Sub-band structure engineering for advanced CMOS channels
NASA Astrophysics Data System (ADS)
Takagi, Shin-ichi; Mizuno, T.; Tezuka, T.; Sugiyama, N.; Nakaharai, S.; Numata, T.; Koga, J.; Uchida, K.
2005-05-01
This paper reviews our recent studies of novel CMOS channels based on the concept of sub-band structure engineering. This device design concept can be realized as strained-Si channel MOSFETs, ultra-thin SOI MOSFETs and Ge-on-Insulator (GOI) MOSFETs. An important factor for the electron mobility enhancement is the introduction of larger sub-band energy splitting between the 2- and 4-fold valleys on a (1 0 0) surface, which can be obtained in strained-Si and ultra-thin body channels. The electrical properties of strained-Si MOSFETs are summarized with an emphasis on strained-SOI structures. Also, the importance of the precise control of ultra-thin SOI thickness is pointed out from the experimental results of the SOI thickness dependence of mobility. Furthermore, it is shown that the increase in the sub-band energy splitting can also be effective in obtaining higher current drive of n-channel MOSFETs under ballistic transport regime. This suggests that the current drive enhancement based on MOS channel engineering utilizing strain and ultra-thin body structures can be extended to ultra-short channel MOSFETs dominated by ballistic transport.
Phonon engineering for nanostructures.
Aubry, Sylvie; Friedmann, Thomas Aquinas; Sullivan, John Patrick; Peebles, Diane Elaine; Hurley, David H.; Shinde, Subhash L.; Piekos, Edward Stanley; Emerson, John Allen
2010-01-01
Understanding the physics of phonon transport at small length scales is increasingly important for basic research in nanoelectronics, optoelectronics, nanomechanics, and thermoelectrics. We conducted several studies to develop an understanding of phonon behavior in very small structures. This report describes the modeling, experimental, and fabrication activities used to explore phonon transport across and along material interfaces and through nanopatterned structures. Toward the understanding of phonon transport across interfaces, we computed the Kapitza conductance for {Sigma}29(001) and {Sigma}3(111) interfaces in silicon, fabricated the interfaces in single-crystal silicon substrates, and used picosecond laser pulses to image the thermal waves crossing the interfaces. Toward the understanding of phonon transport along interfaces, we designed and fabricated a unique differential test structure that can measure the proportion of specular to diffuse thermal phonon scattering from silicon surfaces. Phonon-scale simulation of the test ligaments, as well as continuum scale modeling of the complete experiment, confirmed its sensitivity to surface scattering. To further our understanding of phonon transport through nanostructures, we fabricated microscale-patterned structures in diamond thin films.
Pressure-enabled phonon engineering in metals.
Lanzillo, Nicholas A; Thomas, Jay B; Watson, Bruce; Washington, Morris; Nayak, Saroj K
2014-06-17
We present a combined first-principles and experimental study of the electrical resistivity in aluminum and copper samples under pressures up to 2 GPa. The calculations are based on first-principles density functional perturbation theory, whereas the experimental setup uses a solid media piston-cylinder apparatus at room temperature. We find that upon pressurizing each metal, the phonon spectra are blue-shifted and the net electron-phonon interaction is suppressed relative to the unstrained crystal. This reduction in electron-phonon scattering results in a decrease in the electrical resistivity under pressure, which is more pronounced for aluminum than for copper. We show that density functional perturbation theory can be used to accurately predict the pressure response of the electrical resistivity in these metals. This work demonstrates how the phonon spectra in metals can be engineered through pressure to achieve more attractive electrical properties. PMID:24889627
Phonon bandgap engineering of strained monolayer MoS2
NASA Astrophysics Data System (ADS)
Jiang, Jin-Wu
2014-06-01
The phonon band structure of monolayer MoS2 is characteristic of a large energy gap between acoustic and optical branches, which protects the vibration of acoustic modes from being scattered by optical phonon modes. Therefore, the phonon bandgap engineering is of practical significance for the manipulation of phonon-related mechanical or thermal properties in monolayer MoS2. We perform both phonon analysis and molecular dynamics simulations to investigate the tension effect on the phonon bandgap and the compression induced instability of the monolayer MoS2. Our key finding is that the phonon bandgap can be narrowed by the uniaxial tension, and is completely closed at ε = 0.145; while the biaxial tension only has a limited effect on the phonon bandgap. We also demonstrate the compression induced buckling for the monolayer MoS2. The critical strain for buckling is extracted from the band structure analysis of the flexure mode in the monolayer MoS2 and is further verified by molecular dynamics simulations and the Euler buckling theory. Our study illustrates the uniaxial tension as an efficient method for manipulating the phonon bandgap of the monolayer MoS2, while the biaxial compression as a powerful tool to intrigue buckling in the monolayer MoS2.
Phonon bandgap engineering of strained monolayer MoS₂.
Jiang, Jin-Wu
2014-07-21
The phonon band structure of monolayer MoS₂ is characteristic of a large energy gap between acoustic and optical branches, which protects the vibration of acoustic modes from being scattered by optical phonon modes. Therefore, the phonon bandgap engineering is of practical significance for the manipulation of phonon-related mechanical or thermal properties in monolayer MoS₂. We perform both phonon analysis and molecular dynamics simulations to investigate the tension effect on the phonon bandgap and the compression induced instability of the monolayer MoS₂. Our key finding is that the phonon bandgap can be narrowed by the uniaxial tension, and is completely closed at ε = 0.145; while the biaxial tension only has a limited effect on the phonon bandgap. We also demonstrate the compression induced buckling for the monolayer MoS₂. The critical strain for buckling is extracted from the band structure analysis of the flexure mode in the monolayer MoS₂ and is further verified by molecular dynamics simulations and the Euler buckling theory. Our study illustrates the uniaxial tension as an efficient method for manipulating the phonon bandgap of the monolayer MoS₂, while the biaxial compression as a powerful tool to intrigue buckling in the monolayer MoS₂. PMID:24932612
Electron-phonon interaction and scattering in Si and Ge: Implications for phonon engineering
Tandon, Nandan; Albrecht, J. D.; Ram-Mohan, L. R.
2015-07-28
We report ab-initio results for electron-phonon (e-ph) coupling and display the existence of a large variation in the coupling parameter as a function of electron and phonon dispersion. This variation is observed for all phonon modes in Si and Ge, and we show this for representative cases where the initial electron states are at the band gap edges. Using these e-ph matrix elements, which include all possible phonon modes and electron bands within a relevant energy range, we evaluate the imaginary part of the electron self-energy in order to obtain the associated scattering rates. The temperature dependence is seen through calculations of the scattering rates at 0 K and 300 K. The results provide a basis for understanding the impacts of phonon scattering vs. orientation and geometry in the design of devices, and in analysis of transport phenomena. This provides an additional tool for engineering the transfer of energy from carriers to the lattice.
Phonon engineering in carbon nanotubes by controlling defect concentration.
Sevik, Cem; Sevinçli, Hâldun; Cuniberti, Gianaurelio; Cağın, Tahir
2011-11-01
Outstanding thermal transport properties of carbon nanotubes (CNTs) qualify them as possible candidates to be used as thermal management units in electronic devices. However, significant variations in the thermal conductivity (κ) measurements of individual CNTs restrict their utilizations for this purpose. In order to address the possible sources of this large deviation and to propose a route to solve this discrepancy, we systematically investigate the effects of varying concentrations of randomly distributed multiple defects (single and double vacancies, Stone-Wales defects) on the phonon transport properties of armchair and zigzag CNTs with lengths ranging between a few hundred nanometers to several micrometers, using both nonequilibrium molecular dynamics and atomistic Green's function methods. Our results show that, for both armchair and zigzag CNTs, κ converges nearly to the same values with different types of defects, at all lengths considered in this study. On the basis of the detailed mean free path analysis, this behavior is explained with the fact that intermediate and high frequency phonons are filtered out by defect scattering, while low frequency phonons are transmitted quasi-ballistically even for several micrometer long CNTs. Furthermore, an analysis of variances in κ for different defect concentrations indicates that defect scattering at low defect concentrations could be the source of large experimental variances, and by taking advantage of the possibility to create a controlled concentration of defects by electron or ion irradiation, it is possible to standardize κ with minimizing the variance. Our results imply the possibility of phonon engineering in nanostructured graphene based materials by controlling the defect concentration. PMID:21967464
Structural engineering of three-dimensional phononic crystals
NASA Astrophysics Data System (ADS)
Delpero, Tommaso; Schoenwald, Stefan; Zemp, Armin; Bergamini, Andrea
2016-02-01
Artificially-structured materials are attracting the research interest of a growing community of scientists for the possibility to develop novel materials with advantageous properties that arise from the ability to tailor the propagation of elastic waves, and thus energy, through them. In this work, we propose a three-dimensional phononic crystal whose unit cell has been engineered to obtain a strong wave-attenuation band in the middle of the acoustic frequency range. The combination of its acoustic properties with the dimensions of the unit cell and its static mechanical properties makes it an interesting material for possibly several applications in civil and mechanical engineering, for instance as the core of an acoustically insulating sandwich panel. A sample of this crystal has been manufactured and experimentally tested with respect to its acoustic transmissibility. The performance of the phononic crystal core is remarkable both in terms of amplitude reduction in the transmissibility and width of the attenuation band. A parametric study has been finally conducted on selected geometrical parameters of the unit cell and on their effect on the macroscopic properties of the crystal. This work represents an application-oriented example of how the macroscopic properties of an artificially-structured material can be designed, according to specific needs, by a conventional engineering of its unit cell.
Engineering the hypersonic phononic band gap of hybrid Bragg stacks.
Schneider, Dirk; Liaqat, Faroha; El Boudouti, El Houssaine; El Hassouani, Youssef; Djafari-Rouhani, Bahram; Tremel, Wolfgang; Butt, Hans-Jürgen; Fytas, George
2012-06-13
We report on the full control of phononic band diagrams for periodic stacks of alternating layers of poly(methyl methacrylate) and porous silica combining Brillouin light scattering spectroscopy and theoretical calculations. These structures exhibit large and robust on-axis band gaps determined by the longitudinal sound velocities, densities, and spacing ratio. A facile tuning of the gap width is realized at oblique incidence utilizing the vector nature of the elastic wave propagation. Off-axis propagation involves sagittal waves in the individual layers, allowing access to shear moduli at nanoscale. The full theoretical description discerns the most important features of the hypersonic one-dimensional crystals forward to a detailed understanding, a precondition to engineer dispersion relations in such structures. PMID:22506610
Grain-boundary layering transitions and phonon engineering
NASA Astrophysics Data System (ADS)
Rickman, J. M.; Harmer, M. P.; Chan, H. M.
2016-09-01
We employ semi-grand canonical Monte Carlo simulation to investigate layering transitions at grain boundaries in a prototypical binary alloy. We demonstrate the existence of such transitions among various interfacial states and examine the role of elastic fields in dictating state equilibria. The results of these studies are summarized in the form of diagrams that highlight interfacial state coexistence in this system. Finally, we examine the impact of layering transitions on the phononic properties of the system, as given by the specific heat and, by extension, the thermal conductivity. Thus, it is suggested that by inducing interfacial layering transitions via changes in temperature or pressure, one can thereby engineer thermodynamic and transport properties in materials.
Engineering thermal conductance using a two-dimensional phononic crystal
Zen, Nobuyuki; Puurtinen, Tuomas A.; Isotalo, Tero J.; Chaudhuri, Saumyadip; Maasilta, Ilari J.
2014-01-01
Controlling thermal transport has become relevant in recent years. Traditionally, this control has been achieved by tuning the scattering of phonons by including various types of scattering centres in the material (nanoparticles, impurities, etc). Here we take another approach and demonstrate that one can also use coherent band structure effects to control phonon thermal conductance, with the help of periodically nanostructured phononic crystals. We perform the experiments at low temperatures below 1 K, which not only leads to negligible bulk phonon scattering, but also increases the wavelength of the dominant thermal phonons by more than two orders of magnitude compared to room temperature. Thus, phononic crystals with lattice constants ≥1 μm are shown to strongly reduce the thermal conduction. The observed effect is in quantitative agreement with the theoretical calculation presented, which accurately determined the ballistic thermal conductance in a phononic crystal device. PMID:24647049
NASA Astrophysics Data System (ADS)
Maasilta, I. J.; Puurtinen, T. A.; Tian, Y.; Geng, Z.
2016-07-01
We discuss two alternative and complementary means of controlling radial phonon conduction for bolometers in two dimensions: by using phononic crystals or by roughening the surface of the membranes (Casimir limit). For phononic crystals, we present new experiments with a modified geometry and a larger hole periodicity than before, achieving a low thermal conductance {˜ }2 pW/K at 150 mK. Calculations in the Casimir limit, on the other hand, show that for small detector dimensions thermal conductance below 1 fW/K seems achievable.
Material and Phonon Engineering for Next Generation Acoustic Devices
NASA Astrophysics Data System (ADS)
Kuo, Nai-Kuei
This thesis presents the theoretical and experimental work related to micromachining of low intrinsic loss sapphire and phononic crystals for engineering new classes of electroacoustic devices for frequency control applications. For the first time, a low loss sapphire suspended membrane was fabricated and utilized to form the main body of a piezoelectric lateral overtone bulk acoustic resonator (LOBAR). Since the metalized piezoelectric transducer area in a LOBAR is only a small fraction of the overall resonant cavity (made out of sapphire), high quality factor (Q) overtones are attained. The experiment confirms the low intrinsic mechanical loss of the transferred sapphire thin film, and the resonators exhibit the highest Q of 5,440 at 2.8 GHz ( f·Q of 1.53.1013 Hz). This is also the highest f·Q demonstrated for aluminum-nitride-(AIN)-based Lamb wave devices to date. Beyond demonstrating a low loss device, this experimental work has laid the foundation for the future development of new micromechanical devices based on a high Q, high hardness and chemically resilient material. The search for alternative ways to more efficiently perform frequency control functionalities lead to the exploration of Phononic Crystal (PnC) structures in AIN thin films. Four unit cell designs were theoretically and experimentally investigated to explore the behavior of phononic bandgaps (PBGs) in the ultra high frequency (UHF) range: (i) the conventional square lattice with circular air scatterer, (ii) the inverse acoustic bandgap (IABG) structure, (iii) the fractal PnC, and (iv) the X-shaped PnC. Each unit cell has its unique frequency characteristic that was exploited to synthesize either cavity resonators or improve the performance of acoustic delay lines. The PBGs operate in the range of 770 MHz to 1 GHz and exhibit a maximum acoustic rejection of 40 dB. AIN Lamb wave transducers (LWTs) were employed for the experimental demonstration of the PBGs and cavity resonances. Ultra
25th Anniversary Article: Ordered Polymer Structures for the Engineering of Photons and Phonons
Lee, Jae-Hwang; Koh, Cheong Yang; Singer, Jonathan P; Jeon, Seog-Jin; Maldovan, Martin; Stein, Ori; Thomas, Edwin L
2014-01-01
The engineering of optical and acoustic material functionalities via construction of ordered local and global architectures on various length scales commensurate with and well below the characteristic length scales of photons and phonons in the material is an indispensable and powerful means to develop novel materials. In the current mature status of photonics, polymers hold a pivotal role in various application areas such as light-emission, sensing, energy, and displays, with exclusive advantages despite their relatively low dielectric constants. Moreover, in the nascent field of phononics, polymers are expected to be a superior material platform due to the ability for readily fabricated complex polymer structures possessing a wide range of mechanical behaviors, complete phononic bandgaps, and resonant architectures. In this review, polymer-centric photonic and phononic crystals and metamaterials are highlighted, and basic concepts, fabrication techniques, selected functional polymers, applications, and emerging ideas are introduced. PMID:24338738
Nanoscale interface engineering in ZnO twin nanorods for proposed phonon tunnel devices.
Singh, Avanendra; Senapati, Kartik; Satpati, Biswarup; Kumar, Mohit; Sahoo, Pratap K
2015-02-14
Zinc oxide twin nanorods, with two identical crystalline sections connected by an amorphous layer, were reproducibly grown using a simple one-step hydrothermal technique. The thickness of the amorphous layer between the crystalline segments was tunable with growth parameters, as confirmed by high resolution transmission electron microscopy. The photoluminescence spectra of these twin nanorods exhibit strong near band edge emission in the UV range, with convoluted phonon sidebands. De-convolution analyses of these spectra showed that the amorphous interlayers act as effective phonon barriers beyond a certain thickness. Such oriented grown individual crystalline-amorphous-crystalline structures may be a suitable test system for fundamental studies of phonon tunneling in the nanostructure. While physical vapor deposition techniques are seriously constrained in realizing crystalline-amorphous-crystalline structures, our results show the viability of engineering embedded interfaces via chemical routes. PMID:25572135
Specific heat of twisted bilayer graphene: Engineering phonons by atomic plane rotations
Nika, Denis L.; Cocemasov, Alexandr I.; Balandin, Alexander A.
2014-07-21
We have studied the phonon specific heat in single-layer, bilayer, and twisted bilayer graphene. The calculations were performed using the Born-von Karman model of lattice dynamics for intralayer atomic interactions and spherically symmetric interatomic potential for interlayer interactions. We found that at temperature T < 15 K, specific heat varies with temperature as T{sup n}, where n = 1 for graphene, n = 1.6 for bilayer graphene, and n = 1.3 for the twisted bilayer graphene. The phonon specific heat reveals an intriguing dependence on the twist angle in bilayer graphene, which is particularly pronounced at low temperature. The results suggest a possibility of phonon engineering of thermal properties of layered materials by twisting the atomic planes.
Phonon Spectrum Engineering in Rolled-up Micro- and Nano-Architectures
Fomin, Vladimir M.; Balandin, Alexander A.
2015-10-10
We report on a possibility of efficient engineering of the acoustic phonon energy spectrum in multishell tubular structures produced by a novel high-tech method of self-organization of micro- and nano-architectures. The strain-driven roll-up procedure paved the way for novel classes of metamaterials such as single semiconductor radial micro- and nano-crystals and multi-layer spiral micro- and nano-superlattices. The acoustic phonon dispersion is determined by solving the equations of elastodynamics for InAs and GaAs material systems. It is shown that the number of shells is an important control parameter of the phonon dispersion together with the structure dimensions and acoustic impedance mismatch between the superlattice layers. The obtained results suggest that rolled up nano-architectures are promising for thermoelectric applications owing to a possibility of significant reduction of the thermal conductivity without degradation of the electronic transport.
Phonon Spectrum Engineering in Rolled-up Micro- and Nano-Architectures
Fomin, Vladimir M.; Balandin, Alexander A.
2015-10-10
We report on a possibility of efficient engineering of the acoustic phonon energy spectrum in multishell tubular structures produced by a novel high-tech method of self-organization of micro- and nano-architectures. The strain-driven roll-up procedure paved the way for novel classes of metamaterials such as single semiconductor radial micro- and nano-crystals and multi-layer spiral micro- and nano-superlattices. The acoustic phonon dispersion is determined by solving the equations of elastodynamics for InAs and GaAs material systems. It is shown that the number of shells is an important control parameter of the phonon dispersion together with the structure dimensions and acoustic impedance mismatchmore » between the superlattice layers. The obtained results suggest that rolled up nano-architectures are promising for thermoelectric applications owing to a possibility of significant reduction of the thermal conductivity without degradation of the electronic transport.« less
El-Kady, Ihab F.; Olsson, Roy H.
2012-01-10
Phononic crystals that have the ability to modify and control the thermal black body phonon distribution and the phonon component of heat transport in a solid. In particular, the thermal conductivity and heat capacity can be modified by altering the phonon density of states in a phononic crystal. The present invention is directed to phononic crystal devices and materials such as radio frequency (RF) tags powered from ambient heat, dielectrics with extremely low thermal conductivity, thermoelectric materials with a higher ratio of electrical-to-thermal conductivity, materials with phononically engineered heat capacity, phononic crystal waveguides that enable accelerated cooling, and a variety of low temperature application devices.
Noise Reduction using Frequency Sub-Band Adaptive Spectral Subtraction
NASA Technical Reports Server (NTRS)
Kozel, David
2000-01-01
A frequency sub-band based adaptive spectral subtraction algorithm is developed to remove noise from noise-corrupted speech signals. A single microphone is used to obtain both the noise-corrupted speech and the estimate of the statistics of the noise. The statistics of the noise are estimated during time frames that do not contain speech. These statistics are used to determine if future time frames contain speech. During speech time frames, the algorithm determines which frequency sub-bands contain useful speech information and which frequency sub-bands contain only noise. The frequency sub-bands, which contain only noise, are subtracted off at a larger proportion so the noise does not compete with the speech information. Simulation results are presented.
Computationally efficient sub-band coding of ECG signals.
Husøy, J H; Gjerde, T
1996-03-01
A data compression technique is presented for the compression of discrete time electrocardiogram (ECG) signals. The compression system is based on sub-band coding, a technique traditionally used for compressing speech and images. The sub-band coder employs quadrature mirror filter banks (QMF) with up to 32 critically sampled sub-bands. Both finite impulse response (FIR) and the more computationally efficient infinite impulse response (IIR) filter banks are considered as candidates in a complete ECG coding system. The sub-bands are threshold, quantized using uniform quantizers and run-length coded. The output of the run-length coder is further compressed by a Huffman coder. Extensive simulations indicate that 16 sub-bands are a suitable choice for this application. Furthermore, IIR filter banks are preferable due to their superiority in terms of computational efficiency. We conclude that the present scheme, which is suitable for real time implementation on a PC, can provide compression ratios between 5 and 15 without loss of clinical information. PMID:8673319
Sub-band/transform compression of video sequences
NASA Technical Reports Server (NTRS)
Sauer, Ken; Bauer, Peter
1992-01-01
The progress on compression of video sequences is discussed. The overall goal of the research was the development of data compression algorithms for high-definition television (HDTV) sequences, but most of our research is general enough to be applicable to much more general problems. We have concentrated on coding algorithms based on both sub-band and transform approaches. Two very fundamental issues arise in designing a sub-band coder. First, the form of the signal decomposition must be chosen to yield band-pass images with characteristics favorable to efficient coding. A second basic consideration, whether coding is to be done in two or three dimensions, is the form of the coders to be applied to each sub-band. Computational simplicity is of essence. We review the first portion of the year, during which we improved and extended some of the previous grant period's results. The pyramid nonrectangular sub-band coder limited to intra-frame application is discussed. Perhaps the most critical component of the sub-band structure is the design of bandsplitting filters. We apply very simple recursive filters, which operate at alternating levels on rectangularly sampled, and quincunx sampled images. We will also cover the techniques we have studied for the coding of the resulting bandpass signals. We discuss adaptive three-dimensional coding which takes advantage of the detection algorithm developed last year. To this point, all the work on this project has been done without the benefit of motion compensation (MC). Motion compensation is included in many proposed codecs, but adds significant computational burden and hardware expense. We have sought to find a lower-cost alternative featuring a simple adaptation to motion in the form of the codec. In sequences of high spatial detail and zooming or panning, it appears that MC will likely be necessary for the proposed quality and bit rates.
Formation of a protected sub-band for conduction in quantum point contacts under extreme biasing
NASA Astrophysics Data System (ADS)
Lee, J.; Han, J. E.; Xiao, S.; Song, J.; Reno, J. L.; Bird, J. P.
2014-02-01
Managing energy dissipation is critical to the scaling of current microelectronics and to the development of novel devices that use quantum coherence to achieve enhanced functionality. To this end, strategies are needed to tailor the electron-phonon interaction, which is the dominant mechanism for cooling non-equilibrium (`hot') carriers. In experiments aimed at controlling the quantum state, this interaction causes decoherence that fundamentally disrupts device operation. Here, we show a contrasting behaviour, in which strong electron-phonon scattering can instead be used to generate a robust mode for electrical conduction in GaAs quantum point contacts, driven into extreme non-equilibrium by nanosecond voltage pulses. When the amplitude of these pulses is much larger than all other relevant energy scales, strong electron-phonon scattering induces an attraction between electrons in the quantum-point-contact channel, which leads to the spontaneous formation of a narrow current filament and to a renormalization of the electronic states responsible for transport. The lowest of these states coalesce to form a sub-band separated from all others by an energy gap larger than the source voltage. Evidence for this renormalization is provided by a suppression of heating-related signatures in the transient conductance, which becomes pinned near 2e2/h (e, electron charge; h, Planck constant) for a broad range of source and gate voltages. This collective non-equilibrium mode is observed over a wide range of temperature (4.2-300 K) and may provide an effective means to manage electron-phonon scattering in nanoscale devices.
NASA Technical Reports Server (NTRS)
Rippert, Edward D.; Ketterson, John B.; Chen, Jun; Song, Shenian; Lomatch, Susanne; Maglic, Stevan R.; Thomas, Christopher; Cheida, M. A.; Ulmer, Melville P.
1992-01-01
An engineered structure is proposed that can alleviate quasi-particle recombination losses via the existence of a phononic band gap that overlaps the 2-Delta energy of phonons produced during recombination of quasi-particles. Attention is given to a 1D Kronig-Penny model for phonons normally incident to the layers of a multilayered superconducting tunnel junction as an idealized example. A device with a high density of Bragg resonances is identified as desirable; both Nb/Si and NbN/SiN superlattices have been produced, with the latter having generally superior performance.
Phonon manipulation with phononic crystals.
Kim Bongsang; Hopkins, Patrick Edward; Leseman, Zayd C.; Goettler, Drew F.; Su, Mehmet F.; El-Kady, Ihab Fathy; Reinke, Charles M.; Olsson, Roy H., III
2012-01-01
In this work, we demonstrated engineered modification of propagation of thermal phonons, i.e. at THz frequencies, using phononic crystals. This work combined theoretical work at Sandia National Laboratories, the University of New Mexico, the University of Colorado Boulder, and Carnegie Mellon University; the MESA fabrication facilities at Sandia; and the microfabrication facilities at UNM to produce world-leading control of phonon propagation in silicon at frequencies up to 3 THz. These efforts culminated in a dramatic reduction in the thermal conductivity of silicon using phononic crystals by a factor of almost 30 as compared with the bulk value, and about 6 as compared with an unpatterned slab of the same thickness. This work represents a revolutionary advance in the engineering of thermoelectric materials for optimal, high-ZT performance. We have demonstrated the significant reduction of the thermal conductivity of silicon using phononic crystal structuring using MEMS-compatible fabrication techniques and in a planar platform that is amenable to integration with typical microelectronic systems. The measured reduction in thermal conductivity as compared to bulk silicon was about a factor of 20 in the cross-plane direction [26], and a factor of 6 in the in-plane direction. Since the electrical conductivity was only reduced by a corresponding factor of about 3 due to the removal of conductive material (i.e., porosity), and the Seebeck coefficient should remain constant as an intrinsic material property, this corresponds to an effective enhancement in ZT by a factor of 2. Given the number of papers in literature devoted to only a small, incremental change in ZT, the ability to boost the ZT of a material by a factor of 2 simply by reducing thermal conductivity is groundbreaking. The results in this work were obtained using silicon, a material that has benefitted from enormous interest in the microelectronics industry and that has a fairly large thermoelectric power
A Multiple-Channel Sub-Band Transient Detection System
David A. Smith
1998-11-01
We have developed a unique multiple-channel sub-band transient detection system to record transient electromagnetic signals in carrier-dominated radio environments; the system has been used to make unique observations of weak, transient HF signals. The detection system has made these observations possible through improved sensitivity compared to conventional broadband transient detection systems; the sensitivity improvement is estimated to be at least 20 dB. The increase in sensitivity has been achieved through subdivision of the band of interest (an 18 MHz tunable bandwidth) into eight sub-band independent detection channels, each with a 400 kHz bandwidth and its own criteria. The system generates a system trigger signal when a predetermined number of channels (typically five) trigger within a predetermined window of time (typically 100 ~s). Events are recorded with a broadband data acquisition system sampling at 50 or 100 Msample/s, so despite the fact that the detection system operates on portions of the signal confined to narrow bands, data acquisition is broadband. Between May and September of 1994, the system was used to detect and record over six thousand transient events in the frequency band from 3 to 30 MHz. Approximately 500 of the events have been characterized as paired bursts of radio noise with individual durations of 2 to 10 ps and separations between the bursts of 5 to 160 ps. The paired transients are typically 5 to 40 dB brighter than the background electromagnetic spectrum between carrier signals. We have termed these events SubIonospheric Pulse Pairs (SIPPS) and presently have no explanation as to their source. Our observations of SIPPS resemble observations of TransIonospheric Pulse Pairs (TIPPs) recorded by the Blackboard instrument on the ALEXIS satellite; the source of TIPP events is also unknown. Most of the recorded SIPP events do not exhibit frequency dispersion, implying propagation along a line-of-sight (groundwave) path; but seven of
The FORTE receiver and sub-band triggering unit
Enemark, D.C.; Shipley, M.E.
1994-08-01
The FORTE payload receiver and trigger unit represent a significant advance over the currently flying BLACKBEARD payload aboard the ALEXIS satellite. Not only is the polarization sensitive antenna array massive compared to the BLACKBEARD monopole, but the event triggering scheme is completely different. Electromagnetic pulses (EWs) are dispersed when they pass through the ionosphere creating a chirped frequency signal which can be helpful in discriminating between natural and man-made signals. Payloads designed to digitize and store the RF signatures of these signals must include sophisticated triggering circuitry to select events of interest and prevent false alarms from wasting the available memory storage resources. The FORTE wideband receiver tunes from 20 to 320 MHz with eight sub-band trigger channels distributed across the 20 MHz IF bandwidth. The conditions which must be satisfied to generate an event trigger are processor controlled. Early testing of the prototype indicates an ability to reliably trigger on chirped RF signals several dB below the noise level. FORTE is scheduled to be launched with a Pegasus XL vehicle in late 1995.
Streyer, W.; Law, S.; Rosenberg, A.; Wasserman, D.; Roberts, C.; Podolskiy, V. A.; Hoffman, A. J.
2014-03-31
We demonstrate excitation of surface phonon polaritons on patterned gallium phosphide surfaces. Control over the light-polariton coupling frequencies is demonstrated by changing the pattern periodicity and used to experimentally determine the gallium phosphide surface phonon polariton dispersion curve. Selective emission via out-coupling of thermally excited surface phonon polaritons is experimentally demonstrated. Samples are characterized experimentally by Fourier transform infrared reflection and emission spectroscopy, and modeled using finite element techniques and rigorous coupled wave analysis. The use of phonon resonances for control of emissivity and excitation of bound surface waves offers a potential tool for the exploration of long-wavelength Reststrahlen band frequencies.
Liu, Yong; Xu, Wei; Liu, Da-Bo; Yu, Meijuan; Lin, Yuan-Hua; Nan, Ce-Wen
2015-05-01
Ga doped In2O3-based thermoelectric materials were prepared by spark plasma sintering (SPS) using sintered powders in the low temperature solid phase. The solubility of Ga in In2O3 is about 10 at%, much larger than other elements such as Ge, Ce, etc. The larger solubility of Ga allows us to optimize the thermal and electrical transport properties of Ga doped In2O3 in a wider window. While tuning the concentration of dopants, the thermoelectric performance of Ga doped In2O3 was enhanced through a synergistic approach combining band-gap engineering and phonon suppression. The power factor increases from ∼0.5 × 10(-4) to ∼9.6 × 10(-4) W mK(-2) at 700 °C while thermal conductivity reduces from ∼4 to ∼2 W mK(-1) at 700 °C in In1.9Ga0.1O3. The maximum ZT of 0.37, increased by a factor of 4 from the pristine In2O3, is achieved in In1.9Ga0.1O3 at 700 °C. PMID:25829235
Manipulation of thermal phonons
NASA Astrophysics Data System (ADS)
Hsu, Chung-Hao
Developing materials that can conduct electricity easily, but block the motion of phonons is necessary in the applications of thermoelectric devices, which can generate electricity from temperature differences. In converse, a key requirement as chips get faster is to obtain better ways to dissipate heat. Controlling heat transfer in these crystalline materials devices --- such as silicon --- is important. The heat is actually the motion or vibration of atoms known as phonons. Finding ways to manipulate the behavior of phonons is crucial for both energy applications and the cooling of integrated circuits. A novel class of artificially periodic structured materials --- phononic crystals --- might make manipulation of thermal phonons possible. In many fields of physical sciences and engineering, acoustic wave propagation in solids attracts many researchers. Wave propagation phenomena can be analyzed by mathematically solving the acoustic wave equation. However, wave propagation in inhomogeneous media with various geometric structures is too complex to find an exact solution. Hence, the Finite Difference Time Domain method is developed to investigate these complicated problems. In this work, the Finite-Difference Time-Domain formula is derived from acoustic wave equations based on the Taylor's expansion. The numerical dispersion and stability problems are analyzed. In addition, the convergence conditions of numerical acoustic wave are stated. Based on the periodicity of phononic crystal, the Bloch's theorem is applied to fulfill the periodic boundary condition of the FDTD method. Then a wide-band input signal is used to excite various acoustic waves with different frequencies. In the beginning of the calculation process, the wave vector is chosen and fixed. By means of recording the displacement field and taking the Fourier transformation, we can obtain the eigenmodes from the resonance peaks of the spectrum and draw the dispersion relation curve of acoustic waves
Design and implementation of a hybrid sub-band acoustic echo canceller (AEC)
NASA Astrophysics Data System (ADS)
Bai, Mingsian R.; Yang, Cheng-Ken; Hur, Ker-Nan
2009-04-01
An efficient method is presented for implementing an acoustic echo canceller (AEC) that makes use of hybrid sub-band approach. The hybrid system is comprised of a fixed processor and an adaptive filter in each sub-band. The AEC aims at reducing the echo resulting from the acoustic feedback in loudspeaker-enclosure-microphone (LEM) systems such as teleconferencing and hands-free systems. In order to cancel the acoustical echo efficiently, various processing architectures including fixed filters, hybrid processors, and sub-band structure are investigated. A double-talk detector is incorporated into the proposed AEC to prevent the adaptive filter from diverging in double-talk situations. A de-correlation filter is also used alongside sub-band processing in order to enhance the performance and efficiency of AEC. All algorithms are implemented and verified on the platform of a fixed-point digital signal processor (DSP). The AECs are evaluated in terms of cancellation performance and computation complexity. In addition, listening tests are conducted to assess the subjective performance of the AECs. From the results, the proposed hybrid sub-band AEC was found to be the most effective among all methods in terms of echo reduction and timbral quality.
Sharma, A.; Dhar, S. Singh, B. P.; Nayak, C.; Bhattacharyya, D.; Jha, S. N.
2013-12-07
A compressive hydrostatic strain has been found to develop in the ZnO lattice as a result of accumulation of Tb ions on the surface of the nanoparticles for Tb mole-fraction less than 0.04. This hydrostatic strain can be controlled up to ≈14 GPa by varying the Tb mole-fraction. Here, we have utilized this novel technique of surface strain engineering through Tb doping for introducing hydrostatic compressive strain in the lattice to study the pressure dependent electronic and vibrational properties of ZnO nanoparticles. Our study reveals that when subjected to pressure, nanoparticles of ZnO behave quite differently than bulk in many aspects. Unlike bulk ZnO, which is reported to go through a wurtzite to rock-salt structural phase transition at ≈8 GPa, ZnO nanoparticles do not show such transition and remain in wurtzite phase even at 14 GPa of pressure. Furthermore, the Grüneisen parameters for the optical phonon modes are found to be order of magnitude smaller in ZnO nanoparticles as compared to bulk. Our study also suggests an increase of the dielectric constant with pressure, which is opposite to what has been reported for bulk ZnO. Interestingly, it has also been found that the exciton-phonon interaction depends strongly upon pressure in this system. The exciton-phonon coupling has been found to decrease as pressure increases. A variational technique has been adopted to theoretically calculate the exciton-LO phonon coupling coefficient in ZnO nanoparticles as a function of pressure, which shows a good agreement with the experimental results. These findings imply that surface engineering of ZnO nanoparticles with Tb could indeed be an efficient tool to enhance and control the optical performance of this material.
Giant phonon anomaly associated with superconducting fluctuations in the pseudogap phase of cuprates
Liu, Ye-Hua; Konik, Robert M.; Rice, T. M.; Zhang, Fu-Chun
2016-01-01
The pseudogap in underdoped cuprates leads to significant changes in the electronic structure, and was later found to be accompanied by anomalous fluctuations of superconductivity and certain lattice phonons. Here we propose that the Fermi surface breakup due to the pseudogap, leads to a breakup of the pairing order into two weakly coupled sub-band amplitudes, and a concomitant low energy Leggett mode due to phase fluctuations between them. This increases the temperature range of superconducting fluctuations containing an overdamped Leggett mode. In this range inter-sub-band phonons show strong damping due to resonant scattering into an intermediate state with a pair of overdamped Leggett modes. In the ordered state, the Leggett mode develops a finite energy, changing the anomalous phonon damping into an anomaly in the dispersion. This proposal explains the intrinsic connection between the anomalous pseudogap phase, enhanced superconducting fluctuations and giant anomalies in the phonon spectra. PMID:26785835
Giant phonon anomaly associated with superconducting fluctuations in the pseudogap phase of cuprates
Liu, Ye-Hua; Konik, Robert M.; Rice, T. M.; Zhang, Fu-Chun
2016-01-20
The pseudogap in underdoped cuprates leads to significant changes in the electronic structure, and was later found to be accompanied by anomalous fluctuations of superconductivity and certain lattice phonons. Here we propose that the Fermi surface breakup due to the pseudogap, leads to a breakup of the pairing order into two weakly coupled sub-band amplitudes, and a concomitant low energy Leggett mode due to phase fluctuations between them. This increases the temperature range of superconducting fluctuations containing an overdamped Leggett mode. In this range inter-sub-band phonons show strong damping due to resonant scattering into an intermediate state with a pairmore » of overdamped Leggett modes. In the ordered state, the Leggett mode develops a finite energy, changing the anomalous phonon damping into an anomaly in the dispersion. Finally, this proposal explains the intrinsic connection between the anomalous pseudogap phase, enhanced superconducting fluctuations and giant anomalies in the phonon spectra.« less
NASA Astrophysics Data System (ADS)
Tian, Ruoming; Kearley, Gordon J.; Yu, Dehong; Ling, Chris D.; Pham, Anh; Embs, Jan P.; Shoko, Elvis; Li, Sean
2016-07-01
Phonons in condensed matter materials transmit energy through atomic lattices as coherent vibrational waves. Like electronic and photonic properties, an improved understanding of phononic properties is essential for the development of functional materials, including thermoelectric materials. Recently, an Einstein rattling mode was found in thermoelectric material Na0.8CoO2, due to the large displacement of Na between the [CoO2] layers. In this work, we have realized a different type of rattler in another thermoelectric material Ca3Co4O9 by chemical doping, which possesses the same [CoO2] layer as Na0.8CoO2. It remarkably suppressed the thermal conductivity while enhancing its electrical conductivity. This new type of rattler was investigated by inelastic neutron scattering experiments in conjunction with ab-initio molecular dynamics simulations. We found that the large mass of dopant rather than the large displacement is responsible for such rattling in present study, which is fundamentally different from skutterudites, clathrates as well as Na analogue. We have also tentatively studied the phonon band structure of this material by DFT lattice dynamics simulation, showing the relative contribution to phonons in the distinct layers of Ca3Co4O9.
Tian, Ruoming; Kearley, Gordon J; Yu, Dehong; Ling, Chris D; Pham, Anh; Embs, Jan P; Shoko, Elvis; Li, Sean
2016-01-01
Phonons in condensed matter materials transmit energy through atomic lattices as coherent vibrational waves. Like electronic and photonic properties, an improved understanding of phononic properties is essential for the development of functional materials, including thermoelectric materials. Recently, an Einstein rattling mode was found in thermoelectric material Na0.8CoO2, due to the large displacement of Na between the [CoO2] layers. In this work, we have realized a different type of rattler in another thermoelectric material Ca3Co4O9 by chemical doping, which possesses the same [CoO2] layer as Na0.8CoO2. It remarkably suppressed the thermal conductivity while enhancing its electrical conductivity. This new type of rattler was investigated by inelastic neutron scattering experiments in conjunction with ab-initio molecular dynamics simulations. We found that the large mass of dopant rather than the large displacement is responsible for such rattling in present study, which is fundamentally different from skutterudites, clathrates as well as Na analogue. We have also tentatively studied the phonon band structure of this material by DFT lattice dynamics simulation, showing the relative contribution to phonons in the distinct layers of Ca3Co4O9. PMID:27456817
Tian, Ruoming; Kearley, Gordon J.; Yu, Dehong; Ling, Chris D.; Pham, Anh; Embs, Jan P.; Shoko, Elvis; Li, Sean
2016-01-01
Phonons in condensed matter materials transmit energy through atomic lattices as coherent vibrational waves. Like electronic and photonic properties, an improved understanding of phononic properties is essential for the development of functional materials, including thermoelectric materials. Recently, an Einstein rattling mode was found in thermoelectric material Na0.8CoO2, due to the large displacement of Na between the [CoO2] layers. In this work, we have realized a different type of rattler in another thermoelectric material Ca3Co4O9 by chemical doping, which possesses the same [CoO2] layer as Na0.8CoO2. It remarkably suppressed the thermal conductivity while enhancing its electrical conductivity. This new type of rattler was investigated by inelastic neutron scattering experiments in conjunction with ab-initio molecular dynamics simulations. We found that the large mass of dopant rather than the large displacement is responsible for such rattling in present study, which is fundamentally different from skutterudites, clathrates as well as Na analogue. We have also tentatively studied the phonon band structure of this material by DFT lattice dynamics simulation, showing the relative contribution to phonons in the distinct layers of Ca3Co4O9. PMID:27456817
Electronic Band Structure and Sub-band-gap Absorption of Nitrogen Hyperdoped Silicon
Zhu, Zhen; Shao, Hezhu; Dong, Xiao; Li, Ning; Ning, Bo-Yuan; Ning, Xi-Jing; Zhao, Li; Zhuang, Jun
2015-01-01
We investigated the atomic geometry, electronic band structure, and optical absorption of nitrogen hyperdoped silicon based on first-principles calculations. The results show that all the paired nitrogen defects we studied do not introduce intermediate band, while most of single nitrogen defects can introduce intermediate band in the gap. Considering the stability of the single defects and the rapid resolidification following the laser melting process in our sample preparation method, we conclude that the substitutional nitrogen defect, whose fraction was tiny and could be neglected before, should have considerable fraction in the hyperdoped silicon and results in the visible sub-band-gap absorption as observed in the experiment. Furthermore, our calculations show that the substitutional nitrogen defect has good stability, which could be one of the reasons why the sub-band-gap absorptance remains almost unchanged after annealing. PMID:26012369
NASA Astrophysics Data System (ADS)
Perrin, Bernard
2007-06-01
phonons can help tracking dark matter. These 328 presentations gave rise to 185 articles published in the present proceedings. The traditional topics of this conference series (phonons in superconductors and new materials, lattice dynamics, phonons in glasses and disordered materials, phase transitions, light, neutrons and x-ray inelastic scattering) were still very important in the scientific program but an increasing number of contributions occurred in the fields of coherent phonon generation, phonons in nanoscaled structures and nano/micro thermal phonon transport, expressing the growing involvement of condensed matter physicists in nanosciences. Areas like acoustic solitons and phononic crystals are now well established. Two noteworthy contributions have been brought in the long term quest for an operational SASER : one by Harold De Wijn's group from Utrecht in the classical ruby system and another one by Anthony Kent's group from Nottingham, who used semiconductor nanodevices to realize both an amplifying medium and a cavity. With these semiconductor devices the possibility for engineering, generation and detection of THz acoustic phonons are now imminent. By tradition, a prize is awarded every three years at the International Conference on Phonon Scattering in Condensed Matter to honour a scientist for his outstanding contributions to the field of phonon physics. For this twelfth edition, Humphrey Maris has been honoured for his numerous breakthroughs in the physics of phonons and quantum fluids. According to the words of James Wolfe 'Humphrey Maris has delighted and innovated the members of our phonon community with an entertaining style and challenging wit'. Prizes were also awarded for the best presentations during the poster sessions. The two winners were Peter van Capel from Utrecht, Netherlands, ('Simulations of acoustic soliton-induced chirping of exciton resonances') and Patrick Emery from Lille, France, ('Acoustic attenuation in silica in the 100-250 GHz
Sub-band processing for grating lobe disambiguation in sparse arrays
NASA Astrophysics Data System (ADS)
Hersey, Ryan K.; Culpepper, Edwin
2014-06-01
Combined synthetic aperture radar (SAR) and ground moving target indication (GMTI) radar modes simultaneously generate SAR and GMTI products from the same radar data. This hybrid mode provides the benefit of combined imaging and moving target displays as well as improved target recognition. However, the differing system, antenna, and waveform requirements between SAR and GMTI modes make implementing the hybrid mode challenging. The Air Force Research Laboratory (AFRL) Gotcha radar has collected wide-bandwidth, multi-channel data that can be used for both SAR and GMTI applications. The spatial channels on the Gotcha array are sparsely separated, which causes spatial grating lobes during the digital beamforming process. Grating lobes have little impact on SAR, which typically uses a single spatial channel. However, grating lobes have a large impact on GMTI, where spatial channels are used to mitigate clutter and estimate the target angle of arrival (AOA). The AOA ambiguity has a significant impact in the Gotcha data, where detections from the sidelobes and skirts of the mainlobe wrap back into the main scene causing a significant number of false alarms. This paper presents a sub-banding method to disambiguate grating lobes in the GMTI processing. This method divides the wideband SAR data into multiple frequency sub-bands. Since each sub-band has a different center frequency, the grating lobes for each sub-band appear at different angles. The method uses this variation to disambiguate target returns and places them at the correct angle of arrival (AOA). Results are presented using AFRL Gotcha radar data.
Otelaja, O. O.; Robinson, R. D.
2015-10-26
In this work, the mechanism for enhanced phonon backscattering in silicon is investigated. An understanding of phonon propagation through substrates has implications for engineering heat flow at the nanoscale, for understanding sources of decoherence in quantum systems, and for realizing efficient phonon-mediated particle detectors. In these systems, phonons that backscatter from the bottom of substrates, within the crystal or from interfaces, often contribute to the overall detector signal. We utilize a microscale phonon spectrometer, comprising superconducting tunnel junction emitters and detectors, to specifically probe phonon backscattering in silicon substrates (∼500 μm thick). By etching phonon “enhancers” or deep trenches (∼90 μm) around the detectors, we show that the backscattered signal level increases by a factor of ∼2 for two enhancers versus one enhancer. Using a geometric analysis of the phonon pathways, we show that the mechanism of the backscattered phonon enhancement is due to confinement of the ballistic phonon pathways and increased scattering off the enhancer walls. Our result is applicable to the geometric design and patterning of substrates that are employed in phonon-mediated detection devices.
NASA Astrophysics Data System (ADS)
Cocemasov, A. I.; Nika, D. L.; Fomin, V. M.; Grimm, D.; Schmidt, O. G.
2015-07-01
The transition between nanoscale and microscale thermal transport regime at room temperature in silicon wires with constant and periodically modulated cross-section is theoretically investigated. Extrapolating the calculated thermal conductivity from the nano- to micrometer range, we find the characteristic dimensions of the wires where a crossover between nanoscale and microscale thermal transport occurs. This crossover is observed in both generic (smooth) and cross-section-modulated wires. In case of smooth silicon wires, we reveal a strong dependence of the crossing point position on the boundary roughness. For silicon wires with weak boundary roughness, the crossover occurs at cross-sections ˜60 nm × 300 nm, while for very rough boundaries it occurs at cross-sections ˜150 nm × 750 nm. In case of the periodically modulated wires, the crossover between nano- and microscale regimes occurs at typical cross-sections ˜120 nm × 120 nm of the narrow segment, and it is almost independent of boundary roughness. A strong distinction from the case of smooth wires is attributed (i) to the different trends at the nanometer scale, wherefrom the extrapolation was performed, and (ii) to the different phonon-boundary scattering due to the specific geometry. For modulated silicon wires, the influence of modulation thickness, modulation length, and cross-sectional area on the phonon thermal conductivity at the room temperature is analyzed. A possibility of thermal transport engineering in cross-section-modulated wires by resizing them is revealed in both nano- and microscale regimes. The presented results pave the way towards a better understanding of thermal transport reduction in Si nanowires with engineered diameter modulations and shed light on the crossover between nano- and microscale regimes of thermal transport.
NASA Astrophysics Data System (ADS)
Pourghasemi, Mahyar; Garg, Jivtesh
2015-03-01
There is a huge desire to increase operation speeds in modern integrated circuits as they get more compact. Heat generation in such a submicron devices is a key factor limiting their performances. As a solution, thermoelectric cooling in heterostructures can address heat dissipation issue in submicron devices. Performance of single barrier heterostructures depends strongly on several parameters including barrier height, barrier width and thermal conductivity of barrier. Superlattice structures have been known to have the lowest thermal conductivities reported for crystalline materials. Low thermal conductivity is beneficial for thermoelectric cooling as it reduces the heat flow from hot end to cold junction. Moreover the band offset between the barrier and base material can be easily tuned by changing the superlattice period. By optimizing the conduction band offset (barrier height), it is possible to control the Joule heating and also optimize the amount of heat absorbed due to Peltier cooling. We investigate the feasibility of using PbSe/PbSnSe superlattice in heterostructures using Monte Carlo simulation. The effect of different parameters such as barrier height, barrier width and superlattice thermal conductivity on thermoelectric cooling of such structures will be presented.
Coherent phonon modulation by nanoscale acoustically mismatched interface
NASA Astrophysics Data System (ADS)
Yu, Shangjie; Ouyang, Min
2015-03-01
Precise engineering of phonon spectrum by material design is essential for in-depth understanding of fundamental physical phenomena as well as new technology breakthrough. When phonons propagate through two different constituents, their mismatched interface can coherently modulate phonon spectrum. In this talk, we will demonstrate the phonon characteristics can be precisely tailored through nanoscale interfacial coupling by investigating acoustically mismatched core-shell hetero-nanostructures with ultrafast pump-probe technique. Coherent phonon coupling between core and shell through their interface has been experimentally revealed, which agrees well with theoretical simulation. This interfacial phonon coupling also represents a unique fingerprint of complex nanostructures.
Improving solar cell efficiencies by up-conversion of sub-band-gap light
NASA Astrophysics Data System (ADS)
Trupke, T.; Green, M. A.; Würfel, P.
2002-10-01
A system for solar energy conversion using the up-conversion of sub-band-gap photons to increase the maximum efficiency of a single-junction conventional, bifacial solar cell is discussed. An up-converter is located behind a solar cell and absorbs transmitted sub-band-gap photons via sequential ground state absorption/excited state absorption processes in a three-level system. This generates an excited state in the up-converter from which photons are emitted which are subsequently absorbed in the solar cell and generate electron-hole pairs. The solar energy conversion efficiency of this system in the radiative limit is calculated for different cell geometries and different illumination conditions using a detailed balance model. It is shown that in contrast to an impurity photovoltaic solar cell the conditions of photon selectivity and of complete absorption of high-energy photons can be met simultaneously in this system by restricting the widths of the bands in the up-converter. The upper limit of the energy conversion efficiency of the system is found to be 63.2% for concentrated sunlight and 47.6% for nonconcentrated sunlight.
NASA Astrophysics Data System (ADS)
Limaye, Mukta V.; Chen, S. C.; Lee, C. Y.; Chen, L. Y.; Singh, Shashi B.; Shao, Y. C.; Wang, Y. F.; Hsieh, S. H.; Hsueh, H. C.; Chiou, J. W.; Chen, C. H.; Jang, L. Y.; Cheng, C. L.; Pong, W. F.; Hu, Y. F.
2015-06-01
The correlation between sub-band gap absorption and the chemical states and electronic and atomic structures of S-hyperdoped Si have been extensively studied, using synchrotron-based x-ray photoelectron spectroscopy (XPS), x-ray absorption near-edge spectroscopy (XANES), extended x-ray absorption fine structure (EXAFS), valence-band photoemission spectroscopy (VB-PES) and first-principles calculation. S 2p XPS spectra reveal that the S-hyperdoped Si with the greatest (~87%) sub-band gap absorption contains the highest concentration of S2- (monosulfide) species. Annealing S-hyperdoped Si reduces the sub-band gap absorptance and the concentration of S2- species, but significantly increases the concentration of larger S clusters [polysulfides (Sn2-, n > 2)]. The Si K-edge XANES spectra show that S hyperdoping in Si increases (decreased) the occupied (unoccupied) electronic density of states at/above the conduction-band-minimum. VB-PES spectra evidently reveal that the S-dopants not only form an impurity band deep within the band gap, giving rise to the sub-band gap absorption, but also cause the insulator-to-metal transition in S-hyperdoped Si samples. Based on the experimental results and the calculations by density functional theory, the chemical state of the S species and the formation of the S-dopant states in the band gap of Si are critical in determining the sub-band gap absorptance of hyperdoped Si samples.
Malekiha, Mahdi; Tselniker, Igor; Plant, David V
2015-12-14
We propose and experimentally demonstrate a novel sub-band multiplexed data architecture for chromatic dispersion (CD) mitigation. We have demonstrated 32 GBaud multi-sub-band (MSB) dual-polarization (DP) 16QAM transmission over 2400 km. Using this approach, the transmitted signal bandwidth is divided into multiple narrow-bandwidth sub-bands, each operating at a lower baud rate. Within each sub-band bandwidth, the CD frequency response can be approximated as a linear-phase band-pass filter, which can be considered as an analog delay that does not require compensation. Therefore, the resulting receiver digital signal processing (DSP) is simplified due to the removal of the CD compensation equalizer. In addition, this leads to efficient parallelization of DSP tasks by deploying multiple independent sub-band processors running at a lower clock rate. The proposed system reduces receiver computational complexity and offers 1 dB higher Kerr-nonlinearity tolerance and 2% extended transmission reach in comparison to the conventional single carrier systems. PMID:26699054
Trevisanutto, P. E.; Sushko, Petr V.; Beck, Kenneth M.; Joly, Alan G.; Hess, Wayne P.; Shluger, Alexander L.
2009-01-29
Nanoparticles of wide-band-gap materials MgO and CaO, subjected to low-intensity ultraviolet irradiation with 266 nm (4.66 eV) photons, emit hyperthermal oxygen atoms with kinetic energies up to ~ 0.4 eV. We use ab initio embedded cluster methods to study theoretically a variety of elementary photoinduced processes at both ideal and defect-containing surfaces of these nanoparticles and develop a mechanism for the desorption process. The proposed mechanism includes multiple local photoexcitations resulting in sequential formation of localized excitons, their ionization, and further excitations. It is suggested that judicious choice of sub-band-gap photon energies can be used to selectively modify surfaces of nanomaterials.
Study of sub band gap absorption of Sn doped CdSe thin films
NASA Astrophysics Data System (ADS)
Kaur, Jagdish; Rani, Mamta; Tripathi, S. K.
2014-04-01
The nanocrystalline thin films of Sn doped CdSe at different dopants concentration are prepared by thermal evaporation technique on glass substrate at room temperature. The effect of Sn doping on the optical properties of CdSe has been studied. A decrease in band gap value is observed with increase in Sn concentration. Constant photocurrent method (CPM) is used to study the absorption coefficient in the sub band gap region. Urbach energy has been obtained from CPM spectra which are found to increase with amount of Sn dopants. The refractive index data calculated from transmittance is used for the identification of oscillator strength and oscillator energy using single oscillator model which is found to be 7.7 and 2.12 eV, 6.7 and 2.5 eV for CdSe:Sn 1% and CdSe:Sn 5% respectively.
Study of sub band gap absorption of Sn doped CdSe thin films
Kaur, Jagdish; Rani, Mamta; Tripathi, S. K.
2014-04-24
The nanocrystalline thin films of Sn doped CdSe at different dopants concentration are prepared by thermal evaporation technique on glass substrate at room temperature. The effect of Sn doping on the optical properties of CdSe has been studied. A decrease in band gap value is observed with increase in Sn concentration. Constant photocurrent method (CPM) is used to study the absorption coefficient in the sub band gap region. Urbach energy has been obtained from CPM spectra which are found to increase with amount of Sn dopants. The refractive index data calculated from transmittance is used for the identification of oscillator strength and oscillator energy using single oscillator model which is found to be 7.7 and 2.12 eV, 6.7 and 2.5 eV for CdSe:Sn 1% and CdSe:Sn 5% respectively.
Thermally induced effect on sub-band gap absorption in Ag doped CdSe thin films
NASA Astrophysics Data System (ADS)
Kaur, Jagdish; Sharma, Kriti; Bharti, Shivani; Tripathi, S. K.
2015-05-01
Thin films of Ag doped CdSe have been prepared by thermal evaporation using inert gas condensation (IGC) method taking Argon as inert gas. The prepared thin films are annealed at 363 K for one hour. The sub-band gap absorption spectra in the as deposited and annealed thin films have been studied using constant photocurrent method (CPM). The absorption coefficient in the sub-band gap region is described by an Urbach tail in both as deposited and annealed thin films. The value of Urbach energy and number density of trap states have been calculated from the absorption coefficient in the sub-band gap region which have been found to increase after annealing treatment indicating increase in disorderness in the lattice. The energy distribution of the occupied density of states below Fermi level has also been studied using derivative procedure of absorption coefficient.
Manipulation of Phonons with Phononic Crystals
Leseman, Zayd Chad
2015-07-09
There were three research goals associated with this project. First, was to experimentally demonstrate phonon spectrum control at THz frequencies using Phononic Crystals (PnCs), i.e. demonstrate coherent phonon scattering with PnCs. Second, was to experimentally demonstrate analog PnC circuitry components at GHz frequencies. The final research goal was to gain a fundamental understanding of phonon interaction using computational methods. As a result of this work, 7 journal papers have been published, 1 patent awarded, 14 conference presentations given, 4 conference publications, and 2 poster presentations given.
Electron-phonon heat exchange in layered nano-systems
NASA Astrophysics Data System (ADS)
Anghel, D. V.; Cojocaru, S.
2016-02-01
We analyze the heat power P from electrons to phonons in thin metallic films deposited on free-standing dielectric membranes in a temperature range in which the phonon gas has a quasi two-dimensional distribution. The quantization of the electrons wavenumbers in the direction perpendicular to the film surfaces lead to the formation of quasi two-dimensional electronic sub-bands. The electron-phonon coupling is treated in the deformation potential model. If we denote by Te the electrons temperature and by Tph the phonons temperature, we find that P ≡P (0)(Te) -P (1)(Te ,Tph). Due to the quantization of the electronic states, both P (0) and P (1), plotted vs (Te , d) show very strong oscillations with d, forming sharp crests almost parallel to Te. From valley to crest, both P (0) and P (1) increase by more than one order of magnitude. In the valleys between the crests, P ∝ Te3.5-Tph3.5 in the low temperature limit, whereas on the crests P does not have a simple power law dependence on temperature. The strong modulation of P with the thickness of the film may provide a way to control the electron-phonon heat power and the power dissipation in thin metallic films. On the other hand, the surface imperfections of the metallic films can smoothen these modulations.
47 CFR 15.323 - Specific requirements for devices operating in the 1920-1930 MHz sub-band.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 1 2011-10-01 2011-10-01 false Specific requirements for devices operating in the 1920-1930 MHz sub-band. 15.323 Section 15.323 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Unlicensed Personal Communications Service Devices § 15.323 Specific requirements for devices operating in the...
Efficient snoring and breathing detection based on sub-band spectral statistics.
Sun, Xiang; Kim, Jin Young; Won, Yonggwan; Kim, Jung-Ja; Kim, Kyung-Ah
2015-01-01
Snoring, a common symptom in the general population may indicate the presence of obstructive sleep apnea (OSA). In order to detect snoring events in sleep sound recordings, a novel method was proposed in this paper. The proposed method operates by analyzing the acoustic characteristics of the snoring sounds. Based on these acoustic properties, the feature vectors are obtained using the mean and standard deviation of the sub-band spectral energy. A support vector machine is then applied to perform the frame-based classification procedure. This method was demonstrated experimentally to be effective for snoring detection. The database for detection included full-night audio recordings from four individuals who acknowledged having snoring habits. The performance of the proposed method was evaluated by classifying different events (snoring, breathing and silence) from the sleep sound recordings and comparing the classification against ground truth. The proposed algorithm was able to achieve an accuracy of 99.61% for detecting snoring events, 99.16% for breathing, and 99.55% for silence. PMID:26406075
Limaye, Mukta V.; Chen, S. C.; Lee, C. Y.; Chen, L. Y.; Singh, Shashi B.; Shao, Y. C.; Wang, Y. F.; Hsieh, S. H.; Hsueh, H. C.; Chiou, J. W.; Chen, C. H.; Jang, L. Y.; Cheng, C. L.; Pong, W. F.; Hu, Y. F.
2015-01-01
The correlation between sub-band gap absorption and the chemical states and electronic and atomic structures of S-hyperdoped Si have been extensively studied, using synchrotron-based x-ray photoelectron spectroscopy (XPS), x-ray absorption near-edge spectroscopy (XANES), extended x-ray absorption fine structure (EXAFS), valence-band photoemission spectroscopy (VB-PES) and first-principles calculation. S 2p XPS spectra reveal that the S-hyperdoped Si with the greatest (~87%) sub-band gap absorption contains the highest concentration of S2− (monosulfide) species. Annealing S-hyperdoped Si reduces the sub-band gap absorptance and the concentration of S2− species, but significantly increases the concentration of larger S clusters [polysulfides (Sn2−, n > 2)]. The Si K-edge XANES spectra show that S hyperdoping in Si increases (decreased) the occupied (unoccupied) electronic density of states at/above the conduction-band-minimum. VB-PES spectra evidently reveal that the S-dopants not only form an impurity band deep within the band gap, giving rise to the sub-band gap absorption, but also cause the insulator-to-metal transition in S-hyperdoped Si samples. Based on the experimental results and the calculations by density functional theory, the chemical state of the S species and the formation of the S-dopant states in the band gap of Si are critical in determining the sub-band gap absorptance of hyperdoped Si samples. PMID:26098075
Yang, Chunfan; Faust, Adam; Amit, Yorai; Gdor, Itay; Banin, Uri; Ruhman, Sanford
2016-05-19
The effect of Cu impurities on the absorption cross section, the rate of hot exction thermalization, and on exciton recombination processes in InAs quantum dots was studied by femtosecond transient absorption. Our findings reveal dynamic spectral effects of an emergent impurity sub-band near the bottom of the conduction band. Previously hypothesized to explain static photophysical properties of this system, its presence is shown to shorten hot carrier relaxation. Partial redistribution of interband oscillator strength to sub-band levels reduces the band edge bleach per exciton progressively with the degree of doping, even though the total linear absorption cross section at the band edge remains unchanged. In contrast, no doping effects were detected on absorption cross sections high in the conduction band, as expected due to the relatively high density of sates of the undoped QDs. PMID:26720008
NASA Astrophysics Data System (ADS)
Song, Xinfang; Wang, Wenyuan; Fu, Libin
2016-09-01
Oscillating electric field is chosen to investigate the electron-positron pair production process by using a quantum kinetic theory and the effective mass model [Phys. Rev. Lett. 112, 050402 (2014)]. The particle yield exhibits a characteristic oscillatory structure which is related to the multi-photon thresholds. The true peak positions are typically slightly above the naive threshold estimate, which is defined as frequency shift. During the numerical calculations, we find the frequency shift can be affected by the system parameters under adiabatic closing the external field, it is worthwhile to study in detail. In this paper, we investigate the frequency shift and the sub-band effect in electron-positron pair production with oscillating electric field. First, a quantum kinetic theory and the effective mass are presented to obtain the frequency shift, the results are fitted very well. And we find the frequency shift and the sub-band effect can be influenced by pulse duration, photon number, and strength of the external field. The frequency shift becomes evident as increases of photon number and the external field strength. The sub-band width is relatively lower at longer pulse duration, higher photon number region, and weaker external field. The results shown in the paper are helpful for understanding multi-photon pair production process in the strong field.
NASA Astrophysics Data System (ADS)
Song, Xinfang; Wang, Wenyuan; Fu, Libin
2016-04-01
Oscillating electric field is chosen to investigate the electron-positron pair production process by using a quantum kinetic theory and the effective mass model [Phys. Rev. Lett. 112, 050402 (2014)]. The particle yield exhibits a characteristic oscillatory structure which is related to the multi-photon thresholds. The true peak positions are typically slightly above the naive threshold estimate, which is defined as frequency shift. During the numerical calculations, we find the frequency shift can be affected by the system parameters under adiabatic closing the external field, it is worthwhile to study in detail. In this paper, we investigate the frequency shift and the sub-band effect in electron-positron pair production with oscillating electric field. First, a quantum kinetic theory and the effective mass are presented to obtain the frequency shift, the results are fitted very well. And we find the frequency shift and the sub-band effect can be influenced by pulse duration, photon number, and strength of the external field. The frequency shift becomes evident as increases of photon number and the external field strength. The sub-band width is relatively lower at longer pulse duration, higher photon number region, and weaker external field. The results shown in the paper are helpful for understanding multi-photon pair production process in the strong field.
Shirazinodeh, Alireza; Noubari, Hossein Ahmadi; Rabbani, Hossein; Dehnavi, Alireza Mehri
2015-01-01
Recent studies on wavelet transform and fractal modeling applied on mammograms for the detection of cancerous tissues indicate that microcalcifications and masses can be utilized for the study of the morphology and diagnosis of cancerous cases. It is shown that the use of fractal modeling, as applied to a given image, can clearly discern cancerous zones from noncancerous areas. In this paper, for fractal modeling, the original image is first segmented into appropriate fractal boxes followed by identifying the fractal dimension of each windowed section using a computationally efficient two-dimensional box-counting algorithm. Furthermore, using appropriate wavelet sub-bands and image Reconstruction based on modified wavelet coefficients, it is shown that it is possible to arrive at enhanced features for detection of cancerous zones. In this paper, we have attempted to benefit from the advantages of both fractals and wavelets by introducing a new algorithm. By using a new algorithm named F1W2, the original image is first segmented into appropriate fractal boxes, and the fractal dimension of each windowed section is extracted. Following from that, by applying a maximum level threshold on fractal dimensions matrix, the best-segmented boxes are selected. In the next step, the segmented Cancerous zones which are candidates are then decomposed by utilizing standard orthogonal wavelet transform and db2 wavelet in three different resolution levels, and after nullifying wavelet coefficients of the image at the first scale and low frequency band of the third scale, the modified reconstructed image is successfully utilized for detection of breast cancer regions by applying an appropriate threshold. For detection of cancerous zones, our simulations indicate the accuracy of 90.9% for masses and 88.99% for microcalcifications detection results using the F1W2 method. For classification of detected mictocalcification into benign and malignant cases, eight features are identified and
Shirazinodeh, Alireza; Noubari, Hossein Ahmadi; Rabbani, Hossein; Dehnavi, Alireza Mehri
2015-01-01
Recent studies on wavelet transform and fractal modeling applied on mammograms for the detection of cancerous tissues indicate that microcalcifications and masses can be utilized for the study of the morphology and diagnosis of cancerous cases. It is shown that the use of fractal modeling, as applied to a given image, can clearly discern cancerous zones from noncancerous areas. In this paper, for fractal modeling, the original image is first segmented into appropriate fractal boxes followed by identifying the fractal dimension of each windowed section using a computationally efficient two-dimensional box-counting algorithm. Furthermore, using appropriate wavelet sub-bands and image Reconstruction based on modified wavelet coefficients, it is shown that it is possible to arrive at enhanced features for detection of cancerous zones. In this paper, we have attempted to benefit from the advantages of both fractals and wavelets by introducing a new algorithm. By using a new algorithm named F1W2, the original image is first segmented into appropriate fractal boxes, and the fractal dimension of each windowed section is extracted. Following from that, by applying a maximum level threshold on fractal dimensions matrix, the best-segmented boxes are selected. In the next step, the segmented Cancerous zones which are candidates are then decomposed by utilizing standard orthogonal wavelet transform and db2 wavelet in three different resolution levels, and after nullifying wavelet coefficients of the image at the first scale and low frequency band of the third scale, the modified reconstructed image is successfully utilized for detection of breast cancer regions by applying an appropriate threshold. For detection of cancerous zones, our simulations indicate the accuracy of 90.9% for masses and 88.99% for microcalcifications detection results using the F1W2 method. For classification of detected mictocalcification into benign and malignant cases, eight features are identified and
Toward quantitative modeling of silicon phononic thermocrystals
Lacatena, V.; Haras, M.; Robillard, J.-F. Dubois, E.; Monfray, S.; Skotnicki, T.
2015-03-16
The wealth of technological patterning technologies of deca-nanometer resolution brings opportunities to artificially modulate thermal transport properties. A promising example is given by the recent concepts of 'thermocrystals' or 'nanophononic crystals' that introduce regular nano-scale inclusions using a pitch scale in between the thermal phonons mean free path and the electron mean free path. In such structures, the lattice thermal conductivity is reduced down to two orders of magnitude with respect to its bulk value. Beyond the promise held by these materials to overcome the well-known “electron crystal-phonon glass” dilemma faced in thermoelectrics, the quantitative prediction of their thermal conductivity poses a challenge. This work paves the way toward understanding and designing silicon nanophononic membranes by means of molecular dynamics simulation. Several systems are studied in order to distinguish the shape contribution from bulk, ultra-thin membranes (8 to 15 nm), 2D phononic crystals, and finally 2D phononic membranes. After having discussed the equilibrium properties of these structures from 300 K to 400 K, the Green-Kubo methodology is used to quantify the thermal conductivity. The results account for several experimental trends and models. It is confirmed that the thin-film geometry as well as the phononic structure act towards a reduction of the thermal conductivity. The further decrease in the phononic engineered membrane clearly demonstrates that both phenomena are cumulative. Finally, limitations of the model and further perspectives are discussed.
Toward quantitative modeling of silicon phononic thermocrystals
NASA Astrophysics Data System (ADS)
Lacatena, V.; Haras, M.; Robillard, J.-F.; Monfray, S.; Skotnicki, T.; Dubois, E.
2015-03-01
The wealth of technological patterning technologies of deca-nanometer resolution brings opportunities to artificially modulate thermal transport properties. A promising example is given by the recent concepts of "thermocrystals" or "nanophononic crystals" that introduce regular nano-scale inclusions using a pitch scale in between the thermal phonons mean free path and the electron mean free path. In such structures, the lattice thermal conductivity is reduced down to two orders of magnitude with respect to its bulk value. Beyond the promise held by these materials to overcome the well-known "electron crystal-phonon glass" dilemma faced in thermoelectrics, the quantitative prediction of their thermal conductivity poses a challenge. This work paves the way toward understanding and designing silicon nanophononic membranes by means of molecular dynamics simulation. Several systems are studied in order to distinguish the shape contribution from bulk, ultra-thin membranes (8 to 15 nm), 2D phononic crystals, and finally 2D phononic membranes. After having discussed the equilibrium properties of these structures from 300 K to 400 K, the Green-Kubo methodology is used to quantify the thermal conductivity. The results account for several experimental trends and models. It is confirmed that the thin-film geometry as well as the phononic structure act towards a reduction of the thermal conductivity. The further decrease in the phononic engineered membrane clearly demonstrates that both phenomena are cumulative. Finally, limitations of the model and further perspectives are discussed.
Liu, Yanhong; Li, La; Wang, Song; Gao, Ping; Pan, Lujun; Zhang, Jialiang; Zhou, Peng; Li, Jinhua; Weng, Zhankun
2015-02-09
In this paper, we discuss a model of sub-band in resistive switching nonvolatile memories with a structure of silver/aluminum oxide/p-type silicon (Ag/Al{sub x}O{sub y}/p-Si), in which the sub-band is formed by overlapping of wave functions of electron-occupied oxygen vacancies in Al{sub x}O{sub y} layer deposited by atomic layer deposition technology. The switching processes exhibit the characteristics of the bipolarity, discreteness, and no need of forming process, all of which are discussed deeply based on the model of sub-band. The relationships between the SET voltages and distribution of trap levels are analyzed qualitatively. The semiconductor-like behaviors of ON-state resistance affirm the sub-band transport mechanism instead of the metal filament mechanism.
Phonon-induced polariton superlattices.
de Lima, M M; van der Poel, M; Santos, P V; Hvam, J M
2006-07-28
We show that the coherent interaction between microcavity polaritons and externally stimulated acoustic phonons forms a tunable polariton superlattice with a folded energy dispersion determined by the phonon population and wavelength. Under high phonon concentration, the strong confinement of the optical and excitonic polariton components in the phonon potential creates weakly coupled polariton wires with a virtually flat energy dispersion. PMID:16907587
Birefringent phononic structures
Psarobas, I. E. Exarchos, D. A.; Matikas, T. E.
2014-12-15
Within the framework of elastic anisotropy, caused in a phononic crystal due to low crystallographic symmetry, we adopt a model structure, already introduced in the case of photonic metamaterials, and by analogy, we study the effect of birefringence and acoustical activity in a phononic crystal. In particular, we investigate its low-frequency behavior and comment on the factors which determine chirality by reference to this model.
Anharmonic effects on Raman-active phonons
NASA Astrophysics Data System (ADS)
Canonico, Michael John
This dissertation explores anharmonic properties of semiconductor materials associated with strain and phonon lifetime using Raman spectroscopy. In recent years, extensive research and development of strain engineered advanced complementary metal-oxide-semiconductor devices utilizing high-k dielectrics and metal gate technology has been conducted to meet the challenges imposed by fundamental limits of device scaling. From a development and manufacturing viewpoint, the metrology required to drive these new technologies is critical to their success. In particular, UV-Raman spectroscopy has been extensively used to measure wafer and device strain due to the high spatial and spectral resolution coupled with an ultra-short optical penetration depth in Si. However, the strain-shift coefficients reported in the literature, which correlate the shift in Raman frequency with strain, have typically been measured in the visible portion of the spectrum and appear to differ from their UV counter-parts. This work presents a detailed measurement of the strain-shift coefficients in the UV at 325 and 364nm for Si, Ge, and Si:C and SiGe alloys. In addition, the temperature dependence of the frequencies and linewidths of the Raman-active longitudinal-optic (LO) phonons in GaAs and AlAs III-V semiconductor compounds is presented. Contrary to early theoretical predictions, the low temperature lifetime of the LO phonon is similar for the two materials with tau = 9.5 ps and 9.7 ps in GaAs and AlAs, respectively. The discrepancy between theory and experiment is caused by the accidental degeneracy between the AlAs LO phonon frequency and a Van Hove singularity in the two-phonon density of states. A new expression, based on the frequency dependence of the phonon self-energy, is derived to model the phonon lifetime.
Phonons and their interactions
Nicklow, R.M.
1982-08-01
The phonon energy spectra nu(vector q) of crystalline materials contains key information about the interatomic interactions. However, it is generally not possible to fully understand the phonon spectra without also understanding the influence on phonon energies and lifetimes caused by interactions with defects, electrons and other excitations. The study of several of these types of interactions have grown over the years so as to now constitute subfields of solid state physics and the contributions of neutron scattering research to each has been, if not of paramount importance, at least very significant. In the present review we can merely touch on a few highlights. Perhaps the largest research effort is expended on electron-phonon interactions. These interactions are, of course, fundamental to the properties of metallic solids. They are seen in the phonon nu(vector q) of metals in a wide variety of effects. We shall mention three: the relatively small fine structure produced by Kohn singularities, large anomalies and phonon lifetimes measured in some superconductors and in materials with fluctuating valence.
Temperature dependence of phonon-defect interactions: phonon scattering vs. phonon trapping
Bebek, M. B.; Stanley, C. M.; Gibbons, T. M.; Estreicher, S. K.
2016-01-01
The interactions between thermal phonons and defects are conventionally described as scattering processes, an idea proposed almost a century ago. In this contribution, ab-initio molecular-dynamics simulations provide atomic-level insight into the nature of these interactions. The defect is the Si|X interface in a nanowire containing a δ-layer (X is C or Ge). The phonon-defect interactions are temperature dependent and involve the trapping of phonons for meaningful lengths of time in defect-related, localized, vibrational modes. No phonon scattering occurs and the momentum of the phonons released by the defect is unrelated to the momentum of the phonons that generated the excitation. The results are extended to the interactions involving only bulk phonons and to phonon-defect interactions at high temperatures. These do resemble scattering since phonon trapping occurs for a length of time short enough for the momentum of the incoming phonon to be conserved. PMID:27535463
Temperature dependence of phonon-defect interactions: phonon scattering vs. phonon trapping.
Bebek, M B; Stanley, C M; Gibbons, T M; Estreicher, S K
2016-01-01
The interactions between thermal phonons and defects are conventionally described as scattering processes, an idea proposed almost a century ago. In this contribution, ab-initio molecular-dynamics simulations provide atomic-level insight into the nature of these interactions. The defect is the Si|X interface in a nanowire containing a δ-layer (X is C or Ge). The phonon-defect interactions are temperature dependent and involve the trapping of phonons for meaningful lengths of time in defect-related, localized, vibrational modes. No phonon scattering occurs and the momentum of the phonons released by the defect is unrelated to the momentum of the phonons that generated the excitation. The results are extended to the interactions involving only bulk phonons and to phonon-defect interactions at high temperatures. These do resemble scattering since phonon trapping occurs for a length of time short enough for the momentum of the incoming phonon to be conserved. PMID:27535463
Uniaxial strain-induced Kohn anomaly and electron-phonon coupling in acoustic phonons of graphene
NASA Astrophysics Data System (ADS)
Cifuentes-Quintal, M. E.; de la Peña-Seaman, O.; Heid, R.; de Coss, R.; Bohnen, K.-P.
2016-08-01
Recent advances in strain engineering at the nanoscale have shown the feasibility to modulate the properties of graphene. Although the electron-phonon (e-ph) coupling and Kohn anomalies in graphene define the phonon branches contributing to the resonance Raman scattering and are relevant to the electronic and thermal transport as a scattering source, the evolution of the e-ph coupling as a function of strain has been less studied. In this work, the Kohn anomalies and the e-ph coupling in uniaxially strained graphene along armchair and zigzag directions were studied by means of density functional perturbation theory calculations. In addition to the phonon anomaly at the transversal optical (TO) phonon branch in the K point for pristine graphene, we found that uniaxial strain induces a discontinuity in the frequency derivative of the longitudinal acoustic phonon branch. This behavior corresponds to the emergence of a Kohn anomaly, as a consequence of a strain-enhanced e-ph coupling. Thus, the present results for uniaxially strained graphene contrast with the commonly assumed view that the e-ph coupling around the K point is only present in the TO phonon branch.
Finite element analysis of surface modes in phononic crystal waveguides
NASA Astrophysics Data System (ADS)
Guo, Yuning; Schubert, Martin; Dekorsy, Thomas
2016-03-01
The study of surface modes in phononic crystal waveguides in the hypersonic regime is a burgeoning field with a large number of possible applications. By using the finite element method, the band structure and the corresponding transmission spectrum of surface acoustic waves in phononic crystal waveguides generated by line defects in a silicon pillar-substrate system were calculated and investigated. The bandgaps are caused by the hybridization effect of band branches induced by local resonances and propagating modes in the substrate. By changing the sizes of selected pillars in the phononic crystal waveguides, the corresponding bands shift and localized modes emerge due to the local resonance effect induced by the pillars. This effect offers further possibilities for tailoring the propagation and filtering of elastic waves. The presented results have implications for the engineering of phonon dynamics in phononic nanostructures.
Phononic crystal diffraction gratings
NASA Astrophysics Data System (ADS)
Moiseyenko, Rayisa P.; Herbison, Sarah; Declercq, Nico F.; Laude, Vincent
2012-02-01
When a phononic crystal is interrogated by an external source of acoustic waves, there is necessarily a phenomenon of diffraction occurring on the external enclosing surfaces. Indeed, these external surfaces are periodic and the resulting acoustic diffraction grating has a periodicity that depends on the orientation of the phononic crystal. This work presents a combined experimental and theoretical study on the diffraction of bulk ultrasonic waves on the external surfaces of a 2D phononic crystal that consists of a triangular lattice of steel rods in a water matrix. The results of transmission experiments are compared with theoretical band structures obtained with the finite-element method. Angular spectrograms (showing frequency as a function of angle) determined from diffraction experiments are then compared with finite-element simulations of diffraction occurring on the surfaces of the crystal. The experimental results show that the diffraction that occurs on its external surfaces is highly frequency-dependent and has a definite relation with the Bloch modes of the phononic crystal. In particular, a strong influence of the presence of bandgaps and deaf bands on the diffraction efficiency is found. This observation opens perspectives for the design of efficient phononic crystal diffraction gratings.
Li, Zenghui; Xu, Bin; Yang, Jian; Song, Jianshe
2015-01-01
This paper focuses on suppressing spectral overlap for sub-band spectral estimation, with which we can greatly decrease the computational complexity of existing spectral estimation algorithms, such as nonlinear least squares spectral analysis and non-quadratic regularized sparse representation. Firstly, our study shows that the nominal ability of the high-order analysis filter to suppress spectral overlap is greatly weakened when filtering a finite-length sequence, because many meaningless zeros are used as samples in convolution operations. Next, an extrapolation-based filtering strategy is proposed to produce a series of estimates as the substitutions of the zeros and to recover the suppression ability. Meanwhile, a steady-state Kalman predictor is applied to perform a linearly-optimal extrapolation. Finally, several typical methods for spectral analysis are applied to demonstrate the effectiveness of the proposed strategy. PMID:25609038
NASA Astrophysics Data System (ADS)
Gu, Yamei; You, Shanhong
2016-07-01
With the rapid growth of data rate, the optical network is evolving from fixed-grid to flexible-grid to provide spectrum-efficient and scalable transport of 100 Gb/s services and beyond. Also, the deployment of wavelength converter in the existing network can increase the flexibility of routing and wavelength allocation (RWA) and improve blocking performance of the optical networks. In this paper, we present a methodology for computing approximate blocking probabilities of the provision of multiclass services in the flexible-grid optical networks with sub-band spectrum conversion and inverse multiplexing respectively. Numerical calculation results based on the model are compared to the simulation results for the different cases. It is shown that the calculation results match well with the simulation results for the flexible-grid optical networks at different scenarios.
Li, Zenghui; Xu, Bin; Yang, Jian; Song, Jianshe
2015-01-01
This paper focuses on suppressing spectral overlap for sub-band spectral estimation, with which we can greatly decrease the computational complexity of existing spectral estimation algorithms, such as nonlinear least squares spectral analysis and non-quadratic regularized sparse representation. Firstly, our study shows that the nominal ability of the high-order analysis filter to suppress spectral overlap is greatly weakened when filtering a finite-length sequence, because many meaningless zeros are used as samples in convolution operations. Next, an extrapolation-based filtering strategy is proposed to produce a series of estimates as the substitutions of the zeros and to recover the suppression ability. Meanwhile, a steady-state Kalman predictor is applied to perform a linearly-optimal extrapolation. Finally, several typical methods for spectral analysis are applied to demonstrate the effectiveness of the proposed strategy. PMID:25609038
PHONONS IN INTRINSIC JOSEPHSON SYSTEMS
C. PREIS; K. SCHMALZL; ET AL
2000-10-01
Subgap structures in the I-V curves of layered superconductors are explained by the excitation of phonons by Josephson oscillations. In the presence of a magnetic field applied parallel to the layers additional structures due to fluxon motion appear. Their coupling with phonons is investigated theoretically and a shift of the phonon resonances in strong magnetic fields is predicted.
Phonons in chalcopyrite compounds
NASA Astrophysics Data System (ADS)
Derollez, P.; Laamyem, A.; Fouret, R.; Hennion, B.; Gonzalez, J.
1999-06-01
The phonon dispersion curves along the [100] and [001] directions of CuInSe2 and AgGaSe2 have been measured by inelastic neutron scattering. They are analyzed with different rigid-ion models: Born-von Karman and valence force field models. The calculated dispersion curves are in good agreement with experiments.
Zarkevich, Nikolai
2014-11-24
ThermoPhonon is a stand-alone code, which can be integrated into other software packages. Typically, it is used together with a density functional theory (DFT) code (such as VASP, Wien2k, AbInit, SIESTA) and a phonon code (such as Phonopy or Phon). The workflow is the following. Molecular dynamics (MD) in a supercell at a given temperature T is performed using another code. After sufficient equilibration, the output in the form of atomic positions and forces for a large number of selected MD steps is recorded into a file. If needed, one can modify this file by applying additional constraints, such as enforced crystal symmetry or subtracted motion of the center of mass. ThermoPhonon reads the file with atomic positions and forces and writes a new file with the force constants. Force constants can be used by another code (such as Phonopy or Phon) to produce phonon spectrum for plotting, in the assumption of known equilibrium atomic positions provided in a separate file.
Energy Science and Technology Software Center (ESTSC)
2014-11-24
ThermoPhonon is a stand-alone code, which can be integrated into other software packages. Typically, it is used together with a density functional theory (DFT) code (such as VASP, Wien2k, AbInit, SIESTA) and a phonon code (such as Phonopy or Phon). The workflow is the following. Molecular dynamics (MD) in a supercell at a given temperature T is performed using another code. After sufficient equilibration, the output in the form of atomic positions and forces formore » a large number of selected MD steps is recorded into a file. If needed, one can modify this file by applying additional constraints, such as enforced crystal symmetry or subtracted motion of the center of mass. ThermoPhonon reads the file with atomic positions and forces and writes a new file with the force constants. Force constants can be used by another code (such as Phonopy or Phon) to produce phonon spectrum for plotting, in the assumption of known equilibrium atomic positions provided in a separate file.« less
Phonon properties of americium phosphide
NASA Astrophysics Data System (ADS)
Arya, B. S.; Aynyas, Mahendra; Sanyal, S. P.
2016-05-01
Phonon properties of AmP have been studied by using breathing shell models (BSM) which includes breathing motion of electrons of the Am atoms due to f-d hybridization. The phonon dispersion curves, specific heat calculated from present model. The calculated phonon dispersion curves of AmP are presented follow the same trend as observed in uranium phosphide. We discuss the significance of this approach in predicting the phonon dispersion curves of these compounds and examine the role of electron-phonon interaction.
Chattopadhyay, P.; Karim, B.; Guha Roy, S.
2013-12-28
The sub-band gap optical absorption in chemical bath deposited cadmium sulphide thin films annealed at different temperatures has been critically analyzed with special reference to Urbach relation. It has been found that the absorption co-efficient of the material in the sub-band gap region is nearly constant up to a certain critical value of the photon energy. However, as the photon energy exceeds the critical value, the absorption coefficient increases exponentially indicating the dominance of Urbach rule. The absorption coefficients in the constant absorption region and the Urbach region have been found to be sensitive to annealing temperature. A critical examination of the temperature dependence of the absorption coefficient indicates two different kinds of optical transitions to be operative in the sub-band gap region. After a careful analyses of SEM images, energy dispersive x-ray spectra, and the dc current-voltage characteristics, we conclude that the absorption spectra in the sub-band gap domain is possibly associated with optical transition processes involving deep levels and the grain boundary states of the material.
Geometrical tuning of thermal phonon spectrum in nanoribbons
NASA Astrophysics Data System (ADS)
Ramiere, Aymeric; Volz, Sebastian; Amrit, Jay
2016-03-01
Phonon spectral energy transmission in silicon nanoribbons is investigated using Monte-Carlo simulations in the boundary scattering regime by changing the length and width geometrical parameters. We show that the transition frequency from specular scattering to diffuse scattering is inversely proportional to the edge roughness σ with a geometry independent factor of proportionality. The increase of the length over width ratio \\zeta leads to a decrease of the energy transmission in the diffuse scattering regime which evolves as {{≤ft(1+{{\\zeta}0.59}\\right)}-1} . This trend is explained by developing a model of phonon energy transmission in the fully diffuse scattering regime which takes into account the probability for a diffusively scattered phonon to be directly transmitted from any position on the edge of the nanoribbon. This model establishes the importance of the solid angles in the energy transmission evolution with \\zeta . The transition from unity energy transmission in the specular scattering regime to reduced transmission in the diffuse scattering regime constitutes a low-pass frequency filter for phonons. Our simulations show an energy rejection rate better than 90% for high \\zeta , which paves the way for potential high performance filters. Filtering out high frequency phonons is of significant interest for phononic crystal applications, which use band engineering of phonons in the wave regime with low frequencies.
Estreicher, S. K. Gibbons, T. M.; Kang, By.; Bebek, M. B.
2014-01-07
Defects in semiconductors introduce vibrational modes that are distinct from bulk modes because they are spatially localized in the vicinity of the defect. Light impurities produce high-frequency modes often visible by Fourier-transform infrared absorption or Raman spectroscopy. Their vibrational lifetimes vary by orders of magnitude and sometimes exhibit unexpectedly large isotope effects. Heavy impurities introduce low-frequency modes sometimes visible as phonon replicas in photoluminescence bands. But other defects such as surfaces or interfaces exhibit spatially localized modes (SLMs) as well. All of them can trap phonons, which ultimately decay into lower-frequency bulk phonons. When heat flows through a material containing defects, phonon trapping at localized modes followed by their decay into bulk phonons is usually described in terms of phonon scattering: defects are assumed to be static scattering centers and the properties of the defect-related SLMs modes are ignored. These dynamic properties of defects are important. In this paper, we quantify the concepts of vibrational localization and phonon trapping, distinguish between normal and anomalous decay of localized excitations, discuss the meaning of phonon scattering in real space at the atomic level, and illustrate the importance of phonon trapping in the case of heat flow at Si/Ge and Si/C interfaces.
Jamaloo, Fatemeh; Mikaeili, Mohammad
2015-01-01
Common spatial pattern (CSP) is a method commonly used to enhance the effects of event-related desynchronization and event-related synchronization present in multichannel electroencephalogram-based brain-computer interface (BCI) systems. In the present study, a novel CSP sub-band feature selection has been proposed based on the discriminative information of the features. Besides, a distinction sensitive learning vector quantization based weighting of the selected features has been considered. Finally, after the classification of the weighted features using a support vector machine classifier, the performance of the suggested method has been compared with the existing methods based on frequency band selection, on the same BCI competitions datasets. The results show that the proposed method yields superior results on “ay” subject dataset compared against existing approaches such as sub-band CSP, filter bank CSP (FBCSP), discriminative FBCSP, and sliding window discriminative CSP. PMID:26284171
Tunable Topological Phononic Crystals
NASA Astrophysics Data System (ADS)
Chen, Ze-Guo; Wu, Ying
2016-05-01
Topological insulators first observed in electronic systems have inspired many analogues in photonic and phononic crystals in which remarkable one-way propagation edge states are supported by topologically nontrivial band gaps. Such band gaps can be achieved by breaking the time-reversal symmetry to lift the degeneracy associated with Dirac cones at the corners of the Brillouin zone. Here, we report on our construction of a phononic crystal exhibiting a Dirac-like cone in the Brillouin zone center. We demonstrate that simultaneously breaking the time-reversal symmetry and altering the geometric size of the unit cell result in a topological transition that we verify by the Chern number calculation and edge-mode analysis. We develop a complete model based on the tight binding to uncover the physical mechanisms of the topological transition. Both the model and numerical simulations show that the topology of the band gap is tunable by varying both the velocity field and the geometric size; such tunability may dramatically enrich the design and use of acoustic topological insulators.
Wu, Tsung-Tsong; Hsu, Jin-Chen; Sun, Jia-Hong
2011-10-01
In the past two decades, phononic crystals (PCs) which consist of periodically arranged media have attracted considerable interest because of the existence of complete frequency band gaps and maneuverable band structures. Recently, Lamb waves in thin plates with PC structures have started to receive increasing attention for their potential applications in filters, resonators, and waveguides. This paper presents a review of recent works related to phononic plate waves which have recently been published by the authors and coworkers. Theoretical and experimental studies of Lamb waves in 2-D PC plate structures are covered. On the theoretical side, analyses of Lamb waves in 2-D PC plates using the plane wave expansion (PWE) method, finite-difference time-domain (FDTD) method, and finite-element (FE) method are addressed. These methods were applied to study the complete band gaps of Lamb waves, characteristics of the propagating and localized wave modes, and behavior of anomalous refraction, called negative refraction, in the PC plates. The theoretical analyses demonstrated the effects of PC-based negative refraction, lens, waveguides, and resonant cavities. We also discuss the influences of geometrical parameters on the guiding and resonance efficiency and on the frequencies of waveguide and cavity modes. On the experimental side, the design and fabrication of a silicon-based Lamb wave resonator which utilizes PC plates as reflective gratings to form the resonant cavity are discussed. The measured results showed significant improvement of the insertion losses and quality factors of the resonators when the PCs were applied. PMID:21989878
NASA Astrophysics Data System (ADS)
Tsuboi, Yutaka; Ihara, Takehiro; Takagi, Kazuyuki; Ozeki, Kazuhiko
A solution to the problem of improving robustness to noise in automatic speech recognition is presented in the framework of multi-band, multi-SNR, and multi-path approaches. In our word recognizer, the whole frequency band is divided into seven-overlapped subbands, and then sub-band noisy phoneme HMMs are trained on speech data mixed with the filtered white Gaussian noise at multiple SNRs. The acoustic model of a word is built as a set of concatenations of clean and noisy sub-band phoneme HMMs arranged in parallel. A Viterbi decoder allows a search path to transit to another SNR condition at a phoneme boundary. The recognition scores of the sub-bands are then recombined to give the score for a word. Experiments show that the overlapped seven-band system yields the best performance under nonstationary ambient noises. It is also shown that the use of filtered white Gaussian noise is advantageous for training noisy phoneme HMMs.
Coherent acoustic phonons in nanostructures
NASA Astrophysics Data System (ADS)
Dekorsy, T.; Taubert, R.; Hudert, F.; Bartels, A.; Habenicht, A.; Merkt, F.; Leiderer, P.; Köhler, K.; Schmitz, J.; Wagner, J.
2008-02-01
Phonons are considered as a most important origin of scattering and dissipation for electronic coherence in nanostructures. The generation of coherent acoustic phonons with femtosecond laser pulses opens the possibility to control phonon dynamics in amplitude and phase. We demonstrate a new experimental technique based on two synchronized femtosecond lasers with GHz repetition rate to study the dynamics of coherently generated acoustic phonons in semiconductor heterostructures with high sensitivity. High-speed synchronous optical sampling (ASOPS) enables to scan a time-delay of 1 ns with 100 fs time resolution with a frequency in the kHz range without a moving part in the set-up. We investigate the dynamics of coherent zone-folded acoustic phonons in semiconductor superlattices (GaAs/AlAs and GaSb/InAs) and of coherent vibration of metallic nanostructures of non-spherical shape using ASOPS.
Reconfigurable long-range phonon dynamics in optomechanical arrays.
Xuereb, André; Genes, Claudiu; Pupillo, Guido; Paternostro, Mauro; Dantan, Aurélien
2014-04-01
We investigate periodic optomechanical arrays as reconfigurable platforms for engineering the coupling between multiple mechanical and electromagnetic modes and for exploring many-body phonon dynamics. Exploiting structural resonances in the coupling between light fields and collective motional modes of the array, we show that tunable effective long-range interactions between mechanical modes can be achieved. This paves the way towards the implementation of controlled phononic walks and heat transfer on densely connected graphs as well as the coherent transfer of excitations between distant elements of optomechanical arrays. PMID:24745417
Wong, Joe; Krisch, M.; Farber, D.; Occelli, F.; Schwartz, A.; Chiang, T.C.; Wall, M.; Boro, C.; Xu, Ruqing
2010-11-16
Plutonium (Pu) is well known to have complex and unique physico-chemical properties. Notably, the pure metal exhibits six solid-state phase transformations with large volume expansions and contractions along the way to the liquid state: {alpha} {yields} {beta} {yields} {gamma} {yields} {delta} {yields} {delta}{prime} {yields} {var_epsilon} {yields} liquid. Unalloyed Pu melts at a relatively low temperature {approx}640 C to yield a higher density liquid than that of the solid from which it melts, (Figure 1). Detailed understanding of the properties of plutonium and plutonium-based alloys is critical for the safe handling, utilization, and long-term storage of these important, but highly toxic materials. However, both technical and and safety issues have made experimental observations extremely difficult. Phonon dispersion curves (PDCs) are key experimenta l data to the understanding of the basic properties of Pu materials such as: force constants, sound velocities, elastic constants, thermodynamics, phase stability, electron-phonon coupling, structural relaxation, etc. However, phonon dispersion curves (PDCs) in plutonium (Pu) and its alloys have defied measurement for the past few decades since the discovery of this element in 1941. This is due to a combination of the high thermal-neutron absorption cross section of plutonium and the inability to grow the large single crystals (with dimensions of a few millimeters) necessary for inelastic neutron scattering. Theoretical simulations of the Pu PDC continue to be hampered by the lack of suitable inter -atomic potentials. Thus, until recently the PDCs for Pu and its alloys have remained unknown experimentally and theoretically. The experimental limitations have recently been overcome by using a tightly focused undulator x-ray micro-beam scattered from single -grain domains in polycrystalline specimens. This experimental approach has been applied successfully to map the complete PDCs of an fcc d-Pu-Ga alloy using the
Phonon dispersion in thalous halides
NASA Astrophysics Data System (ADS)
Kushwaha, Manvir S.
1984-07-01
The phonon dispersion relations, phonon density of states, g( v), and Debye-characteristic temperature, θ D, of TlCl and TlBr have been studied. The theoretical model adopted for this purpose is a 9-parameter bond-bending force model (BBFM) which was recently developed and successfully applied to study the crystal dynamics of CsCl-structure crystals. The theoretical results compare well with the available measurements for phonon dispersion in the high symmetry directions. The discrepancy between calculated and experimental values of θ D, particularly at higher temperatures, is reasonably attributed to the predominating anharmonic effects. The values of the compressibilities (χ), calculated using the Brout sum rule, are in a reasonably good agreement with the existing observed values. A critical-point-phonon analysis has also been performed to interpret the observed infrared (IR) and Raman peaks.
Phonons with orbital angular momentum
NASA Astrophysics Data System (ADS)
Ayub, M. K.; Ali, S.; Mendonca, J. T.
2011-10-01
Ion accoustic waves or phonon modes are studied with orbital angular momentum (OAM) in an unmagnetized collissionless uniform plasma, whose constituents are the Boltzmann electrons and inertial ions. For this purpose, we have employed the fluid equations to obtain a paraxial equation in terms of ion density perturbations and discussed its Gaussian beam and Laguerre-Gauss (LG) beam solutions. Furthermore, an approximate solution for the electrostatic potential problem is presented, allowing to express the components of the electric field in terms of LG potential perturbations. The energy flux due to phonons is also calculated and the corresponding OAM is derived. Numerically, it is shown that the parameters such as azimuthal angle, radial and angular mode numbers, and beam waist, strongly modify the profiles of the phonon LG potential. The present results should be helpful in understanding the phonon mode excitations produced by Brillouin backscattering of laser beams in a uniform plasma.
Phonons with orbital angular momentum
Ayub, M. K.; Ali, S.; Mendonca, J. T.
2011-10-15
Ion accoustic waves or phonon modes are studied with orbital angular momentum (OAM) in an unmagnetized collissionless uniform plasma, whose constituents are the Boltzmann electrons and inertial ions. For this purpose, we have employed the fluid equations to obtain a paraxial equation in terms of ion density perturbations and discussed its Gaussian beam and Laguerre-Gauss (LG) beam solutions. Furthermore, an approximate solution for the electrostatic potential problem is presented, allowing to express the components of the electric field in terms of LG potential perturbations. The energy flux due to phonons is also calculated and the corresponding OAM is derived. Numerically, it is shown that the parameters such as azimuthal angle, radial and angular mode numbers, and beam waist, strongly modify the profiles of the phonon LG potential. The present results should be helpful in understanding the phonon mode excitations produced by Brillouin backscattering of laser beams in a uniform plasma.
Hussein, Mahmoud I.; El-Kady, Ihab; Li, Baowen; Sánchez-Dehesa, José
2014-12-31
“Phononics” is an interdisciplinary branch of physics and engineering that deals with the behavior of phonons, and more broadly elastic and acoustic waves in similar context, and their manipulation in solids and/or fluids to benefit technological applications. Compared to resembling disciplines, such as electronics and photonics, phononics is a youthful field. It is growing at a remarkable rate, especially when viewed liberally with no limiting constraints on any particular length scale, discipline or application.
Phonon dynamics of neptunium chalcogenides
NASA Astrophysics Data System (ADS)
Aynyas, Mahendra; Rukmangad, Aditi; Arya, Balwant S.; Sanyal, Sankar P.
2012-06-01
We have performed phonon calculations of Neptunium Chalcogenides (NpX) (X= S, Se, Te) based on breathing shell model (BSM) which includes breathing motion of electron of the Np-atoms due to f-d hybridization. The model predicts that the short range breathing phenomenon play a dominant role in the phonon properties. We also report, for the first time specific heat for these compounds.
Malekiha, Mahdi; Tselniker, Igor; Nazarathy, Moshe; Tolmachev, Alex; Plant, David V
2015-10-01
We experimentally demonstrate a novel digital signal processing (DSP) structure for reduced guard-interval (RGI) OFDM coherent optical systems. The proposed concept is based on digitally slicing optical channel bandwidth into multiple spectrally disjoint sub-bands which are then processed in parallel. Each low bandwidth sub-band has a smaller delay-spread compared to a full-band signal. This enables compensation of both chromatic dispersion (CD) and polarization mode dispersion using a simple timing and one-tap-per-symbol frequency domain equalizer with a small cyclic prefix overhead. In terms of the DSP architecture, this allows for a highly efficient parallelization of DSP tasks performed over the received signal samples by deploying multiple processors running at a lower clock rate. It should be noted that this parallelization is performed in the frequency domain and it allows for flexible optical transceiver schemes. In addition, the resulting optical receiver is simplified due to the removal of the CD compensation equalizer compared to conventional RGI-OFDM systems. In this paper we experimentally demonstrate digital sub-banding of optical bandwidth. We test the system performance for different modulation formats (QPSK, 16QAM and 32QAM) over various transmission distances and optical launch powers using a 1.5% CP overhead in all scenarios. We also compare the proposed RGI-OFDM architecture performance against common single carrier modulation formats. At the same total data rate and signal bandwidth both systems have similar performance and transmission reach whereas the proposed method allows for a significant reduction of computational complexity due to removal of CD pre/post compensation equalizer. PMID:26480077
NASA Astrophysics Data System (ADS)
Yater, J. E.; Shaw, J. L.; Pate, B. B.; Feygelson, T. I.
2016-02-01
Secondary-electron-emission (SEE) current measured from high-purity, single-crystal (100) chemical-vapor-deposited diamond is found to increase when sub-band gap (3.06 eV) photons are incident on the hydrogenated surface. Although the light does not produce photoemission directly, the SEE current increases by more than a factor of 2 before saturating with increasing laser power. In energy distribution curves (EDCs), the emission peak shows a corresponding increase in intensity with increasing laser power. However, the emission-onset energy in the EDCs remains constant, indicating that the bands are pinned at the surface. On the other hand, changes are observed on the high-energy side of the distribution as the laser power increases, with a well-defined shoulder becoming more pronounced. From an analysis of this feature in the EDCs, it is deduced that upward band bending is present in the near-surface region during the SEE measurements and this band bending suppresses the SEE yield. However, sub-band gap photon illumination reduces the band bending and thereby increases the SEE current. Because the bands are pinned at the surface, we conclude that the changes in the band levels occur below the surface in the electron transport region. Sample heating produces similar effects as observed with sub-band gap photon illumination, namely, an increase in SEE current and a reduction in band bending. However, the upward band bending is not fully removed by either increasing laser power or temperature, and a minimum band bending of ˜0.8 eV is established in both cases. The sub-band gap photo-excitation mechanism is under further investigation, although it appears likely at present that defect or gap states play a role in the photo-enhanced SEE process. In the meantime, the study demonstrates the ability of visible light to modify the electronic properties of diamond and enhance the emission capabilities, which may have potential impact for diamond-based vacuum electron
Gilman, J.J.
1996-12-31
In crystals (and/or glasses) with localized sp{sup 3} or spd-bonding orbitals, dislocations have very low mobilities, making the crystals very hard. Classical Peierls-Nabarro theory does not account for the low mobility. The breaking of spin-pair bonds which creates internal free-radicals must be considered. Therefore, a theory based on quantum mechanics has been proposed (Science, 261, 1436 (1993)). It has been applied successfully to diamond, Si, Ge, SiC, and with a modification to TiC and WC. It has recently been extended to account for the temperature independence of the hardness of silicon at low temperatures together with strong softening at temperatures above the Debye temperature. It is quantitatively consistent with the behaviors of the Group 4 elements (C, Si, Ge, Sn) when their Debye temperatures are used as normalizing factors; and appears to be consistent with data for TiC if an Einstein temperature for carbon is used. Since the Debye temperature marks the approximate point at which phonons of atomic wavelengths become excited (as contrasted with collective acoustic waves), this confirms the idea that the process which limits dislocation mobility is localized to atomic dimensions (sharp kinks).
Propagation of large-wavevector acoustic phonons new perspectives from phonon imaging
NASA Astrophysics Data System (ADS)
Wolfe, James P.
Within the last decade a number of attempts have been made to observe the ballistic propagation of large wavevector acoustic phonons in crystals at low temperatures. Time-of-flight heat-pulse methods have difficulty in distinguishing between scattered phonons and ballistic phonons which travel dispersively at subsonic velocities. Fortunately, ballistic phonons can be identified by their highly anisotropic flux, which is observed by phonon imaging techniques. In this paper, several types of phonon imaging experiments are described which reveal the dispersive propagation of large-wavevector phonons and expose interesting details of the phonon scattering processes.
Phonon Josephson junction with nanomechanical resonators
NASA Astrophysics Data System (ADS)
Barzanjeh, Shabir; Vitali, David
2016-03-01
We study coherent phonon oscillations and tunneling between two coupled nonlinear nanomechanical resonators. We show that the coupling between two nanomechanical resonators creates an effective phonon Josephson junction, which exhibits two different dynamical behaviors: Josephson oscillation (phonon-Rabi oscillation) and macroscopic self-trapping (phonon blockade). Self-trapping originates from mechanical nonlinearities, meaning that when the nonlinearity exceeds its critical value, the energy exchange between the two resonators is suppressed, and phonon Josephson oscillations between them are completely blocked. An effective classical Hamiltonian for the phonon Josephson junction is derived and its mean-field dynamics is studied in phase space. Finally, we study the phonon-phonon coherence quantified by the mean fringe visibility, and show that the interaction between the two resonators may lead to the loss of coherence in the phononic junction.
Coherent phonon control via electron-lattice interaction in ferromagnetic Co/Pt multilayers
Kim, Chul Hoon; Shim, Je-Ho; Lee, Kyung Min; Jeong, Jong-Ryul; Kim, Dong-Hyun; Kim, Dong Eon
2016-01-01
The manipulation of coherent phonons in condensed systems has attracted fundamental interest, particularly for its applications to future devices. We demonstrate that a coherent phonon in Co/Pt nano-multilayer can be quantitatively controlled via electron-lattice coupling, specifically by changing the multilayer repeat number. To that end, systematic measurement of the time-resolved reflectivity and magneto-optical Kerr effect in Co/Pt multilayers was performed. The coherent phonon frequency was observed to be shifted with the change of the multilayer repeat number. This shift could be clearly explained based on the two-temperature model. Detailed analysis indicated that the lattice heat capacity and electron-lattice coupling strength are linearly dependent on the repeat number of the periodic multilayer structures. Accessing the control of coherent phonons using nanostructures opens a new avenue for advanced phonon-engineering applications. PMID:26928846
Phonon mean free path spectrum and thermal conductivity for Si1-xGex nanowires
NASA Astrophysics Data System (ADS)
Xie, Guofeng; Guo, Yuan; Wei, Xiaolin; Zhang, Kaiwang; Sun, Lizhong; Zhong, Jianxin; Zhang, Gang; Zhang, Yong-Wei
2014-06-01
We reformulate the linearized phonon Boltzmann transport equation by incorporating the direction-dependent phonon-boundary scattering, and based on this equation, we study the thermal conductivity of Si1-xGex nanowires and derive their phonon mean free path spectrum. Due to the severe suppression of high-frequency phonons by alloy scattering, the low frequency phonons in Si1-xGex nanowires have a much higher contribution to the thermal conductivity than pure silicon nanowires. We also find that Si1-xGex nanowires possess a stronger length-dependent, weaker diameter-dependent, and weaker surface roughness-dependent thermal conductivity than silicon nanowires. These findings are potentially useful for engineering Si1-xGex nanowires for thermoelectric applications.
A Bond-order Theory on the Phonon Scattering by Vacancies in Two-dimensional Materials
NASA Astrophysics Data System (ADS)
Xie, Guofeng; Shen, Yulu; Wei, Xiaolin; Yang, Liwen; Xiao, Huaping; Zhong, Jianxin; Zhang, Gang
2014-05-01
We theoretically investigate the phonon scattering by vacancies, including the impacts of missing mass and linkages () and the variation of the force constant of bonds associated with vacancies () by the bond-order-length-strength correlation mechanism. We find that in bulk crystals, the phonon scattering rate due to change of force constant is about three orders of magnitude lower than that due to missing mass and linkages . In contrast to the negligible in bulk materials, in two-dimensional materials can be 3-10 folds larger than . Incorporating this phonon scattering mechanism to the Boltzmann transport equation derives that the thermal conductivity of vacancy defective graphene is severely reduced even for very low vacancy density. High-frequency phonon contribution to thermal conductivity reduces substantially. Our findings are helpful not only to understand the severe suppression of thermal conductivity by vacancies, but also to manipulate thermal conductivity in two-dimensional materials by phononic engineering.
Coherent phonon control via electron-lattice interaction in ferromagnetic Co/Pt multilayers
NASA Astrophysics Data System (ADS)
Kim, Chul Hoon; Shim, Je-Ho; Lee, Kyung Min; Jeong, Jong-Ryul; Kim, Dong-Hyun; Kim, Dong Eon
2016-03-01
The manipulation of coherent phonons in condensed systems has attracted fundamental interest, particularly for its applications to future devices. We demonstrate that a coherent phonon in Co/Pt nano-multilayer can be quantitatively controlled via electron-lattice coupling, specifically by changing the multilayer repeat number. To that end, systematic measurement of the time-resolved reflectivity and magneto-optical Kerr effect in Co/Pt multilayers was performed. The coherent phonon frequency was observed to be shifted with the change of the multilayer repeat number. This shift could be clearly explained based on the two-temperature model. Detailed analysis indicated that the lattice heat capacity and electron-lattice coupling strength are linearly dependent on the repeat number of the periodic multilayer structures. Accessing the control of coherent phonons using nanostructures opens a new avenue for advanced phonon-engineering applications.
A Bond-order Theory on the Phonon Scattering by Vacancies in Two-dimensional Materials
Xie, Guofeng; Shen, Yulu; Wei, Xiaolin; Yang, Liwen; Xiao, Huaping; Zhong, Jianxin; Zhang, Gang
2014-01-01
We theoretically investigate the phonon scattering by vacancies, including the impacts of missing mass and linkages () and the variation of the force constant of bonds associated with vacancies () by the bond-order-length-strength correlation mechanism. We find that in bulk crystals, the phonon scattering rate due to change of force constant is about three orders of magnitude lower than that due to missing mass and linkages . In contrast to the negligible in bulk materials, in two-dimensional materials can be 3–10 folds larger than . Incorporating this phonon scattering mechanism to the Boltzmann transport equation derives that the thermal conductivity of vacancy defective graphene is severely reduced even for very low vacancy density. High-frequency phonon contribution to thermal conductivity reduces substantially. Our findings are helpful not only to understand the severe suppression of thermal conductivity by vacancies, but also to manipulate thermal conductivity in two-dimensional materials by phononic engineering. PMID:24866858
Modification of phonon processes in nanostructured rare-earth-ion-doped crystals
NASA Astrophysics Data System (ADS)
Lutz, Thomas; Veissier, Lucile; Thiel, Charles W.; Cone, Rufus L.; Barclay, Paul E.; Tittel, Wolfgang
2016-07-01
Nano-structuring impurity-doped crystals affects the phonon density of states and thereby modifies the atomic dynamics induced by interaction with phonons. We propose the use of nano-structured materials in the form of powders or phononic bandgap crystals to enable or improve persistent spectral hole burning and coherence for inhomogeneously broadened absorption lines in rare-earth-ion-doped crystals. This is crucial for applications such as ultra-precise radio-frequency spectrum analyzers and optical quantum memories. As an example, we discuss how phonon engineering can enable spectral hole burning in erbium-doped materials operating in the convenient telecommunication band and present simulations for density of states of nano-sized powders and phononic crystals for the case of Y2SiO5 , a widely used material in current quantum memory research.
NASA Astrophysics Data System (ADS)
Chen, Gang
In this talk, we will discuss different modes of heat conduction in nanostructures. Ballistic transport happens when phonon mean free path is longer than the characteristic size of the structure. We will discuss how we compute phonon mean free path distributions based on first-principles and measure the distributions with optical pump-probe techniques by exploring ballistic phonon transport processes. In superlattice structures, ballistic phonon transport across the whole thickness of the superlattices implies phase coherence. We observed this coherent transport in GaAs/AlAs superlattices with fixed periodic thickness and varying number of periods. Simulations show that although high frequency phonons are scattering by roughness, remaining long wavelength phonons maintain their phase and traverse the superlattices ballistically. Accessing the coherent heat conduction regime opens a new venue for phonon engineering. We show further that phonon heat conduction localization happens in GaAs/AlAs superlattice by placing ErAs nanodots at interfaces. This heat-conduction localization phenomenon is confirmed by nonequilibrium atomic Green's function simulation. These ballistic and localization effects can be exploited to improve thermoelectric energy conversion materials via reducing their thermal conductivity. In another opposite, we will discuss phonon hydrodynamic transport mode in graphene via first-principle simulations. In this mode, phonons drift with an average velocity under a temperature gradient, similar to fluid flow in a pipe. Conditions for observing such phonon hydrodynamic modes will be discussed. Finally, we will talk about the one-dimensional nature of heat conduction in polymer chains. Such 1D nature can lead to divergent thermal conductivity. Inspired by simulation, we have experimentally demonstrated high thermal conductivity in ultra-drawn polyethylene nanofibers and sheets. Work supported by DOE Office of Basic Energy Sciences under Award Number: DE
NASA Astrophysics Data System (ADS)
Banerjee, Debika; Trudeau, Charles; Gerlein, Luis Felipe; Cloutier, Sylvain G.
2016-03-01
The nanoscale engineering of silicon can significantly change its bulk optoelectronic properties to make it more favorable for device integration. Phonon process engineering is one way to enhance inter-band transitions in silicon's indirect band structure alignment. This paper demonstrates phonon localization at the tip of silicon nanowires fabricated by galvanic displacement using wet electroless chemical etching of a bulk silicon wafer. High-resolution Raman micro-spectroscopy reveals that such arrayed structures of silicon nanowires display phonon localization behaviors, which could help their integration into the future generations of nano-engineered silicon nanowire-based devices such as photodetectors and solar cells.
Unified phonon-based approach to the thermodynamics of solid, liquid and gas states
NASA Astrophysics Data System (ADS)
Bolmatov, Dima; Zav'yalov, Dmitry; Zhernenkov, Mikhail; Musaev, Edvard T.; Cai, Yong Q.
2015-12-01
We introduce a unified approach to states of matter (solid, liquid and gas) and describe the thermodynamics of the pressure-temperature phase diagram in terms of phonon excitations. We derive the effective Hamiltonian with low-energy cutoff in two transverse phonon polarizations (phononic band gaps) by breaking the symmetry in phonon interactions. Further, we construct the statistical mechanics of states of aggregation employing the Debye approximation. The introduced formalism covers the Debye theory of solids, the phonon theory of liquids, and thermodynamic limits such as the Dulong-Petit thermodynamic limit (cV = 3kB), the ideal gas limit (cV =3/2 kB) and the new thermodynamic limit (cV = 2kB), dubbed here the Frenkel line thermodynamic limit. We discuss the phonon propagation and localization effects in liquids above and below the Frenkel line, and explain the "fast sound" phenomenon. As a test for our theory we calculate velocity-velocity autocorrelation and pair distribution functions within the Green-Kubo formalism. We show the consistency between dynamics of phonons and pair correlations in the framework of the unified approach. New directions towards advancements in phononic band gaps engineering, hypersound manipulation technologies and exploration of exotic behaviour of fluids relevant to geo- and planetary sciences are discussed. The presented results are equally important both for practical implications and for fundamental research.
Phonon-induced topological insulation
NASA Astrophysics Data System (ADS)
Saha, Kush; Garate, Ion
2014-05-01
We develop an approximate theory of phonon-induced topological insulation in Dirac materials. In the weak-coupling regime, long-wavelength phonons may favor topological phases in Dirac insulators with direct and narrow band gaps. This phenomenon originates from electron-phonon matrix elements, which change qualitatively under a band inversion. A similar mechanism applies to weak Coulomb interactions and spin-independent disorder; however, the influence of these on band topology is largely independent of temperature. As applications of the theory, we evaluate the temperature dependence of the critical thickness and the critical stoichiometric ratio for the topological transition in CdTe/HgTe quantum wells and in BiTl(S1-δSeδ)2, respectively.
Phonon Mapping in Flowing Equilibrium
NASA Astrophysics Data System (ADS)
Ruff, J. P. C.
2015-03-01
When a material conducts heat, a modification of the phonon population occurs. The equilibrium Bose-Einstein distribution is perturbed towards flowing-equilibrium, for which the distribution function is not analytically known. Here I argue that the altered phonon population can be efficiently mapped over broad regions of reciprocal space, via diffuse x-ray scattering or time-of-flight neutron scattering, while a thermal gradient is applied across a single crystal sample. When compared to traditional transport measurements, this technique offers a superior, information-rich new perspective on lattice thermal conductivity, wherein the band and momentum dependences of the phonon thermal current are directly resolved. The proposed method is benchmarked using x-ray thermal diffuse scattering measurements of single crystal diamond under transport conditions. CHESS is supported by the NSF & NIH/NIGMS via NSF Award DMR-1332208.
Phonon-tunnelling dissipation in mechanical resonators
Cole, Garrett D.; Wilson-Rae, Ignacio; Werbach, Katharina; Vanner, Michael R.; Aspelmeyer, Markus
2011-01-01
Microscale and nanoscale mechanical resonators have recently emerged as ubiquitous devices for use in advanced technological applications, for example, in mobile communications and inertial sensors, and as novel tools for fundamental scientific endeavours. Their performance is in many cases limited by the deleterious effects of mechanical damping. In this study, we report a significant advancement towards understanding and controlling support-induced losses in generic mechanical resonators. We begin by introducing an efficient numerical solver, based on the 'phonon-tunnelling' approach, capable of predicting the design-limited damping of high-quality mechanical resonators. Further, through careful device engineering, we isolate support-induced losses and perform a rigorous experimental test of the strong geometric dependence of this loss mechanism. Our results are in excellent agreement with the theory, demonstrating the predictive power of our approach. In combination with recent progress on complementary dissipation mechanisms, our phonon-tunnelling solver represents a major step towards accurate prediction of the mechanical quality factor. PMID:21407197
A wrinkly phononic crystal slab
NASA Astrophysics Data System (ADS)
Bayat, Alireza; Gordaninejad, Faramarz
2015-03-01
The buckling induced surface instability is employed to propose a tunable phononic crystal slab composed of a stiff thin film bonded on a soft elastomer. Wrinkles formation is used to generate one-dimensional periodic scatterers at the surface of a finitely thick slab. Wrinkles' pattern change and corresponding stress is employed to control wave propagation triggered by a compressive strain. Simulation results show that the periodic wrinkly structure can be used as a transformative phononic crystal which can switch band diagram of the structure in a reversible behavior. Results of this study provide opportunities for the smart design of tunable switch and elastic wave filters at ultrasonic and hypersonic frequency ranges.
Phonon dynamics of americium telluride
NASA Astrophysics Data System (ADS)
Arya, B. S.; Aynyas, Mahendra; Ahirwar, Ashok K.; Sanyal, S. P.
2013-06-01
We report for the first time the complete phonon dispersion curves for Americium telluride (AmTe) using a breathing shell models (BSM) to establish their predominant ionic nature. The results obtained in the present study show the general features of the phonon spectrum. We could not compare our results with the experimental measurements as they are not available so far. We emphasize the need of neutron scattering measurements to compare our results. We also report, for the first time specific heat for this compound.
Phonon-phonon interactions and phonon damping for the curvature modes in carbon nanotubes
NASA Astrophysics Data System (ADS)
Li, Guolong; Ren, Zhongzhou
2016-01-01
We focus on the damping of the lowest-lying gapped modes with integer angular-momentum quantum number |l|=2 in carbon nanotubes (CNTs). These modes, called C modes simply, can be predicted within the framework of the continuum elasticity theory with the curvature term. Based on the phonon-phonon interactions due to the anharmonic effect, we obtain the three-phonon coupling coefficients of different damping processes of C modes. Applying perturbation theory, we calculate relaxation rates τ_C-1 and upper bounds of quality factors for the long-wavelength C modes. In addition, we display the wave vector dependence of τC and show the importance of the C mode damping to thermal conductivity.
Cavity-type hypersonic phononic crystals
NASA Astrophysics Data System (ADS)
Sato, A.; Pennec, Y.; Yanagishita, T.; Masuda, H.; Knoll, W.; Djafari-Rouhani, B.; Fytas, G.
2012-11-01
We report on the engineering of the phonon dispersion diagram in monodomain anodic porous alumina (APA) films through the porosity and physical state of the material residing in the nanopores. Lattice symmetry and inclusion materials are theoretically identified to be the main factors which control the hypersonic acoustic wave propagation. This involves the interaction between the longitudinal and the transverse modes in the effective medium and a flat band characteristic of the material residing in the cavities. Air and filled nanopores, therefore, display markedly different dispersion relations and the inclusion materials lead to a locally resonant structural behavior uniquely determining their properties under confinement. APA films emerge as a new platform to investigate the rich acoustic phenomena of structured composite matter.
Kinetic description of an electron--LO-phonon system with finite phonon lifetime
Nguyen, V.T.; Mahler, G. )
1992-02-15
We study the cooling of an electron plasma from a kinetic point of view. For this purpose, a quantum theory of fluctuations is applied to derive the kinetic equations for an electron--LO-phonon system from various model Hamiltonians. A polarization approximation is provided that goes beyond perturbation theory of the electron-phonon interaction. The description of electron-phonon energy exchange is shown to be impossible with the interacting Hamiltonian in Froehlich's one-phonon form unless dissipation of the bare LO phonon is included. For a Hamiltonian including effects of the scattering of LO phonons by acoustic phonons, kinetic equations are derived. The equation for LO phonons is shown to describe the collective excitations with finite lifetime, in the limiting case of weak damping of the plasmon-phonon coupled modes. A reduction of the cooling rate similar to the hot-phonon'' effect is shown to occur for the case of weak coupling without assuming a steady state of the LO phonons. Finally, an electron-phonon interaction Hamiltonian in two-phonon form is considered and it is shown that electron-phonon energy exchange may be described in the polarization approximation without introducing a finite phonon lifetime.
Sound and heat revolutions in phononics.
Maldovan, Martin
2013-11-14
The phonon is the physical particle representing mechanical vibration and is responsible for the transmission of everyday sound and heat. Understanding and controlling the phononic properties of materials provides opportunities to thermally insulate buildings, reduce environmental noise, transform waste heat into electricity and develop earthquake protection. Here I review recent progress and the development of new ideas and devices that make use of phononic properties to control both sound and heat. Advances in sonic and thermal diodes, optomechanical crystals, acoustic and thermal cloaking, hypersonic phononic crystals, thermoelectrics, and thermocrystals herald the next technological revolution in phononics. PMID:24226887
Sound and heat revolutions in phononics
NASA Astrophysics Data System (ADS)
Maldovan, Martin
2013-11-01
The phonon is the physical particle representing mechanical vibration and is responsible for the transmission of everyday sound and heat. Understanding and controlling the phononic properties of materials provides opportunities to thermally insulate buildings, reduce environmental noise, transform waste heat into electricity and develop earthquake protection. Here I review recent progress and the development of new ideas and devices that make use of phononic properties to control both sound and heat. Advances in sonic and thermal diodes, optomechanical crystals, acoustic and thermal cloaking, hypersonic phononic crystals, thermoelectrics, and thermocrystals herald the next technological revolution in phononics.
Nanoscale control of phonon excitations in graphene
Kim, Hyo Won; Ko, Wonhee; Ku, JiYeon; Jeon, Insu; Kim, Donggyu; Kwon, Hyeokshin; Oh, Youngtek; Ryu, Seunghwa; Kuk, Young; Hwang, Sung Woo; Suh, Hwansoo
2015-01-01
Phonons, which are collective excitations in a lattice of atoms or molecules, play a major role in determining various physical properties of condensed matter, such as thermal and electrical conductivities. In particular, phonons in graphene interact strongly with electrons; however, unlike in usual metals, these interactions between phonons and massless Dirac fermions appear to mirror the rather complicated physics of those between light and relativistic electrons. Therefore, a fundamental understanding of the underlying physics through systematic studies of phonon interactions and excitations in graphene is crucial for realising graphene-based devices. In this study, we demonstrate that the local phonon properties of graphene can be controlled at the nanoscale by tuning the interaction strength between graphene and an underlying Pt substrate. Using scanning probe methods, we determine that the reduced interaction due to embedded Ar atoms facilitates electron–phonon excitations, further influencing phonon-assisted inelastic electron tunnelling. PMID:26109454
Origin of large electron-phonon coupling in the metallic hydride TiH2
NASA Astrophysics Data System (ADS)
Veedu, Shanavas K.; Parker, David S.
The recent discovery of large superconducting transition temperature of Tc = 190 K in metallic H2S under high pressures of 200 GPa, has renewed the interest in the superconducting properties of metal-hydrogen systems. These materials are expected to be electron-phonon superconductors and hydrogen with its low mass can contribute new optic phonons that may couple with the conduction electrons. Often, though not always, a large electron-phonon coupling parameter λ (and consequently high Tc) can result from a high electronic density of states at the Fermi level (N (EF)) and the presence of soft phonons. With the help of first-principles calculations within density functional theory, we studied the cubic TiH2 which has a large 3 d N (EF) = 2 . 8 states/eV/f.u. Our calculated phonon dispersions show that Ti modes active below frequencies of 10 THz whereas much lighter H modes are active between 32 and 40 THz. Electron-phonon coupling calculations reveal a λ = 0 . 98 which corresponds to a Tc = 6 . 1 K. However, the large N (EF) also leads to a tetragonal instability at low temperatures in TiH2, which may be overcome by a uniaxial strain, potentially making it a candidate for electron-phonon superconductor. This research was supported by the US Department of Energy, Basic Energy Sciences, Office of Science, Materials Sciences and Engineering Division.
Studies of Phonon Anharmonicity in Solids
NASA Astrophysics Data System (ADS)
Lan, Tian
Today our understanding of the vibrational thermodynamics of materials at low temperatures is emerging nicely, based on the harmonic model in which phonons are independent. At high temperatures, however, this understanding must accommodate how phonons interact with other phonons or with other excitations. We shall see that the phonon-phonon interactions give rise to interesting coupling problems, and essentially modify the equilibrium and non-equilibrium properties of materials, e.g., thermodynamic stability, heat capacity, optical properties and thermal transport of materials. Despite its great importance, to date the anharmonic lattice dynamics is poorly understood and most studies on lattice dynamics still rely on the harmonic or quasiharmonic models. There have been very few studies on the pure phonon anharmonicity and phonon-phonon interactions. The work presented in this thesis is devoted to the development of experimental and computational methods on this subject. Modern inelastic scattering techniques with neutrons or photons are ideal for sorting out the anharmonic contribution. Analysis of the experimental data can generate vibrational spectra of the materials, i.e., their phonon densities of states or phonon dispersion relations. We obtained high quality data from laser Raman spectrometer, Fourier transform infrared spectrometer and inelastic neutron spectrometer. With accurate phonon spectra data, we obtained the energy shifts and lifetime broadenings of the interacting phonons, and the vibrational entropies of different materials. The understanding of them then relies on the development of the fundamental theories and the computational methods. We developed an efficient post-processor for analyzing the anharmonic vibrations from the molecular dynamics (MD) calculations. Currently, most first principles methods are not capable of dealing with strong anharmonicity, because the interactions of phonons are ignored at finite temperatures. Our method adopts
Edge phonons in black phosphorus
Ribeiro, H. B.; Villegas, C. E. P.; Bahamon, D. A.; Muraca, D.; Castro Neto, A. H.; de Souza, E. A. T.; Rocha, A. R.; Pimenta, M. A.; de Matos, C. J. S.
2016-01-01
Black phosphorus has recently emerged as a new layered crystal that, due to its peculiar and anisotropic crystalline and electronic band structures, may have important applications in electronics, optoelectronics and photonics. Despite the fact that the edges of layered crystals host a range of singular properties whose characterization and exploitation are of utmost importance for device development, the edges of black phosphorus remain poorly characterized. In this work, the atomic structure and behaviour of phonons near different black phosphorus edges are experimentally and theoretically studied using Raman spectroscopy and density functional theory calculations. Polarized Raman results show the appearance of new modes at the edges of the sample, and their spectra depend on the atomic structure of the edges (zigzag or armchair). Theoretical simulations confirm that the new modes are due to edge phonon states that are forbidden in the bulk, and originated from the lattice termination rearrangements. PMID:27412813
Edge phonons in black phosphorus
NASA Astrophysics Data System (ADS)
Ribeiro, H. B.; Villegas, C. E. P.; Bahamon, D. A.; Muraca, D.; Castro Neto, A. H.; de Souza, E. A. T.; Rocha, A. R.; Pimenta, M. A.; de Matos, C. J. S.
2016-07-01
Black phosphorus has recently emerged as a new layered crystal that, due to its peculiar and anisotropic crystalline and electronic band structures, may have important applications in electronics, optoelectronics and photonics. Despite the fact that the edges of layered crystals host a range of singular properties whose characterization and exploitation are of utmost importance for device development, the edges of black phosphorus remain poorly characterized. In this work, the atomic structure and behaviour of phonons near different black phosphorus edges are experimentally and theoretically studied using Raman spectroscopy and density functional theory calculations. Polarized Raman results show the appearance of new modes at the edges of the sample, and their spectra depend on the atomic structure of the edges (zigzag or armchair). Theoretical simulations confirm that the new modes are due to edge phonon states that are forbidden in the bulk, and originated from the lattice termination rearrangements.
Edge phonons in black phosphorus.
Ribeiro, H B; Villegas, C E P; Bahamon, D A; Muraca, D; Castro Neto, A H; de Souza, E A T; Rocha, A R; Pimenta, M A; de Matos, C J S
2016-01-01
Black phosphorus has recently emerged as a new layered crystal that, due to its peculiar and anisotropic crystalline and electronic band structures, may have important applications in electronics, optoelectronics and photonics. Despite the fact that the edges of layered crystals host a range of singular properties whose characterization and exploitation are of utmost importance for device development, the edges of black phosphorus remain poorly characterized. In this work, the atomic structure and behaviour of phonons near different black phosphorus edges are experimentally and theoretically studied using Raman spectroscopy and density functional theory calculations. Polarized Raman results show the appearance of new modes at the edges of the sample, and their spectra depend on the atomic structure of the edges (zigzag or armchair). Theoretical simulations confirm that the new modes are due to edge phonon states that are forbidden in the bulk, and originated from the lattice termination rearrangements. PMID:27412813
Ultrasonic and hypersonic phononic crystals
NASA Astrophysics Data System (ADS)
Khelif, A.; Hsiao, F.-L.; Benchabane, S.; Choujaa, A.; Aoubiza, B.; Laude, V.
2008-02-01
We report on the experimental and theoretical investigation two kinds of acoustic waves in two dimensional phononic crystal: bulk acoustic waves and surface acoustic waves. For bulk acoustic waves, the work focuses on the experimental observation of full acoustic band gaps in a two-dimensional lattice of steel cylinders immersed in water as well as deaf bands that cause strong attenuation in the transmission for honeycomb and triangular lattices. For surface acoustic waves, complete acoustic band gaps found experimentally in a two-dimensional square-lattice piezoelectric phononic crystal etched in lithium niobate will be presented. Propagation in the phononic crystal is studied by direct generation and detection of surface waves using interdigital transducers. The complete band gap extends from 203 to 226 MHz, in good agreement with theoretical predictions. Near the upper edge of the complete band gap, it is observed that radiation to the bulk of the substrate dominates. This observation is explained by introducing the concept of sound line.
Addition and subtraction of single phonons in a trapped ion system
NASA Astrophysics Data System (ADS)
Lv, Dingshun; An, Shuoming; Um, Mark; Lu, Yao; Zhang, Jingning; Kim, Kihwan
2014-05-01
We introduce an addition and subtraction of single phonons in a trapped ion system. The creation â† and annihilation â operation have been realized with photons and used for the complete engineering of quantum states of light and the probe of fundamental quantum phenomena. The mathematical description of photon is identical to that of phonon. However, phonon is a particle of quantized matter wave, which should be interpreted differently from photon. We implement the addition and the subtraction of phonon by applying an anti-Jaynes-Cummings type of operation on our trapped ion and performing projective measurements. Our realization can be used for the accurate measurement of position and momentum as well as their relation. This work was supported by the National Basic Research Program of China Grant 2011CBA00300, 2011CBA00301, 2011CBA00302, the National Natural Science Foundation of China Grant 61073174, 61033001, 61061130540.
Influence of electron–phonon interactions in single dopant nanowire transistors
Carrillo-Nuñez, H. Bescond, M. Cavassilas, N.; Dib, E.; Lannoo, M.
2014-10-28
Single dopant nanowire transistors can be viewed as the ultimate miniaturization of nano electronic devices. In this work, we theoretically investigate the influence of the electron-phonon coupling on their transport properties using a non-equilibrium Green's function approach in the self-consistent Born approximation. For an impurity located at the center of the wire we find that, at room temperature, acoustic phonons broaden the impurity level so that the bistability predicted in the ballistic regime is suppressed. Optical phonons are found to have a beneficial impact on carrier transport via a phonon-assisted tunneling effect. We discuss the position and temperature dependence of these effects, showing that such systems might be very promising for engineering of ultimate devices.
Wide-stopband aperiodic phononic filters
NASA Astrophysics Data System (ADS)
Rostem, K.; Chuss, D. T.; Denis, K. L.; Wollack, E. J.
2016-06-01
We demonstrate that a phonon stopband can be synthesized from an aperiodic structure comprising a discrete set of phononic filter stages. Each element of the set has a dispersion relation that defines a complete bandgap when calculated under a Bloch boundary condition. Hence, the effective stopband width in an aperiodic phononic filter (PnF) may readily exceed that of a phononic crystal with a single lattice constant or a coherence scale. With simulations of multi-moded phononic waveguides, we discuss the effects of finite geometry and mode-converting junctions on the phonon transmission in PnFs. The principles described may be utilized to form a wide stopband in acoustic and surface wave media. Relative to the quantum of thermal conductance for a uniform mesoscopic beam, a PnF with a stopband covering 1.6–10.4 GHz is estimated to reduce the thermal conductance by an order of magnitude at 75 mK.
Topologically protected elastic waves in phononic metamaterials.
Mousavi, S Hossein; Khanikaev, Alexander B; Wang, Zheng
2015-01-01
Surface waves in topological states of quantum matter exhibit unique protection from backscattering induced by disorders, making them ideal carriers for both classical and quantum information. Topological matters for electrons and photons are largely limited by the range of bulk properties, and the associated performance trade-offs. In contrast, phononic metamaterials provide access to a much wider range of material properties. Here we demonstrate numerically a phononic topological metamaterial in an elastic-wave analogue of the quantum spin Hall effect. A dual-scale phononic crystal slab is used to support two effective spins for phonons over a broad bandwidth, and strong spin-orbit coupling is realized by breaking spatial mirror symmetry. By preserving the spin polarization with an external load or spatial symmetry, phononic edge states are shown to be robust against scattering from discrete defects as well as disorders in the continuum, demonstrating topological protection for phonons in both static and time-dependent regimes. PMID:26530426
Topologically protected elastic waves in phononic metamaterials
Mousavi, S. Hossein; Khanikaev, Alexander B.; Wang, Zheng
2015-01-01
Surface waves in topological states of quantum matter exhibit unique protection from backscattering induced by disorders, making them ideal carriers for both classical and quantum information. Topological matters for electrons and photons are largely limited by the range of bulk properties, and the associated performance trade-offs. In contrast, phononic metamaterials provide access to a much wider range of material properties. Here we demonstrate numerically a phononic topological metamaterial in an elastic-wave analogue of the quantum spin Hall effect. A dual-scale phononic crystal slab is used to support two effective spins for phonons over a broad bandwidth, and strong spin–orbit coupling is realized by breaking spatial mirror symmetry. By preserving the spin polarization with an external load or spatial symmetry, phononic edge states are shown to be robust against scattering from discrete defects as well as disorders in the continuum, demonstrating topological protection for phonons in both static and time-dependent regimes. PMID:26530426
Wide-Stopband Aperiodic Phononic Filters
NASA Technical Reports Server (NTRS)
Rostem, Karwan; Chuss, David; Denis, K. L.; Wollack, E. J.
2016-01-01
We demonstrate that a phonon stopband can be synthesized from an aperiodic structure comprising a discrete set of phononic filter stages. Each element of the set has a dispersion relation that defines a complete bandgap when calculated under a Bloch boundary condition. Hence, the effective stopband width in an aperiodic phononic filter (PnF) may readily exceed that of a phononic crystal with a single lattice constant or a coherence scale. With simulations of multi-moded phononic waveguides, we discuss the effects of finite geometry and mode-converting junctions on the phonon transmission in PnFs. The principles described may be utilized to form a wide stopband in acoustic and surface wave media. Relative to the quantum of thermal conductance for a uniform mesoscopic beam, a PnF with a stopband covering 1.6-10.4 GHz is estimated to reduce the thermal conductance by an order of magnitude at 75 mK.
Computer Simulation of Disordered Electron-Phonon Systems.
NASA Astrophysics Data System (ADS)
Lei, G.; Kerr, S. N.; Kerr, W. C.
2002-03-01
--We have programmed the equations of motion for an electron propagating in a tight-binding band and interacting with Einstein oscillators. Any or all of the electron on-site energies, transfer energies, oscillator frequencies and the electron-phonon coupling strength can be random functions with prescribed distributions. The program is written in C++, to gain flexibility and reusability. We argue that the lattice geometry, the specific equations of motion, the choice of integration algorithm, and the initialization of parameters that are either random or uniform are more easily changed than in a non-object oriented language. We use partial specialization of template classes in order to achieve these purposes(S. Haney & J. Crotinger, Computing in Science & Engineering 1, 66 (1999)). We will present results for the inverse participation ratio and electron wave functions as functions of the electron-phonon coupling strength and the distribution of electron on-site energies.
Phonon-Assisted Resonant Tunnelling through a Triple-Quantum-Dot: a Phonon-Signal Detector
NASA Astrophysics Data System (ADS)
Shen, Xiao-Yun; Dong, Bing; Lei, Xiao-lin
2008-02-01
We study the effect of electron-phonon interaction on current and zero-frequency shot noise in resonant tunnelling through a series triple-quantum-dot coupling to a local phonon mode by means of a nonperturbative mapping technique along with the Green function formulation. By fixing the energy difference between the first two quantum dots to be equal to phonon frequency and sweeping the level of the third quantum dot, we find a largely enhanced current spectrum due to phonon effect, and in particular we predict current peaks corresponding to phonon-absorption and phonon-emission assisted resonant tunnelling processes, which show that this system can be acted as a sensitive phonon-signal detector or as a cascade phonon generator.
Temperature Dependence of Phonons in Pyrolitic Graphite
DOE R&D Accomplishments Database
Brockhouse, B. N.; Shirane, G.
1977-01-01
Dispersion curves for longitudinal and transverse phonons propagating along and near the c-axis in pyrolitic graphite at temperatures between 4°K and 1500°C have been measured by neutron spectroscopy. The observed frequencies decrease markedly with increasing temperature (except for the transverse optical ''rippling'' modes in the hexagonal planes). The neutron groups show interesting asymmetrical broadening ascribed to interference between one phonon and many phonon processes.
Soltanipour, Asieh; Sadri, Saeed; Rabbani, Hossein; Akhlaghi, Mohammad Reza
2015-01-01
This paper presents a new procedure for automatic extraction of the blood vessels and optic disk (OD) in fundus fluorescein angiogram (FFA). In order to extract blood vessel centerlines, the algorithm of vessel extraction starts with the analysis of directional images resulting from sub-bands of fast discrete curvelet transform (FDCT) in the similar directions and different scales. For this purpose, each directional image is processed by using information of the first order derivative and eigenvalues obtained from the Hessian matrix. The final vessel segmentation is obtained using a simple region growing algorithm iteratively, which merges centerline images with the contents of images resulting from modified top-hat transform followed by bit plane slicing. After extracting blood vessels from FFA image, candidates regions for OD are enhanced by removing blood vessels from the FFA image, using multi-structure elements morphology, and modification of FDCT coefficients. Then, canny edge detector and Hough transform are applied to the reconstructed image to extract the boundary of candidate regions. At the next step, the information of the main arc of the retinal vessels surrounding the OD region is used to extract the actual location of the OD. Finally, the OD boundary is detected by applying distance regularized level set evolution. The proposed method was tested on the FFA images from angiography unit of Isfahan Feiz Hospital, containing 70 FFA images from different diabetic retinopathy stages. The experimental results show the accuracy more than 93% for vessel segmentation and more than 87% for OD boundary extraction. PMID:26284170
Watching surface waves in phononic crystals.
Wright, Oliver B; Matsuda, Osamu
2015-08-28
In this paper, we review results obtained by ultrafast imaging of gigahertz surface acoustic waves in surface phononic crystals with one- and two-dimensional periodicities. By use of quasi-point-source optical excitation, we show how, from a series of images that form a movie of the travelling waves, the dispersion relation of the acoustic modes, their corresponding mode patterns and the position and widths of phonon stop bands can be obtained by temporal and spatio-temporal Fourier analysis. We further demonstrate how one can follow the temporal evolution of phononic eigenstates in k-space using data from phononic-crystal waveguides as an example. PMID:26217053
Phonon-assisted transient electroluminescence in Si
Cheng, Tzu-Huan; Chu-Su, Yu; Liu, Chien-Sheng; Lin, Chii-Wann
2014-06-30
The phonon-replica infrared emission is observed at room temperature from indirect band gap Si light-emitting diode under forward bias. With increasing injection current density, the broadened electroluminescence spectrum and band gap reduction are observed due to joule heating. The spectral-resolved temporal response of electroluminescence reveals the competitiveness between single (TO) and dual (TO + TA) phonon-assisted indirect band gap transitions. As compared to infrared emission with TO phonon-replica, the retarder of radiative recombination at long wavelength region (∼1.2 μm) indicates lower transition probability of dual phonon-replica before thermal equivalent.
Phononic Molecules Studied by Raman Scattering
Lanzillotti-Kimura, N. D.; Fainstein, A.; Jusserand, B.; Lemaitre, A.
2010-01-04
An acoustic nanocavity can confine phonons in such a way that they act like electrons in an atom. By combining two of these phononic-atoms, it is possible to form a phononic 'molecule', with acoustic modes that are similar to the electronic states in a hydrogen molecule. We report Raman scattering experiments performed in a monolithic structure formed by a phononic molecule embedded in an optical cavity. The acoustic mode splitting becomes evident through both the amplification and change of selection rules induced by the optical cavity confinement. The results are in perfect agreement with photoelastic model simulations.
Electron-phonon interaction effects in tantalum
Al-Lehaibi, A.; Swihart, J.C.; Butler, W.H.; Pinski, F.J.
1987-09-15
The results of calculations for a number of electron-phonon interaction effects for tantalum are presented. The calculations are based on Korringa-Kohn-Rostoker energy bands, Born--von Karman phonons, and the rigid-muffin-tin approximation for the electron-phonon matrix element. The calculated Eliashberg spectral function ..cap alpha../sup 2/F is compared with the earlier tunneling data of Shen and the proximity tunneling data of Wolf et al. The calculated and tunneling transverse-phonon peaks agree well, but the height of the tunneling longitudinal-phonon peak is smaller than the calculated results. The calculated electron-phonon coupling parameter lambda is 0.88, which is larger than the lambda determined from superconducting tunneling and superconducting T/sub c/ measurements, but is slightly smaller than the lambda determined from electronic specific-heat measurements. Calculated phonon linewidths along various symmetry directions are presented. The temperature dependence of the electrical resistivity due to phonon scattering is calculated in the lowest-order variational approximation and it agrees with experiment. The point-contact spectral function of Kulik, G(..omega..), is determined and compared with ..cap alpha../sup 2/F(..omega..). The agreement between calculated and measured electronic specific heat and high-temperature electrical resistivity gives strong support to the validity of the rigid-muffin-tin approximation for electron-phonon matrix elements.
Influence of the optical-acoustic phonon hybridization on phonon scattering and thermal conductivity
NASA Astrophysics Data System (ADS)
Li, Wu; Carrete, Jesús; Madsen, Georg K. H.; Mingo, Natalio
2016-05-01
We predict a marked effect of optical-acoustic phonon hybridization on phonon scattering and lattice thermal conductivity (κ ), and illustrate it in the case of Fe2Ge3 . This material presents very low-lying optical phonons with an energy of 1.8 meV at the Brillouin zone center, which show avoided crossings with longitudinal acoustic (LA) phonons, due to optical-acoustic phonon polarization hybridization. Because the optical phonons have nonvanishing scattering rates, even a small amount of hybridization with the optical phonon can increase the scattering rates of LA phonons by much more than one order of magnitude, causing the contribution of these phonons to κ to vanish. At low temperatures, the contributions of all LA phonons are eliminated, and thus the avoided crossing leads to a reduction of thermal conductivity by more than half. The scattering rates are very sensitive to the optical-acoustic phonon hybridization strength, characterized by the gap at the avoided crossing point and varied with the wave-vector direction. Our work presents a different reduction mechanism of κ in systems with optical-acoustic phonon hybridization, which can benefit the search for new thermoelectric materials.
NASA Astrophysics Data System (ADS)
Wang, Mingchao; Lin, Shangchao
2015-12-01
The elastic modulus of carbyne, a one-dimensional carbon chain, was recently predicted to be much higher than graphene. Inspired by this discovery and the fundamental correlation between elastic modulus and thermal conductivity, we investigate the intrinsic thermal transport in two carbon allotropes: carbyne and cumulene. Using molecular dynamics simulations, we discover that thermal conductivities of carbyne and cumulene at the quantum-corrected room temperature can exceed 54 and 148 kW/m/K, respectively, much higher than that for graphene. Such conductivity is attributed to high phonon energies and group velocities, as well as reduced scattering from non-overlapped acoustic and optical phonon modes. The prolonged spectral acoustic phonon lifetime of 30-110 ps and mean free path of 0.5-2.5 μm exceed those for graphene, and allow ballistic phonon transport along micron-length carbon chains. Tensile extensions can enhance the thermal conductivity of carbyne due to the increased phonon density of states in the acoustic modes and the increased phonon lifetime from phonon bandgap opening. These findings provide fundamental insights into phonon transport and band structure engineering through tensile deformation in low-dimensional materials, and will inspire studies on carbyne, cumulene, and boron nitride chains for their practical deployments in nano-devices.
Wang, Mingchao; Lin, Shangchao
2015-01-01
The elastic modulus of carbyne, a one-dimensional carbon chain, was recently predicted to be much higher than graphene. Inspired by this discovery and the fundamental correlation between elastic modulus and thermal conductivity, we investigate the intrinsic thermal transport in two carbon allotropes: carbyne and cumulene. Using molecular dynamics simulations, we discover that thermal conductivities of carbyne and cumulene at the quantum-corrected room temperature can exceed 54 and 148 kW/m/K, respectively, much higher than that for graphene. Such conductivity is attributed to high phonon energies and group velocities, as well as reduced scattering from non-overlapped acoustic and optical phonon modes. The prolonged spectral acoustic phonon lifetime of 30–110 ps and mean free path of 0.5–2.5 μm exceed those for graphene, and allow ballistic phonon transport along micron-length carbon chains. Tensile extensions can enhance the thermal conductivity of carbyne due to the increased phonon density of states in the acoustic modes and the increased phonon lifetime from phonon bandgap opening. These findings provide fundamental insights into phonon transport and band structure engineering through tensile deformation in low-dimensional materials, and will inspire studies on carbyne, cumulene, and boron nitride chains for their practical deployments in nano-devices. PMID:26658143
Dynamical stabilization by phonon-phonon interaction exemplified in cubic zirconia
Souvatsos,; Rudin, Sven P
2008-01-01
Cubic zirconia exhibits a soft phonon mode (X{sup -}{sub 2}), which becomes dynamically unstable at low temperatures. Previous ab initio invest.igations into the temperature-induced stabilization of the soft mode treated it as an independent anharmonic oscillator. Calculations presented here, using the self consistent ab initio lattice dynamical (SCAILD) method to evaluate the phonons at 2570 K, show that the soft mode should not be treated independently of other phonon modes. Phonon-phonon interactions stabilize the X{sup -}{sub 2} mode. Furthermore, the effective potential experienced by the mode takes on a quadratic form.
Splash, pop, sizzle: Information processing with phononic computing
Sklan, Sophia R.
2015-05-15
Phonons, the quanta of mechanical vibration, are important to the transport of heat and sound in solid materials. Recent advances in the fundamental control of phonons (phononics) have brought into prominence the potential role of phonons in information processing. In this review, the many directions of realizing phononic computing and information processing are examined. Given the relative similarity of vibrational transport at different length scales, the related fields of acoustic, phononic, and thermal information processing are all included, as are quantum and classical computer implementations. Connections are made between the fundamental questions in phonon transport and phononic control and the device level approach to diodes, transistors, memory, and logic. .
Enhanced electron-phonon coupling for a semiconductor charge qubit in a surface phonon cavity
NASA Astrophysics Data System (ADS)
Chen, J. C. H.; Sato, Y.; Kosaka, R.; Hashisaka, M.; Muraki, K.; Fujisawa, T.
2015-10-01
Electron-phonon coupling is a major decoherence mechanism, which often causes scattering and energy dissipation in semiconductor electronic systems. However, this electron-phonon coupling may be used in a positive way for reaching the strong or ultra-strong coupling regime in an acoustic version of the cavity quantum electrodynamic system. Here we propose and demonstrate a phonon cavity for surface acoustic waves, which is made of periodic metal fingers that constitute Bragg reflectors on a GaAs/AlGaAs heterostructure. Phonon band gap and cavity phonon modes are identified by frequency, time and spatially resolved measurements of the piezoelectric potential. Tunneling spectroscopy on a double quantum dot indicates the enhancement of phonon assisted transitions in a charge qubit. This encourages studying of acoustic cavity quantum electrodynamics with surface phonons.
Enhanced electron-phonon coupling for a semiconductor charge qubit in a surface phonon cavity.
Chen, J C H; Sato, Y; Kosaka, R; Hashisaka, M; Muraki, K; Fujisawa, T
2015-01-01
Electron-phonon coupling is a major decoherence mechanism, which often causes scattering and energy dissipation in semiconductor electronic systems. However, this electron-phonon coupling may be used in a positive way for reaching the strong or ultra-strong coupling regime in an acoustic version of the cavity quantum electrodynamic system. Here we propose and demonstrate a phonon cavity for surface acoustic waves, which is made of periodic metal fingers that constitute Bragg reflectors on a GaAs/AlGaAs heterostructure. Phonon band gap and cavity phonon modes are identified by frequency, time and spatially resolved measurements of the piezoelectric potential. Tunneling spectroscopy on a double quantum dot indicates the enhancement of phonon assisted transitions in a charge qubit. This encourages studying of acoustic cavity quantum electrodynamics with surface phonons. PMID:26469629
Enhanced electron-phonon coupling for a semiconductor charge qubit in a surface phonon cavity
Chen, J. C. H.; Sato, Y.; Kosaka, R.; Hashisaka, M.; Muraki, K.; Fujisawa, T.
2015-01-01
Electron-phonon coupling is a major decoherence mechanism, which often causes scattering and energy dissipation in semiconductor electronic systems. However, this electron-phonon coupling may be used in a positive way for reaching the strong or ultra-strong coupling regime in an acoustic version of the cavity quantum electrodynamic system. Here we propose and demonstrate a phonon cavity for surface acoustic waves, which is made of periodic metal fingers that constitute Bragg reflectors on a GaAs/AlGaAs heterostructure. Phonon band gap and cavity phonon modes are identified by frequency, time and spatially resolved measurements of the piezoelectric potential. Tunneling spectroscopy on a double quantum dot indicates the enhancement of phonon assisted transitions in a charge qubit. This encourages studying of acoustic cavity quantum electrodynamics with surface phonons. PMID:26469629
Hydrodynamic phonon transport in suspended graphene.
Lee, Sangyeop; Broido, David; Esfarjani, Keivan; Chen, Gang
2015-01-01
Recent studies of thermal transport in nanomaterials have demonstrated the breakdown of Fourier's law through observations of ballistic transport. Despite its unique features, another instance of the breakdown of Fourier's law, hydrodynamic phonon transport, has drawn less attention because it has been observed only at extremely low temperatures and narrow temperature ranges in bulk materials. Here, we predict on the basis of first-principles calculations that the hydrodynamic phonon transport can occur in suspended graphene at significantly higher temperatures and wider temperature ranges than in bulk materials. The hydrodynamic transport is demonstrated through drift motion of phonons, phonon Poiseuille flow and second sound. The significant hydrodynamic phonon transport in graphene is associated with graphene's two-dimensional features. This work opens a new avenue for understanding and manipulating heat flow in two-dimensional materials. PMID:25693180
Phononic crystals and elastodynamics: Some relevant points
Aravantinos-Zafiris, N.; Sigalas, M. M.; Kafesaki, M.; Economou, E. N.
2014-12-15
In the present paper we review briefly some of the first works on wave propagation in phononic crystals emphasizing the conditions for the creation of acoustic band-gaps and the role of resonances to the band-gap creation. We show that useful conclusions in the analysis of phononic band gap structures can be drawn by considering the mathematical similarities of the basic classical wave equation (Helmholtz equation) with Schrödinger equation and by employing basic solid state physics concepts and conclusions regarding electronic waves. In the second part of the paper we demonstrate the potential of phononic systems to be used as elastic metamaterials. This is done by demonstrating negative refraction in phononic crystals and subwavelength waveguiding in a linear chain of elastic inclusions, and by proposing a novel structure with close to pentamode behavior. Finally the potential of phononic structures to be used in liquid sensor applications is discussed and demonstrated.
Lattice Boltzmann modeling of phonon transport
NASA Astrophysics Data System (ADS)
Guo, Yangyu; Wang, Moran
2016-06-01
A novel lattice Boltzmann scheme is proposed for phonon transport based on the phonon Boltzmann equation. Through the Chapman-Enskog expansion, the phonon lattice Boltzmann equation under the gray relaxation time approximation recovers the classical Fourier's law in the diffusive limit. The numerical parameters in the lattice Boltzmann model are therefore rigorously correlated to the bulk material properties. The new scheme does not only eliminate the fictitious phonon speed in the diagonal direction of a square lattice system in the previous lattice Boltzmann models, but also displays very robust performances in predicting both temperature and heat flux distributions consistent with analytical solutions for diverse numerical cases, including steady-state and transient, macroscale and microscale, one-dimensional and multi-dimensional phonon heat transport. This method may provide a powerful numerical tool for deep studies of nonlinear and nonlocal heat transports in nanosystems.
Hybrid functional calculation of electronic and phonon structure of BaSnO{sub 3}
Kim, Bog G.; Jo, J.Y.; Cheong, S.W.
2013-01-15
Barium stannate, BaSnO{sub 3} (BSO), with a cubic perovskite structure, has been highlighted as a promising host material for the next generation transparent oxide electrodes. This study examined theoretically the electronic structure and phonon structure of BSO using hybrid density functional theory based on the HSE06 functional. The electronic structure results of BSO were corrected by extending the phonon calculations based on the hybrid density functional. The fundamental thermal properties were also predicted based on a hybrid functional calculation. Overall, a detailed understanding of the electronic structure, phonon modes and phonon dispersion of BSO will provide a theoretical starting-point for engineering applications of this material. - Graphical Abstract: (a) Crystal structure of BaSnO{sub 3}. The center ball is Ba and small (red) ball on edge is oxygen and SnO{sub 6} octahedrons are plotted as polyhedron. (b) Electronic band structure along the high symmetry point in the Brillouin zone using the HSE06 hybrid functional. (c) The phonon dispersion curve calculated using the HSE06 hybrid functional (d) Zone center lowest energy F{sub 1u} phonon mode. Highlights: Black-Right-Pointing-Pointer We report the full hybrid functional calculation of not only the electronic structure but also the phonon structure for BaSnO{sub 3}. Black-Right-Pointing-Pointer The band gap calculation of HSE06 revealed an indirect gap with 2.48 eV. Black-Right-Pointing-Pointer The effective mass at the conduction band minimum and valence band maximum was calculated. Black-Right-Pointing-Pointer In addition, the phonon structure of BSO was calculated using the HSE06 functional. Black-Right-Pointing-Pointer Finally, the heat capacity was calculated and compared with the recent experimental result.
Phonon counting and intensity interferometry of a nanomechanical resonator
NASA Astrophysics Data System (ADS)
Cohen, Justin D.; Meenehan, Seán M.; Maccabe, Gregory S.; Gröblacher, Simon; Safavi-Naeini, Amir H.; Marsili, Francesco; Shaw, Matthew D.; Painter, Oskar
2015-04-01
In optics, the ability to measure individual quanta of light (photons) enables a great many applications, ranging from dynamic imaging within living organisms to secure quantum communication. Pioneering photon counting experiments, such as the intensity interferometry performed by Hanbury Brown and Twiss to measure the angular width of visible stars, have played a critical role in our understanding of the full quantum nature of light. As with matter at the atomic scale, the laws of quantum mechanics also govern the properties of macroscopic mechanical objects, providing fundamental quantum limits to the sensitivity of mechanical sensors and transducers. Current research in cavity optomechanics seeks to use light to explore the quantum properties of mechanical systems ranging in size from kilogram-mass mirrors to nanoscale membranes, as well as to develop technologies for precision sensing and quantum information processing. Here we use an optical probe and single-photon detection to study the acoustic emission and absorption processes in a silicon nanomechanical resonator, and perform a measurement similar to that used by Hanbury Brown and Twiss to measure correlations in the emitted phonons as the resonator undergoes a parametric instability formally equivalent to that of a laser. Owing to the cavity-enhanced coupling of light with mechanical motion, this effective phonon counting technique has a noise equivalent phonon sensitivity of 0.89 +/- 0.05. With straightforward improvements to this method, a variety of quantum state engineering tasks using mesoscopic mechanical resonators would be enabled, including the generation and heralding of single-phonon Fock states and the quantum entanglement of remote mechanical elements.
Phonon counting and intensity interferometry of a nanomechanical resonator.
Cohen, Justin D; Meenehan, Seán M; MacCabe, Gregory S; Gröblacher, Simon; Safavi-Naeini, Amir H; Marsili, Francesco; Shaw, Matthew D; Painter, Oskar
2015-04-23
In optics, the ability to measure individual quanta of light (photons) enables a great many applications, ranging from dynamic imaging within living organisms to secure quantum communication. Pioneering photon counting experiments, such as the intensity interferometry performed by Hanbury Brown and Twiss to measure the angular width of visible stars, have played a critical role in our understanding of the full quantum nature of light. As with matter at the atomic scale, the laws of quantum mechanics also govern the properties of macroscopic mechanical objects, providing fundamental quantum limits to the sensitivity of mechanical sensors and transducers. Current research in cavity optomechanics seeks to use light to explore the quantum properties of mechanical systems ranging in size from kilogram-mass mirrors to nanoscale membranes, as well as to develop technologies for precision sensing and quantum information processing. Here we use an optical probe and single-photon detection to study the acoustic emission and absorption processes in a silicon nanomechanical resonator, and perform a measurement similar to that used by Hanbury Brown and Twiss to measure correlations in the emitted phonons as the resonator undergoes a parametric instability formally equivalent to that of a laser. Owing to the cavity-enhanced coupling of light with mechanical motion, this effective phonon counting technique has a noise equivalent phonon sensitivity of 0.89 ± 0.05. With straightforward improvements to this method, a variety of quantum state engineering tasks using mesoscopic mechanical resonators would be enabled, including the generation and heralding of single-phonon Fock states and the quantum entanglement of remote mechanical elements. PMID:25903632
Flow stabilization by subsurface phonons
Hussein, M. I.; Biringen, S.; Bilal, O. R.; Kucala, A.
2015-01-01
The interaction between a fluid and a solid surface in relative motion represents a dynamical process that is central to the problem of laminar-to-turbulent transition (and consequent drag increase) for air, sea and land vehicles, as well as long-range pipelines. This problem may in principle be alleviated via a control stimulus designed to impede the generation and growth of instabilities inherent in the flow. Here, we show that phonon motion underneath a surface may be tuned to passively generate a spatio-temporal elastic deformation profile at the surface that counters these instabilities. We theoretically demonstrate this phenomenon and the underlying mechanism of frequency-dependent destructive interference of the unstable flow waves. The converse process of flow destabilization is illustrated as well. This approach provides a condensed-matter physics treatment to fluid–structure interaction and a new paradigm for flow control. PMID:27547095
Two-Dimensional Phononic Crystals: Disorder Matters.
Wagner, Markus R; Graczykowski, Bartlomiej; Reparaz, Juan Sebastian; El Sachat, Alexandros; Sledzinska, Marianna; Alzina, Francesc; Sotomayor Torres, Clivia M
2016-09-14
The design and fabrication of phononic crystals (PnCs) hold the key to control the propagation of heat and sound at the nanoscale. However, there is a lack of experimental studies addressing the impact of order/disorder on the phononic properties of PnCs. Here, we present a comparative investigation of the influence of disorder on the hypersonic and thermal properties of two-dimensional PnCs. PnCs of ordered and disordered lattices are fabricated of circular holes with equal filling fractions in free-standing Si membranes. Ultrafast pump and probe spectroscopy (asynchronous optical sampling) and Raman thermometry based on a novel two-laser approach are used to study the phononic properties in the gigahertz (GHz) and terahertz (THz) regime, respectively. Finite element method simulations of the phonon dispersion relation and three-dimensional displacement fields furthermore enable the unique identification of the different hypersonic vibrations. The increase of surface roughness and the introduction of short-range disorder are shown to modify the phonon dispersion and phonon coherence in the hypersonic (GHz) range without affecting the room-temperature thermal conductivity. On the basis of these findings, we suggest a criteria for predicting phonon coherence as a function of roughness and disorder. PMID:27580163
Phonons of the cis-polyacetylene chain
NASA Astrophysics Data System (ADS)
Faulques, Eric; Buisson, Jean-Pierre; Lefrant, Serge
1995-12-01
An investigation of the in-plane phonons of the cis-polyacetylene chain (CH)x and isotopic analogs (CD)x and (13CH)x is presented on the basis of a Fourier's dynamical D-matrix formalism. The conjugation is found to be similar to that of the trans-polyacetylene chain. Phonon dispersions have been calculated and follow the shapes predicted by Božović. Finally, the most interesting result is that phonon density of states exhibits van Hove singularities whose energies are close to those determined experimentally with incoherent inelastic neutron scattering.
One-dimensional hypersonic phononic crystals.
Gomopoulos, N; Maschke, D; Koh, C Y; Thomas, E L; Tremel, W; Butt, H-J; Fytas, G
2010-03-10
We report experimental observation of a normal incidence phononic band gap in one-dimensional periodic (SiO(2)/poly(methyl methacrylate)) multilayer film at gigahertz frequencies using Brillouin spectroscopy. The band gap to midgap ratio of 0.30 occurs for elastic wave propagation along the periodicity direction, whereas for inplane propagation the system displays an effective medium behavior. The phononic properties are well captured by numerical simulations. The porosity in the silica layers presents a structural scaffold for the introduction of secondary active media for potential coupling between phonons and other excitations, such as photons and electrons. PMID:20141118
Acoustic superfocusing by solid phononic crystals
Zhou, Xiaoming; Assouar, M. Badreddine Oudich, Mourad
2014-12-08
We propose a solid phononic crystal lens capable of acoustic superfocusing beyond the diffraction limit. The unit cell of the crystal is formed by four rigid cylinders in a hosting material with a cavity arranged in the center. Theoretical studies reveal that the solid lens produces both negative refraction to focus propagating waves and surface states to amplify evanescent waves. Numerical analyses of the superfocusing effect of the considered solid phononic lens are presented with a separated source excitation to the lens. In this case, acoustic superfocusing beyond the diffraction limit is evidenced. Compared to the fluid phononic lenses, the solid lens is more suitable for ultrasonic imaging applications.
Harvesting vibrations via 3D phononic isolators
NASA Astrophysics Data System (ADS)
Psarobas, Ioannis E.; Yannopapas, Vassilios; Matikas, Theodore E.
2016-05-01
We report on the existence of unidirectional phononic band gaps that may span over extended regions of the Brillouin zone and can find application in trapping elastic (acoustic) waves in properly designed multilayered 3D structures. Phononic isolators operate as a result of asymmetrical wave transmission through a slab of a crystallographic phononic structure with broken mirror symmetry. Due to the use of lossless materials in the crystal, the absorption rate is dramatically enhanced when the proposed isolator is placed next to a vibrational harvesting cell. xml:lang="fr"
Electrons and Phonons in Semiconductor Multilayers
NASA Astrophysics Data System (ADS)
Ridley, B. K.
2014-08-01
Introduction; 1. Simple models of the electron-phonon interaction; 2. Quantum confinement of carriers; 3. Quasicontinuum theory of lattice vibrations; 4. Bulk vibratory modes in an isotropic continuum; 5. Optical modes in a quantum well; 6. Superlattice modes; 7. Optical modes in various structures; 8. Electron-phonon interaction in a quantum well; 9. Other scattering mechanisms; 10. Quantum screening; 11. The electron distribution function; 12. Spin relaxation; 13. Electrons and phonons in the Wurtzite lattice; 14. Nitride heterostructures; 15. Terahertz sources; References; Index.
Phonon Spectrum of SrFe2As2 determined by multizone phonon refinement
Parshall, D; Heid, R; Niedziela, Jennifer L; Wolf, Th.; Stone, Matthew B; Abernathy, Douglas L; Reznik, Dmitry
2014-01-01
The ferropnictidesuperconductors exhibit a sensitive interplay between the lattice and magnetic degrees of freedom, including a number of phonon modes that are much softer than predicted by nonmagnetic calculations using density functional theory (DFT). However, it is not known what effect, if any, the long-range magnetic order has on phonon frequencies above 23 meV, where several phonon branches are very closely spaced in energy and it is challenging to isolate them from each other. We measured these phonons using inelastic time-of-flight neutron scattering in 40 Brillouin zones, and developed a technique to determine their frequencies. We find this method capable of determining phonon energies to 0.1 meV accuracy, and that the DFT calculations using the experimental structure yield qualitatively correct energies and eigenvectors. We do not find any effect of the magnetic transition on these phonons.
NASA Astrophysics Data System (ADS)
Dey, Prasenjit; Paul, Jagannath; Wang, Zefang; Stevens, Christopher; Liu, Cunming; Romero, Aldo; Shan, Jie; Hilton, David; Karaiskaj, Denis; Aldo Romero Collaboration; Zefang Wang, Jie Shan Collaboration; David HIlton Collaboration
We systematically investigate the excitonic dephasing of three representative transition metal dichalcogenides, namely MoS2, MoSe2 and WSe2 atomic monolayer thick and bulk crystals, in order to gain proper understanding of the factors that determine the optical coherence in these materials. Coherent nonlinear optical spectroscopy, temperature dependent absorption combined with `ab initio' theoretical calculations of the phonon spectra, indicate electron-phonon interactions to be the limiting factor. The research at USF, Penn. State, and UAB is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0012635.
Predicting the phonon spectra of coupled nonlinear chains using effective phonon theory
NASA Astrophysics Data System (ADS)
Su, Ruixia; Yuan, Zongqiang; Wang, Jun; Zheng, Zhigang
2016-06-01
In general one-dimensional nonlinear lattices, extensive studies have discovered the existence of renormalized phonons due to nonlinear interactions and found these renormalized phonons, as the energy carriers, are responsible for heat transport. Within the framework of renormalized phonons, a generic form of renormalized phonon spectrum has been derived and effective phonon theory (EPT) has been developed to explain the heat transport in general 1D nonlinear lattices. Our attention is dedicated to generalizing the EPT for two-layer nonlinear lattices and deriving the analytic expression of phonon spectra. By calculating the phonon spectra of different coupled models with EPT, it is found that the phonon dispersion relation is in good agreement with the result obtained from the spectral energy density method. It is demonstrated that the EPT of a coupled system can predict the phonon spectra of two-layer nonlinear lattices well. Thus, this finding may shed light on the prediction of heat conduction behavior in a coupled system, qualitatively, and provide a useful guide for designing thermal devices.
Yudistira, D; Boes, A; Djafari-Rouhani, B; Pennec, Y; Yeo, L Y; Mitchell, A; Friend, J R
2014-11-21
We theoretically and experimentally demonstrate the existence of complete surface acoustic wave band gaps in surface phonon-polariton phononic crystals, in a completely monolithic structure formed from a two-dimensional honeycomb array of hexagonal shape domain-inverted inclusions in single crystal piezoelectric Z-cut lithium niobate. The band gaps appear at a frequency of about twice the Bragg band gap at the center of the Brillouin zone, formed through phonon-polariton coupling. The structure is mechanically, electromagnetically, and topographically homogeneous, without any physical alteration of the surface, offering an ideal platform for many acoustic wave applications for photonics, phononics, and microfluidics. PMID:25479504
Strong Coupling between Nanoscale Metamaterials and Phonons
Shelton, David J.; Brener, Igal; Ginn, James C.; Sinclair, Michael B.; Peters, David W.; Coffey, Kevin R.; Boreman, Glenn D.
2011-05-11
We use split ring resonators (SRRs) at optical frequencies to study strong coupling between planar metamaterials and phonon vibrations in nanometer-scale dielectric layers. A series of SRR metamaterials were fabricated on a semiconductor wafer with a thin intervening SiO{sub 2} dielectric layer. The dimensions of the SRRs were varied to tune the fundamental metamaterial resonance across the infrared (IR) active phonon band of SiO{sub 2} at 130 meV (31 THz). Strong anticrossing of these resonances was observed, indicative of strong coupling between metamaterial and phonon excitations. This coupling is very general and can occur with any electrically polarizable resonance including phonon vibrations in other thin film materials and semiconductor band-to-band transitions in the near to far IR. These effects may be exploited to reduce loss and to create unique spectral features that are not possible with metamaterials alone.
Phonon-glass dynamics in thermoelectric clathrates
NASA Astrophysics Data System (ADS)
Liu, Yaping; Xi, Qing; Zhou, Jun; Nakayama, Tsuneyoshi; Li, Baowen
2016-06-01
Type-I clathrate compounds exhibit glasslike thermal/dynamic properties due to symmetry breaking of guest-atom positions in tetrakaidecahedron cages. All of these features are associated with the phonon dynamics in the THz region, for which we perform large-scale numerical simulations by highlighting the difference between type-I clathrates Ba8Ga16Ge30 (BGG) with on-center guest atoms and Ba8Ga16Sn30 (BGS) with off-center guest atoms. The results of the phonon densities of states D (ω ) , the dynamic structure factors S (Q ,E ) , the specific heats C (T ) , and the participation ratios of eigenmodes clearly realize a drastic change from the conventional phonon dynamics of BGG to the phonon-glass dynamics of BGS.
Kabuss, Julia; Carmele, Alexander; Brandes, Tobias; Knorr, Andreas
2012-08-01
We present a microscopically based scheme for the generation of coherent cavity phonons (phonon laser) by an optically driven semiconductor quantum dot coupled to a THz acoustic nanocavity. External laser pump light on an anti-Stokes resonance creates an effective Lambda system within a two-level dot that leads to coherent phonon statistics. We use an inductive equation of motion method to estimate a realistic parameter range for an experimental realization of such phonon lasers. This scheme for the creation of nonequilibrium phonons is robust with respect to radiative and phononic damping and only requires optical Rabi frequencies of the order of the electron-phonon coupling strength. PMID:23006175
Phonon Cooling by an Optomechanical Heat Pump
NASA Astrophysics Data System (ADS)
Dong, Ying; Bariani, F.; Meystre, P.
2015-11-01
We propose and analyze theoretically a cavity optomechanical analog of a heat pump that uses a polariton fluid to cool mechanical modes coupled to a single precooled phonon mode via external modulation of the substrate of the mechanical resonator. This approach permits us to cool phonon modes of arbitrary frequencies not limited by the cavity-optical field detuning deep into the quantum regime from room temperature.
Phonon coherence in isotopic silicon superlattices
Frieling, R.; Radek, M.; Eon, S.; Bracht, H.; Wolf, D. E.
2014-09-29
Recent experimental and theoretical investigations have confirmed that a reduction in thermal conductivity of silicon is achieved by isotopic silicon superlattices. In the present study, non-equilibrium molecular dynamics simulations are performed to identify the isotope doping and isotope layer ordering with minimum thermal conductivity. Furthermore, the impact of isotopic intermixing at the superlattice interfaces on phonon transport is investigated. Our results reveal that the coherence of phonons in isotopic Si superlattices is prevented if interfacial mixing of isotopes is considered.
Thermal transport in amorphous nanostructures: the (enduring) role of low-energy phonons
NASA Astrophysics Data System (ADS)
Underwood, Jason
2014-03-01
Micromachined amorphous solid structures have proven to be ideal platforms for physicists to challenge their understanding of phonon transport. Such nanostructures have been exploited for early experimental demonstrations of the quantum of thermal conductance. These structures also serve important technological functions. Amorphous silicon nitride (SiNx) nanostructures, in particular, are increasingly critical to the operation of state-of-the-art low temperature detector arrays. Achieving control over which phonon modes propagate in a given structure -- phononics -- is a major goal for engineering better thermoelectric materials, for regulating heat flow in ever-shrinking microprocessors, and for the developing field of caloritronics. At very low temperatures, it is generally accepted that phonons with energy much lower than the Debye energy (i.e., ω <<1013 Hz) dominate thermal transport. At room temperature, the preponderance of higher energy modes is usually reason enough to assume that the low energy modes do not contribute substantially to the overall thermal conductance. While generally true for crystals, the efficient scattering of high-energy phonons in amorphous solids means that the remaining low-energy modes may acquire comparably long mean free paths. Recent measurements of SiNx nanostructures strongly suggest that this bias in mean free paths leads to the result that low-energy phonons may contribute up to 50% of the overall thermal conductance of the structure -- even at room temperature. After a brief review of thermal transport in the low-energy regime, I will discuss these results, as well as other recent experiments where low-energy phonons play an important role.
A first principles method for simulating phonons in strongly disordered materials
NASA Astrophysics Data System (ADS)
Berlijn, Tom; Delaire, Olivier; Larson, Ben
2015-03-01
At the microscopic level the flow of vibrational heat is encoded not only in the energies of phonons but also in their lifetimes. In many functional materials these phonon lifetimes are controlled by strong disorder. Such systems are difficult to understand from conventional perturbation theories or mean field treatments. Here we will present an affordable and accurate first principles method for simulating phonons in strongly disordered materials. The method will be illustrated with applications ranging from thermoelectrics to nuclear fuels. TB was supported as a Wigner Fellow at the Oak Ridge National Laboratory, OD was supported by the US DOE-BES, Materials Science and Engineering Division, and BL was supported by the CMSNF Energy Frontier Research Center.
Dexterous acoustic trapping and patterning of particles assisted by phononic crystal plate
Wang, Tian; Ke, Manzhu Xu, Shengjun; Feng, Junheng; Qiu, Chunyin; Liu, Zhengyou
2015-04-20
In this letter, we present experimental demonstration of multi-particles trapping and patterning by the artificially engineered acoustic field of phononic crystal plate. Polystyrene particles are precisely trapped and patterned in two dimensional arrays, for example, the square, triangular, or quasi-periodic arrays, depending on the structures of the phononic crystal plates with varying sub-wavelength holes array. Analysis shows that the enhanced acoustic radiation force, induced by the resonant transmission field highly localized near the sub-wavelength apertures, accounts for the particles self-organizing. It can be envisaged that this kind of simple design of phononic crystal plates would pave an alternative route for self-assembly of particles and may be utilized in the lab-on-a-chip devices.
Ballistic Performance Study of Nanowire FET: Effect of Channel Materials and Phonon Scattering
NASA Astrophysics Data System (ADS)
Iztihad, Hossain Md.; Khan, Touhid; Sufian, Abu; Alam, Md. Nur Kutubul; Mollah, Md. Nurunnabi; Islam, Md. Rafiqul
2016-02-01
The ballistic performance of Si and Ge nanowire (NW) is compared in this study. Current-voltage characteristic is obtained by self-consistently solving the nonequilibrium Green’s function (NEGF) transport equation with Poisson’s equation. The result is obtained at ⟨001⟩ channel orientation. Simulation result shows Ge NW gives higher ON-state current than Si NW, when OFF-state current is made equal by gate metal work function engineering. However, at subthreshold region, performance of NW FET for both material is almost identical. The intravalley and intervalley electron-phonon scattering effect is also calculated using the deformation potential theory and the self-consistent Born approximation. It is found that electron-phonon scattering effect is more pronounced at ON-state of Si NW FET. The ballistic current decreases with the decrease in diameter of the Si NW FET due to electron-phonon scattering.
Ab initio phonon limited transport
NASA Astrophysics Data System (ADS)
Verstraete, Matthieu
We revisit the thermoelectric (TE) transport properties of two champion materials, PbTe and SnSe, using fully first principles methods. In both cases the performance of the material is due to subtle combinations of structural effects, scattering, and phase space reduction. In PbTe anharmonic effects are completely opposite to the predicted quasiharmonic evolution of phonon frequencies and to frequently (and incorrectly) cited extrapolations of experiments. This stabilizes the material at high T, but also tends to enhance its thermal conductivity, in a non linear manner, above 600 Kelvin. This explains why PbTe is in practice limited to room temperature applications. SnSe has recently been shown to be the most efficient TE material in bulk form. This is mainly due to a strongly enhanced carrier concentration and electrical conductivity, after going through a phase transition from 600 to 800 K. We calculate the transport coefficients as well as the defect concentrations ab initio, showing excellent agreement with experiment, and elucidating the origin of the double phase transition as well as the new charge carriers. AH Romero, EKU Gross, MJ Verstraete, and O Hellman PRB 91, 214310 (2015) O. Hellman, IA Abrikosov, and SI Simak, PRB 84 180301 (2011)
Shin, H.B.
1984-02-28
An internal combustion engine has a piston rack depending from each piston. This rack is connected to a power output shaft through a mechanical rectifier so that the power output shaft rotates in only one direction. A connecting rod is pivotally connected at one end to the rack and at the other end to the crank of a reduced function crankshaft so that the crankshaft rotates at the same angular velocity as the power output shaft and at the same frequency as the pistons. The crankshaft has a size, weight and shape sufficient to return the pistons back into the cylinders in position for the next power stroke.
Wang, Jing; Chen, Di; Wallace, Joseph; Gigax, Jonathan; Wang, Xuemei; Shao, Lin
2014-05-12
Through integrated molecular dynamics (MD) simulations and experimental studies, we demonstrated the feasibility of an ion-irradiation-and-annealing based phonon engineering technique to enhance thermal conductivity of carbon nanotube (CNT) films. Upon ion irradiation of CNT films, both inter-tube defects and intra-tube defects are introduced. Our MD simulations show that inter-tube defects created between neighboring tubes are much more stable than intra-tube defects created on tube graphitic planes. Upon thermal annealing, intra-tube defects are preferentially removed but inter-tube defects stay. Consequently, axial phonon transport increases due to reduced phonon scattering and off-axial phonon transport is sustained due to the high stability of inter-tube defects, leading to a conductivity enhancement upon annealing. The modeling predictions agree with experimental observations that thermal conductivities of CNT films were enhanced after 2 MeV hydrogen ion irradiations and conductivities were further enhanced upon post irradiation annealing.
Thermal conductivity of graphene nanoribbons accounting for phonon dispersion and polarization
NASA Astrophysics Data System (ADS)
Wang, Yingjun; Xie, Guofeng
2015-12-01
The relative contribution to heat conduction by different phonon branches is still an intriguing and open question in phonon transport of graphene nanoribbons (GNRs). By incorporating the direction-dependent phonon-boundary scattering into the linearized phonon Boltzmann transport equation, we find that because of lower Grüneisen parameter, the TA phonons have the major contribution to thermal conductivity of GNRs, and in the case of smooth edge and micron-length of GNRS, the relative contribution of TA branch to thermal conductivity is over 50%. The length and edge roughness of GNRs have distinct influences on the relative contribution of different polarization branches to thermal conductivity. The contribution of TA branch to thermal conductivity increases with increasing the length or decreasing the edge roughness of GNRs. On the contrary, the contribution of ZA branch to thermal conductivity increases with decreasing the length or increasing the edge roughness of GNRs. The contribution of LA branch is length and roughness insensitive. Our findings are helpful for understanding and engineering the thermal conductivity of GNRs.
A bond-order theory on the phonon scattering by vacancies in two-dimensional materials.
Xie, Guofeng; Shen, Yulu; Wei, Xiaolin; Yang, Liwen; Xiao, Huaping; Zhong, Jianxin; Zhang, Gang
2014-01-01
We theoretically investigate the phonon scattering by vacancies, including the impacts of missing mass and linkages (τ(V)(-1)) and the variation of the force constant of bonds associated with vacancies (τ(A)(-1)) by the bond-order-length-strength correlation mechanism. We find that in bulk crystals, the phonon scattering rate due to change of force constant τ(A)(-1) is about three orders of magnitude lower than that due to missing mass and linkages τ(V)(-1). In contrast to the negligible τ(A)(-1) in bulk materials, τ(A)(-1) in two-dimensional materials can be 3-10 folds larger than τ(V)(-1). Incorporating this phonon scattering mechanism to the Boltzmann transport equation derives that the thermal conductivity of vacancy defective graphene is severely reduced even for very low vacancy density. High-frequency phonon contribution to thermal conductivity reduces substantially. Our findings are helpful not only to understand the severe suppression of thermal conductivity by vacancies, but also to manipulate thermal conductivity in two-dimensional materials by phononic engineering. PMID:24866858
NASA Astrophysics Data System (ADS)
Rury, Aaron S.
2016-06-01
This study reports experimental, computational, and theoretical evidence for a previously unobserved coherent phonon-phonon interaction in an organic solid that can be described by the application of Fano's analysis to a case without the presence of a continuum. Using Raman spectroscopy of the hydrogen-bonded charge-transfer material quinhydrone, two peaks appear near 700 cm-1 we assign as phonons whose position and line-shape asymmetry depend on the sample temperature and light scattering excitation energy. Density functional theory calculations find two nearly degenerate phonons possessing frequencies near the values found in experiment that share similar atomic motion out of the aromatic plane of electron donor and acceptor molecules of quinhydrone. Further analytical modeling of the steady-state light scattering process using the Peierls-Hubbard Hamiltonian and time-dependent perturbation theory motivates assignment of the physical origin of the asymmetric features of each peak's line shape to an interaction between two discrete phonons via nonlinear electron-phonon coupling. In the context of analytical model results, characteristics of the experimental spectra upon 2.33 eV excitation of the Raman scattering process are used to qualify the temperature dependence of the magnitude of this coupling in the valence band of quinhydrone. These results broaden the range of phonon-phonon interactions in materials in general while also highlighting the rich physics and fundamental attributes specific to organic solids that may determine their applicability in next generation electronics and photonics technologies.
NASA Astrophysics Data System (ADS)
Li, Nianbei; Li, Baowen
2012-12-01
Heat transport in low-dimensional systems has attracted enormous attention from both theoretical and experimental aspects due to its significance to the perception of fundamental energy transport theory and its potential applications in the emerging field of phononics: manipulating heat flow with electronic anologs. We consider the heat conduction of one-dimensional nonlinear lattice models. The energy carriers responsible for the heat transport have been identified as the renormalized phonons. Within the framework of renormalized phonons, a phenomenological theory, effective phonon theory, has been developed to explain the heat transport in general one-dimensional nonlinear lattices. With the help of numerical simulations, it has been verified that this effective phonon theory is able to predict the scaling exponents of temperature-dependent thermal conductivities quantitatively and consistently.
Investigating the existence of coherent phonon scattering in silicon using phononic crystals
NASA Astrophysics Data System (ADS)
Goettler, Drew
In silicon the majority of heat energy is transported by phonons, which are discrete lattice vibrations. Phonon scattering due to the presence of voids in silicon can further alter the material's thermal conductivity. There is a question about the possibility of some of this scattering being coherent rather than purely incoherent. Coherent phonon scattering is defined as constructive interference of phonons scattered from the inclusions in the phononic crystal. The intent of this work is to investigate the existence of coherent scattering in Si via phononic crystals. A phononic crystal is a periodic array of inclusions inside a host material. The inclusions could be a second material or a void. In this work five different supercell phononic crystals comprised of holes in silicon will be used to investigate the existence of coherent phonon scattering. Each of the supercells had nearly identical critical lengths in order to keep the amount of incoherent scattering equal among all of the PnCs. Porosity differences among the supercells were also minimized. All of the PnCs were fabricated with a focused ion beam (FIB). During fabrication a protective layer of Ti was used to protect the Si from unintentional Ga doping from the FIB. The Ti layer also helped generate voids with more vertical sidewalls. A set of experiments was performed to measure the thermal conductivity of each PnC. Thermal conductivity measurements were carried out on a silicon nitride suspended island platform with platinum resistance temperature detectors and coated with aluminum nitride. A silicon slab was concurrently measured with each PnC, and relative thermal conductivity values were determined. The addition of the PnC decreased Si's thermal conductivity to less than 22% of its original value. An analysis of the results shows there is a reduction in thermal conductivity beyond the effects of porosity and incoherent scattering. This enhanced reduction in thermal conductivity is due to coherent
Existence of an independent phonon bath in a quantum device
NASA Astrophysics Data System (ADS)
Pascal, L. M. A.; Fay, A.; Winkelmann, C. B.; Courtois, H.
2013-09-01
At low temperatures, the thermal wavelength of acoustic phonons in a metallic thin film on a substrate can widely exceed the film thickness. It is thus generally believed that a mesoscopic device operating at low temperature does not carry an individual phonon population. In this work, we provide direct experimental evidence for the thermal decoupling of phonons in a mesoscopic quantum device from its substrate phonon heat bath at a sub-Kelvin temperature. A simple heat balance model assuming an independent phonon bath following the usual electron-phonon and Kapitza coupling laws can account for all experimental observations.
Phonon Recycling for Ultrasensitive Kinetic Inductance Detectors
NASA Astrophysics Data System (ADS)
Zmuidzinas, Jonas
Initially proposed (Day et al. 2003; Zmuidzinas 2012) in 1999 by our Caltech/JPL group, and thanks to strong support from NASA, the superconducting (microwave) kinetic inductance detector (MKID or KID) technology continues to develop rapidly as it transitions into applications. The development effort worldwide is intensifying and NASA's continued support of KID development is essential in order to keep pace. Here we propose to investigate and demonstrate a new, low-TRL concept, which we call phonon recycling, that promises to open broad new avenues in KID design and performance. Briefly, phonon recycling allows the detector designer to tailor the responsivity and sensitivity of a KID to match the needs of the application by using geometry to restrict the rate at which recombination phonons are allowed to escape from the detector. In particular, phonon recycling should allow very low noise-equivalent power (NEP) to be achieved without requiring very low operating tem- peratures. Phonon recycling is analogous to the use of micromachined suspension legs to control the flow of heat in a bolometer, as measured by the thermal conductivity G. However, phonon recycling exploits the non-thermal distribution of recombination phonons as well as their very slow decay in crystals at low temperatures. These properties translate to geometrical and mechanical requirements for a phonon-recycled KID that are considerably more relaxed than for a bolometer operating at the same temperature and NEP. Our ultimate goal is to develop detector arrays suitable for a far-infrared (FIR) space mission, which will impose strict requirements on the array sensitivity, yield, uniformity, multiplexing density, etc. Through previous NASA support under the Strategic Astrophysics Technology (SAT) program, we have successfully demonstrated the MAKO submillimeter camera at the Caltech Submillimeter Observatory and have become familiar with these practical issues. If our demonstration of phonon recycling
Symmetry-adapted phonon analysis of nanotubes
NASA Astrophysics Data System (ADS)
Aghaei, Amin; Dayal, Kaushik; Elliott, Ryan S.
2013-02-01
The characteristics of phonons, i.e. linearized normal modes of vibration, provide important insights into many aspects of crystals, e.g. stability and thermodynamics. In this paper, we use the Objective Structures framework to make concrete analogies between crystalline phonons and normal modes of vibration in non-crystalline but highly symmetric nanostructures. Our strategy is to use an intermediate linear transformation from real-space to an intermediate space in which the Hessian matrix of second derivatives is block-circulant. The block-circulant nature of the Hessian enables us to then follow the procedure to obtain phonons in crystals: namely, we use the Discrete Fourier Transform from this intermediate space to obtain a block-diagonal matrix that is readily diagonalizable. We formulate this for general Objective Structures and then apply it to study carbon nanotubes of various chiralities that are subjected to axial elongation and torsional deformation. We compare the phonon spectra computed in the Objective Framework with spectra computed for armchair and zigzag nanotubes. We also demonstrate the approach by computing the Density of States. In addition to the computational efficiency afforded by Objective Structures in providing the transformations to almost-diagonalize the Hessian, the framework provides an important conceptual simplification to interpret the phonon curves. Our findings include that, first, not all non-optic long-wavelength modes are zero energy and conversely not all zero energy modes are long-wavelength; second, the phonon curves accurately predict both the onset as well as the soft modes for instabilities such as torsional buckling; and third, unlike crystals where phonon stability does not provide information on stability with respect to non-rank-one deformation modes, phonon stability in nanotubes is sufficient to guarantee stability with respect to all perturbations that do not involve structural modes. Our finding of characteristic
Phonon dynamics of graphene on metals.
Al Taleb, Amjad; Farías, Daniel
2016-03-16
The study of surface phonon dispersion curves is motivated by the quest for a detailed understanding of the forces between the atoms at the surface and in the bulk. In the case of graphene, additional motivation comes from the fact that thermal conductivity is dominated by contributions from acoustic phonons, while optical phonon properties are essential to understand Raman spectra. In this article, we review recent progress made in the experimental determination of phonon dispersion curves of graphene grown on several single-crystal metal surfaces. The two main experimental techniques usually employed are high-resolution electron energy loss spectroscopy (HREELS) and inelastic helium atom scattering (HAS). The different dispersion branches provide a detailed insight into the graphene-substrate interaction. Softening of optical modes and signatures of the substrate's Rayleigh wave are observed for strong graphene-substrate interactions, while acoustic phonon modes resemble those of free-standing graphene for weakly interacting systems. The latter allows determining the bending rigidity and the graphene-substrate coupling strength. A comparison between theory and experiment is discussed for several illustrative examples. Perspectives for future experiments are discussed. PMID:26886508
Ionizing particle detection based on phononic crystals
NASA Astrophysics Data System (ADS)
Aly, Arafa H.; Mehaney, Ahmed; Eissa, Mostafa F.
2015-08-01
Most conventional radiation detectors are based on electronic or photon collections. In this work, we introduce a new and novel type of ionizing particle detector based on phonon collection. Helium ion radiation treats tumors with better precision. There are nine known isotopes of helium, but only helium-3 and helium-4 are stable. Helium-4 is formed in fusion reactor technology and in enormous quantities during Big Bang nucleo-synthesis. In this study, we introduce a technique for helium-4 ion detection (sensing) based on the innovative properties of the new composite materials known as phononic crystals (PnCs). PnCs can provide an easy and cheap technique for ion detection compared with conventional methods. PnC structures commonly consist of a periodic array of two or more materials with different elastic properties. The two materials are polymethyl-methacrylate and polyethylene polymers. The calculations showed that the energies lost to target phonons are maximized at 1 keV helium-4 ion energy. There is a correlation between the total phonon energies and the transmittance of PnC structures. The maximum transmission for phonons due to the passage of helium-4 ions was found in the case of making polyethylene as a first layer in the PnC structure. Therefore, the concept of ion detection based on PnC structure is achievable.
Ionizing particle detection based on phononic crystals
Aly, Arafa H. E-mail: arafa.hussien@science.bsu.edu.eg; Mehaney, Ahmed; Eissa, Mostafa F.
2015-08-14
Most conventional radiation detectors are based on electronic or photon collections. In this work, we introduce a new and novel type of ionizing particle detector based on phonon collection. Helium ion radiation treats tumors with better precision. There are nine known isotopes of helium, but only helium-3 and helium-4 are stable. Helium-4 is formed in fusion reactor technology and in enormous quantities during Big Bang nucleo-synthesis. In this study, we introduce a technique for helium-4 ion detection (sensing) based on the innovative properties of the new composite materials known as phononic crystals (PnCs). PnCs can provide an easy and cheap technique for ion detection compared with conventional methods. PnC structures commonly consist of a periodic array of two or more materials with different elastic properties. The two materials are polymethyl-methacrylate and polyethylene polymers. The calculations showed that the energies lost to target phonons are maximized at 1 keV helium-4 ion energy. There is a correlation between the total phonon energies and the transmittance of PnC structures. The maximum transmission for phonons due to the passage of helium-4 ions was found in the case of making polyethylene as a first layer in the PnC structure. Therefore, the concept of ion detection based on PnC structure is achievable.
Phonon dynamics of graphene on metals
NASA Astrophysics Data System (ADS)
Taleb, Amjad Al; Farías, Daniel
2016-03-01
The study of surface phonon dispersion curves is motivated by the quest for a detailed understanding of the forces between the atoms at the surface and in the bulk. In the case of graphene, additional motivation comes from the fact that thermal conductivity is dominated by contributions from acoustic phonons, while optical phonon properties are essential to understand Raman spectra. In this article, we review recent progress made in the experimental determination of phonon dispersion curves of graphene grown on several single-crystal metal surfaces. The two main experimental techniques usually employed are high-resolution electron energy loss spectroscopy (HREELS) and inelastic helium atom scattering (HAS). The different dispersion branches provide a detailed insight into the graphene-substrate interaction. Softening of optical modes and signatures of the substrate‧s Rayleigh wave are observed for strong graphene-substrate interactions, while acoustic phonon modes resemble those of free-standing graphene for weakly interacting systems. The latter allows determining the bending rigidity and the graphene-substrate coupling strength. A comparison between theory and experiment is discussed for several illustrative examples. Perspectives for future experiments are discussed.
Understandng of phonon anharmonicity in thermoelectric clathrates
NASA Astrophysics Data System (ADS)
Tanigaki, Katsumi; Wu, Jiazhen; Shimotani, Hidekazu; Huynh, Khuong; Akagi, Kazuto; AIMR Collaboration; Department of Physics, Graduate School of Science Collaboration
Anharmonicity in phonons, apart from the conventional Einstein- or Debye- mode harmonic phonons, is frequently observed for amorphous or glass-like materials. A frontier topic relating to anharmonic phonons revolves around the fact that they are also observed in a single crystal with a void of cage structure. Although the origin of the phonon anharmonicity has been the center of scientific debate for many years, a clear understanding has not yet been achieved. In the present study, we show that the anharmonic oscillations in thermoelectric clathrates can successfully be rationalized in terms of a single unified exponential line for a variety of clathrates by employing a new parameter associated with the freedom of space. The intrinsic nature of phonon anharmonicity is described based on the unified picture with a help of first principles calculations. Although the origin of the anharmonicity appearing in disordered materials is complex to understand due to the missing information on the real structure, the present unified picture gives important information applicable to other systems.
Phonon Dispersion in Amorphous Ni-Alloys
NASA Astrophysics Data System (ADS)
Vora, A. M.
2007-06-01
The well-known model potential is used to investigate the longitudinal and transverse phonon dispersion curves for six Ni-based binary amorphous alloys, viz. Ni31Dy69, Ni33Y67, Ni36Zr64, Ni50Zr50, Ni60 Nb40, and Ni81B19. The thermodynamic and elastic properties are also computed from the elastic limits of the phonon dispersion curves. The theoretical approach given by Hubbard-Beeby is used in the present study to compute the phonon dispersion curves. Five local field correction functions proposed by Hartree, Taylor, Ichimaru-Utsumi, Farid et al. and Sarkar et al. are employed to see the effect of exchange and correlation in the aforesaid properties.
Hierarchical thermoelectrics: crystal grain boundaries as scalable phonon scatterers
NASA Astrophysics Data System (ADS)
Selli, Daniele; Boulfelfel, Salah Eddine; Schapotschnikow, Philipp; Donadio, Davide; Leoni, Stefano
2016-02-01
Thermoelectric materials are strategically valuable for sustainable development, as they allow for the generation of electrical energy from wasted heat. In recent years several strategies have demonstrated some efficiency in improving thermoelectric properties. Dopants affect carrier concentration, while thermal conductivity can be influenced by alloying and nanostructuring. Features at the nanoscale positively contribute to scattering phonons, however those with long mean free paths remain difficult to alter. Here we use the concept of hierarchical nano-grains to demonstrate thermal conductivity reduction in rocksalt lead chalcogenides. We demonstrate that grains can be obtained by taking advantage of the reconstructions along the phase transition path that connects the rocksalt structure to its high-pressure form. Since grain features naturally change as a function of size, they impact thermal conductivity over different length scales. To understand this effect we use a combination of advanced molecular dynamics techniques to engineer grains and to evaluate thermal conductivity in PbSe. By affecting grain morphologies only, i.e. at constant chemistry, two distinct effects emerge: the lattice thermal conductivity is significantly lowered with respect to the perfect crystal, and its temperature dependence is markedly suppressed. This is due to an increased scattering of low-frequency phonons by grain boundaries over different size scales. Along this line we propose a viable process to produce hierarchical thermoelectric materials by applying pressure via a mechanical load or a shockwave as a novel paradigm for material design.
Hierarchical thermoelectrics: crystal grain boundaries as scalable phonon scatterers.
Selli, Daniele; Boulfelfel, Salah Eddine; Schapotschnikow, Philipp; Donadio, Davide; Leoni, Stefano
2016-02-14
Thermoelectric materials are strategically valuable for sustainable development, as they allow for the generation of electrical energy from wasted heat. In recent years several strategies have demonstrated some efficiency in improving thermoelectric properties. Dopants affect carrier concentration, while thermal conductivity can be influenced by alloying and nanostructuring. Features at the nanoscale positively contribute to scattering phonons, however those with long mean free paths remain difficult to alter. Here we use the concept of hierarchical nano-grains to demonstrate thermal conductivity reduction in rocksalt lead chalcogenides. We demonstrate that grains can be obtained by taking advantage of the reconstructions along the phase transition path that connects the rocksalt structure to its high-pressure form. Since grain features naturally change as a function of size, they impact thermal conductivity over different length scales. To understand this effect we use a combination of advanced molecular dynamics techniques to engineer grains and to evaluate thermal conductivity in PbSe. By affecting grain morphologies only, i.e. at constant chemistry, two distinct effects emerge: the lattice thermal conductivity is significantly lowered with respect to the perfect crystal, and its temperature dependence is markedly suppressed. This is due to an increased scattering of low-frequency phonons by grain boundaries over different size scales. Along this line we propose a viable process to produce hierarchical thermoelectric materials by applying pressure via a mechanical load or a shockwave as a novel paradigm for material design. PMID:26815914
Atomistic modeling of phonon transport in turbostratic graphitic structures
NASA Astrophysics Data System (ADS)
Mao, Rui; Chen, Yifeng; Kim, Ki Wook
2016-05-01
Thermal transport in turbostratic graphitic systems is investigated by using an atomistic analytical model based on the 4th-nearest-neighbor force constant approximation and a registry-dependent interlayer potential. The developed model is shown to produce an excellent agreement with the experimental data and ab initio results in the calculation of bulk properties. Subsequent analysis of phonon transport in combination with the Green's function method illustrates the significant dependence of key characteristics on the misorientation angle, clearly indicating the importance of this degree of freedom in multi-stacked structures. Selecting three angles with the smallest commensurate unit cells, the thermal resistance is evaluated at the twisted interface between two AB stacked graphite. The resulting values in the range of 35 × 10-10 K m2/W to 116 × 10-10 K m2/W are as large as those between two dissimilar material systems such as a metal and graphene. The strong rotational effect on the cross-plane thermal transport may offer an effective means of phonon engineering for applications such as thermoelectric materials.
Refraction characteristics of phononic crystals
NASA Astrophysics Data System (ADS)
Nemat-Nasser, Sia
2015-08-01
Some of the most interesting refraction properties of phononic crystals are revealed by examining the anti-plane shear waves in doubly periodic elastic composites with unit cells containing rectangular and/or elliptical multi-inclusions. The corresponding band structure, group velocity, and energy-flux vector are calculated using a powerful mixed variational method that accurately and efficiently yields all the field quantities over multiple frequency pass-bands. The background matrix and the inclusions can be anisotropic, each having distinct elastic moduli and mass densities. Equifrequency contours and energy-flux vectors are readily calculated as functions of the wave-vector components. By superimposing the energy-flux vectors on equifrequency contours in the plane of the wave-vector components, and supplementing this with a three-dimensional graph of the corresponding frequency surface, a wealth of information is extracted essentially at a glance. This way it is shown that a composite with even a simple square unit cell containing a central circular inclusion can display negative or positive energy and phase velocity refractions, or simply performs a harmonic vibration (standing wave), depending on the frequency and the wave-vector. Moreover, that the same composite when interfaced with a suitable homogeneous solid can display: (1) negative refraction with negative phase velocity refraction; (2) negative refraction with positive phase velocity refraction; (3) positive refraction with negative phase velocity refraction; (4) positive refraction with positive phase velocity refraction; or even (5) complete reflection with no energy transmission, depending on the frequency, and direction and the wavelength of the plane-wave that is incident from the homogeneous solid to the interface. For elliptical and rectangular inclusion geometries, analytical expressions are given for the key calculation quantities. Expressions for displacement, velocity, linear momentum
Revision of the statistical mechanics of phonons to include phonon line widths
Overton, W.C. Jr.
1983-01-01
Zubarev in 1960 obtained the smeared Bose-Einstein (B-E) function in order to take into account the fact that the eigenenergy associated with a fixed phonon wave vector q and fixed polarization index j is not precisely defined but instead, is smeared by phonon-phonon and phonon-electron interactions. The ratio GAMMA(qj)/..omega..(qj) is often quite small, i.e., of the order of 0.01 or less, where GAMMA is the phonon linewidth and h-bar ..omega.. is the eigenenergy. However, in strongly anharmonic crystals GAMMA/..omega.. may be as large as 0.3 at certain points of the Brillouin zone. In such dramatic cases one would suspect that such phonon linewidths would have some observable effect on the thermodynamic properties. The purpose of this work is to derive the expression for the average free energy per mode for a crystal having large phonon linewidths and to test the properties of the thermodynamic functions derivable from the average free energy per mode. (WHK)
Phonon and magnon heat transport and drag effects
NASA Astrophysics Data System (ADS)
Heremans, Joseph P.
2014-03-01
Thermoelectric generators and coolers constitute today's solid-state energy converters. The two goals in thermoelectrics research are to enhance the thermopower while simultaneously maintaining a high electrical conductivity of the same material, and to minimize its lattice thermal conductivity without affecting its electronic properties. Up to now the lattice thermal conductivity has been minimized by using alloy scattering and, more recently, nanostructuring. In the first part of the talk, a new approach to minimize the lattice thermal conductivity is described that affects phonon scattering much more than electron scattering. This can be done by selecting potential thermoelectric materials that have a very high anharmonicity, because this property governs phonon-phonon interaction probability. Several possible types of chemical bonds will be described that exhibit such high anharmonicity, and particular emphasis will be put on solids with highly-polarizable lone-pair electrons, such as the rock salt I-V-VI2 compounds (e.g. NaSbSe2). The second part of the talk will give an introduction to a completely new class of solid-state thermal energy converters based on spin transport. One configuration for such energy converters is based on the recently discovered spin-Seebeck effect (SSE). This quantity is expressed in the same units as the conventional thermopower, and we have recently shown that it can be of the same order of magnitude. The main advantage of SSE converters is that the problem of optimization is now distributed over two different materials, a ferromagnet in which a flux of magnetization is generated by a thermal gradient, and a normal metal where the flux of magnetization is converted into electrical power. The talk will focus on the basic physics behind the spin-Seebeck effect. Recent developments will then be described based on phonon-drag of spin polarized electrons. This mechanism has made it possible to reach magnitudes of SSE that are comparable
Angular momentum in spin-phonon processes
NASA Astrophysics Data System (ADS)
Garanin, D. A.; Chudnovsky, E. M.
2015-07-01
Quantum theory of spin relaxation in the elastic environment is revised with account of the concept of a phonon spin recently introduced by Zhang and Niu [L. Zhang and Q. Niu, Phys. Rev. Lett. 112, 085503 (2014), 10.1103/PhysRevLett.112.085503]. Similar to the case of the electromagnetic field, the division of the angular momentum associated with elastic deformations into the orbital part and the part due to phonon spins proves to be useful for the analysis of the balance of the angular momentum. Such analysis sheds important light on microscopic processes leading to the Einstein-de Haas effect.
Phononic Phase Conjugation in an Optomechanical System
NASA Astrophysics Data System (ADS)
Buchmann, Lukas; Wright, Ewan; Meystre, Pierre
2013-05-01
We study theoretically the phase conjugation of a phononic field in an optomechanical system with two mechanical modes coupled to a common optical field. Phase conjugation becomes the dominant process for an appropriate choice of driving field parameters, and he effective coupling coefficients between phonon modes can result in amplification and entanglement, phase-conjugation or a mixture thereof. We discuss surprising consequences of mechanical phase-conjugation that could lead to the preparation of mechanical states with negative temperature, the improvement of quantum memories and the study of the quantum-classical transition. Supported by DARPA ORCHID program.
Phonon analogue of topological nodal semimetals
NASA Astrophysics Data System (ADS)
Po, Hoi Chun; Bahri, Yasaman; Vishwanath, Ashvin
2015-03-01
Recently, Kane and Lubensky proposed a mapping between bosonic phonon problems on isostatic lattices to chiral fermion systems based on factorization of the dynamical matrix [Nat. Phys. 10, 39 (2014)]. The existence of topologically protected zero modes in such mechanical problems is related to their presence in the fermionic system and is dictated by a local index theorem. Here we adopt the proposed mapping to construct a two-dimensional mechanical analogue of a fermionic topological nodal semimetal that hosts a robust bulk node in its linearized phonon spectrum. Such topologically protected soft modes with tunable wavevector may be useful in designing mechanical structures with fault-tolerant properties.
Phonon interference effects in molecular junctions
Markussen, Troels
2013-12-28
We study coherent phonon transport through organic, π-conjugated molecules. Using first principles calculations and Green's function methods, we find that the phonon transmission function in cross-conjugated molecules, like meta-connected benzene, exhibits destructive quantum interference features very analogous to those observed theoretically and experimentally for electron transport in similar molecules. The destructive interference features observed in four different cross-conjugated molecules significantly reduce the thermal conductance with respect to linear conjugated analogues. Such control of the thermal conductance by chemical modifications could be important for thermoelectric applications of molecular junctions.
NASA Astrophysics Data System (ADS)
Yan, Zhequan; Chen, Liang; Yoon, Mina; Kumar, Satish
2016-02-01
Hexagonal boron nitride (h-BN) is a promising substrate for graphene based nano-electronic devices. We investigate the ballistic phonon transport at the interface of vertically stacked graphene and h-BN heterostructures using first principles density functional theory and atomistic Green's function simulations considering the influence of lattice stacking. We compute the frequency and wave-vector dependent transmission function and observe distinct stacking-dependent phonon transmission features for the h-BN/graphene/h-BN sandwiched systems. We find that the in-plane acoustic modes have the dominant contributions to the phonon transmission and thermal boundary conductance (TBC) for the interfaces with the carbon atom located directly on top of the boron atom (C-B matched) because of low interfacial spacing. The low interfacial spacing is a consequence of the differences in the effective atomic volume of N and B and the difference in the local electron density around N and B. For the structures with the carbon atom directly on top of the nitrogen atom (C-N matched), the spatial distance increases and the contribution of in-plane modes to the TBC decreases leading to higher contributions by out-of-plane acoustic modes. We find that the C-B matched interfaces have stronger phonon-phonon coupling than the C-N matched interfaces, which results in significantly higher TBC (more than 50%) in the C-B matched interface. The findings in this study will provide insights to understand the mechanism of phonon transport at h-BN/graphene/h-BN interfaces, to better explain the experimental observations and to engineer these interfaces to enhance heat dissipation in graphene based electronic devices.
Yan, Zhequan; Chen, Liang; Yoon, Mina; Kumar, Satish
2016-02-21
Hexagonal boron nitride (h-BN) is a promising substrate for graphene based nano-electronic devices. We investigate the ballistic phonon transport at the interface of vertically stacked graphene and h-BN heterostructures using first principles density functional theory and atomistic Green's function simulations considering the influence of lattice stacking. We compute the frequency and wave-vector dependent transmission function and observe distinct stacking-dependent phonon transmission features for the h-BN/graphene/h-BN sandwiched systems. We find that the in-plane acoustic modes have the dominant contributions to the phonon transmission and thermal boundary conductance (TBC) for the interfaces with the carbon atom located directly on top of the boron atom (C-B matched) because of low interfacial spacing. The low interfacial spacing is a consequence of the differences in the effective atomic volume of N and B and the difference in the local electron density around N and B. For the structures with the carbon atom directly on top of the nitrogen atom (C-N matched), the spatial distance increases and the contribution of in-plane modes to the TBC decreases leading to higher contributions by out-of-plane acoustic modes. We find that the C-B matched interfaces have stronger phonon-phonon coupling than the C-N matched interfaces, which results in significantly higher TBC (more than 50%) in the C-B matched interface. The findings in this study will provide insights to understand the mechanism of phonon transport at h-BN/graphene/h-BN interfaces, to better explain the experimental observations and to engineer these interfaces to enhance heat dissipation in graphene based electronic devices. PMID:26817419
Luo, Yixiu; Wang, Jiemin; Li, Yiran; Wang, Jingyang
2016-01-01
Modification of lattice thermal conductivity (κL) of a solid by means of hydrostatic pressure (P) has been a crucially interesting approach that targets a broad range of advanced materials from thermoelectrics and thermal insulators to minerals in mantle. Although it is well documented knowledge that thermal conductivity of bulk materials normally increase upon hydrostatic pressure, such positive relationship is seriously challenged when it comes to ceramics with complex crystal structure and heterogeneous chemical bonds. In this paper, we predict an abnormally negative trend dκL/dP < 0 in Y2Si2O7 silicate using density functional theoretical calculations. The mechanism is disclosed as combined effects of slightly decreased group velocity and significantly augmented scattering of heat-carrying acoustic phonons in pressured lattice, which is originated from pressure-induced downward shift of low-lying optic and acoustic phonons. The structural origin of low-lying optic phonons as well as the induced phonon anharmonicity is also qualitatively elucidated with respect to intrinsic bonding heterogeneity of Y2Si2O7. The present results are expected to bring deeper insights for phonon engineering and modulation of thermal conductivity in complex solids with diverging structural flexibility, enormous bonding heterogeneity, and giant phonon anharmonicity. PMID:27430670
NASA Astrophysics Data System (ADS)
Luo, Yixiu; Wang, Jiemin; Li, Yiran; Wang, Jingyang
2016-07-01
Modification of lattice thermal conductivity (κL) of a solid by means of hydrostatic pressure (P) has been a crucially interesting approach that targets a broad range of advanced materials from thermoelectrics and thermal insulators to minerals in mantle. Although it is well documented knowledge that thermal conductivity of bulk materials normally increase upon hydrostatic pressure, such positive relationship is seriously challenged when it comes to ceramics with complex crystal structure and heterogeneous chemical bonds. In this paper, we predict an abnormally negative trend dκL/dP < 0 in Y2Si2O7 silicate using density functional theoretical calculations. The mechanism is disclosed as combined effects of slightly decreased group velocity and significantly augmented scattering of heat-carrying acoustic phonons in pressured lattice, which is originated from pressure-induced downward shift of low-lying optic and acoustic phonons. The structural origin of low-lying optic phonons as well as the induced phonon anharmonicity is also qualitatively elucidated with respect to intrinsic bonding heterogeneity of Y2Si2O7. The present results are expected to bring deeper insights for phonon engineering and modulation of thermal conductivity in complex solids with diverging structural flexibility, enormous bonding heterogeneity, and giant phonon anharmonicity.
NASA Astrophysics Data System (ADS)
Plemmons, Dayne; Flannigan, David
Coherent collective lattice oscillations known as phonons dictate a broad range of physical observables in condensed matter and act as primary energy carriers across a wide range of material systems. Despite this omnipresence, analysis of phonon dynamics on their ultrashort native spatiotemporal length scale - that is, the combined nanometer (nm), spatial and femtosecond (fs), temporal length-scales - has largely remained experimentally inaccessible. Here, we employ ultrafast electron microscopy (UEM) to directly image discrete acoustic phonons in real-space with combined nm-fs resolution. By directly probing electron scattering in the image plane (as opposed to the diffraction plane), we retain phase information critical for following the evolution, propagation, scattering, and decay of phonons in relation to morphological features of the specimen (i.e. interfaces, grain boundaries, voids, ripples, etc.). We extract a variety of morphologically-specific quantitative information from the UEM videos including phonon frequencies, phase velocities, and decays times. We expect these direct manifestations of local elastic properties in the vicinity of material defects and interfaces will aide in the understanding and application of phonon-mediated phenomena in nanostructures. Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA.
Luo, Yixiu; Wang, Jiemin; Li, Yiran; Wang, Jingyang
2016-01-01
Modification of lattice thermal conductivity (κL) of a solid by means of hydrostatic pressure (P) has been a crucially interesting approach that targets a broad range of advanced materials from thermoelectrics and thermal insulators to minerals in mantle. Although it is well documented knowledge that thermal conductivity of bulk materials normally increase upon hydrostatic pressure, such positive relationship is seriously challenged when it comes to ceramics with complex crystal structure and heterogeneous chemical bonds. In this paper, we predict an abnormally negative trend dκL/dP < 0 in Y2Si2O7 silicate using density functional theoretical calculations. The mechanism is disclosed as combined effects of slightly decreased group velocity and significantly augmented scattering of heat-carrying acoustic phonons in pressured lattice, which is originated from pressure-induced downward shift of low-lying optic and acoustic phonons. The structural origin of low-lying optic phonons as well as the induced phonon anharmonicity is also qualitatively elucidated with respect to intrinsic bonding heterogeneity of Y2Si2O7. The present results are expected to bring deeper insights for phonon engineering and modulation of thermal conductivity in complex solids with diverging structural flexibility, enormous bonding heterogeneity, and giant phonon anharmonicity. PMID:27430670
Soft surfaces of nanomaterials enable strong phonon interactions
NASA Astrophysics Data System (ADS)
Bozyigit, Deniz; Yazdani, Nuri; Yarema, Maksym; Yarema, Olesya; Lin, Weyde Matteo Mario; Volk, Sebastian; Vuttivorakulchai, Kantawong; Luisier, Mathieu; Juranyi, Fanni; Wood, Vanessa
2016-03-01
Phonons and their interactions with other phonons, electrons or photons drive energy gain, loss and transport in materials. Although the phonon density of states has been measured and calculated in bulk crystalline semiconductors, phonons remain poorly understood in nanomaterials, despite the increasing prevalence of bottom-up fabrication of semiconductors from nanomaterials and the integration of nanometre-sized components into devices. Here we quantify the phononic properties of bottom-up fabricated semiconductors as a function of crystallite size using inelastic neutron scattering measurements and ab initio molecular dynamics simulations. We show that, unlike in microcrystalline semiconductors, the phonon modes of semiconductors with nanocrystalline domains exhibit both reduced symmetry and low energy owing to mechanical softness at the surface of those domains. These properties become important when phonons couple to electrons in semiconductor devices. Although it was initially believed that the coupling between electrons and phonons is suppressed in nanocrystalline materials owing to the scarcity of electronic states and their large energy separation, it has since been shown that the electron–phonon coupling is large and allows high energy-dissipation rates exceeding one electronvolt per picosecond (refs 10, 11, 12, 13). Despite detailed investigations into the role of phonons in exciton dynamics, leading to a variety of suggestions as to the origins of these fast transition rates and including attempts to numerically calculate them, fundamental questions surrounding electron–phonon interactions in nanomaterials remain unresolved. By combining the microscopic and thermodynamic theories of phonons and our findings on the phononic properties of nanomaterials, we are able to explain and then experimentally confirm the strong electron–phonon coupling and fast multi-phonon transition rates of charge carriers to trap states. This improved understanding of
Honeycomb phononic crystals with self-similar hierarchy
NASA Astrophysics Data System (ADS)
Mousanezhad, Davood; Babaee, Sahab; Ghosh, Ranajay; Mahdi, Elsadig; Bertoldi, Katia; Vaziri, Ashkan
2015-09-01
We highlight the effect of structural hierarchy and deformation on band structure and wave-propagation behavior of two-dimensional phononic crystals. Our results show that the topological hierarchical architecture and instability-induced pattern transformations of the structure under compression can be effectively used to tune the band gaps and directionality of phononic crystals. The work provides insights into the role of structural organization and hierarchy in regulating the dynamic behavior of phononic crystals, and opportunities for developing tunable phononic devices.
Soft surfaces of nanomaterials enable strong phonon interactions.
Bozyigit, Deniz; Yazdani, Nuri; Yarema, Maksym; Yarema, Olesya; Lin, Weyde Matteo Mario; Volk, Sebastian; Vuttivorakulchai, Kantawong; Luisier, Mathieu; Juranyi, Fanni; Wood, Vanessa
2016-03-31
Phonons and their interactions with other phonons, electrons or photons drive energy gain, loss and transport in materials. Although the phonon density of states has been measured and calculated in bulk crystalline semiconductors, phonons remain poorly understood in nanomaterials, despite the increasing prevalence of bottom-up fabrication of semiconductors from nanomaterials and the integration of nanometre-sized components into devices. Here we quantify the phononic properties of bottom-up fabricated semiconductors as a function of crystallite size using inelastic neutron scattering measurements and ab initio molecular dynamics simulations. We show that, unlike in microcrystalline semiconductors, the phonon modes of semiconductors with nanocrystalline domains exhibit both reduced symmetry and low energy owing to mechanical softness at the surface of those domains. These properties become important when phonons couple to electrons in semiconductor devices. Although it was initially believed that the coupling between electrons and phonons is suppressed in nanocrystalline materials owing to the scarcity of electronic states and their large energy separation, it has since been shown that the electron-phonon coupling is large and allows high energy-dissipation rates exceeding one electronvolt per picosecond (refs 10-13). Despite detailed investigations into the role of phonons in exciton dynamics, leading to a variety of suggestions as to the origins of these fast transition rates and including attempts to numerically calculate them, fundamental questions surrounding electron-phonon interactions in nanomaterials remain unresolved. By combining the microscopic and thermodynamic theories of phonons and our findings on the phononic properties of nanomaterials, we are able to explain and then experimentally confirm the strong electron-phonon coupling and fast multi-phonon transition rates of charge carriers to trap states. This improved understanding of phonon processes
NASA Astrophysics Data System (ADS)
Wang, Yan; Lu, Zexi; Ruan, Xiulin
2016-06-01
The effect of phonon-electron (p-e) scattering on lattice thermal conductivity is investigated for Cu, Ag, Au, Al, Pt, and Ni. We evaluate both phonon-phonon (p-p) and p-e scattering rates from first principles and calculate the lattice thermal conductivity (κL). It is found that p-e scattering plays an important role in determining the κL of Pt and Ni at room temperature, while it has negligible effect on the κL of Cu, Ag, Au, and Al. Specifically, the room temperature κLs of Cu, Ag, Au, and Al predicted from density-functional theory calculations with the local density approximation are 16.9, 5.2, 2.6, and 5.8 W/m K, respectively, when only p-p scattering is considered, while it is almost unchanged when p-e scattering is also taken into account. However, the κL of Pt and Ni is reduced from 7.1 and 33.2 W/m K to 5.8 and 23.2 W/m K by p-e scattering. Even though Al has quite high electron-phonon coupling constant, a quantity that characterizes the rate of heat transfer from hot electrons to cold phonons in the two-temperature model, p-e scattering is not effective in reducing κL owing to the relatively low p-e scattering rates in Al. The difference in the strength of p-e scattering in different metals can be qualitatively understood by checking the amount of electron density of states that is overlapped with the Fermi window. Moreover, κL is found to be comparable to the electronic thermal conductivity in Ni.
Nonlinear propagation and control of acoustic waves in phononic superlattices
NASA Astrophysics Data System (ADS)
Jiménez, Noé; Mehrem, Ahmed; Picó, Rubén; García-Raffi, Lluís M.; Sánchez-Morcillo, Víctor J.
2016-05-01
The propagation of intense acoustic waves in a one-dimensional phononic crystal is studied. The medium consists in a structured fluid, formed by a periodic array of fluid layers with alternating linear acoustic properties and quadratic nonlinearity coefficient. The spacing between layers is of the order of the wavelength, therefore Bragg effects such as band gaps appear. We show that the interplay between strong dispersion and nonlinearity leads to new scenarios of wave propagation. The classical waveform distortion process typical of intense acoustic waves in homogeneous media can be strongly altered when nonlinearly generated harmonics lie inside or close to band gaps. This allows the possibility of engineer a medium in order to get a particular waveform. Examples of this include the design of media with effective (e.g., cubic) nonlinearities, or extremely linear media (where distortion can be canceled). The presented ideas open a way towards the control of acoustic wave propagation in nonlinear regime. xml:lang="fr"
Dynamical aspects of phonon-phonon coupling in collective mode damping
NASA Astrophysics Data System (ADS)
Cataldo, H. M.; Hernández, E. S.; Dorso, C. O.
1987-04-01
We present an extension of the Quantal Brownian Motion (QBM) model of vibration damping that incorporates phonon-phonon or phonon-(two-particle-two-hole) interactions as sources of dissipative evolution of the excited mode. Starting from the Schrödinger-on Neumann equation of motion, a reduction procedure combined with the proper approximations leads to coupled, nonlinear master equations for the density vectors of the separate oscillators. The fermionic heat bath remains equilibrated at temperature T. The evolution of the phonon system is numerically analyzed under different initial conditions that simulate excitation of one or more collective vibrations, for several strengths of mode-mode coupling. It is found that in the majority of cases the system reaches statistical equilibrium with relaxation times that can be extracted from the numerical treatment.
Phonon Dispersion and Electron--Phonon Interaction in Peanut-Shaped Fullerene Polymers
NASA Astrophysics Data System (ADS)
Ono, Shota; Shima, Hiroyuki
2011-06-01
We reveal that the periodic radius modulation peculiar to one-dimensional (1D) peanut-shaped fullerene (C60) polymers exerts a strong influence on their low-frequency phonon states and their interactions with mobile electrons. The continuum approximation is employed to show the zone-folding of phonon dispersion curves, which leads to fast relaxation of a radial breathing mode in the 1D C60 polymers. We also formulate the electron--phonon interaction along the deformation potential theory, demonstrating that only a few set of electron and phonon modes yields a significant magnitude of the interaction relevant to the low-temperature physics of the system. The latter finding gives an important implication for the possible Peierls instability of the C60 polymers suggested in the earlier experiment.
Phonon dispersion in red mercuric iodide
Sim, H.; Chang, Y. ); James, R.B. )
1994-02-15
We present theoretical studies of phonon modes of undoped HgI[sub 2] in its red tetragonal form. A rigid-ion model including the Coulomb interaction is used which gives the best fit to the neutron scattering, infrared reflectivity, and Raman scattering data. The calculated sound velocities are also in accord with experiment.
Raman phonon spectra of pentacene polymorphs
NASA Astrophysics Data System (ADS)
Brillante, A.; Della Valle, R. G.; Farina, L.; Girlando, A.; Masino, M.; Venuti, E.
2002-05-01
We report for the first time lattice phonon Raman spectra of pentacene measured by means of a Raman microprobe technique. We experimentally prove the existence of two polymorphs, as expected from recent structural studies. A comparison with Quasi Harmonic Lattice Dynamics calculations, previously performed starting from the available X-ray data, help us in identifying the phase to which each crystal belongs.
Synthetic thermoelectric materials comprising phononic crystals
El-Kady, Ihab F; Olsson, Roy H; Hopkins, Patrick; Reinke, Charles; Kim, Bongsang
2013-08-13
Synthetic thermoelectric materials comprising phononic crystals can simultaneously have a large Seebeck coefficient, high electrical conductivity, and low thermal conductivity. Such synthetic thermoelectric materials can enable improved thermoelectric devices, such as thermoelectric generators and coolers, with improved performance. Such synthetic thermoelectric materials and devices can be fabricated using techniques that are compatible with standard microelectronics.
``Forbidden'' phonon in the iron chalcogenide series
NASA Astrophysics Data System (ADS)
Fobes, David M.; Zaliznyak, Igor A.; Xu, Zhijun; Gu, Genda; Tranquada, John M.
2015-03-01
Recently, we uncovered evidence for the formation of a bond-order wave (BOW) leading to ferro-orbital order at low temperature, acting to stabilize the bicollinear AFM order, in the iron-rich parent compound, Fe1+yTe. Investigating the inelastic spectra centered near (100) in Fe1+yTe, a signature peak for the BOW formation in the monoclinic phase, we observed an acoustic phonon dispersion in both tetragonal and monoclinic phases. While a structural Bragg peak accompanies the mode in the monoclinic phase, in the tetragonal phase Bragg scattering at this Q is forbidden by symmetry, and we observed no elastic peak. This phonon mode was also observed in superconducting FeTe0.6Se0.4, where structural and magnetic transitions are suppressed. LDA frozen phonon calculations suggested that this mode could result from a spin imbalance between neighboring Fe atoms, but polarized neutron measurements revealed no additional magnetic scattering. We propose that this ``forbidden'' phonon mode may originate from dynamically broken symmetry, perhaps related to the strong dynamic spin correlations in these materials. Work at BNL was supported by BES, US DOE, under Contract No. DE-AC02-98CH10886. Research at ORNL's HFIR and SNS sponsored by Scientific User Facilities Division, BES, US DOE. We acknowledge the support of NIST, in providing neutron research facilities.
Phononic subsurface: Flow stabilization by crystals
NASA Astrophysics Data System (ADS)
Hussein, Mahmoud I.; Biringen, Sedat; Bilal, Osama R.; Kucala, Alec
2015-11-01
Flow control is a century-old problem where the goal is to alter a flow's natural state to achieve improved performance, such as delay of laminar-to-turbulent transition or reduction of drag in a fully developed turbulent flow. Meeting this goal promises to significantly reduce the dependence on fossil fuels for global transport. In this work, we show that phonon motion underneath a surface interacting with a flow may be tuned to cause the flow to stabilize, or destabilize, as desired. This concept is demonstrated by simulating a fully developed plane Poiseuille (channel) flow whereby a small portion of an otherwise rigid wall is replaced with a one-dimensional phononic crystal. A Tollmien-Schlichting (TS) wave is introduced to the flow as an evolving disturbance. Upon tuning the frequency-dependent phase and amplitude relations of the surface of the phononic crystal that interfaces with the flow, the TS wave is shown to stabilize, or destabilize, as needed. A theory of subsurface phonons is presented that provides an accurate prediction of this behavior without the need for a flow simulation. This represents an unprecedented capability to passively synchronize wave propagation across a fluid-structure interface and achieve favorable, and predictable, alterations to the flow properties. National Science Foundation, Grant No. 1131802.
Hyperbolic phonon polaritons in hexagonal boron nitride
NASA Astrophysics Data System (ADS)
Dai, Siyuan
2015-03-01
Uniaxial materials whose axial and tangential permittivities have opposite signs are referred to as indefinite or hyperbolic media. While hyperbolic responses are normally achieved with metamaterials, hexagonal boron nitride (hBN) naturally possesses this property due to the anisotropic phonons in the mid-infrared. Using scattering-type scanning near-field optical microscopy, we studied polaritonic phenomena in hBN. We performed infrared nano-imaging of highly confined and low-loss hyperbolic phonon polaritons in hBN. The polariton wavelength was shown to be governed by the hBN thickness according to a linear law persisting down to few atomic layers [Science, 343, 1125-1129 (2014)]. Additionally, we carried out the modification of hyperbolic response in heterostructures comprised of a mononlayer graphene deposited on hBN. Electrostatic gating of the top graphene layer allows for the modification of wavelength and intensity of hyperbolic phonon polaritons in bulk hBN. The physics of the modification originates from the plasmon-phonon coupling in the hyperbolic medium. Furthermore, we demonstrated the ``hyperlens'' for subdiffractional imaging and focusing using a slab of hBN.
Phonon Emission from Acoustic Black Hole
NASA Astrophysics Data System (ADS)
Fang, Hengzhong; Zhou, Kaihu; Song, Yuming
2012-08-01
We study the phonon tunneling through the horizon of an acoustic black hole by solving the Hamilton-Jacobi equation. We also make use of the closed-path integral to calculate the tunneling probability, and an improved way to determine the temporal contribution is used. Both the results from the two methods agree with Hawking's initial analysis.
EMRS Spring Meeting 2014 Symposium D: Phonons and fluctuations in low dimensional structures
NASA Astrophysics Data System (ADS)
2014-11-01
The E-MRS 2014 Spring meeting, held from 26-30th May 2014 in Lille included the Symposium D entitled ''Phonons and Fluctuations in Low Dimensional Structures'', the first edition of its kind. The symposium was organised in response to the increasing interest in the study of phonons in the context of advances in condensed matter physics, electronics, experimental methods and theory and, in particular, the transfer of energy across atomic interfaces and the propagation of energy in the nm-scale. Steering heat by light or vice versa and examining nano-scale energy conversion (as in thermoelectricity and harvesting e.g. in biological systems) are two aspects that share the underlying science of energy processes across atomic interfaces and energy propagation in the nanoscale and or in confined systems. The nanometer scale defies several of the bulk relationships as confinement of electrons and phonons, locality and non-equilibrium become increasingly important. The propagation of phonons as energy carriers impacts not only heat transfer, but also the very concept and handling of temperature in non-equilibrium and highly localised conditions. Much of the needed progress depends on the materials studied and this symposium targeted the interface material aspects as well as the emerging concepts to advance in this field. The symposium had its origins in a series of meetings and seminars including: (1) the first Phonon Engineering Workshop, funded by Catalan Institute for Research and Advanced Studies (ICREA), the then MICINN, the CNRS, VTT, and several EU projects, held in Saint Feliu de Guixols (Girona, Spain) from 24th to 27th of May 2010 with 65 participants from Europe, the USA and Japan; (2) the first Phonons and Fluctuations workshop, held in Paris on 8th and 9th November 2010, supported by French, Spanish and Finnish national projects and EU projects, attended by about 50 researchers; (3) the second Phonon and Fluctuations workshop, held in Paris on 8th and 9th
Theoretical study of electron-phonon superconductivity
NASA Astrophysics Data System (ADS)
Moussa, Jonathan Edward
This theoretical study of superconductivity examines some of the limiting factors that constrain the Tc of conventional, phonon-mediated superconductors. For materials with wide-bandwidth metallic states, electronic instabilities that are theoretically challenging to deal with can be avoided. In this case, structural instability can still result from phonon softening caused by strong electron-phonon coupling of electrons at the Fermi level. Superconductivity is also limited by the total electron-phonon coupling available within a material given the hypothetical ability to arbitrarily dope the material. This limit is studied by deriving a generalization of the McMillan-Hopfield parameter, h˜ (E), which measures the strength of electron-phonon coupling including anisotropy effects and rigid-band doping of the Fermi level to E. I examine these bounds for some covalent superconductors including MgB2, where Tc has reached the limit set by total electron-phonon coupling strength, and boron-doped diamond, which is far from any bounds. To consider the possibility of increasing the Tc of boron-doped diamond, calculations of electron-phonon coupling are performed for boron-doped diamond structures without electronically compensating defects over a wide range of boron concentration. The effects of boron substitutional disorder are incorporated through the use of randomly generated supercells, leading to a disorder-broadened distribution of results. After averaging over disorder, this study predicts a maximum bulk Tc near 55 K for boron concentrations between 20% -- 30%, assuming the validity of the simple structural model used and a Coulomb pseudopotential of micro* = 0.12. Considering only the largest electron-phonon coupling values of the distribution, superconductivity may still percolate through the material at higher temperatures, up to 80 K, through the regions of large coupling. A synthesis path is proposed to experimentally access higher levels of boron concentration
Molding Phonon Flow with Symmetry: Rational Design of Hypersonic Phononic Crystals
NASA Astrophysics Data System (ADS)
Koh, Cheong Yang; Thomas, Edwin L.
2009-03-01
Phononic crystals structured at appropriate length scales allow control over the flow of phonons, leading to new possibilities in applications such as heat-management, sound isolation and even energy transfer and conversion. Symmetry provides a unified framework for the interpretation 1D to 3D phononic band structures, allowing utilization of a common set of principles for designing band structures of phononic crystals as well as actual purposeful defects such as waveguide location and boundary termination in finite devices. In this work, we explore the band structure properties of phononic crystals with non-symmorphic space groups, as well as those having quasi-crystalline approximants. We demonstrate gap opening abilities from both anti-crossing and Bragg scattering, as well as unique features like ``sticking'' bands. Symmetry concepts are also powerful means to tune the density of states of the structures. Importantly, we fabricate various theoretical designs and measure their experimental dispersion diagrams for comparison with theoretical calculation. This affords an elegant approach toward a design blueprint for fabricating phononic structures for applications such as opto-acoustic coupling.
Unified theory of electron-phonon renormalization and phonon-assisted optical absorption
NASA Astrophysics Data System (ADS)
Patrick, Christopher E.; Giustino, Feliciano
2014-09-01
We present a theory of electronic excitation energies and optical absorption spectra which incorporates energy-level renormalization and phonon-assisted optical absorption within a unified framework. Using time-independent perturbation theory we show how the standard approaches for studying vibronic effects in molecules and those for addressing electron-phonon interactions in solids correspond to slightly different choices for the non-interacting Hamiltonian. Our present approach naturally leads to the Allen-Heine theory of temperature-dependent energy levels, the Franck-Condon principle, the Herzberg-Teller effect and to phonon-assisted optical absorption in indirect band gap materials. In addition, our theory predicts sub-gap phonon-assisted optical absorption in direct gap materials, as well as an exponential edge which we tentatively assign to the Urbach tail. We also consider a semiclassical approach to the calculation of optical absorption spectra which simultaneously captures energy-level renormalization and phonon-assisted transitions and is especially suited to first-principles electronic structure calculations. We demonstrate this approach by calculating the phonon-assisted optical absorption spectrum of bulk silicon.
Large phonon entropy drives the metallization of vanadium dioxide (VO2)
NASA Astrophysics Data System (ADS)
Hong, Jiawang
2015-03-01
Vanadium dioxide (VO2) exhibits a first-order metal-insulator transition (MIT) near room temperature, where conductivity is suppressed and the lattice changes from tetragonal to monoclinic on cooling. This MIT in VO2 has attracted intense interest from both fundamental and technological perspectives. However, most studies performed in the past 50 years have focused on the electronic structure and energetics of the transition, ignoring the role of phonons and their entropic contribution to the phase stability. Much of the reason is that the standard tool of neutron scattering does not yield coherent scattering from V nuclei, and first-principles methods with harmonic approximation cannot capture the stable phonons for the rutile phase. We close this gap by using a combination of ab initio molecular dynamics calculations and neutron/x-ray scattering to establish that the entropy driving the MIT is dominated by soft, anharmonic phonons of the metallic phase. The MIT results from the competition between lower electronic energy in insulating M1 phase due to the Peierls instability, and the higher entropy of the metallic rutile phase resulting from soft anharmonic phonons. This understanding of the role of lattice dynamics and their relationship to electronic structure provides a critical component for developing more complete physical models of phase competition in functional transition metal oxides. Theoretical calculations were performed using the NERSC at LBNL. Modeling of neutron data was performed in CAMM, measurements were funded by the US DOE, BES, Materials Science and Engineering Division.
Electron-acoustic phonon interaction and mobility in stressed rectangular silicon nanowires
NASA Astrophysics Data System (ADS)
Zhu, Lin-Li
2015-01-01
We investigate the effects of pre-stress and surface tension on the electron-acoustic phonon scattering rate and the mobility of rectangular silicon nanowires. With the elastic theory and the interaction Hamiltonian for the deformation potential, which considers both the surface energy and the acoustoelastic effects, the phonon dispersion relation for a stressed nanowire under spatial confinement is derived. The subsequent analysis indicates that both surface tension and pre-stress can dramatically change the electron-acoustic phonon interaction. Under a negative (positive) surface tension and a tensile (compressive) pre-stress, the electron mobility is reduced (enhanced) due to the decrease (increase) of the phonon energy as well as the deformation-potential scattering rate. This study suggests an alternative approach based on the strain engineering to tune the speed and the drive current of low-dimensional electronic devices. Project supported by the National Natural Science Foundation of China (Grant Nos. 11472243, 11302189, and 11321202), the Doctoral Fund of Ministry of Education of China (Grant No. 20130101120175), the Zhejiang Provincial Qianjiang Talent Program, China (Grant No. QJD1202012), and the Educational Commission of Zhejiang Province, China (Grant No. Y201223476).
Thickness-Dependent Coherent Phonon Frequency in Ultrathin FeSe/SrTiO₃ Films.
Yang, Shuolong; Sobota, Jonathan A; Leuenberger, Dominik; Kemper, Alexander F; Lee, James J; Schmitt, Felix T; Li, Wei; Moore, Rob G; Kirchmann, Patrick S; Shen, Zhi-Xun
2015-06-10
Ultrathin FeSe films grown on SrTiO3 substrates are a recent milestone in atomic material engineering due to their important role in understanding unconventional superconductivity in Fe-based materials. By using femtosecond time- and angle-resolved photoelectron spectroscopy, we study phonon frequencies in ultrathin FeSe/SrTiO3 films grown by molecular beam epitaxy. After optical excitation, we observe periodic modulations of the photoelectron spectrum as a function of pump-probe delay for 1-unit-cell, 3-unit-cell, and 60-unit-cell thick FeSe films. The frequencies of the coherent intensity oscillations increase from 5.00 ± 0.02 to 5.25 ± 0.02 THz with increasing film thickness. By comparing with previous works, we attribute this mode to the Se A1g phonon. The dominant mechanism for the phonon softening in 1-unit-cell thick FeSe films is a substrate-induced lattice strain. Our results demonstrate an abrupt phonon renormalization due to a lattice mismatch between the ultrathin film and the substrate. PMID:26027951
Anharmonicity due to Electron-Phonon Coupling in Magnetite
NASA Astrophysics Data System (ADS)
Hoesch, Moritz; Piekarz, Przemysław; Bosak, Alexey; Le Tacon, Mathieu; Krisch, Michael; Kozłowski, Andrzej; Oleś, Andrzej M.; Parlinski, Krzysztof
2013-05-01
We present the results of inelastic x-ray scattering for magnetite and analyze the energies and widths of the phonon modes with different symmetries in a broad range of temperature 125
Towards a microscopic understanding of the phonon bottleneck
Garanin, D. A.
2007-03-01
The problem of the phonon bottleneck in the relaxation of two-level systems (spins) to a narrow group of resonant phonons via emission-absorption processes is investigated from first principles. It is shown that the kinetic approach based on the Pauli master equation is invalid because of the narrow distribution of the phonons exchanging their energy with the spins. This results in a long-memory effect that can be best taken into account by introducing an additional dynamical variable corresponding to the nondiagonal matrix elements responsible for spin-phonon correlation. The resulting system of dynamical equations describes the phonon-bottleneck plateau in the spin excitation, as well as a gap in the spin-phonon spectrum, for any finite concentration of spins. On the other hand, it does not accurately render the line shape of emitted phonons and still needs improving.
Frequency stabilization of the zero-phonon line of a quantum dot via phonon-assisted active feedback
Hansom, Jack; Schulte, Carsten H. H.; Matthiesen, Clemens; Stanley, Megan J.; Atatüre, Mete
2014-10-27
We report on the feedback stabilization of the zero-phonon emission frequency of a single InAs quantum dot. The spectral separation of the phonon-assisted component of the resonance fluorescence provides a probe of the detuning between the zero-phonon transition and the resonant driving laser. Using this probe in combination with active feedback, we stabilize the zero-phonon transition frequency against environmental fluctuations. This protocol reduces the zero-phonon fluorescence intensity noise by a factor of 22 by correcting for environmental noise with a bandwidth of 191 Hz, limited by the experimental collection efficiency. The associated sub-Hz fluctuations in the zero-phonon central frequency are reduced by a factor of 7. This technique provides a means of stabilizing the quantum dot emission frequency without requiring access to the zero-phonon emission.
Yu, Jen-Kan; Mitrovic, Slobodan; Heath, James R.
2016-08-16
A nanomesh phononic structure includes: a sheet including a first material, the sheet having a plurality of phononic-sized features spaced apart at a phononic pitch, the phononic pitch being smaller than or equal to twice a maximum phonon mean free path of the first material and the phononic size being smaller than or equal to the maximum phonon mean free path of the first material.
Interaction of Thermal Phonons with Interfaces
David H. Hurley; Subhash Shinde; Edward Piekos
2013-11-01
In this chapter we will first explore the connection between interface scattering and thermal transport using the Boltzmann transport equation (BTE). It will be shown that Boltzmann transport provides a convenient method for considering boundary scattering in nanochannel structures. For internal interfaces such as grain boundaries found in polycrystals, it is more natural to consider transmission and reflection across a single boundary. In this regard we will discuss theories related to interface thermal resistance. Our qualitative discussion of the theories of phonon transport will be followed by a discussion of experimental techniques for measuring thermal transport. We end this chapter by giving a detailed description of two complimentary experimental techniques for measuring the influence of interfaces on thermal phonon transport.
Phonon arithmetic in a trapped ion system.
Um, Mark; Zhang, Junhua; Lv, Dingshun; Lu, Yao; An, Shuoming; Zhang, Jing-Ning; Nha, Hyunchul; Kim, M S; Kim, Kihwan
2016-01-01
Single-quantum level operations are important tools to manipulate a quantum state. Annihilation or creation of single particles translates a quantum state to another by adding or subtracting a particle, depending on how many are already in the given state. The operations are probabilistic and the success rate has yet been low in their experimental realization. Here we experimentally demonstrate (near) deterministic addition and subtraction of a bosonic particle, in particular a phonon of ionic motion in a harmonic potential. We realize the operations by coupling phonons to an auxiliary two-level system and applying transitionless adiabatic passage. We show handy repetition of the operations on various initial states and demonstrate by the reconstruction of the density matrices that the operations preserve coherences. We observe the transformation of a classical state to a highly non-classical one and a Gaussian state to a non-Gaussian one by applying a sequence of operations deterministically. PMID:27097897
Phonon arithmetic in a trapped ion system
NASA Astrophysics Data System (ADS)
Um, Mark; Zhang, Junhua; Lv, Dingshun; Lu, Yao; An, Shuoming; Zhang, Jing-Ning; Nha, Hyunchul; Kim, M. S.; Kim, Kihwan
2016-04-01
Single-quantum level operations are important tools to manipulate a quantum state. Annihilation or creation of single particles translates a quantum state to another by adding or subtracting a particle, depending on how many are already in the given state. The operations are probabilistic and the success rate has yet been low in their experimental realization. Here we experimentally demonstrate (near) deterministic addition and subtraction of a bosonic particle, in particular a phonon of ionic motion in a harmonic potential. We realize the operations by coupling phonons to an auxiliary two-level system and applying transitionless adiabatic passage. We show handy repetition of the operations on various initial states and demonstrate by the reconstruction of the density matrices that the operations preserve coherences. We observe the transformation of a classical state to a highly non-classical one and a Gaussian state to a non-Gaussian one by applying a sequence of operations deterministically.
Phonon arithmetic in a trapped ion system
Um, Mark; Zhang, Junhua; Lv, Dingshun; Lu, Yao; An, Shuoming; Zhang, Jing-Ning; Nha, Hyunchul; Kim, M. S.; Kim, Kihwan
2016-01-01
Single-quantum level operations are important tools to manipulate a quantum state. Annihilation or creation of single particles translates a quantum state to another by adding or subtracting a particle, depending on how many are already in the given state. The operations are probabilistic and the success rate has yet been low in their experimental realization. Here we experimentally demonstrate (near) deterministic addition and subtraction of a bosonic particle, in particular a phonon of ionic motion in a harmonic potential. We realize the operations by coupling phonons to an auxiliary two-level system and applying transitionless adiabatic passage. We show handy repetition of the operations on various initial states and demonstrate by the reconstruction of the density matrices that the operations preserve coherences. We observe the transformation of a classical state to a highly non-classical one and a Gaussian state to a non-Gaussian one by applying a sequence of operations deterministically. PMID:27097897
Tunable magneto-granular phononic crystals
NASA Astrophysics Data System (ADS)
Allein, F.; Tournat, V.; Gusev, V. E.; Theocharis, G.
2016-04-01
This paper reports on the study of the dynamics of 1D magneto-granular phononic crystals composed of a chain of spherical steel beads inside a properly designed magnetic field. This field is induced by an array of permanent magnets, located in a holder at a given distance from the chain. The theoretical and experimental results of the band gap structure are displayed, including all six degrees of freedom for the beads, i.e., three translations and three rotations. Experimental evidence of transverse-rotational modes of propagation is presented; moreover, by changing the strength of the magnetic field, the dynamic response of the granular chain is tuned. The combination of non-contact tunability with the potentially strong nonlinear behavior of granular systems ensures the suitability of magneto-granular phononic crystals as nonlinear, tunable mechanical metamaterials for use in controlling elastic wave propagation.
Magnon rainbows filtered through phonon clouds
NASA Astrophysics Data System (ADS)
Boona, Stephen R.
2016-06-01
The study of heat flow in magnetic insulators is a topic of significant interest in spin caloritronics, especially for understanding the nuanced origins of the spin Seebeck effect (SSE). Recent work by Diniz and Costa (2016 New J. Phys. 18 052002) provides insight into this subject by presenting a microscopic model for the spectral dependence of magnon–phonon interactions in magnetic insulators, which has been a challenging puzzle for decades. Their new paper shows that phonon-mediated magnon-magnon interactions affect the lifetime of magnons differently depending on the magnon wavelength. As a result, low energy magnons transport spin more efficiently, and are more sensitive to applied magnetic fields. These results help explain some unexpected behavior in the SSE recently reported in several experiments.
Zeng, Lingping; Collins, Kimberlee C; Hu, Yongjie; Luckyanova, Maria N; Maznev, Alexei A; Huberman, Samuel; Chiloyan, Vazrik; Zhou, Jiawei; Huang, Xiaopeng; Nelson, Keith A; Chen, Gang
2015-01-01
Heat conduction in semiconductors and dielectrics depends upon their phonon mean free paths that describe the average travelling distance between two consecutive phonon scattering events. Nondiffusive phonon transport is being exploited to extract phonon mean free path distributions. Here, we describe an implementation of a nanoscale thermal conductivity spectroscopy technique that allows for the study of mean free path distributions in optically absorbing materials with relatively simple fabrication and a straightforward analysis scheme. We pattern 1D metallic grating of various line widths but fixed gap size on sample surfaces. The metal lines serve as both heaters and thermometers in time-domain thermoreflectance measurements and simultaneously act as wire-grid polarizers that protect the underlying substrate from direct optical excitation and heating. We demonstrate the viability of this technique by studying length-dependent thermal conductivities of silicon at various temperatures. The thermal conductivities measured with different metal line widths are analyzed using suppression functions calculated from the Boltzmann transport equation to extract the phonon mean free path distributions with no calibration required. This table-top ultrafast thermal transport spectroscopy technique enables the study of mean free path spectra in a wide range of technologically important materials. PMID:26612032
Anharmonicity and necessity of phonon eigenvectors in the phonon normal mode analysis
Feng, Tianli; Qiu, Bo; Ruan, Xiulin
2015-05-21
It is well known that phonon frequencies can shift from their harmonic values when elevated to a finite temperature due to the anharmonicity of interatomic potential. Here, we show that phonon eigenvectors also have shifts, but only for compound materials in which each atom has at least two types of anharmonic interactions with other atoms. Using PbTe as the model material, we show that the shifts in some phonon modes may reach as much as 50% at 800 K. Phonon eigenvectors are used in normal mode analysis (NMA) to predict phonon relaxation times and thermal conductivity. We show, from both analytical derivations and numerical simulations, that the eigenvectors are unnecessary in frequency-domain NMA, which gives a critical revision of previous knowledge. This simplification makes the calculation in frequency-domain NMA more convenient since no separate lattice dynamics calculations are needed. On the other hand, we expect our finding of anharmonic eigenvectors may make difference in time-domain NMA and other areas, like wave-packet analysis.
NASA Astrophysics Data System (ADS)
Zeng, Lingping; Collins, Kimberlee C.; Hu, Yongjie; Luckyanova, Maria N.; Maznev, Alexei A.; Huberman, Samuel; Chiloyan, Vazrik; Zhou, Jiawei; Huang, Xiaopeng; Nelson, Keith A.; Chen, Gang
2015-11-01
Heat conduction in semiconductors and dielectrics depends upon their phonon mean free paths that describe the average travelling distance between two consecutive phonon scattering events. Nondiffusive phonon transport is being exploited to extract phonon mean free path distributions. Here, we describe an implementation of a nanoscale thermal conductivity spectroscopy technique that allows for the study of mean free path distributions in optically absorbing materials with relatively simple fabrication and a straightforward analysis scheme. We pattern 1D metallic grating of various line widths but fixed gap size on sample surfaces. The metal lines serve as both heaters and thermometers in time-domain thermoreflectance measurements and simultaneously act as wire-grid polarizers that protect the underlying substrate from direct optical excitation and heating. We demonstrate the viability of this technique by studying length-dependent thermal conductivities of silicon at various temperatures. The thermal conductivities measured with different metal line widths are analyzed using suppression functions calculated from the Boltzmann transport equation to extract the phonon mean free path distributions with no calibration required. This table-top ultrafast thermal transport spectroscopy technique enables the study of mean free path spectra in a wide range of technologically important materials.
Zeng, Lingping; Collins, Kimberlee C.; Hu, Yongjie; Luckyanova, Maria N.; Maznev, Alexei A.; Huberman, Samuel; Chiloyan, Vazrik; Zhou, Jiawei; Huang, Xiaopeng; Nelson, Keith A.; et al
2015-11-27
Heat conduction in semiconductors and dielectrics depends upon their phonon mean free paths that describe the average travelling distance between two consecutive phonon scattering events. Nondiffusive phonon transport is being exploited to extract phonon mean free path distributions. Here, we describe an implementation of a nanoscale thermal conductivity spectroscopy technique that allows for the study of mean free path distributions in optically absorbing materials with relatively simple fabrication and a straightforward analysis scheme. We pattern 1D metallic grating of various line widths but fixed gap size on sample surfaces. The metal lines serve as both heaters and thermometers in time-domainmore » thermoreflectance measurements and simultaneously act as wiregrid polarizers that protect the underlying substrate from direct optical excitation and heating. We demonstrate the viability of this technique by studying length-dependent thermal conductivities of silicon at various temperatures. The thermal conductivities measured with different metal line widths are analyzed using suppression functions calculated from the Boltzmann transport equation to extract the phonon mean free path distributions with no calibration required. Furthermore, this table-top ultrafast thermal transport spectroscopy technique enables the study of mean free path spectra in a wide range of technologically important materials.« less
Zeng, Lingping; Collins, Kimberlee C.; Hu, Yongjie; Luckyanova, Maria N.; Maznev, Alexei A.; Huberman, Samuel; Chiloyan, Vazrik; Zhou, Jiawei; Huang, Xiaopeng; Nelson, Keith A.; Chen, Gang
2015-01-01
Heat conduction in semiconductors and dielectrics depends upon their phonon mean free paths that describe the average travelling distance between two consecutive phonon scattering events. Nondiffusive phonon transport is being exploited to extract phonon mean free path distributions. Here, we describe an implementation of a nanoscale thermal conductivity spectroscopy technique that allows for the study of mean free path distributions in optically absorbing materials with relatively simple fabrication and a straightforward analysis scheme. We pattern 1D metallic grating of various line widths but fixed gap size on sample surfaces. The metal lines serve as both heaters and thermometers in time-domain thermoreflectance measurements and simultaneously act as wire-grid polarizers that protect the underlying substrate from direct optical excitation and heating. We demonstrate the viability of this technique by studying length-dependent thermal conductivities of silicon at various temperatures. The thermal conductivities measured with different metal line widths are analyzed using suppression functions calculated from the Boltzmann transport equation to extract the phonon mean free path distributions with no calibration required. This table-top ultrafast thermal transport spectroscopy technique enables the study of mean free path spectra in a wide range of technologically important materials. PMID:26612032
Zeng, Lingping; Collins, Kimberlee C.; Hu, Yongjie; Luckyanova, Maria N.; Maznev, Alexei A.; Huberman, Samuel; Chiloyan, Vazrik; Zhou, Jiawei; Huang, Xiaopeng; Nelson, Keith A.; Chen, Gang
2015-11-27
Heat conduction in semiconductors and dielectrics depends upon their phonon mean free paths that describe the average travelling distance between two consecutive phonon scattering events. Nondiffusive phonon transport is being exploited to extract phonon mean free path distributions. Here, we describe an implementation of a nanoscale thermal conductivity spectroscopy technique that allows for the study of mean free path distributions in optically absorbing materials with relatively simple fabrication and a straightforward analysis scheme. We pattern 1D metallic grating of various line widths but fixed gap size on sample surfaces. The metal lines serve as both heaters and thermometers in time-domain thermoreflectance measurements and simultaneously act as wiregrid polarizers that protect the underlying substrate from direct optical excitation and heating. We demonstrate the viability of this technique by studying length-dependent thermal conductivities of silicon at various temperatures. The thermal conductivities measured with different metal line widths are analyzed using suppression functions calculated from the Boltzmann transport equation to extract the phonon mean free path distributions with no calibration required. Furthermore, this table-top ultrafast thermal transport spectroscopy technique enables the study of mean free path spectra in a wide range of technologically important materials.
Phonon populations and electrical power dissipation in carbon nanotube transistors.
Steiner, Mathias; Freitag, Marcus; Perebeinos, Vasili; Tsang, James C; Small, Joshua P; Kinoshita, Megumi; Yuan, Dongning; Liu, Jie; Avouris, Phaedon
2009-05-01
Carbon nanotubes and graphene are candidate materials for nanoscale electronic devices. Both materials show weak acoustic phonon scattering and long mean free paths for low-energy charge carriers. However, high-energy carriers couple strongly to optical phonons, which leads to current saturation and the generation of hot phonons. A non-equilibrium phonon distribution has been invoked to explain the negative differential conductance observed in suspended metallic nanotubes, while Raman studies have shown the electrical generation of hot G-phonons in metallic nanotubes. Here, we present a complete picture of the phonon distribution in a functioning nanotube transistor including the G and the radial breathing modes, the Raman-inactive zone boundary K mode and the intermediate-frequency mode populated by anharmonic decay. The effective temperatures of the high- and intermediate-frequency phonons are considerably higher than those of acoustic phonons, indicating a phonon-decay bottleneck. Most importantly, inclusion of scattering by substrate polar phonons is needed to fully account for the observed electronic transport behaviour. PMID:19421219
Design of materials configurations for enhanced phononic and electronic properties
NASA Astrophysics Data System (ADS)
Daraio, Chiara
The discovery of novel nonlinear dynamic and electronic phenomena is presented for the specific cases of granular materials and carbon nanotubes. This research was conducted for designing and constructing optimized macro-, micro- and nano-scale structural configurations of materials, and for studying their phononic and electronic behavior. Variation of composite arrangements of granular elements with different elastic properties in a linear chain-of-sphere, Y-junction or 3-D configurations led to a variety of novel phononic phenomena and interesting physical properties, which can be potentially useful for security, communications, mechanical and biomedical engineering applications. Mechanical and electronic properties of carbon nanotubes with different atomic arrangements and microstructures were also investigated. Electronic properties of Y-junction configured carbon nanotubes exhibit an exciting transistor switch behavior which is not seen in linear configuration nanotubes. Strongly nonlinear materials were designed and fabricated using novel and innovative concepts. Due to their unique strongly nonlinear and anisotropic nature, novel wave phenomena have been discovered. Specifically, violations of Snell's law were detected and a new mechanism of wave interaction with interfaces between NTPCs (Nonlinear Tunable Phononic Crystals) was established. Polymer-based systems were tested for the first time, and the tunability of the solitary waves speed was demonstrated. New materials with transformed signal propagation speed in the manageable range of 10-100 m/s and signal amplitude typical for audible speech have been developed. The enhancing of the mitigation of solitary and shock waves in 1-D chains were demonstrated and a new protective medium was designed for practical applications. 1-D, 2-D and 3-D strongly nonlinear system have been investigated providing a broad impact on the whole area of strongly nonlinear wave dynamics and creating experimental basis for new
Yan, Zhequan; Chen, Liang; Yoon, Mina; Kumar, Satish
2016-01-12
Hexagonal boron nitride (h-BN) is a substrate for graphene based nano-electronic devices. We investigate the ballistic phonon transport at the interface of vertically stacked graphene and h-BN heterostructures using first principles density functional theory and atomistic Green's function simulations considering the influence of lattice stacking. We compute the frequency and wave-vector dependent transmission function and observe distinct stacking-dependent phonon transmission features for the h-BN/graphene/h-BN sandwiched systems. We find that the in-plane acoustic modes have the dominant contributions to the phonon transmission and thermal boundary conductance (TBC) for the interfaces with the carbon atom located directly on top of the boronmore » atom (C–B matched) because of low interfacial spacing. The low interfacial spacing is a consequence of the differences in the effective atomic volume of N and B and the difference in the local electron density around N and B. For the structures with the carbon atom directly on top of the nitrogen atom (C–N matched), the spatial distance increases and the contribution of in-plane modes to the TBC decreases leading to higher contributions by out-of-plane acoustic modes. We find that the C–B matched interfaces have stronger phonon–phonon coupling than the C–N matched interfaces, which results in significantly higher TBC (more than 50%) in the C–B matched interface. The findings in this study will provide insights to understand the mechanism of phonon transport at h-BN/graphene/h-BN interfaces, to better explain the experimental observations and to engineer these interfaces to enhance heat dissipation in graphene based electronic devices.« less
Zhou, Changjiang; Sai, Yi; Chen, Jiujiu
2016-09-01
This paper theoretically investigates the band gaps of Lamb mode waves in two-dimensional magnetoelastic phononic crystal slabs by an applied external magnetostatic field. With the assumption of uniformly oriented magnetization, an equivalent piezomagnetic material model is used. The effects of magnetostatic field on phononic crystals are considered carefully in this model. The numerical results indicate that the width of the first band gap is significantly changed by applying the external magnetic field with different amplitude, and the ratio between the maximum and minimum gap widths reaches 228%. Further calculations demonstrate that the orientation of the magnetic field obviously affects the width and location of the first band gap. The contactless tunability of the proposed phononic crystal slabs shows many potential applications of vibration isolation in engineering. PMID:27281285
Phonon induced magnetism in ionic materials
NASA Astrophysics Data System (ADS)
Restrepo, Oscar D.; Antolin, Nikolas; Jin, Hyungyu; Heremans, Joseph P.; Windl, Wolfgang
2014-03-01
Thermoelectric phenomena in magnetic materials create exciting possibilities in future spin caloritronic devices by manipulating spin information using heat. An accurate understanding of the spin-lattice interactions, i.e. the coupling between magnetic excitations (magnons) and lattice vibrations (phonons), holds the key to unraveling their underlying physics. We report ab initio frozen-phonon calculations of CsI that result in non-zero magnetization when the degeneracy between spin-up and spin-down electronic density of states is lifted for certain phonon displacement patterns. For those, the magnetization as a function of atomic displacement shows a sharp resonance due to the electronic states on the displaced Cs atoms, while the electrons on indium form a continuous background magnetization. We relate this resonance to the generation of a two-level system in the spin-polarized Cs partial density of states as a function of displacement, which we propose to be described by a simple resonant-susceptibility model. Current work extends these investigations to semiconductors such as InSb. ODR and WW are supported by the Center for Emergent Materials, an NSF MRSEC at OSU (Grant DMR-0820414).HJ and JPH are supported by AFOSR MURI Cryogenic Peltier Cooling, Contract #FA9550-10-1-0533.