Science.gov

Sample records for phorbol diester-induced apoptosis

  1. Protection against apoptosis in chicken bursa and thymus cells by phorbol ester in vitro

    SciTech Connect

    Asakawa, J.; Thorbecke, G.J. )

    1991-03-15

    Programmed suicide or apoptosis, due to activation of endogenous nucleases, occurs in immature CD4{sup {minus}}85{sup {minus}} mammalian thymus cells. Like the thymus, the bursa of Fabricius is a site of massive lymphopoiesis accompanied by cell death in vivo. In the present study the authors have, therefore, examined whether chicken bursa and thymus cells exhibit apoptosis. Bursa and thymus cells from SC chickens, 4-10 weeks of age, were incubated for 8-24 hrs with various reagents. Genomic DNA was isolated, electrophoresed in 3% Nusieve agarose gels, and examined for patterns of DNA fragmentation. A laddering of DNA in multiples of 200 base pairs, indicative of apoptosis, was observed with both bursa and thymus cells. These patterns of DNA fragmentation from bursa cells could be prevented by adding phorbol myristic acetate during culture and, more effectively, by PMA plus ionomycin, but not by ionomycin alone or by anti-{mu}. PMA did not affect the patterns of DNA fragmentation seen with spleen cells. Addition of the protein kinase C inhibitor staurosporin inhibited the preventive effect of PMA on apoptosis. PMA also greatly promoted the survival of bursa cells in culture, as assayed by percentage cell death and by {sup 3}H-thymidine incorporation. It is concluded that bursa and thymus cells from the chicken exhibit apoptosis. The data further suggest that protein kinase C activation protects apoptosis in cultured bursa cells.

  2. Diminished Macrophage Apoptosis and Reactive Oxygen Species Generation after Phorbol Ester Stimulation in Crohn's Disease

    PubMed Central

    Palmer, Christine D.; Rahman, Farooq Z.; Sewell, Gavin W.; Ahmed, Afshan; Ashcroft, Margaret; Bloom, Stuart L.; Segal, Anthony W.; Smith, Andrew M.

    2009-01-01

    Background Crohn's Disease (CD) is a chronic relapsing disorder characterized by granulomatous inflammation of the gastrointestinal tract. Although its pathogenesis is complex, we have recently shown that CD patients have a systemic defect in macrophage function, which results in the defective clearance of bacteria from inflammatory sites. Methodology/Principal Findings Here we have identified a number of additional macrophage defects in CD following diacylglycerol (DAG) homolog phorbol-12-myristate-13-acetate (PMA) activation. We provide evidence for decreased DNA fragmentation, reduced mitochondrial membrane depolarization, impaired reactive oxygen species production, diminished cytochrome c release and increased IL-6 production compared to healthy subjects after PMA exposure. The observed macrophage defects in CD were stimulus-specific, as normal responses were observed following p53 activation and endoplasmic reticulum stress. Conclusion These findings add to a growing body of evidence highlighting disordered macrophage function in CD and, given their pivotal role in orchestrating inflammatory responses, defective apoptosis could potentially contribute to the pathogenesis of CD. PMID:19907654

  3. Treatment of mouse melanoma cells with phorbol 12-myristate 13-acetate counteracts mannosylerythritol lipid-induced growth arrest and apoptosis.

    PubMed

    Zhao, X; Geltinger, C; Kishikawa, S; Ohshima, K; Murata, T; Nomura, N; Nakahara, T; Yokoyama, K K

    2000-07-01

    Mannosylerythritol lipid (MEL), an extracellularglycolipid from yeast, induces the differentiation ofHL-60 promyelocytic leukemia cells towardsgranulocytes. We show here that MEL is also a potentinhibitor of the proliferation of mouse melanoma B16cells. Flow-cytometric analysis of the cell cycle ofMEL-treated B16 cells revealed the accumulation ofcells in the sub-G(0)/G(1) phase, which is a hallmark ofcells undergoing apoptosis. Treatment of B16 cellsfor 24 h with phorbol 12-myristate 13-acetate (PMA),an activator of protein kinase C (PKC), did notinterfere with the growth and survival of the cells,but it effectively counteracted the MEL-induced growtharrest and apoptosis. The activity of PKC was reducedin B16 cells treated with MEL at a concentration atwhich MEL induced apoptosis. However, incubation withPMA in addition to MEL reversed this reduction in theactivity of PKC. These results suggest thatconverging signaling pathways are triggeredindependently by MEL and PMA and that the signalsmight both be mediated by PKC. PMID:19002819

  4. Involvement of phorbol-12-myristate-13-acetate-induced protein 1 in goniothalamin-induced TP53-dependent and -independent apoptosis in hepatocellular carcinoma-derived cells

    SciTech Connect

    Kuo, Kung-Kai; Chen, Yi-Ling; Chen, Lih-Ren; Li, Chien-Feng; Lan, Yu-Hsuan; Chang, Fang-Rong; Wu, Yang-Chang; Shiue, Yow-Ling

    2011-10-01

    The objective was to investigate the upstream apoptotic mechanisms that were triggered by a styrylpyrone derivative, goniothalamin (GTN), in tumor protein p53 (TP53)-positive and -negative hepatocellular carcinoma (HCC)-derived cells. Effects of GTN were evaluated by the flow cytometry, alkaline comet assay, immunocytochemistry, small-hairpin RNA interference, mitochondria/cytosol fractionation, quantitative reverse transcription-polymerase chain reaction, immunoblotting analysis and caspase 3 activity assays in two HCC-derived cell lines. Results indicated that GTN triggered phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1, also known as NOXA)-mediated apoptosis via TP53-dependent and -independent pathways. In TP53-positive SK-Hep1 cells, GTN furthermore induced TP53 transcription-dependent and -independent apoptosis. After GTN treatment, accumulation of reactive oxygen species, formation of DNA double-strand breaks, transactivation of TP53 and/or PMAIP1 gene, translocation of TP53 and/or PMAIP1 proteins to mitochondria, release of cytochrome c from mitochondria, cleavage of caspases and induction of apoptosis in both cell lines were sustained. GTN might represent a novel class of anticancer drug that induces apoptosis in HCC-derived cells through PMAIP1 transactivation regardless of the status of TP53 gene. - Highlights: > Goniothalamin (GTN) induced apoptosis in hepatocellular carcinomas-derived cells. > The apoptosis induced by GTN is PMAIP1-dependent, regardless of TP53 status. > The apoptosis induced by GTN might be TP53 transcription-dependent or -independent. > GTN-induced apoptosis is mitochondria- and caspases-mediated.

  5. Phorbol diesters and transferrin modulate lymphoblastoid cell transferrin receptor expression by two different mechanisms

    SciTech Connect

    Alcantara, O.; Phillips, J.L.; Boldt, D.H.

    1986-12-01

    Expression of transferrin receptors (TfR) by activated lymphocytes is necessary for lymphocyte DNA synthesis and proliferation. Regulation of TfR expression, therefore, is a mechanism by which the lymphocyte's proliferative potential may be directed and controlled. The authors studied mechanisms by which lymphoblastoid cells modulate TfR expression during treatment with phorbol diesters or iron transferrin (FeTf), agents which cause downregulation of cell surface TfR. Phorbol diester-induced TfR downregulation occurred rapidly, being detectable at 2 min and reaching maximal decreases of 50% by 15 min. It was inhibited by cold but not by agents that destabilize cytoskeletal elements. Furthermore, this downregulation was reversed rapidly by washing or by treatment with the membrane interactive agent, chlorpromazine. In contrast, FeTf-induced TfR downregulation occurred slowly. Decreased expression of TfR was detectable only after 15 min and maximal downregulation was achieved after 60 min. Although FeTf-induced downregulation also was inhibited by cold, it was inhibited in addition by a group of microtubule destabilizing agents (colchicine, vinblastine, podophyllotoxin) or cytochalasin B, a microfilament inhibitor. Furthermore, FeTf-induced downregulation was not reversed readily by washing or by treatment with chlorpromazine. Phorbol diesters cause TfR downregulation by a cytoskeleton-independent mechanism. These data indicate that TfR expression is regulated by two independent mechanisms in lymphoblastoid cells, and they provide the possibility that downregulation of TfR by different mechanisms may result in different effects in these cells.

  6. Cytotoxic phorbol esters of Croton tiglium.

    PubMed

    Zhang, Xiao-Long; Wang, Lun; Li, Fu; Yu, Kai; Wang, Ming-Kui

    2013-05-24

    Chemical investigation of the seeds of Croton tiglium afforded eight new phorbol diesters (three phorbol diesters, 1-3, and five 4-deoxy-4α-phorbol diesters, 4-8), together with 11 known phorbol diesters (nine phorbol diesters, 9-17, and two 4-deoxy-4α-phorbol diesters, 18 and 19). The structures of compounds 1-8 were determined by spectroscopic data information and chemical degradation experiments. The cytotoxic activities of the phorbol diesters were evaluated against the SNU387 hepatic tumor cell line, and compound 3 exhibited the most potent activity (IC50 1.2 μM). PMID:23701597

  7. Nineteen-step total synthesis of (+)-phorbol.

    PubMed

    Kawamura, Shuhei; Chu, Hang; Felding, Jakob; Baran, Phil S

    2016-04-01

    Phorbol, the flagship member of the tigliane diterpene family, has been known for over 80 years and has attracted attention from many chemists and biologists owing to its intriguing chemical structure and the medicinal potential of phorbol esters. Access to useful quantities of phorbol and related analogues has relied on isolation from natural sources and semisynthesis. Despite efforts spanning 40 years, chemical synthesis has been unable to compete with these strategies, owing to its complexity and unusual placement of oxygen atoms. Purely synthetic enantiopure phorbol has remained elusive, and biological synthesis has not led to even the simplest members of this terpene family. Recently, the chemical syntheses of eudesmanes, germacrenes, taxanes and ingenanes have all benefited from a strategy inspired by the logic of two-phase terpene biosynthesis in which powerful C-C bond constructions and C-H bond oxidations go hand in hand. Here we implement a two-phase terpene synthesis strategy to achieve enantiospecific total synthesis of (+)-phorbol in only 19 steps from the abundant monoterpene (+)-3-carene. The purpose of this synthesis route is not to displace isolation or semisynthesis as a means of generating the natural product per se, but rather to enable access to analogues containing unique placements of oxygen atoms that are otherwise inaccessible. PMID:27007853

  8. Phorbol ester phorbol-12-myristate-13-acetate promotes anchorage-independent growth and survival of melanomas through MEK-independent activation of ERK1/2

    SciTech Connect

    Jorgensen, Kjersti; Skrede, Martina; Cruciani, Veronique; Mikalsen, Svein-Ole; Slipicevic, Ana; Florenes, Vivi Ann . E-mail: v.a.florenes@labmed.uio.no

    2005-04-01

    The phorbol ester, phorbol-12-myristate-13-acetate (PMA), an activator of PKCs, is known to stimulate the in vitro growth of monolayer cultures of normal human melanocytes whereas it inhibits the growth of most malignant melanoma cell lines. We examined the effect of PMA on proliferation and survival of melanoma cells grown as multicellular aggregates in suspension (spheroids), and aimed to elucidate downstream targets of PKC signaling. In contrast to monolayer cultures, PMA increased cell proliferation as well as protected melanoma cells from suspension-mediated apoptosis (anoikis). Supporting the importance of PKC in anchorage-independent growth, treatment of anoikis-resistant melanoma cell lines with antisense oligonucleotides against PKC-{alpha}, or the PKC inhibitor Goe6976, strongly induced anoikis. PMA induced activation of ERK1/2, but this effect was not prevented by the MEK inhibitors PD98059 or by U0126. Whereas PD98059 treatment alone led to marked activation of the pro-apoptotic Bim and Bad proteins and significantly increased anoikis, these effects were clearly reversed by PMA. In conclusion, our results indicate that the protective effect of PMA on anchorage-independent survival of melanoma cells at least partly is mediated by MEK-independent activation of ERK1/2 and inactivation of downstream pro-apoptotic effector proteins.

  9. Effects of phorbol esters in carp (Cyprinus carpio L).

    PubMed

    Becker, K; Makkar, H P

    1998-04-01

    Carp (Cyprinus carpio L) were fed diets containing phorbol esters at concentrations of 0, 3.75, 7.5, 15, 31, 62.5, 125, 250, 500 and 1,000 micrograms/g feed. Phorbol esters were from Jatropha curcas nuts. Jatropha curcas toxicity has been reported in humans, rodents and livestock, and phorbol esters have been identified as the main toxic agent. The adverse effects observed in carp at phorbol esters concentrations of 31 micrograms/g or higher were lower average metabolic growth rate, fecal mucus production and rejection of feed. Average metabolic growth rates (g/kg 0.8/d) in a 7-d experimental period during which diets containing phorbol esters were fed to carp (values with different letters being significantly different) were 15.4a, 14.4a, 12.5ab, 12.4ab, 10.9b, 3.4c, 0.2c, -3.8d, -4.9d and -5.6d, respectively, at the above mentioned concentrations. The values for the recovery phase of 9-d during which phorbol esters were not included in the diet were 16.0a, 15.6a, 14.9a, 15.6a, 5.3b, 1.6b, 4.6bc, 6.3bc, 7.8c and 8.2c, respectively. The adverse effects of phorbol esters were reversible since withdrawal of the esters from the diets led to gain in body mass. None of the fish died at any of the concentrations studied. Incorporation of vitamin C, an antioxidant, at levels of 0.4 and 2% in the feed did not prevent occurrence of the adverse effects of the phorbol esters. The threshold level at which phorbol esters appeared to cause adverse effects in carp was 15 micrograms/g feed or 15 ppm in the diet. Carp were highly sensitive to phorbol esters, thus making them a useful species for bioassay of these compounds. This bioassay together with other analytic procedures could be of immense use in the development of detoxification processes for agro-industrial products containing phorbol esters, such as jatropha meal or jatropha oil, and as a quality control method to monitor successive stages in industrial detoxification processes. PMID:9554059

  10. Plasma application for detoxification of Jatropha phorbol esters

    NASA Astrophysics Data System (ADS)

    Kongmany, S.; Matsuura, H.; Furuta, M.; Okuda, S.; Imamura, K.; Maeda, Y.

    2013-06-01

    Atmospheric pressure non-thermal dielectric barrier discharge (DBD) plasma generated by helium gas at high voltage and input power of about 50 W was first applied to detoxification of Jatropha curcas phorbol esters (J. PEs) as well as standard phorbol ester (4β-12-O-tetradecanoyl phorbol-13-acetate, TPA) in water and methanol. Plasma irradiation on the solution sample was conducted for 15 min. In aqueous solution, only 16% of TPA was degraded and complete degradation of J. PEs was observed. On the contrary, complete degradation of both TPA and J. PEs in methanol was achieved by the same plasma irradiation condition. Hydroxyl radical (•OH) generated by plasma irradiation of the solution is expected as the main radical inducing the degradation of PEs.

  11. Role of phorbol esters in regional cerebral blood flow regulation

    SciTech Connect

    Hanley, D.F.; Uhl, G.R.; Miyabe, M.; Traystman, R.J.

    1986-03-05

    Phorbol esters are known to activate protein kinase C, an intracellular enzyme capable of phosphorylating membrane associated receptors. By using phorbol-12-13-dibutyrate (PDBU), they investigated the presence and function of protein kinase C on canine cerebral vessels. In vitro tissue autoradiographic studies performed on 8 ..mu.. sections of canine cerebral vessels with H/sup 3/-PDBU revealed a 3 to 1 ratio of specific to nonspecific binding. Competitive displacement was demonstrated for 3 physiologically active phorbol esters but could not be demonstrated for 3 physiologically inactive phorbol derivatives. The effect of PDBU on regional cerebral blood flow (rCBF) was then studied in vivo using radiolabelled microspheres in 6 dogs. Measurements were made during control ventriculocisternal CSF infusions and 5,10,15,20 and 25 minutes after infusion of .1 nM/min PDBU. For grey matter regions in contact with the perfusate, caudate nucleus, cortical watershed and cerebellum, blood flow increased from 33 +/- 6 to 45 +/- 7, 20 +/- 2 to 27 +/- 2, and 31 +/- 2 to 42 +/- 5 ml/min/100 gm, respectively. rCBF was unchanged for brainstem, temporal lobe or white matter regions. They conclude (1) PDBU has high affinity binding to canine cerebral vascular smooth muscle, and (2) PDBU produces an increase in rCBF when delivered intraventricularly. These data suggest a possible role for protein kinase C in the regulation of cerebral blood flow.

  12. The effect of phorbols on metabolic cooperation between human fibroblasts

    SciTech Connect

    Mosser, D.D.; Bols, N.C.

    1982-01-01

    Autoradiography has been used to study the effect of 12-O-tetradecanoylphorbol-13-acetate (TPA), 4-O-methyl TPA, and phorbol on metabolic cooperation between human diploid fibroblasts. When the donors, hypoxanthine-guanine phosphoribosyl transferase+ (HGPRT+) cells, and recipients, HGPRT- cells, were plated together in the presence of (/sup 3/H)hypoxanthine and either 4-O-methyl TPA or phorbol, nearly all interactions that developed in 4 h were positive for metabolic cooperation whereas when high concentrations of TPA were used, the number of positive interactions was significantly less than the control. If the phorbol analogs were added after the donors and recipients had made contact, the number of positive interactions was the same as the control in all cases. However, although primary recipients in the cultures that had been treated with phorbol had the same number of grains as those in the control, primary recipients in cultures that had been treated with TPA or high concentrations of 4-O-methyl TPA had significantly fewer grains than those in the control. TPA treatment for 4 h had no effect on total (/sup 3/H)hypoxanthine incorporation or incorporation into acid-soluble and acid-insoluble fractions. Thus, the effect of TPA on metabolic cooperation is interpreted as a reduction in the transfer of (/sup 3/H)nucleotides and is an indication of an interference with intercellular communication.

  13. Biological responsiveness to the phorbol esters and specific binding of (/sup 3/H)phorbol 12,13-dibutyrate in the nematode Caenorhabditis elegans, a manipulable genetic system

    SciTech Connect

    Lew, K.K.; Chritton, S.; Blumberg, P.M.

    1982-01-01

    Because of its suitability for genetic studies, the nematode Caenorhabditis elegans was examined for its responsiveness to the phorbol esters. Phorbol 12-myristate 13-acetate had three effects. It inhibited the increase in animal size during growth; it decreased the yield of progeny; and it caused uncoordinated movement of the adult. The effects on nematode size, progeny yield, and movement were quantitated. Concentrations of phorbol 12-myristate 13-acetate yielding half-maximal responses were 440, 460, and 170 nM, respectively. As was expected from the biological responsiveness of the nematodes, specific, saturable binding of phorbol ester to nematode extracts was found. (/sup 3/H)phorbol 12,13-dibutyrate bound with a dissociation constant of 26.8 +/- 3.9 nM. At saturation, 5.7 +/- 1.4 pmole/mg protein was bound.

  14. Protein Kinase C Regulates Ionic Conductance in Hippocampal Pyramidal Neurons: Electrophysiological Effects of Phorbol Esters

    NASA Astrophysics Data System (ADS)

    Baraban, Jay M.; Snyder, Solomon H.; Alger, Bradley E.

    1985-04-01

    The vertebrate central nervous system contains very high concentrations of protein kinase C, a calcium-and phospholipid-stimulated phosphorylating enzyme. Phorbol esters, compounds with inflammatory and tumor-promoting properties, bind to and activate this enzyme. To clarify the role of protein kinase C in neuronal function, we have localized phorbol ester receptors in the rat hippocampus by autoradiography and examined the electrophysiological effects of phorbol esters on hippocampal pyramidal neurons in vitro. Phorbol esters blocked a calcium-dependent potassium conductance. In addition, phorbol esters blocked the late hyperpolarization elicited by synaptic stimulation even though other synaptic potentials were not affected. The potencies of several phorbol esters in exerting these actions paralleled their affinities for protein kinase C, suggesting that protein kinase C regulates membrane ionic conductance.

  15. Pharmaceutical potential of phorbol esters from Jatropha curcas oil.

    PubMed

    Devappa, Rakshit K; Malakar, Chandi C; Makkar, Harinder P S; Becker, Klaus

    2013-01-01

    Phorbol esters (PEs) are diterpenes present in Jatropha curcas L. seeds and have a myriad of biological activities. Since PEs are toxic, they are considered to be futile in Jatropha-based biodiesel production chain. In the present study, the extracted PEs from Jatropha oil were used as a starting material to synthesise pharmacologically important compound, prostratin. The prostratin synthesised from Jatropha showed identical mass with that of the reference standard prostratin, as determined by Nano-LC-ESI-MS/MS. Considering the rapid growth in Jatropha biodiesel industry, potential exists to harness large amount of PEs which can be further utilised to synthesise prostratin as a value added product. PMID:22913490

  16. A Comparison Between Phorbol 12 Myristate 13 Acetate and Phorbol 12, 13 Dibutyrate in Human Melanocyte Culture

    PubMed Central

    Padma, Divya

    2016-01-01

    Introduction Melanocyte culture is an integral part of the studies of skin biology and cosmetic applications. After the introduction of selective medium for the culture of human melanocyte using Phorbol 12-myristate13-acetate (PMA) in 1982, a lot of methods of culturing were tried but till date PMA is a preferred mitogen because of its cost effectiveness compared to growth factors. We have tried to preliminarily evaluate the efficacy of another phorbol ester, Phorbol 12, 13-dibutyrate (PDBu) in melanocyte culture because of its less hydrophobic nature compared to PMA. This property minimizes the trace amount of mitogen in cell culture after washing off and hence does not interfere in other biological assays. Aim To evaluate the differences in the melanocyte survival rate, morphology and mitotic index when grown in media supplemented with PMA and PDBu. Materials and Methods Foreskins were collected from children undergoing circumcision. Epidermal cells were isolated from foreskin and cultured using PMA and PDBu. Melanocytes in culture were monitored for the better establishment and documented. In proliferative assay, melanocytes were treated with PMA and PDBu for 24, 48 and 72 hours and proliferation was measured using 3-(4,5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay method. Results When cultured, melanocytes acquired proliferative status and bipolar morphology quicker in PDBu medium than in PMA medium. Keratinocytes survived as contamination in PMA medium whereas PDBu medium had minimal keratinocytes. MTT assay showed that PDBu has higher proliferative induction capacity than PMA. In even lower concentration of PDBu in medium, melanocytes survived till 72 hours without significant cell loss in compared to PMA medium. Conclusion PDBu can be a valuable replacement for PMA in human melanocyte culture. Higher proliferation induction, unfavourable to keratinocyte survival and less hydrophobicity make PDBu a promising alternative for quicker

  17. Effect of phorbol myristate acetate on secretion of parathyroid hormone

    SciTech Connect

    Morrissey, J.J. )

    1988-01-01

    The influence of phorbol myristate acetate (PMA), an activator of protein kinase c, on the secretion of parathyroid hormone from collagenase-dispersed bovine parathyroid cells was tested. The cells were incubated at low or high concentrations of calcium in the medium, and the hormone secreted into the medium was measured by a radioimmunoassay that recognizes both intact and C-terminal fragments of hormone. A stimulatory effect of PMA at high calcium, seen at PMA concentrations as low as 1.6 nM, did not occur with a biologically inactive 4{alpha}-isomer of phorbol ester, and was independent of changes in cellular adenosine 3{prime},5{prime}-cyclic monophosphate levels. Examination of {sup 32}P-labeled phosphoproteins by two-dimensional gel electrophoresis revealed acidic proteins of {approximately}20,000 and 100,000 Da that were phosphorylated at low and high calcium + 1.6 {mu}M PMA but not at high calcium alone. The protein kinase c activity associated with the membrane fraction of parathyroid cells significantly decreased 40% when the cells were incubated at high vs. low calcium. The data suggest that calcium may regulate parathyroid hormone secretion through changes in protein kinase c activity of the membrane fraction of the cell and protein phosphorylation.

  18. Antiallergic Phorbol Ester from the Seeds of Aquilaria malaccensis.

    PubMed

    Korinek, Michal; Wagh, Vitthal D; Lo, I-Wen; Hsu, Yu-Ming; Hsu, Hsue-Yin; Hwang, Tsong-Long; Wu, Yang-Chang; Cheng, Yuan-Bin; Chen, Bing-Hung; Chang, Fang-Rong

    2016-01-01

    The Aquilaria malaccensis (Thymelaeaceae) tree is a source of precious fragrant resin, called agarwood, which is widely used in traditional medicines in East Asia against diseases such as asthma. In our continuous search for active natural products, A. malaccensis seeds ethanolic extract demonstrated antiallergic effect with an IC50 value less than 1 µg/mL. Therefore, the present research aimed to purify and identify the antiallergic principle of A. malaccensis through a bioactivity-guided fractionation approach. We found that phorbol ester-rich fraction was responsible for the antiallergic activity of A. malaccensis seeds. One new active phorbol ester, 12-O-(2Z,4E,6E)-tetradeca-2,4,6-trienoylphorbol-13-acetate, aquimavitalin (1) was isolated. The structure of 1 was assigned by means of 1D and 2D NMR data and high-resolution mass spectrometry (HR-MS). Aquimavitalin (1) showed strong inhibitory activity in A23187- and antigen-induced degranulation assay with IC50 values of 1.7 and 11 nM, respectively, with a therapeutic index up to 71,000. The antiallergic activities of A. malaccensis seeds and aquimavitalin (1) have never been revealed before. The results indicated that A. malaccensis seeds and the pure compound have the potential for use in the treatment of allergy. PMID:27007372

  19. Antiallergic Phorbol Ester from the Seeds of Aquilaria malaccensis

    PubMed Central

    Korinek, Michal; Wagh, Vitthal D.; Lo, I-Wen; Hsu, Yu-Ming; Hsu, Hsue-Yin; Hwang, Tsong-Long; Wu, Yang-Chang; Cheng, Yuan-Bin; Chen, Bing-Hung; Chang, Fang-Rong

    2016-01-01

    The Aquilaria malaccensis (Thymelaeaceae) tree is a source of precious fragrant resin, called agarwood, which is widely used in traditional medicines in East Asia against diseases such as asthma. In our continuous search for active natural products, A. malaccensis seeds ethanolic extract demonstrated antiallergic effect with an IC50 value less than 1 µg/mL. Therefore, the present research aimed to purify and identify the antiallergic principle of A. malaccensis through a bioactivity-guided fractionation approach. We found that phorbol ester-rich fraction was responsible for the antiallergic activity of A. malaccensis seeds. One new active phorbol ester, 12-O-(2Z,4E,6E)-tetradeca-2,4,6-trienoylphorbol-13-acetate, aquimavitalin (1) was isolated. The structure of 1 was assigned by means of 1D and 2D NMR data and high-resolution mass spectrometry (HR-MS). Aquimavitalin (1) showed strong inhibitory activity in A23187- and antigen-induced degranulation assay with IC50 values of 1.7 and 11 nM, respectively, with a therapeutic index up to 71,000. The antiallergic activities of A. malaccensis seeds and aquimavitalin (1) have never been revealed before. The results indicated that A. malaccensis seeds and the pure compound have the potential for use in the treatment of allergy. PMID:27007372

  20. Phorbol esters induce multidrug resistance in human breast cancer cells

    SciTech Connect

    Fine, R.L.; Patel, J.; Chabner, B.A.

    1988-01-01

    Mechanisms responsible for broad-based resistance to antitumor drugs derived from natural products (multidrug resistance) are incompletely understood. Agents known to reverse the multidrug-resistant phenotype (verapamil and trifluoperazine) can also inhibit the activity of protein kinase C. When the authors assayed human breast cancer cell lines for protein kinase C activity, they found that enzyme activity was 7-fold higher in the multidrug-resistance cancer cells compared with the control, sensitive parent cells. Exposure of drug-sensitive cells to the phorbol ester phorbol 12,13-dibutyate (P(BtO)/sub 2/) led to an increase in protein kinase C activity and induced a drug-resistance phenotype, whereas exposure of drug-resistant cells to P(BtO)/sub 2/ further increased drug resistance. In sensitive cells, this increased resistance was accomplished by a 3.5-fold increased phosphorylation of a 20-kDa particulate protein and a 35-40% decreased intracellular accumulation of doxorubicin and vincristine. P(BtO)/sub 2/ induced resistance to agents involved in the multidrug-resistant phenotype (doxorubicin and vincristine) but did not affect sensitivity to an unrelated alkylating agent (melphalan). The increased resistance was partially or fully reversible by the calcium channel blocker verapamil and by the calmodulin-antagonist trifluoperazine. These data suggest that stimulation of protein kinase C playus a role in the drug-transport changes in multidrug-resistant cells. This may occur through modulation of an efflux pump by protein phosphorylation.

  1. Identification of the phorbol ester receptor in human and avian erythrocytes

    SciTech Connect

    Kramer, C.M.; Sando, J.J.; Speizer, L.A.

    1986-05-01

    The ability of phorbol esters to inhibit the uptake of a fluorescent glucose analogue in goose but not human erythrocytes is consistent with earlier reports that the human red blood cell lacks the phorbol ester receptor. However, they have located specific phorbol 12,13-dibutyrate binding sites in both human and goose erythrocytes. Human and goose red blood cells contain 2 classes of phorbol ester receptors with similar affinities, however the human erythrocyte contains 1/3 as many phorbol ester receptors as does the goose red blood cell. An additional contrast in the binding of phorbol esters to human and goose red blood cells is the temperature-induced enhancement of binding to goose, but not human erythrocytes. Equilibrium phorbol ester binding to goose red blood cells at 37/sup 0/C is enhanced 3.3 +/- 0.4 times that amount bound at 4/sup 0/C. Equilibrium binding of phorbol esters to human erythrocytes is identical at both temperatures. In vivo and in vitro phosphorylation profiles of C-kinase substrates also differ between the human and goose erythrocyte.

  2. Characterization of the membrane receptor of phorbol ester tumor promoters

    SciTech Connect

    Woodward, K.P.

    1985-01-01

    Binding to the membrane receptor for the phorbol ester tumor promoters was characterized in rat epithelial cell lines and in cell lines from rat and human brain, and in solubilized membranes from animal tissues and cell cultures. In inhibition of (/sup 3/H)-PDBu binding was found in membrane extracts from the transformed rat liver epithelial cell line W8, and with a factor present in normal human serum. An esterase which inactivates phorbol esters and is present in mouse liver homogenates has been described by others. The inhibition associated with the extract was reversed by pretreatment with the esterase inhibitor phenyl methyl sulfonyl fluoride (PMSF). The transformation of W8 seems to have been accompanied by the synthesis of this factor since the parental cell line has demonstrable receptors which appear to have been lost by W8 which displays binding only when pretreated with PMSF. The serum factor does not bind (/sup 3/H)-PDBu and inhibits (/sup 3/H)-PDBu binding at 4/sup 0/C. Its inhibitory action is apparent within minutes and is rapidly reversed by washing. The factor reduces the number of available receptors but not their affinity. These studies demonstrate down regulation by the phorboid receptors, and in cell lines derived from brain more binding was seen in cultures with glial characteristic than in those with predominantly neural characteristics. Since there is more binding in brain tissue than in any other tissue, brain should prove important to study to better understand the physiology of this receptor system.

  3. Phorbol ester stimulates calcium sequestration in saponized human platelets

    SciTech Connect

    Yoshida, K.; Nachmias, V.T.

    1987-11-25

    When platelets are activated by agonists, calcium (Ca2+) is released from an intracellular storage site. Recent studies using fura-2 show that, after thrombin stimulation, the rise in free calcium is transient and returns to base-line levels in 2-3 min, while the transient following ADP stimulation lasts only 15-20 s. We reported previously that the phorbol ester 12,13-phorbol myristate acetate (PMA), added at nanomolar levels after thrombin, immediately accelerated the rate of return of calcium to the base line severalfold. In the present study, we used both intact and saponized platelets to determine whether this is due to stimulation of calcium sequestration. Using fura-2 and intact platelets, we found 1) that PMA stimulated the restoration of free Ca2+ levels after ADP as well as after thrombin, and 2) that H-7, an inhibitor of protein kinase C (Ca2+/phospholipid-dependent enzyme), slowed the return of Ca2+ to baseline levels. Using saponized platelets, we also found 3) that pretreatment of platelets with PMA before saponin treatment increased the ATP-dependent /sup 45/Ca2+ uptake 2-fold, with a half-maximal effect at 5 nm; 4) that most of the Ca2+ released by ionomycin or by myoinositol 1,4,5-trisphosphate; and 5) that a GTP-binding protein inhibitor, guanosine 5'-O-(2-thiodiphosphate), decreased basal or PMA-stimulated /sup 45/Ca2+ uptake in saponin-treated platelets. Our data suggest that activation of protein kinase C stimulates the sequestration of Ca2+ independently of cAMP or myoinositol 1,4,5-trisphosphate.

  4. Phorbol ester-stimulated phosphorylation of basolateral membranes from canine kidney

    SciTech Connect

    Hammerman, M.R.; Rogers, S.; Morrissey, J.J.; Gavin, J.R. III

    1986-06-01

    To determine whether protein kinase C is present in the basolateral membrane of the renal proximal tubular cell, we performed experiments to ascertain whether specific binding of (/sup 3/H)phorbol 12,13-dibutyrate could be demonstrated in basolateral membranes isolated from canine kidney. Specific binding was demonstrable that was half maximal at between 10(-7) and 10(-8) M phorbol 12,13-dibutyrate. Binding was inhibited by 12-O-tetradecanoylphorbol-13-acetate (TPA) and other tumor-promoting phorbol esters, but not by inactive phorbol esters, including 4 alpha-phorbol. Incubation of basolateral membranes with TPA and phorbol 12,13-dibutyrate, but not with 4 alpha-phorbol, in the presence of submicromolar concentrations of free calcium, enhanced phosphorylation of several proteins demonstrable in autoradiograms of sodium dodecyl sulfate-polyacrylamide gels originating from membranes subsequently exposed to (gamma-32P)ATP for 30 s. Dephosphorylation of (/sup 32/P)phosphoproteins was observed in gels from membranes incubated with (gamma-32P)ATP over time. TPA-stimulated phosphorylation of one protein band with Mr 135,000 was quantitated and was found to increase as a function of (TPA). Half-maximal TPA-stimulated phosphorylation of this protein band occurred at slightly less than 10(-9) M TPA. Our findings are consistent with a role for protein kinase C-effected phosphorylation of basolateral membrane proteins in the mediation or modulation of hormonal actions in the proximal tubular cell.

  5. Tumor-promoting phorbol esters effect alkalinization of canine renal proximal tubular cells

    SciTech Connect

    Mellas, J.; Hammerman, M.R.

    1986-03-01

    We have demonstrated the presence of specific receptors for tumor-promoting phorbol esters in the plasma membrane of the canine renal proximal tubular cell. These compounds affect proximal tubular metabolism in vitro. For example, we have shown that they inhibit gluconeogenesis in canine renal proximal tubular segments. Tumor-promoting phorbol esters have been shown to effect alkalinization of non-renal cells, by enhancing Na/sup +/-H/sup +/ exchange across the plasma membrane. To determine whether the actions of tumor-promoting phorbol esters in proximal tubular segments might be mediated by a similar process, we incubated suspensions of segments from dog kidney with these compounds and measured changes in intracellular pH using (/sup 14/C)-5,5-dimethoxazoladine-2-4-dione (DMO) and flow dialysis. Incubation of segments with phorbol 12,13 dibutyrate, but not inactive phorbol ester, 4 ..gamma.. phorbol, effected alkalinization of cells within the segments in a concentration-dependent manner. Alkalinization was dependent upon the presence of extracellular (Na/sup +/) > intracellular (Na/sup +/), was prevented by amiloride and was demonstrable in the presence of SITS. Our findings suggest that tumor-promoting esters stimulate the Na/sup +/-H/sup +/ exchanger known to be present in the brush border membrane of the renal proximal tubular cell. It is possible that the stimulation reflects a mechanism by which phorbol esters affect metabolic processes in these cells.

  6. Phosphatidylinositol 4,5-bisphosphate competitively inhibits phorbol ester binding to protein kinase C

    SciTech Connect

    Chauhan, A.; Cauhan, V.P.S.; Deshmukh, D.S.; Brokerhoff, H. )

    1989-06-13

    Calcium phospholipid dependent protein kinase C (PKC) is activated by diacylglycerol (DG) and by phorbol esters and is recognized to be the phorbol ester receptor of cells; DG displaces phorbol ester competitively from PKC. A phospholipid, phosphatidylinositol 4,5-bisphosphate (PIP{sub 2}), can also activate PKC in the presence of phosphatidylserine (PS) and Ca{sup 2+} with a K{sub PIP{sub 2}} of 0.04 mol %. Preliminary experiments have suggested a common binding site for PIP{sub 2} and DG on PKC. Here, the authors investigate the effect of PIP{sub 2} on phorbol ester binding to PKC in a mixed micellar assay. In the presence of 20 mol % PS, PIP{sub 2} inhibited specific binding of ({sup 3}H)phorbol 12,13-dibutyrate (PDBu) in a dose-dependent fashion up to 85% at 1 mol %. Inhibition of binding was more pronounced with PIP{sub 2} than with DG. Scatchard analysis indicated that the decrease in binding of PDBu in the presence of PIP{sub 2} is the result of an altered affinity for the phorbol ester rather than of a change in maximal binding. The plot of apparent dissociation constants (K{sub d{prime}}) against PIP{sub 2} concentration was linear over a range of 0.01-1 mol % with a K{sub i} of 0.043 mol % and confirmed the competitive nature of inhibition between PDBu and PIP{sub 2}. Competition between PIP{sub 2} and phorbol ester could be determined in a liposomal assay system also. These results indicate that PIP{sub 2}, DG, and phorbol ester all compete for the same activator-receiving region on the regulatory moiety of protein kinase C, and they lend support to the suggestion that PIP{sub 2} is a primary activator of the enzyme.

  7. Sphingolipids inhibit insulin and phorbol ester stimulated uptake of 2-deoxyglucose

    SciTech Connect

    Nelson, D.H.; Murray, D.K.

    1986-07-16

    Studies are presented demonstrating inhibition of both insulin and phorbol myristate acetate stimulated uptake of 2-deoxyglucose uptake by 3T3-L1 fibroblasts. Greatest inhibition of uptake was seen with sphinganine while sphingosine was also potent in this regard. Ceramide inhibited phorbol myristate acetate but not insulin stimulation of uptake. It is suggested that sphingolipid inhibition of glucose transport relates to the previously demonstrated effect of corticosteroids to increase membrane sphingomyelin and inhibit glucose transport.

  8. Phorbol esters potentiate the induction of class I HLA expression by interferon. alpha

    SciTech Connect

    Erusalimsky, J.D.; Kefford, R.F.; Gilmore, D.J.; Milstein, C. )

    1989-03-01

    The authors have studied the effect of phorbol esters on the induction of class I histocompatibility antigen (HLA) expression by interferons (IFNs) in the T-cell line MOLT-4 and in the MOLT-4 mutant YHHH. Addition of IFN-{alpha} to phorbol 12,13-dibutyrate-pretreated MOLT-4 cells causes a >20-fold increase in the expression of class I HLA, as compared to a 4- to 7-fold IFN-{alpha}-induced increase in control cells. Pretreatment with phorbol 12,13-dibutyrate does not alter the class I HLA response to IFN-{gamma} or the responses of other IFN-induced genes. This effect of phorbol 12,13-dibutyrate reproduces in MOLT-4 cells the phenotype of the mutant YHHH, which also displays a selective enhanced class I HLA response to IFN-{alpha}. Pretreatment of YHHH with phorbol 12,13-dibutyrate does not affect any of the responses induced by IFN. These findings suggest the existence of a phorbol ester-sensitive factor, inducible in MOLT-4 and constitutively expressed or modified in YHHH, which operates in the pathway of induction of class I HLA by IFN-{alpha} but not in the pathway used by IFN-{gamma}.

  9. Occular and dermal toxicity of Jatropha curcas phorbol esters.

    PubMed

    Devappa, Rakshit K; Roach, Joy S; Makkar, Harinder P S; Becker, Klaus

    2013-08-01

    Jatropha curcas seeds are a promising feedstock for biodiesel production. However, Jatropha seed oil and other plant parts are toxic due to the presence of phorbol esters (PEs). The ever-increasing cultivation of toxic genotype of J. curcas runs the risk of increased human exposure to Jatropha products. In the present study, effects of J. curcas oil (from both toxic and nontoxic genotypes), purified PEs-rich extract and purified PEs (factors C1, C2, C(3mixture), (C4+C5)) on reconstituted human epithelium (RHE) and human corneal epithelium (HCE) were evaluated in vitro. The PEs were purified from toxic Jatropha oil. In both RHE and HCE, the topical application of PEs containing samples produced severe cellular alterations such as marked oedema, presence of less viable cell layers, necrosis and/or partial tissue disintegration in epithelium and increased inflammatory response (interleukin-1α and prostaglandin E2). When compared to toxic oil, histological alterations and inflammatory response were less evident (P<0.05) in nontoxic oil indicating the severity of toxicity was due to PEs. Conclusively, topical applications of Jatropha PEs are toxic towards RHE and HCE models, which represents dermal and occular toxicity respectively. Data obtained from this study would aid in the development of safety procedures for Jatropha biodiesel industries. It is advised to use protective gloves and glasses when handling PEs containing Jatropha products. PMID:23706600

  10. Phorbol esters modulate cyclic AMP accumulation in porcine thyroid cells

    SciTech Connect

    Emoto, T.; Kasai, K.; Hiraiwa, M.; Shimoda, S.

    1988-01-01

    In cultured porcine thyroid cells, during 60 min incubation phorbol 12-myristate 13-acetate (PMA) had no effect on basal cyclic AMP accumulation and slightly stimulated cyclic AMP accumulation evoked by thyroid stimulating hormone (TSH) or forskolin. Cholera toxin-induced cyclic AMP accumulation was significantly stimulated by PMA. On the other hand, cyclic AMP accumulation evoked by prostaglandin E/sub 1/ or E/sub 2/ (PGE/sub 1/ and PGE/sub 2/) was markedly depressed by simultaneous addition of PMA. These opposing effects of PMA on cyclic AMP accumulation evoked by PGE and cholera toxin were observed in a dose-related fashion, with half-maximal effect of around 10/sup -9/ M in either case. The almost same effects of PMA on cyclic AMP accumulation in basal and stimulated conditions were also observed in freshly prepared thyroid cells. The present study was performed in the presence of phosphodiesterase inhibitor, 3-iso-butyl-1-methylxanthine (IBMX), indicating that PMA affected adenylate cyclase activity. Therefore, it is suggested that PMA may modulate the production of cyclic AMP in response to different stimuli, possibly by affecting several sites in the adenylate cyclase complex in thyroid cells.

  11. Five new phorbol esters with cytotoxic and selective anti-inflammatory activities from Croton tiglium.

    PubMed

    Wang, Jun-Feng; Yang, Sheng-Hui; Liu, Yan-Qun; Li, Din-Xiang; He, Wei-Jun; Zhang, Xiao-Xiao; Liu, Yong-Hong; Zhou, Xiao-Jiang

    2015-05-01

    Five new phorbol esters, (four phorbol diesters, 1-4, and one 4-deoxy-4α-phorbol diester, 5), as well as four known phorbol esters analogues (6-9) were isolated and identified from the branches and leaves of Croton tiglium. Their structures were elucidated mainly by extensive NMR spectroscopic, and mass spectrometric analysis. Among them, compound (1) was the first example of a naturally occurring phorbol ester with the 20-aldehyde group. Compounds 2-5, and 7-9 showed potent cytotoxicity against the K562, A549, DU145, H1975, MCF-7, U937, SGC-7901, HL60, Hela, and MOLT-4 cell lines, with IC50 values ranging from 1.0 to 43 μM, while none of the compounds exhibited cytotoxic effects on normal human cell lines 293T and LX-2, respectively. In addition, compound 3 exhibited moderate COX-1 and COX-2 inhibition, with IC50 values of 0.14 and 8.5 μM, respectively. PMID:25819096

  12. Effects of phorbol esters on adrenergic receptors of DDT MF-2 smooth muscle cells

    SciTech Connect

    Cowlen, M.; Toews, M.

    1986-03-05

    Phorbol esters have been reported to induce redistribution or internalization of several types of cell surface receptors, including beta-adrenergic receptors (BAR) in some cells. They investigated the effects of phorbol esters on adrenergic receptor distribution in DDT/sub 1/ MF-2 smooth muscle cells in suspension culture. Exposure of cells to epinephrine, an agonist for both BAR and alpha-1 adrenergic receptors (AAR), led to a shift of about half of BAR from plasma membrane to light vesicle fractions on sucrose density gradient centrifugation. This change correlates with other evidence for internalization or sequestration of BAR away from the cell surface. AAR distribution remained unaltered following agonist treatment. Pretreatment of cells with phorbol 12-myristate 13-acetate, which caused about 80% inhibition of epinephrine-stimulated turnover of inositol phospholipids, did not lead to redistribution of either BAR or AAR.

  13. Stimulation of dopamine synthesis and activation of tyrosine hydroxylase by phorbol diesters in rat striatum

    SciTech Connect

    Onali, P.; Olianas, M.C.

    1987-03-23

    In rat striatal synaptosomes, 4..beta..-phorbol 12-myristate 13-acetate (PMA) and 4 ..beta..-phorbol 12,13-dibutyrate (PDBu), two activators of Ca/sup 2 +/-phospholipid-dependent protein kinase (protein kinase C) increased dopamine (DA) synthesis measured by following the release of /sup 14/CO/sub 2/ from L-(1-/sup 14/C) tyrosine. Maximal stimulation (21-28% increase of basal rate) was produced by 0.5 ..mu..M PMA and 1 ..mu..M PDBu. 4 ..beta..-Phorbol and 4 ..beta..-phorbol 13-acetate, which are not activators of protein kinase C, were ineffective at 1 ..mu..M. PMA did not change the release of /sup 14/CO/sub 2/ from L-(1-/sup 14/C)DOPA. Addition of 1 mM EGTA to a Ca/sup 2 +/-free incubation medium failed to affect PMA stimulation. KCl (60 mM) enhanced DA synthesis by 25%. Exposure of synaptosomes to either PMA or PDBu prior to KCl addition resulted in a more than additive increase (80-100%) of DA synthesis. A similar synergistic effect was observed when the phorbol diesters were combined with either veratridine or d-amphetamine but not with forskolin and dibutyryl cyclic AMP. Pretreatment of striatal synaptosomes with phorbol diesters produced an activation of tyrosine hydroxylase (TH) associated with a 60% increase of the Vmax and a decrease of the Km for the pterine cofactor 6-methyl-5,6,7,8-tetrahydropterin. These results indicate that protein kinase C participates in the regulation of striatal TH in situ and that its activation may act synergistically with DA releasing agents in stimulating DA synthesis. 37 references, 3 figures, 3 tables.

  14. Method of phorbol ester degradation in Jatropha curcas L. seed cake using rice bran lipase.

    PubMed

    Hidayat, Chusnul; Hastuti, Pudji; Wardhani, Avita Kusuma; Nadia, Lana Santika

    2014-03-01

    A novel enzymatic degradation of phorbol esters (PE) in the jatropha seed cake was developed using lipase. Cihera rice bran lipase had the highest ability to hydrolyze PE, and reduced PE to a safe level after 8 h of incubation. Enzymatic degradation may be a promising method for PE degradation. PMID:24099956

  15. Degradation of Jatropha curcas phorbol esters derived from Jatropha oil cake and their tumor-promoting activity.

    PubMed

    Nakao, Motoyuki; Hasegawa, Go; Yasuhara, Tadashi; Ishihara, Yoko

    2015-04-01

    Large amount of oil cake is generated during biodiesel production from Jatropha seeds. Although Jatropha oil cake is rich in plant nutrients, presence of toxic phorbol esters restricts the usage of oil cake as a fertilizer. The objective of this study is to evaluate the components and tumor promoting activity of phorbol esters in Jatropha oil cake-supplemented soil and plants grown in the treated soil. Contents and their biological activity of Jatropha phorbol esters in soil and plants were sequentially analyzed by high-performance liquid chromatography (HPLC) and in vitro cell transformation assay, respectively. Disappearance of Jatropha phorbol-ester-specific peaks were followed with HPLC during incubation of Jatropha oil cake with soil for five weeks. Along with the degradation of Jatropha phorbol ester in soil, tumor-promoting activity in the sample was also attenuated and ultimately disappeared. Jatropha phorbol esters and tumor promoting activity were not detected from mustard spinach grown in the Jatropha oil cake-supplemented soil. In addition, the esterase KM109 degrades DHPB (see definition below; Jatropha phorbol ester) and reduced its tumor-promoting activity. From these data, we conclude: (1) components and tumor promoting activity of Jatropha phorbol esters in the oil cake disappeared completely by incubation with soil for five-week, (2) Jatropha phorbol esters did not transfer into plants grown in the Jatropha oil cake-supplemented soil, and (3) DHPB can be degraded by esterase from soil bacterium. These observations are useful for utilization of Jatropha oil cake as a fertilizer. PMID:25066610

  16. Phorbol ester binding to protein kinase C requires a cysteine-rich zinc-finger-like sequence

    SciTech Connect

    Ono, Yoshitaka; Fujii, Tomoko; Igarashi, Koichi; Kuno, Takayoshi; Tanaka, Chikako; Kikkawa, Ushio; Nishizuka, Yasutomi )

    1989-07-01

    Protein kinase C normally has a tandem repeat of a characteristic cysteine-rich sequence in C{sub 1}, the conserved region of the regulatory domain. These sequences resemble the DNA-binding zinc finger domain. For the {gamma} subspecies of rat brain protein kinase C, various deletion and point mutants in this domain were constructed, and the mutated proteins were expressed in Escherichia coli by using the T7 expression system. Radioactive phorbol 12,13-dibutyrate binding analysis indicated that a cysteine-rich zinc-finger-like sequence was essential for protein kinase C to bind phorbol ester and that one of the two sequences was sufficient for the phorbol ester binding. Conserved region C{sub 2}, another region in the regulatory domain, was apparently needed for the enzyme to require Ca{sup 2+} for phorbol ester binding activity.

  17. OSTEOCYTE APOPTOSIS

    PubMed Central

    Jilka, Robert L.; Noble, Brendon; Weinstein, Robert S.

    2012-01-01

    Apoptotic death of osteocytes was recognized over 15 years ago, but its significance for bone homeostasis has remained elusive. A new paradigm has emerged that invokes osteocyte apoptosis as a critical event in the recruitment of osteoclasts to a specific site in response to skeletal unloading, fatigue damage, estrogen deficiency and perhaps in other states where bone must be removed. This is accomplished by yet to be defined signals emanating from dying osteocytes, which stimulate neighboring viable osteocytes to produce osteoclastogenic cytokines. The osteocyte apoptosis caused by chronic glucocorticoid administration does not increase osteoclasts; however, it does negatively impact maintenance of bone hydration, vascularity, and strength. PMID:23238124

  18. Tumor-promoting phorbol esters support the in vitro proliferation of murine pluripotent hematopoietic stem cells.

    PubMed Central

    Spivak, J L; Hogans, B B; Stuart, R K

    1989-01-01

    The effect of tumor-promoting phorbol esters on the in vitro proliferation of mouse pluripotent hematopoietic stem cells (CFU-S) was examined using a short-term in vitro culture system and an 11-d spleen colony assay. Phorbol myristate acetate (PMA, 10(-7) M), but not the inert compound phorbol, supported the in vitro survival of day 11 CFU-S for 72 h in a manner similar to IL 3. PMA also enhanced the effect of IL 3 on the in vitro survival of day 11 CFU-S and as little as 1 h of exposure to PMA was sufficient for this purpose. The effect of PMA on CFU-S survival in vitro was not mediated by prostaglandins, did not require an established adherent cell population, and was observed at a concentration of 10(-9) M. PMA alone did not enhance the in vitro survival of day 11 CFU-S at very low concentrations of FCS but was still able to potentiate the effect of IL 3 on these cells. PMA also enhanced the in vitro survival of day 11 CFU-S from mice treated with 5-fluorouracil or from marrow cells exposed to merocyanine 540 and light. The interaction of PMA with day 11 CFU-S was not inhibited by a neutralizing antiserum to IL 3 but was inhibited by the protein kinase inhibitor H-7. Together, the data indicate that tumor-promoting phorbol esters interact with pluripotent hematopoietic stem cells. Like IL 3, their effect appears to be permissive and involves stem cells with marrow repopulating ability. PMID:2463264

  19. Continuous presence of phorbol ester is required for its IL-1 beta mRNA stabilizing effect.

    PubMed

    Siljander, P; Hurme, M

    1993-01-01

    The protein kinase C (PKC) activating phorbol esters are known to prevent the decay of mRNA of several cytokines and proto-oncogenes. To examine whether the phorbol ester signal is continuously required for this stabilizing effect, THP-1 monocytic cells were stimulated either with phorbol 12,13-dibutyrate (PDBu), which can be removed from the cells by washings, or with the more hydrophobic phorbol 12-myristate 13-acetate (PMA). Both of these stimuli induced high levels of interleukin-1 beta (IL-1 beta) mRNA. When the cells were washed at the peak of the IL-1 beta mRNA expression, this mRNA decayed rapidly in the PDBu stimulated cells while in PMA stimulated cells the mRNA levels were not affected. Moreover, this mRNA degradation induced by the removal of PDBu could be inhibited by readdition of the phorbol ester. This restabilization could be prevented by pharmacologic inhibitors of PKC, but not by inhibiting protein or RNA synthesis. Thus these data suggest that the phorbol ester must be continuously present to exert its mRNA stabilizing effect and that its effect is PKC-mediated but does not require active protein or RNA synthesis. PMID:8416817

  20. A nonpromoting phorbol from the samoan medicinal plant Homalanthus nutans inhibits cell killing by HIV-1.

    PubMed

    Gustafson, K R; Cardellina, J H; McMahon, J B; Gulakowski, R J; Ishitoya, J; Szallasi, Z; Lewin, N E; Blumberg, P M; Weislow, O S; Beutler, J A

    1992-05-29

    Extracts of Homalanthus nutans, a plant used in Samoan herbal medicine, exhibited potent activity in an in vitro, tetrazolium-based assay which detects the inhibition of the cytopathic effects of human immunodeficiency virus (HIV-1). The active constituent was identified as prostratin, a relatively polar 12-deoxyphorbol ester. Noncytotoxic concentrations of prostratin from greater than or equal to 0.1 to greater than 25 microM protected T-lymphoblastoid CEM-SS and C-8166 cells from the killing effects of HIV-1. Cytoprotective concentrations of prostratin greater than or equal to 1 microM essentially stopped virus reproduction in these cell lines, as well as in the human monocytic cell line U937 and in freshly isolated human monocyte/macrophage cultures. Prostratin bound to and activated protein kinase C in vitro in CEM-SS cells and elicited other biochemical effects typical of phorbol esters in C3H10T1/2 cells; however, the compound does not appear to be a tumor promoter. In skin of CD-1 mice, high doses of prostratin induced ornithine decarboxylase only to 25-30% of the levels induced by typical phorbol esters at doses 1/30 or less than that used for prostratin, produced kinetics of edema formation characteristic of the nonpromoting 12-deoxyphorbol 13-phenylacetate, and failed to induce the acute or chronic hyperplasias typically caused by tumor-promoting phorbols at doses of 1/100 or less than that used for prostratin. PMID:1597853

  1. Effect of phorbol derivatives and staurosporine on gravitropic response of primary root of maize

    SciTech Connect

    Mulkey, T.J.; Kim, S.Y. ); Lee, J.S. )

    1991-05-01

    Time-lapse videography and computer-based, video image digitization were used to examine the effects of phorbol derivatives (phorbol 12-myristate 13-acetate, TPA; phorbol 12-myristate 13-acetate 4-O-methyl ether, mTPA) and staurosporine on the kinetics of gravicurvature of primary roots of maize (Zea mays L., Pioneer 3343 and Golden Cross Bantam). Pretreatment of roots with TPA (3 hr, 1 {mu}M) decreases the time lag prior to induction of positive gravicurvature in horizontally-oriented roots by > 60%. The rate of curvature is not significantly different than the rate observed in control roots. Wrongway curvature which is observed in 30-40% of control roots is not observed in TPA-pretreated roots. Oscillatory movements observed in control roots after completion of gravitropic reorientation is completely dampened in TPA-pretreated roots. Pretreatment of roots with mTPA(3hr,1{mu}M), the inactive analog of TPA, does not significantly alter the kinetics of gravicurvature of primary roots of maize. Staurosporine (10{sup {minus}8}M), a microbial alkaloid which has been reported to have antifungal activity and to inhibit phospholipid/Ca{sup ++} dependent protein kinase, completely inhibits TPA-induced alteration of the kinetics of gravitropism. DAG (1-oleoyl-2-acetyl-rac-glycerol), a synthetic diglyceride activator of protein kinase C, exhibits similar activity to TPA. TPA-induced alterations in tissue response to auxin are presented.

  2. Characterization of beta2 (CD18) integrin phosphorylation in phorbol ester-activated T lymphocytes.

    PubMed Central

    Valmu, L; Hilden, T J; van Willigen, G; Gahmberg, C G

    1999-01-01

    Integrins are transmembrane proteins involved in cell-cell and cell-extracellular-matrix interactions. The affinity and avidity of integrins for their ligands change in response to cytoplasmic signals. This 'inside-out' activation has been reported to occur also with beta2 integrins (CD18). The beta2 integrin subunit has previously been shown to become phosphorylated in T lymphocytes on cytoplasmic serine and the functionally important threonine residues after treatment with phorbol esters or on triggering of T-cell receptors. We have now characterized the phosphorylation of beta2 integrins in T-cells in more detail. When T-cells were activated by phorbol esters the phosphorylation was mainly on Ser756. After inhibition of serine/threonine phosphatases, phosphorylation was also found in two of the threonine residues in the threonine triplet 758-760 of the beta2 cytoplasmic domain. Activation of T-cells by phorbol esters resulted in phosphorylation in only approx. 10% of the integrin molecules. Okadaic acid increased this phosphorylation to approx. 30% of the beta2 molecules, assuming three phosphorylation sites. This indicates that a strong dynamic phosphorylation exists in serine and threonine residues of the beta2 integrins. PMID:10085235

  3. A new class of simplified phorbol ester analogues: synthesis and binding to PKC and eta PKC-C1B (eta PKC-CRD2).

    PubMed

    Wender, P A; Kirschberg, T A; Williams, P D; Bastiaans, H M; Irie, K

    1999-10-01

    [formula: see text] A unique class of simplified phorbol ester analogues is described for the first time. A highly efficient retro-annelation sequence was developed in order to remove the five-membered ring from the phorbol diterpene core, allowing access to BCD ring analogues of the phorbol esters. The binding of these analogues to protein kinase C (PKC) and the truncated peptide eta PKC-C1B (eta PKC-CRD2) is also reported. PMID:10825954

  4. The insulin-like effects of phorbol myristate acetate (PMA) in the isolated fat cell

    SciTech Connect

    Solomon, S.S.; Palazzolo, M. )

    1989-01-01

    Recent data from many laboratories suggest that insulin stimulates diacylglycerol formation. Data presented in this manuscript demonstrate an insulin-like effect of PMA, a tumor promoting agent that mimics the action of diacylglycerol, in isolated adipocytes on; (a) glucose oxidation using uniformly labelled, C-1-labelled and C-6-labelled glucose, (b) epinephrine-induced lipolysis and (c) low Km cAMP phosphodiesterase activity. Additionally, a lipolytic effect of PMA is identified when unopposed by epinephrine. These data not only demonstrate an insulin-like effect of phorbol esters in adipose tissue but they lend support to the concept of diacylglycerol involvement in the mechanism of insulin action.

  5. Screening for toxic phorbol esters in jerky pet treat products using LC-MS.

    PubMed

    Nishshanka, Upul; Jayasuriya, Hiranthi; Chattopadhaya, Chaitali; Kijak, Philip J; Chu, Pak-Sin; Reimschuessel, Renate; Tkachenko, Andriy; Ceric, Olgica; De Alwis, Hemakanthi G

    2016-05-01

    Since 2007, the U.S. FDA's Center for Veterinary Medicine (CVM) has been investigating reports of pets becoming ill after consuming jerky pet treats. Jerky used in pet treats contains glycerin, which can be made from vegetable oil or as a byproduct of biodiesel production. Because some biodiesel is produced using oil from Jatropha curcas, a plant that contains toxic compounds including phorbol esters, CVM developed a liquid chromatography-mass spectrometry (LC-MS) screening method to evaluate investigational jerky samples for the presence of these toxins. Results indicated that the samples analyzed with the new method did not contain Jatropha toxins at or above the lowest concentration tested. PMID:27038400

  6. Phorbol esters modulate the shape of cultured canine vascular smooth muscle cells

    SciTech Connect

    Di Salvo, J.; Kolquist, K.; Semenchuk, L.; Rengstorf, J. )

    1991-03-11

    Marked changes in the shape of vascular smooth muscle cells (VSMC) occur during early development, repair of the vascular wall, and formation of atherosclerotic plaques. Yet, surprisingly little is known about mechanisms which regulate the shape of VSMC. Since protein kinase C (PKC) is involved in regulation of multiple cellular functions including interactions between contractile and cytoskeletal proteins, the authors suspected it might also regulate VSMC shape. Accordingly, the authors studied the influence of a known activator of PKC, phorbol 12-myristate 13-acetate (PMA), on the shape of cultured canine carotid arterial BSMC. PMA produced time and concentration dependent changes from normal elongated shape to pronounced circular forms. Cells recovered normal shape within 24 hrs even though exposure to PMA was continued. Analogs of PMA which do not activate PKC did not alter shape, whereas phorbol 13, 14 diacetate, an analog which activates PKC, did produce changes in shape similar to those produced by PMA. Cycloheximide, an inhibitor of protein synthesis, or actinomycin D, an inhibitor of mRNA synthesis, did not alter PMA-induced changes in morphology. In contrast, however, recovery of normal shape after prolonged exposure to PMA was blocked by either cycloheximide or actinomycin D. These results suggest activation of PKC produces changes in VSMC shape that are independent of transcription or translation, whereas recovery is dependent on both transcription and translation. The results also suggest PKC may modulate in vivo changes in VSMC shape occurring during different pathophysiological states.

  7. ACE expression in monocytes is induced by cytokines, phorbol ester and steroid

    SciTech Connect

    Lazarus, D.; Lanzillo, J.; Fanburg, B. )

    1991-03-15

    Angiotensin converting enzyme (ACE) levels are elevated in the serum and peripheral blood monocytes (PBM) of patients with granulomatous diseases. However, the role of ACE in (Mo) physiology and the regulation of the inflammatory response is not well understood. Since Mo can be stimulated to form giant cells using phorbol esters, glucocorticoids or certain inflammatory cytokines, the authors examined production of ACE protein by normal PBM, a Mo-like cell line, THP-1, and a macrophage-like cell line, U937 following stimulation with these agents. Using a sensitive ELISA assay, they found that in U937 cells, expression of ACE protein increased by 3.4 fold with dexamethasone, 3.7. fold with phorbol 12-myristate acetate (PMA), and 5.8 fold with the two agents combined. The cytokines IL-4 and GM-CSF substantially increased ACE expression, by 7.6 and 7.7 fold respectively, with maximal effect at 0.01 U/ml, while IFN-{gamma} and TNF-{alpha} had little effect. Similar results were found with PBM and THP-1 cells. The combination of dexamethasone and PMA also induced homotypic cluster formation in PBM, suggesting a correlation between cell adhesion and ACE production. The authors conclude that ACE expression in monocytes and macrophages is stimulated by low concentration of glucocorticoids and certain inflammatory cytokines. ACE may participate in the initiation and propagation of granulomatous inflammatory processes.

  8. Tumor-promoting phorbol ester stimulates tyrosine phosphorylation in U-937 monocytes.

    PubMed Central

    Grunberger, G; Zick, Y; Taylor, S I; Gorden, P

    1984-01-01

    Solubilized lectin-purified extracts from human monocyte-like cells (U-937) and freshly isolated human mononuclear cells preincubated in the presence of phorbol 12-myristate 13-acetate (PMA) stimulated phosphorylation of synthetic tyrosine-containing polymers and of casein. Tyrosine phosphorylation was confirmed by phospho amino acid analysis. PMA stimulated phosphorylation of exogenous substrates in a time- and concentration-dependent manner. This phosphorylation reaction did not require addition of phospholipid, diolein, or calcium. Biologically inactive phorbol compounds did not stimulate phosphorylation in this system. In addition, PMA enhanced phosphorylation of a Mr approximately equal to 140,000 protein as well as several other endogenous proteins in the U-937 extracts. PMA treatment stimulated predominantly phosphorylation on tyrosine residues of the Mr 140,000 protein. Tyrosine phosphorylation, typical of growth-promoting peptides such as insulin or epidermal growth factor, is believed to play a role in regulating normal and disordered cellular growth and proliferation. The demonstration of PMA-stimulated tyrosine phosphorylation might provide a clue to the mechanism of cellular differentiation and proliferation induced by the tumor promoter. Images PMID:6201862

  9. Phorbol ester stimulates secretory activity while inhibiting receptor-activated aminopyrine uptake by gastric glands

    SciTech Connect

    Brown, M.R.; Chew, C.S.

    1986-03-05

    Both cyclic AMP-dependent and -independent secretagogues stimulate pepsinogen release, respiration and H/sup +/ secretory activity (AP uptake) in rabbit gastric glands. 12-O-tetradecanoylphorbol-13-acetate (T), a diacyglycerol analog, activates protein kinase C (PKC) and stimulates secretion in many systems. T stimulated respiration and pepsinogen release by glands and increased AP uptake by both glands and purified parietal cells. However, T reduced AP uptake by glands stimulated with carbachol (C) or histamine (H) with an apparent IC/sub 50/ of 1 nM. Preincubation with T for 30 min produced maximum inhibition which was not reversed by removal of T. T accelerated the decline of the transient C peak while the late steady state response to H was most inhibited. H-stimulated AP uptake was also inhibited by 50 ..mu..g/ml 1-oleoyl-2-acetyl-glycerol, a reported PKC activator, but not by the inactive phorbol, 4..cap alpha..-phorbol-12,13-didecanoate. In contrast, T potentiated AP uptake by glands stimulated with submaximal doses of dibutyryl cyclic AMP. These results suggest inhibition by T is a specific effect of PKC activators. The differing effects of T on secretion indicators may result from a dual action of T on receptor and post-receptor intracellular events.

  10. Estrogen inhibits phorbol ester-induced I kappa B alpha transcription and protein degradation.

    PubMed

    Sun, W H; Keller, E T; Stebler, B S; Ershler, W B

    1998-03-27

    Estrogen (E2) is known to prevent bone loss and the mechanism is, at least in part, mediated by inhibition of expression of cytokines such as interleukin-6 (IL-6). Expression of IL-6 is tightly regulated and the transcription factor NF kappa B can upregulate IL-6 gene expression by binding to its promoter region. NF kappa B is kept in an inactive state by associating with its cytoplasmic inhibitor I kappa B alpha. Upon mitogenic stimulation, I kappa B alpha becomes phosphorylated, followed by a rapid protein degradation. As a result, NF kappa B is released and translocate to the nucleus where DNA binding occurs. It has been shown that E2 treatment downregulates mitogen-induced IL-6 expression by inhibiting NF kappa B activity. Here, we sought to determine whether E2 regulates IL-6 gene expression by modulating the levels of I kappa B alpha. Our results show that E2 treatment almost completely inhibits phorbol ester-induced I kappa B alpha protein degradation. In addition, E2 inhibits phorbol ester-stimulated I kappa B alpha gene expression. Taken together, our results suggest that E2 maintains steady state levels of I kappa B alpha upon mitogen stimulation, resulting in inhibition of NF kappa B activation and IL-6 gene expression. This may explain the protective effect of E2 on bone loss. PMID:9535726

  11. Oncogene transcription in normal human IMR-90 fibroblasts: induction by serum and tetradecanoyl phorbol acetate

    SciTech Connect

    Bower, E.A.; Kaji, H.

    1988-01-01

    The authors report studies of oncogene transcription induced by the addition of serum to quiescent cultures of human IMR-90 fibroblasts. Oncogene messenger RNAs for c-myc, c-erbB and c-ras were increased in a specific temporal sequence after the addition of serum. Compounds that are proposed to exert their actions by the stimulation of cell growth were tested for their effect on oncogene transcription in IMR-90 fibroblasts. The tumor promoter tetradecanoyl phorbol acetate (TPA) was found to selectively induce the transcription of c-myc without observable effect on the transcription of the other oncogenes studied, and without inducing cell division. The inactive analog, phorbol didecanoate (PDD), and two complete carcinogens dimethylbenzanthracene (DMBA) and 4-nitro quinoline-1-oxide (4NQO) were without effect on the transcription of the genes studied. These results suggest that the complete ordered sequence of gene transcription is necessary to achieve the physiologic response of cell division, and that classical promoters and complete carcinogens achieve their effects through different pathways.

  12. Degradation of phorbol 12,13-diacetate in aqueous solution by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Kongmany, Santi; Furuta, Masakazu; Matsuura, Hiroto; Okuda, Shuichi; Imamura, Kiyoshi; Maeda, Yasuaki

    2014-12-01

    Phorbol esters (PEs) are highly toxic compounds that cause skin irritation, inflammation, and tumor promotion upon contact with humans or animals. These compounds are naturally present in Jatropha curcas L. To promote the use of J. curcas seed oil in bio-diesel production industries and reduce environmental concerns, it is necessary to find methods of degrading PEs. In this study, the degradation of phorbol 12,13-diacetate (PDA), as a representative PE, in aqueous solution at a concentration of 10 mg/L by 60Co-γ-irradiation was investigated. The results demonstrate that PDA was effectively degraded by this treatment and the degradation efficiency increased with the absorbed dose within the range of 0.5-3 kGy. Complete degradation of PDA was achieved at a dose of 3 kGy. In the presence of radical scavengers (i.e., methanol, tert-butanol, 2-propanol), reactive species from water radiolysis were scavenged, and significant inhibition of PDA degradation was observed at absorbed doses less than 1 kGy. In the presence of nitrous oxide, the generation of hydroxyl radicals (rad OH) was promoted during gamma irradiation and PDA degradation was drastically enhanced.

  13. Stimulation of phospholipid hydrolysis and arachidonic acid mobilization in human uterine decidua cells by phorbol ester.

    PubMed Central

    Schrey, M P; Read, A M; Steer, P J

    1987-01-01

    Vasopressin and oxytocin both stimulated inositol phosphate accumulation in isolated uterine decidua cells. Pretreatment of cells with the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) prevented this agonist-induced phosphoinositide hydrolysis. TPA (0.1 microM) alone had no effect on basal inositol phosphate accumulation, but stimulated phosphoinositide deacylation, as indicated by a 2-fold increase in lysophosphatidylinositol and glycerophosphoinositol. TPA also stimulated a dose-related release of arachidonic acid from decidua-cell phospholipid [phosphatidylcholine (PC) much greater than phosphatidylinositol (PI) greater than phosphatidylethanolamine]. The phorbol ester 4 beta-phorbol 12,13-diacetate (PDA) at 0.1 microM had no effect on arachidonic acid mobilization. The TPA-stimulated increase in arachidonic acid release was apparent by 2 1/2 min (116% of control), maximal after 20 min (283% of control), and remained around this value (306% of control) after 120 min incubation. TPA also stimulated significant increases in 1,2-diacylglycerol and monoacylglycerol production at 20 and 120 min. Although the temporal increases in arachidonic acid and monoacylglycerol accumulation in the presence of TPA continued up to 120 min, that of 1,2-diacylglycerol declined after 20 min. In decidua cells prelabelled with [3H]choline, TPA also stimulated a significant decrease in radiolabelled PC after 20 min, which was accompanied by an increased release of water-soluble metabolites into the medium. Most of the radioactivity in the extracellular pool was associated with choline, whereas the main cellular water-soluble metabolite was phosphorylcholine. TPA stimulated extracellular choline accumulation to 183% and 351% of basal release after 5 and 20 min respectively and cellular phosphorylcholine production to 136% of basal values after 20 min. These results are consistent with a model in which protein kinase C activation by TPA leads to arachidonic acid mobilization

  14. Phorbol ester activation of chloride current in guinea-pig ventricular myocytes.

    PubMed Central

    Shuba, L. M.; Asai, T.; McDonald, T. F.

    1996-01-01

    1. Although earlier studies with phorbol esters indicate that protein kinase C (PKC) may be an important regulator of Cl- current (Icl) in cardiac cells, there is a need for additional quantitative data and investigation of conflicting findings. Our objectives were to measure the magnitude, time course, and concentration-dependence of Icl activated in guinea-pig ventricular myocytes by phorbol 12-myristate 13-acetate (PMA), evaluate its PKC dependence, and examine its modification by external and internal ions. 2. The whole-cell patch clamp technique was used to apply short depolarizing and hyperpolarizing pulses to myocytes superfused with Na(+)-, K(+)-, Ca(2+)-free solution (36 degrees C) and dialysed with Cs+ solution. Stimulation of membrane currents by PMA (threshold < or = 1nM, EC50 approximately equal to 14 nM, maximal 40% increase with > or = 100 nM) plateaued within 6-10 min. 3. PMA-activated current was time-independent, and suppressed by l mM 9-anthracenecarboxylic acid (9-AC). Its reversal potential (Erev) was sensitive to changes in the Cl- gradient, and outward rectification of the current-voltage (I-V) relationship was more pronounced with 30 mM than 140 mM Cl- dialysate. 4. The relative permeability of PMA-activated channels estimated from Erev measurements was I- > Cl- > > aspartate. Channel activation was independent of external Na+. 5. PMA failed to activate Icl in myocytes pretreated with 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7) or dialysed with pCa 10.5 solution. Lack of response to 4 alpha-phorbol 12, 13-didecanoate (alpha PDD) was a further indication of mediation by PKC. 6. Icl induced by 2 microM forskolin was far larger than that induced by PMA, suggesting that endogenous protein kinase A is a much stronger Cl- channel activator than endogenous PKC in these myocytes. 7. The macroscopic properties of PMA-induced Icl appear to be indistinguishable from those of PKA-activated Icl. We discount stimulation of PKA by PMA as an

  15. Phorbol ester-induced inhibition of. beta. -adrenergic - and vasopressin-mediated responses in an established smooth muscle cell line

    SciTech Connect

    Not Available

    1986-03-01

    A-10 cells which are derived from embryonic rat thoracic aorta contain a high density of vasopressin receptors and relatively fewer ..beta..-adrenergic receptors. The effects of vasopressin binding to these cells are two-fold: a) inhibition of isoproterenol-stimulated cAMP accumulation, and; b) stimulation of phosphatidyl inositol turnover. Incubation of these cells with phorbol dibutyrate leads to an attenuation of the responses mediated by ..beta..-adrenergic agonist as well as vasopressin. This effect of phorbol ester is concentration- and time-dependent and can be observed as early as five minutes. The inactive phorbol ester (4 ..cap alpha.. phorbol 12,13-didecanoate) is ineffective in inhibiting ..beta..-adrenergic agonist and vasopressin-mediated responses. Since present evidence indicates that the enzyme protein kinase C (PK-C) is involved in both short-term and long-term regulatory processes such as secretion, smooth muscle contraction and cell growth, these data suggest that both ..beta..-adrenergic and vasopressin receptors and/or some mediator(s) of ..beta..-adrenergic and/or vasopressin responses may be phosphorylated by protein kinase C resulting in an attenuated response of these two hormones.

  16. COLONY FORMATION ENHANCEMENT OF RAT TRACHEAL AND NASAL EPITHELIAL CELLS BY POLYACETATE, INDOLE ALKALOID, AND PHORBOL ESTER TUMOR PROMOTERS

    EPA Science Inventory

    The phorbol ester 12-0-tetradecanoylphorbol-13-acetate (TPA), teleocidin, and two polyacetate tumor promoters (aplysiatoxin and debromoaplysiatoxin) have been tested for their effect on colony forming efficiency (CFE) of rat tracheal and nasal turbinate epithelial cells. In rat t...

  17. Muscarinic agonists and phorbol esters increase tyrosine phosphorylation of a 40-kilodalton protein in hippocampal slices

    SciTech Connect

    Stratton, K.R.; Worley, P.F.; Huganir, R.L.; Baraban, J.M. )

    1989-04-01

    The authors have used the hippocampal slice preparation to investigate the regulation of protein tyrosine phosphorylation in brain. After pharmacological treatment of intact slices, proteins were separated by electrophoresis, and levels of protein tyrosine phosphorylation were assessed by immunoblotting with specific anti-phosphotyrosine antibodies. Phorbol esters, activators of the serine- and threonine-phosphorylating enzyme protein kinase C, selectively increase tyrosine phosphorylation of a soluble protein with an apparent molecular mass of approximately 40 kilodaltons. Muscarinic agonists such as carbachol and oxotremorine M that strongly activate the inositol phospholipid system also increase tyrosine phosphorylation of this protein. Neurotransmitter activation of the inositol phospholipid system and protein kinase C appears to trigger a cascade leading to increased tyrosine phosphorylation.

  18. Stimulation of progesterone production by phorbol-12-myristate 13-acetate (PMA) in cultured Leydig tumor cells

    SciTech Connect

    Chaudhary, L.R.; Raju, V.S.; Stocco, D.M.

    1987-05-01

    It has been shown that addition of hCG or c-AMP to cultured Leydig tumor cells (MA-10) increases synthesis of progesterone as the major steroid. To investigate the possible involvement of protein kinase C (PK-C) in the regulation of steroid synthesis, the authors have studied the effect of PMA, an activator of PK-C, on progesterone production in MA-10 cells. The addition of PMA (100 ng/ml) stimulated steroid production whereas 4 -phorbol-12,13-didecanoate, an inactive phorbol ester, did not have any effects. Like hCG and c-AMP, PMA-stimulated progesterone production was inhibited by cycloheximide. hCG-stimulated steroid synthesis was inhibited by PMA. The addition of PMA to MA-10 Leydig cells further increased the c-AMP-stimulated progesterone production. To determine whether c-AMP has a obligatory role in the regulation of steroid production, the effect of adenylate cyclase inhibitor, 9-(tetrahydro-2-furyl)adenine (TFA), was studied on progesterone production in the presence of hCG. At lower dose (17 ng/ml) hCG-stimulated intracellular c-AMP levels and steroid production were inhibited by TFA (300 M). At higher dose of hCG (34 ng/ml) TFA did not inhibit the hCG-stimulated intracellular c-AMP levels, however, progesterone production was inhibited. Results suggest that the action of hCG, c-AMP and PMA in controlling steroidogenesis might be regulated by similar but different mechanisms.

  19. Okadaic acid: An additional non-phorbol-12-tetradecanoate-13-acetate-type tumor promoter

    SciTech Connect

    Suganuma, Masami; Fujiki, Hirota; Suguri, Hiroko; Yoshizawa, Shigeru; Hirota, Mitsuru; Nakayasu, Michie ); Ojika, Makoto; Wakamatsu, Kazumasa; Yamada, Kiyoyuki ); Sugimura, Takashi )

    1988-03-01

    Okadaic acid is a polyether compound of a C{sub 38} fatty acid, isolated from a black sponge, Halichondria okadai. Previous studies showed that okadaic acid is a skin irritant and induces ornithine decarboxylase in mouse skin 4 hr after its application to the skin. This induction was strongly inhibited by pretreatment of the skin with 13-cis-retinoic acid. A two-stage carcinogenesis experiment in mouse skin initiated by a single application of 100 {mu}g of 7,12-dimethylbenz(a)anthracene (DMBA) and followed by application of 10 {mu}g of okadaic acid twice a week revealed that okadaic acid is a potent additional tumor promoter: tumors developed in 93% of the mice treated with DMBA and okadaic acid by week 16. In contrast, tumors were found in only one mouse each in the groups treated with DMBA alone or okadaic acid alone. An average of 2.6 tumors per mouse was found in week 30 in the group treated with DMBA and okadaic acid. Unlike phorbol 12-tetradecanoate 13-acetate (TPA), teleocidin, and aplysiatoxin, okadaic acid did not inhibit the specific binding of ({sup 3}H)TPA to a mouse skin particulate fraction when added up to 100 {mu}M or activate calcium-activated, phospholipid-dependent protein kinase (protein kinase C) in vitro when added up to 1.2 {mu}M. Therefore, the actions of okadaic acid and phorbol ester may be mediated in different ways. These results show that okadaic acid is a non-TPA-type tumor promoter in mouse skin carcinogenesis.

  20. Effect of phorbol ester on the release of atrial natriuretic peptide from the hypertrophied rat myocardium.

    PubMed Central

    Kinnunen, P.; Taskinen, T.; Järvinen, M.; Ruskoaho, H.

    1991-01-01

    1. To determine the cellular mechanisms of atrial natriuretic peptide (ANP) release from ventricular cardiomyocytes, the secretory and the cardiac effects of a phorbol ester, 12-O-tetradecanoyl-phorbol-13-acetate (TPA), known to stimulate protein kinase C activity in heart cells, were studied in isolated, perfused heart preparations from 2- and 21-month-old Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) rats. TPA was added to the perfusion fluid for 30 min at a concentration of 46 nM after removal of atrial tissue. Additionally, atrial and ventricular levels of immunoreactive ANP (IR-ANP) and ANP mRNA, the distribution of ANP within ventricles as well as the relative contribution of atria and ventricles in the release of ANP were studied. 2. Ventricular hypertrophy that gradually developed in hypertensive rats resulted in remarkable augmentation of ANP gene expression, as reflected by elevated levels of immunoreactive ANP and ANP mRNA. The total amount of IR-ANP in the ventricles of the SHR rats increased 41 fold and ANP mRNA levels 12.9 fold from the age of 2 to 21 months. At the age of 21 months, levels of IR-ANP and ANP mRNA in the ventricles of SHR rats were 5.4 fold and 3.7 fold higher, respectively, than in the normotensive WKY rats. Immunohistochemical studies demonstrated ANP granules within the hypertrophic ventricles of the old SHR rats, but not within normal ventricular tissue. 3. In isolated perfused heart preparations, the severely hypertrophied ventricular tissue of SHR rats after atrialectomy secreted more ANP into the perfusate than did the control hearts.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 2 PMID:1826618

  1. Regulation of osteosarcoma EGF receptor affinity by phorbol ester and cyclic AMP

    SciTech Connect

    Borst, S.E.; Catherwood, B.D. )

    1989-04-01

    We studied the binding and degradation of 125I-labeled epidermal growth factor (EGF) by UMR-106 osteosarcoma cells and the regulation of EGF receptor affinity for EGF by the phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate (TPA) and by treatments that raise intracellular levels of cyclic AMP. Cell surface binding of (125I)EGF to A431 cells reached a plateau after a 30 minute incubation at 37 degrees C but was undetectable in UMR-106 cells. Degradation of (125I)EGF proceeded at a 50-fold higher rate in A431 cells on a per cell basis, but receptor-bound (125I)EGF was internalized and degraded at a 3.5-fold higher rate by UMR-106 cells on a per receptor basis. At 4 degrees C, (125I)EGF labeled a single class of surface binding sites in the UMR-106 cell. Treatment with TPA at 37 degrees C reduced subsequent cell surface binding of (125I)EGF at 4 degrees C a maximum of 80% with an IC50 of 1.25 ng/ml. Maximal TPA reduction of (125I)EGF binding was observed within 5-15 minutes and was due to a reduction in the affinity of cell surface receptors of (125I)EGF without a change in receptor density. Pretreatment of the cells for 4 h with 30 microM forskolin, 1 mM isobutylmethylxanthine (IBMX) plus 30 microM forskolin, or 1 mM IBMX plus 100 ng/ml parathyroid hormone (PTH) attenuated the loss in (125I)EGF binding caused by a subsequent dose of 10 ng/ml of TPA by 17% (p less than 0.0005), 39% (p less than 0.0002), and 35% (p less than 0.002), respectively.

  2. Development of a sensitive in vitro assay to quantify the biological activity of pro-inflammatory phorbol esters in Jatropha oil.

    PubMed

    Pelletier, Guillaume; Padhi, Bhaja K; Hawari, Jalal; Sunahara, Geoffrey I; Poon, Raymond

    2015-06-01

    New health safety concerns may arise from the increasing production and use of Jatropha oil, a biodiesel feedstock that also contains toxic, pro-inflammatory, and co-carcinogenic phorbol esters. Based on the exceptional sensitivity of Madin-Darby canine kidney (MDCK) cells to the model phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA), a robust bioassay was developed to quantify the biological activity of Jatropha phorbol esters directly in oil, without sample extraction. We first verified that the characteristic response of MDCK cells to TPA was also observed following direct exposure to phorbol esters in Jatropha oil. We further confirmed that similarly to TPA, Jatropha oil's phorbol esters can activate protein kinase C (PKC). We then assessed the transcriptional response of MDCK cells to Jatropha oil exposure by measuring the expression of cyclooxygenase-2 (COX-2), a gene involved in inflammatory processes which is strongly upregulated following PKC activation. Based on the parameterization of a TPA dose-response curve, the transcriptional response of MDCK cells to Jatropha oil exposure was expressed in term of TPA toxic equivalent (TEQ), a convenient metric to report the inflammatory potential of complex mixtures. The sensitive bioassay described in this manuscript may prove useful for risk assessment, as it provides a quantitative method and a convenient metric to report the inflammatory potential of phorbol esters in Jatropha oil. This bioassay may also be adapted for the detection of bioactive phorbol esters in other matrices. PMID:25588777

  3. Phorbol ester promotes a sustained down-regulation of endothelin receptors and cellular responses to endothelin in human vascular smooth muscle cells.

    PubMed

    Resink, T J; Scott-Burden, T; Weber, E; Bühler, F R

    1990-02-14

    The effect of phorbol ester pretreatment of human vascular smooth muscle cells (hVSMC) was studied with respect to regulation of endothelin (ET)-receptor binding and cellular responses to ET. The capacity of hVSMC to bind ET was decreased (by approximately 50% at maximum) after phorbol exposure, and this reductive effect was both rapid (t 1/2 approximately 10 min.) and sustained (for up to 24 hrs. of chronic phorbol exposure). Phorbol pretreatment inhibited both inositol phosphate and diacylclycerol production responses of hVSMC to ET in a manner that was time-dependent and sustained. Phorbol pretreatment also produced a persistent reduction in the ability of ET to release isotopically-labelled arachidonic and/or its metabolites from hVSMC, but importantly ionomycin-stimulated release was similarly negatively affected. Furthermore, ET-induced accumulation of the phospholipase A2/phospholipase B-derived inositol phospholipid metabolite, glycerophosphoinositol, was not different between control and phorbol-treated hVMSC. The mechanism whereby phorbol exerts differential, but notably sustained inhibitory effects on ET-promoted signal transduction pathways are thus complex and illustrative of the selectivity of protein kinase C in regulating cellular responses. PMID:2154974

  4. Effects of Staphylococcal Enterotoxins on Human Neutrophil Functions and Apoptosis

    PubMed Central

    Moulding, Dale A.; Walter, Catherine; Hart, C. Anthony; Edwards, Steven W.

    1999-01-01

    Staphylococcal enterotoxins have marked effects on the properties of T cells and monocytes and have recently been reported to affect neutrophil function. In this study, we investigated the abilities of staphylococcal enterotoxins A and B and toxic shock syndrome toxin 1 to affect respiratory burst activity and to delay apoptosis in human neutrophils. When cultures containing approximately 97% neutrophils were tested, the toxins all delayed neutrophil apoptosis in a dose-dependent manner and induced the expression of FcγRI on the neutrophil cell surface. These effects on apoptosis and expression of FcγRI were largely abrogated by the addition of a neutralizing anti-gamma interferon antibody. Similarly, the effects of these toxins on phorbol ester-induced chemiluminescence were decreased after neutralization of gamma interferon. These effects on neutrophil function were mimicked by the addition of conditioned medium from peripheral blood mononuclear cells incubated with the toxins, and again, neutralizing anti-gamma interferon antibodies largely negated the effects. However, when highly purified neutrophils prepared by immunodepletion of T cells and major histocompatibility complex class II-expressing cells were analyzed, the toxins were without effect on apoptosis and FcγRI expression, but granulocyte-macrophage colony-stimulating factor and gamma interferon could still delay apoptosis. These data indicate that these toxins have no direct effect on neutrophil apoptosis but can act indirectly via the production of T-cell-derived and monocyte-derived cytokines. It is noteworthy that such effects are detected in neutrophil suspensions containing only 3% contamination with T cells and other mononuclear cells. PMID:10225889

  5. Potential treatments to reduce phorbol esters levels in jatropha seed cake for improving the value added product.

    PubMed

    Sadubthummarak, Umapron; Parkpian, Preeda; Ruchirawat, Mathuros; Kongchum, Manoch; Delaune, R D

    2013-01-01

    Jatropha seed cake contains high amounts of protein and other nutrients, however it has a drawback due to toxic compounds. The aim of this study was to investigate the methods applied to detoxify the main toxin, phorbol esters in jatropha seed cake, to a safe and acceptable level by maintaining the nutritional values. Phorbol esters are tetracyclic diterpenoids-polycyclic compounds that are known as tumor promoters and hence exhibited the toxicity within a broad range of species. Mismanagement of the jatropha waste from jatropha oil industries would lead to contamination of the environment, affecting living organisms and human health through the food chain, so several methods were tested for reducing the toxicity of the seed cake. The results from this investigation showed that heat treatments at either 120°C or 220°C for 1 hour and then mixing with adsorbing bentonite (10%), nanoparticles of zinc oxide (100 μg/g) plus NaHCO3 at 4%, followed by a 4-week incubation period yielded the best final product. The remaining phorbol esters concentration (0.05-0.04 mg/g) from this treatment was less than that reported for the nontoxic jatropha varieties (0.11-0.27 mg/g). Nutritional values of the seed cake after treatment remained at the same levels found in the control group and these values were crude protein (20.47-21.40 + 0.17-0.25%), crude lipid (14.27-14.68 + 0.13-0.14%) and crude fiber (27.33-29.67 + 0.58%). A cytotoxicity test conducted using L929 and normal human dermal fibroblast cell lines confirmed that most of the toxic compounds, especially phorbol esters, were shown as completely eliminated. The results suggested that the detoxification of phorbol esters residues in the jatropha seed cake was possible while it also retained nutritional values. Therefore, the methods to detoxify phorbol esters are necessary to minimize the toxicity of jatropha seed cake. Further, it is essential to reduce the possible environmental impacts that may be generated

  6. Phorbol esters induce death in MCF-7 breast cancer cells with altered expression of protein kinase C isoforms. Role for p53-independent induction of gadd-45 in initiating death.

    PubMed Central

    de Vente, J E; Kukoly, C A; Bryant, W O; Posekany, K J; Chen, J; Fletcher, D J; Parker, P J; Pettit, G J; Lozano, G; Cook, P P

    1995-01-01

    Protein kinase C (PKC) modulates growth, differentiation and apoptosis in a cell-specific fashion. Overexpression of PKC-alpha in MCF-7 breast cancer cells (MCF-7-PKC-alpha cell) leads to expression of a more transformed phenotype. The response of MCF-7 and MCF-7-PKC-alpha cells to phorbol esters (TPA) was examined. TPA-treated MCF-7 cells demonstrated a modest cytostatic response associated with a G1 arrest that was accompanied by Cip1 expression and retinoblastoma hypophosphorylation. While p53 was detected in MCF-7 cells, evidence for TPA-induced stimulation of p53 transcriptional activity was not evident. In contrast, TPA treatment induced death of MCF-7-PKC-alpha cells. Bryostatin 1, another PKC activator, exerted modest cytostatic effects on MCF-7 cells while producing a cytotoxic response at low doses in MCF-7-PKC-alpha cells that waned at higher concentrations. TPA-treated MCF-7-PKC-alpha cells accumulated in G2/M, did not express p53, displayed decreased Cip1 expression, and demonstrated a reduction in retinoblastoma hypophosphorylation. TPA-treated MCF-7-PKC-alpha cells expressed gadd-45 which occurred before the onset of apoptosis. Thus, alterations in the PKC pathway can modulate the decision of a breast cancer cell to undergo death or differentiation. In addition, these data show that PKC activation can induce expression of gadd45 in a p53-independent fashion. Images PMID:7560079

  7. Low affinity binding of phorbol esters to protein kinase C and its recombinant cysteine-rich region in the absence of phospholipids.

    PubMed

    Kazanietz, M G; Barchi, J J; Omichinski, J G; Blumberg, P M

    1995-06-16

    Binding of phorbol esters to protein kinase C (PKC) has been regarded as dependent on phospholipids, with phosphatidylserine being the most effective for reconstituting binding. By using a purified single cysteine-rich region from PKC delta expressed in Escherichia coli we were able to demonstrate that specific binding of [3H]phorbol 12,13-dibutyrate to the receptor still takes place in the absence of the phospholipid cofactor. However, [3H]phorbol 12,13-dibutyrate bound to the cysteine-rich region with 80-fold lower affinity in the absence than in the presence of 100 micrograms/ml phosphatidylserine. Similar results were observed with the intact recombinant PKC delta isolated from insect cells. When different phorbol derivatives were examined, distinct structure-activity relations for the cysteine-rich region were found in the presence and absence of phospholipid. Our results have potential implications for PKC translocation, for inhibitor design, and for PKC structural determination. PMID:7782331

  8. 12-O-tetradecanoyl-phorbol-13-acetate down-regulates the Huntingtin promoter at Sp1 sites.

    PubMed

    Coles, R; Birdsall, M; Wyttenbach, A; Rubinsztein, D C

    2000-09-28

    We have studied the effects of the phorbol ester, 12-O-tetradecanoyl-phorbol-13-acetate (TPA) on Huntington's disease (HD) gene transcription in neuronal and non-neuronal cell lines, to investigate pathways regulating HD gene expression. TPA reduced transcription from the HD gene promoter in SK-N-SH (neuroblastoma) and HeLa cells but not in JEG3 (choriocarcinoma) cells. In SK-N-SH cells, the responsible cis-acting promoter sequences comprise the tandemly duplicated Sp1 sites in the region from -213 to -174, relative to the translation start site. The TPA-down-regulating region in HeLa cells was mapped to the sequence from -141 to -126. In conclusion, this demonstrates that HD gene transcription can be down-regulated in vitro in a cell-specific manner. PMID:11043541

  9. Special type of morphological reorganization induced by phorbol ester: reversible partition of cell into motile and stable domains

    SciTech Connect

    Dugina, V.B.; Svitkina, T.M.; Vasiliev, J.M.; Gelfand, I.M.

    1987-06-01

    The phorbol ester phorbol 12-myristate 13-acetate (PMA) induced reversible alteration of the shape of fibroblastic cells of certain transformed lines-namely, partition of the cells into two types of domains: motile body actively extending large lamellas and stable narrow cytoplasmic processes. Dynamic observations have shown that stable processes are formed from partially retracted lamellas and from contracted tail parts of cell bodies. Immunofluorescence microscopy and electron microscopy of platinum replicas of cytoskeleton have shown that PMA-induced narrow processes are rich in microtubules and intermediate filaments but relatively poor in actin microfilaments; in contrast, lamellas and cell bodies contained numerous microfilaments. Colcemid-induced depolymerization of microtubules led to contraction of PMA-induced processes; cytochalasin B prevented this contraction. It is suggested that PMA-induced separation of cell into motile and stable parts is due to directional movement of actin structures along the microtubular framework. Similar movements may play an important role in various normal morphogenetic processes.

  10. Structural Basis for the Failure of the C1 Domain of Ras Guanine Nucleotide Releasing Protein 2 (RasGRP2) to Bind Phorbol Ester with High Affinity.

    PubMed

    Czikora, Agnes; Lundberg, Daniel J; Abramovitz, Adelle; Lewin, Nancy E; Kedei, Noemi; Peach, Megan L; Zhou, Xiaoling; Merritt, Raymond C; Craft, Elizabeth A; Braun, Derek C; Blumberg, Peter M

    2016-05-20

    The C1 domain represents the recognition module for diacylglycerol and phorbol esters in protein kinase C, Ras guanine nucleotide releasing protein (RasGRP), and related proteins. RasGRP2 is exceptional in that its C1 domain has very weak binding affinity (Kd = 2890 ± 240 nm for [(3)H]phorbol 12,13-dibutyrate. We have identified four amino acid residues responsible for this lack of sensitivity. Replacing Asn(7), Ser(8), Ala(19), and Ile(21) with the corresponding residues from RasGRP1/3 (Thr(7), Tyr(8), Gly(19), and Leu(21), respectively) conferred potent binding affinity (Kd = 1.47 ± 0.03 nm) in vitro and membrane translocation in response to phorbol 12-myristate 13-acetate in LNCaP cells. Mutant C1 domains incorporating one to three of the four residues showed intermediate behavior with S8Y making the greatest contribution. Binding activity for diacylglycerol was restored in parallel. The requirement for anionic phospholipid for [(3)H]phorbol 12,13-dibutyrate binding was determined; it decreased in going from the single S8Y mutant to the quadruple mutant. The full-length RasGRP2 protein with the mutated C1 domains also showed strong phorbol ester binding, albeit modestly weaker than that of the C1 domain alone (Kd = 8.2 ± 1.1 nm for the full-length protein containing all four mutations), and displayed translocation in response to phorbol ester. RasGRP2 is a guanyl exchange factor for Rap1. Consistent with the ability of phorbol ester to induce translocation of the full-length RasGRP2 with the mutated C1 domain, phorbol ester enhanced the ability of the mutated RasGRP2 to activate Rap1. Modeling confirmed that the four mutations helped the binding cleft maintain a stable conformation. PMID:27022025

  11. Sphingosine in apoptosis signaling.

    PubMed

    Cuvillier, Olivier

    2002-12-30

    The sphingolipid metabolites ceramide, sphingosine, and sphingosine 1-phosphate contribute to controlling cell proliferation and apoptosis. Ceramide and its catabolite sphingosine act as negative regulators of cell proliferation and promote apoptosis. Conversely, sphingosine 1-phosphate, formed by phosphorylation of sphingosine by a sphingosine kinase, has been involved in stimulating cell growth and inhibiting apoptosis. As the phosphorylation of sphingosine diminishes apoptosis, while dephosphorylation of sphingosine 1-phosphate potentiates it, the role of sphingosine as a messenger of apoptosis is of importance. Herein, the effects of sphingosine on diverse signaling pathways implicated in the apoptotic process are reviewed. PMID:12531549

  12. New phorbol and deoxyphorbol esters: isolation and relative potencies in inducing platelet aggregation and erythema of skin.

    PubMed

    Edwards, M C; Taylor, S E; Williamson, E M; Evans, F J

    1983-09-01

    Diester diterpenes based upon phorbol, 4-deoxyphorbol, 4 alpha-deoxyphorbol, 4-deoxy-5-hydroxyphorbol and 4,20-dideoxy-5-hydroxyphorbol were isolated from the fruit oil of Sapium indicum. Corresponding tri- and tetra-esters were produced by acetylation and mono-esters by selective hydrolysis. Twenty-six compounds were tested for production of erythema in vivo and induction of human and rabbit platelet aggregation in vitro. The flatter shape of the AB-ring trans compounds is necessary for interaction of phorbolesters at their receptor in that the cis analogues were inactive. The tertiary C-4 hydroxy group of phorbol was not necessary for activity although the 4-deoxy derivatives were less potent than the 4-hydroxy diterpenes. A primary hydroxy group at C-20 was essential for biological activity because the methyl and aldehyde derivatives of this position were inactive. The C-20 acetates were also inactive on platelets, but they did produce erythema, possibly because of the removal of the ester due to lipase activity in the skin. 5-hydroxy-analogues which undergo intramolecular hydrogen bonding had greatly reduced activities in both systems. Membrane stabilisers, phospholipase A2 and calmodulin inhibitors were antagonists for phorbol esters in platelet aggregation tests, whilst cyclo-oxygenase inhibitors and free radical scavengers had no inhibitory effects. Consequently, one electron withdrawal and free radical formation plays no part in the biological activity of these compounds. PMID:6637507

  13. The Histone Acetylase PCAF Is a Phorbol-Ester-Inducible Coactivator of the IRF Family That Confers Enhanced Interferon Responsiveness

    PubMed Central

    Masumi, Atsuko; Wang, I-Ming; Lefebvre, Bruno; Yang, Xing-Jiao; Nakatani, Yoshihiro; Ozato, Keiko

    1999-01-01

    Transcription factors of the interferon regulatory factor (IRF) family bind to the type I interferon (IFN)-responsive element (ISRE) and activate transcription from IFN-inducible genes. To identify cofactors that associate with IRF proteins, DNA affinity binding assays were performed with nuclear extracts prepared from tissue culture cells. The results demonstrated that the endogenous IRFs bound to the ISRE are complexed with the histone acetylases, PCAF, GCN5, and p300/CREB binding protein and that histone acetylase activities are accumulated on the IRF-ISRE complexes. By testing recombinant proteins, we show that PCAF directly binds to some but not all members of the IRF family through distinct domains of the two proteins. This interaction was functionally significant, since transfection of PCAF strongly enhanced IRF-1- and IRF-2-dependent promoter activities. Further studies showed that expression of PCAF and other histone acetylases was markedly induced in U937 cells upon phorbol ester treatment, which led to increased recruitment of PCAF to the IRF-ISRE complexes. Coinciding with the induction of histone acetylases, phorbol ester markedly enhanced IFN-α-stimulated gene expression in U937 cells. Supporting the role for PCAF in conferring IFN responsiveness, transfection of PCAF into U937 cells led to a large increase in IFN-α-inducible promoter activity. These results demonstrate that PCAF is a phorbol ester-inducible coactivator of the IRF proteins which contributes to the establishment of type I IFN responsiveness. PMID:10022868

  14. Quantitation of protein kinase C by immunoblot-expression in different cell lines and response to phorbol esters

    SciTech Connect

    Stabel, S.; Rodriguez-Pena, A.; Young, S.; Rozengurt, E.; Parker, P.J.

    1987-01-01

    Antisera have been raised against human protein kinase C and also against a synthetic peptide based on the sequence of the bovine brain enzyme (LLNQEEGEYYNVPIPE). These antibodies react with protein kinase C from a number of species (human, murine, rat, rabbit, bovine), indicating substantial conservation of epitopes. These antisera have been used to quantitate directly protein kinase C by immunoblot analysis. The authors show here that there is a strict correlation between the levels of immunoreactive polypeptide and extractable calcium- and phospholipid-dependent kinase activity for various cell lines. Treatment of murine, rat, and human cells with phorbol dibutyrate was found to deplete levels of immunoreactive protein kinase C severely. A detailed study of the time course of this depletion in Swiss 3T3 cells shows that it follows precisely the loss of extractable activity. On exposure to 400 nM phorbol 12,13-dibutyrate protein kinase C was essentially undetectable by 40 hours; the half-life of this down-regulation was 6.7 hours. This data thus demonstrate that the loss of immunoreactive protein kinase C and of extractable calcium- and phospholipid-dependent kinase activity precisely parallels the phorbol ester induced down-regulation of binding and responsiveness in Swiss 3T3 cells.

  15. Inhaled nitric oxide exacerbated phorbol-induced acute lung injury in rats.

    PubMed

    Lin, Hen I; Chu, Shi Jye; Hsu, Kang; Wang, David

    2004-01-01

    In this study, we determined the effect of inhaled nitric oxide (NO) on the acute lung injury induced by phorbol myristate acetate (PMA) in isolated rat lung. Typical acute lung injury was induced successfully by PMA during 60 min of observation. PMA (2 microg/kg) elicited a significant increase in microvascular permeability, (measured using the capillary filtration coefficient Kfc), lung weight gain, lung weight/body weight ratio, pulmonary arterial pressure (PAP) and protein concentration of the bronchoalveolar lavage fluid. Pretreatment with inhaled NO (30 ppm) significantly exacerbated acute lung injury. All of the parameters reflective of lung injury increased significantly except PAP (P<0.05). Coadministration of Nomega-nitro-L-arginine methyl ester (L-NAME) (5 mM) attenuated the detrimental effect of inhaled NO in PMA-induced lung injury, except for PAP. In addition, L-NAME (5 mM) significantly attenuated PMA-induced acute lung injury except for PAP. These experimental data suggest that inhaled NO significantly exacerbated acute lung injury induced by PMA in rats. L-NAME attenuated the detrimental effect of inhaled NO. PMID:14643171

  16. Protective effect of U74500A on phorbol myristate acetate-induced acute lung injury.

    PubMed

    Chu, Shi-Jye; Chang, Deh-Ming; Wang, David; Lin, Hen-I; Lin, Shih-Hua; Hsu, Kang

    2004-08-01

    1. The present study was designed to determine whether U74500A could ameliorate acute lung injury (ALI) induced by phorbol myristate acetate (PMA) in our rat isolated lung model compared with any amelioration induced by dimethylthiourea (DMTU), superoxide dismutase (SOD) and catalase. 2. Acute lung injury was induced successfully by PMA during 60 min of observation. At 2 microg/kg, PMA elicited a significant increase in microvascular permeability (measured using the capillary filtration coefficient Kfc), lung weight gain, the lung weight/bodyweight ratio, pulmonary arterial pressure and protein concentration of the bronchoalveolar lavage fluid. 3. Pretreatment with 1.5 mg/kg U74500A significantly attenuated ALI; there was no significant increase in any parameters measured, except for pulmonary arterial pressure. The protective effect of U74500A was approximately the same as that of 600 mg/kg DMTU. However, 6000 U/kg SOD, 50,000 U/kg catalase and 6000 U/kg SOD + 50,000 U/kg catalase had no protective effect. 4. These experimental data suggest that U74500A significantly ameliorates ALI induced by PMA in rats. PMID:15298545

  17. Phorbol esters alter alpha4 and alphad integrin usage during eosinophil adhesion to VCAM-1.

    PubMed

    Kikuchi, Matsuo; Tachimoto, Hiroshi; Nutku, Esra; Hudson, Sherry A; Bochner, Bruce S

    2003-01-01

    We examined the effect of the protein kinase C activator phorbol-12-myristate-13-acetate (PMA) on the human eosinophil adhesion molecule phenotype and attachment to VCAM-1 via alpha4 and alphad integrins under static and flow conditions. PMA increased surface expression of alphad integrins and decreased alpha4 integrin expression. Under static conditions, eosinophils bound well to VCAM-1, primarily via alpha4beta1 integrins, with a minor alphadbeta2 integrin component. Unexpectedly, PMA-stimulated eosinophils bound equally well to VCAM-1 and albumin in a temperature- and divalent cation-dependent manner, yet adhesion was independent of beta1 and beta2 integrins. Under flow conditions, eosinophils readily attached to VCAM-1, and adhesion was inhibited by both alpha4 and alphad mAbs (95 and 50% inhibition, respectively). Many fewer PMA-stimulated eosinophils bound to VCAM-1 under flow conditions, but both alpha4 and alphad mAbs inhibited adhesion equally. Thus, PMA alters eosinophil integrin expression and the relative contributions of alpha4 and alphad integrins during attachment to VCAM-1. PMID:14668059

  18. Multianalyte Microphysiometry of Macrophage Responses to Phorbol Myristate Acetate, Lipopolysaccharide, and Lipoarabinomannan

    PubMed Central

    Kimmel, Danielle W.; Meschievitz, Mika E.; Hiatt, Leslie A.; Cliffel, David E.

    2015-01-01

    This study examined the hypothesis that mycobacterial antigens generate different metabolic responses in macrophages as compared to gram-negative effectors and macrophage activators. The metabolic activation of macrophages by PMA is a useful tool for studying virulent agents and can be compared to other effectors. While phorbol myristate acetate (PMA) is commonly used to study macrophage activation, the concentration used to create this physiological response varies. The response of RAW-264.7 macrophages is concentration-dependent, where the metabolic response to high concentrations of PMA decreases suggesting deactivation. The gram-negative effector, lipopolysaccharide (LPS), was seen to promote glucose and oxygen production which were used to produce a delayed onset of oxidative burst. Pre-incubation with interferon-γ (IFN-γ) increased the effect on cell metabolism, where the synergistic effects of IFN-γ and LPS immediately initiated oxidative burst. These studies exhibited a stark contrast with lipoarabinomannan (LAM), an antigenic glycolipid component associated with the bacterial genus Mycobacterium. The presence of LAM effectively inhibits any metabolic response preventing consumption of glucose and oxygen for the promotion of oxidative burst and to ensure pathogenic proliferation. This study demonstrates for the first time the immediate inhibitory metabolic effects LAM has on macrophages, suggesting implications for future intervention studies with Mycobacterium tuberculosis. PMID:25798034

  19. Insulin and phorbol ester stimulate conductive Na/sup +/ transport through a common pathway

    SciTech Connect

    Civan, M.M.; Peterson-Yantorno, K.; O'Brien, T.G.

    1988-02-01

    Insulin stimulates Na/sup +/ transport across frog skin, toad urinary bladder, and the distal renal nephron. This stimulation reflects an increase in apical membrane Na/sup +/ permeability and a stimulation of the basolateral membrane Na,K-exchange pump. Considerable indirect evidence has suggested that the apical natriferic effect of insulin is mediated by activation of protein kinase C. However, no direct information has been available documenting that insulin and protein kinase C indeed share a common pathway in stimulating Na/sup +/ transport across frog skin. In the present work, the authors have studied the interaction of insulin and phorbol 12-myristate 13-acetate (PMA), a documented activator of protein kinase C. Preincubation of skins with 1,2-dioctanoylglycerol, another activator of protein kinase C, increases baseline Na/sup +/ transport and reduces the subsequent natriferic response to PMA. Preincubation with PMA markedly reduces the subsequent natriferic action of insulin. This effect does not appear to primarily reflect PMA-induced internalization of insulin receptors. The insulin receptors are localized on the basolateral surface of frog skin, but the application of PMA to this surface is much less effective than mucosal treatment in reducing the response to insulin. The current results provide documentation that insulin and protein kinase C share a common pathway in stimulating Na/sup +/ transport across frog skin. The data are consistent with the concept that the natriferic effect of insulin on frog skin is, at least in part, mediated by activation of protein kinase C.

  20. Rapid isolation and purification of phorbol esters from Jatropha curcas by high-speed countercurrent chromatography.

    PubMed

    Hua, Wan; Hu, Huiling; Chen, Fang; Tang, Lin; Peng, Tong; Wang, Zhanguo

    2015-03-18

    In this work, a high-speed countercurrent chromatography (HSCCC) method was established for the preparation of phorbol esters (PEs) from Jatropha curcas. n-Hexane-ethyl acetate-methanol-water (1.5:1.5:1.2:0.5, v/v) was selected as the optimum two-phase solvent system to separate and purify jatropha factor C1 (JC1) with a purity of 85.2%, as determined by HPLC, and to obtain a mixture containing four or five PEs. Subsequently, continuous semipreparative HPLC was applied to further purify JC1 (99.8% as determined by HPLC). In addition, UPLC-PDA and UPLC-MS were established and successfully used to evaluate the isolated JC1 and PE-rich crude extract. The purity of JC1 was only 87.8% by UPLC-UV. A peak (a compound highly similar to JC1) was indentified as the isomer of JC1 by comparing the characteristic UV absorption and MS spectra. Meanwhile, this strategy was also applied to analyze the PE-rich crude extract from J. curcas. It is interesting that there may be more than 15 PEs according to the same quasi-molecular ion peaks, highly similar sequence-specific fragment ions, and similar UV absorption spectrum. PMID:25686848

  1. Effects of PMA (PHORBOL-12-MYRISTATE-13-ACETATE) on the Developing Rodent Brain.

    PubMed

    Dzietko, Mark; Hahnemann, Maria; Polley, Oliver; Sifringer, Marco; Felderhoff-Mueser, Ursula; Bührer, Christoph

    2015-01-01

    Perinatal infections have a negative impact on brain development. However, the underlying mechanisms leading to neurological impairment are not completely understood and reliable models of inflammation are urgently needed. Using phorbol-myristate-acetate as an activator of inflammation, we investigated the effect on the developing rodent brain. Neonatal rats and mice deficient in IL-18 or IRAK-4 were exposed to PMA. Brains were assessed for regulation of pro- and anti-inflammatory cytokines and cell death 24 hrs, 7 and 14 days after treatment. PMA induced an inflammatory response and caused widespread neurodegeneration in the brains of 3- and 7-day-old rats. In contrast, 14-day-old rats were resistant to the neurotoxic effect of PMA. Histological evaluation at the age of 14 and 21 days revealed a destruction of the cortical microstructure with decreased numerical density of neuronal cells. Mice deficient in IL-18 or IRAK-4 were protected against PMA induced brain injury. PMA treatment during a vulnerable period can alter brain development. IL-18 and IRAK-4 appear to be important for the development of PMA induced injury. PMID:25918710

  2. Net Increase of platelet membrane tyrosine specific-protein kinase activity by phorbol myristate acetate

    SciTech Connect

    Ishihara, Noriko; Sakamoto, Hikaru; Iwama, Minako; Kobayashi, Bonro )

    1990-01-01

    Tyrosine protein kinase (TPK) activity in rabbit platelets after stimulation by phorbol myristate acetate (PMA) or thrombin was directly estimated by {sup 32}P incorporation from ({gamma}-{sup 32})ATP into synthetic peptide angiotensin II. By PMA-treatment a net increase of TPK activity was obtained, while thrombin acted on the TPK quickly but stimulation was limited within the range attained by the control after lengthy incubation. The responsive TPK to these stimulators was localized mainly in membrane but much less in cytosol. The specific activity of the particulate TPK was low in the sonicate of control ice cold platelets but increased about 6-fold when the platelets were incubated at 37{degree}C. On a brief contact of platelets with PMA at 37{degrees}C the TPK was fully activated and reached a maximum value about 130% of the control. Determination of phosphotyrosine phosphatase in the stimulated platelet sonicate revealed that its participation in the above described increase of {sup 32}P-incorporation was meagre. The quick response suggested a possible role of TPK in the signal transduction through the platelet cell membrane.

  3. Enhanced histamine production through the induction of histidine decarboxylase expression by phorbol ester in Jurkat cells.

    PubMed

    Nagashima, Yusuke; Kako, Koichiro; Kim, Jun-Dal; Fukamizu, Akiyoshi

    2012-11-01

    Histamine (HA), a mediator of inflammation, type I allergic responses and neurotransmission, is synthesized from L-histidine, the reaction of which is catalyzed by histidine decarboxylase (HDC). HDC has been reported to be induced by various stimuli, not only in mast cells and basophils, but also in T lymphocytes and macrophages. Although its mRNA has been shown to be increased in Jurkat cells when treated with phorbol 12-myristate 13-acetate (TPA), little is known concerning the induced production of HA by HDC. The present study quantified the trace amounts of intracellular HA using ultra-high liquid chromatography in combination with the 6-aminoquinoline carbamate-derivatization technique. To test whether the cellular level of HA is elevated by the induction of HDC in Jurkat cells treated with TPA, the peak corresponding to authentic HA in the cell lysate was fractioned and its molecular weight determined by matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight mass spectrometry. The results of this study show that the HA level is increased by the induction of HDC expression by TPA in Jurkat cells. Therefore, this method is useful in elucidating the physiological significance of HA production. PMID:22940786

  4. Silver nanoparticles impede phorbol myristate acetate-induced monocyte-macrophage differentiation and autophagy

    NASA Astrophysics Data System (ADS)

    Xu, Yingying; Wang, Liming; Bai, Ru; Zhang, Tianlu; Chen, Chunying

    2015-09-01

    Monocytes/macrophages are important constituents of the innate immune system. Monocyte-macrophage differentiation is not only crucial for innate immune responses, but is also related to some cardiovascular diseases. Silver nanoparticles (AgNPs) are one of the most widely used nanomaterials because of their broad-spectrum antimicrobial properties. However, the effect of AgNPs on the functions of blood monocytes is scarcely reported. Here, we report the impedance effect of AgNPs on THP-1 monocyte differentiation, and that this effect was mediated by autophagy blockade and lysosomal impairment. Firstly, AgNPs inhibit phorbol 12-myristate 13-acetate (PMA)-induced monocyte differentiation by down-regulating both expression of surface marker CD11b and response to lipopolysaccharide (LPS) stimulation. Secondly, autophagy is activated during PMA-induced THP-1 monocyte differentiation, and the autophagy inhibitor chloroquine (CQ) can inhibit this process. Thirdly, AgNPs block the degradation of the autophagy substrate p62 and induce autophagosome accumulation, which demonstrates the blockade of autophagic flux. Fourthly, lysosomal impairments including alkalization and decrease of lysosomal membrane stability were observed in AgNP-treated THP-1 cells. In conclusion, we demonstrate that the impedance of monocyte-macrophage differentiation by AgNPs is mediated by autophagy blockade and lysosomal dysfunction. Our results suggest that crosstalk exists in different biological effects induced by AgNPs.

  5. Increased phorbol 12,13-dibutyrate (PDBu) receptor function associated with sickle red cell membrane ghosts

    SciTech Connect

    Ramachandran, M.; Nair, C.N.; Abraham, E.C.

    1987-05-01

    The biological receptor for tumor-promoting phorbol esters has been identified as the CaS /phospholipid dependent enzyme, protein kinase C. In the red cell, this enzyme is mainly cytosolic but becomes translocated to the membrane if the cellular CaS is allowed to rise. Since cellular CaS in sickle red cells is high, it was reasoned that this enzyme may become more membrane-bound. In fact, the authors noticed a four-fold increase in the binding of TH-PDBu by membrane ghosts isolated from sickle red cells compared to normal red cells (pmoles PDBu bound/mg protein; normal = 0.3 vs sickle cell = 1.4). Attempts to assay the enzyme directly as phospholipid-activated TSP incorporation into the acid-precipitable membrane proteins also indicated a two-fold increase in the radiolabelling of sickle cell membrane ghosts. Autophosphorylation of membrane proteins and analysis of the phosphorylation profile by SDS-PAGE and autoradiography revealed phosphorylation predominantly of bands 3, 4.1 and 4.9 which are known protein kinase C substrates for the red cell enzyme. The increased membrane-associated protein kinase C in sickle red cells may have a bearing on the altered membrane properties reported in this condition.

  6. Comparison of the hypertrophic effect of phorbol ester, norepinephrine, angiotensin II and contraction on cultured cardiomyocytes

    SciTech Connect

    Allo, S.N.; Carl, L.L.; Morgan, H.E. )

    1991-03-15

    Phorbol 12-myristate 13-acetate (PMA), norepinephrine (NE), angiotensin II (AII) and contraction stimulate cardiomyocyte growth. Differences exist in the time course and extent of protein and RNA accumulation. Cells plated at 4 {times} 10{sup 6} cells/60mm dish and arrested with 50 mM KCl demonstrated no significant growth. Treatment with PMA stimulated growth to a maximum of 17% at 48 h. In contrast, maximal stimulation of growth was 36% at 48 h and 31% at 72 h for contracting and NE treated cells, respectively. Maximal stimulation of the capacity for protein synthesis was 32% for PMA treated cells at 24 h as compared to 59% and 77% for NE treated and contracting cells respectively at 72 h. In support of a primary role for altered capacity in the regulation of protein synthesis, there was a significant correlation between RNA and protein content independent of the stimulus used. AII increased RNA content by 28% at 48h, but had no effect on growth up to 72h. Treatment with staurosporine blocked the stimulation of growth, suggestive of a role for protein kinase C (PKC). However, the inhibition of contraction-induced growth was due in part to a reduction in the rate of contraction. It was concluded that: significant differences existed in the time course of growth stimulation and RNA accumulation, depending on the stimulus; and growth inhibition by staurosporine is suggestive of an important role of PKC in hypertrophic growth induced by these stimuli.

  7. T-cell response to phorbol ester PMA and calcium ionophore A23187 in Down's syndrome.

    PubMed

    Bertotto, A; Crupi, S; Arcangeli, C; Gerli, R; Scalise, F; Fabietti, G; Agea, E; Vaccaro, R

    1989-11-01

    The proliferative response of purified T cells to anti-CD2 monoclonal antibodies (T112 plus T113) was found to be markedly reduced in 12 subjects with Down's syndrome (DS). The addition of phorbol ester PMA, which activates Ca2+/phospholipid-dependent enzyme protein kinase C, or calcium ionophore A23187, which increases intracytosolic free Ca2+ concentration, enhanced, but did not normalize, the defective anti-CD2-mediated T-cell mitogenesis. In contrast, the proliferation of resting lymphocytes from trisomic patients was comparable to that of the control cells when PMA and A23187 were used as co-blastogenic reagents. Because PMA and A23187 together bypass the early activation pathways and promote T-cell growth through the direct induction of membrane interleukin 2 (IL-2) receptor expression and IL-2 synthesis and secretion, it could reasonably be hypothesized that the faulty DS T-cell activation induced by antigen or mitogen is due to a deranged transmembrane signal transduction, rather than a defect in the later intracellular events. PMID:2573952

  8. Repressed PKCδ activation in glycodelin-expressing cells mediates resistance to phorbol ester and TGFβ.

    PubMed

    Hautala, Laura C; Koistinen, Riitta; Koistinen, Hannu

    2016-10-01

    Glycodelin is a glycoprotein mainly expressed in well-differentiated epithelial cells in reproductive tissues. In normal secretory endometrium, the expression of glycodelin is abundant and regulated by progesterone. In hormone-related cancers glycodelin expression is associated with well-differentiated tumors. We have previously found that glycodelin drives epithelial differentiation of HEC-1B endometrial adenocarcinoma cells, resulting in reduced tumor growth in a preclinical mouse model. Here we show that glycodelin-transfected HEC-1B cells have repressed protein kinase C delta (PKCδ) activation, likely due to downregulation of PDK1, and are resistant to phenotypic change and enhanced migration induced by phorbol 12-myristate 13-acetate (PMA). In control cells, which do not express glycodelin, the effects of PMA were abolished by using PKCδ and PDK1 inhibitors, and knockdown of PKCδ, MEK1 and 2, or ERK1 and 2 by siRNAs. Similarly, transforming growth factor β (TGFβ)-induced phenotypic change was only seen in control cells, not in glycodelin-producing cells, and it was mediated by PKCδ. Taken together, these results strongly suggest that PKCδ, via MAPK pathway, is involved in the glycodelin-driven cell differentiation rendering the cells resistant to stimulation by PMA and TGFβ. PMID:27373413

  9. Monitoring of Apoptosis in 3D Cell Cultures by FRET and Light Sheet Fluorescence Microscopy

    PubMed Central

    Weber, Petra; Schickinger, Sarah; Wagner, Michael; Angres, Brigitte; Bruns, Thomas; Schneckenburger, Herbert

    2015-01-01

    Non-radiative cell membrane associated Förster Resonance Energy Transfer (FRET) from an enhanced cyan fluorescent protein (ECFP) to an enhanced yellow fluorescent protein (EYFP) is used for detection of apoptosis in 3-dimensional cell cultures. FRET is visualized in multi-cellular tumor spheroids by light sheet based fluorescence microscopy in combination with microspectral analysis and fluorescence lifetime imaging (FLIM). Upon application of staurosporine and to some extent after treatment with phorbol-12-myristate-13-acetate (PMA), a specific activator of protein kinase c, the caspase-3 sensitive peptide linker DEVD is cleaved. This results in a reduction of acceptor (EYFP) fluorescence as well as a prolongation of the fluorescence lifetime of the donor (ECFP). Fluorescence spectra and lifetimes may, therefore, be used for monitoring of apoptosis in a realistic 3-dimensional system, while light sheet based microscopy appears appropriate for 3D imaging at low light exposure. PMID:25761242

  10. l-Cystathionine Inhibits the Mitochondria-Mediated Macrophage Apoptosis Induced by Oxidized Low Density Lipoprotein

    PubMed Central

    Zhu, Mingzhu; Du, Junbao; Chen, Siyao; Liu, Angie Dong; Holmberg, Lukas; Chen, Yonghong; Zhang, Chunyu; Tang, Chaoshu; Jin, Hongfang

    2014-01-01

    This study was designed to investigate the regulatory role of l-cystathionine in human macrophage apoptosis induced by oxidized low density lipoprotein (ox-LDL) and its possible mechanisms. THP-1 cells were induced with phorbol 12-myristate 13-acetate (PMA) and differentiated into macrophages. Macrophages were incubated with ox-LDL after pretreatment with l-cystathionine. Superoxide anion, apoptosis, mitochondrial membrane potential, and mitochondrial permeability transition pore (MPTP) opening were examined. Caspase-9 activities and expression of cleaved caspase-3 were measured. The results showed that compared with control group, ox-LDL treatment significantly promoted superoxide anion generation, release of cytochrome c (cytc) from mitochondrion into cytoplasm, caspase-9 activities, cleavage of caspase-3, and cell apoptosis, in addition to reduced mitochondrial membrane potential as well as increased MPTP opening. However, 0.3 and 1.0 mmol/L l-cystathionine significantly reduced superoxide anion generation, increased mitochondrial membrane potential, and markedly decreased MPTP opening in ox-LDL + l-cystathionine macrophages. Moreover, compared to ox-LDL treated-cells, release of cytc from mitochondrion into cytoplasm, caspase-9 activities, cleavage of caspase-3, and apoptosis levels in l-cystathionine pretreated cells were profoundly attenuated. Taken together, our results suggested that l-cystathionine could antagonize mitochondria-mediated human macrophage apoptosis induced by ox-LDL via inhibition of cytc release and caspase activation. PMID:25514411

  11. Insulin and phorbol ester stimulate conductive Na+ transport through a common pathway.

    PubMed Central

    Civan, M M; Peterson-Yantorno, K; O'Brien, T G

    1988-01-01

    Insulin stimulates Na+ transport across frog skin, toad urinary bladder, and the distal renal nephron. This stimulation reflects an increase in apical membrane Na+ permeability and a stimulation of the basolateral membrane Na,K-exchange pump. Considerable indirect evidence has suggested that the apical natriferic effect of insulin is mediated by activation of protein kinase C. However, no direct information has been available documenting that insulin and protein kinase C indeed share a common pathway in stimulating Na+ transport across frog skin. In the present work, we have studied the interaction of insulin and phorbol 12-myristate 13-acetate (PMA), a documented activator of protein kinase C. Preincubation of skins with 1,2-dioctanoylglycerol, another activator of protein kinase C, increases baseline Na+ transport and reduces the subsequent natriferic response to PMA. Preincubation with PMA markedly reduces the subsequent natriferic action of insulin. This effect does not appear to primarily reflect PMA-induced internalization of insulin receptors. The insulin receptors are localized on the basolateral surface of frog skin, but the application of PMA to this surface is much less effective than mucosal treatment in reducing the response to insulin. Preincubation with D-sphingosine, an inhibitor of protein kinase C, also reduces the natriferic action of insulin. The current results provide documentation that insulin and protein kinase C share a common pathway in stimulating Na+ transport across frog skin. The data are consistent with the concept that the natriferic effect of insulin on frog skin is, at least in part, mediated by activation of protein kinase C. Images PMID:3277184

  12. Phorbol 12-myristate 13-acetate promotes nuclear translocation of hepatic steroid response element binding protein-2.

    PubMed

    Wong, Tsz Yan; Tan, Yan Qin; Lin, Shu-Mei; Leung, Lai K

    2016-06-01

    Sterol regulatory element-binding protein (SREBP)-2 is a pivotal transcriptional factor in cholesterol metabolism. Factors interfering with the proper functioning of SREBP-2 potentially alter plasma lipid profiles. Phorbol 12-myristate 13-acetate (PMA), which is a common protein kinase C (PKC) activator, was shown to promote the post-translational processing and nuclear translocation of SREBP-2 in hepatic cells in the current study. Following SREBP-2 translocation, the transcripts of its target genes HMGCR and LDLR were upregulated as demonstrated by quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) assay. Electrophoretic mobility shift assays (EMSA) also demonstrated an induced DNA-binding activity on the sterol response element (SRE) domain under PMA treatment. The increase of activated Srebp-2 without the concurrent induced mRNA expression was also observed in an animal model. As the expression of SREBP-2 was not increased by PMA, the activation of PKC was the focus of investigation. Specific PKC isozyme inhibition and overexpression supported that PKCβ was responsible for the promoting effect. Further studies showed that the mitogen-activated protein kinases (MAPKs) extracellular signal-regulated kinases (ERK) and c-Jun N-terminal kinases (JNK), but not 5' adenosine monophosphate-activated protein kinase (AMPK), were the possible downstream signaling proteins of PKCβ. In conclusion, this study illustrated that PKCβ increased SREBP-2 nuclear translocation in a pathway mediated by MEK/ERK and JNK, rather than the one dictated by AMPK. These results revealed a novel signaling target of PKCβ in the liver cells. PMID:27032751

  13. MAP kinase mediates epidermal growth factor- and phorbol ester-induced prostacyclin formation in cardiomyocytes.

    PubMed

    Braconi Quintaje, S; Rebsamen, M; Church, D J; Vallotton, M B; Lang, U

    1998-05-01

    We studied the role of protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) in epidermal growth factor (EGF)-induced prostacyclin (PGI2) production in cultured, spontaneously-beating neonatal ventricular rat cardiomyocytes. To this purpose, the effect of EGF on cardiomyocyte MAPK phosphorylation, MAPK activity and PGI2-production were investigated, and compared to those induced by the PKC activator 4 beta phorbol 12-myristate 13-acetate (PMA). Both EGF (0.1 microM) and PMA (0.1 microM) induced the rapid and reversible phosphorylation of 42 KDa-MAPK in ventricular cardiomyocytes, responses that were accompanied by transient increases in MAPK activity (190-230% of control values within 5 min), and two- to three-fold increases in PGI2 formation. The tyrosine kinase inhibitors lavendustin (1 microM) and genistein (10 microM) strongly inhibited EGF-induced MAPK activation and PGI2-formation, but had no effect on PMA-stimulated responses. Experiments with the PKC inhibitor CGP 41251 (1 microM) or with PKC-downregulated cells demonstrated that in contrast to the PMA-stimulated responses, EGF-induced MAPK activation and PGI2-production were PKC-independent processes. Investigating the role of MAPK in EGF- and in PMA-promoted PGI2-formation, we found that the MAPK-inhibitor 6-thioguanine (500 microM), as well as the MAPK-kinase-inhibitor PD98059 (50 microM) abolished both EGF- and PMA-stimulated PGI2-production in cardiomyocytes. Our results indicate that MAPK-activation is at the basis of both growth factor receptor and PKC-dependent eicosanoid-formation in ventricular cardiomyocytes, where EGF-induced prostaglandin-production takes place via a PKC-independent pathway. PMID:9618234

  14. Phorbol myristate acetate and catechol as skin cocarcinogens in SENCAR mice

    SciTech Connect

    Van Duuren, B.L.; Melchionne, S.; Seidman, I.

    1986-09-01

    The enhancement of the carcinogenicity of benzo(a) pyrene (B(a)P) and ..beta..-propiolactone (BPL) by the mouse skin cocarcinogens phorbol myristate acetate (PMA) and catechol were examined in female SENCAR mice, 30 per group. The carcinogen and cocarcinogen were applied simultaneously, three times weekly for 490-560 days. B(a)P and BPL were used at constant doses of 5 and 50 ..mu..g, respectively, in all experiments. PMA was used at three doses, 2.5, 1.0, and 0.5 ..mu..g per application, and catechol was used at one dose, 2 mg per application. Control groups included animals that received carcinogen only, cocarcinogen only, acetone only, and no treatment. The carcinogenicity of B(a)P and BPL were enhanced by the cocarcinogens, particularly in terms of tumor multiplicity. For both carcinogens, the most marked cocarcinogenic effects were observed at the lowest dose of PMA used (0.5 ..mu..g per application). This observation applied for days to first tumor, animals with tumors, tumor multiplicity, and incidence of malignant skin tumors. Catechol applied alone did not induce any tumors; with PMA alone there were significant incidences of benign and malignant tumors, e.g., at a dose of only 0.5 ..mu..g per application, 15 of 30 animals had 28 tumors, 5 of which were squamous carcinomas. In two-stage carcinogenesis experiments with 7,12-dimethylbenz(a)anthracene (DMBA) as initiator and PMA as promoter, SENCAR mice showed a greater susceptibility to tumor induction when compared to ICR/Ha mice used in earlier work. This susceptibility was most notable in terms of rate of tumor appearance and tumor multiplicity.

  15. Inhibition of Apoptosis in Prostate Cancer Cells by Androgens Is Mediated through Downregulation of c-Jun N-terminal Kinase Activation1

    PubMed Central

    Lorenzo, Petra Isabel; Saatcioglu, Fahri

    2008-01-01

    Androgen deprivation induces the regression of prostate tumors mainly due to an increase in the apoptosis rate; however, the molecular mechanisms underlying the antiapoptotic actions of androgens are not completely understood. We have studied the antiapoptotic effects of androgens in prostate cancer cells exposed to different proapoptotic stimuli. Terminal deoxynucleotidyl transferase-mediated nick-end labeling and nuclear fragmentation analyses demonstrated that androgens protect LNCaP prostate cancer cells from apoptosis induced by thapsigargin, the phorbol ester 12-O-tetradecanoyl-13-phorbol-acetate, or UV irradiation. These three stimuli require the activation of the c-Jun N-terminal kinase (JNK) pathway to induce apoptosis and in all three cases, androgen treatment blocks JNK activation. Interestingly, okadaic acid, a phosphatase inhibitor that causes apoptosis in LNCaP cells, induces JNK activation that is also inhibited by androgens. Actinomycin D, the antiandrogen bicalutamide or specific androgen receptor (AR) knockdown by small interfering RNA all blocked the inhibition of JNK activation mediated by androgens indicating that this activity requires AR-dependent transcriptional activation. These data suggest that the crosstalk between AR and JNK pathways may have important implications in prostate cancer progression and may provide targets for the development of new therapies. PMID:18472959

  16. 1,2-diacylglycerols, but not phorbol esters, activate a potential inhibitory pathway for protein kinase C in GH/sub 3/ pituitary cells

    SciTech Connect

    Kolesnick, R.N.; Clegg, S.

    1988-05-15

    It has been suggested that sphingoid bases may serve as physiologic inhibitors of protein kinase C. Because 1,2-diacylglycerols, but not phorbol esters, enhance sphingomyelin degradation via a sphingomyelinase in GH/sub 3/ pituitary cells, the effects of phorbol esters, 1,2-diacylglycerols, and sphingomyelinase on protein kinase C activation were assessed. Under basal conditions, the inactive cytosolic form of protein kinase C predominated. 1,2-Diacylglycerols stimulated transient protein kinase C redistribution to the membrane. 1.2-Dioctanoylglycerol (200 ..mu..g/ml) reduced cytosolic protein kinase C activity to 67% of control. In contrast, the phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), stimulated redistribution to the membrane without return to the cytosol. Exogenous sphingomyelinase reduced membrane-bound protein kinase C activity to 30% of control, yet did not alter cytosolic activity. Sphingomyelinase, added after phorbol ester-induced redistribution was completed, restored activity to the cytosol. These studies suggest that a pathway involving a sphingomyelinase might comprise a physiologic negative effector system for protein kinase C. Further, the failure of phorbol esters to activate this system might account for some differences between these agents.

  17. Analysis of seed phorbol-ester and curcin content together with genetic diversity in multiple provenances of Jatropha curcas L. from Madagascar and Mexico.

    PubMed

    He, Wei; King, Andrew J; Khan, M Awais; Cuevas, Jesús A; Ramiaramanana, Danièle; Graham, Ian A

    2011-10-01

    Jatropha curcas L. has been promoted as an oilseed crop for use to meet the increased world demand for vegetable oil production, and in particular, as a feedstock for biodiesel production. Seed meal is a protein-rich by-product of vegetable oil extraction, which can either be used as an organic fertilizer, or converted to animal feed. However, conversion of J. curcas seed meal into animal feed is complicated by the presence of toxins, though plants producing "edible" or "non-toxic" seeds occur in Mexico. Toxins present in the seeds of J. curcas include phorbol esters and a type-I ribosome inactivating protein (curcin). Although the edible seeds of J. curcas are known to lack phorbol esters, the curcin content of these seeds has not previously been studied. We analyzed the phorbol ester and curcin content of J. curcas seeds obtained from Mexico and Madagascar, and conclude that while phorbol esters are lacking in edible seeds, both types contain curcin. We also analyzed spatial distribution of these toxins in seeds. Phorbol-esters were most concentrated in the tegmen. Curcin was found in both the endosperm and tegmen. We conclude that seed toxicity in J. curcas is likely to be due to a monogenic trait, which may be under maternal control. We also conducted AFLP analysis and conclude that genetic diversity is very limited in the Madagascan collection compared to the Mexican collection. PMID:21835630

  18. The Phorbol Ester Fraction from Jatropha curcas Seed Oil: Potential and Limits for Crop Protection against Insect Pests

    PubMed Central

    Ratnadass, Alain; Wink, Michael

    2012-01-01

    The physic nut shrub, Jatropha curcas (Euphorbiaceae), has been considered as a “miracle tree”, particularly as a source of alternate fuel. Various extracts of the plant have been reported to have insecticidal/acaricidal or molluscicidal/anthelminthic activities on vectors of medical or veterinary interest or on agricultural or non-agricultural pests. Among those extracts, the phorbol ester fraction from seed oil has been reported as a promising candidate for use as a plant-derived protectant of a variety of crops, from a range of pre-harvest and post-harvest insect pests. However, such extracts have not been widely used, despite the “boom” in the development of the crop in the tropics during recent years, and societal concerns about overuse of systemic chemical pesticides. There are many potential explanations to such a lack of use of Jatropha insecticidal extracts. On the one hand, the application of extracts potentially harmful to human health on stored food grain, might not be relevant. The problem of decomposition of phorbol esters and other compounds toxic to crop pests in the field needing further evaluation before such extracts can be widely used, may also be a partial explanation. High variability of phorbol ester content and hence of insecticidal activity among physic nut cultivars/ecotypes may be another. Phytotoxicity to crops may be further limitation. Apparent obstacles to a wider application of such extracts are the costs and problems involved with registration and legal approval. On the other hand, more studies should be conducted on molluscicidal activity on slugs and land snails which are major pests of crops, particularly in conservation agriculture systems. Further evaluation of toxicity to natural enemies of insect pests and studies on other beneficial insects such as pollinators are also needed. PMID:23203190

  19. Comparison of effects of phorbol esters and glucose on protein kinase C activation and insulin secretion in pancreatic islets.

    PubMed Central

    Easom, R A; Hughes, J H; Landt, M; Wolf, B A; Turk, J; McDaniel, M L

    1989-01-01

    The tumour-promoting phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) induces insulin secretion from isolated pancreatic islets, and this suggests a potential role for protein kinase C in the regulation of stimulus-secretion coupling in islets. In the present study, the hypothesis that the insulinotropic effect of TPA is mediated by activation of protein kinase C in pancreatic islets has been examined. TPA induced a gradual translocation of protein kinase C from the cytosol to a membrane-associated state which correlated with the gradual onset of insulin secretion. The pharmacologically inactive phorbol ester 4 alpha-phorbol 12,13-didecanoate did not mimic this effect. TPA also induced a rapid time-dependent decline of total protein kinase C activity in islets and the appearance of a Ca2+- and phospholipid-independent protein kinase activity. Insulin secretion induced by TPA was completely suppressed (IC50 approximately 10 nM) by staurosporine, a potent protein kinase C inhibitor. Staurosporine also inhibited islet cytosolic protein kinase C activity at similar concentrations (IC50 approximately 2 nM). In addition, staurosporine partially (approximately 60%) inhibited glucose-induced insulin secretion at concentrations (IC50 approximately 10 nM) similar to those required to inhibit TPA-induced insulin secretion, suggesting that staurosporine may act at a step common to both mechanisms, possibly the activation of protein kinase C. However, stimulatory concentrations of glucose did not induce down-regulation of translocation of protein kinase C, and the inhibition of glucose-induced insulin release by staurosporine was incomplete. Significant questions therefore remain unresolved as to the possible involvement of protein kinase C in glucose-induced insulin secretion. PMID:2690823

  20. Calpains, mitochondria, and apoptosis

    PubMed Central

    Smith, Matthew A.; Schnellmann, Rick G.

    2012-01-01

    Mitochondrial activity is critical for efficient function of the cardiovascular system. In response to cardiovascular injury, mitochondrial dysfunction occurs and can lead to apoptosis and necrosis. Calpains are a 15-member family of Ca2+-activated cysteine proteases localized to the cytosol and mitochondria, and several have been shown to regulate apoptosis and necrosis. For example, in endothelial cells, Ca2+ overload causes mitochondrial calpain 1 cleavage of the Na+/Ca2+ exchanger leading to mitochondrial Ca2+ accumulation. Also, activated calpain 1 cleaves Bid, inducing cytochrome c release and apoptosis. In renal cells, calpains 1 and 2 promote apoptosis and necrosis by cleaving cytoskeletal proteins, which increases plasma membrane permeability and cleavage of caspases. Calpain 10 cleaves electron transport chain proteins, causing decreased mitochondrial respiration and excessive activation, or inhibition of calpain 10 activity induces mitochondrial dysfunction and apoptosis. In cardiomyocytes, calpain 1 activates caspase 3 and poly-ADP ribose polymerase during tumour necrosis factor-α-induced apoptosis, and calpain 1 cleaves apoptosis-inducing factor after Ca2+ overload. Many of these observations have been elucidated with calpain inhibitors, but most calpain inhibitors are not specific for calpains or a specific calpain family member, creating more questions. The following review will discuss how calpains affect mitochondrial function and apoptosis within the cardiovascular system. PMID:22581845

  1. Fast apoptosis and erythroid differentiation induced by imatinib mesylate in JURL-MK1 cells.

    PubMed

    Kuzelová, Katerina; Grebenová, Dana; Marinov, Iuri; Hrkal, Zbynek

    2005-05-15

    We compare the effects of Imatinib mesylate (Glivec) on chronic myeloid leukemia derived cell lines K562 and JURL-MK1. In both cell lines, the cell cycle arrests in G(1)/G(0) phase within 24 h after the addition of 1 microM Imatinib. This is followed by a decrease of Ki-67 expression and the induction of apoptosis. In JURL-MK1 cells, the apoptosis is faster in comparison with K562 cells: the caspase-3 activity reaches the peak value (20 to 30 fold of the control) after about 40 h and the apoptosis proceeds to its culmination point, the DNA fragmentation, within 48 h following 1 microM Imatinib addition. Unlike K562 cells, JURL-MK1 cells possess a probably functional p53 protein inducible by TPA (tetradecanoyl phorbol acetate) or UV-B irradiation. However, no increase in p53 expression was observed in Imatinib-treated JURL-MK1 cells indicating that the difference in the apoptosis rate between the two cell lines is not due to the lack of p53 in K562 cells. Imatinib also triggers erythroid differentiation both in JURL-MK1 and K562 cells. Glycophorin A expression occurred simultaneously with the apoptosis, even at the single cell level. In K562 cells, but not in JURL-MK1 cells, the differentiation process involved increased hemoglobin synthesis. However, during spontaneous evolution of JURL-MK1 cells in culture, the effects produced by Imatinib progressively changed from the fast apoptosis to the more complete erythroid differentiation. We suggest that the apoptosis and the erythroid differentiation are parallel effects of Imatinib and their relative contributions, kinetics and completeness are related to the differentiation stage of the treated cells. PMID:15770664

  2. Stimulation of prostaglandin E/sub 2/ production by phorbol esters and epidermal growth factor in porcine thyroid cells

    SciTech Connect

    Kasai, K.; Hiraiwa, M.; Emoto, T.; Akimoto, K.; Takaoka, T.; Shimoda, S.I.

    1987-07-13

    Effects of phorbol esters and epidermal growth factor (EGF) on prostaglandin E/sub 2/ production by cultured porcine thyroid cells were examined. Both phorbol 12-myristate 13-acetate (PMA) and EGF stimulated prostaglandin E/sub 2/ production by the cells in dose related fashion. PMA stimulated prostaglandin E/sub 2/ production over fifty-fold with the dose of 10/sup -7/ M compared with control. EGF (10/sup -7/ M) also stimulated it about ten-fold. The ED/sub 50/ values of PMA and EGF were respectively around 1 x 10/sup -9/ M and 5 x 10/sup -10/ M. Thyroid stimulating hormone (TSH), however, did not stimulate prostaglandin E/sub 2/ production from 1 to 24-h incubation. The release of radioactivity from (/sup 3/H)-arachidonic acid prelabeled cells was also stimulated by PMA and EGF, but not by TSH. These results indicate that both PMA and EGF are potent stimulators of prostaglandin E/sub 2/ production, associated with the activity to stimulate arachidonic acid release in porcine thyroid cells. 36 references, 2 figures, 1 table.

  3. v-Ha-ras transgene abrogates the initiation step in mouse skin tumorigenesis: effects of phorbol esters and retinoic acid.

    PubMed Central

    Leder, A; Kuo, A; Cardiff, R D; Sinn, E; Leder, P

    1990-01-01

    Experimental carcinogenesis has led to a concept that defines two discrete stages in the development of skin tumors: (i) initiation, which is accomplished by using a mutagen that presumably activates a protooncogene, and (ii) promotion, which is a reversible process brought about most commonly by repeated application of phorbol esters. We have created a transgenic mouse strain that carries the activated v-Ha-ras oncogene fused to the promoter of the mouse embryonic alpha-like, zeta-globin gene. Unexpectedly, these animals developed papillomas at areas of epidermal abrasion and, because abrasion can also serve as a tumor-promoting event in mutagen-treated mouse skin, we tested these mice for their ability to respond to phorbol ester application. Within 6 weeks virtually all treated carrier mice had developed multiple papillomas, some of which went on to develop squamous cell carcinomas and, more frequently, underlying sarcomas. We conclude that the oncogene "preinitiates" carrier mice, replacing the initiation/mutagenesis step and immediately sensitizing them to the action of tumor promoters. In addition, treatment of the mice with retinoic acid dramatically delays, reduces, and often completely inhibits the appearance of promoter-induced papillomas. This strain has use in screening tumor promoters and for assessing antitumor and antiproliferative agents. Images PMID:2251261

  4. α-Tomatine inhibits growth and induces apoptosis in HL-60 human myeloid leukemia cells.

    PubMed

    Huang, Huarong; Chen, Shaohua; Van Doren, Jeremiah; Li, Dongli; Farichon, Chelsea; He, Yan; Zhang, Qiuyan; Zhang, Kun; Conney, Allan H; Goodin, Susan; Du, Zhiyun; Zheng, Xi

    2015-06-01

    α‑Tomatine is a glycoalkaloid that occurs naturally in tomatoes (Lycopersicon esculentum). In the present study, the effects of α‑tomatine on human myeloid leukemia HL‑60 cells were investigated. Treatment of HL‑60 cells with α‑tomatine resulted in growth inhibition and apoptosis in a concentration‑dependent manner. Tomatidine, the aglycone of tomatine had little effect on the growth and apoptosis of HL‑60 cells. Growth inhibition and apoptosis induced by α‑tomatine in HL‑60 cells was partially abrogated by addition of cholesterol indicating that interactions between α‑tomatine and cell membrane‑associated cholesterol may be important in mediating the effect of α‑tomatine. Activation of nuclear factor‑κB by the phorbol ester, 12‑O‑tetradecanoylphorbol‑13‑acetate failed to prevent apoptosis in HL‑60 cells treated with α‑tomatine. In animal experiments, it was found that treatment of mice with α‑tomatine inhibited the growth of HL‑60 xenografts in vivo. Results from the present study indicated that α‑tomatine may have useful anti‑leukemia activities. PMID:25625536

  5. Active Oxygen Metabolites and Thromboxane in Phorbol Myristate Acetate Toxicity to the Isolated, Perfused Rat Lung.

    NASA Astrophysics Data System (ADS)

    Carpenter, Laurie Jean

    When administered intravenously or intratracheally to rats, rabbits and sheep, phorbol myristate acetate (PMA) produces changes in lung morphology and function are similar to those seen in humans with the adult respiratory distress syndrome (ARDS). Therefore, it is thought that information about the mechanism of ARDS development can be gained from experiments using PMA-treated animals. Currently, the mechanisms by which PMA causes pneumotoxicity are unknown. Results from other studies in rabbits and in isolated, perfused rabbit lungs suggest that PMA-induced lung injury is mediated by active oxygen species from neutrophils (PMN), whereas studies in sheep and rats suggest that PMN are not required for the toxic response. The role of PMN, active oxygen metabolites and thromboxane (TxA_2) in PMA-induced injury to isolated, perfused rat lungs (IPLs) was examined in this thesis. To determine whether PMN were required for PMA to produce toxicity to the IPL, lungs were perfused for 30 min with buffer containing various concentrations of PMA (in the presence or absence of PMN). When concentrations >=q57 ng/ml were added to medium devoid of added PMN, perfusion pressure and lung weight increased. When a concentration of PMA (14-28 ng/ml) that did not by itself cause lungs to accumulate fluid was added to the perfusion medium containing PMN (1 x 10 ^8), perfusion pressure increased, and lungs accumulated fluid. These results indicate that high concentrations of PMA produce lung injury which is independent of PMN, whereas injury induced by lower concentrations is PMN-dependent. To examine whether active oxygen species were involved in mediating lung injury induced by PMA and PMN, lungs were coperfused with the oxygen radical scavengers SOD and/or catalase. Coperfusion with either or both of these enzymes totally protected lungs against injury caused by PMN and PMA. These results suggest that active oxygen species (the hydroxyl radical in particular), mediate lung injury in

  6. Conformation of the C1 phorbol-ester-binding domain participates in the activating conformational change of protein kinase C.

    PubMed Central

    Ho, C; Slater, S J; Stagliano, B A; Stubbs, C D

    1999-01-01

    The fluorescent phorbol ester 12-N-methylanthraniloylphorbol 13-acetate [sapintoxin D (SAPD)] was used as both the activator and the probe for the activating conformational change of the C1 domain of recombinant protein kinase C (PKC)alpha. Fluorescence emission spectra and steady-state anisotropy measurements of SAPD in fully active membrane-associated PKC show that there is a relatively hydrophobic environment and restricted motional freedom characterizing the phorbol-ester-binding site. SAPD also interacts with the membrane lipids so that it was necessary to resort to time-resolved anisotropy measurements to resolve the signals corresponding to PKC-bound SAPD from that associated with buffer and lipid. In the presence of membrane lipids (unilamellar vesicles of phosphatidylcholine and phosphatidylserine, 4:1 molar ratio) and Ca(2+), at a concentration sufficient to activate the enzyme fully, a long correlation time characteristic of highly restricted motion was observed for PKC-associated SAPD. The fraction of SAPD molecules displaying this restricted motion, in comparison with the total SAPD including that in lipids and in buffer, increased with increasing concentrations of Ca(2+) and paralleled the appearance of enzyme activity, whereas the rotational correlation time remained constant. This could be rationalized as an increase in the number of active PKC conformers in the total population of PKC molecules. It therefore seems that there is a distinct conformation of the C1 activator-binding domain associated with the active form of PKC. The addition of SAPD and dioleoyl-sn-glycerol together produced an activity higher than that achievable by either activator alone both at concentrations that alone induced maximal activity for the respective activator; this higher activity was associated with a further restriction in SAPD motion. Increasing the cholesterol concentration, the phosphatidylethanolamine concentration, the sn-2 unsaturation in phosphatidylcholine

  7. The effect of lipopolysaccharide (LPS) and phorbol 12-myristate 13-acetate (PMA) on whole blood oxidative response as assessed by luminol-amplified chemiluminescence in dairy cows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The differences between lipopolysaccharide (LPS) and phorbol 12-myristate 13-acetate (PMA) on whole blood oxidative response using luminol-amplified chemiluminescence (CL) are currently unknown in cattle. Luminol-dependent CL measures the amount of reactive oxygen species released from leukocytes a...

  8. Modulation of the transient receptor potential vanilloid channel TRPV4 by 4alpha-phorbol esters: a structure-activity study.

    PubMed

    Klausen, Thomas Kjaer; Pagani, Alberto; Minassi, Alberto; Ech-Chahad, Abdellah; Prenen, Jean; Owsianik, Grzegorz; Hoffmann, Else Kay; Pedersen, Stine Falsig; Appendino, Giovanni; Nilius, Bernd

    2009-05-14

    The mechanism of activation of the transient receptor potential vanilloid 4 (TRPV4) channel by 4alpha-phorbol esters was investigated by combining information from chemical modification of 4alpha-phorbol-didecanoate (4alpha-PDD, 2a), site-directed mutagenesis, Ca(2+) imaging, and electrophysiology. Binding of 4alpha-phorbol esters occurs in a loop in the TM3-TM4 domain of TRPV4 that is analogous to the capsaicin binding site of TRPV1, and the ester decoration of ring C and the A,B ring junction are critical for activity. The lipophilic ester groups on ring C serve mainly as a steering element, affecting the orientation of the diterpenoid core into the ligand binding pocket, while the nature of the A,B ring junction plays an essential role in the Ca(2+)-dependence of the TRPV4 response. Taken together, our results show that 4alpha-phorbol is a useful template to investigate the molecular details of TRPV4 activation by small molecules and obtain information for the rational design of structurally simpler ligands for this ion channel. PMID:19361196

  9. Inhibitory action of sphingosine, sphinganine and dexamethasone on glucose uptake: Studies with hydrogen peroxide and phorbol ester

    SciTech Connect

    Murray, D.K.; Hill, M.E.; Nelson, D.H. )

    1990-01-01

    The mechanism of the inhibitory action of glucocorticoids on glucose uptake is incompletely understood. Treatment with corticosteriods of cells in which glucose uptake is stimulated at insulin postbinding and postreceptor sites may clarify the site of the steroid inhibitory action. Hydrogen peroxide, which has been shown to stimulate the insulin receptor tyrosine kinase, and phorbol myristate acetate (PMA) which stimulates protein kinase C were, therefore, used as stimulators of glucose transport in this study. These studies demonstrate that dexamethasone and the sphingoid bases, sphinganine and sphingosine, inhibit glucose uptake that has been stimulated at either the receptor kinase or protein kinase C level in both 3T3-L1 and 3T3-C2 cells. These data confirm glucocorticoid inhibitory action at a post binding level and support the suggestion that some corticosteriod inhibitory effects may be mediated by an action on sphingolipid metabolism.

  10. Characterization of the Rac-GAP (Rac-GTPase-activating protein) activity of beta2-chimaerin, a 'non-protein kinase C' phorbol ester receptor.

    PubMed Central

    Caloca, Maria Jose; Wang, HongBin; Kazanietz, Marcelo G

    2003-01-01

    The regulation and function of beta2-chimaerin, a novel receptor for the phorbol ester tumour promoters and the second messenger DAG (diacylglycerol), is largely unknown. As with PKC (protein kinase C) isoenzymes, phorbol esters bind to beta2-chimaerin with high affinity and promote its subcellular distribution. beta2-Chimaerin has GAP (GTPase-activating protein) activity for the small GTP-binding protein Rac1, but for not Cdc42 or RhoA. We show that acidic phospholipids enhanced its catalytic activity markedly in vitro, but the phorbol ester PMA had no effect. beta2-Chimaerin and other chimaerin isoforms decreased cellular levels of Rac-GTP markedly in COS-1 cells and impaired GTP loading on to Rac upon EGF (epidermal growth factor) receptor stimulation. Deletional and mutagenesis analysis determined that the beta2-chimaerin GAP domain is essential for this effect. Interestingly, PMA has a dual effect on Rac-GTP levels in COS-1 cells. PMA increased Rac-GTP levels in the absence of a PKC inhibitor, whereas under conditions in which PKC activity is inhibited, PMA markedly decreased Rac-GTP levels and potentiated the effect of beta2-chimaerin. Chimaerin isoforms co-localize at the plasma membrane with active Rac, and these results were substantiated by co-immunoprecipitation assays. In summary, the novel phorbol ester receptor beta2-chimaerin regulates the activity of the Rac GTPase through its GAP domain, leading to Rac inactivation. These results strongly emphasize the high complexity of DAG signalling due to the activation of PKC-independent pathways, and cast doubts regarding the selectivity of phorbol esters and DAG analogues as selective PKC activators. PMID:12877655

  11. Detoxification of Toxic Phorbol Esters from Malaysian Jatropha curcas Linn. Kernel by Trichoderma spp. and Endophytic Fungi

    PubMed Central

    Najjar, Azhar; Abdullah, Norhani; Saad, Wan Zuhainis; Ahmad, Syahida; Oskoueian, Ehsan; Abas, Faridah; Gherbawy, Youssuf

    2014-01-01

    The presence of phorbol esters (PEs) with toxic properties limits the use of Jatropha curcas kernel in the animal feed industry. Therefore, suitable methods to detoxify PEs have to be developed to render the material safe as a feed ingredient. In the present study, the biological treatment of the extracted PEs-rich fraction with non-pathogenic fungi (Trichoderma harzianum JQ350879.1, T. harzianum JQ517493.1, Paecilomyces sinensis JQ350881.1, Cladosporium cladosporioides JQ517491.1, Fusarium chlamydosporum JQ350882.1, F. chlamydosporum JQ517492.1 and F. chlamydosporum JQ350880.1) was conducted by fermentation in broth cultures. The PEs were detected by liquid chromatography-diode array detector-electrospray ionization mass spectrometry (LC-DAD-ESIMS) and quantitatively monitored by HPLC using phorbol-12-myristate 13-acetate as the standard. At day 30 of incubation, two T. harzianum spp., P. sinensis and C. cladosporioides significantly (p < 0.05) removed PEs with percentage losses of 96.9%–99.7%, while F. chlamydosporum strains showed percentage losses of 88.9%–92.2%. All fungal strains could utilize the PEs-rich fraction for growth. In the cytotoxicity assay, cell viabilities of Chang liver and NIH 3T3 fibroblast cell lines were less than 1% with the untreated PEs-rich fraction, but 84.3%–96.5% with the fungal treated PEs-rich fraction. There was no inhibition on cell viability for normal fungal growth supernatants. To conclude, Trichoderma spp., Paecilomyces sp. and Cladosporium sp. are potential microbes for the detoxification of PEs. PMID:24504029

  12. Phosphorylation state of the glucose transporter from 3T3-L1 adipocytes: effect of insulin and phorbol ester

    SciTech Connect

    Gibbs, E.M.; Allard, W.J.; Lienhard, G.E.

    1986-05-01

    Polyclonal antibodies against the purified human erythrocyte glucose transporter (GT) were used to study the phosphorylation state of GT in (/sup 32/P)orthophosphate-labeled 3T3-L1 adipocytes that were exposed to insulin or phorbol ester. Conditions were established in which the recovery of GT (identified as a polypeptide of M/sub r/ 51,000) after immunoprecipitation from detergent-solubilized adipocytes was about 50% of total cellular transporter, as quantitated by immunoblot analysis. Exposure of adipocytes to insulin (100 nM) for 10 min after prelabeling in /sup 32/P for 90 min, followed by the addition of phorbol myristate acetate (PMA; 1 ..mu..M) for 20 min elicited a marked phosphorylation of GT. Addition of excess purified human erythrocyte GT completely abolished the immunoprecipitation of the 51 K phosphoprotein; this finding validates the conclusion that this phosphoprotein is GT. Treatment with PMA alone resulted in only 30% of the incorporation of /sup 32/P into the 51 K region of the gel compared to that seen with the combination of PMA and insulin. Insulin alone gave only about 20% /sup 32/P incorporation into this region compared to the combination treatment. It remains to be determined if the phosphorylation into the 51 K region of the gel seen after treatment with either of the two agonists alone is into GT. The authors tentative hypothesis is that GT is not phosphorylated in basal cells, and that insulin causes little or no increase in the phosphorylation state. On the other hand, PMA elicits some phosphorylation of GT that can be increased about 3-fold by prior treatment with insulin. Presumably, this increase is due to the translocation of GT to the plasma membrane where it is a better substrate for activated protein kinase C.

  13. Increased glucose transport in response to phorbol ester growth factors, and insulin: relationship to phosphorylation of the glucose transporter

    SciTech Connect

    Allard, W.J.; Gibbs, E.M.; Witters, L.A.; Lienhard, G.E.

    1986-05-01

    The authors have examined the relationship between the increase in glucose transport induced by phorbol myristate acetate (PMA), EGF, PDGF, and insulin and the phosphorylation state of the glucose transporter in human fibroblasts. To assay transport, cells were cultured in medium with 10% serum for 5 days and then for 2 days in phosphate-free medium with 5% serum. Exposure to each agonist stimulated transport, as measured by the uptake of /sup 3/H-2-deoxyglucose over a 2 min period. Values for maximal percent stimulation, time needed to reach maximal stimulation, and concentration required to achieve half-maximal stimulation were as follows: PMA, 80%, 30 min, 2 nM; EGF, 30%, 10 min, 0.2 nM; Insulin, 45%, 10 min, 17 nM. In the case of PDGF, uptake was stimulated 65% by treatment with 0.7 or 1.4 nM for 20 min. Phosphorylation of the glucose transporter was measured in cells cultured for 5-7 days in medium with 10% serum and exposed to 670 ..mu..Ci/ml /sup 32/P/sub i/ for 100 min. The agonist was then added at a saturating dose for 20 min, and the glucose transporter was immunoprecipitated from cell lysates using a monoclonal antibody. Under these conditions, no basal phosphorylation of the transporter was detected, and only phorbol ester stimulated significant incorporation of phosphate into the transport protein. Experiments are currently in progress to quantitate transporter phosphorylation under conditions identical to those used for the assay of transport. These results suggest that while the transporter is a substrate for protein kinase C in vivo, phosphorylation of the transporter is not required for increased transport in response to growth factors and insulin.

  14. Detoxification of toxic phorbol esters from Malaysian Jatropha curcas Linn. kernel by Trichoderma spp. and endophytic fungi.

    PubMed

    Najjar, Azhar; Abdullah, Norhani; Saad, Wan Zuhainis; Ahmad, Syahida; Oskoueian, Ehsan; Abas, Faridah; Gherbawy, Youssuf

    2014-01-01

    The presence of phorbol esters (PEs) with toxic properties limits the use of Jatropha curcas kernel in the animal feed industry. Therefore, suitable methods to detoxify PEs have to be developed to render the material safe as a feed ingredient. In the present study, the biological treatment of the extracted PEs-rich fraction with non-pathogenic fungi (Trichoderma harzianum JQ350879.1, T. harzianum JQ517493.1, Paecilomyces sinensis JQ350881.1, Cladosporium cladosporioides JQ517491.1, Fusarium chlamydosporum JQ350882.1, F. chlamydosporum JQ517492.1 and F. chlamydosporum JQ350880.1) was conducted by fermentation in broth cultures. The PEs were detected by liquid chromatography-diode array detector-electrospray ionization mass spectrometry (LC-DAD-ESIMS) and quantitatively monitored by HPLC using phorbol-12-myristate 13-acetate as the standard. At day 30 of incubation, two T. harzianum spp., P. sinensis and C. cladosporioides significantly (p < 0.05) removed PEs with percentage losses of 96.9%-99.7%, while F. chlamydosporum strains showed percentage losses of 88.9%-92.2%. All fungal strains could utilize the PEs-rich fraction for growth. In the cytotoxicity assay, cell viabilities of Chang liver and NIH 3T3 fibroblast cell lines were less than 1% with the untreated PEs-rich fraction, but 84.3%-96.5% with the fungal treated PEs-rich fraction. There was no inhibition on cell viability for normal fungal growth supernatants. To conclude, Trichoderma spp., Paecilomyces sp. and Cladosporium sp. are potential microbes for the detoxification of PEs. PMID:24504029

  15. Apoptosis in Anthracycline Cardiomyopathy

    PubMed Central

    Shi, Jianjian; Abdelwahid, Eltyeb; Wei, Lei

    2011-01-01

    Apoptosis is a tightly regulated physiologic process of programmed cell death that occurs in both normal and pathologic tissues. Numerous in vitro or in vivo studies have indicated that cardiomyocyte death through apoptosis and necrosis is a primary contributor to the progression of anthracycline-induced cardiomyopathy. There are now several pieces of evidence to suggest that activation of intrinsic and extrinsic apoptotic pathways contribute to anthracycline-induced apoptosis in the heart. Novel strategies were developed to address a wide variety of cardiotoxic mechanisms and apoptotic pathways by which anthracycline influences cardiac structure and function. Anthracycline-induced apoptosis provides a very valid representation of cardiotoxicity in the heart, an argument which has implications for the most appropriate animal models of damaged heart plus diverse pharmacological effects. In this review we describe various aspects of the current understanding of apoptotic cell death triggered by anthracycline. Differences in the sensitivity to anthracycline-induced apoptosis between young and adult hearts are also discussed. PMID:22212952

  16. Spaceflight Associated Apoptosis

    NASA Technical Reports Server (NTRS)

    Ichiki, Albert T.; Gibson, Linda A.; Allebban, Zuhair

    1996-01-01

    Lymphoid tissues have been shown to atrophy in rats flown on Russian spaceflights. Histological examination indicated evidence for cell degradation. Lymphoid tissues from rats flown on Spacelab Life Sciences-2 mission were analyzed for apoptosis by evidence of fragmented lymphocytes, which could be engulfed by macrophages, or DNA strand breaks using the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay. Apoptosis was not detected in the thymus and spleen collected inflight or from the synchronous ground rats but was detected in the thymus, spleen and inguinal lymph node of the flight animals on recovery. These results indicate that the apoptosis observed in the lymphatic tissues of the rats on recovery could have been induced by the gravitational stress of reentry, corroborating the findings from the early space-flight observations.

  17. [Sphingolipid and apoptosis].

    PubMed

    Wang, Jing; Hu, Xiao-Song; Shi, Jie-Ping

    2003-07-01

    Over the last decade, considerable progress has been made in the study of sphingolipids with the development of biological techniques. Sphingolipids play important roles in diverse physiological process, including cytoskeleton migration, angiogenesis, embryonic development and signal transduction. Except for this, the lastest evidence has suggested that sphingolipids and their metabolite (ceramide, sphingosine, sphingosine 1-phosphate) can induce apoptosis in a wide variety of tumor cell lines such as LoVo HT29, Bel7402, A549, CNE2 cells. This paper is attempted to review the recent advances of investigation into the relationship between sphingolipids and apoptosis. PMID:14628466

  18. [Apoptosis during embryo development].

    PubMed

    Jezek, Davor; Kozina, Viviana

    2009-10-01

    The development of human embryo includes two essential processes, i.e., rapid mitotic activity of cells and gradual differentiation of tissues and organs. The latter process is very often characterized by extensive migration of cells from their site of origin to the site of definitive location, inductive action of the neighboring germ layers and programmed cell death (apoptosis). This paper describes examples of proliferative and apoptotic processes during the development of human embryo. The development of trilaminar germ disk, skin, gonads, central and peripheral nerve system as well as limbs provides instructive examples of how apoptosis regulates the development and differentiation of cells. PMID:19999545

  19. Acetaminophen prevents oxidative burst and delays apoptosis in human neutrophils.

    PubMed

    Freitas, Marisa; Costa, Vera M; Ribeiro, Daniela; Couto, Diana; Porto, Graça; Carvalho, Félix; Fernandes, Eduarda

    2013-05-23

    Acetaminophen is a frequently prescribed over-the-counter drug to reduce fever and pain in the event of inflammatory process. As neutrophils are relevant cells in inflammatory processes, the putative interaction of acetaminophen with these cells, if present, would be of paramount importance. The present study was undertaken to evaluate the effect of acetaminophen in human neutrophils' oxidative burst and lifespan in vitro. The obtained results demonstrate that acetaminophen efficiently modulates neutrophils' oxidative burst in phorbol myristate acetate-activated neutrophils, in a concentration-dependent manner, at in vivo relevant concentrations. It was clearly demonstrated that acetaminophen is a strong scavenger of HOCl and H2O2, which probably contributed to the effect observed in neutrophils. Acetaminophen also induced the depletion of glutathione in stimulated neutrophils, suggesting its transformation into a reactive intermediate. Obtained results further revealed that acetaminophen affects programmed cell death of human neutrophils, resulting in a delay of previously stimulated neutrophils-mediated apoptosis. Overall, our data suggested that acetaminophen has considerable potential to be included in anti-inflammatory therapeutic strategies, by preventing biological damage induced by an excessive production of reactive species generated in activated neutrophils and by extending the lifespan of neutrophils, favoring the elimination of pathogens, thus contributing to tissue healing and resolution of inflammation. PMID:23518321

  20. Apoptosis in colorectal cancer.

    PubMed

    Stoian, M; State, N; Stoica, V; Radulian, G

    2014-06-15

    Apoptosis is an inborn process that has been preserved during evolution; it allows the cells to systematically inactivate, destroy and dispose of their own components thus leading to their death. This programme can be activated by both intra and extracellular mechanisms. The intracellular components involve a genetically defined development programme while the extracellular aspects regard endogenous proteins, cytokines and hormones as well as xenobiotics, radiations, oxidative stress and hypoxia. The ability of a cell to enter apoptosis as a response to a "death" signal depends on its proliferative status, the position in the cell cycle and also on the controlled expression of those genes that have the capacity of promoting and inhibiting cell death. The fine regulation of these parameters needs to be maintained in order to ensure the physiological environment required for the induction of apoptosis. Any malfunction in any of the steps of controlled cellular death can lead to dysfunctions and, as a consequence, to different pathological conditions. The importance of apoptosis lies in its active nature and in the potential of controlling biological systems. PMID:25408720

  1. Epidermal growth factor (EGF)-stimulated inositol phosphate formation in hepatocytes is abolished by pertussis toxin and phorbol esters

    SciTech Connect

    Johnson, R.M.; Garrison, J.C.

    1987-05-01

    The EGF-stimulated rise in intracellular Ca/sup 2 +/ (Ca/sup 2 +/)/sub i/ and Ca/sup 2 +/-dependent protein phosphorylation events in isolated hepatocytes are blocked by pertussis toxin and phorbol ester pretreatment. The present study characterized the EGF-stimulated formation of inositol 1,4,5-trisphosphate (Ins(1,4,5)P/sub 3/) and inositol 1,3,4-trisphosphate (Ins(1,3,4)P/sub 3/) in hepatocytes using HPLC methodology to separate the InsP/sub 3/ isomers. Both 66 nM EGF and 10 nM angiotensin II (ANG II) caused a rapid increase in the Ins(1,4,5)P/sub 3/ isomer although EGF-stimulated formation was smaller. At a concentration of ANG II (0.1 nM) which gave an equivalent rise in (Ca/sup 2 +/)/sub i/ as 66 nM EGF, the kinetics and magnitude of Ins(1,4,5)P/sub 3/ formation were similar. EGF or ANG II-stimulated formation of the Ins(1,3,4)P/sub 3/ isomer was more gradual and increased beyond the level of Ins(1,4,5)P/sub 3/ after 60 sec. The initial EGF and ANG II-stimulated increase in both InsP/sub 3/ isomers was not affected by removing external Ca/sup 2 +/ with a 10-fold excess of EGTA. Pretreatment of rats with pertussis toxin for 72 hrs blocked the ability of EGF to increase Ins(1,4,5)P/sub 3/ but did not affect the increase due to ANG II. Three main pretreatment of cells with 1 ..mu..g/ml phorbol 12-myristate-13-acetate (PMA) also inhibited the EGF-stimulated Ins(1,4,5)P/sub 3/ formation. PMA slightly attenuated Ins(1,4,5)P/sub 3/ formation stimulated by 0.1 nM ANG II but not enough to affect the Ca/sup 2 +/ signal. These data suggest that the signal transduction system used by EGF receptors to increase Ins (1,4,5)P/sub 3/ in hepatocytes is somehow different from that used by ANG II receptors.

  2. Oxidant-dependent metabolic activation of polycyclic aromatic hydrocarbons by phorbol ester-stimulated human polymorphonuclear leukocytes: possible link between inflammation and cancer

    SciTech Connect

    Trush, M.A.; Seed, J.L.; Kensler, T.W.

    1985-08-01

    Oxidants, such as those generated by metabolically activated phagocytes in inflammation, have been implicated in the metabolic activation of carcinogens, and in this study the authors demonstrate that the interaction of (+/-)-trans-7,8-dihydroxy-7,8-dihydrobenzo(a)pyrene (BP 7,8-dihydrodiol) with phorbol ester-stimulated polymorphonuclear leukocytes (PMNs) results in the generation of both a chemiluminescent intermediate and one that covalently binds to DNA. Concordant with the formation of a carcinogen-DNA adduct, the admixture of BP 7,8-dihydrodiol and phorbol ester-stimulated PMNs elicited mutagenesis in Salmonella typhimurium strain TA100. These results demonstrate that oxidants generated by metabolically stimulated PMNs can activate penultimate polycyclic aromatic hydrocarbons to a genotoxic metabolite and further defines a role for inflammation in carcinogenesis.

  3. Structural insights into the interactions of phorbol ester and bryostatin complexed with protein kinase C: a comparative molecular dynamics simulation study.

    PubMed

    Thangsunan, Patcharapong; Tateing, Suriya; Hannongbua, Supa; Suree, Nuttee

    2016-07-01

    Protein kinase C (PKC) isozymes are important regulatory enzymes that have been implicated in many diseases, including cancer, Alzheimer's disease, and in the eradication of HIV/AIDS. Given their potential clinical ramifications, PKC modulators, e.g. phorbol esters and bryostatin, are also of great interest in the drug development. However, structural details on the binding between PKC and its modulators, especially bryostatin - the highly potent and non-tumor promoting activator for PKCs, are still lacking. Here, we report the first comparative molecular dynamics study aimed at gaining structural insight into the mechanisms by which the PKC delta cys2 activator domain is used in its binding to phorbol ester and bryostatin-1. As anticipated in the phorbol ester binding, hydrogen bonds are formed through the backbone atoms of Thr242, Leu251, and Gly253 of PKC. However, the opposition of H-bond formation between Thr242 and Gly253 may cause the phorbol ester complex to become less stable when compared with the bryostatin binding. For the PKC delta-bryostatin complex, hydrogen bonds are formed between the Gly253 backbone carbonyl and the C30 carbomethoxy substituent of the ligand. Additionally, the indole Nε1 of the highly homologous Trp252 also forms an H-bond to the C20 ester group on bryostatin. Backbone fluctuations also suggest that this latter H-bond formation may abrogate the transient interaction between Trp252 and His269, thus dampening the fluctuations observed on the nearby Zn(2+)-coordinating residues. This new dynamic fluctuation dampening model can potentially benefit future design of new PKC modulators. PMID:26292580

  4. Mortalin, Apoptosis, and Neurodegeneration

    PubMed Central

    Londono, Carolina; Osorio, Cristina; Gama, Vivian; Alzate, Oscar

    2012-01-01

    Mortalin is a highly conserved heat-shock chaperone usually found in multiple subcellular locations. It has several binding partners and has been implicated in various functions ranging from stress response, control of cell proliferation, and inhibition/prevention of apoptosis. The activity of this protein involves different structural and functional mechanisms, and minor alterations in its expression level may lead to serious biological consequences, including neurodegeneration. In this article we review the most current data associated with mortalin’s binding partners and how these protein-protein interactions may be implicated in apoptosis and neurodegeneration. A complete understanding of the molecular pathways in which mortalin is involved is important for the development of therapeutic strategies for cancer and neurodegenerative diseases. PMID:24970131

  5. Bio-detoxification of phorbol esters and other anti-nutrients of Jatropha curcas seed cake by fungal cultures using solid-state fermentation.

    PubMed

    Sharath, B S; Mohankumar, B V; Somashekar, D

    2014-03-01

    Jatropha seed cake, a byproduct after biodiesel extraction, has several anti-nutrients and toxins. Solid-state fermentation was carried out for the detoxification of the Jatropha seed cake (JSC) using different fungal cultures. The reduction in the anti-nutritional components such as tannins, phytates, saponins, lectin and protease inhibitor, and phorbol esters on 6th, 9th, and 12th day of fermentation was analyzed. The phorbol ester content in the unfermented JSC was 0.83 mg/g, and the maximum degradation of phorbol esters to the extent of 75% was observed in the case of JSC fermented with Cunninghamella echinulata CJS-90. The phytate degradation in the fermented JSC was in the range of 65-96%. There was a gradual reduction of saponin content in the JSC from 6th to 12th day, and the reduction of saponin was in the range of 55-99% after solid-state fermentation. The trypsin inhibitor activity and lectin were 1,680 trypsin inhibitor units (TIU) per gram and 0.32 hemagglutinating unit in the unfermented JSC, respectively. Trypsin inhibitor activity and lectin could not be detected in JSC after 12th day of solid-state fermentation. Tannins accounted for 0.53% in unfermented JSC, and there was a marginal increase of tannins after solid-state fermentation. The results indicate that biological detoxification could be a promising method to reduce anti-nutritional compounds and toxins in the JSC. PMID:24435764

  6. Cross-linking of surface Ig receptors on murine B lymphocytes stimulates the expression of nuclear tetradecanoyl phorbol acetate-response element-binding proteins

    SciTech Connect

    Chiles, T.C.; Liu, J.L.; Rothstein, T.L. )

    1991-03-15

    Cross-linking of sIg on primary B lymphocytes leads to increased nuclear DNA-binding activity specific for the tetradecanoyl phorbol acetate-response element (TRE), as judged by gel mobility shift assays. Stimulation of B cells to enter S phase of the cell cycle by treatment with the combination of phorbol ester plus calcium ionophore also stimulated nuclear TRE-binding activity within 2 h, with maximal expression at 4 h; however, phorbol ester and calcium ionophore were not as effective in stimulating binding activity when examined separately. Stimulated nuclear expression of TRE-binding activity appears to require protein synthesis. Fos- and Jun/AP-1-related proteins participate directly in the identified nucleoprotein complex, as shown by the ability of c-fos- and c-jun-specific antisera to either alter or completely abolish electrophoretic migration of the complex in native gels. Further, UV photo-cross-linking studies identified two major TRE-binding protein species, whose sizes correspond to TRE-binding proteins derived from HeLa cell nuclear extracts. The results suggest that in primary B cells nuclear TRE-binding activity represents a downstream signaling event that occurs subsequent to changes in protein kinase C activity and intracellular Ca2+ but that can be triggered physiologically through sIg.

  7. Effects of an endogenous nitric oxide synthase inhibitor on phorbol myristate acetate-induced acute lung injury in rats.

    PubMed

    Lin, Hen I; Chu, Shi Jye; Wang, David; Chen, Hsing I; Hsu, Kang

    2003-01-01

    1. In the present study, we determined whether the endogenous nitric oxide (NO) synthase (NOS) inhibitor Nomega-nitro-l-arginine methyl ester (l-NAME) could ameliorate the acute lung injury (ALI) induced by phorbol myristate acetate (PMA) in rat isolated lung. 2. Typical ALI was induced successfully by PMA during 60 min of observation. At 2 micro g/kg, PMA elicited a significant increase in microvascular permeability (measured using the capillary filtration coefficient Kfc), lung weight gain, lung weight/bodyweight ratio, pulmonary arterial pressure (PAP) and protein concentration of bronchoalveolar lavage fluid. 3. Pretreatment with the NOS inhibitor l-NAME (5 mmol/L) significantly attenuated ALI. None of the parameters reflective of lung injury showed significant increase, except for PAP (P < 0.001). The addition of l-arginine (4 mmol/L) blocked the protective effective of l-NAME. Pretreatment with l-arginine exacerbated PMA-induced lung injury. 4. These data suggest that l-NAME significantly ameliorates ALI induced by PMA in rats, indicating that endogenous NO plays a key role in the development of lung oedema in PMA-induced lung injury. PMID:12859432

  8. The effects of phorbol ester, diacylglycerol, phospholipase C and Ca2+ ionophore on protein phosphorylation in human and sheep erythrocytes.

    PubMed Central

    Raval, P J; Allan, D

    1985-01-01

    Treatment of human or sheep erythrocytes with PMA (phorbol myristate acetate) enhanced [32P]phosphate labelling of membrane polypeptides of approx. 100, 80 and 46 kDa. The 80 kDa and 46 kDa polypeptides coincided with bands 4.1 and 4.9 respectively on Coomassie-Blue-stained gels. Similar but smaller effects were obtained by treating human cells with 1-oleoyl-2-acetyl-rac-glycerol (OAG), exogenous bacterial phospholipase C or ionophore A23187 + Ca2+, each of which treatments would be expected to raise the concentration of membrane diacylglycerol. In contrast, sheep cells, which do not increase their content of diacylglycerol when treated with phospholipase C or A23187 + Ca2+, only showed enhanced phosphorylation with OAG. Neither human nor sheep cells showed any enhanced [32P]phosphate labelling of phosphoproteins when treated with 1-mono-oleoyl-rac-glycerol. It is concluded that diacylglycerol from a variety of sources can activate erythrocyte protein kinase C, but that the most effective diacylglycerol is that derived from endogenous polyphosphoinositides. In contrast with bacterial phospholipase C and A23187, which stimulate synthesis of phosphatidate by increasing the cell-membrane content of diacylglycerol in human erythrocytes, PMA, OAG or 1-mono-oleoyl-rac-glycerol caused no change in phospholipid metabolism. Images PMID:4084238

  9. Phorbol ester and interferon-gamma modulation of epidermal growth factor receptors on human amniotic (WISH) cells.

    PubMed

    Karasaki, Y; Jaken, S; Komoriya, A; Zoon, K C

    1989-04-15

    In this study we report that pretreatment of human amniotic (WISH) cells with interferon gamma (IFN-gamma) in the presence of 12-O-tetradecanoylphorbol 13-acetate (TPA) resulted in the down-modulation of epidermal growth factor (EGF) receptors with respect to both receptor number and affinity. Scatchard analysis of EGF binding in the absence of both IFN-gamma and TPA indicated biphasic binding whereas addition of TPA resulted in the loss of the higher affinity class of sites. Pretreatment with IFN-gamma for 24 h enhanced the TPA-induced inhibition of EGF binding whereas IFN-gamma alone had no effect on binding. Protein kinase C (Ca2+/phospholipid-dependent enzyme) was examined as a possible mediator of IFN-induced EGF-receptor modulation; pretreatment of cells with IFN-gamma affected neither the binding of [3H]phorbol 12,13-dibutyrate to membrane or cytosolic fractions nor the protein kinase C activity, suggesting that IFN-gamma pretreatment did not result in translocation or activation of protein kinase C. PMID:2495278

  10. Cross Talk Mechanism among EMT, ROS, and Histone Acetylation in Phorbol Ester-Treated Human Breast Cancer MCF-7 Cells

    PubMed Central

    Kamiya, Tetsuro; Goto, Aki; Kurokawa, Eri; Hara, Hirokazu; Adachi, Tetsuo

    2016-01-01

    Epithelial-mesenchymal transition (EMT) plays a pivotal role in the progression of cancer, and some transcription factors including Slug and Snail are known to be involved in EMT processes. It has been well established that the excess production of reactive oxygen species (ROS) and epigenetics such as DNA methylation and histone modifications participate in carcinogenesis; however, the cross talk mechanism among EMT, ROS, and epigenetics remains unclear. In the present study, we demonstrated that the treatment of human breast cancer MCF-7 cells with phorbol ester (TPA), a protein kinase C activator, significantly induced cell proliferation and migration, and these were accompanied by the significant induction of Slug expression. Moreover, the TPA-elicited induction of Slug expression was regulated by histone H3 acetylation and NADPH oxidase (NOX) 2-derived ROS signaling, indicating that ROS and histone acetylation are involved in TPA-elicited EMT processes. We herein determined the cross talk mechanism among EMT, ROS, and histone acetylation, and our results provide an insight into the progression of cancer metastasis. PMID:27127545

  11. Increased endocytosis and formation of multivesicular bodies in phorbol-ester-stimulated human monoblastic U-937 cells

    SciTech Connect

    Nilsson, M. ); Nilsson, K.; Forsbeck, K. )

    1989-04-01

    The phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) is known to arrest mitotic activity and induce macrophage differentiation in the U-937 monoblastic cell line. The acute effect of TPA on ultrastructural morphology and endocytic activity of U-937 cells was studied. TPA induced within 15 minutes {alpha} marked enlargement of multivesicular bodies (MVBs), comprising both volume and number of inclusion vesicles (other organelles appeared unchanged). At this stage the MVBs frequently showed tubular cytoplasmic extensions. Inclusion vesicles accumulated in MVBs with prolonged incubation (60 minutes). Cellular uptake of {sup 125}I-HRP was increased five times the control values already after 5 minutes of TPA stimulation. The uptake increased further with prolonged incubation (60 minutes), but at a slower rate. Together these indicate a TPA-induced transfer by endocytosis of portions of the plasma membrane to the lysosomal system via MVBs. Consideration of MVBs as part of the receptor-mediated endocytic pathway suggests that this effect of TPA might involve down-regulation of cell-surface receptors. The possibility of MVBs as a proton-sequestrating compartment, responsible for the cytoplasmic alkalinization previously reported for TPA-stimulated U-937 monoblastic cells, is discussed.

  12. Characterization of the formyl peptide chemotactic receptor appearing at the phagocytic cell surface after exposure to phorbol myristate acetate

    SciTech Connect

    Gardner, J.P.; Melnick, D.A.; Malech, H.L.

    1986-02-15

    The biochemistry and subcellular source of new formyl peptide chemotactic receptor appearing at the human neutrophil and differentiated HL-60 (d-HL-60) cell surface after stimulation with phorbol myristate acetate (PMA) were examined. Formyl peptide receptor was analyzed by affinity labeling with formyl-norleu-leu-phe-norleu- (/sup 125/I)iodotyr-lys and ethylene glycol bis(succinimidyl succinate) followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and densitometric analysis of autoradiographs. PMA, a specific granule secretagogue, increases affinity labeling of formyl peptide receptors on the neutrophil surface by 100%, and on d-HL-60, which lack specific granule markers, by 20%. Papain treatment markedly reduces surface labeling of formyl peptide receptor in both neutrophils and d-HL-60, and results in the appearance of a lower m.w. membrane-bound receptor fragment. PMA stimulation of papain-treated cells increases uncleaved surface receptor on neutrophils by 400%, and on D-HL-60 by only 45%. This newly appearing receptor is the same apparent m.w. (55,000 to 75,000 for neutrophils; 62,000 to 80,000 for d-HL-60) and yields the same papain cleavage product as receptor on the surface of unstimulated cells. These observations suggest that specific granule membranes contain large amounts of formyl peptide receptor, which is biochemically identical to that found on the cell surface and can be mobilized to the cell surface with appropriate stimulation.

  13. beta. -Endorphin and related peptides suppress phorbol myristate acetate-induced respiratory burst in human polymorphonuclear leukocytes

    SciTech Connect

    Diamant, M.; Henricks, P.A.J.; Nijkamp, F.P.; de Wied, D. )

    1989-01-01

    In the present study, the immunomodulatory effect of {beta}-endorphin ({beta}-E) and shorter pro-opiomelancortin (POMC) fragments was evaluated by assessing their influence on respiratory burst in human polymorphonuclear leukocytes (PMN). The effect of the peptides on phorbol myristate acetate (PMA)-stimulated production of reactive oxygen metabolites was measured in a lucigenin-enhanced chemiluminescence (CL) assay. Both POMC peptides with opiate-like activity and their non-opioid derivatives were tested. With the exception of {alpha}-E, PMA-stimulated respiratory burst was suppressed by all POMC fragments tested. A U-shaped dose-response relation was observed. Doses lower than 10{sup {minus}17}M and higher than 10{sup {minus}8}M were without effect. {beta}-E and dT{beta}E both suppressed PMA-induced oxidative burst in human PMN at physiological concentrations. {gamma}-E and dT{gamma}E proved to be less potent inhibitors, reaching maximal effect at higher concentrations. DE{gamma}E exerted an even less pronounced but still significant suppressive effect at the concentration of 10{sup {minus}10}M. None of the endorphins tested was shown to affect resting oxidative metabolism in the PMN. The modulatory effects of the opioid peptides could not be blocked by the opioid antagonist naloxone.

  14. Effects of inorganic iodide, epidermal growth factor and phorbol ester on hormone synthesis by porcine thyroid follicles cultured in suspension

    SciTech Connect

    Kasai, Kikuo; Ichimura, Kenichi; Banba, Nobuyuki; Emoto, Tatsushi; Hiraiwa, Masaki; Hishinuma, Akira; Hattori, Yoshiyuki; Shimoda, Shinichi ); Yamaguchi, Fumihiko; Hosoya, Toichiro )

    1992-01-01

    Porcine thyroid follicles cultured in suspension for 96 h synthesized and secreted thyroid hormones in the presence of thyrotropin (TSH). The secretion of newly synthesized hormones was assessed by determining in the contents of thyroxine (T{sub 4}) and triiodothyronine (T{sub 3}) in the media and by paperchromatographic analysis of {sup 125}I-labeled hormones in the media where the follicles were cultured in the presence and absence of inhibitors of hormone synthesis. The hormone synthesis and secretion was modified by exogenously added NaI. The maximal response was obtained at 1 {mu}M. Thyroid peroxidase (TPO) activity in the cultured follicles with TSH for 96 h was dose-dependently inhibited by NaI. One hundred {mu}M and NaI completely inhibited TSH-induced TPO activity. Moreover, both epidermal growth factor and phorbol 12-myristate 13-acetate inhibited de novo hormone synthesis. An induction of TPO activity by TSH was also inhibited by either agent. These data provide direct evidences that thyroid hormone synthesis is regulated by NaI as well as TSH at least in part via regulation of TPO activity and also that both EGF and PMA are inhibitory on thyroid hormone formation.

  15. Regulation of thyroid peroxidase activity by thyrotropin, epidermal growth factor and phorbol ester in porcine thyroid follicles cultured in suspension

    SciTech Connect

    Kasai, Kikuo; Hiraiwa, Masaki; Emoto, Tatsushi; Hattori, Yoshiyuki; Shimoda, Shin-Ichi ); Ohmori, Takeshi; Koizumi, Narumi; Hosoya, Toichiro )

    1989-01-01

    The activity of thyroid peroxidase (TPO) in porcine follicles cultured for 96 h in suspension with five hormones (5H) still attained over 50% of that in the freshly isolated follicles. On the other hand, the activity in those cultured with 5H + TSH (6H) was several times higher than that cultured with 5H after 96 h, although an initial decrease of TPO activity during the first 24 h of culture was observed in both conditions. The ability of follicles to metabolize iodide when cultured with 6H for 96 h was also several times higher than that of those cultured with 5H. The half-maximal dose of TSH for stimulation of TPO activity and iodide metabolism was 0.03 - 0.04 mU/ml and the effect was mediated by cAMP. These results indicate that in porcine thyroid follicles in primary suspension culture, TPO activity as well as the ability of iodide metabolism is induced by chronic TSH stimulation. In addition, epidermal growth factor and phorbol 12-myristate 13-acetate completely inhibited TSH stimulation on both activities and also basal (5H) activity of iodide metabolism.

  16. Phorbol 12-myristate 13-acetate prevents isoproterenol-induced morphological change in cultured vascular smooth muscle cells

    SciTech Connect

    Nabika, Toru; Chaldakov, G.N.; Nara, Yasuo; Endo, Jiro; Yamori, Yukio )

    1988-10-01

    The effect of phorbol 12-myristate 13-acetate (PMA) on isoproterenol (ISO)- and dibutyryl cAMP (dBcAMP)-induced morphological change and cytoskeletal reorganization was studied in cultured vascular smooth muscle cells (VSMC) using the fluorescence staining of actin and microtubules. The treatment of VSMC with 1.0 {mu}M of ISO or with 1.0 mM of dBcAMP for 90 min induced the disruption of actin-containing stress fibers followed by cytoplasmic arborization. The addition of 100 nM of PMA prevented both the destruction of actin fibers and cell arborization induced either by ISO or by dBcAMP. These results indicated that the inhibition of arborization by PMA was mediated through the activation of protein kinase C. Colchicine at 5.0 {mu}M also had an inhibitory effect on ISO- and dBcAMP-induced cell arborization. However, immunofluorescence studies revealed that colchicine but not PMA elicited the reorganization of microtubules, suggesting that the effect of PMA was mediated through a mechanism different from that of colchicine. The observations indicated that the morphology of VSMC was regulated through the alteration of cytoskeletal organization induced by cAMP-mediated and by protein kinase C-dependent systems.

  17. Phorbol 12,13-dibutyrate and 1-oleyl-2-acetyldiacylglycerol stimulate inositol trisphosphate dephosphorylation in human platelets

    SciTech Connect

    Molina y Vedia, L.M.; Lapetina, E.G.

    1986-08-15

    Inositol trisphosphate (IP3) is formed in response to specific agonists that cause activation of phospholipase C and degradation of phosphatidylinositol bisphosphate. IP3 is a second messenger that releases Ca/sup 2 +/ from the dense tubular system to the cytosol in stimulated platelets. Our present information indicates that (/sup 3/H)IP3 is dephosphorylated to (/sup 3/H)inositol bisphosphate (IP2) and (/sup 3/H)inositol monophosphate (IP) by human platelets treated with 0.05-0.10% Triton X-100. This dephosphorylation of (/sup 3/H)IP3 to (/sup 3/H)IP2 and (/sup 3/H)IP is also observed when platelets are permeabilized by electrical stimulation or by 20 micrograms/ml saponin. These detergents or electropermeabilization allow IP3 to access cytosolic IP3 phosphatase. Pretreatment of intact platelets with phorbol dibutyrate and 1-oleyl-2-acetyldiacylglycerol for 30 s, at concentrations that maximally activate protein kinase C, stimulates the conversion of IP3 to IP2 and IP. This suggests a role for protein kinase C in the regulation of IP3 degradation.

  18. Phorbol myristate acetate, but not CD40L, induces the differentiation of CLL B cells into Ab-secreting cells

    PubMed Central

    Ghamlouch, Hussein; Ouled-Haddou, Hakim; Guyart, Aude; Regnier, Aline; Trudel, Stéphanie; Claisse, Jean-François; Fuentes, Vincent; Royer, Bruno; Marolleau, Jean-Pierre; Gubler, Brigitte

    2014-01-01

    In this study, we investigated the capacity of chronic lymphocytic leukemia (CLL) B cells to undergo terminal differentiation into Ig-secreting plasma cells in T cell-independent and T cell-dependent responses. We used a two-step model involving stimulation with phorbol myristate acetate (PMA) and CD40L, together with cytokines (PMA/c and CD40L/c), for 7 days. We describe immunophenotypic modifications, changes in the levels of mRNA and protein for transcription factors and morphological and functional events occurring during the differentiation of CLL B cells into antibody-secreting cells (ASCs). The induction of differentiation differed significantly between the CD40L/c and PMA/c culture systems. The PMA/c culture system allowed CLL B cells to differentiate into IgM-secreting cells with an immunophenotype and molecular profile resembling those of preplasmablasts. By contrast, CD40L/c-stimulated cells had a phenotype and morphology similar to those of activated B cells and resembling those of the CLL B cells residing in the lymph node and bone marrow. These data suggest that the CLL B cells are not frozen permanently at a stage of differentiation and are able to differentiate into ASCs as appropriate stimulation are provided. The data presented here raise questions about the molecular processes and stimulation required for CLL B-cell differentiation and about the inability of CD40 ligand to induce differentiation of the CLL B cells. PMID:24797583

  19. Role of Calpain in Apoptosis

    PubMed Central

    Momeni, Hamid Reza

    2011-01-01

    Apoptosis, a form of programmed cell death that occurs under physiological as well as pathological conditions, is characterized by morphological and biochemical features. While the importance of caspases in apoptosis is established, several noncaspase proteases (Ca2+-dependent proteases) such as calpain may play a role in the execution of apoptosis. The calpain family consists of two major isoforms, calpain I and calpain II which require µM and mM Ca2+ concentrations to initiate their activity. An increase in intracellular Ca2+ level is thought to trigger a cascade of biochemical processes including calpain activation. Once activated, calpains degrade membrane, cytoplasmic and nuclear substrates, leading to the breakdown of cellular architecture and finally apoptosis. The activation of calpain has been implicated in neuronal apoptosis following spinal cord injuries and neurodegenerative diseases. This review focuses on calpain with an emphasis on its key role in the proteolysis of cellular protein substrates following apoptosis. PMID:23507938

  20. Pathophysiological Significance of Hepatic Apoptosis

    PubMed Central

    Wang, Kewei; Lin, Bingliang

    2013-01-01

    Apoptosis is a classical pathological feature in liver diseases caused by various etiological factors such as drugs, viruses, alcohol, and cholestasis. Hepatic apoptosis and its deleterious effects exacerbate liver function as well as involvement in fibrosis/cirrhosis and carcinogenesis. An imbalance between apoptotic and antiapoptotic capabilities is a prominent characteristic of liver injury. The regulation of apoptosis and antiapoptosis can be a pivotal step in the treatment of liver diseases. PMID:27335822

  1. Regulation of T cell apoptosis via T cell receptors and steroid receptors.

    PubMed

    Iwata, M; Ohoka, Y; Kuwata, T; Asada, A

    1996-11-01

    Less than 5% of immature CD4/CD8 double-positive (DP) thymocytes are positively selected to survive and differentiate into single-positive CD4 and CD8 T cells, while self-reactive DP thymocytes undergo apoptosis (negative selection). Both positive and negative selection events are active processes that involve signaling through the T cell receptors (TCRs) and through some accessory molecules. The two events differ quantitatively in the strength of the interaction between TCR and peptide/major histocompatibility complex molecules. We established an in vitro model of positive selection that can be analyzed quantitatively. Positive selection is likely to inhibit glucocorticoid-induced apoptosis in DP thymocytes. Proper crosslinking of TCR together with CD4, CD8, or LFA-1 inhibits the death, and its inhibitory activity is mimicked by proper combinations of ionomycin, a calcium ionophore, and phorbol myristate acetate (PMA), a protein kinase C (PKC) activator. The drug concentrations are within narrow ranges, and are lower than those which are required for the proliferation of mature T cells. Transient stimulation with the combinations of ionomycin and PMA induces differentiation and commitment of isolated DP thymocytes to the CD4 or CD8 T cell lineage in suspension cultures. The level of PKC activity appears to determine the lineage to commit. Functional mature T cells are induced from the committed cells upon secondary stimulation. Activation of calcineurin, a Ca2+/calmodulin-dependent protein phosphatase, also appears to be essential for positive selection as well as for the inhibition of glucocorticoid-induced apoptosis. Negative selection and the regulation of mature T cell apoptosis through TCR and steroid receptors are also discussed. PMID:8948021

  2. JNK Signaling in Apoptosis

    PubMed Central

    Dhanasekaran, Danny N.; Reddy, E. Premkumar

    2011-01-01

    Jun N-terminal kinases or JNKs play a critical role in death receptor-initiated extrinsic as well as mitochondrial intrinsic apoptotic pathways. JNKs activate apoptotic signaling by the upregulation pro-apoptotic genes via the transactivation of specific transcription factors or by directly modulating the activities of mitochondrial pro- and anti-apoptotic proteins through distinct phosphorylation events. This review analyzes our present understanding of the role of JNK in apoptotic signaling and the various mechanisms by which JNK promotes apoptosis PMID:18931691

  3. The beneficial effects of dietary restriction: reduced oxidative damage and enhanced apoptosis.

    PubMed

    Wachsman, J T

    1996-02-19

    There is compelling evidence for the central role of oxidative damage in the aging process and for the participation of reactive oxygen species in tumor initiation and promotion. Caloric restriction (CR) or energy restriction retards age-associated increases in mitochondrial free-radical production and reduces the accumulation of oxidatively damaged cell components. CR has also been shown to slow down age-related declines in various repair capabilities, including some types of DNA repair. It is proposed that inhibitors of mitochondrial electron transport and/or uncouplers of oxidative phosphorylation (rotenone, amytal, amiodarone, valinomycin, etc.), when used at extremely low doses, could mimic the effects of CR in model systems. The objective is to lower mitochondrial free-radical production by decreasing the fraction of electron carriers in the reduced state. In addition to a variety of other effects, CR has been shown to increase the rate of apoptosis, particularly in preneoplastic cells, and in general, to promote elevated levels of free glucocorticoids (GCs). GCs are known to induce tissue-specific apoptosis and to upregulate gap-junction-mediated intercellular communication (GJIC). Tumor promoters like phorbol esters have the opposite effect, in that they inhibit both the process of apoptosis and GJIC. The enzyme poly (ADP-ribose) polymerase (PARP) is thought to play a central role in apoptosis, in a manner that has been highly conserved in evolution. There is good evidence that the apoptosis-associated Ca/Mg-dependent DNA endonuclease is maintained in a latent form by being poly (ADP-ribosylated). Apoptosis would require the removal of this polymer from the endonuclease, and, most likely, its removal from topoisomerase II and histone H1 as well. The role of poly (ADP-ribose) in apoptosis, carcinogenesis, and aging could be studied by the use of modulators of PARP activity (3-aminobenzamide, 3-nitrosobenzamide, 1% ethanol, etc.), inhibitors of poly ADP

  4. Kinetics and subcellular localization of specific [3H]phorbol 12, 13-dibutyrate binding by mouse brain.

    PubMed

    Dunphy, W G; Kochenburger, R J; Castagna, M; Blumberg, P M

    1981-07-01

    The specific binding of [3H]phorbol 12,13-dibutyrate ([3H]-PDBU) to particulate preparations from mouse brain has been further characterized. Kinetic analysis, using a filtration assay to measure binding, yielded a second-order rate constant at 23 degrees of 3.75 X 10(7) M-1 min-1 and a first-order dissociation rate constant of 0.21 min-1. The Kd of 5.6 nM calculated from the kinetic data agreed well with the value determined previously in equilibrium binding studies. The Kd for [3H]PDBU binding varied only slightly with temperature. From its temperature dependence, [3H]PDBU binding appeared to be associated with a small increase in enthalpy (delta H degrees = +0.4 kcal/mol) and a large increase in entropy (delta S degrees = +38 e.u.). Such values are characteristic for hydrophobic interactions. The dissociation rate constant for binding, in contrast to the Kd, varied dramatically with temperature. The half-time for release ranged from 1.75 min at 30 degrees to 62 min at 4 degrees. The Kd for binding was Ca2+ sensitive; chelation of Ca2+ by ethyleneglycolbis(beta-aminoethyl ether)N,N'-tetraacetic acid increased the Kd 2.4-fold. Upon subcellular fractionation, the specific [3H]PDBU binding activity was exclusively particulate; no binding to cytosol was detectable. Binding clearly did not correlate with nuclear or mitochondrial markers. On the other hand, a broader distribution of binding activity was seen on sucrose density gradients than for either Na+-K+-adenosine triphosphatase activity or binding of quinuclidinyl benzilate (a muscarinic cholinergic antagonist). The localization of specific [3H]PDBU binding to the plasma membrane therefore remains uncertain. PMID:6941848

  5. Calcium ionophore and phorbol ester activation of proliferation and. gamma. -IFN production by neonatal mononuclear cells (MNCs)

    SciTech Connect

    Bryson, Y.J.; Kuhls, T.L.; Pineda, E.

    1986-03-01

    Human neonatal MNCs have a dissociation between prolif. and ..gamma..-IFN prod. Although cord MNCs display normal-high prolif. following lectin stim., ..gamma..-IFN prod. is greatly diminished compared to adult MNCs. Increasing data support a 2-stimuli requirement for human T-cell activation as noted in the T-cell line Jurkat as well as in peripheral T-cells. They have compared prolif. and ..gamma..-IFN responses of cord and adult MNCs to the calcium ionophore A23187, phorbol myristate acetate (PMA), PHA and their combinations. Cord and adult MNCs had similar prolif. responses to A23187, PMA and PHA. PMA alone acted as a weak mitogen compared to PHA. Optimal A23187 alone caused very low amts of prolif. Either PMA or A23187 suppressed PHA-stim. prolif. while A23187 augmented PMA-induced prolif. A23187, PMA or PHA alone prod. ..gamma..-IFN in adult but not cord MNCs. The addition of PMA or A23187 augmented the PHA-induced ..gamma..-IFN prod. in both cord and adult MNCs (6..-->..80 IU vs 240..-->..480 IU resp). When combined, A23187 and PMA stim. optimal and comparable amts of ..gamma..-IFN in adult and cord MNCs (480 IU). From these findings they conclude that although the stimuli for ..gamma..-IFN and prolif. may be similar, there is an absolute requirement for 2 stimuli (PMA/A23187) for ..gamma..-IFN prod. by cord cells and optimal prod. in adult MNCs. The defect of ..gamma..-IFN prod. observed in PHA stim. neonatal MNCs can be corrected using a calcium ionophore and protein kinase C activator.

  6. Phorbol 12-myristate 13-acetate induces protein kinase ceta-specific proliferative response in astrocytic tumor cells.

    PubMed

    Hussaini, I M; Karns, L R; Vinton, G; Carpenter, J E; Redpath, G T; Sando, J J; VandenBerg, S R

    2000-07-21

    Protein kinase C (PKC) activation has been implicated in cellular proliferation in neoplastic astrocytes. The roles for specific PKC isozymes in regulating this glial response, however, are not well understood. The aim of this study was to characterize the expression of PKC isozymes and the role of PKC-eta expression in regulating cellular proliferation in two well characterized astrocytic tumor cell lines (U-1242 MG and U-251 MG) with different properties of growth in cell culture. Both cell lines expressed an array of conventional (alpha, betaI, betaII, and gamma) and novel (theta and epsilon) PKC isozymes that can be activated by phorbol myristate acetate (PMA). Another novel PKC isozyme, PKC-eta, was only expressed by U-251 MG cells. In contrast, PKC-delta was readily detected in U-1242 MG cells but was present only at low levels in U-251 MG cells. PMA (100 nm) treatment for 24 h increased cell proliferation by over 2-fold in the U-251 MG cells, whereas it decreased the mitogenic response in the U-1242 MG cells by over 90%. When PKC-eta was stably transfected into U-1242 MG cells, PMA increased cell proliferation by 2.2-fold, similar to the response of U-251 MG cells. The cell proliferation induced by PMA in both the U-251 MG and U-1242-PKC-eta cells was blocked by the PKC inhibitor bisindolylmaleimide (0.5 micrometer) and the MEK inhibitor, PD 98059 (50 micrometer). Transient transfection of wild type U-251 with PKC-eta antisense oligonucleotide (1 micrometer) also blocked the PMA-induced increase in [(3)H]thymidine incorporation. The data demonstrate that two glioblastoma lines, with functionally distinct proliferative responses to PMA, express different novel PKC isozymes and that the differential expression of PKC-eta plays a determining role in the different proliferative capacity. PMID:10806212

  7. Phorbol 12,13-dibutyrate-induced, protein kinase C-mediated contraction of rabbit bladder smooth muscle.

    PubMed

    Wang, Tanchun; Kendig, Derek M; Trappanese, Danielle M; Smolock, Elaine M; Moreland, Robert S

    2012-01-01

    Contraction of bladder smooth muscle is predominantly initiated by M(3) muscarinic receptor-mediated activation of the G(q/11)-phospholipase C β-protein kinase C (PKC) and the G(12/13)-RhoGEF-Rho kinase (ROCK) pathways. However, these pathways and their downstream effectors are not well understood in bladder smooth muscle. We used phorbol 12,13-dibutyrate (PDBu), and 1,2-dioctanoyl-sn-glycerol (DOG), activators of PKC, in this investigation. We were interested in dissecting the role(s) of PKC and to clarify the signaling pathways in bladder smooth muscle contraction, especially the potential cross-talk with ROCK and their downstream effectors in regulating myosin light chain phosphatase activity and force. To achieve this goal, the study was performed in the presence or absence of the PKC inhibitor bisindolylmaleimide-1 (Bis) or the ROCK inhibitor H-1152. Phosphorylation levels of Thr(38)-CPI-17 and Thr(696)/Thr(850) myosin phosphatase target subunit (MYPT1) were measured during PDBu or DOG stimulation using site specific antibodies. PDBu-induced contraction in bladder smooth muscle involved both activation of PKC and PKC-dependent activation of ROCK. CPI-17 as a major downstream effector, is phosphorylated by PKC and ROCK during PDBu and DOG stimulation. Our results suggest that Thr(696) and Thr(850)-MYPT1 phosphorylation are not involved in the regulation of a PDBu-induced contraction. The results also demonstrate that bladder smooth muscle contains a constitutively active isoform of ROCK that may play an important role in the regulation of bladder smooth muscle basal tone. Together with the results from our previous study, we developed a working model to describe the complex signaling pathways that regulate contraction of bladder smooth muscle. PMID:22232602

  8. Biomarkers of apoptosis

    PubMed Central

    Ward, T H; Cummings, J; Dean, E; Greystoke, A; Hou, J M; Backen, A; Ranson, M; Dive, C

    2008-01-01

    Within the era of molecularly targeted anticancer agents, it has become increasingly important to provide proof of mechanism as early on as possible in the drug development cycle, especially in the clinic. Selective activation of apoptosis is often cited as one of the major goals of cancer chemotherapy. Thus, the present minireview focuses on a discussion of the pros and cons of a variety of methodological approaches to detect different components of the apoptotic cascade as potential biomarkers of programmed cell death. The bulk of the discussion centres on serological assays utilising the technique of ELISA, since here there is an obvious advantage of sampling multiple time points. Potential biomarkers of apoptosis including circulating tumour cells, cytokeratins and DNA nucleosomes are discussed at length. However, accepting that a single biomarker may not have the power to predict proof of concept and patient outcome, it is clear that in the future more emphasis will be placed on technologies that can analyse panels of biomarkers in small volumes of samples. To this end the increased throughput afforded by multiplex ELISA technologies is discussed. PMID:19238626

  9. Apoptosis and the Airway Epithelium

    PubMed Central

    White, Steven R.

    2011-01-01

    The airway epithelium functions as a barrier and front line of host defense in the lung. Apoptosis or programmed cell death can be elicited in the epithelium as a response to viral infection, exposure to allergen or to environmental toxins, or to drugs. While apoptosis can be induced via activation of death receptors on the cell surface or by disruption of mitochondrial polarity, epithelial cells compared to inflammatory cells are more resistant to apoptotic stimuli. This paper focuses on the response of airway epithelium to apoptosis in the normal state, apoptosis as a potential regulator of the number and types of epithelial cells in the airway, and the contribution of epithelial cell apoptosis in important airways diseases. PMID:22203854

  10. High ACSL5 Transcript Levels Associate with Systemic Lupus Erythematosus and Apoptosis in Jurkat T Lymphocytes and Peripheral Blood Cells

    PubMed Central

    2011-01-01

    Background Systemic lupus erythematosus (SLE) is a prototypical autoimmune disease in which increased apoptosis and decreased apoptotic cells removal has been described as most relevant in the pathogenesis. Long-chain acyl-coenzyme A synthetases (ACSLs) have been involved in the immunological dysfunction of mouse models of lupus-like autoimmunity and apoptosis in different in vitro cell systems. The aim of this work was to assess among the ACSL isoforms the involvement of ACSL2, ACSL4 and ACSL5 in SLE pathogenesis. Findings With this end, we determined the ACSL2, ACSL4 and ACSL5 transcript levels in peripheral blood mononuclear cells (PBMCs) of 45 SLE patients and 49 healthy controls by quantitative real time-PCR (q-PCR). We found that patients with SLE had higher ACSL5 transcript levels than healthy controls [median (range), healthy controls = 16.5 (12.3–18.0) vs. SLE = 26.5 (17.8–41.7), P = 3.9×10 E-5] but no differences were found for ACSL2 and ACSL4. In in vitro experiments, ACSL5 mRNA expression was greatly increased when inducing apoptosis in Jurkat T cells and PBMCs by Phorbol-Myristate-Acetate plus Ionomycin (PMA+Io). On the other hand, short interference RNA (siRNA)-mediated silencing of ACSL5 decreased induced apoptosis in Jurkat T cells up to the control levels as well as decreased mRNA expression of FAS, FASLG and TNF. Conclusions These findings indicate that ACSL5 may play a role in the apoptosis that takes place in SLE. Our results point to ACSL5 as a potential novel functional marker of pathogenesis and a possible therapeutic target in SLE. PMID:22163040

  11. [Apoptosis and its biomedical significance].

    PubMed

    Ortega-Camarillo, C; Díaz-Flores, M; Avalos-Rodríguez, A; Vergara-Onofre, M; Rosales-Torres, A M

    2001-01-01

    Cell death can occur through apoptotic or necrotic death pathways. Membrane disruption leads to inflammation, a typical feature of necrosis. Apoptosis constitutes a genetically controlled physiologic process of cell removal. It is characterized by cell shrinkage, chromatin condensation, and DNA cleavage. Apoptotic cells are rapidly recognized and engulfed by phagocytes thus inhibiting an inflammatory response following necrosis. Apoptosis has been proposed as a basic event to protect tissue homeostasis. This paper analyzes the genetic, biochemical, and morphologic characteristics related to apoptosis, as well as its relationship to certain illnesses. PMID:11766462

  12. Induction of transcription from the long terminal repeat of Moloney murine sarcoma provirus by UV-irradiation, x-irradiation, and phorbol ester

    SciTech Connect

    Lin, C.S.; Goldthwait, D.A.; Samols, D. )

    1990-01-01

    The long terminal repeat (LTR) of Moloney murine sarcoma virus (Mo-MuSV) was used as a model system to study the stress response of mammalian cells to physical carcinogens. The chloramphenicol acetyltransferase (CAT) gene was inserted between two Mo-MuSV LTRs, and the LTR-CAT-LTR construct was used for virus production and was integrated into the genome of NIH 3T3 cells in the proviral form. This construct was used to assure that the integrated CAT gene was driven by the promoter of the LTR. Expression of the CAT gene was stimulated 4-fold by UV irradiation, and the peak of activity was observed at 18 hr. In contrast, stimulation of the CAT expression after x-irradiation was 2-fold and occurred at 6 hr. Phorbol myristate acetate also stimulated CAT activity 4-fold with a peak at 6 hr. Down-regulation of protein kinase C blocked totally the response to x-irradiation but only partially the response to UV. The protein kinase inhibitor H7 blocked the response to treatment by UV, x-ray, and phorbol ester.

  13. Differential effects of nylon fibre adherence on the production of superoxide anion by human polymorphonuclear neutrophilic granulocytes stimulated with chemoattractants, ionophore A23187 and phorbol myristate acetate.

    PubMed Central

    Kownatzki, E; Uhrich, S

    1987-01-01

    Human polymorphonuclear neutrophilic granulocytes were made adherent by passing them over protein-coated nylon fibre columns and compared with suspended cells for their production of superoxide anion as measured by cytochrome C reduction. The cells were stimulated with chemotactic factors, the ionophore A 23187, and the tumour promoter phorbol myristate acetate. There was no increased O2-. production by adherent cells in the absence of a stimulus. Adherent cells produced considerably higher amounts of superoxide than suspended cells when stimulated with formyl-methionyl-leucyl-phenylalanine, ionophore A 23187, C5a, C5adesArg, and the platelet activating factor 1-o-alkyl-2-acetyl-sn-glycero-3-phosphorylcholine. In contrast, stimulation with phorbol myristate acetate did not result in higher superoxide release from adherent than from suspended cells, and leukotriene B4 and a mononuclear cell-derived chemotaxin did not stimulate either cell to release significant amounts of superoxide. It is suggested that the augmented production of oxygen radicals with certain stimuli contributes to inflammatory symptoms in situations involving adherent granulocytes. PMID:2820637

  14. Epidermal growth factor (EGF) stimulated Ca/sup 2 +/ mobilization in hepatocytes is abolished by phorbol esters, pertussis toxin and partial hepatectomy

    SciTech Connect

    Johnson, R.M.; Garrison, J.C.

    1986-05-01

    EGF has been demonstrated to increase free intracellular Ca/sup 2 +/ levels in isolated hepatocytes putatively by generation of the second messenger inositol trisphosphate (IP/sub 3/). Pretreatment of cells with phorbol 12-myristate 13-acetate (PMA) inhibited the EGF (66 nM) stimulated Ca/sup 2 +/ response as measured by quin2. Inhibition by PMA was maximal within 3 min and was concentration dependent (IC/sub 50/ = 13.5 nM). Four other active phorbol ester analogues blocked the Ca/sup 2 +/ response while inactive analogues did not. EGF was unable to increase intracellular Ca/sup 2 +/ levels in hepatocytes isolated from rats treated with pertussis toxin for 72 hrs. Neither PMA nor toxin pretreatment was able to inhibit the Ca/sup 2 +/ response to angiotensin II (Ang II). In hepatocytes isolated 24 hrs after partial hepatectomy, the Ca/sup 2 +/ response to EGF (as measured by phosphorylase activity, EC/sub 50/ = 5 nM) was completely abolished and remained attenuated for 7 days post-hepatectomy. The Ca/sup 2 +/ response to Ang II in this model system was also blunted but required 3 days for development of the full effect and within 7 days full activity is nearly restored. The results suggest that fundamental differences exist in the transduction mechanisms used by these two Ca/sup 2 +/-linked hormones to mobilize intracellular Ca/sup 2 +/ (and putatively increase IP/sub 3/ formation).

  15. In vivo phosphorylation of 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNP): CNP in brain myelin is phosphorylated by forskolin- and phorbol ester-sensitive protein kinases.

    PubMed

    Agrawal, H C; Sprinkle, T J; Agrawal, D

    1994-06-01

    2',3'-cyclic nucleotide 3'-phosphohydrolase (CNP) was phosphorylated in vivo, in brain slices and in a cell free system. Phosphoamino acid analysis of immunoprecipitated CNP labeled in vivo and in brain slices revealed phosphorylation of phosphoserine (94%) and phosphothreonine (5%) residues. Phosphorylation of CNP increased by 3-fold after brain slices were incubated with forskolin. Similarly, incubation of isolated myelin with [gamma-32]ATP with cAMP (5 microM) and cAMP (5 microM)+catalytic unit of cAMP dependent protein kinase dramatically increased CNP2 phosphorylation by 4- and 6-fold, respectively. It is feasible that CNP2 was predominantly phosphorylated on serine and/or threonine residues of the amino terminal peptide of CNP2, and this phosphorylation was catalyzed by protein kinase A. Phosphorylation of CNP1 and CNP2 increased 2-fold by incubating brain slices with phorbol ester. Forskolin and phorbol ester increased the phosphorylation of single, but distinct, CNP peptides. We present the first biochemical evidence that CNP2, on a protein mass basis, is far more heavily phosphorylated than CNP1, suggesting there are more phosphorylation sites on CNP2 than CNP1 and that at least one site is located on the 20-amino acid terminus of CNP2 and that it is likely a PKA site. PMID:8065530

  16. Oxidant-dependent metabolic activation of polycyclic aromatic hydrocarbons by phorbol ester-stimulated human polymorphonuclear leukocytes: possible link between inflammation and cancer.

    PubMed Central

    Trush, M A; Seed, J L; Kensler, T W

    1985-01-01

    Oxidants, such as those generated by metabolically activated phagocytes in inflammation, have been implicated in the metabolic activation of carcinogens, and in this study we demonstrate that the interaction of (+/-)-trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BP 7,8-dihydrodiol) with phorbol ester-stimulated polymorphonuclear leukocytes (PMNs) results in the generation of both a chemiluminescent intermediate and one that covalently binds to DNA. Cu(II)(3,5-diisopropylsalicylic acid)2 (CuDIPS), a biomimetic superoxide dismutase, and azide, a myeloperoxidase inhibitor, inhibited both of these reactions, indicating a dependency on oxygen-derived oxidants in these hydrocarbon-activation processes. Concordant with the formation of a carcinogen-DNA adduct, the admixture of BP 7,8-dihydrodiol and phorbol ester-stimulated PMNs elicited mutagenesis in Salmonella typhimurium strain TA100. 7,8-Dihydro-BP and BP cis-7,8-dihydrodiol were also mutagenic, whereas derivatives lacking a double bond at the 9,10 position were not. These results demonstrate that oxidants generated by metabolically stimulated PMNs can activate penultimate polycyclic aromatic hydrocarbons to a genotoxic metabolite and further defines a role for inflammation in carcinogenesis. PMID:2991910

  17. Factor recruitment and TIF2/GRIP1 corepressor activity at a collagenase-3 response element that mediates regulation by phorbol esters and hormones

    PubMed Central

    Rogatsky, Inez; Zarember, Kol A.; Yamamoto, Keith R.

    2001-01-01

    To investigate determinants of specific transcriptional regulation, we measured factor occupancy and function at a response element, col3A, associated with the collagenase-3 gene in human U2OS osteosarcoma cells; col3A confers activation by phorbol esters, and repression by glucocorticoid and thyroid hormones. The subunit composition and activity of AP-1, which binds col3A, paralleled the intracellular level of cFos, which is modulated by phorbol esters and glucocorticoids. In contrast, a similar AP-1 site at the collagenase-1 gene, not inducible in U2OS cells, was not bound by AP-1. The glucocorticoid receptor (GR) associated with col3A through protein–protein interactions with AP-1, regardless of AP-1 subunit composition, and repressed transcription. TIF2/GRIP1, reportedly a coactivator for GR and the thyroid hormone receptor (TR), was recruited to col3A and potentiated GR-mediated repression in the presence of a GR agonist but not antagonist. GRIP1 mutants deficient in GR binding and coactivator functions were also defective for corepression, and a GRIP1 fragment containing the GR-interacting region functioned as a dominant-negative for repression. In contrast, repression by TR was unaffected by GRIP1. Thus, the composition of regulatory complexes, and the biological activities of the bound factors, are dynamic and dependent on cell and response element contexts. Cofactors such as GRIP1 probably contain distinct surfaces for activation and repression that function in a context-dependent manner. PMID:11689447

  18. Factor recruitment and TIF2/GRIP1 corepressor activity at a collagenase-3 response element that mediates regulation by phorbol esters and hormones.

    PubMed

    Rogatsky, I; Zarember, K A; Yamamoto, K R

    2001-11-01

    To investigate determinants of specific transcriptional regulation, we measured factor occupancy and function at a response element, col3A, associated with the collagenase-3 gene in human U2OS osteosarcoma cells; col3A confers activation by phorbol esters, and repression by glucocorticoid and thyroid hormones. The subunit composition and activity of AP-1, which binds col3A, paralleled the intracellular level of cFos, which is modulated by phorbol esters and glucocorticoids. In contrast, a similar AP-1 site at the collagenase-1 gene, not inducible in U2OS cells, was not bound by AP-1. The glucocorticoid receptor (GR) associated with col3A through protein-protein interactions with AP-1, regardless of AP-1 subunit composition, and repressed transcription. TIF2/GRIP1, reportedly a coactivator for GR and the thyroid hormone receptor (TR), was recruited to col3A and potentiated GR-mediated repression in the presence of a GR agonist but not antagonist. GRIP1 mutants deficient in GR binding and coactivator functions were also defective for corepression, and a GRIP1 fragment containing the GR-interacting region functioned as a dominant-negative for repression. In contrast, repression by TR was unaffected by GRIP1. Thus, the composition of regulatory complexes, and the biological activities of the bound factors, are dynamic and dependent on cell and response element contexts. Cofactors such as GRIP1 probably contain distinct surfaces for activation and repression that function in a context-dependent manner. PMID:11689447

  19. Linkage mapping in the oilseed crop Jatropha curcas L. reveals a locus controlling the biosynthesis of phorbol esters which cause seed toxicity.

    PubMed

    King, Andrew J; Montes, Luis R; Clarke, Jasper G; Affleck, Julie; Li, Yi; Witsenboer, Hanneke; van der Vossen, Edwin; van der Linde, Piet; Tripathi, Yogendra; Tavares, Evanilda; Shukla, Parul; Rajasekaran, Thirunavukkarasu; van Loo, Eibertus N; Graham, Ian A

    2013-10-01

    Current efforts to grow the tropical oilseed crop Jatropha curcas L. economically are hampered by the lack of cultivars and the presence of toxic phorbol esters (PE) within the seeds of most provenances. These PE restrict the conversion of seed cake into animal feed, although naturally occurring 'nontoxic' provenances exist which produce seed lacking PE. As an important step towards the development of genetically improved varieties of J. curcas, we constructed a linkage map from four F₂ mapping populations. The consensus linkage map contains 502 codominant markers, distributed over 11 linkage groups, with a mean marker density of 1.8 cM per unique locus. Analysis of the inheritance of PE biosynthesis indicated that this is a maternally controlled dominant monogenic trait. This maternal control is due to biosynthesis of the PE occurring only within maternal tissues. The trait segregated 3 : 1 within seeds collected from F₂ plants, and QTL analysis revealed that a locus on linkage group 8 was responsible for phorbol ester biosynthesis. By taking advantage of the draft genome assemblies of J. curcas and Ricinus communis (castor), a comparative mapping approach was used to develop additional markers to fine map this mutation within 2.3 cM. The linkage map provides a framework for the dissection of agronomic traits in J. curcas, and the development of improved varieties by marker-assisted breeding. The identification of the locus responsible for PE biosynthesis means that it is now possible to rapidly breed new nontoxic varieties. PMID:23898859

  20. Phorbol ester tumor promoter induced the synthesis of two major cytoplasmic proteins: identity with two proteins induced under heat-shocked and glucose-starved conditions

    SciTech Connect

    Zhang, H.; Chen, K.Y.; Liu, A.Y.C.

    1987-05-01

    The regulation of specific protein synthesis by the phorbol ester tumor promoter, 12-O-tetradecanoyl-phorbol-13-acetate (TPA), was evaluated using the L-8 and C-2 myoblast and the 3T3-L1 fibroblast cell cultures. TPA increased, by 2-4 fold, the synthesis rates of two cytoplasmic proteins with apparent molecular weights of 89,000 and 74,000 as determined by SDS-polyacrylamide gel electrophoresis and autoradiography. The concentration of TPA and the time of incubation needed to elicit this induction was determined to be 10 ..mu..g/ml and 20 hrs, respectively. Increasing the concentration of TPA to 100, 200, and 500 ng/ml did not result in a greater magnitude of induction. The possibility that these two TPA-induced proteins may be identical to proteins with similar molecular weights induced under heat-shocked or glucose-starved conditions was evaluated by 1-D and 2-D gel electrophoresis and autoradiography. Results provided evidence that the TPA-induced 89,000- and 74,000-dalton proteins were identical to hsp 89 and hsp 74, 2 out of a set of 8-9 proteins induced under heat shocked conditions. Furthermore, they are identical to two of the set of glucose-regulated proteins induced under a glucose-starved condition.

  1. Mitochondria and apoptosis: emerging concepts

    PubMed Central

    Li, Mark Xiang

    2015-01-01

    As mitochondria are the powerhouses of the cell, their damage during the cell suicide process of apoptosis is essentially responsible for cellular demise in most cells. A key family of proteins, the B-cell lymphoma-2 (BCL-2) family, determines the integrity of mitochondria in the face of apoptotic insult. A comprehensive understanding of the molecular details of how apoptosis is initiated and how it culminates is essential if apoptosis is to fulfil its undoubted potential as a therapeutic target to treat diseases ranging from cancer to neurodegenerative conditions. Recent advances have provided significant insight into the control of this fundamental process while prompting a re-evaluation of what was considered dogma in the field. Emerging evidence also points to a potential overarching control network that governs not only apoptosis but other fundamental mitochondrial processes, including mitochondrial fission/fusion and quality control. PMID:26097715

  2. Beyond Apoptosis in Lupus

    PubMed Central

    Colonna, Lucrezia; Lood, Christian; Elkon, Keith B.

    2014-01-01

    Purpose of review Systemic lupus erythematosus (SLE) is characterized by autoantibodies directed against nuclear autoantigens normally concealed from immune recognition in healthy individuals. Here we summarize recently identified mechanisms of abnormal cell death leading to exposure and aberrant processing of nucleoprotein self antigens, and discuss their role in the SLE pathogenesis. Recent findings During the past few years, the unveiling of several new forms of cell death has expanded our understanding beyond the simple view of “apoptotic” versus “necrotic” cell death. SLE patients show abnormalities in cell death at several levels, including increased rates of apoptosis, necrosis, and autophagy, as well as reduced clearance of dying cells. These abnormalities lead to an increased autoantigen burden and also antigen modifications, such as nucleic acid oxidation that increase the inflammatory properties of self antigens. Recent investigations have highlighted the role of opsonins in determining the immunogenic versus tolerogenic characteristics of self antigens. Summary Dysregulation of different forms of programmed cell death contributes to increased exposure, availability, and immunogenic characteristic of intracellular self antigens, which all participate in development of lupus autoimmunity. As our understanding of abnormalities of cell death in SLE advances, potential therapeutic opportunities await human implementation. PMID:25036095

  3. Cytoskeleton and apoptosis.

    PubMed

    Ndozangue-Touriguine, Olivia; Hamelin, Jocelyne; Bréard, Jacqueline

    2008-07-01

    Apoptosis is a genetically programmed and physiological mode of cell death that leads to the removal of unwanted or abnormal cells. Cysteine-proteases called caspases are responsible for the apoptotic execution phase which is characterized by specific biochemical events as well as morphological changes. These changes, which lead to the orderly dismantling of the apoptotic cell, include cell contraction, dynamic membrane blebbing, chromatin condensation, nuclear disintegration, cell fragmentation followed by phagocytosis of the dying cell. They involve major modifications of the cytoskeleton which are largely mediated by cleavage of several of its components by caspases. For example, dynamic membrane blebbing is due to the increased contractility of the acto-myosin system following myosin light chain (MLC) phosphorylation. MLC phosphorylation is a consequence of the cleavage of a Rho GTPase effector, the kinase ROCK I, by caspase-3. This cleavage induces a constitutive kinase activity by removal of an inhibitory domain. Chromatin condensation is facilitated by the processing of lamins by caspases. Collapse of the cytokeratin network is mediated by cleavage of keratin 18. On another hand, the actin cytoskeleton rearrangement needed in the phagocyte for engulfment of the dying cell is due to the activation of the small GTPase Rac, a GTPase of the Rho family that induces actin polymerisation and formation of lamellipodia. In addition to mediating the morphological modifications of the apoptotic cell, several proteins of the cytoskeleton such as actin and keratins are also involved in the regulation of apoptotic signaling. PMID:18462707

  4. Synergistic activation by serotonin and GTP analogue and inhibition by phorbol ester of cyclic Ca2+ rises in hamster eggs.

    PubMed Central

    Miyazaki, S; Katayama, Y; Swann, K

    1990-01-01

    1. Synergistic activation of a GTP-binding protein (G protein) by external serotonin (5-hydroxytryptamine, 5-HT) and internally applied guanosine-5'-O-(3-thiotriphosphate (GTP gamma S) in hamster eggs was demonstrated by the facilitation of repetitive increases in cytoplasmic Ca2+ as measured by their associated hyperpolarizing responses (HRs) and by aequorin luminescence. 2. Rapid application of 70 nM-5-HT caused a single HR of 10-12 s duration and with a delay of 80 s. The critical concentration of 5-HT to cause an HR was 50 nM. 3. With 10 microM-5-HT four to six HRs were often elicited with a delay to the first HR of 8-30 s. HRs disappeared after prolonged or repeated application of 5-HT, indicating an apparent desensitization. 4. 5-HT-induced HRs were completely inhibited by the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (TPA) (100 nM). Conversely, the PKC inhibitor sphingosine (2 microM) enhanced the series of HRs by shortening the delay to the first HR (3-9 s) and by causing more HRs. 5. Ionophoretic injection of GTP gamma S into the egg usually produced a large HR with a delay of 120-240 s followed by a series of much smaller HRs. When 5-HT was applied within 1 min of injection of GTP gamma S. 70 nM-5-HT induced a number of large HRs and even 1 nM-5-HT could induce HR(s). In contrast, when 5-HT was applied after the size of GTP gamma S-induced HRs had declined, as much as 10 microM-5-HT could only elicit a single large HR. Thus, GTP gamma S apparently caused a sensitization and then a desensitization of the action of 5-HT. 6. GTP gamma S-induced Ca2+ transients were facilitated when injected in the presence of 5-HT concentrations as low as 0.1 nM. The time delay to the first HR was 65 s in 0.1 nM-5-HT or 4 s in 100 nM-5-HT whereas it was 170 s without 5-HT (mean values). The magnitude as well as frequency of HRs succeeding the first HR was enhanced by 5-HT at concentrations above 0.01 nM. 7. TPA (100 nM) blocked the GTP gamma S-plus-5

  5. Nitric oxide and nitric oxide-generating agents induce a reversible inactivation of protein kinase C activity and phorbol ester binding.

    PubMed

    Gopalakrishna, R; Chen, Z H; Gundimeda, U

    1993-12-25

    Since S-nitrosylation of protein thiols is one of the cellular regulatory mechanisms induced by nitric oxide (NO), and since protein kinase C (PKC) has critical thiol residues which influence its kinase activity, we have determined whether NO could regulate this enzyme. Initial studies were carried out with purified PKC and the NO-generating agent S-nitrosocysteine. This agent decreased phosphotransferase activity of PKC in a Ca(2+)- and oxygen-dependent manner with an IC50 of 75 microM. Phorbol ester binding was affected partially only at higher concentrations (> 100 microM) of S-nitrosocysteine. This inactivation of PKC was blocked by the NO scavenger oxyhemoglobin or reversed by dithiothreitol. It is likely that NO initially induced an S-nitrosylation of vicinal thiols, which were then oxidized to form an intramolecular disulfide. Other NO-generating agents such as S-nitroso-N-acetylpenicillamine and sodium nitroprusside, as well as authentic NO gas, induced similar types of PKC modifications. In intact B16 melanoma cells treated with S-nitrosocysteine a rapid decrease in PKC activity in both cytosol and membrane was observed. Unlike in experiments with purified PKC, in intact cells treated with S-nitrosocysteine the phorbol ester binding also decreased to a rate equal to that of PKC activity. These modifications were readily reversed by treating the homogenates with dithiothreitol in test tubes or by removing the NO-generating source from intact cells. To determine whether the limited amounts of NO generated within the intact cells could induce this type of PKC modification, the macrophage cell line IC-21 was treated with lipopolysacharide and Ca2+ ionophore A23187 to induce the NO production. With an increase in generation of NO (3-12-h period) in these cells, a parallel and irreversible decrease in PKC activity and phorbol ester binding was observed. A specific inhibitor for NO synthase, NG-monomethyl-L-arginine, inhibited both the production of NO and PKC

  6. Spontaneous apoptosis in human thymocytes.

    PubMed Central

    Tiso, M.; Gangemi, R.; Bargellesi Severi, A.; Pizzolitto, S.; Fabbi, M.; Risso, A.

    1995-01-01

    Apoptosis seems to be involved in different stages of immune cell development. In particular, experimental evidence suggests that it is a major form of cell death in the thymus. The present analysis of human thymocytes reveals that a fraction of these cells, cultured in vitro, undergoes spontaneous apoptosis. This observation is based both on molecular (DNA fragmentation) and morphological (electron microscopic) investigations of the cells. The apoptotic thymocytes are CD3- or CD3lo, CD4lo, and CD8lo and do not express Bcl-2 protein. Furthermore, thymocytes die by apoptosis when exposed to pharmacological stimuli, such as tumor necrosis factor-alpha, dexamethasone, ATP, or Ca++ ionophore. Thus the apoptotic machinery in thymocytes can be triggered by an imbalance in growth factors in the in vitro culture media and can be modulated by various biochemical signals. The process of spontaneous apoptosis is independent of mRNA or protein synthesis, as actinomycin D and cycloheximide fail to inhibit this phenomenon. Furthermore, apoptosis seems to require active oxidative phosphorylation, as it is prevented by incubation of the cells with inhibitors of the respiratory chain. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 6 Figure 7 Figure 8 PMID:7639336

  7. Effective activation of antioxidant system by immune-relevant factors reversely correlates with apoptosis of Eisenia andrei coelomocytes.

    PubMed

    Homa, J; Stalmach, M; Wilczek, G; Kolaczkowska, E

    2016-05-01

    Oxidative stress is harmful to the microbes but also to the host, and may result in bystander damage or death. Because of this, respiratory burst triggered in phagocytes by pathogens is counteracted by production of antioxidative factors. The aim of this work was to examine effectiveness of the latter system in earthworms Eisenia andrei by induction of reactive oxygen species, lipofuscin and phenoloxidase by natural (LPS, zymosan, Micrococus luteus) and synthetic (phorbol ester, PMA) stimulants. The compounds impaired numbers, viability (increased apoptosis) and composition of coelomocytes, and triggered the antioxidant activity of catalase and selenium-dependent glutathione peroxidase. The natural pathogenic compounds, unlike PMA, strongly activated antioxidative responses that diminished cell apoptosis. Moreover, repeated exposure to the same or different pathogenic compounds did not induce respiratory burst exhausted phenotype showing that coelomocytes are constantly at bay to withstand numerous infections. The current study reveals importance and efficiency of the oxidative-antioxidative systems in annelids but also confirms its evolutionary conservatism and complexity even in lower taxa of the animal kingdom. PMID:26922789

  8. Molecular mechanisms of hepatic apoptosis

    PubMed Central

    Wang, K

    2014-01-01

    Apoptosis is a prominent feature of liver diseases. Causative factors such as alcohol, viruses, toxic bile acids, fatty acids, drugs, and immune response, can induce apoptotic cell death via membrane receptors and intracellular stress. Apoptotic signaling network, including membrane death receptor-mediated cascade, reactive oxygen species (ROS) generation, endoplasmic reticulum (ER) stress, lysosomal permeabilization, and mitochondrial dysfunction, is intermixed each other, but one mechanism may dominate at a particular stage. Mechanisms of hepatic apoptosis are complicated by multiple signaling pathways. The progression of liver disease is affected by the balance between apoptotic and antiapoptotic capabilities. Therapeutic options of liver injury are impacted by the clear understanding toward mechanisms of hepatic apoptosis. PMID:24434519

  9. Apoptosis deregulation in myeloproliferative neoplasms

    PubMed Central

    Tognon, Raquel; Nunes, Natália de Souza; de Castro, Fabíola Attié

    2013-01-01

    ABSTRACT Philadelphia-chromosome negative chronic myeloproliferative neoplasms are clonal hematologic diseases characterized by hematopoietic progenitor independence from or hypersensitivity to cytokines. The cellular and molecular mechanisms involved in the pathophysiology of myeloproliferative neoplasms have not yet been fully clarified. Pathophysiologic findings relevant for myeloproliferative neoplasms are associated with genetic alterations, such as, somatic mutation in the gene that codifies JAK-2 (JAK V617F). Deregulation of the process of programmed cellular death, called apoptosis, seems to participate in the pathogenesis of these disorders. It is known that expression deregulation of pro- and anti-apoptotic genes promotes cell resistance to apoptosis, culminating with the accumulation of myeloid cells and establishing neoplasms. This review will focus on the alterations in apoptosis regulation in myeloproliferative neoplasms, and the importance of a better understanding of this mechanism for the development of new therapies for these diseases. PMID:24488400

  10. Galangin and kaempferol suppress phorbol-12-myristate-13-acetate-induced matrix metalloproteinase-9 expression in human fibrosarcoma HT-1080 cells.

    PubMed

    Choi, Yu Jung; Lee, Young Hun; Lee, Seung-Taek

    2015-01-01

    Matrix metalloproteinase (MMP)-9 degrades type IV collagen in the basement membrane and plays crucial roles in several pathological implications, including tumorigenesis and inflammation. In this study, we analyzed the effect of flavonols on MMP-9 expression in phorbol-12-myristate-13-acetate (PMA)-induced human fibrosarcoma HT-1080 cells. Galangin and kaempferol efficiently decreased MMP-9 secretion, whereas fisetin only weakly decreased its secretion. Galangin and kaempferol did not affect cell viability at concentrations up to 30 μM. Luciferase reporter assays showed that galangin and kaempferol decrease transcription of MMP-9 mRNA. Moreover, galangin and kaempferol strongly reduce IκBα phosphorylation and significantly decrease JNK phosphorylation. These results indicate that galangin and kaempferol suppress PMA-induced MMP-9 expression by blocking activation of NF-κB and AP-1. Therefore, these flavonols could be used as chemopreventive agents to lower the risk of diseases involving MMP-9. PMID:25518925

  11. System-wide analysis of the transcriptional network of human myelomonocytic leukemia cells predicts attractor structure and phorbol-ester-induced differentiation and dedifferentiation transitions

    NASA Astrophysics Data System (ADS)

    Sakata, Katsumi; Ohyanagi, Hajime; Sato, Shinji; Nobori, Hiroya; Hayashi, Akiko; Ishii, Hideshi; Daub, Carsten O.; Kawai, Jun; Suzuki, Harukazu; Saito, Toshiyuki

    2015-02-01

    We present a system-wide transcriptional network structure that controls cell types in the context of expression pattern transitions that correspond to cell type transitions. Co-expression based analyses uncovered a system-wide, ladder-like transcription factor cluster structure composed of nearly 1,600 transcription factors in a human transcriptional network. Computer simulations based on a transcriptional regulatory model deduced from the system-wide, ladder-like transcription factor cluster structure reproduced expression pattern transitions when human THP-1 myelomonocytic leukaemia cells cease proliferation and differentiate under phorbol myristate acetate stimulation. The behaviour of MYC, a reprogramming Yamanaka factor that was suggested to be essential for induced pluripotent stem cells during dedifferentiation, could be interpreted based on the transcriptional regulation predicted by the system-wide, ladder-like transcription factor cluster structure. This study introduces a novel system-wide structure to transcriptional networks that provides new insights into network topology.

  12. A region of the rat N-methyl-D-aspartate receptor 2A subunit that is sufficient for potentiation by phorbol esters.

    PubMed

    Grant, E R; Guttmann, R P; Seifert, K M; Lynch, D R

    2001-09-01

    N-methyl-D-aspartate (NMDA) receptors are modulated by protein kinase C (PKC) in vivo and in heterologous expression systems. In heterologous expression systems, PKC-mediated modulation is subunit specific with NR2A-containing receptors being potentiated by phorbol 12-myristate 13-acetate (PMA), while NR2C-containing receptors are inhibited or unaffected. In the present study we have produced chimeric receptors containing NR2A and NR2C to define the components of NR2A which are sufficient for potentiation by PMA. Amino acids 1105-1400 of NR2A placed onto the C-terminus of NR2C at amino acid 1102 was the minimum region sufficient for producing a PMA-stimulated receptor. This suggests that this region contains structural determinants for PKC-mediated potentiation of NR2A receptors. PMID:11524145

  13. Monitoring apoptosis in real time.

    PubMed

    Green, Allan M; Steinmetz, Neil D

    2002-01-01

    Many therapeutically active anticancer treatments exert their effect by the induction of apoptosis and necrosis. Serial biopsies in breast cancer patients have suggested that response to therapy correlates with early posttreatment increases in tumor apoptotic index. Radiolabeled technetium Tc 99m-recombinant human (rh) annexin V provides a noninvasive technique for imaging treatment-induced cell death. Annexin V is a naturally occurring human protein that binds avidly to membrane-associated phosphatidylserine (PS). PS is normally found only on the inner leaflet of the cell membrane double layer, but it is actively transported to the outer layer as an early event in apoptosis and becomes available for annexin binding. Annexin also gains access to PS as a result of the membrane fragmentation associated with necrosis. In vitro studies of apoptosis using fluorescein annexin have shown good correlation with assessments of apoptosis documented by nuclear DNA degradation and caspase activation. In vivo localization of intravenously administered Tc 99m-annexin V has been demonstrated in numerous preclinical models of apoptosis, including anti-Fas-mediated hepatic apoptosis, rejection of allogeneic heterotopic cardiac allografts, cyclophosphamide treatment of murine lymphoma, cyclophosphamide-induced apoptosis in bone marrow, and leukocyte apoptosis associated with abscess formation. Scintigraphic studies in humans using Tc 99m-rh annexin V have demonstrated the feasibility of imaging cell death in acute myocardial infarction, in tumors with a high apoptotic index, and in response to anti-tumor chemotherapy of non-small cell lung cancer, small-cell lung cancer, breast cancer, lymphoma, and sarcoma. Increased localization of Tc 99m-rh annexin V within 1 to 3 days of chemotherapy has been noted in some, but not all, subjects with these tumors. To date, most subjects showing increased Tc 99m-rh annexin V uptake after the first course of chemotherapy have shown objective

  14. Myosin light chain phosphorylation in sup 32 P-labeled rabbit aorta stimulated by phorbol 12,13-dibutyrate and phenylephrine

    SciTech Connect

    Singer, H.A.; Oren, J.W.; Benscoter, H.A. )

    1989-12-15

    The mechanism(s) of force development in vascular smooth muscle following pharmacological activation of protein kinase C by phorbol esters are not known. In this study, we examined the myosin light chain phosphorylation response following stimulation by phorbol 12,13-dibutyrate (PDB) or phenylephrine in rabbit aorta which had been incubated with 32PO4 in order to label ATP pools. Through tryptic phosphopeptide mapping of myosin light chain from intact tissue and comparison to controls using purified components, we inferred that Ca2+-dependent force stimulated by PDB was associated with small increases in serine-19 phosphorylation, consistent with a contractile mechanism involving indirect activation of myosin light chain kinase. Additional residues, consistent with the in vitro substrate specificity of protein kinase C, were also observed to be phosphorylated in response to PDB and represented proportionately a larger fraction of the total phosphorylated myosin light chain in Ca2+-depleted tissues. Stimulation by an alpha 1-adrenergic agonist (phenylephrine) resulted in phosphorylation of residues which were consistent with an activation mechanism involving myosin light chain kinase only. These results indicate that in rabbit aorta the contractile effects of PDB may be partially mediated by Ca2+-dependent activation of myosin light chain kinase. However, the data do not rule out a component of the PDB-stimulated contractile response which is independent of myosin light chain phosphorylation on the serine-19 residue. In addition, activation by a more physiological stimulus, phenylephrine, does not result in protein kinase C-mediated myosin light chain phosphorylation.

  15. Linkage mapping in the oilseed crop Jatropha curcas L. reveals a locus controlling the biosynthesis of phorbol esters which cause seed toxicity

    PubMed Central

    King, Andrew J; Montes, Luis R; Clarke, Jasper G; Affleck, Julie; Li, Yi; Witsenboer, Hanneke; van der Vossen, Edwin; van der Linde, Piet; Tripathi, Yogendra; Tavares, Evanilda; Shukla, Parul; Rajasekaran, Thirunavukkarasu; van Loo, Eibertus N; Graham, Ian A

    2013-01-01

    Current efforts to grow the tropical oilseed crop Jatropha curcas L. economically are hampered by the lack of cultivars and the presence of toxic phorbol esters (PE) within the seeds of most provenances. These PE restrict the conversion of seed cake into animal feed, although naturally occurring ‘nontoxic’ provenances exist which produce seed lacking PE. As an important step towards the development of genetically improved varieties of J. curcas, we constructed a linkage map from four F2 mapping populations. The consensus linkage map contains 502 codominant markers, distributed over 11 linkage groups, with a mean marker density of 1.8 cM per unique locus. Analysis of the inheritance of PE biosynthesis indicated that this is a maternally controlled dominant monogenic trait. This maternal control is due to biosynthesis of the PE occurring only within maternal tissues. The trait segregated 3 : 1 within seeds collected from F2 plants, and QTL analysis revealed that a locus on linkage group 8 was responsible for phorbol ester biosynthesis. By taking advantage of the draft genome assemblies of J. curcas and Ricinus communis (castor), a comparative mapping approach was used to develop additional markers to fine map this mutation within 2.3 cM. The linkage map provides a framework for the dissection of agronomic traits in J. curcas, and the development of improved varieties by marker-assisted breeding. The identification of the locus responsible for PE biosynthesis means that it is now possible to rapidly breed new nontoxic varieties. PMID:23898859

  16. Phosphatidic acid mobilized by phospholipase D is involved in the phorbol 12-myristate 13-acetate-induced G2 delay of A431 cells.

    PubMed Central

    Kaszkin, M; Richards, J; Kinzel, V

    1996-01-01

    This study was aimed at gaining an understanding of metabolic events responsible for the inhibition of cells in G2 phase, a known physiological restriction site in the cell cycle of multicellular organisms. In an earlier study, phosphatidic acid was proposed as an inhibitory mediator in the epidermal growth factor (EGF)-induced inhibition of A431 cells in G2 phase via the phospholipase C pathway [Kaszkin, Richards and Kinzel (1992) Cancer Res. 52, 5627-5634]. We show here that the phorbol ester phorbol 12-myristate 13-acetate (PMA) induces a reversible inhibition of the G2/M transition in A431 cells under conditions of phospholipase D-catalysed phosphatidic acid formation. Such PMA-induced inhibition in G2 phase is largely attenuated in the presence of 1-propanol (but not of 2-propanol). In this case the amount of phosphatidic acid is reduced to almost control levels, and instead phosphatidylpropanol is formed. In the case of EGF-induced activation of a phospholipase D the amount of phosphatidic acid is only slightly decreased in the presence of a primary alcohol. Under these conditions the EGF-induced G2 delay was not affected. The correlation between the formation of phosphatidic acid and the G2 delay induced by PMA, as well as by an exogenous bacterial phospholipase D (from Streptomyces chromofuscus), could be supported by using synchronized cells in order to increase the population of cells in G2 phase. This study indicates that the formation of substantial amounts of phosphatidic acid immediately before entry into mitosis seems to be important for establishing a delay in the cell cycle at the G2/M border by exogenous ligands. PMID:8660273

  17. Effects of phorbol esters and cytokines (interleukin-2,-4, and -6) on the proliferation and surface phenotype of Epstein-Barr virus immortalised human B lymphocytes.

    PubMed

    Kosmas, C; Epenetos, A A; Courtenay-Luck, N S

    1992-09-01

    Epstein-Barr virus (EBV)-induced in vitro infection of peripheral blood mononuclear cells (PBMCs) leads to a polyclonal proliferation and immortalisation of B lymphocytes. In the present study we determined the effects of three different cytokines, interleukin-2 (IL-2), interleukin-4 (IL-4) and interleukin-6 (IL-6), and the tumour promoting phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate (TPA) on EBV-immortalised B lymphocytes. These factors have known activities on normal B cells. IL-4 and IL-6 increased significantly EBV-B cell proliferation after 3 and 5 days of culture, where IL-2 had no effect. The effect of IL-4 and IL-6 on EBV-B cells was abolished after pre-incubation with anti-IL-4 and anti-IL-6 neutralising antisera, respectively. TPA induced a dose dependent inhibition of proliferation both in serum free and 10% fetal calf serum (FCS) supplemented culture medium. Combinations of TPA and interleukins did not restore lymphoblastoid cell proliferation to background levels. All possible combinations of the three cytokines showed no synergistic or antagonistic effect on proliferation. TPA induced significant phenotypic changes of EBV immortalised B lymphocytes, by increasing IL-2 receptor (IL-2R) expression and decreasing CD20 and CD23 antigen expression. Other B cell differentiation antigens; HLA-DR, CD19, and transferrin receptor (CD71), did not demonstrate significant changes. A dose dependent inhibition of CD21 and increase in CD22 expression was observed in 2 out of 3 lymphoblastoid cell lines tested. PMID:1337296

  18. Tyrosine hydroxylase is activated and phosphorylated at different sites in rat pheochromocytoma PC 12 cells treated with phorbol ester and forskolin

    SciTech Connect

    Tachikawa, E.; Tank, A.W.; Weiner, D.H.; Mosimann, W.F.; Yanagihara, N.; Weiner, N.

    1986-03-01

    The effects of phorbol ester (4..beta..-phorbol, 12..beta..-myristate, 13..cap alpha..-acetate; TPA), an activator of Ca/sup + +//phospholipid-dependent protein kinase (PK-C), and forskolin, which stimulates adenylate cyclase and cyclic AMP-dependent protein kinase (cAMP-PK), on the activation and phosphorylation of tyrosine hydroxylase (TH) in rat pheochromocytoma (PC 12) cells were examined. Incubation of the cells with TPA (0.01-1 ..mu..M) or forskolin (0.01-0.1 ..mu..M) produces increases in activation and phosphorylation of TH in a concentration-dependent manner. The stimulatory effects of TPA are dependent on extracellular Ca/sup + +/ and are inhibited by pretreatment of the cells with trifluoperazine (TFP). The effects of forskolin are independent of Ca/sup + +/ and are not inhibited by TFP. In cells treated with forskolin, the time course of the increase in cAMP correlates with the increases in TH activity and phosphorylation. cAMP levels do not increase in cells treated with TPA. There is an increase in the phosphorylation of only one tryptic phosphopeptide derived from TH in cells treated with either forskolin or TPA. The peptide phosphorylated in TPA-treated cells exhibits different elution characteristics on HPLC from that in forskolin-treated cells. The authors conclude that TH in PC 12 cells is phosphorylated on different sites by cAMP-PK and PK-C. Phosphorylation of either of these sites is associated with enzyme activation.

  19. Inhibition of hormone-sensitive lipase gene expression by cAMP and phorbol esters in 3T3-F442A and BFC-1 adipocytes.

    PubMed Central

    Plée-Gautier, E; Grober, J; Duplus, E; Langin, D; Forest, C

    1996-01-01

    Hormone-sensitive lipase (HSL) catalyses the rate-limiting step in adipocyte lipolysis. Short-term hormonal regulation of HSL activity is well characterized, whereas little is known about the control of HSL gene expression. We have measured HSL mRNA content of 3T3-F442A and BFC-1 adipocytes in response to the cAMP analogue 8-(4-chlorophenylthio)-cAMP (8-CPT-cAMP) and to the phorbol ester phorbol 12-myristate 13-acetate (PMA) by Northern blot, using a specific mouse cDNA fragment. Treatment of the cells for 12 or 6 h with, respectively, 0.5 mM 8-CPT-cAMP or 1 microM PMA produced a maximal decrease of about 60% in HSL mRNA. These effects were unaffected by the protein-synthesis inhibitor anisomycin, suggesting that cAMP and PMA actions were direct. The reduction in HSL mRNA was accompanied by a reduction in HSL total activity. The intracellular routes that cAMP and PMA follow for inducing such an effect seemed clearly independent. (i) After desensitization of the protein kinase C regulation pathway by a 24 h treatment of the cells with 1 microM PMA, PMA action was abolished whereas cAMP was still fully active. (ii) Treatment with saturating concentrations of both agents produced an additive effect. (iii) The synthetic glucocorticoid dexamethasone had no proper effect on HSL gene expression but potentiated cAMP action without affecting PMA action. cAMP inhibitory action on HSL is unexpected. Indeed, the second messenger of catecholamines is the main activator of HSL by phosphorylation. We envision that a long-term cAMP treatment of adipocytes induces a counter-regulatory process that reduces HSL content and, ultimately, limits fatty acid depletion from stored triacylglycerols. PMID:8836156

  20. Comparative study of cell cycle kinetics and induction of apoptosis or necrosis after exposure of human Mono Mac 6 cells to radiofrequency radiation.

    PubMed

    Lantow, M; Viergutz, T; Weiss, D G; Simkó, M

    2006-09-01

    The possible harmful effects of radiofrequency electromagnetic fields (RF EMFs) are controversial. We have used human Mono Mac 6 cells to investigate the influence of RF EMFs in vitro on cell cycle alterations and BrdU uptake, as well as the induction of apoptosis and necrosis in human Mono Mac 6 cells, using flow cytometry after exposure to a 1,800 MHz, 2 W/kg specific absorption rate (SAR), GSM-DTX signal for 12 h. No statistically significant differences in the induction of apoptosis or necrosis, cell cycle kinetics, or BrdU uptake were detected after RF EMF exposure compared to sham or incubator controls. However, in the positive control cells treated with gliotoxin and PMA (phorbol 12 myristate-13 acetate), a significant increase in apoptotic and necrotic cells was seen. Cell cycle analysis or BrdU incorporation for 72 h showed no differences between RF EMF- or sham-exposed cells, whereas PMA treatment induced a significant accumulation of cells in G(0)/G(1)-phase and a reduction in S-phase cells. RF EMF radiation did not induce cell cycle alterations or changes in BrdU incorporation or induce apoptosis and necrosis in Mono Mac 6 cells under the exposure conditions used. PMID:16953672

  1. Pancreatic carcinogenesis: apoptosis and angiogenesis.

    PubMed

    Onizuka, Shinya; Kawakami, Shunsuke; Taniguchi, Ken; Fujioka, Hikaru; Miyashita, Kosei

    2004-04-01

    Apoptosis and angiogenesis are critical biologic processes that are altered during carcinogenesis. Both apoptosis and angiogenesis may play an important role in pancreatic carcinogenesis. Despite numerous advances in the diagnosis and treatment of pancreatic cancer, its prognosis remains dismal and a new therapeutic approach is much needed. Recent research has revealed that apoptosis and angiogenesis are closely interrelated. Several reports show that a tumor suppresser gene that is expressed in pancreatic carcinoma and related to malignant potential can induce apoptosis and also inhibit angiogenesis. At present, it is generally accepted that tumor growth in cancers, including pancreatic cancer, depends on angiogenesis. We have identified 2 new angiogenesis inhibitors from a conditioned medium of human pancreatic carcinoma cell line (BxPC-3): antiangiogenic antithrombin III (aaAT-III) and vitamin D binding protein-macrophage activating factor (DBP-maf). These molecules were able to regress tumors in severe combined immunodeficiency disease (SCID) mice, demonstrating potent inhibition of endothelial cell proliferation. Moreover, the angiogenesis inhibitors induced tumor dormancy in the animal model. These results suggest that antiangiogenic therapy using angiogenesis inhibitors may become a new strategy for treatment of pancreatic cancer in the near future. PMID:15084979

  2. Fluorescence Lifetime Imaging of Apoptosis

    PubMed Central

    Xiao, Annie; Gibbons, Anne E.; Luker, Kathryn E.; Luker, Gary D.

    2015-01-01

    Genetically-encoded fluorescence resonance energy transfer (FRET) reporters are powerful tools to analyze cell signaling and function at single cell resolution in standard two-dimensional cell cultures, but these reporters rarely have been applied to three-dimensional environments. FRET interactions between donor and acceptor molecules typically are determined by changes in relative fluorescence intensities, but wavelength-dependent differences in absorption of light complicate this analysis method in three-dimensional settings. Here we report fluorescence lifetime imaging microscopy (FLIM) with phasor analysis, a method that displays fluorescence lifetimes on a pixel-wise basis in real time, to quantify apoptosis in breast cancer cells stably expressing a genetically encoded FRET reporter. This microscopic imaging technology allowed us to identify treatment-induced apoptosis in single breast cancer cells in environments ranging from two-dimensional cell culture, spheroids with cancer and bone marrow stromal cells, and living mice with orthotopic human breast cancer xenografts. Using this imaging strategy, we showed that combined metabolic therapy targeting glycolysis and glutamine pathways significantly reduced overall breast cancer metabolism and induced apoptosis. We also determined that distinct subpopulations of bone marrow stromal cells control resistance of breast cancer cells to chemotherapy, suggesting heterogeneity of treatment responses of malignant cells in different bone marrow niches. Overall, this study establishes FLIM with phasor analysis as an imaging tool for apoptosis in cell-based assays and living mice, enabling real-time, cellular-level assessment of treatment efficacy and heterogeneity. PMID:26771007

  3. APOPTOSIS IN WHOLE MOUSE OVARIES

    EPA Science Inventory

    Apoptosis in Whole Mouse Ovaries
    Robert M. Zucker Susan C. Jeffay and Sally D. Perreault
    Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27711.

  4. Calmodulin antagonists induce platelet apoptosis.

    PubMed

    Wang, Zhicheng; Li, Suping; Shi, Quanwei; Yan, Rong; Liu, Guanglei; Dai, Kesheng

    2010-04-01

    Calmodulin (CaM) antagonists induce apoptosis in various tumor models and inhibit tumor cell invasion and metastasis, thus some of which have been extensively used as anti-cancer agents. In platelets, CaM has been found to bind directly to the cytoplasmic domains of several platelet receptors. Incubation of platelets with CaM antagonists impairs the receptors-related platelet functions. However, it is still unknown whether CaM antagonists induce platelet apoptosis. Here we show that CaM antagonists N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide (W7), tamoxifen (TMX), and trifluoperazine (TFP) induce apoptotic events in human platelets, including depolarization of mitochondrial inner transmembrane potential, caspase-3 activation, and phosphatidylserine exposure. CaM antagonists did not incur platelet activation as detected by P-selectin surface expression and PAC-1 binding. However, ADP-, botrocetin-, and alpha-thrombin-induced platelet aggregation, platelet adhesion and spreading on von Willebrand factor surface were significantly reduced in platelets pre-treated with CaM antagonists. Furthermore, cytosolic Ca(2+) levels were obviously elevated by both W7 and TMX, and membrane-permeable Ca(2+) chelator BAPTA-AM significantly reduced apoptotic events in platelets induced by W7. Therefore, these findings indicate that CaM antagonists induce platelet apoptosis. The elevation of the cytosolic Ca(2+) levels may be involved in the regulation of CaM antagonists-induced platelet apoptosis. PMID:20172594

  5. Sall2 is required for proapoptotic Noxa expression and genotoxic stress-induced apoptosis by doxorubicin

    PubMed Central

    Escobar, D; Hepp, M I; Farkas, C; Campos, T; Sodir, N M; Morales, M; Álvarez, C I; Swigart, L; Evan, G I; Gutiérrez, J L; Nishinakamura, R; Castro, A F; Pincheira, R

    2015-01-01

    The Sall2 transcription factor is deregulated in several cancers; however, little is known about its cellular functions, including its target genes. Recently, we demonstrated that p53 directly regulates Sall2 expression under genotoxic stress. Here, we investigated the role of Sall2 in the context of cellular response to genotoxic stress. In addition, we further examined the Sall2-p53 relationship during genotoxic stress in primary mouse embryo fibroblasts (MEFs), which are derived from Sall2 knockout mice separately, or in combination with the p53ERTAM knock-in mice. We found that the levels of Sall2 mRNA and protein are dynamically modulated in response to doxorubicin. At early times of stress, Sall2 is downregulated, but increases under extension of the stress in a p53-independent manner. Based on caspase-3/7 activities, expression of cleaved poly (ADP-ribose) polymerase, expression of cleaved caspase-3 and induction of proapoptotic proteins, Sall2 expression was correlated with cellular apoptosis. Consequently, Sall2−/− MEFs have decreased apoptosis, which relates with increased cell viability in response to doxorubicin. Importantly, Sall2 was required for apoptosis even in the presence of fully activated p53. Searching for putative Sall2 targets that could mediate its role in apoptosis, we identified proapoptotic NOXA/PMAIP1 (phorbol-12-myristate-13-acetate-induced protein 1). We demonstrated that Sall2 positively regulates Noxa promoter activity. Conserved putative Sall2-binding sites at the NOXA promoter were validated in vitro by electrophoretic mobility shift assay and in vivo by ChIP experiments, identifying NOXA as a novel Sall2 target. In agreement, induction of Noxa protein and mRNA in response to doxorubicin was significantly decreased in Sall2−/− MEFs. In addition, studies in leukemia Jurkat T cells support the existence of the Sall2/Noxa axis, and the significance of this axis on the apoptotic response to doxorubicin in cancer cells. Our

  6. 1,25-Dihydroxyvitamin D3 and 12-O-tetradecanoyl phorbol 13-acetate cause differential activation of Ca(2+)-dependent and Ca(2+)-independent isoforms of protein kinase C in rat colonocytes.

    PubMed Central

    Bissonnette, M; Wali, R K; Hartmann, S C; Niedziela, S M; Roy, H K; Tien, X Y; Sitrin, M D; Brasitus, T A

    1995-01-01

    Considerable evidence that alterations in protein kinase C (PKC) are intimately involved in important physiologic and pathologic processes in many cells, including colonic epithelial cells, has accumulated. In this regard, phorbol esters, a class of potent PKC activators, have been found to induce a number of cellular events in normal or transformed colonocytes. In addition, our laboratory has demonstrated that the major active metabolite of vitamin D3, 1,25(OH)2D3, also rapidly (seconds-minutes) activated PKC and increased intracellular calcium in isolated rat colonocytes. These acute responses, however, were lost in vitamin D deficiency and partially restored with the in vivo repletion of 1,25(OH)2D3. The Ca(2+)-independent or novel isoforms of PKC expressed in the rat colon and the isoform-specific responses of PKC to acute treatment with phorbol esters or 1,25(OH)2D3 have not been previously characterized. Moreover, the effects of vitamin D status on PKC isoform expression, distribution, and response to agonists are also unknown. In the present experiments, in addition to PKC-alpha, rat colonocytes were found to express the novel isoforms delta, epsilon, and zeta by Western blotting using isoform-specific PKC antibodies. The tumor-promoting phorbol ester, 12-O-tetradecanoyl phorbol 13-acetate, caused time- and concentration-dependent translocations of all these isoforms except PKC-zeta. In vitamin D deficiency, there were no alterations in colonic PKC isoform expression but significant changes in the subcellular distribution of PKC-alpha, -delta, and -zeta. Acute treatment of colonocytes from D-sufficient, but not D-deficient, rats with 1,25(OH)2D3 caused a rapid transient redistribution of only PKC-alpha from the soluble to the particulate fraction. The alterations in PKC isoform distribution and PKC-alpha responsiveness to 1,25(OH)2D3 in vitamin D deficiency were partially, but significantly, restored with 5-7 d in vivo repletion of this secosteroid. Both 12

  7. Effect of deoxycholic acid on Ca2+ movement, cell viability and apoptosis in human gastric cancer cells.

    PubMed

    Chien, Jau-Min; Chou, Chiang-Ting; Liang, Wei-Zhe; Cheng, Jin-Shiung; Chang, Hong-Tai; Tseng, Hui-Wen; Kuo, Soong-Yu; Kuo, Chun-Chi; Chen, Fu-An; Shieh, Pochuen; Ho, Chin-Man; Lin, Jia-Rong; Kuo, Daih-Huang; Jan, Chung-Ren

    2015-02-01

    Deoxycholic acid (DOA) is one of the secondary bile acids used as a mild detergent for the isolation of membrane associated proteins. This study examined whether the secondary bile acid, DOA, altered Ca(2+) movement, cell viability and apoptosis in SCM1 human gastric cancer cells. The Ca(2+)-sensitive fluorescent dye fura-2 was used to measure [Ca(2+)]i. DOA-evoked [Ca(2+)]i rises concentration dependently. The response was reduced by removing extracellular Ca(2+). DOA-evoked Ca(2+) entry was inhibited by store-operated Ca(2+) channel inhibitors (nifedipine, econazole and SKF96365), the protein kinase C (PKC) activator phorbol 12-myristate 13 acetate (PMA) and the PKC inhibitor GF109203X. In Ca(2+)-free medium, treatment with the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin (TG) abolished DOA-evoked [Ca(2+)]i rises. Conversely, treatment with DOA abolished TG-evoked [Ca(2+)]i rises. Inhibition of phospholipase C with U73122 abolished DOA-evoked [Ca(2+)]i rises. At 100-500 μM, DOA decreased cell viability, which was not changed by chelating cytosolic Ca(2+) with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA/AM). DOA between 100 and 300 μM also induced apoptosis. Collectively, in SCM1 cells, DOA-induced [Ca(2+)]i rises by evoking phospholipase C-dependent Ca(2+) release from the endoplasmic reticulum and Ca(2+) entry via store-operated Ca(2+) channels. DOA also caused Ca(2+)-independent apoptosis. PMID:25406855

  8. Pin1 in Neuronal Apoptosis

    PubMed Central

    Becker, Esther B.E.; Bonni, Azad

    2009-01-01

    While the role of the prolyl isomerase Pin1 in dividing cells has long been recognized, Pin1’s function in postmitotic neurons is poorly understood. We have identified a novel mechanism by which Pin1 mediates activation of the mitochondrial cell death machinery specifically in neurons. This perspective presents a sophisticated signaling pathway that triggers neuronal apoptosis upon JNK-mediated phosphorylation of the BH3-only protein BIMEL at serine 65. Pin1 is enriched at the mitochondria in neurons together with BIMEL and components of a neuron-specific JNK signaling complex and functions as a molecular switch that couples the phosphorylation of BIMEL by JNK to apoptosis specifically in neurons. We discuss how these findings relate to our understanding of the development of the nervous system and the pathogenesis of neurologic disorders. PMID:17568190

  9. Inhibitors of apoptosis catch ubiquitin.

    PubMed

    Rajalingam, Krishnaraj; Dikic, Ivan

    2009-01-01

    IAP (inhibitor of apoptosis) proteins are a class of anti-apoptotic regulators characterized by the presence of BIR (baculoviral IAP repeat) domains. Some of the IAPs also possess a RING (really interesting new gene) domain with E3 ubiquitin ligase activity. In this issue of the Biochemical Journal, Blankenship et al. unveil the presence of an UBA (ubiquitin-associated domain) in several IAPs. UBAs in c-IAPs (cellular IAPs) bind to monoubiquitin and ubiquitin chains and are implicated in degradation of c-IAPs by promoting their interaction with proteasomes as well as in regulation of TNF-alpha (tumour necrosis factor-alpha)-induced apoptosis. These novel observations establish IAPs as ubiquitin-interacting proteins and opens up new lines of investigation. PMID:19061481

  10. Apoptosis in irradiated murine tumors.

    PubMed

    Stephens, L C; Ang, K K; Schultheiss, T E; Milas, L; Meyn, R E

    1991-09-01

    Early radiation responses of transplantable murine ovarian (OCaI) and hepatocellular (HCaI) carcinomas were examined at 6, 24, 48, 96, and 144 h after single photon doses of 25, 35, or 45 Gy. Previous studies using tumor growth delay and tumor radiocurability assays had shown OCaI tumors to be relatively radiosensitive and HCaI tumors to be radioresistant. At 6 h, approximately 20% of nuclei in OCaI tumors showed aberrations characteristic of cell death by apoptosis. This contrasted to an incidence of 3% in HCaI tumors. Mitotic activity was eliminated in OCaI tumors but was only transiently suppressed in HCaI tumors. At 24-96 h, OCaI tumors continued to display apoptosis and progressive necrosis, whereas HCaI tumors responded by exhibiting marked pleomorphism. Factors other than mitotic activity may influence tumor radiosensitivity, and one of these may be susceptibility to induction of apoptosis (programmed cell death), because this was a prominent early radiation response by the radiosensitive OCaI tumors. PMID:1886987

  11. Ric-8A gene deletion or phorbol ester suppresses tumorigenesis in a mouse model of GNAQ(Q209L)-driven melanoma.

    PubMed

    Patel, B R; Tall, G G

    2016-01-01

    The heterotrimeric G protein α subunit oncogenes GNAQ or GNA11 carry Q209X or R183X activating mutations and are present with ~90% frequency in human uveal melanomas. Forced expression of GNAQ/11(Q209L) in melanocytes is sufficient to drive metastatic melanoma in immune-compromised mice. No known drugs directly target these oncogenic G proteins. Ric-8A is the molecular chaperone that selectively folds Gαq/i/13 subunits. Targeting Ric-8A serves as a rational, yet unexplored approach to reduce the functional abundance of oncogenic Gαq/11 in order to blunt cancer signaling. Here, using mouse melanocyte cell graft tumorigenesis models, we determined that Ric-8A genetic ablation attenuated the abundance and melanoma-driving potential of Gαq-Q209L. A new conditional Ric-8A(Flox/Flox); Rosa-CreER(+/)(-) mouse strain was derived and used as a tissue source to culture an immortalized, tamoxifen-inducible Ric-8A knockout melanocyte cell line that required 12-O-tetradecanoylphorbol-13-acetate (TPA, phorbol ester) for growth. The cell line failed to grow tumors when grafted into immune-compromised mice regardless of Ric-8A expression. Stable expression of human GNAQ(Q209L), but not GNAQ(WT) in the cell line promoted TPA-independent cell proliferation, and upon cell grafting in mice, the initiation and robust growth of darkly-pigmented melanoma tumors. Deletion of Ric-8A in GNAQ(Q209L) cells restored TPA-dependent growth, reduced Gαq-Q209L below detectable levels and completely mitigated tumorigenesis from primary or secondary cell line grafts. Interestingly, TPA treatment of cultured GNAQ(Q209L) cells or host animals grafted with GNAQ(Q209L) cells also sharply reduced Gαq-Q209L abundance and tumorigenic capacity. Finally, tumorigenesis initiated from GNAQ(Q209L) cell grafts, followed by host mouse systemic tamoxifen treatment to delete Ric-8A in the grafted cells completely abrogated GNAQ(Q209L)-driven tumor progression unless a stable human RIC-8A transgene was used to

  12. Ric-8A gene deletion or phorbol ester suppresses tumorigenesis in a mouse model of GNAQQ209L-driven melanoma

    PubMed Central

    Patel, B R; Tall, G G

    2016-01-01

    The heterotrimeric G protein α subunit oncogenes GNAQ or GNA11 carry Q209X or R183X activating mutations and are present with ~90% frequency in human uveal melanomas. Forced expression of GNAQ/11Q209L in melanocytes is sufficient to drive metastatic melanoma in immune-compromised mice. No known drugs directly target these oncogenic G proteins. Ric-8A is the molecular chaperone that selectively folds Gαq/i/13 subunits. Targeting Ric-8A serves as a rational, yet unexplored approach to reduce the functional abundance of oncogenic Gαq/11 in order to blunt cancer signaling. Here, using mouse melanocyte cell graft tumorigenesis models, we determined that Ric-8A genetic ablation attenuated the abundance and melanoma-driving potential of Gαq-Q209L. A new conditional Ric-8AFlox/Flox; Rosa-CreER+/− mouse strain was derived and used as a tissue source to culture an immortalized, tamoxifen-inducible Ric-8A knockout melanocyte cell line that required 12-O-tetradecanoylphorbol-13-acetate (TPA, phorbol ester) for growth. The cell line failed to grow tumors when grafted into immune-compromised mice regardless of Ric-8A expression. Stable expression of human GNAQQ209L, but not GNAQWT in the cell line promoted TPA-independent cell proliferation, and upon cell grafting in mice, the initiation and robust growth of darkly-pigmented melanoma tumors. Deletion of Ric-8A in GNAQQ209L cells restored TPA-dependent growth, reduced Gαq-Q209L below detectable levels and completely mitigated tumorigenesis from primary or secondary cell line grafts. Interestingly, TPA treatment of cultured GNAQQ209L cells or host animals grafted with GNAQQ209L cells also sharply reduced Gαq-Q209L abundance and tumorigenic capacity. Finally, tumorigenesis initiated from GNAQQ209L cell grafts, followed by host mouse systemic tamoxifen treatment to delete Ric-8A in the grafted cells completely abrogated GNAQQ209L-driven tumor progression unless a stable human RIC-8A transgene was used to rescue the floxed

  13. Site-specific anti-phosphopeptide antibodies: use in assessing insulin receptor serine/threonine phosphorylation state and identification of serine-1327 as a novel site of phorbol ester-induced phosphorylation.

    PubMed Central

    Coghlan, M P; Pillay, T S; Tavaré, J M; Siddle, K

    1994-01-01

    Rabbit antisera were raised against synthetic phosphopeptides corresponding to defined or putative sites of insulin receptor serine/threonine phosphorylation (Ser-1305, Ser-1327, Thr-1348). All of these antibodies bound specifically to the immunogenic phosphopeptide but not to the non-phosphorylated form of the peptide or to other phosphopeptides, in a microtitre plate competition enzyme-linked immunosorbent assay. Anti-PS1327 antibody reacted well with native insulin receptor prepared from phorbol ester-treated transfected CHO.T cells, but showed little reaction with receptor from untreated cells. Anti-PT1348 antibody in crude form reacted substantially with receptor from both phorbol 12-myristate 13-acetate-treated and untreated cells, but displayed specificity for phosphoreceptor after adsorption to remove antibodies reactive with dephosphopeptide. The ability to discriminate between receptor from cells treated with or without phorbol ester was retained when these antibodies were used to probe denatured receptor on Western blots. Thus anti-PS1327 and anti-PT1348 react with insulin receptor in a site-specific and phosphorylation-state-dependent manner. Anti-PT1348, but not anti-PS1327, also showed increased reactivity with receptor prepared from insulin-treated cells. The third antibody, anti-PS1305, did not react with intact insulin receptor under any conditions. It is concluded that serine 1327 is a major, previously unrecognized, site of phorbol ester-induced receptor phosphorylation, and that anti-phosphopeptide antibodies will be valuable reagents with which to examine the serine/threonine phosphorylation state of receptor extracted from tissues. Images Figure 3 Figure 4 PMID:7980459

  14. Identification of cis-acting sequences responsible for phorbol ester induction of human serum amyloid A gene expression via a nuclear factor kB-like transcription factor

    SciTech Connect

    Edbrooke, M.R.; Cheshire, J.K.; Woo, P.; Burt, B.W.

    1989-05-01

    The authors have analyzed the 5'-flanking region of one of the genes coding for the human acute-phase protein, serum amyloid A (SAA). They found that SAA mRNA could be increased fivefold in transfected cells by treatment with phorbol 12-myristate 13-acetate (PMA). To analyze this observation further, they placed a 265-base-pair 5' SAA fragment upstream of the reporter chloramphenicol acetyltransferase (CAT) gene and transfected this construct into HeLa cells. PMA treatment of these transient transfectants resulted in increased CAT expression. Nuclear proteins from PMA-treated HeLa cells bound to this DNA fragment, and methylation interference analysis showed that the binding was specific to the sequence GGGACTTTCC (between -82 and -91), a sequence previously described by others as the binding site for the nuclear factor NF/kappa/B. In a cotransfection competition experiment, they could abolish PMA-induced CAT activity by using cloned human immunodeficiency virus long-terminal-repeat DNA containing the NF/kappa/B-binding sequence. The same long-terminal-repeat DNA containing mutant NF/kappa/B-binding sequences did not affect CAT expression, which suggested that binding by an NF/kappa/B-like factor is required for increased SAA transcription.

  15. Phorbol ester-mediated re-expression of endogenous LAT adapter in J.CaM2 cells: a model for dissecting drivers and blockers of LAT transcription.

    PubMed

    Marek-Bukowiec, K; Aguado, E; Miazek, A

    2016-07-01

    Linker for activation of T cells (LAT) is a raft-associated, transmembrane adapter protein critical for T-cell development and function. LAT expression is transiently upregulated upon T-cell receptor (TCR) engagement, but molecular mechanisms conveying TCR signaling to enhanced LAT transcription are not fully understood. Here we found that a Jurkat subline J.CaM2, initially characterized as LAT deficient, conditionally re-expressed LAT upon the treatment with a protein kinase C activator, phorbol 12-myristate 13-acetate (PMA). We took advantage of the above observation for studying cis-elements and trans-acting factors contributing to the activation-induced expression of LAT. We identified a LAT gene region spanning nucleotide position -14 to +357 relative to the ATG start codon as containing novel cis-regulatory elements that were able to promote PMA-induced reporter transcription in the absence of the core LAT promoter. Interestingly, a point mutation in LAT intron 1, identified in J.CaM2 cells, downmodulated LAT promoter activity by 50%. Mithramycin A, a selective Sp1 DNA-binding inhibitor, abolished LAT expression upon PMA treatment as did calcium ionophore ionomycin (Iono) and valproic acid (VPA), widely used as an anti-epileptic drug. Our data introduce J.CaM2 cells as a model for dissecting drivers and blockers of activation induced expression of LAT. PMID:27278128

  16. Distribution of Spinal Sensitization Evoked by Inflammatory Pain Using Local Spinal Cord Glucose Utilization Combined with 3H-Phorbol 12,13-Dibutyrate Binding in Rats

    PubMed Central

    Seiko, Yasuda; Kozo, Ishikawa; Yoshihiro, Matsumoto; Toru, Ariyoshi; Hironori, Sasaki; Yuika, Ida; Yasutake, Iwanaga; Hae-Kyu, Kim; Osamu, Nakanishi; Toshizo, Ishikawa

    2013-01-01

    Aims. Hyperalgesia following tissue injury is induced by plasticity in neurotransmission. Few investigators have considered the ascending input which activates the superficial of spinal cord. The aim was to examine neurotransmission and nociceptive processing in the spinal cord after mustard-oil (MO) injection. Both in vitro and in vivo autoradiographs were employed for neuronal activity and transmission in discrete spinal cord regions using the 14C-2-deoxyglucose method and 3H-phorbol 12,13-dibutyrate (3H-PDBu) binding sites. Methods. To quantify the hyperalgesia evoked by MO, the flinching was counted for 60 min after MO (20%, 50 μL) injection in Wistar rats. Simultaneous determination of 14C-2-deoxyglucose and 3H-PDBu binding was used for a direct observation of neuronal/metabolic changes and intracellular signaling in the spinal cord. Results. MO injection evoked an increase in flinching for 60 min. LSCGU significantly increased in the Rexed I-II with 3H-PDBu binding in the ipsilateral side of spinal cord. Discussion. We clearly demonstrated that the hyperalgesia is primarily relevant to increased neuronal activation with PKC activation in the Rexed I-II of the spinal cord. In addition, functional changes such as “neuronal plasticity” may result in increased neuronal excitability and a central sensitization. PMID:27335874

  17. A Metabolic Shift toward Pentose Phosphate Pathway Is Necessary for Amyloid Fibril- and Phorbol 12-Myristate 13-Acetate-induced Neutrophil Extracellular Trap (NET) Formation*

    PubMed Central

    Azevedo, Estefania P.; Rochael, Natalia C.; Guimarães-Costa, Anderson B.; de Souza-Vieira, Thiago S.; Ganilho, Juliana; Saraiva, Elvira M.; Palhano, Fernando L.; Foguel, Debora

    2015-01-01

    Neutrophils are the main defense cells of the innate immune system. Upon stimulation, neutrophils release their chromosomal DNA to trap and kill microorganisms and inhibit their dissemination. These chromatin traps are termed neutrophil extracellular traps (NETs) and are decorated with granular and cytoplasm proteins. NET release can be induced by several microorganism membrane components, phorbol 12-myristate 13-acetate as well as by amyloid fibrils, insoluble proteinaceous molecules associated with more than 40 different pathologies among other stimuli. The intracellular signaling involved in NET formation is complex and remains unclear for most tested stimuli. Herein we demonstrate that a metabolic shift toward the pentose phosphate pathway (PPP) is necessary for NET release because glucose-6-phosphate dehydrogenase (G6PD), an important enzyme from PPP, fuels NADPH oxidase with NADPH to produce superoxide and thus induce NETs. In addition, we observed that mitochondrial reactive oxygen species, which are NADPH-independent, are not effective in producing NETs. These data shed new light on how the PPP and glucose metabolism contributes to NET formation. PMID:26198639

  18. Optimization of chemical induction conditions for human herpesvirus 8 (HHV-8) reactivation with 12-O-tetradecanoyl-phorbol-13-acetate (TPA) from latently-infected BC-3 cells.

    PubMed

    Ma, Wenbin; Galvin, Teresa A; Ma, Hailun; Ma, Yunkun; Muller, Jacqueline; Khan, Arifa S

    2011-05-01

    Human herpesvirus 8 (HHV-8) persists as episomal DNA in latently-infected cells and can establish two alternative life cycles, latent or lytic. 12-O-tetradecanoyl-phorbol-13-acetate (TPA) is a known inducer of HHV-8 in several human primary effusion lymphoma cell lines and has been widely used for HHV-8 reactivation; however, induction conditions have differed, resulting in varying levels of virus expression. We have used HHV-8 latently-infected BC-3 cells as a model to determine critical parameters for optimizing virus reactivation by TPA. We found that cell growth properties and drug treatment conditions were important for maximum reactivation of HHV-8. Addition of TPA to cells in the early log phase of a sigmoidal growth curve, which was tightly associated with high percentage of the cells in early S phase and with lower histone deacetylase activity in the cells, provided the optimum cell conditions for latent virus to switch to lytic replication. Furthermore, increasing TPA concentration (up to 320 ng per ml) at 48 h exposure time resulted in increased virus production. The results demonstrate the use of a step-wise strategy with chemical induction that may facilitate broad detection of latent DNA viruses and novel virus discovery. PMID:21470875

  19. Phorbol ester-mediated re-expression of endogenous LAT adapter in J.CaM2 cells: a model for dissecting drivers and blockers of LAT transcription

    PubMed Central

    Marek-Bukowiec, K; Aguado, E; Miazek, A

    2016-01-01

    Linker for activation of T cells (LAT) is a raft-associated, transmembrane adapter protein critical for T-cell development and function. LAT expression is transiently upregulated upon T-cell receptor (TCR) engagement, but molecular mechanisms conveying TCR signaling to enhanced LAT transcription are not fully understood. Here we found that a Jurkat subline J.CaM2, initially characterized as LAT deficient, conditionally re-expressed LAT upon the treatment with a protein kinase C activator, phorbol 12-myristate 13-acetate (PMA). We took advantage of the above observation for studying cis-elements and trans-acting factors contributing to the activation-induced expression of LAT. We identified a LAT gene region spanning nucleotide position −14 to +357 relative to the ATG start codon as containing novel cis-regulatory elements that were able to promote PMA-induced reporter transcription in the absence of the core LAT promoter. Interestingly, a point mutation in LAT intron 1, identified in J.CaM2 cells, downmodulated LAT promoter activity by 50%. Mithramycin A, a selective Sp1 DNA-binding inhibitor, abolished LAT expression upon PMA treatment as did calcium ionophore ionomycin (Iono) and valproic acid (VPA), widely used as an anti-epileptic drug. Our data introduce J.CaM2 cells as a model for dissecting drivers and blockers of activation induced expression of LAT. PMID:27278128

  20. A Metabolic Shift toward Pentose Phosphate Pathway Is Necessary for Amyloid Fibril- and Phorbol 12-Myristate 13-Acetate-induced Neutrophil Extracellular Trap (NET) Formation.

    PubMed

    Azevedo, Estefania P; Rochael, Natalia C; Guimarães-Costa, Anderson B; de Souza-Vieira, Thiago S; Ganilho, Juliana; Saraiva, Elvira M; Palhano, Fernando L; Foguel, Debora

    2015-09-01

    Neutrophils are the main defense cells of the innate immune system. Upon stimulation, neutrophils release their chromosomal DNA to trap and kill microorganisms and inhibit their dissemination. These chromatin traps are termed neutrophil extracellular traps (NETs) and are decorated with granular and cytoplasm proteins. NET release can be induced by several microorganism membrane components, phorbol 12-myristate 13-acetate as well as by amyloid fibrils, insoluble proteinaceous molecules associated with more than 40 different pathologies among other stimuli. The intracellular signaling involved in NET formation is complex and remains unclear for most tested stimuli. Herein we demonstrate that a metabolic shift toward the pentose phosphate pathway (PPP) is necessary for NET release because glucose-6-phosphate dehydrogenase (G6PD), an important enzyme from PPP, fuels NADPH oxidase with NADPH to produce superoxide and thus induce NETs. In addition, we observed that mitochondrial reactive oxygen species, which are NADPH-independent, are not effective in producing NETs. These data shed new light on how the PPP and glucose metabolism contributes to NET formation. PMID:26198639

  1. Granulocytes and phorbol myristate acetate increase permeability to albumin of cultured endothelial monolayers and isolated perfused lungs. Role of oxygen radicals and granulocyte adherence.

    PubMed

    Shasby, D M; Shasby, S S; Peach, M J

    1983-01-01

    Human granulocytes and phorbol myristate acetate (PMA) increased permeability to albumin of monolayers of cultured endothelial cells grown on micropore filters. Granulocytes from a patient with chronic granulomatous disease and PMA did not increase endothelial permeability to albumin, demonstrating that the increase in permeability is dependent on granulocyte-derived oxygen radicals. When granulocytes were separated from the endothelial cells by a micropore filter, granulocytes and PMA no longer increased endothelial permeability to albumin, demonstrating that PMA-stimulated granulocytes must be closely approximated to endothelial cells to increase endothelial permeability. The relevance of these in vitro findings to an intact microvasculature was confirmed by demonstrating that agents that reduce granulocyte adherence to endothelium reduce edema formed in isolated lungs by granulocytes and PMA, an oxygen radical dependent process. Pretreatment of granulocytes with cytochalasin B or addition of 2% dextran to isolated lung perfusates reduced granulocyte adherence and markedly reduced edema formation in isolated lungs. These studies demonstrate that PMA-stimulated granulocytes must be closely apposed to endothelial cells to increase endothelial permeability through an oxygen-radical-dependent mechanism, and they suggest that reduction of granulocyte adherence may protect against granulocyte-dependent edema. PMID:6849554

  2. Optogenetic apoptosis: light-triggered cell death.

    PubMed

    Hughes, Robert M; Freeman, David J; Lamb, Kelsey N; Pollet, Rebecca M; Smith, Weston J; Lawrence, David S

    2015-10-01

    An optogenetic Bax has been designed that facilitates light-induced apoptosis. We demonstrate that mitochondrial recruitment of a genetically encoded light-responsive Bax results in the release of mitochondrial proteins, downstream caspase-3 cleavage, changes in cellular morphology, and ultimately cell death. Mutagenesis of a key phosphorylatable residue or modification of the C-terminus mitigates background (dark) levels of apoptosis that result from Bax overexpression. The mechanism of optogenetic Bax-mediated apoptosis was explored using a series of small molecules known to interfere with various steps in programmed cell death. Optogenetic Bax appears to form a mitochondrial apoptosis-induced channel analogous to that of endogenous Bax. PMID:26418181

  3. Apoptosis and Molecular Targeting Therapy in Cancer

    PubMed Central

    Hassan, Mohamed; Watari, Hidemichi; AbuAlmaaty, Ali; Ohba, Yusuke; Sakuragi, Noriaki

    2014-01-01

    Apoptosis is the programmed cell death which maintains the healthy survival/death balance in metazoan cells. Defect in apoptosis can cause cancer or autoimmunity, while enhanced apoptosis may cause degenerative diseases. The apoptotic signals contribute into safeguarding the genomic integrity while defective apoptosis may promote carcinogenesis. The apoptotic signals are complicated and they are regulated at several levels. The signals of carcinogenesis modulate the central control points of the apoptotic pathways, including inhibitor of apoptosis (IAP) proteins and FLICE-inhibitory protein (c-FLIP). The tumor cells may use some of several molecular mechanisms to suppress apoptosis and acquire resistance to apoptotic agents, for example, by the expression of antiapoptotic proteins such as Bcl-2 or by the downregulation or mutation of proapoptotic proteins such as BAX. In this review, we provide the main regulatory molecules that govern the main basic mechanisms, extrinsic and intrinsic, of apoptosis in normal cells. We discuss how carcinogenesis could be developed via defective apoptotic pathways or their convergence. We listed some molecules which could be targeted to stimulate apoptosis in different cancers. Together, we briefly discuss the development of some promising cancer treatment strategies which target apoptotic inhibitors including Bcl-2 family proteins, IAPs, and c-FLIP for apoptosis induction. PMID:25013758

  4. Death-Defining Immune Responses After Apoptosis

    PubMed Central

    Campisi, L.; Cummings, R. J.; Blander, J. Magarian

    2014-01-01

    Apoptosis is a programmed form of cell death whereby characteristic internal cellular dismantling is accompanied by the preservation of plasma membrane integrity. Maintaining this order during apoptosis prevents the release of cellular contents and ensures a noninflammatory death. Here, we consider examples of apoptosis in different contexts and discuss how the same form of cell death could have different immunological consequences. Multiple parameters such as cell death as a result of microbial infection, the nature of the inflammatory microenvironment, the type of responding phagocytic cells and the genetic background of the host organism all differentially influence the immunological consequences of apoptosis. PMID:24903539

  5. Sphingosine 1-phosphate inhibits activation of caspases that cleave poly(ADP-ribose) polymerase and lamins during Fas- and ceramide-mediated apoptosis in Jurkat T lymphocytes.

    PubMed

    Cuvillier, O; Rosenthal, D S; Smulson, M E; Spiegel, S

    1998-01-30

    Ceramide, a sphingolipid generated by the hydrolysis of membrane-associated sphingomyelin, appears to play a role as a gauge of apoptosis. A further metabolite of ceramide, sphingosine 1-phosphate (SPP), prevents ceramide-mediated apoptosis, and it has been suggested that the balance between intracellular ceramide and SPP levels may determine the cell fate (Cuvillier, O., Pirianov, G, Kleuser, B., Vanek, P. G., Coso, O. A., Gutkind, J. S., and Spiegel, S. (1996) Nature 381, 800-803). Here, we investigated the role of SPP and the protein kinase C activator, phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA), in the caspase cascade leading to the proteolysis of poly(ADP-ribose) polymerase (PARP) and lamins. In Jurkat T cells, Fas ligation or addition of exogenous C2-ceramide induced activations of caspase-3/CPP32 and caspase-7/Mch3 followed by PARP cleavage, effects that can be blocked either by SPP or TPA. Furthermore, both SPP and TPA inhibit the activation of caspase-6/Mch2 and subsequent lamin B cleavage. Ceramide, in contrast to Fas ligation, did not induce activation of caspase-8/FLICE and neither SPP nor TPA were able to prevent this activation. Thus, SPP, likely generated via protein kinase C-mediated activation of sphingosine kinase, suppresses the apoptotic pathway downstream of FLICE but upstream of the executioner caspases, caspase-3, -6, and -7. PMID:9446602

  6. Sphingosine 1-phosphate antagonizes apoptosis of human leukemia cells by inhibiting release of cytochrome c and Smac/DIABLO from mitochondria.

    PubMed

    Cuvillier, O; Levade, T

    2001-11-01

    Sphingosine 1-phosphate (S-1P) has been implicated as a second messenger preventing apoptosis by counteracting activation of executioner caspases. Here it is reported that S-1P prevents apoptosis and executioner caspase-3 activation by inhibiting the translocation of cytochrome c and Smac/DIABLO from mitochondria to the cytosol induced by anti-Fas, tumor necrosis factor-alpha (TNF-alpha), serum deprivation, and cell-permeable ceramides in the human acute leukemia Jurkat, U937, and HL-60 cell lines. Furthermore, the tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate, which stimulates sphingosine kinase, the enzyme responsible for S-1P production, also inhibits cytochrome c and Smac/DIABLO release. In contrast, dimethylsphingosine (DMS), a specific inhibitor of sphingosine kinase, sensitizes cells to cytochrome c and Smac/DIABLO release triggered by anti-Fas, TNF-alpha, serum deprivation, or ceramide. DMS-induced mitochondrial apoptogenic factor leakage can likewise be overcome by S-1P cotreatment. Hence, S-1P, likely generated through a protein kinase C- mediated activation of sphingosine kinase, inhibits the apoptotic cascade upstream of the release of the mitochondrial apoptogenic factors, cytochrome c, and Smac/DIABLO in human acute leukemia cells. PMID:11675357

  7. Poly-γ-Glutamic Acid Induces Apoptosis via Reduction of COX-2 Expression in TPA-Induced HT-29 Human Colorectal Cancer Cells

    PubMed Central

    Shin, Eun Ju; Sung, Mi Jeong; Park, Jae Ho; Yang, Hye Jeong; Kim, Myung Sunny; Hur, Haeng Jeon; Hwang, Jin-Taek

    2015-01-01

    Poly-γ-glutamic acid (PGA) is one of the bioactive compounds found in cheonggukjang, a fast-fermented soybean paste widely utilized in Korean cooking. PGA is reported to have a number of beneficial health effects, and interestingly, it has been identified as a possible anti-cancer compound through its ability to promote apoptosis in cancer cells, although the precise molecular mechanisms remain unclear. Our findings demonstrate that PGA inhibits the pro-proliferative functions of the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA), a known chemical carcinogen in HT-29 human colorectal cancer cells. This inhibition was accompanied by hallmark apoptotic phenotypes, including DNA fragmentation and the cleavage of poly (ADP-ribose) polymerase (PARP) and caspase 3. In addition, PGA treatment reduced the expression of genes known to be overexpressed in colorectal cancer cells, including cyclooxygenase 2 (COX-2) and inducible nitric oxide synthase (iNOS). Lastly, PGA promoted activation of 5' adenosine monophosphate-activated protein (AMPK) in HT-29 cells. Taken together, our results suggest that PGA treatment enhances apoptosis in colorectal cancer cells, in part by modulating the activity of the COX-2 and AMPK signaling pathways. These anti-cancer functions of PGA make it a promising compound for future study. PMID:25854428

  8. Therapeutic approaches to the modulation of apoptosis.

    PubMed

    Murphy, Finbarr J; Seery, Liam T; Hayes, Ian

    2003-01-01

    The appreciation of the role of apoptosis in the vast majority of diseases affecting humans has revolutionized the discovery and development of drugs targeting inflammation and oncology. Novel therapeutic approaches to modulate disease by regulating apoptosis are currently being tested in preclinical and clinical settings. Enthusiasm for some of these therapies is reflected in the fact that they have received U.S. Food and Drug Administration approval in record time. Approaches include the traditional use of small molecules to target specific players in the apoptosis cascade. They also include radical new approaches such as using antisense molecules to inhibit production of the Bcl-2 protein or antibodies that ligate either death receptors, such as TRAIL (tumour necrosis factor-related apoptosis-inducing ligand), or the MHC (HLA-DR), resulting in the initiation of apoptosis of target cells. Antibodies targeting cell-specific antigens are being used in conjunction with radioactive isotopes to deliver a more specific chemotherapy, particularly in the case of B-cell lymphomas. Other therapies target mitochondria, a key organelle in the apoptosis cascade. This diverse range of therapies includes photodynamic therapy, retinoic acid and arsenic trioxide, all of which induce apoptosis by generating reactive oxygen species. As our understanding of apoptosis increases, further opportunities will arise for tailor-made therapies that will result in improved clinical outcome without the devastating side effects of current interventions. PMID:14585079

  9. CHCHD2 connects mitochondrial metabolism to apoptosis

    PubMed Central

    Liu, Yong; Zhang, Yanping

    2015-01-01

    As the powerhouse of cells and gatekeeper for apoptosis, mitochondria control life and death. CHCHD2, a mitochondrial protein previously known to regulate metabolism, has recently been identified as an apoptosis inhibitor. New data suggest a model in which CHCHD2 performs a prosurvival function by acting as both a reactive oxygen species scavenger and BCL-XL activator. PMID:27308501

  10. Apoptosis in mammalian oocytes: a review.

    PubMed

    Tiwari, Meenakshi; Prasad, Shilpa; Tripathi, Anima; Pandey, Ashutosh N; Ali, Irfan; Singh, Arvind K; Shrivastav, Tulsidas G; Chaube, Shail K

    2015-08-01

    Apoptosis causes elimination of more than 99% of germ cells from cohort of ovary through follicular atresia. Less than 1% of germ cells, which are culminated in oocytes further undergo apoptosis during last phases of oogenesis and depletes ovarian reserve in most of the mammalian species including human. There are several players that induce apoptosis directly or indirectly in oocytes at various stages of meiotic cell cycle. Premature removal of encircling granulosa cells from immature oocytes, reduced levels of adenosine 3',5'-cyclic monophosphate and guanosine 3',5'-cyclic monophosphate, increased levels of calcium (Ca(2+)) and oxidants, sustained reduced level of maturation promoting factor, depletion of survival factors, nutrients and cell cycle proteins, reduced meiotic competency, increased levels of proapoptotic as well as apoptotic factors lead to oocyte apoptosis. The BH3-only proteins also act as key regulators of apoptosis in oocyte within the ovary. Both intrinsic (mitochondria-mediated) as well as extrinsic (cell surface death receptor-mediated) pathways are involved in oocyte apoptosis. BID, a BH3-only protein act as a bridge between both apoptotic pathways and its cleavage activates cell death machinery of both the pathways inside the follicular microenvironment. Oocyte apoptosis leads to the depletion of ovarian reserve that directly affects reproductive outcome of various mammals including human. In this review article, we highlight some of the important players and describe the pathways involved during oocyte apoptosis in mammals. PMID:25958165

  11. THE ROLE OF APOPTOSIS IN NEUROTOXICOLOGY.

    EPA Science Inventory

    The role of apoptosis in neurodegeneration in developing animals and in adults has become increasingly apparent in the past ten years. Normal apoptosis occurs in the CNS from the embryonic stage through senescence, with different cells in each region of the nervous system having ...

  12. Apoptosis inducers in chronic lymphocytic leukemia

    PubMed Central

    Billard, Christian

    2014-01-01

    Chronic lymphocytic leukemia (CLL) is characterized by a typical defect in apoptosis and is still an incurable disease. Numerous apoptosis inducers have been described. These synthetic compounds and natural products (mainly derived from plants) display antileukemic properties in vitro and in vivo and some have even been tested in the clinic in CLL. They act through several different mechanisms. Most of them involve proteins of the Bcl-2 family, which are the key regulators in triggering the mitochondrial pathway of caspase-dependent apoptosis. Thus, the Mcl-1/Noxa axis appeared as a target. Here I overview natural and synthetic apoptosis inducers and their mechanisms of action in CLL cells. Opportunities for developing novel, apoptosis-based therapeutics are presented. PMID:24525395

  13. Analysis of apoptosis in Caenorhabditis elegans.

    PubMed

    Lant, Benjamin; Derry, W Brent

    2014-05-01

    The nematode worm Caenorhabditis elegans has provided researchers with a wealth of information on the molecular mechanisms controlling programmed cell death (apoptosis). Its genetic tractability, optical clarity, and relatively short lifespan are key advantages for rapid assessment of apoptosis in vivo. The use of forward and reverse genetics methodology, coupled with in vivo imaging, has provided deep insights into how a multicellular organism orchestrates the self-destruction of specific cells during development and in response to exogenous stresses. Strains of C. elegans carrying mutations in the core elements of the apoptotic pathway, or in tissue-specific regulators of apoptosis, can be used for genetic analyses to reveal conserved mechanisms by which apoptosis is regulated in the somatic and reproductive (germline) tissue. Here we present an introduction to the study of apoptosis in C. elegans, including current techniques for visualization, analysis, and screening. PMID:24786497

  14. Induction of apoptosis by Shiga toxins

    PubMed Central

    Tesh, Vernon L

    2010-01-01

    Shiga toxins comprise a family of structurally and functionally related protein toxins expressed by Shigella dysenteriae serotype 1 and multiple serotypes of Escherichia coli. While the capacity of Shiga toxins to inhibit protein synthesis by catalytic inactivation of eukaryotic ribosomes has been well described, it is also apparent that Shiga toxins trigger apoptosis in many cell types. This review presents evidence that Shiga toxins induce apoptosis of epithelial, endothelial, leukocytic, lymphoid and neuronal cells. Apoptotic signaling pathways activated by the toxins are reviewed with an emphasis on signaling mechanisms that are shared among different cell types. Data suggesting that Shiga toxins induce apoptosis through the endoplasmic reticulum stress response and clinical evidence demonstrating apoptosis in humans infected with Shiga toxin-producing bacteria are briefly discussed. The potential for use of Shiga toxins to induce apoptosis in cancer cells is briefly reviewed. PMID:20210553

  15. Distinct PKC isoforms mediate the activation of cPLA2 and adenylyl cyclase by phorbol ester in RAW264.7 macrophages

    PubMed Central

    Lin, Wan-W; Chen, Bin C

    1998-01-01

    The modulatory effects of protein kinase C (PKC) on the activation of cytosolic phospholipase A2 (cPLA2) and adenylyl cyclase (AC) have recently been described. Since the signalling cascades associated with these events play critical roles in various functions of macrophages, we set out to investigate the crosstalk between PKC and the cPLA2 and AC pathways in mouse RAW 264.7 macrophages and to determine the involvement of individual PKC isoforms. The cPLA2 and AC pathways were studied by measuring the potentiation by the phorbol ester PMA of ionomycin-induced arachidonic acid (AA) release and prostagladin E1 (PGE1)-stimulated cyclic AMP production, respectively.PMA at 1 μM caused a significant increase in AA release both in the presence (371%) and absence (67%) of ionomycin induction, while exposure of RAW 264.7 cells to PMA increased PGE1 stimulation of cyclic AMP levels by 208%.Treatment of cells with staurosporine and Ro 31-8220 inhibited the PMA-induced potentiation of both AA release and cyclic AMP accumulation, while Go 6976 (an inhibitor of classical PKC isoforms) and LY 379196 (a specific inhibitor of PKCβ) inhibited the AA response but failed to affect the enhancement of the cyclic AMP response by PMA.Long term pretreatment of cells with PMA abolished the subsequent effect of PMA in potentiating AA release, but only inhibited the cyclic AMP response by 42%.Neither PD 98059, an inhibitor of MEK, nor genistein, an inhibitor of tyrosine kinases, had any effect on the ability of PMA to potentiate AA or cyclic AMP production.The potentiation of AA release, but not of cyclic AMP formation, by PMA was sensitive to inhibition by wortmannin. This effect was unrelated to the inhibition of PKC activation as deduced from the translocation of PKC activity to the cell membrane.Western blot analysis revealed the presence of eight PKC isoforms (α, βI, βII, δ, ε, μ λ and ξ) in RAW 264.7 cells and PMA was shown to induce the translocation of the α, βI, βII,

  16. Lymphocyte apoptosis in murine Pneumocystis pneumonia

    PubMed Central

    Shi, Xin; LeCapitaine, Nicole J; Rudner, Xiaowen L; Ruan, Sanbao; Shellito, Judd E

    2009-01-01

    Background Apoptosis of lymphocytes is important in the termination of an immune response to infection but has also been shown to have detrimental effects in animal models of systemic infection and sepsis. We sought to characterize lymphocyte apoptosis in an animal model of pneumonia due to Pneumocystis murina, an infection localized to the lungs. Methods Control mice and mice depleted of CD4+ lymphocytes were inoculated with Pneumocystis. Apoptosis of lung and spleen lymphocytes was assayed by flow cytometry and PCR assay of apoptotic proteins. Results In control mice, apoptosis of lung lymphocytes was maximal just after the infection was cleared from lung tissue and then declined. However, in CD4-depleted mice, apoptosis was also upregulated in recruited lymphocytes in spite of progressive infection. In splenic lymphocytes, apoptosis was observed early at 1 week after inoculation and then declined. Apoptosis of lung lymphocytes in control mice was associated with a decrease in mRNA for Bcl-2 and an increase in mRNA for Bim. In CD4-depleted mice, lavaged CD8+ cells did change intracellular Bcl-2 but showed increased mRNA for Bim. Conclusion Apoptosis of both pulmonary and extrapulmonary lymphocytes is part of the normal host response to Pneumocystis but is also triggered in CD4-deficient animals with progressive infection. In normal mice apoptosis of pulmonary lymphocytes may serve to terminate the immune response in lung tissue. Apoptosis of lung lymphocytes takes place via both the intrinsic and extrinsic apoptotic pathways and is associated with changes in both pro- and anti-apoptotic proteins. PMID:19558669

  17. Transcriptional and post‐transcriptional regulation of monocyte chemoattractant protein‐3 gene expression in human endothelial cells by phorbol ester and cAMP signalling

    PubMed Central

    Kondo, A; Isaji, S; Nishimura, Y; Tanaka, T

    2000-01-01

    Monocyte chemoattractant protein‐3 (MCP‐3) is one of the most broadly active chemokines, potentially inducing chemotaxis of all leucocytic cells. In the present study, we examined the regulation of MCP‐3 mRNA and protein production in endothelial cells by protein kinase C (PKC) activator, phorbol 12‐myristate 13‐acetate (PMA) and cAMP signalling. On stimulation of endothelial cells with 10 nm PMA, MCP‐3 mRNA increased to 300‐fold the basal level at 3 hr and rapidly declined to 0·2‐fold the basal level at 24 hr. PMA‐induced MCP‐3 mRNA and protein production of human endothelial cells were partially inhibited by pretreatment with the adenylate cyclase activator, forskolin, or membrane‐permeable cAMP derivative. The PMA‐induced MCP‐3 mRNA increase was almost abrogated when cells were pretreated with cycloheximide (CHX). Forskolin inhibited the transcription of PMA‐induced MCP‐3 gene expression. Following PMA stimulation for 3 hr, subsequent addition of actinomycin D suppressed the rapid decay of PMA‐induced MCP‐3 mRNA. These results suggest that PMA induces the transcriptional activation of the MCP‐3 gene through de novo protein synthesis and the rapid decay of PMA‐induced MCP‐3 mRNA through de novo synthesis of adenosine/uridine (AU)‐rich element binding proteins and cAMP signalling inhibits the PMA‐induced transcriptional activation of the MCP‐3 gene expression. PMID:10792504

  18. Antioxidant and antiradical activities of Manihot esculenta Crantz (Euphorbiaceae) leaves and other selected tropical green vegetables investigated on lipoperoxidation and phorbol-12-myristate-13-acetate (PMA) activated monocytes.

    PubMed

    Tsumbu, Cesar N; Deby-Dupont, Ginette; Tits, Monique; Angenot, Luc; Franck, Thierry; Serteyn, Didier; Mouithys-Mickalad, Ange

    2011-09-01

    Abelmoschus esculentus (Malvaceae), Hibiscus acetosella (Malvaceae), Manihot esculenta Crantz (Euphorbiaceae) and Pteridium aquilinum (Dennstaedtiaceae) leaves are currently consumed as vegetables by migrants from sub-Saharan Africa living in Western Europe and by the people in the origin countries, where these plants are also used in the folk medicine. Manihot leaves are also eaten in Latin America and some Asian countries. This work investigated the capacity of aqueous extracts prepared from those vegetables to inhibit the peroxidation of a linoleic acid emulsion. Short chain, volatile C-compounds as markers of advanced lipid peroxidation were measured by gas chromatography by following the ethylene production. The generation of lipid hydroperoxides, was monitored by spectroscopy using N-N'-dimethyl-p-phenylene-diamine (DMPD). The formation of intermediate peroxyl, and other free radicals, at the initiation of the lipid peroxidation was investigated by electron spin resonance, using α-(4-pyridyl-1-oxide)-N-tert-butylnitrone as spin trap agent. The ability of the extracts to decrease the cellular production of reactive oxygen species (ROS) in "inflammation like" conditions was studied by fluorescence technique using 2',7'-dichlorofluorescine-diacetate as fluorogenic probe, in a cell model of human monocytes (HL-60 cells) activated with phorbol ester. Overall the extracts displayed efficient concentration-dependent inhibitory effects. Their total polyphenol and flavonoid content was determined by classic colorimetric methods. An HPLC-UV/DAD analysis has clearly identified the presence of some polyphenolic compounds, which explains at least partially the inhibitions observed in our models. The role of these plants in the folk medicine by sub-Saharan peoples as well as in the prevention of oxidative stress and ROS related diseases requires further consideration. PMID:22254126

  19. Phorbol 12-myristate 13-acetate (PMA) responsive sequence in Galphaq promoter during megakaryocytic differentiation. Regulation by EGR-1 and MAP kinase pathway.

    PubMed

    Jalagadugula, Gauthami; Dhanasekaran, Danny N; Rao, A Koneti

    2008-11-01

    Galphaq plays a major role in platelet signal transduction, but little is known regarding its transcriptional regulation. We have reported that Galphaq is upregulated during phorbol 12-myristate 13-acetate (PMA)-induced megakaryocytic transformation of human erythroleukemia (HEL) cells and regulated by EGR-1, an early growth transcription factor. These studies focused on the initial 238 bp of the 5' upstream region of the Galphaq gene. In the present studies we characterize a minimal region -1042/-1037 bp from ATG in the 5' upstream of the Galphaq promoter that is associated with PMA responsiveness. In luciferase reporter gene studies in HEL cells, Galphaq 5' upstream promoter sequence -1042/-1 showed an about four-fold increased activity in PMA-treated compared to untreated cells. Deletion of 6-nt -1042/-1037 eliminated the difference. Gel-shift studies on Galphaq probe (-1042/-1012 bp) revealed binding of EGR-1 with PMA-treated but not untreated nuclear extracts, and this was dependent on the sequence -1042/-1037. Silencing of endogenous EGR-1 inhibited Galphaq induction by PMA. MEK/ERK inhibitor U0126 blocked PMA effect on promoter activity of the -1042/-1 construct. In conclusion, EGR-1 binding to sequence -1042/-1037 bp in Galphaq promoter mediates the induction of Galphaq gene by PMA via the MEK/ERK signaling pathway. These studies provide the first evidence of a PMA-responsive element in Galphaq promoter, and new insights into regulation of Galphaq gene by EGR-1. PMID:18989526

  20. Topical application of the adenosine A2A receptor agonist CGS-21680 prevents phorbol-induced epidermal hyperplasia and inflammation in mice.

    PubMed

    Arasa, Jorge; Martos, Patricio; Terencio, María Carmen; Valcuende-Cavero, Francisca; Montesinos, María Carmen

    2014-08-01

    The nucleoside adenosine is a known regulator of immunity and inflammation that mediates, at least in part, the anti-inflammatory effect of methotrexate, an immunosuppressive agent widely used to treat autoimmune inflammatory diseases. Adenosine A2A receptors play a key role in the inhibition of the inflammatory process besides promoting wound healing. Therefore, we aimed to determine the topical effect of a selective agonist, CGS-21680, on a murine model of skin hyperplasia with a marked inflammatory component. Pretreatment with either CGS-21680 (5 μg per site) or the reference agent dexamethasone (200 μg/site) prevented the epidermal hyperplasia and inflammatory response induced by topical application of 12-O-tetradecanoylphorbol-13-acetate (TPA, 2 nmol/site) for three consecutive days. The histological analysis showed that both CGS-21680 and dexamethasone produced a marked reduction of inflammatory cell infiltrate, which correlated with diminished myeloperoxidase (MPO) activity in skin homogenates. Both treatments reduced the levels of the chemotactic mediators LTB4 and CXCL-1, and the inflammatory cytokine TNF-α, through the suppression of NFκB phosphorylation. The immunohistochemical analysis of the hyperproliferative markers cytokeratin 6 (CK6) and Ki67 revealed that while both agents inhibit the number of proliferating cells in the epidermis, CGS-21680 treatment promoted dermal fibroblasts proliferation. Consistently, increased collagen deposition in dermis was observed in tissue sections from agonist-treated mice. Our results showed that CGS 21680 efficiently prevents phorbol-induced epidermal hyperplasia and inflammation in mice without the deleterious atrophic effect of topical corticosteroids. PMID:24889129

  1. Thymoquinone inhibits phorbol ester-induced activation of NF-κB and expression of COX-2, and induces expression of cytoprotective enzymes in mouse skin in vivo

    SciTech Connect

    Kundu, Joydeb Kumar; Liu, Lijia; Shin, Jun-Wan; Surh, Young-Joon

    2013-09-06

    Highlights: •Thymoquinone inhibits phorbol ester-induced COX-2 expression in mouse skin. •Thymoquinone attenuates phosphorylation of IκBα and DNA binding of NF-κB in mouse skin. •Thymoquinone inhibits phosphorylation of p38 MAP kinase, JNK and Akt in mouse skin. •Thymoquinone induces the expression of cytoprotective proteins in mouse skin. -- Abstract: Thymoquinone (TQ), the active ingredient of Nigella sativa, has been reported to possess anti-inflammatory and chemopreventive properties. The present study was aimed at elucidating the molecular mechanisms of anti-inflammatory and antioxidative activities of thymoquinone in mouse skin. Pretreatment of female HR-1 hairless mouse skin with TQ attenuated 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced expression of cyclooxygenase-2 (COX-2). TQ diminished nuclear translocation and the DNA binding of nuclear factor-kappaB (NF-κB) via the blockade of phosphorylation and subsequent degradation of IκBα in TPA-treated mouse skin. Pretreatment with TQ attenuated the phosphorylation of Akt, c-Jun-N-terminal kinase and p38 mitogen-activated protein kinase, but not that of extracellular signal-regulated kinase-1/2. Moreover, topical application of TQ induced the expression of heme oxygenase-1, NAD(P)H-quinoneoxidoreductase-1, glutathione-S-transferase and glutamate cysteine ligase in mouse skin. Taken together, the inhibitory effects of TQ on TPA-induced COX-2 expression and NF-κB activation, and its ability to induce the expression of cytoprotective proteins provide a mechanistic basis of anti-inflammatory and antioxidative effects of TQ in hairless mouse skin.

  2. Effects of phorbol 12-myristate 13-acetate on triglyceride and cholesteryl ester synthesis in cultured coronary smooth muscle cells and macrophages.

    PubMed

    Moinat, M; Chevey, J M; Muzzin, P; Giacobino, J P; Kossovsky, M

    1990-02-01

    In cultured pig coronary smooth muscle cells phorbol 12-myristate 13-acetate (PMA) stimulated the conversion of [4-14C]cholesterol into cholesteryl esters and the incorporation of [2-3H]glycerol into triglycerides 6.4- and 4.5-fold, respectively. The maximal effects occurred after 3 h of treatment and there was a return to basal values after 72 h. In the presence of 400 microM oleic acid, PMA stimulated the conversion of [4-14C]cholesterol into cholesteryl esters and that of [2-3H]glycerol into triglycerides 5.3- and 2.3-fold, respectively. The stimulatory effects were more sustained (still significant after 72 h) and their maxima were delayed (peaks after 24 h). PMA was also found to increase 2-fold the amount of triglyceride that accumulated in the cells in the presence of oleic acid after 24 h. In macrophages IC-21, the effects of PMA were observed only in the presence of oleic acid. They consisted of a 1.9-fold stimulation in the conversion of [4-14C]cholesterol into cholesteryl esters after 72 h and of a 1.7-fold stimulation in the incorporation of [2-3H]glycerol into triglycerides after 24 h. PMA also increased the amount of triglyceride that accumulated in the cells 1.9-fold after 72 h. It is concluded that PMA, and possibly growth factors, may promote lipid storage in smooth muscle cells and that fatty acids favor long lasting effects of PMA in smooth muscle cells and are necessary for any effect of PMA in macrophages. PMID:2324651

  3. Transplacental arsenic plus postnatal 12-O-teradecanoyl phorbol-13-acetate exposures associated with hepatocarcinogenesis induce similar aberrant gene expression patterns in male and female mouse liver

    SciTech Connect

    Liu Jie . E-mail: Liu6@niehs.nih.gov; Xie Yaxiong; Merrick, B. Alex; Shen Jun; Ducharme, Danica M.K.; Collins, Jennifer; Diwan, Bhalchandra A.; Logsdon, Daniel; Waalkes, Michael P.

    2006-06-15

    Our prior work shows that in utero arsenic exposure alone is a complete transplacental carcinogen, producing hepatocellular carcinoma in adult male offspring but not in females. In a follow-up study to potentially promote arsenic-initiated tumors, mice were exposed to arsenic (85 ppm) from gestation day 8 to 18 and then exposed to 12-O-teradecanoyl phorbol-13-acetate (TPA), a well-known tumor promoter after weaning. The dermal application of TPA (2 {mu}g/0.1 ml acetone, twice/week for 21 weeks) after transplacental arsenic did not further increase arsenic-induced liver tumor formation in adult males but significantly increased liver tumor formation in adult females. Thus, for comparison, liver tumors and normal liver samples taken from adult male and female mice at necropsy were analyzed for aberrant gene/protein expression by microarray, real-time RT-PCR and Western blot analysis. Arsenic/TPA treatment resulted in increased expression of {alpha}-fetoprotein, k-ras, c-myc, estrogen receptor-{alpha}, cyclin D1, cdk2na, plasminogen activator inhibitor-1, cytokeratin-8, cytokeratin-18, glutathione S-transferases and insulin-like growth factor binding proteins in liver and liver tumors from both male and female mice. Arsenic/TPA also decreased the expression of BRCA1, betaine-homocysteine methyltransferase, CYP7B1, CYP2F2 and insulin-like growth factor-1 in normal and cancerous livers. Alterations in these gene products were associated with arsenic/TPA-induced liver tumors, regardless of sex. Thus, transplacental arsenic plus postnatal TPA exposure induced similar aberrant gene expression patterns in male and female mouse liver, which are persistent and potentially important to the mechanism of arsenic initiation of hepatocarcinogenesis.

  4. The choice of phorbol 12-myristate 13-acetate differentiation protocol influences the response of THP-1 macrophages to a pro-inflammatory stimulus.

    PubMed

    Lund, Maria E; To, Joyce; O'Brien, Bronwyn A; Donnelly, Sheila

    2016-03-01

    The human monocytic cell line, THP-1, is the most widely used model for primary human monocytes/macrophages. This is because, following differentiation using phorbol 12-myristate 13-acetate (PMA), THP-1 cells acquire a macrophage-like phenotype, which mimics, in many respects, primary human macrophages. Despite the widespread use of THP-1 cells in studies elucidating macrophage responses to inflammatory stimuli, as well as the development and screening of potential therapeutics, there is currently no standardised protocol for the reliable differentiation of THP-1 monocytes to a macrophage phenotype using PMA. Consequently, reports using THP-1 cells have demonstrated significant phenotypic and functional differences between resultant THP-1 macrophage populations, which are largely attributable to the varying PMA differentiation methods used. Thus, to guarantee consistency and reproducibility between studies, and to ensure the relevance of THP-1 cells as an appropriate model for primary human macrophages, it is crucial to develop a standardised protocol for the differentiation of THP-1 macrophages. Accordingly, we compared the function and phenotype of THP-1 macrophages generated using the range of published PMA differentiation protocols, specifically in response to the pro-inflammatory stimulus, lipopolysaccharide (LPS). Our results demonstrated that the function of the resultant THP-1 macrophage populations, as determined by tumour necrosis factor (TNF) secretion in response to LPS stimulation, varied significantly, and was dependent upon the concentration of PMA used to stimulate the differentiation of monocytes, and the period of rest following PMA exposure. These data indicate that exposure of monocytic THP-1 cells to 25 nM PMA over 48 h, followed by a recovery period of 24h in culture in the absence of PMA, was the optimal protocol for the differentiation of THP-1 cells. PMID:26826276

  5. The benzene metabolite para-benzoquinone is genotoxic in human, phorbol-12-acetate-13-myristate induced, peripheral blood mononuclear cells at low concentrations.

    PubMed

    Westphal, Götz Alexander; Bünger, Jürgen; Lichey, Nadine; Taeger, Dirk; Mönnich, Angelika; Hallier, Ernst

    2009-07-01

    Benzene is one of the most prominent occupational and environmental pollutants. The substance is a proven human carcinogen that induces hematologic malignancies in humans, probably at even low doses. Yet knowledge of the mechanisms leading to benzene-induced carcinogenesis is still incomplete. Benzene itself is not genotoxic. The generation of carcinogenic metabolites involves the production of oxidized intermediates such as catechol, hydroquinone and para-benzoquinone (p-BQ) in the liver. Further activation to the ultimate carcinogenic intermediates is most probably catalyzed by myeloperoxidase (MPO). Yet the products of the MPO pathway have not been identified. If an oxidized benzene metabolite such as p-BQ was actually the precursor for the ultimate carcinogenic benzene metabolite and further activation proceeds via MPO mediated reactions, it should be possible to activate p-BQ to a genotoxic compound in vitro. We tested this hypothesis with phorbol-12-acetate-13-myristate (PMA) activated peripheral blood cells exposed to p-BQ, using the cytokinesis-block micronucleus test. Addition of 20-28 ng/ml PMA caused a significant increase of micronuclei at low and non-cytotoxic p-BQ concentrations between 0.04 and 0.2 microg/ml (0.37-1.85 microM). Thus with PMA or p-BQ alone no reproducible elevation of micronuclei was seen up to toxic concentrations. PMA and p-BQ induce micronuclei when administered jointly. Our results add further support to the hypothesis that MPO is a key enzyme in the activation of benzene. PMID:19212761

  6. Micromanipulation of adhesion of phorbol 12-myristate-13-acetate-stimulated T lymphocytes to planar membranes containing intercellular adhesion molecule-1.

    PubMed Central

    Tözeren, A; Mackie, L H; Lawrence, M B; Chan, P Y; Dustin, M L; Springer, T A

    1992-01-01

    This paper presents an analytical and experimental methodology to determine the physical strength of cell adhesion to a planar membrane containing one set of adhesion molecules. In particular, the T lymphocyte adhesion due to the interaction of the lymphocyte function associated molecule 1 on the surface of the cell, with its counter-receptor, intercellular adhesion molecule-1 (ICAM-1), on the planar membrane, was investigated. A micromanipulation method and mathematical analysis of cell deformation were used to determine (a) the area of conjugation between the cell and the substrate and (b) the energy that must be supplied to detach a unit area of the cell membrane from its substrate. T lymphocytes stimulated with phorbol 12-myristate-13-acetate (PMA) conjugated strongly with the planar membrane containing purified ICAM-1. The T lymphocytes attached to the planar membrane deviated occasionally from their round configuration by extending pseudopods but without changing the size of the contact area. These adherent cells were dramatically deformed and then detached when pulled away from the planar membrane by a micropipette. Detachment occurred by a gradual decrease in the radius of the contact area. The physical strength of adhesion between a PMA-stimulated T lymphocyte and a planar membrane containing 1,000 ICAM-1 molecules/micron 2 was comparable to the strength of adhesion between a cytotoxic T cell and its target cell. The comparison of the adhesive energy density, measured at constant cell shape, with the model predictions suggests that the physical strength of cell adhesion may increase significantly when the adhesion bonds in the contact area are immobilized by the actin cytoskeleton. Images FIGURE 2 FIGURE 4 FIGURE 5 FIGURE 8 FIGURE 9 PMID:1358239

  7. Roles of insulin, guanosine 5'-[gamma-thio]triphosphate and phorbol 12-myristate 13-acetate in signalling pathways of GLUT4 translocation.

    PubMed Central

    Todaka, M; Hayashi, H; Imanaka, T; Mitani, Y; Kamohara, S; Kishi, K; Tamaoka, K; Kanai, F; Shichiri, M; Morii, N; Narumiya, S; Ebina, Y

    1996-01-01

    Insulin, guanosine 5'-[gamma-thio]triphosphate (GTP[S] and phorbol 12-myristate 13-acetate (PMA) trigger the translocation of Gl UT4 (type 4 glucose transporter; insulin-sensitive glucose transporter) from an intracellular pool to the cell surface. We have developed a highly sensitive and quantitative method to detect GLUT4 immunologically on the surface of intact 3T3-L1 adipocytes and Chinese hamster ovary (CHO) cells, using c-myc epitope-tagged GLUT4 (GLUT4myc). We examined the roles of insulin, GTP[S] and PMA in the signalling pathways of GLUT4 translocation in the CHO cell system. Among small molecular GTP-binding proteins, ras, rab3D, rad and rho seem to be candidates as signal transmitters of insulin-stimulated GLUT4 translocation. Overexpression of wild-type H-ras and the dominant negative mutant H-rass17N in our cell system respectively enhanced and blocked insulin-stimulated activation of mitogen-activated protein kinase, but did not affect insulin-stimulated GLUT4 translocation. Overexpression of rab3D or rad in the cells did not affect GLUT4 translocation triggered by insulin, GTP[S] or PMA. Treatment with Botulinum C3 exoenzyme, a specific inhibitor of rho, had no effect on GLUT4 translocation induced by insulin, GTP[S] or PMA. Therefore these small molecular GTP-binding proteins are not likely to be involved in GLUT4 translocation. In addition, insulin, GTP[S] and PMA apparently stimulate GLUT4 translocation through independent pathways. PMID:8645171

  8. Phorbol 12-myristate 13-acetate up-regulates the transcription of MUC2 intestinal mucin via Ras, ERK, and NF-kappa B.

    PubMed

    Lee, Hae-Wan; Ahn, Dae-Ho; Crawley, Suzanne C; Li, Jian-Dong; Gum, James R; Basbaum, Carol B; Fan, Nancy Q; Szymkowski, David E; Han, Sang-Young; Lee, Bong H; Sleisenger, Marvin H; Kim, Young S

    2002-09-01

    MUC2 is a secretory mucin normally expressed by goblet cells of the intestinal epithelium. It is overexpressed in mucinous type colorectal cancers but down-regulated in colorectal adenocarcinoma. Phorbol 12-myristate 13-acetate (PMA) treatment of colon cancer cell lines increases MUC2 expression, so we have undertaken a detailed analysis of the effects of PMA on the promoter activity of the 5'-flanking region of the MUC2 gene using stably and transiently transfected promoter reporter vectors. Protein kinase C inhibitors (bisindolylmaleimide, calphostin C) and inhibitors of mitogen-activated protein/extracellular signal regulated kinase kinase (MEK) (PD98059 and U0126) suppressed up-regulation of MUC2. Src tyrosine kinase inhibitor PP2, a protein kinase A inhibitor (KT5720), and a p38 inhibitor (SB 203580) did not affect transcription. Western blotting and reverse transcription-PCR analysis confirmed these results. In addition, co-transfections with mutants of Ras, Raf, and MEK showed that the induction of MUC2 promoter activity by PMA required these three signaling proteins. Our results demonstrate that PMA activates protein kinase C, stimulating MAP kinase through a Ras- and Raf-dependent mechanism. An important role for nuclear factor kappaB (NF-kappaB) was also demonstrated using the inhibitor caffeic acid phenethyl ester and electrophoretic mobility shift assays. Such identification of pathways involved in MUC2 up-regulation by PMA in the HM3 colon cancer cell line may serve as a model for the effects of cytokines and growth factors, which regulate MUC2 expression during the progression of colorectal cancer. PMID:12077118

  9. Phorbol 12-myristate 13-acetate-induced endocytosis of the Na-K-2Cl cotransporter in MDCK cells is associated with a clathrin-dependent pathway

    PubMed Central

    Mykoniatis, Andreas; Shen, Le; Fedor-Chaiken, Mary; Tang, Jun; Tang, Xu; Worrell, Roger T.; Delpire, Eric; Turner, Jerrold R.; Matlin, Karl S.

    2010-01-01

    In secretory epithelial cells, the basolateral Na+-K+-2Cl− cotransporter (NKCC1) plays a major role in salt and fluid secretion. Our laboratory has identified NKCC1 surface expression as an important regulatory mechanism for Cl− secretion in the colonic crypt cell line T84, a process also present in native human colonic crypts. We previously showed that activation of protein kinase C (PKC) by carbachol and phorbol 12-myristate 13-acetate (PMA) decreases NKCC1 surface expression in T84 cells. However, the specific endocytic entry pathway has not been defined. We used a Madin-Darby canine kidney (MDCK) cell line stably transfected with enhanced green fluorescent protein (EGFP)-NKCC1 to map NKCC1 entry during PMA exposure. At given times, we fixed and stained the cells with specific markers (e.g., dynamin II, clathrin heavy chain, and caveolin-1). We also used chlorpromazine, methyl-β-cyclodextrin, amiloride, and dynasore, blockers of the clathrin, caveolin, and macropinocytosis pathways and the vesicle “pinchase” dynamin, respectively. We found that PMA caused dose- and time-dependent NKCC1 endocytosis. After 2.5 min of PMA exposure, ∼80% of EGFP-NKCC1 endocytic vesicles colocalized with clathrin and ∼40% colocalized with dynamin II and with the transferrin receptor, the uptake of which is also mediated by clathrin-coated vesicles. We did not observe significant colocalization of EGFP-NKCC1 endocytic vesicles with caveolin-1, a marker of the caveolae-mediated endocytic pathway. We quantified the effect of each inhibitor on PMA-induced EGFP-NKCC1 endocytosis and found that only chlorpromazine and dynasore caused significant inhibition compared with the untreated control (61% and 25%, respectively, at 2.5 min). Together, these results strongly support the conclusion that PMA-stimulated NKCC1 endocytosis is associated with a clathrin pathway. PMID:19864322

  10. Honey and Apoptosis in Human Gastric Mucosa

    PubMed Central

    Ghaffari, Aida; Somi, Mohammad H; Safaiyan, Abdolrasoul; Modaresi, Jabiz; Ostadrahimi, Alireza

    2012-01-01

    Background: Gastric cancer is the fourth most common malignancy in the world. Honey is a complex mixture of special biological active constituents. Honey possesses antioxidant and antitumor properties. Nutritional studies have indicated that consumption of honey modulates the risk of developing gastric cancer. On the other hand, apoptosis has been reported to play a decisive role in precancerous changes. Our chief study was conducted to assess the relationship between consumption of honey and apoptosis in human gastric mucosa. Method: This cross-sectional study was conducted on 98 subjects over 18 years old, referred to two hospitals in Tabriz, Iran. Subjects were undergone an upper gastrointestinal endoscopy, 62 subjects were finally enrolled. Honey consumption was assessed by a Food Frequency Questionnaire (FFQ) and apoptosis was detected by TUNEL technique. We tested polynomial curve to find the best fit between honey consumption and apoptosis. Results: A positive relation between honey consumption and apoptosis was found (P=0.024). Our results indicated that the final and the best fit curve was: apoptosis = 1.714+1.648(honey amount) - 0.533(honey amount)2 +1.833×10-5(honey amount)7. Conclusion: Honey consumption had positive effects on gastric cancer by inducing apoptosis in gastric mucosa. PMID:24688918

  11. The Role of Mitochondria in Apoptosis*

    PubMed Central

    Wang, Chunxin; Youle, Richard J.

    2016-01-01

    Mitochondria play key roles in activating apoptosis in mammalian cells. Bcl-2 family members regulate the release of proteins from the space between the mitochondrial inner and outer membrane that, once in the cytosol, activate caspase proteases that dismantle cells and signal efficient phagocytosis of cell corpses. Here we review the extensive literature on proteins released from the intermembrane space and consider genetic evidence for and against their roles in apoptosis activation. We also compare and contrast apoptosis pathways in Caenorhabditis elegans, Drosophila melanogaster, and mammals that indicate major mysteries remaining to be solved. PMID:19659442

  12. Hyperglycaemia promotes human brain microvascular endothelial cell apoptosis via induction of protein kinase C-ßI and prooxidant enzyme NADPH oxidase

    PubMed Central

    Shao, Beili; Bayraktutan, Ulvi

    2014-01-01

    Blood–brain barrier disruption represents a key feature in hyperglycaemia-aggravated cerebral damage after an ischaemic stroke. Although the underlying mechanisms remain largely unknown, activation of protein kinase C (PKC) is thought to play a critical role. This study examined whether apoptosis of human brain microvascular endothelial cells (HBMEC) might contribute to hyperglycaemia-evoked barrier damage and assessed the specific role of PKC in this phenomenon. Treatments with hyperglycaemia (25 mM) or phorbol myristate acetate (PMA, a protein kinase C activator, 100 nM) significantly increased NADPH oxidase activity, O2•- generation, proapoptotic protein Bax expression, TUNEL-positive staining and caspase-3/7 activities. Pharmacological inhibition of NADPH oxidase, PKC-a, PKC-ß or PKC-ßI via their specific inhibitors and neutralisation of O2•- by a cell-permeable superoxide dismutase mimetic, MnTBAP normalised all the aforementioned increases induced by hyperglycaemia. Suppression of these PKC isoforms also negated the stimulatory effects of hyperglycaemia on the protein expression of NADPH oxidase membrane-bound components, Nox2 and p22-phox which determine the overall enzymatic activity. Silencing of PKC-ßI gene through use of specific siRNAs abolished the effects of both hyperglycaemia and PMA on endothelial cell NADPH oxidase activity, O2•- production and apoptosis and consequently improved the integrity and function of an in vitro model of human cerebral barrier comprising HBMEC, astrocytes and pericytes. Hyperglycaemia-mediated apoptosis of HBMEC contributes to cerebral barrier dysfunction and is modulated by sequential activations of PKC-ßI and NADPH oxidase. PMID:24936444

  13. Autophagy and apoptosis in liver injury.

    PubMed

    Wang, Kewei

    2015-01-01

    Apoptosis is a primary characteristic in the pathogenesis of liver disease. Hepatic apoptosis is regulated by autophagic activity. However, mechanisms mediating their interaction remain to be determined. Basal level of autophagy ensures the physiological turnover of old and damaged organelles. Autophagy also is an adaptive response under stressful conditions. Autophagy can control cell fate through different cross-talk signals. A complex interplay between hepatic autophagy and apoptosis determines the degree of hepatic apoptosis and the progression of liver disease as demonstrated by pre-clinical models and clinical trials. This review summarizes recent advances on roles of autophagy that plays in pathophysiology of liver. The autophagic pathway can be a novel therapeutic target for liver disease. PMID:25927598

  14. [The comeback of mitochondria in Drosophila apoptosis].

    PubMed

    Clavier, Amandine; Rincheval-Arnold, Aurore; Mignotte, Bernard; Guénal, Isabelle

    2016-05-01

    The role of the mitochondrion in mammalian cell apoptosis has been established since the mid-1990s. However, the importance of this organelle in non-mammalian apoptosis has long been regarded as minor, notably because of the absence of a crucial role for cytochrome c in caspase activation. Recent results indicate that the control of caspase activation and apoptosis in Drosophila cell death occurs at the mitochondrial level. Numerous proteins that appear key for Drosophila apoptosis regulation constitutively or transiently bind to mitochondria. They participate in the cell death process at different levels such as degradation of an IAP caspase inhibitor, production of mitochondrial reactive oxygen species or stimulation of the mitochondrial fission machinery. The aim of this review is to take stock of these events that might have their counterpart in humans. PMID:27225920

  15. Autophagy and apoptosis in liver injury

    PubMed Central

    Wang, Kewei

    2015-01-01

    Apoptosis is a primary characteristic in the pathogenesis of liver disease. Hepatic apoptosis is regulated by autophagic activity. However, mechanisms mediating their interaction remain to be determined. Basal level of autophagy ensures the physiological turnover of old and damaged organelles. Autophagy also is an adaptive response under stressful conditions. Autophagy can control cell fate through different cross-talk signals. A complex interplay between hepatic autophagy and apoptosis determines the degree of hepatic apoptosis and the progression of liver disease as demonstrated by pre-clinical models and clinical trials. This review summarizes recent advances on roles of autophagy that plays in pathophysiology of liver. The autophagic pathway can be a novel therapeutic target for liver disease. PMID:25927598

  16. An AIF orthologue regulates apoptosis in yeast

    PubMed Central

    Wissing, Silke; Ludovico, Paula; Herker, Eva; Büttner, Sabrina; Engelhardt, Silvia M.; Decker, Thorsten; Link, Alexander; Proksch, Astrid; Rodrigues, Fernando; Corte-Real, Manuela; Fröhlich, Kai-Uwe; Manns, Joachim; Candé, Céline; Sigrist, Stephan J.; Kroemer, Guido; Madeo, Frank

    2004-01-01

    Apoptosis-inducing factor (AIF), a key regulator of cell death, is essential for normal mammalian development and participates in pathological apoptosis. The proapoptotic nature of AIF and its mode of action are controversial. Here, we show that the yeast AIF homologue Ynr074cp controls yeast apoptosis. Similar to mammalian AIF, Ynr074cp is located in mitochondria and translocates to the nucleus of yeast cells in response to apoptotic stimuli. Purified Ynr074cp degrades yeast nuclei and plasmid DNA. YNR074C disruption rescues yeast cells from oxygen stress and delays age-induced apoptosis. Conversely, overexpression of Ynr074cp strongly stimulates apoptotic cell death induced by hydrogen peroxide and this effect is attenuated by disruption of cyclophilin A or the yeast caspase YCA1. We conclude that Ynr074cp is a cell death effector in yeast and rename it AIF-1 (Aif1p, gene AIF1). PMID:15381687

  17. Noninvasive real-time imaging of apoptosis.

    PubMed

    Laxman, Bharathi; Hall, Daniel E; Bhojani, Mahaveer Swaroop; Hamstra, Daniel A; Chenevert, Thomas L; Ross, Brian D; Rehemtulla, Alnawaz

    2002-12-24

    Strict coordination of proliferation and programmed cell death (apoptosis) is essential for normal physiology. An imbalance in these two opposing processes results in various diseases including AIDS, neurodegenerative disorders, myelodysplastic syndromes, ischemiareperfusion injury, cancer, autoimmune disease, among others. Objective and quantitative noninvasive imaging of apoptosis would be a significant advance for rapid and dynamic screening as well as validation of experimental therapeutic agents. Here, we report the development of a recombinant luciferase reporter molecule that when expressed in mammalian cells has attenuated levels of reporter activity. In cells undergoing apoptosis, a caspase-3-specific cleavage of the recombinant product occurs, resulting in the restoration of luciferase activity that can be detected in living animals with bioluminescence imaging. The ability to image apoptosis noninvasively and dynamically over time provides an opportunity for high-throughput screening of proapoptotic and antiapoptotic compounds and for target validation in vivo in both cell lines and transgenic animals. PMID:12475931

  18. Regulation of apoptosis by peroxisome proliferators.

    PubMed

    Roberts, Ruth A; Michel, Cecile; Coyle, Beth; Freathy, Caroline; Cain, Kelvin; Boitier, Eric

    2004-04-01

    Peroxisome proliferators (PPs) constitute a large and chemically diverse family of non-genotoxic rodent hepatocarcinogens that activate the PP-activated receptor alpha (PPARalpha). In order to investigate the hypothesis that PPs elicit their carcinogenic effects through the suppression of apoptosis, we established an in vitro assay for apoptosis using both primary rat hepatocytes and the FaO rat hepatoma cell line. Apoptosis was induced by transforming growth factor beta1 (TGFbeta1), the physiological negative regulator of liver growth. In this system, PPs could suppress both spontaneous and TGFbeta1-induced apoptosis. In order to understand the mechanisms of this regulation of apoptosis, we conducted microarray analysis followed by pathway-specific gene clustering in TGFbeta1-treated cells. After treatment, 76 genes were up-regulated and 185 were down-regulated more than 1.5-fold. Cluster analysis of up-regulated genes revealed three clusters, A-C. Cluster A (4h) was associated with 12% apoptosis and consisted of genes mainly of the cytoskeleton and extracellular matrix such as troponin and the proteoglycan SDC4. In cluster B (8h; 25% apoptosis), there were many pro- and anti-apoptotic genes such as XIAP, BAK1 and BAD, whereas at 16h (40% apoptosis) the regulated genes were mainly those of the cellular stress pathways such as the genes implicated in the activation of the transcription factor NFkappab. Genes found down-regulated in response to TGFbeta1 were mainly those associated with oxidative stress and several genes implicated in glutathione production and maintenance. Thus, TGFbeta1 may induce apoptosis via a down regulation of oxidant defence leading to the generation of reactive oxygen species. The ability of PPs to impact on these apoptosis pathways remains to be determined. To approach this question, we have developed a technique using laser capture microdissection of livers treated with the PP, clofibric acid coupled with gene expression array analysis

  19. The effects of phorbol 12,13-diacetate on responses of guinea-pig isolated trachea to methylxanthines, isoprenaline and ryanodine.

    PubMed Central

    Cortijo, J.; Sanz, C. M.; Villagrasa, V.; Morcillo, E. J.; Small, R. C.

    1994-01-01

    1. Using guinea-pig isolated trachea, we have studied how phorbol 12,13-diacetate (PDA) modulates mechanical responses of the tissue to methylxanthines, isoprenaline and ryanodine. 2. Caffeine (10 microM-5 mM), theophylline (10 microM-5 mM) and isoprenaline (1 nM-1 microM), each inhibited the spontaneous tone of the trachea. Pretreatment with PDA (0.1-10 microM) converted relaxant responses to high concentrations of the methylxanthines into contractions. PDA produced no equivalent effect against isoprenaline. Pretreatment with verapamil (1 or 10 microM), nifedipine (0.1 microM) or incubation with Ca(2+)-free, EGTA (0.1 mM)-containing physiological salt solution (PSS) suppressed the contraction produced by caffeine or theophylline in PDA (5 microM)-treated tissues. 3. The ability of PDA (5 microM) to convert caffeine-induced relaxation into caffeine-induced contraction was retained in tissues pretreated with a combination of atropine (1 microM) and mepyramine (1 microM) and in tissues denuded of the airway epithelium. 4. Caffeine (10 microM-5 mM), theophylline (10 microM-5 mM) and isoprenaline (1 nM-1 microM), each relaxed trachea contracted with histamine (0.1 mM). The relaxation induced by caffeine, theophylline and isoprenaline was markedly reduced in the presence of PDA (5 microM) and the responses to high concentrations of caffeine and theophylline, but not those to isoprenaline, were reversed to contractions. Verapamil (10 microM) prevented the effects of PDA against caffeine- or theophylline-induced relaxation. 5. PDA (1 microM) enhanced the tracheal spasm produced by caffeine (10 mM) and theophylline (10 mM) in indomethacin (2.8 microM)-treated trachea maintained at 20 degrees C. This enhancement was reduced in the presence of verapamil (10 microM).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8019755

  20. Factors affecting dense and alpha-granule secretion from electropermeabilized human platelets: Ca(2+)-independent actions of phorbol ester and GTP gamma S.

    PubMed Central

    Coorssen, J R; Davidson, M M; Haslam, R J

    1990-01-01

    Electropermeabilized human platelets containing 5-hydroxy[14C]tryptamine ([14C]5-HT) were suspended in a glutamate medium containing ATP and incubated for 10 min with (in various combinations) Ca2+ buffers, phorbol 12-myristate 13-acetate (PMA), guanine nucleotides, and thrombin. Release of [14C]5-HT and beta-thromboglobulin (beta TG) were used to measure secretion from dense and alpha-granules, respectively. Ca2+ alone induced secretion from both granule types; half-maximal effects were seen at a -log [Ca2+ free] (pCa) of 5.5 and maximal secretion at a pCa of 4.5, when approximately 80% of 5-HT and approximately 50% of beta TG were released. Addition of PMA, guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S), GTP, or thrombin shifted the Ca2+ dose-response curves for secretion of both 5-HT and beta TG to the left and caused small increases in the maximum secretion observed. These results suggested that secretion from alpha-granules, like that from dense granules, is a Ca(2+)-dependent process stimulated by the sequential activation of a G-protein, phospholipase C, and protein kinase C (PKC). However, high concentrations of PMA and GTP gamma S had distinct effects in the absence of Ca2+ (pCa greater than 9); 100 nM PMA released approximately 20% of platelet 5-HT but little beta TG, whereas 100 microM GTP gamma S stimulated secretion of approximately 25% of each. Simultaneous addition of PMA greatly enhanced these effects of GTP gamma S. Phosphorylation of pleckstrin in permeabilized platelets incubated with [gamma-32P]ATP was used as an index of the activation of PKC during secretion. In the absence of Ca2+, 100 nM PMA caused maximal phosphorylation of pleckstrin and 100 microM GTP gamma S was approximately 50% as effective as PMA; neither GTP gamma S nor Ca2+ enhanced the phosphorylation of pleckstrin caused by 100 nM PMA. These results indicate that, although activation of PKC promoted secretion, GTP gamma S exerted additional stimulatory effects on secretion from

  1. NRF2 Signaling Negatively Regulates Phorbol-12-Myristate-13-Acetate (PMA)-Induced Differentiation of Human Monocytic U937 Cells into Pro-Inflammatory Macrophages

    PubMed Central

    Choi, Hye-young; Choi, Bo-hyun; Kim, Sang-Tae; Heo, Tae-Hwe; Lee, Joo Young; Park, Pil-Hoon; Kwak, Mi-Kyoung

    2015-01-01

    Blood monocytes are recruited to injured tissue sites and differentiate into macrophages, which protect against pathogens and repair damaged tissues. Reactive oxygen species (ROS) are known to be an important contributor to monocytes’ differentiation and macrophages’ function. NF-E2-related factor 2 (NRF2), a transcription factor regulating cellular redox homeostasis, is known to be a critical modulator of inflammatory responses. We herein investigated the role of NRF2 in macrophage differentiation using the human monocytic U937 cell line and phorbol-12-myristate-13-acetate (PMA). In U937 cells with NRF2 silencing, PMA-stimulated cell adherence was significantly facilitated when compared to control U937 cells. Both transcript and protein levels for pro-inflammatory cytokines, including interleukine-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNFα) were highly elevated in PMA-stimulated NRF2-silenced U937 compared to the control. In addition, PMA-inducible secretion of monocyte chemotactic protein 1 (MCP-1) was significantly high in NRF2-silenced U937. As an underlying mechanism, we showed that NRF2-knockdown U937 retained high levels of cellular ROS and endoplasmic reticulum (ER) stress markers expression; and subsequently, PMA-stimulated levels of Ca2+ and PKCα were greater in NRF2-knockdown U937 cells, which caused enhanced nuclear accumulation of nuclear factor-ҡB (NFҡB) p50 and extracellular signal-regulated kinase (ERK)-1/2 phosphorylation. Whereas the treatment of NRF2-silenced U937 cells with pharmacological inhibitors of NFҡB or ERK1/2 largely blocked PMA-induced IL-1β and IL-6 expression, indicating that these pathways are associated with cell differentiation. Taken together, our results suggest that the NRF2 system functions to suppress PMA-stimulated U937 cell differentiation into pro-inflammatory macrophages and provide evidence that the ROS-PKCα-ERK-NFҡB axis is involved in PMA-facilitated differentiation of NRF2-silenced U937 cells

  2. Liganded Thyroid Hormone Receptor Inhibits Phorbol 12-O-Tetradecanoate-13-Acetate-Induced Enhancer Activity via Firefly Luciferase cDNA

    PubMed Central

    Misawa, Hiroko; Sasaki, Shigekazu; Matsushita, Akio; Ohba, Kenji; Iwaki, Hiroyuki; Matsunaga, Hideyuki; Suzuki, Shingo; Ishizuka, Keiko; Oki, Yutaka; Nakamura, Hirotoshi

    2012-01-01

    Thyroid hormone receptor (TR) belongs to the nuclear hormone receptor (NHR) superfamily and regulates the transcription of its target genes in a thyroid hormone (T3)-dependent manner. While the detail of transcriptional activation by T3 (positive regulation) has been clarified, the mechanism of T3-dependent repression (negative regulation) remains to be determined. In addition to naturally occurring negative regulations typically found for the thyrotropin β gene, T3-bound TR (T3/TR) is known to cause artificial negative regulation in reporter assays with cultured cells. For example, T3/TR inhibits the transcriptional activity of the reporter plasmids harboring AP-1 site derived from pUC/pBR322-related plasmid (pUC/AP-1). Artificial negative regulation has also been suggested in the reporter assay with firefly luciferase (FFL) gene. However, identification of the DNA sequence of the FFL gene using deletion analysis was not performed because negative regulation was evaluated by measuring the enzymatic activity of FFL protein. Thus, there remains the possibility that the inhibition by T3 is mediated via a DNA sequence other than FFL cDNA, for instance, pUC/AP-1 site in plasmid backbone. To investigate the function of FFL cDNA as a transcriptional regulatory sequence, we generated pBL-FFL-CAT5 by ligating FFL cDNA in the 5' upstream region to heterologous thymidine kinase promoter in pBL-CAT5, a chloramphenicol acetyl transferase (CAT)-based reporter gene, which lacks pUC/AP-1 site. In kidney-derived CV1 and choriocarcinoma-derived JEG3 cells, pBL-FFL-CAT5, but not pBL-CAT5, was strongly activated by a protein kinase C activator, phorbol 12-O-tetradecanoate-13-acetate (TPA). TPA-induced activity of pBL-FFL-CAT5 was negatively regulated by T3/TR. Mutation of nt. 626/640 in FFL cDNA attenuated the TPA-induced activation and concomitantly abolished the T3-dependent repression. Our data demonstrate that FFL cDNA sequence mediates the TPA-induced transcriptional activity

  3. Human mature erythroblasts are resistant to apoptosis.

    PubMed

    Hristoskova, Sashka; Holzgreve, Wolfgang; Hahn, Sinuhe; Rusterholz, Corinne

    2007-03-10

    Apoptosis plays an important role in red blood cell development, notably by regulating the fate of early erythroid progenitors. We show here that, by contrast, mature erythroblasts are resistant to apoptosis. Treatment of these cells with several apoptosis-inducing agents failed to trigger caspase activation and oligonucleosomal DNA fragmentation. Interestingly, we find that cytochrome c levels are dramatically reduced even though the cells contain mitochondria. Supplementation of cytosolic extracts from mature erythroblasts with cytochrome c, however, did not rescue caspase activation. This was not due to the presence of inhibitors of apoptosis, as these proteins were also missing in these cells. We also show that cytochrome c depletion is a normal event during erythroblast differentiation, which follows transient, developmentally induced caspase activation and correlates with the loss of response to cytokine withdrawal or drug-induced apoptosis. Our data therefore suggest that erythroblasts acquire resistance to apoptosis during maturation through the developmentally induced depletion of cytochrome c and other crucial regulators of the apoptotic machinery. PMID:17289021

  4. Ultrastructural definition of apoptosis in heart failure.

    PubMed

    Arbustini, Eloisa; Brega, Agnese; Narula, Jagat

    2008-06-01

    Cardiac myocytes die through apoptosis, oncosis, and autophagy. Apoptosis affects single cells and is morphologically characterized by nuclear fragmentation with generation of apoptotic bodies that can be seen either within dying cells or free in the interstitial spaces. Dead myocytes are removed by macrophages through phagocytosis without triggering inflammation. The circulating markers of myocyte necrosis are not increased by apoptosis. The morphologic changes of the induction and early execution phases are seen at electron microscopy while late fragmentation is visible on both light and electron microscopy. Immunoelectron microscopy provides combined functional and structural information showing cytochrome c immuno-labelling release from mitochondria, TUNEL labelling of apoptotic nuclei, annexin V translocation in the outer plasma cell layer. Oncosis is characterized by specific morphologic features that may coexist with apoptosis, especially in ischemic myocardium. Autophagy is a defense process that is associated with significant myocardial damage and necrosis when removal of the lysosomal content is impaired. Morphological features of apoptosis, oncosis, and autophagocytosis may coexist at the same time. Although dead myocytes showing characteristics of autophagy and apoptosis are rarely observed in human decompensated hearts, autophagic vacuoles, and early apoptotic changes may be seen more often in morphologically viable myocytes. Such features may occur in failing hearts of both ischemic and non-ischemic etiology. The shared mode of cardiac myocyte death in failing human hearts of different etiologies suggests that preservation of myocyte integrity may be possible by similar therapeutic strategies. PMID:18172761

  5. Umbelliprenin Induces Apoptosis in CLL Cell Lines

    PubMed Central

    Ziai, Seyed Ali; Gholami, Omid; Iranshahi, Mehrdad; Zamani, Amir Hassan; Jeddi-Tehrani, Mahmood

    2012-01-01

    Chronic lymphocytic leukemia (CLL) remains an incurable disease that requires innovative new approaches to improve therapeutic outcome. Many Ferula species, including F. asa-foetida, synthesize terpenyloxy coumarins. One of these coumarins is umbelliprenin, which has been implicated with induction of apoptosis in some cancer cell lines. In this study induction of apoptosis by umbelliprenin on Jurkat T-CLL and Raji B-CLL cell lines was studied. In this regard, cells were incubated with various concentrations of umbelliprenin in-vitro for different times and assayed for apoptosis with annexin V–FITC/PI double staining flowcytometry method. Results showed that umbelliprenin induced apoptosis in leukemic cells in a dose- and time-dependent manner and that CLL cells were more susceptible to umbelliprenin induced cell death than normal peripheral blood mononuclear cell (PBMCs). Moreover, we study the induction of apoptosis in Jurkat cells by umbelliprenin in the presence of interleukin 4 (IL-4) as an agent that causes resistance to apoptosis in CLL cells, was also student. We showed that IL-4 can not reduce apoptotic effect of umbelliprenin. The preferential toxicity of umbelliprenin for CLL cells, supports the hypothesis that oral administration of umbelliprenin in the form of foods or folk medicines containing this coumarin, might enhance protection against the development of CLL in man with little side effects. In conclusion, umbelliprenin may be an effective therapeutic agent in the treatment of CLL, and thus clinical studies with umbelliprenin may be appropriate. PMID:24250490

  6. Morphologic criteria and detection of apoptosis.

    PubMed

    Saraste, A

    1999-05-01

    Apoptosis is an organized, energy dependent process, which leads to cell death. Its definition is based on distinct morphological features [10] and demonstration of internucleosomal DNA degradation [27], executed by selectively activated DNAses [4, 22]. The morphologic hallmarks of apoptosis include chromatic margination, nuclear condensation and fragmentation, and condensation of the cell with preservation of organelles. The process is followed by fragmentation of the cell into membrane-bound apoptotic bodies, which undergo phagocytosis by nearby cells without associated inflammation [10, 11]. Apoptosis characteristically occurs in insolated single cells. The duration of apoptosis is estimated to be from 12 to 24 hours, but in cell culture visible morphologic changes are accomplished in less than two hours [10, 16]. Non-apoptotic cell death, a prototype of which is cell death due to ischemia (oncosis), is characterized by depletion of intracellular ATP stores, swelling of the cell with disruption of organelles and rupture of the plasma membrane [15]. Groups of necrotic cells and inflammation are found in tissues [10, 15]. The significance of apoptosis has mostly been studied using the TUNEL assay that detects DNA strand breaks in tissue sections and allows quantification of apoptotic cells by light microscopy [6]. Common experience seems to be that the TUNEL assay is prone to false positive or negative findings. This has been explained by the dependence of the staining kinetics on the reagent concentration [17], fixation of the tissue [2] and the extent of proteolysis [17]. Active RNA synthesis [12] and DNA damage in necrotic cells [17, 19] may cause non-specific staining. To obtain reliable and reproducible results, TUNEL assay should be carefully standardized by using tissue sections treated with DNAse (positive control of apoptosis). Quantification of apoptosis should include enough microscopic fields and identification of the cell type undergoing apoptosis

  7. Trauma patients’ elevated Tumor Necrosis Related Apoptosis Inducing Ligand (TRAIL) contributes to increased T cell apoptosis

    PubMed Central

    Bandyopadhyay, Gautam; Bankey, Paul E.; Miller-Graziano, Carol L.

    2012-01-01

    Immunosuppression resulting from excessive post-trauma apoptosis of hyperactivated Tcells is controversial. TRAIL mediated Tcell apoptosis decreases highly activated Tcells’ responses. Caspase-10, a particular TRAIL target, was increased in trauma patients’ Tcells with concomitantly elevated plasma TRAIL levels. These patients’ Tcells developed anergy, implicating increased TRAIL-mediated Tcell apoptosis in post-trauma Tcell anergy. Control Tcells cultured with patients’ sera containing high TRAIL levels increased their Caspase-10 activity and apoptosis. Stimulated primary Tcells are TRAIL apoptosis resistant. Increased plasma Thrombospondin-1 and Tcell expression of CD47, a Thrombospondin-1 receptor, preceded patients’ Tcell anergy. CD47 triggering of Tcells increased their sensitivity to TRAIL-induced apoptosis. Augmentation of Tcell TRAIL-induced apoptosis was secondary to CD47 triggered activation of the Src homology-containing phosphatase-1(SHP-1) and was partially blocked by a SHP-1 inhibitor. We suggest that combined post-trauma CD47 triggering, SHP-1 mediated NFκB suppression, and elevated TRAIL levels increase patients’ CD47 expressing Tcell apoptosis, thus contributing to subsequent Tcell anergy. PMID:22926077

  8. Chondrocyte Apoptosis in the Pathogenesis of Osteoarthritis

    PubMed Central

    Hwang, Hyun Sook; Kim, Hyun Ah

    2015-01-01

    Apoptosis is a highly-regulated, active process of cell death involved in development, homeostasis and aging. Dysregulation of apoptosis leads to pathological states, such as cancer, developmental anomalies and degenerative diseases. Osteoarthritis (OA), the most common chronic joint disease in the elderly population, is characterized by progressive destruction of articular cartilage, resulting in significant disability. Because articular cartilage depends solely on its resident cells, the chondrocytes, for the maintenance of extracellular matrix, the compromising of chondrocyte function and survival would lead to the failure of the articular cartilage. The role of subchondral bone in the maintenance of proper cartilage matrix has been suggested as well, and it has been proposed that both articular cartilage and subchondral bone interact with each other in the maintenance of articular integrity and physiology. Some investigators include both articular cartilage and subchondral bone as targets for repairing joint degeneration. In late-stage OA, the cartilage becomes hypocellular, often accompanied by lacunar emptying, which has been considered as evidence that chondrocyte death is a central feature in OA progression. Apoptosis clearly occurs in osteoarthritic cartilage; however, the relative contribution of chondrocyte apoptosis in the pathogenesis of OA is difficult to evaluate, and contradictory reports exist on the rate of apoptotic chondrocytes in osteoarthritic cartilage. It is not clear whether chondrocyte apoptosis is the inducer of cartilage degeneration or a byproduct of cartilage destruction. Chondrocyte death and matrix loss may form a vicious cycle, with the progression of one aggravating the other, and the literature reveals that there is a definite correlation between the degree of cartilage damage and chondrocyte apoptosis. Because current treatments for OA act only on symptoms and do not prevent or cure OA, chondrocyte apoptosis would be a valid

  9. Chondrocyte Apoptosis in the Pathogenesis of Osteoarthritis.

    PubMed

    Hwang, Hyun Sook; Kim, Hyun Ah

    2015-01-01

    Apoptosis is a highly-regulated, active process of cell death involved in development, homeostasis and aging. Dysregulation of apoptosis leads to pathological states, such as cancer, developmental anomalies and degenerative diseases. Osteoarthritis (OA), the most common chronic joint disease in the elderly population, is characterized by progressive destruction of articular cartilage, resulting in significant disability. Because articular cartilage depends solely on its resident cells, the chondrocytes, for the maintenance of extracellular matrix, the compromising of chondrocyte function and survival would lead to the failure of the articular cartilage. The role of subchondral bone in the maintenance of proper cartilage matrix has been suggested as well, and it has been proposed that both articular cartilage and subchondral bone interact with each other in the maintenance of articular integrity and physiology. Some investigators include both articular cartilage and subchondral bone as targets for repairing joint degeneration. In late-stage OA, the cartilage becomes hypocellular, often accompanied by lacunar emptying, which has been considered as evidence that chondrocyte death is a central feature in OA progression. Apoptosis clearly occurs in osteoarthritic cartilage; however, the relative contribution of chondrocyte apoptosis in the pathogenesis of OA is difficult to evaluate, and contradictory reports exist on the rate of apoptotic chondrocytes in osteoarthritic cartilage. It is not clear whether chondrocyte apoptosis is the inducer of cartilage degeneration or a byproduct of cartilage destruction. Chondrocyte death and matrix loss may form a vicious cycle, with the progression of one aggravating the other, and the literature reveals that there is a definite correlation between the degree of cartilage damage and chondrocyte apoptosis. Because current treatments for OA act only on symptoms and do not prevent or cure OA, chondrocyte apoptosis would be a valid

  10. Solamargine triggers hepatoma cell death through apoptosis

    PubMed Central

    XIE, XIAODONG; ZHU, HAITAO; YANG, HUIJIAN; HUANG, WENSI; WU, YINGYING; WANG, YING; LUO, YANLING; WANG, DONGQING; SHAO, GENBAO

    2015-01-01

    Solamargine (SM), a steroidal alkaloid glycoside extracted from the traditional Chinese herb Solanum incanum, has been evidenced to inhibit the growth and induce apoptosis in a number of human cancer cell lines. In the present study, the anticancer effect of SM and underlying molecular mechanism of SM-induced apoptosis were investigated on the human hepatocellular carcinoma cells, SMMC7721 and HepG2. The proliferation effects of SM on the SMMC7721 and HepG2 cell lines were evaluated using MTT and colony formation assays. In addition, the percentage of apoptosis was measured using an Annexin V/propidium iodide staining method and the cell cycle distribution mediated by SM was analyzed using flow cytometry. The expression levels of B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), caspase-3, caspase-9, proliferating cell nuclear antigen (pcna) and Ki67 proteins were examined to further demonstrate the proliferate and apoptosis effects of SM on the hepatoma cells. The results indicated that SM effectively inhibited hepatoma cell proliferation and promoted apoptosis. SM resulted in cell cycle arrest at the G2/M phase in the two cell lines. In addition, SM downregulated the levels of proliferation-associated (Ki67 and pcna) and anti-apoptotic (Bcl-2) proteins, and promoted the activity of apoptosis-associated proteins (Bax, caspase-3 and caspase-9). Therefore, the activation of the Bcl-2/Bax and caspase signaling pathways may be involved in the SM-induced apoptosis of hepatoma cells. PMID:26170994