Science.gov

Sample records for phenotype chlorpyrifos diazinon

  1. Developmental neurotoxicants target neurodifferentiation into the serotonin phenotype: Chlorpyrifos, diazinon, dieldrin and divalent nickel

    SciTech Connect

    Slotkin, Theodore A. Seidler, Frederic J.

    2008-12-01

    Developmental exposure to organophosphates (OP) produces long-term changes in serotonin (5HT) synaptic function and associated behaviors, but there are disparities among the different OPs. We contrasted effects of chlorpyrifos and diazinon, as well as non-OP neurotoxicants (dieldrin, Ni{sup 2+}) using undifferentiated and differentiating PC12 cells, a well-established neurodevelopmental model. Agents were introduced at 30 {mu}M for 24 or 72 h, treatments devoid of cytotoxicity, and we evaluated the mRNAs encoding the proteins for 5HT biosynthesis, storage and degradation, as well as 5HT receptors. Chlorpyrifos and diazinon both induced tryptophan hydroxylase, the rate-limiting enzyme for 5HT biosynthesis, but chlorpyrifos had a greater effect, and both agents suppressed expression of 5HT transporter genes, effects that would tend to augment extracellular 5HT. However, whereas chlorpyrifos enhanced the expression of most 5HT receptor subtypes, diazinon evoked overall suppression. Dieldrin evoked even stronger induction of tryptophan hydroxylase, and displayed a pattern of receptor effects similar to that of diazinon, even though they come from different pesticide classes. In contrast, Ni{sup 2+} had completely distinct actions, suppressing tryptophan hydroxylase and enhancing the vesicular monoamine transporter, while also reducing 5HT receptor gene expression, effects that would tend to lower net 5HT function. Our findings provide some of the first evidence connecting the direct, initial mechanisms of developmental neurotoxicant action on specific transmitter pathways with their long-term effects on synaptic function and behavior, while also providing support for in vitro test systems as tools for establishing mechanisms and outcomes of related and unrelated neurotoxicants.

  2. CHARACTERIZATION OF RESIDENTIAL EXPOSURE TO CHLORPYRIFOS AND DIAZINON

    EPA Science Inventory

    Exposures to chlorpyrifos and diazinon in residential microenvironment in AZ were estimated using the indirect method of exposure calculation by combining measured concentrations in multiple media with time subjects spent indoors, dietary and non-dietary items they consumed, an...

  3. REGRESSION MODELS OF RESIDENTIAL EXPOSURE TO CHLORPYRIFOS AND DIAZINON

    EPA Science Inventory

    This study examines the ability of regression models to predict residential exposures to chlorpyrifos and diazinon, based on the information from the NHEXAS-AZ database. The robust method was used to generate "fill-in" values for samples that are below the detection l...

  4. The Reliability of Using Urinary Biomarkers to Estimate Human Exposures to Chlorpyrifos and Diazinon

    EPA Science Inventory

    A few studies have reported concurrent levels of chlorpyrifos (CPF) and diazinon (DZN) and their environmentally occurring metabolites, 3,5,6-trichloro-2-pyridinol (TCP) and 2-isopropyl-6-methyl-4-pyrimidinol (IMP), in food and in environmental media. This information raises ques...

  5. Diazinon and chlorpyrifos loads in the San Joaquin River basin, California, January and February 2000

    USGS Publications Warehouse

    Kratzer, Charles R.; Zamora, Celia; Knifong, Donna L.

    2002-01-01

    The application of diazinon and chlorpyrifos on dormant orchards in 2000 in the San Joaquin River Basin was less than 21 percent of application in 1993 and 1994. A total of 13 sites were sampled weekly during nonstorm periods and more frequently during two storm periods. The sites included five major river and eight minor tributary sites. The highest concentrations of diazinon and chlorpyrifos occurred during the storm periods. Four samples from major river sites (Tuolumne River and two San Joaquin River sites) had diazinon concentrations greater than 0.08 microgram per liter, the concentration being considered by the state of California as its criterion maximum concentration for the protection of aquatic habitat. One sample from a major river site (San Joaquin River) exceeded the equivalent State guideline of 0.02 microgram per liter for chlorpyrifos. At the eight minor tributary sites, 24 samples exceeded the diazinon guideline and four samples exceeded the chlorpyrifos guideline. The total diazinon load in the San Joaquin River near Vernalis during January and February 2000 was 19.6 pounds active ingredient; of this, 8.17 pounds active ingredient was transported during two storms. In 1994, 27.4 pounds active ingredient was transported during two storms. The total chlorpyrifos load in the San Joaquin River near Vernalis during January and February 2000 was 5.68 pounds active ingredient; of this, 2.17 pounds active ingredient was transported during the two storms. During the frequently sampled February 2000 storm, the main sources of diazinon in the San Joaquin River Basin were the San Joaquin River near Stevinson Basin (25 percent), Tuolumne River Basin (14 percent), and the Stanislaus River Basin (10 percent). The main sources of chlorpyrifos in the San Joaquin River Basin were the San Joaquin River near Stevinson Basin (17 percent), Tuolumne River Basin (13 percent), and the Merced River Basin (11 percent). The total January and February diazinon load in the

  6. Temporal changes in surface-water insecticide concentrations after the phaseout of diazinon and chlorpyrifos

    USGS Publications Warehouse

    Phillips, P.J.; Ator, S.W.; Nystrom, E.A.

    2007-01-01

    The recent (late 2001) federally mandated phaseout of diazinon and chlorpyrifos insecticide use in outdoor urban settings has resulted in a rapid decline in concentrations of these insecticides in urban streams and rivers in the northeastern and midwestern United States. Assessment of temporal insecticide trends at 20 sites showed that significant step decreases in diazinon concentrations occurred at 90% of the sites after the phaseout, with concentrations generally decreasing by over 50% in summer samples. Chlorpyrifos concentrations showed significant step decreases in at least 1 season at 3 of the 4 sites with sufficient data for analysis. The decrease in diazinon concentrations in response to the phaseout resulted in a decline in the frequency of concentrations exceeding the acute invertebrate water-quality benchmark of 0.1 ??g/L from 10% of pre-phaseout summer samples to fewer than 1% of post-phaseout summer samples. Although some studies have indicated an increase in concentrations of carbaryl in response to the organophosphorous phaseout, carbaryl concentrations only increased at 1 site after the phaseout. A full assessment of the effect of the phaseout of diazinon and chlorpyrifos on surface water will require data on other insecticides used to replace these compounds.

  7. Differential acetylcholinesterase inhibition of chlorpyrifos, diazinon and parathion in larval zebrafish

    PubMed Central

    Yen, Jerry; Donerly, Sue; Levin, Edward D.; Linney, Elwood A.

    2011-01-01

    Zebrafish are increasingly used for developmental neurotoxicity testing because early embryonic events are easy to visualize, exposures are done without affecting the mother and the rapid development of zebrafish allows for high throughput testing. We used zebrafish to examine how exposures to three different organophosphorus pesticides (chlorpyrifos, diazinon and parathion) over the first five days of embryonic and larval development of zebrafish affected their survival, acetylcholinesterase (AChE) activity and behavior. We show that at non-lethal, equimolar concentrations, chlorpyrifos (CPF) is more effective at equimolar concentrations than diazinon (DZN) and parathion (PA) in producing AChE inhibition. As concentrations of DZN and PA are raised, lethality occurs before they can produce the degree of AChE inhibition observed with CPF at 300nM. Because of its availability outside the mother at the time of fertilization, zebrafish provides a complementary model for studying the neurotoxicity of very early developmental exposures. PMID:22036888

  8. Comparative toxicity of chlorpyrifos, diazinon, malathion and their oxon derivatives to larval Rana boylii

    USGS Publications Warehouse

    Sparling, D.W.; Fellers, G.

    2007-01-01

    Organophosphorus pesticides (OPs) are ubiquitous in the environment and are highly toxic to amphibians. They deactivate cholinesterase, resulting in neurological dysfunction. Most chemicals in this group require oxidative desulfuration to achieve their greatest cholinesterase-inhibiting potencies. Oxon derivatives are formed within liver cells but also by bacterial decay of parental pesticides. This study examines the toxicity of chlorpyrifos, malathion and diazinon and their oxons on the foothill yellow-legged frog (Rana boylii). R. boylii is exposed to agricultural pesticides in the California Central Valley. Median lethal concentrations of the parental forms during a 96 h exposure were 3.00 mg/L (24 h) for chlorpyrifos, 2.14 mg/L for malathion and 7.49 mg/L for diazinon. Corresponding oxons were 10 to 100 times more toxic than their parental forms. We conclude that environmental concentrations of these pesticides can be harmful to R. boylii populations. ?? 2006 Elsevier Ltd. All rights reserved.

  9. Screening for the Pesticides Atrazine, Chlorpyrifos, Diazinon, Metolachlor, and Simazine in Selected Michigan Streams, March-November 2005

    USGS Publications Warehouse

    Fogarty, Lisa R.; Duris, Joseph W.

    2007-01-01

    From March through November 2005, the U.S. Geological Survey, in cooperation with the Michigan Department of Environmental Quality (MDEQ), did a statewide screening to aid in understanding the occurrence and distribution of selected pesticides in Michigan streams. Stream-water samples were collected from 23 sites throughout Michigan. In all, 320 water samples were analyzed by use of rapid immunoassay methods for the herbicides atrazine, metolachlor, and simazine and the insecticides chlorpyrifos and diazinon. On one occasion (June, 2005), atrazine concentrations exceeded the Michigan water-quality value (7.3 micrograms per liter) at the Black River in St. Clair County. Neither chlorpyrifos nor diazinon was detected during April through September. MDEQ detected chlorpyrifos in streams throughout the state in November. Herbicide concentrations were highest in samples influenced by intensive agriculture; however, median herbicide concentrations were similar among agricultural and urban sites. Concentrations of herbicides were very low to undetected in undeveloped areas. Seasonal patterns were also evident during the sampling period. Increased concentrations generally occurred in late spring to early summer. At 11 sites, daily sampling was done every day for 5 days following a rainfall after herbicide application in the area. Substantial changes in concentrations of herbicides - greater than tenfold from the previous day - were observed during the daily sampling. No consistent relation was found between concentration and streamflow. Results of this study may be used to aid in the development of a more comprehensive pesticide monitoring study for the State of Michigan.

  10. PHARMACOKINETIC AND PHARMACODYNAMIC INTERACTION FOR A BINARY MIXTURE OF CHLORPYRIFOS AND DIAZINON IN THE RAT

    SciTech Connect

    Timchalk, Chuck; Poet, Torka S.; Hinman, Melissa N.; Busby, Andrea L.; Kousba, Ahmed A.

    2005-05-15

    Chlorpyrifos (CPF) and diazinon (DZN) are two commonly used organophosphorus (OP) insecticides and potential exists for concurrent exposures. The primary neurotoxic effects from OP pesticide exposures result from the inhibition of acetylcholinesterase (AChE) by their oxon metabolites. The pharmacokinetic and pharmacodynamic impact of acute binary exposures to CPF and DZN in rats were evaluated in this study. Rats were orally administered CPF, DZN or a CPF/DZN mixture (0, 15, 30 or 60 mg/kg) and blood (plasma and RBC), and brain were collected at 0, 3, 6, 12 and 24 h post-dosing, urine was also collected at 24 h. Chlorpyrifos, DZN and their respective metabolites 3,5,6-trichloro-2-pyridinol (TCP) and 2-isopropyl-4-methyl-6-hydroxypyrimidine (IMHP) were quantified in blood and/or urine and cholinesterase (ChE) inhibition was measured in brain, RBCs and plasma. Co-exposure to CPF/DZN at 15/15 mg/kg, did not appreciably alter the pharmacokinetics of CPF, DZN or their metabolites in blood; whereas, a 60/60 mg/kg dose resulted in a transient increase in Cmax, AUC, and decreased clearance of both compounds, likely due to competition between CPF and DZN for CYP450 metabolism. At lower doses, most likely to be encountered in occupational or environmental exposures, the pharmacokinetics were linear. A dose-dependent inhibition of ChE was noted in tissues for both the single and co-exposures. The overall potency for ChE inhibition was greater for CPF than DZN and the binary mixture response appeared to be strongly influenced by CPF. A comparison of the ChE binary response at the low dose (15 mg/kg), where there were no apparent pharmacokinetic interactions, suggested that the overall ChE response was additive. These are the first reported experiments we are aware of that characterize both the pharmacokinetic and pharmacodynamic interactions between CPF and DZN in the rat, and will be used to further develop a binary physiologically based pharmacokinetic and pharmacodynamic

  11. In Vitro Rat Hepatic and Intestinal Metabolism of the Organophosphate Pesticides Chlorpyrifos and Diazinon

    SciTech Connect

    Poet, Torka S. ); Wu, Hong ); Kousba, Ahmed A. ); Timchalk, Charles

    2003-04-01

    Chlorpyrifos (CPF) and diazinon (DZN) are thionophosphorus organophosphate, insecticides; their toxicity is mediated through CYP450 metabolism to CPF-oxon and DZN-oxon, respectively. Conversely, CYP450s also detoxify these OPs to trichloropyridinol (TCP) and 2-isopropyl-4-methyl-6-hydroxypyrimidine (IMHP), respectively. In addition, A-esterase metabolism of CPF- and DZN-oxon also form TCP and IMHP. This study evaluated the role intestinal and hepatic metabolism may play in the first-pass elimination of CPF and DZN. Similar CYP450- and A-esterase-mediated metabolic profiles were demonstrated in microsomes from liver or isolated intestinal enterocytes. In enterocyte microsomes, the CYP450 metabolic efficiency (Vmax/Km) for metabolism to the oxon metabolites was~5-fold greater for CPF than DZN. Compared on a per nmol P450 basis, the Vmax for CPF in enterocytes was~2-3 times higher than in liver microsomes for the production of CPF-oxon and TCP. The affinity (Km) for the metabolism of CPF to CPF-oxon was comparable in liver and enterocyte microsomes, however the enterocyte Km for TCP production was higher (lower affinity). The smaller volume of intestine, lower amount of CYP450, and higher Km for TCP in the enterocyte microsomes, resulted in a lower catalytic efficiency (2 and 62 times) than in liver for oxon and TCP. A-esterase-mediated metabolism of CPF- and DZN-oxon was also demonstrated in liver and enterocyte microsomes. Although A-esterase affinity for the substrates were comparable in hepatic and enterocyte microsomes, the Vmax were 48 - to 275-fold, in the liver. These results suggest that intestinal metabolism may impact first-pass metabolism of CPF and DZN, especially following low-dose oral exposures.

  12. AGE-RELATED BRAIN CHOLINESTERASE INHIBITION KINETICS FOLLOWING IN VITRO INCUBATION WITH CHLORPYRIFOS-OXON AND DIAZINON-OXON

    SciTech Connect

    Kousba, Ahmed A.; Poet, Torka S.; Timchalk, Chuck

    2007-01-01

    Chlorpyrifos and diazinon are two commonly used organophosphorus (OP) insecticides, and their primary mechanism of action involves the inhibition of acetylcholinesterase (AChE) by their metabolites chlorpyrifos-oxon (CPO) and diazinon-oxon (DZO), respectively. The study objectives were to assess the in vitro age-related inhibition kinetics of neonatal rat brain cholinesterase (ChE) by estimating the bimolecular inhibitory rate constant (ki) values for CPO and DZO. Brain ChE inhibition and ki values following CPO and DZO incubation with neonatal Sprague-Dawley rats rat brain homogenates were determined at post natal day (PND) -5, -12 and -17 and compared with the corresponding inhibition and ki values obtained in the adult rat. A modified Ellman method was utilized for measuring the ChE activity. Chlorpyrifos-oxon resulted in greater ChE inhibition than DZO consistent with the estimated ki values of both compounds. Neonatal brain ChE inhibition kinetics exhibited a marked age-related sensitivity to CPO, where the order of ChE inhibition was PND-5 > PND-7 > PND-17 with ki values of 0.95, 0.50 and 0.22 nM-1hr-1, respectively. In contrast, DZO did not exhibit an age-related inhibition of neonatal brain ChE, and the estimated ki value at all PND ages was 0.02 nM-1hr-1. These results demonstrated an age- and chemical-related OP-selective inhibition of rat brain ChE which may be critically important in understanding the potential sensitivity of juvenile humans to specific OP exposures.

  13. The In Vivo Quantitation of Diazinon, Chlorpyrifos and their Major Metabolites in Rat Blood for the Refinement of a Physiologically-based Pharmacokinetic/pharmacodynamic Models.

    SciTech Connect

    Busby, Andrea L.; Kousba, Ahmed A.; Timchalk, Chuck

    2004-12-01

    Chlorpyrifos (CPF) and diazinon (DZN) are inhibitors of acetylcholinesterase due to the effects of their active oxon metabolites. The inhibition of acetylcholinesterase results in a buildup of acetylcholine within the nerve synapses leading to a variety of neurotoxic effects (Mileson et al., 1998). These effects are most clearly seen following acute high dose exposures but they can also be observed in lower dose chronic cases as well. Chlorpyrifos is the active ingredient in commonly used organophosphorous (OP) insecticides like DURSBAN and LORSBAN (Timchalk et. al, 2002). Chlorpyrifos and diazinon are used to eliminate pests in agricultural applications like cotton and fruit crops. Every year globally there are approximately 3 million cases of organophosphate poisoning reported resulting in 200,000 deaths (Haywood et al., 2000). The public is exposed to these chemicals on a regular basis at chronic low levels from food and water contamination, dermal contact and inhalation. The United States National Health and Nutrition Examination Survey indicated that of approximately 3,600 persons from all 64 NHANES III locations, 70% tested positive for TCP in urine, suggesting exposure to chlorpyrifos (NHANES III, 1994). The chemical structures of chlorpyrifos, diazinon, and their major metabolites trichlorpyridinol (TCP), and isopropyl-methyl-hydroxypyrimidine (IMHP) are shown in Figure 1. The parent compounds, CPF and DZN, are metabolized to their potent inhibiting oxon forms via a desulfuration reaction initiated by cytochrome P450 (CYP)(Poet et al., 2003; Amitai et al., 1998). Competing with the formation of oxon is the detoxification metabolism of CPF to TCP and DZN to IMHP via a dearylation reaction utilizing the same enzymes. A-esterase (PON1) and other B-esterases also contribute to the production of TCP and IMHP through the metabolism of CPF-oxon and DZN-oxon, respectively (Poet et al., 2003; Ma et al., 1994). The ratio between the toxification

  14. Diazinon and chlorpyrifos loads in precipitation and urban and agricultural storm runoff during January and February 2001 in the San Joaquin River basin, California

    USGS Publications Warehouse

    Zamora, Celia; Kratzer, Charles R.; Majewski, Michael S.; Knifong, Donna L.

    2003-01-01

    The application of diazinon and chlorpyrifos on dormant orchards in 2001 in the San Joaquin River Basin was 24 percent less and 3.2 times more than applications in 2000, respectively. A total of 16 sites were sampled during January and February 2001 storm events: 7 river sites, 8 precipitation sites, and 1 urban storm drain. The seven river sites were sampled weekly during nonstorm periods and more frequently during storm runoff from a total of four storms. The monitoring of storm runoff at a city storm drain in Modesto, California, occurred simultaneously with the collection of precipitation samples from eight sites during a January 2001 storm event. The highest concentrations of diazinon occurred during the storm periods for all 16 sites, and the highest concentrations of chlorpyrifos occurred during weekly nonstorm sampling for the river sites and during the January storm period for the urban storm drain and precipitation sites. A total of 60 samples (41 from river sites, 10 from precipitation sites, and 9 from the storm drain site) had diazinon concentrations greater than 0.08 ?g/L, the concentration being considered by the California Department of Fish and Game as its criterion maximum concentration for the protection of aquatic habitats. A total of 18 samples (2 from river sites, 9 from precipitation sites, and 7 from the storm drain site) exceeded the equivalent California Department of Fish and Game guideline of 0.02 ?g/L for chlorpyrifos. The total diazinon load in the San Joaquin River near Vernalis during January and February 2001 was 23.8 pounds active ingredient; of this amount, 16.9 pounds active ingredient were transported by four storms, 1.06 pounds active ingredient were transported by nonstorm events, and 5.82 pounds active ingredient were considered to be baseline loads. The total chlorpyrifos load in the San Joaquin River near Vernalis during January and February 2001 was 2.17 pounds active ingredient; of this amount, 0.702 pound active

  15. Organophosphorus insecticides chlorpyrifos and diazinon and oxidative stress in neuronal cells in a genetic model of glutathione deficiency

    SciTech Connect

    Giordano, Gennaro; Afsharinejad, Zhara; Guizzetti, Marina; Vitalone, Annabella; Kavanagh, Terrance J.; Costa, Lucio G. . E-mail: lgcosta@u.washington.edu

    2007-03-15

    Over the past several years evidence has been accumulating from in vivo animal studies, observations in humans, and in vitro studies, that organophosphorus (OP) insecticides may induce oxidative stress. Such effects may contribute to some of the toxic manifestations of OPs, particularly upon chronic or developmental exposures. The aim of this study was to investigate the role of oxidative stress in the neurotoxicity of two commonly used OPs, chlorpyrifos (CPF) and diazinon (DZ), their oxygen analogs (CPO and DZO), and their 'inactive' metabolites (TCP and IMP), in neuronal cells from a genetic model of glutathione deficiency. Cerebellar granule neurons from wild type mice (Gclm +/+) and mice lacking the modifier subunit of glutamate cysteine ligase (Gclm -/-), the first and limiting step in the synthesis of glutathione (GSH), were utilized. The latter display very low levels of GSH and are more susceptible to the toxicity of agents that increase oxidative stress. CPO and DZO were the most cytotoxic compounds, followed by CPF and DZ, while TCP and IMP displayed lower toxicity. Toxicity was significantly higher (10- to 25-fold) in neurons from Gclm (-/-) mice, and was antagonized by various antioxidants. Depletion of GSH from Gclm (+/+) neurons significantly increased their sensitivity to OP toxicity. OPs increased intracellular levels of reactive oxygen species and lipid peroxidation and in both cases the effects were greater in neurons from Gclm (-/-) mice. OPs did not alter intracellular levels of GSH, but significantly increased those of oxidized glutathione (GSSG). Cytotoxicity was not antagonized by cholinergic antagonists, but was decreased by the calcium chelator BAPTA-AM. These studies indicate that cytotoxicity of OPs involves generation of reactive oxygen species and is modulated by intracellular GSH, and suggest that it may involve disturbances in intracellular homeostasis of calcium.

  16. Chlorpyrifos

    Integrated Risk Information System (IRIS)

    Chlorpyrifos ; CASRN 2921 - 88 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  17. The In Vivo Quantitation of Diazinon, chlorpyrifos, and Their Major Metabolites in Rat Blood for the Refinement of a Physiologically-Based Pharmacokinetic/Pharmacodynamic Models

    SciTech Connect

    Busby, A.; Kousba, A.; Timchalk, C.

    2004-01-01

    Chlorpyrifos (CPF)(O,O-diethyl-O-[3,5,6-trichloro-2-pyridyl]-phosphorothioate, CAS 2921-88-2), and diazinon (DZN)(O,O-diethyl-O-2-isopropyl-4-methyl-6-pyrimidyl thiophosphate, CAS 333-41-5) are commonly encountered organophosphorus insecticides whose oxon metabolites (CPF-oxon and DZN-oxon) have the ability to strongly inhibit acetylcholinesterase, an enzyme responsible for the breakdown of acetylcholine at nerve synapses. Chlorpyrifos-oxon and DZN-oxon are highly unstable compounds that degrade via hepatic, peripheral blood, and intestinal metabolism to the more stable metabolites, TCP (3,5,6-trichloro-2-pyridinol, CAS not assigned) and IMHP (2-isopropyl-6-methyl-4-pyrimidinol, CAS 2814-20-2), respectively. Studies have been performed to understand and model the chronic and acute toxic effects of CPF and DZN individually but little is known about their combined effects. The purpose of this study was to improve physiologically based pharmacokinetic/ pharmacodynamic (PBPK/PD) computational models by quantifying concentrations of CPF and DZN and their metabolites TCP and IMHP in whole rat blood, following exposure to the chemicals individually or as a mixture. Male Sprague-Dawley rats were orally dosed with 60 mg/kg of CPF, DZN, or a mixture of these two pesticides. When administered individually DZN and CPF were seen to reach their maximum concentration at ~3 hours post-dosing. When given as a mixture, both DZN and CPF peak blood concentrations were not achieved until ~6 hours post-dosing and the calculated blood area under the curve (AUC) for both chemicals exceeded those calculated following the single dose. Blood concentrations of IMHP and TCP correlated with these findings. It is proposed that the higher AUC obtained for both CPF and DZN as a mixture resulted from competition for the same metabolic enzyme systems.

  18. Differential sensitivity of plasma carboxylesterase-null mice to parathion, chlorpyrifos and chlorpyrifos oxon, but not to diazinon, dichlorvos, diisopropylfluorophosphate, cresyl saligenin phosphate, cyclosarin thiocholine, tabun thiocholine, and carbofuran

    PubMed Central

    Duysen, Ellen G.; Cashman, John R.; Schopfer, Lawrence M.; Nachon, Florian; Masson, Patrick; Lockridge, Oksana

    2012-01-01

    Mouse blood contains four esterases that detoxify organophosphorus compounds: carboxylesterase, butyrylcholinesterase, acetylcholinesterase, and paraoxonase-1. In contrast human blood contains the latter three enzymes but not carboxylesterase. Organophosphorus compound toxicity is due to inhibition of acetylcholinesterase. Symptoms of intoxication appear after approximately 50% of the acetylcholinesterase is inhibited. However, complete inhibition of carboxylesterase and butyrylcholinesterase has no known effect on an animal’s well being. Paraoxonase hydrolyzes organophosphorus compounds and is not inhibited by them. Our goal was to determine the effect of plasma carboxylesterase deficiency on response to sublethal doses of 10 organophosphorus toxicants and one carbamate pesticide. Homozygous plasma carboxylesterase deficient ES1−/− mice and wild-type littermates were observed for toxic signs and changes in body temperature after treatment with a single sublethal dose of toxicant. Inhibition of plasma acetylcholinesterase, butyrylcholinesterase, and plasma carboxylesterase was measured. It was found that wild-type mice were protected from the toxicity of 12.5 mg/kg parathion applied subcutaneously. However, both genotypes responded similarly to paraoxon, cresyl saligenin phosphate, diisopropylfluorophosphate, diazinon, dichlorvos, cyclosarin thiocholine, tabun thiocholine, and carbofuran. An unexpected result was the finding that transdermal application of chlorpyrifos at 100 mg/kg and chlorpyrifos oxon at 14 mg/kg was lethal to wild-type but not to ES1−/− mice, showing that with this organochlorine, the presence of carboxylesterase was harmful rather than protective. It was concluded that carboxylesterase in mouse plasma protects from high toxicity agents, but the amount of carboxylesterase in plasma is too low to protect from low toxicity compounds that require high doses to inhibit acetylcholinesterase. PMID:22209767

  19. Developmental exposure to chlorpyrifos and diazinon differentially affect passive avoidance performance and nitric oxide synthase-containing neurons in the basolateral complex of the amygdala.

    PubMed

    Vatanparast, Jafar; Naseh, Maryam; Baniasadi, Mansoureh; Haghdoost-Yazdi, Hashem

    2013-02-01

    Chronic exposure to low doses of organophosphates during brain development can induce persistent neurochemical and behavioral effects. This study sought to determine the long-lasting effects of developmental exposure to chlorpyrifos (CPF) and diazinon (DZN) on passive avoidance (PA) performance and neuronal nitric oxide synthase (nNOS)-containing neurons in the subnuclei within basolateral complex of amygdala (BLC). Developing rats were exposed to daily dose (1mg/kg) of CPF or DZN during gestational days 15-18 and postnatal days (PND) 1-4. PA performance was assessed in young adulthood (PND 60). Brain sections were also processed by NADPH-diaphorase (NADPH-d) and nNOS immunohistochemistry. Gestational exposure to CPF increased NADPH-d(+)/nNOS-immunoreactive (IR) neurons within the basolateral nucleus (BL) and medial paracapsular intercalated cluster, which was along with PA retention impairment in both male and female rats. Prenatal exposure to DZN did not significantly change the number of NADPH-d(+)/nNOS-IR neurons in the BLC while impaired PA retention in females. Postnatal exposure to CPF decreased NADPH-d(+)/NOS-IR neurons in the BL without affecting PA performance. Exposure to DZN during early postnatal period impaired PA retention in both sexes, albeit to a lesser extent in females, and was along with a considerable sex independent reduction of NADPH-d(+)/NOS-IR neurons in all BLC subnuclei. Our data suggest that developmental exposure to apparently subtoxic dose of CPF and DZN elicit long-lasting impairment in PA retention that are associated, but not necessarily correlated with effects on NADPH-d(+)/NOS-IR neurons in BLC of the amygdala. PMID:23219576

  20. Development of a Physiologically Based Pharmacokinetic and Pharmacodynamic Model to Determine Dosimetry and Cholinesterase Inhibition for a Binary Mixture of Chlorpyrifos and Diazinon in the Rat

    SciTech Connect

    Timchalk, Chuck; Poet, Torka S.

    2008-05-01

    Physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) models have been developed and validated for the organophosphorus (OP) insecticides chlorpyrifos (CPF) and diazinon (DZN). Based on similar pharmacokinetic and mode of action properties it is anticipated that these OPs could interact at a number of important metabolic steps including: CYP450 mediated activation/detoxification, and blood/tissue cholinesterase (ChE) binding/inhibition. We developed a binary PBPK/PD model for CPF, DZN and their metabolites based on previously published models for the individual insecticides. The metabolic interactions (CYP450) between CPF and DZN were evaluated in vitro and suggests that CPF is more substantially metabolized to its oxon metabolite than is DZN. These data are consistent with their observed in vivo relative potency (CPF>DZN). Each insecticide inhibited the other’s in vitro metabolism in a concentration-dependent manner. The PBPK model code used to described the metabolism of CPF and DZN was modified to reflect the type of inhibition kinetics (i.e. competitive vs. non-competitive). The binary model was then evaluated against previously published rodent dosimetry and ChE inhibition data for the mixture. The PBPK/PD model simulations of the acute oral exposure to single- (15 mg/kg) vs. binary-mixtures (15+15 mg/kg) of CFP and DZN at this lower dose resulted in no differences in the predicted pharmacokinetics of either the parent OPs or their respective metabolites; whereas, a binary oral dose of CPF+DZN at 60+60 mg/kg did result in observable changes in the DZN pharmacokinetics. Cmax was more reasonably fit by modifying the absorption parameters. It is anticipated that at low environmentally relevant binary doses, most likely to be encountered in occupational or environmental related exposures, that the pharmacokinetics are expected to be linear, and ChE inhibition dose-additive.

  1. Influence of gender on thermoregulation and cholinesterase inhibition in the long-evans rat exposed to diazinon.

    PubMed

    Gordon, Christopher J; Mack, Cina M

    2003-02-14

    Diazinon is an organophosphate (OP)-based, anticholinesterase insecticide that irreversibly inhibits acetylcholinesterase activity and produces cholinergic stimulation in central nervous system (CNS) and peripheral tissues. Our laboratory has found that OPs administered orally in rats induce a transient period of hypothermia followed by a delayed fever that persists for several days after exposure. There is little information on the thermoregulatory effects of diazinon. Core temperature (Tc) and motor activity (MA) were monitored by radiotelemetry in male and female rats of the Long-Evans strain dosed orally with diazinon (0 [corn-oil vehicle], 100, 200, or 300 mg/kg in males and 0, 50, 100, or 200 mg/kg in females). There was a dose-dependent decrease in Tc during the first night after treatment, with females exhibiting slightly greater sensitivity than males. MA was unaffected in females exposed to diazinon at doses of 50 to 200 mg/kg; MA of males was reduced during the first night after dosing with 300 mg/kg. There was a delayed elevation in Tc of males dosed with 200 and 300 mg/kg and females dosed with 50, 100, and 200 mg/kg diazinon. The elevated Tc was only manifested during d 2 and 3 after diazinon. Administration of 200 mg/kg sodium salicylate to females 48 h after being treated with 200 mg/kg diazinon led to a rapid abatement of the fever. Diazinon doses of 50 to 300 mg/kg led to 40% to 50% inhibition in plasma cholinesterase (ChE) activity 4 h after dosing, and females displayed a significantly slower recovery of ChE activity compared to males. When compared on a molar basis, the hypothermic response to diazinon was relatively small compared to other OPs such as chlorpyrifos. The delayed fever and efficacy of sodium salicylate to block diazinon-induced fever are similar to the effects of OPs chlorpyrifos and diisopropyl fluoro-phosphate (DFP). PMID:12521673

  2. Evaluation of Residual Diazinon and Chlorpiryfos in Children Herbal Medicines by Headspace-SPME and GC-FID

    PubMed Central

    Mosaddegh, Mohammad Hossein; Emami, Fakhrossadat; Asghari, Gholamreza

    2014-01-01

    The oldest method for the managing of the illness is the use of medicinal plants. The use of herbal products as the first choice in self-treatment of minor conditions continues to expand rapidly across Iran. This makes the safety of herbal products an important public health issue. Pesticides are used widely in agriculture to increase the production by controlling the harmful insects and disease vectors, however it has some hazards on biological system of human especially children. The present study was designed to examine the residual amount of organophosphorus pesticides (Diazinon and Chlorpyrifos) in children herbal medicines available in the Iranian market. Five children herbal medicine liquid dosage forms were purchased from pharmacy store. They were extracted with SPME (Solid Phase Microextraction) using the PDMS-DVB fibre. Then the extracts were injected into a GC. The gas chromatograph was Younglin model YL 6100 equipped with a flame ionization detector. The column was Technokroma 60 m length, 0.53 mm internal diameter and 1.25 µm film coated. The presence and quantity of Diazinon and Chlorpyrifos were evaluated using their standard curves. Trace amounts of chlorpyrifos and diazinon were detected in a few herbal medicines. Based on European pharmacopeia, threshold limits of chlorpyrifos and diazinon residues for medicinal plant materials are 0.2 and 0.5 mg/Kg, respectively. Our analysis results showed that residue limits of these two pesticides in five children herbal medicines are ignorable. PMID:25237349

  3. The effects of acute pesticide exposure on neuroblastoma cells chronically exposed to diazinon.

    PubMed

    Axelrad, J C; Howard, C V; McLean, W G

    2003-03-14

    Speculation about potential neurotoxicity due to chronic exposure to low doses of organophosphate (OP) pesticides is not yet supported by experimental evidence. The objective of this work was to use a cell culture model of chronic OP exposure to determine if such exposure can alter the sensitivity of nerve cells to subsequent acute exposure to OPs or other compounds. NB2a neuroblastoma cells were grown in the presence of 25 microM diazinon for 8 weeks. The OP was then withdrawn and the cells were induced to differentiate in the presence of various other pesticides or herbicides, including OPs and OP-containing formulations. The resulting outgrowth of neurite-like structures was measured by light microscopy and quantitative image analysis and the IC(50) for each OP or formulation was calculated. The IC(50) values in diazinon-pre-exposed cells were compared with the equivalent values in cells not pre-exposed to diazinon. The IC(50) for inhibition of neurite outgrowth by acute application of diazinon, pyrethrum, glyphosate or a commercial formulation of glyphosate was decreased by between 20 and 90% after pre-treatment with diazinon. In contrast, the IC(50) for pirimiphos methyl was unaffected and those for phosmet or chlorpyrifos were increased by between 1.5- and 3-fold. Treatment of cells with chlorpyrifos or with a second glyphosate-containing formulation led to the formation of abnormal neurite-like structures in diazinon-pre-exposed cells. The data support the view that chronic exposure to an OP may reduce the threshold for toxicity of some, but by no means all, environmental agents. PMID:12505446

  4. Targeted Gene Expression in Zebrafish Exposed to Chlorpyrifos-Oxon Confirms Phenotype-Specific Mechanisms Leading to Adverse Outcomes.

    PubMed

    Garcia-Reyero, Natàlia; Escalon, Lynn; Prats, Eva; Faria, Melissa; Soares, Amadeu M V M; Raldúa, Demetrio

    2016-06-01

    Zebrafish models for mild, moderate, and severe acute organophosphorus poisoning were previously developed by exposing zebrafish larvae to chlopyrifos-oxon. The phenotype of these models was characterized at several levels of biological organization. Oxidative stress and mitochondrial dysfunction were found to be involved in the development of the more severe phenotype. Here we used targeted gene expression to understand the dose-responsiveness of those two pathways and their involvement on generating the different zebrafish models. As the severe phenotype is irreversible after only 3 h of exposure, we also analyzed the response of the oxidative stress pathway at 3 and 24 h. Some of the genes related to oxidative stress were already differentially expressed at 3 h. There was an increase in differentially expressed genes related to both oxidative stress and mitochondrial function from the more mild to the more severe phenotype, suggesting the involvement of these mechanisms in increasing phenotype severity. Temporal data suggest that peroxynitrite leading to lipid peroxidation might be involved in phenotype transition and irreversibility. PMID:27086301

  5. Biodegradation of diazinon by Serratia marcescens DI101 and its use in bioremediation of contaminated environment.

    PubMed

    Abo-Amer, Aly

    2011-01-01

    Four diazinon-degrading bacteria were isolated from agricultural soil by using an enrichment technique. The biochemical analysis and molecular method including RFLP indicated that these isolates were identical, and one strain designated DI101 was selected for further study. Phylogenetic analysis based on 16S rDNA sequencing indicated that the strain DI101 clearly belongs to the Serratia marcescens group. The ability of the strain to utilize diazinon as a source of carbon and phosphorus was investigated under different culture conditions. The DI101 strain was able to completely degrade 50 mg/l diazinon in MSM within 11 days with a degradation rate of 0.226 day-1. The inoculation of sterilized soil treated with 100 mg/kg of diazinon with 10(6) CFU/g DI101 resulted in a faster degradation rate than was recorded in non-sterilized soil. The diazinon degradation rate by DI101 was efficient at temperatures from 25 to 30degrees C and at pHs from 7.0 to 8.0. The degradation rate of diazinon was not affected by the absence of a phosphorus supplement, and addition of other carbon sources (glucose or succinate) resulted in the slowing down of the degradation rate. The maximum degradation rate (Vmax) of diazinon was 0.292 day-1 and its saturation constant (Ks) was 11 mg/l, as determined by a Michaelis-Menten curve. The strain was able to degrade diethylthiophosphate-containing organophosphates such as chlorpyrifos, coumaphos, parathion, and isazofos when provided as a source of carbon and phosphorus, but not ethoprophos, cadusafos, and fenamiphos. These results propose useful information for the potential application of the DI101 strain in bioremediation of pesticide-contaminated environments. PMID:21301195

  6. Human variation in CYP-specific chlorpyrifos metabolism.

    PubMed

    Croom, Edward L; Wallace, Andrew D; Hodgson, Ernest

    2010-10-29

    Chlorpyrifos, an organophophorothioate insecticide, is bioactivated to the neurotoxic metabolite, chlorpyrifos-oxon (CPO) by cytochromes P450 (CYPs). To determine the variability in chlorpyrifos bioactivation, CPO production by human liver microsomes from 17 individual donors was compared relative to phenotype and genotype. CPO production varied over 14-fold between individuals in incubations utilizing 20 μM chlorpyrifos as substrate, while CPO production varied 57-fold in incubations with 100 μM chlorpyrifos. For all but two samples, the formation of the less toxic metabolite, 3,5,6-trichloro-2-pyridinol (TCP), was greater than CPO production. TCP production varied 9-fold in incubations utilizing 20 μM chlorpyrifos as substrate and 19-fold using 100 μM chlorpyrifos. Chlorpyrifos metabolism by individual human liver microsomes was significantly correlated with CYP2B6, CYP2C19 and CYP3A4 related activity. CPO formation was best correlated with CYP2B6 related activity at low (20 μM) chlorpyrifos concentrations while CYP3A4 related activity was best correlated with CPO formation at high concentrations (100 μM) of chlorpyrifos. TCP production was best correlated with CYP3A4 activity at all substrate concentrations of chlorpyrifos. The production of both CPO and TCP was significantly lower at a concentration of 20 μM chlorpyrifos as compared to 100 μM chlorpyrifos. Calculations of percent total normalized rates (% TNR) and the chemical inhibitors ketoconazole and ticlopidine were used to confirm the importance of CYP2B6, CYP2C19, and CYP3A4 for the metabolism of chlorpyrifos. The combination of ketoconazole and ticlopidine inhibited the majority of TCP and CPO formation. CPO formation did not differ by CYP2B6 genotype. Individual variations in CPO production may need to be considered in determining the risk of chlorpyrifos poisoning. PMID:20709133

  7. Toxicity evaluation of diazinon contaminated leaf litter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diazinon is an organophosphate pesticide with widespread use on a variety of agricultural crops. Because of its use, diazinon is a potential contributor to non-point source contamination of aquatic environments. A prominent feature within these aquatic environments includes leaf litter, especially...

  8. Ecotoxicology of chlorpyrifos.

    PubMed

    Barron, M G; Woodburn, K B

    1995-01-01

    Chlorpyrifos is a broad-spectrum organophosphorothioate insecticide with a principal mechanism of toxicity by inactivation of acetylcholinesterase at nerve junctions. Unlike certain organochlorine pesticides, chlorpyrifos is relatively nonpersistent (Racke 1993), and its principal degradation products are less toxic than the parent chemical. Species sensitivity varies considerably across kingdom and phyla. In general, aquatic and terrestrial microorganisms and plants are tolerant to chlorpyrifos exposure. Aquatic invertebrates, particularly crustaceans and insect larvae, are sensitive to exposure: LC50s are generally less than 1 microgram/L, and no-observed-effect concentrations may be below 0.1 microgram/L in laboratory studies. Fish appear to be less sensitive, with LC50s generally between 1 and 100 micrograms/L and no-observed effect concentrations of approximately 0.5 microgram/L. In general, saltwater and freshwater organisms exhibit similar sensitivity to chlorpyrifos, considering the extreme phylogenetic and species differences in toxicity. Chlorpyrifos effects in aquatic ecosystems are complex because of the diversity of species assemblages and trophic interactions. In general, functional endpoints (e.g., community metabolism) are less sensitive than structural parameters of ecosystems (e.g., loss of sensitive species). Ecosystem recovery is dependent on the interaction of a variety of factors including treatment timing and application dose, rate of dissipation, species assemblages, trophic structure, and the reproductive capacity and growth rate of susceptible and tolerant populations. Terrestrial species are relatively tolerant of chlorpyrifos exposure, although contact toxicity to sensitive terrestrial invertebrates may occur at concentrations of 0.1 microgram/insect. Amphibians, birds, and mammals show similar sensitivity to orally administered chlorpyrifos, with LD50s ranging from 8 to > 400 mg/kg body weight. Long-term chronic feeding studies in birds

  9. Biodegradation of Chlorpyrifos by Enterobacter Strain B-14 and Its Use in Bioremediation of Contaminated Soils

    PubMed Central

    Singh, Brajesh K.; Walker, Allan; Morgan, J. Alun W.; Wright, Denis J.

    2004-01-01

    Six chlorpyrifos-degrading bacteria were isolated from an Australian soil and compared by biochemical and molecular methods. The isolates were indistinguishable, and one (strain B-14) was selected for further analysis. This strain showed greatest similarity to members of the order Enterobacteriales and was closest to members of the Enterobacter asburiae group. The ability of the strain to mineralize chlorpyrifos was investigated under different culture conditions, and the strain utilized chlorpyrifos as the sole source of carbon and phosphorus. Studies with ring or uniformly labeled [14C]chlorpyrifos in liquid culture demonstrated that the isolate hydrolyzed chlorpyrifos to diethylthiophospshate (DETP) and 3, 5, 6-trichloro-2-pyridinol, and utilized DETP for growth and energy. The isolate was found to possess mono- and diphosphatase activities along with a phosphotriesterase activity. Addition of other sources of carbon (glucose and succinate) resulted in slowing down of the initial rate of degradation of chlorpyrifos. The isolate degraded the DETP-containing organophosphates parathion, diazinon, coumaphos, and isazofos when provided as the sole source of carbon and phosphorus, but not fenamiphos, fonofos, ethoprop, and cadusafos, which have different side chains. Studies of the molecular basis of degradation suggested that the degrading ability could be polygenic and chromosome based. Further studies revealed that the strain possessed a novel phosphotriesterase enzyme system, as the gene coding for this enzyme had a different sequence from the widely studied organophosphate-degrading gene (opd). The addition of strain B-14 (106 cells g−1) to soil with a low indigenous population of chlorpyrifos-degrading bacteria treated with 35 mg of chlorpyrifos kg−1 resulted in a higher degradation rate than was observed in noninoculated soils. These results highlight the potential of this bacterium to be used in the cleanup of contaminated pesticide waste in the

  10. Monitoring of selected pesticides residue levels in water samples of paddy fields and removal of cypermethrin and chlorpyrifos residues from water using rice bran.

    PubMed

    Bhattacharjee, Shubhra; Fakhruddin, A N M; Chowdhury, M A Z; Rahman, M A; Alam, M K

    2012-08-01

    Consumption of pesticides associated foods increased in recent decades in Bangladesh. Most of the pesticides come from paddy, as rice is the main food items here and about 70 % pesticides are used only on paddy fields. Water samples of paddy fields and Kaliganga River of Manikganj district were analyzed to provide base line data on cypermethrin, chlorpyrifos and diazinon residue by using high performance liquid chromatography. Levels of Cypermethrin, chlorpyrifos and diazinon detected in the paddy field water samples were (0.605 ± 0.011 μg/L), (0.06 ± 0.001 μg/L) and (0.039 ± 0.002 μg/L), respectively. 0.11 ± 0.003 μg/L of cypermethrin and 0.012 ± 0.0006 μg/L of chlorpyrifos were also identified in the water samples of Kaligonga River. Diazinon residue was not detected in the river water samples. The detected concentrations of pesticide residues in the river water were below the accepted maximum residue limit (MRL) value of drinking water (0.1 μg/l) adopted by the FAO/WHO Codex Alimentarius Commission. Cypermethrin and chlorpyrifos were chosen for decontamination through rice bran, as it was found in river water. Two gm rice bran could easily decontaminated 95.6 % and 96.4 % of cypermethrin and chlorpyrifos. The result of this study showed that pesticide residue was detected in water samples were below the MRLs value, which can easily be decontaminated through absorption of rice bran. PMID:22627618

  11. Diazinon residues in insects from sprayed tobacco

    USGS Publications Warehouse

    Stromborg, K.L.; Beyer, W.N.; Kolbe, E.

    1982-01-01

    Pooled samples of tobacco hornworms collected from a field sprayed with 0.84 kg/ha of diazinon were analyzed for residues at various intervals after application. No residues of the toxic metabolite diazoxon were detected (sensitivity 0.5 ppm) in any sample. Only one sample exceeded 1.0 ppm of the parent compound and was collected 4 hours after spraying. Residues declined over time (P<0.01) and none were detected (sensitivity 0.1 ppm) 18 days after spraying. the potential hazard to birds eating these insects appeared to be minimal.

  12. IN-RESIDENCE, MULTIPLE ROUTE EXPOSURES TO CHLORPYRIFOS AND DIAZINON ESTIMATED BY INDIRECT METHOD MODELS

    EPA Science Inventory

    One of the objectives of the National Human Exposure Assessment Survey (NHEXAS) is to estimate exposures to several pollutants in multiple media and determine their distributions for the population of Arizona. This paper presents modeling methods used to estimate exposure dist...

  13. Immunological abnormalities in humans chronically exposed to chlorpyrifos.

    PubMed

    Thrasher, Jack D; Heuser, Gunnar; Broughton, Alan

    2002-01-01

    Twenty-nine individuals with chronic health complaints following exposure to chlorpyrifos were compared with 3 control groups (i.e., 1 positive and 2 negative) with respect to the following: (1) peripheral lymphocyte phenotypes; (2) autoantibodies (nucleic acids and nucleoproteins, parietal cell, brush border, mitochondria, smooth muscle, thyroid gland, and central nervous system/peripheral nervous system myelin); (3) mitogenesis to phytohemagglutinin and concanavillin. The data revealed an increase in CD26 expression, a decrease in percentage of CD5 phenotype, decreased mitogenesis in response to phytohemagglutinin and concanavillin, and an increased frequency of autoantibodies. The alterations in these peripheral blood markers were unaffected by medications, age, sex, or season. The authors concluded that chronic exposure to chlorpyrifos causes immunological changes. PMID:12507170

  14. Isolation and characterization of a novel native Bacillus thuringiensis strain BRC-HZM2 capable of degrading chlorpyrifos.

    PubMed

    Wu, Songqing; Peng, Yan; Huang, Zhangmin; Huang, Zhipeng; Xu, Lei; Ivan, Gelbič; Guan, Xiong; Zhang, Lingling; Zou, Shuangquan

    2015-03-01

    Studies were carried out to isolate chlorpyrifos degrading Bacillus thuringiensis (Bt) strains from chlorpyrifos-contaminated samples. Six Bt strains (isolation rate 2.7%) were isolated by modified sodium acetate antibiotic heat treatment, and one novel strain (BRC-HZM2) was selected for further analysis. Phenotype and phylogeny analysis of this strain was conducted on the basis of biochemical reactions, antibiotic sensitivity, 16s rRNA genes, plasmid profile, insecticidal crystal protein profiles, and PCR-RFLP for cry and cyt genes. The degradation rate of chlorpyrifos in liquid culture was estimated during 48 h of incubation for the isolate BRC-HZM2. More than 50% of the initial chlorpyrifos concentration degraded within 12 h, 88.9% after 48 h. These results highlight the potential of the Bt strain for biological control and the bioremediation of environments contaminated with chlorpyrifos. PMID:24243520

  15. Transport of diazinon in the San Joaquin River Basin, California

    USGS Publications Warehouse

    Kratzer, C.R.

    1999-01-01

    Most of the application of the organophosphate insecticide diazinon in the San Joaquin River Basin occurs in winter to control wood-boring insects in dormant almond orchards. A federal-state collaborative study found that diazinon accounted for most of the observed toxicity of San Joaquin River water in February 1993. Previous studies focused mainly on west-side inputs to the San Joaquin River. In this 1994 study, the three major east-side tributaries to the San Joaquin River - the Merced, Tuolumne, and Stanislaus rivers - and a downstream site on the San Joaquin River were sampled throughout the hydrographs of a late January and an early February storm. In both storms, the Tuolumne River had the highest concentrations of diazinon and transported the largest load of the three tributaries. The Stanislaus River was a small source in both storms. On the basis of previous storm sampling and estimated travel times, ephemeral west-side creeks probably were the main diazinon source early in the storms, whereas the Tuolumne and Merced rivers and east-side drainages directly to the San Joaquin River were the main sources later. Although 74 percent of diazinon transport in the San Joaquin River during 1991-1993 occurred in January and February, transport during each of the two 1994 storms was only 0.05 percent of the amount applied during preceding dry periods. Nevertheless, some of the diazinon concentrations in the San Joaquin River during the January storm exceeded 0.35 ??g/L, a concentration shown to be acutely toxic to water fleas. On the basis of this study and previous studies, diazinon concentrations and streamflow are highly variable during January and February storms, and frequent sampling is required to evaluate transport in the San Joaquin River Basin.

  16. Transport of diazinon in the San Joaquin River basin, California

    USGS Publications Warehouse

    Kratzer, Charles R.

    1997-01-01

    Most of the application of the organophosphate insecticide diazinon in the San Joaquin River Basin occurs in winter to control wood boring insects in dormant almond orchards. A federal-state collaborative study found that diazinon accounted for most of the observed toxicity of San Joaquin River water to water fleas in February 1993. Previous studies focussed mainly on west-side inputs to the San Joaquin River. In this 1994 study, the three major east-side tributaries to the San Joaquin River, the Merced, Tuolumne, and Stanislaus Rivers, and a downstream site on the San Joaquin River were sampled throughout the hydrographs of a late January and an early February storm. In both storms, the Tuolumne River had the highest concentrations of diazinon and transported the largest load of the three tributaries. The Stanislaus River was a small source in both storms. On the basis of previous storm sampling and estimated traveltimes, ephemeral west-side creeks were probably the main diazinon source early in the storms, while the Tuolumne and Merced Rivers and east-side drainage directly to the San Joaquin River were the main sources later. Although 74 percent of diazinon transport in the San Joaquin River during 199193 occurred in January and February, transport during each of the two 1994 storms was only 0.05 percent of the amount applied during preceeding dry periods. Nevertheless, some of the diazinon concentrations in the San Joaquin River during the January storm exceeded 0.35 micrograms per liter, a concentration shown to be acutely toxic to water fleas. Diazinon concentrations were highly variable during the storms and frequent sampling was required to adequately describe the concentration curves and to estimate loads.

  17. HEALTH AND ENVIRONMENTAL EFFECTS PROFILE FOR CHLORPYRIFOS AND CHLORPYRIFOS-METHYL

    EPA Science Inventory

    The Health and Environmental Effects Profile for chlorpyrifos and chlorpyrifos methyl was prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste to support listings of hazardous con...

  18. Diazinon degradation by a novel strain Ralstonia sp. DI-3 and X-ray crystal structure determination of the metabolite of diazinon.

    PubMed

    Wang, Guangli; Liu, Yuan

    2016-09-01

    Diazinon is a widely used organophosphorus insecticide often detected in the environment. A highly effective diazinon-degrading Ralstonia sp. strain DI-3 was isolated from agricultural soil. Strain DI-3 can utilize dimethoate as its sole carbon source for growth and degrade an initial concentration of 100 mg L-1 diazinon to non-detectable levels within 60 h in liquid culture. A small amount of second carbon source as co-substrate could slightly enhance the biodegradation of diazinon. In addition, a less toxic metabolic intermediate formed during the degradation of diazinon mediated by strain DI-3 was purified using thin-layer chromatography (TLC) and identified based on single-crystal Xray diffraction analysis, allowing a degradation pathway for diazinon by pure culture to be proposed. Finally, this is the first providing authentic evidence to describe the metabolite. PMID:27581928

  19. TOXICITY OF DIAZINON TO BROOK TROUT AND FATHEAD MINNOWS

    EPA Science Inventory

    Fathead minnows exposed to diazinon from 5 days through 24 weeks post hatch developed severe scoliosis. The incidence and degree of spinal deformity correlated to exposure level. Fish in 3.2 micrograms/l was 30% lower than the controls. Hatch of eggs from fathead minnows exposed ...

  20. Diurnal variation of diazinon volatilization: Soil moisture effects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A field study was conducted to measure the effect of soil moisture on diazinon volatilization under typical semi-arid field conditions. The study comprised three experiments performed with differing soil moisture conditions. Over the course of each three day experiment, diurnal changes in volatiliz...

  1. IMMUNOASSAY ANALYSIS FOR CHLORPYRIFOS IN FOODS

    EPA Science Inventory

    Chlorpyrifos is widely used in agriculture on fruits and vegetables. The tolerances for chlorpyrifos on produce range from 0.1-8.0 ppm. Residue detection is commonly performed by gas chromatography following various cleanup procedures. However, the required cleanup can make ...

  2. Ecotoxicological characterization of a tropical soil after diazinon spraying.

    PubMed

    Natal-da-Luz, Tiago; Moreira-Santos, Matilde; Ruepert, Clemens; Castillo, Luisa E; Ribeiro, Rui; Sousa, José Paulo

    2012-11-01

    The impact of diazinon spraying in an agricultural tropical soil through the evaluation of both the habitat and retention functions of the soil system was never reported. To fill this gap, five times the recommended dose of a commercial diazinon formulation was sprayed in an agricultural area of Costa Rica, and dilution gradients of the sprayed soil were prepared in the laboratory. Avoidance and reproduction tests with soil organisms (Eisenia andrei, Enchytraeus crypticus and Folsomia candida) to evaluate losses in terrestrial habitat function, and growth and reproduction tests with aquatic organisms (Chlorella vulgaris and Daphnia magna, respectively) to evaluate the retention function of soil were performed. Results demonstrated that regarding habitat function, F. candida reproduction was the most sensitive endpoint (EC(50) = 0.288 mg a.i./kg), followed by avoidance behaviour of E. andrei (EC(20) = 1.75 mg a.i./kg). F. candida avoidance and the reproduction of E. andrei and E. crypticus were not affected by diazinon. The toxicity tests with aquatic organisms showed that the soil retention function was insufficient to prevent effects of diazinon either on microalgae growth (EC(50) ≤ 0.742 mg/L and EC(20) ≤ 0.223 mg/L) and on the reproduction of the cladoceran (EC(50) ≤ 0.00771 mg/L and EC(20) ≤ 0.00646 mg/L). Results suggested that diazinon exerted toxic effects even at the dilution corresponding to the recommended dose, fact which makes its misuse an issue of environmental concern. Furthermore, the present study highlighted the importance and complementary nature of the assessment of both habitat and retention functions to an ecological risk assessment in tropical systems. PMID:22760667

  3. Influence of cimetidine on the toxicity and toxicokinetics of diazinon in the rat.

    PubMed

    Wu, H X; Evreux-Gros, C; Descotes, J

    1996-05-01

    1. The influence of cimetidine on diazinon toxicity and toxicokinetics was investigated in male Wistar rats. 2. The acute toxicity of diazinon, as well as brain acetylcholinesterase and carboxylesterase inhibition, were potentiated by pretreating rats with cimetidine (80 mg kg-1, i.p.) 1 and 24 h prior to diazinon application (50 mg kg-1, i.p.). 3. Comparison of toxicokinetic parameters between control and cimetidine-treated animals, showed a significant decrease in diazinon total body clearance and a marked increase in the area under the plasma concentration-time curve following cimetidine. 4. These results indicate that a major cause of the potentiation of diazinon may be related to the increase in the amount of diazinon in the systemic circulation as well as in the brain. PMID:8735462

  4. Isolation and characterization of a novel chlorpyrifos degrading flavobacterium species EMBS0145 by 16S rRNA gene sequencing.

    PubMed

    Amareshwari, P; Bhatia, Mayuri; Venkatesh, K; Roja Rani, A; Ravi, G V; Bhakt, Priyanka; Bandaru, Srinivas; Yadav, Mukesh; Nayarisseri, Anuraj; Nair, Achuthsankar S

    2015-03-01

    Indiscriminate application of pesticides like chlorpyrifos, diazinon, or malathion contaminate the soil in addition has being unsafe often it has raised severe health concerns. Conversely, microorganisms like Trichoderma, Aspergillus and Bacteria like Rhizobium Bacillus, Azotobacter, Flavobacterium etc have evolved that are endowed with degradation of pesticides aforementioned to non-toxic products. The current study pitches into identification of a novel species of Flavobacterium bacteria capable to degrade the Organophosphorous pesticides. The bacterium was isolated from agricultural soil collected from Guntur District, Andhra Pradesh, India. The samples were serially diluted and the aliquots were incubated for a suitable time following which the suspected colony was subjected to 16S rDNA sequencing. The sequence thus obtained was aligned pairwise against Flavobacterium species, which resulted in identification of novel specie of Flavobacterium later named as EMBS0145, the sequence of which was deposited in in GenBank with accession number JN794045. PMID:25248957

  5. Diazinon residues and degradation kinetics for grapes under field conditions.

    PubMed

    Torabi, Ehssan; Talebi, Khalil

    2013-01-01

    The dissipation of diazinon (O,O-diethyl O-2-isopropyl-6-methylpyrimidin-4-yl phosphorothioate) in grapes was investigated to determine its pre-harvest interval (PHI). Diazinon was applied to grapes at the recommended dosage (0.9 g a.i. L(-1)) and twice the recommended dosage (1.8 g a.i. L(-1)) three times, at the fruit formation stage, the sour stage, and the ripening stage, in a field trial with three replications. Samples were taken at 0, 1, 2, 4, 7, 11, 15, 20, 26 and 32 days after spraying. The residue was extracted using a water/methanol/acetonitrile (1:1:1, v/v/v) solvent and solid phase extraction was employed for cleanup. Quantitative analysis was performed using a gas chromatograph equipped with a nitrogen-phosphorus detector. The dissipation trend for the recommended dosage and twice the recommend dosage followed the simple first-order kinetic model (SFOK) (DT(50) = 3.29 days, DT(90) = 11 days, PHI = 13.5 days) and first-order double-exponential decay (FODED) model (DT(50) = 1.08 days, DT(90) = 5.82 days, PHI = 15.29 days), respectively. The average initial deposit of diazinon at the recommended dosage was 9.04 mg kg(-1)and for twice the recommended dosage was 27.38 mg kg(-1)and it dissipated rapidly within days of spraying. PMID:23374043

  6. Biodegradation of chlorpyrifos by bacterial genus Pseudomonas.

    PubMed

    Gilani, Razia Alam; Rafique, Mazhar; Rehman, Abdul; Munis, Muhammad Farooq Hussain; Rehman, Shafiq Ur; Chaudhary, Hassan Javed

    2016-02-01

    Chlorpyrifos is an organophosphorus pesticide commonly used in agriculture. It is noxious to a variety of organisms that include living soil biota along with beneficial arthropods, fish, birds, humans, animals, and plants. Exposure to chlorpyrifos may cause detrimental effects as delayed seedling emergence, fruit deformities, and abnormal cell division. Contamination of chlorpyrifos has been found about 24 km from the site of its application. There are many physico-chemical and biological approaches to remove organophosphorus pesticides from the ecosystem, among them most promising is biodegradation. The 3,5,6-trichloro-2-pyridinol (TCP) and diethylthiophosphate (DETP) as primary products are made when chlorpyrifos is degraded by soil microorganisms which further break into nontoxic metabolites as CO(2), H(2)O, and NH(3). Pseudomonas is a diversified genus possessing a series of catabolic pathways and enzymes involved in pesticide degradation. Pseudomonas putida MAS-1 is reported to be more efficient in chlorpyrifos degradation by a rate of 90% in 24 h among Pseudomonas genus. The current review analyzed the comparative potential of bacterial species in Pseudomonas genus for degradation of chlorpyrifos thus, expressing an ecofriendly approach for the treatment of environmental contaminants like pesticides. PMID:26837064

  7. Environmental degradation of chlorpyrifos in soil

    SciTech Connect

    Cink, J.H.; Coats, J.R.

    1995-12-31

    Dursban TC has become the most widely used insecticide for the control of termites since the banning of chlordane. Several laboratory studies have been conducted to investigate the degradation kinetics of chlorpyrifos applied to soil at termiticide rates. These have included a limited number of soil types and have utilized tightly regulated environmental conditions. A field study was established to investigate the degradation of chlorpyrifos in soil treated with a 1% solution via trench application and under natural environmental conditions. Once treated, soil samples were removed from the trench at scheduled intervals and extracted to determine the concentration chlorpyrifos remaining. In three of the soils studied, the concentration of chlorpyrifos decreased dramatically within the first three months. The remaining soils showed a steady decline in concentration over 12 months. After this initial phase of degradation, the slope of the degradation curve changed sharply. This may indicate that chlorpyrifos undergoes two phases of degradation in soil. Using both phases of the degradation curves may give a better estimate of the concentration of chlorpyrifos that may be present in a soil at any time period.

  8. Engineering chlorpyrifos-degrading Stenotrophomonas sp. YC-1 for heavy metal accumulation and enhanced chlorpyrifos degradation.

    PubMed

    Liu, Ruihua; Jiang, Hong; Xu, Ping; Qiao, Chuanling; Zhou, Qixing; Yang, Chao

    2014-11-01

    Many ecosystems are currently co-contaminated with pesticides and heavy metals, such as chlorpyrifos and cadmium. A promising strategy to remediate mixed chlorpyrifos-cadmium-contaminated sites is the use of chlorpyrifos-degrading bacteria endowed with cadmium removal capabilities. In this work, a gene coding for synthetic phytochelatins (EC20) with high cadmium-binding capacity was introduced into a chlorpyrifos-degrading bacterium, Stenotrophomonas sp. YC-1, resulting in an engineered strain with both cadmium accumulation and chlorpyrifos degradation capabilities. To improve the cadmium-binding efficiency of whole cells, EC20 was displayed on the cell surface of Stenotrophomonas sp. YC-1 using the truncated ice nucleation protein (INPNC) anchor. The surface localization of the INPNC-EC20 fusion protein was demonstrated by cell fractionation, Western blot analysis, and immunofluorescence microscopy. Expression of EC20 on the cell surface not only improved cadmium binding, but also alleviated the cellular toxicity of cadmium. As expected, the chlorpyrifos degradation rate was reduced in the presence of cadmium for cells without EC20 expression. However, expression of EC20 (higher cadmium accumulation) completely restored the level of chlorpyrifos degradation. These results demonstrated that EC20 expression not only enhanced cadmium accumulation, but also reduced the toxic effect of cadmium on chlorpyrifos degradation. PMID:25151179

  9. Chlorpyrifos, chlorpyrifos-oxon, and diisopropylfluorophosphate inhibit kinesin-dependent microtubule motility

    SciTech Connect

    Gearhart, Debra A. . E-mail: dgearhar@mcg.edu; Sickles, Dale W.; Buccafusco, Jerry J.; Prendergast, Mark A.; Terry, Alvin V.

    2007-01-01

    Diisopropylfluorophosphate, originally developed as a chemical warfare agent, is structurally similar to nerve agents, and chlorpyrifos has extensive worldwide use as an agricultural pesticide. While inhibition of cholinesterases underlies the acute toxicity of these organophosphates, we previously reported impaired axonal transport in the sciatic nerves from rats treated chronically with subthreshold doses of chlorpyrifos. Those data indicate that chlorpyrifos (and/or its active metabolite, chlorpyrifos-oxon) might directly affect the function of kinesin and/or microtubules-the principal proteins that mediate anterograde axonal transport. The current report describes in vitro assays to assess the concentration-dependent effects of chlorpyrifos (0-10 {mu}M), chlorpyrifos-oxon (0-10 {mu}M), and diisopropylfluorophosphate (0-0.59 nM) on kinesin-dependent microtubule motility. Preincubating bovine brain microtubules with the organophosphates did not alter kinesin-mediated microtubule motility. In contrast, preincubation of bovine brain kinesin with diisopropylfluorophosphate, chlorpyrifos, or chlorpyrifos-oxon produced a concentration-dependent increase in the number of locomoting microtubules that detached from the kinesin-coated glass cover slip. Our data suggest that the organophosphates-chlorpyrifos-oxon, chlorpyrifos, and diisopropylfluorophosphate-directly affect kinesin, thereby disrupting kinesin-dependent transport on microtubules. Kinesin-dependent movement of vesicles, organelles, and other cellular components along microtubules is fundamental to the organization of all eukaryotic cells, especially in neurons where organelles and proteins synthesized in the cell body must move down long axons to pre-synaptic sites in nerve terminals. We postulate that disruption of kinesin-dependent intracellular transport could account for some of the long-term effects of organophosphates on the peripheral and central nervous system.

  10. Movement of Diazinon Residues into Homes Following Applications of a Granular Formulation to Residential Lawns

    EPA Science Inventory

    A pilot study was conducted to examine the movement of diazinon following applications of a granular formulation to residential lawns. The objectives included examining the transport and fate of diazinon from an outdoor source to the indoor living areas of six homes, and estimati...

  11. Efficiency of experimental rice (Oryza sativa L.) fields in mitigating diazinon runoff toxicity to Hyalella azteca

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study assessed the viability of using planted, mature rice fields in mitigating diazinon (an organophosphate insecticide) runoff toxicity using aqueous 48 h Hyalella azteca whole effluent toxicity bioassays. Rice fields decreased diazinon concentrations 80.1-99.9% compared with 10.8% in the unv...

  12. Degradation of chlorpyrifos in tropical rice soils.

    PubMed

    Das, Subhasis; Adhya, Tapan K

    2015-04-01

    Chlorpyrifos [O,O-diethyl O-(3,5,6-trichloro-2-pyridinol) phosphorothioate] is used worldwide as an agricultural insecticide against a broad spectrum of insect pests of economically important crops including rice, and soil application to control termites. The insecticide mostly undergoes hydrolysis to diethyl thiophosphoric acid (DETP) and 3,5,6-trichloro-2-pyridinol (TCP), and negligible amounts of other intermediate products. In a laboratory-cum-greenhouse study, chlorpyrifos, applied at a rate of 10 mg kg(-1) soil to five tropical rice soils of wide physico-chemical variability, degraded with a half-life ranging from 27.07 to 3.82 days. TCP was the major metabolite under both non-flooded and flooded conditions. Chlorpyrifos degradation had significant negative relationship with electrical conductivity (EC), cation exchange capacity (CEC), clay and sand contents of the soils under non-flooded conditions. Results indicate that degradation of chlorpyrifos was accelerated with increase in its application frequency, across the representative rice soils. Management regimes including moisture content and presence or absence of rice plants also influenced the process. Biotic factors also play an important role in the degradation of chlorpyrifos as demonstrated by its convincing degradation in mineral salts medium inoculated with non-sterile soil suspension. PMID:25617866

  13. Physiologically Based Pharmacokinetic/Pharmacodynamic Model for the Organophosphorus Pesticide Diazinon

    SciTech Connect

    Poet, Torka S.; Kousba, Ahmed A.; Dennison, Stephanie L.; Timchalk, Chuck

    2004-12-01

    Organophosphate (OP) insecticides like diazinon (DZN) constitute a large class of chemical insecticides that are widely utilized. The potential exists for significant exposures to a combination of OP pesticides from multiple routes. The objective of this research was to develop a physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) model capable of predicting the relationships between exposure route, bioactivation, detoxification, and acetylcholinesterase (AChE) inhibition. CYP450-mediated metabolism of DZN to the active oxon leads to inhibition of AChE at nerve endings. CYP450s also mediate detoxification of DZN to its pyrimidinol and A-esterase detoxifies the oxon to the pyrimidinol. The ultimate goal is to use this model to quantify systemic dosimetry and biological response from available environmental and personal exposure data. The model structure integrates CYP450 and esterase metabolism, route-dependent absorption, target tissue dosimetry, and dynamic response, to predict circulating blood levels of DZN and esterase inhibition in target organs. Metabolic rate constants for the CYP450-mediated conversion to the active oxon and the inactive pyrimidinol and the esterase-mediated deactivation of the oxon have been measured in vitro. The inhibition of AChE activity is a sensitive and relatively easy measure of exposure and is therefore the preferred descriptive endpoint. Esterase inhibition and regeneration rates have been described using in vitro calculations and parameter optimization to fit the model to AChE inhibition data. This descriptive model for DZN has been developed and has been shown to predict blood levels of the parent chemical and AChE inhibition in animal models. This PBPK/PD model will be linked to a existing PBPK model for chlorpyrifos to estimate the effects of exposures to a mixture of OPs and to describe target tissue dosimetry and effects in humans. These biologically relevant PBPK models will be integral to risk assessments for

  14. High chlorpyrifos resistance in Culex pipiens mosquitoes: strong synergy between resistance genes.

    PubMed

    Alout, H; Labbé, P; Berthomieu, A; Makoundou, P; Fort, P; Pasteur, N; Weill, M

    2016-02-01

    We investigated the genetic determinism of high chlorpyrifos resistance (HCR), a phenotype first described in 1999 in Culex pipiens mosquitoes surviving chlorpyrifos doses ⩾1 mg l(-1) and more recently found in field samples from Tunisia, Israel or Indian Ocean islands. Through chlorpyrifos selection, we selected several HCR strains that displayed over 10 000-fold resistance. All strains were homozygous for resistant alleles at two main loci: the ace-1 gene, with the resistant ace-1(R) allele expressing the insensitive G119S acetylcholinesterase, and a resistant allele of an unknown gene (named T) linked to the sex and ace-2 genes. We constructed a strain carrying only the T-resistant allele and studied its resistance characteristics. By crossing this strain with strains harboring different alleles at the ace-1 locus, we showed that the resistant ace-1(R) and the T alleles act in strong synergy, as they elicited a resistance 100 times higher than expected from a simple multiplicative effect. This effect was specific to chlorpyrifos and parathion and was not affected by synergists. We also examined how HCR was expressed in strains carrying other ace-1-resistant alleles, such as ace-1(V) or the duplicated ace-1(D) allele, currently spreading worldwide. We identified two major parameters that influenced the level of resistance: the number and the nature of the ace-1-resistant alleles and the number of T alleles. Our data fit a model that predicts that the T allele acts by decreasing chlorpyrifos concentration in the compartment targeted in insects. PMID:26463842

  15. Variation characteristics of chlorpyrifos in nonsterile wetland plant hydroponic system.

    PubMed

    Wang, Chuan; Zhou, Qiaohong; Zhang, Liping; Zhang, Yan; Xiao, Enrong; Wu, Zhenbin

    2013-01-01

    Six wetland plants were investigated for their effect on the degradation characteristics of chlorpyrifos in nonsterile hydroponic system at constant temperature of 28 degrees C. The results showed that the removal rates of chlorpyrifos in the water of plant systems were 1.26-5.56% higher than that in the control without plants. Scirpus validus and Typha angustifolia were better than other hygrophytes in elimination of chlorpyrifos. The removal rates of the two systems were up to 88%. Plants of acaulescent group had an advantage over caulescent group in removing chlorpyrifos. Phytoaccumulation of chlorpyrifos was observed, and the order of chlorpyrifos concentration in different plant tissues was root > stem > leaf. It was also found that chlorpyrifos and its metabolite TCP decreased rapidly at the initial step of the experiment. PMID:23819296

  16. Differential toxicity and uptake of Diazinon on embryo-larval development of Rhinella arenarum.

    PubMed

    Aronzon, Carolina Mariel; Marino, Damián J G; Ronco, Alicia E; Pérez Coll, Cristina Silvia

    2014-04-01

    Diazinon, an anti-cholinesterase organophosphate, is an extensively used pesticide. The main objective of this work was to assess the lethal and sublethal effects of Diazinon and its comparison with the uptake by embryos and larvae of the common South American toad Rhinella arenarum by means of standardized bioassays during acute (96 h), short-term chronic (168 h) and chronic (504 h) exposures. Toxicity resulted time- and stage-dependent, thus the lethal concentration 50 for 96 h, 168 h and 504 h were 27.2; 20.1 and 6.8 mg Diazinon L(-1) for embryos and 8, 6.7 and 1.9 mg Diazinon L(-1) for larvae. It is noteworthy the remarkable differences found in the concentration which caused lethality with those causing adverse effects on development such as malformations (teratogenic effects). Therefore, the teratogenic index from 144 h was greater than two; the main adverse effects were axial flexures, irregular borders, wavy tail, microcephaly, malformed mouth and adhesive structures, gut miscoiling, underdeveloped gills, cloacal edema, desquamation and severe hydropsy. Moreover, the characteristic sublethal effect of Diazinon on larvae was abnormal behavior related to neurotoxicity with a NOEC-168 h of 4.5 mg Diazinon L(-1). Diazinon contents in R. arenarum were time-dependent and significantly related to exposure concentration for both embryos and larvae. Diazinon contents were also stage-dependent, as it was up to 27 times higher for organisms exposed from blastula stage onwards than early larvae. These facts and the Hazard Quotients, a numerical expression of ecological risk, of 2.73, which is above USEPA's Level of Concern, showed the threat that Diazinon represents for R. arenarum populations. PMID:24485812

  17. Persistent Cognitive Alterations in Rats after Early Postnatal Exposure to Low Doses of the Organophosphate Pesticide, Diazinon

    PubMed Central

    Timofeeva, Olga A.; Roegge, Cindy S.; Seidler, Frederic J.; Slotkin, Theodore A.; Levin, Edward D.

    2008-01-01

    Background Developmental neurotoxicity of organophosphorous insecticides (OPs) involves multiple mechanisms in addition to cholinesterase inhibition. We have found persisting effects of developmental chlorpyrifos (CPF) and diazinon (DZN) on cholinergic and serotonergic neurotransmitter systems and gene expression as well as behavioral function. Both molecular/neurochemical and behavioral effects of developmental OP exposure have been seen at doses below those which cause appreciable cholinesterase inhibition. Objectives We sought to determine if developmental DZN exposure at doses which do not produce significant acetylcholinesterase inhibition cause cognitive deficits. Methods Rats were exposed to DZN on postnatal days 1-4 at doses (0.5 and 2 mg/kg/d) that span the threshold for cholinesterase inhibition. They were later examined with a cognitive battery tests similar to that used with CPF. Results In the T-maze DZN caused significant hyperactivity in the initial trials of the session, but not later. In a longer assessment of locomotor activity no DZN-induced changes were seen over a 1-hour session. Prepulse inhibition was reduced by DZN exposure selectively in males vs. females; DZN eliminated the sex difference present in controls. In the radial maze, the lower but not higher DZN dose significantly impaired spatial learning. This has previously been seen with CPF as well. The lower dose DZN group also showed significantly greater sensitivity to the memory-impairing effects of the anticholinergic drug scopolamine. Conclusions Neonatal DZN exposure below the threshold for appreciable cholinesterase inhibition caused neurocognitive deficits in adulthood. The addition of some inhibition of AChE with a higher dose reversed the cognitive impairment. This non-monotonic dose-effect function has also been seen with neurochemical effects. Some of the DZN effects on cognition resemble those seen earlier for CPF, some differ. Our data suggest that DZN and CPF affect

  18. Brain cholinesterase response in the snakehead fish (Channa striata) after field exposure to diazinon.

    PubMed

    Nguyen, Van Cong; Nguyen, Thanh Phuong; Bayley, Mark

    2008-10-01

    The snakehead Channa striata is an economically important air-breathing fish species in the Mekong delta of Vietnam. Rice paddies, which are disturbed by the frequent application of agro-chemicals, are among the preferred habitats for this species during the rainy season. Diazinon is one of most commonly used chemicals in rice paddies. In the present study, exposure of adult snakehead fish to a single diazinon application in cages within a rice field resulted in long-term brain cholinesterase inhibition, while the water concentration of this insecticide fell below the detection limit within 3 days. In addition, incubation of brain homogenates with 2-PAM caused reactivation of the cholinesterase diazinon complex to within 80% of the control level. These experiments also showed that chemical ageing of the diazinon cholinesterase binding occurred, which may explain the long-term effects of this pesticide. PMID:18514898

  19. Lactobacillus Casei Decreases Organophosphorus Pesticide Diazinon Cytotoxicity in Human HUVEC Cell Line

    PubMed Central

    Bagherpour Shamloo, Hasan; Golkari, Saber; Faghfoori, Zeinab; Movassaghpour, AliAkbar; Lotfi, Hajie; Barzegari, Abolfazl; Yari Khosroushahi, Ahmad

    2016-01-01

    Purpose: Exposure to diazinon can trigger acute and chronic toxicity and significantly induces DNA damage and proapoptotic effects in different human cells. Due to the significance of probiotic bacteria antitoxin effect, this study aimed to investigate the effect of Lactobacillus casei on diazinon (DZN) cytotoxicity in human umbilical vein endothelial cells (HUVEC) in vitro. Methods: The cytotoxicity assessments were performed by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test, DAPI (4',6-diamidino-2-phenylindole) staining and flow cytometric methodologies. Results: Cytotoxic assessments through flow cytometry/ DAPI staining demonstrated that apoptosis is the main cytotoxic mechanism of diazinon in HUVEC cells and L. casei could decrease the diazinon cytotoxic effects on toxicants. Conclusion: the screen of total bacterial secreted metabolites can be considered as a wealthy source to find the new active compounds to introduce as reducing agricultural remained pesticide cytotoxicity effects on the human food chain. PMID:27478782

  20. TWO ACUTE HUMAN POISONING CASES RESULTING FROM EXPOSURE TO DIAZINON TRANSFORMATION PRODUCTS IN EGYPT

    EPA Science Inventory

    Two spraymen working in public health occupations in Alexandria, Egypt, experienced acute toxicity resulting from exposure to diazinon. Symptomatology was similar to that previously reported for exposure to parathion or other organophosphorus insecticides. Plasma and red blood ce...

  1. 76 FR 39399 - Chlorpyrifos Registration Review; Preliminary Human Health Risk Assessment; Notice of Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-06

    ... AGENCY Chlorpyrifos Registration Review; Preliminary Human Health Risk Assessment; Notice of Availability... availability of EPA's preliminary human health risk assessment for the registration review of chlorpyrifos and... comprehensive preliminary human health risk assessment for all chlorpyrifos uses. After reviewing...

  2. 76 FR 52945 - Chlorpyrifos Registration Review; Preliminary Human Health Risk Assessment; Extension of Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-24

    ... AGENCY Chlorpyrifos Registration Review; Preliminary Human Health Risk Assessment; Extension of Comment... availability of the chlorpyrifos registration review; preliminary human health risk assessment. This document... for the chlorpyrifos reregistration review, preliminary human health risk assessment, established...

  3. Toxicopathic changes and genotoxic effects in liver of rat following exposure to diazinon.

    PubMed

    Ezzi, Lobna; Haouas, Zohra; Salah, Imen Belhadj; Sakly, Amina; Grissa, Intissar; Chakroun, Sana; Kerkeni, Emna; Hassine, Mohsen; Mehdi, Meriem; Cheikh, Hassen Ben

    2016-06-01

    In general, people may come in contact with mixtures of insecticides through domestic use, consumption of contaminated food or drinks, and/or living close to treated areas. We analyzed the toxic effects of diazinon on histological structure of liver and hematological parameters in male rats. DNA-damaging potential of diazinon was also investigated using the comet assay in blood cells and the micronucleus test in bone marrow. Two groups of six male rats orally received different amounts of diazinon: 1/50 and 1/25 LD 50 for 4 weeks (5 day/week). The present study showed that diazinon caused hypertrophy of sinusoids, central vein, and portal triad, in addition to the formation of oedema, vacuoles, hemorrhage, necrosis, and lymphoid infiltration in rats' liver. A significant decrease in red blood cells, hemoglobin, hematocrite levels, and platelet counts was observed in the treated groups. However, the white blood cell count increased. Micronucleus test results revealed aneugenic effects of diazinon. Furthermore, we noticed an increase in comet tail length in treated groups. So, the comet assay confirmed the genotoxic potential of diazinon in vivo. On the assumption that all alterations observed in rats could be observed in human, it is necessary to raise the awareness about the health risk posed by this insecticide. PMID:26916269

  4. Diazinon concentrations in the Sacramento and San Joaquin Rivers and San Francisco Bay, California, February 1993

    USGS Publications Warehouse

    Kuivila, Kathryn M.

    1993-01-01

    The distribution and possible biological effects of a dormant spray pesticide, diazinon, were examined by measuring pesticide concentrations and estimating toxicity using bioassays at a series of sites in the Sacramento-San Joaquin Delta and San Francisco Bay. Pulses of diazinon were observed in early February 1993 in the Sacramento and San Joaquin Rivers after heavy rains, with elevated concentrations measured for a few days to weeks at a time. The pulse of diazinon in the Sacramento River was followed from Sacramento through Suisun Bay, the eastward embayment of San Francisco Bay. In the central delta, well-defined pulses of diazinon were not observed at the Old and Middle River sites; instead, the concentrations steadily increased throughout February. Ceriodaphnia dubia mortality was 100% in water samples collected for 12 consecutive days (February 8-19) from the San Joaquin River at Vernalis. The bioassay mortality corresponded with the peak diazinon concentrations. Conversely, no toxicity was observed in water collected before or after peaks of diazinon concentration. Other pesticides present also could contribute to the toxicity.

  5. The effects of diazinon and cypermethrin on the differentiation of neuronal and glial cell lines

    SciTech Connect

    Flaskos, J.; Harris, W.; Sachana, M.; Munoz, D.; Tack, J.; Hargreaves, A.J. . E-mail: alan.hargreaves@ntu.ac.uk

    2007-03-15

    Diazinon and cypermethrin are pesticides extensively used in sheep dipping. Diazinon is a known anti-cholinesterase, but there is limited information regarding its molecular mechanism of action. This paper describes the effects of diazinon and cypermethrin at a morphological and molecular level on differentiating mouse N2a neuroblastoma and rat C6 glioma cell lines. Concentrations up to 10 {mu}M of both compounds and their mixture had no effect on the viability of either cell line, as determined by methyl blue tetrazolium reduction and total protein assays. Microscopic analysis revealed that 1 {mu}M and 10 {mu}M diazinon but not cypermethrin inhibited the outgrowth of axon-like processes in N2a cells after a 24-h exposure but neither compound affected process outgrowth by differentiating C6 cells at these concentrations. Under these conditions, 10 {mu}M diazinon inhibited AChE slightly compared to the control after a 4-h exposure but not after 24 h. Western blotting analysis showed that morphological changes were associated with reduced cross-reactivity with antibodies that recognize the neurofilament heavy chain (NFH), microtubule associated protein MAP 1B and HSP-70 compared to control cell extracts, whereas reactivity with anti-{alpha}-tubulin antibodies was unchanged. Aggregation of NFH was observed in cell bodies of diazinon-treated N2a cells, as determined by indirect immunofluorescence staining. These data demonstrate that diazinon specifically targets neurite outgrowth in neuronal cells and that this effect is associated with disruption of axonal cytoskeleton proteins, whereas cypermethrin has no effect on the same parameters.

  6. Increased diazinon hydrolysis to 2-isopropyl-6-methyl-4-pyrimidinol in liquid medium by a specific Streptomyces mixed culture.

    PubMed

    Briceño, G; Schalchli, H; Rubilar, O; Tortella, G R; Mutis, A; Benimeli, C S; Palma, G; Diez, M C

    2016-08-01

    Actinobacteria identified as Streptomyces spp. were evaluated for their ability to remove diazinon as the only carbon source from a liquid medium. Single cultures of Streptomyces strains were exposed to diazinon at a concentration of 50 mg L(-1). After 96 h incubation, six of the eight cultures grew and five strains showed an increase in their total protein concentrations and changes in their protein profile. Up to 32% of the diazinon was removed by the single Streptomyces cultures. A compatibility assay showed that the different Streptomyces species were not antagonistic. Twenty-six mixed cultures were then prepared. Diazinon removal was increased when mixed cultures were used, and maximum diazinon removal of 62% was observed when the Streptomyces spp. strains AC5, AC9, GA11 and ISP13 were mixed; this was defined as the selected mixed culture (SMC). Diazinon removal was positively influenced by the addition of glucose into the liquid medium. Our study showed a diazinon degradation rate of 0.025 h(-1), half-life of 28 h(-1) and 2-isopropyl-6-methyl-4-pyrimidinol (IMHP) production of 0.143 mg L h(-1). Rapid diazinon hydrolysis to IMHP was associated with a decrease in the pH of the medium as a consequence of microbial glucose metabolism and organic acid exudation. Moreover, the SMC of Streptomyces was able to remove IMHP. This work constitutes a new, if not the only, report on diazinon degradation by mixed cultures of Streptomyces spp. Given the high levels of diazinon removal, the SMC formed by four Streptomyces strains has the potential to be used to treat the diazinon present in environmental matrices. PMID:27176942

  7. Effect of exposure to diazinon on adult rat's brain.

    PubMed

    Rashedinia, Marzieh; Hosseinzadeh, Hossein; Imenshahidi, Mohsen; Lari, Parisa; Razavi, Bibi Marjan; Abnous, Khalil

    2016-04-01

    Diazinon (DZN), a commonly used agricultural organophosphate insecticide, is one of the major concerns for human health. This study was planned to investigate neurotoxic effects of subacute exposure to DZN in adult male Wistar rats. Animals received corn oil as control and 15 and 30 mg/kg DZN orally by gastric gavage for 4 weeks. The cerebrum malondialdehyde and glutathione (GSH) contents were assessed as biomarkers of lipid peroxidation and nonenzyme antioxidants, respectively. Moreover, activated forms of caspase 3, -9, and Bax/Bcl-2 ratios were evaluated as key apoptotic proteins. Results of this study suggested that chronic administration of DZN did not change lipid peroxidation and GSH levels significantly in comparison with control. Also, the active forms of caspase 3 and caspase 9 were not significantly altered in DZN-treated rat groups. Moreover, no significant changes were observed in Bax and Bcl-2 ratios. This study indicated that generation of reactive oxygen species was probably modulated by intracellular antioxidant system. In conclusion, subacute oral administration of DZN did not alter lipid peroxidation. Moreover, apoptosis induction was not observed in rat brain. PMID:24217015

  8. Role of food and clay particles in toxicity of copper and diazinon using Daphnia magna.

    PubMed

    Jeon, Junho; Sung Ra, Jin; Lee, Sun Hong; Lee, Myun J; Yu, Seung H; Kim, Sang Don

    2010-03-01

    Toxicity changes in copper and diazinon were investigated in the presence of food, clay, and their mixture by using Daphnia magna. In sorption equilibrium experiments, copper was significantly attracted (>34% sorbed) to food, clay, and food-clay mixture due to their negative zeta potential, while diazinon was less sorbed (<11%). In the exposure test with food and clay particles, it was revealed that copper was remarkably reduced in the presence of clay particles indicating the change in bioavailability of copper by sorption to clay. This was considered as the primary mechanism for toxicity reduction whereas diazinon toxicity was food dependent in the analysis of toxicity using toxicity change index (TCI). It was also shown that certain foods could not only act as a sorbent to copper and diazinon, but also as a material of energy source to alleviate the toxic damage. Meanwhile, clay can be considered as a prominent sorbent to copper but not to diazinon and can inhibit the sorption interaction between foodstuffs and toxicants through the aggregation and sedimentation processes. Furthermore, clay particles, as shown in TCI analysis, may be a potentially risky material as a physiological stressor or a toxicant carrier in contaminated environments. PMID:19942290

  9. Effects of a diazinon formulation on unialgal growth rates and phytoplankton diversity

    SciTech Connect

    Doggett, S.M.; Rhodes, R.G. )

    1991-07-01

    Diazinon and other organophosphorus insecticides are used primarily for their broad effectiveness, short persistence, and relatively low mammalian toxicity. Although these insecticides are less toxic to algae than most organochlorines, the extensive use of Diazinon and the subsequent exposure to aquatic communities may pose a serious threat to algal growth and population diversity. The significance of phytoplankton as primary producers as well as their ability to intrinsically alter the balance of aquatic ecosystems has warranted greater concern for the toxic effects of this widely accepted insecticide. Few reports are available on the effects of Diazinon on nontarget aquatic organisms and even less is known about its effects on algal growth and phytoplankton diversity. In light of the sparse information available on the effects of Diazinon on phytoplankton population dynamics, the objectives of this study were: (1) to determine the effects of a Diazinon formulation on the growth rates of three widely distributed species of freshwater algae, (2) to ascertain the effects of this formulation on the diversity of a natural phytoplankton assemblage.

  10. Electro-enzymatic degradation of chlorpyrifos by immobilized hemoglobin.

    PubMed

    Tang, Tiantian; Dong, Jing; Ai, Shiyun; Qiu, Yanyan; Han, Ruixia

    2011-04-15

    Electro-enzymatic processes, which are enzyme catalysis combined with electrochemical reactions, have been used in the degradation of many environment pollutants. For some pollutants, the catalytic mechanisms of the electrochemical-enzyme reaction are still poorly understood. In this paper, the degradation of chlorpyrifos by a combination of immobilized hemoglobin and in situ generated hydrogen peroxide is reported for the first time. Hemoglobin was immobilized on graphite felts to catalyze the removal of chlorpyrifos in an electrochemical-enzyme system. Under the optimal conditions, more than 98% of the chlorpyrifos was degraded. Furthermore, the degradation products of chlorpyrifos were also studied and identified using liquid chromatography-mass spectrometry analysis. The results suggest a possible degradation mechanism for chlorpyrifos with low power and high efficiency, reveal the feasibility of hemoglobin as a substitute for some expensive natural enzymes, and demonstrate the application of an electro-enzymatic process in the treatment of organophosphorus compounds in wastewater. PMID:21316849

  11. Effects of sub-lethal neurite outgrowth inhibitory concentrations of chlorpyrifos oxon on cytoskeletal proteins and acetylcholinesterase in differentiating N2a cells

    SciTech Connect

    Flaskos, J.; Nikolaidis, E.; Harris, W.; Sachana, M.; Hargreaves, A.J.

    2011-11-15

    Previous work in our laboratory has shown that sub-lethal concentrations (1-10 {mu}M) of chlorpyrifos (CPF), diazinon (DZ) and diazinon oxon (DZO) inhibit the outgrowth of axon-like neurites in differentiating mouse N2a neuroblastoma cells concomitant with altered levels and/or phosphorylation state of axonal cytoskeleton and growth-associated proteins. The aim of the present work was to determine whether chlorpyrifos oxon (CPO) was capable of inhibiting N2a cell differentiation in a similar manner. Using experimental conditions similar to our previous work, sub-lethal concentrations (1-10 {mu}M) of CPO were found to inhibit N2a cell differentiation. However, unlike previous studies with DZ and DZO, there was a high level of sustained inhibition of acetylcholinesterase (AChE) in CPO treated cells. Impairment of neurite outgrowth was also associated with reduced levels of growth associated protein-43 and neurofilament heavy chain (NFH), and the distribution of NFH in cells stained by indirect immunofluorescence was disrupted. However, in contrast to previous findings for DZO, the absolute level of phosphorylated NFH was unaffected by CPO exposure. Taken together, the findings suggest that sub-lethal concentrations of CPO inhibit axon outgrowth in differentiating N2a cells and that this effect involves reduced levels of two proteins that play key roles in axon outgrowth and maintenance. Although the inhibition of neurite outgrowth is unlikely to involve AChE inhibition directly, further work will help to determine whether the persistent inhibition of AChE by CPO can account for the different effects induced by CPO and DZO on the levels of total and phosphorylated NFH. -- Highlights: Black-Right-Pointing-Pointer Sub-lethal levels of chlorpyrifos oxon inhibit neurite outgrowth in N2a cells Black-Right-Pointing-Pointer Acetylcholinesterase exhibits sustained inhibition throughout exposure Black-Right-Pointing-Pointer The levels of neurofilament heavy chain and GAP-43

  12. Particulate and gas-phase products from the atmospheric degradation of chlorpyrifos and chlorpyrifos-oxon

    NASA Astrophysics Data System (ADS)

    Borrás, Esther; Ródenas, Milagros; Vázquez, Mónica; Vera, Teresa; Muñoz, Amalia

    2015-12-01

    The phosphorothioate structure is highly present in several pesticides. However, there is a lack of information about its degradation process in air and the secondary pollutants formed. Herein, the atmospheric reactions of chlorpyrifos, one of the most world-used insecticide, and its main degradation product - chlorpyrifos-oxon - are described. The photo-oxidation under the presence of NOx was studied in a large outdoor simulation chamber for both chlorpyrifos and chlorpyrifos-oxon, observing a rapid degradation (Half lifetime < 3.5 h for both compounds). Also, the photolysis reactions of both were studied. The formation of particulate matter (aerosol mass yield ranged 6-59%) and gaseous products were monitored. The chemical composition of minor products was studied, identifying 15 multi-oxygenated derivatives. The most abundant products were ring-retaining molecules such as 3,5,6-trichloropyridin-2-ol and ethyl 3,5,6-trichloropyridin-2-yl hydrogen phosphate. An atmospheric degradation mechanism has been amplified based on an oxidation started with OH-nucleophilic attack to Pdbnd S bond.

  13. Diazinon accumulation and dissipation in Oryza sativa L. following simulated agricultural runoff amendment in flooded rice paddies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flooded post-harvest rice paddies were examined as potential best management practices for reducing diazinon (organophosphate insecticide) concentrations in stormwater runoff. Two rice paddies were cultivated in Oryza sativa L. and amended with a 3hr, 0.1% simulated stormwater diazinon runoff event....

  14. Organophosphate pesticide method development and presence of chlorpyrifos in the feet of nearctic-neotropical migratory songbirds from Canada that over-winter in Central America agricultural areas.

    PubMed

    Alharbi, Hattan A; Letcher, Robert J; Mineau, Pierre; Chen, Da; Chu, Shaogang

    2016-02-01

    Recent modeling analysis suggests that numerous birds may be at risk of acute poisoning in insecticide-treated fields. Although the majority of avian field studies on pesticides have focused on treated seed, granule, insect or vegetation (oral exposure) ingestion, dermal exposure is an important exposure route when birds come into contact with deposited pesticides on foliage and other surfaces. Some nearctic-neotropical migratory songbirds are likely exposed to pesticides on their non-breeding habitats and include treated crops, plantations or farmlands. In the present study, we developed a method for four environmentally-relevant organophosphate (OP) pesticides (fenthion, fenamiphos, chlorpyrifos and diazinon) in the feet of migratory songbirds (i.e. Common yellowthroat, Gray catbird, Indigo bunting, America redstart, Northern waterthrush, Northern parula, and an additional 12 species of warblers). A total of 190 specimens of the 18 species of songbirds were sampled from available window-killed birds (spring of 2007 and 2011) in downtown Toronto, Canada. The species that were available most likely over-wintered in Mexican/Central American crops such as citrus, coffee and cacao. The feet of the dead birds were sampled and where OP foot exposure likely occurred during over-wintering foraging on pesticide-treated crops. Chlorpyrifos was the only measurable OP (pg mg feet weight(-1)) and in the 2011-collected feet of Black throated blue warbler (0.5), Tennessee warbler (1.0), Northern parula (1.2), Northern waterthrush (0.6), Common yellowthroat (1.0) and the Blue winged warbler (0.9). Dermal contact with OP pesticides during over-wintering in agricultural areas resulted in low levels of chlorpyrifos and long time retention on the feet of a subset of songbirds. PMID:26421621

  15. Mechanism-Based Inactivation of Human Cytochrome P450 2B6 by Chlorpyrifos.

    PubMed

    D'Agostino, Jaime; Zhang, Haoming; Kenaan, Cesar; Hollenberg, Paul F

    2015-07-20

    Chlorpyrifos (CPS) is a commonly used pesticide which is metabolized by P450s into the toxic metabolite chlorpyrifos-oxon (CPO). Metabolism also results in the release of sulfur, which has been suggested to be involved in mechanism-based inactivation (MBI) of P450s. CYP2B6 was previously determined to have the greatest catalytic efficiency for CPO formation in vitro. Therefore, we characterized the MBI of CYP2B6 by CPS. CPS inactivated CYP2B6 in a time- and concentration-dependent manner with a kinact of 1.97 min(-1), a KI of 0.47 μM, and a partition ratio of 17.7. We further evaluated the ability of other organophosphate pesticides including chorpyrifos-methyl, diazinon, parathion-methyl, and azinophos-methyl to inactivate CYP2B6. These organophosphate pesticides were also potent MBIs of CYP2B6 characterized by similar kinact and KI values. The inactivation of CYP2B6 by CPS was accompanied by the loss of P450 detectable in the CO reduced spectrum and loss of detectable heme. High molecular weight aggregates were observed when inactivated CYP2B6 was run on SDS-PAGE gels indicating protein aggregation. Interestingly, we found that the rat homologue of CYP2B6, CYP2B1, was not inactivated by CPS despite forming CPO to a similar extent. On the basis of the locations of the Cys residues in the two proteins which could react with released sulfur during the metabolism of CPS, we investigated whether the C475 in CYP2B6, which is not conserved in CYP2B1, was the critical residue for inactivation by mutating it to a Ser. CYP2B6 C475S was inactivated to a similar extent as wild type CYP2B6 indicating that C475 is not likely the key difference between CYP2B1 and CYP2B6 with respect to inactivation. These results indicate that CPS and other organophosphate pesticides are potent MBIs of CYP2B6 which may have implications for the toxicity of these pesticides as well as the potential for pesticide-drug interactions. PMID:26075493

  16. Effects of repeated exposure of diazinon on cholinesterase activity and growth in snakehead fish (Channa striata).

    PubMed

    Cong, Nguyen Van; Phuong, Nguyen Thanh; Bayley, Mark

    2009-03-01

    The organophosphate insecticide diazinon is widely used in the Mekong river delta and often applied several times per rice crop. In the present study, juvenile snakehead fish Channa striata, which is a commercially important inhabitant of rice fields, were exposed twice to 4-day pulses of 0.016, 0.079 or 0.35mg/L of diazinon, separated by a 2 week interval to imitate the exposure conditions in the field. After the 4-day exposures to these environmentally realistic concentrations, the fish were moved to clean water for recovery. During this experiment, which lasted a total of 2 months, the individual growth rates and brain cholinesterase levels were measured. We show not only that diazinon caused long term inhibition of brain ChE activity, which was still significantly depressed at the termination of the experiment, but also that the highest of these realistic concentrations caused a significant 30% growth inhibition. PMID:19054558

  17. Susceptibility to diazinon in populations of the horn fly, Haematobia irritans (Diptera: Muscidae), in Central Brazil.

    PubMed

    Barros, Antonio Thadeu M; Gomes, Alberto; Ismael, Ana Paula K; Koller, Wilson W

    2002-09-01

    From October 2000 to April 2001, insecticide bioassays were conducted in 18 ranches from 10 counties in the states of Mato Grosso and Mato Grosso do Sul, in Central Brazil. Horn flies from wild populations were exposed to diazinon-impregnated filter papers immediately after collection on cattle, and mortality was recorded after 2 h. A high susceptibility to diazinon was observed in all tested populations. The LC50s ranged from 0.15 to 0.64 micro g/cm2, and resistance ratios were always lower than one (ranging 0.1-0.6). Pyrethroid products, most applied by backpack sprayers, have been used since the horn fly entered the region, about 10 years ago. The high susceptibility observed to diazinon indicates that this insecticide (as probably other organophosphate insecticides) represents an useful tool for horn fly control and resistance management, particularly in pyrethroid-resistant populations. PMID:12386720

  18. Effects of diazinon on mummichog (Fundulus heteroclitus) larvae produced from eggs differentially treated with PCB126.

    PubMed

    Couillard, C M; Lebeuf, M; Légaré, B; Trottier, S

    2008-02-01

    During their formation, fish eggs receive a load of contaminants including polychlorinated biphenyls (PCBs) from their mother and then, after spawning, are exposed to pesticides present in water. This is the first study investigating the interaction between PCBs and organophosphorous pesticides in fish. The effect of diazinon was evaluated in mummichog (Fundulus heteroclitus) larvae produced from eggs differentially treated with 3,3',4,4',5 pentachlorobiphenyl (PCB126). A few hours after fertilization, eggs were treated topically with a solution of PCB126 (100 pg/microl) in dimethyl sulfoxide (DMSO) (Group P), DMSO (Group D), or not treated (Group N). Newly hatched larvae from Groups P and D were exposed to diazinon (125-12,900 ng/L) in saltwater and Group N larvae to saltwater alone. Diazinon caused a dose-responsive inhibition of cholinesterase (ChE) activity at environmentally realistic concentrations (> or =361 ng/L), with up to 85% inhibition at 12,900 ng/L. Body length was also inversely related to diazinon at concentrations > or =361 ng/L and was significantly reduced (by 4%) at 12,900 ng/L compared to controls. Mummichog larvae were highly sensitive to PCB126 with an eightfold induction of the activity of ethoxyresorufin-O-deethylase at a dose of 710 pg PCB126 or 3.6 pg TCDD-TEQ/g wet weight. Treatment with PCB126 also caused a slight reduction in body length but no effect on ChE activity. This study indicates that the effects of PCB126 and diazinon on body length are cumulative because no significant synergistic or antagonistic interactions were observed. Longer term studies with several doses of PCB126 are needed to fully assess the overall impact of joint exposure to diazinon and PCB126 on growth and survival of fish larvae. PMID:17763880

  19. Gas-phase and particulate products from the atmospheric degradation of the organothiophosphorus insecticide chlorpyrifos-methyl.

    PubMed

    Borrás, Esther; Tortajada-Genaro, Luis Antonio; Ródenas, Milagros; Vera, Teresa; Coscollá, Clara; Yusá, Vicent; Muñoz, Amalia

    2015-11-01

    The phosphorothioate structure is highly present in several organophosphorus pesticides. However, there is insufficient information about its degradation process after the release to the atmosphere and the secondary pollutants formed. Herein, the atmospheric reaction of chlorpyrifos-methyl (o,o-dimethyl o-(3,5,6-trichloropyridin-2-yl) phosphorothioate), is described for semi-urban or rural locations. The photo-oxidation under low NOx conditions (5-55 ppbV) was reproduced in a large outdoor simulation chamber, observing a rapid degradation (lifetime<3.5 h). The formation of gaseous products and particulate matter (aerosol yield 2-8%) was monitored. The chemical composition of minor products (gaseous and particulate) was studied, identifying 15 multi-oxygenated derivatives. The most abundant products were ring-retaining molecules such as o,o-dimethyl o-(3,5,6-trichloropyridin-2-yl) phosphorothioate, dimethyl 3,5,6-trichloropyridin-2-yl phosphate, o-methyl o-(3,5,6-trichloropyridin-2-yl) hydrogen phosphorothioate, 3,5,6-trichloropyridin-2-yl dihydrogen phosphate, 3,5,6-trichloropyridin-2-ol, and 3,5,6-trichloropyridine-2,4-diol. An atmospheric degradation mechanism has been proposed based on an oxidation started with OH-nucleophilic attack to P=S bond. The results have been extrapolated to other organothiophosphorus molecules, such as malathion, parathion, diazinon and methidathion, among many others, to estimate their photo-oxidative degradation and the expected products. PMID:25548033

  20. Protein tyrosine adduct in humans self-poisoned by chlorpyrifos

    SciTech Connect

    Li, Bin; Eyer, Peter; Eddleston, Michael; Jiang, Wei; Schopfer, Lawrence M.; Lockridge, Oksana

    2013-06-15

    Studies of human cases of self-inflicted poisoning suggest that chlorpyrifos oxon reacts not only with acetylcholinesterase and butyrylcholinesterase but also with other blood proteins. A favored candidate is albumin because in vitro and animal studies have identified tyrosine 411 of albumin as a site covalently modified by organophosphorus poisons. Our goal was to test this proposal in humans by determining whether plasma from humans poisoned by chlorpyrifos has adducts on tyrosine. Plasma samples from 5 self-poisoned humans were drawn at various time intervals after ingestion of chlorpyrifos for a total of 34 samples. All 34 samples were analyzed for plasma levels of chlorpyrifos and chlorpyrifos oxon (CPO) as a function of time post-ingestion. Eleven samples were analyzed for the presence of diethoxyphosphorylated tyrosine by mass spectrometry. Six samples yielded diethoxyphosphorylated tyrosine in pronase digests. Blood collected as late as 5 days after chlorpyrifos ingestion was positive for CPO-tyrosine, consistent with the 20-day half-life of albumin. High plasma CPO levels did not predict detectable levels of CPO-tyrosine. CPO-tyrosine was identified in pralidoxime treated patients as well as in patients not treated with pralidoxime, indicating that pralidoxime does not reverse CPO binding to tyrosine in humans. Plasma butyrylcholinesterase was a more sensitive biomarker of exposure than adducts on tyrosine. In conclusion, chlorpyrifos oxon makes a stable covalent adduct on the tyrosine residue of blood proteins in humans who ingested chlorpyrifos. - Highlights: • Chlorpyrifos-poisoned patients have adducts on protein tyrosine. • Diethoxyphosphate-tyrosine does not lose an alkyl group. • Proteins in addition to AChE and BChE are modified by organophosphates.

  1. Effects of diazinon on adaptation to sea-water by the endangered Persian sturgeon, Acipenser persicus, fingerlings.

    PubMed

    Hajirezaee, Saeed; Mirvaghefi, Ali Reza; Farahmand, Hamid; Agh, Naser

    2016-11-01

    To replenish the depleting populations of sturgeon fishes especially Persian sturgeon, Acipenser persicus in the Caspian Sea, millions of Persian sturgeon fingerlings are farmed through artificial propagation and released into the Iranian river estuaries annually. Fish osmoregulation is a vital physiological process that can be affected during the release. Many Iranian river estuaries are under the influence of pesticides originating from farming activities that may affect osmoregulation. In this study, Persian sturgeon fingerlings were exposed to sublethal concentrations (0, 0.18, 0.54, 0.9mgL(-)(1)) of diazinon for 96h (short-term trial) and 12 days (long-term trial) in fresh water (FW) and then fish were exposed in brackish water (BW) for 24h. After 96h and 12 days of exposure in FW, the lower levels of plasma triidothyronine (T3), thyroxine (T4), Na(+), Cl(-), K(+), gill Na(+)/K(+)- ATPase activity and number of chloride cells were observed in exposed fish (0.54 and 0.9mgL(-)(1) diazinon) compared to control group and 0.18mgL(-)(1) diazinon treatment. Also, higher levels of plasma cortisol (except 0.18mgL(-)(1) diazinon treatment in long-term trial) were observed in diazinon exposed fish compared to control group. However, gill Na(+)/K(+)-ATPase activity and the number of chloride cells were higher in fingerlings exposed to diazinon compared than control. When fish were exposed in BW for 24h, the following changes occurred: (a) in short-term trial: increases in cortisol and Cl(-) levels (0.54mgL(-)(1) diazinon ), Na(+) (0.9mgL(-)(1) diazinon ) and gill Na(+)/K(+)-ATPase activity (0.18mgL(-)(1) diazinon ). In control group, cortisol, T4, Na(+), gill Na(+)/K(+)-ATPase activity and the number of chloride cells increased significantly. (b) In long-term trial: increases in K(+) levels in fish exposed to 0.9mgL(-)(1) diazinon, Na+ in all diazinon concentrations and decreases in chloride cells number in fish exposed to 0.18mgL(-)(1) diazinon. In control group

  2. EFFECTS OF DIAZINON ON MACROINVERTEBRATES AND INSECT EMERGENCE IN OUTDOOR EXPERIMENTAL CHANNELS

    EPA Science Inventory

    Effects of diazinon on macroinvertebrates were assessed in three outdoor experimental channels from mid-May to mid-September, 1980. One channel served as a control and two channels as low and high treatments. Three dosing regimes were employed. The low and high treatment channels...

  3. THE INTERACTION OF AN ANTICHOLINESTERASE INSECTICIDE, DIAZINON, WITH A PYRETHROID INSECTICIDE, DELTAMETHRIN.

    EPA Science Inventory

    This present study explores the interaction of the toxicity induced by an organophosphorus insecticide, diazinon (diethyl 2-isopropyl-6methyl-4-pyrimidal phosphorothionate), with a pyrethroid insecticide, deltamethrin ((S)-a-cyano-3-phenoxybenzyl (1R,3R)-3-(2,2-dibromovinyl)-2,...

  4. THE ANTICHOLINESTERASE INSECTICIDE, DIAZINON, MAY POTENTIATE THE TOXICITY OF THE PYRETHROID INSECTICIDE DELTAMETHRIN AT LOW DOSAGES.

    EPA Science Inventory

    This present study explores the interaction of the toxicity induced by an organophosphorus insecticide, diazinon (diethyl 2-isopropyl-6methyl-4-pyrimidal phosphorothionate), with a pyrethroid insecticide, deltamethrin ((S)-a-cyano-3-phenoxybenzyl (1R,3R)-3-(2,2-dibromovinyl)-2,...

  5. Effects of Subchronic Exposure to Cadmium and Diazinon on Testis and Epididymis in Rats

    PubMed Central

    Cabaj, Michal; Massanyi, Peter; Martiniakova, Monika; Omelka, Radoslav; Krajcovicova, Vladimira; Duranova, Hana

    2014-01-01

    The present study aimed to elucidate the structural changes in testis and epididymis of adult rats following subchronic peroral administration of cadmium at 30 mg/L, diazinon at 40 mg/L, cadmium at 30 mg/L, and diazinon at 40 mg/L, respectively. At the end of 90-day experiment, the samples of the testes and epididymis were assayed by qualitative and quantitative histological methods. The testis and epididymis weights increased following exposure to cadmium and simultaneous exposure to cadmium and diazinon. Testicular damage following cadmium and diazinon coexposure was significantly less expressive than in groups with individual administration of these compounds. Cadmium caused a significant thickening of seminiferous epithelium, cellular degeneration, and necrosis. Desquamation of immature germ cells resulted in a significant increase of intraepithelial spaces and reduced tubule volume in all experimental groups. Vascular dilation and congestion were detected in the interstitial tissue. The changes in epididymal histology in the group exposed to cadmium and group exposed simultaneously included a reduction of epithelium, necrotic epithelial cells, vasoconstriction, and interstitial edema together with mononuclear cell infiltration. Results did not indicate a synergistic or any additional effect from the simultaneous administration of both toxicants. Further research is needed to determine the significance and the mechanism of the adverse effects. PMID:25548789

  6. Toxicity assessment of diazinon in a constructed wetland using Hyalella azteca

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study examined the use of a 3-cell constructed wetland to mitigate ecological impacts of simulated diazinon runoff from agricultural fields to receiving aquatic systems by using standard 48 h aqueous and sediment bioassays with the freshwater test organism, Hyalella azteca. Chemical analysis r...

  7. THE POTENTIAL FOR HUMAN EXPOSURES TO PET-BORNE DIAZINON RESIDUES FOLLOWING RESIDENTIAL LAWN APPLICATIONS

    EPA Science Inventory

    This observational study examined the potential for indoor/outdoor pet dogs to be an important pathway for transporting diazinon residues into homes and onto occupants following residential lawn applications. The primary objective was to investigate the potential exposures of chi...

  8. Influence of permethrin, diazinon and ivermectin treatments on insecticide resistance in the horn fly (Diptera: Muscidae).

    PubMed

    Byford, R L; Craig, M E; DeRouen, S M; Kimball, M D; Morrison, D G; Wyatt, W E; Foil, L D

    1999-01-01

    The history of insecticide resistance in the horn fly, Haematobia irritans, and the relationship between the characteristics of horn fly biology and insecticide use on resistance development is discussed. Colonies of susceptible horn flies were selected for resistance with six insecticide treatment regimens: continuous single use of permethrin, diazinon and ivermectin: permethrin-diazinon (1:2) mixture; and permethrin-diazinon and permethrin-ivermectin rotation (4-month cycle). Under laboratory conditions, resistance developed during generations 21, 31 and 30 to permethrin, diazinon and ivermectin, respectively. The magnitude of resistance ranged from < 3-fold with ivermectin to 1470-fold with permethrin. Field studies demonstrated that use of a single class of insecticidal ear tag during the horn-fly season resulted in product failure within 3-4 years for pyrethroids and organophosphates, respectively. In laboratory studies, use of alternating insecticides or a mixture of insecticides delayed the onset of resistance for up to 12 generations and reduced the magnitude of pyrethroid resistance. In field studies, yearly alternated use of pyrethroids and organophosphates did not slow or reverse pyrethroid resistance (Barros et al., unpublished data), while a 2-year alternated use with organophosphates resulted in partial reversion of pyrethroid resistance. When pyrethroid and organophosphate ear tags were used in a mosaic strategy at two different locations, efficacy of products did not change during a 3-year period. PMID:10048825

  9. Does diazinon pose a threat to a neighborhood stream in Tallahassee, Florida?

    USGS Publications Warehouse

    Berndt, Marian P.; Hatzell, Hilda H.

    2001-01-01

    The water quality of Lafayette Creek was studied from March 1993 to December 1995 as part of the National Water-Quality Assessment Program of the U.S.Geological Survey. Diazinon was specifically studied in the Lafayette Creek watershed, a residential area in northeastern Tallahassee, Fla. Diazinon and other pesticides applied directly to the soil or grass can be washed off into nearby storm drains, ditches, streams, and lakes. Heavy rainstorms can wash substantial amounts of chemicals into streams and lakes, including diazinon that was applied several weeks earlier. Sampling streams during rainstorms for water quality can sometimes provide clues about how pesticides and other contaminants are transported to surface water. Diazinon was detected in 92% of all samples collected from Lafayette Creek and it was detected throughout the year during the sampling period. However, concentrations were low (0.002 to 0.28 micrograms per liter) and do not pose a risk to human health. About 20% of the samples exceeded the aquatic-life criterion--a guideline that establishes the maximum acceptable level of concentrations of pesticides for protecting aquatic life.

  10. Impairment of novel object recognition in adulthood after neonatal exposure to diazinon.

    PubMed

    Win-Shwe, Tin-Tin; Nakajima, Daisuke; Ahmed, Sohel; Fujimaki, Hidekazu

    2013-04-01

    Diazinon is an organophosphate pesticide that is still heavily used in agriculture, home gardening, and indoor pest control in Japan. The present study investigated the effect of neonatal exposure to diazinon on hippocampus-dependent novel object recognition test performance and the expression of the N-methyl-D-aspartate (NMDA) receptor and its signal transduction pathway-related genes in the hippocampi of young adult and adult mice. Male offspring of C3H/HeN mice were subcutaneously treated with 0, 0.5, or 5 mg/kg of diazinon for 4 consecutive days beginning on postnatal day (PND) 8. Beginning on PND 46 or PND 81, a novel object recognition test was performed on 4 consecutive days. The hippocampi were collected on PND 50 or PND 85 after the completion of the novel object recognition test, and the expression levels of neurotrophins and the NMDA receptor and its signal transduction pathway-related genes were examined using real-time RT-PCR. Diazinon-injected mice exhibited a poor ability to discriminate between novel and familiar objects during both the PND 49 and the PND 84 tests. The NMDA receptor subunits NR1 and NR2B and the related protein kinase calcium/calmodulin-dependent protein kinase (CaMK)-IV and the transcription factor cyclic AMP responsive element binding protein (CREB)-1 mRNA levels were reduced in the PND 50 mice. However, no significant changes in the expressions of the NMDA subunits and their signal transduction molecules were observed in the hippocampi of the PND 85 mice. The expression level of nerve growth factor mRNA was significantly reduced in the PND 50 or 85 mice. These results indicate that neonatal diazinon exposure impaired the hippocampus-dependent novel object recognition ability, accompanied by a modulation in the expressions of the NMDA receptor and neurotrophin in young adult and adult mice. PMID:23212306

  11. Histopathological and genotoxic effects of chlorpyrifos in rats.

    PubMed

    Ezzi, Lobna; Belhadj Salah, Imen; Haouas, Zohra; Sakly, Amina; Grissa, Intissar; Chakroun, Sana; Kerkeni, Emna; Hassine, Mohsen; Mehdi, Meriem; Ben Cheikh, Hassen

    2016-03-01

    This study aims to investigate the effects of chlorpyrifos's sub-acute exposure on male rats. Two groups with six animals each were orally treated, respectively, with 3.1 mg/kg b w and 6.2 mg/kg b w of chlorpyrifos during 4 weeks. The genotoxic effect of chlopyrifos was investigated using the comet assay and the micronucleus test. Some hematological and liver's histopathological changes were also evaluated. Results revealed that chlorpyrifos induced histopathological alterations in liver parenchyma. The lymphoid infiltration observed in liver sections and the increase in white blood cells parameter are signs of inflammation. A significant increase in the platelet' count and in polychromatic erythrocytes/normochromatic erythrocytes (PCE/NCE) ratio was observed in chlorpyrifos-treated groups which could be due to the stimulatory effect of chlorpyrifos on cell formation in the bone marrow at lower doses. In addition, the increase of bone marrow micronucleus percentage and the comet tail length revealed a genotoxic potential of chlorpyrifos in vivo. PMID:26545888

  12. Risk assessment of chlorpyrifos on rice and cabbage in China.

    PubMed

    Chen, Chen; Qian, Yongzhong; Liu, Xianjin; Tao, Chuanjiang; Liang, Ying; Li, Yun

    2012-02-01

    Chlorpyrifos is a widely used organophosphorus insecticide in agricultural pest control. To understand the residue behavior of chlorpyrifos and to evaluate the dietary risk of chlorpyrifos residue in food in China, a number of residue studies were conducted on rice and cabbage. The supervised trial median residues (STMRs) for rice and cabbage were less than 0.010 and 0.227 mg kg⁻¹, respectively. Only 7.4% and 13.3% of acceptable daily intake (ADI) (0-0.01 mg kg⁻¹ bw) of chlorpyrifos is occupied by dietary daily intake to the Chinese adult and children, respectively, due to the consumption of rice and cabbage. These results on risk assessment were consistent with that of JMPR. Incorporation of market survey residue data gave a 5-fold reduction in the estimated exposures to chlorpyrifos. Concerning the acute exposure, the national estimated short-term intake (NESTI) represents 0.077% and 10.6% for rice and cabbage, respectively, of the acute reference dose (ARfD) (0-0.1 mg kg⁻¹ bw). The application of chlorpyrifos at the recommended dose on rice and cabbage is unlikely to pose any public health issues if it is applied according to the good agricultural practices (GAPs) established by each country. PMID:22210174

  13. Retention and Migration of Chlorpyrifos in Aquatic Sediments and Soils

    NASA Astrophysics Data System (ADS)

    Gebremariam, S. Y.; Beutel, M.; Yonge, D.; Flury, M.; Harsh, J. B.

    2010-12-01

    The accurate description of the fate and transport of potentially toxic agricultural pesticides in sediments and soils is of great interest to environmental scientists and regulators. Of particular concern is the widely documented detection of agricultural pesticides and their byproducts in drinking water wells. This presentation discusses results of a study of the fate and transport of chlorpyrifos, a strongly hydrophobic organophosphate-pesticide, in sediments and soils collected from a range of aquatic environments. Using radio-labeled chlorpyrifos, this study is unique in its comprehensive nature and focus on aquatic sediments, for which studies involving pesticide fate and transport are limited. Study components include: (1) batch equilibrium experiments to evaluate sorption/desorption parameters; (2) kinetic and non-equilibrium sorption experiments using miniaturized flow-cells; (3) column experiments to understand patterns of pesticide break through; and (4) numerical modeling of chlorpyrifos transport through aquatic sediments and soils. Initial results show that chlorpyrifos sorption, when corrected for reversible sorption to container walls, exhibited two component sorption, a large irreversible fraction and a smaller reversible fraction that can act as a secondary source. In addition, of a wide range of soil parameters measured, organic carbon content exhibited the highest correlation with chlorpyrifos retention in cranberry field soils. Simulation models developed in this study, which account for hysteretic and nonlinear sorption, will help to better predict the fate of chlorpyrifos and other hydrophobic chemicals in sediments and soils.

  14. Human exposure and risk from indoor use of chlorpyrifos.

    PubMed Central

    Gibson, J E; Peterson, R K; Shurdut, B A

    1998-01-01

    The toxicity, exposure, and risk from chlorpyrifos are briefly discussed in juxtaposition with two recent articles in Environmental Health Perspectives concerning potential exposures to children. In studies conducted according to EPA guidelines, chlorpyrifos has been shown not to be mutagenic, carcinogenic, or teratogenic, nor does it adversely affect reproduction. Chlorpyrifos toxicity does not occur in the absence of significant cholinesterase inhibition. If exposures are less than those that cause significant cholinesterase depression, then no signs or symptoms related to chlorpyrifos exposure occur. The weight of empirical evidence indicates that the risk of adults or children experiencing an adverse health effect from exposure to chlorpyrifos through both nondietary and dietary sources is negligible. Both the research supporting the registration of these products and their long history of widespread use suggest that unless these products are seriously misused, their margins of safety are wide enough to protect everyone with the potential to be exposed. A weight-of-evidence review of the entire scientific knowledge base relating to chlorpyrifos products supports these conclusions. PMID:9618344

  15. TOXICOLOGICAL INTERACTIONS OF CHLORPYRIFOS AND METHYL MERCURY IN THE AMPHIPOD, HYALELLA AZTECA

    EPA Science Inventory

    The mechanism of interaction between chlorpyrifos, an organo-phosphate insecticide, and methyl mercury, an organometal, was assessed utilizing the amphipod, Hyalella azteca. Previous studies have demonstrated that chlorpyrifos and methyl mercury interact additively, with survival...

  16. Mobility Studies of (14)C-Chlorpyrifos in Malaysian Oil Palm Soils.

    PubMed

    Halimah, Muhamad; Ismail, B Sahid; Nashriyah, Mat; Maznah, Zainol

    2016-01-01

    The mobility of (14)C-chlorpyrifos using soil TLC was investigated in this study. It was found that chlorpyrifos was not mobile in clay, clay loam and peat soil. The mobility of (14)C-chlorpyrifos and non-labelled chlorpyrifos was also tested with silica gel TLC using three types of developing solvent hexane (100%), hexane:ethyl acetate (95:5, v/v); and hexane:ethyl acetate (98:2, v/v). The study showed that both the (14)C-labelled and non-labelled chlorpyrifos have the same Retardation Factor (Rf) for different developing solvent systems. From the soil column study on mobility of chlorpyrifos, it was observed that no chlorpyrifos residue was found below 5 cm depth in three types of soil at simulation rainfall of 20, 50 and 100 mm. Therefore, the soil column and TLC studies have shown similar findings in the mobility of chlorpyrifos. PMID:26546229

  17. INTERACTIONS OF CHLORPYRIFOS AND METHYL MERCURY: A MECHANISTIC APPROACH TO ASSESS CHEMICAL MIXTURES

    EPA Science Inventory

    The mechanism of interaction between chlorpyrifos, an organophosphate insecticide, and methyl mercury was assessed utilizing the amphipod, Hyalella azteca. Previous studies have demonstrated that chlorpyrifos and methl mercury interact additively with survival as the endpoint. I...

  18. CHLORPYRIFOS TRANSFORMATION BY AQUEOUS CHLORINE IN THE PRESENCE OF BROMIDE AND NATURAL ORGANIC MATTER

    EPA Science Inventory

    The aqueous chlorination of chlorpyrifos (CP) was investigated in the presence of bromide and natural organic matter (NOM), which were identified as naturally occurring aqueous constituents that could impact CP transformation rates to the toxic product chlorpyrifos oxon (CPO). Br...

  19. Effects of Soil pH on the Biodegradation of Chlorpyrifos and Isolation of a Chlorpyrifos-Degrading Bacterium

    PubMed Central

    Singh, Brajesh K.; Walker, Allan; Morgan, J. Alun W.; Wright, Denis J.

    2003-01-01

    We examined the role of microorganisms in the degradation of the organophosphate insecticide chlorpyrifos in soils from the United Kingdom and Australia. The kinetics of degradation in five United Kingdom soils varying in pH from 4.7 to 8.4 suggested that dissipation of chlorpyrifos was mediated by the cometabolic activities of the soil microorganisms. Repeated application of chlorpyrifos to these soils did not result in the development of a microbial population with an enhanced ability to degrade the pesticide. A robust bacterial population that utilized chlorpyrifos as a source of carbon was detected in an Australian soil. The enhanced ability to degrade chlorpyrifos in the Australian soil was successfully transferred to the five United Kingdom soils. Only soils with a pH of ≥6.7 were able to maintain this degrading ability 90 days after inoculation. Transfer and proliferation of degrading microorganisms from the Australian soil to the United Kingdom soils was monitored by molecular fingerprinting of bacterial 16S rRNA genes by PCR-denaturing gradient gel electrophoresis (DGGE). Two bands were found to be associated with enhanced degradation of chlorpyrifos. Band 1 had sequence similarity to enterics and their relatives, while band 2 had sequence similarity to strains of Pseudomonas. Liquid enrichment culture using the Australian soil as the source of the inoculum led to the isolation of a chlorpyrifos-degrading bacterium. This strain had a 16S rRNA gene with a sequence identical to that of band 1 in the DGGE profile of the Australian soil. DNA probing indicated that genes similar to known organophosphate-degrading (opd) genes were present in the United Kingdom soils. However, no DNA hybridization signal was detected for the Australian soil or the isolated degrader. This indicates that unrelated genes were present in both the Australian soil and the chlorpyrifos-degrading isolate. These results are consistent with our observations that degradation of

  20. Effect of tea (Camellia sinensis) and olive (Olea europaea L.) leaves extracts on male mice exposed to diazinon.

    PubMed

    Al-Attar, Atef M; Abu Zeid, Isam M

    2013-01-01

    The present study was aimed to evaluate the effects of tea and olive leaves extracts and their combination in male mice intoxicated with a sublethal concentration of diazinon. Exposure of mice to 6.5 mg/kg body weight of diazinon for seven weeks resulted in statistical increases of serum alanine aminotransferase, aspartate aminotransferase, gamma glutamyl transferase, alkaline phosphatase, creatine kinase, creatinine, glucose, triglycerides, and cholesterol, while the value of serum total protein was declined. Treating diazinon-intoxicated mice with tea and olive leaves extracts or their combination significantly attenuated the severe alterations in these hematobiochemical parameters. Moreover, the results indicated that the supplementation with combination of tea and olive leaves extracts led to more attenuation effect against diazinon toxicity. Additionally, these new findings suggest that the effect of tea and olive leaves extracts and their combination against toxicity of diazinon may be due to antioxidant properties of their chemical constituents. Finally, the present study indicated that the extracts of tea and olive leaves and their combination can be considered as promising therapeutic agents against hepatotoxicity, cardiotoxicity, nephrotoxicity, and metabolic disorders induced by diazinon and maybe by other toxicants and pathogenic factors. PMID:23691503

  1. Transformation of Chlorpyrifos and Chlorpyrifos-Methyl in Prairie Pothole Porewaters

    NASA Astrophysics Data System (ADS)

    Anderson, R. M.; Chin, Y. P.

    2014-12-01

    The prairie pothole region (PPR) extends over approximately 700,000 km2 in the Great Plains region in United States and Canada and is a critical breeding ground for migratory waterfowl, as well as an important ecosystem for diverse invertebrates and aquatic plants (van der Valk, 2003). Consisting of up to 12 million permanent and temporary depressional wetlands, the PPR is negatively impacted by non-point source pesticide pollution due to extensive agricultural development in the region. Recent studies have shown that high (mM) levels of sulfate in the pothole lakes are capable of abiotically reducing dinitroaniline and chloroacetanilide pesticides (Zeng, 2011; Zeng, 2012). In this study the transformation of the organophosphorus pesticide chlorpyrifos (CP) and its analog chlorpyrifos-methyl (CPM) was studied using pore waters sampled from two pothole lakes. CP and CPM have been found to react in the laboratory with sulfur species via a SN2 mechanism, with degradation by sulfur compounds occurring faster than hydrolysis at high pH (Wu, 2006). To date the reaction of CP and CPM in natural environments with sulfur species has not been studied. Chlorpyrifos-methyl underwent rapid degradation in the presence of reduced sulfur species in pore water, while chlorpyrifos degradation occurred at significantly slower rates. Both CP and CPM degradation occurred at comparable rates to what has been previously observed in the laboratory (Wu, 2006). References van der Valk, Arnold G., and Roger L. Pederson. "The SWANCC decision and its implications for prairie potholes." Wetlands 23.3 (2003): 590-596. Wu, Tong, Qiu Gan, and Urs Jans. "Nucleophilic Substitution of Phosphorothionate Ester Pesticides with Bisulfide (HS-) and Polysulfides (Sn2-)." Environmental science & technology 40.17 (2006): 5428-5434. Zeng, Teng, et al. "Pesticide processing potential in prairie pothole porewaters."Environmental science & technology 45.16 (2011): 6814-6822. Zeng, Teng, Yu-Ping Chin, and William

  2. An observational study of the potential for human exposures to pet-borne diazinon residues following lawn applications

    SciTech Connect

    Morgan, Marsha K. Stout, Daniel M.; Jones, Paul A.; Barr, Dana B.

    2008-07-15

    This study examined the potential for pet dogs to be an important pathway for transporting diazinon residues into homes and onto its occupants following residential lawn applications. The primary objectives were to investigate the potential exposures of occupants and their pet dogs to diazinon after an application to turf at their residences and to determine if personal contacts between occupants and their pet dogs resulted in measurable exposures. It was conducted from April to August 2001 before the Agency phased out all residential uses of diazinon in December 2004. Six families and their pet dogs were recruited into the study. Monitoring was conducted at pre-, 1, 2, 4, and 8 days post-application of a commercial, granular formulation of diazinon to the lawn by the homeowner. Environmental samples collected included soil, indoor air, carpet dust, and transferable residues from lawns and floors. Samples collected from the pet dogs consisted of paw wipes, fur clippings, and transferable residues from the fur by a technician or child wearing a cotton glove(s). First morning void (FMV) urine samples were collected from each child and his/her parent on each sampling day. Diazinon was analyzed in all samples, except urine, by GC-MS. The metabolite 2-isopropyl-4-methyl-6-hydroxypyrimidine (IMPy) was analyzed in the urine samples by HPLC-MS/MS. Mean airborne residues of diazinon on day 1 post-application were at least six times higher in both the living rooms (235{+-}267 ng/m{sup 3}) and children's bedrooms (179{+-}246 ng/m{sup 3}) than at pre-application. Mean loadings of diazinon in carpet dust samples were at least 20 times greater on days 2, 4, and 8 post-application than mean loadings (0.03{+-}0.04 ng/cm{sup 2}) at pre-application. The pet dogs had over 900 times higher mean loadings of diazinon residues on their paws on day 1 post-application (88.1{+-}100.1 ng/cm{sup 2}) compared to mean loadings (<0.09 ng/cm{sup 2}) at pre-application. The mean diazinon loadings

  3. Adsorption and desorption of chlorpyrifos to soils and sediments.

    PubMed

    Gebremariam, Seyoum Yami; Beutel, Marc W; Yonge, David R; Flury, Markus; Harsh, James B

    2012-01-01

    Chlorpyrifos, one of the most widely used insecticides, has been detected in air, rain, marine sediments, surface waters, drinking water wells, and solid and liquid dietary samples collected from urban and rural areas. Its metabolite, TCP, has also been widely detected in urinary samples collected from people of various age groups. With a goal of elucidating the factors that control the environmental contamination, impact, persistence, and ecotoxicity of chlorpyrifos, we examine, in this review, the peer-reviewed literature relating to chlorpyrifos adsorption and desorption behavior in various solid-phase matrices. Adsorption tends to reduce chlorpyrifos mobility, but adsorption to erodible particulates, dissolved organic matter, or mobile inorganic colloids enhances its mobility. Adsorption to suspended sediments and particulates constitutes a major off-site migration route for chlorpyrifos to surface waters, wherein it poses a potential danger to aquatic organisms. Adsorption increases the persistence of chlorpyrifos in the environment by reducing its avail- ability to a wide range of dissipative and degradative forces, whereas the effect of adsorption on its ecotoxicity is dependent upon the route of exposure. Chlorpyrifos adsorbs to soils, aquatic sediments, organic matter, and clay minerals to differing degrees. Its adsorption strongly correlates with organic carbon con- tent of the soils and sediments. A comprehensive review of studies that relied on the batch equilibrium technique yields mean and median Kd values for chlorpyrifos of 271 and 116 L/kg for soils, and 385 and 403 L/kg for aquatic sediments. Chlorpyrifos adsorption coefficients spanned two orders of magnitude in soils. Normalizing the partition coefficient to organic content failed to substantially reduce variability to commonly acceptable level of variation. Mean and median values for chlorpyrifos partition coefficients normalized to organic carbon, K, were 8,163 and 7,227 L/kg for soils and 13

  4. Short communication: interaction of bovine milk protein with chlorpyrifos.

    PubMed

    Lv, Ying; Li, Xuefen; Wang, Zongyi; Zheng, Han; Zhang, Qi; Huo, Ran; Chen, Xiangning; Han, Tao

    2014-01-01

    Dairy products are considered as nutrient-dense foods and consumed by many people in western countries, as well as an increasing number of Asian people. Excessive and frequent application of pesticides on vegetables and fruits leads to a potential health hazard to consumers. The organophosphate insecticide chlorpyrifos has been reported to bind with human and bovine serum albumin. Thus, it is necessary to explore the interaction between food protein and chlorpyrifos. In this study, equilibrium dialysis and fluorescence spectra were used to demonstrate binding of milk proteins to chlorpyrifos. The amount of milk protein bound was 0.03±0.01mg/g. Moreover, the milk protein-chlorpyrifos complexes were stable at pH 3.5to 9.5 and ion concentrations from 0.1 to 1.0M. The amount of chlorpyrifos bound to milk proteins decreased to 50% after being in vitro digested by pepsin and trypsin. The results showed that the interaction between food proteins and the pesticide might partially remove the insecticide and reduce the concentration of pesticide absorbed into the blood and, thus, alleviate the corresponding toxicity. PMID:24534502

  5. Chlorpyrifos-induced toxicity in Duttaphrynus melanostictus (Schneider 1799) larvae.

    PubMed

    Wijesinghe, M R; Bandara, M G D K; Ratnasooriya, W D; Lakraj, G P

    2011-05-01

    This study investigates the effects of continuous exposure to a widely used organophosphate pesticide, chlorpyrifos, on survival, growth, development, and activity of larvae of the Asian common toad, Duttaphrynus melanostictus Schneider 1799. Larvae were continuously exposed to six different concentrations (1-1,500 μg l(-1)) of commercial-grade chlorpyrifos for 14 days and monitored for 1 additional week. Chlorpyrifos at ≥1,000 μg l(-1) caused significantly high and dose-dependent mortality, and the weekly LC50(7 day-21 day) values ranged from 3,003 to 462 μg l(-1). Larvae surviving exposure to ≥500 μg l(-1) chlorpyrifos showed significant growth impairment, delays in metamorphosis, and decreased swimming activity. Tail abnormalities were the most common morphologic deformity at concentrations of 1,000 and 1,500 μg l(-1) chlorpyrifos. The findings of the present study highlight the need to recognize the potential risk that agrochemicals pose to amphibians inhabiting agricultural landscapes in Sri Lanka and other Asian countries. PMID:20669016

  6. Sensitive impedimetric biosensor for direct detection of diazinon based on lipases

    NASA Astrophysics Data System (ADS)

    Jaffrezic-Renault, Nicole; Zehani, Nedjla; Dzyadevych, Sergei; Kherrat, Rochdi

    2014-07-01

    Two novel impedimetric biosensors for highly sensitive and rapid quantitative detection of diazinon in an aqueous medium were developed using two types of lipase, from Candida Rugosa (microbial source) (CRL) and from porcine pancreas (animal source) (PPL) immobilized onto a functionalized gold electrode. The lipase is characterized to specifically catalyze the hydrolysis of ester functions leading to the transformation of diazinon into diethyl phosphorothioic acid (DETP) and 2-isopropyl-4-methyl-6-hydroxypyrimidine (IMHP). The developed biosensors both presented a large wide range of linearity up to 50µM with a detection limit of 10 nM for the CRL biosensor and 0.1 µM for the PPL biosensor. A comparative study was carried out between the two biosensors and results showed higher sensitivity for the CRL sensor. Moreover, it presented good accuracy and reproducibility, and had very good storage and multiple use stability for 25 days when stored at 4°C.

  7. Acute toxicity of diazinon is similar for eight stocks of bobwhite

    USGS Publications Warehouse

    Hill, E.F.; Camardese, M.B.; Heinz, G.H.; Spann, J.W.; DeBevec, A.B.

    1984-01-01

    Nine-week-old bobwhite (Colinus virginianus) from eight different game farms were tested for their sensitivity to an acute oral exposure of technical-grade diazinon (phosphorothioic acid O, O-diethyl-O-[6-methyl- 2-(1 -methylethy 1)-4-pyrimidinyl]ester). Extraneous variables associated with interlaboratory differences in husbandry were eliminated by incubating eggs and rearing chicks to test age for all stocks simultaneously in the same facilities at the Patuxent Wildlife Research Center. Under this single set of conditions, the responses of the eight stocks of bobwhite to diazinon were statistically inseparable, with LD50 values varying from 13 mg/kg (95% confidence interval, 8-21 mg/kg) to 17 mg/kg (95% confidence interval, 11-25 mg/kg). The pooled LD50 for the eight stocks was 14.7 mg/kg (95% confidence interval,13.1-16.5 mg/kg).

  8. Sensitive impedimetric biosensor for direct detection of diazinon based on lipases

    PubMed Central

    Zehani, Nedjla; Dzyadevych, Sergei V.; Kherrat, Rochdi; Jaffrezic-Renault, Nicole J.

    2014-01-01

    Two novel impedimetric biosensors for highly sensitive and rapid quantitative detection of diazinon in aqueous medium were developed using two types of lipase, from Candida Rugosa (microbial source) (CRL) and from porcine pancreas (animal source) (PPL) immobilized on functionalized gold electrode. Lipase is characterized to specifically catalyze the hydrolysis of ester functions leading to the transformation of diazinon into diethyl phosphorothioic acid (DETP) and 2-isopropyl-4-methyl-6-hydroxypyrimidine (IMHP). The developed biosensors both presented a wide range of linearity up to 50 μM with a detection limit of 10 nM for Candida Rugosa biosensor and 0.1 μM for porcine pancreas biosensor. A comparative study was carried out between the two biosensors and results showed higher efficiency of Candida Rugosa sensor. Moreover, it presented good accuracy and reproducibility, had very good storage and multiple use stability for 25 days when stored at 4°C. PMID:25072052

  9. Survival and behavioral responses of larvae of the caddis fly Hydropsyche angustipennis to copper and diazinon

    SciTech Connect

    Geest, H.G. van der; Greve, G.D.; Haas, E.M. De; Scheper, B.B.; Kraak, M.H.S.; Stuijfzand, S.C.; Augustijn, K.H.; Admiraal, W.

    1999-09-01

    This study reports on newly developed short-term survival and behavioral tests with larvae of the caddis fly Hydropsyche angustipennis using two model toxicants, copper and diazinon. Mortality of first instar larvae was shown to be a reliable endpoint, and it was demonstrated that H. angustipennis is among the more sensitive aquatic insects in terms of both copper and diazinon. In addition, short-term behavioral responses were found to be indicative of adverse effects of ecologically relevant low doses of copper. Using the tests developed in this study, hydropsychid species are excellent tools for discerning the effects of individual toxicants present in large European rivers, and these species may help in defining the conditions for ecological rehabilitation.

  10. Oxidative damage in gills and liver in Nile tilapia (Oreochromis niloticus) exposed to diazinon.

    PubMed

    Toledo-Ibarra, G A; Díaz Resendiz, K J G; Ventura-Ramón, G H; González-Jaime, F; Vega-López, A; Becerril-Villanueva, E; Pavón, L; Girón-Pérez, M I

    2016-10-01

    Agricultural activity demands the use of pesticides for plague control and extermination. In that matter, diazinon is one of the most widely used organophosphorus pesticides (OPs). Despite its benefits, the use of OPs in agricultural activities can also have negative effects since the excessive use of these substances can represent a major contamination problem for water bodies and organisms that inhabit them. The aim of this paper was to evaluate oxidative damage in lipids and proteins of Nile tilapia (Oreochromis niloticus) exposed acutely to diazinon (0.97, 1.95 and 3.95ppm) for 12 or 24h. The evaluation of oxidative damage was determined by quantifying lipid hydroperoxides (Fox method) and oxidized proteins (DNPH method). The data from this study suggest that diazinon induces a concentration-dependent oxidative damage in proteins, but not lipids, of the liver and gills of Nile tilapia. Furthermore, the treatment leads to a decrease in the concentration of total proteins, which can have serious consequences in cell physiology and fish development. PMID:27174646

  11. Does thyroid disruption contribute to the developmental neurotoxicity of chlorpyrifos?

    PubMed

    Slotkin, Theodore A; Cooper, Ellen M; Stapleton, Heather M; Seidler, Frederic J

    2013-09-01

    Although organophosphate pesticides are not usually characterized as "endocrine disruptors," recent work points to potential, long-term reductions of circulating thyroid hormones after developmental exposures to chlorpyrifos that are devoid of observable toxicity. We administered chlorpyrifos to developing rats on gestational days 17-20 or postnatal days 1-4, regimens that produce distinctly different, sex-selective effects on neurobehavioral performance. The prenatal regimen produced a small, but statistically significant reduction in brain thyroxine levels from juvenile stages through adulthood; in contrast, postnatal exposure produced a transient elevation in young adulthood. However, in neither case did we observe the sex-selectivity noted earlier for neurobehavioral outcomes of these specific treatment regimens, or as reported earlier for effects on serum T4 in developing mice. Thus, although chlorpyrifos has the potential to disrupt thyroid status sufficiently to alter brain thyroid hormone levels, the effect is small, and any potential contribution to neurobehavioral abnormalities remains to be proven. PMID:23686008

  12. An evaluation of alternative insecticides to diazinon for control of tephritid fruit flies (Diptera: Tephritidae) in soil.

    PubMed

    Stark, John D; Vargas, Roger

    2009-02-01

    Diazinon has been used extensively in the past as part of California eradication programs for tephritid fruit flies (Diptera: Tephritidae) as a soil drench, but it is being phased out for this purpose in the United States. Therefore, in this study, the toxicity of Platinum, Force, Admire, Regent, and Warrior was estimated after application to sand and soil as drenches for control of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann); melon fly, Bactrocera cucurbitae (Coquillett); and oriental fruit fly, Bactrocera dorsalis (Hendel), in Hawaii. Susceptibility of each species differed. In sand, the order of toxicity at LC50 based on the 95% confidence limit overlap approach for C. capitata from most toxic to least toxic was diazinon > Force = Warrior > Admire = Platinum > Regent. The order of toxicity for B. dorsalis was diazinon > Platinum = Warrior = Force > Regent = Admire. The order of toxicity for B. cucurbitae was Warrior = diazinon > Force = Regent = Platinum = Admire. Based on the dose ratio method, Warrior was not significantly different at LC50 than diazinon for B. cucurbitae only. All other insecticides were significantly different from diazinon at LC50. Studies in sand were followed by an evaluation of specific concentrations of Warrior and Force in soil collected from two sites on the island of Kauai. Average concentrations that caused at least 95% mortality in soil in all three fruit fly species were 121 g active ingredient (AI)/ha for Force and 363 g (AI)/ha for Warrior compared with 182 g (AI)/ha for diazinon. These results indicate that Force and Warrior could be used as soil treatments for control of tephritid fruit flies. PMID:19253629

  13. Chlorpyrifos degradation in soils with different treatment regimes within Nzoia River Drainage Basin, Kenya.

    PubMed

    Mutua, Gershom Kyalo; Ngigi, Anastasiah Njoki; Getenga, Zachary Moranga

    2015-03-01

    Two organic amendments, filter mud compost and Tithonia diversifolia leaves generated within a sugarcane growing area were used to enhance the degradation of chlorpyrifos in soil. Filter mud compost and T. diversifolia leaves significantly enhanced degradation of chlorpyrifos in soils (p < 0.05) with DT50 values of 21 and 24 days, respectively. Furthermore, field degradation of chlorpyrifos in soil with prior exposure to chlorpyrifos was significantly enhanced (p = 0.034) with DT50 of 21 days compared to 30 days in soil with no previous exposure. Degradation of chlorpyrifos in sterile and non-sterile soils were significantly different (p = 0.023) with DT50 values of 161 and 27 days, respectively. Results show enhanced degradation of chlorpyrifos in organically amended soils and soils with prior exposure to the pesticide. These amendments show promise in a continuing effort to reduce chlorpyrifos concentrations in soils. PMID:25617186

  14. MODELING AGGREGATE CHLORPYRIFOS EXPOSURE AND DOSE TO CHILDREN

    EPA Science Inventory

    To help address the aggregate exposure assessment needs of the Food Quality Protection Act, a physically-based probabilistic model (SHEDS-Pesticides, version 3) has been applied to estimate aggregate chlorpyrifos exposure and dose to children. Two age groups (0-4, 5-9 years) a...

  15. Golfer exposure to chlorpyrifos and carbaryl following application to turfgrass.

    PubMed

    Putnam, Raymond A; Doherty, Jeffery J; Clark, J Marshall

    2008-08-13

    Exposure of golfers to pesticides following their application to turfgrass is of concern to regulators, turfgrass professionals, and consumers. Multipathway exposures were evaluated for golfers on turfgrass treated with chlorpyrifos and carbaryl. Air concentrations and transferable foliar residues (TFRs) were measured to assess potential respiratory and dermal exposures, respectively. At the same time, exposure to individuals simulating the play of golf was determined by dosimetry and urinary biomonitoring. Individual golfer exposure was determined in 76 rounds of golf following eight applications of chlorpyrifos and two applications of carbaryl. Estimated exposures to golfers following full course and full rate applications of chlorpyrifos and carbaryl were 19-68 times below current U.S. EPA acute reference dose (Rfd) values, indicating safe exposures under U.S. EPA hazard quotient criteria. Dermal exposure was determined to be the dominant exposure pathway to golfers, accounting for approximately 60% of the chlorpyrifos absorbed dose and 100% of the carbaryl absorbed dose. This study also provides a set of transfer factors (TFs) that may be used to determine dermal exposure of golfers to pesticides using transferable residue data. PMID:18598045

  16. Risk assessment under FQPA: case study with chlorpyrifos.

    PubMed

    Clevelan, C B; Oliver, G R; Chen, B; Mattsson, J

    2001-10-01

    Key science policies have had significant impact on the evolving implementation of the Food Quality and Protection Act (FQPA) (PL 104-170, 1996) by the US Environmental Protection Agency (EPA). The impact offour of these policies will be examined using the risk assessment for chlorpyrifos as a case study. These policies are selection of a regulatory endpoint, use of animal data without consideration of human data for setting the reference dose, a 10 FQPA safety factor and use of the 99.9 percentile of modeled consumer exposure in the acute dietary assessment. Each of these policy decisions had individual impact that was then compounded as cumulative impact on the revised risk assessment for chlorpyrifos conducted by the US EPA in 2000 [Federal Register Notice 65(159) (2000) 49982]. But embedded within each science policy, there are assumptions which may be too conservative and which together have resulted in a very large multiplicative reduction in the allowable exposure limits for chlorpyrifos in the US. These new exposure limits are quite different from other regulatory standards around the world. There is third party opposition to many of these policies and many believe the understanding of the relationship between exposure and what is known about human and animal responses to chlorpyrifos has been clouded. These changes in policy insert a new level of conservatism into the scientific statement of risk and create confusion that threatens to weaken the credibility of the regulatory process. PMID:11770891

  17. Soil bacterial and fungal community successions under the stress of chlorpyrifos application and molecular characterization of chlorpyrifos-degrading isolates using ERIC-PCR*

    PubMed Central

    Chen, Lie-zhong; Li, Yan-li; Yu, Yun-long

    2014-01-01

    Chlorpyrifos is a widely used insecticide in recent years, and it will produce adverse effects on soil when applied on crops or mixed with soil. In this study, nested polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) were combined to explore the bacterial and fungal community successions in soil treated with 5 and 20 mg/kg of chlorpyrifos. Furthermore, isolates capable of efficiently decomposing chlorpyrifos were molecular-typed using enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR). Under the experimental conditions, degradation of chlorpyrifos in soil was interpreted with the first-order kinetics, and the half-lives of chlorpyrifos at 5 and 20 mg/kg doses were calculated to be 8.25 and 8.29 d, respectively. DGGE fingerprint and principal component analysis (PCA) indicated that the composition of the fungal community was obviously changed with the chlorpyrifos treatment, and that samples of chlorpyrifos treatment were significantly separated from those of the control from the beginning to the end. While for the bacterial community, chlorpyrifos-treated soil samples were apparently different in the first 30 d and recovered to a similar level of the control up until 60 d, and the distance in the PCA between the chlorpyrifos-treated samples and the control was getting shorter through time and was finally clustered into one group. Together, our results demonstrated that the application of chlorpyrifos could affect the fungal community structure in a quick and lasting way, while only affecting the bacterial community in a temporary way. Finally, nine typical ERIC types of chlorpyrifos-degrading isolates were screened. PMID:24711353

  18. Soil bacterial and fungal community successions under the stress of chlorpyrifos application and molecular characterization of chlorpyrifos-degrading isolates using ERIC-PCR.

    PubMed

    Chen, Lie-zhong; Li, Yan-li; Yu, Yun-long

    2014-04-01

    Chlorpyrifos is a widely used insecticide in recent years, and it will produce adverse effects on soil when applied on crops or mixed with soil. In this study, nested polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) were combined to explore the bacterial and fungal community successions in soil treated with 5 and 20 mg/kg of chlorpyrifos. Furthermore, isolates capable of efficiently decomposing chlorpyrifos were molecular-typed using enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR). Under the experimental conditions, degradation of chlorpyrifos in soil was interpreted with the first-order kinetics, and the half-lives of chlorpyrifos at 5 and 20 mg/kg doses were calculated to be 8.25 and 8.29 d, respectively. DGGE fingerprint and principal component analysis (PCA) indicated that the composition of the fungal community was obviously changed with the chlorpyrifos treatment, and that samples of chlorpyrifos treatment were significantly separated from those of the control from the beginning to the end. While for the bacterial community, chlorpyrifos-treated soil samples were apparently different in the first 30 d and recovered to a similar level of the control up until 60 d, and the distance in the PCA between the chlorpyrifos-treated samples and the control was getting shorter through time and was finally clustered into one group. Together, our results demonstrated that the application of chlorpyrifos could affect the fungal community structure in a quick and lasting way, while only affecting the bacterial community in a temporary way. Finally, nine typical ERIC types of chlorpyrifos-degrading isolates were screened. PMID:24711353

  19. Neurologic function among termiticide applicators exposed to chlorpyrifos.

    PubMed Central

    Steenland, K; Dick, R B; Howell, R J; Chrislip, D W; Hines, C J; Reid, T M; Lehman, E; Laber, P; Krieg, E F; Knott, C

    2000-01-01

    Chlorpyrifos is a moderately toxic organophosphate pesticide. Houses and lawns in the United States receive a total of approximately 20 million annual chlorpyrifos treatments, and 82% of U.S. adults have detectable levels of a chlorpyrifos metabolite (3,5, 6-trichloro-2-pyridinol; TCP) in the urine. The U.S. Environmental Protection Agency has estimated that there are 5,000 yearly reported cases of accidental chlorpyrifos poisoning, and approximately one-fourth of these cases exhibit symptoms. Organophosphates affect the nervous system, but there are few epidemiologic data on chlorpyrifos neurotoxicity. We studied neurologic function in 191 current and former termiticide applicators who had an average of 2.4 years applying chlorpyrifos and 2.5 years applying other pesticides, and we compared them to 189 nonexposed controls. The average urinary TCP level for 65 recently exposed applicators was 629.5 microg/L, as compared to 4.5 microg/L for the general U.S. population. The exposed group did not differ significantly from the nonexposed group for any test in the clinical examination. Few significant differences were found in nerve conduction velocity, arm/hand tremor, vibrotactile sensitivity, vision, smell, visual/motor skills, or neurobehavioral skills. The exposed group did not perform as well as the nonexposed group in pegboard turning tests and some postural sway tests. The exposed subjects also reported significantly more symptoms, including memory problems, emotional states, fatigue, and loss of muscle strength; our more quantitative tests may not have been adequate to detect these symptoms. Eight men who reported past chlorpyrifos poisoning had a pattern of low performance on a number of tests, which is consistent with prior reports of chronic effects of organophosphate poisoning. Overall, the lack of exposure effects on the clinical examination was reassuring. The findings for self-reported symptoms raise some concern, as does the finding of low performance

  20. Modifying Effects of Vitamin E on Chlorpyrifos Toxicity in Atlantic Salmon

    PubMed Central

    Olsvik, Pål A.; Berntssen, Marc H. G.; Søfteland, Liv

    2015-01-01

    The aim of this study was to elucidate how vitamin E (alpha tocopherol) may ameliorate the toxicity of the pesticide chlorpyrifos in Atlantic salmon. Freshly isolated hepatocytes were exposed to vitamin E, chlorpyrifos or a combination of vitamin E and chlorpyrifos (all 100 μM). Transcriptomics (RNA-seq) and metabolomics were used to screen for effects of vitamin E and chlorpyrifos. By introducing vitamin E, the number of upregulated transcripts induced by chlorpyrifos exposure was reduced from 941 to 626, while the number of downregulated transcripts was reduced from 901 to 742 compared to the control. Adding only vitamin E had no effect on the transcriptome. Jak-STAT signaling was the most significantly affected pathway by chlorpyrifos treatment according to the transcriptomics data. The metabolomics data showed that accumulation of multiple long chain fatty acids and dipeptides and amino acids in chlorpyrifos treated cells was partially alleviated by vitamin E treatment. Significant interaction effects between chlorpyrifos and vitamin E were seen for 15 metabolites, including 12 dipeptides. The antioxidant had relatively modest effects on chlorpyrifos-induced oxidative stress. By combining the two data sets, the study suggests that vitamin E supplementation prevents uptake and accumulation of fatty acids, and counteracts inhibited carbohydrate metabolism. Overall, this study shows that vitamin E only to a moderate degree modifies chlorpyrifos toxicity in Atlantic salmon liver cells. PMID:25774794

  1. Structural and metabolic responses of microbial community to sewage-borne chlorpyrifos in constructed wetlands.

    PubMed

    Zhang, Dan; Wang, Chuan; Zhang, Liping; Xu, Dong; Liu, Biyun; Zhou, Qiaohong; Wu, Zhenbin

    2016-06-01

    Long-term use of chlorpyrifos poses a potential threat to the environment that cannot be ignored, yet little is known about the succession of substrate microbial communities in constructed wetlands (CWs) under chlorpyrifos stress. Six pilot-scale CW systems receiving artificial wastewater containing 1mg/L chlorpyrifos were established to investigate the effects of chlorpyrifos and wetland vegetation on the microbial metabolism pattern of carbon sources and community structure, using BIOLOG and denaturing gradient gel electrophoresis (DGGE) approaches. Based on our samples, BIOLOG showed that Shannon diversity (H') and richness (S) values distinctly increased after 30days when chlorpyrifos was added. At the same time, differences between the vegetated and the non-vegetated systems disappeared. DGGE profiles indicated that H' and S had no significant differences among four different treatments. The effect of chlorpyrifos on the microbial community was mainly reflected at the physiological level. Principal component analysis (PCA) of both BIOLOG and DGGE showed that added chlorpyrifos made a difference on test results. Meanwhile, there was no difference between the vegetation and no-vegetation treatments after addition of chlorpyrifos at the physiological level. Moreover, the vegetation had no significant effect on the microbial community at the genetic level. Comparisons were made between bacteria in this experiment and other known chlorpyrifos-degrading bacteria. The potential chlorpyrifos-degrading ability of bacteria in situ may be considerable. PMID:27266297

  2. Circadian Rhythmicity of Diazinon Susceptibility, Detoxifying Enzymes, and Energy Reserves in Aphis gossypii (Hemiptera: Aphididae).

    PubMed

    Bagheri, Faezeh; Talebi, Khalil; Hosseininaveh, Vahid; Allahyari, Hossein; Habibi-Rezaei, Mehran; Zare, Shahnaz

    2016-08-01

    The daily susceptibility rhythm of the cotton aphid, Aphis gossypii Glover, to diazinon and the corresponding changes in the activity of three xenobiotic detoxifying enzymes-cytochrome P450 monooxygenases (P450), glutathione S-transferases (GSTs), and esterases-were investigated. Bioassays were conducted to estimate the median lethal doses (LD50) of diazinon at six different zeitgeber times (ZT0, 4, 8, 12, 16, and 20) under constant light (LL) and lighting conditions of 16 h of light and 8 h of darkness (LD). The results showed that the highest susceptibility occurred at the onset of night (ZT16) and 4 h before this time point (ZT12) under the LD condition. The endogenous rhythmicity of susceptibility was ensured, as the highest susceptibility occurred at the same time under the LL condition. The circadian changes in susceptibility to diazinon were almost coincident with changes in esterase and GSTs activity, but not in P450 activity. We also found rhythmic changes in energy components of whole-body aphids, with similar patterns of circadian changes of proteins, lipids, and soluble carbohydrates, but not glycogen, under LL and LD conditions. These photoperiod conditions (LD and LL) showed different fluctuation in trends of energy resources and of course, different quantities. Our study represents the first report of circadian control of insecticide susceptibility in aphids and provides insights into more efficient control of these pests by unveiling the times of day during which aphids are more susceptible to insecticides with attention to endogenous physiological phenomena. PMID:27298427

  3. Study of the Effects of Diazinon on Fetal Liver in BALB/c Mice

    PubMed Central

    Saraei, Fatemeh; Sadoughi, Mehrangiz; Kaka, Gholamreza; Sadraie, Seyed Homayoon; Foaddodini, Mohsen

    2016-01-01

    Background Diazinon is an organophosphate that is broadly used as a pesticide to control insects and environmental pollutions. This toxic material is absorbed via inhalation, contact, or digestion and affects different tissues. Objectives This research was a histomorphometric and immunohistochemical study of the fetal liver of mice after exposure to Diazinon. Materials and Methods Twenty-five pregnant BALB/c mice (25 - 30 gr) were divided into five equal groups in the animal lab of Baqiyatallah University of Medical Sciences, Tehran, Iran. The normal group was without any intervention, and two sham groups received an emulsifier as 0.52 and 5.2 μL/volume (5000 cc in desiccator) and two experimental groups received Diazinon 1.3 and 13μL/volume from the seventh to eighteenth days of pregnancy every other day via forty minutes of inhalation. The pregnant mice were killed on the eighteenth day of gestation and their fetuses were removed and evaluated for fetal growth and liver development. Five fixed fetuses were dehydrated through a series of graded ethanol, embedded in paraffin wax and their whole bodies were sectioned sagittally and stained via the hematoxylin-eosin method. Quantitative computer-assisted morphometric studies were done on the fetal liver tissues occupied by hepatocytes, blood islands, liver sinusoids, and apoptosis. Results The mean crown-rump of the fetuses and their mean weight were increased in the experimental group as compared to the sham and normal groups, but the differences were not significant. The mean percentage of the hepatocyte area significantly increased in the experimental group as compared to the sham and control groups (P < 0.0001). However, the mean sinusoid area significantly decreased in the experimental group as compared to the sham and control groups. The mean percentage of the area occupied by apoptotic hepatocytes in the experimental group - 13 μL /volume (8.6143 ± 1.00945) and 1.3 μL /volume (6.1091 ± 0

  4. Effects of storage and processing on residue levels of chlorpyrifos in soybeans.

    PubMed

    Zhao, Liuwei; Ge, Jing; Liu, Fengmao; Jiang, Naiwen

    2014-05-01

    The residue levels of chlorpyrifos in soybeans during storage and processing were investigated. Soybeans were treated with chlorpyrifos aqueous solution and placed in a sealed plastic container. The residue of chlorpyrifos was determined in soybeans at six time points within 0 and 112days during storage and oil processing of the soybeans was conducted. The analysis of the residues of chlorpyrifos was carried out by gas chromatography-mass spectrometry (GC-MS). Results show that the dissipation of chlorpyrifos in soybeans is about 62% during the storage period. Moreover, the carryover of the residues from soybeans into oil is found to be related to the processing methods. Processing factor, which is defined as the ratio of chlorpyrifos residue concentration in oil sample to that in the soybean samples, was 11 and 0.25 after cold and hot pressing, respectively. PMID:24360437

  5. Complete biodegradation of chlorpyrifos by engineered Pseudomonas putida cells expressing surface-immobilized laccases.

    PubMed

    Liu, Jin; Tan, Luming; Wang, Jing; Wang, Zhiyong; Ni, Hong; Li, Lin

    2016-08-01

    The long-term abuse use of chlorpyrifos-like pesticides in agriculture and horticulture has resulted in significant soil or water contamination and a worldwide ecosystem threat. In this study, the ability of a solvent-tolerant bacterium, Pseudomonas putida MB285, with surface-displayed bacterial laccase, to biodegrade chlorpyrifos was investigated. The results of compositional analyses of the degraded products demonstrate that the engineered MB285 was capable of completely eliminating chlorpyrifos via direct biodegradation, as determined by high-performance liquid chromatography and gas chromatography-mass spectrometry assays. Two intermediate metabolites, namely 3,5,6-trichloro-2-pyridinol (TCP) and diethyl phosphate, were temporarily detectable, verifying the joint and stepwise degradation of chlorpyrifos by surface laccases and certain cellular enzymes, whereas the purified free laccase incompletely degraded chlorpyrifos into TCP. The degradation reaction can be conducted over a wide range of pH values (2-7) and temperatures (5-55 °C) without the need for Cu(2+). Bioassays using Caenorhabditis elegans as an indicator organism demonstrated that the medium was completely detoxified of chlorpyrifos by degradation. Moreover, the engineered cells exhibited a high capacity of repeated degradation and good performance in continuous degradation cycles, as well as a high capacity to degrade real effluents containing chlorpyrifos. Therefore, the developed system exhibited a high degradation capacity and performance and constitutes an improved approach to address chlorpyrifos contamination in chlorpyrifos-remediation practice. PMID:27231878

  6. [Thermodynamics adsorption and its influencing factors of chlorpyrifos and triazophos on the bentonite and humus].

    PubMed

    Zhu, Li-Jun; Zhang, Wei; Zhang, Jin-Chi; Zai, De-Xin; Zhao, Rong

    2010-11-01

    The adsorption of chlorpyrifos and triazophos on bentonite and humus was investigated by using the equilibrium oscillometry. The adsorption capacity of chlorpyrifos and triazophos on humus was great higher than bentonite at the same concentration. Equilibrium data of Langmuir, Freundlich isotherms showed significant relationship to the adsorption of chlorpyrifos and triazophos on humus (chlorpyrifos: R2 0.996 4, 0.996 3; triazophos: R2 0.998 9, 0.992 4). Langmuir isotherm was the best for chlorpyrifos and triazophos on bentonite (chlorpyrifos: R2 = 0.995 7, triazophos: R2 = 0.998 9). The pH value, adsorption equilibrium time and temperature were the main factors affecting adsorption of chlorpyrifos and triazophos on bentonite and humus. The adsorption equilibrium time on mixed adsorbent was 12h for chlorpyrifos and 6h for triazophos respectively. The mass ratio of humus and bentonite was 12% and 14% respectively, the adsorption of chlorpyrifos and triazophos was the stronglest and tended to saturation. At different temperatures by calculating the thermodynamic parameters deltaG, deltaH and deltaS, confirmed that the adsorption reaction was a spontaneous exothermic process theoretically. The adsorption was the best when the pH value was 6.0 and the temperature was 15 degrees C. PMID:21250454

  7. Distribution of chlorpyrifos in rice paddy environment and its potential dietary risk.

    PubMed

    Fu, Yan; Liu, Feifei; Zhao, Chenglin; Zhao, Ying; Liu, Yihua; Zhu, Guonian

    2015-09-01

    Chlorpyrifos is one of the most extensively used insecticides in China. The distribution and residues of chlorpyrifos in a paddy environment were characterized under field and laboratory conditions. The half-lives of chlorpyrifos in the two conditions were 0.9-3.8days (field) and 2.8-10.3days (laboratory), respectively. The initial distribution of chlorpyrifos followed the increasing order of waterchlorpyrifos was rather low compared to the acceptable daily intake (ADI=0.01mg/kg bw) due to rice consumption. The chronic exposure risk from chlorpyrifos in rice grain was 5.90% and 1.30% ADI from field and laboratory results respectively. Concerning the acute dietary exposure, intake estimated for the highest chlorpyrifos level did not exceed the acute reference dose (ARfD=0.1mg/kg bw). The estimated short-term intakes (ESTIs) were 0.78% and 0.25% of the ARfD for chlorpyrifos. The results showed that the use of chlorpyrifos in rice paddies was fairly safe for consumption of rice grain by consumers. PMID:26354698

  8. Effects of diazinon on the lymphocytic cholinergic system of Nile tilapia fish (Oreochromis niloticus).

    PubMed

    Toledo-Ibarra, G A; Díaz-Resendiz, K J G; Pavón-Romero, L; Rojas-García, A E; Medina-Díaz, I M; Girón-Pérez, M I

    2016-08-01

    Fish rearing under intensive farming conditions can be easily disturbed by pesticides, substances that have immunotoxic properties and may predispose to infections. Organophosphorus pesticides (OPs) are widely used in agricultural activities; however, the mechanism of immunotoxicity of these substances is unclear. The aim of this study was to evaluate the effect of diazinon pesticides (OPs) on the cholinergic system of immune cells as a possible target of OP immunotoxicity. We evaluated ACh levels and cholinergic (nicotinic and muscarinic) receptor concentration. Additionally, AChE activity was evaluated in mononuclear cells of Nile tilapia (Oreochromis niloticus), a freshwater fish mostly cultivated in tropical regions around the world. The obtained results indicate that acute exposure to diazinon induces an increase in ACh concentration and a decrease in nAChR and mAChR concentrations and AChE activity in fish immune cells, This suggests that the non-neuronal lymphocytic cholinergic system may be the main target in the mechanism of OP immunotoxicity. This study contributes to the understanding of the mechanisms of immunotoxicity of pollutants and may help to take actions for animal health improvement. PMID:27260186

  9. Application of pesticide transport model for simulating diazinon runoff in California’s central valley

    NASA Astrophysics Data System (ADS)

    Joyce, Brian A.; Wallender, Wesley W.; Mailapalli, Damodhara R.

    2010-12-01

    Dormant spray application of pesticides to almond and other stone fruit orchards is the main source of diazinon during the winter in California's central valley. Understanding the pesticide transport and the tradeoffs associated with the various management practices is greatly facilitated by the use of physically-based contaminant transport models. In this study, performance of Joyce's et al. (2008) pesticide transport model was evaluated using experimental data collected from two ground treatments such as resident vegetation and bare soil. The model simulation results obtained in calibration and validation process were analyzed for pesticide concentration and total load. The pesticide transport model accurately predicted the pesticide concentrations and total load in the runoff from bare field and was capable of simulating chemical responses to rainfall-runoff events. In case of resident vegetation, the model results exhibited a larger range of variation than was observed in the bare soil simulations due to increased model parameterization with the addition of foliage and thatch compartments. Furthermore, the model was applied to study the effect of runoff lag time, extent of crop cover, organic content of soil and post-application irrigation on the pesticide peak concentration and total load. Based on the model results, recommendations were suggested to growers prior to implementing certain management decisions to mitigate diazinon transport in the orchard's spray runoff.

  10. Effects of malathion, diazinon, and parathion on mallard embryo development and cholinesterase activity

    USGS Publications Warehouse

    Hoffman, D.J.; Eastin, W.C., Jr.

    1981-01-01

    The effects of external exposure of mallard (Anas platyrhynchos) eggs to malathion, diazinon, and parathion were examined using formulations and concentrations similar to field applications. Treatment with aqueous emulsion simulated exposure at the rate of 100 gal per acre (153 liters/hectare) with three to six different doses per compound with treatment at 3 and 8 days of embryonic development. Treatment with a nontoxic oil vehicle simulated exposure at the rate of 11 gal per acre (16.8 liters/hectare) with three to six different doses per compound. The order of embryotoxicity on a pounds-per-acre basis was parathion > diazinon > malathion with either vehicle. However, the potential hazard under conditions of up to five times the maximum field level of application was greater for malathion because of the high permissible level of application for malathion on certain crops. Parathion, the most embryotoxic of the three, had the most pronounced effects when an oil vehicle was used, as reflected by an LC50 of about 2 lb of active ingredient per acre, stunted growth, and a high frequency of malformations involving distortion of the axial skeleton, particularly in the cervical region. All three compounds resulted in significant depression of plasma and brain cholinesterase activity, but parathion caused the most depression throughout development, which was still apparent in hatchlings. Treatment with either distilled water or oil vehicle alone did not result in any of these effects seen with organophosphorous insecticides.

  11. Efficiency of partial treatment of cattle infested with horn fly using 40% diazinon.

    PubMed

    de Almeida, Fabiana Alves; Alari, Fernando de Oliveira; Seno, Maria Conceição Zocoller; de Lima, Marco Monteiro; Nascimento, Sheila Tavares; Chiquitelli Neto, Marcos

    2013-01-01

    The aim of this investigation was to evaluate the efficiency of partial treatment of animals infested with horn flies. Forty-five Guzerat cows between 4 and 7 years of age were divided into three groups (15 cows per group). The treatments were as follows: in groups G33 and G100, 33.3 and 100% of the cows were treated with one insecticide-impregnated ear tag/animal (40% diazinon), respectively, while in the group GC, the cows were not treated (control). The flies on the cervico-dorsal-lumbar region of the cows, in all three groups, were counted every 14 days. The experiment lasted from September 2006 to September 2009. Over this period, six four-month ear tag treatments, with intervals of one to two months, were conducted on both treated groups. The animals of group G33 had a higher infection than those of group G100, and the number of flies ranged from 12 to 27 (group G33) and from 3 to 11 (group G100). However, groups G33 and G100 had lower infection levels than group GC, which presented from 45 to 87 flies. Partial treatment of cattle infested with horn flies using 40% diazinon insecticide is an efficient alternative for controlling this ectoparasite. PMID:24473881

  12. Screening and identification of SUMP-proteins in sub-acute treatment with diazinon

    PubMed Central

    Yazdian-Robati, Rezvan; Pourtaji, Atena; Rashedinia, Marzieh; Hosseinzadeh, Hossein; Ghorbani, Maryam; Razavi, BiBi Marjan; Ramezani, Mohammad; Abnous, Khalil

    2015-01-01

    Objective(s): Small ubiquitin-like modifiers (SUMOs) are a family of ubiquitin-related, proteins that are involved in a wide variety of signaling pathways. SUMOylation, as a vital post translational modification, regulate protein function in manycellular processes. Diazinon (DZN), an organophosphate insecticide, causses oxidative stress and subsequently programmed cell death in different tissues. The aim of this study was to evaluate the role and pattern of SUMO modificationas a defense mechanism against stress oxidative, in the heart tissuesof the DZN treated rats. Materials and Methods: Diazinon (15 mg/kg/day), corn oil (control) were administered via gavageto male Wistar rats for four weeks. SUMO1 antibody was covalently crosslinked to protein A/G agarose. heart tissue lysate were added to agarosebeads, After isolation of target proteins(SUMO1- protein)SDS-PAGE gel electrophoresis was performed. Protein bands were identified using MALDI-TOF/TOF and MASCOT). Fold change of (DZN/Ctrl) separated proteins was evaluated using UVband software (UVITEC, UK). Results: Our result showed that subacute exposure to DZN increased SUMOylationoffour key proteins involved in the metabolic process including; Acyl-CoA dehydrogenase, creatine kinase, glyceraldehyde-3-phosphate dehydrogenase and ATP synthase, in the heart tissue of animals. A probability value of less than 0.05 was considered significant (P<0.05). Conclusion: It seems that protein SUMOylation provides a safeguard mechanism against DZN Toxicity. PMID:26877855

  13. Differential response to diazinon and coumaphos in a strain of Boophilus microplus (Acari: Ixodidae) collected in Mexico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Boophilus microplus, collected from Nuevo Leon, Mexico were found to be highly resistant to diazinon but not highly resistant to coumaphos, suggesting that different mechanisms of resistance were present in these ticks than other Mexican organophosphate (OP)-resistant ticks reported previously. When...

  14. Potential of solid phase extraction disks to aid determination of dislodgeable foliar residues of chlorpyriphos, malathion, diazinon, and acephate.

    PubMed

    Snyder, J C; Thacker, R R; Boeniger, M; Antonious, G F

    2003-11-01

    The utility of solid phase extraction (SPE) for concentrating four organophosphate insecticides from solutions of water and sodium dioctyl sulfosuccinate, a surfactant, was evaluated. Reverse phase (C18, octadecyl bonded silica) sorbent in the form of a disk was the SPE medium evaluated. Chlorpyriphos, malathion, and diazinon, but not acephate, were retained on and eluted from the SPE disks. For pesticides that were retained on SPE disks, recoveries from the disks were equal to or higher than recoveries achieved by solvent partitioning. Dislodgeable foliar residues of acephate were successfully concentrated for analysis by lyophilization of water-surfactant solutions. Recoveries of pesticides from SPE disks stored at -15 degrees C for one week were equal to or higher than those of pesticides stored in water-surfactant for one week at -15 degrees C. Malathion- and diazinon-fortified samples in watersurfactant and on SPE disks were prepared in one state and shipped for analysis in another state. Pesticides in the water-surfactant samples were concentrated by solvent partitioning and were underestimated by 41% (diazinon) and 16% (malathion). Conversely, diazinon samples on the SPE disks were on average underestimated by 3% and malathion was overestimated by an average of 55%. The overestimation of malathion was attributed to a matrix effect during analysis associated with the presence of surfactant, which was retained on and subsequently eluted from the SPE disks. The retention of surfactant by the SPE disks and its subsequent elution may considerably limit their usefulness in determination of dislodgeable foliar residues. PMID:14708658

  15. PILOT STUDY OF THE POTENTIAL FOR HUMAN EXPOSURES TO PET-BORNE DIAZINON RESIDUES FOLLOWING LAWN APPLICATIONS IN NORTH CAROLINA

    EPA Science Inventory

    This study examined the potential for indoor/outdoor pet dogs to be an important pathway for transporting diazinon residues into homes and onto occupants following residential lawn applications. The primary objective was to investigate the potential exposures of children and thei...

  16. FEASIBILITY STUDY OF THE POTENTIAL FOR HUMAN EXPOSURE TO PET-BORNE DIAZINON RESIDUES FOLLOWING LAWN APPLICATIONS

    EPA Science Inventory

    Diazinon (O,O-diethyl-O-[2-isopropyl-6-methylpyrimidin-4-yl]phosphorothioate) is a broad spectrum organophosphorus insecticide commonly used to control a variety of pest insects (ticks, grubs, ants, and fleas) on lawns (Earl et al. 1971; Tomlin, 1994). Recently, Stout II (1998)...

  17. An Evaluation of Alternative Insecticides to Diazinon for Control of Tephritid Fruit Flies (Diptera: Tephritidae) in Soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diazinon has been used extensively in the past as part of California eradication programs for tephritid fruit flies, but is being phased out for this purpose in the United States. Therefore, in this study, the toxicity of Platinum®, Force®, Admire®, Regent®, and Warrior® was estimated after applica...

  18. Analysis of diazinon pesticide using potentiometric biosensor based on enzyme immobilized cellulose acetate membrane in gold electrode

    NASA Astrophysics Data System (ADS)

    Mashuni; Ramadhan, L. O. A. N.; Jahiding, M.; Herniati

    2016-02-01

    Biosensor for analysis of diazinon pesticide using Potentiometric transducer has been developed. The basic element of this biosensor was a gold electrode modified with an immobilized acetylcholinesterase enzyme layer formed by entrapment with glutaraldehyde crosslinked-cellulose acetate. The aim of the research is to determine the composition of glutaraldehyde crosslinked-cellulose acetate in the gold electrode which provide optimum performance of biosensors of diazinon pesticide analysis on characterization include a range of working concentration, sensitivity, and detection limit. The results showed the composition of the cellulose acetate 15% and glutaraldehyde 25% that obtain optimum performance in the measurement of diazinon pesticide with a range of working concentration of 10-6 ppm to 1 ppm, the value of sensitivity 20.275 mV/decade and detection limit 10-6 ppm. The use of cellulose acetate provides highly sensitive devices allowing the efficient analysis of pesticides. The response time of electrode is on the measurement of pesticide diazinon with concentration variation of 10-6 ppm to 1 ppm with response time is about 5 minutes.

  19. Sublethal toxicity of chlorpyrifos to salmonid olfaction after hypersaline acclimation.

    PubMed

    Maryoung, Lindley A; Blunt, Brian; Tierney, Keith B; Schlenk, Daniel

    2015-04-01

    Salmonid habitats can be impacted by several environmental factors, such as salinization, which can also affect salmonid tolerance to anthropogenic stressors, such as pesticides. Previous studies have shown that hypersaline acclimation enhances the acute toxicity of certain organophosphate and carbamate pesticides to euryhaline fish; however, sublethal impacts have been far less studied. The current study aims to determine how hypersaline acclimation and exposure to the organophosphate chlorpyrifos (CPF) impact salmonid olfaction. Combined acclimation and exposure to CPF was shown to impact rainbow trout olfaction at the molecular, physiological, and behavioral levels. Concurrent exposure to hypersalinity and 0.5μg/L CPF upregulated four genes (chloride intracellular channel 4, G protein zgc:101761, calcium calmodulin dependent protein kinase II delta, and adrenergic alpha 2C receptor) that inhibit olfactory signal transduction. At the physiological level, hypersalinity and chlorpyrifos caused a decrease in sensory response to the amino acid l-serine and the bile salt taurocholic acid. Combined acclimation and exposure also negatively impacted behavior and reduced the avoidance of a predator cue (l-serine). Thus, acclimation to hypersaline conditions and exposure to environmentally relevant concentrations of chlorpyrifos caused an inhibition of olfactory signal transduction leading to a decreased response to odorants and impairment of olfactory mediated behaviors. PMID:25697678

  20. Molecularly imprinted polymer nanoparticles-based electrochemical sensor for determination of diazinon pesticide in well water and apple fruit samples.

    PubMed

    Motaharian, Ali; Motaharian, Fatemeh; Abnous, Khalil; Hosseini, Mohammad Reza Milani; Hassanzadeh-Khayyat, Mohammad

    2016-09-01

    In this research, an electrochemical sensor based on molecularly imprinted polymer (MIP) nanoparticles for selective and sensitive determination of diazinon (DZN) pesticides was developed. The nanoparticles of diazinon imprinted polymer were synthesized by suspension polymerization and then used for modification of carbon paste electrode (CPE) composition in order to prepare the sensor. Cyclic voltammetry (CV) and square wave voltammetry (SWV) methods were applied for electrochemical measurements. The obtained results showed that the carbon paste electrode modified by MIP nanoparticles (nano-MIP-CP) has much higher adsorption ability for diazinon than the CPE based non-imprinted polymer nanoparticles (nano-NIP-CP). Under optimized extraction and analysis conditions, the proposed sensor exhibited excellent sensitivity (95.08 μA L μmol(-1)) for diazinon with two linear ranges of 2.5 × 10(-9) to 1.0 × 10(-7) mol L(-1) (R (2) = 0.9971) and 1.0 × 10(-7) to 2.0 × 10(-6) mol L(-1) (R (2) = 0.9832) and also a detection limit of 7.9 × 10(-10) mol.L(-1). The sensor was successfully applied for determination of diaznon in well water and apple fruit samples with recovery values in the range of 92.53-100.86 %. Graphical abstract Procedure for preparation of electrochemical sensor based on MIP nanoparticles for determination of diazinon. PMID:27497964

  1. Mechanistic toxicodynamic model for receptor-mediated toxicity of diazoxon, the active metabolite of diazinon, in Daphnia magna.

    PubMed

    Kretschmann, Andreas; Ashauer, Roman; Hitzfeld, Kristina; Spaak, Piet; Hollender, Juliane; Escher, Beate I

    2011-06-01

    The organothiophosphate diazinon inhibits the target site acetylcholinesterase only after activation to its metabolite diazoxon. Commonly, the toxicity of xenobiotics toward aquatic organisms is expressed as a function of the external concentration and the resulting effect on the individual level after fixed exposure times. This approach does not account for the time dependency of internal processes such as uptake, metabolism, and interaction of the toxicant with the target site. Here, we develop a mechanistic toxicodynamic model for Daphnia magna and diazoxon, which accounts for the inhibition of the internal target site acetylcholinesterase and its link to the observable effect, immobilization, and mortality. The model was parametrized by experiments performed in vitro with the active metabolite diazoxon on enzyme extracts and in vivo with the parent compound diazinon. The mechanism of acetylcholinesterase inhibition was shown to occur irreversibly in two steps via formation of a reversible enzyme-inhibitor complex. The corresponding kinetic parameters revealed a very high sensitivity of acetylcholinesterase from D. magna toward diazoxon, which corresponds well with the high toxicity of diazinon toward this species. Recovery of enzyme activity but no recovery from immobilization was observed after in vivo exposure to diazinon. The toxicodynamic model combining all in vitro and in vivo parameters was successfully applied to describe the time course of immobilization in dependence of acetylcholinesterase activity during exposure to diazinon. The threshold value for enzyme activity below which immobilization set in amounted to 40% of the control activity. Furthermore, the model enabled the prediction of the time-dependent diazoxon concentration directly present at the target site. PMID:21539304

  2. Chlorpyrifos and chlorpyrifos-oxon inhibit axonal growth by interfering with the morphogenic activity of acetylcholinesterase

    SciTech Connect

    Yang Dongren; Howard, Angela; Bruun, Donald; Ajua-Alemanj, Mispa; Pickart, Cecile; Lein, Pamela J.

    2008-04-01

    A primary role of acetylcholinesterase (AChE) is regulation of cholinergic neurotransmission by hydrolysis of synaptic acetylcholine. In the developing nervous system, however, AChE also functions as a morphogenic factor to promote axonal growth. This raises the question of whether organophosphorus pesticides (OPs) that are known to selectively bind to and inactivate the enzymatic function of AChE also interfere with its morphogenic function to perturb axonogenesis. To test this hypothesis, we exposed primary cultures of sensory neurons derived from embryonic rat dorsal root ganglia (DRG) to chlorpyrifos (CPF) or its oxon metabolite (CPFO). Both OPs significantly decreased axonal length at concentrations that had no effect on cell viability, protein synthesis or the enzymatic activity of AChE. Comparative analyses of the effects of CPF and CPFO on axonal growth in DRG neurons cultured from AChE nullizygous (AChE{sup -/-}) versus wild type (AChE{sup +/+}) mice indicated that while these OPs inhibited axonal growth in AChE{sup +/+} DRG neurons, they had no effect on axonal growth in AChE{sup -/-} DRG neurons. However, transfection of AChE{sup -/-} DRG neurons with cDNA encoding full-length AChE restored the wild type response to the axon inhibitory effects of OPs. These data indicate that inhibition of axonal growth by OPs requires AChE, but the mechanism involves inhibition of the morphogenic rather than enzymatic activity of AChE. These findings suggest a novel mechanism for explaining not only the functional deficits observed in children and animals following developmental exposure to OPs, but also the increased vulnerability of the developing nervous system to OPs.

  3. Chlorpyrifos and Chlorpyrifos-Oxon Inhibit Axonal Growth by Interfering with the Morphogenic Activity of Acetylcholinesterase

    PubMed Central

    Yang, Dongren; Howard, Angela; Bruun, Donald; Ajua-Alemanj, Mispa; Pickart, Cecile; Lein, Pamela J.

    2008-01-01

    A primary role of acetylcholinesterase (AChE) is regulation of cholinergic neurotransmission by hydrolysis of synaptic acetylcholine. In the developing nervous system, however, AChE also functions as a morphogenic factor to promote axonal growth. This raises the question of whether organophosphorus pesticides (OPs) that are known to selectively bind to and inactivate the enzymatic function of AChE also interfere with its morphogenic function to perturb axonogenesis. To test this hypothesis, we exposed primary cultures of sensory neurons derived from embryonic rat dorsal root ganglia (DRG) to chlorpyrifos (CPF) or its oxon metabolite (CPFO). Both OPs significantly decreased axonal length at concentrations that had no effect on cell viability, protein synthesis or the enzymatic activity of AChE. Comparative analyses of the effects of CPF and CPFO on axonal growth in DRG neurons cultured from AChE nullizygous (AChE−/−) versus wildtype (AChE+/+) mice indicated that while these OPs inhibited axonal growth in AChE+/+ DRG neurons, they had no effect on axonal growth in AChE−/− DRG neurons. However, transfection of AChE−/− DRG neurons with cDNA encoding full-length AChE restored the wildtype response to the axon inhibitory effects of OPs. These data indicate that inhibition of axonal growth by OPs requires AChE, but the mechanism involves inhibition of the morphogenic rather than enzymatic activity of AChE. These findings suggest a novel mechanism for explaining not only the functional deficits observed in children and animals following developmental exposure to OPs, but also the increased vulnerability of the developing nervous system to OPs. PMID:18076960

  4. Phytoremediation of chlorpyrifos in aqueous system by riverine macrophyte, Acorus calamus: toxicity and removal rate.

    PubMed

    Wang, Qinghai; Li, Cui; Zheng, Ruilun; Que, Xiaoe

    2016-08-01

    The potential of Acorus calamus to remove chlorpyrifos from water was assessed under laboratory conditions. Toxic effects of the insecticide in A. calamus were evaluated using pulse-amplitude modulated chlorophyll fluorescence techniques as well. At exposure concentrations above 8 mg L(-1), A. calamus showed obvious phytotoxic symptom with significant reduction in quantum efficiency of PSII (ΦPSII) and photochemical quenching coefficient (qP) in 20-day test; the inhibition of maximal quantum efficiency of PSII (Fv/Fm) was accompanied by a significant rise in initial chlorophyll fluorescence (Fo) within 15-day exposures. Fv/Fm and Fo recover to the normal level after 20-day exposure. The reduced removal rate to chlorpyrifos was observed with increase of initial chlorpyrifos concentrations. At application levels of 1, 2, and 4 mg L(-1), the disappearance rate of chlorpyrifos in the hydroponic system with plants was significantly greater than that without plants during the 20-day test periods. Chlorpyrifos was taken up from medium and transferred to above ground tissues by the plant and significant amounts of chlorpyrifos accumulated in plant tissues. The result indicated that A. calamus can promote the disappearance of chlorpyrifos from water and may be used for phytoremediation of water contaminated with a relatively low concentration of chlorpyrifos insecticide (<4 mg L(-1)). PMID:27154841

  5. Binding and detoxification of chlorpyrifos by lactic acid bacteria on rice straw silage fermentation.

    PubMed

    Wang, Yan-Su; Wu, Tian-Hao; Yang, Yao; Zhu, Cen-Ling; Ding, Cheng-Long; Dai, Chuan-Chao

    2016-01-01

    This investigation examined the reduction of pesticide residues on straw inoculated with lactic acid bacteria (LAB) during ensiling. Lactobacillus casei WYS3 was isolated from rice straw that contained pesticide residues. Non-sterilized rice straw, which was inoculated with L. casei WYS3, showed increased removal of chlorpyrifos after ensiling, compared with rice straw that was not inoculated with L. casei WYS3 or sterilized rice straw. In pure culture, these strains can bind chlorpyrifos as indicated by high-performance liquid chromatography analysis. Viable L. casei WYS3 was shown to bind 33.3-42% of exogenously added chlorpyrifos. These results are similar to those of acid-treated cells but less than those of heat-treated cells, which were found to bind 32.0% and 77.2% of the added chlorpyrifos respectively. Furthermore, gas chromatography-mass spectrometry analysis determined that L. casei WYS3 detoxified chlorpyrifos via P-O-C cleavage. Real-time polymerized chain reaction analysis determined that organophosphorus hydrolase gene expression tripled after the addition of chlorpyrifos to LAB cultures, compared with the control group (without chlorpyrifos). This paper highlights the potential use of LAB starter cultures for the detoxification and removal of chlorpyrifos residues in the environment. PMID:26852781

  6. COMPARISON OF TRANSFER OF SURFACE CHLORPYRIFOS RESIDUES FROM CARPET BY THREE DISLODGEABLE RESIDUE METHODS

    EPA Science Inventory

    After chlorpyrifos, which was broadcast-sprayed on carpet, had dried, transfers by the Dow drag sled, the California cloth roller, and the Southwest Research Institute polyurethane foam (PUF) roller were compared. n plush nylon carpet, mean chlorpyrifos transfers were 4.5% by the...

  7. NEUROBEHAVIORAL EFFECTS OF CHRONIC DIETARY AND REPEATED HIGH-LEVEL SPIKE EXPOSURE TO CHLORPYRIFOS IN RATS.

    EPA Science Inventory

    This study aimed to model long-term subtoxic human exposure to an organophosphorus pesticide, chlorpyrifos, and to examine the influence of that exposure on the response to intermittent high-dose acute challenges. Adult rats were maintained on a chlorpyrifos-containing diet to p...

  8. BEHAVIORAL AND NEUROCHEMICAL OUTCOMES OF REPEATED ORAL ADMINISTRATION OF CHLORPYRIFOS IN POSTNATAL/JUVENILE RATS.

    EPA Science Inventory

    Concern has been raised regarding potential adverse effects on the nervous system following childhood exposure to chlorpyrifos (O,O-diethyl-O-3,5,6-trichloro-2-pyridyl-phosphorothioate). This study examined the outcomes of daily oral dosing with chlorpyrifos, from early postnata...

  9. Chlorpyrifos-induced hypothermia and vasodilation in the tail of the rat: blockade by scopolamine.

    PubMed

    Gordon, C J; Yang, Y L

    2000-07-01

    Organophosphate pesticides such as chlorpyrifos reduce core temperature (Tc) in laboratory rodents. The mechanism(s) responsible for the chlorpyrifos-induced hypothermia are not well known. This study assessed the role of a key effector for thermoregulation in the rat, vasomotor control of heat loss from the tail, and its possible cholinergic control during chlorpyrifos-induced hypothermia. Tc and motor activity were monitored by telemetry in female Long-Evans rats maintained at an ambient temperature (Ta) of 25 degrees. Tail skin temperature (Tsk(t)) was measured hourly. Rats were dosed with chlorpyrifos (0 or 25 mg/kg orally). Two hr later the rats were dosed with saline or scopolamine (1.0 mg/kg intraperitoneally). Two hr after chlorpyrifos treatment there was a marked elevation in Tsk(t)) concomitant with a 0.5 degrees reduction in Tc. Scopolamine administered to control rats led to a marked elevation in Tc with little change in Tsk(t). Rats treated with chlorpyrifos and administered scopolamine underwent a marked vasoconstriction and elevation in Tc. Vasodilation of the tail is an important thermoeffector to reduce Tc during the acute stages of chlorpyrifos exposure. The blockade of the response by scopolamine suggests that the hypothermic and vasodilatory response to chlorpyrifos is mediated via a cholinergic muscarinic pathway in the CNS. PMID:10987209

  10. Identification of a diazinon-metabolizing glutathione S-transferase in the silkworm, Bombyx mori.

    PubMed

    Yamamoto, Kohji; Yamada, Naotaka

    2016-01-01

    The glutathione S-transferase superfamily play key roles in the metabolism of numerous xenobiotics. We report herein the identification and characterization of a novel glutathione S-transferase in the silkworm, Bombyx mori. The enzyme (bmGSTu2) conjugates glutathione to 1-chloro-2,4-dinitrobenzene, as well as metabolizing diazinon, one of the organophosphate insecticides. Quantitative reverse transcription-polymerase chain reaction analysis of transcripts demonstrated that bmGSTu2 expression was induced 1.7-fold in a resistant strain of B. mori. Mutagenesis of putative amino acid residues in the glutathione-binding site revealed that Ile54, Glu66, Ser67, and Asn68 are crucial for enzymatic function. These results provide insights into the catalysis of glutathione conjugation in silkworm by bmGSTu2 and into the detoxification of organophosphate insecticides. PMID:27440377

  11. Identification of a diazinon-metabolizing glutathione S-transferase in the silkworm, Bombyx mori

    PubMed Central

    Yamamoto, Kohji; Yamada, Naotaka

    2016-01-01

    The glutathione S-transferase superfamily play key roles in the metabolism of numerous xenobiotics. We report herein the identification and characterization of a novel glutathione S-transferase in the silkworm, Bombyx mori. The enzyme (bmGSTu2) conjugates glutathione to 1-chloro-2,4-dinitrobenzene, as well as metabolizing diazinon, one of the organophosphate insecticides. Quantitative reverse transcription–polymerase chain reaction analysis of transcripts demonstrated that bmGSTu2 expression was induced 1.7-fold in a resistant strain of B. mori. Mutagenesis of putative amino acid residues in the glutathione-binding site revealed that Ile54, Glu66, Ser67, and Asn68 are crucial for enzymatic function. These results provide insights into the catalysis of glutathione conjugation in silkworm by bmGSTu2 and into the detoxification of organophosphate insecticides. PMID:27440377

  12. Inputs of the Dormant-Spray Pesticide, Diazinon, to the San Joaquin River, California, February 1993

    USGS Publications Warehouse

    Domagalski, Joseph L.; Dubrovsky, Neil M.; Kratzer, Charles R.

    1995-01-01

    INTRODUCTION The objective of the National Water Quality Assessment (NAWQA) Program of the U.S. Geological Survey is to describe the status and trends of the Nation's water quality with respect to natural features of the environment and human activities or land-use. Pesticides are a major water-quality issue in the San Joaquin Valley of California (fig. 1), and pesticide residues may be transported to rivers and streams in agricultural runoff following winter storms. Three sites in the western San Joaquin Valley were monitored during and after two February 1993 storms. The storms occurred after extensive spraying of organophosphate insecticides, mostly diazinon, on almond and other stone-fruit orchards.

  13. Environmental Behavior of Chlorpyrifos and Endosulfan in a Tropical Soil in Central Brazil.

    PubMed

    Dores, Eliana F G C; Spadotto, Claudio A; Weber, Oscarlina L S; Dalla Villa, Ricardo; Vecchiato, Antonio B; Pinto, Alicio A

    2016-05-25

    The environmental behavior of chlorpyrifos and endosulfan in soil was studied in the central-western region of Brazil by means of a field experiment. Sorption was evaluated in laboratory batch experiments. Chlorpyrifos and endosulfan were applied to experimental plots on uncultivated soil and the following processes were studied: leaching, runoff, and dissipation in top soil. Field dissipation of chlorpyrifos and endosulfan was more rapid than reported in temperate climates. Despite the high Koc of the studied pesticides, the two endosulfan isomers and endosulfan sulfate as well as chlorpyrifos were detected in percolated water. In runoff water and sediment, both endosulfan isomers and endosulfan sulfate were detected throughout the period of study. Observed losses of endosulfan by leaching (below a depth of 50 cm) and runoff were 0.0013 and 1.04% of the applied amount, whereas chlorpyrifos losses were 0.003 and 0.032%, respectively. Leaching of these highly adsorbed pesticides was attributed to preferential flow. PMID:26635198

  14. Toxicokinetic and toxicodynamic model for diazinon toxicity--mechanistic explanation of differences in the sensitivity of Daphnia magna and Gammarus pulex.

    PubMed

    Kretschmann, Andreas; Ashauer, Roman; Hollender, Juliane; Escher, Beate I

    2012-09-01

    A mechanistic toxicokinetic and toxicodynamic model for acute toxic effects (immobilization, mortality) of the organothiophosphate insecticide diazinon in Daphnia magna is presented. The model was parameterized using measured external and internal (whole-body) concentrations of diazinon, its toxic metabolite diazoxon, and the inactive metabolite 2-isopropyl-6-methyl-4-pyrimidinol, plus acetylcholinesterase (AChE) activity measured during exposure to diazinon in vivo. The toxicokinetic and toxicodynamic model provides a coherent picture from exposure to the resulting toxic effect on an organism level through internally formed metabolites and the effect on a molecular scale. A very fast reaction of diazoxon with AChE (pseudo first-order inhibition rate constant k(i) = 3.3 h(-1)) compared with a slow formation of diazoxon (activation rate constant k(act) = 0.014 h(-1)) was responsible for the high sensitivity of D. magna toward diazinon. Recovery of AChE activity from inhibition was slow and rate-determining (99% recovery within 16 d), compared with a fast elimination of diazinon (99% elimination within 17 h). The obtained model parameters were compared with toxicokinetic and toxicodynamic parameters of Gammarus pulex exposed to diazinon from previous work. This comparison revealed that G. pulex is less sensitive because of a six times faster detoxification of diazinon and diazoxon and an approximately 400 times lower rate for damage accrual. These differences overcompensate the two times faster activation of diazinon to diazoxon in G. pulex compared to D. magna. The present study substantiates theoretical considerations that mechanistically based effect models are helpful to explain sensitivity differences among different aquatic invertebrates. PMID:22653849

  15. Effect of grapeseed oil on diazinon-induced physiological and histopathological alterations in rats

    PubMed Central

    Al-Attar, Atef Mohammed

    2014-01-01

    The pollution of environment by toxic chemicals is a global and chronic problem. Human health risk due to exposure to chemical pollutants is constantly increasing. Pesticides form major toxic chemicals in environment. Scientifically, there is an obviously correlation between the exposure to pesticides and appearance of many diseases. Currently, the significance of natural products for health and medicine has been formidable. The present study investigated the effect of grapeseed oil in male rats exposed to diazinon. The experimental rats were divided into five groups. The rats of the first group were served as control. The experimental animals of the second group were exposed to diazinon (DZN). The animals of the third group were supplemented with grapeseed oil and treated with DZN. The rats of the fourth group were supplemented with grapeseed oil. The experimental rats of the fifth group were supplemented with corn oil. Hematobiochemical and histopathological evaluations were chosen as indicators of DZN toxicity and protective role of grapeseed oil. In rats exposed only to DZN, the levels of serum glucose, triglycerides, cholesterol, low density lipoprotein cholesterol, very low density lipoprotein cholesterol, creatinine, urea nitrogen, uric acid, alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, creatine kinase and lactate dehydrogenase were statistically increased, while the level of serum total protein was significantly decreased. Moreover, the histopathological evaluations of the liver, kidney and testis showed that DZN causes several severe alterations. Pretreatment with grapeseed oil exhibited a protective role against DZN toxicity which confirmed by the inhibition of hematobiochemical and histopathological changes due to DZN exposure. Additionally, the present study suggests that the effect of grapeseed oil supplementation against DZN toxicity may be attributed to the antioxidant role of its constituents. PMID:25972749

  16. Diazinon poisoning

    MedlinePlus

    ... care unit and getting long-term therapy. Some effects of the poison may last for weeks or months, or even longer. ... RD, Ruha A-M. Insecticides, herbicides, and rodenticides. In: Adams JG. Emergency Medicine . 2nd ...

  17. Diazinon poisoning

    MedlinePlus

    ... to light Heart and blood Low or high blood pressure Slow or rapid heart rate Weakness Nervous system Agitation Anxiety Coma Confusion Convulsions Dizziness Headache Skin Blue lips and fingernails Sweating Stomach and gastrointestinal tract ...

  18. Analysis of aggregate exposure to chlorpyrifos in the NHEXAS-Maryland investigation.

    PubMed Central

    Pang, Yaohong; MacIntosh, David L; Camann, David E; Ryan, P Barry

    2002-01-01

    As part of the National Human Exposure Assessment Survey (NHEXAS) in Maryland, we collected indoor air, carpet dust, exterior soil, and duplicate diet samples from a stratified random sample of 80 individuals to evaluate aggregate daily exposure, contributions of specific pathways of exposure, and temporal variation in exposure to chlorpyrifos. We collected samples from each participant in up to six equally spaced sampling cycles over a year and analyzed them for chlorpyrifos. We used chlorpyrifos concentrations in each medium and self-reported rates of time spent inside at home, time and frequency of contact with carpet, frequency of contact with soil, and weights of the duplicate diet samples to derive exposure to chlorpyrifos from each medium as well as average daily aggregate exposure (nanograms per day). The mean aggregate daily exposure to chlorpyrifos of 36 measurements obtained from 31 people was 1,390 ng/day (SD, 2,770 ng/day). Exposure from inhalation of indoor air accounted for 84.7% of aggregate daily exposure to chlorpyrifos on average. Chlorpyrifos concentrations in indoor air and carpet dust and the corresponding exposure rates were significantly correlated. Repeated short-term measurements of chlorpyrifos in carpet dust from individual residences were strongly correlated over time (reliability coefficient, R = 0.90), whereas the short-term measurements of chlorpyrifos in indoor air (R = 0.55) and solid food (R = 0.03) had moderate to weak reliability. Exposure to chlorpyrifos through those media and in aggregate based on direct measurements reported in this study can be used to understand better the accuracy of pesticide safety assessments. PMID:11882473

  19. In vitro evaluation of neurotoxicity potential and oxidative stress responses of diazinon and its degradation products in rat brain synaptosomes.

    PubMed

    Čolović, Mirjana B; Vasić, Vesna M; Avramović, Nataša S; Gajić, Milan M; Djurić, Dragan M; Krstić, Danijela Z

    2015-02-17

    Although primary toxic action of organophosphorous insecticides is associated with acetylcholinesterase inhibition, later studies suggest that oxidative stress may be responsible for induced organophosphates toxicity. These studies mostly include thio forms, while the effects of their metabolites/degradation products have been less investigated. Therefore, this paper studies the toxic effects of diazinon degradation products, diazoxon and 2-isopropyl-6-methyl-4-pyrimidinol, and compares them with the toxic potential of the parent compound. The toxicity induced by various concentrations of the investigated compounds was in vitro evaluated by the activities of acetylcholinesterase, ATPases, antioxidant defense enzymes and lactate dehydrogenase, and malondialdehyde level in rat brain synaptosomes. Diazinon inhibited acetylcholinesterase and Na(+)/K(+)-ATPase in dose-dependent manner, while the inhibition of ecto-ATPase activity was less than 15% at all investigated concentrations. It did not demonstrate noteworthy prooxidative properties causing increase (up to 10%) in antioxidant enzymes activity and malondialdehyde level, as a marker of lipid peroxidation. Diazinon oxidation product, diazoxon was found as the most toxic investigated compound. Beside the expected strong inhibitory effect on acetylcholinesterase, it induced dose-dependent and almost complete inhibition of Na(+)/K(+)-ATPase and ecto-ATPase at the highest investigated concentration (0.1mM). Increasing diazoxon concentrations activated catalase (up to 30%), superoxide dismutase (up to 50%), glutathione peroxidase (up to 30%), and significantly increased malondialdehyde level (up to 50%). The investigated hydrolysis product of diazinon, 2-isopropyl-6-methyl-4-pyrimidinol did not remarkably alter the activities of acetylcholinesterase, Na(+)/K(+)-ATPase, catalase, glutathione peroxidase and lipid peroxidation level (up to about 10%). Although this diazinon metabolite has been known as non toxic, it induced

  20. Possible role of vasopressin in the thermoregulatory response to chlorpyrifos in the rat.

    PubMed

    Yang, Yong-La; Gordon, Christopher J

    2002-06-01

    Arginine vasopressin is a naturally occurring antipyretic which is released into the CNS to prevent excessive elevations in body temperature during fever. Circulating levels of arginine vasopressin may also have a role in the tonic control of body temperature. We have found that the organophosphate insecticide chlorpyrifos will raise blood pressure and lower body temperature in the rat. Because arginine vasopressin is a potent hypertensive agent and is capable of lowering core temperature, we suspected that arginine vasopressin may be involved in the thermoregulatory response to chlorpyrifos. To this end, core temperature and motor activity of male and female Sprague-Dawely rats were monitored before and after treatment with the corn oil vehicle or chlorpyrifos (15 mg/kg in females; 30 mg/kg in males; oral) concomitant with injection of a saline vehicle or a type 1 arginine vasopressin antagonist (20 microg/kg in females; 30 microg/kg in males; intraperitoneally). Rats dosed with chlorpyrifos and saline underwent a 2-3 degrees reduction in core temperature >50% decrease in motor activity. The V1 antagonist attenuated the hypothermic effect of chlorpyrifos in both sexes. Chlorpyrifos-induced inhibition in motor activity was unaffected by the V1 antagonist. In another experiment, the V1 antagonist (30 microg/kg) was co-administered with saline or 0.2 mg/kg oxotremorine, a muscarinic agonist that stimulates a heat loss response and partially mimics the effects of chlorpyrifos. The V1 antagonist attenuated the hypothermic effect of oxotremorine in both sexes. Plasma arginine vasopressin levels were determined in male rats 3 hr after corn oil or 30 mg/kg chlorpyrifos. There was no significant effect of chlorpyrifos on plasma levels of arginine vasopressin. That the V1 antagonist blocked the hypothermic effect of chlorpyrifos suggests that the thermoregulatory response to chlorpyrifos is mediated by central and/or systemic vasopressin release. The lack of a significant

  1. Impacts of hypersaline acclimation on the acute toxicity of the organophosphate chlorpyrifos to salmonids.

    PubMed

    Maryoung, Lindley A; Lavado, Ramon; Schlenk, Daniel

    2014-07-01

    Acclimation to hypersaline conditions enhances the acute toxicity of certain thioether organophosphate and carbamate pesticides in some species of euryhaline fish. As the organophosphate chlorpyrifos is commonly detected in salmonid waterways, the impacts of hypersaline conditions on its toxicity were examined. In contrast to other previously examined pesticides, time to death by chlorpyrifos was more rapid in freshwater than in hypersaline water (16ppth). The median lethal time (LT50) after 100μg/L chlorpyrifos exposure was 49h (95% CI: 31-78) and 120h (95% CI: 89-162) for rainbow trout (Oncorhynchus mykiss) in freshwater and those acclimated to hypersaline conditions, respectively. Previous studies with hypersaline acclimated fish indicated induction of xenobiotic metabolizing enzymes that may detoxify chlorpyrifos. In the current study, chlorpyrifos metabolism was unaltered in liver and gill microsomes of freshwater and hypersaline acclimated fish. Acetylcholinesterase inhibition in brain and bioavailability of chlorpyrifos from the aqueous exposure media were also unchanged. In contrast, mRNA expression of neurological targets: calcium calmodulin dependent protein kinase II delta, chloride intracellular channel 4, and G protein alpha i1 were upregulated in saltwater acclimated fish, consistent with diminished neuronal signaling which may protect animals from cholinergic overload associated with acetylcholinesterase inhibition. These results indicate targets other than acetylcholinesterase may contribute to the altered toxicity of chlorpyrifos in salmonids under hypersaline conditions. PMID:24799192

  2. Cu(2+) and Fe(2+) mediated photodegradation studies of soil-incorporated chlorpyrifos.

    PubMed

    Rafique, Nazia; Tariq, Saadia R; Ahad, Karam; Taj, Touqeer

    2016-03-01

    The influences of Cu(2+) and Fe(2+) on the photodegradation of soil-incorporated chlorpyrifos were investigated in the present study. The soil samples spiked with chlorpyrifos and selected metal ions were irradiated with UV light for different intervals of time and analyzed by HPLC. The unsterile and sterile control soil samples amended with pesticides and selected metals were incubated in the dark at 25 °C for the same time intervals. The results of the study evidenced that photodegradation of chlorpyrifos followed the first-order kinetics. The dissipation t0.5 of chlorpyrifos was found to decrease from 41 to 20 days under UV irradiation. The rate of chlorpyrifos photodegradation was increased in the presence of both metals, i.e., Cu(2+) and Fe(2+). Thus, initially observed t0.5 of 19.8 days was decreased to 4.39 days in the case of Cu(+2) and 19.25 days for Fe(+2). Copper was found to increase the rate of photodegradation by 4.5 orders of magnitude while the microbial degradation of chlorpyrifos was increased only twofold. The microbial degradation of chlorpyrifos was only negligibly affected by Fe(2+) amendment. The studied trace metals also affected the abiotic degradation of the pesticide in the order Cu(2+) > Fe(2+). PMID:26507736

  3. The effects of chlorpyrifos on blood pressure and temperature regulation in spontaneously hypertensive rats.

    PubMed

    Smith, Edward G; Gordon, Christopher J

    2005-06-01

    Using radiotelemetry to monitor blood pressure and core temperature, studies in our laboratory have shown that a prolonged hypertensive response is elicited in rats exposed to chlorpyrifos, an organophosphate-based insecticide. Chlorpyrifos inhibits acetylcholinesterase activity, resulting in central and peripheral stimulation of central cholinergic pathways involved in blood pressure regulation. The spontaneously hypertensive rat has been shown to be more sensitive to central cholinergic stimulation. Therefore, we hypothesized that these rats would be more susceptible and sustain a greater hypertensive response when exposed to chlorpyrifos. Heart rate, cardiac contractility, core temperature, and blood pressure were monitored by radiotelemetry in SHRs and their Wistar Kyoto (WKY) normotensive controls following exposure to chlorpyrifos (10 mg/kg or 25 mg/kg, orally). Baseline blood pressure of SHRs was approximately 35 mmHg above that of WKYs prior to dosing. SHRs exhibited a greater and more sustained elevation in diastolic, mean and systolic blood pressure following exposure to 25 mg/kg of chlorpyrifos. The rise in blood pressure lasted for approximately 56 hours in SHRs compared to approximately 32 hours in WKYs. Chlorpyrifos also led to a prolonged elevation in daytime heart rate in both strains. There was a transient elevation in cardiac contractility in both strains lasting approximately 7 hr after exposure to chlorpyrifos. The hypothermic response to chlorpyrifos was similar in magnitude and duration for both strains. Plasma cholinesterase activity measured 4 hr after exposure to 25 mg/kg chlorpyrifos was inhibited to approximately 40% of control levels in both strains. Using the SHR strain as a model to study susceptible populations, the data suggest that individuals with a genetic predisposition to hypertension may be more susceptible from exposure to organophosphate-based insecticide, as manifested by an exacerbated hypertensive response. PMID:15910416

  4. Concentration of hepatic vitamins A and E in rats exposed to chlorpyrifos and/or enrofloxacin.

    PubMed

    Spodniewska, A; Barski, D

    2016-01-01

    The aim of the study was to determine the level of antioxidant vitamins A and E in the liver of rats exposed to chlorpyrifos and/or enrofloxacin. Chlorpyrifos (Group I) was administered at a dose of 0.04 LD50 (6 mg/kg b.w.) for 28 days, and enrofloxacin (Group II) at a dose of 5 mg/kg b.w. for 5 consecutive days. The animals of group III were given both of the mentioned above compounds at the same manner as groups I and II, but enrofloxacin was applied to rats for the last 5 days of chlorpyrifos exposure (i.e. on day 24, 25, 26, 27 and 28). Chlorpyrifos and enrofloxacin were administered to rats intragastrically via a gastric tube. The quantitative determination of vitamins was made by the HPLC method. The results of this study indicated a reduction in the hepatic concentrations of vitamins A and E, compared to the control, which sustained for the entire period of the experiment. The four-week administration of chlorpyrifos to rats resulted in a significant decrease of vitamins in the initial period of the experiment, i.e. up to 24 hours after exposure. For vitamin A the maximum drop was observed after 24 hours (19.24%) and for vitamin E after 6 hours (23.19%). Enrofloxacin caused a slight (3-9%) reduction in the level of the analysed vitamins. In the chlorpyrifos-enrofloxacin co-exposure group reduced vitamins A and E levels were also noted, but changes in this group were less pronounced in comparison to the animals intoxicated with chlorpyrifos only. The decrease in the antioxidant vitamin levels, particularly noticeable in the chlorpyrifos- and the chlorpyrifos combined with enrofloxacin-treated groups, may result not only from the increase in the concentration of free radicals, but also from the intensification of the secondary stages of lipid peroxidation. PMID:27487512

  5. Genetics and preliminary mechanism of chlorpyrifos resistance in Phenacoccus solenopsis Tinsley (Homoptera: Pseudococcidae).

    PubMed

    Afzal, Muhammad Babar Shahzad; Ijaz, Mamuna; Farooq, Zahra; Shad, Sarfraz Ali; Abbas, Naeem

    2015-03-01

    Cotton mealybug, Phenacoccus solenopsis Tinsley, is a serious pest of cotton and other crops and infestation by this pest results in yield losses that affect the economy of Pakistan. Various groups of insecticides have been used to control this pest but resistance development is a major factor that inhibits its control in the field. Chlorpyrifos is a common insecticide used against many pests including P. solenopsis. The present experiment was designed to assess the genetics and mechanism of chlorpyrifos resistance and to develop a better resistance management strategy and assess the genetics and mechanism of chlorpyrifos resistance. Before selection, the field strain showed 3.1-fold resistance compared to the susceptible strain (CSS). After 8 rounds of selection with chlorpyrifos, a selected population developed a 191.0-fold resistance compared to the CSS. The LC50 values of F1 (CRR ♀ × CSS ♂) and F1(†) (CRR ♂ × CSS ♀) strains were not significantly different and dominance (DLC) values were 0.42 and 0.55. Reciprocal crosses between chlorpyrifos susceptible and resistant strains indicated that resistance was autosomal and incompletely recessive. The monogenic model of fit test and calculation of number of genes segregating in the chlorpyrifos resistant strain demonstrated that resistance is controlled by multiple genes. A value of 0.59 was calculated for realized heritability for chlorpyrifos resistance. Synergism bioassays with piperonyl butoxide and S, S, S-butyl phosphorotrithioate showed that chlorpyrifos resistance was associated with microsomal oxidases and esterases. It was concluded that chlorpyrifos resistance in P. solenopsis was autosomally inherited, incompletely recessive and polygenic. These findings would be helpful to improve the management of P. solenopsis. PMID:25868815

  6. Chlorpyrifos residues levels in fruits and vegetables after field treatment.

    PubMed

    Angioni, Alberto; Dedola, Fabrizio; Garau, Anna; Sarais, Giorgia; Cabras, Paolo; Caboni, Pierluigi

    2011-01-01

    Chlorpyrifos (O,O-diethyl O-3,5,6-trichloro-2-pyridyl phosphorothioate) was applied with three different formulations on oranges, peaches, tomatoes, wine and table grapes, and its behaviour was evaluated after field treatment. The formulations applied were emulsifiable concentrates (EC), microencapsulates (ME), and wettable granules (WG). The residues were similar in all crops studied in the EC and WG experiments, except peaches with WG treatment, the residue amount was lower than EC values. Tomatoes which were grown in greenhouse showed similar residues in all treatments just after treatment. Wine and table grapes showed different decline curves in the EC experiments ascribable to the different growing technology. Instrumental limit of determination (LOD) and limit of quantification (LOQ) for all matrices were 0.01, and 0.03 mg kg⁻¹, respectively. Repeated treatments showed that Chlorpyrifos can accumulate leading to residue levels at the preharvest interval (PHI) over the maximum residue level (MRL), especially on oranges and peaches. Among the formulates used ME showed the higher risk of residues over the MRL at harvest. PMID:21726154

  7. Non-accidental chlorpyrifos poisoning-an unusual cause of profound unconsciousness.

    PubMed

    Lee, Jiun-Chang; Lin, Kuang-Lin; Lin, Jainn-Jim; Hsia, Shao-Hsuan; Wu, Chang-Teng

    2010-04-01

    Chlorpyrifos is an organophosphorus anticholinesterase insecticide, and organophosphate intoxication can induce symptoms such as miosis, urination, diarrhea, diaphoresis, lacrimation, excitation of central nervous system, salivation, and consciousness disturbance (MUDDLES). Although accidental poisoning of children with drugs and chemicals is a common cause for consciousness disturbance in children, the possibility of deliberate poisoning is rarely considered. We report on a healthy 5-year 6-month-old boy with recurrent organophosphate intoxication. Reports of chlorpyrifos intoxication in children are quite rare. This case report demonstrates decision-making process and how to disclose deliberate chlorpyrifos poisoning of the toddler by the stepmother, another example of Munchausen syndrome by proxy. PMID:19763618

  8. Mineralization of chlorpyrifos by co-culture of Serratia and Trichosporon spp.

    PubMed

    Xu, Gangming; Li, Yingying; Zheng, Wei; Peng, Xiang; Li, Wen; Yan, Yanchun

    2007-10-01

    A bacterial strain (Serratia sp.) that could transform chlorpyrifos to 3,5,6-trichloro-2-pyridinol (TCP) and a TCP-mineralizing fungal strain (Trichosporon sp.) were isolated from activated sludge by enrichment culture technique. The fungus could also degrade 50 mg chlorpyrifos l(-1) within 7 days. Co-cultures completely mineralized 50 mg chlorpyrifos l(-1) within 18 h at 30 degrees C and pH 8 using a total inocula of 0.15 g biomass l(-1). PMID:17609859

  9. Enhanced remediation of chlorpyrifos by ryegrass (Lolium multiflorum) and a chlorpyrifos degrading bacterial endophyte Mezorhizobium sp. HN3.

    PubMed

    Jabeen, Hina; Iqbal, Samina; Ahmad, Fiaz; Afzal, Muhammad; Firdous, Sadiqa

    2016-01-01

    For effective remediation of contaminants, plant-endophyte partnership is a promising field to be explored. Generally endophytic bacteria assist their host plant by withstanding the stress induced by the contaminants. The objective of this study was to explore the suitability of plant-bacterial partnership for chlorpyrifos (CP) remediation using ryegrass and a CP degrading endophyte, Mesorhizobium sp. HN3 which belongs to plant growth promoting rhizobia. The inoculated yfp-tagged Mesorhizobium sp. HN3 efficiently colonized in the rhizosphere, enhanced plant growth and degradation of CP and its metabolite 3,5,6 trichloro-2-pyridinol (TCP). Significantly lower CP residues were observed in the roots and shoots of plants vegetated in inoculated soil which might be attributed to the efficient root colonization of HN3yfp. These results suggest the involvement of Mesorhizobium sp. HN3yfp in CP degradation inside the roots and rhizosphere of plants and further emphasize on the effectiveness of endophytic bacteria in stimulating the remediation of pesticide contaminants. This is the first report which demonstrates the efficacy of bacterial endophyte for degradation of CP residues taken up by the plant and enhanced remediation of chlorpyrifos contaminated soil. PMID:26248164

  10. MODELED ESTIMATES OF CHLORPYRIFOS EXPOSURE AND DOSE FOR THE MINNESOTA AND ARIZONA NHEXAS POPULATIONS

    EPA Science Inventory

    This paper presents a probabilistic, multimedia, multipathway exposure model and assessment for chlorpyrifos developed as part of the National Human Exposure Assessment Survey (NHEXAS). The model was constructed using available information prior to completion of the NHEXAS stu...

  11. GESTATIONAL EXPOSURE TO CHLORPYRIFOS: QUALITATIVE AND QUANTITATIVE NEUROPATHOLOGICAL CHANGES IN THE FETAL NEOCORTEX.

    EPA Science Inventory

    This study investigated the qualitative and quantitative neuropathological changes that occur in the fetal brain following gestational exposure to chlorpyrifos [(O,O'diethyl O-3,5,6-trichloro-2-pyridyl) phosphorothionate], a commonly used organophosphorus insecticide. Two cohort...

  12. INCREASED SUSCEPTIBILITY OF THE SPONTANEOUSLY HYPERTENSIVE RAT TO CHLORPYRIFOS, AN ORGANOPHOSPHATE PESTICIDE.

    EPA Science Inventory

    Hypertension and hypothermia are common symptoms in rats exposed to chlorpyrifos (CHP), an organophosphate (OP)-based pesticide. CHP inhibits acetylcholinesterase (AChE) activity resulting in central and peripheral stimulation of cholinergic pathways involved in blood pressure ...

  13. THE EFFECTS OF CHRONIC EXERCISE CONDITIONING ON THERMOREGULATORY RESPONSE TO CHLORPYRIFOS IN FEMALE RATS.

    EPA Science Inventory

    Chronic exercise conditioning has been shown to alter basal thermoregulatory processes (change in thermoregulatory set-point) as well as the response to infectious fever. Chlorpyrifos (CHP), an organophosphate pesticide, causes an acute period of hypothermia followed by a delaye...

  14. THE MUSCARINIC ANTAGONIST SCOPOLAMINE ATTENUATES CHLORPYRIFOS INDUCED HYPOTHERMIA IN THE DEVELOPING RAT.

    EPA Science Inventory

    Chlorpyrifos (CHP), an anticholinesterase organophosphate (OP) pesticide, induces acute hypothermia in adult and developing rats. Previously we demonstrated that thermoregulation in preweanling pups is markedly more sensitive to the neurotoxic effects of CHP than in adults. The c...

  15. MODELING OF CHLORPYRIFOS EXPOSURE, DOSE, AND BIOMARKER USING NHEXAS MINNESOTA CHILDREN'S DATA

    EPA Science Inventory


    Data from the National Human Exposure Assessment Survey (NHEXAS) are now becoming available. For the organophosphorus insecticide chlorpyrifos, available data for NHEXAS Minnesota children include concentrations in air, food, beverages, water, house dust (transferable surf...

  16. EFFECTS OF CHLORPYRIFOS ON FIELD- AND LABORATORY-DEVELOPED ESTUARINE BENTHIC COMMUNITIES

    EPA Science Inventory

    Macrobenthic animal communities, developed in sand-filled aquaria in the laboratory and in the field, were exposed to various concentrations of the insecticide, chlorpyrifos, and effects on community structure assessed. Laboratory communities were continuously exposed to the toxi...

  17. Adsorption of diazinon and hinosan molecules on the iron-doped boron nitride nanotubes surface in gas phase and aqueous solution: A computational study

    NASA Astrophysics Data System (ADS)

    Farmanzadeh, Davood; Rezainejad, Hamid

    2016-02-01

    In this study, the geometric structures and electronic properties of two widely used organophosphorus pesticides, diazinon and hinosan, boron nitride nanotubes (BNNTs) and Fe doped boron nitride nanotubes (FeBNNTs) as adsorbents of these pesticides are studied by density functional theory calculation as well as dispersion correction by Grimme method. The results show that Fe doping in boron nitride nanotubes structures increases the potency of nanotubes to adsorb mentioned pesticides, especially when Fe atom located instead of N atom. Comparing the adsorption energies of diazinon on FeBNNTs with ones for hinosan demonstrate that the adsorption of hinosan is energetically more favorable by FeBNNTs. Assessment of adsorption energies in aqueous solution confirmed significant decrease in their values compared to ones in gaseous phase. However, the adsorption of diazinon and hinosan on both BNNTs and FeBNNTs are exothermic. So, BNNTs and FeBNNTs may be promising candidates as appropriate adsorbents for adsorbing diazinon and hinosan. Also, the results of calculations have revealed that van der Waals interaction energies are remarkably large in adsorption of diazinon and hinosan on all boron nitride nanotubes.

  18. Integrated biomarker analysis of chlorpyrifos metabolism and toxicity in the earthworm Aporrectodea caliginosa.

    PubMed

    Sanchez-Hernandez, Juan C; Narvaez, C; Sabat, P; Martínez Mocillo, S

    2014-08-15

    To increase our understanding about the mode of toxic action of organophosphorus pesticides in earthworms, a microcosm experiment was performed with Aporrectodea caliginosa exposed to chlorpyrifos-spiked soils (0.51 and 10 mg kg(-1) dry soil) for 3 and 21 d. Acetylcholinesterase (AChE), carboxylesterase (CbE), cytochrome P450-dependent monooxygenase (CYP450), and glutathione S-transferase (GST) activities were measured in the body wall of earthworms. With short-term exposure, chlorpyrifos inhibited CbE activity (51-89%) compared with controls in both treated groups, whereas AChE activity was depressed in the 10-mg kg(-1) group (87% inhibition). With long-term exposure, chlorpyrifos strongly inhibited all esterase activities (84-97%). Native electrophoresis revealed three AChE isozymes, two of which showed a decreased staining corresponding to the level of pesticide exposure. The impact of chlorpyrifos on CbE activity was also corroborated by zymography. CYP450 activity was low in unexposed earthworms, but it increased (1.5- to 2.4-fold compared to controls) in the earthworms exposed to both chlorpyrifos concentrations for 3d. Bioactivation of chlorpyrifos was determined by incubating the muscle homogenate in the presence of chlorpyrifos and NAD(H)2. The mean (±SD, n=40) bioactivation rate in the unexposed earthworms was 0.74±0.27 nmol NAD(H)2 oxidized min(-1) mg(-1) protein, and a significant induction was detected in the low/short-term exposure group. GST activity significantly increased (33-35% of controls) in earthworms short-term exposed to both chlorpyrifos concentrations. Current data showed that CYP450 and GST activities had a prominent role in the initial exposure to the organophosphorus. With short-term exposure, CbE activity was also a key enzyme in the non-catalytic detoxification of chlorpyrifos-oxon, thereby reducing its impact on AChE activity, before it became saturated at t=21 d. Results indicate that A. caliginosa detoxify efficiently

  19. Removal of chlorpyrifos by water lettuce (Pistia stratiotes L.) and duckweed (Lemna minor L.).

    PubMed

    Prasertsup, Pichamon; Ariyakanon, Naiyanan

    2011-04-01

    The potential of water lettuce (Pistia stratiotes L.) and duckweed (Lemna minor L.) to remove chlorpyrifos in water was investigated under laboratory greenhouse conditions. At initial chlorpyrifos concentrations of 0.0, 0.1 and 0.5 mg/L, the relative growth rates (RGR) of L. minor and P. stratiotes were not significantly different. In contrast, in the presence of 1 mg/L chlorpyrifos the RGR was significantly inhibited, giving an observed fresh weight based RGR(FW) for P. stratiotes and L. minor from day 0 to 7 of -0.036 and -0.023 mg/g/day, respectively. The maximum removal of chlorpyrifos by P. stratiotes and L. minor, when chlorpyrifos was at an initial culture concentration of 0.5 mg/L, was 82% and 87%, respectively, with disappearance rate constants under these conditions of 2.94, 10.21 and 12.14 microg h(-1) for the control (no plants), and with P. stratiotes and L. minor, respectively, giving actual corrected plant removal rate constants of 7.27 and 9.20 microg h(-1) for P. stratiotes and L. minor, respectively. The bioconcentration factor (BCF) of L. minor was significantly greater than that for P. stratiotes and therefore, at least under these greenhouse-based conditions, L. minor was more efficient than P. stratiotes for the accelerated removal of chlorpyrifos from water. PMID:21598800

  20. Development of a Freeze-Dried Fungal Wettable Powder Preparation Able to Biodegrade Chlorpyrifos on Vegetables

    PubMed Central

    Chen, Shaohua; Xiao, Ying; Hu, Meiying; Zhong, Guohua

    2014-01-01

    Continuous use of the pesticide chlorpyrifos has resulted in harmful contaminations in environment and species. Based on a chlorpyrifos-degrading fungus Cladosporium cladosporioides strain Hu-01 (collection number: CCTCC M 20711), a fungal wettable powder preparation was developed aiming to efficiently remove chlorpyrifos residues from vegetables. The formula was determined to be 11.0% of carboxymethyl cellulose-Na, 9.0% of polyethylene glycol 6000, 5.0% of primary alcohol ethoxylate, 2.5% of glycine, 5.0% of fucose, 27.5% of kaolin and 40% of freeze dried fungi by response surface methodology (RSM). The results of quality inspection indicated that the fungal preparation could reach manufacturing standards. Finally, the degradation of chlorpyrifos by this fungal preparation was determined on pre-harvest cabbage. Compared to the controls without fungal preparation, the degradation of chlorpyrifos on cabbages, which was sprayed with the fungal preparation, was up to 91% after 7 d. These results suggested this freeze-dried fungal wettable powder may possess potential for biodegradation of chlorpyrifos residues on vegetables and provide a potential strategy for food and environment safety against pesticide residues. PMID:25061758

  1. Toxicological effects of chlorpyrifos on growth, enzyme activity and chlorophyll a synthesis of freshwater microalgae.

    PubMed

    Chen, Shangchao; Chen, Mindong; Wang, Zhuang; Qiu, Weijian; Wang, Junfeng; Shen, Yafei; Wang, Yajun; Ge, Shun

    2016-07-01

    This paper aims to acquire the experimental data on the eco-toxicological effects of agricultural pollutants on the aquatic plants and the data can support the assessment of toxicity on the phytoplankton. The pesticide of Chlorpyrifos used as a good model to investigate its eco-toxicological effect on the different microalgae in freshwater. In order to address the pollutants derived from forestry and agricultural applications, freshwater microalgae were considered as a good sample to investigate the impact of pesticides such as Chlorpyrifos on aquatic life species. Two microalgae of Chlorella pyrenoidosa and Merismopedia sp. were employed to evaluate toxicity of Chlorpyrifos in short time and long time by means of measuring the growth inhibition rate, the redox system and the content of chlorophyll a, respectively. In this study, the results showed that EC50 values ranging from 7.63 to 19.64mg/L, indicating the Chlorpyrifos had a relatively limited to the growth of algae during the period of the acute toxicity experiment. Moreover, when two kinds of algae were exposed to a medium level of Chlorpyrifos, SOD and CAT activities were importantly advanced. Therefore, the growth rate and SOD and CAT activities can be highly recommended for the eco-toxicological assessment. In addition, chlorophyll a also could be used as a targeted parameter for assessing the eco-toxicity of Chlorpyrifos on both Chlorella pyrenoidosa and Merismopedia sp. PMID:27314761

  2. Impact of chlorpyrifos on health biomarkers of broiler chicks.

    PubMed

    Ahmad, Muhammad Zishan; Khan, Ahrar; Javed, M Tariq; Hussain, Iftikhar

    2015-07-01

    The present study aimed to investigate the deleterious effects of chlorpyrifos (CPF) in experimentally exposed broiler birds. The experiment was carried out on one day old (n = 120) broiler chicks. The CPF was reconstituted in corn oil as vehicle (1 ml/kg) to obtain a final concentration of a single dose to the birds 5, 10 and 20 mg/kg body weight (BW) for fourteen days of the experiment through the stomach tube. The control group was given corn oil 1 ml/kg only. Birds exposed to high dose (20 mg/kg BW) showed signs of toxicity (salivation, lacrimation, gasping, convulsions, frequent defecation and tremors). The birds exposed to 10 and 20 mg/kg showed significantly (P ≤ 0.05) decreased body weight. Significantly (P ≤ 0.05) decreased hematological parameters i.e. total erythrocyte counts, hemoglobin concentration, hematocrit and total leukocyte were observed in the high dosed group as compared to control and other low dosed fed birds. Serum protein and albumin showed a significant (P ≤ 0.05) increase in high dosed CPF fed birds. Non significant results were observed in the case of globulin. The acetylcholinestrease (AChE) activity was significantly (P ≤ 0.05) decreased in blood, serum and plasma in CPF fed birds compared to control birds. In CPF fed birds as compared to control birds we found significantly (P ≤ 0.05) higher levels of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Necrotic and degenerative changes were observed on histopathological investigations of spleen, kidneys, bursa of Fabricius, thymus and brain tissues in CPF exposed birds. In conclusion the chlorpyrifos induced toxicopathological effects on health biomarkers of broiler chicks. PMID:26071807

  3. Children's residential exposure to chlorpyrifos: application of CPPAES field measurements of chlorpyrifos and TCPy within MENTOR/SHEDS-Pesticides model.

    PubMed

    Hore, Paromita; Zartarian, Valerie; Xue, Jianping; Ozkaynak, Halûk; Wang, Sheng-Wei; Yang, Yu-Ching; Chu, Pei-Ling; Sheldon, Linda; Robson, Mark; Needham, Larry; Barr, Dana; Freeman, Natalie; Georgopoulos, Panos; Lioy, Paul J

    2006-08-01

    The comprehensive individual field-measurements on non-dietary exposure collected in the Children's-Post-Pesticide-Application-Exposure-Study (CPPAES) were used within MENTOR/SHEDS-Pesticides, a physically based stochastic human exposure and dose model. In this application, however, the model was run deterministically. The MENTOR/SHEDS-Pesticides employed the CPPAES as input variables to simulate the exposure and the dose profiles for seven children over a 2-week post-application period following a routine residential and professional indoor crack-and-crevice chlorpyrifos application. The input variables were obtained from a personal activity diary, microenvironmental measurements and personal biomonitoring data obtained from CPPAES samples collected from the individual children and in their homes. Simulation results were compared with CPPAES field measured values obtained from the children's homes to assess the utility of the different microenvironmental data collected in CPPAES, i.e. indicator toys and wipe samplers to estimate aggregate exposures that can be result from one or more exposure pathways and routes. The final analyses of the database involved comparisons of the actual data obtained from the individual biomarker samples of a urinary metabolite of chlorpyrifos (TCPy) and the values predicted by MENTOR/SHEDS-Pesticides using the CPPAES-derived variables. Because duplicate diet samples were not part of the CPPAES study design, SHEDs-Pesticides simulated dose profiles did not account for the dietary route. The research provided more confidence in the types of data that can be used in the inhalation and dermal contact modules of MENTOR/SHEDS-Pesticides to predict the pesticide dose received by a child. It was determined that we still need additional understanding about: (1) the types of activities and durations of activities that result in non-dietary ingestion of pesticides and (2) the influence of dietary exposures on the levels of TCPy found in the

  4. The effects of diazinon on lipid peroxidation and antioxidant enzymes in rat heart and ameliorating role of vitamin E and vitamin C.

    PubMed

    Akturk, O; Demirin, H; Sutcu, R; Yilmaz, N; Koylu, H; Altuntas, I

    2006-11-01

    Diazinon is one of the most widely used organophosphate insecticides (OPIs) in agriculture and public health programs. Reactive oxygen species (ROS) caused by OPIs may be involved in the toxicity of various pesticides. The aim of this study was to investigate how diazinon affects lipid peroxidation (LPO) and the antioxidant defense system in vivo and the possible ameliorating role of vitamins E and C. For this purpose, experiments were done to study the effects of DI on LPO and the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) in adult rat heart. Experimental groups were: (1) control group, (2) diazinon treated (DI) group, (3) DI+vitamins E and C-treated (DI+Vit) group. The levels of malondialdehyde (MDA) and the activities of SOD and CAT increased significantly in the DI group compared with the control group. The activity of SOD and the levels of MDA decreased significantly in the DI+Vit group compared with the DI group. The differences between the DI+Vit and control groups according to the MDA levels and the activities of both SOD and CAT were statistically significant. These results suggest that treating rats with a single dose of diazinon increases LPO and some antioxidant enzyme activities in the rat myocardium and, in addition, that single-dose treatment with a combination of vitamins E and C after the administration of diazinon can reduce LPO caused by diazinon, though this treatment was not sufficiently effective to reduce the values to those in control group. PMID:16964585

  5. Diazinon and diazoxon impair the ability of astrocytes to foster neurite outgrowth in primary hippocampal neurons

    SciTech Connect

    Pizzurro, Daniella M.; Dao, Khoi; Costa, Lucio G.

    2014-02-01

    Evidence from in vivo and epidemiological studies suggests that organophosphorus insecticides (OPs) are developmental neurotoxicants, but possible underlying mechanisms are still unclear. Astrocytes are increasingly recognized for their active role in normal neuronal development. This study sought to investigate whether the widely-used OP diazinon (DZ), and its oxygen metabolite diazoxon (DZO), would affect glial–neuronal interactions as a potential mechanism of developmental neurotoxicity. Specifically, we investigated the effects of DZ and DZO on the ability of astrocytes to foster neurite outgrowth in primary hippocampal neurons. The results show that both DZ and DZO adversely affect astrocyte function, resulting in inhibited neurite outgrowth in hippocampal neurons. This effect appears to be mediated by oxidative stress, as indicated by OP-induced increased reactive oxygen species production in astrocytes and prevention of neurite outgrowth inhibition by antioxidants. The concentrations of OPs were devoid of cytotoxicity, and cause limited acetylcholinesterase inhibition in astrocytes (18 and 25% for DZ and DZO, respectively). Among astrocytic neuritogenic factors, the most important one is the extracellular matrix protein fibronectin. DZ and DZO decreased levels of fibronectin in astrocytes, and this effect was also attenuated by antioxidants. Underscoring the importance of fibronectin in this context, adding exogenous fibronectin to the co-culture system successfully prevented inhibition of neurite outgrowth caused by DZ and DZO. These results indicate that DZ and DZO increase oxidative stress in astrocytes, and this in turn modulates astrocytic fibronectin, leading to impaired neurite outgrowth in hippocampal neurons. - Highlights: • DZ and DZO inhibit astrocyte-mediated neurite outgrowth in rat hippocampal neurons. • Oxidative stress is involved in inhibition of neuritogenesis by DZ and DZO. • DZ and DZO decrease expression of the neuritogenic

  6. Sensitivity of Ethiopian aquatic macroinvertebrates to the pesticides endosulfan and diazinon, compared to literature data.

    PubMed

    Teklu, Berhan M; Retta, Negussie; Van den Brink, Paul J

    2016-08-01

    The aims of the present study were to present a methodology for toxicity tests that can be used when analytical resources to verify the test concentrations are limited, and to evaluate whether the sensitivity of a limited number of Ethiopian species to pesticides differs from literature values for, mainly, temperate species. Acute toxicity tests were performed using three Ethiopian aquatic invertebrate species, one crustacean (Diaphanosoma brachyurum) and two insects (Anopheles pharoensis and Culex pipiens) and using the pesticides endosulfan and diazinon. All species-pesticide combinations were tested in duplicate to estimate the consistency, i.e. the intra-laboratory variation, in test results. Daphnia magna was tested as well to allow the test results to be compared directly with values from the literature. Results indicate that the differences between the EC50s obtained for D. magna in this study and those reported in the literature were less than a factor of 2. This indicates that the methodology used is able to provide credible toxicity values. The results of the duplicated tests showed intra-laboratory variation in EC50 values of up to a factor of 3, with one test showing a difference of a factor of 6 at 48 h. Comparison with available literature results for arthropod species using species sensitivity distributions indicated that the test results obtained in this study fit well in the log-normal distribution of the literature values. We conclude that the methodology of performing multiple tests to check for consistency of test results and performing tests with D. magna for comparison with literature values to check for accuracy is able to provide reliable effect threshold levels and that the tested Ethiopian species did not differ in sensitivity from the arthropod species reported on in the literature. PMID:27221822

  7. Crocin Restores Hypotensive Effect of Subchronic Administration of Diazinon in Rats

    PubMed Central

    Razavi, Marjan; Hosseinzadeh, Hossein; Abnous, Khalil; Motamedshariaty, Vahideh Sadat; Imenshahidi, Mohsen

    2013-01-01

    Objective(s): In this study, the effects of crocin against subchronic toxicity of diazinon (DZN) on systolic blood pressure (SBP) and heart rate (HR) were evaluated in rats. Materials and Methods: Rats were equally divided into 7 groups; control (corn oil), DZN (15 mg/kg), crocin (each group received 12.5, 25 or 50 mg/kg crocin plus DZN), vitamin E (200 IU/kg plus DZN) and crocin (50 mg/kg) treated groups. Rats were given DZN via gavage once a day for 4 weeks. Vitamin E (three times per week) and crocin (once a day) were intraperitoneally injected to rats for 4 weeks. Plasma cholinesterase activity (Elman method), malondealdehyde (MDA) levels in the aortic tissue (Thiobarbituric acid reactive substances or TBARS method); SBP and HR (tail cuff method) were evaluated at the end of 4th week. Results: A significant decrease in cholinesterase activity was observed in DZN group (P< 0.001). Crocin did not show any effects on cholinesterase activity. DZN increased MDA levels in aortic tissue (P< 0.001) in comparison with control group. Crocin and vitamin E plus DZN decreased MDA elevation induced by DZN in aortic tissue. DZN significantly reduced SBP (P< 0.01) and increased HR (P< 0.001) in comparison with control. Concurrent administration of crocin and DZN, improved the reduction of SBP and the elevation of HR induced by DZN in rat. Crocin alone did not have any effect on SBP and HR. Conclusion: This study showed that concurrent administration of crocin and DZN could restore the effects of subchronic DZN administration on SBP and HR in rats. PMID:23638294

  8. Diazinon alters sperm chromatin structure in mice by phosphorylating nuclear protamines

    SciTech Connect

    Pina-Guzman, B.; Solis-Heredia, M.J.; Quintanilla-Vega, B. . E-mail: mquintan@mail.cinvestav.mx

    2005-01-15

    Organophosphorus (OP) pesticides, widely used in agriculture and pest control, are associated with male reproductive effects, including sperm chromatin alterations, but the mechanisms underlying these effects are unknown. The main toxic action of OP is related to phosphorylation of proteins. Chemical alterations in sperm nuclear proteins (protamines), which pack DNA during the last steps of spermatogenesis, contribute to male reproductive toxicity. Therefore, in the present study, we tested the ability of diazinon (DZN), an OP compound, to alter sperm chromatin by phosphorylating nuclear protamines. Mice were injected with a single dose of DZN (8.12 mg/kg, i.p.), and killed 8 and 15 days after treatment. Quality of sperm from epididymis and vas deferens was evaluated through standard methods and chromatin condensation by flow cytometry (DNA Fragmented Index parameters: DFI and DFI%) and fluorescence microscopy using chromomycin-A{sub 3} (CMA{sub 3}). Increases in DFI (15%), DFI% (4.5-fold), and CMA{sub 3} (2-fold) were observed only at 8 days post-treatment, indicating an alteration in sperm chromatin condensation and DNA damage during late spermatid differentiation. In addition, an increase of phosphorous content (approximately 50%) in protamines, especially in the phosphoserine content (approximately 73%), was found at 8 days post-treatment. Sperm viability, motility, and morphology showed significant alterations at this time. These data strongly suggest that spermatozoa exposed during the late steps of maturation were the targets of DZN exposure. The correlation observed between the phosphorous content in nuclear protamines with DFI%, DFI, and CMA{sub 3} provides evidence that phosphorylation of nuclear protamines is involved in the OP effects on sperm chromatin.

  9. A Human Life-Stage Physiologically Based Pharmacokinetic and Pharmacodynamic Model for Chlorpyrifos: Development and Validation

    SciTech Connect

    Smith, Jordan N.; Hinderliter, Paul M.; Timchalk, Charles; Bartels, M. J.; Poet, Torka S.

    2014-08-01

    Sensitivity to chemicals in animals and humans are known to vary with age. Age-related changes in sensitivity to chlorpyrifos have been reported in animal models. A life-stage physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model was developed to computationally predict disposition of CPF and its metabolites, chlorpyrifos-oxon (the ultimate toxicant) and 3,5,6-trichloro-2-pyridinol (TCPy), as well as B-esterase inhibition by chlorpyrifos-oxon in humans. In this model, age-dependent body weight was calculated from a generalized Gompertz function, and compartments (liver, brain, fat, blood, diaphragm, rapid, and slow) were scaled based on body weight from polynomial functions on a fractional body weight basis. Blood flows among compartments were calculated as a constant flow per compartment volume. The life-stage PBPK/PD model was calibrated and tested against controlled adult human exposure studies. Model simulations suggest age-dependent pharmacokinetics and response may exist. At oral doses ≥ 0.55 mg/kg of chlorpyrifos (significantly higher than environmental exposure levels), 6 mo old children are predicted to have higher levels of chlorpyrifos-oxon in blood and higher levels of red blood cell cholinesterase inhibition compared to adults from equivalent oral doses of chlorpyrifos. At lower doses that are more relevant to environmental exposures, the model predicts that adults will have slightly higher levels of chlorpyrifos-oxon in blood and greater cholinesterase inhibition. This model provides a computational framework for age-comparative simulations that can be utilized to predict CPF disposition and biological response over various postnatal life-stages.

  10. Nanoimages show disruption of tubulin polymerization by chlorpyrifos oxon: Implications for neurotoxicity

    SciTech Connect

    Grigoryan, Hasmik; Lockridge, Oksana

    2009-10-15

    Organophosphorus agents cause cognitive deficits and depression in some people. We hypothesize that the mechanism by which organophosphorus agents cause these disorders is by modification of proteins in the brain. One such protein could be tubulin. Tubulin polymerizes to make the microtubules that transport cell components to nerve axons. The goal of the present work was to measure the effect of the organophosphorus agent chlorpyrifos oxon on tubulin polymerization. An additional goal was to identify the amino acids covalently modified by chlorpyrifos oxon in microtubule polymers and to compare them to the amino acids modified in unpolymerized tubulin dimers. Purified bovine tubulin (0.1 mM) was treated with 0.005-0.1 mM chlorpyrifos oxon for 30 min at room temperature and then polymerized by addition of 1 mM GTP to generate microtubules. Microtubules were visualized by atomic force microscopy. Chlorpyrifos oxon-modified residues were identified by tandem ion trap electrospray ionization and matrix-assisted laser desorption/ionization mass spectrometry of tryptic peptides. Nanoimaging showed that low concentrations (0.005 and 0.01 mM) of chlorpyrifos oxon yielded short, thin microtubules. A concentration of 0.025 mM stimulated polymerization, while high concentrations (0.05 and 0.1 mM) caused aggregation. Of the 17 tyrosines covalently modified by chlorpyrifos oxon in unpolymerized tubulin dimers, only 2 tyrosines were labeled in polymerized microtubules. The two labeled tyrosines in polymerized tubulin were Tyr 103 in EDAANNY*R of alpha tubulin, and Tyr 281 in GSQQY*R of beta tubulin. In conclusion, chlorpyrifos oxon binding to tubulin disrupts tubulin polymerization. These results may lead to an understanding of the neurotoxicity of organophosphorus agents.

  11. Chlorpyrifos exposure in farmers and urban adults: Metabolic characteristic, exposure estimation, and potential effect of oxidative damage.

    PubMed

    Wang, Lei; Liu, Zhen; Zhang, Junjie; Wu, Yinghong; Sun, Hongwen

    2016-08-01

    Chlorpyrifos is a widely used organophosphorus pesticide that efficiently protects crops against pests. However, recent studies suggest that severe exposure to chlorpyrifos may present adverse health effects in human. To analyze the exposure level and metabolic characteristics of chlorpyrifos pesticide in urban adults and farmers with/without occupation pesticide contact, the occurrence of urinary chlorpyrifos and methyl chlorpyrifos (CP-me), as well as their metabolite, 3,5,6-trichloro-2-pyridinol (TCPy), was determined in farmers of an agricultural village in China, and in urban adults of a nearby town. The geometric mean (GM) concentrations of TCPy, which is the major marker of chlorpyrifos exposure, were 4.29 and 7.57μg/g-creatinine in urban adults and farmers before pesticide application, respectively. Chlorpyrifos spraying significantly increased the concentrations of urinary TCPy. In the first day after spraying, a GM concentration of 43.7μg/g-creatinine was detected in the urine specimens from farmers, which decreased to 38.1 and 22.8μg/g-creatinine in the second and third day after chlorpyrifos spraying. The ratio of TCPy and its parent compounds, i.e. chlorpyrifos and CP-me, was positively associated with the sum concentration of urinary chlorpyrifos, CP-me, and TCPy, suggesting the increasing metabolic efficiency of chlorpyrifos to TCPy at higher chlorpyrifos exposure levels. To estimate the farmers' occupational exposure to chlorpyrifos pesticide, a new model based on the fitted first-order elimination kinetics of TCPy was established. Occupational chlorpyrifos exposure in a farmer was estimated to be 3.70μg/kg-bw/day (GM), which is an exposure level that is higher than the recommended guideline levels. Significant increase of urinary 8-hydroxydeoxyguanosine (8-OHdG) was observed on the first day after chlorpyrifos spraying, which indicates a potential oxidative damage in farmers. However, urinary 8-OHdG returned to its baseline level within two

  12. CHLORPYRIFOS AND 3,5,6 TRICHLORO-2-PYRIDINOL DISTRIBUTION IN RAT BLOOD AND BRAIN DURING CHRONIC DIETARY AND REPEATED HIGH LEVEL ACUTE EXPOSURE TO CHLORPYRIFOS.

    EPA Science Inventory

    The aim of this study was to determine the concentrations of an organophosphorus pesticide, chlorpyrifos (CPF), and the metabolite 3,5,6 trichloro-2-pyridinol (TCP) in tissues from rats exposed to long-term, low-dose CPF. Adult, Long-Evans male rats received CPF for one year at ...

  13. Environmental Risk Assessment of Fluctuating Diazinon Concentrations in an Urban and Agricultural Catchment Using Toxicokinetic–Toxicodynamic Modeling

    PubMed Central

    2011-01-01

    Temporally resolved environmental risk assessment of fluctuating concentrations of micropollutants is presented. We separated the prediction of toxicity over time from the extrapolation from one to many species and from acute to sublethal effects. A toxicokinetic–toxicodynamic (TKTD) model predicted toxicity caused by fluctuating concentrations of diazinon, measured by time-resolved sampling over 108 days from three locations in a stream network, representing urban, agricultural and mixed land use. We calculated extrapolation factors to quantify variation in toxicity among species and effect types based on available toxicity data, while correcting for different test durations with the TKTD model. Sampling from the distribution of extrapolation factors and prediction of time-resolved toxicity with the TKTD model facilitated subsequent calculation of the risk of undesired toxic events. Approximately one-fifth of aquatic organisms were at risk and fluctuating concentrations were more toxic than their averages. Contribution of urban and agricultural sources of diazinon to the overall risk varied. Thus using fixed concentrations as water quality criteria appears overly simplistic because it ignores the temporal dimension of toxicity. However, the improved prediction of toxicity for fluctuating concentrations may be small compared to uncertainty due to limited diversity of toxicity data to base the extrapolation factors on. PMID:21958042

  14. Environmental risk assessment of fluctuating diazinon concentrations in an urban and agricultural catchment using toxicokinetic-toxicodynamic modeling.

    PubMed

    Ashauer, Roman; Wittmer, Irene; Stamm, Christian; Escher, Beate I

    2011-11-15

    Temporally resolved environmental risk assessment of fluctuating concentrations of micropollutants is presented. We separated the prediction of toxicity over time from the extrapolation from one to many species and from acute to sublethal effects. A toxicokinetic-toxicodynamic (TKTD) model predicted toxicity caused by fluctuating concentrations of diazinon, measured by time-resolved sampling over 108 days from three locations in a stream network, representing urban, agricultural and mixed land use. We calculated extrapolation factors to quantify variation in toxicity among species and effect types based on available toxicity data, while correcting for different test durations with the TKTD model. Sampling from the distribution of extrapolation factors and prediction of time-resolved toxicity with the TKTD model facilitated subsequent calculation of the risk of undesired toxic events. Approximately one-fifth of aquatic organisms were at risk and fluctuating concentrations were more toxic than their averages. Contribution of urban and agricultural sources of diazinon to the overall risk varied. Thus using fixed concentrations as water quality criteria appears overly simplistic because it ignores the temporal dimension of toxicity. However, the improved prediction of toxicity for fluctuating concentrations may be small compared to uncertainty due to limited diversity of toxicity data to base the extrapolation factors on. PMID:21958042

  15. Determination of atrazine, lindane, pentachlorophenol, and diazinon in water and soil by isotope dilution gas chromatography/mass spectrometry

    SciTech Connect

    Lopez-Avila, V.; Hirata, P.; Kraska, S.; Flanagan, M.; Taylor, J.H. Jr.; Hern, S.C.

    1985-12-01

    This paper describes an isotope dilution GC/MS technique for the analysis of low-parts-per-billion concentrations of atrazine, lindane, pentachlorophenol, and diazinon in water and soil. Known amounts of stable-labeled isotopes such as atrazine-d/sub 5/, lindane-d/sub 6/, pentachlorophenol-/sup 13/C/sub 6/, and diazinon-d/sub 10/ are spiked into each sample prior to extraction. Water samples are extracted with methylene chloride; soil samples are extracted with acetone/hexane. Analysis is performed by high-resolution GC/MS with the mass spectrometer operated in the selected ion monitoring mode. Accuracy greater than 86% and precision better than 8% were demonstrated by use of spiked samples. This technique has been used successfully in the analysis of over 300 water and 300 soil samples. Detection limits of 0.1-1.0 ppb were achieved for the test compounds by selected ion monitoring GC/MS. 8 references, 2 figures, 4 tables.

  16. Physiological measures of neurotoxicity of diazinon and malathion to larval rainbow trout (Oncorhynchus mykiss) and their correlation with behavioral measures

    USGS Publications Warehouse

    Beauvais, S.L.; Jones, S.B.; Brewer, S.K.; Little, E.E.

    2000-01-01

    Relations between neurotoxicants and changes in physiological parameters and behavior were investigated in larval rainbow trout (RBT; Oncorhynchus mykiss) exposed to sublethal concentrations of two organophosphate pesticides (OPs). Fish were exposed to diazinon and malathion in static-renewal experiments. After exposures for 24, 96, or 96 h, followed by 48 h of recovery, individual RBT were videotaped to assess locomotory behaviors. Brain tissue from the same fish was assayed for the physiological endpoints, cholinesterase (ChE) activity, muscarinic cholinergic receptor (MChR) number (B(max)), and MChR affinity (K(D)). Cholinesterase activity decreased significantly with increasing concentrations of both diazinon and malathion and differed significantly among exposure durations, with 24- and 96-h means less than 48-h recovery means. Decreases in B(max) with OP concentration were not significant for either chemical, and K(D) was unaffected. Changes in swimming speed and distance were significantly correlated with changes in ChE activity for both chemicals; rate of turning was significantly correlated with ChE activity in malathion exposures. These results suggest that correlations between physiological and behavioral changes previously seen in mammals also occur in fish.

  17. Interpretation and estimation for dynamic mobility of chlorpyrifos in soils containing different organic matters.

    PubMed

    Hwang, Jeong-In; Lee, Sung-Eun; Kim, Jang-Eok

    2015-12-01

    The adsorption and removal behaviors of the organophosphate insecticide chlorpyrifos in two soils (AS and GW soils) with different organic matter contents were investigated to predict the dynamic residues in the soil environment. The adsorption test showed that the chlorpyrifos adsorptive power for the AS soil containing high organic matter content was greater than that for the GW soil. The extent of the time-dependent removal of chlorpyrifos in the tested soils was not significantly different except at 90 days after the treatment. The availability of a chemical-specific residue model developed in this study was statistically assessed to estimate the chlorpyrifos residue in soil solutions that could be absorbed into plants. The values modeled using the soil experimental data were satisfactory, having a mean deviation of 32% from the measured data. The correlation between the modeled and measured data was acceptable, with mean coefficients of correlation (R(2)) of 0.89. Furthermore, the average of the residual error was low at 0.43, which corresponded to a mean factor of -1.9. The developed model could be used as a critical tool to predict the subsequent plant uptake of chlorpyrifos. PMID:26055453

  18. Susceptibility to Chlorpyrifos in Pyrethroid-Resistant Populations of Aedes aegypti (Diptera: Culicidae) from Mexico

    PubMed Central

    Lopez, Beatriz; Ponce, Gustavo; Gonzalez, Jessica A.; Gutierrez, Selene M.; Villanueva, Olga K.; Gonzalez, Gabriela; Bobadilla, Cristina; Rodriguez, Iram P.; Black, William C.; Flores, Adriana E.

    2014-01-01

    Resistance to the organophosphate insecticide chlorpyrifos was evaluated in females from six strains of Aedes aegypti (L) that expressed high levels of cross resistance to eight pyrethroid insecticides. Relative to LC50 and LC90 at 24h of a susceptible New Orleans (NO) three strains were highly resistant to chlorpyrifos (Coatzacoalcos, resistance ratio (RRLC90) =11.97; Pozarica, RRLC90=12.98; and Cosoleacaque, RRLC50= 13.94 and RRLC90=17.57), one strain was moderately resistant (Veracruz, RR=5.92), and two strains were susceptible (Tantoyuca and Martinez de la Torre, RRLC50 and RRLC90 < 5) in CDC bottle bioassays. Furthermore, high levels of α/β-esterase activity in the sample populations were correlated with resistance, suggesting that esterase activity may be a mechanism causing the development of organophosphate resistance in these populations. Overall, the populations in this study were less resistant to chlorpyrifos than to pyrethroids. Rotation of insecticides used in control activities is recommended to delay or minimize the occurrence of high levels of resistance to chlorpyrifos among local populations of Ae. aegypti. The diagnostic dose (DD) and diagnostic time (DT) for chlorpyrifos resistance monitoring was determined to be 85 μg/ bottle and 30min, respectively, using the susceptible NO strain. PMID:24897857

  19. Role of Ocimum sanctum as a Genoprotective Agent on Chlorpyrifos-Induced Genotoxicity

    PubMed Central

    Khanna, Asha; Shukla, Poonam; Tabassum, Shajiya

    2011-01-01

    Protective effect of Ocimum sanctum was evaluated on chlorpyrifos-induced genotoxicity in in vivo and in vitro models. Two different concentrations of pesticide were taken, i.e., 1/5 and 1/15 of LD50 of chlorpyrifos for the in vivo study. Rats were pre-treated orally with O. sanctum extract (OE) at 50 mg/kg b.wt. For the in vitro studies, human lymphocyte cultures were exposed to 75 μg/ml chlorpyrifos with and without OE. Structural and numerical (both aneuploidy and euploidy types) chromosomal aberrations (CAs) were scored for the assessment of induced genotoxic effects, while the variation in mitotic index (MI) was considered as a monitor for induced cellular toxicity. The same concentration of the pesticide (75 μg/ml) was taken to study the DNA damage by comet assay. Results showed that lymphocytes treated with the pesticide exhibited increased DNA damage but the increase was statistically insignificant (P>0.05). In rats pretreated with OE, a significant (P<0.01) increase in MI was observed and there was a significant decrease in the frequency of aberrant cells as compared to the rats treated with chlorpyrifos alone. A significant (P<0.05) increase in CA was observed in cultures treated with 75 μg/ml chlorpyrifos as compared to controls, which decreased significantly (P<0.05) with OE pretreatment. PMID:21430913

  20. Role of Ocimum sanctum as a Genoprotective Agent on Chlorpyrifos-Induced Genotoxicity.

    PubMed

    Khanna, Asha; Shukla, Poonam; Tabassum, Shajiya

    2011-01-01

    Protective effect of Ocimum sanctum was evaluated on chlorpyrifos-induced genotoxicity in in vivo and in vitro models. Two different concentrations of pesticide were taken, i.e., 1/5 and 1/15 of LD(50) of chlorpyrifos for the in vivo study. Rats were pre-treated orally with O. sanctum extract (OE) at 50 mg/kg b.wt. For the in vitro studies, human lymphocyte cultures were exposed to 75 μg/ml chlorpyrifos with and without OE. Structural and numerical (both aneuploidy and euploidy types) chromosomal aberrations (CAs) were scored for the assessment of induced genotoxic effects, while the variation in mitotic index (MI) was considered as a monitor for induced cellular toxicity. The same concentration of the pesticide (75 μg/ml) was taken to study the DNA damage by comet assay. Results showed that lymphocytes treated with the pesticide exhibited increased DNA damage but the increase was statistically insignificant (P>0.05). In rats pretreated with OE, a significant (P<0.01) increase in MI was observed and there was a significant decrease in the frequency of aberrant cells as compared to the rats treated with chlorpyrifos alone. A significant (P<0.05) increase in CA was observed in cultures treated with 75 μg/ml chlorpyrifos as compared to controls, which decreased significantly (P<0.05) with OE pretreatment. PMID:21430913

  1. Temperature influences on water permeability and chlorpyrifos uptake in aquatic insects with differing respiratory strategies

    USGS Publications Warehouse

    Buchwalter, D.B.; Jenkins, J.J.; Curtis, L.R.

    2003-01-01

    Aquatic insects have evolved diverse respiratory strategies that range from breathing atmospheric air to breathing dissolved oxygen. These strategies result in vast morphological differences among taxa in terms of exchange epithelial surface areas that are in direct contact with the surrounding water that, in turn, affect physiological processes. This paper examines the effects of acute temperature shifts on water permeability and chlorpyrifos uptake in aquatic insects with different respiratory strategies. While considerable differences existed in water permeability among the species tested, acute temperature shifts raised water influx rates similarly in air-breathing and gill-bearing taxa. This contrasts significantly with temperature-shift effects on chlorpyrifos uptake. Temperature shifts of 4.5??C increased 14C-chlorpyrifos accumulation rates in the gill-bearing mayfly Cinygma sp. and in the air-breathing hemipteran Sigara washingtonensis. However, the temperature-induced increase in 14C-chlorpyrifos uptake after 8 h of exposure was 2.75-fold higher in Cinygma than in Sigara. Uptake of 14C-chlorpyrifos was uniformly higher in Cinygma than in Sigara in all experiments. These findings suggest that organisms with relatively large exchange epithelial surface areas are potentially more vulnerable to both osmoregulatory distress as well as contaminant accumulation. Temperature increases appear more likely to impact organisms that have relatively large exchange epithelial surface areas, both as an individual stressor and in combination with additional stressors such as contaminants.

  2. Evaluation of chlorpyrifos transferred from contaminated feed to duck commodities and dietary risks to Chinese consumers.

    PubMed

    Li, Rui; Ji, Xiaofeng; He, Liang; Liu, Zhiqiang; Wei, Wei; Qiang, Mingrong; Wang, Qiang; Yuan, Yuwei

    2015-06-01

    The present study describes chlorpyrifos residues in duck commodities through the duck food chain, transfer factors, and dietary risks to Chinese consumers. After duck feeding experiments with pellet feed that lasted for 42 days, chlorpyrifos residues found in all samples collected from the ducks on maximum estimated dose group (3.20 mg/kg level) were from <0.0005 to 0.019 mg/kg. The residue levels of the fat, intestine, and tongue were obviously higher than those of the meat and other edible tissues. The transfer factors of all duck commodities were from 0.0001 to 0.0049 among different contamination levels, which indicated that chlorpyrifos had a low persistency in duck meat and metabolism organs. The chronic exposure assessment revealed that only 0.034-0.150% of the acceptable daily intake (ADI; 0-0.01 mg/kg/bw/day) of chlorpyrifos was consumed via the duck commodities for different age and gender groups in China. The acute exposure assessments of different age and gender groups were only 0.019-0.082% of the acute reference dose (ARfD; 0-0.1 mg/kg/bw). The results show that the single dietary exposure risk of chlorpyrifos raised by the intake of duck commodities was quite low in China. PMID:25946472

  3. Effects of extracellular polymeric and humic substances on chlorpyrifos bioavailability to Chironomus riparius.

    PubMed

    Lundqvist, Anna; Bertilsson, Stefan; Goedkoop, Willem

    2010-04-01

    The role of sediment organic matter quality and quantity for chlorpyrifos bioavailability was studied in experiments with Chironomus riparius larvae and with four types of organic matter; (1) commercially available extracellular polymeric substances (EPS), (2) EPS produced by sediment microbes, (3) commercially available humic substances and, (4) humic substances extracted from a boreal lake. The effects of each type of organic matter were assessed at three concentrations. We used a (14)C-tracer approach to quantify uptake of chlorpyrifos in the larvae, and the partitioning of the insecticide within the microcosm. Carbon-normalised larval uptake was reduced both by EPS and humic substances. However, the reduction in uptake was much greater for EPS than for humic substances: uptake was reduced by 94 and 88% for commercial and complex EPS, and by 59 and 57% for commercial and complex humic substances, respectively. We also found differences in chlorpyrifos uptake, and sediment concentrations between treatments with commercially available and complex polymers, suggesting that minor differences in the quality of relatively simple organic molecules can affect contaminant behaviour in ecotoxicological studies. Passive uptake in dead controls was 40% of that in living larvae. Therefore, both passive and digestive uptake were important processes for chlorpyrifos uptake by larvae. Our results show that both EPS and humic substances affect chlorpyrifos bioavailability to sediment biota negatively and contribute to the understanding of the processes that regulate organic contaminant bioavailability in aquatic environments. PMID:19851864

  4. Tolerance of ARPE 19 cells to organophosphorus pesticide chlorpyrifos is limited to concentration and time of exposure.

    PubMed

    Gomathy, Narayanan; Sumantran, Venil N; Shabna, A; Sulochana, K N

    2015-01-01

    Age related macular degeneration is a blinding disease common in elder adults. The prevalence of age related macular degeneration has been found to be 1.8% in the Indian population. Organophosphates are widely used insecticides with well documented neurological effects, and the persistent nature of these compounds in the body results in long term health effects. Farmers exposed to organophosphorus pesticides in USA had an earlier onset of age related macular degeneration when compared to unexposed controls. A recent study found significant levels of an organophosphate, termed chlorpyrifos, in the blood samples of Indian farmers. Therefore, in understanding the link between age related macular degeneration and chlorpyrifos, the need for investigation is important. Our data show that ARPE-19 (retinal pigment epithelial cells) exhibit a cytoprotective response to chlorpyrifos as measured by viability, mitochondrial membrane potential, superoxide dismutase activity, and increased levels of glutathione peroxidase and reduced glutathione, after 24 h exposure to chlorpyrifos. However, this cytoprotective response was absent in ARPE-19 cells exposed to the same range of concentrations of chlorpyrifos for 48 h. These results have physiological significance, since HPLC analysis showed that effects of chlorpyrifos were mediated through its entry into ARPE-19 cells. HPLC analysis also showed that chlorpyrifos remained stable, as we recovered up to 80% of the chlorpyrifos added to 6 different ocular tissues. PMID:25619908

  5. USE OF PHARMACOKINETIC MODEL TO ASSESS CHLORPYRIFOS EXPOSURE AND DOSE IN CHILDREN BASED ON URINARY BIOMARKER MEASUREMENTS

    EPA Science Inventory

    Chlorpyrifos is a common agricultural insecticide and has been used residentially in the United States until 2000 when this use was restricted by the U.S. Environmental Protection Agency (U.S. EPA). A chlorpyrifos metabolite, 3,5,6-trichloro-2-pyridinol (TCPy) has been found i...

  6. Chlorpyrifos Exposure and Respiratory Health among Adolescent Agricultural Workers

    PubMed Central

    Callahan, Catherine L.; Al-Batanony, Manal; Ismail, Ahmed A.; Abdel-Rasoul, Gaafar; Hendy, Olfat; Olson, James R.; Rohlman, Diane S.; Bonner, Matthew R.

    2014-01-01

    Chlorpyrifos (CPF) is a commonly used organophosphate insecticide (OP). In adults, exposure to OPs has been inconsistently associated with reduced lung function. OP exposure and lung function has not been assessed in adolescents. The objective of this study was to assess CPF exposure and lung function among Egyptian adolescents. We conducted a 10-month study of male adolescent pesticide applicators (n = 38) and non-applicators of similar age (n = 24). Urinary 3,5,6-trichloro-2-pyridinol (TPCy), a CPF-specific metabolite, was analyzed in specimens collected throughout the study. Spirometry was performed twice after pesticide application: day 146, when TCPy levels were elevated and day 269, when TCPy levels were near baseline. Applicators had higher levels of TCPy (mean cumulative TCPy day 146 = 33,217.6; standard deviation (SD) = 49,179.3) than non-applicators (mean cumulative TCPy day 146 = 3290.8; SD = 3994.9). Compared with non-applicators, applicators had higher odds of reporting wheeze, odds ratio = 3.41 (95% CI: 0.70; 17.41). Cumulative urinary TCPy was inversely associated with spirometric measurements at day 146, but not at day 269. Although generally non-significant, results were consistent with an inverse association between exposure to CPF and lung function. PMID:25522051

  7. Electrospray ionization mass spectrometry (ESI-MS) monitoring of the photolysis of diazinon in aqueous solution: degradation route and toxicity of by-products against Artemia salina.

    PubMed

    Souza, Amauri G; Cardeal, Zenilda L; Augusti, Rodinei

    2013-01-01

    The photolytic degradation of diazinon, an organophosphorus pesticide, in aqueous medium under assorted pH values was continuously monitored by direct infusion electrospray ionization mass spectrometry (ESI-MS). The results indicated that the UV radiation was quite efficient in promoting the pesticide degradation at the three pH levels evaluated (5, 7 and 8). The m/z of the most abundant ions observed in the mass spectra (MS), in conjunction with the fragmentation patterns of such ionic species (MS/MS data), made possible the proposition of chemical structures for the main by-products formed. As a result, routes for the photodegradation of diazinon in aqueous solution could thus be suggested. In the assays using Artemia salina (brine shrimp) it was verified that the photodegradation products exhibited much lower toxicity than the primary substrate. Aiming at mimicking the conditions ordinarily found in water treatment plants, an additional series of tests was conducted with a solution containing sodium hypochlorite and diazinon. This solution, when not exposed to UV radiation, exhibited high toxicity against the microorganisms. Under the influence of UV radiation, however, the toxicity rates decreased dramatically. This result is relevant because it points toward the confident application of UV radiation to neutralize the deleterious effects caused by diazinon (and perhaps other organophosphorus pesticides) as well as sodium hypochlorite to the environment. PMID:23356337

  8. Solvent-assisted dispersive solid-phase extraction: A sample preparation method for trace detection of diazinon in urine and environmental water samples.

    PubMed

    Aladaghlo, Zolfaghar; Fakhari, Alireza; Behbahani, Mohammad

    2016-09-01

    In this research, a sample preparation method termed solvent-assisted dispersive solid-phase extraction (SA-DSPE) was applied. The used sample preparation method was based on the dispersion of the sorbent into the aqueous sample to maximize the interaction surface. In this approach, the dispersion of the sorbent at a very low milligram level was received by inserting a solution of the sorbent and disperser solvent into the aqueous sample. The cloudy solution created from the dispersion of the sorbent in the bulk aqueous sample. After pre-concentration of the diazinon, the cloudy solution was centrifuged and diazinon in the sediment phase dissolved in ethanol and determined by gas chromatography-flame ionization detector. Under the optimized conditions (pH of solution=7.0, Sorbent: benzophenone, 2%, Disperser solvent: ethanol, 500μL, Centrifuge: centrifuged at 4000rpm for 3min), the method detection limit for diazinon was 0.2, 0.3, 0.3 and 0.3μgL(-1) for distilled water, lake water, waste water and urine sample, respectively. Furthermore, the pre-concentration factor was 363.8, 356.1, 360.7 and 353.38 in distilled water, waste water, lake water and urine sample, respectively. SA-DSPE was successfully used for trace monitoring of diazinon in urine, lake and waste water samples. PMID:27495366

  9. Apoptotic effects and glucose-6-phosphate dehydrogenase responses in liver and gill tissues of rainbow trout treated with chlorpyrifos.

    PubMed

    Topal, Ahmet; Atamanalp, Muhammed; Oruç, Ertan; Kırıcı, Muammer; Kocaman, Esat Mahmut

    2014-12-01

    We investigated apoptotic effects and changes in glucose-6-phosphate dehydrogenase (G6PD) enzyme activity in liver and gill tissues of fish exposed to chlorpyrifos. Three different chlorpyrifos doses (2.25, 4.5 and 6.75 μg/L) were administrated to rainbow trout at different time intervals (24, 48, 72 and 96 h). Acute exposure to chlorpyrifos showed time dependent decrease in G6PD enzyme activity at all concentrations (p < 0.05). Immunohistochemical results showed that chlorpyrifos caused mucous cell loss in gill tissue and apoptosis via caspase-3 activation in fish. The present study suggested that chlorpyrifos inhibits G6PD enzyme and causes mucous cell loss in gill and apoptosis in gill and liver tissues. PMID:25438950

  10. The effect of stress on the acute neurotoxicity of the organophosphate insecticide chlorpyrifos

    SciTech Connect

    Hancock, Sandra; Ehrich, Marion; Hinckley, Jonathan; Pung, Thitiya; Jortner, Bernard S. . E-mail: bjortner@vt.edu

    2007-03-15

    A study was conducted to determine if multiple exposures to several stress paradigms might affect the anticholinesterase effect of subsequently administered organophosphate insecticide chlorpyrifos. Male Sprague-Dawley rats were subject to daily periods of restraint, swimming, a combination of the two, or neither of the two (controls) (n = 8/group) for 5 days per week over a six-week period. The most profound stress, as measured by reduced body weight gain and elevated levels of plasma corticosterone, was swimming. On day 39 of the study, shortly after the daily stress episode, one half of the rats in each group was dosed with 60 mg/kg chlorpyrifos subcutaneously. This had no effect on subsequent levels of plasma corticosterone. There were no stress-related differences in the degree of chlorpyrifos-induced inhibition of brain acetylcholinesterase in animals sacrificed on day 43.

  11. Investigation of acute toxicity of chlorpyrifos-methyl on Nile tilapia (Oreochromis niloticus L.) larvae.

    PubMed

    Gül, Ali

    2005-04-01

    Chlorpyrifos-methyl, a wide-spectrum organophosphorus insecticide and potential toxic pollutant contaminating aquatic ecosystems, was investigated for acute toxicity. Larvae of the freshwater fish Nile tilapia (Oreochromis niloticus L.) were selected for the bioassay experiments. The experiments were repeated three times and the 96 h LC50 was determined for the larvae. The static test method for assessing acute toxicity was used. Water temperature was maintained at 25+/-1 degrees C. In addition, behavioral changes at each chlorpyrifos-methyl concentration were observed for the individual fish. Data obtained from the chlorpyrifos-methyl acute toxicity tests were evaluated using Finney's probit analysis statistical method. The 96 h LC50 value for Nile tilapia larvae was calculated to be 1.57 mg/l. PMID:15722087

  12. Reactive oxygen species regulated mitochondria-mediated apoptosis in PC12 cells exposed to chlorpyrifos

    SciTech Connect

    Lee, Jeong Eun; Park, Jae Hyeon; Shin, In Chul; Koh, Hyun Chul

    2012-09-01

    Reactive oxidative species (ROS) generated by environmental toxicants including pesticides could be one of the factors underlying the neuronal cell damage in neurodegenerative diseases. In this study we found that chlorpyrifos (CPF) induced apoptosis in dopaminergic neuronal components of PC12 cells as demonstrated by the activation of caspases and nuclear condensation. Furthermore, CPF also reduced the tyrosine hydroxylase-positive immunoreactivity in substantia nigra of the rat. In addition, CPF induced inhibition of mitochondrial complex I activity. Importantly, N-acetyl cysteine (NAC) treatment effectively blocked apoptosis via the caspase-9 and caspase-3 pathways while NAC attenuated the inhibition of mitochondrial complex I activity as well as the oxidative metabolism of dopamine (DA). These results demonstrated that CPF-induced apoptosis was involved in mitochondrial dysfunction through the production of ROS. In the response of cellular antioxidant systems to CPF, we found that CPF treatment increased HO-1 expression while the expression of CuZnSOD and MnSOD was reduced. In addition, we found that CPF treatment activated MAPK pathways, including ERK 1/2, the JNK, and the p38 MAP kinase in a time-dependent manner. NAC treatment abolished MAPK phosphorylation caused by CPF, indicating that ROS are upstream signals of MAPK. Interestingly, MAPK inhibitors abolished cytotoxicity and reduced ROS generation by CPF treatment. Our results demonstrate that CPF induced neuronal cell death in part through MAPK activation via ROS generation, suggesting its potential to generate oxidative stress via mitochondrial damage and its involvement in oxidative stress-related neurodegenerative disease. -- Highlights: ► Chlorpyrifos induces apoptosis. ► Chlorpyrifos inhibits mitochondrial complex I activity. ► ROS is involved in chlorpyrifos-induced apoptosis. ► Chlorpyrifos affects cellular antioxidant systems. ► Chlorpyrifos-induced apoptosis mediates activation of MAPK.

  13. Chlorpyrifos residual behaviors in field crops and transfers during duck pellet feed processing.

    PubMed

    Li, Rui; Wei, Wei; He, Liang; Hao, Lili; Ji, Xiaofeng; Zhou, Yu; Wang, Qiang

    2014-10-22

    Chlorpyrifos is a widely used organophosphorus pesticide in agricultural crops (including food) and animal feeds in China, resulting in heavy contamination. Many studies have focused on the food-processing effects on chlorpyrifos removal, but sufficient information is not observed for feed-processing steps. Here, chlorpyrifos residual behaviors in field crops and its transfers in duck pellet feed-processing steps were evaluated. In field trials, the highest residues for rice grain, shelled corn, and soybean seed were 12.0, 0.605, and 0.220 mg/kg, respectively. Residues of all rice grain and about half of shelled corn exceeded the maximum residue limits (MRLs) of China, and five soybean seeds exceeded the MRL of China. Chlorpyrifos residue was reduced 38.2% in brown rice after the raw rice grain was hulled. The residue in bran increased 71.2% after milling from brown rice. During the squashing step, the residue reduced 73.8% in soybean meal. The residues reduced significantly (23.7-36.8%) during the process of granulating for rice, maize, and soybean products. Comparatively, the grinding process showed only limited influence on chlorpyrifos removal (<10%). The residues of duck pellet feeds produced from highly contaminated raw materials of this study were 1.01 mg/kg (maize-soybean feed) and 3.20 mg/kg (rice-soybean feed), which were much higher than the generally accepted value (>0.1 mg/kg) for animal feeding. Chlorpyrifos residues were removed significantly by processing steps of pellet feeds, but the residue of raw materials was the determining factor for the safety of duck feeding. PMID:25310710

  14. Dissipation kinetics and assessment of processing factor for chlorpyrifos and lambda-cyhalothrin in cardamom.

    PubMed

    George, Thomas; Beevi, S Naseema; Xavier, George; Kumar, N Pratheesh; George, Jayesh

    2013-06-01

    The dissipation kinetics and method for estimation of residues of chlorpyrifos and lambda-cyhalothrin in cardamom were studied and developed. The limit of detection and limit of quantitation arrived for the compounds were 0.01 and 0.025 μg g(-1), respectively. Gas chromatographic response of chlorpyrifos and lambda-cyhalothrin residues was linear in the range of 0.01-0.50 μg g(-1) and the mean recovery obtained was 97.3 % for chlorpyrifos and 98.9 % for lambda-cyhalothrin with satisfactory relative standard deviation values. The mean initial residues of chlorpyrifos applied at a concentration of 0.05 % in cardamom was 2.5 μg g(-1) and the residue was 8.1 μg g(-1) after processing, with a processing factor of 3.24, while lambda-cyhalothrin when applied at 0.0025 % resulted in initial residues of 1.63 μg g(-1) that magnified to 4.86 μg g(-1) on curing, with a processing factor of 2.98. The half-life of chlorpyrifos was in the range of 5.1-5.24 days while that of lambda-cyhalothrin was in the range of 4.40-4.55 days. The processing factor arrived at in the above experiment lead to the conclusion that the residues of chlorpyrifos got magnified to 3.24-3.68 times and that of lambda-cyhalothrin got magnified to 2.98-3.46 times of initial residues, consequent to loss of weight due to dehydration during curing. PMID:23079795

  15. Warming increases chlorpyrifos effects on predator but not anti-predator behaviours.

    PubMed

    Dinh Van, Khuong; Janssens, Lizanne; Debecker, Sara; Stoks, Robby

    2014-07-01

    Recent insights indicate that negative effects of pesticides on aquatic biota occur at concentrations that current legislation considers environmentally protective. We here address two, potentially interacting, mechanisms that may contribute to the underestimation of the impact of sublethal pesticide effects in single species tests at room temperature: the impairment of predator and antipredator behaviours and the stronger impact of organophosphate pesticides at higher temperatures. To address these issues we assessed the effects of chlorpyrifos on the predator and antipredator behaviours of larvae of the damselfly Ischnura elegans, important intermediate predators in aquatic food webs, in a common-garden warming experiment with replicated low- and high-latitude populations along the latitudinal gradient of this species in Europe. Chlorpyrifos reduced the levels of predator behavioural endpoints, and this reduction was stronger at the higher temperature for head orientations and feeding strikes. Chlorpyrifos also impaired two key antipredator behavioural endpoints, activity reductions in response to predator cues were smaller in the presence of chlorpyrifos, and chlorpyrifos caused a lower escape swimming speed; these effects were independent of temperature. This suggests chlorpyrifos may impact food web interactions by changing predator-prey interactions both with higher (predators) and lower trophic levels (food). Given that only the interaction with the lower trophic level was more impaired at higher temperatures, the overall pesticide-induced changes in food web dynamics may be strongly temperature-dependent. These findings were consistent in damselflies from low- and high-latitude populations, illustrating that thermal adaptation will not mitigate the increased toxicity of pesticides at higher temperatures. Our study not only underscores the relevance of including temperature and prey-predator interactions in ecological risk assessment but also their potential

  16. Developmental sub-chronic exposure to chlorpyrifos reduces anxiety-related behavior in zebrafish larvae.

    PubMed

    Richendrfer, Holly; Pelkowski, Sean D; Colwill, Ruth M; Créton, Robbert

    2012-07-01

    Neurobehavioral disorders such as anxiety, autism, and attention deficit hyperactivity disorders are typically influenced by genetic and environmental factors. Although several genetic risk factors have been identified in recent years, little is known about the environmental factors that either cause neurobehavioral disorders or contribute to their progression in genetically predisposed individuals. One environmental factor that has raised concerns is chlorpyrifos, an organophosphate pesticide that is widely used in agriculture and is found ubiquitously in the environment. In the present study, we examined the effects of sub-chronic chlorpyrifos exposure on anxiety-related behavior during development using zebrafish larvae. We found that sub-chronic exposure to 0.01 or 0.1 μM chlorpyrifos during development induces specific behavioral defects in 7-day-old zebrafish larvae. The larvae displayed decreases in swim speed and thigmotaxis, yet no changes in avoidance behavior were seen. Exposure to 0.001 μM chlorpyrifos did not affect swimming, thigmotaxis, or avoidance behavior and exposure to 1 μM chlorpyrifos induced behavioral defects, but also induced defects in larval morphology. Since thigmotaxis, a preference for the edge, is an anxiety-related behavior in zebrafish larvae, we propose that sub-chronic chlorpyrifos exposure interferes with the development of anxiety-related behaviors. The results of this study provide a good starting point for examination of the molecular, cellular, developmental, and neural mechanisms that are affected by environmentally relevant concentrations of organophosphate pesticides. A more detailed understanding of these mechanisms is important for the development of predictive models and refined health policies to prevent toxicant-induced neurobehavioral disorders. PMID:22579535

  17. Ecotoxicity of two organophosphate pesticides chlorpyrifos and dichlorvos on non-targeting cyanobacteria Microcystis wesenbergii.

    PubMed

    Sun, Kai-Feng; Xu, Xiang-Rong; Duan, Shun-Shan; Wang, You-Shao; Cheng, Hao; Zhang, Zai-Wang; Zhou, Guang-Jie; Hong, Yi-Guo

    2015-10-01

    Organophosphate pesticides (OPs), as a replacement for the organochlorine pesticides, are generally considered non-toxic to plants and algae. Chlorpyrifos and dichlorvos are two OPs used for pest control all over the world. In this study, the dose-response of cyanobacteria Microcystis wesenbergii on OPs exposure and the stimulating effect of OPs with and without phosphorus source were investigated. The results showed that high concentrations of chlorpyrifos and dichlorvos caused significant decrease of chlorophyll a content. The median inhibitory concentrations (EC50) of chlorpyrifos and dichlorvos at 96 h were 15.40 and 261.16 μmol L(-1), respectively. Growth of M. wesenbergii under low concentration of OPs (ranged from 1/10,000 to 1/20 EC50), was increased by 35.85 % (chlorpyrifos) and 41.83 % (dichlorvos) at 120 h, respectively. Correspondingly, the highest enhancement on the maximum quantum yield (F v/F m) was 4.20 % (24 h) and 9.70 % (48 h), respectively. Chlorophyll fluorescence kinetics, known as O-J-I-P transients, showed significant enhancements in the O-J, J-I, and I-P transients under low concentrations of dichlorvos at 144 h, while enhancements of chlorophyll fluorescence kinetics induced by low concentrations of chlorpyrifos were only observed in the J-I transient at 144 h. Significant decreases of chlorophyll content, F v/F m and O-J-I-P transients with OPs as sole phosphorus source were found when they were compared with inorganic phosphate treatments. The results demonstrated an evidently hormetic dose-response of M. wesenbergii to both chlorpyrifos and dichlorvos, where high dose (far beyond environmental concentrations) exposure caused growth inhibition and low dose exposure induced enhancement on physiological processes. The stimulating effect of two OPs on growth of M. wesenbergii was negligible under phosphate limitation. PMID:25854898

  18. Oxidative mechanisms contributing to the developmental neurotoxicity of nicotine and chlorpyrifos

    SciTech Connect

    Qiao, Dan; Seidler, Frederic J.; Slotkin, Theodore A. . E-mail: t.slotkin@duke.edu

    2005-08-01

    Nicotine and chlorpyrifos are developmental neurotoxicants that, despite their differences in structure and mechanism of action, share many aspects for damage to the developing brain. Both are thought to generate oxidative radicals; in the current study, we evaluated their ability to produce lipid peroxidation in two in vitro models of neural cell development (PC12 and SH-SY5Y cells) and for nicotine, with treatment of adolescent rats in vivo. Nicotine and chlorpyrifos, in concentrations relevant to human exposures, elicited an increase in thiobarbituric-acid-reactive species (TBARS) in undifferentiated cells, an effect that was prevented by addition of the antioxidant, Vitamin E. Initiating differentiation with nerve growth factor, which enhances nicotinic acetylcholine receptor expression, increased the TBARS response to nicotine but not chlorpyrifos, suggesting that the two agents act by different originating mechanisms to converge on the endpoint of oxidative damage. Furthermore, nicotine protected the cells from oxidative damage evoked by chlorpyrifos and similarly blocked the antimitotic effect of chlorpyrifos. Treatment of adolescent rats with nicotine elicited increases in TBARS in multiple brain regions when given in doses that simulate plasma nicotine concentrations found in smokers or at one-tenth the dose. Our results indicate that nicotine and chlorpyrifos elicit oxidative damage to developing neural cells both in vitro and in vivo, a mechanism that explains some of the neurodevelopmental endpoints that are common to the two agents. The balance between neuroprotectant and neurotoxicant actions of nicotine may be particularly important in situations where exposure to tobacco smoke is combined with other prooxidant insults.

  19. Data on the phosphorylation of p38MAPK and JNK induced by chlorpyrifos in Drosophila melanogaster.

    PubMed

    Batista, J E S; Sousa, L R; Martins, I K; Rodrigues, N R; Posser, T; Franco, J L

    2016-12-01

    Exposure to organophosphate compounds, such as chlorpyrifos, has been linked to disturbances on cell signaling pathways. Mitogen activated protein kinases (MAPK) are a family of protein kinases involved in a range of cellular processes, including stress response, apoptosis and survival. Therefore, changes in the activation state of these kinases may characterize key mechanisms of toxicity elicited by xenobiotics. Here we report data on the phosphorylation of p38MAPK and JNK, members of the MAPK family, in Drosophila melanogaster exposed to chlorpyrifos, as characterized by western blotting assays. PMID:27626050

  20. Behavioral thermoregulatory response to chlorpyrifos in the rat.

    PubMed

    Gordon, C J

    1997-12-31

    Chlorpyrifos (CHP) is a heavily used organophosphorous-based insecticide that elicits thermoregulatory dysfunction in the rat characterized by an initial period of hypothermia followed by a delayed hyperthermia lasting 24-72 h after exposure. The purpose of the present study was to determine (1) if the delayed hyperthermia is linked to CHP-induced hypothermia and (2) if the hypothermia and delayed hyperthermia are regulated by the CNS thermoregulatory centers. Core temperature (Tc) and motor activity (MA) of female Long-Evans rats were monitored via radiotelemetry. Rats housed in a temperature gradient were administered the control vehicle or CHP (25 mg/kg (p.o.)) while Tc, MA and ambient temperature (Ta) preferred by rats in the gradient (i.e. selected Ta) were recorded. There was an initial reduction in Tc concomitant with a decrease in selected Taa A gradual recovery in Tc occurred during the first night along with a preference for warmer Ta's and depressed MA. The day after CHP there was an elevation in Tc but no change in selected Ta, suggesting that the delayed rise in Tc was regulated. In another experiment, the hypothermic effects of CHP (25 mg/kg (p.o.)) were blocked by raising Ta from 22 to 31 degrees C immediately after CHP administration. Non-heated rats administered CHP underwent a marked period of hypothermia followed by an elevation in diurnal Tc for 2 days. Heated rats showed no hypothermic response but did undergo a hyperthermic response 48 h after CHP. MA was reduced during the first night after CHP in both non-heated and heated groups. Overall, the CHP-induced hyperthermia is not dependent on the development of hypothermia. Behavioral thermoregulatory observations suggest that both hypothermia and hyperthermia are regulated by CNS thermoregulatory centers. PMID:9482118

  1. Synergistic hepatotoxicity by cadmium and chlorpyrifos: disordered hepatic lipid homeostasis.

    PubMed

    He, Wei; Guo, Wenli; Qian, Yi; Zhang, Shuping; Ren, Difeng; Liu, Sijin

    2015-07-01

    Due to its extensive application, chlorpyrifos (CPF) has contaminated a diverse range of environmental substrates, fruits and vegetables. A number of studies have suggested that CPF may incur adverse effects on human health, including neurotoxicity, hepatotoxicity and endocrine disruption. Additionally, cadmium (Cd) is one of the most prevalent environmental heavy metals, as a result of considerable use in a wide spectrum of industrial fields. Exposure to Cd can cause several lesions in various organs, including the liver, kidneys and lungs. CPF and Cd often co-exist in the environment, food and crops, however, their joint exposure and potential synergistic toxicity are largely neglected and unrecognized. Our previous study characterized an interaction between CPF and Cd, which may occur via bonding between Cd2+ and the nitrogen atom in the pyridine ring of CPF, or the chelation between one Cd2+ and two CPF molecules. Our previous study also identified increased hepatotoxicity induced by CPF and Cd together compared with the individual compounds. In the present study, the effects of the concomitant exposure of CPF and Cd on lipid metabolism in hepatocytes was investigated. The results demonstrated an accumulation of lipids in hepatocytes, induced by the CPF and Cd complex, which was fundamentally distinct from its parental chemicals. Notably, the molecular mechanism by which the CPF-Cd complex significantly induced hepatic lipogenesis was revealed, elevating the concentrations of sterol regulatory element-binding protein-1 and fatty acid synthase. These findings pave the way for future studies in recognizing synergistic biological effects between pollutants. PMID:25707953

  2. Toxicity of chlorpyrifos and chlorpyrifos oxon in a transgenic mouse model of the human paraoxonase (PON1) Q192R polymorphism

    SciTech Connect

    Cole, Toby B.; Walter, Betsy J.; Shih, Diana M.; Tward, Aaron D.; Lusis, Aldons J.; Timchalk, Chuck; Richter, Rebecca J.; Costa, Lucio G.; Furlong, Clement E.

    2005-08-01

    The Q192R polymorphism of paraoxonase (PON1) has been shown to affect hydrolysis of organophosphorus compounds. The Q192 and R192 alloforms exhibit equivalent catalytic efficiencies of hydrolysis for diazoxon, the oxon form of the pesticide (DZ). However, the R192 alloform has a higher catalytic efficiency of hydrolysis than does the Q192 alloform for chlorpyrifos oxon (CPO), the oxon form of the pesticide chlorpyrifos (CPS). The current study examined the relevance of these observations for in-vivo exposures to chlorpyrifos and chlorpyrifos oxon. Methods Using a transgenic mouse model we examined the relevance of the Q192R polymorphism for exposure to CPS and CPO in vivo. Transgenic mice were generated that expressed either human PON1Q192 or PON1R192 at equivalent levels, in the absence of endogenous mouse PON1. Dose-response and time course experiments were performed on adult mice exposed dermally to CPS or CPO. Morbidity and acetylcholinesterase (AChE) activity in the brain and diaphragm were determined in the first 24 h following exposure. Results Mice expressing PON1Q192 were significantly more sensitive to CPO, and to a lesser extent CPS, than were mice expressing PON1R192. The time course of inhibition following exposure to 1.2 mg/kg CPO revealed maximum inhibition of brain AChE at 6?12 h, with PON1R192, PON1Q192, and PON1? /? mice exhibiting 40, 70 and 85% inhibition, respectively, relative to control mice. The effect of PON1 removal on the dose?response curve for CPS exposure was remarkably consistent with a PBPK/PD model of CPS exposure. Conclusion These results indicate that individuals expressing only the PON1Q192 allele would be more sensitive to the adverse effects of CPO or CPS exposure, especially if they are expressing a low level of plasma PON1Q192.

  3. Role of zinc in mitigating the toxic effects of chlorpyrifos on hematological alterations and electron microscopic observations in rat blood.

    PubMed

    Goel, Ajay; Dani, Vijayta; Dhawan, D K

    2006-10-01

    The present study determined the protective potential of zinc in attenuating the toxicity induced by chlorpyrifos in rat blood. Male Sparque Dawley (SD) rats received either oral chlorpyrifos (13.5 mg/kg body weight) treatment every alternate day, zinc alone (227 mg/l in drinking water) or combined chlorpyrifos plus zinc treatment for a total duration of 8 weeks. The effects of different treatments were studied on various parameters in rat blood including haemoglobin (Hb) levels, total leukocyte count (TLC), differential leukocyte count (DLC), zinc protoporphyrins (ZPP), serum trace elemental concentrations and Scanning Electron Microscopic (SEM) observation of the blood cells. Chlorpyrifos treatment to normal control animals resulted in a significant decrease in TLC and ZPP concentration after 4 and 8 weeks. Chlorpyrifos treated animals also showed significant neutrophilia and lymphopenia after 8 weeks of toxicity. In addition, a significant decrease in serum zinc and iron concentrations were observed following chlorpyrifos intoxication, however, these animals responded with increased serum copper levels following the toxic treatment with this organophosphate. SEM studies of the red blood cells from chlorpyrifos treated animals indicated marked alterations in the topographical morphology of the various cell types, with the prominent feature being common aniscocytosis of the erythrocytes. Oral zinc treatment to the chlorpyrifos treated animals significantly improved the total leukocyte, neutrophil and lymphocyte counts, as well as the otherwise reduced concentrations of ZPP and the levels of various serum trace elements. Protective effects of zinc were also evident in the electron microscopic observations where most blood cell types depicted reverted to a close to the normal appearance. Based upon these data, the present study is first of its kind and suggests that zinc treatment considerably attenuates chlorpyrifos induced toxicity induced in restoring the altered

  4. DOES THE DEVELOPMENTAL NEUROTOXICITY OF CHLORPYRIFOS INVOLVE GLIAL TARGETS? (U915722)

    EPA Science Inventory

    The widespread use of chlorpyrifos (CPF) has raised major concerns about its potential to cause fetal or neonatal neurobehavioral damage, even at doses that do not evoke acute toxicity. CPF has been shown to inhibit replication of brain cells, to elicit alterations in neurotro...

  5. Effect of enrofloxacin and chlorpyrifos on the levels of vitamins A and E in Wistar rats.

    PubMed

    Spodniewska, Anna; Barski, Dariusz; Giżejewska, Aleksandra

    2015-09-01

    This study investigates the effects of enrofloxacin and chlorpyrifos, and their combination on vitamin A and E concentrations in the liver of rats. Results of this study indicated a reduction in the contents of vitamins A and E in the liver, which persisted for the entire period of the experiment. Vitamins A and E concentrations were slightly decreased (2-7%) in enrofloxacin-treated rats. In the group of rats intoxicated with chlorpyrifos, a significant decrease in the level of vitamin A was observed up to the 24th hour, and for vitamin E up to the 3rd day from the discontinuation of intoxication with the compounds under study. In the enrofloxacin-chlorpyrifos co-exposure group reduced vitamins A and E level was also noted. The greatest fall in vitamin A level was observed after 3h, while the contents of vitamin E decreased progressively up to the 3rd day. Changes in this group were less pronounced in comparison to the animals intoxicated with chlorpyrifos only. PMID:26356388

  6. REPRODUCTIVE TOXICITY OF CHLORPYRIFOS, DIELDRIN, AND METHYL MERCURY MIXTURES TO THE AMPHIPOD, HYALELLA AZTECA

    EPA Science Inventory

    Toxicological interactions were assessed on the reproduction of the amphipod Hyalella azteca throughout a chronic exposure to methyl mercury (0.9, 4.7, 23.3 nM), chlorpyrifos (0.01, 0.05, 0.24), dieldrin (0.5, 2.3, 11.4 nM) and their binary mixtures. H. azteca were exposed to the...

  7. Specific surface area effect on adsorption of chlorpyrifos and TCP by soils and modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The adsorption of chlorpyrifos and TCP (3,5,6, trichloro-2-pyridinol) was determined in four soils (Mollisol, Inceptisol, Entisol, Alfisol) having different specific surface areas (19–84 m2/g) but rather similar organic matter content (2.4–3.5%). Adsorption isotherms were derived from batch equilibr...

  8. Short-term effects of chlorpyrifos and other pesticides on earthworm numbers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chlorpyrifos is generally used on grasses grown for seed to control billbugs (Sphenophorus venatus confluens) and cutworms (various species), and on other crops for crane fly larvae (Tipula sp.), garden symphyllans (Scutigerella immaculate), and wireworms (Agriotes sp.). The indirect impact of cont...

  9. Chronic Chlorpyrifos Exposure Does Not Promote Prostate Cancer in Prostate Specific PTEN Mutant Mice

    PubMed Central

    Svensson, Robert U.; Bannick, Nadine L.; Marin, Maximo J.; Robertson, Larry W.; Lynch, Charles F.; Henry, Michael D.

    2014-01-01

    Environmental factors are likely to interact with genetic determinants to influence prostate cancer progression. The Agricultural Health Study has identified an association between exposure to organophosphorous pesticides including chlorpyrifos, and increased prostate cancer risk in pesticide applicators with a first-degree family history of this disease. Exploration of this potential gene-environment interaction would benefit from the development of a suitable animal model. Utilizing a previously described mouse model that is genetically predisposed to prostate cancer through a prostate-specific heterozygous PTEN deletion, termed C57/Luc/Ptenp+/−, we used bioluminescence imaging and histopathological analyses to test whether chronic exposure to chlorpyrifos in a grain-based diet for 32 weeks was able to promote prostate cancer development. Chronic exposure to chlorpyrifos in the diet did not promote prostate cancer development in C57/Luc/Ptenp+/− mice despite achieving sufficient levels to inhibit acetylcholinesterase activity in plasma. We found no significant differences in numbers of murine prostatic intraepithelial neoplasia lesions or disease progression in chlorpyrifos versus control treated animals up to 32 weeks. The mechanistic basis of pesticide-induced prostate cancer may be complex and may involve other genetic variants, multiple genes, or nongenetic factors that might alter prostate cancer risk during pesticide exposure in agricultural workers. PMID:23758150

  10. BEHAVIORAL AND NEUROCHEMICAL EFFECTS OF ACUTE CHLORPYRIFOS IN RATS: TOLERANCE TO PROLONGED INHIBITION OF CHOLINESTERASE

    EPA Science Inventory

    Chlorpyrifos (CPF), a commercially prevalent organophosphate (OP) pesticide, inhibits blood and brain cholinesterase for up to 10 weeks after acute s.c. injection in rats. his prolonged inhibition suggested that acute CPF may affect muscarinic receptors and behavior as does repea...

  11. Inhibition of acetylcholinesterase in guppies (Poecilia reticulata) by chlorpyrifos at sublethal concentrations: Methodological aspects

    SciTech Connect

    van der Wel, H.; Welling, W.

    1989-04-01

    Acetylcholinesterase activity is a potential biochemical indicator of toxic stress in fish and a sensitive parameter for testing water for the presence of organophosphates. A number of methodological aspects regarding the determination of the in vivo effect of chlorpyrifos on acetylcholinesterase in guppies have been investigated. It was found that with acetylthiocholine as a substrate, the contribution of pseudocholinesterase to the total cholinesterase activity can be neglected. Protection of acetylcholinesterase of guppies exposed to chlorpyrifos from additional, artifactual in vitro enzyme inhibition during homogenization is necessary. Very low concentrations of acetone in the exposure medium, resulting from dilution of the stock solution of chlorpyrifos in acetone, can result in large decreases in the oxygen content of this medium. This may affect the uptake rate of the toxic compound and, thereby, cholinesterase inhibition. Very low, sublethal concentrations of chlorpyrifos result in high inhibition levels of acetylcholinesterase (80-90%) in guppies within 2 weeks of continuous exposure. Recovery of the enzyme activity occurs after the exposed animals are kept in clean medium for 4 days, but the rate of recovery is considerably lower than the rate of inhibition.

  12. THERMOREGULATORY EFFECTS OF CHLORPYRIFOS IN THE RAT: LONG-TERM CHANGES IN CHOLINERGIC AND NORADRENERGIC SENSITIVITY

    EPA Science Inventory

    Subcutaneous injection of a sublethal dose of chlorpyrifos (CHLP), an organophosphate (OP) pesticide, causes long-term inhibition in cholinesterase activity (ChE) of brain, blood, and other tissues. uch prolonged inhibition in ChE should lead to marked behavioral and autonomic th...

  13. THERMOREGULATION IN THE RAT DURING CHRONIC, DIETARY EXPOSURE TO CHLORPYRIFOS, AN ORGANOPHOSPHATE INSECTICIDE.

    EPA Science Inventory

    Administration of chlorpyrifos (CHP) at a dose of 25 to 80 mg/kg (p.o.) To rats results in hypothermia followed by a fever lasting for several days. To understand if chronic, low level exposure to CHP affects thermoregulation in a comparable manner to acute administration, male L...

  14. The effects of chlorpyrifos on cholinesterase activity and foraging behavior in the dragonfly, Anax junius (Odonata)

    USGS Publications Warehouse

    Brewer, S.K.; Atchison, G.J.

    1999-01-01

    We examined head capsule cholinesterase (ChE) and foraging behavior in nymphs of the dragonfly, Anax junius, exposed for 24 h to 0.2, 0.6 and 1.0 ??g l-1 of the organophosphorus (OP) insecticide, chlorpyrifos [O,O-diethyl O-(3,5,6-trichloro-2-pyridyl) phosphorothioate]. The invertebrate community is an important component of the structure and function of wetland ecosystems, yet the potential effects of insecticides on wetland ecosystems are largely unknown. Our objectives were to determine if exposure to environmentally realistic concentrations of chlorpyrifos affected foraging behavior and ChE activity in head capsules of dragonfly nymphs. Nymphs were exposed to different concentrations of chlorpyrifos and different prey densities in a factorial design. ChE activities and foraging behaviors of treated nymphs were not statistically different (p ??? 0.05) from control groups. Prey density effects exerted a greater effect on dragonfly foraging than toxicant exposures. Nymphs offered higher prey densities exhibited more foraging behaviors but also missed their prey more often. High variability in ChE activities within the control group and across treated groups precluded determination of relationships between ChE and foraging behaviors. It appears that A. junius is relatively tolerant of chlorpyrifos, although the concentrations we tested have been shown in other work to adversely affect the prey base; therefore the introduction of this insecticide may have indirect adverse affects on top invertebrate predators such as Odonata.

  15. AGE-RELATED EFFECTS OF CHLORPYRIFOS ON ACETYLCHOLINE RELEASE IN RAT BRAIN. (R825811)

    EPA Science Inventory

    Chlorpyrifos (CPF) is an organophosphorus insecticide that elicits toxicity through inhibition of acetylcholinesterase (AChE). Young animals are markedly more sensitive than adults to the acute toxicity of CPF. We evaluated acetylcholine (ACh) release and its muscarinic recept...

  16. Atmospheric deposition flux estimates for chlorpyrifos and trifluralin in the chukchi sea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During the 1993 U.S.-Russian BERPAC expedition, residues of agricultural pesticides were detected in seawater, ice, surface microlayer, fog, and air of the Bering and Chukchi Seas. Gas exchange, wet deposition, and dry particle deposition fluxes of trifluralin and chlorpyrifos were estimated using m...

  17. CHANGES IN THE RAT EEG SPECTRA AND CORE TEMPERATURE AFTER EXPOSURE TO DIFFERENT DOSES OF CHLORPYRIFOS.

    EPA Science Inventory

    Our previous study showed that single exposure to 25 mg/kg (p.o.) of organophsphate pesticide chlorpyrifos (CHP) led to significant alterations in all EEG frequency bands within 0.1-50 Hz range, reduction in core temperature (Tc) and motor activity (MA). The alterations in EEG pe...

  18. Hepatotoxicity of Chlorpyrifos in Zebrafish Liver Cells by NMR-based Metabolomics

    EPA Science Inventory

    For decades chlorpyrifos (CPS) has been one of the most widely used organophosphate insecticides for a variety of agricultural and public health applications. The extensive use of CPS inevitably results in exposure to a small number of the human population. It is believed that ...

  19. 76 FR 25281 - Atrazine, Chloroneb, Chlorpyrifos, Clofencet, Endosulfan, et al.; Proposed Tolerance Actions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-04

    ...EPA is proposing to revoke certain tolerances in follow-up to canceled uses for chlorpyrifos, chloroneb, clofencet, endosulfan, ethyl parathion, methidathion, methyl parathion, and N,N-diethyl-2-(4- methylbenzyloxy)ethylamine, modify certain tolerances for atrazine, establish tolerances for endosulfan, and make minor revisions to tolerance expressions for a few of the aforementioned pesticide......

  20. NEUROBEHAVIORAL EFFECTS OF CHRONIC DIETARY AND REPEATED HIGH-LEVEL SPIKE EXPOSURE TO CHLORPYRIFOS IN RATS.

    EPA Science Inventory

    This study aimed to model long-term subtoxic human exposure to an organophosphorus pesticide, chlorpyrifos, and to examine the influence of that exposure on the response to intermittent high-dose acute challenges. Adult Long-Evans male rats were maintained at 350g body weight by...

  1. LONG-TERM NEUROCHEMICAL AND BEHAVIORAL EFFECTS INDUCED BY ACUTE CHLORPYRIFOS TREATMENT

    EPA Science Inventory

    A single, maximal tolerated dose of the organophosphate insecticide chlorpyrifos (CPF, 279 mg/kg, sc) caused extensive inhibition of striatal and cortical cholinesterase (ChE) activity in adult rats at two (94-96%), four (64-74%) and six (36-38%) weeks after treatment. These pers...

  2. PRENATAL EXPOSURE TO CHLORPYRIFOS ALTERS NEUROTROPHIN IMMUNOREACTIVITY AND APOPTOSIS IN RAT BRAIN.

    EPA Science Inventory

    In the present study, the effects of the organophosphate pesticide chlorpyrifos [CPF; O,O'diethyl O-3,5,6-trichloro-2-pyridyl) phosphorothionate] on the regional distribution of three neurotrophic factors and on levels of apoptosis in gestational rat brain were characterized. P...

  3. A Biomarker Validation Study of Prenatal Chlorpyrifos Exposure within an Inner-City Cohort during Pregnancy

    PubMed Central

    Whyatt, Robin M.; Garfinkel, Robin; Hoepner, Lori A.; Andrews, Howard; Holmes, Darrell; Williams, Megan K.; Reyes, Andria; Diaz, Diurka; Perera, Frederica P.; Camann, David E.; Barr, Dana B.

    2009-01-01

    Background We previously documented significant decreases in chlorpyrifos concentrations in maternal personal and indoor air samples among pregnant African-American and Dominican women from New York City after the 2000–2001 restrictions on its residential use. Objective We undertook a biomarker validation study within the same cohort to evaluate trends over time in multiple biomarkers of prenatal chlorpyrifos exposure. Methods Subjects were enrolled between February 2001 and May 2004 (n = 102). We measured 3,5,6-trichloro-2-pyridinol (TCPy) in postpartum meconium (n = 83), repeat prenatal maternal spot urine samples (n = 253), and postnatal urine from the mothers (n = 73) and newborns (n = 59). We measured chlorpyrifos in postnatal maternal (n = 92) and umbilical cord (n = 65) blood. Results We did not detect TCPy in infant urine, but all other biomarkers showed a highly significant decrease in detection frequencies (χ2 = 7.8–34.0, p ≤ 0.005) and mean ranks (p ≤ 0.006, Kruskal–Wallis) among subjects enrolled in 2003–2004 compared with those enrolled in 2001–2002. Chlorpyrifos in maternal personal and indoor air declined 2- to 3-fold over the same period (p < 0.05). In 2001–2002 samples, TCPy levels in repeat prenatal urine were positively correlated (r = 0.23–0.56), but within-subject variability exceeded between-subject variability (intraclass correlation coefficient = 0.43); indoor air levels explained 19% of the variance in prenatal urine TCPy (p = 0.001). Meconium TCPy concentrations were positively correlated with chlorpyrifos in maternal and cord blood (r = 0.25–0.33, p < 0.05) and with TCPy in maternal urine (r = 0.31, p < 0.01). Conclusions Results suggest the biomarkers are reliable dosimeters to differentiate between groups with prenatal chlorpyrifos exposures varying by a factor of 2 or more and vividly illustrate the efficacy of residential restriction on chlorpyrifos to reduce the internal dose during pregnancy. PMID:19440494

  4. Effects of chlorpyrifos on the growth and ultrastructure of green algae, Ankistrodesmus gracilis.

    PubMed

    Asselborn, Viviana; Fernández, Carolina; Zalocar, Yolanda; Parodi, Elisa R

    2015-10-01

    The effect of the organophosphorus insecticide chlorpyrifos on the growth, biovolume, and ultrastructure of the green microalga Ankistrodesmus gracilis was evaluated. Concentrations of 9.37, 18.75, 37.5, 75 and 150mgL(-1) of chlorpyrifos were assayed along with a control culture. At the end of the bioassay the ultrastructure of algal cells from control culture and from cultures exposed to 37.5 and 150mgL(-1) was observed under transmission (TEM) and scanning electron microscopy (SEM). After 24 and 48h, treatments with 75 and 150mgL(-1) inhibited the growth of A. gracilis; whereas after 72 and 96h, all the treatments except at 9.37mgL(-1) significantly affected the algae growth. The effective concentration 50 (EC50) after 96h was 22.44mgL(-1) of chlorpyrifos. After the exposure to the insecticide, an increase in the biovolume was observed, with a larger increase in cells exposed to 75 and 150mgL(-1). Radical changes were observed in the ultrastructure of cells exposed to chlorpyrifos. The insecticide affected the cell shape and the distribution of the crests in the wall. At 37.5mgL(-1) electodense bodies were observed along with an increase in the size and number of starch granules. At 150mgL(-1) such bodies occupied almost the whole cytoplasm together with lipids and remains of thylakoids. Autospores formation occurred normally at 37.5mgL(-1) while at 150mgL(-1) karyokinesis occurred, but cell-separation-phase was inhibited. The present study demonstrates that the exposure of phytoplankton to the insecticide chlorpyrifos leads to effects observed at both cellular and population level. PMID:26099464

  5. Concentration-dependent interactions of the organophosphates chlorpyrifos oxon and methyl paraoxon with human recombinant acetylcholinesterase

    SciTech Connect

    Kaushik, R.; Rosenfeld, Clint A.; Sultatos, L.G. . E-mail: sultatle@umdnj.edu

    2007-06-01

    For many decades it has been thought that oxygen analogs (oxons) of organophosphorus insecticides phosphorylate the catalytic site of acetylcholinesterase by a mechanism that follows simple Michaelis-Menten kinetics. More recently, the interactions of at least some oxons have been shown to be far more complex and likely involve binding of oxons to a second site on acetylcholinesterase that modulates the inhibitory capacity of other oxon molecules at the catalytic site. The current study has investigated the interactions of chlorpyrifos oxon and methyl paraoxon with human recombinant acetylcholinesterase. Both chlorpyrifos oxon and methyl paraoxon were found to have k {sub i}'s that change as a function of oxon concentration. Furthermore, 10 nM chlorpyrifos oxon resulted in a transient increase in acetylthiocholine hydrolysis, followed by inhibition. Moreover, in the presence of 100 nM chlorpyrifos oxon, acetylthiocholine was found to influence both the K {sub d} (binding affinity) and k {sub 2} (phosphorylation constant) of this oxon. Collectively, these results demonstrate that the interactions of chlorpyrifos oxon and methyl paraoxon with acetylcholinesterase cannot be described by simple Michaelis-Menten kinetics but instead support the hypothesis that these oxons bind to a secondary site on acetylcholinesterase, leading to activation/inhibition of the catalytic site, depending on the nature of the substrate and inhibitor. Additionally, these data raise questions regarding the adequacy of estimating risk of low levels of insecticide exposure from direct extrapolation of insecticide dose-response curves since the capacity of individual oxon molecules at low oxon levels could be greater than individual oxon molecules in vivo associated with the dose-response curve.

  6. Dissipation and distribution of chlorpyrifos in selected vegetables through foliage and root uptake.

    PubMed

    Ge, Jing; Lu, Mengxiao; Wang, Donglan; Zhang, Zhiyong; Liu, Xianjin; Yu, Xiangyang

    2016-02-01

    Dissipation, distribution and uptake pathways of chlorpyrifos were investigated in pakchoi (Brassica chinensis L.) and lettuce (Lactuca sativa) with foliage treatments under a greenhouse trial and root treatments under a hydroponic experiment. The dissipation trends were similar for chlorpyrifos in pakchoi and lettuce with different treatments. More than 94% of chlorpyrifos was degraded in the samples for both of the vegetables 21 days after the foliage treatments. For the root treatment, the dissipation rate of chlorpyrifos in pakchoi and lettuce at the low concentration was greater than 93%, however, for the high concentrations, the dissipation rates were all under 90%. Both shoots and roots of the vegetables were able to absorb chlorpyrifos from the environment and distribute it inside the plants. Root concentration factor (RCF) values at different concentrations with the hydroponic experiment ranged from 5 to 39 for pakchoi, and from 14 to 35 for lettuce. The translocation factor (TF) representing the capability of the vegetables to translocate contaminants was significantly different for pakchoi and lettuce with foliage and root treatments. The values of TF with foliage treatments ranged from 0.003 to 0.22 for pakchoi, and from 0.032 to 1.63 for lettuce. The values of TF with root treatments ranged from 0.01 to 0.17 for pakchoi, and from 0.003 to 0.23 for lettuce. Significant difference of TF was found between pakchoi and lettuce with foliage treatments, and at high concentrations (10 and 50 mg L(-1)) with root treatments as well. However, there was no significant difference of TF between pakchoi and lettuce at 1 mg L(-1) with root treatment. PMID:26363321

  7. Prenatal drug exposures sensitize noradrenergic circuits to subsequent disruption by chlorpyrifos.

    PubMed

    Slotkin, Theodore A; Skavicus, Samantha; Seidler, Frederic J

    2015-12-01

    We examined whether nicotine or dexamethasone, common prenatal drug exposures, sensitize the developing brain to chlorpyrifos. We gave nicotine to pregnant rats throughout gestation at a dose (3mg/kg/day) producing plasma levels typical of smokers; offspring were then given chlorpyrifos on postnatal days 1-4, at a dose (1mg/kg) that produces minimally-detectable inhibition of brain cholinesterase activity. In a parallel study, we administered dexamethasone to pregnant rats on gestational days 17-19 at a standard therapeutic dose (0.2mg/kg) used in the management of preterm labor, followed by postnatal chlorpyrifos. We evaluated cerebellar noradrenergic projections, a known target for each agent, and contrasted the effects with those in the cerebral cortex. Either drug augmented the effect of chlorpyrifos, evidenced by deficits in cerebellar β-adrenergic receptors; the receptor effects were not due to increased systemic toxicity or cholinesterase inhibition, nor to altered chlorpyrifos pharmacokinetics. Further, the deficits were not secondary adaptations to presynaptic hyperinnervation/hyperactivity, as there were significant deficits in presynaptic norepinephrine levels that would serve to augment the functional consequence of receptor deficits. The pretreatments also altered development of cerebrocortical noradrenergic circuits, but with a different overall pattern, reflecting the dissimilar developmental stages of the regions at the time of exposure. However, in each case the net effects represented a change in the developmental trajectory of noradrenergic circuits, rather than simply a continuation of an initial injury. Our results point to the ability of prenatal drug exposure to create a subpopulation with heightened vulnerability to environmental neurotoxicants. PMID:26419632

  8. Acetylcholinesterase inhibition in the threeridge mussel (Amblema plicata) by chlorpyrifos: implications for biomonitoring

    USGS Publications Warehouse

    Doran, W.J.; Cope, W.G.; Rada, R.G.; Sandheinrich, M.B.

    2001-01-01

    The effects of chlorpyrifos, an organophosphorus insecticide, were examined on the activity of the nervous system enzyme acetylcholinesterase (AChE) in the threeridge mussel Amblema plicata in a 24-day laboratory test. Thirty-six mussels in each of seven treatments (18 mussels per duplicate) were exposed to chlorpyrifos (0.1, 0.2, 0.3, 0.6, and 1.2 mg/L), a solvent (acetone), and a solvent-free (well water) control for 12, 24, or 96 h. The activity of AChE was measured in the anterior adductor muscle of eight mussels from each treatment after exposure. To assess potential latent effects, six mussels from each treatment were removed after 24 h of exposure and transferred to untreated water for a 21-day holding period; AChE activity was measured on three mussels from each treatment at 7 and 21 days of the holding period. The activity of AChE in chlorpyrifos-exposed mussels did not differ from controls after 12 or 24 h of exposure (t- test, P>0.05), but was significantly less than controls after 96 h (t- test, P=0.01). AChE activity did not vary among mussels at 24 h of exposure (i.e., Day 0 of holding period) and those at Day 7 and Day 21 of the holding period. Overall changes in AChE activity of mussels during the test were unrelated to individual chlorpyrifos concentrations and exposure times (repeated measure ANOVA; (P=0.06). A power analysis revealed that the sample size must be increased from 2 to 5 replicates (8 to 20 mussels per time interval and test concentration) to increase the probability of detecting significant differences in AChE activity. This calculated increase in sample size has potential implications for future biomonitoring studies with chlorpyrifos and unionid mussels.

  9. Neurobehavioral effects of chronic dietary and repeated high-level spike exposure to chlorpyrifos in rats.

    PubMed

    Moser, V C; Phillips, P M; McDaniel, K L; Marshall, R S; Hunter, D L; Padilla, S

    2005-08-01

    This study aimed to model long-term subtoxic human exposure to an organophosphorus pesticide, chlorpyrifos, and to examine the influence of that exposure on the response to intermittent high-dose acute challenges. Adult Long-Evans male rats were maintained at 350 g body weight by limited access to a chlorpyrifos-containing diet to produce an intake of 0, 1, or 5 mg/kg/day chlorpyrifos. During the year-long exposure, half of the rats in each dose group received bi-monthly challenges (spikes) of chlorpyrifos, and the other half received vehicle. Rats were periodically tested using a neurological battery of evaluations and motor activity to evaluate the magnitude of the acute response (spike days) as well as recovery and ongoing chronic effects (non-spike days). Effects of the spikes differed as a function of dietary level for several endpoints (e.g., tremor, lacrimation), and in general, the high-dose feed groups showed greater effects of the spike doses. Animals receiving the spikes also showed some neurobehavioral differences among treatment groups (e.g., hypothermia, sensory and neuromotor differences) in the intervening months. During the eleventh month, rats were tested in a Morris water maze. There were some cognitive deficits observed, demonstrated by slightly longer latency during spatial training, and decreased preference for the correct quadrant on probe trials. A consistent finding in the water maze was one of altered swim patterning, or search strategy. The high-dose feed groups showed more tendency to swim in the outer annulus or to swim very close to the walls of the tank (thigmotaxic behavior). Overall, dietary exposure to chlorpyrifos produced long-lasting neurobehavioral changes and also altered the response to acute challenges. PMID:15901919

  10. Dietary exposure to chlorpyrifos alters core temperature in the rat.

    PubMed

    Gordon, Christopher J; Padnos, Beth K

    2002-08-15

    Administration of the organophosphate pesticide chlorpyrifos (CHP) to the male rat at a dose of 25-80 mg/kg (p.o.) results in hypothermia followed by a delayed fever lasting for several days. These are high doses of CHP that cause marked cholinergic stimulation. It is important to understand if chronic exposure to CHP would evoke changes in thermoregulation that are comparable to the acute administration. Male rats of the Long-Evans strain were subjected to dietary treatment of 0, 1, or 5 mg/(kg day) CHP for 6 months. A limited amount of food was given per day to maintain body weight at 350 g. The constant body weight allowed for the regulation of a consistent dosage of CHP per kg body weight throughout the feeding period. Core temperature (T(a)) and motor activity (MA) were monitored by radio telemetric transmitters implanted in the abdominal cavity. After 5 months of treatment, T(c) and MA were monitored in undisturbed animals for 96 h. CHP at 5 mg/(kg day) led to a slight elevation in T(c) without affecting MA. The rats were then administered a challenge dose of CHP (30 mg/kg, p.o.) while T(c) and MA were monitored. Rats fed the 1 and 5 mg/kg CHP diets showed a significantly greater hypothermic response and reduction in MA following CHP challenge compared to controls. The restricted feeding schedule resulted in marked changes in the pattern of the circadian rhythm. Therefore, in another study, rats were treated ad libitum for 17 days with a CHP diet that resulted in a dosage of 7 mg CHP/(mg day). There was a significant increase in T(c) during the daytime but not during the night throughout most of the treatment period. Overall, chronic CHP was associated with a slight but significant elevation in T(c) and greater hypothermic response to a CHP challenge. This latter finding was unexpected and suggests that chronic exposure to CHP sensitizes the rat's thermoregulatory response to acute CHP exposure. PMID:12135625