are

  13. New adhesive systems based on functionalized block copolymers

    SciTech Connect

    Kent, M.; Saunders, R.; Hurst, M.; Small, J.; Emerson, J.; Zamora, D.

    1997-05-01

    The goal of this work was to evaluate chemically-functionalized block copolymers as adhesion promoters for metal/thermoset resin interfaces. Novel block copolymers were synthesized which contain pendant functional groups reactive toward copper and epoxy resins. In particular, imidazole and triazole functionalities that chelate with copper were incorporated onto one block, while secondary amines were incorporated onto the second block. These copolymers were found to self-assemble from solution onto copper surfaces to form monolayers. The structure of the adsorbed monolayers were studied in detail by neutron reflection and time-of-flight secondary ion mass spectrometry. The monolayer structure was found to vary markedly with the solution conditions and adsorption protocol. Appropriate conditions were found for which the two blocks form separate layers on the surface with the amine functionalized block exposed at the air surface. Adhesion testing of block copolymer-coated copper with epoxy resins was performed in both lap shear and peel modes. Modest enhancements in bond strengths were observed with the block copolymer applied to the native oxide. However, it was discovered that the native oxide is the weak link, and that by simply removing the native oxide, and then applying an epoxy resin before the native oxide can reform, excellent bond strength in the as-prepared state as well as excellent retention of bond strength after exposure to solder in ambient conditions are obtained. It is recommended that long term aging studies be performed with and without the block copolymer. In addition, the functionalized block copolymer method should be evaluated for another system that has inherently poor bonding, such as the nickel/silicone interface, and for systems involving metals and alloys which form oxides very rapidly, such as aluminum and stainless steel, where bonding strategies involve stabilizing the native oxide.

  14. Theory of the Miscibility of Fullerenes in Random Copolymer Melts

    SciTech Connect

    Dadmun, Mark D; Sumpter, Bobby G; Schweizer, Kenneth; Banerjee, Debapriya

    2013-01-01

    We combine polymer integral equation theory and computational chemistry methods to study the interfacial structure, effective interactions, miscibility and spatial dispersion mechanism of fullerenes dissolved in specific random AB copolymer melts characterized by strong non-covalent electron donor-acceptor interactions with the nanofiller. A statistical mechanical basis is developed for designing random copolymers to optimize fullerene dispersion at intermediate copolymer compositions. Pair correlation calculations reveal a strong sensitivity of interfacial packing near the fullerene to copolymer composition and adsorption energy mismatch. The potential of mean force between fullerenes displays rich trends, often non-monotonic with copolymer composition, reflecting a non-additive competition between direct filler attractions and polymer-mediated bridging and steric stabilization. The spinodal phase diagrams are in qualitative agreement with recent solubility limit experimental observations on three systems, and testable predictions are made for other random copolymers. The distinctive non-monotonic variation of miscibility with copolymer composition is found to be primarily a consequence of composition-dependent, spatially short-range attractions between the A and B monomers with the fullerene. A remarkably rich, polymer-specific temperature dependence of the spinodal diagram is predicted which reflects the thermal sensitivity of spatial correlations which can result in fullerene miscibility either increasing or decreasing with cooling. The calculations are contrasted with a simpler effective homopolymer model and the random structure Flory-Huggins model. The former appears to be qualitatively reasonable but can incur large quantitative errors since it misses preferential packing of monomers near nanoparticles, while the latter appears to fail qualitatively due to its neglect of all spatial correlations.

  15. 21 CFR 177.1570 - Poly-1-butene resins and butene/ethylene copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Infrared identification. Poly-1-butene resins and butene/ethylene copolymers can be identified by their characteristic infrared spectra. (ii) Viscosity. Poly-1-butene resins and the butene/ethylene copolymers have...

  16. Monte Carlo simulations of the phase separation of a copolymer blend in a thin film.

    PubMed

    Wang, Zhexiao; Shao, Jing; Pan, Heng; Feng, Xiaoshuang; Chen, Peng; Xia, Ru; Wu, Xiangsong; Qian, Jiasheng

    2015-02-23

    Monte Carlo simulations were carried out to study the phase separation of a copolymer blend comprising an alternating copolymer and/or block copolymer in a thin film, and a phase diagram was constructed with a series of composed recipes. The effects of composition and segregation strength on phase separation were discussed in detail. The chain conformation of the block copolymer and alternating copolymer were investigated with changes of the segregation strength. Our simulations revealed that the segment distribution along the copolymer chain and the segregation strength between coarse-grained beads are two important parameters controlling phase separation and chain conformation in thin films of a copolymer blend. A well-controlled phase separation in the copolymer blend can be used to fabricate novel nanostructures. PMID:25504337

  17. Block copolymer adsorbed layers on solids

    NASA Astrophysics Data System (ADS)

    Sen, Mani; Jiang, Naisheng; Gowd, Bhoje; Endoh, Maya; Koga, Tadanori

    Block copolymer thin films offer a simple and effective route to fabricate highly ordered periodic microdomain structures. The fundamental, yet unsolved question is whether these highly oriented microdomain structures persist even near an impenetrable solid wall. We here report the adsorbed structures of polystyrene-block-poly (4-vinylpyridine) (PS-block-P4VP, Mw = 41,000, PS (weight fraction =0.81) formed on planar silicon substrates. Perpendicularly aligned cylindrical microdomains were created by solvent vapor annealing (Gowd et al., Soft Matter, 2014, 10, 7753), and the adsorbed layer was derived by solvent leaching with chloroform, a good solvent for the polymers and thereafter characterized by using atomic force microscopy, scanning electron microscopy, grazing incidence small angle x-ray scattering, and x-ray reflectivity. The results showed that both PS and P4VP chains lie flat on the substrate, forming a microphase-separated structure (MSS) without long-range order. Moreover, a spin-coated PS-block-P4VP thin film annealed under vacuum at 190 °C showed similar MSS on the substrate, indicating the generality of the interfacial polymer structure. Details will be discussed in the presentation. NSF Grant No. CMMI-1332499.

  18. Ionic Block Copolymers for Anion Exchange Membranes

    NASA Astrophysics Data System (ADS)

    Tsai, Tsung-Han; Herbst, Dan; Giffin, Guinevere A.; di Noto, Vito; Witten, Tom; Coughlin, E. Bryan

    2013-03-01

    Anion exchange membrane (AEM) fuel cells have regained interest because it allows the use of non-noble metal catalysts. Until now, most of the studies on AEM were based on random polyelectrolytes. In this work, Poly(vinylbenzyltrimethylammonium bromide)-b- (methylbutylene) ([PVBTMA][Br]-b-PMB) was studied by SAXS, TEM and dielectric spectroscopy to understand the fundamental structure-conductivity relationship of ion transport mechanisms within well-ordered block copolymers. The ionic conductivity and the formation of order structure were dependent on the casting solvent. Higher ion exchange capacity (IEC) of the membranes showed higher conductivity at as IEC values below 1.8mmol/g, as above this, the ionic conductivity decreases due to more water uptake leading to dilution of charge density. The humidity dependence of morphology exhibited the shifting of d-spacing to higher value and the alteration in higher characteristic peak of SAXS plot as the humidity increase from the dry to wet state. This phenomenon can be further explained by a newly developed polymer brush theory. Three ionic conduction pathways with different conduction mechanism within the membranes can be confirmed by broadband electric spectroscopy. US Army MURI (W911NF1010520)

  19. Hot embossing of cyclic olefin copolymers

    NASA Astrophysics Data System (ADS)

    Leech, P. W.

    2009-05-01

    The hot embossing properties of cyclic olefin copolymer (COC) have been examined as a function of comonomer content. Six standard grades of COC with varying norbornene content (61-82 wt%) were used in these experiments in order to provide a range of glass transition temperatures, Tg. All grades of COC exhibited sharp increases in embossed depth over a critical range of temperature. The transition temperature in embossed depth increased linearly with norbornene content for both 35 and 70 µm deep structures. At temperatures above this transition, the dimensions of the embossed patterns were essentially independent of the COC grade, the applied pressure and duration of loading. Channels formed above the transition in a regime of viscous liquid flow were extremely smooth in morphology for all grades. The average surface roughness, Ra, measured at the base of the channels decreased sharply at the transition temperature, with a levelling off at higher temperatures. Grades of COC with a higher norbornene content exhibited extensive micro-cracking during embossing at temperatures close to the transition temperature.

  20. Tunable Morphologies from Charged Block Copolymers

    SciTech Connect

    Goswami, Monojoy; Sumpter, Bobby G; Mays, Jimmy; Messman, Jamie M

    2010-01-01

    The bulk morphologies formed by a new class of charged block copolymers, 75 vol % fluorinated polyisoprene (FPI) 25 vol% sulfonated polystyrene (PSS) with 50% sulfonation, are characterized, and the fundamental underlying forces that promote the self-assembly processes are elucidated. The results show how the bulk morphologies are substantially different from their uncharged diblock counterparts (PS-PI) and also how morphology can be tuned with volume fraction of the charged block and the casting solvent. A physical understanding based on the underlying strong electrostatic interactions between the charged block and counterions is obtained using Monte Carlo (MC) and Molecular Dynamics (MD) simulations. The 75/25 FPI-PSS shows hexagonal morphologies with the minority blocks (PSS) forming the continuous phase due to charge percolation and the FPI blocks arranged in hexagonal cylinders. Some long-range order can be sustained even if lipophobicity is increased (addition of water), albeit with lower dimensional structures. However, thermal annealing provides sufficient energy to disrupt the percolated charges and promotes aggregation of ionic sites which leads to a disordered system. Diverse and atypical morphologies are readily accessible by simply changing the number distribution of the charges on PSS block.

  1. Nanoscale buckling deformation in layered copolymer materials

    PubMed Central

    Makke, Ali; Perez, Michel; Lame, Olivier; Barrat, Jean-Louis

    2012-01-01

    In layered materials, a common mode of deformation involves buckling of the layers under tensile deformation in the direction perpendicular to the layers. The instability mechanism, which operates in elastic materials from geological to nanometer scales, involves the elastic contrast between different layers. In a regular stacking of “hard” and “soft” layers, the tensile stress is first accommodated by a large deformation of the soft layers. The inhibited Poisson contraction results in a compressive stress in the direction transverse to the tensile deformation axis. The hard layers sustain this transverse compression until buckling takes place and results in an undulated structure. Using molecular simulations, we demonstrate this scenario for a material made of triblock copolymers. The buckling deformation is observed to take place at the nanoscale, at a wavelength that depends on strain rate. In contrast to what is commonly assumed, the wavelength of the undulation is not determined by defects in the microstructure. Rather, it results from kinetic effects, with a competition between the rate of strain and the growth rate of the instability. PMID:22203970

  2. Molecular Exchange in Ordered Diblock Copolymer Micelles

    NASA Astrophysics Data System (ADS)

    Choi, Soo-Hyung; Lodge, Timothy; Bates, Frank

    2011-03-01

    Previously, molecular exchange between spherical micelles in dilute solution (1 vol% polymer) was investigated using time-resolved small-angle neutron scattering (TR-SANS). As the concentration of spherical micelles formed by the diblock copolymers increases, the micelles begin to overlap and eventually pack onto body-centered cubic (BCC) lattice. In this study, concentrated, ordered micelles (15 vol% polymers) prepared by dispersing isotopically labeled poly(styrene- b -ethylene-alt-propylene) in an isotopic squalane mixture was investigated to understand the micellar concentration dependence of the molecular exchange. Perfectly random mixing of isotopically labeled micelles on the BCC lattice was confirmed by SANS patterns where the interparticle contribution vanishes, resulting in an intensity that directly relates to the exchange kinetics. The measured molecular exchange process for the concentrated, ordered system is qualitatively consistent with the previous observations, but the rate is more than an order of magnitude slower than that for the dilute, disordered system. Infineum(IPrime), MRSEC(NSF), NIST.

  3. Molecular Transfer Printing Using Block Copolymers

    NASA Astrophysics Data System (ADS)

    Ji, Shengxiang; Liu, Chi-Chun; Liu, Guoliang; Nealey, Paul

    2009-03-01

    We report a new parallel patterning technique, molecular transfer printing (MTP), for replicating geometrically complex patterns over macroscopic areas with sub-15 nm feature dimensions, and the ability to replicate the same pattern multiple times. In MTP, inks are mixed with block copolymers (BCPs) and deposited as films on a substrate. The inks are compatible with only one block of the BCP, and sequestered into domains of nanometer scale dimensions after microphase separation. A second substrate is then placed in contact with the surface of the film. By designing the inks to react, adsorb, or otherwise interact with the second substrate, inks are transferred to the second substrate in the exact pattern of domains present at the surface of the ``master'' BCP film. Here we demonstrate high degrees of perfection on both line and dot patterns. We also show that 1) the master template can be regenerated, 2) the resultant replica can be used to direct the assembly of BCPs and as a daughter master for MTP, and 3) the master and daughter templates can be reused tens of times.

  4. Plastic Deformation and Morphological Evolution of Precise Acid Copolymers

    NASA Astrophysics Data System (ADS)

    Middleton, L. Robert; Azoulay, Jason; Murtagh, Dustin; Cordaro, Joseph; Winey, Karen

    2014-03-01

    Acid- and ion-containing polymers have specific interactions that produce complex and hierarchical morphologies that provide remarkable mechanical properties. Historically, correlating the hierarchical structure and the mechanical properties of these polymers has been challenging due to the random arrangements of the polar groups along the backbone, ex situ characterization and the difficulty in deconvolution the effects of crystalline and amorphous regions along with secondary interactions between polymer chains. We address these challenges through in situ deformation of precise acid copolymers and relate the structural evolution to bulk properties by considering a series of copolymers with 9, 15 or 21 carbons between acid groups. Simultaneous synchrotron X-ray scattering and room temperature uniaxial tensile experiments of these precise acid copolymers were conducted. The different deformation mechanisms are compared and the microstructural evolution during deformation is discussed. For example, the liquid-like distribution of acid aggregates within the bulk copolymer transitions into a layered structure concurrent to a dramatic increase in tensile strength. Overall, we evaluate the effect and control of introducing acid groups on mechanical deformation of the bulk copolymers.

  5. A Solid-State NMR Investigation of MQ Silicone Copolymers.

    PubMed

    Vasil'ev, Sergey G; Volkov, Vitaly I; Tatarinova, Elena A; Muzafarov, Aziz M

    2013-01-01

    The structure of MQ copolymers of the general chemical formula [(CH3)3SiO0.5]m [SiO2]n was characterized by means of solid-state magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy. The MQ copolymers are highly branched polycyclic compounds (densely cross-linked nanosized networks). MQ copolymers were prepared by hydrolytic polycondensation in active medium. (29)Si NMR spectra were obtained by single pulse excitation (or direct polarization, DP) and cross-polarization (CP) (29)Si{(1)H} techniques in concert with MAS. It was shown that material consist of monofunctional M (≡SiO Si (CH3)3) and two types of tetrafunctional Q units: Q(4) ((≡SiO)4 Si) and Q(3) ((≡SiO)3 SiOH). Spin-lattice relaxation times T 1 measurements of (29)Si nuclei and analysis of (29)Si{(1)H} variable contact time signal intensities allowed us to obtain quantitative data on the relative content of different sites in copolymers. These investigations indicate that MQ copolymers represent dense structure with core and shell. PMID:23914072

  6. Photoreversible gelation of a triblock copolymer in an ionic liquid.

    PubMed

    Ueki, Takeshi; Nakamura, Yutaro; Usui, Ryoji; Kitazawa, Yuzo; So, Soonyong; Lodge, Timothy P; Watanabe, Masayoshi

    2015-03-01

    The reversible micellization and sol-gel transition of block copolymer solutions in an ionic liquid (IL) triggered by a photostimulus is described. The ABA triblock copolymer employed, denoted P(AzoMA-r-NIPAm)-b-PEO-b-P(AzoMA-r-NIPAm)), has a B block composed of an IL-soluble poly(ethylene oxide) (PEO). The A block consists of a random copolymer including thermosensitive N-isopropylacrylamide (NIPAm) units and a methacrylate with an azobenzene chromophore in the side chain (AzoMA). A phototriggered reversible unimer-to-micelle transition of a dilute ABA triblock copolymer (1 wt%) was observed in an IL, 1-butyl-3-methylimidazolium hexafluorophosphate ([C4mim]PF6), at an intermediate "bistable" temperature (50 °C). The system underwent a reversible sol-gel transition cycle at the bistable temperature (53 °C), with reversible association/fragmentation of the polymer network resulting from the phototriggered self-assembly of the ABA triblock copolymer (20 wt%) in [C4 mim]PF6. PMID:25613353

  7. Preparation and icephobic properties of polymethyltrifluoropropylsiloxane-polyacrylate block copolymers

    NASA Astrophysics Data System (ADS)

    Li, Xiaohui; Zhao, Yunhui; Li, Hui; Yuan, Xiaoyan

    2014-10-01

    Five polymethyltrifluoropropylsiloxane (PMTFPS)-polyacrylate block copolymers (PMTFPS-b-polyacrylate) were synthesized by free radical polymerization of methyl methacrylate, n-butyl acrylate and hydroxyethyl methacrylate using PMTFPS macroazoinitiator (PMTFPS-MAI) in range of 10-50 mass percentages. The morphology, surface chemical composition and wettability of the prepared copolymer films were investigated by transmission electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, and water contact angle measurement. Delayed icing time and ice shear strength of the films were also detected for the icephobic purpose. The surface morphologies of the copolymers were different from those of the bulk because of the migration of the PMTFPS segments to the air interface during the film formation. Maximal delayed icing time (186 s at -15 °C) and reduction of the ice shear strength (301 ± 10 kPa) which was significantly lower than that of polyacrylates (804 ± 37 kPa) were achieved when the content of PMTFPS-MAI was 20 wt%. The icephobicity of the copolymers was attributed primarily to the enrichment of PMTFPS on the film surface and synergistic effect of both silicone and fluorine. Thus, the results show that the PMTFPS-b-polyacrylate copolymer can be used as icephobic coating materials potentially.

  8. Self-Assembly of a Selectively Modified Fluorinated Block Copolymer

    NASA Astrophysics Data System (ADS)

    Davidock, Drew; Hillmyer, Marc; Lodge, Timothy

    2002-03-01

    Selective modification can be used to systematically tune the strength of the thermodynamic interaction between the two segments of a block copolymer. It also offers an effective method for the preparation of model fluorinated block copolymers, which are difficult to synthesize directly. In this study, the effect of controlled difluorocarbene (CF_2) addition to the polyisoprene block on the self-assembly of a series of poly(ethylethylene)-b-polyisoprene (PEE-b-PI) copolymers was investigated. Equilibrium morphologies were determined by small-angle X-ray scattering (SAXS). An effective interaction parameter (\\chi_eff) between the PEE and FPI-s-PI was calculated from the domain spacing, and is found to increase by a factor of ~400 upon complete CF2 modification. The resulting materials also offer an opportunity to examine the phase behavior all the way from weak to strong segregation with one parent copolymer. Using a binary interaction model originally developed for homopolymer/copolymer blends, we were able to model the dependence of \\chi_eff on the extent of fluorination in a quantitative manner and obtain values for the three pairwise interaction parameters.

  9. Relaxation processes in a lower disorder order transition diblock copolymer

    SciTech Connect

    Sanz, Alejandro; Ezquerra, Tiberio A.; Nogales, Aurora

    2015-02-14

    The dynamics of lower disorder-order temperature diblock copolymer leading to phase separation has been observed by X ray photon correlation spectroscopy. Two different modes have been characterized. A non-diffusive mode appears at temperatures below the disorder to order transition, which can be associated to compositional fluctuations, that becomes slower as the interaction parameter increases, in a similar way to the one observed for diblock copolymers exhibiting phase separation upon cooling. At temperatures above the disorder to order transition T{sub ODT}, the dynamics becomes diffusive, indicating that after phase separation in Lower Disorder-Order Transition (LDOT) diblock copolymers, the diffusion of chain segments across the interface is the governing dynamics. As the segregation is stronger, the diffusive process becomes slower. Both observed modes have been predicted by the theory describing upper order-disorder transition systems, assuming incompressibility. However, the present results indicate that the existence of these two modes is more universal as they are present also in compressible diblock copolymers exhibiting a lower disorder-order transition. No such a theory describing the dynamics in LDOT block copolymers is available, and these experimental results may offer some hints to understanding the dynamics in these systems. The dynamics has also been studied in the ordered state, and for the present system, the non-diffusive mode disappears and only a diffusive mode is observed. This mode is related to the transport of segment in the interphase, due to the weak segregation on this system.

  10. Ordering stripe structures of nanoscale rods in diblock copolymer scaffolds

    NASA Astrophysics Data System (ADS)

    Chen, Kang; Ma, Yu-qiang

    2002-05-01

    We report a simulation on the formation of ordered stripe structures of nanoscale rods driven by symmetric diblock copolymer melts. Due to the preferential adsorption of one species of the diblock onto the mobile rods, the phase ordering process will couple with the movement of rods. We find that the self-assembly of rods on the copolymer scaffold produces the highly ordered nanowires of rods, and copolymer blends in turn form the well-oriented lamellar structure. This is due to the interplay among the micro-phase separating dynamics in the diblock copolymer, the wetting interaction between rods and diblock copolymer, and the nematic ordering dynamics of rods. We examine the influence of the domain size, the wetting strength, and the rod number density on the formation of such a nanoscale structure. Additionally, we indicate that the orientation of the pattern can be well controlled by external fields acting on the rods. The results suggest that our model system may provide a novel and simple way to control and design the ordering nanowire structure.

  11. Synthesis and Structure - Property Relationships for Regular Multigraft Copolymers

    SciTech Connect

    Mays, Jimmy; Uhrig, David; Gido, Samuel; Zhu, Yuqing; Weidisch, Roland; Iatrou, Hermis; Hadjichristidis, Nikos; Hong, Kunlun; Beyer, Frederick; Lach, Ralph

    2004-01-01

    Multigraft copolymers with polyisoprene backbones and polystyrene branches, having multiple regularly spaced branch points, were synthesized by anionic polymerization high vacuum techniques and controlled chlorosilane linking chemistry. The functionality of the branch points (1, 2 and 4) can be controlled, through the choice of chlorosilane linking agent. The morphologies of the various graft copolymers were investigated by transmission electron microscopy and X-ray scattering. It was concluded that the morphology of these complex architectures is governed by the behavior of the corresponding miktoarm star copolymer associated with each branch point (constituting block copolymer), which follows Milner's theoretical treatment for miktoarm stars. By comparing samples having the same molecular weight backbone and branches but different number of branches it was found that the extent of long range order decreases with increasing number of branch points. The stress-strain properties in tension were investigated for some of these multigraft copolymers. For certain compositions thermoplastic elastomer (TPE) behavior was observed, and in many instances the elongation at break was much higher (2-3X) than that of conventional triblock TPEs.

  12. Formation and structural properties of multi-block copolymer vesicles

    NASA Astrophysics Data System (ADS)

    Wang, Rong; Ma, Shiying

    2014-03-01

    Due to the unique structure, vesicles have attracted considerable attention for their potential applications, such as gene and drug delivery, microcapsules, nanoreactors, cell membrane mimetic, synthetic organelles, etc. By using dissipative particle dynamics, we studied the self-assembly of amphiphilic multi-block copolymer. The phase diagram was constructed by varying the interaction parameters and the composition of the block copolymers. The results show that the vesicles are stable in a large region which is different from the diblock copolymer or triblock copolymer. The structural properties of vesicles can be controlled by varying the interaction parameters and the length of the hydrophobic block. The relationship between the hydrophilic and hydrophobic block length vs the aqueous cavity size and vesicle size are revealed. The copolymers with shorter hydrophobic blocks length or the higher hydrophilicity are more likely to form vesicles with larger aqueous cavity size and vesicle size as well as thinner wall thickness. However, the increase in hydrophobic-block length results to form vesicles with smaller aqueous cavity size and larger vesicle size. Acknowledgments. This work has been supported by NNSFC (No. 21074053) and NBRPC (No. 2010CB923303).

  13. Controlling block copolymer phase behavior using ionic surfactant

    NASA Astrophysics Data System (ADS)

    Ray, D.; Aswal, V. K.

    2016-05-01

    The phase behavior of poly(ethylene oxide)-poly(propylene oxide-poly(ethylene oxide) PEO-PPO-PEO triblock copolymer [P85 (EO26PO39EO26)] in presence of anionic surfactant sodium dodecyl sulfate (SDS) in aqueous solution as a function of temperature has been studied using dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The measurements have been carried out for fixed concentrations (1 wt%) of block copolymer and surfactants. Each of the individual components (block copolymer and surfactant) and the nanoparticle-surfactant mixed system have been examined at varying temperature. The block copolymer P85 forms spherical micelles at room temperature whereas shows sphere-to-rod like micelle transition at higher temperatures. On the other hand, SDS surfactant forms ellipsoidal micelles over a wide temperature range. Interestingly, it is found that phase behavior of mixed micellar system (P85 + SDS) as a function of temperature is drastically different from that of P85, giving the control over the temperature-dependent phase behavior of block copolymers.

  14. Highly conductive side chain block copolymer anion exchange membranes.

    PubMed

    Wang, Lizhu; Hickner, Michael A

    2016-06-28

    Block copolymers based on poly(styrene) having pendent trimethyl styrenylbutyl ammonium (with four carbon ring-ionic group alkyl linkers) or benzyltrimethyl ammonium groups with a methylene bridge between the ring and ionic group were synthesized by reversible addition-fragmentation radical (RAFT) polymerization as anion exchange membranes (AEMs). The C4 side chain polymer showed a 17% increase in Cl(-) conductivity of 33.7 mS cm(-1) compared to the benzyltrimethyl ammonium sample (28.9 mS cm(-1)) under the same conditions (IEC = 3.20 meq. g(-1), hydration number, λ = ∼7.0, cast from DMF/1-propanol (v/v = 3 : 1), relative humidity = 95%). As confirmed by small angle X-ray scattering (SAXS), the side chain block copolymers with tethered ammonium cations showed well-defined lamellar morphologies and a significant reduction in interdomain spacing compared to benzyltrimethyl ammonium containing block copolymers. The chemical stabilities of the block copolymers were evaluated under severe, accelerated conditions, and degradation was observed by (1)H NMR. The block copolymer with C4 side chain trimethyl styrenylbutyl ammonium motifs displayed slightly improved stability compared to that of a benzyltrimethyl ammonium-based AEM at 80 °C in 1 M NaOD aqueous solution for 30 days. PMID:27216558

  15. Effect of Crystallinity on Melt Memory of Random Ethylene Copolymers

    NASA Astrophysics Data System (ADS)

    Chen, Xuejian; Mamun, Al; Rufina, Alamo G.

    2015-03-01

    A strong melt memory effect of crystallization has been observed in random ethylene copolymers even above the equilibrium melting temperature. Melt memory is associated with seeds that increase the crystallization rate of copolymers in a range of comonomer content between 0.5 and 4.5 mol%. The seeds are taken as molten ethylene sequences that remain in close proximity and are unable to diffuse fast to the randomized melt state. Fast diffusion is restricted by topological chain constraints (loops, knots, and other entanglements) that build in the intercrystalline region during crystallization. The molten nature of the self-seeds is supported by a linear variation of T2H with Tmelt n NMR experiments in a range from 180 °C to 100 °C, covering both the homogeneous and heterogeneous melt regions. The effect of topological constraints on melt memory, or on number of seeds that remain in the melt, was analyzed studying copolymers with different levels of crystallinity. There is a threshold level of crystallinity, which depends on type and concentration of comonomer, below which copolymers do not display strong melt memory. Increasing 1-hexene content from 0.5 to 3.5 mol%, the crystallinity threshold decreases from 39 to 4%, while decreasing branch length from hexyl to ethyl, the threshold crystallinity decreases from 18% to 5% in agreement with stronger melt memory in copolymers with increasing comonomer content and with shorter branches.

  16. Nanostructured Amphiphilic Star-Hyperbranched Block Copolymers for Drug Delivery.

    PubMed

    Seleci, Muharrem; Seleci, Didem Ag; Ciftci, Mustafa; Demirkol, Dilek Odaci; Stahl, Frank; Timur, Suna; Scheper, Thomas; Yagci, Yusuf

    2015-04-21

    A robust drug delivery system based on nanosized amphiphilic star-hyperbranched block copolymer, namely, poly(methyl methacrylate-block-poly(hydroxylethyl methacrylate) (PMMA-b-PHEMA) is described. PMMA-b-PHEMA was prepared by sequential visible light induced self-condensing vinyl polymerization (SCVP) and conventional vinyl polymerization. All of the synthesis and characterization details of the conjugates are reported. To accomplish tumor cell targeting property, initially cell-targeting (arginylglycylaspactic acid; RGD) and penetrating peptides (Cys-TAT) were binding to each other via the well-known EDC/NHS chemistry. Then, the resulting peptide was further incorporated to the surface of the amphiphilic hyperbranched copolymer via a coupling reaction between the thiol (-SH) group of the peptide and the hydroxyl group of copolymer by using N-(p-maleinimidophenyl) isocyanate as a heterolinker. The drug release property and targeting effect of the anticancer drug (doxorobucin; DOX) loaded nanostructures to two different cell lines were evaluated in vitro. U87 and MCF-7 were chosen as integrin αvβ3 receptor positive and negative cells for the comparison of the targeting efficiency, respectively. The data showed that drug-loaded copolymers exhibited enhanced cell inhibition toward U87 cells in compared to MCF-7 cells because targeting increased the cytotoxicity of drug-loaded copolymers against integrin αvβ3 receptor expressing tumor cells. PMID:25816726

  17. Synthesis of imide/arylene ether copolymers for adhesives and composite matrices

    NASA Technical Reports Server (NTRS)

    Jensen, B. J.; Hergenrother, P. M.; Bass, R. G.

    1991-01-01

    A series of imide/arylene ether copolymers were prepared from the reaction of an amorphous arylene ether oligomer and a semi-crystalline imide oligomer. These copolymers were thermally characterized and mechanical properties were measured. One block copolymer was endcapped and the molecular weight was controlled to provide a material that displayed good compression moldability and attractive adhesion and composite properties.

  18. 21 CFR 175.365 - Vinylidene chloride copolymer coatings for polycarbonate film.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Vinylidene chloride copolymer coatings for...: ADHESIVES AND COMPONENTS OF COATINGS Substances for Use as Components of Coatings § 175.365 Vinylidene chloride copolymer coatings for polycarbonate film. Vinylidene chloride copolymer coatings identified...

  19. 21 CFR 177.1020 - Acrylonitrile/butadiene/sty-rene co-polymer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Acrylonitrile/butadiene/sty-rene co-polymer. 177.../butadiene/sty-rene co-polymer. Acrylonitrile/butadiene/styrene copolymer identified in this section may be... of: (1) Eighty-four to eighty-nine parts by weight of a matrix polymer containing 73 to 78 parts...

  20. 21 CFR 177.1020 - Acrylonitrile/butadiene/sty-rene co-polymer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Acrylonitrile/butadiene/sty-rene co-polymer. 177.../butadiene/sty-rene co-polymer. Acrylonitrile/butadiene/styrene copolymer identified in this section may be... of: (1) Eighty-four to eighty-nine parts by weight of a matrix polymer containing 73 to 78 parts...

  1. 21 CFR 177.1360 - Ethylene-vinyl acetate-vinyl alcohol copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from the Office of... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ethylene-vinyl acetate-vinyl alcohol copolymers... acetate-vinyl alcohol copolymers. Ethylene-vinyl acetate-vinyl alcohol copolymers (CAS Reg. No....

  2. 21 CFR 177.1360 - Ethylene-vinyl acetate-vinyl alcohol copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from the Office of Food... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ethylene-vinyl acetate-vinyl alcohol copolymers... acetate-vinyl alcohol copolymers. Ethylene-vinyl acetate-vinyl alcohol copolymers (CAS Reg. No....

  3. 40 CFR 721.10389 - Styrene, copolymer with acrylic acid, salt with alkoxylated alkenylamine (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Styrene, copolymer with acrylic acid... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10389 Styrene, copolymer with acrylic... subject to reporting. (1) The chemical substance identified generically as styrene, copolymer with...

  4. 21 CFR 175.365 - Vinylidene chloride copolymer coatings for polycarbonate film.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Vinylidene chloride copolymer coatings for... Substances for Use as Components of Coatings § 175.365 Vinylidene chloride copolymer coatings for polycarbonate film. Vinylidene chloride copolymer coatings identified in this section and applied...

  5. Affinity-mediated capture and release of amphiphilic copolymers for controlling antimicrobial activity.

    PubMed

    Takahashi, Haruko; Akiyoshi, Kazunari; Kuroda, Kenichi

    2015-08-14

    Capture and release of amphiphilic copolymers by a nano-sized polysaccharide gel (nanogel) was controlled by altering the hydrophobic binding affinity between the copolymer chains and nanogel. The antimicrobial activity of captured copolymer chains was suppressed, and regained upon release from the nanogel. PMID:26154063

  6. 40 CFR 721.10101 - Copolymer of alkyl acrylate and ethyleneglycol dimethacrylate (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Copolymer of alkyl acrylate and... Significant New Uses for Specific Chemical Substances § 721.10101 Copolymer of alkyl acrylate and...) The chemical substance identified generically as copolymer of alkyl acrylate and...

  7. Water-soluble graft copolymers of starch-acrylamide and uses therefor

    DOEpatents

    Butler, George B.; Hogen-Esch, Thieo E.; Meister, John J.; Pledger, Jr., Huey

    1983-08-23

    Graft copolymers having starch as the central chain with grafted side chains of acrylamide or acrylamide-acrylic acid, and a process for preparation of such copolymers in the presence of Ce.sup.+4 or other redox initiators. These copolymers are employed in preparing highly viscous aqueous solutions that are particularly useful in oil recovery from subterranean wells.

  8. 40 CFR 721.10419 - Tetrafluoroethylene chlorotrifluoroethylene copolymer (generic) (P-11-561).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... chlorotrifluoroethylene copolymer (generic) (P-11-561). 721.10419 Section 721.10419 Protection of Environment... chlorotrifluoroethylene copolymer (generic) (P-11-561). (a) Chemical substance and significant new uses subject to... copolymer (PMN P-11-561) is subject to reporting under this section for the significant new uses...

  9. 40 CFR 721.10419 - Tetrafluoroethylene chlorotrifluoroethylene copolymer (generic) (P-11-561).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... chlorotrifluoroethylene copolymer (generic) (P-11-561). 721.10419 Section 721.10419 Protection of Environment... chlorotrifluoroethylene copolymer (generic) (P-11-561). (a) Chemical substance and significant new uses subject to... copolymer (PMN P-11-561) is subject to reporting under this section for the significant new uses...

  10. 40 CFR 721.10419 - Tetrafluoroethylene chlorotrifluoroethylene copolymer (generic) (P-11-561).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... chlorotrifluoroethylene copolymer (generic) (P-11-561). 721.10419 Section 721.10419 Protection of Environment... chlorotrifluoroethylene copolymer (generic) (P-11-561). (a) Chemical substance and significant new uses subject to... copolymer (PMN P-11-561) is subject to reporting under this section for the significant new uses...

  11. 21 CFR 177.1020 - Acrylonitrile/butadiene/sty-rene co-polymer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylonitrile/butadiene/sty-rene co-polymer. 177... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances.../butadiene/sty-rene co-polymer. Acrylonitrile/butadiene/styrene copolymer identified in this section may...

  12. 21 CFR 175.360 - Vinylidene chloride copolymer coatings for nylon film.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Vinylidene chloride copolymer coatings for nylon... Use as Components of Coatings § 175.360 Vinylidene chloride copolymer coatings for nylon film. Vinylidene chloride copolymer coatings identified in this section and applied on nylon film may be...

  13. 40 CFR 721.10179 - Copolymers of phenol and aromatic hydocarbon (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Copolymers of phenol and aromatic... Specific Chemical Substances § 721.10179 Copolymers of phenol and aromatic hydocarbon (generic). (a... generically as copolymers of phenol and aromatic hydocarbon (PMNs P-04-346 and P-04-347) are subject...

  14. 40 CFR 721.10179 - Copolymers of phenol and aromatic hydocarbon (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Copolymers of phenol and aromatic... Specific Chemical Substances § 721.10179 Copolymers of phenol and aromatic hydocarbon (generic). (a... generically as copolymers of phenol and aromatic hydocarbon (PMNs P-04-346 and P-04-347) are subject...

  15. 40 CFR 721.10179 - Copolymers of phenol and aromatic hydocarbon (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Copolymers of phenol and aromatic... Specific Chemical Substances § 721.10179 Copolymers of phenol and aromatic hydocarbon (generic). (a... generically as copolymers of phenol and aromatic hydocarbon (PMNs P-04-346 and P-04-347) are subject...

  16. 40 CFR 721.10179 - Copolymers of phenol and aromatic hydocarbon (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Copolymers of phenol and aromatic... Specific Chemical Substances § 721.10179 Copolymers of phenol and aromatic hydocarbon (generic). (a... generically as copolymers of phenol and aromatic hydocarbon (PMNs P-04-346 and P-04-347) are subject...

  17. 40 CFR 721.10179 - Copolymers of phenol and aromatic hydocarbon (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Copolymers of phenol and aromatic... Specific Chemical Substances § 721.10179 Copolymers of phenol and aromatic hydocarbon (generic). (a... generically as copolymers of phenol and aromatic hydocarbon (PMNs P-04-346 and P-04-347) are subject...

  18. 40 CFR 721.338 - Salt of an acrylate copolymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Salt of an acrylate copolymer (generic... Substances § 721.338 Salt of an acrylate copolymer (generic). Link to an amendment published at 79 FR 34636... substances identified generically as salt of an acrylate copolymer (PMNs P-00-0333 and P-00-0334) are...

  19. Water-soluble graft copolymers of starch-acrylamide and uses therefor

    DOEpatents

    Butler, G.B.; Hogen-Esch, T.E.; Meister, J.J.; Pledger, H. Jr.

    1983-08-23

    Graft copolymers having starch as the central chain with grafted side chains of acrylamide or acrylamide-acrylic acid, and a process for preparation of such copolymers in the presence of Ce[sup +4] or other redox initiators are disclosed. These copolymers are employed in preparing highly viscous aqueous solutions that are particularly useful in oil recovery from subterranean wells. 2 figs.

  20. 21 CFR 177.1020 - Acrylonitrile/butadiene/sty-rene co-polymer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Acrylonitrile/butadiene/sty-rene co-polymer. 177... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances.../butadiene/sty-rene co-polymer. Acrylonitrile/butadiene/styrene copolymer identified in this section may...

  1. Studies on N-vinylformamide cross-linked copolymers

    NASA Astrophysics Data System (ADS)

    Świder, Joanna; Tąta, Agnieszka; Sokołowska, Katarzyna; Witek, Ewa; Proniewicz, Edyta

    2015-12-01

    Copolymers of N-vinylformamide (NVF) cross-linked with three multifunctional monomers, including divinylbenzene (DVB), ethylene glycol dimethacrylate (EGDMA), and N,N‧-methylenebisacrylamide (MBA) were synthetized by a three-dimensional free radical polymerization in inverse suspension using 2,2‧-azobis(2-methylpropionamide) dihydrochloride (AIBA) as an initiator. Methyl silicon oil was used as the continuous phase during the polymerization processes. Fourier-transform adsorption infrared (FT-IR) spectra revealed the presence of silicone oil traces and suggested that silicone oil strongly interacted with the copolymers surface. Purification procedure allowed to completely remove the silicon oil traces from P(NVF-co-DVB) only. The morphology and the structure of the investigated copolymers were examined by optical microscopy, FT-IR, and FT-Raman (Fourier-transform Raman spectroscopy) methods.

  2. Characterization of Lithium Polysulfide Salts in Homopolymers and Block Copolymers

    NASA Astrophysics Data System (ADS)

    Wang, Dunyang; Wujcik, Kevin; Balsara, Nitash

    Ion-conducting polymers are important for solid-state batteries due to the promise of better safety and the potential to produce higher energy density batteries. Nanostructured block copolymer electrolytes can provide high ionic conductivity and mechanical strength through microphase separation. One of the potential use of block copolymer electrolytes is in lithium-sulfur batteries, a system that has high theoretical energy density wherein the reduction of sulfur leads to the formation of lithium polysulfide intermediates. In this study we investigate the effect of block copolymer morphology on the speciation and transport properties of the polysulfides. The morphology and conductivities of polystyrene-b-poly(ethylene oxide) (SEO) containing lithium polysulfides were studies using small-angle X-ray scattering and ac impedance spectroscopy. UV-vis spectroscopy is being used to determine nature of the polysulfide species in poly(ethylene oxide) and SEO. Department of Energy, Soft Matter Electron Microscopy Program and Battery Materials Research Program.

  3. Patterned silica films using microphase separation of a block copolymer

    NASA Astrophysics Data System (ADS)

    Kataoka, Sho; Takeuchi, Yasutaka; Endo, Akira

    2014-11-01

    Block copolymers exhibit various nanoscale ordered morphologies induced by microphase separation. Here, we present a method for providing two types of patterned silica films on Si wafer substrates simply by shifting the phase equilibrium of a block copolymer, polystyrene-block-poly(4-vinylpyridine) (PS-P4VP). In this method, siloxane is adsorbed onto poly(4-vinylpyridine) blocks of PS-P4VP whose structure varies with solvent polarity and is calcined to remove the block copolymer. Siloxane is in a dispersed phase with toluene as a solvent resulting in silica nanoparticle arrays, while siloxane is in a continuous phase with N, N-dimethylformamide (DMF) resulting in silica films with ordered mesopores. Since the pore size of silica films prepared in DMF is approximately 20 nm, the film has the ability to serve as a support for enzymes such as laccase.

  4. Performance behavior of modified cellulosic fabrics using polyurethane acrylate copolymer.

    PubMed

    Zuber, Mohammad; Shah, Sayyed Asim Ali; Jamil, Tahir; Asghar, Muhammad Irfan

    2014-06-01

    The surface of the cellulosic fabrics was modified using self-prepared emulsions of polyurethane acrylate copolymers (PUACs). PUACs were prepared by varying the molecular weight of polycaprolactone diol (PCL). The PCL was reacted with isophorone diisocyanate (IPDI) and chain was extended with 2-hydroxy ethyl acrylate (HEA) to form vinyl terminated polyurethane (VTPU) preploymer. The VTPU was further co-polymerized through free radical polymerization with butyl acrylate in different proportions. The FT-IR spectra of monomers, prepolymers and copolymers assured the formation of proposed PUACs structure. The various concentrations of prepared PUACs were applied onto the different fabric samples using dip-padding techniques. The results revealed that the application of polyurethane butyl acrylate copolymer showed a pronounced effect on the tear strength and pilling resistance of the treated fabrics. PMID:24661889

  5. Phase Behavior and Significantly Enhanced Toughness in Polylactide Graft Copolymers

    NASA Astrophysics Data System (ADS)

    Robertson, Megan; Theryo, Grayce; Jing, Feng; Hillmyer, Marc

    2011-03-01

    Polylactide (PLA), a biodegradable polyester derived from plant sugars, is commercially available and used in a variety of applications ranging from serviceware to resorbable sutures. One limitation to diversifying the applications of the material is its inherent brittleness. Graft copolymers containing PLA arms and a rubbery aliphatic polymer backbone were synthesized by a combination of ring-opening metathesis and ring-opening transesterification polymerizations. The high degree of incompatibility between the arms and backbone resulted in microphase separation of the graft copolymer at increasingly low fractions of the backbone polymer, as evidenced by small-angle x-ray scattering. In graft copolymers with a rubbery content of only 5 wt percent, the tensile strain at break was observed to be as high as twenty times that of neat PLA. Studies are underway to provide insight into the critical polymer molecular parameters for enhanced toughness and the deformation mechanisms.

  6. Morphologies of precise polyethylene-based acid copolymers and ionomers

    NASA Astrophysics Data System (ADS)

    Buitrago, C. Francisco

    Acid copolymers and ionomers are polymers that contain a small fraction of covalently bound acidic or ionic groups, respectively. For the specific case of polyethylene (PE), acid and ionic pendants enhance many of the physical properties such as toughness, adhesion and rheological properties. These improved properties result from microphase separated aggregates of the polar pendants in the non-polar PE matrix. Despite the widespread industrial use of these materials, rigorous chemical structure---morphology---property relationships remain elusive due to the inevitable structural heterogeneities in the historically-available acid copolymers and ionomers. Recently, precise acid copolymers and ionomers were successfully synthesized by acyclic diene metathesis (ADMET) polymerization. These precise materials are linear, high molecular weight PEs with pendant acid or ionic functional groups separated by a precisely controlled number of carbon atoms. The morphologies of nine precise acid copolymers and eleven precise ionomers were investigated by X-ray scattering, solid-state 13C nuclear magnetic resonance (NMR) and differential scanning calorimetry (DSC). For comparison, the morphologies of linear PEs with pseudo-random placement of the pendant groups were also studied. Previous studies of precise copolymers with acrylic acid (AA) found that the microstructural precision produces a new morphology in which PE crystals drive the acid aggregates into layers perpendicular to the chain axes and presumably at the interface between crystalline and amorphous phases. In this dissertation, a second new morphology for acid copolymers is identified in which the aggregates arrange on cubic lattices. The fist report of a cubic morphology was observed at room and elevated temperatures for a copolymer functionalized with two phosphonic acid (PA) groups on every 21st carbon atom. The cubic lattice has been identified as face-centered cubic (FCC). Overall, three morphology types have been

  7. Liquid-crystalline ordering helps block copolymer self-assembly.

    PubMed

    Yu, Haifeng; Kobayashi, Takaomi; Yang, Huai

    2011-08-01

    Interaction between liquid-crystalline elastic deformation and microphase separation in liquid-crystalline block copolymers enables them to supramolecularly assemble into ordered nanostructures with high regularity. With the help of liquid-crystalline alignment, parallel and perpendicular patterning of nanostructures is fabricated with excellent reproducibility and mass production, which provides nanotemplates and nanofabrication processes for preparing varieties of nanomaterials. Furthermore, nanoscale microphase separation improves the optical performance of block-copolymer fi lms by eliminating the scattering of visible light, leading to advanced applications in optical devices and actuators. Recent progress in liquid-crystalline block copolymers, including their phase diagram, structure-property relationship, nanostructure control and nanotemplate applications, is reviewed. PMID:21910267

  8. Field-Based Simulations of Confined Block Copolymers

    NASA Astrophysics Data System (ADS)

    Fredrickson, Glenn

    2009-03-01

    This presentation will discuss field-theoretic simulation methods that can be used to analyze the self-assembly behavior of thin block copolymer films, including films that are laterally confined on a flat substrate and curved films on a spherical manifold. Our studies of lateral confinement have revealed strategies for epitaxially templating microdomain patterns with long-range in-plane order and minimal defects (``graphoepitaxy"), and methods for diversifying the set of stable 2D lattice structures. On the sphere, we have found defective ground state block copolymer morphologies that are analogous to spherical crystalline packings in other contexts, e.g. the Thompson problem and viruses. The methods and findings have applications in block copolymer lithography and in dispersion technology of polymer-stabilized nanoparticles and colloids.

  9. Stimuli-responsive polypeptide-based triblock copolymers

    NASA Astrophysics Data System (ADS)

    Ray, Jacob; Naik, Sandeep; Savin, Daniel

    2010-03-01

    Stimuli-responsive copolymers demonstrate diverse aggregation behavior in aqueous solution, where the molecular architecture and hydrophilic/hydrophobic content influences morphology. The solution morphology of poly(lysine)-b-poly(propylene oxide)-b-poly(lysine) (KPK) triblock copolymers with high lysine content (> 75 wt.%) will be compared with complementary KP diblock copolymers in the same phase range. Light scattering and TEM were used to determine aggregate size and morphology as a function of pH and temperature; furthermore, circular dichroism was used to measure helix-to-coil transitions of the K blocks. PK diblocks in this composition range yield spherical micelles over the entire pH range whereas KPK systems appear to exhibit morphological transitions with changing pH.

  10. Modeling Line Edge Roughness in Lamellar Block Copolymer Systems

    NASA Astrophysics Data System (ADS)

    Patrone, Paul; Gallatin, Gregg

    2012-02-01

    Block copolymers offer an appealing alternative to current lithographic techniques with regard to fabrication of the next generation microprocessors. However, if copolymers are to be useful on an industrial manufacturing scale, they must meet or exceed lithography specifications for placement and line edge roughness (LER) of resist features. Here we discuss a field theoretic approach to modeling the LER in the lamellar phase of a strongly segregated block copolymer system. Our model is based on the Leibler-Ohta-Kawasaki free energy functional, which takes the Flory-Huggins parameter and index of polymerization as inputs. We consider a domain with a finite number of phase separated microdomains; at the system boundary, we apply conditions akin to a chemical pinning field. Using a path integral formalism, we determine how fluctuations of the microdomain boundaries depend on distance from the system boundary, number of microdomains, the Flory-Huggins parameter, and index of polymerization.

  11. Self-assembly of ABA triblock copolymers under soft confinement

    NASA Astrophysics Data System (ADS)

    Sheng, Yuping; An, Jian; Zhu, Yutian

    2015-05-01

    Using Monte Carlo method, the self-assembly of ABA triblock copolymers under soft confinement is investigated in this study. The soft confinement is achieved by a poor solvent environment for the polymer, which makes the polymer aggregate into a droplet. Various effects, including the block length ratio, the solvent quality for the blocks B, and the incompatibility between blocks A and B, on the micellar structures induced by soft confinement are examined. By increasing the solvent quality of B blocks, the micellar structure transforms from stacked lamella to bud-like structure, and then to onion-like structure for A5B8A5 triblock copolymers, while the inner micellar structure changes from spherical phase to various cylindrical phase, such as inner single helix, double helixes, stacked rings and cage-like structures, for A7B4A7 triblock copolymers. Moreover, the formation pathways of some typical aggregates are examined to illustrate their growth mechanisms.

  12. Reordering transitions during annealing of block copolymer cylinder phases

    SciTech Connect

    Majewski, Pawel W.; Yager, Kevin G.

    2015-10-06

    While equilibrium block-copolymer morphologies are dictated by energy-minimization effects, the semi-ordered states observed experimentally often depend on the details of ordering pathways and kinetics. In this study, we explore reordering transitions in thin films of block-copolymer cylinder-forming polystyrene-block-poly(methyl methacrylate). We observe several transient states as films order towards horizontally-aligned cylinders. In particular, there is an early-stage reorganization from randomly-packed cylinders into hexagonally-packed vertically-aligned cylinders; followed by a reorientation transition from vertical to horizontal cylinder states. These transitions are thermally activated. The growth of horizontal grains within an otherwise vertical morphology proceeds anisotropically, resulting in anisotropic grains in the final horizontal state. The size, shape, and anisotropy of grains are influenced by ordering history; for instance, faster heating rates reduce grain anisotropy. These results help elucidate aspects of pathway-dependent ordering in block-copolymer thin films.

  13. Responsive copolymers for enhanced petroleum recovery. Second annual report

    SciTech Connect

    McCormick, C.; Hester, R.

    1995-05-01

    The authors describe second year efforts in synthesis, characterization, and rheology to develop polymers with significantly improved efficiency in mobility control and conformance. These advanced polymer systems would maintain high viscosities or behave as virtual gels under low shear conditions and at elevated electrolyte concentrations. At high fluid shear rates, associates would deaggregate yielding low viscosity solutions, reducing problems of shear degradation or face plugging during injection. Polymeric surfactants were also developed with potential for use in higher salt, higher temperature reservoirs for mobilization of entrapped oil. Chapters include: Ampholytic terpolymers of acrylamide with sodium 3-acrylamido-3-methylbutanoate and 2-acrylamido-2-methylpropanetrimethylammonium chloride; Hydrophilic sulfobetaine copolymers of acrylamide and 3-(2-acrylamido-methylpropane-dimethylammonio)-1-propanesulfonate; Copolymerization of maleic anhydride and N-vinylformamide; Reactivity ratio of N-vinylformamide with acrylamide, sodium acrylate, and n-butyl acrylate; Effect of the distribution of the hydrophobic cationic monomer dimethyldodecyl(2-acrylamidoethyl)ammonium bromide on the solution behavior of associating acrylamide copolymers; Effect of surfactants on the solution properties of amphipathic copolymers of acrylamide and N,N-dimethyl-N-dodecyl-N-(2-acrylamidoethyl)ammonium bromide; Associative interactions and photophysical behavior of amphiphilic terpolymers prepared by modification of maleic anhydride/ethyl vinyl ether copolymers; Copolymer compositions of high-molecular-weight functional acrylamido water-soluble polymers using direct-polarization magic-angle spinning {sup 13}C NMR; Use of factorial experimental design in static and dynamic light scattering characterization of water soluble polymers; and Porous medium elongational rheometer studies of NaAMB/AM copolymer solutions.

  14. Lithographic Evaluation Of Copolymers With Enhanced Dry Etch Resistance

    NASA Astrophysics Data System (ADS)

    Namaste, Y. M.; Obendorf, S. K.; Rosenblum, J. M.; Gifford, G. G.; Dems, B. C.; Rodriguez, F.

    1987-08-01

    Alternating copolymers of alphamethylstyrene (AMS) with maleic anhydride (MA) and methyl maleate (MeM) are evaluated as positive electron resists. The chain scission efficiency (Gs) of P(AMS-MA), determined by exposure to 50 keV electrons, is 0.90 scissions/100 eV. When the maleic anhydride in the copolymer is reacted with sodium methoxide to form its methyl ester, P(AMS-MeM), the Gs increases to 2.9 for electrons and to 3.5 for gamma radiation. Based on these G-scission values, this copolymer is expected to exhibit enhanced sensitivity, while having good dry etch resistance due to the aromatic nature of alphamethylstyrene. Lithographically, P(AMS-MeM) is more sensitive than P(AMS-MA), as expected from G-scission data. Film properties such as adhesion are also superior for P(AMS-MeM). Using a one hour prebake at 140°C, 10% thinning of unexposed P(AMS-MeM) occurs upon development of pads exposed to an incident electron dose of 8 jC/cm2 (accelerating voltage = 20 kV). The contrast (1) is 2.0 for development of 12 iiC/cm exposur2es. In comparison, P(AMS-MA) exhibited 10% thinning for an incident dose of 40 pC/cm, which is similar to observations with PMMA. The copolymers are developed with mixtures of ethyl 3-ethoxypropionate and 1-methoxy-2-propanol acetate. The dry etch rate of P(AMS-MA) in CFI.' plasma with 8% 02 varies from 45 to 53% of the etch rate of a PMMA standard. The etch rate of P(AMS-MeM) after a 140°C prebake is about 65% that of PMMA. Thus, much of the etch resistance of alphamethylstyrene is maintained in copolymers with maleic anhydride or methyl maleate, while the copolymer with methyl maleate also exhibits significantly enhanced sensitivity.

  15. Structure-Property Relationships in Polyolefin Block Copolymers

    NASA Astrophysics Data System (ADS)

    Mansour, Ameara Salah

    Poly(cyclohexylethylene) (PCHE for a homopolymer or C in a block copolymer) is created by hydrogenating polystyrene, and this polymer exhibits interesting properties, such as a high glass transition temperature (147 °C), high flexural modulus (2.8 GPa), low stress optical coefficient (-0.2 * 10-9 Pa-1), and low cost. However, the inherently brittle nature of PCHE prevents it from being used in applications that simultaneously require high modulus, ductility, thermal stability, and optical clarity. Previous research has shown that incorporating PCHE into a block copolymer with rubbery poly(ethylene-alt-propylene) (P) or poly(ethylethylene) (EE) or semicrystalline polyethylene (E) results in a tough material. In some cases, applications also require specific mechanical or optical properties. In order to tune these properties, this research examined tuning crystallinity using two methods: (1) by controlling the microstructure of the soft block by synthesizing a random copolymer of E and EE, and (2) by blending high C content pentablock copolymers with semicrystalline and rubbery minority components. In the first study, diblock copolymers of C(EcoEE) also were used to understand how the microstructure of the random copolymer affects the thermodynamics of the system. In the second study, CECEC and CPCPC, designed to form the same morphology (hexagonally packed cylinders with glassy C matrices), and have similar order-to-disorder transition temperatures and domain spacings, were blended together. Isothermal crystallization experiments were used to determine how the confining E and P in one domain affects the crystallization process. The effect of architecture, the state of the minority component, and the percent crystallinity on the mechanical properties of high glass content materials was also examined. These results were compared to the mechanical properties of homopolymer PCHE, polystyrene, and polycarbonate. The processing conditions needed to create smooth films of

  16. Block-copolymer-induced structure formation in microemulsions

    SciTech Connect

    Hilfiker, R.; Eicke, H.F.; Steeb, C.; Hofmeier, U. )

    1991-02-07

    Transient electric birefringence measurements were performed on water/AOT (sodium bis(2-ethylhexyl) sulfosuccinate)/isooctane microemulsions with various amounts of block-copoly(oxyethylene/isoprene/oxyethylene) added. The authors could show that addition of the copolymer leads to a formation of nanodroplet (ND)-copolymer-aggregates. The contributions of NDs and aggregates to the induced birefringence could easily be separated because the NDs exhibited a negative and the aggregates a positive induced birefringence and because the time scales corresponding to the two processes were different.

  17. Drilling fluid containing a copolymer filtration control agent

    SciTech Connect

    Enright, D.P.; Lucas, J.M.; Perricone, A.C.

    1981-10-06

    The invention relates to an aqueous drilling fluid composition, a filtration control agent for utilization in said aqueous drilling fluid, and a method of forming a filter cake on the wall of a well for the reduction of filtrate from said drilling fluid, by utilization of a copolymer of: (1) a (Meth) acrylamido alkyl sulfonic acid or alkali metal salt thereof; and (2) a (Meth) acrylamide or n-alkyl (Meth) acrylamide. The copolymer may be cross-linked with a quaternary ammonium salt cross-linking agent.

  18. Block Copolymer Nanocomposites in Electric Fields: Kinetics of Alignment

    SciTech Connect

    Liedel, Clemens; Pester, Christian; Ruppel, Markus A; Lewin, Christian; Pavan, Mariela J.; Urban, Volker S; Shenhar, Roy; Bosecke, Peter; Boker, Alexander

    2013-01-01

    We investigate the kinetics of block copolymer/nanoparticle composite alignment in an electric field using in situ transmission small-angle X-ray scattering. As a model system, we employ a lamellae forming polystyrene-block-poly(2-vinyl pyridine) block copolymer with different contents of gold nanoparticles in thick films under solvent vapor annealing. While the alignment improves with increasing nanoparticle fraction, the kinetics slows down. This is explained by changes in the degree of phase separation and viscosity. Our findings provide extended insights into the basics of nanocomposite alignment.

  19. Block copolymer adhesion promoters via ring-opening metathesis polymerization

    DOEpatents

    Kent, M.S.; Saunders, R.

    1997-02-18

    Coupling agents are disclosed based on functionalized block copolymers for bonding thermoset polymers to solid materials. These are polymers which possess at least two types of functional groups, one which is able to attach to and react with solid surfaces, and another which can react with a thermoset resin, which are incorporated as pendant groups in monomers distributed in blocks (typically two) along the backbone of the chain. The block copolymers in this invention are synthesized by living ring-opening metathesis polymerization. 18 figs.

  20. Morphology and Proton Transport in Porous Block Copolymer Electrolyte Membranes

    NASA Astrophysics Data System (ADS)

    Chen, Chelsea; Kortright, Jeffrey; Wong, David; Balsara, Nitash

    2015-03-01

    Block copolymer electrolyte membranes consisting of a proton-conducting block and an uncharged structural block are attractive due to their potential in clean energy applications. Herein we demonstrate a novel approach of fabricating block copolymer electrolyte membranes, by inducing pores in the proton-conducting phase. We examine morphology of these membranes with contrast-matched resonant soft X-ray scattering (RSoXS) and electron tomography. Proton conductivity as a function of porosity and water activity is also investigated. By tuning the porosity of the membranes, we are able to adjust the water uptake of the membranes for improved proton conductivities, in both humid air and liquid water.

  1. Gelation of Copolymers Photo-crosslinked by Pendent Benzophenones

    NASA Astrophysics Data System (ADS)

    Christensen, Scott; Hayward, Ryan C.

    2012-02-01

    Copolymers containing pendent benzophenone (BP) groups provide a simple and powerful route to crosslinkable polymer films. While the solution state photo-chemistry of BP is well established, and crosslinking of polymers blended with BP has been studied in detail, the process of crosslinking by covalently attached BP has received comparatively little attention. We have prepared copolymers of BP with several different monomers, and studied gelation as a function of BP content and degree of photochemical conversion. Understanding the influence of polymer chemistry on crosslinking efficiency allows the appropriate choice of materials for nanostructured photo-crosslinkable polymer films and reactive polymer blends.

  2. Gelation of Copolymers Photo-crosslinked by Pendant Benzophenones

    NASA Astrophysics Data System (ADS)

    Christensen, Scott; Hayward, Ryan C.

    2011-03-01

    Copolymers containing pendant benzophenone (BP) groups provide a simple and powerful route to crosslinkable polymer films. While the solution state photo-chemistry of BP is well established, and crosslinking of polymers blended with BP has been studied in detail, the process of crosslinking by covalently attached BP has received comparatively little attention. We have prepared copolymers of BP with several different monomers, and studied gelation as a function of BP content and degree of photochemical conversion. We seek to understand the influence of polymer chemistry on crosslinking efficiency, to guide choices of materials for photo- crosslinkable polymer films and to provide a route for tailoring morphology in polymer blends.

  3. Light-Emitting Properties of Fluorene-Based Copolymers

    NASA Astrophysics Data System (ADS)

    Hwang, Do-Hoon; Lee, Jong-Don; Park, Moo-Jin; Lee, Ji-Hoon; Lee, Chang-Hee

    A series of random copolymers of 2,7-dibromo-9,9-bis(4‧-n-octyloxyphenyl) fluorene (BOPF) and 2,7-dibromo-N-(2‧-ethylhexyl)carbazole (EHC) were synthesized through Ni(0)-mediated polymerization. Carbazole comonomer was introduced to improve the hole-transporting properties of PBOPF. The synthesized poly(BOPF-co-EHC)s showed similar UV-visible absorption and PL emission to PBOPF. EL devices were fabricated in an ITO/PEDOT/polymer/Ca/Al configuration. EL devices which used copolymers showed improved device performance over devices which used PBOPF homopolymers due to a more balanced charge transport.

  4. Research Update: Triblock copolymers as templates to synthesize inorganic nanoporous materials

    NASA Astrophysics Data System (ADS)

    Li, Yunqi; Bastakoti, Bishnu Prasad; Yamauchi, Yusuke

    2016-04-01

    This review focuses on the application of triblock copolymers as designed templates to synthesize nanoporous materials with various compositions. Asymmetric triblock copolymers have several advantages compared with symmetric triblock copolymers and diblock copolymers, because the presence of three distinct domains can provide more functional features to direct the resultant nanoporous materials. Here we clearly describe significant contributions of asymmetric triblock copolymers, especially polystyrene-block-poly(2-vinylpyridine)-block-poly(ethylene oxide) (abbreviated as PS-b-P2VP-b-PEO).

  5. Synthesis and interactions with blood of polyetherurethaneurea/polypeptide block copolymers.

    PubMed

    Ito, Y; Miyashita, K; Kashiwagi, T; Imanishi, Y

    1993-01-01

    Polyurethane/polypeptide block copolymers were synthesized. Infrared spectroscopy and differential scanning calorimetry revealed that in the block copolymers both segments undergo phase-mixing, while in polyurethane/polypeptide blend both components undergo phase-separation. Contact angle measurement showed that in the block copolymers polyurethane segments tended to appear on the membrane surface, whereas in polyurethane/polypeptide blend polypeptide components appeared on the membrane surface. In vitro nonthrombogenicity of the block copolymers was similar to that of homopolymers or polymer blends, though adhesion and deformation of platelets were suppressed on the block copolymer membranes. PMID:8260582

  6. Surface segregation assessment in poly(epsilon-caprolactone)-poly(ethylene glycol) multiblock copolymer films.

    PubMed

    Cometa, Stefania; Chiellini, Federica; Bartolozzi, Irene; Chiellini, Emo; De Giglio, Elvira; Sabbatini, Luigia

    2010-03-10

    The ability to predict the in vivo performance of multiblock-copolymer-based biomaterials is crucial for their applicability in the biomedical field. In this work, XPS analysis of PCL-PEG copolymers was carried out, as well as morphological and wettability evaluations by SEM and CA measurements, respectively. XPS analysis on films equilibrated in PBS demonstrated a further enrichment in the PEG component on the surface. Copolymer films obtained by casting using different solvents showed a dependence in segregation according to the solvent employed. Cell adhesion tests demonstrated the importance of copolymer segregation and rearrangement in a wet environment, with a dependence of these phenomena on the copolymer molecular weight. PMID:19957286

  7. Chlorine resistant desalination membranes based on directly sulfonated poly(arylene ether sulfone) copolymers

    DOEpatents

    McGrath, James E.; Park, Ho Bum; Freeman, Benny D.

    2011-10-04

    The present invention provides a membrane, kit, and method of making a hydrophilic-hydrophobic random copolymer membrane. The hydrophilic-hydrophobic random copolymer membrane includes a hydrophilic-hydrophobic random copolymer. The hydrophilic-hydrophobic random copolymer includes one or more hydrophilic monomers having a sulfonated polyarylsulfone monomer and a second monomer and one or more hydrophobic monomers having a non-sulfonated third monomer and a fourth monomer. The sulfonated polyarylsulfone monomer introduces a sulfonate into the hydrophilic-hydrophobic random copolymer prior to polymerization.

  8. Vinyl Dimethyl Azlactone-Containing Copolymers: Towards Bio-Inspired Surfaces/Polymer-Protein Conjugates

    SciTech Connect

    Messman, Jamie M; Banaszak, Abigail; Barrninger, Joshua; Mays, Jimmy; Kilbey, II, S Michael

    2007-01-01

    Stimuli-responsive, vinyl dimethyl azlactone/vinyl pyrrolidone (VDMA/VP) copolymers have been prepared using free radical polymerization techniques. These copolymers are subsequently the basis for the design of polymer brushes where the system is composed of a polystyrene (PS) block and a VDMA/VP copolymer block. Copolymers have been prepared using reversible addition fragmentation chain transfer (RAFT) polymerization technique. Using a solvent that is selective for the VDMA/VP block, these PS-block-P[VDMA/VP] copolymers can be preferentially adsorbed at the solid-fluid interface through the PS block to form a polymer "brush". Because VDMA is known to quantitatively react with amines, exposure of the copolymer to a solution containing amino acids (e.g. glycine) yields a bio-functionalized polymer brush. In this paper we will report on the synthesis and characterization of VDMA/VP copolymers including compositional analysis using FTIR and NMR spectroscopies.

  9. Atom Transfer Radical Copolymerization of Gradient Copolymers of HEMA/DMAEMA with Arbitrary Composition Profiles

    NASA Astrophysics Data System (ADS)

    Gallow, Keith; Loo, Yueh-Lin

    2009-03-01

    Gradient copolymers represent a new class of statistical copolymers where a non-uniform composition profile is controllably introduced along the length of the polymer chain. Gradient copolymers have thermal and mechanical properties that are different from random or block copolymers having the same average composition. Due to synthetic limitations, however, the introduction of arbitrary composition profiles remains challenging. Here, we demonstrate the ability to controllably introduce arbitrary composition profiles along copolymers of 2-hydroxyethyl methacrylate (HEMA) and 2-(dimethylamino)ethyl methacrylate (DMAEMA) by atom transfer radical copolymerization in a semi-batch reactor. Using gas chromatography to monitor monomer consumption, we have constructed a kinetic model which we use as a basis to synthesize copolymers with linear and parabolic composition profiles. The overall DMAEMA content and molecular weight of these gradient copolymers were determined using nuclear magnetic resonance spectroscopy and size exclusion chromatography, respectively, and both show good agreement with our model's predictions.

  10. Solid state thermal degradation behaviour of graft copolymers of carboxymethyl cellulose with vinyl monomers.

    PubMed

    Srivastava, Arti; Mandal, Pratibha; Kumar, Rajesh

    2016-06-01

    The graft copolymer of sodium carboxymethyl cellulose (CMC) with acrylamide (ACM), dimethylacrylamide (DMA), N-vinyl pyrrolidone (NVP), 2-acrylamido-2-methyl-1-propane sulphonic acid (AMPS) and vinyl caprolactum (VCL) were synthesized in nitrogen atmosphere by employing redox initiators. The integral procedural decomposition temperature (IPDT) of CMC and its graft copolymer with ACM, DMA, AMPS, NVP and VCL have been found to be 274°C, 375°C, 421°C, 404°C, 466°C and 331°C, respectively. The higher value of IPDT showed more thermal stability. Among all five graft copolymers, the graft copolymer of CMC with NVP is thermally more stable and VCL grafted copolymer was found least thermally stable. The higher char yield and final decomposition temperature (FDT) were obtained in the case of more thermally stable graft copolymer. All five graft copolymers have shown more than one Tmax, which suggests that degradations were multistep process. PMID:26959171

  11. Bicontinuous Polymeric Microemulsions from Polydisperse Diblock Copolymers

    SciTech Connect

    Ellison, Christopher J.; Meuler, Adam J.; Qin, Jian; Evans, Christopher M.; Wolf, Lynn M.; Bates, Frank S.

    2009-06-12

    Polymeric bicontinuous microemulsions are thermodynamically stable structures typically formed by ternary blends of immiscible A and B homopolymers and a macromolecular surfactant such as an AB diblock copolymer. Investigations of these bicontinuous morphologies have largely focused on model systems in which all components have narrow molecular weight distributions. Here we probe the effects of AB diblock polydispersity in ternary blends of polystyrene (PS), polyisoprene (PI), and poly(styrene-b-isoprene) (PS-PI). Three series of blends were prepared using the same PS and PI homopolymers; two of them contain nearly monodisperse components while the third includes a polydisperse PS-PI diblock. The PS and PI homopolymers and two of the PS-PI diblocks were prepared by anionic polymerization using sec-butyllithium and have narrow molecular weight distributions. The polydisperse PS-PI diblock was prepared by anionic polymerization using the functional organolithium 3-tert-butyldimethylsilyloxy-1-propyllithium; this diblock has a polydisperse PS block (M{sub w}/M{sub n} = 1.57) and a nearly monodisperse PI block (Mw/Mn < 1.1). The phase behavior of the three series of blends was probed using a combination of dynamic mechanical spectroscopy, small-angle X-ray scattering, and cloud point measurements, and a bicontinuous microemulsion channel was identified in each system. These results prove that monodisperse components are not required to form bicontinuous microemulsions and highlight the utility of polydispersity as a tool to tune polymer blend phase behavior. The random-phase approximation, originally advanced by de Gennes, and self-consistent field theory are used to provide a theoretical supplement to the experimental work. These theories are able to predict the directions of the polydispersity-driven shifts in domain spacing, order-disorder transition temperatures, and the location of the microemulsion channel. Self-consistent field theory is also used in conjunction

  12. Combinatorial Block Copolymer Ordering on Tunable Rough

    SciTech Connect

    Kulkarni M. M.; Yager K.; Sharma, A.; Karim, A.

    2012-05-01

    Morphology control of block copolymer (BCP) thin films through substrate interaction via controlled roughness parameters is of significant interest for numerous high-tech applications ranging from solar cells to high-density storage media. While effects of substrate surface energy (SE) and roughness (R) on BCP morphology have been individually investigated, their synergistic effects have not been explored in any systematic manner. Interestingly, orientation response of BCP to changes in SE can be similar to what can be accomplished with variations in R. Here we present a novel approach for orienting lamellar BCP films of poly(styrene)-block-poly(methyl methacrylate) (PS-PMMA) on spin-coated xerogel (a dried gel of silica nanoparticle network) substrate with simultaneously tunable surface energy, {gamma}{sub s} {approx} 29-53 mJ/m{sup 2}, by UVO exposure and roughness, R{sub rms} {approx} 0.5-30 nm, by sol-gel processing steps of regulating the catalyst concentration and sol aging time. As in previous BCP orientation studies on 20 nm diameter monodisperse silica nanoparticle coated surface, we find a similar but broadened oscillatory BCP orientation behavior with film thickness due to the random rather than periodic rough surfaces. We also find that higher random roughness amplitude is not the necessary criteria for obtaining a vertical orientation of BCP lamellae. Rather, a high surface fractal dimension (D{sub f} > 2.4) of the rough substrate in conjunction with an optimal substrate surface energy {gamma}{sub s} 29 mJ/m{sup 2} results in 100% vertically oriented lamellar microdomains. The AFM measured film surface microstructure correlates well with the internal 3D BCP film structure probed by grazing incidence small-angle X-ray scattering (GISAXS) and rotational small-angle neutron scattering (SANS). In contrast to tunable self-assembled monolayer (SAM)-coated substrates, the xerogel films are very durable and retain their chemical properties over period of

  13. Reducible HPMA-co-oligolysine copolymers for nucleic acid delivery

    PubMed Central

    Shi, Julie; Johnson, Russell N.; Schellinger, Joan G.; Carlson, Peter M.

    2011-01-01

    Biodegradability can be incorporated into cationic polymers via use of disulfide linkages that are degraded in the reducing environment of the cell cytosol. In this work, N-(2-hydroxypropyl)methacrylamide (HPMA) and methacrylamido-functionalized oligo-L-lysine peptide monomers with either a non-reducible 6-aminohexanoic acid (AHX) linker or a reducible 3-[(2-aminoethyl)dithiol]propionic acid (AEDP) linker were copolymerized via reversible addition-fragmentation chain transfer (RAFT) polymerization. Both of the copolymers and a 1:1 (w/w) mixture of copolymers with reducible and non-reducible peptides were complexed with DNA to form polyplexes. The polyplexes were tested for salt stability, transfection efficiency, and cytotoxicity. The HPMA-oligolysine copolymer containing the reducible AEDP linkers was less efficient at transfection than the non-reducible polymer and was prone to flocculation in saline and serum-containing conditions, but was also not cytotoxic at charge ratios tested. Optimal transfection efficiency and toxicity was attained with mixed formulation of copolymers. Flow cytometry uptake studies indicated that blocking extracellular thiols did not restore transfection efficiency and that the decreased transfection of the reducible polyplex is therefore not primarily caused by extracellular polymer reduction by free thiols. The decrease in transfection efficiency of the reducible polymers could be partially mitigated by the addition of low concentrations of EDTA to prevent metal-catalyzed oxidation of reduced polymers. PMID:21893178

  14. 21 CFR 181.32 - Acrylonitrile copolymers and resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylonitrile copolymers and resins. 181.32 Section 181.32 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) PRIOR-SANCTIONED FOOD INGREDIENTS Specific Prior-Sanctioned...

  15. 21 CFR 181.32 - Acrylonitrile copolymers and resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) Acrylonitrile/butadiene copolymer blended with vinyl chloride-vinyl acetate (optional at level up to 5 percent by weight of the vinyl chloride resin) resin—for use only in contact with oleomargarine. (iv... with polyvinyl chloride resins—for use only on paper and paperboard in contact with meats and lard....

  16. 40 CFR 721.10519 - Perfluoroalkyl acrylate copolymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Perfluoroalkyl acrylate copolymer (generic). 721.10519 Section 721.10519 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances §...

  17. PREPARATION OF STARCH-GRAFT-POLYACRYLAMIDE COPOLYMERS BY REACTIVE EXTRUSION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Graft copolymers of starch and polyacrylamide (PAAm) were prepared by reactive extrusion using a co-rotating twin screw extruder and ammonium persulfate initiator. Feed rates were 109 g/min to 325 g/min (all components) at a moisture content of 50%, with screw speeds in the range 100 rpm to 300 rpm...

  18. 40 CFR 721.10619 - Perfluoroalkylethyl methacrylate copolymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... as perfluoroalkylethyl methacrylate copolymer (PMN P-11-653) is subject to reporting under this.... Requirements as specified in § 721.80(p)(any amount after September 30, 2014). (b) Specific requirements. The...) Recordkeeping. Recordkeeping requirements as specified in § 721.125 (a), (b), (c), (f), (h), and (i)...

  19. 21 CFR 177.1820 - Styrene-maleic anhydride copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Styrene-maleic anhydride copolymers. 177.1820 Section 177.1820 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated...

  20. Flash Grafting of Functional Random Copolymers for Surface Neutralization

    NASA Astrophysics Data System (ADS)

    Perego, Michele; Ferrarese Lupi, Federico; Giammaria, Tommaso J.; Seguini, Gabriele; Ceresoli, Monica; Antonioli, Diego; Gianotti, Valentina; Sparnacci, Katia; Laus, Michele

    2014-03-01

    Tailoring surface energies is the key factor to control the orientation of nanoscopic structures in thin block copolymer (BCP) films in view of the possible integration into next generation lithographic processes. In the general frame of the ``grafting to'' approach, this paper reports on the use of Rapid Thermal Processing (RTP) technology to perform flash grafting reactions of a hydroxyl terminated polystyrene- r-methylmethacrylate random copolymer to the activated silicon wafer surface. The perpendicular orientation of the cylinder morphology of an asymmetric PS- b-PMMA block copolymer is achieved when the thickness of the random copolymer layer is higher than 6.0 nm. The grafting time to achieve this thickness reduces from about 750 s, when the RTP grafting process is performed at 230 °C, to 15 s at 310 °C. In addition, TGA-GC-MS analysis indicates that the chain structural reorganization, which occurs during the RTP treatments, affords a more stable film structure without changing its surface characteristics. In this work we investigate the early stages and on the dynamic of the grafting processes on time scales and in temperature ranges that have never been explored before.

  1. 21 CFR 177.1320 - Ethylene-ethyl acrylate copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... prescribed for polyethylene in § 177.1520. (1) Specifications—(i) Infrared identification. Ethylene-ethyl acrylate copolymers can be identified by their characteristic infrared spectra. (ii) Quantitative determination of ethyl acrylate content. The ethyl acrylate can be determined by the infrared spectra. Prepare...

  2. 21 CFR 177.1320 - Ethylene-ethyl acrylate copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... § 177.1520. (1) Specifications—(i) Infrared identification. Ethylene-ethyl acrylate copolymers can be identified by their characteristic infrared spectra. (ii) Quantitative determination of ethyl acrylate content. The ethyl acrylate can be determined by the infrared spectra. Prepare a scan from 10.5 microns...

  3. 21 CFR 177.1320 - Ethylene-ethyl acrylate copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... prescribed for polyethylene in § 177.1520. (1) Specifications—(i) Infrared identification. Ethylene-ethyl acrylate copolymers can be identified by their characteristic infrared spectra. (ii) Quantitative determination of ethyl acrylate content. The ethyl acrylate can be determined by the infrared spectra. Prepare...

  4. 21 CFR 177.1320 - Ethylene-ethyl acrylate copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... prescribed for polyethylene in § 177.1520. (1) Specifications—(i) Infrared identification. Ethylene-ethyl acrylate copolymers can be identified by their characteristic infrared spectra. (ii) Quantitative determination of ethyl acrylate content. The ethyl acrylate can be determined by the infrared spectra. Prepare...

  5. 21 CFR 177.1320 - Ethylene-ethyl acrylate copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... prescribed for polyethylene in § 177.1520. (1) Specifications—(i) Infrared identification. Ethylene-ethyl acrylate copolymers can be identified by their characteristic infrared spectra. (ii) Quantitative determination of ethyl acrylate content. The ethyl acrylate can be determined by the infrared spectra. Prepare...

  6. Phase behaviors of supramolecular graft copolymers with reversible bonding

    SciTech Connect

    Zhang, Xu; Wang, Liquan E-mail: lq-wang@ecust.edu.cn; Jiang, Tao; Lin, Jiaping E-mail: lq-wang@ecust.edu.cn

    2013-11-14

    Phase behaviors of supramolecular graft copolymers with reversible bonding interactions were examined by the random-phase approximation and real-space implemented self-consistent field theory. The studied supramolecular graft copolymers consist of two different types of mutually incompatible yet reactive homopolymers, where one homopolymer (backbone) possesses multifunctional groups that allow second homopolymers (grafts) to be placed on. The calculations carried out show that the bonding strength exerts a pronounced effect on the phase behaviors of supramolecular graft copolymers. The length ratio of backbone to graft and the positions of functional groups along the backbone are also of importance to determine the phase behaviors. Phase diagrams were constructed at high bonding strength to illustrate this architectural dependence. It was found that the excess unbounded homopolymers swell the phase domains and shift the phase boundaries. The results were finally compared with the available experimental observations, and a well agreement is shown. The present work could, in principle, provide a general understanding of the phase behaviors of supramolecular graft copolymers with reversible bonding.

  7. Influence of Chirality in Ordered Block Copolymer Phases

    NASA Astrophysics Data System (ADS)

    Prasad, Ishan; Grason, Gregory

    2015-03-01

    Block copolymers are known to assemble into rich spectrum of ordered phases, with many complex phases driven by asymmetry in copolymer architecture. Despite decades of study, the influence of intrinsic chirality on equilibrium mesophase assembly of block copolymers is not well understood and largely unexplored. Self-consistent field theory has played a major role in prediction of physical properties of polymeric systems. Only recently, a polar orientational self-consistent field (oSCF) approach was adopted to model chiral BCP having a thermodynamic preference for cholesteric ordering in chiral segments. We implement oSCF theory for chiral nematic copolymers, where segment orientations are characterized by quadrupolar chiral interactions, and focus our study on the thermodynamic stability of bi-continuous network morphologies, and the transfer of molecular chirality to mesoscale chirality of networks. Unique photonic properties observed in butterfly wings have been attributed to presence of chiral single-gyroid networks, this has made it an attractive target for chiral metamaterial design.

  8. 21 CFR 177.1980 - Vinyl chloride-propylene copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Vinyl chloride-propylene copolymers. 177.1980 Section 177.1980 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1980...

  9. 21 CFR 177.1950 - Vinyl chloride-ethylene copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Vinyl chloride-ethylene copolymers. 177.1950 Section 177.1950 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1950...

  10. Copolymer-in-oil phantom materials for elastography.

    PubMed

    Oudry, J; Bastard, C; Miette, V; Willinger, R; Sandrin, L

    2009-07-01

    Phantoms that mimic mechanical and acoustic properties of soft biological tissues are essential to elasticity imaging investigation and to elastography device characterization. Several materials including agar/gelatin, polyvinyl alcohol and polyacrylamide gels have been used successfully in the past to produce tissue phantoms, as reported in the literature. However, it is difficult to find a phantom material with a wide range of stiffness, good stability over time and high resistance to rupture. We aim at developing and testing a new copolymer-in-oil phantom material for elastography. The phantom is composed of a mixture of copolymer, mineral oil and additives for acoustic scattering. The mechanical properties of phantoms were evaluated with a mechanical test instrument and an ultrasound-based elastography technique. The acoustic properties were investigated using a through-transmission water-substituting method. We showed that copolymer-in-oil phantoms are stable over time. Their mechanical and acoustic properties mimic those of most soft tissues: the Young's modulus ranges from 2.2-150 kPa, the attenuation coefficient from 0.4-4.0 dB.cm(-1) and the ultrasound speed from 1420-1464 m/s. Their density is equal to 0.90 +/- 0.04 g/cm3. The results suggest that copolymer-in-oil phantoms are attractive materials for elastography. PMID:19427100

  11. 21 CFR 172.775 - Methacrylic acid-divinylbenzene copolymer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Methacrylic acid-divinylbenzene copolymer. 172.775 Section 172.775 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD...

  12. Directed assembly of supramolecular copolymers in thin films

    NASA Astrophysics Data System (ADS)

    Muller, Marcus; Daoulas, Kostas Ch.; Cavallo, Anna; Shenhar, Roy

    2011-03-01

    Using computer simulation of a coarse-grained model for supramolecular polymers we investigate the potential of quasi-block copolymers (QBCP) assembled on chemically patterned substrates for creating device-oriented nanostructures. QBCP are comprised of AB diblock copolymers and supramolecular B segments that can reversibly bond to any available B terminus, either on the copolymers or the B oligomers, creating a polydisperse blend of B homopolymers, AB and ABA copolymers. We focus on an AB incompatibility, χ , and strength of supramolecular bonds where a lamellar morphology, a bicontinous structure and a macrophase-separated state have comparable free energy in the bulk. We consider substrate patterns with perpendicularly crossing, A-preferential lines and demonstrate their defect-free replication by QBCP. The same QBCP replicates simultaneously patterns differing by up to 50 % in their length scales, illustrating the high versatility of QBCP materials. We discuss the interplay between pattern geometry and distribution of molecular architectures and verify the key role of supramolecular associations for replicating patterns with different length scales.

  13. 21 CFR 177.1430 - Isobutylene-butene copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...: Isobutylene-butene copolymers Molecular weight (range) Viscosity (range) Maximum bromine value 1. Used as.../federal_register/code_of_federal_regulations/ibr_locations.html. (2) Viscosity. Viscosity shall be determined by ASTM method D445-74, “Test for Kinematic Viscosity of Transparent and Opaque Liquids,” which...

  14. 21 CFR 177.1430 - Isobutylene-butene copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) of this section. (b) Specifications: Isobutylene-butene copolymers Molecular weight (range) Viscosity...: http://www.archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html. (2) Viscosity. Viscosity shall be determined by ASTM method D445-74, “Test for Kinematic Viscosity of Transparent...

  15. 21 CFR 177.1430 - Isobutylene-butene copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) of this section. (b) Specifications: Isobutylene-butene copolymers Molecular weight (range) Viscosity...: http://www.archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html. (2) Viscosity. Viscosity shall be determined by ASTM method D445-74, “Test for Kinematic Viscosity of Transparent...

  16. 21 CFR 177.1430 - Isobutylene-butene copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) of this section. (b) Specifications: Isobutylene-butene copolymers Molecular weight (range) Viscosity...: http://www.archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html. (2) Viscosity. Viscosity shall be determined by ASTM method D445-74, “Test for Kinematic Viscosity of Transparent...

  17. 21 CFR 177.1430 - Isobutylene-butene copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... section. (b) Specifications: Isobutylene-butene copolymers Molecular weight (range) Viscosity (range.../federal_register/code_of_federal_regulations/ibr_locations.html. (2) Viscosity. Viscosity shall be determined by ASTM method D445-74, “Test for Kinematic Viscosity of Transparent and Opaque Liquids,” which...

  18. Biodegradable PELA block copolymers: in vitro degradation and tissue reaction.

    PubMed

    Younes, H; Nataf, P R; Cohn, D; Appelbaum, Y J; Pizov, G; Uretzky, G

    1988-01-01

    Degradation of, and tissue reaction elicited by a series of polyethylene oxide (PEO)/polylactic acid (PLA) PELA block copolymers were studied in vitro and in vivo. In particular, the effect of pH, temperature and enzymatic activity was addressed. The mass loss was faster, the more basic the media, while, expectedly, PELA copolymers degraded faster with the higher temperature. The addition of an enzyme (carboxylic ester hydrolase) had no effect. The degradation process strongly affected the mechanical properties of the materials under investigation, the elongation at break dropping drastically after two days of degradation. After seven days, only gross observation of the extensively degraded samples was possible. The in vivo studies compared the tissue reaction elicited by various PELA copolymers to that evoked by PLA. Evaluation of tissue reaction observed with a PELA sample after sterilization with gamma radiation showed acute inflammation with considerable dispersion of the material, 12 days after implantation. The granulomatous reaction observed with PELA copolymers after ethylene oxide sterilization was identical to the reaction observed with PLA. PMID:3064826

  19. Meter-long multiblock copolymer microfibers via interfacial bioorthogonal polymerization

    PubMed Central

    Liu, Shuang; Zhang, Han; Remy, Roddel A.; Deng, Fei; Mackay, Michael E.; Fox, Joseph M.; Jia, Xinqiao

    2015-01-01

    High molecular weight multiblock copolymers are synthesized as robust polymer fibers via interfacial bioorthogonal polymerization employing the rapid cycloaddition of s-tetrazines with strained trans-cyclooctenes. When cell-adhesive peptide was incorporated in the tetrazine monomer, the resulting protein-mimetic polymer fibers provide guidance cues for cell attachment and elongation. PMID:25824805

  20. 21 CFR 177.1211 - Cross-linked polyacrylate copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...). The solvent used shall be at least 60 milliliters aqueous sodium chloride solution per gram of... grafted copolymer of cross-linked sodium polyacrylate identified as 2-propenoic acid, polymers with N,N-di-2-propenyl-2-propen-1-amine and hydrolyzed polyvinyl acetate, sodium salts, graft (CAS Reg....

  1. In vivo biocompatibility of radiation crosslinked acrylamide copolymers

    NASA Astrophysics Data System (ADS)

    Saraydın, Dursun; Ünver-Saraydın, Serpil; Karadağ, Erdener; Koptagel, Emel; Güven, Olgun

    2004-04-01

    In vitro swelling and in vivo biocompatibility of radiation crosslinked acrylamide copolymers such as acrylamide/crotonic acid (AAm/CA) and acrylamide/itaconic acid (AAm/IA) were studied. The swelling kinetics of acrylamide copolymers were performed in distilled water, human serum and some simulated physiological fluids such as phosphate buffer, pH 7.4, glycine-HCl buffer, pH 1.1, physiological saline solution, and some swelling and diffusion parameters have been calculated. AAm/CA and AAm/IA hydrogels were subcutaneously implanted in rats for up to 10 weeks and the immediate short- and long-term tissue response to these implants were investigated. Histological analysis indicated that tissue reaction at the implant site progressed from an initial acute inflammatory response. No necrosis, tumorigenesis or infection was observed at the implant site up to 10 weeks. The radiation crosslinked AAm/CA and AAm/IA copolymers were found well tolerated, non-toxic and highly biocompatible. However, AAm/IA copolymer was not found to be compatible biomaterials, because one of the AAm/IA samples was disintegrated into small pieces in the rat.

  2. Synthesis and photooxidation of styrene copolymer bearing camphorquinone pendant groups

    PubMed Central

    Moszner, Norbert; Lukáč, Ivan

    2012-01-01

    Summary (±)-10-Methacryloyloxycamphorquinone (MCQ) was synthesized from (±)-10-camphorsulfonic acid either by a known seven-step synthetic route or by a novel, shorter five-step synthetic route. MCQ was copolymerized with styrene (S) and the photochemical behavior of the copolymer MCQ/S was compared with that of a formerly studied copolymer of styrene with monomers containing the benzil (BZ) moiety (another 1,2-dicarbonyl). Irradiation (λ > 380 nm) of aerated films of styrene copolymers with monomers containing the BZ moiety leads to the insertion of two oxygen atoms between the carbonyl groups of BZ and to the formation of benzoyl peroxide (BP) as pendant groups on the polymer backbone. An equivalent irradiation of MCQ/S led mainly to the insertion of only one oxygen atom between the carbonyl groups of camphorquinone (CQ) and to the formation of camphoric anhydride (11) covalently bound to the polymer backbone. While the decomposition of pendant BP groups formed in irradiated films of styrene copolymers with pendant BZ groups leads to crosslinking, only small molecular-weight changes in irradiated MCQ/S were observed. PMID:22509202

  3. 40 CFR 721.484 - Fluorinated acrylic copolymer (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.484 Fluorinated acrylic copolymer (generic name). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as...

  4. 40 CFR 721.484 - Fluorinated acrylic copolymer (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.484 Fluorinated acrylic copolymer (generic name). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as...

  5. Collapse Transitions in Thermosensitive Alternating Copolymers: A Monte Carlo Study

    NASA Astrophysics Data System (ADS)

    Bitsanis, Ioannis; Rissanou, Anastasia; Burov, Stanislav; Manias, Eveangelos

    2009-03-01

    Alternating copolymers are expected to exhibit a rich transition behavior in selective solvents with implications in biology and the design of thermo and pH-sensitive materials. We studied transitions of model alternating copolymers of the type (AAA...)n1(BBB...)n2, in selective solvents by MC simulations. Results showed that the eminent factor, controlling response to external stimuli, is co-polymer's chemical composition.. We focused on the extreme case of a single polymer chain of N = 1000 units, distributed equally in alternate blocks of n1= n2 =100 units (A- and B- blocks). The solvent was quite selective, i.e. good for 5 100-A-blocks, whereas the 5 100 B-blocks were quite insoluble. An extended critical region, characterized by the presence of several distinct intermediate states between coil and globules, and by fluctuations strong enough to induce spontaneous transitions among these states was observed. Our findings underline that in the case of strong blockiness the alternating architecture induces collapse transitions that proceed through stages not existing in the analogous homopolymer and di-block copolymer transitions. GSRT-05-MAT-USA- 14; INTASDMR-0602877; NSF-DMR-0602877; INTAS 05-1000008-8020.

  6. 21 CFR 177.1820 - Styrene-maleic anhydride copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... distilled water at specified temperatures, times, and particle size Maximum extractable fraction in n-heptane at specified temperatures, times, and particle size 1. Styrene-maleic anhydride copolymers... weight percent 0.006 weight percent at reflux temperature for 1 hr utilizing particles of a size...

  7. Responsive copolymers for enhanced petroleum recovery. Annual report

    SciTech Connect

    McCormick, C.; Hester, R.

    1994-08-01

    A coordinated research program involving synthesis, characterization, and rheology has been undertaken to develop advanced polymer system which should be significantly more efficient than polymers presently used for mobility control and conformance. Unlike the relatively inefficient, traditional EOR polymers, these advanced polymer systems possess microstructural features responsive to temperature, electrolyte concentration, and shear conditions. Contents of this report include the following chapters. (1) First annual report responsive copolymers for enhanced oil recovery. (2) Copolymers of acrylamide and sodium 3-acrylamido-3-methylbutanoate. (3) Terpolymers of NaAMB, Am, and n-decylacrylamide. (4) Synthesis and characterization of electrolyte responsive terpolymers of acrylamide, N-(4-butyl)phenylacrylamide, and sodium acrylate, sodium-2-acrylamido-2-methylpropanesulphonate or sodium-3-acrylamido-3-methylbutanoate. (5) Synthesis and solution properties of associative acrylamido copolymers with pyrensulfonamide fluorescence labels. (6) Photophysical studies of the solution behavior of associative pyrenesulfonamide-labeled polyacrylamides. (7) Ampholytic copolymers of sodium 2-(acrylamido)-2-methylpropanesulfonate with [2-(acrylamido)-2-methypropyl]trimethylammonium chloride. (8) Ampholytic terpolymers of acrylamide with sodium 2-acrylamido-2-methylpropanesulphoante and 2-acrylamido-2-methylpropanetrimethyl-ammonium chloride and (9) Polymer solution extensional behavior in porous media.

  8. Fast assembly of ordered block copolymer nanostructures through microwave annealing.

    PubMed

    Zhang, Xiaojiang; Harris, Kenneth D; Wu, Nathanael L Y; Murphy, Jeffrey N; Buriak, Jillian M

    2010-11-23

    Block copolymer self-assembly is an innovative technology capable of patterning technologically relevant substrates with nanoscale precision for a range of applications from integrated circuit fabrication to tissue interfacing, for example. In this article, we demonstrate a microwave-based method of rapidly inducing order in block copolymer structures. The technique involves the usage of a commercial microwave reactor to anneal block copolymer films in the presence of appropriate solvents, and we explore the effect of various parameters over the polymer assembly speed and defect density. The approach is applied to the commonly used poly(styrene)-b-poly(methyl methacrylate) (PS-b-PMMA) and poly(styrene)-b-poly(2-vinylpyridine) (PS-b-P2VP) families of block copolymers, and it is found that the substrate resistivity, solvent environment, and anneal temperature all critically influence the self-assembly process. For selected systems, highly ordered patterns were achieved in less than 3 min. In addition, we establish the compatibility of the technique with directed assembly by graphoepitaxy. PMID:20964379

  9. Epoxy-crosslinked sulfonated poly (phenylene) copolymer proton exchange membranes

    DOEpatents

    Hibbs, Michael; Fujimoto, Cy H.; Norman, Kirsten; Hickner, Michael A.

    2010-10-19

    An epoxy-crosslinked sulfonated poly(phenylene) copolymer composition used as proton exchange membranes, methods of making the same, and their use as proton exchange membranes (PEM) in hydrogen fuel cells, direct methanol fuel cell, in electrode casting solutions and electrodes, and in sulfur dioxide electrolyzers. These improved membranes are tougher, have higher temperature capability, and lower SO.sub.2 crossover rates.

  10. Beyond Spherical Micelles in Styrene-Isoprene Block Copolymer Solutions

    NASA Astrophysics Data System (ADS)

    Bang, Joona; Lodge, Timothy P.

    2004-03-01

    As macromolecular surfactants, block copolymers have been shown to self-assemble into various microstructures. Many studies have focused on aqueous systems, in which the strongly amphiphilic characteristics of the polymers lead to various micellar shapes (worms, vesicles, compound micelles, etc). However, such micellar shape changes are apparently very rare in organic systems. We report systematic shape changes of the micelles in styrene-isoprene block copolymer solutions. Remarkably, such changes could be accomplished in a single block copolymer by varying the solvent selectivity. We studied two asymmetric poly(styrene-b-isoprene) diblock copolymers with the styrene volume fractions of approximately 0.15 in a series of solvents with varying styrene selectivity, dibuthyl phthalate, diethyl phthalate, and dimethyl phthalate. The degree of the solvent selectivity was adjusted by mixing two solvents. With increasing solvent selectivity, the micellar shape changes from cylindrical micelles to bilayer vesicles, and then phase-separates, reflecting the changing interfacial curvature induced by solvent selectivity. The detailed micellar morphologies were characterized by dynamic light scattering, rheology, electron microscopy, and small angle x-ray scattering.

  11. Order and Disorder in Polydisperse Block Copolymer Melts

    NASA Astrophysics Data System (ADS)

    Lynd, Nathaniel; Hillmyer, Marc

    2007-03-01

    Utilizing creative strategies for the synthesis of model controlled-polydispersity poly(ethylene-alt-propylene)-b-poly(d,l-lactide)(PEP-PLA) and polystyrene-b-polyisoprene(PS-PI) block copolymers, the effects of increased breadth in the molecular weight distribution on block copolymer self-assembly were investigated. Small-angle x-ray scattering and rheological measurements were carried out to characterize the morphological details of these self-assembled materials as a function of their polydispersity, interaction strengths, and compositions. A number of surprising consequences of increased breadth in the molecular weight distribution emerged; the domain spacing of the ordered structures increased, changes in morphology occurred, and the degree of segregation at the order-disorder transitions changed as well, particularly for asymmetric block copolymers. The change in the degree of segregation at the order-disorder transition as the polydispersity was increased was found to be dependent on the block copolymer composition, e.g., for PEP-PLA and PS-PI at asymmetric compositions, when the polydispersity was increased in the minority component, the degree of segregation at the order-disorder transition decreased, whereas when the polydispersity was increased in the majority component, the degree of segregation at the order-disorder transition increased.

  12. 21 CFR 173.60 - Dimethylamine-epichlorohydrin copolymer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Dimethylamine-epichlorohydrin copolymer. 173.60 Section 173.60 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Polymer Substances and...

  13. Morphology of Novel Semicrystalline Ethylene-α-Olefin Block Copolymers

    NASA Astrophysics Data System (ADS)

    Li, Sheng; Register, Richard; Landes, Brian

    2009-03-01

    In semicrystalline block copolymers, the solid-state structure can be set either by block incompatibility or by crystallization of one or more blocks. Depending on the block interaction strength, a wide array of solid-state morphologies may be observed, ranging from spherulitic to confined crystallization within preexisting microphase-separated domains. Dow Chemical has recently developed a novel chain shuttling polymerization process to produce olefin block copolymers with alternating amorphous and semicrystalline chain segments, where each block exhibits the most-probable distribution. We examined the melt and solid-state morphologies of these novel olefin block copolymers, having a high octene content in the amorphous block, using two- dimensional synchrotron small-angle and wide-angle x-ray scattering on specimens oriented by channel die compression. Multiblock and diblock copolymers with near-symmetric compositions showed well-ordered lamellar structures at room temperature with long periods exceeding 100 nm, with little dependence on thermal history, indicating the presence of a mesophase-separated melt which templates crystallization.

  14. Linear-dendritic block copolymer for drug and gene delivery.

    PubMed

    Fan, Xiaohui; Zhao, Yanli; Xu, Wei; Li, Lingbing

    2016-05-01

    Dendrimers as a new class of polymeric materials have a highly ordered branched structure, exact molecular weight, multivalency and available internal cavities, which make them extensively used in biology and drug-delivery. Concurrent with the development of dendrimers, much more attention is drawn to a novel block copolymer which combines linear chains with dendritic macromolecules, the linear-dendritic block copolymer (LDBC). Because of the different solubility of the contrasting regions, the amphiphilic LDBCs could self-assemble to form aggregates with special core-shell structures which exhibit excellent properties different from traditional micelles, such as lower critical micelle concentration, prolonged circulation in the bloodstream, better biocompatibility, and lower toxicity. The present review briefly describes the type of LDBC, the self-assembly behavior in solution, and the application in delivery system including the application as drug carriers and gene vectors. The interactions between block copolymers and drugs are also summarized to better understand the release mechanism of drugs from the linear-dendritic block copolymers. PMID:26952501

  15. 21 CFR 177.1312 - Ethylene-carbon monoxide copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...,” which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ethylene-carbon monoxide copolymers. 177.1312... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1312 Ethylene-carbon...

  16. 21 CFR 177.1312 - Ethylene-carbon monoxide copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...,” which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ethylene-carbon monoxide copolymers. 177.1312... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1312 Ethylene-carbon...

  17. 21 CFR 177.1312 - Ethylene-carbon monoxide copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...,” which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-carbon monoxide copolymers. 177.1312... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1312 Ethylene-carbon...

  18. 21 CFR 177.1312 - Ethylene-carbon monoxide copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...,” which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethylene-carbon monoxide copolymers. 177.1312... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1312 Ethylene-carbon...

  19. Phase behaviors of supramolecular graft copolymers with reversible bonding

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Wang, Liquan; Jiang, Tao; Lin, Jiaping

    2013-11-01

    Phase behaviors of supramolecular graft copolymers with reversible bonding interactions were examined by the random-phase approximation and real-space implemented self-consistent field theory. The studied supramolecular graft copolymers consist of two different types of mutually incompatible yet reactive homopolymers, where one homopolymer (backbone) possesses multifunctional groups that allow second homopolymers (grafts) to be placed on. The calculations carried out show that the bonding strength exerts a pronounced effect on the phase behaviors of supramolecular graft copolymers. The length ratio of backbone to graft and the positions of functional groups along the backbone are also of importance to determine the phase behaviors. Phase diagrams were constructed at high bonding strength to illustrate this architectural dependence. It was found that the excess unbounded homopolymers swell the phase domains and shift the phase boundaries. The results were finally compared with the available experimental observations, and a well agreement is shown. The present work could, in principle, provide a general understanding of the phase behaviors of supramolecular graft copolymers with reversible bonding.

  20. Copolymer-surfactant complexes obtained in a lamellar lyotropic medium.

    PubMed

    Agzenai, Yahya; Pacios, Isabel E; Renamayor, Carmen S

    2013-03-14

    Polymer-surfactant complexes formed between charged copolymers and oppositely charged surfactants are analyzed as a function of the charge density in the macromolecule. Copolymers of ionizable diallyldimethylammonium chloride (DADMAC) and neutral acrylamide are obtained at different comonomer ratios. When mixed with the lamellar medium formed by the anionic surfactant 1,4-bis(2-ethylhexyl)sodium sulfosuccinate (AOT) in water, they give rise to highly condensed lamellar phases in equilibrium with another lyotropic phase. The structure of these phases is studied by SAXS and optical microscopy revealing the formation of copolymer-surfactant complexes which present a lamellar structure. The composition of the phases is inaccessible to direct determination, because they do not separate macroscopically (in most of the samples). Thus, the stoichiometry is determined using a model which considers the charge density of the copolymers. This model allows, from the experimental data provided by SAXS, to calculate the composition and volume ratio of the phases. The results indicate that these complexes are nonstoichiometric, containing a lesser amount of DADMAC than surfactant units. The neutral sequences of acrylamide can be considered as bridges along the water domains remaining anchored to the AOT bilayers by the cationic DADMAC units. When the charge density diminishes, the bridges become longer, rendering structures with higher water content. PMID:23387994

  1. 21 CFR 175.210 - Acrylate ester copolymer coating.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Acrylate ester copolymer coating. 175.210 Section 175.210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: ADHESIVES AND COMPONENTS...

  2. 21 CFR 177.1830 - Styrene-methyl methacrylate copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Styrene-methyl methacrylate copolymers. 177.1830 Section 177.1830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and...

  3. 21 CFR 181.32 - Acrylonitrile copolymers and resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Acrylonitrile copolymers and resins. 181.32 Section 181.32 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) PRIOR-SANCTIONED FOOD INGREDIENTS Specific Prior-Sanctioned Food Ingredients § 181.32...

  4. PREPARATION OF STARCH-G-POLYACRYLAMIDE COPOLYMERS BY REACTIVE EXTRUSION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Graft copolymers of starch and polyacrylamide were prepared by reactive extrusion using a co-rotating twin screw extruder and ammonium persulfate initiator. Feed rates were 109 g/min up to 325 g/min (all components) at a moisture content of 50 percent, with screw speeds in the range 100 rpm to 300 ...

  5. Synthesis and morphology characterization of polydimethylsiloxane-containing block copolymers

    NASA Astrophysics Data System (ADS)

    Wadley, Maurice

    The thin film morphology characteristics of polydimethylsiloxane-containing block copolymers have been investigated. For this investigation, a commercially available hydroxyl terminated PDMS was purchased from Gelest and attached to a carboxylic acid functional reversible addition-fragmentation chain transfer (RAFT) agent by Steglich esterification. This produced macro-RAFT agents to which styrene monomer was polymerized. By using this approach the generation of low polydispersity polystyrene-block-polydimethylsiloxane (PS-block-PDMS) copolymers of various molecular weights spanning a wide volume fraction range in which the PDMS block remained the same in each polymerization. Synthesized block copolymers were characterized by gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR) spectroscopy. Bulk and thin film characterization of PS-block-PDMS copolymers was done by small-angle x-ray scattering (SAXS), transmission electron microscopy (TEM), contact angle measurements, scanning force microscopy (SFM), and grazing incidence small-angle X-ray scattering (GISAXS). The following observations have been made. For PS-rich PS-block -PDMS copolymer thin films the low surface tension of PDMS caused it to migrate to the film surface regardless of solvent choice. The surface morphology was found to depend strongly on the solubility parameter of the solvent and exhibited SFM images consistent with parallel cylinder, perforated lamellar, and lamellar surface layers with increasing solvent solubility parameter. This behavior was due to the selective swelling of the individual blocks under slightly selective, good solvent conditions. A custom solvent annealing apparatus provided similar results in which order-order transitions in the thin films were observed with increasing solvent solubility parameter. Additionally improvements in the long-range order were observed after 1 h of solvent annealing. PS-rich PS-block-PDMS copolymer thin films also displayed PDMS

  6. Synthesis and characterization of thermoresponsive copolymers for drug delivery.

    PubMed

    Aerry, Swati; De, Arnab; Kumar, Ajeet; Saxena, Amit; Majumdar, D K; Mozumdar, Subho

    2013-07-01

    We report the synthesis and characterization of two nontoxic, thermogelling drug delivery systems which are liquid at room temperatures but become a gel at physiological temperature (37°C) potentially leading to release of a drug molecule. We selected temperature as the stimulus for drug release as it is physiologically invariant. A free radical polymerization of N-isopropylacrylamide (NIPAM) and N-vinylpyrrolidone (VP) was carried out under nitrogen atmosphere in double-distilled water at two different temperatures (30°C and 70°C), and the copolymers obtained were characterized by various analytical techniques. The molar ratios of the two monomers were altered with increasing NIPAM content and their cloud point temperature or least critical solution temperature (LCST) was determined. The copolymer at 9:1 ratio of NIPAM to VP resulted in the formation of nanoparticle-based gel (NG1) at 30°C; however, at 70°C, a microgel (MG1) was formed. The LCST of the nanogel and microgel was 33.5-34°C and 36.5-37°C, respectively. Thus, both the copolymers are water soluble at room temperature, but distinct phases appear at physiological temperatures. We hypothesized that these copolymers on entrapment with a drug could be used for topical application to the skin or eye for controlled drug delivery applications. Toxicological studies revealed that the copolymers are nontoxic in HeLa cells. Finally, our experiments show that a model drug [bovine serum albumin (BSA)] is released at 37°C with zero-order kinetics and confirmed using multiple well-known mathematical models. PMID:23255175

  7. From multi-responsive tri- and diblock copolymers to diblock-copolymer-decorated gold nanoparticles: the effect of architecture on micellization behaviors in aqueous solutions.

    PubMed

    Song, Lichun; Sun, Hui; Chen, Xiaolu; Han, Xia; Liu, Honglai

    2015-06-28

    This work reports on the aqueous stimuli-responsive behaviors of an ABA triblock copolymer, a BAB triblock copolymer, an AB diblock copolymer and citrate-based gold nanoparticles decorated with AB diblock copolymers (where A is the pH- and thermo-responsive poly[N,N-(dimethylamino)ethyl methacrylate] (PDMAEMA) and B is the thermo-responsive poly[2-(2-methoxyethoxy)ethyl methacrylate] (PMEO2MA)). The symmetric triblock polymers were synthesized via sequential atom transfer radical polymerization (ATRP) using a disulfide-functionalized initiator. Subsequently, the thiol-ended diblock copolymers were facilely obtained by reducing these triblock copolymers and were grafted onto gold nanoparticle (AuNP) surfaces via ligand exchange to yield stimuli-sensitive gold nanoparticles (Au@AB and Au@BA). The ABA and BAB triblock copolymers exhibited two-step thermo-induced aggregation behavior in water at a pH near the isoelectric point (IEP), which resulted in the formation of micelles after the first lower critical solution temperature (LCST) and large aggregates consisting of clustered micelles above the second LCST transition. The significant difference between the micelle sizes of the ABA and BAB copolymers, such that the micelle size of the BAB copolymer was smaller than that of the ABA copolymer although both had a similar unit composition, suggests a distinction between the micelle structures. The "branch" and "flower-like" micelles that are formed in the ABA and BAB aqueous solutions, respectively, ultimately governed the phase transition behaviors. The AB diblock copolymer exhibited similar micellization behavior and a micelle size roughly similar to that of the ABA triblock copolymer, although the chain length of the AB copolymer is only half that of the ABA copolymer. Both Au@PDMAEMA-PMEO2MA and Au@PMEO2MA-PDMAEMA showed similar dual LCST behaviors and pH-responsive behaviors in aqueous solutions without the addition of salt. A significant difference was observed

  8. Adsorption and functionality of fibrinogen on triblock copolymer-coated surfaces

    NASA Astrophysics Data System (ADS)

    O'Connor, Stephen Moss

    To assess the influence of the surface microenvironment on the adsorption and biologic activity of fibrinogen, a series of poly(ethylene oxide)/poly(propylene oxide) triblock copolymers were adsorbed to solid, hydrophobic polystyrene-divinylbenzene beads. The copolymers, which were of the form PEOsb{b}PPOsb{a}PEOsb{b}, varied in their hydrophile/lipophile balances (HLB) due only to differences in their PEO chain length (5 to 129 EO units) as the hydrophobic PPO core segment was of fixed length (56 or 69 PO units). The surface coverage of copolymers was determined first and after exposing the beads to fibrinogen or to human plasma, the total amount of protein adsorbed to their surface was measured. The functionality of fibrinogen bound to copolymer-modified beads was assessed in terms of fibrin clot formation and by the adherence of macrophages (THP-1 tumor cells). Enzymatic processing was used to probe the surface orientation of fibrinogen. The copolymers appear to adsorb in an expanded fashion, a conclusion supported by surface pressure-area isotherms of the copolymers spread at the air-water interface. As compared to copolymer-free surfaces, protein adsorption decreases by up to 90% as the PEO chain length of the copolymers increases. The copolymer coatings appear to lower fibrinogen adsorption by limiting the available surface area. On surfaces coated with the hydrophobic versions of the copolymers, the biologic assays demonstrate that fibrinogen is as reactive/coagulable as for surfaces with saturated coverages of fibrin despite that these copolymer-coated surfaces have 60% less fibrinogen adsorbed to them. When adsorbed at the same low surface concentration in the absence of copolymer, fibrinogen is not active. Enzymatic processing of bound fibrinogen suggests that the presence of the copolymers promote the adsorption of the protein in end-on fashion. It is proposed here, that when adsorbed end-on, fibrinogen is functional because its reactive sites are

  9. Vapor-liquid equilibria for copolymer+solvent systems: Effect of intramolecular repulsion

    SciTech Connect

    Gupta, R.B.; Prausnitz, J.M.

    1995-03-01

    Role of intramolecular interactions in blend miscibility is well documented for polymer+copolymer mixtures. Some copolymer+polymer mixtures are miscible although their corresponding homopolymers are not miscible; for example, over a range of acrylonitrile content, styrene/acrylonitrile copolymers are miscible with poly(methyl methacrylate) but neither polystyrene nor polyacrylonitrile is miscible with poly(methyl methacrylate). Similarly, over a composition range, butadiene/acrylonitrile copolymers are miscible with poly(vinyl chloride) while none of the binary combinations of the homopolymers [polybutadiene, polyacrylonitrile, and poly(vinyl chloride)] are miscible. This behavior has been attributed to ``intramolecular repulsion`` between unlike copolymer segments. We have observed similar behavior in vapor-liquid equilibria (VLE) of copolymer+solvent systems. We find that acrylonitrile/butadiene copolymers have higher affinity for acetonitrile solvent than do polyacrylonitrile or polybutadiene. We attribute this non-intuitive behavior to ``intramolecular repulsion`` between unlike segments of the copolymer. This repulsive interaction is weakened when acetonitrile molecules are in the vicinity of unlike copolymer segments, favoring copolymer+solvent miscibility. We find similar behavior when acetonitrile is replaced by methyl ethyl ketone. To best knowledge, this effect has not been reported previously for VLE. We have obtained VLE data for mixtures containing a solvent and a copolymer as a function of copolymer composition. It appears that, at a given solvent partial pressure, there may be copolymer composition that yields maximum absorption of the solvent. This highly non-ideal VLE phase behavior may be useful for optimum design of a membrane for a separation process.

  10. Synchrotron-based X-ray Fluorescence Microscopy in Conjunction with Nanoindentation to Study Molecular-Scale Interactions of Phenol-Formaldehyde in Wood Cell Walls

    SciTech Connect

    Jakes, Joseph E.; Hunt, Chris G.; Yelle, Daniel J.; Lorenz, Linda; Hirth, Kolby; Gleber, Sophie-Charlotte; Vogt, Stefan; Grigsby, Warren; Frihart, Charles R.

    2015-04-01

    Understanding and controlling molecular-scale interactions between adhesives and wood polymers are critical to accelerate the development of improved adhesives for advanced wood-based materials. The submicrometer resolution of synchrotron-based X-ray fluorescence microscopy (XFM) was found capable of mapping and quantifying infiltration of Br-labeled phenolformaldehyde (BrPF) into wood cell walls. Cell wall infiltration of five BrPF adhesives with different average molecular weights (MWs) was mapped. Nanoindentation on the same cell walls was performed to assess the effects of BrPF infiltration on cell wall hygromechanical properties. For the same amount of weight uptake, lower MW BrPF adhesives were found to be more effective at decreasing moisture-induced mechanical softening. This greater effectiveness of lower MW phenolic adhesives likely resulted from their ability to more intimately associate with water sorption sites in the wood polymers. Evidence also suggests that a BrPF interpenetrating polymer network (IPN) formed within the wood polymers, which might also decrease moisture sorption by mechanically restraining wood polymers during swelling.

  11. Protein-Resistant Biodegradable Amphiphilic Graft Copolymer Vesicles as Protein Carriers.

    PubMed

    Wang, Yupeng; Yan, Lesan; Li, Bin; Qi, Yanxin; Xie, Zhigang; Jing, Xiabin; Chen, Xuesi; Huang, Yubin

    2015-09-01

    The protein adsorption and self-assembly behavior of biocompatible graft copolymer, poly(lactide-co-diazidomethyl trimethylene carbonate)-g-poly(ethylene glycol) [P(LA-co-DAC)-g-PEG], were systematically studied. The graft copolymers showed enhanced resistance to non-specific protein adsorption compared with their block copolymer counterparts, indicative of the increased effect of PEG density beyond PEG length. Diverse nanostructures including vesicles can be assembled from the amphiphilic graft copolymers with well-defined nano-sizes. Hemoglobin (Hb), as a model protein, can be entrapped in the formed vesicles and keep the gas-binding capacity. The reduced release rate of Hb from graft copolymer vesicles indicated the relatively stable membrane packing compared with block copolymer counterpart. PMID:26036907

  12. Periodic nanostructures from self assembled wedge-type block-copolymers

    SciTech Connect

    Xia, Yan; Sveinbjornsson, Benjamin R.; Grubbs, Robert H.; Weitekamp, Raymond; Miyake, Garret M.; Piunova, Victoria; Daeffler, Christopher Scot

    2015-06-02

    The invention provides a class of wedge-type block copolymers having a plurality of chemically different blocks, at least a portion of which incorporates a wedge group-containing block providing useful properties. For example, use of one or more wedge group-containing blocks in some block copolymers of the invention significantly inhibits chain entanglement and, thus, the present block copolymers materials provide a class of polymer materials capable of efficient molecular self-assembly to generate a range of structures, such as periodic nanostructures and microstructures. Materials of the present invention include copolymers having one or more wedge group-containing blocks, and optionally for some applications copolymers also incorporating one or more polymer side group-containing blocks. The present invention also provides useful methods of making and using wedge-type block copolymers.

  13. Morphological Characteristics and Phase Behavior of Nanoparticle-Modified Block Copolymers

    NASA Astrophysics Data System (ADS)

    Bowman, Michelle; Bockstaller, Michael; Rasmussen, Kim; Samseth, Jon; Smith, Steven; Thompson, Russell; Spontak, Richard

    2007-03-01

    Block copolymers exhibit a wealth of nanoscale morphologies that continue to find use in a diverse variety of emergent (nano)technologies. While numerous studies have explored the effects of molecular confinement on such copolymers, few have examined the use of such objects to modify the morphological characteristics and phase behavior of microphase-ordered block copolymers. In this work, a poly(styrene-b-methyl methacrylate) (SM) diblock copolymer has been modified with surface-functionalized fumed silica (FS) and colloidal silica (CS). Dynamic rheological measurements have been conducted on the neat and nanoparticle-modified copolymer to generate a quantitative comparison with SM/FS and SM/CS nanocomposites. Transmission electron microscopy (TEM) and self-consistent field theory (SCFT) calculations have also been performed to further elucidate results obtained via dynamic rheology by establishing the morphological characteristics of the copolymer and the dispersion of the functionalized nanoparticles within the resultant nanocomposites.

  14. Phase Separation Kinetics of a Binary Polymer Blend with Added Random Copolymer

    NASA Astrophysics Data System (ADS)

    Waldow, Dean; Barham, Bethany; Halasa, Adel

    1998-03-01

    The phase separation kinetics of a polymer blend with increasing amounts of random copolymer was studied using wide angle light scattering. The system is a blend of polystyrene and polybutadiene, and the copolymer is an asymmetric random styrene-butadiene copolymer (80/20). The composition of the blend is near critical and the weight percentages of the added copolymer vary from 0.0 to 2.5 percent. The temperature of the cloud point increases with increasing copolymer amount indicating a destabilizing effect. Light scattering data was collected while temperature was jumped from the one-phase region into the two-phase region near the phase boundary. Early stage and intermediate stage kinetics were analyzed using Cahn-Hillard-Cook theory and scaling theory. The early stage kinetics indicate a slowing of the diffusion constants with added copolymer, and the intermediate stage kinetics suggest that the scaling theory doesn't accurately describe the data.

  15. The polymerization and electrochemical characterization of polypyrrole and polypyrrole/poly(ethylene oxide)pyrrole copolymers

    NASA Astrophysics Data System (ADS)

    Huntoon, Trey William Stevens

    1998-11-01

    The work contained within this document discusses the polymerization and subsequent characterization of Polypyrrole based electrodes for lithium batteries. Polypyrrole and Polypyrrole/polyethyloxy copolymers were compared and contrasted in an attempt to show the superior kinetics of the copolymer electrode. It was found that the diffusion of dopant ions across the electrode and electrolyte interface was increased by on order of magnitude in the copolymer sample. It was also found that the reversibility of the Polypyrrole electrode was greater than that of the copolymer electrode. While the diffusion coefficient of the copolymer electrode was altered to be comparable to that of the transition metal oxide cathodes in production today, the capacity of the copolymer material is still too low to be considered as an alternative cathode material in the lithium battery industry.

  16. Synthesis and Characterization of Poly(phthalazinone Ether Nitrile) Copolymers with Hydrophobic Surface

    NASA Astrophysics Data System (ADS)

    Dong, L. M.; Liao, G. X.; Liu, C.; Yang, S. S.; Jian, X. G.

    Poly(phthalazinone ether nitrile) (PPEN) block copolymers containing polysiloxane were prepared so as to create a strongly hydrophobic polymer surface. The copolymers were synthesized from eugenol end-capped polydimethylsiloxane (PDMS) and fluoro-terminated PPEN oligomers by the aromatic nucleophilic substitution polycondensation in the presence of dimethyl sulfoxide/o-dichlorobenzene and K2CO3 as solvents and catalyst, respectively. The resultant copolymers were characterized by FTIR, 1H NMR, and gel permeation chromatography. XPS analysis results indicated that the copolymer film had a very rich PDMS segment surface. Atomic force microscopy further showed that there existed a continuous PDMS phase on the copolymer surface and PPEN as the dispersive particles was dispersed at diameters between 0.1 and 0.3 nm. The enrichment of PDMS in the copolymer surface could be responsible for an increase of surface water repellency (113.4°).

  17. Solubilisation of drugs in micellar solutions of diblock copolymers of ethylene oxide and styrene oxide.

    PubMed

    Crothers, Michael; Ricardo, Nagíla M P S; Heatley, Frank; Nixon, S Keith; Attwood, David; Booth, Colin

    2008-06-24

    The solubilisation of two poorly soluble drugs, furosemide and nabumetone, in micellar solutions of diblock copolymers of ethylene oxide and styrene oxide has been studied at 25 and 37 degrees C and solubilisation capacities compared with published values for griseofulvin and docetaxel. Solubilisation in the micelle core, corrected for the different proportions of poly(styrene oxide) in the copolymers, was similar for all four drugs. The highest solubilisation capacities were found for a copolymer with worm-like micelles. PMID:18417305

  18. Ultrafine metal particles immobilized on styrene/acrylic acid copolymer particles

    SciTech Connect

    Tamai, Hisashi; Hamamoto, Shiro; Nishiyama, Fumitaka; Yasuda, Hajime

    1995-04-01

    Ultrafine metal particles immobilized on styrene/acrylic acid copolymer fine particles were produced by reducing the copolymer particles-metal ion complexes or refluxing an ethanol solution of metal ions in the presence of copolymer particles. The size of metal particles formed by reduction of the complex is smaller than that by reflux of the metal ion solution and depends on the amount of metal ions immobilized.

  19. Biological materials: Part A. tuning LCST of raft copolymers and gold/copolymer hybrid nanoparticles and Part B. Biobased nanomaterials

    NASA Astrophysics Data System (ADS)

    Chen, Ning

    The research described in this dissertation is comprised of two major parts. The first part studied the effects of asymmetric amphiphilic end groups on the thermo-response of diblock copolymers of (oligo/di(ethylene glycol) methyl ether (meth)acrylates, OEGA/DEGMA) and the hybrid nanoparticles of these copolymers with a gold nanoparticle core. Placing the more hydrophilic end group on the more hydrophilic block significantly increased the cloud point compared to a similar copolymer composition with the end group placement reversed. For a given composition, the cloud point was shifted by as much as 28 °C depending on the placement of end groups. This is a much stronger effect than either changing the hydrophilic/hydrophobic block ratio or replacing the hydrophilic acrylate monomer with the equivalent methacrylate monomer. The temperature range of the coil-globule transition was also altered. Binding these diblock copolymers to a gold core decreased the cloud point by 5-15 °C and narrowed the temperature range of the coil-globule transition. The effects were more pronounced when the gold core was bound to the less hydrophilic block. Given the limited numbers of monomers that are approved safe for in vivo use, employing amphiphilic end group placement is a useful tool to tune a thermo-response without otherwise changing the copolymer composition. The second part of the dissertation investigated the production of value-added nanomaterials from two biorefinery "wastes": lignin and peptidoglycan. Different solvents and spinning methods (melt-, wet-, and electro-spinning) were tested to make lignin/cellulose blended and carbonized fibers. Only electro-spinning yielded fibers having a small enough diameter for efficient carbonization (≤ 5-10 μm), but it was concluded that cellulose was not a suitable binder. Cellulose lignin fibers before carbonization showed up to 90% decrease in moisture uptake compared to pure cellulose. Peptidoglycan (a bacterial cell wall

  20. Supramolecular self-assembly of conjugated diblock copolymers.

    PubMed

    Wang, Hengbin; You, Wei; Jiang, Ping; Yu, Luping; Wang, H Hau

    2004-02-20

    This paper describes the synthesis and characterization of a novel series of copolymers with different lengths of oligo(phenylene vinylene) (OPV) as the rod block, and poly(propylene oxide) as the coil block. Detailed characterization by means of transmission electron microscopy (TEM), atomic force microscopy (AFM), and small-angle neutron scattering (SANS) revealed the strong tendency of these copolymers to self-assemble into cylindrical micelles in solution and as-casted films on a nanometer scale. These micelles have a cylindrical OPV core surrounded by a poly(propylene glycol) (PPG) corona and readily align with each other to form parallel packed structures when mica is used as the substrate. A packing model has been proposed for these cylindrical micelles. PMID:14978825

  1. Graphoepitaxy of diblock-copolymers microdomains with chemical patterns

    NASA Astrophysics Data System (ADS)

    Checco, Antonio; Ocko, Benjamin M.; Misner, Matthew; Xu, Ji; Russell, Thomas P.

    2007-03-01

    Topographically patterned substrates have been used in recent years to laterally confine diblock copolymer (DBC) thin films in order to induce long-range lateral order of the DBC microdomain lattice with respect to a macroscopic reference. Here we demonstrate that surfaces with pure chemical patterns can be used to confine laterally diblock copolymers thin films through template-induced dewetting. A thin DBC film (PS-PEO) is spun cast on top of a surface chemically patterned with micron-sized, wettable domains prepared by oxidative nanolithography. Subsequently, annealing is used to direct the dewetting of the thin film into regions which are conformal to the patterns. We investigate the conditions (film thickness, annealing time) necessary to obtain dewetted structures reproducing the pattern shape with a high level of fidelity. In addition, we study the effect of pattern shape and size on the long-range order of DBC microdomains.

  2. Magnetic Alignment of Block Copolymer Microdomains by Intrinsic Chain Anisotropy

    NASA Astrophysics Data System (ADS)

    Rokhlenko, Yekaterina; Gopinadhan, Manesh; Osuji, Chinedum O.; Zhang, Kai; O'Hern, Corey S.; Larson, Steven R.; Gopalan, Padma; Majewski, Paweł W.; Yager, Kevin G.

    2015-12-01

    We examine the role of intrinsic chain susceptibility anisotropy in magnetic field directed self-assembly of a block copolymer using in situ x-ray scattering. Alignment of a lamellar mesophase is observed on cooling across the disorder-order transition with the resulting orientational order inversely proportional to the cooling rate. We discuss the origin of the susceptibility anisotropy, Δ χ , that drives alignment and calculate its magnitude using coarse-grained molecular dynamics to sample conformations of surface-tethered chains, finding Δ χ ≈2 ×1 0-8. From field-dependent scattering data, we estimate that grains of ≈1.2 μ m are present during alignment. These results demonstrate that intrinsic anisotropy is sufficient to support strong field-induced mesophase alignment and suggest a versatile strategy for field control of orientational order in block copolymers.

  3. Room-Temperature-Cured Copolymers for Lithium Battery Gel Electrolytes

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Tigelaar, Dean M.

    2009-01-01

    Polyimide-PEO copolymers (PEO signifies polyethylene oxide) that have branched rod-coil molecular structures and that can be cured into film form at room temperature have been invented for use as gel electrolytes for lithium-ion electric-power cells. These copolymers offer an alternative to previously patented branched rod-coil polyimides that have been considered for use as polymer electrolytes and that must be cured at a temperature of 200 C. In order to obtain sufficient conductivity for lithium ions in practical applications at and below room temperature, it is necessary to imbibe such a polymer with a suitable carbonate solvent or ionic liquid, but the high-temperature cure makes it impossible to incorporate and retain such a liquid within the polymer molecular framework. By eliminating the high-temperature cure, the present invention makes it possible to incorporate the required liquid.

  4. Properties of the modified cellulosic fabrics using polyurethane acrylate copolymers.

    PubMed

    Tabasum, Shazia; Zuber, Mohammad; Jabbar, Abdul; Zia, Khalid Mahmood

    2013-05-15

    Polyurethane acrylate copolymers (PAC) were synthesized via emulsion polymerization following three step synthesis process using toluene-2,4-diisocyanate, hydroxy terminated poly(caprolactone) diol, 2-hydroxyethylacrylate (HEA) and butyl acrylate (BuA). Structural characteristics of the synthesized polyurethane acrylate copolymer (PAC) were studied using Fourier Transform Infrared (FT-IR) spectrophotometer and are with accordance with the proposed PAC structure. The physicochemical properties such as solid contents (%), tackiness, film appearance and emulsion stability were studied, discussed and co-related with other findings. The plain weave poly-cotton printed fabrics after application of PAC was evaluated applying colorfastness standard test method. The results revealed that emulsion stability is the main controlling factor of the synthesized material in order to get better applications and properties. The emulsion stability of the synthesized material increased with increase in molecular weight of the polycaprolactone diol. PMID:23544644

  5. Theory of Primary Photoexcitations in Donor-Acceptor Copolymers

    NASA Astrophysics Data System (ADS)

    Aryanpour, Karan; Dutta, Tirthankar; Huynh, Uyen N. V.; Vardeny, Zeev Valy; Mazumdar, Sumit

    2015-12-01

    We present a generic theory of primary photoexcitations in low band gap donor-acceptor conjugated copolymers. Because of the combined effects of strong electron correlations and broken symmetry, there is considerable mixing between a charge-transfer exciton and an energetically proximate triplet-triplet state with an overall spin singlet. The triplet-triplet state, optically forbidden in homopolymers, is allowed in donor-acceptor copolymers. For an intermediate difference in electron affinities of the donor and the acceptor, the triplet-triplet state can have a stronger oscillator strength than the charge-transfer exciton. We discuss the possibility of intramolecular singlet fission from the triplet-triplet state, and how such fission can be detected experimentally.

  6. Theory of Primary Photoexcitations in Donor-Acceptor Copolymers.

    PubMed

    Aryanpour, Karan; Dutta, Tirthankar; Huynh, Uyen N V; Vardeny, Zeev Valy; Mazumdar, Sumit

    2015-12-31

    We present a generic theory of primary photoexcitations in low band gap donor-acceptor conjugated copolymers. Because of the combined effects of strong electron correlations and broken symmetry, there is considerable mixing between a charge-transfer exciton and an energetically proximate triplet-triplet state with an overall spin singlet. The triplet-triplet state, optically forbidden in homopolymers, is allowed in donor-acceptor copolymers. For an intermediate difference in electron affinities of the donor and the acceptor, the triplet-triplet state can have a stronger oscillator strength than the charge-transfer exciton. We discuss the possibility of intramolecular singlet fission from the triplet-triplet state, and how such fission can be detected experimentally. PMID:26765027

  7. MEAN FIELD AND MONTE CARLO MODELING OF MULTIBLOCK COPOLYMERS

    SciTech Connect

    K. RASMUSSEN; ET AL

    2001-01-01

    The authors discuss and apply extensions needed to treat multiblock copolymers within the mean field theoretical framework for microphase separation in diblock copolymer metals, originally due to Leibler. The mean field calculations are complemented by lattice Monte Carlo realizations using the bond fluctuation model. They find that the microphase separation transition occurs at larger {sub {chi}}N as the number of blocks in increased beyond two (i.e., beyond diblock), and that the characteristic length scale of the emerging morphology decreases as the number of blocks increases. The latter prediction is in qualitative agreement with published experimental results due to Sontak and co-workers for model multiblock poly(styrene-isoprene) systems and recent results due to Hjelm and co-workers for a segmented poly(ester-urethane) relevant to Los Alamos interests. Additionally, the mean field predictions and bond fluctuation realizations yield consistent results.

  8. Hydrogen-Bonded Multifunctional Supramolecular Copolymers in Water.

    PubMed

    Xiang, Yunjie; Moulin, Emilie; Buhler, Eric; Maaloum, Mounir; Fuks, Gad; Giuseppone, Nicolas

    2015-07-21

    We have investigated the self-assembly in water of molecules having a single hydrophobic bis-urea domain linked to different hydrophilic functional side chains, i.e., bioactive peptidic residues and fluorescent cyanine dyes. By using a combination of spectroscopy, scattering, and microscopy techniques, we show that each one of these molecules can individually produce well-defined nanostructures such as twisted ribbons, two-dimensional plates, or branched fibers. Interestingly, when these monomers of different functionalities are mixed in an equimolar ratio, supramolecular copolymers are preferred to narcissistic segregation. Radiation scattering and imaging techniques demonstrate that one of the molecular units dictates the formation of a preferential nanostructure, and optical spectroscopies reveal the alternated nature of the copolymerization process. This work illustrates how social self-sorting in H-bond supramolecular polymers can give straightforward access to multifunctional supramolecular copolymers. PMID:26087392

  9. Multilayer light emitting diodes using a PPV based copolymer

    NASA Astrophysics Data System (ADS)

    Nguyen, T. P.; Chen, L. C.; Wang, X.; Huang, Z.

    1998-01-01

    We have investigated the electrical and optical properties of poly((2,5-(dimethoxy) p-phenylene vinylene)- p-phenylene vinylene) (PDMeOPV/PPV) copolymer used as an emitting layer in light emitting diodes. With p-phenylene vinylene (PPV) used as a hole transport layer and polyphenylquinoxaline (PPQ) as an electron transport layer, the emission intensity of the devices has substantially increased without alteration of the transport property. The different conduction mechanisms in the diodes were examined and discussed in terms of the energy band diagrams of the polymer layers. A balance of the injected charge carriers confined in the copolymer could explain the enhancement of the performance of the multilayer diodes.

  10. Self-assembled phases of block copolymer blend thin films.

    PubMed

    Yager, Kevin G; Lai, Erica; Black, Charles T

    2014-10-28

    The patterns formed by self-assembled thin films of blended cylindrical and lamellar polystyrene-b-poly(methyl methacrylate) block copolymers can be either a spatially uniform, single type of nanostructure or separate, coexisting regions of cylinders and lamellae, depending on fractional composition and molecular weight ratio of the blend constituents. In blends of block copolymers with different molecular weights, the morphology of the smaller molecular weight component more strongly dictates the resulting pattern. Although molecular scale chain mixing distorts microdomain characteristic length scales from those of the pure components, even coexisting morphologies exhibit the same domain spacing. We quantitatively account for the phase behavior of thin-film blends of cylinders and lamellae using a physical, thermodynamic model balancing the energy of chain distortions with the entropy of mixing. PMID:25285733

  11. Block Copolymer Membranes for Efficient Capture of a Chemotherapy Drug

    PubMed Central

    2016-01-01

    We introduce the use of block copolymer membranes for an emerging application, “drug capture”. The polymer is incorporated in a new class of biomedical devices, referred to as ChemoFilter, which is an image-guided temporarily deployable endovascular device designed to increase the efficacy of chemotherapy-based cancer treatment. We show that block copolymer membranes consisting of functional sulfonated polystyrene end blocks and a structural polyethylene middle block (S-SES) are capable of capturing doxorubicin, a chemotherapy drug. We focus on the relationship between morphology of the membrane in the ChemoFilter device and efficacy of doxorubicin capture measured in vitro. Using small-angle X-ray scattering and cryogenic scanning transmission electron microscopy, we discovered that rapid doxorubicin capture is associated with the presence of water-rich channels in the lamellar-forming S-SES membranes in aqueous environment. PMID:27547493

  12. Barite formation in the presence of a commercial copolymer

    NASA Astrophysics Data System (ADS)

    Ruiz-Agudo, Cristina; Putnis, Christine; Ruiz-Agudo, Encarnacion; Putnis, Andrew

    2015-04-01

    Fluid composition can significantly modify the mechanisms of mineral formation. Particularly, the presence of organic additives in the aqueous media has been shown to alter the precipitation of minerals substantially (e.g. calcium carbonate, barium carbonate and barium sulfate). Despite the numerous studies dealing with barite precipitation and the influence of organic additives (e.g. Benton et al. 1993, Qi et al., 2000, Wang and Cölfen, 2006, Mavredaki et al., 2011), the details of the mechanism of barite formation in the presence of organic additives, particularly at the early stages of this process, are yet to be fully resolved. Here, we present observations on the initial stages of barite formation from aqueous solutions, as well as the alterations induced by a commercial copolymer (maleic acid/allyl sulfonic acid copolymer with phosphonate groups), commonly used as a scale inhibitor in oil recovery. Most synthetic commercial additives contain the same functional groups (e.g. carboxylate, phosphonate and/or sulfonate groups). Thus our work may help to understand the mechanism by which copolymers modify crystallization processes and aid in the selection of the most appropriate inhibitors for hindering or controlling barite scale formation. Barite scaling is one of the main problems in many industrial processes (such as, paper-making, chemical manufacturing, cement operations, off-shore oil extraction, geothermal energy production). Using Atomic Force Microscopy (AFM), we show that barite growth is significantly influenced by the presence of the copolymer. In its absence, barium sulfate growth occurs by 2D island nucleation and spreading. The addition of small amounts (0.1 ppm and 0.5 ppm) of the copolymer enhances 2D nucleation but blocks growth. Just 1 ppm of inhibitor is enough to block barite nucleation and growth by adsorption of a copolymer layer onto the barite surface. Transmission electron microscopy (TEM) was also used to gain better insights into the

  13. Formulation and Characterization of Epoxy Resin Copolymer for Graphite Composites

    NASA Technical Reports Server (NTRS)

    Keck, F. L.

    1983-01-01

    Maximum char yield was obtained with a copolymer containing 25% mol fraction DGEBE and 75% mol fraction DGEBA (Epon 828). To achieve the high values (above 40%), a large quantity of catalyst (trimethoxyboroxine) was necessary. Although a graphite laminate 1/8" thick was successfully fabricated, the limited life of the catalyzed epoxy copolymer system precludes commercial application. Char yields of 45% can be achieved with phenolic cured epoxy systems as indicated by data generated under NAS2-10207 contract. A graphite laminate using this type of resin system was fabricated for comparison purposes. The resultant laminate was easier to process and because the graphite prepreg is more stable, the fabrication process could readily be adapted to commercial applications.

  14. Confinement of elastomeric block copolymers via forced assembly coextrusion.

    PubMed

    Burt, Tiffani M; Keum, Jong; Hiltner, Anne; Baer, Eric; Korley, Lashanda T J

    2011-12-01

    Forced assembly processing provides a unique opportunity to examine the effects of confinement on block copolymers (BCPs) via conventional melt processing techniques. The microlayering process was utilized to produce novel materials with enhanced mechanical properties through selective manipulation of layer thickness. Multilayer films consisting of an elastomeric, symmetric block copolymer confined between rigid polystyrene (PS) layers were produced with layer thicknesses ranging from 100 to 600 nm. Deformation studies of the confined BCP showed an increase in ductility as the layer thickness decreased to 190 nm due to a shift in the mode of deformation from crazing to shear yielding. Postextrusion annealing was performed on the multilayer films to investigate the impact of a highly ordered morphology on the mechanical properties. The annealed multilayer films exhibited increased toughness with decreasing layer thickness and resulted in homogeneous deformation compared to the as-extruded films. Multilayer coextrusion proved to be an advantageous method for producing continuous films with tunable mechanical response. PMID:22124208

  15. Supramolecular self-assembly of conjugated diblock copolymers.

    SciTech Connect

    Wang, H.; You, W.; Jiang, P.; Yu, L.; Wang, H. H.; Univ. of Chicago

    2004-02-20

    This paper describes the synthesis and characterization of a novel series of copolymers with different lengths of oligo(phenylene vinylene) (OPV) as the rod block, and poly(propylene oxide) as the coil block. Detailed characterization by means of transmission electron microscopy (TEM), atomic force microscopy (AFM), and small-angle neutron scattering (SANS) revealed the strong tendency of these copolymers to self-assemble into cylindrical micelles in solution and as-casted films on a nanometer scale. These micelles have a cylindrical OPV core surrounded by a poly(propylene glycol) (PPG) corona and readily align with each other to form parallel packed structures when mica is used as the substrate. A packing model has been proposed for these cylindrical micelles.

  16. Magnetic alignment of block copolymer microdomains by intrinsic chain anisotropy

    DOE PAGESBeta

    Rokhlenko, Yekaterina; Yager, Kevin G.; Gopinadhan, Manesh; Osuji, Chinedum O.; Zhang, Kai; O'Hern, Corey S.; Larson, Steven R.; Gopalan, Padma; Majewski, Pawel W.

    2015-12-18

    We examine the role of intrinsic chain susceptibility anisotropy in magnetic field directed self-assembly of a block copolymer using in situ x-ray scattering. Alignment of a lamellar mesophase is observed on cooling across the disorder-order transition with the resulting orientational order inversely proportional to the cooling rate. We discuss the origin of the susceptibility anisotropy, Δχ, that drives alignment and calculate its magnitude using coarse-grained molecular dynamics to sample conformations of surface-tethered chains, finding Δχ ≈ 2×10–8. From field-dependent scattering data, we estimate that grains of ≈ 1.2 μm are present during alignment. Furthermore, these results demonstrate that intrinsic anisotropymore » is sufficient to support strong field-induced mesophase alignment and suggest a versatile strategy for field control of orientational order in block copolymers.« less

  17. All Solid State Rechargeable Lithium Batteries using Block Copolymers

    NASA Astrophysics Data System (ADS)

    Hallinan, Daniel; Balsara, Nitash

    2011-03-01

    The growing need for alternative energy and increased demand for mobile technology require higher density energy storage. Existing battery technologies, such as lithium ion, are limited by theoretical energy density as well as safety issues. Other battery chemistries are promising options for dramatically increasing energy density. Safety can be improved by replacing the flammable, reactive liquids used in existing lithium-ion battery electrolytes with polymer electrolytes. Block copolymers are uniquely suited for this task because ionic conductivity and mechanical strength, both important properties in battery formulation, can be independently controlled. In this study, lithium batteries were assembled using lithium metal as negative electrode, polystyrene-b-poly(ethylene oxide) copolymer with lithium salt as electrolyte, and a positive electrode. The positive electrode consisted of polymer electrolyte for ion conduction, carbon for electron conduction, and an active material. Batteries were charged and discharged over many cycles. The battery cycling results were compared to a conventional battery chemistry.

  18. Effect of chain microstructure on physical properties of olefin copolymers

    NASA Astrophysics Data System (ADS)

    Poon, Benjamin Chunman

    The effect of chain microstructure on various physical properties was studied in polyethylene and polypropylene copolymers. Adhesion of Ziegler-Natta (ZNPE) and metallocene (mPE) catalyzed ethylene-octene copolymers to polypropylene (PP) were studied by measuring the delamination toughness G of coextruded microlayers using the T-peel test. It was found that the heterogeneous ZNPE exhibited poor adhesion to polypropylene. It was proposed that the low molecular weight, highly branched ZNPE fractions migrate to the interface to form an amorphous layer. The homogeneous mPE with the same short chain branch content showed very high G. Blending ZNPE with an mPE increased G. Atomic force microscopy revealed that blending mPE into ZNPE reduced or eliminated the amorphous interfacial layer. It was hypothesized that mPE increased miscibility of low molecular weight, highly branched fractions of ZNPE and prevented their segregation at the interface. The solid state structure and properties of homogeneous propylene-octene copolymers were examined. Based on the combined observations from melting behavior, dynamic mechanical response, morphology with primarily atomic force microscopy, X-ray diffraction, and tensile deformation, a classification scheme with 4 distinct categories is proposed. The homopolymer with 60 wt% crystallinity constitutes Type IV. It is characterized by large alpha-positive spherulite. Copolymers with up to 5 mol% octene, with at least 35 wt% crystallinity, are classified as Type III. They crystallize as alpha-positive spherulites that are smaller than the homopolymer. Both Type IV and Type III materials exhibit thermoplastic behavior. Copolymers classified as Type II have between 5 and 10 mol% octene with crystallinity in the range of 20--35%. Type II materials have smaller impinging spherulites than Type III copolymers and they are negative. The materials in this category have plastomeric behavior. Type I copolymers have more than 10 mol% octene and less

  19. Magnetic alignment of block copolymer microdomains by intrinsic chain anisotropy

    SciTech Connect

    Rokhlenko, Yekaterina; Yager, Kevin G.; Gopinadhan, Manesh; Osuji, Chinedum O.; Zhang, Kai; O'Hern, Corey S.; Larson, Steven R.; Gopalan, Padma; Majewski, Pawel W.

    2015-12-18

    We examine the role of intrinsic chain susceptibility anisotropy in magnetic field directed self-assembly of a block copolymer using in situ x-ray scattering. Alignment of a lamellar mesophase is observed on cooling across the disorder-order transition with the resulting orientational order inversely proportional to the cooling rate. We discuss the origin of the susceptibility anisotropy, Δχ, that drives alignment and calculate its magnitude using coarse-grained molecular dynamics to sample conformations of surface-tethered chains, finding Δχ ≈ 2×10–8. From field-dependent scattering data, we estimate that grains of ≈ 1.2 μm are present during alignment. Furthermore, these results demonstrate that intrinsic anisotropy is sufficient to support strong field-induced mesophase alignment and suggest a versatile strategy for field control of orientational order in block copolymers.

  20. Defect Structures in Block Copolymer/Nanoparticle Blends

    NASA Astrophysics Data System (ADS)

    Ryu, Hyung Ju; Bockstaller, Michael

    2009-03-01

    We present a systematic study of the implications of nanoparticle additives on the defect formation in block copolymer/nanoparticle blends (BCP). The morphology of lamellar styrene/isoprene-based di- and triblock copolymers blended with polystyrene-coated gold nanocrystals at various filling fractions was analyzed using electron microscopy using stereology and image reconstruction. Three structural characteristics, i.e. the grain size distribution, grain orientation distribution and grain boundary structure, were analyzed as a function of polymer chain architecture, particle filling fraction and film processing conditions. With increasing particle filling fraction the average anisotropy as well as average grain size is observed to decrease as is the rate of grain growth during thermal annealing. The results are interpreted in terms of the stabilization of grain boundary structures through segregation of particle fillers to the grain boundary regions.

  1. Structural Characterization of Layered Morphologies in Precise Copolymers

    NASA Astrophysics Data System (ADS)

    Trigg, Edward; Gaines, Taylor; Wagener, Kenneth; Winey, Karen

    2015-03-01

    Layered morphologies have been observed in precise polyethylene-based copolymers that contain acid, charged, or polar functional groups precisely spaced along a linear alkane chain. Sufficiently long alkane segments form structures resembling orthorhombic polyethylene crystals, while the functional groups form 2-D layers that disrupt the alkane crystal structure to varying degrees. Here, layered morphologies in precise copolymers containing acrylic acid, phosphonic acid, imidazolium bromide, and sulfone groups are studied via X-ray scattering. Specifically, the composition profiles of the layered structures are obtained by Fourier synthesis, and the coherence length is investigated using peak width analysis. This analysis indicates that the layers of functional groups are frequently bordered by two crystallites, which suggests different dynamics relative to layers bordered by one crystalline and one amorphous microdomain. Detailed understanding of the structure of the layered morphologies will allow for a systematic investigation of proton and ion conductivity mechanisms, which are expected to occur through the high-dielectric layers.

  2. Beyond Orientation: The Impact of Electric Fields on Block Copolymers

    SciTech Connect

    Liedel, Clemens; Boker, A.; Pester, Christian; Ruppel, Markus A; Urban, Volker S

    2012-01-01

    Since the first report on electric field-induced alignment of block copolymers (BCPs) in 1991, electric fields have been shown not only to direct the orientation of BCP nanostructures in bulk, solution, and thin films, but also to reversibly induce order-order transitions, affect the order-disorder transition temperature, and control morphologies' dimensions with nanometer precision. Theoretical and experimental results of the past years in this very interesting field of research are summarized and future perspectives are outlined.

  3. Ethylene vinylacetate copolymer and nanographite composite as chemical vapour sensor

    NASA Astrophysics Data System (ADS)

    Stepina, Santa; Sakale, Gita; Knite, Maris

    2013-12-01

    Polymer-nanostructured carbon composite as chemical vapour sensor is described, made by the dissolution method of a non-conductive polymer, ethylene vinylacetate copolymer, mixed with conductive nanographite particles (carbon black). Sensor exhibits relative electrical resistance change in chemical vapours, like ethanol and toluene. Since the sensor is relatively cheap, easy to fabricate, it can be used in air quality monitoring and at industries to control hazardous substance concentration in the air, for example, to protect workers from exposure to chemical spills.

  4. Block copolymer blends with improved oil absorption resistance

    SciTech Connect

    Himes, G.R.; Sanders, A.

    1989-11-14

    This patent describes a thermoplastic blend. It comprises: about 80 to about 20 parts by weight of an elastometric block copolymer having the general configuration A-B-A, wherein: each A block is a polymerized monoalkenyl aromatic hydrocarbon block having an average molecular weight of about 4000 to about 115,000; the A blocks, in combination, comprise about 5 to about 35w% of the elastomeric block copolymer; and each B block is a non-hydrogenated butadiene hydrocarbon block consisting of 8 to 55 mole percent condensed butadiene units in the 1,2 configuration, or a hydrogenated butadiene hydrocarbon block consisting of 35 to 55 mole percent condensed butadiene units in the 1,2 configuration, and the B block has an average molecular weight of between about 20,000 and about 450,000; and about 20 to about 80 parts by weight of a block copolymer having the general configuration A-B-A wherein: each A block is a polymerized monoalkenyl aromatic hydrocarbon block having an average molecular weight of about 4000 to about 115,000; the A blocks, in combination, comprise about 5 to about 35 w % of the block copolymer; each B block is a polymerized butadiene hydrocarbon block consisting of about 18 to 34 mole percent condensed butadiene units in the 1,2 configuration, and the B block has an average molecular weight of between about 20,000 and about 450,000; and the B blocks are hydrogenated to an unsaturation that is less than about 5% of the original unsaturation.

  5. Roll-on perfume compositions containing polyoxybutylene-polyoxyethylene copolymers

    SciTech Connect

    Schmolka, I.R.

    1987-05-26

    This patent describes a liquid roll-on composition containing, in weight percent based upon the total composition weight, from 5 percent to 15 percent of a perfume oil, from 25 percent to 40 percent of a volatile alcohol, from 10 percent to 60 percent water, and from 10 percent to 30 percent of a nonionic polyether surfactant. The improvement comprises employing as the nonionic polyether surfactant a cogeneric polyoxybutylene-polyoxyethylene block copolymer.

  6. Viscoelastic response of diblock copolymers to oscillatory shear.

    PubMed

    Rüdiger, S

    2005-05-01

    A mesoscopic model for diblock copolymers is combined with a simple rheological description of the viscoelastic contrast of its two phases. Under oscillatory shear the contrast generates secondary velocity fields and substantial deviations of volume-averaged flow parameters. The validity of our analytical findings is tested with three-dimensional numerical simulations. Furthermore, we consider the effect of advection by the generated flows on the stability of ordered lamellar states and propose a new criterion for the selection of orientations. PMID:15864726

  7. Novel Cyclo Olefin Copolymer Used as Waveguide Film

    NASA Astrophysics Data System (ADS)

    Hwang, Shug-June; Yu, Hsin Her

    2005-04-01

    A novel cyclo olefin copolymer (COC) waveguide film was fabricated and characterized. The optical properties as well as the absorption spectrum of this polymer film were observed using a prism coupler and by Fourier transformation infra-red (FTIR) spectroscopy. Atomic force microscopy (AFM) was also used to monitor the morphology of the waveguide film to probe the influence of an external electric field. In addition, the moisture resistance of this waveguide film was explored by water permeation measurements.

  8. Self-assembly of cyclic rod-coil diblock copolymers.

    PubMed

    He, Linli; Chen, Zenglei; Zhang, Ruifen; Zhang, Linxi; Jiang, Zhouting

    2013-03-01

    The phase behavior of cyclic rod-coil diblock copolymer melts is investigated by the dissipative particle dynamics simulation. In order to understand the effect of chain topological architecture better, we also study the linear rod-coil system. The comparison of the calculated phase diagrams between the two rod-coil copolymers reveals that the order-disorder transition point (χN)ODT for cyclic rod-coil diblock copolymers is always higher than that of equivalent linear rod-coil diblocks. In addition, the phase diagram for cyclic system is more "symmetrical," due to the topological constraint. Moreover, there are significant differences in the self-assembled overall morphologies and the local molecular arrangements. For example, frod = 0.5, both lamellar structures are formed while rod packing is different greatly in cyclic and linear cases. The lamellae with rods arranged coplanarly into bilayers occurs in cyclic rod-coil diblocks, while the lamellar structure with rods arranged end by end into interdigitated bilayers appears in linear counterpart. In both the lamellar phases, the domain size ratio of cyclic to linear diblocks is ranged from 0.63 to 0.70. This is attributed to that the cyclic architecture with the additional junction increases the contacts between incompatible blocks and prevents the coil chains from expanding as much as the linear cases. As frod = 0.7, the hexagonally packed cylinder is observed for cyclic rod-coil diblocks, while liquid-crystalline smectic A lamellar phase is formed in linear system. As a result, the cyclization of a linear rod-coil block copolymer can induce remarkable differences in the self-assembly behavior and also diversify its physical properties and applications greatly. PMID:23485326

  9. Hole schubweg in FEP (fluorinated ethylene propylene copolymer)

    NASA Astrophysics Data System (ADS)

    Wintle, H. J.

    We discuss four models to account for observations of a constant hole schubweg in FEP (fluorinated ethylene propylene copolymer). Inhomogeneity in the sample and one-dimensional chain transport seem unlikely, while conventional semiconductor theory demands a particular combination of properties. Tunnelling, influenced by the field to yield essentially unidirectional transport, matches the observations and gives a reasonable trap density ( N ≈ 10 19 cm -3, with wide limits of uncertainty).

  10. Oxidatively stable linear carborane-siloxane-diacetylene copolymers

    SciTech Connect

    Son, D.Y.; Keller, T.M.

    1995-12-31

    New thermosetting copolymers have been synthesized which contain varying amounts of carborane in the backbone. The syntheses are straightforward and proceed in high yield. The polymers give high char yields on pyrolysis, and the resultant chars show excellent oxidative stability at high temperatures. It has been determined that only a small percentage of carborane is necessary to provide this oxidation protection. Thus, these polymers are more cost-effective than previous polymers which contained carborane in each repeating unit.

  11. Self-doped microphase separated block copolymer electrolyte

    DOEpatents

    Mayes, Anne M.; Sadoway, Donald R.; Banerjee, Pallab; Soo, Philip; Huang, Biying

    2002-01-01

    A polymer electrolyte includes a self-doped microphase separated block copolymer including at least one ionically conductive block and at least one second block that is immiscible in the ionically conductive block, an anion immobilized on the polymer electrolyte and a cationic species. The ionically conductive block provides a continuous ionically conductive pathway through the electrolyte. The electrolyte may be used as an electrolyte in an electrochemical cell.

  12. Block copolymer libraries: modular versatility of the macromolecular Lego system.

    PubMed

    Lohmeijer, Bas G G; Wouters, Daan; Yin, Zhihui; Schubert, Ulrich S

    2004-12-21

    The synthesis and characterization of a new 4 x 4 library of block copolymers based on polystyrene and poly(ethylene oxide) connected by an asymmetrical octahedral bis(terpyridine) ruthenium complex at the block junction are described, while initial studies on the thin film morphology of the components of the library are presented by the use of Atomic Force Microscopy, demonstrating the impact of a library approach to derive structure-property relationships. PMID:15599456

  13. Thermodynamics of Surfactants, Block Copolymers and Their Mixtures in Water: The Role of the Isothermal Calorimetry

    PubMed Central

    De Lisi, Rosario; Milioto, Stefania; Muratore, Nicola

    2009-01-01

    The thermodynamics of conventional surfactants, block copolymers and their mixtures in water was described to the light of the enthalpy function. The two methodologies, i.e. the van’t Hoff approach and the isothermal calorimetry, used to determine the enthalpy of micellization of pure surfactants and block copolymers were described. The van’t Hoff method was critically discussed. The aqueous copolymer+surfactant mixtures were analyzed by means of the isothermal titration calorimetry and the enthalpy of transfer of the copolymer from the water to the aqueous surfactant solutions. Thermodynamic models were presented to show the procedure to extract straightforward molecular insights from the bulk properties. PMID:19742173

  14. Self-assembly of block copolymers on topographically patterned polymeric substrates

    DOEpatents

    Russell, Thomas P.; Park, Soojin; Lee, Dong Hyun; Xu, Ting

    2016-05-10

    Highly-ordered block copolymer films are prepared by a method that includes forming a polymeric replica of a topographically patterned crystalline surface, forming a block copolymer film on the topographically patterned surface of the polymeric replica, and annealing the block copolymer film. The resulting structures can be used in a variety of different applications, including the fabrication of high density data storage media. The ability to use flexible polymers to form the polymeric replica facilitates industrial-scale processes utilizing the highly-ordered block copolymer films.

  15. Photochromic copolymers containing 3-indolylfulgides/indolylfulgimides: synthesis and photochemical properties in toluene and as films

    PubMed Central

    Islamova, Nadezhda I.; Chen, Xi; Fan, Changjun; Andino, Richard S.; Lees, Watson J.

    2013-01-01

    Photochromic indolylfulgimides covalently attached to polymers have beneficial properties for optical switching. A 3-indolylfulgide and two 3-indolylfulgimides with one or two polymerizable styrene groups attached on the nitrogen atom(s) were synthesized. Copolymerization with methyl methacrylate (MMA) provided linear copolymers (one styrene group) or a cross-linked copolymer (two styrene groups). The properties of the monomers and copolymers in toluene or as thin films were characterized. The new copolymers were photochromic (reversible Z-to-C isomerization), absorbed visible light, and revealed good thermal and photochemical stability. At room temperature, all copolymer films showed no loss of absorbance after 5 weeks. At 80 °C in either toluene or as films, the Z-forms copolymers were less stable than the C-form copolymers, which showed little or no degradation after 400 h. The degradation rate due to repeated ring-closing – ring opening cycles was less than 3% per 100 cycles. The cross-linked copolymer showed photochemical stability comparable to monomeric fulgides in toluene, <1% per 100 cycles. In general, the properties of the linear and cross-linked copolymers were similar to the corresponding monomers in toluene. In films, the conformations of the Z-form were restricted due to the matrix indicating that the preparation of films from the C-form is advantageous. PMID:23935228

  16. Efficacy of Different Block Copolymers in Facilitating Microemulsion Phases in Polymer Blend Systems

    NASA Astrophysics Data System (ADS)

    Pandav, Gunja; Ganesan, Venkat

    2014-03-01

    Polymeric microemulsions are formed in a narrow range of phase diagram when a blend of immiscible homopolymers is compatibilized by copolymers. In this study, we consider the ternary blend system of A and B homopolymers mixed with block copolymers containing A and B segments, and probe the efficacy of different copolymer configurations in promoting the formation of microemulsion phases. Specifically, we consider: (a) Monodisperse diblock copolymers; (b) Diblock copolymers with bidisperse molecular weights (MW); (c) Block copolymers having MW polydispersity in one of the blocks; (d) Diblock copolymers having monodisperse MW but bidispersity in average composition; and (e) Gradient copolymers exhibiting a linear variation in the average composition. Using single chain in mean field simulations effected in two dimensions, we probe the onset of formation and the width of the bicontinuous microemulsion channel in the ternary phase diagram of homopolymer blended with compatibilizer. We rationalize our results by explicitly quantifying the interfacial activity and the influence of fluctuation effects in the respective copolymer systems.

  17. Multifunctional triblock copolymers for intracellular messenger RNA delivery

    PubMed Central

    Cheng, C.; Convertine, A.J.; Stayton, P.S.; Bryers, J.D.

    2012-01-01

    Messenger RNA (mRNA) is a promising alternative to plasmid DNA (pDNA) for gene vaccination applications, but safe and effective delivery systems are rare. Reversible addition-fragmentation chain transfer (RAFT) polymerization was employed to synthesize a series of triblock copolymers designed to enhance the intracellular delivery of mRNA. These materials are composed of a cationic dimethylaminoethyl methacrylate (DMAEMA) segment to mediate mRNA condensation, a hydrophilic poly(ethylene glycol) methyl ether methacrylate (PEGMA) segment to enhance stability and biocompatibility, and a pH-responsive endosomolytic copolymer of diethylaminoethyl methacrylate (DEAEMA) and butyl methacrylate (BMA) designed to facilitate cytosolic entry. The blocking order and PEGMA segment length were systematically varied to investigate the effect of different polymer architectures on mRNA delivery efficacy. These polymers were monodisperse, exhibited pH-dependent hemolytic activity, and condensed mRNA into 86–216 nm particles. mRNA polyplexes formed from polymers with the PEGMA segment in the center of the polymer chain displayed the greatest stability to heparin displacement and were associated with the highest transfection efficiencies in two immune cell lines, RAW 264.7 macrophages (77%) and DC2.4 dendritic cells (50%). Transfected DC2.4 cells were shown to be capable of subsequently activating antigen-specific T cells, demonstrating the potential of these multifunctional triblock copolymers for mRNA-based vaccination strategies. PMID:22784603

  18. Non-Classical Order in Sphere Forming ABAC Tetrablock Copolymers

    NASA Astrophysics Data System (ADS)

    Zhang, Jingwen; Sides, Scott; Bates, Frank

    2013-03-01

    AB diblock and ABC triblock copolymers have been studied thoroughly. ABAC tetrablock copolymers, representing the simplest variation from ABC triblock by breaking the molecular symmetry via inserting some of the A block in between B and C blocks, have been studied systematically in this research. The model system is poly(styrene-b-isoprene-b-styrene-b-ethylene oxide) (SISO) tetrablock terpolymers and the resulting morphologies were characterized by nuclear magnetic resonance, gel permeation chromatography, small-angle X-ray scattering, transmission electron microscopy, differential scanning calorimetry and dynamic mechanical spectroscopy. Two novel phases are first discovered in a single component block copolymers: hexagonally ordered spherical phase and tentatively identified dodecagonal quasicrystalline (QC) phase. In particular, the discovery of QC phase bridges the world of soft matters to that of metals. These unusual sets of morphologies will be discussed in the context of segregation under the constraints associated with the tetrablock molecular architecture. Theoretical calculations based on the assumption of Gaussian chain statistics provide valuable insights into the molecular configurations associated with these morphologies. the U.S. Department of Energy, Basic Energy Sciences, Division of Materials Science and Engineering, under contract number DEAC05-00OR22725 with UT-Battelle LLC at Oak Ridge National Lab.

  19. Formation and Characterization of Anisotropic Block Copolymer Gels

    NASA Astrophysics Data System (ADS)

    Liaw, Chya Yan; Joester, Derk; Burghardt, Wesley; Shull, Kenneth

    2012-02-01

    Cylindrical micelles formed from block copolymer solutions closely mimic biological fibers that are presumed to guide mineral formation during biosynthesis of hard tissues like bone. The goal of our work is to use acrylic block copolymers as oriented templates for studying mineral formation reactions in model systems where the structure of the underlying template is well characterized and reproducible. Self-consistent mean field theory is first applied to investigate the thermodynamically stable micellar morphologies as a function of temperature and block copolymer composition. Small-angle x-ray scattering, optical birefringence and shear rheometry are used to study the morphology development during thermal processing. Initial experiments are based on a thermally-reversible alcohol-soluble system that can be converted to an aqueous gel by hydrolysis of a poly(t-butyl methacrylate) block to a poly(methacrylic acid) block. Aligned cylindrical domains are formed in the alcohol-based system when shear is applied in an appropriate temperature regime, which is below the critical micelle temperature but above the temperature at which the relaxation time of the gels becomes too large. Processing strategies for producing the desired cylindrical morphologies are being developed that account for both thermodynamic and kinetic effects.

  20. Electrically Tunable Soft-Solid Block Copolymer Structural Color.

    PubMed

    Park, Tae Joon; Hwang, Sun Kak; Park, Sungmin; Cho, Sung Hwan; Park, Tae Hyun; Jeong, Beomjin; Kang, Han Sol; Ryu, Du Yeol; Huh, June; Thomas, Edwin L; Park, Cheolmin

    2015-12-22

    One-dimensional photonic crystals based on the periodic stacking of two different dielectric layers have been widely studied, but the fabrication of mechanically flexible polymer structural color (SC) films, with electro-active color switching, remains challenging. Here, we demonstrate free-standing electric field tunable ionic liquid (IL) swollen block copolymer (BCP) films. Placement of a polymer/ionic liquid film-reservoir adjacent to a self-assembled poly(styrene-block-quaternized 2-vinylpyridine) (PS-b-QP2VP) copolymer SC film allowed the development of red (R), green (G), and blue (B) full-color SC block copolymer films by swelling of the QP2VP domains by the ionic liquid associated with water molecules. The IL-polymer/BCP SC film is mechanically flexible with excellent color stability over several days at ambient conditions. The selective swelling of the QP2VP domains could be controlled by both the ratio of the IL to a polymer in the gel-like IL reservoir layer and by an applied voltage in the range of -3 to +6 V using a metal/IL reservoir/SC film/IL reservoir/metal capacitor type device. PMID:26505787

  1. Morphology and Proton Transport in Humidified Phosphonated Peptoid Block Copolymers

    PubMed Central

    2016-01-01

    Polymers that conduct protons in the hydrated state are of crucial importance in a wide variety of clean energy applications such as hydrogen fuel cells and artificial photosynthesis. Phosphonated and sulfonated polymers are known to conduct protons at low water content. In this paper, we report on the synthesis phosphonated peptoid diblock copolymers, poly-N-(2-ethyl)hexylglycine-block-poly-N-phosphonomethylglycine (pNeh-b-pNpm), with volume fractions of pNpm (ϕNpm) values ranging from 0.13 to 0.44 and dispersity (Đ) ≤ 1.0003. The morphologies of the dry block copolypeptoids were determined by transmission electron microscopy and in both the dry and hydrated states by synchrotron small-angle X-ray scattering. Dry samples with ϕNpm > 0.13 exhibited a lamellar morphology. Upon hydration, the lowest molecular weight sample transitioned to a hexagonally packed cylinder morphology, while the others maintained their dry morphologies. Water uptake of all of the ordered samples was 8.1 ± 1.1 water molecules per phosphonate group. In spite of this, the proton conductivity of the ordered pNeh-b-pNpm copolymers ranged from 0.002 to 0.008 S/cm. We demonstrate that proton conductivity is maximized in high molecular weight, symmetric pNeh-b-pNpm copolymers. PMID:27134312

  2. Chain exchange kinetics of block copolymer micelles in ionic liquids

    NASA Astrophysics Data System (ADS)

    Ma, Yuanchi; Lodge, Timothy

    The chain exchange kinetics of block copolymer micelles has been studied using time-resolved small-angle neutron scattering (TR-SANS), a key tool in determining the average micelle composition in contrast-matched solvents. In this work, PMMA-block-PnBMA was selected as the model block copolymer, which has a LCST behavior in the common ionic liquids, [EMIM][TFSI] and [BMIM][TFSI]. We examined the chain exchange kinetics of three PMMA-block-PnBMA copolymers, with identical PMMA block length (MPMMA = 25000) and different PnBMA block lengths (MPnBMA = 24000, 35000 and 53000); the Flory-Huggins interaction parameter (χ) between the core (PnBMA) and the solvent were varied by mixing [EMIM][TFSI] and [BMIM][TFSI] in different ratios. We found that the relaxation of the initial segregation of h- and d- micelles followed the same form with the time as previously developed by our group. Assuming that single chain expulsion is the rate limiting step, the thermal barrier was found to depend linearly on the core block length (Ncore) . Furthermore, the effect of χ on the chain exchange kinetics will also be discussed.

  3. Nanostructured anion conducting block copolymer electrolyte thin films

    NASA Astrophysics Data System (ADS)

    Arges, Christopher; Kambe, Yu; Nealey, Paul

    Lamellae forming block copolymer electrolyte (BCE) thin-films with perpendicular aligned orientation were registered with high fidelity over large areas via a self-assembly process followed by a novel chemical vapor infiltration reaction (CVIR) technique. In this scheme, poly(styrene- b-2-vinyl pyridine) (PS bP2VP) block copolymers were self-assembled with perpendicular orientations on neutral chemical brushes using solvent vapor annealing. The ionic groups were selectively introduced into the P2VP block via a Menshutkin reaction that converted the nitrogen in the pyridine to n-methylpyridinium - anion carrier groups. FTIR-ATR and XPS tools confirmed the formation of the aforementioned ionic moieties post CVIR process and structure imaging tools (e.g., SEM and AFM imaging, GI-SAXS and RSOXs) established that incorporation of the ionic groups did not alter the self-assembled nanostructured films nor did subsequent ion-exchange processes. Electrochemical impedance spectroscopy determined the in-plane ion conductivity of different counteranions in the BCE thin films and alteration to the symmetry of the block copolymer film substantially improved (or hindered) BCE ion conductivity if the P2VP block's volume fraction was slightly greater than (or less than) 0.5. U.S. Department of Energy, Office of Science under Contract No. DE-AC02-06CH11357.

  4. Solubilization of a homopolymer in a block copolymer

    SciTech Connect

    Jeon, K.J.; Roe, R.J. . Dept of Materials Science and Engineering)

    1994-04-25

    Blends containing styrene-butadiene diblock copolymer (50 wt % styrene content) and polystyrene of various molecular weights are studied by light scattering, transmission electron microscopy, and small-angle X-ray scattering. The solubility of polystyrene in the styrene domain of the block copolymer is governed by the ratio of the homopolymer molecular weight to the block molecular weight. A finite solubility limit exists when this ratio exceeds [approximately]1. The lamellar repeat period increases linearly as more polystyrene is added, but the butadiene layer thickness remains constant, signifying that the average interfacial area occupied by a copolymer junction point does not change with added polystyrene. This contrasts to the case found by the others that the average area per junction point increases when the added homopolymer is smaller than the block size. Small-angle X-ray scattering patterns obtained from samples having lamellar morphology are described by an idealized model in which layers of styrene and butadiene of randomly varying thicknesses with a diffuse interface between them are stacked parallel.

  5. Simple, generalizable route to highly aligned block copolymer thin films

    NASA Astrophysics Data System (ADS)

    Qiang, Zhe; Cavicchi, Kevin; Vogt, Bryan; University of Akron Team

    Macroscopic alignment of block copolymer domains in thin films is desired for many applications, such as cell responsive surfaces or optical polarizers. Alignment generally requires specialized tools that apply external fields, shear force gradient, or produce topological patterned substrates. This requirement limits the broad academic application of aligned BCPs. Here, we describe a simple modification of commonly utilized solvent vapor annealing (SVA) process for macroscopic alignment of BCPs. Adhering a flat, crosslinked elastomer pad to the BCP film leads to differential swelling between the elastomer pad and BCP to produce a shear force that aligns the ordered BCP domains. The role of elastomer properties, solvent quality, drying rate and degree of segregation of the block copolymer will be discussed to provide generalized rules for alignment with this technique. Cylindrical nanostructures formed in polystyrene-block-polydimethylsiloxane can be transformed into arrays of silica lines and increasing the thickness from a monolayer to bilayer can effectively halve the spacing of the lines. These results illustrate a generalized method for BCP alignment and a potential route for the generation of complex hierarchical assembled structures. A generalized method for block copolymer thin film alignment: solvent vapor annealing with shear.

  6. Stress induced topographic patterning in thin diblock copolymer films

    NASA Astrophysics Data System (ADS)

    Croll, Andrew; Crosby, Alfred

    2011-03-01

    When a thin rigid polymer film is attached to a soft elastic substrate and placed in a state of compressive stress, the system wrinkles as a critical stress is surpassed. This simple deformation pattern contains information about the mechanical state of both the polymer film and substrate. Although classical mechanics can be used to relate the global deformation of the film/substrate to the local wrinkle geometry as a function of materials properties, relatively little is known about how the thin capping film material accommodates the localized bending (and therefore localized stress). Here we conduct wrinkling experiments using a model diblock copolymer/elastomer composite. Wrinkling a homogeneous, disordered block copolymer film places the film in a well-defined initial stress state. When heated above its glass transition, the wrinkled film flows, microphase separates, and relaxes from the stress imposed by local wrinkle deformations. The periodic stress relaxation leads to the emergence of a new pattern in the microphase separated surface structure, thus providing new insight into how block copolymers react to stress.

  7. Crystallization studies of polyethylene -poly(ethylene glycol) graft copolymers

    NASA Astrophysics Data System (ADS)

    Mark, P. R.; Hovey, G. E.; Murthy, N. S.; Breitenkamp, K.; Kade, M.; Emerick, T.

    2006-03-01

    Structure and crystallization behavior of three copolymers obtained by grafting poly (ethylene glycol) (PEG) chains to polyethylene (PE) main chain was investigated by variable temperature x-ray diffraction and thermal analysis. The results show that PEG side chains and PE main chains crystallize into separate domains. This is especially true when grafted chains are long (50 and 100 repeat units), in which the PEG domains are same as in PEG homopolymer both in structure and in melting behavior. In the copolymer with shorter chains (25 repeat units), the PEG crystals are not distinct and melting is broad. The PEG domains can be dissolved in water or ethanol without altering the mechanical integrity of the film. PE crystallites in both samples are similar to that in PE homopolymer. For instance, the thermal expansion of the basal cell plane (a- and b-axes) of the PE domains agrees well with that of PE homopolymer over the entire temperature range from ambient to melt. However, the chain-axis dimension PE-lattice in the copolymer is shorter by ˜ 0.05 å and the basal dimensions are larger by ˜ 0.05 å. The changes in these dimensions due to the changes in the length of the grafted PEG chains were investigated.

  8. Ductile electroactive biodegradable hyperbranched polylactide copolymers enhancing myoblast differentiation.

    PubMed

    Xie, Meihua; Wang, Ling; Guo, Baolin; Wang, Zhong; Chen, Y Eugene; Ma, Peter X

    2015-12-01

    Myotube formation is crucial to restoring muscular functions, and biomaterials that enhance the myoblast differentiation into myotubes are highly desirable for muscular repair. Here, we report the synthesis of electroactive, ductile, and degradable copolymers and their application in enhancing the differentiation of myoblasts to myotubes. A hyperbranched ductile polylactide (HPLA) was synthesized and then copolymerized with aniline tetramer (AT) to produce a series of electroactive, ductile and degradable copolymers (HPLAAT). The HPLA and HPLAAT showed excellent ductility with strain to failure from 158.9% to 42.7% and modulus from 265.2 to 758.2 MPa. The high electroactivity of the HPLAAT was confirmed by UV spectrometer and cyclic voltammogram measurements. These HPLAAT polymers also showed improved thermal stability and controlled biodegradation rate compared to HPLA. Importantly, when applying these polymers for myotube formation, the HPLAAT significantly improved the proliferation of C2C12 myoblasts in vitro compared to HPLA. Furthermore, these polymers greatly promoted myogenic differentiation of C2C12 cells as measured by quantitative analysis of myotube number, length, diameter, maturation index, and gene expression of MyoD and TNNT. Together, our study shows that these electroactive, ductile and degradable HPLAAT copolymers represent significantly improved biomaterials for muscle tissue engineering compared to HPLA. PMID:26335860

  9. Self-Assembly of Globular Protein-Polymer Diblock Copolymers

    NASA Astrophysics Data System (ADS)

    Thomas, C. S.; Olsen, B. D.

    2011-03-01

    The self-assembly of globular protein-polymer diblock copolymers into nanostructured phases is demonstrated as an elegant and simple method for structural control in biocatalysis or bioelectronics. In order to fundamentally investigate self-assembly in these complex block copolymer systems, a red fluorescent protein was expressed in E. coli and site-specifically conjugated to a low polydispersity poly(N-isopropyl acrylamide) (PNIPAM) block using thiol-maleimide coupling to form a well-defined model globular protein-polymer diblock. Functional protein materials are obtained by solvent evaporation and solvent annealing above and below the lower critical solution temperature of PNIPAM in order to access different pathways toward self-assembly. Small angle x-ray scattering and microscopy are used to show that the diblock forms lamellar nanostructures and to explore dependence of nanostructure formation on processing conditions. Circular dichroism and UV-vis show that a large fraction of the protein remains in its folded state after conjugation, and wide angle x-ray scattering demonstrates that diblock copolymer self-assembly changes the protein packing symmetry.

  10. Emulsifying properties of biodegradable polylactide-grafted dextran copolymers.

    PubMed

    Raynaud, J; Choquenet, B; Marie, E; Dellacherie, E; Nouvel, C; Six, J-L; Durand, A

    2008-03-01

    Amphiphilic glycopolymers, polylactide-grafted dextran copolymers (Dex-g-PLA), were synthesized with a well-controlled architecture obtained through a three-step procedure: partial silylation of the dextran hydroxyl groups, ring-opening polymerization of D,L-lactide initiated from remaining hydroxyl groups, silylether deprotection under very mild conditions. Depending on their proportion in polylactide (PLA), these copolymers exhibited solubility either in water or in organic solvents. The emulsifying properties of these glycopolymers were studied: depending on their PLA-to-dextran ratio, they were able to stabilize either direct or inverse emulsions. Droplet size was related to the amount of amphiphilic copolymer in the continuous phase. The aging mechanism of both direct and inverse emulsions was shown to be Ostwald ripening in the first weeks following preparation. Finally inverse miniemulsion copolymerization of acrylamide and N, N'-methylenebisacrylamide was performed in the presence of an amphiphilic Dex-g-PLA stabilizer. Polyacrylamide hydrogel nanoparticles were prepared in that way. PMID:18271550

  11. Formation of micelles in homopolymer-copolymer mixtures

    NASA Astrophysics Data System (ADS)

    Müller, Marcus; Cavallo, Anna; Binder, Kurt

    2007-03-01

    Using Monte Carlo (MC) simulations of the bond fluctuation model and self-consistent field (SCF) calculations, we study the formation of micelles in a mixture of homopolymers and asymmetric AB-diblock copolymers with composition, fA=1/8. We work in the semi--grandcanonical ensemble, i.e., we fix the monomer density and incompatibility, χN˜100, and control the composition of the mixture via the exchange chemical potential, δμ between the copolymer and homopolymer solvent. The MC simulation comprises moves that allow homopolymers to mutate into AB-diblock copolymers and vice versa. These moves are very efficient in equilibrating the configurations. We accurately locate the critical micelle concentration, study the micellar size distribution and characterize the shape of the micelles by the tensor of gyration and radial density profiles. The simulation results are quantitatively compared to predictions of the SCF theory in the grandcanonical ensemble without adjustable parameter. Only in the limit of high molecular weight the simulation results gradually approach the theoretical predictions. The structure and phase behavior of mixed micelles is investigated by SCF calculations.

  12. Charge injection and transport in fluorene-based copolymers.

    NASA Astrophysics Data System (ADS)

    Fong, Hon Hang; Malliaras, George G.; Lu, Tianjian; Dunlap, David

    2007-03-01

    Fluorene-based copolymer is considered to be one of the most promising hole transporting and blue light-emitting conjugated polymers used in polymeric light-emitting diodes (PLEDs). Time-of-flight (TOF) technique has been employed to evaluate the charge drift mobility under a temperature range between 200 - 400 K at the thick film regime (1-10 micron). Meanwhile, contact ohmicity is studied by Dark Current Space Charge Limited Conduction (DISCLC) technique. Charge injection efficiencies from different electrical contacts are also studied and the corresponding injection barriers are independently investigated by photoemission and electroabsorption spectroscopies. Results show that the copolymers exhibit non-dispersive charge transport behavior and possess superior mobilities of up to 0.01cm^2V-1s-1 while single-carrier devices from various electrical contacts such as PEDOT:PSS are varied, depending on the chemical structure of amine component in the fluorene-triarylamine copolymers. Results will shed light on the enhancement of device efficiency and stability in the future polymer electronic devices.

  13. Yield Stress Enhancement in Glassy-Polyethylene Block Copolymers

    NASA Astrophysics Data System (ADS)

    Mulhearn, William; Register, Richard

    Polyethylene (PE) has the highest annual production volume of all synthetic polymers worldwide, and is valuable across many applications due to its low cost, toughness, processability, and chemical resistance. However, PE is not well suited to certain applications due to its modest yield stress and Young's modulus (approximately 30 MPa and 1 GPa, respectively for linear, high-density PE). Irreversible deformation of PE results from dislocation of crystal stems and eventual crystal fragmentation under applied stress. The liquid-like amorphous fraction provides no useful mechanical support to the crystal fold surface in a PE homopolymer, so the only method to enhance the force required for crystal slip, and hence the yield stress, is crystal thickening via thermal treatment. An alternative route towards modifying the mechanical properties of PE involves copolymerization of a minority high-glass transition temperature block into a majority-PE block copolymer. In this work, we investigate a system of glassy/linear-PE block copolymers prepared via ring-opening metathesis polymerization of cyclopentene and substituted norbornene monomers followed by hydrogenation. We demonstrate that a large change in mechanical properties can be achieved with the addition of a short glassy block (e.g. a doubling of the yield stress and Young's modulus versus PE homopolymer with the addition of 25 percent glassy block). Furthermore, owing to the low interaction energy between PE and the substituted polynorbornene blocks employed, these high-yield PE block copolymers can exhibit single-phase melts for ease of processability.

  14. Proton Transport in Nanostructured Block Copolymer/Ionic Liquid Membranes

    NASA Astrophysics Data System (ADS)

    Hoarfrost, Megan; Tyagi, Madhu; Reimer, Jeffrey; Segalman, Rachel

    2011-03-01

    Nanostructured block copolymer/ionic liquid mixtures are of interest for creating membranes having high proton conductivity coupled with high thermal stability. In these mixtures, it is anticipated that nanoconfinement to block copolymer domains will affect ionic liquid proton transport properties. Using pulsed-field gradient NMR and quasi-elastic neutron scattering, this relationship has been investigated for mixtures of poly(styrene-b- 2-vinylpyridine) (S2VP) with ionic liquids composed of imidazole and bis(trifluoromethane)sulfonimide (HTFSI), where the ionic liquids selectively reside in the P2VP domains of the block copolymer. Proton mobility is highest in the neat ionic liquids when there is an excess of imidazole compared to HTFSI due to proton hopping between hydrogen-bonded imidazoles. As predicted, the amount of proton hopping can be tuned by nanoconfinement, as evidenced by the finding that a lamellar mixture of an imidazole- excess ionic liquid with S2VP has greater proton mobility than a corresponding disordered mixture of the ionic liquid with P2VP homopolymer.

  15. The Influence of Polydispersity on the Thermodynamics of Diblock Copolymers

    NASA Astrophysics Data System (ADS)

    Lynd, Nathaniel

    2005-03-01

    The effects of the molecular weight distribution on the thermodynamics of diblock copolymers have been predicted to affect order-disorder transitions (ODT), order-order transitions and the equilibrium morphology adopted.^1,2 We prepared several sets of Poly[(ethylene-alt-propylene)-b-(D,L-lactide)] diblock copolymers with controlled molecular weights, compositions and polydispersities (PDIs). Rheology and small angle x-ray scattering were used to evaluate the effects of PDI on the lamellar domain spacing, the ODT, and the resultant morphology. For symmetrical samples, the lamellar domain spacing increased with increasing PDI. The degree of segregation at the ODT ((χN)ODT) was dependent upon the volume fraction of the polydisperse component (fPLA). Interestingly, for fPLA = 0.33 (χN)ODT decreased with increasing PDI but for fPLA= 0.64 (χN)ODT increased with increasing PDI. We also demonstrated that an increase in PDI at constant fPLA results in a change in equilibrium morphology. Monte Carlo simulations addressing the effects of fluctuations on the ODT of polydisperse diblock copolymer melts were also performed. .(1) Sides,S.W.; Frederickson, G.H. J. Chem. Phys. 2004, 121,4974. (2) Burger,C.; Ruland, W.; Semenov, A.N. Macromolecules 1990, 23, 3339.

  16. Synthesis and Application of Conducting Block Copolymers in Organic Photovoltaics

    NASA Astrophysics Data System (ADS)

    Boudouris, Bryan W.; Hillmyer, Marc A.; Frisbie, C. Daniel

    2007-03-01

    Recent advances in the fabrication and post-processing of polymer -- fullerene bulk heterojunction solar cells have allowed for devices with power conversion efficiencies up to 5% to be generated. An understanding of how the internal morphology of the active layer affects device performance would facilitate optimization and ultimately lead to higher efficiencies. Block copolymers have been shown to self-assemble into well-structured, microphase-separated domains on the order of the diffusion length (˜ 10 nm) of an exciton (bound electron-hole pair) in thin films. In an effort to make a nanostructured active layer morphology we have synthesized block copolymers where the conducting moiety is either poly(3-hexylthiophene) or poly(3-dodeclythiophene) and the second, etchable block is polylactide. Hydroxyl-terminated polythiophene molecules were synthesized via the McCullough method and used as macroinitiators for the ring-opening polymerization of D,L-lactide. AFM images of spin-coated block copolymer films show separation between the polythiophene and polylactide segments. After subjecting the samples to a dilute aqueous base for short periods of time, we have selectively etched the polylactide segments to create pits in the semicrystalline polythiophene matrices. In addition to these findings, preliminary device results will also be discussed.

  17. Surface Structure of Thin Films of Multifunctional Ionizable Copolymers

    NASA Astrophysics Data System (ADS)

    Wickramasinghe, Anuradhi; Perahia, Dvora

    Phase segregation results in a rich variety of structures in co-polymers where interfacial forces often dominate the structure of thin films. Introduction of ionizable segments often drives the formation of compounded structures with multiple blocks residing at the interfaces. Here we probe thin films, 40-50nm, of an A-B-C-B-A co-polymer where C is a randomly sulfonated polystyrene with sulfonation fractions of 0, 26 and 52 mole %, B is poly (ethylene-r-propylene), and A is poly (t-butyl styrene) as the sulfonation level and temperature are varied using Neutron Reflectivity AFM, and surface tension measurements. As cast films form layers with both hydrophobic blocks dominating the solid and air interfaces and the ionizable block segregating to the center. Following annealing at 1700C, above Tg of styrene sulfonate, the films coarsen, with surface aggregation dominating the structure, though interfacial regions remain dominated by the hydrophobic segments. We show that in contrast to non-ionic co-polymers, formation of micelles dominated the structure of these ionic structured films. Supported in part by DOE Grant No. DE-SC007908.

  18. Modeling line-edge roughness in lamellar block copolymer systems

    NASA Astrophysics Data System (ADS)

    Patrone, Paul N.; Gallatin, Gregg M.

    2012-03-01

    Block copolymers oer an appealing alternative to current lithographic techniques with regard to fabrication of the next generation micro-processors. However, if copolymers are to be useful on an industrial manufacturing scale, they must meet or exceed lithography specications for placement and line edge roughness (LER) of resist features. Here we discuss a eld theoretic approach to modeling the LER of lamellar microdomain interfaces in a strongly segregated block copolymer system; specically, we derive a formula for the LER as a functions of the Flory Huggins parameter and the index of polymerization N. Our model is based on the Leibler-Ohta-Kawasaki energy functional. We consider a system with a nite number of phase separated microdomains and also show how the LER depends on distance of the microdomain interface from the system boundary. Our results suggest that in order to meet target LER goals at the 15 nm, 11 nm, and 6 nm nodes, must be increased by a factor of at least 5 above currently attainable values.

  19. Stress Relaxation of a Series of Polyester Copolymer Containing cyclohexylenedimethylene

    NASA Astrophysics Data System (ADS)

    Sun, Nanjian; Yee, Albert F.

    2002-03-01

    It was found that with the substitute of the ethylene in the PET’s main Chain by the cyclohexylenedimethylene (CHDM), the copolymer’s brittle-ductile transition temperature decrease significantly, with increase of yielding stress and decrease of crazing stress, while copolymer’s Tg also increases with the substitute, from PET’s 70oC to poly cyclohexylenedimethylene terephthalate (PCT)’s 92oC. The former research in Prof. Yee’s group indicated this results from large-scale cooperative motion due to the inserting of CHDM in copolymer’s main chain. Stress relaxation behavior of a series copolymers based on PET and PCT were studied under the frame of coupling model. The results show stress relaxation of very small strain (0.1equation very well in temperature region 10oC to 65oC. At 60oC and 25oC, coupling parameter n increases with the CHDM component in copolymer, indicating that scale of cooperative motion of local chain increases with the CHDM content, which diffuses the initial very local strain during material’s deformation, thus retards the formation of the crazy, making the polymer more ductile. With the increase of CHDM content in backbone of copolymer, tp also increases, while activation energy of tp decrease. .

  20. Reordering transitions during annealing of block copolymer cylinder phases

    DOE PAGESBeta

    Majewski, Pawel W.; Yager, Kevin G.

    2015-10-06

    While equilibrium block-copolymer morphologies are dictated by energy-minimization effects, the semi-ordered states observed experimentally often depend on the details of ordering pathways and kinetics. In this study, we explore reordering transitions in thin films of block-copolymer cylinder-forming polystyrene-block-poly(methyl methacrylate). We observe several transient states as films order towards horizontally-aligned cylinders. In particular, there is an early-stage reorganization from randomly-packed cylinders into hexagonally-packed vertically-aligned cylinders; followed by a reorientation transition from vertical to horizontal cylinder states. These transitions are thermally activated. The growth of horizontal grains within an otherwise vertical morphology proceeds anisotropically, resulting in anisotropic grains in the final horizontalmore » state. The size, shape, and anisotropy of grains are influenced by ordering history; for instance, faster heating rates reduce grain anisotropy. These results help elucidate aspects of pathway-dependent ordering in block-copolymer thin films.« less