Science.gov

Sample records for phosphatase alpha rptpalpha

  1. Purification and properties of branched-chain alpha-keto acid dehydrogenase phosphatase from bovine kidney.

    PubMed Central

    Damuni, Z; Merryfield, M L; Humphreys, J S; Reed, L J

    1984-01-01

    Branched-chain alpha-keto acid dehydrogenase (BCKDH) phosphatase was purified about 8000-fold from extracts of bovine kidney mitochondria. The highly purified phosphatase exhibited a molecular weight of approximately 460,000, as estimated by gel-permeation chromatography. Another form of the phosphatase, with an apparent molecular weight of approximately 230,000, was also detected under conditions of high dilution. In contrast to pyruvate dehydrogenase phosphatase, BCKDH phosphatase was active in the absence of divalent cations. BCKDH phosphatase was inactive toward 32P-labeled phosphorylase a, but exhibited approximately 10% maximal activity with 32P-labeled pyruvate dehydrogenase complex. BCKDH phosphatase activity was inhibited by GTP, GDP, ATP, ADP, UTP, UDP, CTP, and CDP. Half-maximal inhibition occurred at about 60, 200, 200, 400, 100, 250, 250, and 400 microM, respectively. These inhibitions were reversed completely by 2 mM Mg2+. GTP was replaceable by guanosine 5'-(beta, gamma-imido)triphosphate. GMP, AMP, UMP, CMP, NAD, and NADH showed little effect, if any, on BCKDH phosphatase activity at concentrations up to 1 mM. Heparin showed half-maximal inhibition at 2 micrograms/ml. This inhibition was only partially (30%) reversed by 2 mM Mg2+. CoA and various acyl-CoA compounds exhibited half-maximal inhibition at 150-300 microM. These inhibitions were not reversed by 2 mM Mg2+. BCKDH phosphatase activity was stimulated 1.5- to 3-fold by protamine, poly(L-lysine), and poly(L-arginine) at 3.6 micrograms/ml. PMID:6589597

  2. The three Type 2A protein phosphatases, PP2Ac, PP4c and PP6c, are differentially regulated by Alpha4.

    PubMed

    LeNoue-Newton, Michele L; Wadzinski, Brian E; Spiller, Benjamin W

    2016-06-17

    Alpha4 is a non-canonical regulatory subunit of Type 2A protein phosphatases that interacts directly with the phosphatase catalytic subunits (PP2Ac, PP4c, and PP6c) and is upregulated in a variety of cancers. Alpha4 modulates phosphatase expression levels and activity, but the molecular mechanism of this regulation is unclear, and the extent to which the various Type 2A catalytic subunits associate with Alpha4 is also unknown. To determine the relative fractions of the Type 2A catalytic subunits associated with Alpha4, we conducted Alpha4 immunodepletion experiments in HEK293T cells and found that a significant fraction of total PP6c is associated with Alpha4, whereas a minimal fraction of total PP2Ac is associated with Alpha4. To facilitate studies of phosphatases in the presence of mutant or null Alpha4 alleles, we developed a facile and rapid method to simultaneously knockdown and rescue Alpha4 in tissue culture cells. This approach has the advantage that levels of endogenous Alpha4 are dramatically reduced by shRNA expression thereby simplifying interpretation of mutant phenotypes. We used this system to show that knockdown of Alpha4 preferentially impacts the expression of PP4c and PP6c compared to expression levels of PP2Ac. PMID:27169767

  3. The effects of various kinase and phosphatase inhibitors on the transmission of the prolactin and extracellular matrix signals to rabbit alpha S1-casein and transferrin genes.

    PubMed

    Bayat-Sarmadi, M; Puissant, C; Houdebine, L M

    1995-07-01

    In all species, milk protein genes are specifically expressed in the mammary gland under the control of lactogenic hormones and extracellular matrix. In rabbit, casein gene expression is induced by prolactin alone and this induction is amplified by extracellular matrix. Transferrin gene expression is induced by extracellular matrix in the absence of hormones. The transduction mechanisms of prolactin and extracellular matrix to milk protein genes is only partly known. The present study has been undertaken to determine if protein kinases and phosphatases are involved in these mechanisms. Rabbit primary mammary cells were cultured in three different conditions (i) directly on floating collagen I, (ii) on plastic after a trypsinization to remove endogenous extracellular matrix, and (iii) on floating collagen I after a trypsinization to restore a functional extracellular matrix. In these culture conditions, prolactin and several protein kinase and phosphatase inhibitors were added to the medium. The expression of alpha S1-casein and transferrin genes was evaluated using Northern blotting analysis. In cells cultured directly on collagen I, staurosporine, quercetin and 6-dimethylaminopurine strongly inhibited prolactin action of alpha S1-casein gene whereas herbimycin A was only partly inhibitory. An erbstatin analogue, tyrosine phosphate, 1(5 isoquinolylsulphonyl) 2-methylpiperazine and GF 109 203 X did not alter prolactin action. The inhibitors which inhibited prolactin action when cells were directly cultured on collagen I were also those which prevented the induction of alpha S1-casein gene expression when cells were cultured on plastic in the absence of extracellular matrix. The induction of transferrin gene by the extracellular matrix was inhibited slightly by quercetin. Okadaic acid, phenylarsine oxide and sodium pervanadate which inhibit Ser/Thr and Tyr phosphatase inhibitors were unable to mimic prolactin action on alpha S1-casein gene expression. On the contrary

  4. The E3 Ubiquitin Ligase- and Protein Phosphatase 2A (PP2A)-binding Domains of the Alpha4 Protein Are Both Required for Alpha4 to Inhibit PP2A Degradation

    SciTech Connect

    LeNoue-Newton, Michele; Watkins, Guy R.; Zou, Ping; Germane, Katherine L.; McCorvey, Lisa R.; Wadzinski, Brian E.; Spiller, Benjamin W.

    2012-04-30

    Protein phosphatase 2A (PP2A) is regulated through a variety of mechanisms, including post-translational modifications and association with regulatory proteins. Alpha4 is one such regulatory protein that binds the PP2A catalytic subunit (PP2Ac) and protects it from polyubiquitination and degradation. Alpha4 is a multidomain protein with a C-terminal domain that binds Mid1, a putative E3 ubiquitin ligase, and an N-terminal domain containing the PP2Ac-binding site. In this work, we present the structure of the N-terminal domain of mammalian Alpha4 determined by x-ray crystallography and use double electron-electron resonance spectroscopy to show that it is a flexible tetratricopeptide repeat-like protein. Structurally, Alpha4 differs from its yeast homolog, Tap42, in two important ways: (1) the position of the helix containing the PP2Ac-binding residues is in a more open conformation, showing flexibility in this region; and (2) Alpha4 contains a ubiquitin-interacting motif. The effects of wild-type and mutant Alpha4 on PP2Ac ubiquitination and stability were examined in mammalian cells by performing tandem ubiquitin-binding entity precipitations and cycloheximide chase experiments. Our results reveal that both the C-terminal Mid1-binding domain and the PP2Ac-binding determinants are required for Alpha4-mediated protection of PP2Ac from polyubiquitination and degradation.

  5. Structural and Kinetic Characterization of the LPS Biosynthetic Enzyme D-alpha,beta-D-heptose-1,7-bisphosphate Phosphatase (GmhB) from Escherichia coli

    SciTech Connect

    Taylor, P.; Sugiman-Marangos, S; Zhang, K; Valvano, M; Wright, G; Junop, M

    2010-01-01

    Lipopolysaccharide is a major component of the outer membrane of Gram-negative bacteria and provides a permeability barrier to many commonly used antibiotics. ADP-heptose residues are an integral part of the LPS inner core, and mutants deficient in heptose biosynthesis demonstrate increased membrane permeability. The heptose biosynthesis pathway involves phosphorylation and dephosphorylation steps not found in other pathways for the synthesis of nucleotide sugar precursors. Consequently, the heptose biosynthetic pathway has been marked as a novel target for antibiotic adjuvants, which are compounds that facilitate and potentiate antibiotic activity. D-{alpha},{beta}-D-Heptose-1,7-bisphosphate phosphatase (GmhB) catalyzes the third essential step of LPS heptose biosynthesis. This study describes the first crystal structure of GmhB and enzymatic analysis of the protein. Structure-guided mutations followed by steady state kinetic analysis, together with established precedent for HAD phosphatases, suggest that GmhB functions through a phosphoaspartate intermediate. This study provides insight into the structure-function relationship of GmhB, a new target for combatting Gram-negative bacterial infection.

  6. Integrin {alpha}1{beta}1 promotes caveolin-1 dephosphorylation by activating T cell protein-tyrosine phosphatase.

    PubMed

    Borza, Corina M; Chen, Xiwu; Mathew, Sijo; Mont, Stacey; Sanders, Charles R; Zent, Roy; Pozzi, Ambra

    2010-12-17

    Integrin α1β1 is a collagen receptor that down-regulates collagen and reactive oxygen species (ROS) production, and mice lacking this receptor show increased ROS levels and exacerbated glomerular sclerosis following injury. Caveolin-1 (Cav-1) is a multifunctional protein that is tyrosine-phosphorylated in response to injury and has been implicated in ROS-mediated injury. Cav-1 interacts with integrins, and integrin α1β1 binds/activates T cell protein-tyrosine phosphatase (TCPTP), which is homologous to the tyrosine phosphatase PTP1B known to dephosphorylate Cav-1. In this study, we analyzed whether phosphorylated Cav-1 (pCav-1) is a substrate of TCPTP and if integrin α1β1 is essential for promoting TCPTP-mediated Cav-1 dephosphorylation. We found that Cav-1 phosphorylation is significantly higher in cells lacking integrin α1β1 at base line and following oxidative stress. Overexpression of TCPTP leads to reduced pCav-1 levels only in cells expressing integrin α1β1. Using solid phase binding assays, we demonstrated that 1) purified Cav-1 directly interacts with TCPTP and the integrin α1 subunit, 2) pCav-1 is a substrate of TCPTP, and 3) TCPTP-mediated Cav-1 dephosphorylation is highly increased by the addition of purified integrin α1β1 or an integrin α1 cytoplasmic peptide to which TCPTP has been shown to bind. Thus, our results demonstrate that pCav-1 is a new substrate of TCPTP and that integrin α1β1 acts as a negative regulator of Cav-1 phosphorylation by activating TCPTP. This could explain the protective function of integrin α1β1 in oxidative stress-mediated damage and why integrin α1-null mice are more susceptible to fibrosis following injury. PMID:20940300

  7. Specificity of a protein phosphatase inhibitor from rabbit skeletal muscle.

    PubMed Central

    Cohen, P; Nimmo, G A; Antoniw, J F

    1977-01-01

    A hear-stable protein, which is a specific inhibitor of protein phosphatase-III, was purified 700-fold from skeletal muscle by a procedure that involved heat-treatment at 95 degrees C, chromatography on DEAE-cellulose and gel filtration on Sephadex G-100. The final step completely resolved the protein phosphatase inhibitor from the protein inhibitor of cyclic AMP-dependent protein kinase. The phosphorylase phosphatase, beta-phosphorylase kinase phosphatase, glycogen synthase phosphatase-1 and glycogen synthase phosphatase-2 activities of protein phosphatase-III [Antoniw, J. F., Nimmo, H. G., Yeaman, S. J. & Cohen, P.(1977) Biochem.J. 162, 423-433] were inhibited in a very similar manner by the protein phosphatase inhibitor and at least 95% inhibition was observed at high concentrations of inhibitor. The two forms of protein phosphatase-III, termed IIIA and IIIB, were equally susceptible to the protein phosphatase inhibitor. The protein phosphatase inhibitor was at least 200 times less effective in inhibiting the activity of protein phosphatase-I and protein phosphatase-II. The high degree of specificity of the inhibitor for protein phosphatase-III was used to show that 90% of the phosphorylase phosphatase and glycogen synthase phosphatase activities measured in muscle extracts are catalysed by protein phosphatase-III. Protein phosphatase-III was tightly associated with the protein-glycogen complex that can be isolated from skeletal muscle, whereas the protein phosphatase inhibitor and protein phosphatase-II were not. The results provide further evidence that the enzyme that catalyses the dephosphorylation of the alpha-subunit of phosphorylase kinase (protein phosphatase-II) and the enzyme that catalyses the dephosphorylation of the beta-subunit of phosphorylase kinase (protein phosphatase-III) are distinct. The results suggest that the protein phosphatase inhibitor may be a useful probe for differentiating different classes of protein phosphatases in mammalian

  8. Homozygous mutation in the eukaryotic translation initiation factor 2alpha phosphatase gene, PPP1R15B, is associated with severe microcephaly, short stature and intellectual disability

    PubMed Central

    Kernohan, Kristin D.; Tétreault, Martine; Liwak-Muir, Urszula; Geraghty, Michael T.; Qin, Wen; Venkateswaran, Sunita; Davila, Jorge; Holcik, Martin; Majewski, Jacek; Richer, Julie; Boycott, Kym M.

    2015-01-01

    Protein translation is an essential cellular process initiated by the association of a methionyl–tRNA with the translation initiation factor eIF2. The Met-tRNA/eIF2 complex then associates with the small ribosomal subunit, other translation factors and mRNA, which together comprise the translational initiation complex. This process is regulated by the phosphorylation status of the α subunit of eIF2 (eIF2α); phosphorylated eIF2α attenuates protein translation. Here, we report a consanguineous family with severe microcephaly, short stature, hypoplastic brainstem and cord, delayed myelination and intellectual disability in two siblings. Whole-exome sequencing identified a homozygous missense mutation, c.1972G>A; p.Arg658Cys, in protein phosphatase 1, regulatory subunit 15b (PPP1R15B), a protein which functions with the PPP1C phosphatase to maintain dephosphorylated eIF2α in unstressed cells. The p.R658C PPP1R15B mutation is located within the PPP1C binding site. We show that patient cells have greatly diminished levels of PPP1R15B–PPP1C interaction, which results in increased eIF2α phosphorylation and resistance to cellular stress. Finally, we find that patient cells have elevated levels of PPP1R15B mRNA and protein, suggesting activation of a compensatory program aimed at restoring cellular homeostasis which is ineffective due to PPP1R15B alteration. PPP1R15B now joins the expanding list of translation-associated proteins which when mutated cause rare genetic diseases. PMID:26307080

  9. ALP (Alkaline Phosphatase) Test

    MedlinePlus

    ... known as: ALK PHOS; Alkp Formal name: Alkaline Phosphatase Related tests: AST ; ALT ; GGT ; Bilirubin ; Liver Panel ; Bone Markers ; Alkaline Phosphatase Isoenzymes; Bone Specific ALP All content on Lab ...

  10. Glucose-6-phosphatase deficiency

    PubMed Central

    2011-01-01

    Glucose-6-phosphatase deficiency (G6P deficiency), or glycogen storage disease type I (GSDI), is a group of inherited metabolic diseases, including types Ia and Ib, characterized by poor tolerance to fasting, growth retardation and hepatomegaly resulting from accumulation of glycogen and fat in the liver. Prevalence is unknown and annual incidence is around 1/100,000 births. GSDIa is the more frequent type, representing about 80% of GSDI patients. The disease commonly manifests, between the ages of 3 to 4 months by symptoms of hypoglycemia (tremors, seizures, cyanosis, apnea). Patients have poor tolerance to fasting, marked hepatomegaly, growth retardation (small stature and delayed puberty), generally improved by an appropriate diet, osteopenia and sometimes osteoporosis, full-cheeked round face, enlarged kydneys and platelet dysfunctions leading to frequent epistaxis. In addition, in GSDIb, neutropenia and neutrophil dysfunction are responsible for tendency towards infections, relapsing aphtous gingivostomatitis, and inflammatory bowel disease. Late complications are hepatic (adenomas with rare but possible transformation into hepatocarcinoma) and renal (glomerular hyperfiltration leading to proteinuria and sometimes to renal insufficiency). GSDI is caused by a dysfunction in the G6P system, a key step in the regulation of glycemia. The deficit concerns the catalytic subunit G6P-alpha (type Ia) which is restricted to expression in the liver, kidney and intestine, or the ubiquitously expressed G6P transporter (type Ib). Mutations in the genes G6PC (17q21) and SLC37A4 (11q23) respectively cause GSDIa and Ib. Many mutations have been identified in both genes,. Transmission is autosomal recessive. Diagnosis is based on clinical presentation, on abnormal basal values and absence of hyperglycemic response to glucagon. It can be confirmed by demonstrating a deficient activity of a G6P system component in a liver biopsy. To date, the diagnosis is most commonly confirmed

  11. Direct determination of phosphatase activity from physiological substrates in cells.

    PubMed

    Ren, Zhongyuan; Do, Le Duy; Bechkoff, Géraldine; Mebarek, Saida; Keloglu, Nermin; Ahamada, Saandia; Meena, Saurabh; Magne, David; Pikula, Slawomir; Wu, Yuqing; Buchet, René

    2015-01-01

    A direct and continuous approach to determine simultaneously protein and phosphate concentrations in cells and kinetics of phosphate release from physiological substrates by cells without any labeling has been developed. Among the enzymes having a phosphatase activity, tissue non-specific alkaline phosphatase (TNAP) performs indispensable, multiple functions in humans. It is expressed in numerous tissues with high levels detected in bones, liver and neurons. It is absolutely required for bone mineralization and also necessary for neurotransmitter synthesis. We provided the proof of concept that infrared spectroscopy is a reliable assay to determine a phosphatase activity in the osteoblasts. For the first time, an overall specific phosphatase activity in cells was determined in a single step by measuring simultaneously protein and substrate concentrations. We found specific activities in osteoblast like cells amounting to 116 ± 13 nmol min(-1) mg(-1) for PPi, to 56 ± 11 nmol min(-1) mg(-1) for AMP, to 79 ± 23 nmol min(-1) mg(-1) for beta-glycerophosphate and to 73 ± 15 nmol min(-1) mg(-1) for 1-alpha-D glucose phosphate. The assay was also effective to monitor phosphatase activity in primary osteoblasts and in matrix vesicles. The use of levamisole--a TNAP inhibitor--served to demonstrate that a part of the phosphatase activity originated from this enzyme. An IC50 value of 1.16 ± 0.03 mM was obtained for the inhibition of phosphatase activity of levamisole in osteoblast like cells. The infrared assay could be extended to determine any type of phosphatase activity in other cells. It may serve as a metabolomic tool to monitor an overall phosphatase activity including acid phosphatases or other related enzymes. PMID:25785438

  12. Alkaline Phosphatase in Stem Cells

    PubMed Central

    Štefková, Kateřina; Procházková, Jiřina; Pacherník, Jiří

    2015-01-01

    Alkaline phosphatase is an enzyme commonly expressed in almost all living organisms. In humans and other mammals, determinations of the expression and activity of alkaline phosphatase have frequently been used for cell determination in developmental studies and/or within clinical trials. Alkaline phosphatase also seems to be one of the key markers in the identification of pluripotent embryonic stem as well as related cells. However, alkaline phosphatases exist in some isoenzymes and isoforms, which have tissue specific expressions and functions. Here, the role of alkaline phosphatase as a stem cell marker is discussed in detail. First, we briefly summarize contemporary knowledge of mammalian alkaline phosphatases in general. Second, we focus on the known facts of its role in and potential significance for the identification of stem cells. PMID:25767512

  13. Modulators of intestinal alkaline phosphatase.

    PubMed

    Bobkova, Ekaterina V; Kiffer-Moreira, Tina; Sergienko, Eduard A

    2013-01-01

    Small molecule modulators of phosphatases can lead to clinically useful drugs and serve as invaluable tools to study functional roles of various phosphatases in vivo. Here, we describe lead discovery strategies for identification of inhibitors and activators of intestinal alkaline phosphatases. To identify isozyme-selective inhibitors and activators of the human and mouse intestinal alkaline phosphatases, ultrahigh throughput chemiluminescent assays, utilizing CDP-Star as a substrate, were developed for murine intestinal alkaline phosphatase (mIAP), human intestinal alkaline phosphatase (hIAP), human placental alkaline phosphatase (PLAP), and human tissue-nonspecific alkaline phosphatase (TNAP) isozymes. Using these 1,536-well assays, concurrent HTS screens of the MLSMR library of 323,000 compounds were conducted for human and mouse IAP isozymes monitoring both inhibition and activation. This parallel screening approach led to identification of a novel inhibitory scaffold selective for murine intestinal alkaline phosphatase. SAR efforts based on parallel testing of analogs against different AP isozymes generated a potent inhibitor of the murine IAP with IC50 of 540 nM, at least 65-fold selectivity against human TNAP, and >185 selectivity against human PLAP. PMID:23860652

  14. Structural Genomics of Protein Phosphatases

    SciTech Connect

    Almo,S.; Bonanno, J.; Sauder, J.; Emtage, S.; Dilorenzo, T.; Malashkevich, V.; Wasserman, S.; Swaminathan, S.; Eswaramoorthy, S.; et al

    2007-01-01

    The New York SGX Research Center for Structural Genomics (NYSGXRC) of the NIGMS Protein Structure Initiative (PSI) has applied its high-throughput X-ray crystallographic structure determination platform to systematic studies of all human protein phosphatases and protein phosphatases from biomedically-relevant pathogens. To date, the NYSGXRC has determined structures of 21 distinct protein phosphatases: 14 from human, 2 from mouse, 2 from the pathogen Toxoplasma gondii, 1 from Trypanosoma brucei, the parasite responsible for African sleeping sickness, and 2 from the principal mosquito vector of malaria in Africa, Anopheles gambiae. These structures provide insights into both normal and pathophysiologic processes, including transcriptional regulation, regulation of major signaling pathways, neural development, and type 1 diabetes. In conjunction with the contributions of other international structural genomics consortia, these efforts promise to provide an unprecedented database and materials repository for structure-guided experimental and computational discovery of inhibitors for all classes of protein phosphatases.

  15. Structural Basis of Response Regulator Dephosphorylation by Rap Phosphatases

    SciTech Connect

    V Parashar; N Mirouze; D Dubnau; M Neiditch

    2011-12-31

    Bacterial Rap family proteins have been most extensively studied in Bacillus subtilis, where they regulate activities including sporulation, genetic competence, antibiotic expression, and the movement of the ICEBs1 transposon. One subset of Rap proteins consists of phosphatases that control B. subtilis and B. anthracis sporulation by dephosphorylating the response regulator Spo0F. The mechanistic basis of Rap phosphatase activity was unknown. Here we present the RapH-Spo0F X-ray crystal structure, which shows that Rap proteins consist of a 3-helix bundle and a tetratricopeptide repeat domain. Extensive biochemical and genetic functional studies reveal the importance of the observed RapH-Spo0F interactions, including the catalytic role of a glutamine in the RapH 3-helix bundle that inserts into the Spo0F active site. We show that in addition to dephosphorylating Spo0F, RapH can antagonize sporulation by sterically blocking phosphoryl transfer to and from Spo0F. Our structure-function analysis of the RapH-Spo0F interaction identified Rap protein residues critical for Spo0F phosphatase activity. This information enabled us to assign Spo0F phosphatase activity to a Rap protein based on sequence alone, which was not previously possible. Finally, as the ultimate test of our newfound understanding of the structural requirements for Rap phosphatase function, a non-phosphatase Rap protein that inhibits the binding of the response regulator ComA to DNA was rationally engineered to dephosphorylate Spo0F. In addition to revealing the mechanistic basis of response regulator dephosphorylation by Rap proteins, our studies support the previously proposed T-loop-Y allostery model of receiver domain regulation that restricts the aromatic 'switch' residue to an internal position when the {beta}4-{alpha}4 loop adopts an active-site proximal conformation.

  16. Phosphatase regulation of macrophage activation.

    PubMed

    Kozicky, Lisa K; Sly, Laura M

    2015-08-01

    Macrophages are innate immune cells that play critical roles in tissue homeostasis and the immune response to invading pathogens or tumor cells. A hallmark of macrophages is their "plasticity," that is, their ability to respond to cues in their local microenvironment and adapt their activation state or phenotype to mount an appropriate response. During the inflammatory response, macrophages may be required to mount a profound anti-bacterial or anti-tumor response, an anti-inflammatory response, an anti-parasitic response, or a wound healing response. To do so, macrophages express cell surface receptors for growth factors, chemokines and cytokines, as well pathogen and danger associated molecular patterns. Downstream of these cell surface receptors, cell signalling cascades are activated and deactivated by reversible and competing activities of lipid and protein kinases and phosphatases. While kinases drive the activation of cell signalling pathways critical for macrophage activation, the strength and duration of the signalling is regulated by phosphatases. Hence, gene knockout mouse models have revealed critical roles for lipid and protein phosphatases in macrophage activation. Herein, we describe our current understanding and the key roles of specific cellular phosphatases in the regulation of the quality of macrophage polarization as well as the quantity of cytokines produced by activated macrophages. PMID:26216598

  17. Stimulation of protein phosphatase activity by insulin and growth factors in 3T3 cells

    SciTech Connect

    Chan, C.P.; McNall, S.J.; Krebs, E.G.; Fischer, E.H. )

    1988-09-01

    Incubation of Swiss mouse 3T3-D1 cells with physiological concentrations of insulin resulted in a rapid and transient activation of protein phosphatase activity as measure by using ({sup 32}P)phosphorylase {alpha} as substrate. Activation reached a maximum level (140% of control value) within 5 min of addition and returned to control levels within 20 min. The effect of insulin was dose-dependent with half-maximal activation occurring at {approx}5 nM insulin. This activity could be completely inhibited by addition of the heat-stable protein inhibitor 2, which suggests the presence of an activated type-1 phosphatase. Similar effects on phosphatase activity were seen when epidermal growth factor and platelet-derived growth factor were tested. These results suggest that some of the intracellular effects caused by insulin and growth factors are mediated through the activation of a protein phosphatase.

  18. The glucose-6-phosphatase system.

    PubMed Central

    van Schaftingen, Emile; Gerin, Isabelle

    2002-01-01

    Glucose-6-phosphatase (G6Pase), an enzyme found mainly in the liver and the kidneys, plays the important role of providing glucose during starvation. Unlike most phosphatases acting on water-soluble compounds, it is a membrane-bound enzyme, being associated with the endoplasmic reticulum. In 1975, W. Arion and co-workers proposed a model according to which G6Pase was thought to be a rather unspecific phosphatase, with its catalytic site oriented towards the lumen of the endoplasmic reticulum [Arion, Wallin, Lange and Ballas (1975) Mol. Cell. Biochem. 6, 75--83]. Substrate would be provided to this enzyme by a translocase that is specific for glucose 6-phosphate, thereby accounting for the specificity of the phosphatase for glucose 6-phosphate in intact microsomes. Distinct transporters would allow inorganic phosphate and glucose to leave the vesicles. At variance with this substrate-transport model, other models propose that conformational changes play an important role in the properties of G6Pase. The last 10 years have witnessed important progress in our knowledge of the glucose 6-phosphate hydrolysis system. The genes encoding G6Pase and the glucose 6-phosphate translocase have been cloned and shown to be mutated in glycogen storage disease type Ia and type Ib respectively. The gene encoding a G6Pase-related protein, expressed specifically in pancreatic islets, has also been cloned. Specific potent inhibitors of G6Pase and of the glucose 6-phosphate translocase have been synthesized or isolated from micro-organisms. These as well as other findings support the model initially proposed by Arion. Much progress has also been made with regard to the regulation of the expression of G6Pase by insulin, glucocorticoids, cAMP and glucose. PMID:11879177

  19. Myosin light-chain phosphatase.

    PubMed Central

    Morgan, M; Perry, S V; Ottaway, J

    1976-01-01

    1. A method for the isolation of a new enzyme, myosin light-chain phosphatase, from rabbit white skeletal muscle by using a Sepharose-phosphorylated myosin light-chain affinity column is described. 2. The enzyme migrated as a single component on electrophoresis in sodium dodecyl sulphate/polyacrylamide gel at pH7.0, with apparent mol.wt. 70000. 3. The enzyme was highly specific for the phosphorylated P-light chain of myosin, had pH optima at 6.5 and 8.0 and was not inhibited by NaF. 4. A Ca2+-sensitive 'ATPase' (adenosine triphosphatase) system consisting of myosin light-chain kinase, myosin light-chain phosphatase and the P-light chain is described. 5. Evidence is presented for a phosphoryl exchange between Pi, phosphorylated P-light chain and myosin light-chain phosphatase. 6. Heavy meromyosin prepared by chymotryptic digestion can be phosphorylated by myosin light-chain kinase. 7. The ATPase activities of myosin and heavy meromyosin, in the presence and absence of F-actin, were not significantly changed (+/- 10%) by phosphorylation of the P-light chain. Images PLATE 1 PMID:186030

  20. Dephosphorylation of Tctex2-related dynein light chain by type 2A protein phosphatase.

    PubMed

    Inaba, Kazuo

    2002-10-01

    Sperm flagellar movements are regulated by cAMP-dependent protein phosphorylation. Tctex2-related light chain of outer arm dynein is a well-defined phosphorylated protein that is phosphorylated at activation of sperm motility. Here, the protein phosphatase that dephosphorylates Tctex2-related dynein light chain (LC2) has been characterized in salmonid fish sperm. Most of the phosphatase activity against LC2 is found in Triton-soluble fraction of flagella but trace extent of the activity is retained in the axoneme. The dephosphorylation of LC2 is inhibited by okadaic acid at more than 1nM, whereas that of dynein alpha heavy chain is inhibited at more than 10nM. The addition of Ca(2+) gives no direct effect on LC2 dephosphorylation, but it accelerates the dephosphorylation of the regulatory subunit of cAMP-dependent protein kinase, resulting in the decrease of LC2 phosphorylation. The activity to dephosphorylate the LC2 is separated by MonoQ ion-exchange column chromatography along with the immunoreactivity to the antibody against the catalytic subunit of type 2A protein phosphatase. These results suggest that LC2 is dephosphorylated by type 2A protein phosphatase and that dynein alpha heavy chain and the regulatory subunit of cAMP-dependent protein kinase are dephosphorylated by other types of protein phosphatases. PMID:12359223

  1. The protein phosphatase inhibitor calyculin A stimulates chemokine production by human synovial cells.

    PubMed Central

    Jordan, N J; Watson, M L; Westwick, J

    1995-01-01

    Cultured human synovial fibroblasts express mRNA for the chemotactic cytokines (chemokines) interleukin-8 (IL-8), monocyte chemotactic protein 1 (MCP-1) and regulated upon activation normal T-cell expressed and presumably secreted (RANTES), when stimulated with IL-1 or tumour necrosis factor alpha (TNF alpha). Calyculin A, a potent type 1/2A protein serine/threonine phosphatase inhibitor, was used to examine the role of protein phosphatases in the regulation of chemokine gene expression. Calyculin A (1 nM) mimicked IL-1 by inducing IL-8 and MCP-1 mRNA expression in synovial cells. IL-8 mRNA was induced over a similar time period (1-6 h) in response to IL-1 or calyculin A, whereas MCP-1 mRNA was induced more rapidly (1-2 h) by calyculin A than by IL-1 (4-6 h). Expression of RANTES mRNA occurred in response to TNF alpha, but could not be induced by stimulation with calyculin A alone. These results suggest that inhibition of protein phosphatase type 1/2A may have a differential role in the regulation of the expression of each of the chemokine genes. Synovial fibroblasts also secreted IL-8 and IL-6 peptide when stimulated with either IL-1/TNF alpha or calyculin A. The amount of IL-8 and IL-6 peptide produced in response to calyculin A was significantly increased above that produced by untreated synovial cells, though it was much less than the amount induced by IL-1 or TNF alpha. Calyculin A also acted synergistically with IL-1 or TNF alpha to cause a 2-fold potentiation of IL-1- or TNF alpha-induced IL-8 mRNA and peptide and RANTES mRNA expression. These results suggest that although inhibition of a protein phosphatase may be able to regulate the magnitude of IL-1-induced chemokine gene expression, the IL-1 signal transduction pathway involves components in addition to phosphatase inhibition, possibly including the activation of a protein kinase, the action of which may be opposed by a protein phosphatase inhibited by calyculin A. Images Figure 1 Figure 2 Figure 3

  2. [Phosphoprotein phosphatase nonspecifically hydrolyzes CoA].

    PubMed

    Reziapkin, V I; Moiseenok, A G

    1988-01-01

    CoA hydrolysis was studied by a homogenous phosphoprotein phosphatase (EC 3.1 3.16) preparation from bovine spleen nuclei at pH 5.8. Phosphoprotein phosphatase catalyzed hydrolysis of the CoA 3'-phosphoester bond to form dephospho-CoA and Pi. The Km value for phosphoprotein phosphatase with CoA as substrate was 3.7 mM, the specific activity - 0.26 mmol Pi.min-1.mg-1. Phosphoprotein phosphatase did not essentially catalyze the calcium pantothenate hydrolysis (not more than 2% as compared with the CoA hydrolysis rate). PMID:2849829

  3. The cell-wall phosphatase of cotton (Gossypium) is inhibited by kelthane.

    PubMed Central

    Daley, L S; Carroll, P; Mussell, H

    1979-01-01

    Kelthane [4,4'-dichloro-alpha-(trichloromethyl)benzhydrol] was previously shown to decrease the limited tolerance of susceptible varieties of cotton (Gossypium) to Verticillium wilt. Kelthane was shown in the present study to inhibit the cell-wall p-nitrophenyl phosphatase of cotton. In view of information already establishing the cell wall as a primary site of action of Verticillium wilt, the data are interpreted as suggesting an as yet undefined interaction between Kelthane, cell-wall phosphatase and verticillium-resistance mechanisms of the cell wall. PMID:224864

  4. Isolation of Human Mitotic Protein Phosphatase Complexes: Identification of a Complex between Protein Phosphatase 1 and the RNA Helicase Ddx21

    PubMed Central

    De Wever, Veerle; Lloyd, David C.; Nasa, Isha; Nimick, Mhairi; Trinkle-Mulcahy, Laura; Gourlay, Robert; Morrice, Nick; Moorhead, Greg B. G.

    2012-01-01

    Metazoan mitosis requires remodelling of sub-cellular structures to ensure proper division of cellular and genetic material. Faults often lead to genomic instability, cell cycle arrests and disease onset. These key structural changes are under tight spatial-temporal and post-translational control, with crucial roles for reversible protein phosphorylation. The phosphoprotein phosphatases PP1 and PP2A are paramount for the timely execution of mitotic entry and exit but their interaction partners and substrates are still largely unresolved. High throughput, mass-spectrometry based studies have limited sensitivity for the detection of low-abundance and transient complexes, a typical feature of many protein phosphatase complexes. Moreover, the limited timeframe during which mitosis takes place reduces the likelihood of identifying mitotic phosphatase complexes in asynchronous cells. Hence, numerous mitotic protein phosphatase complexes still await identification. Here we present a strategy to enrich and identify serine/threonine protein phosphatase complexes at the mitotic spindle. We thus identified a nucleolar RNA helicase, Ddx21/Gu, as a novel, direct PP1 interactor. Furthermore, our results place PP1 within the toposome, a Topoisomerase II alpha (TOPOIIα) containing complex with a key role in mitotic chromatin regulation and cell cycle progression, possibly via regulated protein phosphorylation. This study provides a strategy for the identification of further mitotic PP1 partners and the unravelling of PP1 functions during mitosis. PMID:22761809

  5. Protein phosphatases in pancreatic islets

    PubMed Central

    Ortsäter, Henrik; Grankvist, Nina; Honkanen, Richard E.; Sjöholm1, Åke

    2014-01-01

    The prevalence of diabetes is increasing rapidly world-wide. A cardinal feature of most forms of diabetes is the lack of insulin-producing capability, due to the loss of insulin-producing β-cells, impaired glucose-sensitive insulin secretion from the β-cell, or a combination thereof, the reasons for which largely remain elusive. Reversible phosphorylation is an important and versatile mechanism for regulating the biological activity of many intracellular proteins, which, in turn, controls a variety of cellular functions. For instance, significant changes in protein kinase activities and in protein phosphorylation patterns occur subsequent to stimulation of insulin release by glucose. Therefore, the molecular mechanisms regulating phosphorylation of proteins involved in the insulin secretory process by the β-cell have been extensively investigated. However, far less is known about the role and regulation of protein dephosphorylation by various protein phosphatases. Herein we review extant data implicating serine/threonine and tyrosine phosphatases in various aspects of healthy and diabetic islet biology, ranging from control of hormonal stimulus-secretion coupling to mitogenesis and apoptosis. PMID:24681827

  6. Crystal structure of human dual specificity phosphatase, JNK stimulatory phosphatase-1, at 1.5 A resolution.

    PubMed

    Yokota, Takehiro; Nara, Yukinori; Kashima, Akiko; Matsubara, Keiko; Misawa, Satoru; Kato, Ryohei; Sugio, Shigetoshi

    2007-02-01

    Human JNK stimulatory phosphatase-1 (JSP-1) is a novel member of dual specificity phosphatases. A C-terminus truncated JSP-1 was expressed in Escherichia coli and was crystallized using the sitting-drop vapor diffusion method. Thin-plate crystals obtained at 278 K belong to a monoclinic space group, C2, with unit-cell parameters a = 84.0 A, b = 49.3 A, c = 47.3 A, and beta = 119.5 degrees , and diffract up to 1.5 A resolution at 100 K. The structure of JSP-1 has a single compact (alpha/beta) domain, which consists of six alpha-helices and five beta-strands, and shows a conserved structural scaffold in regard to both DSPs and PTPs. A cleft formed by a PTP-loop at the active site is very shallow, and is occupied by one sulfonate compound, MES, at the bottom. In the binary complex structure of JSP-1 with MES, the conformations of three important segments in regard to the catalytic mechanism are not similar to those in PTP1B. JSP-1 has no loop corresponding to the Lys120-loop of PTP1B, and tryptophan residue corresponding to the substrate-stacking in PTP1B is substituted by alanine residue in JSP-1. PMID:17068812

  7. Characterization of the major phosphofructokinase-dephosphorylating protein phosphatases from Ascaris suum muscle.

    PubMed

    Daum, G; Schmid, B; MacKintosh, C; Cohen, P; Hofer, H W

    1992-07-13

    In contrast to the mammalian enzyme, PFK from the nematode Ascaris suum is activated following phosphorylation (Daum et al. (1986) Biochem. Biophys. Res. Commun. 139, 215-221) catalyzed by a cAMP-dependent protein kinase (Thalhofer et al. (1988) J. Biol. Chem. 263, 952-957). In the present report, we describe the characterization of the major PFK dephosphorylating phosphatases from Ascaris muscle. Two of these phosphatases exhibit apparent M(r) values of 174,000 and 126,000, respectively, and are dissociated to active 33 kDa proteins by ethanol precipitation. Denaturing electrophoresis of each of the enzyme preparations showed two bands of M(r) 33,000 and 63,000. The enzymes are classified as type 2A phosphatases according to their inhibition by subnanomolar concentrations of okadaic acid, the lack of inhibition by heat-stable phosphatase inhibitors 1 and 2, and their preference for the alpha- rather than for the beta-subunit of phosphorylase kinase. Like other type 2A phosphatases, they exhibit broad substrate specificities, are activated by divalent cations and polycations, and inhibited by fluoride, inorganic phosphate and adenine nucleotides. In addition, we have found that PFK is also dephosphorylated by an unusual protein phosphatase. This exhibits kinetic properties similar to type 2A protein phosphatases, but has a distinctly lower sensitivity towards inhibition by okadaic acid (IC50 approx. 20 nM). Partial purification of the enzyme provided evidence that it is composed of a 30 kDa catalytic subunit and probably two other subunits (molecular masses 66 and 72 kDa). The dephosphorylation of PFK by protein phosphatases is strongly inhibited by heparin. This effect, however, is substrate-specific and does not occur with Ascaris phosphorylase a. PMID:1321672

  8. Alpha Particle

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Term that is sometimes used to describe a helium nucleus, a positively charged particle that consists of two protons and two neutrons, bound together. Alpha particles, which were discovered by Ernest Rutherford (1871-1937) in 1898, are emitted by atomic nuclei that are undergoing alpha radioactivity. During this process, an unstable heavy nucleus spontaneously emits an alpha particle and transmut...

  9. HuPho: the human phosphatase portal.

    PubMed

    Liberti, Susanna; Sacco, Francesca; Calderone, Alberto; Perfetto, Livia; Iannuccelli, Marta; Panni, Simona; Santonico, Elena; Palma, Anita; Nardozza, Aurelio P; Castagnoli, Luisa; Cesareni, Gianni

    2013-01-01

    Phosphatases and kinases contribute to the regulation of protein phosphorylation homeostasis in the cell. Phosphorylation is a key post-translational modification underlying the regulation of many cellular processes. Thus, a comprehensive picture of phosphatase function and the identification of their target substrates would aid a systematic approach to a mechanistic description of cell signalling. Here we present a website designed to facilitate the retrieval of information about human protein phosphatases. To this end we developed a search engine to recover and integrate information annotated in several publicly available web resources. In addition we present a text-mining-assisted annotation effort aimed at extracting phosphatase related data reported in the scientific literature. The HuPho (human phosphatases) website can be accessed at http://hupho.uniroma2.it. PMID:22804825

  10. Phosphoinositide Phosphatases in Cell Biology and Disease

    PubMed Central

    Liu, Yang; Bankaitis, Vytas A.

    2010-01-01

    Phosphoinositides are essential signaling molecules linked to a diverse array of cellular processes in eukaryotic cells. The metabolic interconversions of these phospholipids are subject to exquisite spatial and temporal regulation executed by arrays of phosphatidylinositol (PtdIns) and phosphoinositide-metabolizing enzymes. These include PtdIns- and phosphoinositide-kinases that drive phosphoinositide synthesis, and phospholipases and phosphatases that regulate phosphoinositide degradation. In the past decade, phosphoinositide phosphatases have emerged as topics of particular interest. This interest is driven by the recent appreciation that these enzymes represent primary mechanisms for phosphoinositide degradation, and because of their ever-increasing connections with human diseases. Herein, we review the biochemical properties of six major phosphoinositide phosphatases, the functional involvements of these enzymes in regulating phosphoinositide metabolism, the pathologies that arise from functional derangements of individual phosphatases, and recent ideas concerning the involvements of phosphoinositide phosphatases in membrane traffic control. PMID:20043944

  11. Regulation of the innate immune response by threonine-phosphatase of Eyes absent.

    PubMed

    Okabe, Yasutaka; Sano, Teruyuki; Nagata, Shigekazu

    2009-07-23

    Innate immunity is stimulated not only by viral or bacterial components, but also by non-microbial danger signals (damage-associated molecular patterns). One of the damage-associated molecular patterns is chromosomal DNA that escapes degradation. In programmed cell death and erythropoiesis, DNA from dead cells or nuclei expelled from erythroblasts is digested by DNase II in the macrophages after they are engulfed. DNase II(-/-) (also known as Dnase2a(-/-)) mice suffer from severe anaemia or chronic arthritis due to interferon-beta (IFN-beta) and tumour necrosis factor-alpha (TNF-alpha) produced from the macrophages carrying undigested DNA in a Toll-like receptor (TLR)-independent mechanism. Here we show that Eyes absent 4 (EYA4), originally identified as a co-transcription factor, stimulates the expression of IFN-beta and CXCL10 in response to the undigested DNA of apoptotic cells. EYA4 enhanced the innate immune response against viruses (Newcastle disease virus and vesicular stomatitis virus), and could associate with signalling molecules (IPS-1 (also known as MAVS), STING (TMEM173) and NLRX1). Three groups have previously shown that EYA has phosphatase activity. We found that mouse EYA family members act as a phosphatase for both phosphotyrosine and phosphothreonine. The haloacid dehalogenase domain at the carboxy terminus contained the tyrosine-phosphatase, and the amino-terminal half carried the threonine-phosphatase. Mutations of the threonine-phosphatase, but not the tyrosine-phosphatase, abolished the ability of EYA4 to enhance the innate immune response, suggesting that EYA regulates the innate immune response by modulating the phosphorylation state of signal transducers for the intracellular pathogens. PMID:19561593

  12. Leishmania mexicana: promastigotes and amastigotes secrete protein phosphatases and this correlates with the production of inflammatory cytokines in macrophages.

    PubMed

    Escalona-Montaño, A R; Ortiz-Lozano, D M; Rojas-Bernabé, A; Wilkins-Rodriguez, A A; Torres-Guerrero, H; Mondragón-Flores, R; Mondragón-Gonzalez, R; Becker, I; Gutiérrez-Kobeh, L; Aguirre-Garcia, M M

    2016-09-01

    Phosphatase activity of Leishmania spp. has been shown to deregulate the signalling pathways of the host cell. We here show that Leishmania mexicana promastigotes and amastigotes secrete proteins with phosphatase activity to the culture medium, which was higher in the Promastigote Secretion Medium (PSM) as compared with the Amastigote Secretion Medium (ASM) and was not due to cell lysis, since parasite viability was not affected by the secretion process. The biochemical characterization showed that the phosphatase activity present in PSM was higher in dephosphorylating the peptide END (pY) INASL as compared with the peptide RRA (pT)VA. In contrast, the phosphatase activity in ASM showed little dephosphorylating capacity for both peptides. Inhibition assays demonstrated that the phosphatase activity of both PSM and ASM was sensible only to protein tyrosine phosphatases inhibitors. An antibody against a protein phosphatase 2C (PP2C) of Leishmania major cross-reacted with a 44·9 kDa molecule in different cellular fractions of L. mexicana promastigotes and amastigotes, however, in PSM and ASM, the antibody recognized a protein about 70 kDa. By electron microscopy, the PP2C was localized in the flagellar pocket of amastigotes. PSM and ASM induced the production of tumor necrosis factor alpha, IL-1β, IL-12p70 and IL-10 in human macrophages. PMID:27220404

  13. Multiple Functions of the Eya Phosphotyrosine Phosphatase

    PubMed Central

    2015-01-01

    Eyes absent (Eya), a protein conserved from plants to humans and best characterized as a transcriptional coactivator, is also the prototype for a novel class of eukaryotic aspartyl protein tyrosine phosphatases. This minireview discusses recent breakthroughs in elucidating the substrates and cellular events regulated by Eya's tyrosine phosphatase function and highlights some of the complexities, new questions, and surprises that have emerged from efforts to understand how Eya's unusual multifunctionality influences developmental regulation and signaling. PMID:26667035

  14. 21 CFR 864.7660 - Leukocyte alkaline phosphatase test.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Leukocyte alkaline phosphatase test. 864.7660... Leukocyte alkaline phosphatase test. (a) Identification. A leukocyte alkaline phosphatase test is a device used to identify the enzyme leukocyte alkaline phosphatase in neutrophilic granulocytes...

  15. 21 CFR 864.7660 - Leukocyte alkaline phosphatase test.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Leukocyte alkaline phosphatase test. 864.7660... Leukocyte alkaline phosphatase test. (a) Identification. A leukocyte alkaline phosphatase test is a device used to identify the enzyme leukocyte alkaline phosphatase in neutrophilic granulocytes...

  16. Phosphorylation-independent stimulation of DNA topoisomerase II alpha activity.

    PubMed

    Kimura, K; Saijo, M; Tanaka, M; Enomoto, T

    1996-05-01

    It has been suggested that casein kinase II phosphorylates DNA topoisomerase II alpha (topo II alpha) in mouse FM3A cells, by comparison of phosphopeptide maps of topo II alpha labeled in intact cells and of topo II alpha phosphorylated by various kinases in vitro. The phosphorylation of purified topo II alpha by casein kinase II, which attached a maximum of two phosphate groups per topo II alpha molecule, had no effect on the activity of topo II alpha. Dephosphorylation of purified topo II alpha by potato acid phosphatase, which almost completely dephosphorylated the topo II alpha, did not reduce the activity of topo II alpha. The incubation itself, regardless of phosphorylation or dephosphorylation status, stimulated the enzyme activity in both reactions. Topo II alpha activity was stimulated by incubation in a medium containing low concentrations of glycerol but not in that containing high concentrations of glycerol, such as the 50% in which purified topo II alpha is stored. The stimulation of topo II alpha activity by incubation was dependent on the concentration of topo II alpha, requiring a relatively high concentration of topo II alpha. PMID:8631919

  17. Analysis of Smad Phosphatase Activity In Vitro.

    PubMed

    Shen, Tao; Qin, Lan; Lin, Xia

    2016-01-01

    Phosphorylation of Smad1/5/8 at the C-terminal SXS motif by BMP type I receptors is one of the most critical events in BMP signaling. Conversely, protein phosphatases that dephosphorylate phospho-Smad1/5/8 can consequently prevent or terminate BMP signaling. PPM1H is an undercharacterized phosphatase in the PPM family. We recently demonstrated that PPM1H can dephosphorylate Smad1 in the cytoplasm and block BMP signaling responses in cellular assays. Here we describe in vitro method showing that PPM1H is a bona fide phosphatase for Smad1/5/8. PPM1H is produced as GST fusion protein in E. coli, and purified against glutathione sepharose beads. Bacterially purified recombinant PPM1H possesses phosphatase activity toward artificial substrate para-nitrophenyl phosphate (pNPP). Recombinant PPM1H also dephosphorylates immuno-purified phosphorylated Smad1 in test tubes. These direct in vitro phosphatase assays provide convincing evidence demonstrating the role of PPM1H as a specific phosphatase for P-Smad1. PMID:26520120

  18. Assessing the Biological Activity of the Glucan Phosphatase Laforin.

    PubMed

    Romá-Mateo, Carlos; Raththagala, Madushi; Gentry, Mathew S; Sanz, Pascual

    2016-01-01

    Glucan phosphatases are a recently discovered family of enzymes that dephosphorylate either starch or glycogen and are essential for proper starch metabolism in plants and glycogen metabolism in humans. Mutations in the gene encoding the only human glucan phosphatase, laforin, result in the fatal, neurodegenerative, epilepsy known as Lafora disease. Here, we describe phosphatase assays to assess both generic laforin phosphatase activity and laforin's unique glycogen phosphatase activity. PMID:27514803

  19. Protein Phosphatase 1 β Paralogs Encode the Zebrafish Myosin Phosphatase Catalytic Subunit

    PubMed Central

    Jayashankar, Vaishali; Nguyen, Michael J.; Carr, Brandon W.; Zheng, Dale C.; Rosales, Joseph B.; Rosales, Joshua B.; Weiser, Douglas C.

    2013-01-01

    Background The myosin phosphatase is a highly conserved regulator of actomyosin contractility. Zebrafish has emerged as an ideal model system to study the in vivo role of myosin phosphatase in controlling cell contractility, cell movement and epithelial biology. Most work in zebrafish has focused on the regulatory subunit of the myosin phosphatase called Mypt1. In this work, we examined the critical role of Protein Phosphatase 1, PP1, the catalytic subunit of the myosin phosphatase. Methodology/Principal Findings We observed that in zebrafish two paralogous genes encoding PP1β, called ppp1cba and ppp1cbb, are both broadly expressed during early development. Furthermore, we found that both gene products interact with Mypt1 and assemble an active myosin phosphatase complex. In addition, expression of this complex results in dephosphorylation of the myosin regulatory light chain and large scale rearrangements of the actin cytoskeleton. Morpholino knock-down of ppp1cba and ppp1cbb results in severe defects in morphogenetic cell movements during gastrulation through loss of myosin phosphatase function. Conclusions/Significance Our work demonstrates that zebrafish have two genes encoding PP1β, both of which can interact with Mypt1 and assemble an active myosin phosphatase. In addition, both genes are required for convergence and extension during gastrulation and correct dosage of the protein products is required. PMID:24040418

  20. Bacterial-like PPP protein phosphatases

    PubMed Central

    Kerk, David; Uhrig, R Glen; Moorhead, Greg B

    2013-01-01

    Reversible phosphorylation is a widespread modification affecting the great majority of eukaryotic cellular proteins, and whose effects influence nearly every cellular function. Protein phosphatases are increasingly recognized as exquisitely regulated contributors to these changes. The PPP (phosphoprotein phosphatase) family comprises enzymes, which catalyze dephosphorylation at serine and threonine residues. Nearly a decade ago, “bacterial-like” enzymes were recognized with similarity to proteins from various bacterial sources: SLPs (Shewanella-like phosphatases), RLPHs (Rhizobiales-like phosphatases), and ALPHs (ApaH-like phosphatases). A recent article from our laboratory appearing in Plant Physiology characterizes their extensive organismal distribution, abundance in plant species, predicted subcellular localization, motif organization, and sequence evolution. One salient observation is the distinct evolutionary trajectory followed by SLP genes and proteins in photosynthetic eukaryotes vs. animal and plant pathogens derived from photosynthetic ancestors. We present here a closer look at sequence data that emphasizes the distinctiveness of pathogen SLP proteins and that suggests that they might represent novel drug targets. A second observation in our original report was the high degree of similarity between the bacterial-like PPPs of eukaryotes and closely related proteins of the “eukaryotic-like” phyla Myxococcales and Planctomycetes. We here reflect on the possible implications of these observations and their importance for future research. PMID:24675170

  1. Alpha Thalassemia

    MedlinePlus

    ... an apparently normal individual has a child with hemoglobin H disease or alpha thalassemia minor. It can ... gene on one chromosome 25% 25% 25% 25% hemoglobin H disease there is a 25% chance with ...

  2. Structure-Function Analysis of the 3' Phosphatase Component of T4 Polynucleotide Kinase/phosphatase

    SciTech Connect

    Zhu,H.; Smith, P.; Wang, L.; Shuman, S.

    2007-01-01

    T4 polynucleotide kinase/phosphatase (Pnkp) exemplifies a family of bifunctional enzymes with 5'-kinase and 3' phosphatase activities that function in nucleic acid repair. T4 Pnkp is a homotetramer of a 301-aa polypeptide, which consists of an N-terminal kinase domain of the P-loop phosphotransferase superfamily and a C-terminal phosphatase domain of the DxD acylphosphatase superfamily. The homotetramer is formed via pairs of phosphatase-phosphatase and kinase-kinase homodimer interfaces. Here we identify four side chains-Asp187, Ser211, Lys258, and Asp277-that are required for 3' phosphatase activity. Alanine mutations at these positions abolished phosphatase activity without affecting kinase function or tetramerization. Conservative substitutions of asparagine or glutamate for Asp187 did not revive the 3' phosphatase, nor did arginine or glutamine substitutions for Lys258. Threonine in lieu of Ser211 and glutamate in lieu of Asp277 restored full activity, whereas asparagine at position 277 had no salutary effect. We report a 3.0 A crystal structure of the Pnkp tetramer, in which a sulfate ion is coordinated between Arg246 and Arg279 in a position that we propose mimics one of the penultimate phosphodiesters (5'NpNpNp-3') of the polynucleotide 3'-PO(4) substrate. The amalgam of mutational and structural data engenders a plausible catalytic mechanism for the phosphatase that includes covalent catalysis (via Asp165), general acid-base catalysis (via Asp167), metal coordination (by Asp165, Asp277 and Asp278), and transition state stabilization (via Lys258, Ser211, backbone amides, and the divalent cation). Other critical side chains play architectural roles (Arg176, Asp187, Arg213, Asp254). To probe the role of oligomerization in phosphatase function, we introduced six double-alanine cluster mutations at the phosphatase-phosphatase domain interface, two of which (R297A-Q295A and E292A-D300A) converted Pnkp from a tetramer to a dimer and ablated phosphatase activity.

  3. Phosphatase activities as biosignatures of extant life

    NASA Astrophysics Data System (ADS)

    Kobayashi, K.; Itoh, Y.; Edazawa, Y.; Moroi, A.; Takano, Y.

    It has been recognized that terrestrial biosphere expands to such extreme environments as deep subsurface lithosphere high temperature hot springs and stratosphere Possible extraterrestrial biospheres in Mars Europa and Titan are being discussed Many biosignatures or biomarkers have been proposed to detect microbial activities in such extreme environments Phosphate esters are essential for the terrestrial life since they are constituents of nucleic acids and cell mebranes Thus all the terrestrial organisms have phosphatases that are enzymes catalyzing hydrolysis of phosphate esters We analyzed phosphatase activities in the samples obtained in extreme environments such as submarine hydrothermal systems and discussed whether they can be used as biosignatures for extant life Core samples and chimney samples were collected at the Suiyo Seamount Izu-Bonin Arc the Pacific Ocean in 2001 and 2002 and in South Mariana hydrothermal systems the Pacific Oceanas in 2003 both in a part of the Archaean Park Project Phosphatase activity in solid rock samples was measured spectrometrically by using 25 mM p-nitrophenyl phosphate pH 8 0 or pH 6 5 as a substrate as follows Pulverized samples were incuvated with substrate solution for an hour and then production rate of p-nitrophenol was calculated with absorbance at 410 nm Phosphatase activity in extracts was measured fluorometrically by using 4-methylumberyferryl phosphate as a substrate Concentration of amino acids and their enantiomeric ratio were determined by HPLC after HF digestion of the

  4. Phosphatase hydrolysis of organic phosphorus compounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphatases are diverse groups of enzymes that deserve special attention because of the significant roles they play in mineralizing organic phosphorus (P) into inorganic available form. For getting more insight on the enzymatically hydrolysis of organic P, in this work, we compared the catalytic pa...

  5. Structure- and function-based characterization of a new phosphoglycolate phosphatase from Thermoplasma acidophilum.

    SciTech Connect

    Kim, Y.; Yakunin, A. F.; Kuznetsova, E.; Xu, X.; Pennycooke, M.; Gu, J.; Cheung, F.; Proudfoot, M.; Arrowsmith, C. H.; Joachimiak, A.; Edwards, A.; Christendat, D.; Biosciences Division; Univ. of Toronto; Clinical Genomics Centre

    2004-01-02

    The protein TA0175 has a large number of sequence homologues, most of which are annotated as unknown and a few as belonging to the haloacid dehalogenase superfamily, but has no known biological function. Using a combination of amino acid sequence analysis, three-dimensional crystal structure information, and kinetic analysis, we have characterized TA0175 as phosphoglycolate phosphatase from Thermoplasma acidophilum. The crystal structure of TA0175 revealed two distinct domains, a larger core domain and a smaller cap domain. The large domain is composed of a centrally located five-stranded parallel {beta}-sheet with strand order S10, S9, S8, S1, S2 and a small {beta}-hairpin, strands S3 and S4. This central sheet is flanked by a set of three {alpha}-helices on one side and two helices on the other. The smaller domain is composed of an open faced {beta}-sandwich represented by three antiparallel {beta}-strands, S5, S6, and S7, flanked by two oppositely oriented {alpha}-helices, H3 and H4. The topology of the large domain is conserved; however, structural variation is observed in the smaller domain among the different functional classes of the haloacid dehalogenase superfamily. Enzymatic assays on TA0175 revealed that this enzyme catalyzed the dephosphorylation of phosphoglycolate in vitro with similar kinetic properties seen for eukaryotic phosphoglycolate phosphatase. Activation by divalent cations, especially Mg{sup 2+}, and competitive inhibition behavior with Cl{sup -} ions are similar between TA0175 and phosphoglycolate phosphatase. The experimental evidence presented for TA0175 is indicative of phosphoglycolate phosphatase.

  6. Structural Basis for the Catalytic Activity of Human Serine/Threonine Protein Phosphatase type 5 (PP5)

    NASA Technical Reports Server (NTRS)

    Swingle, Mark R.; Ciszak, Ewa M.; Honkanen, Richard E.

    2004-01-01

    Serine/threonine protein phosphatase-5 (PP5) is a member of the PPP-gene family of protein phosphatases that is widely expressed in mammalian tissues and is highly conserved among eukaryotes. PP5 associates with several proteins that affect signal transduction networks, including the glucocorticoid receptor (GR)-heat shock protein-90 (Hsp90)-heterocomplex, the CDC16 and CDC27 subunits of the anaphase-promoting complex, elF2alpha kinase, the A subunit of PP2A, the G12-alpha / G13-alpha subunits of heterotrimeric G proteins and DNA-PK. The catalytic domain of PP5 (PP5c) shares 35-45% sequence identity with the catalytic domains of other PPP-phosphatases, including protein phosphatase-1 (PP1), -2A (PP2A), -2B / calcineurin (PP2B), -4 (PP4), -6 (PP6), and -7 (PP7). Like PP1, PP2A and PP4, PP5 is also sensitive to inhibition by okadaic acid, microcystin, cantharidin, tautomycin, and calyculin A. Here we report the crystal structure of the PP5 catalytic domain (PP5c) at a resolution of 1.6 angstroms. From this structure we propose a mechanism for PP5-mediated hydrolysis of phosphoprotein substrates, which requires the precise positioning of two metal ions within a conserved Asp(sup 271)-M(sub 1):M(sub 2)-W(sup 1)-His(sup 304)-Asp(sup 274) catalytic motif. The structure of PP5c provides a possible structural basis for explaining the exceptional catalytic proficiency of protein phosphatases, which are among the most powerful known catalysts. Resolution of the entire C-terminus revealed a novel subdomain, and the structure of the PP5c should also aid development of type-specific inhibitors.

  7. Alpha-1 Antitrypsin Deficiency

    MedlinePlus

    ... Liver Disease Information > Alpha-1 Antitrypsin Deficiency Alpha-1 Antitrypsin Deficiency Explore this section to learn more about alpha-1 antitrypsin deficiency, including a description of the disorder ...

  8. Smooth-muscle caldesmon phosphatase is SMP-I, a type 2A protein phosphatase.

    PubMed

    Pato, M D; Sutherland, C; Winder, S J; Walsh, M P

    1993-07-01

    Caldesmon phosphatase was identified in chicken gizzard smooth muscle by using as substrates caldesmon phosphorylated at different sites by protein kinase C, Ca2+/calmodulin-dependent protein kinase II and cdc2 kinase. Most (approximately 90%) of the phosphatase activity was recovered in the cytosolic fraction. Gel filtration after (NH4)2SO4 fractionation of the cytosolic fraction revealed a single major peak of phosphatase activity which coeluted with calponin phosphatase [Winder, Pato and Walsh (1992) Biochem. J. 286, 197-203] and myosin LC20 phosphatase. Further purification of caldesmon phosphatase was achieved by sequential chromatography on columns of DEAE-Sephacel, omega-amino-octyl-agarose, aminopropyl-agarose and thiophosphorylated myosin LC20-Sepharose. A single peak of caldesmon phosphatase activity was detected at each step of the purification. The purified phosphatase was identified as SMP-I [Pato and Adelstein (1980) J. Biol. Chem. 255, 6535-6538] by subunit composition (three subunits, of 60, 55 and 38 kDa) and Western blotting using antibodies against the holoenzyme which recognize all three subunits and antibodies specific for the 38 kDa catalytic subunit. SMP-I is a type 2A protein phosphatase [Pato, Adelstein, Crouch, Safer, Ingebritsen and Cohen (1983) Eur. J. Biochem. 132, 283-287; Winder et al. (1992), cited above]. Consistent with the conclusion that SMP-I is the major caldesmon phosphatase of smooth muscle, purified SMP-I from turkey gizzard dephosphorylated all three phosphorylated forms of caldesmon, whereas SMP-II, -III and -IV were relatively ineffective. Kinetic analysis of dephosphorylation by chicken gizzard SMP-I of the three phosphorylated caldesmon species and calponin phosphorylated by protein kinase C indicates that calponin is a significantly better substrate of SMP-I than are any of the three phosphorylated forms of caldesmon. We therefore suggest that caldesmon phosphorylation in vivo can be maintained after kinase

  9. Molecular Differences between a Mutase and a Phosphatase: Investigations of the Activation Step in Bacillus cereus Phosphopentomutase

    SciTech Connect

    Iverson, T.M.; Panosian, Timothy D.; Birmingham, William R.; Nannemann, David P.; Bachmann, Brian O.

    2012-05-09

    Prokaryotic phosphopentomutases (PPMs) are di-Mn{sup 2+} enzymes that catalyze the interconversion of {alpha}-D-ribose 5-phosphate and {alpha}-D-ribose 1-phosphate at an active site located between two independently folded domains. These prokaryotic PPMs belong to the alkaline phosphatase superfamily, but previous studies of Bacillus cereus PPM suggested adaptations of the conserved alkaline phosphatase catalytic cycle. Notably, B. cereus PPM engages substrates when the active site nucleophile, Thr-85, is phosphorylated. Further, the phosphoenzyme is stable throughout purification and crystallization. In contrast, alkaline phosphatase engages substrates when the active site nucleophile is dephosphorylated, and the phosphoenzyme reaction intermediate is only stably trapped in a catalytically compromised enzyme. Studies were undertaken to understand the divergence of these mechanisms. Crystallographic and biochemical investigations of the PPM{sup T85E} phosphomimetic variant and the neutral corollary PPM{sup T85Q} determined that the side chain of Lys-240 underwent a change in conformation in response to active site charge, which modestly influenced the affinity for the small molecule activator {alpha}-D-glucose 1,6-bisphosphate. More strikingly, the structure of unphosphorylated B. cereus PPM revealed a dramatic change in the interdomain angle and a new hydrogen bonding interaction between the side chain of Asp-156 and the active site nucleophile, Thr-85. This hydrogen bonding interaction is predicted to align and activate Thr-85 for nucleophilic addition to {alpha}-D-glucose 1,6-bisphosphate, favoring the observed equilibrium phosphorylated state. Indeed, phosphorylation of Thr-85 is severely impaired in the PPM{sup D156A} variant even under stringent activation conditions. These results permit a proposal for activation of PPM and explain some of the essential features that distinguish between the catalytic cycles of PPM and alkaline phosphatase.

  10. Assessment and kinetics of soil phosphatase in Brazilian Savanna systems.

    PubMed

    Ferreira, Adão S; Espíndola, Suéllen P; Campos, Maria Rita C

    2016-05-31

    The activity and kinetics of soil phosphatases are important indicators to evaluate soil quality in specific sites such as the Cerrado (Brazilian Savanna). This study aimed to determine the activity and kinetic parameters of soil phosphatase in Cerrado systems. Soil phosphatase activity was assessed in samples of native Cerrado (NC), no-tillage (NT), conventional tillage (CT) and pasture with Brachiaria brizantha (PBb) and evaluated with acetate buffer (AB), tris-HCl buffer (TB), modified universal buffer (MUB) and low MUB. The Michaelis-Menten equation and Eadie-Hofstee model were applied to obtain the kinetic parameters of soil phosphatase using different concentrations of p-nitrophenol phosphate (p-NPP). MUB showed the lowest soil phosphatase activity in all soils whereas AB in NC and NT presented the highest. Low MUB decreased interferences in the assessment of soil phosphatase activity when compared to MUB, suggesting that organic acids interfere on the soil phosphatase activity. In NC and NT, soil phosphatase activity performed with TB was similar to AB and low MUB. Km values from the Michaels-Menten equation were higher in NC than in NT, which indicate a lower affinity of phosphatase activity for the substrate in NC. Vmax values were also higher in NC than in NT. The Eadie-Hofstee model suggests that NC had more phosphatase isoforms than NT. The study showed that buffer type is of fundamental importance when assessing soil phosphatase activity in Cerrado soils. PMID:27254453

  11. [ATPase and phosphatase activity of drone brood].

    PubMed

    Bodnarchuk, L I; Stakhman, O S

    2004-01-01

    Most researches on insect enzymes concern carbohydrate and nitrogenous exchange. Data on ATPase activity for larval material of drone brood are absent in the available literature. The drone brood is one of the least investigated apiproducts. Allowing for the important role of ATPase in the vital functions of the insect cells our work was aimed at the study of ATPase of the drone blood activity and that of alkaline and acid phosphatases. When studying liophylised preparations of the drone brood homogenate we have found out high activity of Mg2+, Na+, K+-, Ca2+- and Mg2+-ATPase and of alkaline and acid phosphatase, that is the possible explanation of the high-intensity power and plastic processes proceeding during growth and development of larvae. PMID:16350755

  12. Protein phosphatases and their regulation in the control of mitosis

    PubMed Central

    Mochida, Satoru; Hunt, Tim

    2012-01-01

    Cell cycle transitions depend on protein phosphorylation and dephosphorylation. The discovery of cyclin-dependent kinases (CDKs) and their mode of activation by their cyclin partners explained many important aspects of cell cycle control. As the cell cycle is basically a series of recurrences of a defined set of events, protein phosphatases must obviously be as important as kinases. However, our knowledge about phosphatases lags well behind that of kinases. We still do not know which phosphatase(s) is/are truly responsible for dephosphorylating CDK substrates, and we know very little about whether and how protein phosphatases are regulated. Here, we summarize our present understanding of the phosphatases that are important in the control of the cell cycle and pose the questions that need to be answered as regards the regulation of protein phosphatases. PMID:22482124

  13. Rhizobiales-like Phosphatase 2 from Arabidopsis thaliana Is a Novel Phospho-tyrosine-specific Phospho-protein Phosphatase (PPP) Family Protein Phosphatase.

    PubMed

    Uhrig, R Glen; Labandera, Anne-Marie; Muhammad, Jamshed; Samuel, Marcus; Moorhead, Greg B

    2016-03-11

    Cellular signaling through protein tyrosine phosphorylation is well established in mammalian cells. Although lacking the classic tyrosine kinases present in humans, plants have a tyrosine phospho-proteome that rivals human cells. Here we report a novel plant tyrosine phosphatase from Arabidopsis thaliana (AtRLPH2) that, surprisingly, has the sequence hallmarks of a phospho-serine/threonine phosphatase belonging to the PPP family. Rhizobiales/Rhodobacterales/Rhodospirillaceae-like phosphatases (RLPHs) are conserved in plants and several other eukaryotes, but not in animals. We demonstrate that AtRLPH2 is localized to the plant cell cytosol, is resistant to the classic serine/threonine phosphatase inhibitors okadaic acid and microcystin, but is inhibited by the tyrosine phosphatase inhibitor orthovanadate and is particularly sensitive to inhibition by the adenylates, ATP and ADP. AtRLPH2 displays remarkable selectivity toward tyrosine-phosphorylated peptides versus serine/threonine phospho-peptides and readily dephosphorylates a classic tyrosine phosphatase protein substrate, suggesting that in vivo it is a tyrosine phosphatase. To date, only one other tyrosine phosphatase is known in plants; thus AtRLPH2 represents one of the missing pieces in the plant tyrosine phosphatase repertoire and supports the concept of protein tyrosine phosphorylation as a key regulatory event in plants. PMID:26742850

  14. The Extended Family of Protein Tyrosine Phosphatases.

    PubMed

    Alonso, Andrés; Nunes-Xavier, Caroline E; Bayón, Yolanda; Pulido, Rafael

    2016-01-01

    In higher eukaryotes, the Tyr phosphorylation status of cellular proteins results from the coordinated action of Protein Tyrosine Kinases (PTKs) and Protein Tyrosine Phosphatases (PTPs). PTPs have emerged as highly regulated enzymes with diverse substrate specificity, and proteins with Tyr-dephosphorylation or Tyr-dephosphorylation-like properties can be clustered as the PTPome. This includes proteins from the PTP superfamily, which display a Cys-based catalytic mechanism, as well as enzymes from other gene families (Asp-based phosphatases, His-based phosphatases) that have converged in protein Tyr-dephosphorylation-related functions by using non-Cys-based catalytic mechanisms. Within the Cys-based members of the PTPome, classical PTPs dephosphorylate specific phosphoTyr (pTyr) residues from protein substrates, whereas VH1-like dual-specificity PTPs dephosphorylate pTyr, pSer, and pThr residues, as well as nonproteinaceous substrates, including phosphoinositides and phosphorylated carbohydrates. In addition, several PTPs have impaired catalytic activity as a result of amino acid substitutions at their active sites, but retain regulatory functions related with pTyr signaling. As a result of their relevant biological activity, many PTPs are linked to human disease, including cancer, neurodevelopmental, and metabolic diseases, making these proteins important drug targets and molecular markers in the clinic. Here, a brief overview on the biochemistry and physiology of the different groups of proteins that belong to the mammalian PTPome is presented. PMID:27514797

  15. Leishmanial phosphatase hydrolyzes phosphoproteins and inositol phosphates

    SciTech Connect

    Saha, A.K.; Das, S.; Glew, R.H.

    1986-05-01

    An extensively purified preparation of the predominant, tartrate-resistant acid phosphatase (ACP) from the external surface of Leishmania donovani promastigotes form catalyzes the dephosphorylation of several phosphoproteins; these include: pyruvate kinase, phosphorylase kinase and histones. However, the protein phosphatase activity of ACP is very low compared with that of other protein phosphates known to be involved in regulating various metabolic pathways. /sup 32/P-labelled inositoltriphosphate (IP3), a well-established second messenger derived from phosphatidylinositol-4,5-diphosphate (PIP2), was a substrate for the leishmanial acid phosphatase; incubation of the IP3 preparation with 13.2 milliunits (1 unit equals 1 ..mu..mol 4-methylumbelliferyl phosphate (MUP) cleaved per min at pH 5.5) of ACP at pH 5.5 for 4 hr resulted in hydrolysis of 75% of the radiolabelled substrate resulting in a mixture of inositoldiphosphate and inositolmonophosphate. In addition PIP2 was hydrolyzed rapidly by ACP at pH 5.5 (V/sub max/, 71 units/mg protein; k/sub m/, 4.16 ..mu..M). In contrast, to MUP which is hydrolzyed most rapidly at pH 5.5, PIP2 hydrolysis was optimal at pH 6.8. These observations raise the possibility that ACP could play a role in the host-phagocyte interaction by degrading the precursor of the second messenger, PIP2 or the second messenger itself, IP3.

  16. Role of Protein Tyrosine Phosphatases in Plants

    PubMed Central

    Shankar, Alka; Agrawal, Nisha; Sharma, Manisha; Pandey, Amita; Pandey, Girdhar K.

    2015-01-01

    Reversible protein phosphorylation is a crucial regulatory mechanism that controls many biological processes in eukaryotes. In plants, phosphorylation events primarily occur on serine (Ser) and threonine (Thr) residues, while in certain cases, it was also discovered on tyrosine (Tyr) residues. In contrary to plants, extensive reports on Tyr phosphorylation regulating a large numbers of biological processes exist in animals. Despite of such prodigious function in animals, Tyr phosphorylation is a least studied mechanism of protein regulation in plants. Recently, various chemical analytical procedures have strengthened the view that Tyr phosphorylation is equally prevalent in plants as in animals. However, regardless of Tyr phosphorylation events occuring in plants, no evidence could be found for the existence of gene encoding for Tyr phosphorylation i.e. the typical Tyr kinases. Various methodologies have suggested that plant responses to stress signals and developmental processes involved modifications in protein Tyr phosphorylation. Correspondingly, various reports have established the role of PTPs (Protein Tyrosine Phosphatases) in the dephosphorylation and inactivation of mitogen activated protein kinases (MAPKs) hence, in the regulation of MAPK signaling cascade. Besides this, many dual specificity protein phosphatases (DSPs) are also known to bind starch and regulate starch metabolism through reversible phosphorylation. Here, we are emphasizing the significant progress on protein Tyr phosphatases to understand the role of these enzymes in the regulation of post-translational modification in plant physiology and development. PMID:26962298

  17. Regulatory Roles of MAPK Phosphatases in Cancer

    PubMed Central

    Low, Heng Boon

    2016-01-01

    The mitogen-activated protein kinases (MAPKs) are key regulators of cell growth and survival in physiological and pathological processes. Aberrant MAPK signaling plays a critical role in the development and progression of human cancer, as well as in determining responses to cancer treatment. The MAPK phosphatases (MKPs), also known as dual-specificity phosphatases (DUSPs), are a family of proteins that function as major negative regulators of MAPK activities in mammalian cells. Studies using mice deficient in specific MKPs including MKP1/DUSP1, PAC-1/DUSP2, MKP2/DUSP4, MKP5/DUSP10 and MKP7/DUSP16 demonstrated that these molecules are important not only for both innate and adaptive immune responses, but also for metabolic homeostasis. In addition, the consequences of the gain or loss of function of the MKPs in normal and malignant tissues have highlighted the importance of these phosphatases in the pathogenesis of cancers. The involvement of the MKPs in resistance to cancer therapy has also gained prominence, making the MKPs a potential target for anti-cancer therapy. This review will summarize the current knowledge of the MKPs in cancer development, progression and treatment outcomes. PMID:27162525

  18. Structural and biochemical characterization of a halophilic archaeal alkaline phosphatase.

    PubMed

    Wende, Andy; Johansson, Patrik; Vollrath, Ronnald; Dyall-Smith, Mike; Oesterhelt, Dieter; Grininger, Martin

    2010-07-01

    Phosphate is an essential component of all cells that must be taken up from the environment. Prokaryotes commonly secrete alkaline phosphatases (APs) to recruit phosphate from organic compounds by hydrolysis. In this study, the AP from Halobacterium salinarum, an archaeon that lives in a saturated salt environment, has been functionally and structurally characterized. The core fold and the active-site architecture of the H. salinarum enzyme are similar to other AP structures. These generally form dimers composed of dominant beta-sheet structures sandwiched by alpha-helices and have well-accessible active sites. The surface of the enzyme is predicted to be highly negatively charged, like other proteins of extreme halophiles. In addition to the conserved core, most APs contain a crown domain that strongly varies within species. In the H. salinarum AP, the crown domain is made of an acyl-carrier-protein-like fold. Different from other APs, it is not involved in dimer formation. We compare the archaeal AP with its bacterial and eukaryotic counterparts, and we focus on the role of crown domains in enhancing protein stability, regulating enzyme function, and guiding phosphoesters into the active-site funnel. PMID:20438737

  19. Regulation of autophagy by coordinated action of mTORC1 and protein phosphatase 2A.

    PubMed

    Wong, Pui-Mun; Feng, Yan; Wang, Junru; Shi, Rong; Jiang, Xuejun

    2015-01-01

    Autophagy is a cellular catabolic process critical for cell viability and homoeostasis. Inhibition of mammalian target of rapamycin (mTOR) complex-1 (mTORC1) activates autophagy. A puzzling observation is that amino acid starvation triggers more rapid autophagy than pharmacological inhibition of mTORC1, although they both block mTORC1 activity with similar kinetics. Here we find that in addition to mTORC1 inactivation, starvation also causes an increase in phosphatase activity towards ULK1, an mTORC1 substrate whose dephosphorylation is required for autophagy induction. We identify the starvation-stimulated phosphatase for ULK1 as the PP2A-B55α complex. Treatment of cells with starvation but not mTORC1 inhibitors triggers dissociation of PP2A from its inhibitor Alpha4. Furthermore, pancreatic ductal adenocarcinoma cells, whose growth depends on high basal autophagy, possess stronger basal phosphatase activity towards ULK1 and require ULK1 for sustained anchorage-independent growth. Taken together, concurrent mTORC1 inactivation and PP2A-B55α stimulation fuel ULK1-dependent autophagy. PMID:26310906

  20. A cluster of protein kinases and phosphatases modulated in fetal Down syndrome (trisomy 21) brain.

    PubMed

    Weitzdoerfer, Rachel; Toran, Nuria; Subramaniyan, Saraswathi; Pollak, Arnold; Dierssen, Mara; Lubec, Gert

    2015-06-01

    Down syndrome (DS; trisomy 21) is the most frequent cause of mental retardation with major cognitive and behavioral deficits. Although a series of aberrant biochemical pathways has been reported, work on signaling proteins is limited. It was, therefore, the aim of the study to test a selection of protein kinases and phosphatases known to be essential for memory and learning mechanisms in fetal DS brain. 12 frontal cortices from DS brain were compared to 12 frontal cortices from controls obtained at legal abortions. Proteins were extracted from brains and western blotting with specific antibodies was carried out. Primary results were used for networking (IntAct Molecular Interaction Database) and individual predicted pathway components were subsequently quantified by western blotting. Levels of calcium-calmodulin kinase II alpha, transforming growth factor beta-activated kinase 1 as well as phosphatase and tensin homolog (PTEN) were reduced in cortex of DS subjects and network generation pointed to interaction between PTEN and the dendritic spine protein drebrin that was subsequently determined and reduced levels were observed. The findings of reduced levels of cognitive-function-related protein kinases and the phosphatase may be relevant for interpretation of previous work and may be useful for the design of future studies on signaling in DS brain. Moreover, decreased drebrin levels may point to dendritic spine abnormalities. PMID:25740605

  1. Carboxyarabinitol-1-P phosphatase of Phaseolus vulgaris

    SciTech Connect

    Kobza, J.; Moore, B.d.; Seemann, J.R. )

    1990-05-01

    The activity of carboxyarabinitol-1-P (CA1P) phosphatase was detected in clarified stromal extracts by the generation of {sup 14}C-carboxyarabinitol from {sup 14}C-CA1P. Carboxyribitol-1-P dependent activity was 3% of the CA1P dependent activity, indicating the enzyme was specific for CA1P. Inclusion of DTT in the assay was required for maximum velocity, but it appears that the enzyme is not regulated by thioredoxin in vivo. Activity o f the CA1P phosphatase was stimulated by RuBP, NADPH and FBP, though the latter two metabolites were required at nonphysiological concentrations in order to achieve significant stimulation. Contrary to a previous report on purified tobacco enzyme, ATP stimulated the CA1P phosphatase activity. In the presence of 1 mM RuBP or ATP, rates of 2 or 3 {mu}mol mg{sup {minus}1} Chl h{sup {minus}1}, respectively, were observed at 1 mM CA1P. These rates were 3-4 fold higher than the rate observed in the absence of effectors and are 2-4 times the in vivo rate of degradation of CA1P during dark/light transitions. The rates from bean were about 7 fold higher than rates reported for the enzyme from tobacco. Changes in the levels of ATP and RuBP associated with dark/light transitions could modulate the enzyme activity in vivo, but it remains to be established if this is the only mechanism for the required regulation of the enzyme.

  2. The endogenous inhibitor of protein kinase-C in the rat ovary is a protein phosphatase.

    PubMed

    Eyster, K M; Waller, M S; Miller, T L; Miller, C J; Johnson, M J; Persing, J S

    1993-09-01

    Calcium- and lipid-dependent protein kinase (PKC) activity in the ovary of the pseudopregnant rat is masked by an endogenous inhibitor of PKC. These studies were undertaken to examine the mechanism of action of the endogenous inhibitor of PKC in the rat ovary. The addition of the phosphatase inhibitors calyculin-A (0.09 nM), microcystin-LR (6.4 nM), and okadaic acid (10 nM) resulted in the loss of PKC inhibitory activity and an increase in basal PKC activity in rat ovarian cytosol. In phosphatase assays, significant dephosphorylation of histone-III-S or myelin basic protein that had been phosphorylated by PKC occurred within 4 min after the addition of ovarian cytosol from the pseudopregnant rat. This dephosphorylation was prevented from the pseudopregnant rat. This dephosphorylation was prevented by the addition of calyculin-A (0.73 nM) and was removed by fractionation of ovarian cytosol on diethylaminoethyl cellulose. No inhibition of PKC activity was observed when the PKC-specific peptides AcMBP-(4-14) and [Ser25]PKC-(19-31) were used as the substrate for phosphorylation. In addition, rat ovarian cytosol did not exhibit phosphatase activity when the peptide AcMBP-(4-14) was used as the substrate. Addition of ovarian cytosol resulted in dephosphorylation of phosphorylase-alpha phosphorylated by phosphorylase kinase, but not dephosphorylation of histone-II-A or histone-VIII-S phosphorylated by PKA. The data suggest that the endogenous inhibitor of PKC in the rat ovary is a protein phosphatase. PMID:7689949

  3. Mitogen-Activated Protein Kinase Phosphatase 2 Regulates the Inflammatory Response in Sepsis▿

    PubMed Central

    Cornell, Timothy T.; Rodenhouse, Paul; Cai, Qing; Sun, Lei; Shanley, Thomas P.

    2010-01-01

    Sepsis results from a dysregulation of the regulatory mechanisms of the pro- and anti-inflammatory response to invading pathogens. The mitogen-activated protein (MAP) kinase cascades are key signal transduction pathways involved in the cellular production of cytokines. The dual-specific phosphatase 1 (DUSP 1), mitogen-activated protein kinase phosphatase-1 (MKP-1), has been shown to be an important negative regulator of the inflammatory response by regulating the p38 and Jun N-terminal protein kinase (JNK) MAP kinase pathways to influence pro- and anti-inflammatory cytokine production. MKP-2, also a dual-specific phosphatase (DUSP 4), is a phosphatase highly homologous with MKP-1 and is known to regulate MAP kinase signaling; however, its role in regulating the inflammatory response is not known. We hypothesized a regulatory role for MKP-2 in the setting of sepsis. Mice lacking the MKP-2 gene had a survival advantage over wild-type mice when challenged with intraperitoneal lipopolysaccharide (LPS) or a polymicrobial infection via cecal ligation and puncture. The MKP-2−/− mice also exhibited decreased serum levels of both pro-inflammatory cytokines (tumor necrosis factor alpha [TNF-α], interleukin-1β [IL-1β], IL-6) and anti-inflammatory cytokines (IL-10) following endotoxin challenge. Isolated bone marrow-derived macrophages (BMDMs) from MKP-2−/− mice showed increased phosphorylation of the extracellular signal-regulated kinase (ERK), decreased phosphorylation of JNK and p38, and increased induction of MKP-1 following LPS stimulation. The capacity for cytokine production increased in MKP-2−/− BMDMs following MKP-1 knockdown. These data support a mechanism by which MKP-2 targets ERK deactivation, thereby decreasing MKP-1 and thus removing the negative inhibition of MKP-1 on cytokine production. PMID:20351138

  4. Subunits of the alkaline phosphatase of Bacillus licheniformis: chemical, physicochemical, and dissociation studies.

    PubMed Central

    Hulett, F M; Schaffel, S D; Campbell, L L

    1976-01-01

    The alkaline phosphatase (orthophosphoric monoester phosphydrolase, EC 3.1.3.1) of Bacillus licheniformis MC14 was studied in an attempt to determine the number of subunits contained in the 120,000-molecular-weight native enzyme. Two moles of arginine was liberated per mole of native enzyme by carboxypeptidases A and B in the presence of sodium dodecyl sulfate. The effect on the native enzyme of progressively lowering the solvent buffer pH was monitored by determining the molecular weight by sedimentation equilibrium analysis, the sedimentation coefficient, the frictional coefficient, and the percent alpha-helix content of the enzyme. The alkaline phosphatase dissociates into two subunits around pH 4. At pH 2.8 a further decrease in S value, but no change in molecular weight, is observed, indicating a change in conformation. The frictional coefficients and percent alpha-helix content agree with this interpretation. A subunit molecular weight of 59,000 was calculated from sodium dodecyl sulfate gels. Images PMID:10280

  5. Subunits of the alkaline phosphatase of Bacillus licheniformis: chemical, physicochemical, and dissociation studies.

    PubMed

    Hulett, F M; Schaffel, S D; Campbell, L L

    1976-11-01

    The alkaline phosphatase (orthophosphoric monoester phosphydrolase, EC 3.1.3.1) of Bacillus licheniformis MC14 was studied in an attempt to determine the number of subunits contained in the 120,000-molecular-weight native enzyme. Two moles of arginine was liberated per mole of native enzyme by carboxypeptidases A and B in the presence of sodium dodecyl sulfate. The effect on the native enzyme of progressively lowering the solvent buffer pH was monitored by determining the molecular weight by sedimentation equilibrium analysis, the sedimentation coefficient, the frictional coefficient, and the percent alpha-helix content of the enzyme. The alkaline phosphatase dissociates into two subunits around pH 4. At pH 2.8 a further decrease in S value, but no change in molecular weight, is observed, indicating a change in conformation. The frictional coefficients and percent alpha-helix content agree with this interpretation. A subunit molecular weight of 59,000 was calculated from sodium dodecyl sulfate gels. PMID:10280

  6. The extended human PTPome: a growing tyrosine phosphatase family.

    PubMed

    Alonso, Andrés; Pulido, Rafael

    2016-04-01

    Tyr phosphatases are, by definition, enzymes that dephosphorylate phospho-Tyr (pTyr) from proteins. This activity is found in several structurally diverse protein families, including the protein Tyr phosphatase (PTP), arsenate reductase, rhodanese, haloacid dehalogenase (HAD) and His phosphatase (HP) families. Most of these families include members with substrate specificity for non-pTyr substrates, such as phospho-Ser/phospho-Thr, phosphoinositides, phosphorylated carbohydrates, mRNAs, or inorganic moieties. A Cys is essential for catalysis in PTPs, rhodanese and arsenate reductase enzymes, whereas this work is performed by an Asp in HAD phosphatases and by a His in HPs, via a catalytic mechanism shared by all of the different families. The category that contains most Tyr phosphatases is the PTP family, which, although it received its name from this activity, includes Ser, Thr, inositide, carbohydrate and RNA phosphatases, as well as some inactive pseudophosphatase proteins. Here, we propose an extended collection of human Tyr phosphatases, which we call the extended human PTPome. The addition of new members (SACs, paladin, INPP4s, TMEM55s, SSU72, and acid phosphatases) to the currently categorized PTP group of enzymes means that the extended human PTPome contains up to 125 proteins, of which ~ 40 are selective for pTyr. We set criteria to ascribe proteins to the extended PTPome, and summarize the more important features of the new PTPome members in the context of their phosphatase activity and their relationship with human disease. PMID:26573778

  7. Bone alkaline phosphatase in rheumatic diseases.

    PubMed

    Beyeler, C; Banks, R E; Thompson, D; Forbes, M A; Cooper, E H; Bird, H

    1995-07-01

    A double monoclonal immunoradiometric assay specific for bone alkaline phosphatase (BAP) was used to determine whether the raised total alkaline phosphatase (TAP) often found in patients with active rheumatoid arthritis (RA) and ankylosing spondylitis (AS) is derived from bone or liver. Fifty-eight patients with RA were compared to 14 with AS and 14 with non-inflammatory rheumatic diseases (NI). None had clinical liver disease and only one had a slightly elevated aspartate transaminase activity. Elevated BAP concentrations were found in seven patients (5 RA, 1 AS, 1 NI), only two of whom also had abnormal TAP. Abnormal TAP activities were found in only three patients (all RA). BAP did not correlate with disease activity in RA or AS. In contrast, TAP correlated with disease activity (assessed by plasma viscosity) in RA (P < 0.002) and gamma-glutamyl transferase (GGT) also correlated with plasma viscosity in RA (P < 0.01). Both TAP and BAP were significantly correlated with GGT in RA (P < 0.001 and P < 0.02, respectively). These findings are discussed, together with possible reasons for the conflicting nature of some of the observations. PMID:7486797

  8. Nonantioxidant functions of alpha-tocopherol in smooth muscle cells.

    PubMed

    Azzi, A; Breyer, I; Feher, M; Ricciarelli, R; Stocker, A; Zimmer, S; Zingg, J

    2001-02-01

    Most tocopherols and tocotrienols, with the exception of alpha-tocopherol, are not retained by humans. This suggests that alpha-tocopherol is recognized uniquely; therefore, it may exert an exclusive function. alpha-Tocopherol possesses distinct properties that are independent of its prooxidant, antioxidant or radical-scavenging ability. alpha-Tocopherol specifically inhibits protein kinase C, the growth of certain cells and the transcription of the CD36 and collagenase genes. Activation events have also been seen on the protein phosphatase 2A (PP(2)A) and on the expression of other genes (alpha-tropomyosin and connective tissue growth factor). Neither ss-tocopherol nor probucol possessed the same specialty functions as alpha-tocopherol. Recently, we isolated a new ubiquitous cytosolic alpha-tocopherol binding protein (TAP). Its motifs suggest that it is a member of the hydrophobic ligand-binding protein family (CRAL-TRIO). TAP may also be involved in the regulation of cellular alpha-tocopherol concentration and alpha-tocopherol-mediated signaling. PMID:11160565

  9. Histone II-A stimulates glucose-6-phosphatase and reveals mannose-6-phosphatase activities without permeabilization of liver microsomes.

    PubMed Central

    St-Denis, J F; Annabi, B; Khoury, H; van de Werve, G

    1995-01-01

    The effect of histone II-A on glucose-6-phosphatase and mannose-6-phosphatase activities was investigated in relation to microsomal membrane permeability. It was found that glucose-6-phosphatase activity in histone II-A-pretreated liver microsomes was stimulated to the same extent as in detergent-permeabilized microsomes, and that the substrate specificity of the enzyme for glucose 6-phosphate was lost in histone II-A-pretreated microsomes, as [U-14C]glucose-6-phosphate hydrolysis was inhibited by mannose 6-phosphate and [U-14C]mannose 6-phosphate hydrolysis was increased. The accumulation of [U-14C]glucose from [U-14C]glucose 6-phosphate into untreated microsomes was completely abolished in detergent-treated vesicles, but was increased in histone II-A-treated microsomes, accounting for the increased glucose-6-phosphatase activity, and demonstrating that the microsomal membrane was still intact. The stimulation of glucose-6-phosphatase and mannose-6-phosphatase activities by histone II-A was found to be reversed by EGTA. It is concluded that the effects of histone II-A on glucose-6-phosphatase and mannose-6-phosphatase are not caused by the permeabilization of the microsomal membrane. The measurement of mannose-6-phosphatase latency to evaluate the intactness of the vesicles is therefore inappropriate. PMID:7646448

  10. Phosphatase Specificity and Pathway Insulation in Signaling Networks

    PubMed Central

    Rowland, Michael A.; Harrison, Brian; Deeds, Eric J.

    2015-01-01

    Phosphatases play an important role in cellular signaling networks by regulating the phosphorylation state of proteins. Phosphatases are classically considered to be promiscuous, acting on tens to hundreds of different substrates. We recently demonstrated that a shared phosphatase can couple the responses of two proteins to incoming signals, even if those two substrates are from otherwise isolated areas of the network. This finding raises a potential paradox: if phosphatases are indeed highly promiscuous, how do cells insulate themselves against unwanted crosstalk? Here, we use mathematical models to explore three possible insulation mechanisms. One approach involves evolving phosphatase KM values that are large enough to prevent saturation by the phosphatase’s substrates. Although this is an effective method for generating isolation, the phosphatase becomes a highly inefficient enzyme, which prevents the system from achieving switch-like responses and can result in slow response kinetics. We also explore the idea that substrate degradation can serve as an effective phosphatase. Assuming that degradation is unsaturatable, this mechanism could insulate substrates from crosstalk, but it would also preclude ultrasensitive responses and would require very high substrate turnover to achieve rapid dephosphorylation kinetics. Finally, we show that adaptor subunits, such as those found on phosphatases like PP2A, can provide effective insulation against phosphatase crosstalk, but only if their binding to substrates is uncoupled from their binding to the catalytic core. Analysis of the interaction network of PP2A’s adaptor domains reveals that although its adaptors may isolate subsets of targets from one another, there is still a strong potential for phosphatase crosstalk within those subsets. Understanding how phosphatase crosstalk and the insulation mechanisms described here impact the function and evolution of signaling networks represents a major challenge for

  11. Alpha-1 Antitrypsin Deficiency

    MedlinePlus

    ... from the NHLBI on Twitter. What Is Alpha-1 Antitrypsin Deficiency? Alpha-1 antitrypsin (an-tee-TRIP-sin) deficiency, or AAT ... as it relates to lung disease. Overview Alpha-1 antitrypsin, also called AAT, is a protein made ...

  12. Yeast has homologs (CNA1 and CNA2 gene products) of mammalian calcineurin, a calmodulin-regulated phosphoprotein phosphatase.

    PubMed Central

    Cyert, M S; Kunisawa, R; Kaim, D; Thorner, J

    1991-01-01

    Calcineurin, or phosphoprotein phosphatase type 2B (PP2B), is a calmodulin-regulated phosphoprotein phosphatase. We isolated a gene encoding a yeast PP2B homolog (CNA1) by screening a yeast genomic DNA library in the expression vector lambda gt11, first with 125I-labeled yeast calmodulin and then with a human cDNA encoding the catalytic (or A) subunit of calcineurin. The predicted CNA1 gene product is 54% identical to its mammalian counterpart. Using the polymerase chain reaction (PCR) with oligonucleotide primers based on sequences conserved between CNA1 and mammalian PP2B genes, we isolated a second gene, CNA2. CNA2 is identical to PP2Bw, a partial cDNA clone previously described by others as originating from rabbit brain tissue. Our findings demonstrate that a unicellular eukaryote contains phosphoprotein phosphatases of the 2B class. Haploid cells containing a single cna1 or cna2 null mutation, or both mutations, were viable. MATa cna1 cna2 double mutants were more sensitive than wild-type cells or either single mutant to growth arrest induced by the mating pheromone alpha factor and failed to resume growth during continuous exposure to alpha factor. Thus, calcineurin action antagonizes the mating-pheromone response pathway. Images PMID:1651503

  13. Organization and alternate splice products of the gene encoding nuclear inhibitor of protein phosphatase-1 (NIPP-1).

    PubMed

    Van Eynde, A; Pérez-Callejón, E; Schoenmakers, E; Jacquemin, M; Stalmans, W; Bollen, M

    1999-04-01

    Nuclear inhibitor of protein phosphatase-1 (NIPP-1) is one of two major regulatory subunits of protein phosphatase-1 in mammalian nuclei. We report here the cloning and structural characterization of the human NIPP-1 genes, designated PPP1R8P and PPP1R8 in human gene nomenclature. PPP1R8P (1.2 kb) is a processed pseudogene and was localized by in situ hybridization to chromosome 1p33-32. PPP1R8 is an authentic NIPP-1 gene and was localized to chromosome 1p35. PPP1R8 (25.2 kb) is composed of seven exons and encodes four different transcripts, as determined from cDNA library screening, reverse transcriptase-PCR (RT-PCR) and/or EST (expressed sequence tag) database search analysis. NIPP-1alpha mRNA represents the major transcript in human tissues and various cell lines, and encodes a polypeptide of 351 residues that only differs from the previously cloned calf thymus NIPP-1 by a single residue. The other transcripts, termed NIPP-1beta, gamma and delta, are generated by alternative 5'-splice site usage, by exon skipping and/or by alternative polyadenylation. The NIPP-1beta/delta and NIPP-1gamma mRNAs are expected to encode fragments of NIPP-1alpha that differ from the latter by the absence of the first 142 and 224 residues, respectively. NIPP-1gamma corresponds to 'activator of RNA decay-1' (Ard-1) which, unlike NIPP-1alpha, displays in vitro and endoribonuclease activity and lacks an RVXF consensus motif for interaction with protein phosphatase-1. While the NIPP-1alpha/beta/delta-transcripts were found to be present in various human tissues, the NIPP-1gamma transcript could only be detected in human transformed B-lymphocytes. PMID:10103062

  14. Biogeochemical drivers of phosphatase activity in salt marsh sediments

    NASA Astrophysics Data System (ADS)

    Freitas, Joana; Duarte, Bernardo; Caçador, Isabel

    2014-10-01

    Although nitrogen has become a major concern for wetlands scientists dealing with eutrophication problems, phosphorous represents another key element, and consequently its biogeochemical cycling has a crucial role in eutrophication processes. Microbial communities are a central component in trophic dynamics and biogeochemical processes on coastal systems, since most of the processes in sediments are microbial-mediated due to enzymatic action, including the mineralization of organic phosphorus carried out by acid phosphatase activity. In the present work, the authors investigate the biogeochemical sediment drivers that control phosphatase activities. Authors also aim to assess biogeochemical factors' influence on the enzyme-mediated phosphorous cycling processes in salt marshes. Plant rhizosediments and bare sediments were collected and biogeochemical features, including phosphatase activities, inorganic and organic phosphorus contents, humic acids content and pH, were assessed. Acid phosphatase was found to give the highest contribution for total phosphatase activity among the three pH-isoforms present in salt marsh sediments, favored by acid pH in colonized sediments. Humic acids also appear to have an important role inhibiting phosphatase activity. A clear relation of phosphatase activity and inorganic phosphorous was also found. The data presented reinforces the role of phosphatase in phosphorous cycling.

  15. Structural mechanisms of plant glucan phosphatases in starch metabolism.

    PubMed

    Meekins, David A; Vander Kooi, Craig W; Gentry, Matthew S

    2016-07-01

    Glucan phosphatases are a recently discovered class of enzymes that dephosphorylate starch and glycogen, thereby regulating energy metabolism. Plant genomes encode two glucan phosphatases, called Starch EXcess4 (SEX4) and Like Sex Four2 (LSF2), that regulate starch metabolism by selectively dephosphorylating glucose moieties within starch glucan chains. Recently, the structures of both SEX4 and LSF2 were determined, with and without phosphoglucan products bound, revealing the mechanism for their unique activities. This review explores the structural and enzymatic features of the plant glucan phosphatases, and outlines how they are uniquely adapted to perform their cellular functions. We outline the physical mechanisms used by SEX4 and LSF2 to interact with starch glucans: SEX4 binds glucan chains via a continuous glucan-binding platform comprising its dual-specificity phosphatase domain and carbohydrate-binding module, while LSF2 utilizes surface binding sites. SEX4 and LSF2 both contain a unique network of aromatic residues in their catalytic dual-specificity phosphatase domains that serve as glucan engagement platforms and are unique to the glucan phosphatases. We also discuss the phosphoglucan substrate specificities inherent to SEX4 and LSF2, and outline structural features within the active site that govern glucan orientation. This review defines the structural mechanism of the plant glucan phosphatases with respect to phosphatases, starch metabolism and protein-glucan interaction, thereby providing a framework for their application in both agricultural and industrial settings. PMID:26934589

  16. Acid phosphatase deactivation by a series mechanism.

    PubMed

    Gianfreda, L; Marrucci, G; Grizzuti, N; Greco, G

    1984-05-01

    Acid phosphatase (E.C.3.1.3.2.) thermal deactivation at pH 3.77 has been investigated by monitoring the enzyme activity as a function of time in the hydrolysis of p-nitrophenyl phosphate. The experimental curves obtained show a two-slope behavior in a log (activity)versus-time plot, which indicates that deactivation occurs via a complex mechanism. From the dependence of the kinetic parameters on both deactivation and hydrolysis temperatures, it is inferred that the deactivation mechanism involves intermediate, temperature-dependent, less-active forms of the enzyme. This interpretation is confirmed by the results of additional tests in which the temperature was suddenly changed during the deactivation process. PMID:18553349

  17. Determination of liver microsomal glucose-6-phosphatase.

    PubMed

    Zak, B; Epstein, E; Baginski, E S

    1977-01-01

    A procedure for the determination of liver microsomal glucose-6-phosphatase is described. Homogenization and ultracentrifrigation were used to prepare a precipitate whose character was defined by monitoring the desire enzyme activity which serves as a marker. Activity of the enzyme was determined by means of a sensitive colorimetric reaction for the product, inorganic phosphate. Non-enzymatic hydrolysis problems with the substrate are minimized in this procedure by the masking action of citrate. The final heteropoly blue color appears to be considerably sensitized by interaction of phosphomolybdous ion with arsenite. The stability of the relatively labile enzyme was ensured by chelating any metals present with ethylene diamine tetraacetic acid. The overall results obtained by the procedure appear to be useful as an aid in the diagnosis of Type I glycogenosis, a glycogen storage disease called Von Gierke's disease. PMID:192125

  18. Unique structural features of red kidney bean purple acid phosphatase.

    PubMed

    Cashikar, A G; Rao, M N

    1995-06-01

    Purple acid phosphatase from red kidney beans (Phaseolus vulgaris) has been purified to homogeneity and characterized. The enzyme is a homodimer of 60 kDa subunits each containing one atom of zinc and iron in the active site. Circular dichroism spectral studies on the purified enzyme reveals that a large portion of the peptide backbone is in the unordered and beta-turn conformation. A unique feature of the red kidney bean acid phosphatase, which we have found, is that one of the two cysteines of each subunit is involved in the formation of an inter-subunit disulphide. The thiol group of the other cysteine is not necessary for the activity of the enzyme. Western blot analysis with antibodies raised against kidney bean acid phosphatase could not recognize acid phosphatases from other sources except from potato. This paper emphasizes the fact that acid phosphatases are functionally, but not structurally, conserved enzymes. PMID:7590853

  19. Phosphatidylinositol anchor of HeLa cell alkaline phosphatase

    SciTech Connect

    Jemmerson, R.; Low, M.G.

    1987-09-08

    Alkaline phosphatase from cancer cells, HeLa TCRC-1, was biosynthetically labeled with either /sup 3/H-fatty acids or (/sup 3/H)ethanolamine as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography of immunoprecipitated material. Phosphatidylinositol-specific phospholipase C (PI-PLC) released a substantial proportion of the /sup 3/H-fatty acid label from immunoaffinity-purified alkaline phosphatase but had no effect on the radioactivity of (/sup 3/H)ethanolamine-labeled material. PI-PLC also liberated catalytically active alkaline phosphatase from viable cells, and this could be selectively blocked by monoclonal antibodies to alkaline phosphatase. However, the alkaline phosphatase released from /sup 3/H-fatty acid labeled cells by PI-PLC was not radioactive. By contrast, treatment with bromelain removed both the /sup 3/H-fatty acid and the (/sup 3/H)ethanolamine label from purified alkaline phosphatase. Subtilisin was also able to remove the (/sup 3/H)ethanolamine label from the purified alkaline phosphatase. The /sup 3/H radioactivity in alkaline phosphatase purified from (/sup 3/H)ethanolamine-labeled cells comigrated with authentic (/sup 3/H)ethanolamine by anion-exchange chromatography after acid hydrolysis. The data suggest that the /sup 3/H-fatty acid and (/sup 3/H)ethanolamine are covalently attached to the carboxyl-terminal segment since bromelain and subtilisin both release alkaline phosphatase from the membrane by cleavage at that end of the polypeptide chain. The data are consistent with findings for other proteins recently shown to be anchored in the membrane through a glycosylphosphatidylinositol structure and indicate that a similar structure contributes to the membrane anchoring of alkaline phosphatase.

  20. A Theileria parva type 1 protein phosphatase activity.

    PubMed

    Cayla, X; Garcia, A; Baumgartner, M; Ozon, R; Langsley, G

    2000-09-01

    The protozoan parasite Theileria (spp. parva and annulata) infects bovine leukocytes and provokes a leukaemia-like disease in vivo. In this study, we have detected a type 1 serine/threonine phosphatase activity with phosphorylase a as a substrate, in protein extracts of parasites purified from infected B lymphocytes. In contrast to this type 1 activity, dose response experiments with okadaic acid (OA), a well characterised inhibitor of type 1 and 2A protein phosphatases, indicated that type 2A is the predominant activity detected in host B cells. Furthermore, consistent with polycation-specific activation of the type 2A phosphatase, protamine failed to activate the parasite-associated phosphorylase a phosphatase activity. Moreover, inhibition of phosphorylase a dephosphorylation by phospho-DARPP-32, a specific type 1 inhibitor, clearly demonstrated that a type 1 phosphatase is specifically associated with the parasite, while the type 2A is predominantly expressed in the host lymphocyte. Since an antibody against bovine catalytic protein phosphatase 1 (PP1) subunit only recognised the PP1 in B cells, but not in parasite extracts, we conclude that in parasites the PP1 activity is of parasitic origin. Intriguingly, since type 1 OA-sensitive phosphatase activity has been recently described in Plasmodium falciparum, we can conclude that these medically important parasites produce their one PP1. PMID:10989153

  1. Francisella DnaK Inhibits Tissue-nonspecific Alkaline Phosphatase*

    PubMed Central

    Arulanandam, Bernard P.; Chetty, Senthilnath Lakshmana; Yu, Jieh-Juen; Leonard, Sean; Klose, Karl; Seshu, Janakiram; Cap, Andrew; Valdes, James J.; Chambers, James P.

    2012-01-01

    Following pulmonary infection with Francisella tularensis, we observed an unexpected but significant reduction of alkaline phosphatase, an enzyme normally up-regulated following inflammation. However, no reduction was observed in mice infected with a closely related Gram-negative pneumonic organism (Klebsiella pneumoniae) suggesting the inhibition may be Francisella-specific. In similar fashion to in vivo observations, addition of Francisella lysate to exogenous alkaline phosphatase (tissue-nonspecific isozyme) was inhibitory. Partial purification and subsequent proteomic analysis indicated the inhibitory factor to be the heat shock protein DnaK. Incubation with increasing amounts of anti-DnaK antibody reduced the inhibitory effect in a dose-dependent manner. Furthermore, DnaK contains an adenosine triphosphate binding domain at its N terminus, and addition of adenosine triphosphate enhances dissociation of DnaK with its target protein, e.g. alkaline phosphatase. Addition of adenosine triphosphate resulted in decreased DnaK co-immunoprecipitated with alkaline phosphatase as well as reduction of Francisella-mediated alkaline phosphatase inhibition further supporting the binding of Francisella DnaK to alkaline phosphatase. Release of DnaK via secretion and/or bacterial cell lysis into the extracellular milieu and inhibition of plasma alkaline phosphatase could promote an orchestrated, inflammatory response advantageous to Francisella. PMID:22923614

  2. Bacillus cereus Phosphopentomutase Is an Alkaline Phosphatase Family Member That Exhibits an Altered Entry Point into the Catalytic Cycle

    SciTech Connect

    Panosian, Timothy D.; Nannemann, David P.; Watkins, Guy R.; Phelan, Vanessa V.; McDonald, W. Hayes; Wadzinski, Brian E.; Bachmann, Brian O.; Iverson, Tina M.

    2011-09-15

    Bacterial phosphopentomutases (PPMs) are alkaline phosphatase superfamily members that interconvert {alpha}-D-ribose 5-phosphate (ribose 5-phosphate) and {alpha}-D-ribose 1-phosphate (ribose 1-phosphate). We investigated the reaction mechanism of Bacillus cereus PPM using a combination of structural and biochemical studies. Four high resolution crystal structures of B. cereus PPM revealed the active site architecture, identified binding sites for the substrate ribose 5-phosphate and the activator {alpha}-D-glucose 1,6-bisphosphate (glucose 1,6-bisphosphate), and demonstrated that glucose 1,6-bisphosphate increased phosphorylation of the active site residue Thr-85. The phosphorylation of Thr-85 was confirmed by Western and mass spectroscopic analyses. Biochemical assays identified Mn{sup 2+}-dependent enzyme turnover and demonstrated that glucose 1,6-bisphosphate treatment increases enzyme activity. These results suggest that protein phosphorylation activates the enzyme, which supports an intermolecular transferase mechanism. We confirmed intermolecular phosphoryl transfer using an isotope relay assay in which PPM reactions containing mixtures of ribose 5-[{sup 18}O{sub 3}]phosphate and [U-{sup 13}C{sub 5}]ribose 5-phosphate were analyzed by mass spectrometry. This intermolecular phosphoryl transfer is seemingly counter to what is anticipated from phosphomutases employing a general alkaline phosphatase reaction mechanism, which are reported to catalyze intramolecular phosphoryl transfer. However, the two mechanisms may be reconciled if substrate encounters the enzyme at a different point in the catalytic cycle.

  3. Evidence for an indirect transcriptional regulation of glucose-6-phosphatase gene expression by liver X receptors

    SciTech Connect

    Grempler, Rolf . E-mail: rolfgrempler@yahoo.de; Guenther, Susanne; Steffensen, Knut R.; Nilsson, Maria; Barthel, Andreas; Schmoll, Dieter

    2005-12-16

    Liver X receptor (LXR) paralogues {alpha} and {beta} (LXR{alpha} and LXR{beta}) are members of the nuclear hormone receptor family and have oxysterols as endogenous ligands. LXR activation reduces hepatic glucose production in vivo through the inhibition of transcription of the key gluconeogenic enzymes phosphoenolpyruvate carboxykinase and glucose-6-phosphatase (G6Pase). In the present study, we investigated the molecular mechanisms involved in the regulation of G6Pase gene expression by LXR. Both T0901317, a synthetic LXR agonist, and the adenoviral overexpression of either LXR{alpha} or LXR{beta} suppressed G6Pase gene expression in H4IIE hepatoma cells. However, compared to the suppression of G6Pase expression seen by insulin, the decrease of G6Pase mRNA by LXR activation was delayed and was blocked by cycloheximide, an inhibitor of protein synthesis. These observations, together with the absence of a conserved LXR-binding element within the G6Pase promoter, suggest an indirect inhibition of G6Pase gene expression by liver X receptors.

  4. Structural and kinetic properties of a novel purple acid phosphatase from phosphate-starved tomato (Lycopersicon esculentum) cell cultures.

    PubMed Central

    Bozzo, Gale G; Raghothama, Kashchandra G; Plaxton, William C

    2004-01-01

    An intracellular acid phosphatase (IAP) from P(i)-starved (-P(i)) tomato ( Lycopersicon esculentum ) suspension cells has been purified to homogeneity. IAP is a purple acid phosphatase (PAP), as the purified protein was violet in colour (lambda(max)=546 nm) and was insensitive to L-tartrate. PAGE, periodic acid-Schiff staining and peptide mapping demonstrated that the enzyme exists as a 142 kDa heterodimer composed of an equivalent ratio of glycosylated and structurally dissimilar 63 (alpha-subunit) and 57 kDa (beta-subunit) polypeptides. However, the nine N-terminal amino acids of the alpha- and beta-subunits were identical, exhibiting similarity to the deduced N-terminal portions of several putative plant PAPs. Quantification of immunoblots probed with rabbit anti-(tomato acid phosphatase) immune serum revealed that the 4-fold increase in IAP activity due to P(i)-deprivation was correlated with similar increases in the amount of antigenic IAP alpha- and beta-subunits. IAP displayed optimal activity at pH 5.1, was activated 150% by 10 mM Mg(2+), but was potently inhibited by Zn(2+), Cu(2+), Fe(3+), molybdate, vanadate, fluoride and P(i). Although IAP demonstrated broad substrate selectivity, its specificity constant ( V (max)/ K (m)) with phosphoenolpyruvate was >250% greater than that obtained with any other substrate. IAP exhibited significant peroxidase activity, which was optimal at pH 9.0 and insensitive to Mg(2+) or molybdate. This IAP is proposed to scavenge P(i) from intracellular phosphate esters in -P(i) tomato. A possible secondary IAP role in the metabolism of reactive oxygen species is discussed. IAP properties are compared with those of two extracellular PAP isoenzymes that are secreted into the medium of -P(i) tomato cells [Bozzo, Raghothama and Plaxton (2002) Eur. J. Biochem. 269, 6278-6286]. PMID:14521509

  5. The RCN1-encoded A subunit of protein phosphatase 2A increases phosphatase activity in vivo

    NASA Technical Reports Server (NTRS)

    Deruere, J.; Jackson, K.; Garbers, C.; Soll, D.; Delong, A.; Evans, M. L. (Principal Investigator)

    1999-01-01

    Protein phosphatase 2A (PP2A), a heterotrimeric serine/threonine-specific protein phosphatase, comprises a catalytic C subunit and two distinct regulatory subunits, A and B. The RCN1 gene encodes one of three A regulatory subunits in Arabidopsis thaliana. A T-DNA insertion mutation at this locus impairs root curling, seedling organ elongation and apical hypocotyl hook formation. We have used in vivo and in vitro assays to gauge the impact of the rcn1 mutation on PP2A activity in seedlings. PP2A activity is decreased in extracts from rcn1 mutant seedlings, and this decrease is not due to a reduction in catalytic subunit expression. Roots of mutant seedlings exhibit increased sensitivity to the phosphatase inhibitors okadaic acid and cantharidin in organ elongation assays. Shoots of dark-grown, but not light-grown seedlings also show increased inhibitor sensitivity. Furthermore, cantharidin treatment of wild-type seedlings mimics the rcn1 defect in root curling, root waving and hypocotyl hook formation assays. In roots of wild-type seedlings, RCN1 mRNA is expressed at high levels in root tips, and accumulates to lower levels in the pericycle and lateral root primordia. In shoots, RCN1 is expressed in the apical hook and the basal, rapidly elongating cells in etiolated hypocotyls, and in the shoot meristem and leaf primordia of light-grown seedlings. Our results show that the wild-type RCN1-encoded A subunit functions as a positive regulator of the PP2A holoenzyme, increasing activity towards substrates involved in organ elongation and differential cell elongation responses such as root curling.

  6. Phosphatase activity of aerobic and facultative anaerobic bacteria.

    PubMed

    Pácová, Z; Kocur, M

    1978-10-01

    1115 strains of aerobic and facultatively anaerobic bacteria were tested for phosphatase activity by a conventional plate method and a microtest. The microtest was devised to allow results to be read after 4 h cultivation. Phosphatase activity was found in wide range of species and strains. Besides staphylococci, where the test for phosphatase is successfully used, it may be applied as one of the valuable tests for the differentiation of the following species: Bacillus cereus, B. licheniformis, Aeromonas spp., Vibrio parahaemolyticus, Actinobacillus spp., Pasteurella spp., Xanthomonas spp., Flavobacterium spp., Alteromonas putrefaciens, Pseudomonas maltophilia, Ps. cepacia, and some other species of Pseudomonas. The species which gave uniformly negative phosphatase reaction were as follows: Staph. saprophyticus, Acinetobacter calcoaceticus, Alcaligenes faecalis, and Bordetella bronchiseptica. PMID:216188

  7. Acid phosphatase and protease activities in immobilized rat skeletal muscles

    NASA Technical Reports Server (NTRS)

    Witzmann, F. A.; Troup, J. P.; Fitts, R. H.

    1982-01-01

    The effect of hind-limb immobilization on selected Iysosomal enzyme activities was studied in rat hing-limb muscles composed primarily of type 1. 2A, or 2B fibers. Following immobilization, acid protease and acid phosphatase both exhibited signifcant increases in their activity per unit weight in all three fiber types. Acid phosphatase activity increased at day 14 of immobilization in the three muscles and returned to control levels by day 21. Acid protease activity also changed biphasically, displaying a higher and earlier rise than acid phosphatase. The pattern of change in acid protease, but not acid phosphatase, closely parallels observed muscle wasting. The present data therefore demonstrate enhanced proteolytic capacity of all three fiber types early during muscular atrophy. In addition, the data suggest a dependence of basal hydrolytic and proteolytic activities and their adaptive response to immobilization on muscle fiber composition.

  8. Structure and Mechanism of the Phosphotyrosyl Phosphatase Activator

    SciTech Connect

    Chao,Y.; Xing, Y.; Chen, Y.; Xu, Y.; Lin, Z.; Li, Z.; Jeffrey, P.; Stock, J.; Shi, Y.

    2006-01-01

    Phosphotyrosyl phosphatase activator (PTPA), also known as PP2A phosphatase activator, is a conserved protein from yeast to human. Here we report the 1.9 {angstrom} crystal structure of human PTPA, which reveals a previously unreported fold consisting of three subdomains: core, lid, and linker. Structural analysis uncovers a highly conserved surface patch, which borders the three subdomains, and an associated deep pocket located between the core and the linker subdomains. The conserved surface patch and the deep pocket are responsible for binding to PP2A and ATP, respectively. PTPA and PP2A A-C dimer together constitute a composite ATPase. PTPA binding to PP2A results in a dramatic alteration of substrate specificity, with enhanced phosphotyrosine phosphatase activity and decreased phosphoserine phosphatase activity. This function of PTPA strictly depends on the composite ATPase activity. These observations reveal significant insights into the function and mechanism of PTPA and have important ramifications for understanding PP2A function.

  9. Ab initio alpha-alpha scattering

    NASA Astrophysics Data System (ADS)

    Elhatisari, Serdar; Lee, Dean; Rupak, Gautam; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A.; Luu, Thomas; Meißner, Ulf-G.

    2015-12-01

    Processes such as the scattering of alpha particles (4He), the triple-alpha reaction, and alpha capture play a major role in stellar nucleosynthesis. In particular, alpha capture on carbon determines the ratio of carbon to oxygen during helium burning, and affects subsequent carbon, neon, oxygen, and silicon burning stages. It also substantially affects models of thermonuclear type Ia supernovae, owing to carbon detonation in accreting carbon-oxygen white-dwarf stars. In these reactions, the accurate calculation of the elastic scattering of alpha particles and alpha-like nuclei—nuclei with even and equal numbers of protons and neutrons—is important for understanding background and resonant scattering contributions. First-principles calculations of processes involving alpha particles and alpha-like nuclei have so far been impractical, owing to the exponential growth of the number of computational operations with the number of particles. Here we describe an ab initio calculation of alpha-alpha scattering that uses lattice Monte Carlo simulations. We use lattice effective field theory to describe the low-energy interactions of protons and neutrons, and apply a technique called the ‘adiabatic projection method’ to reduce the eight-body system to a two-cluster system. We take advantage of the computational efficiency and the more favourable scaling with system size of auxiliary-field Monte Carlo simulations to compute an ab initio effective Hamiltonian for the two clusters. We find promising agreement between lattice results and experimental phase shifts for s-wave and d-wave scattering. The approximately quadratic scaling of computational operations with particle number suggests that it should be possible to compute alpha scattering and capture on carbon and oxygen in the near future. The methods described here can be applied to ultracold atomic few-body systems as well as to hadronic systems using lattice quantum chromodynamics to describe the interactions of

  10. Ab initio alpha-alpha scattering.

    PubMed

    Elhatisari, Serdar; Lee, Dean; Rupak, Gautam; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A; Luu, Thomas; Meißner, Ulf-G

    2015-12-01

    Processes such as the scattering of alpha particles ((4)He), the triple-alpha reaction, and alpha capture play a major role in stellar nucleosynthesis. In particular, alpha capture on carbon determines the ratio of carbon to oxygen during helium burning, and affects subsequent carbon, neon, oxygen, and silicon burning stages. It also substantially affects models of thermonuclear type Ia supernovae, owing to carbon detonation in accreting carbon-oxygen white-dwarf stars. In these reactions, the accurate calculation of the elastic scattering of alpha particles and alpha-like nuclei--nuclei with even and equal numbers of protons and neutrons--is important for understanding background and resonant scattering contributions. First-principles calculations of processes involving alpha particles and alpha-like nuclei have so far been impractical, owing to the exponential growth of the number of computational operations with the number of particles. Here we describe an ab initio calculation of alpha-alpha scattering that uses lattice Monte Carlo simulations. We use lattice effective field theory to describe the low-energy interactions of protons and neutrons, and apply a technique called the 'adiabatic projection method' to reduce the eight-body system to a two-cluster system. We take advantage of the computational efficiency and the more favourable scaling with system size of auxiliary-field Monte Carlo simulations to compute an ab initio effective Hamiltonian for the two clusters. We find promising agreement between lattice results and experimental phase shifts for s-wave and d-wave scattering. The approximately quadratic scaling of computational operations with particle number suggests that it should be possible to compute alpha scattering and capture on carbon and oxygen in the near future. The methods described here can be applied to ultracold atomic few-body systems as well as to hadronic systems using lattice quantum chromodynamics to describe the interactions of

  11. 21 CFR 862.1050 - Alkaline phosphatase or isoenzymes test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Alkaline phosphatase or isoenzymes test system... Test Systems § 862.1050 Alkaline phosphatase or isoenzymes test system. (a) Identification. An alkaline phosphatase or isoenzymes test system is a device intended to measure alkaline phosphatase or its...

  12. 21 CFR 862.1050 - Alkaline phosphatase or isoenzymes test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Alkaline phosphatase or isoenzymes test system... Test Systems § 862.1050 Alkaline phosphatase or isoenzymes test system. (a) Identification. An alkaline phosphatase or isoenzymes test system is a device intended to measure alkaline phosphatase or its...

  13. A Bioassay for Lafora Disease and Laforin Glucan Phosphatase Activity

    PubMed Central

    Sherwood, Amanda R.; Johnson, Mary Beth; Delgado-Escueta, Antonio V.; Gentry, Matthew S.

    2013-01-01

    Objectives Lafora disease is a rare yet invariably fatal form of progressive neurodegenerative epilepsy resulting from mutations in the phosphatase laforin. Several therapeutic options for Lafora disease patients are currently being explored, and these therapies would benefit from a biochemical means of assessing functional laforin activity following treatment. To date, only clinical outcomes such as decreases in seizure frequency and severity have been used to indicate success of epilepsy treatment. However, these qualitative measures exhibit variability and must be assessed over long periods of time. In this work, we detail a simple and sensitive bioassay that can be used for the detection of functional endogenous laforin from human and mouse tissue. Design and methods We generated antibodies capable of detecting and immunoprecipitating endogenous laforin. Following laforin immunoprecipitation, laforin activity was assessed via phosphatase assays using para-nitrophenylphosphate (pNPP) and a malachite green-based assay specific for glucan phosphatase activity. Results We found that antibody binding to laforin does not impede laforin activity. Furthermore, the malachite green-based glucan phosphatase assay used in conjunction with a rabbit polyclonal laforin antibody was capable of detecting endogenous laforin activity from human and mouse tissue. Importantly, this assay discriminated between laforin activity and other phosphatases. Conclusions The bioassay that we have developed utilizing laforin antibodies and an assay specific for glucan phosphatase activity could prove valuable in the rapid detection of functional laforin in patients to which novel Lafora disease therapies have been administered. PMID:24012855

  14. Protein phosphatase 1 is a key player in nuclear events.

    PubMed

    Rebelo, Sandra; Santos, Mariana; Martins, Filipa; da Cruz e Silva, Edgar F; da Cruz e Silva, Odete A B

    2015-12-01

    Reversible protein phosphorylation at serine (Ser), threonine (Thr) and tyrosine (Tyr) residues is among the major regulatory mechanism in eukaryotic cells. The eukaryotic genome encodes many protein kinases and protein phosphatases. However, the localization, activity and specificity towards phosphatase substrates are dictated by a large array of phosphatase binding and regulatory subunits. For protein phosphatase 1 (PP1) more than 200 binding subunits have been described. The various PP1 isoforms and the binding subunits can be located throughout the cell, including in the nucleus. It follows that several nuclear specific PP1 binding proteins (PIPs) have been described and these will be discussed. Among them are PNUTS (phosphatase 1 nuclear targeting subunit), NIPP1 (nuclear inhibitor of PP1) and CREB (cAMP-responsive element-binding protein), which have all been associated with transcription. In fact PP1 can associate with transcription factors fulfilling an important regulatory function, in this respect it can bind to Hox11, human factor C1 (HCF1) and myocyte enhancer factor-2 (MEF2). PP1 also regulates cell cycle progression and centrosome maturation and splitting, again by binding to specific regulatory proteins. Moreover, PP1 together with other protein phosphatases control the entry into mitosis by regulating the activity of mitotic kinases. Thus, PP1, its binding proteins and/or the phosphorylation states of both, directly control a vast array of cell nucleus associated functions, many of which are starting to be unraveled. PMID:26275498

  15. Overexpression of Human Bone Alkaline Phosphatase in Pichia Pastoris

    NASA Technical Reports Server (NTRS)

    Karr, Laurel; Malone, Christine, C.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The Pichiapastoris expression system was utilized to produce functionally active human bone alkaline phosphatase in gram quantities. Bone alkaline phosphatase is a key enzyme in bone formation and biomineralization, yet important questions about its structural chemistry and interactions with other cellular enzymes in mineralizing tissues remain unanswered. A soluble form of human bone alkaline phosphatase was constructed by deletion of the 25 amino acid hydrophobic C-terminal region of the encoding cDNA and inserted into the X-33 Pichiapastoris strain. An overexpression system was developed in shake flasks and converted to large-scale fermentation. Alkaline phosphatase was secreted into the medium to a level of 32mgAL when cultured in shake flasks. Enzyme activity was 12U/mg measured by a spectrophotometric assay. Fermentation yielded 880mgAL with enzymatic activity of 968U/mg. Gel electrophoresis analysis indicates that greater than 50% of the total protein in the fermentation is alkaline phosphatase. A purification scheme has been developed using ammonium sulfate precipitation followed by hydrophobic interaction chromatography. We are currently screening crystallization conditions of the purified recombinant protein for subsequent X-ray diffraction analyses. Structural data should provide additional information on the role of alkaline phosphatase in normal bone mineralization and in certain bone mineralization anomalies.

  16. Isolation and characterization of a neutral phosphatase from wheat seedlings

    SciTech Connect

    Cheng, H.F.

    1988-01-01

    A neutral phosphatase was purified to homogeneity from wheat seedlings. The enzyme was a monomeric glycoprotein exhibiting a molecular weight of 35,000, frictional ratio of 1.22, Stokes' radius of 26 A, and sedimentation coefficient of 3.2 S. That the enzyme was a glycoprotein was surmised from its chromatographic property on Concanavalin A-Sepharose column. The phosphatase activity was assayed using either fructose-2,6-bisphosphate or p-nitrophenyl phosphate as substrate. The phosphatase activity was not affected by high concentrations of chelating agents and did not require the addition of Mg{sup +2} or Ca{sup +2} for its activity. Molybdate, orthovanadate, Zn{sup +2}, and Hg{sup +2} were all potent inhibitors of the phosphatase activity. The inhibition by Hg{sup +2} was reversed by dithiothreitol. The enzyme activity was stimulated by Mn{sup +2} about 2-fold. On the other hand, 3-phosphoglycerate, fructose-6-P and Pi as well as polyamines inhibited the enzyme activity. The ability of the neutral phosphatase to dephosphorylate protein phosphotyrosine was also investigated. The phosphotyrosyl-substrates, such as ({sup 32}P) phosphotyrosyl-poly(Glu, Tyr)n, -alkylated bovine serum albumin, -angiotensin-1, and -band 3 of erythrocytes, were all substrates of the phosphatase. On the other hand, the enzyme had no activity toward protein phosphoserine and protein phosphothreonine.

  17. Unique carbohydrate binding platforms employed by the glucan phosphatases.

    PubMed

    Emanuelle, Shane; Brewer, M Kathryn; Meekins, David A; Gentry, Matthew S

    2016-07-01

    Glucan phosphatases are a family of enzymes that are functionally conserved at the enzymatic level in animals and plants. These enzymes bind and dephosphorylate glycogen in animals and starch in plants. While the enzymatic function is conserved, the glucan phosphatases employ distinct mechanisms to bind and dephosphorylate glycogen or starch. The founding member of the family is a bimodular human protein called laforin that is comprised of a carbohydrate binding module 20 (CBM20) followed by a dual specificity phosphatase domain. Plants contain two glucan phosphatases: Starch EXcess4 (SEX4) and Like Sex Four2 (LSF2). SEX4 contains a chloroplast targeting peptide, dual specificity phosphatase (DSP) domain, a CBM45, and a carboxy-terminal motif. LSF2 is comprised of simply a chloroplast targeting peptide, DSP domain, and carboxy-terminal motif. SEX4 employs an integrated DSP-CBM glucan-binding platform to engage and dephosphorylate starch. LSF2 lacks a CBM and instead utilizes two surface binding sites to bind and dephosphorylate starch. Laforin is a dimeric protein in solution and it utilizes a tetramodular architecture and cooperativity to bind and dephosphorylate glycogen. This chapter describes the biological role of glucan phosphatases in glycogen and starch metabolism and compares and contrasts their ability to bind and dephosphorylate glucans. PMID:27147465

  18. alpha-Hexachlorocyclohexane (alpha-HCH)

    Integrated Risk Information System (IRIS)

    alpha - Hexachlorocyclohexane ( alpha - HCH ) ; CASRN 319 - 84 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Ass

  19. [Phosphatase activity in Amoeba proteus at pH 9.0].

    PubMed

    Sopina, V A

    2007-01-01

    In the free-living amoeba Amoeba proteus (strain B), after PAAG disk-electrophoresis of the homogenate supernatant, at using 1-naphthyl phosphate as a substrate and pH 9.0, three forms of phosphatase activity were revealed; they were arbitrarily called "fast", "intermediate", and "slow" phosphatases. The fast phosphatase has been established to be a fraction of lysosomal acid phosphatase that preserves some low activity at alkaline pH. The question as to which particular class the intermediate phosphatase belongs to has remained unanswered: it can be both acid phosphatase and protein tyrosine phosphatase (PTP). Based on data of inhibitor analysis, large substrate specificity, results of experiments with reactivation by Zn ions after inactivation with EDTA, other than in the fast and intermediate phosphatases localization in the amoeba cell, it is concluded that only slow phosphatase can be classified as alkaline phosphatase (EC 3.1.3.1). PMID:17933343

  20. Alpha-1 Antitrypsin Test

    MedlinePlus

    ... measures the level of the protein AAT in blood. Alpha-1 antitrypsin phenotype testing evaluates the amount and type of AAT being produced and compares it to normal patterns. Alpha-1 antitrypsin genotype testing ( DNA testing) can ...

  1. Alpha-1 antitrypsin test

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003715.htm Alpha-1 antitrypsin test To use the sharing features on this page, please enable JavaScript. Alpha-1 antitrypsin is a laboratory test to measure the ...

  2. Crystal Structures of the Histidine Acid Phosphatase from Francisella tularensis Provide Insight into Substrate Recognition

    SciTech Connect

    Singh, Harkewal; Felts, Richard L.; Schuermann, Jonathan P.; Reilly, Thomas J.; Tanner, John J.

    2009-12-01

    Histidine acid phosphatases catalyze the transfer of a phosphoryl group from phosphomonoesters to water at acidic pH using an active-site histidine. The histidine acid phosphatase from the category A pathogen Francisella tularensis (FtHAP) has been implicated in intramacrophage survival and virulence, motivating interest in understanding the structure and mechanism of this enzyme. Here, we report a structure-based study of ligand recognition by FtHAP. The 1.70-{angstrom}-resolution structure of FtHAP complexed with the competitive inhibitor L(+)-tartrate was solved using single-wavelength anomalous diffraction phasing. Structures of the ligand-free enzyme and the complex with inorganic phosphate were determined at resolutions of 1.85 and 1.70 {angstrom}, respectively. The structure of the Asp261Ala mutant enzyme complexed with the substrate 3'-AMP was determined at 1.50 {angstrom} resolution to gain insight into substrate recognition. FtHAP exhibits a two-domain fold similar to that of human prostatic acid phosphatase, consisting of an {alpha}/{beta} core domain and a smaller domain that caps the core domain. The structures show that the core domain supplies the phosphoryl binding site, catalytic histidine (His17), and an aspartic acid residue (Asp261) that protonates the leaving group, while the cap domain contributes residues that enforce substrate preference. FtHAP and human prostatic acid phosphatase differ in the orientation of the crucial first helix of the cap domain, implying differences in the substrate preferences of the two enzymes. 3'-AMP binds in one end of a 15-{angstrom}-long tunnel, with the adenine clamped between Phe23 and Tyr135, and the ribose 2'-hydroxyl interacting with Gln132. The importance of the clamp is confirmed with site-directed mutagenesis; mutation of Phe23 and Tyr135 individually to Ala increases K{sub m} by factors of 7 and 10, respectively. The structural data are consistent with a role for FtHAP in scavenging phosphate from small

  3. Protein phosphatase 1α is a Ras-activated Bad phosphatase that regulates interleukin-2 deprivation-induced apoptosis

    PubMed Central

    Ayllón, Verónica; Martínez-A, Carlos; García, Alphonse; Cayla, Xavier; Rebollo, Angelita

    2000-01-01

    Growth factor deprivation is a physiological mechanism to regulate cell death. We utilize an interleukin-2 (IL-2)-dependent murine T-cell line to identify proteins that interact with Bad upon IL-2 stimulation or deprivation. Using the yeast two-hybrid system, glutathione S-transferase (GST) fusion proteins and co-immunoprecipitation techniques, we found that Bad interacts with protein phosphatase 1α (PP1α). Serine phosphorylation of Bad is induced by IL-2 and its dephosphorylation correlates with appearance of apoptosis. IL-2 deprivation induces Bad dephosphorylation, suggesting the involvement of a serine phosphatase. A serine/threonine phosphatase activity, sensitive to the phosphatase inhibitor okadaic acid, was detected in Bad immunoprecipitates from IL-2-stimulated cells, increasing after IL-2 deprivation. This enzymatic activity also dephosphorylates in vivo 32P-labeled Bad. Treatment of cells with okadaic acid blocks Bad dephosphorylation and prevents cell death. Finally, Ras activation controls the catalytic activity of PP1α. These results strongly suggest that Bad is an in vitro and in vivo substrate for PP1α phosphatase and that IL-2 deprivation-induced apoptosis may operate by regulating Bad phosphorylation through PP1α phosphatase, whose enzymatic activity is regulated by Ras. PMID:10811615

  4. The receptor protein tyrosine phosphatase LAR promotes R7 photoreceptor axon targeting by a phosphatase-independent signaling mechanism

    PubMed Central

    Hofmeyer, Kerstin; Treisman, Jessica E.

    2009-01-01

    Receptor protein tyrosine phosphatases (RPTPs) control many aspects of nervous system development. At the Drosophila neuromuscular junction (NMJ), regulation of synapse growth and maturation by the RPTP LAR depends on catalytic phosphatase activity and on the extracellular ligands Syndecan and Dally-like. We show here that the function of LAR in controlling R7 photoreceptor axon targeting in the visual system differs in several respects. The extracellular domain of LAR important for this process is distinct from the domains known to bind Syndecan and Dally-like, suggesting the involvement of a different ligand. R7 targeting does not require LAR phosphatase activity, but instead depends on the phosphatase activity of another RPTP, PTP69D. In addition, a mutation that prevents dimerization of the intracellular domain of LAR interferes with its ability to promote R7 targeting, although it does not disrupt phosphatase activity or neuromuscular synapse growth. We propose that LAR function in R7 is independent of its phosphatase activity, but requires structural features that allow dimerization and may promote the assembly of downstream effectors. PMID:19889974

  5. The Alpha Centauri System.

    ERIC Educational Resources Information Center

    Soderblom, David R.

    1987-01-01

    Describes the Alpha Centauri star system, which is the closest star system to the sun. Discusses the difficulties associated with measurements involving Alpha Centauri, along with some of the recent advances in stellar seismology. Raises questions about the possibilities of planets around Alpha Centauri. (TW)

  6. Liprin-alpha has LAR-independent functions in R7 photoreceptor axon targeting.

    PubMed

    Hofmeyer, Kerstin; Maurel-Zaffran, Corinne; Sink, Helen; Treisman, Jessica E

    2006-08-01

    In the Drosophila visual system, the color-sensing photoreceptors R7 and R8 project their axons to two distinct layers in the medulla. Loss of the receptor tyrosine phosphatase LAR from R7 photoreceptors causes their axons to terminate prematurely in the R8 layer. Here we identify a null mutation in the Liprin-alpha gene based on a similar R7 projection defect. Liprin-alpha physically interacts with the inactive D2 phosphatase domain of LAR, and this domain is also essential for R7 targeting. However, another LAR-dependent function, egg elongation, requires neither Liprin-alpha nor the LAR D2 domain. Although human and Caenorhabditis elegans Liprin-alpha proteins have been reported to control the localization of LAR, we find that LAR localizes to focal adhesions in Drosophila S2R+ cells and to photoreceptor growth cones in vivo independently of Liprin-alpha. In addition, Liprin-alpha overexpression or loss of function can affect R7 targeting in the complete absence of LAR. We conclude that Liprin-alpha does not simply act by regulating LAR localization but also has LAR-independent functions. PMID:16864797

  7. Monoclonal antibodies directed against Leishmania secreted acid phosphatase and lipophosphoglycan. Partial characterization of private and public epitopes.

    PubMed

    Ilg, T; Harbecke, D; Wiese, M; Overath, P

    1993-10-15

    Leishmania promastigotes, the stage of the parasite characteristic for the sandfly vector, express an abundant glycoconjugate, called lipophosphoglycan, at their surface. Lipophosphoglycan consists of lysoalkyl-sn-glycerophosphoinositol linked to a phosphosaccharide core conserved in all species, which is connected to PO4-6Gal beta 1,4Man alpha 1 repeats with species-specific substitutions at the Gal residue; the repeats are capped by conserved and species-specific oligosaccharides. Most Leishmania species also secrete an acid phosphatase, which, in Leishmania mexicana, is a filamentous complex composed of a phosphorylated glycoprotein and non-covalently associated proteo-(high-molecular-mass)phosphoglycan. The secreted acid phosphatase complex was used as an antigen to derive a panel of monoclonal antibodies (mAbs). A total of 25 mAbs (17 novel and 8 previously described) were tested by different techniques for their specificity against lipophosphoglycan and secreted acid phosphatase from several Leishmania species. This comparison and the modification of the antigens by chemical or enzymic treatments allowed a classification of the mAbs into several groups. First, from 25 mAbs examined, 22 recognize lipophosphoglycan and the enzyme complex of L. mexicana; only three are specific for secreted acid phosphatase. Two of the latter group are also directed against carbohydrate structures, whereas the third mAb recognizes the 100-kDa polypeptide of the complex. The secreted acid-phosphatase-specific class detects antigen in the flagellar pocket of promastigotes while all anti-lipophosphoglycan mAbs bind to the cell surface. Second, all 15 anti-lipophosphoglycan mAbs investigated in detail appear to be directed against the phosphosaccharide repeats or the cap structure rather than the phosphosaccharide core. Two mAbs recognize terminal cap-structures containing Man alpha 1,2Man residues. Four antibodies are specific for L. mexicana and are probably directed against PO4

  8. Cellular phosphatases facilitate combinatorial processing of receptor-activated signals

    PubMed Central

    Kumar, Dhiraj; Dua, Raina; Srikanth, Ravichandran; Jayaswal, Shilpi; Siddiqui, Zaved; Rao, Kanury VS

    2008-01-01

    Background Although reciprocal regulation of protein phosphorylation represents a key aspect of signal transduction, a larger perspective on how these various interactions integrate to contribute towards signal processing is presently unclear. For example, a key unanswered question is that of how phosphatase-mediated regulation of phosphorylation at the individual nodes of the signaling network translates into modulation of the net signal output and, thereby, the cellular phenotypic response. Results To address the above question we, in the present study, examined the dynamics of signaling from the B cell antigen receptor (BCR) under conditions where individual cellular phosphatases were selectively depleted by siRNA. Results from such experiments revealed a highly enmeshed structure for the signaling network where each signaling node was linked to multiple phosphatases on the one hand, and each phosphatase to several nodes on the other. This resulted in a configuration where individual signaling intermediates could be influenced by a spectrum of regulatory phosphatases, but with the composition of the spectrum differing from one intermediate to another. Consequently, each node differentially experienced perturbations in phosphatase activity, yielding a unique fingerprint of nodal signals characteristic to that perturbation. This heterogeneity in nodal experiences, to a given perturbation, led to combinatorial manipulation of the corresponding signaling axes for the downstream transcription factors. Conclusion Our cumulative results reveal that it is the tight integration of phosphatases into the signaling network that provides the plasticity by which perturbation-specific information can be transmitted in the form of a multivariate output to the downstream transcription factor network. This output in turn specifies a context-defined response, when translated into the resulting gene expression profile. PMID:18798986

  9. Glycerol-3-phosphatase of Corynebacterium glutamicum.

    PubMed

    Lindner, Steffen N; Meiswinkel, Tobias M; Panhorst, Maren; Youn, Jung-Won; Wiefel, Lars; Wendisch, Volker F

    2012-06-15

    Formation of glycerol as by-product of amino acid production by Corynebacterium glutamicum has been observed under certain conditions, but the enzyme(s) involved in its synthesis from glycerol-3-phosphate were not known. It was shown here that cg1700 encodes an enzyme active as a glycerol-3-phosphatase (GPP) hydrolyzing glycerol-3-phosphate to inorganic phosphate and glycerol. GPP was found to be active as a homodimer. The enzyme preferred conditions of neutral pH and requires Mg²⁺ or Mn²⁺ for its activity. GPP dephosphorylated both L- and D-glycerol-3-phosphate with a preference for the D-enantiomer. The maximal activity of GPP was estimated to be 31.1 and 1.7 U mg⁻¹ with K(M) values of 3.8 and 2.9 mM for DL- and L-glycerol-3-phosphate, respectively. For physiological analysis a gpp deletion mutant was constructed and shown to lack the ability to produce detectable glycerol concentrations. Vice versa, gpp overexpression increased glycerol accumulation during growth in fructose minimal medium. It has been demonstrated previously that intracellular accumulation of glycerol-3-phosphate is growth inhibitory as shown for a recombinant C. glutamicum strain overproducing glycerokinase and glycerol facilitator genes from E. coli in media containing glycerol. In this strain, overexpression of gpp restored growth in the presence of glycerol as intracellular glycerol-3-phosphate concentrations were reduced to wild-type levels. In C. glutamicum wild type, GPP was shown to be involved in utilization of DL-glycerol-3-phosphate as source of phosphorus, since growth with DL-glycerol-3-phosphate as sole phosphorus source was reduced in the gpp deletion strain whereas it was accelerated upon gpp overexpression. As GPP homologues were found to be encoded in the genomes of many other bacteria, the gpp homologues of Escherichia coli (b2293) and Bacillus subtilis (BSU09240, BSU34970) as well as gpp1 from the plant Arabidosis thaliana were overexpressed in E. coli MG1655 and

  10. Protein phosphatase 2A regulatory subunit B56α limits phosphatase activity in the heart.

    PubMed

    Little, Sean C; Curran, Jerry; Makara, Michael A; Kline, Crystal F; Ho, Hsiang-Ting; Xu, Zhaobin; Wu, Xiangqiong; Polina, Iuliia; Musa, Hassan; Meadows, Allison M; Carnes, Cynthia A; Biesiadecki, Brandon J; Davis, Jonathan P; Weisleder, Noah; Györke, Sandor; Wehrens, Xander H; Hund, Thomas J; Mohler, Peter J

    2015-07-21

    Protein phosphatase 2A (PP2A) is a serine/threonine-selective holoenzyme composed of a catalytic, scaffolding, and regulatory subunit. In the heart, PP2A activity is requisite for cardiac excitation-contraction coupling and central in adrenergic signaling. We found that mice deficient in the PP2A regulatory subunit B56α (1 of 13 regulatory subunits) had altered PP2A signaling in the heart that was associated with changes in cardiac physiology, suggesting that the B56α regulatory subunit had an autoinhibitory role that suppressed excess PP2A activity. The increase in PP2A activity in the mice with reduced B56α expression resulted in slower heart rates and increased heart rate variability, conduction defects, and increased sensitivity of heart rate to parasympathetic agonists. Increased PP2A activity in B56α(+/-) myocytes resulted in reduced Ca(2+) waves and sparks, which was associated with decreased phosphorylation (and thus decreased activation) of the ryanodine receptor RyR2, an ion channel on intracellular membranes that is involved in Ca(2+) regulation in cardiomyocytes. In line with an autoinhibitory role for B56α, in vivo expression of B56α in the absence of altered abundance of other PP2A subunits decreased basal phosphatase activity. Consequently, in vivo expression of B56α suppressed parasympathetic regulation of heart rate and increased RyR2 phosphorylation in cardiomyocytes. These data show that an integral component of the PP2A holoenzyme has an important inhibitory role in controlling PP2A enzyme activity in the heart. PMID:26198358

  11. Human prostatic acid phosphatase directly stimulates collagen synthesis and alkaline phosphatase content of isolated bone cells

    SciTech Connect

    Ishibe, M.; Rosier, R.N.; Puzas, J.E. )

    1991-10-01

    Human prostatic acid phosphatase (hPAP) directly enhances the differentiated characteristics of isolated bone cells in vitro. This enzyme, when added to cell cultures for 24 h in vitro stimulates collagen synthesis and the production of alkaline phosphatase. The effects are dose dependent, with statistically significant effects occurring from 0.1-100 nM hPAP. Concentrations higher than 100 nM do not evoke greater effects. The maximal effect of hPAP occurs between 12 and 24 h of exposure. The cells stimulated to the greatest degree are osteoprogenitor cells and osteoblasts. Fibroblasts isolated from the same tissue show a lesser sensitivity to hPAP. hPAP has no detectable effect on cell proliferation, as measured by radiolabeled thymidine incorporation or total DNA synthesis. None of the observations reported in this work can be attributed to contaminating proteins in the hPAP preparation. hPAP was radiolabeled with 125I and was used for affinity binding and cross-linking studies. Scatchard analysis of specific binding indicated the presence of 1.0 X 10(5) high affinity binding sites/cell, with a Kd of 6.5 nM. Cross-linking studies demonstrated the presence of one 320-kDa binding complex. The pH profile and kinetic determinations of Km and maximum velocity for hPAP were similar to those previously reported, except for the finding of positive cooperativity of the substrate with the enzyme under the conditions of our assay. We believe that the direct stimulation of bone-forming cells by hPAP may contribute to the sclerotic nature of skeletal bone around sites of neoplastic prostatic metastases and that the effect of the enzyme is probably mediated by a plasma membrane receptor.

  12. Characterization of Human Bone Alkaline Phosphatase in Pichia Pastoris

    NASA Technical Reports Server (NTRS)

    Malone, Christine C.; Ciszak, Eva; Karr, Laurel J.

    1999-01-01

    A soluble form of human bone alkaline phosphatase has been expressed in a recombinant strain of the methylotrophic yeast Pichia pastoris. We constructed a plasmid containing cDNA encoding for human bone alkaline phosphatase, with the hydrophobic carboxyl terminal portion deleted. Alkaline phosphatase was secreted into the medium to a level of 32mg/L when cultured in shake flasks, and enzyme activity was 12U/mg, as measured by a spectrophotometric assay. By conversion to a fermentation system, a yield of 880mg/L has been achieved with an enzyme activity of 968U/mg. By gel electrophoresis analysis, it appears that greater than 50% of the total protein in the fermentation media is alkaline phosphatase. Although purification procedures are not yet completely optimized, they are expected to include filtration, ion exchange and affinity chromatography. Our presentation will focus on the purification and crystallization results up to the time of the conference. Structural data should provide additional information on the role of alkaline phosphatase in normal bone mineralization and in certain bone mineralization anomalies.

  13. New Functions of the Inositol Polyphosphate 5-Phosphatases in Cancer.

    PubMed

    Erneux, Christophe; Ghosh, Somadri; Ramos, Ana Raquel; Edimo, William's Elong

    2016-01-01

    Inositol polyphosphate 5-phosphatases act on inositol phosphates and phosphoinositides as substrates. They are 10 different isoenzymes and several splice variants in the human genome that are involved in a series of human pathologies such as the Lowe syndrome, the Joubert and MORM syndromes, breast cancer, glioblastoma, gastric cancer and several other type of cancers. Inositol 5-phosphatases can be amplified in human cancer cells, whereas the 3- and 4- phosphatase tumor suppressor PTEN and INPP4B, repectively are often repressed or deleted. The inositol 5-phosphatases are critically involved in a complex network of higly regulated phosphoinositides, affecting the lipid content of PI(3, 4, 5)P3, PI(4, 5)P2 and PI(3, 4)P2. This has an impact on the normal behavior of many intracellular target proteins e.g. protein kinase B (PKB/Akt) or actin binding proteins and final biological responses. The production of PI(3, 4P)2 by dephosphorylation of the substrate PI(3, 4, 5)P3 is particularly important as it produces a new signal messenger in the control of cell migration, invasion and endocytosis. New inhibitors/activators of inositol 5- phosphatases have recently been identified for the possible control of their activity in several human pathologies such as inflamation and cancer. PMID:26916021

  14. Phosphotyrosine Substrate Sequence Motifs for Dual Specificity Phosphatases

    PubMed Central

    Zhao, Bryan M.; Keasey, Sarah L.; Tropea, Joseph E.; Lountos, George T.; Dyas, Beverly K.; Cherry, Scott; Raran-Kurussi, Sreejith; Waugh, David S.; Ulrich, Robert G.

    2015-01-01

    Protein tyrosine phosphatases dephosphorylate tyrosine residues of proteins, whereas, dual specificity phosphatases (DUSPs) are a subgroup of protein tyrosine phosphatases that dephosphorylate not only Tyr(P) residue, but also the Ser(P) and Thr(P) residues of proteins. The DUSPs are linked to the regulation of many cellular functions and signaling pathways. Though many cellular targets of DUSPs are known, the relationship between catalytic activity and substrate specificity is poorly defined. We investigated the interactions of peptide substrates with select DUSPs of four types: MAP kinases (DUSP1 and DUSP7), atypical (DUSP3, DUSP14, DUSP22 and DUSP27), viral (variola VH1), and Cdc25 (A-C). Phosphatase recognition sites were experimentally determined by measuring dephosphorylation of 6,218 microarrayed Tyr(P) peptides representing confirmed and theoretical phosphorylation motifs from the cellular proteome. A broad continuum of dephosphorylation was observed across the microarrayed peptide substrates for all phosphatases, suggesting a complex relationship between substrate sequence recognition and optimal activity. Further analysis of peptide dephosphorylation by hierarchical clustering indicated that DUSPs could be organized by substrate sequence motifs, and peptide-specificities by phylogenetic relationships among the catalytic domains. The most highly dephosphorylated peptides represented proteins from 29 cell-signaling pathways, greatly expanding the list of potential targets of DUSPs. These newly identified DUSP substrates will be important for examining structure-activity relationships with physiologically relevant targets. PMID:26302245

  15. Calibration issues in delta alpha /alpha .

    NASA Astrophysics Data System (ADS)

    Molaro, Paolo; Centurión, Miriam; Levshakov, Sergei

    Laser Comb Wavelength calibration shows that the ThAr one is locally unreliable with possible deviations of up to 100 {m s}-1 within one order range, while delivering an overall 1 {m s}-1 accuracy (Wilken et al 2009). Such deviation corresponds to delta alpha /alpha ≈ 7* 10-6 for a Fe II-Mg II pair. Comparison of line shifts among the 5 Fe II lines, with almost identical sensitivity to fine structure constant changes, offers a clean way to directly test the presence of possible local wavelength calibration errors of whatever origin. We analyzed 5 absorption systems, with zabs ranging from 1.15 to 2.19 towards 3 bright QSOs. The results show that while some lines are aligned within 20 {m s}-1, others reveal large deviations reaching 200 {m s}-1 or higher and corresponding to a delta alpha /alpha > 10-5 level. The origin of these deviations is not clearly identified but could be related to the adaptation of wavelength calibration to CCD manufacturing irregularities. These results suggest that to draw conclusions from delta alpha /alpha analysis based on one or only few lines must be done with extreme care.

  16. Growth inhibition of human lung adenocarcinoma cells by antibodies against epidermal growth factor receptor and by ganglioside GM3: involvement of receptor-directed protein tyrosine phosphatase(s).

    PubMed Central

    Suarez Pestana, E.; Greiser, U.; Sánchez, B.; Fernández, L. E.; Lage, A.; Perez, R.; Böhmer, F. D.

    1997-01-01

    Growth of the EGF receptor-expressing non-small-cell lung carcinoma cell line H125 seems to be at least partially driven by autocrine activation of the resident EGF receptors. Thus, the possibility of an EGF receptor-directed antiproliferative treatment was investigated in vitro using a monoclonal antibody (alpha EGFR ior egf/r3) against the human EGF receptor and gangliosides which are known to possess antiproliferative and anti-tyrosine kinase activity. The moderate growth-inhibitory effect of alpha EGFR ior egf/r3 was strongly potentiated by the addition of monosialoganglioside GM3. Likewise, the combination of alpha EGFR ior egf/r3 and GM3 inhibited EGF receptor autophosphorylation activity in H125 cells more strongly than either agent alone. A synergistic inhibition of EGF receptor autophosphorylation by alpha EGFR ior egf/r3 and GM3 was also observed in the human epidermoid carcinoma cell line A431. In both cell lines, the inhibition of EGF receptor autophosphorylation by GM3 was prevented by pretreatment of the cells with pervanadate, a potent inhibitor of protein tyrosine phosphatases (PTPases). Also, GM3 accelerated EGF receptor dephosphorylation in isolated A431 cell membranes. These findings indicate that GM3 has the capacity to activate EGF receptor-directed PTPase activity and suggest a novel possible mechanism for the regulation of cellular PTPases. Images Figure 5 Figure 6 PMID:9010029

  17. Activation of signal transduction in platelets by the tyrosine phosphatase inhibitor pervanadate (vanadyl hydroperoxide).

    PubMed Central

    Pumiglia, K M; Lau, L F; Huang, C K; Burroughs, S; Feinstein, M B

    1992-01-01

    The protein tyrosine phosphatase (PTPase) inhibitor pervanadate (vanadyl hydroperoxide) stimulated protein tyrosine phosphorylation 29-fold more than did thrombin in intact and saponin-permeabilized platelets. Increased tyrosine phosphorylation preceded, or was coincident with, a fall in PtdIns(4,5)P2 levels, production of PtdIns(3,4)P2 and phosphatidic acid, mobilization of intracellular Ca2+, stimulation of protein kinase C-dependent protein phosphorylation, secretion of dense and alpha-granules, increased actin polymerization, shape change and aggregation which required fibrinogen and was mediated by increased surface expression of GPIIb-IIIa. The tyrosine kinase inhibitor RG 50864 totally prevented induction of tyrosine phosphorylation by pervanadate, as well as all other responses measured; in contrast, the inactive structural analogue, tyrphostin #1, had no effect. Dense-granule secretion induced by pervanadate required protein kinase C activity; however, aggregation and alpha-granule secretion were independent of protein kinase C. In saponin-permeabilized platelets pervanadate and thrombin stimulated phospholipase C activity by GTP-independent and GTP-dependent mechanisms respectively. We conclude that PTPases are important regulators of signal transduction in platelets. Images Fig. 1. Fig. 2. PMID:1530576

  18. [Interaction of two tumor suppressors: Phosphatase CTDSPL and Rb protein].

    PubMed

    Beniaminov, A D; Krasnov, G S; Dmitriev, A A; Puzanov, G A; Snopok, B A; Senchenko, V N; Kashuba, V I

    2016-01-01

    Earlier we established that CTDSPL gene encoding small carboxy-terminal domain serine phosphatase can be considered a classical tumor suppressor gene. Besides, transfection of tumor cell line MCF-7 with CTDSPL led to the content decrease of inactive phosphorylated form of another tumor suppressor, retinoblastoma protein (Rb), and subsequently to cell cycle arrest at the G1/S boundary. This result implied that small phosphatase CTDSPL is able to specifically dephosphorylate and activate Rb protein. In order to add some fuel to this hypothesis, in the present work we studied the interaction of two tumor suppressors CTDSPL and Rb in vitro. GST pool-down assay revealed that CTDSPL is able to precipitate Rb protein from MCF-7 cell extracts, while surface plasmon resonance technique showed that interaction of the two proteins is direct. Results of this study reassert that phosphatase CTDSPL and Rb could be involved in the common mechanism of cell cycle regulation. PMID:27414789

  19. Characterization of the PEST family protein tyrosine phosphatase BDP1.

    PubMed

    Kim, Y W; Wang, H; Sures, I; Lammers, R; Martell, K J; Ullrich, A

    1996-11-21

    Using a polymerase chain reaction (PCR) amplification strategy, we identified a novel protein tyrosine phosphatase (PTPase) designated Brain Derived Phosphatase (BDP1). The full length sequence encoded an open reading frame of 459 amino acids with no transmembrane domain and had a calculated molecular weight of 50 kDa. The predicted amino acid sequence contained a PEST motif and accordingly, BDP1 shared the greatest homology with members of the PTP-PEST family. When transiently expressed in 293 cells BDP1 hydrolyzed p-Nitrophenylphosphate, confirming it as a functional protein tyrosine phosphatase. Northern blot analysis indicated that BDP1 was expressed not only in brain, but also in colon and several different tumor-derived cell lines. Furthermore, BDP1 was found to differentially dephosphorylate autophosphorylated tyrosine kinases which are known to be overexpressed in tumor tissues. PMID:8950995

  20. Genetic alterations of protein tyrosine phosphatases in human cancers

    PubMed Central

    Zhao, Shuliang; Sedwick, David; Wang, Zhenghe

    2014-01-01

    Protein tyrosine phosphatases (PTPs) are enzymes that remove phosphate from tyrosine residues in proteins. Recent whole-exome sequencing of human cancer genomes reveals that many PTPs are frequently mutated in a variety of cancers. Among these mutated PTPs, protein tyrosine phosphatase T (PTPRT) appears to be the most frequently mutated PTP in human cancers. Beside PTPN11 which functions as an oncogene in leukemia, genetic and functional studies indicate that most of mutant PTPs are tumor suppressor genes. Identification of the substrates and corresponding kinases of the mutant PTPs may provide novel therapeutic targets for cancers harboring these mutant PTPs. PMID:25263441

  1. Bacterial Expression and HTS Assessment of Soluble Epoxide Hydrolase Phosphatase.

    PubMed

    Klingler, Franca-Maria; Wolf, Markus; Wittmann, Sandra; Gribbon, Philip; Proschak, Ewgenij

    2016-08-01

    Soluble epoxide hydrolase (sEH) is a bifunctional enzyme that possesses an epoxide hydrolase and lipid phosphatase activity (sEH-P) at two distinct catalytic domains. While the physiological role of the epoxide hydrolase domain is well understood, the consequences of the phosphatase activity remain unclear. Herein we describe the bacterial expression of the recombinant N-terminal domain of sEH-P and the development of a high-throughput screening protocol using a sensitive and commercially available substrate fluorescein diphosphate. The usability of the assay system was demonstrated and novel inhibitors of sEH-P were identified. PMID:27009944

  2. [Alpha1-adrenoceptor subtypes and alpha1-adrenoceptor antagonists].

    PubMed

    Muramatsu, Ikunobu; Suzuki, Fumiko; Tanaka, Takashi; Yamamoto, Hatsumi; Morishima, Shigeru

    2006-03-01

    Alpha(1)-adrenoceptors are widely distributed in the human body and play important physiologic roles. Three alpha(1)-adrenoceptor subtypes (alpha(1A), alpha(1B) and alpha(1D)) have been cloned and show different pharmacologic profiles. In addition, a putative alpha(1)-adrenoceptor (alpha(1L) subtype) has also been proposed. Recently, three drugs (tamsulosin, naftopidil, and silodosin) have been developed in Japan for the treatment of urinary obstruction in patients with benign prostatic hyperplasia. In this review, we describe recent alpha(1)-adrenoceptor subclassifications and the pharmacologic characteristics (subtype selectivity and clinical relevance) of alpha(1)-adrenoceptor antagonists. PMID:16518082

  3. Expression of neuron specific phosphatase, striatal enriched phosphatase (STEP) in reactive astrocytes after transient forebrain ischemia.

    PubMed

    Hasegawa, S; Morioka, M; Goto, S; Korematsu, K; Okamura, A; Yano, S; Kai, Y; Hamada, J I; Ushio, Y

    2000-02-15

    We studied the distribution and change of striatal enriched phosphatase (STEP) in the gerbil hippocampus after transient forebrain ischemia. STEP was expressed in the perikarya and in neuronal processes; it was not detected in non-neuronal cells of control animals. After 5-min forebrain ischemia, STEP immunoreactivity (STEP-IR) was preserved for 2 days; it disappeared 4 and more days after ischemia with completion of delayed neuronal death (DND) in the CA1 subfield. Furthermore, only in the CA1 after ischemia, STEP was expressed in reactive astrocytes for 4 to 28 days, showing different patterns of glial fibrillary acidic protein (GFAP)-positive reactive astrocytes. After non-or less-than lethal ischemia, STEP expression in reactive astrocytes corresponded with the degree of neuronal degeneration. Immunoblot analysis of the CA1 subfield revealed the expression of three isoforms, STEP45, -56 and -61; their expression patterns changed with time after ischemia. These data suggest that neuronal STEP is preserved until cell degeneration after ischemia and that STEP is expressed in reactive astrocytes only after lethal ischemia, with different expression patterns for its isoforms. Of STEP45, -56 and -61, STEP61 was the most strongly expressed in the reactive astrocytes; both STEP45 and -61 were expressed in neurons and the expression of STEP56 was weak. STEP may play an important role not only in neurons but also in reactive astrocytes after ischemia, depending on neuronal degeneration. PMID:10652442

  4. Electron microscope histochemical localization of alkaline phosphatase(s) in Bacillus licheniformis.

    PubMed Central

    McNicholas, J M; Hulett, F M

    1977-01-01

    Sites of alkaline phosphatase (APase) activity in a facultative thermophilic strain of Bacillus licheniformis MC14 have been localized by electron microscope histochemistry, using a lead capture method. The effects of 3% glutaraldehyde and 3.0 mM lead on APase activity were investigated, and these compounds were found to significantly inhibit enzyme activity, 68 and 18%, respectively. A number of parameters were varied in studies to localize APase activity, including: growth temperature (55 and 37 degrees C); substrate concentration in the histochemical mixture (0.06, 0.15, 0.30, 1.00 mM); fixatives; protoplast preparations and whole cells; phosphate-repressed and -derepressed cells; and age of vegetative cells (mid-log and late log). These variations affected the number but not the location of lead phosphate deposits, which appeared at discrete sites along the inner side of the cytoplasmic membrane. Control cells incubated in histochemical mixtures lacking substrate, lead, or both exhibited no lead phosphate depositis. The histochemical localization at membrane sites correlated well with biochemical localization data, which indicated that greater than 80% of the APase activity was associated with the membrane fraction in logarithmically growing cells. Images PMID:401501

  5. Electron microscope histochemical localization of alkaline phosphatase(s) in Bacillus licheniformis.

    PubMed

    McNicholas, J M; Hulett, F M

    1977-01-01

    Sites of alkaline phosphatase (APase) activity in a facultative thermophilic strain of Bacillus licheniformis MC14 have been localized by electron microscope histochemistry, using a lead capture method. The effects of 3% glutaraldehyde and 3.0 mM lead on APase activity were investigated, and these compounds were found to significantly inhibit enzyme activity, 68 and 18%, respectively. A number of parameters were varied in studies to localize APase activity, including: growth temperature (55 and 37 degrees C); substrate concentration in the histochemical mixture (0.06, 0.15, 0.30, 1.00 mM); fixatives; protoplast preparations and whole cells; phosphate-repressed and -derepressed cells; and age of vegetative cells (mid-log and late log). These variations affected the number but not the location of lead phosphate deposits, which appeared at discrete sites along the inner side of the cytoplasmic membrane. Control cells incubated in histochemical mixtures lacking substrate, lead, or both exhibited no lead phosphate depositis. The histochemical localization at membrane sites correlated well with biochemical localization data, which indicated that greater than 80% of the APase activity was associated with the membrane fraction in logarithmically growing cells. PMID:401501

  6. Biocatalysis with Sol-Gel Encapsulated Acid Phosphatase

    ERIC Educational Resources Information Center

    Kulkarni, Suhasini; Tran, Vu; Ho, Maggie K.-M.; Phan, Chieu; Chin, Elizabeth; Wemmer, Zeke; Sommerhalter, Monika

    2010-01-01

    This experiment was performed in an upper-level undergraduate biochemistry laboratory course. Students learned how to immobilize an enzyme in a sol-gel matrix and how to perform and evaluate enzyme-activity measurements. The enzyme acid phosphatase (APase) from wheat germ was encapsulated in sol-gel beads that were prepared from the precursor…

  7. Identification and Structural Characterization of a Legionella Phosphoinositide Phosphatase*

    PubMed Central

    Toulabi, Leila; Wu, Xiaochun; Cheng, Yanshu; Mao, Yuxin

    2013-01-01

    Bacterial pathogen Legionella pneumophila is the causative agent of Legionnaires' disease, which is associated with intracellular replication of the bacteria in macrophages of human innate immune system. Recent studies indicate that pathogenic bacteria can subvert host cell phosphoinositide (PI) metabolism by translocated virulence effectors. However, in which manner Legionella actively exploits PI lipids to benefit its infection is not well characterized. Here we report that L. pneumophila encodes an effector protein, named SidP, that functions as a PI-3-phosphatase specifically hydrolyzing PI(3)P and PI(3,5)P2 in vitro. This activity of SidP rescues the growth phenotype of a yeast strain defective in PI(3)P phosphatase activity. Crystal structure of SidP orthologue from Legionella longbeachae reveals that this unique PI-3-phosphatase is composed of three distinct domains: a large catalytic domain, an appendage domain that is inserted into the N-terminal portion of the catalytic domain, and a C-terminal α-helical domain. SidP has a small catalytic pocket that presumably provides substrate specificity by limiting the accessibility of bulky PIs with multiple phosphate groups. Together, our identification of a unique family of Legionella PI phosphatases highlights a common scheme of exploiting host PI lipids in many intracellular bacterial pathogen infections. PMID:23843460

  8. Effects of organic dairy manure amendment on soil phosphatase activities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic dairy production is increasing in the U.S. due to concerns over environmental, human, and animal health. It is well known that the application of livestock manure to soil can influence enzyme activities involved in nutrient cycling and soil fertility, such as soil phosphatases; however, orga...

  9. Enzymatic method of determining lead using alkaline phosphatase

    SciTech Connect

    Shekhovtsova, T.N.; Kucheryaeva, V.V.; Dolmanova, I.F.

    1986-03-20

    The purpose of this work was to determine the possibility of using alkaline phosphatase to determine trace amounts of ions of a number of metals - Mg, Ba, Ca, Sr, Cd, Pb - for which there are virtually no sensitive and simple methods of determination.

  10. Methods to distinguish various types of protein phosphatase activity

    SciTech Connect

    Brautigan, D.L.; Shriner, C.L.

    1988-01-01

    To distinguish the action of protein Tyr(P) and protein Ser(P)/Thr(P) phosphatases on /sup 32/P-labeled phosphoproteins in subcellular fractions different inhibitors and activators are utilized. Comparison of the effects of added compounds provides a convenient, indirect method to characterize dephosphorylation reactions. Protein Tyr(P) phosphatases are specifically inhibited by micromolar Zn2+ or vanadate, and show maximal activity in the presence of EDTA. The other class of cellular phosphatases, specific for protein Ser(P) and Thr(P) residues, are inhibited by fluoride and EDTA. In this class of enzymes two major functional types can be distinguished: those sensitive to inhibition by the heat-stable protein inhibitor-2 and not stimulated by polycations, and those not sensitive to inhibition and stimulated by polycations. Preparation of /sup 32/P-labeled Tyr(P) and Ser(P) phosphoproteins also is presented for the direct measurement of phosphatase activities in preparations by the release of acid-soluble (/sup 32/P)phosphate.

  11. Functional Diversity of Haloacid Dehalogenase Superfamily Phosphatases from Saccharomyces cerevisiae

    PubMed Central

    Kuznetsova, Ekaterina; Nocek, Boguslaw; Brown, Greg; Makarova, Kira S.; Flick, Robert; Wolf, Yuri I.; Khusnutdinova, Anna; Evdokimova, Elena; Jin, Ke; Tan, Kemin; Hanson, Andrew D.; Hasnain, Ghulam; Zallot, Rémi; de Crécy-Lagard, Valérie; Babu, Mohan; Savchenko, Alexei; Joachimiak, Andrzej; Edwards, Aled M.; Koonin, Eugene V.; Yakunin, Alexander F.

    2015-01-01

    The haloacid dehalogenase (HAD)-like enzymes comprise a large superfamily of phosphohydrolases present in all organisms. The Saccharomyces cerevisiae genome encodes at least 19 soluble HADs, including 10 uncharacterized proteins. Here, we biochemically characterized 13 yeast phosphatases from the HAD superfamily, which includes both specific and promiscuous enzymes active against various phosphorylated metabolites and peptides with several HADs implicated in detoxification of phosphorylated compounds and pseudouridine. The crystal structures of four yeast HADs provided insight into their active sites, whereas the structure of the YKR070W dimer in complex with substrate revealed a composite substrate-binding site. Although the S. cerevisiae and Escherichia coli HADs share low sequence similarities, the comparison of their substrate profiles revealed seven phosphatases with common preferred substrates. The cluster of secondary substrates supporting significant activity of both S. cerevisiae and E. coli HADs includes 28 common metabolites that appear to represent the pool of potential activities for the evolution of novel HAD phosphatases. Evolution of novel substrate specificities of HAD phosphatases shows no strict correlation with sequence divergence. Thus, evolution of the HAD superfamily combines the conservation of the overall substrate pool and the substrate profiles of some enzymes with remarkable biochemical and structural flexibility of other superfamily members. PMID:26071590

  12. Gossypol inhibits calcineurin phosphatase activity at multiple sites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Calcineurin, the calcium/calmodulin dependant serine/threonine phosphatase is the target for the immunosuppressant drugs FK506 and cyclosporine A. These calcineurin inhibitors each require an immunophilin protein cofactor. Gossypol, a polyphenol produced by the cotton plant, inhibits calcineurin, ...

  13. Phosphatase inhibitors activate normal and defective CFTR chloride channels.

    PubMed Central

    Becq, F; Jensen, T J; Chang, X B; Savoia, A; Rommens, J M; Tsui, L C; Buchwald, M; Riordan, J R; Hanrahan, J W

    1994-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel is regulated by phosphorylation and dephosphorylation at multiple sites. Although activation by protein kinases has been studied in some detail, the dephosphorylation step has received little attention. This report examines the mechanisms responsible for the dephosphorylation and spontaneous deactivation ("rundown") of CFTR chloride channels excised from transfected Chinese hamster ovary (CHO) and human airway epithelial cells. We report that the alkaline phosphatase inhibitors bromotetramisole, 3-isobutyl-1-methylxanthine, theophylline, and vanadate slow the rundown of CFTR channel activity in excised membrane patches and reduce dephosphorylation of CFTR protein in isolated membranes. It was also found that in unstimulated cells, CFTR channels can be activated by exposure to phosphatase inhibitors alone. Most importantly, exposure of mammalian cells to phosphatase inhibitors alone activates CFTR channels that have disease-causing mutations, provided the mutant channels are present in the plasma membrane (R117H, G551D, and delta F508 after cooling). These results suggest that CFTR dephosphorylation is dynamic and that membrane-associated phosphatase activity may be a potential therapeutic target for the treatment of cystic fibrosis. Images PMID:7522329

  14. Phosphatase inhibitors activate normal and defective CFTR chloride channels.

    PubMed

    Becq, F; Jensen, T J; Chang, X B; Savoia, A; Rommens, J M; Tsui, L C; Buchwald, M; Riordan, J R; Hanrahan, J W

    1994-09-13

    The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel is regulated by phosphorylation and dephosphorylation at multiple sites. Although activation by protein kinases has been studied in some detail, the dephosphorylation step has received little attention. This report examines the mechanisms responsible for the dephosphorylation and spontaneous deactivation ("rundown") of CFTR chloride channels excised from transfected Chinese hamster ovary (CHO) and human airway epithelial cells. We report that the alkaline phosphatase inhibitors bromotetramisole, 3-isobutyl-1-methylxanthine, theophylline, and vanadate slow the rundown of CFTR channel activity in excised membrane patches and reduce dephosphorylation of CFTR protein in isolated membranes. It was also found that in unstimulated cells, CFTR channels can be activated by exposure to phosphatase inhibitors alone. Most importantly, exposure of mammalian cells to phosphatase inhibitors alone activates CFTR channels that have disease-causing mutations, provided the mutant channels are present in the plasma membrane (R117H, G551D, and delta F508 after cooling). These results suggest that CFTR dephosphorylation is dynamic and that membrane-associated phosphatase activity may be a potential therapeutic target for the treatment of cystic fibrosis. PMID:7522329

  15. Structural and functional basis of protein phosphatase 5 substrate specificity

    PubMed Central

    Oberoi, Jasmeen; Dunn, Diana M.; Woodford, Mark R.; Mariotti, Laura; Schulman, Jacqualyn; Bourboulia, Dimitra; Mollapour, Mehdi

    2016-01-01

    The serine/threonine phosphatase protein phosphatase 5 (PP5) regulates hormone- and stress-induced cellular signaling by association with the molecular chaperone heat shock protein 90 (Hsp90). PP5-mediated dephosphorylation of the cochaperone Cdc37 is essential for activation of Hsp90-dependent kinases. However, the details of this mechanism remain unknown. We determined the crystal structure of a Cdc37 phosphomimetic peptide bound to the catalytic domain of PP5. The structure reveals PP5 utilization of conserved elements of phosphoprotein phosphatase (PPP) structure to bind substrate and provides a template for many PPP–substrate interactions. Our data show that, despite a highly conserved structure, elements of substrate specificity are determined within the phosphatase catalytic domain itself. Structure-based mutations in vivo reveal that PP5-mediated dephosphorylation is required for kinase and steroid hormone receptor release from the chaperone complex. Finally, our data show that hyper- or hypoactivity of PP5 mutants increases Hsp90 binding to its inhibitor, suggesting a mechanism to enhance the efficacy of Hsp90 inhibitors by regulation of PP5 activity in tumors. PMID:27466404

  16. Thyrotropin-releasing hormone-induced depletion of G(q)alpha/G(11)alpha proteins from detergent-insensitive membrane domains.

    PubMed

    Pesanová, Z; Novotný, J; Cerný, J; Milligan, G; Svoboda, P

    1999-12-24

    The role of detergent-insensitive membrane domains (DIMs) in desensitisation of the G protein-coupled receptor-mediated hormone response was studied in clone E2M11 of HEK293 cells which stably express high levels of both thyrotropin-releasing hormone (TRH) receptors and G(11)alpha G protein. DIMs were prepared by flotation in equilibrium sucrose density gradients and characterised by a panel of membrane markers representing peripheral, glycosylphosphatidylinositol-bound as well as integral membrane proteins (caveolin, CD29, CD55, CD59, CD147, the alpha subunit of Na, K-ATPase) and enzyme activities (alkaline phosphatase, adenylyl cyclase). Caveolin-containing DIMs represented only a small fraction of the overall pool of G(q)alpha/G(11)alpha-rich domains. Prolonged stimulation of E2M11 cells with TRH resulted in dramatic depletion of G(q)alpha/G(11)alpha from all DIMs, which was paralleled by a concomitant G(q)alpha/G(11)alpha increase in the high-density gradient fractions containing the bulk-phase membrane constituents soluble in 1% Triton X-100. Distribution of membrane markers was unchanged under these conditions. Membrane domains thus represent a substantial structural determinant of the G protein pool relevant to desensitisation of hormone action. PMID:10611479

  17. Phosphatase acitivity as biosignatures in terrestrial extreme environments

    NASA Astrophysics Data System (ADS)

    Kawai, Jun; Nakamoto, Saki; Hara, Masashi; Obayashi, Yumiko; Kaneko, Takeo; Mita, Hajime; Yoshimura, Yoshitaka; Takano, Yoshinori; Kobayashi, Kensei

    Since phosphate esters are essential for the terrestrial life, phosphatase activity can be a can-didate for biosignatures of biological activity. It has been recognized that terrestrial biosphere expands to such extreme environments as deep subsurface lithosphere, high temperature hot springs and stratosphere. We analyzed phosphatase activities in the samples obtained in ex-treme environments such as submarine hydrothermal systems and Antarctica , and discussed whether they can be used as biosignatures for extant life. Core samples and chimney samples were collected at Tarama Knoll in Okinawa Trough in 2009, both in a part of the Archaean Park Project. Surface soil samples are obtained at the Sites 1-8 near Showa Base in Antarctica during the 47th Japan Antarctic exploration mission in 2005-6. Alkaline Phosphatase activ-ity in sea water and in soil was measured spectrometrically by using 25 mM p-nitrophenyl phosphate (pH 8.0) as a substrate. Phosphatase activities in extracts were measured fluoro-metrically by using 4-methylumberyferryl phosphate as a substrate. Concentration of amino acids and their enantiomeric ratios were also determined by HPLC . Significant enzymatic ac-tivities were revealed in both some of the hydrothermal sub-vent systems and Antarctica soils, which is crucial evidence of vigorous microbial oasis. It is consistent with the fact that large enantiomeric excess of L-form amino acids were found in the same core sequences. Optimum temperatures of ALP in the chimney, Antarctica soil and YNU campus soil were 353 K, 313 K, and 333 K, respectively. The present results suggested that phosphatase activities,, together with amino acids, can be used as possible biosignatures for extant life.

  18. Event counting alpha detector

    DOEpatents

    Bolton, Richard D.; MacArthur, Duncan W.

    1996-01-01

    An electrostatic detector for atmospheric radon or other weak sources of alpha radiation. In one embodiment, nested enclosures are insulated from one another, open at the top, and have a high voltage pin inside and insulated from the inside enclosure. An electric field is produced between the pin and the inside enclosure. Air ions produced by collision with alpha particles inside the decay volume defined by the inside enclosure are attracted to the pin and the inner enclosure. With low alpha concentrations, individual alpha events can be measured to indicate the presence of radon or other alpha radiation. In another embodiment, an electrical field is produced between parallel plates which are insulated from a single decay cavity enclosure.

  19. Alpha-particle diagnostics

    SciTech Connect

    Young, K.M.

    1991-01-01

    This paper will focus on the state of development of diagnostics which are expected to provide the information needed for {alpha}- physics studies in the future. Conventional measurement of detailed temporal and spatial profiles of background plasma properties in DT will be essential for such aspects as determining heating effectiveness, shaping of the plasma profiles and effects of MHD, but will not be addressed here. This paper will address (1) the measurement of the neutron source, and hence {alpha}-particle birth profile, (2) measurement of the escaping {alpha}-particles and (3) measurement of the confined {alpha}-particles over their full energy range. There will also be a brief discussion of (4) the concerns about instabilities being generated by {alpha}-particles and the methods necessary for measuring these effects. 51 refs., 10 figs.

  20. Imaging alpha particle detector

    DOEpatents

    Anderson, D.F.

    1980-10-29

    A method and apparatus for detecting and imaging alpha particles sources is described. A dielectric coated high voltage electrode and a tungsten wire grid constitute a diode configuration discharge generator for electrons dislodged from atoms or molecules located in between these electrodes when struck by alpha particles from a source to be quantitatively or qualitatively analyzed. A thin polyester film window allows the alpha particles to pass into the gas enclosure and the combination of the glass electrode, grid and window is light transparent such that the details of the source which is imaged with high resolution and sensitivity by the sparks produced can be observed visually as well. The source can be viewed directly, electronically counted or integrated over time using photographic methods. A significant increase in sensitivity over other alpha particle detectors is observed, and the device has very low sensitivity to gamma or beta emissions which might otherwise appear as noise on the alpha particle signal.

  1. Imaging alpha particle detector

    DOEpatents

    Anderson, David F.

    1985-01-01

    A method and apparatus for detecting and imaging alpha particles sources is described. A conducting coated high voltage electrode (1) and a tungsten wire grid (2) constitute a diode configuration discharge generator for electrons dislodged from atoms or molecules located in between these electrodes when struck by alpha particles from a source (3) to be quantitatively or qualitatively analyzed. A thin polyester film window (4) allows the alpha particles to pass into the gas enclosure and the combination of the glass electrode, grid and window is light transparent such that the details of the source which is imaged with high resolution and sensitivity by the sparks produced can be observed visually as well. The source can be viewed directly, electronically counted or integrated over time using photographic methods. A significant increase in sensitivity over other alpha particle detectors is observed, and the device has very low sensitivity to gamma or beta emissions which might otherwise appear as noise on the alpha particle signal.

  2. Event counting alpha detector

    DOEpatents

    Bolton, R.D.; MacArthur, D.W.

    1996-08-27

    An electrostatic detector is disclosed for atmospheric radon or other weak sources of alpha radiation. In one embodiment, nested enclosures are insulated from one another, open at the top, and have a high voltage pin inside and insulated from the inside enclosure. An electric field is produced between the pin and the inside enclosure. Air ions produced by collision with alpha particles inside the decay volume defined by the inside enclosure are attracted to the pin and the inner enclosure. With low alpha concentrations, individual alpha events can be measured to indicate the presence of radon or other alpha radiation. In another embodiment, an electrical field is produced between parallel plates which are insulated from a single decay cavity enclosure. 6 figs.

  3. Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling.

    PubMed Central

    Janssens, V; Goris, J

    2001-01-01

    Protein phosphatase 2A (PP2A) comprises a family of serine/threonine phosphatases, minimally containing a well conserved catalytic subunit, the activity of which is highly regulated. Regulation is accomplished mainly by members of a family of regulatory subunits, which determine the substrate specificity, (sub)cellular localization and catalytic activity of the PP2A holoenzymes. Moreover, the catalytic subunit is subject to two types of post-translational modification, phosphorylation and methylation, which are also thought to be important regulatory devices. The regulatory ability of PTPA (PTPase activator), originally identified as a protein stimulating the phosphotyrosine phosphatase activity of PP2A, will also be discussed, alongside the other regulatory inputs. The use of specific PP2A inhibitors and molecular genetics in yeast, Drosophila and mice has revealed roles for PP2A in cell cycle regulation, cell morphology and development. PP2A also plays a prominent role in the regulation of specific signal transduction cascades, as witnessed by its presence in a number of macromolecular signalling modules, where it is often found in association with other phosphatases and kinases. Additionally, PP2A interacts with a substantial number of other cellular and viral proteins, which are PP2A substrates, target PP2A to different subcellular compartments or affect enzyme activity. Finally, the de-regulation of PP2A in some specific pathologies will be touched upon. PMID:11171037

  4. Formation and properties of organo-phosphatase complexes by abiotic and biotic polymerization of pyrogallol-phosphatase mixtures.

    PubMed

    Rao, Maria A; Del Gaudio, Stefania; Scelza, Rosalia; Gianfreda, Liliana

    2010-04-28

    In this paper, the catalytic efficacy of peroxidase and manganese oxide, both commonly present in soil, to catalyze the formation of pyrogallol-phosphatase complexes was compared. The influence of several factors (e.g., the concentration of pyrogallol, the amount of catalysts, the nature of manganese oxide, birnessite, or pyrolusite, the incubation time, and the pH) on the transformation of pyrogallol and the characteristics and properties of the pyrogallol-phosphatase interaction products were investigated. The pyrogallol transformation mediated by both catalysts was very fast and increased by increasing the catalyst concentration. The nature of the catalyst also influenced the size and the molecular mass of the formed complexes. When polymerization of pyrogallol occurred with high intensity, a loss of phosphatase activity occurred, and it strongly depended on the pH at which the process was carried out and the catalyst. In particular, with peroxidase, the phosphatase activity was much lower in either suspensions or supernatants and not measurable in the insoluble complexes as compared to that measured in the presence of manganese oxides. PMID:20302357

  5. Dephosphorylation of the beta 2-adrenergic receptor and rhodopsin by latent phosphatase 2

    SciTech Connect

    Yang, S.D.; Fong, Y.L.; Benovic, J.L.; Sibley, D.R.; Caron, M.G.; Lefkowitz, R.J.

    1988-06-25

    Recent evidence suggests that the function of receptors coupled to guanine nucleotide regulatory proteins may be controlled by highly specific protein kinases, e.g. rhodopsin kinase and the beta-adrenergic receptor kinase. In order to investigate the nature of the phosphatases which might be involved in controlling the state of receptor phosphorylation we studied the ability of four highly purified well characterized protein phosphatases to dephosphorylate preparations of rhodopsin or beta 2-adrenergic receptor which had been highly phosphorylated by beta-adrenergic receptor kinase. These included: type 1 phosphatase, calcineurin phosphatase, type 2A phosphatase, and the high molecular weight latent phosphatase 2. Under conditions in which all the phosphatases could dephosphorylate such common substrates as (/sup 32/P)phosphorylase a and (/sup 32/P)myelin basic protein at similar rates only the latent phosphatase 2 was active on the phosphorylated receptors. Moreover, a latent phosphatase activity was found predominantly in a sequestered membrane fraction of frog erythrocytes. This parallels the distribution of a beta-adrenergic receptor phosphatase activity recently described in these cells. These data suggest a potential role for the latent phosphatase 2 as a specific receptor phosphatase.

  6. Enzymatic and Functional Analysis of a Protein Phosphatase, Pph3, from Myxococcus xanthus ▿

    PubMed Central

    Kimura, Yoshio; Mori, Yumi; Ina, Youhei; Takegawa, Kaoru

    2011-01-01

    A protein phosphatase, designated Pph3, from Myxococcus xanthus showed the enzymatic characteristics of PP2C-type serine/threonine protein phosphatases, which are metal ion-dependent, okadaic acid-insensitive protein phosphatases. The pph3 mutant under starvation conditions formed immature fruiting bodies and reduced sporulation. PMID:21398555

  7. Detection of endogenous alkaline phosphatase activity in intact cells by flow cytometry using the fluorogenic ELF-97 phosphatase substrate

    NASA Technical Reports Server (NTRS)

    Telford, W. G.; Cox, W. G.; Stiner, D.; Singer, V. L.; Doty, S. B.

    1999-01-01

    BACKGROUND: The alkaline phosphatase (AP) substrate 2-(5'-chloro-2'-phosphoryloxyphenyl)-6-chloro-4-(3H)-quinazolinone (ELF((R))-97 for enzyme-labeled fluorescence) has been found useful for the histochemical detection of endogenous AP activity and AP-tagged proteins and oligonucleotide probes. In this study, we evaluated its effectiveness at detecting endogenous AP activity by flow cytometry. METHODS: The ELF-97 phosphatase substrate was used to detect endogenous AP activity in UMR-106 rat osteosarcoma cells and primary cultures of chick chondrocytes. Cells were labeled with the ELF-97 reagent and analyzed by flow cytometry using an argon ultraviolet (UV) laser. For comparison purposes, cells were also assayed for AP using a Fast Red Violet LB azo dye assay previously described for use in detecting AP activity by flow cytometry. RESULTS: The ELF-97 phosphatase substrate effectively detected endogenous AP activity in UMR-106 cells, with over 95% of the resulting fluorescent signal resulting from AP-specific activity (as determined by levamisole inhibition of AP activity). In contrast, less than 70% of the fluorescent signal from the Fast Red Violet LB (FRV) assay was AP-dependent, reflecting the high intrinsic fluorescence of the unreacted components. The ELF-97 phosphatase assay was also able to detect very low AP activity in chick chondrocytes that was undetectable by the azo dye method. CONCLUSIONS: The ELF-97 phosphatase assay was able to detect endogenous AP activity in fixed mammalian and avian cells by flow cytometry with superior sensitivity to previously described assays. This work also shows the applicability of ELF-97 to flow cytometry, supplementing its previously demonstrated histochemical applications. Copyright 1999 Wiley-Liss, Inc.

  8. The alpha channeling effect

    SciTech Connect

    Fisch, N. J.

    2015-12-10

    Alpha particles born through fusion reactions in a tokamak reactor tend to slow down on electrons, but that could take up to hundreds of milliseconds. Before that happens, the energy in these alpha particles can destabilize on collisionless timescales toroidal Alfven modes and other waves, in a way deleterious to energy confinement. However, it has been speculated that this energy might be instead be channeled into useful energy, so as to heat fuel ions or to drive current. Such a channeling needs to be catalyzed by waves Waves can produce diffusion in energy of the alpha particles in a way that is strictly coupled to diffusion in space. If these diffusion paths in energy-position space point from high energy in the center to low energy on the periphery, then alpha particles will be cooled while forced to the periphery. The energy from the alpha particles is absorbed by the wave. The amplified wave can then heat ions or drive current. This process or paradigm for extracting alpha particle energy collisionlessly has been called alpha channeling. While the effect is speculative, the upside potential for economical fusion is immense. The paradigm also operates more generally in other contexts of magnetically confined plasma.

  9. Alpha-thalassaemia.

    PubMed

    Harteveld, Cornelis L; Higgs, Douglas R

    2010-01-01

    Alpha-thalassaemia is inherited as an autosomal recessive disorder characterised by a microcytic hypochromic anaemia, and a clinical phenotype varying from almost asymptomatic to a lethal haemolytic anaemia.It is probably the most common monogenic gene disorder in the world and is especially frequent in Mediterranean countries, South-East Asia, Africa, the Middle East and in the Indian subcontinent. During the last few decades the incidence of alpha thalassaemia in North-European countries and Northern America has increased because of demographic changes. Compound heterozygotes and some homozygotes have a moderate to severe form of alpha thalassaemia called HbH disease. Hb Bart's hydrops foetalis is a lethal form in which no alpha-globin is synthesized. Alpha thalassaemia most frequently results from deletion of one or both alpha genes from the chromosome and can be classified according to its genotype/phenotype correlation. The normal complement of four functional alpha-globin genes may be decreased by 1, 2, 3 or all 4 copies of the genes, explaining the clinical variation and increasing severity of the disease. All affected individuals have a variable degree of anaemia (low Hb), reduced mean corpuscular haemoglobin (MCH/pg), reduced mean corpuscular volume (MCV/fl) and a normal/slightly reduced level of HbA2. Molecular analysis is usually required to confirm the haematological observations (especially in silent alpha-thalassaemia and alpha-thalassaemia trait). The predominant features in HbH disease are anaemia with variable amounts of HbH (0.8-40%). The type of mutation influences the clinical severity of HbH disease. The distinguishing features of the haemoglobin Bart's hydrops foetalis syndrome are the presence of Hb Bart's and the total absence of HbF. The mode of transmission of alpha thalassaemia is autosomal recessive. Genetic counselling is offered to couples at risk for HbH disease or haemoglobin Bart's Hydrops Foetalis Syndrome. Carriers of alpha+- or

  10. Assays to Measure PTEN Lipid Phosphatase Activity In Vitro from Purified Enzyme or Immunoprecipitates.

    PubMed

    Spinelli, Laura; Leslie, Nicholas R

    2016-01-01

    PTEN is a one of the most frequently mutated tumor suppressors in human cancers. It is essential for regulating diverse biological processes and through its lipid phosphatase activity regulates the PI 3-Kinase signaling pathway. Sensitive phosphatase assays are employed to study the catalytic activity of PTEN against phospholipid substrates. Here we describe protocols to assay PTEN lipid phosphatase activity using either purified enzyme (purified PTEN lipid phosphatase assay) or PTEN immunopurified from tissues or cultured cells (cellular IP PTEN lipid phosphatase assay) against vesicles containing radiolabeled PIP3 substrate. PMID:27514802

  11. Myosin light chain phosphatase activation is involved in the hydrogen sulfide-induced relaxation in mouse gastric fundus.

    PubMed

    Dhaese, Ingeborg; Lefebvre, Romain A

    2009-03-15

    The relaxant effect of hydrogen sulfide (H(2)S) in the vascular tree is well established but its influence and mechanism of action in gastrointestinal smooth muscle was hardly investigated. The influence of H(2)S on contractility in mouse gastric fundus was therefore examined. Sodium hydrogen sulfide (NaHS; H(2)S donor) was administered to prostaglandin F(2alpha) (PGF(2alpha))-contracted circular muscle strips of mouse gastric fundus, before and after incubation with interfering drugs. NaHS caused a concentration-dependent relaxation of the pre-contracted mouse gastric fundus strips. The K(+) channels blockers glibenclamide, apamin, charybdotoxin, 4-aminopyridin and barium chloride had no influence on the NaHS-induced relaxation. The relaxation by NaHS was also not influenced by L-NAME, ODQ and SQ 22536, inhibitors of the cGMP and cAMP pathway, by nerve blockers capsazepine, omega-conotoxin and tetrodotoxin or by several channel and receptor blockers (ouabain, nifedipine, 2-aminoethyl diphenylborinate, ryanodine and thapsigargin). The myosin light chain phosphatase (MLCP) inhibitor calyculin-A reduced the NaHS-induced relaxation, but the Rho-kinase inhibitor Y-27632 had no influence. We show that NaHS is able to relax PGF(2alpha)-contracted mouse gastric fundus strips. The results suggest that in the mouse gastric fundus, H(2)S causes relaxation at least partially via activation of MLCP. PMID:19374871

  12. Promiscuity and electrostatic flexibility in the alkaline phosphatase superfamily.

    PubMed

    Pabis, Anna; Kamerlin, Shina Caroline Lynn

    2016-04-01

    Catalytic promiscuity, that is, the ability of single enzymes to facilitate the turnover of multiple, chemically distinct substrates, is a widespread phenomenon that plays an important role in the evolution of enzyme function. Additionally, such pre-existing multifunctionality can be harnessed in artificial enzyme design. The members of the alkaline phosphatase superfamily have served extensively as both experimental and computational model systems for enhancing our understanding of catalytic promiscuity. In this Opinion, we present key recent computational studies into the catalytic activity of these highly promiscuous enzymes, highlighting the valuable insight they have provided into both the molecular basis for catalytic promiscuity in general, and its implications for the evolution of phosphatase activity. PMID:26716576

  13. Mitochondrial Phosphatase PTPMT1 is essential for cardiolipin biosynthesis

    PubMed Central

    Zhang, Ji; Guan, Ziqiang; Murphy, Anne N.; Wiley, Sandra E.; Perkins, Guy A.; Worby, Carolyn A.; Engel, James L.; Heacock, Philip; Nguyen, Oanh Kim; Wang, Jonathan H.; Raetz, Christian R.H.; Dowhan, William; Dixon, Jack E.

    2011-01-01

    Summary PTPMT1 was the first protein tyrosine phosphatase found localized to the mitochondria, but its biological function was unknown. Herein, we demonstrate that whole body deletion of Ptpmt1 in mice leads to embryonic lethality, suggesting an indispensable role for PTPMT1 during development. Ptpmt1-deficiency in mouse embryonic fibroblasts compromises mitochondrial respiration and results in abnormal mitochondrial morphology. Lipid analysis of Ptpmt1-deficient fibroblasts reveals an accumulation of phosphatidylglycerophosphate (PGP) along with a concomitant decrease in phosphatidylglycerol. PGP is an essential intermediate in the biosynthetic pathway of cardiolipin, a mitochondrial-specific phospholipid regulating the membrane integrity and activities of the organelle. We further demonstrate that PTPMT1 specifically dephosphorylates PGP in vitro. Loss of PTPMT1 leads to dramatic diminution of cardiolipin, which can be partially reversed by the expression of catalytic active PTPMT1. Our study identifies PTPMT1 as the mammalian PGP phosphatase and points to its role as a regulator of cardiolipin biosynthesis. PMID:21641550

  14. Inositol lipid phosphatases in membrane trafficking and human disease.

    PubMed

    Billcliff, Peter G; Lowe, Martin

    2014-07-15

    The specific interaction of phosphoinositides with proteins is critical for a plethora of cellular processes, including cytoskeleton remodelling, mitogenic signalling, ion channel regulation and membrane traffic. The spatiotemporal restriction of different phosphoinositide species helps to define compartments within the cell, and this is particularly important for membrane trafficking within both the secretory and endocytic pathways. Phosphoinositide homoeostasis is tightly regulated by a large number of inositol kinases and phosphatases, which respectively phosphorylate and dephosphorylate distinct phosphoinositide species. Many of these enzymes have been implicated in regulating membrane trafficking and, accordingly, their dysregulation has been linked to a number of human diseases. In the present review, we focus on the inositol phosphatases, concentrating on their roles in membrane trafficking and the human diseases with which they have been associated. PMID:24966051

  15. Radiation inactivation analysis of rat liver microsomal glucose 6-phosphatase

    SciTech Connect

    Ness, G.C.; Sample, C.E.; McCreery, M.J.; Sukalski, K.A.; Nordlie, R.C.

    1986-05-01

    Attempts to obtain the molecular weight of microsomal glucose-6-phosphatase based on solubilization and purification have yielded widely divergent results. Since radiation inactivation analysis can be used to obtain molecular weights of proteins within the native membrane environments, this technique was applied. Identical target sizes of about 70 kd for both glucose 6-phosphate phosphohydrolase and carbamyl phosphate:glucose phosphotransferase were observed. This value was unaffected by adding deoxycholate, which disrupts the microsomal membranes, to the microsomal suspensions prior to irradiation. The data suggest that the glucose 6-phosphate transport function and the glucose 6-phosphate phosphohydrolase activity of microsomal glucose 6-phosphatase either residue on a single polypeptide or on two covalently linked polypeptides.

  16. Cytochemical characterization of yolk granule acid phosphatase during early development of the oyster Crassostrea gigas (Thunberg)

    NASA Astrophysics Data System (ADS)

    Wang, Yiyan; Sun, Hushan; Wang, Yanjie; Yan, Dongchun; Wang, Lei

    2015-03-01

    In this study, a cytochemical method and transmission electron microscopy was used to examine acid phosphatase activities of yolk granules throughout the early developmental stages of the Pacific oyster Crassostrea gigas. This study aimed to investigate the dynamic change of yolk granule acid phosphatase, and the mechanisms underlying its involvement in yolk degradation during the early developmental stages of molluscs. Three types of yolk granules (YGI, YGII, and YGIII) that differed in electron density and acid phosphatase reaction were identified in early cleavage, morula, blastula, gastrula, trochophore, and veliger stages. The morphological heterogeneities of the yolk granules were related to acid phosphatase activity and degrees of yolk degradation, indicating the association of acid phosphatase with yolk degradation in embryos and larvae of molluscs. Fusion of yolk granules was observed during embryogenesis and larval development of C. gigas. The fusion of YGI (free of acid phosphatase reaction) with YGII (rich in acid phosphatase reaction) could be the way by which yolk degradation is triggered.

  17. Regulation of the synthesis of barley aleurone. cap alpha. -amylase by gibberellic acid and calcium ions

    SciTech Connect

    Jones, R.L.; Carbonell, J.

    1984-09-01

    The effects of gibberellic acid (GA/sub 3/) and calcium ions on the production of ..cap alpha..-amylase and acid phosphatase by isolated aleurone layers of barley (Hordeum vulgare L. cv Himalaya) were studied. Aleurone layers not previously exposed to GA/sub 3/ or CA/sup 2 +/ show qualitative and quantitative changes in hydrolase production following incubation in either GA/sub 3/ or CA/sup 2 +/ or both. In cubation in H/sub 2/O or CA/sup 2 +/ results in the production of low levels of ..cap alpha..-amylase or acid phosphatase. The addition of GA/sub 3/ to the incubation medium causes 10- to 20-fold increase in the amounts of these enzymes released from the tissue, and addition of CA/sup 2 +/ at 10 millimolar causes a further 8- to 9-fold increase in ..cap alpha..-amylase release and a 75% increase in phosphatase release. Production of ..cap alpha..-amylase isoenzymes is also modified by the levels of GA/sub 3/ and CA/sup 2 +/ in the incubation medium. ..cap alpha..-amylase 2 is produced under all conditions of incubation, while ..cap alpha..-amylase 1 appears only when layers are incubated in GA/sub 3/ or GA/sub 3/ plus CA/sup 2 +/. The synthesis of ..cap alpha..-amylases 3 and 4 requires the presence of both GA/sub 3/ and CA/sup 2 +/ in the incubation medium. Laurell rocket immunoelectrophoresis shows that two distinct groups of ..cap alpha..-amylase antigens are present in incubation media of aleurone layers incubated with both GA/sub 3/ and CA/sup 2 +/, while only one group of antigens is found in media of layers incubated in GA/sub 3/ alone. Strontium ions can be substituted for CA/sup 2 +/ in increasing hydrolase production, although higher concentrations of Sr/sup 2 +/ are requried for maximal response. We conclude that GA/sub 3/ is required for the production of ..cap alpha..-amylase 1 and that both GA/sub 3/ and either CA/sup 2 +/ or Sr/sup 2 +/ are required for the production of isoenzymes 3 and 4 of barley aleurone ..cap alpha..-amylase. 22 references, 8

  18. Cholesterol modulates alkaline phosphatase activity of rat intestinal microvillus membranes.

    PubMed

    Brasitus, T A; Dahiya, R; Dudeja, P K; Bissonnette, B M

    1988-06-25

    Experiments were conducted, using a nonspecific lipid transfer protein, to vary the cholesterol/phospholipid molar ratio of rat proximal small intestinal microvillus membranes in order to assess the possible role of cholesterol in modulating enzymatic activities of this plasma membrane. Cholesterol/phospholipid molar ratios from 0.71 to 1.30 were produced from a normal value of 1.05 by incubation with the transfer protein and an excess of either phosphatidylcholine or cholesterol/phosphatidylcholine liposomes for 60 min at 37 degrees C. Cholesterol loading or depletion of the membranes was accompanied by a decrease or increase, respectively, in their lipid fluidity, as assessed by steady-state fluorescence polarization techniques using the lipid-soluble fluorophore 1,6-diphenyl-1,3,5-hexatriene. Increasing the cholesterol/phospholipid molar ratio also decreased alkaline phosphatase specific activity by approximately 20-30%, whereas decreasing this ratio increased this enzymatic activity by 20-30%. Sucrase, maltase, and lactase specific activities were not affected in these same preparations. Since the changes in alkaline phosphatase activity could be secondary to alterations in fluidity, cholesterol, or both, additional experiments were performed using benzyl alcohol, a known fluidizer. Benzyl alcohol (25 mM) restored the fluidity of cholesterol-enriched preparations to control levels, did not change the cholesterol/phospholipid molar ratio, and failed to alter alkaline phosphatase activity. These findings, therefore, indicate that alterations in the cholesterol content and cholesterol/phospholipid molar ratio of microvillus membranes can modulate alkaline phosphatase but not sucrase, maltase, or lactase activities. Moreover, membrane fluidity does not appear to be an important physiological regulator of these enzymatic activities. PMID:3379034

  19. Metavanadate at the active site of the phosphatase VHZ.

    PubMed

    Kuznetsov, Vyacheslav I; Alexandrova, Anastassia N; Hengge, Alvan C

    2012-09-01

    Vanadate is a potent modulator of a number of biological processes and has been shown by crystal structures and NMR spectroscopy to interact with numerous enzymes. Although these effects often occur under conditions where oligomeric forms dominate, the crystal structures and NMR data suggest that the inhibitory form is usually monomeric orthovanadate, a particularly good inhibitor of phosphatases because of its ability to form stable trigonal-bipyramidal complexes. We performed a computational analysis of a 1.14 Å structure of the phosphatase VHZ in complex with an unusual metavanadate species and compared it with two classical trigonal-bipyramidal vanadate-phosphatase complexes. The results support extensive delocalized bonding to the apical ligands in the classical structures. In contrast, in the VHZ metavanadate complex, the central, planar VO(3)(-) moiety has only one apical ligand, the nucleophilic Cys95, and a gap in electron density between V and S. A computational analysis showed that the V-S interaction is primarily ionic. A mechanism is proposed to explain the formation of metavanadate in the active site from a dimeric vanadate species that previous crystallographic evidence has shown to be able to bind to the active sites of phosphatases related to VHZ. Together, the results show that the interaction of vanadate with biological systems is not solely reliant upon the prior formation of a particular inhibitory form in solution. The catalytic properties of an enzyme may act upon the oligomeric forms primarily present in solution to generate species such as the metavanadate ion observed in the VHZ structure. PMID:22876963

  20. phoD Alkaline Phosphatase Gene Diversity in Soil

    PubMed Central

    Kertesz, Michael A.; Bünemann, Else K.

    2015-01-01

    Phosphatase enzymes are responsible for much of the recycling of organic phosphorus in soils. The PhoD alkaline phosphatase takes part in this process by hydrolyzing a range of organic phosphoesters. We analyzed the taxonomic and environmental distribution of phoD genes using whole-genome and metagenome databases. phoD alkaline phosphatase was found to be spread across 20 bacterial phyla and was ubiquitous in the environment, with the greatest abundance in soil. To study the great diversity of phoD, we developed a new set of primers which targets phoD genes in soil. The primer set was validated by 454 sequencing of six soils collected from two continents with different climates and soil properties and was compared to previously published primers. Up to 685 different phoD operational taxonomic units were found in each soil, which was 7 times higher than with previously published primers. The new primers amplified sequences belonging to 13 phyla, including 71 families. The most prevalent phoD genes identified in these soils were affiliated with the orders Actinomycetales (13 to 35%), Bacillales (1 to 29%), Gloeobacterales (1 to 18%), Rhizobiales (18 to 27%), and Pseudomonadales (0 to 22%). The primers also amplified phoD genes from additional orders, including Burkholderiales, Caulobacterales, Deinococcales, Planctomycetales, and Xanthomonadales, which represented the major differences in phoD composition between samples, highlighting the singularity of each community. Additionally, the phoD bacterial community structure was strongly related to soil pH, which varied between 4.2 and 6.8. These primers reveal the diversity of phoD in soil and represent a valuable tool for the study of phoD alkaline phosphatase in environmental samples. PMID:26253682

  1. The Aspergillus fumigatus sitA Phosphatase Homologue Is Important for Adhesion, Cell Wall Integrity, Biofilm Formation, and Virulence

    PubMed Central

    Bom, Vinícius Leite Pedro; de Castro, Patrícia Alves; Winkelströter, Lizziane K.; Marine, Marçal; Hori, Juliana I.; Ramalho, Leandra Naira Zambelli; dos Reis, Thaila Fernanda; Goldman, Maria Helena S.; Brown, Neil Andrew; Rajendran, Ranjith; Ramage, Gordon; Walker, Louise A.; Munro, Carol A.; Rocha, Marina Campos; Malavazi, Iran; Hagiwara, Daisuke

    2015-01-01

    Aspergillus fumigatus is an opportunistic pathogenic fungus able to infect immunocompromised patients, eventually causing disseminated infections that are difficult to control and lead to high mortality rates. It is important to understand how the signaling pathways that regulate these factors involved in virulence are orchestrated. Protein phosphatases are central to numerous signal transduction pathways. Here, we characterize the A. fumigatus protein phosphatase 2A SitA, the Saccharomyces cerevisiae Sit4p homologue. The sitA gene is not an essential gene, and we were able to construct an A. fumigatus null mutant. The ΔsitA strain had decreased MpkA phosphorylation levels, was more sensitive to cell wall-damaging agents, had increased β-(1,3)-glucan and chitin, was impaired in biofilm formation, and had decreased protein kinase C activity. The ΔsitA strain is more sensitive to several metals and ions, such as MnCl2, CaCl2, and LiCl, but it is more resistant to ZnSO4. The ΔsitA strain was avirulent in a murine model of invasive pulmonary aspergillosis and induces an augmented tumor necrosis factor alpha (TNF-α) response in mouse macrophages. These results stress the importance of A. fumigatus SitA as a possible modulator of PkcA/MpkA activity and its involvement in the cell wall integrity pathway. PMID:25911225

  2. Phosphatidate phosphatase, a key regulator of lipid homeostasis.

    PubMed

    Pascual, Florencia; Carman, George M

    2013-03-01

    Yeast Pah1p phosphatidate phosphatase (PAP) catalyzes the penultimate step in the synthesis of triacylglycerol. PAP plays a crucial role in lipid homeostasis by controlling the relative proportions of its substrate phosphatidate and its product diacylglycerol. The cellular amounts of these lipid intermediates influence the synthesis of triacylglycerol and the pathways by which membrane phospholipids are synthesized. Physiological functions affected by PAP activity include phospholipid synthesis gene expression, nuclear/endoplasmic reticulum membrane growth, lipid droplet formation, and vacuole homeostasis and fusion. Yeast lacking Pah1p PAP activity are acutely sensitive to fatty acid-induced toxicity and exhibit respiratory deficiency. PAP is distinguished in its cellular location, catalytic mechanism, and physiological functions from Dpp1p and Lpp1p lipid phosphate phosphatases that utilize a variety of substrates that include phosphatidate. Phosphorylation/dephosphorylation is a major mechanism by which Pah1p PAP activity is regulated. Pah1p is phosphorylated by cytosolic-associated Pho85p-Pho80p, Cdc28p-cyclin B, and protein kinase A and is dephosphorylated by the endoplasmic reticulum-associated Nem1p-Spo7p phosphatase. The dephosphorylation of Pah1p stimulates PAP activity and facilitates the association with the membrane/phosphatidate allowing for its reaction and triacylglycerol synthesis. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism. PMID:22910056

  3. An Alkaline Phosphatase Reporter for use in Clostridium difficile

    PubMed Central

    Edwards, Adrianne N.; Pascual, Ricardo A.; Childress, Kevin O.; Nawrocki, Kathryn L.; Woods, Emily C.; McBride, Shonna M.

    2015-01-01

    Clostridium difficile is an anaerobic, Gram-positive pathogen that causes severe gastrointestinal disease in humans and other mammals. C. difficile is notoriously difficult to work with and, until recently, few tools were available for genetic manipulation and molecular analyses. Despite the recent advances in the field, there is no simple or cost-effective technique for measuring gene transcription in C. difficile other than direct transcriptional analyses (e.g., quantitative real-time PCR and RNA-seq), which are time-consuming, expensive and difficult to scale-up. We describe the development of an in vivo reporter assay that can provide qualitative and quantitative measurements of C. difficile gene expression. Using the Enterococcus faecalis alkaline phosphatase gene, phoZ, we measured expression of C. difficile genes using a colorimetric alkaline phosphatase assay. We show that inducible alkaline phosphatase activity correlates directly with native gene expression. The ability to analyze gene expression using a standard reporter is an important and critically needed tool to study gene regulation and design genetic screens for C. difficile and other anaerobic clostridia. PMID:25576237

  4. Crystallization of recombinant Haemophilus influenzaee (P4) acid phosphatase

    SciTech Connect

    Ou, Zhonghui; Felts, Richard L.; Reilly, Thomas J.; Nix, Jay C.; Tanner, John J.

    2006-05-01

    Lipoprotein e (P4) is a class C acid phosphatase and a potential vaccine candidate for nontypeable H. influenzae infections. This paper reports the crystallization of recombinant e (P4) and the acquisition of a 1.7 Å resolution native X-ray diffraction data set. Haemophilus influenzae infects the upper respiratory tract of humans and can cause infections of the middle ear, sinuses and bronchi. The virulence of the pathogen is thought to involve a group of surface-localized macromolecular components that mediate interactions at the host–pathogen interface. One of these components is lipoprotein e (P4), which is a class C acid phosphatase and a potential vaccine candidate for nontypeable H. influenzae infections. This paper reports the crystallization of recombinant e (P4) and the acquisition of a 1.7 Å resolution native X-ray diffraction data set. The space group is P4{sub 2}2{sub 1}2, with unit-cell parameters a = 65.6, c = 101.4 Å, one protein molecule per asymmetric unit and 37% solvent content. This is the first report of the crystallization of a class C acid phosphatase.

  5. Alkaline Phosphatase-Mimicking Peptide Nanofibers for Osteogenic Differentiation.

    PubMed

    Gulseren, Gulcihan; Yasa, I Ceren; Ustahuseyin, Oya; Tekin, E Deniz; Tekinay, Ayse B; Guler, Mustafa O

    2015-07-13

    Recognition of molecules and regulation of extracellular matrix synthesis are some of the functions of enzymes in addition to their catalytic activity. While a diverse array of enzyme-like materials have been developed, these efforts have largely been confined to the imitation of the chemical structure and catalytic activity of the enzymes, and it is unclear whether enzyme-mimetic molecules can also be used to replicate the matrix-regulatory roles ordinarily performed by natural enzymes. Self-assembled peptide nanofibers can provide multifunctional enzyme-mimetic properties, as the active sequences of the target enzymes can be directly incorporated into the peptides. Here, we report enhanced bone regeneration efficiency through peptide nanofibers carrying both catalytic and matrix-regulatory functions of alkaline phosphatase, a versatile enzyme that plays a critical role in bone formation by regulating phosphate homeostasis and calcifiable bone matrix formation. Histidine presenting peptide nanostructures were developed to function as phosphatases. These molecules are able to catalyze phosphate hydrolysis and serve as bone-like nodule inducing scaffolds. Alkaline phosphatase-like peptide nanofibers enabled osteogenesis for both osteoblast-like and mesenchymal cell lines. PMID:26039144

  6. Isolation of lysophosphatidic acid phosphatase from developing peanut cotyledons.

    PubMed

    Shekar, Sunil; Tumaney, Ajay W; Rao, T J V Sreenivasa; Rajasekharan, Ram

    2002-03-01

    The soluble fraction of immature peanut (Arachis hypogaea) was capable of dephosphorylating [(3)H]lysophosphatidic acid (LPA) to generate monoacylglycerol (MAG). The enzyme responsible for the generation of MAG, LPA phosphatase, has been identified in plants and purified by successive chromatography separations on octyl-Sepharose, Blue Sepharose, Superdex-75, and heparin-agarose to apparent homogeneity from developing peanuts. This enzyme was purified 5,048-fold to a final specific activity of 858 nmol min(-1) mg(-1). The enzyme has a native molecular mass of approximately 39 kD determined by gel filtration and migrates as a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a subunit molecular mass of 39 +/- 1.5 kD. The K(m) values for oleoyl-, stearoyl-, and palmitoyl-sn-glycerol-3-phosphate were determined to be 28.6, 39.3, and 47.9 microM, respectively. The LPA phosphatase was specific to LPA and did not utilize any other substrate such as glycerol-3-phosphate, phosphatidic acid, or p-nitrophenylphosphate. The enzyme activity was stimulated by the low concentrations of detergents such as Triton X-100 and octylglucoside. Cations had no effect on the enzyme activity. Fatty acids, sphingosine, and sphingomyelin at low concentrations stimulated the enzyme activity. The identification of LPA phosphatase in plants demonstrates the existence of MAG biosynthetic machinery in plants. PMID:11891254

  7. Purification of a specific reversible tyrosine-O-phosphate phosphatase.

    PubMed Central

    Fukami, Y; Lipmann, F

    1982-01-01

    A phosphatase specific for tyrosine-O-phosphate (Tyr-P) was separated from several nonspecific phosphatases present in the third instar larvae of Drosophila melanogaster. The enzyme hydrolyzed L-Tyr-P, with an apparent Km of 0.14 mM, but not D-Tyr-P after being freed from hydrolytic activity toward p-nitrophenyl phosphate, the common phosphatase substrate. Such purified preparations also catalyzed a reversible phosphate transfer reaction from unlabeled Tyr-P to [3H]tyrosine. The transfer activity was L4-14% of the hydrolytic activity, depending on the initial concentration of tyrosine (0.25-4.0 mM). The two activities coincided throughout purification. However, they differed in pH optimum, that of hydrolysis being 6.5-7 and that of phosphate transfer being 7.7.5. The two activities were also differentially inhibited by 1-p-bromotetramisole oxalate in the presence of EDTA and by Mn2+. Addition of Mg2+ did not affect either hydrolysis or phosphate transfer, but 5 mM Zn2+ was 65% inhibitory to both. Sodium fluoride strongly inhibited both reactions, and this inhibition was reversed by EDTA, while EDTA itself had no effect. Pi had no effect and no detectable incorporation of 32Pi into Tyr-P was observed, indicating that the phosphate transfer reaction is not a simple reversal of hydrolysis. No ATP-linked phosphorylation of tyrosine was found. PMID:6181504

  8. Centromeric binding and activity of Protein Phosphatase 4

    PubMed Central

    Lipinszki, Zoltan; Lefevre, Stephane; Savoian, Matthew S.; Singleton, Martin R.; Glover, David M.; Przewloka, Marcin R.

    2015-01-01

    The cell division cycle requires tight coupling between protein phosphorylation and dephosphorylation. However, understanding the cell cycle roles of multimeric protein phosphatases has been limited by the lack of knowledge of how their diverse regulatory subunits target highly conserved catalytic subunits to their sites of action. Phosphoprotein phosphatase 4 (PP4) has been recently shown to participate in the regulation of cell cycle progression. We now find that the EVH1 domain of the regulatory subunit 3 of Drosophila PP4, Falafel (Flfl), directly interacts with the centromeric protein C (CENP-C). Unlike other EVH1 domains that interact with proline-rich ligands, the crystal structure of the Flfl amino-terminal EVH1 domain bound to a CENP-C peptide reveals a new target-recognition mode for the phosphatase subunit. We also show that binding of Flfl to CENP-C is required to bring PP4 activity to centromeres to maintain CENP-C and attached core kinetochore proteins at chromosomes during mitosis. PMID:25562660

  9. Discovery and development of small molecule SHIP phosphatase modulators.

    PubMed

    Viernes, Dennis R; Choi, Lydia B; Kerr, William G; Chisholm, John D

    2014-07-01

    Inositol phospholipids play an important role in the transfer of signaling information across the cell membrane in eukaryotes. These signals are often governed by the phosphorylation patterns on the inositols, which are mediated by a number of inositol kinases and phosphatases. The src homology 2 (SH2) containing inositol 5-phosphatase (SHIP) plays a central role in these processes, influencing signals delivered through the PI3K/Akt/mTOR pathway. SHIP modulation by small molecules has been implicated as a treatment in a number of human disease states, including cancer, inflammatory diseases, diabetes, atherosclerosis, and Alzheimer's disease. In addition, alteration of SHIP phosphatase activity may provide a means to facilitate bone marrow transplantation and increase blood cell production. This review discusses the cellular signaling pathways and protein-protein interactions that provide the molecular basis for targeting the SHIP enzyme in these disease states. In addition, a comprehensive survey of small molecule modulators of SHIP1 and SHIP2 is provided, with a focus on the structure, potency, selectivity, and solubility properties of these compounds. PMID:24302498

  10. A PTEN-like phosphatase with a novel substrate specificity.

    PubMed

    Pagliarini, David J; Worby, Carolyn A; Dixon, Jack E

    2004-09-10

    We show that a novel PTEN-like phosphatase (PLIP) exhibits a unique preference for phosphatidylinositol 5-phosphate (PI(5)P) as a substrate in vitro. PI(5)P is the least characterized member of the phosphoinositide (PI) family of lipid signaling molecules. Recent studies suggest a role for PI(5)P in a variety of cellular events, such as tumor suppression, and in response to bacterial invasion. Determining the means by which PI(5)P levels are regulated is therefore key to understanding these cellular processes. PLIP is highly enriched in testis tissue and, similar to other PI phosphatases, exhibits poor activity against several proteinaceous substrates. Despite a recent report suggesting a role for PI(5)P in the regulation of Akt, the overexpression of wild-type or catalytically inactive PLIP in Chinese hamster ovary-insulin receptor cells or a dsRNA-mediated knockdown of PLIP mRNA levels in Drosophila S2 cells does not alter Akt activity or phosphorylation. The unique in vitro catalytic activity and detailed biochemical and kinetic analyses reported here will be of great value in our continued efforts to identify in vivo substrate(s) for this highly conserved phosphatase. PMID:15247229

  11. The role of serine/threonine protein phosphatases in exocytosis.

    PubMed Central

    Sim, Alistair T R; Baldwin, Monique L; Rostas, John A P; Holst, Jeff; Ludowyke, Russell I

    2003-01-01

    Modulation of exocytosis is integral to the regulation of cellular signalling, and a variety of disorders (such as epilepsy, hypertension, diabetes and asthma) are closely associated with pathological modulation of exocytosis. Emerging evidence points to protein phosphatases as key regulators of exocytosis in many cells and, therefore, as potential targets for the design of novel therapies to treat these diseases. Diverse yet exquisite regulatory mechanisms have evolved to direct the specificity of these enzymes in controlling particular cell processes, and functionally driven studies have demonstrated differential regulation of exocytosis by individual protein phosphatases. This Review discusses the evidence for the regulation of exocytosis by protein phosphatases in three major secretory systems, (1) mast cells, in which the regulation of exocytosis of inflammatory mediators plays a major role in the respiratory response to antigens, (2) insulin-secreting cells in which regulation of exocytosis is essential for metabolic control, and (3) neurons, in which regulation of exocytosis is perhaps the most complex and is essential for effective neurotransmission. PMID:12749763

  12. Searching for the role of protein phosphatases in eukaryotic microorganisms.

    PubMed

    da-Silva, A M; Zapella, P D; Andrioli, L P; Campanhã, R B; Fiorini, L C; Etchebehere, L C; da-Costa-Maia, J C; Terenzi, H F

    1999-07-01

    Preference for specific protein substrates together with differential sensitivity to activators and inhibitors has allowed classification of serine/threonine protein phosphatases (PPs) into four major types designated types 1, 2A, 2B and 2C (PP1, PP2A, PP2B and PP2C, respectively). Comparison of sequences within their catalytic domains has indicated that PP1, PP2A and PP2B are members of the same gene family named PPP. On the other hand, the type 2C enzyme does not share sequence homology with the PPP members and thus represents another gene family, known as PPM. In this report we briefly summarize some of our studies about the role of serine/threonine phosphatases in growth and differentiation of three different eukaryotic models: Blastocladiella emersonii, Neurospora crassa and Dictyostelium discoideum. Our observations suggest that PP2C is the major phosphatase responsible for dephosphorylation of amidotransferase, an enzyme that controls cell wall synthesis during Blastocladiella emersonii zoospore germination. We also report the existence of a novel acid- and thermo-stable protein purified from Neurospora crassa mycelia, which specifically inhibits the PP1 activity of this fungus and mammals. Finally, we comment on our recent results demonstrating that Dictyostelium discoideum expresses a gene that codes for PP1, although this activity has never been demonstrated biochemically in this organism. PMID:10454741

  13. Isolation of Lysophosphatidic Acid Phosphatase from Developing Peanut Cotyledons1

    PubMed Central

    Shekar, Sunil; Tumaney, Ajay W.; Rao, T.J.V. Sreenivasa; Rajasekharan, Ram

    2002-01-01

    The soluble fraction of immature peanut (Arachis hypogaea) was capable of dephosphorylating [3H]lysophosphatidic acid (LPA) to generate monoacylglycerol (MAG). The enzyme responsible for the generation of MAG, LPA phosphatase, has been identified in plants and purified by successive chromatography separations on octyl-Sepharose, Blue Sepharose, Superdex-75, and heparin-agarose to apparent homogeneity from developing peanuts. This enzyme was purified 5,048-fold to a final specific activity of 858 nmol min−1 mg−1. The enzyme has a native molecular mass of approximately 39 kD determined by gel filtration and migrates as a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a subunit molecular mass of 39 ± 1.5 kD. The Km values for oleoyl-, stearoyl-, and palmitoyl-sn-glycerol-3-phosphate were determined to be 28.6, 39.3, and 47.9 μm, respectively. The LPA phosphatase was specific to LPA and did not utilize any other substrate such as glycerol-3-phosphate, phosphatidic acid, or p-nitrophenylphosphate. The enzyme activity was stimulated by the low concentrations of detergents such as Triton X-100 and octylglucoside. Cations had no effect on the enzyme activity. Fatty acids, sphingosine, and sphingomyelin at low concentrations stimulated the enzyme activity. The identification of LPA phosphatase in plants demonstrates the existence of MAG biosynthetic machinery in plants. PMID:11891254

  14. Testicular acid phosphatase induces odontoblast differentiation and mineralization.

    PubMed

    Choi, Hwajung; Kim, Tak-Heun; Yun, Chi-Young; Kim, Jung-Wook; Cho, Eui-Sic

    2016-04-01

    Odontoblasts differentiate from dental mesenchyme during dentin formation and mineralization. However, the molecular mechanisms controlling odontoblast differentiation remain poorly understood. Here, we show that expression of testicular acid phosphatase (ACPT) is restricted in the early stage of odontoblast differentiation in proliferating dental mesenchymal cells and secretory odontoblasts. ACPT is expressed earlier than tissue-nonspecific alkaline phosphatase (TNAP) and partly overlaps with TNAP in differentiating odontoblasts. In MDPC-23 odontoblastic cells, expression of ACPT appears simultaneously with a decrease in β-catenin activity and is abolished with the expression of Phex and Dsp. Knockdown of ACPT in MDPC-23 cells stimulates cell proliferation together with an increase in active β-catenin and cyclin D1. In contrast, the overexpression of ACPT suppresses cell proliferation with a decrease in active β-catenin and cyclin D1. Expression of TNAP, Osx, Phex and Dsp is reduced by knockdown of ACPT but is enhanced by ACPT overexpression. When ACPT is blocked with IgG, alkaline phosphatase activity is inhibited but cell proliferation is unchanged regardless of ACPT expression. These findings suggest that ACPT inhibits cell proliferation through β-catenin-mediated signaling in dental mesenchyme but elicits odontoblast differentiation and mineralization by supplying phosphate during dentin formation. Thus, ACPT might be a novel candidate for inducing odontoblast differentiation and mineralization for dentin regeneration. PMID:26547858

  15. Displacement affinity chromatography of protein phosphatase one (PP1) complexes

    PubMed Central

    Moorhead, Greg BG; Trinkle-Mulcahy, Laura; Nimick, Mhairi; De Wever, Veerle; Campbell, David G; Gourlay, Robert; Lam, Yun Wah; Lamond, Angus I

    2008-01-01

    Background Protein phosphatase one (PP1) is a ubiquitously expressed, highly conserved protein phosphatase that dephosphorylates target protein serine and threonine residues. PP1 is localized to its site of action by interacting with targeting or regulatory proteins, a majority of which contains a primary docking site referred to as the RVXF/W motif. Results We demonstrate that a peptide based on the RVXF/W motif can effectively displace PP1 bound proteins from PP1 retained on the phosphatase affinity matrix microcystin-Sepharose. Subsequent co-immunoprecipitation experiments confirmed that each identified binding protein was either a direct PP1 interactor or was in a complex that contains PP1. Our results have linked PP1 to numerous new nuclear functions and proteins, including Ki-67, Rif-1, topoisomerase IIα, several nuclear helicases, NUP153 and the TRRAP complex. Conclusion This modification of the microcystin-Sepharose technique offers an effective means of purifying novel PP1 regulatory subunits and associated proteins and provides a simple method to uncover a link between PP1 and additional cellular processes. PMID:19000314

  16. Alpha Particle Diagnostic

    SciTech Connect

    Fisher, Ray, K.

    2009-05-13

    The study of burning plasmas is the next frontier in fusion energy research, and will be a major objective of the U.S. fusion program through U.S. collaboration with our international partners on the ITER Project. For DT magnetic fusion to be useful for energy production, it is essential that the energetic alpha particles produced by the fusion reactions be confined long enough to deposit a significant fraction of their initial ~3.5 MeV energy in the plasma before they are lost. Development of diagnostics to study the behavior of energetic confined alpha particles is a very important if not essential part of burning plasma research. Despite the clear need for these measurements, development of diagnostics to study confined the fast confined alphas to date has proven extremely difficult, and the available techniques remain for the most part unproven and with significant uncertainties. Research under this grant had the goal of developing diagnostics of fast confined alphas, primarily based on measurements of the neutron and ion tails resulting from alpha particle knock-on collisions with the plasma deuterium and tritium fuel ions. One of the strengths of this approach is the ability to measure the alphas in the hot plasma core where the interesting ignition physics will occur.

  17. Peptide Microarrays for Real-Time Kinetic Profiling of Tyrosine Phosphatase Activity of Recombinant Phosphatases and Phosphatases in Lysates of Cells or Tissue Samples.

    PubMed

    Hovestad-Bijl, Liesbeth; van Ameijde, Jeroen; Pijnenburg, Dirk; Hilhorst, Riet; Liskamp, Rob; Ruijtenbeek, Rob

    2016-01-01

    A high-throughput method for the determination of the kinetics of protein tyrosine phosphatase (PTP) activity in a microarray format is presented, allowing real-time monitoring of the dephosphorylation of a 3-nitro-phosphotyrosine residue. The 3-nitro-phosphotyrosine residue is incorporated in potential PTP substrates. The peptide substrates are immobilized onto a porous surface in discrete spots. After dephosphorylation by a PTP, a 3-nitrotyrosine residue is formed that can be detected by a specific, sequence-independent antibody. The rate of dephosphorylation can be measured simultaneously on 12 microarrays, each comprising three concentrations of 48 clinically relevant peptides, using 1.0-5.0 μg of protein from a cell or tissue lysate or 0.1-2.0 μg of purified phosphatase. The data obtained compare well with solution phase assays involving the corresponding unmodified phosphotyrosine substrates. This technology, characterized by high-throughput (12 assays in less than 2 h), multiplexing and low sample requirements, facilitates convenient and unbiased investigation of the enzymatic activity of the PTP enzyme family, for instance by profiling of PTP substrate specificities, evaluation of PTP inhibitors and pinpointing changes in PTP activity in biological samples related to diseases. PMID:27514800

  18. Purification and characterization of an extracellular alkaline phosphatase from Penicillium chrysogenum.

    PubMed

    Politino, M; Brown, J; Usher, J J

    1996-01-01

    An extracellular alkaline phosphatase from Penicillium chrysogenum was purified to homogeneity using DEAE ion-exchange chromatography and size exclusion chromatography. SDS-PAGE of the purified enzyme indicated a molecular weight of 58,000. The mobility of the native enzyme on a Superose 12 column suggests that the active form of the enzyme is a monomer. The enzyme catalyzes the hydrolysis of phosphate from a variety of substrates including p-nitrophenyl phosphate, alpha-naphthyl phosphate and the anti-tumor compound etoposide phosphate. The apparent K(m) for the substrate p-nitrophenyl phosphate is 1.3 mM and the enzyme is inhibited by inorganic phosphate. The pH optimum of the enzyme is 9.0 with a broad optimal temperature range between 40 and 50 degrees C. The isoelectric point of the enzyme is approximately 5.5. The enzyme is a glycoprotein; digestion with endoglycosidase H indicates that the protein consists primarily of N-linked carbohydrates. Enzymatic activity is enhanced by the addition of divalent cations such as Mg+2 and Mn+2 and inhibited by addition of a chelator such as EDTA suggesting a metal ion requirement. The enzyme was found to be an inexpensive catalyst for the conversion of etoposide phosphate to etoposide in the manufacture of this anti-tumor compound. PMID:8958566

  19. Effects of aluminium on the hepatic inositol polyphosphate phosphatase.

    PubMed Central

    Ali, N; Craxton, A; Sumner, M; Shears, S B

    1995-01-01

    There is speculation that some of the toxic effects of Al3+ may originate from it perturbing inositol phosphate/Ca2+ signalling. For example, in permeabilized L1210 mouse lymphoma cells, 10-50 microM Al3+ activated Ins(1,3,4,5)P4-dependent Ca2+ mobilization and Ins(1,3,4,5)P4 3-phosphatase activity [Loomis-Husselbee, Cullen, Irvine and Dawson (1991) Biochem. J. 277, 883-885]. Ins(1,3,4,5)P4 3-phosphatase activity is performed by a multiple inositol polyphosphate phosphatase (MIPP) that also attacks Ins(1,3,4,5,6)P5 and InsP6 [Craxton, Ali and Shears (1995) Biochem. J. 305, 491-498]: 5-50 microM Al3+ increased MIPP activity towards both Ins(1,3,4,5)P4 (by 30%) and Ins(1,3,4,5,6)P5 (by up to 500%), without affecting metabolism of InsP6. Higher concentrations of Al3+ inhibited metabolism of all three substrates, and in the case of InsP6, Al3+ altered the pattern of accumulating products. When 1-50 microM Al3+ was present, InsP6 became a less effective inhibitor of Ins(1,3,4,5)P4 3-phosphatase activity; this effect did not depend on the presence of cellular membranes, contrary to a previous proposal. The latter phenomenon largely explains how, in a cell-free system where Ins(1,3,4,5)P4 3-phosphatase is inhibited by endogenous InsP6, the addition of Al3+ can apparently increase the enzyme activity. However, there was no effect of either 10 or 25 microM Al3+ (in either the presence or absence of apotransferrin) on inositol phosphate profiles in either Jurkat E6-1 lymphoma cells or AR4-2J pancreatoma cells. PMID:7832774

  20. Phosphatase activity of the voltage-sensing phosphatase, VSP, shows graded dependence on the extent of activation of the voltage sensor.

    PubMed

    Sakata, Souhei; Okamura, Yasushi

    2014-03-01

    The voltage-sensing phosphatase (VSP) consists of a voltage sensor and a cytoplasmic phosphatase region, and the movement of the voltage sensor is coupled to the phosphatase activity. However, its coupling mechanisms still remain unclear. One possible scenario is that the phosphatase is activated only when the voltage sensor is in a fully activated state. Alternatively, the enzymatic activity of single VSP proteins could be graded in distinct activated states of the voltage sensor, and partial activation of the voltage sensor could lead to partial activation of the phosphatase. To distinguish between these two possibilities, we studied a voltage sensor mutant of zebrafish VSP, where the voltage sensor moves in two steps as evidenced by analyses of charge movements of the voltage sensor and voltage clamp fluorometry. Measurements of the phosphatase activity toward phosphatidylinositol 4,5-bisphosphate revealed that both steps of voltage sensor activation are coupled to the tuning of phosphatase activities, consistent with the idea that the phosphatase activity is graded by the magnitude of the movement of the voltage sensor. PMID:24277865

  1. Identification of a non-purple tartrate-resistant acid phosphatase: an evolutionary link to Ser/Thr protein phosphatases?

    PubMed Central

    Hadler, Kieran S; Huber, Thomas; Cassady, A Ian; Weber, Jane; Robinson, Jodie; Burrows, Allan; Kelly, Gregory; Guddat, Luke W; Hume, David A; Schenk, Gerhard; Flanagan, Jack U

    2008-01-01

    Background Tartrate-resistant acid phosphatases (TRAcPs), also known as purple acid phosphatases (PAPs), are a family of binuclear metallohydrolases that have been identified in plants, animals and fungi. The human enzyme is a major histochemical marker for the diagnosis of bone-related diseases. TRAcPs can occur as a small form possessing only the ~35 kDa catalytic domain, or a larger ~55 kDa form possessing both a catalytic domain and an additional N-terminal domain of unknown function. Due to its role in bone resorption the 35 kDa TRAcP has become a promising target for the development of anti-osteoporotic chemotherapeutics. Findings A new human gene product encoding a metallohydrolase distantly related to the ~55 kDa plant TRAcP was identified and characterised. The gene product is found in a number of animal species, and is present in all tissues sampled by the RIKEN mouse transcriptome project. Construction of a homology model illustrated that six of the seven metal-coordinating ligands in the active site are identical to that observed in the TRAcP family. However, the tyrosine ligand associated with the charge transfer transition and purple color of TRAcPs is replaced by a histidine. Conlusion The gene product identified here may represent an evolutionary link between TRAcPs and Ser/Thr protein phosphatases. Its biological function is currently unknown but is unlikely to be associated with bone metabolism. PMID:18771593

  2. A soluble alkaline phosphatase from Bacillus licheniformis MC14. Histochemical localization, purification, characterization and comparison with the membrane-associated alkaline phosphatase.

    PubMed

    Hansa, J G; Laporta, M; Kuna, M A; Reimschuessel, R; Hulett, F M

    1981-02-13

    Growth conditions affect the quantity and distribution of alkaline phosphatase (orthophosphoric-monoester phosphohydrolase (alkaline optimum), EC 3.1.3.1) in Bacillus licheniformis MC14. The soluble alkaline phosphatase, which has been found in biochemical localization studies between the cell wall and cell membrane (Glynn, J.A., Schaffel, S.D., McNicholas, J.M. and Hulett, F.M. (1977) J. Bacteriol. 129, 1010-1019), was localized via electron microscope histochemistry in cells cultured under conditions which result in increased quantities of this activity. This soluble alkaline phosphatase was stabilized with 20% glycerol and purified to homogeneity as determined by sodium dodecyl sulfate(SDS)-polyacrylamide gel electrophoresis. The purified enzyme is soluble in dilute buffer. This soluble alkaline phosphatase has been characterized and compared to the membrane-associated alkaline phosphatase from this organism. PMID:6783099

  3. Structural basis for the glucan phosphatase activity of Starch Excess4

    PubMed Central

    Vander Kooi, Craig W.; Taylor, Adam O.; Pace, Rachel M.; Meekins, David A.; Guo, Hou-Fu; Kim, Youngjun; Gentry, Matthew S.

    2010-01-01

    Living organisms utilize carbohydrates as essential energy storage molecules. Starch is the predominant carbohydrate storage molecule in plants while glycogen is utilized in animals. Starch is a water-insoluble polymer that requires the concerted activity of kinases and phosphatases to solubilize the outer surface of the glucan and mediate starch catabolism. All known plant genomes encode the glucan phosphatase Starch Excess4 (SEX4). SEX4 can dephosphorylate both the starch granule surface and soluble phosphoglucans and is necessary for processive starch metabolism. The physical basis for the function of SEX4 as a glucan phosphatase is currently unclear. Herein, we report the crystal structure of SEX4, containing phosphatase, carbohydrate-binding, and C-terminal domains. The three domains of SEX4 fold into a compact structure with extensive interdomain interactions. The C-terminal domain of SEX4 integrally folds into the core of the phosphatase domain and is essential for its stability. The phosphatase and carbohydrate-binding domains directly interact and position the phosphatase active site toward the carbohydrate-binding site in a single continuous pocket. Mutagenesis of the phosphatase domain residue F167, which forms the base of this pocket and bridges the two domains, selectively affects the ability of SEX4 to function as a glucan phosphatase. Together, these results reveal the unique tertiary architecture of SEX4 that provides the physical basis for its function as a glucan phosphatase. PMID:20679247

  4. Structural basis for the glucan phosphatase activity of Starch Excess4

    SciTech Connect

    Vander Kooi, Craig W.; Taylor, Adam O.; Pace, Rachel M.; Meekins, David A.; Guo, Hou-Fu; Kim, Youngjun; Gentry, Matthew S.

    2010-11-12

    Living organisms utilize carbohydrates as essential energy storage molecules. Starch is the predominant carbohydrate storage molecule in plants while glycogen is utilized in animals. Starch is a water-insoluble polymer that requires the concerted activity of kinases and phosphatases to solubilize the outer surface of the glucan and mediate starch catabolism. All known plant genomes encode the glucan phosphatase Starch Excess4 (SEX4). SEX4 can dephosphorylate both the starch granule surface and soluble phosphoglucans and is necessary for processive starch metabolism. The physical basis for the function of SEX4 as a glucan phosphatase is currently unclear. Herein, we report the crystal structure of SEX4, containing phosphatase, carbohydrate-binding, and C-terminal domains. The three domains of SEX4 fold into a compact structure with extensive interdomain interactions. The C-terminal domain of SEX4 integrally folds into the core of the phosphatase domain and is essential for its stability. The phosphatase and carbohydrate-binding domains directly interact and position the phosphatase active site toward the carbohydrate-binding site in a single continuous pocket. Mutagenesis of the phosphatase domain residue F167, which forms the base of this pocket and bridges the two domains, selectively affects the ability of SEX4 to function as a glucan phosphatase. Together, these results reveal the unique tertiary architecture of SEX4 that provides the physical basis for its function as a glucan phosphatase.

  5. Differential Requirement for Pten Lipid and Protein Phosphatase Activity during Zebrafish Embryonic Development.

    PubMed

    Stumpf, Miriam; den Hertog, Jeroen

    2016-01-01

    The lipid- and protein phosphatase PTEN is one of the most frequently mutated tumor suppressor genes in human cancers and many mutations found in tumor samples directly affect PTEN phosphatase activity. In order to understand the functional consequences of these mutations in vivo, the aim of our study was to dissect the role of Pten phosphatase activities during zebrafish embryonic development. As in other model organisms, zebrafish mutants lacking functional Pten are embryonically lethal. Zebrafish have two pten genes and pten double homozygous zebrafish embryos develop a severe pleiotropic phenotype around 4 days post fertilization, which can be largely rescued by re-introduction of pten mRNA at the one-cell stage. We used this assay to characterize the rescue-capacity of Pten and variants with mutations that disrupt lipid, protein or both phosphatase activities. The pleiotropic phenotype at 4dpf could only be rescued by wild type Pten, indicating that both phosphatase activities are required for normal zebrafish embryonic development. An earlier aspect of the phenotype, hyperbranching of intersegmental vessels, however, was rescued by Pten that retained lipid phosphatase activity, independent of protein phosphatase activity. Lipid phosphatase activity was also required for moderating pAkt levels at 4 dpf. We propose that the role of Pten during angiogenesis mainly consists of suppressing PI3K signaling via its lipid phosphatase activity, whereas the complex process of embryonic development requires lipid and protein phosphatase of Pten. PMID:26848951

  6. Differential Requirement for Pten Lipid and Protein Phosphatase Activity during Zebrafish Embryonic Development

    PubMed Central

    Stumpf, Miriam; den Hertog, Jeroen

    2016-01-01

    The lipid- and protein phosphatase PTEN is one of the most frequently mutated tumor suppressor genes in human cancers and many mutations found in tumor samples directly affect PTEN phosphatase activity. In order to understand the functional consequences of these mutations in vivo, the aim of our study was to dissect the role of Pten phosphatase activities during zebrafish embryonic development. As in other model organisms, zebrafish mutants lacking functional Pten are embryonically lethal. Zebrafish have two pten genes and pten double homozygous zebrafish embryos develop a severe pleiotropic phenotype around 4 days post fertilization, which can be largely rescued by re-introduction of pten mRNA at the one-cell stage. We used this assay to characterize the rescue-capacity of Pten and variants with mutations that disrupt lipid, protein or both phosphatase activities. The pleiotropic phenotype at 4dpf could only be rescued by wild type Pten, indicating that both phosphatase activities are required for normal zebrafish embryonic development. An earlier aspect of the phenotype, hyperbranching of intersegmental vessels, however, was rescued by Pten that retained lipid phosphatase activity, independent of protein phosphatase activity. Lipid phosphatase activity was also required for moderating pAkt levels at 4 dpf. We propose that the role of Pten during angiogenesis mainly consists of suppressing PI3K signaling via its lipid phosphatase activity, whereas the complex process of embryonic development requires lipid and protein phosphatase of Pten. PMID:26848951

  7. Structural and binding studies of the three-metal center in two mycobacterial PPM Ser/Thr protein phosphatases.

    PubMed

    Wehenkel, Annemarie; Bellinzoni, Marco; Schaeffer, Francis; Villarino, Andrea; Alzari, Pedro M

    2007-12-01

    Phospho-Ser/Thr protein phosphatases (PPs) are dinuclear metalloenzymes classed into two large families, PPP and PPM, on the basis of sequence similarity and metal ion dependence. The archetype of the PPM family is the alpha isoform of human PP2C (PP2Calpha), which folds into an alpha/beta domain similar to those of PPP enzymes. The recent structural studies of three bacterial PPM phosphatases, Mycobacterium tuberculosis MtPstP, Mycobacterium smegmatis MspP, and Streptococcus agalactiae STP, confirmed the conservation of the overall fold and dinuclear metal center in the family, but surprisingly revealed the presence of a third conserved metal-binding site in the active site. To gain insight into the roles of the three-metal center in bacterial enzymes, we report structural and metal-binding studies of MtPstP and MspP. The structure of MtPstP in a new trigonal crystal form revealed a fully active enzyme with the canonical dinuclear metal center but without the third metal ion bound to the catalytic site. The absence of metal correlates with a partially unstructured flap segment, indicating that the third manganese ion contributes to reposition the flap, but is dispensable for catalysis. Studies of metal binding to MspP using isothermal titration calorimetry revealed that the three Mn(2+)-binding sites display distinct affinities, with dissociation constants in the nano- and micromolar range for the two catalytic metal ions and a significantly lower affinity for the third metal-binding site. In agreement, the structure of inactive MspP at acidic pH was determined at atomic resolution and shown to lack the third metal ion in the active site. Structural comparisons of all bacterial phosphatases revealed positional variations in the third metal-binding site that are correlated with the presence of bound substrate and the conformation of the flap segment, supporting a role of this metal ion in assisting enzyme-substrate interactions. PMID:17961594

  8. Ahnak protein activates protein kinase C (PKC) through dissociation of the PKC-protein phosphatase 2A complex.

    PubMed

    Lee, In Hye; Lim, Hee Jung; Yoon, Suhyeon; Seong, Je Kyung; Bae, Duk Soo; Rhee, Sue Goo; Bae, Yun Soo

    2008-03-01

    We have previously reported that central repeated units (CRUs) of Ahnak act as a scaffolding protein networking phospholipase Cgamma and protein kinase C (PKC). Here, we demonstrate that an Ahnak derivative consisting of four central repeated units binds and activates PKC-alpha in a phosphatidylserine/1,2-dioleoyl-sn-glycerol-independent manner. Moreover, NIH3T3 cells expressing the 4 CRUs of Ahnak showed enhanced c-Raf, MEK, and Erk phosphorylation in response to phorbol 12-myristate 13-acetate (PMA) compared with parental cells. To evaluate the effect of loss-of-function of Ahnak in cell signaling, we investigated PKC activation and Raf phosphorylation in embryonic fibroblast cells (MEFs) of the Ahnak knock-out (Ahnak(-/-)) mouse. Membrane translocation of PKC-alpha and phosphorylation of Raf in response to PMA or platelet-derived growth factor were decreased in Ahnak null MEF cells compared with wild type MEFs. Several lines of evidence suggest that PKC-alpha activity is regulated through association with protein phosphatase 2A (PP2A). A co-immunoprecipitation assay indicated that the association of PKC-alpha with PP2A was disrupted in NIH3T3 cells expressing 4 CRUs of Ahnak in response to PMA. Consistently, Ahnak null MEF cells stimulated by PMA showed enhanced PKC-PP2A complex formation, and add-back expression of Ahnak into Ahnak null MEF cells abolished the PKC-PP2A complex formation in response to PMA. These data indicate that Ahnak potentiates PKC activation through inhibiting the interaction of PKC with PP2A. PMID:18174170

  9. Hepatic effects of a methionine-choline-deficient diet in hepatocyte RXR{alpha}-null mice

    SciTech Connect

    Gyamfi, Maxwell Afari; Tanaka, Yuji; He Lin; Klaassen, Curtis D.; Wan, Y.-J.Y.

    2009-01-15

    Retinoid X receptor-{alpha} (RXR{alpha}) is an obligate partner for several nuclear hormone receptors that regulate important physiological processes in the liver. In this study the impact of hepatocyte RXR{alpha} deficiency on methionine and choline deficient (MCD) diet-induced steatosis, oxidative stress, inflammation, and hepatic transporters gene expression were examined. The mRNA of sterol regulatory element-binding protein (SREBP)-regulated genes, important for lipid synthesis, were not altered in wild type (WT) mice, but were increased 2.0- to 5.4-fold in hepatocyte RXR{alpha}-null (H-RXR{alpha}-null) mice fed a MCD diet for 14 days. Furthermore, hepatic mRNAs and proteins essential for fatty acid {beta}-oxidation were not altered in WT mice, but were decreased in the MCD diet-fed H-RXR{alpha}-null mice, resulting in increased hepatic free fatty acid levels. Cyp2e1 enzyme activity and lipid peroxide levels were induced only in MCD-fed WT mice. In contrast, hepatic mRNA levels of pro-inflammatory factors were increased only in H-RXR{alpha}-null mice fed the MCD diet. Hepatic uptake transporters Oatp1a1 and Oatp1b2 mRNA levels were decreased in WT mice fed the MCD diet, whereas the efflux transporter Mrp4 was increased. However, in the H-RXR{alpha}-null mice, the MCD diet only moderately decreased Oatp1a1 and induced both Oatp1a4 and Mrp4 gene expression. Whereas the MCD diet increased serum bile acid levels and alkaline phosphatase activity in both WT and H-RXR{alpha}-null mice, serum ALT levels were induced (2.9-fold) only in the H-RXR{alpha}-null mice. In conclusion, these data suggest a critical role for RXR{alpha} in hepatic fatty acid homeostasis and protection against MCD-induced hepatocyte injury.

  10. ALPHA MIS: Reference manual

    SciTech Connect

    Lovin, J.K.; Haese, R.L.; Heatherly, R.D.; Hughes, S.E.; Ishee, J.S.; Pratt, S.M.; Smith, D.W.

    1992-02-01

    ALPHA is a powerful and versatile management information system (MIS) initiated and sponsored and by the Finance and Business Management Division of Oak Ridge National Laboratory, who maintain and develop it in concert with the Business Systems Division for its Information Center. A general-purpose MIS, ALPHA allows users to access System 1022 and System 1032 databases to obtain and manage information. From a personal computer or a data terminal, Energy Systems employees can use ALPHA to control their own report reprocessing. Using four general commands (Database, Select, Sort, and Report) they can (1) choose a mainframe database, (2) define subsets within it, (3) sequentially order a subset by one or more variables, and (4) generate a report with their own or a canned format.

  11. Promoting Uranium Immobilization by the Activities of Microbial Phosphatases

    SciTech Connect

    Robert J. Martinez; Melanie J. Beazley; Samuel M. Webb; Martial Taillefert; and Patricia A. Sobecky

    2007-04-19

    The overall objective of this project is to examine the activity of nonspecific phosphohydrolases present in naturally occurring subsurface microorganisms for the purpose of promoting the immobilization of radionuclides through the production of uranium [U(VI)] phosphate precipitates. Specifically, we hypothesize that the precipitation of U(VI) phosphate minerals may be promoted through the microbial release and/or accumulation of PO4 3- as a means to detoxify radionuclides and heavy metals. An experimental approach was designed to determine the extent of phosphatase activity in bacteria previously isolated from contaminated subsurface soils collected at the ERSP Field Research Center (FRC) in Oak Ridge, TN. Screening of 135 metal resistant isolates for phosphatase activity indicated the majority (75 of 135) exhibited a phosphatase-positive phenotype. During this phase of the project, a PCR based approach has also been designed to assay FRC isolates for the presence of one or more classes of the characterized non-specific acid phophastase (NSAP) genes likely to be involved in promoting U(VI) precipitation. Testing of a subset of Pb resistant (Pbr) Arthrobacter, Bacillus and Rahnella strains indicated 4 of the 9 Pbr isolates exhibited phosphatase phenotypes suggestive of the ability to bioprecipitate U(VI). Two FRC strains, a Rahnella sp. strain Y9602 and a Bacillus sp. strain Y9-2, were further characterized. The Rahnella sp. exhibited enhanced phosphatase activity relative to the Bacillus sp. Whole-cell enzyme assays identified a pH optimum of 5.5, and inorganic phosphate accumulated in pH 5.5 synthetic groundwater (designed to mimic FRC conditions) incubations of both strains in the presence of a model organophosphorus substrate provided as the sole C and P source. Kinetic experiments showed that these two organisms can grow in the presence of 200 μM dissolved uranium and that Rahnella is much more efficient in precipitating U(VI) than Bacillus sp. The

  12. The Apollo Alpha Spectrometer.

    NASA Technical Reports Server (NTRS)

    Jagoda, N.; Kubierschky, K.; Frank, R.; Carroll, J.

    1973-01-01

    Located in the Science Instrument Module of Apollo 15 and 16, the Alpha Particle Spectrometer was designed to detect and measure the energy of alpha particles emitted by the radon isotopes and their daughter products. The spectrometer sensor consisted of an array of totally depleted silicon surface barrier detectors. Biased amplifier and linear gate techniques were utilized to reduce resolution degradation, thereby permitting the use of a single 512 channel PHA. Sensor identification and in-flight radioactive calibration were incorporated to enhance data reduction.

  13. The Lyman alpha coronagraph

    NASA Technical Reports Server (NTRS)

    Kohl, J. L.; Reeves, E. M.; Kirkham, B.

    1977-01-01

    The rocket-borne Lyman alpha coronagraph (RLAC) is to be used in the absence of a natural solar eclipse to determine coronal temperatures from measurements of the line width of Lyman-alpha and to determine neutral hydrogen densities of coronal material from the absolute intensity. The coronagraph consists of a 75-cm Fastie-Ebert scanning spectrometer with an AMR 641 photoelectric detection system, an off-axis parabolic primary mirror, and an occulting system. A special optical arrangement achieves rejection of radiation from the solar disk.

  14. Lymphocyte phosphatase-associated phosphoprotein proteoforms analyzed using monoclonal antibodies

    PubMed Central

    Filatov, Alexander; Kruglova, Natalia; Meshkova, Tatiana; Mazurov, Dmitriy

    2015-01-01

    Phosphatase CD45 regulates the activation of lymphocytes by controlling the level of receptor and signal molecule phosphorylation. However, it remains unknown which molecules mediate the phosphatase activity of CD45. A candidate for such a molecule is a small transmembrane adapter protein called lymphocyte phosphatase-associated phosphoprotein (LPAP). LPAP forms a supramolecular complex that consists of not only CD45 molecule but also CD4 and Lck kinase. The function of LPAP has not been defined clearly. In our study, we determined the pattern of LPAP expression in various cell types and characterized its proteoforms using new monoclonal antibodies generated against the intracellular portion of the protein. We show that LPAP is a pan-lymphocyte marker, and its expression in cells correlates with the expression of CD45. The majority of T, B and NK cells express high levels of LPAP, whereas monocytes, granulocytes, monocyte-derived dendritic cells, platelets and red blood cells are negative for LPAP. Using one- and two-dimensional protein gel electrophoresis, we demonstrate that LPAP has at least four sites of phosphorylation. The resting cells express at least six different LPAP phosphoforms representing mono-, di- and tri-phosphorylated LPAP. T and B cells differ in the distribution of the protein between phosphoforms. The activation of lymphocytes with PMA reduces the diversity of phosphorylated forms. Our experiments on Lck-deficient Jurkat cells show that Lck kinase is not involved in LPAP phosphorylation. Thus, LPAP is a dynamically phosphorylated protein, the function of which can be understood, when all phosphosites and kinases involved in its phosphorylation will be identified. PMID:26682052

  15. Characterization of the protein tyrosine phosphatase PRL from Entamoeba histolytica.

    PubMed

    Ramírez-Tapia, Ana Lilia; Baylón-Pacheco, Lidia; Espíritu-Gordillo, Patricia; Rosales-Encina, José Luis

    2015-12-01

    Protein tyrosine phosphatase of regenerating liver (PRL) is a group of phosphatases that has not been broadly studied in protozoan parasites. In humans, PRLs are involved in metastatic cancer, the promotion of cell migration and invasion. PTPs have been increasingly recognized as important effectors of host-pathogen interactions. We characterized the only putative protein tyrosine phosphatase PRL (PTP EhPRL) in the eukaryotic human intestinal parasite Entamoeba histolytica. Here, we reported that the EhPRL protein possessed the classical HCX5R catalytic motif of PTPs and the CAAX box characteristic of the PRL family and exhibited 31-32% homology with the three human PRL isoforms. In amebae, the protein was expressed at low but detectable levels. The recombinant protein (rEhPRL) had enzymatic activity with the 3-o-methyl fluorescein phosphate (OMFP) substrate; this enzymatic activity was inhibited by the PTP inhibitor o-vanadate. Using immunofluorescence we showed that native EhPRL was localized to the cytoplasm and plasma membrane. When the trophozoites interacted with collagen, EhPRL relocalized over time to vesicle-like structures. Interaction with fibronectin increased the presence of the enzyme in the cytoplasm. Using RT-PCR, we demonstrated that EhPRL mRNA expression was upregulated when the trophozoites interacted with collagen but not with fibronectin. Trophozoites recovered from amoebic liver abscesses showed higher EhPRL mRNA expression levels than normal trophozoites. These results strongly suggest that EhPRL may play an important role in the biology and adaptive response of the parasite to the host environment during amoebic liver abscess development, thereby participating in the pathogenic mechanism. PMID:26431820

  16. Phylogenetic Characterization of Phosphatase-Expressing Bacterial Communities in Baltic Sea Sediments.

    PubMed

    Steenbergh, Anne K; Bodelier, Paul L E; Hoogveld, Hans L; Slomp, Caroline P; Laanbroek, Hendrikus J

    2015-01-01

    Phosphate release from sediments hampers the remediation of aquatic systems from a eutrophic state. Microbial phosphatases in sediments release phosphorus during organic matter degradation. Despite the important role of phosphatase-expressing bacteria, the identity of these bacteria in sediments is largely unknown. We herein presented a culture-independent method to phylogenetically characterize phosphatase-expressing bacteria in sediments. We labeled whole-cell extracts of Baltic Sea sediments with an artificial phosphatase substrate and sorted phosphatase-expressing cells with a flow cytometer. Their phylogenetic affiliation was determined by Denaturing Gradient Gel Electrophoresis. The phosphatase-expressing bacterial community coarsely reflected the whole-cell bacterial community, with a similar dominance of Alphaproteobacteria. PMID:25817584

  17. Acid phosphatase localization in neurons of Bulla gouldiana (Gastropoda: Opisthobranchia.

    PubMed

    Robles, L J; Fisher, S K

    1975-01-01

    The organization of the ganglia and the ultrastructure of the neurons of Bulla gouldiana are similar to those described for other molluscs. Acid phosphatase positive reactions were found in the large pigmented granules, small dense bodies, multivesicular bodies, and Golgi lamellae and associated vesicles. The small dense bodies and multivesicular bodies may be stages in the formation of the larger pigmented granules which are interpreted as lysosomes. Comparison is made between the pigmented granules in Bulla and the lipofuscin bodies of vertebrate neurons. The possible involvement of these pigmented granules in the hyperpolarization of Bulla and Aplysia neurons to light is discussed. PMID:1122539

  18. A description of alkaline phosphatases from marine organisms

    NASA Astrophysics Data System (ADS)

    Tian, Jiyuan; Jia, Hongbing; Yu, Juan

    2015-12-01

    Alkaline phosphatases (APs) are non-specific phosphohydrolases, and they are widely used in clinical diagnostics and biological studies. APs are widespread in nature and exhibit different structural formulations. Based on the diversity of biogenetic sources, APs exhibit temperature-propensity traits, and they are classified as psychrophilic, mesophilic, and thermophilic. In this article, the characteristics of psychrophilic APs from marine organisms were described, accompanied by a simple description of APs from other organisms. This review will facilitate better utilization of marine APs in the biotechnology field.

  19. A description of alkaline phosphatases from marine organisms

    NASA Astrophysics Data System (ADS)

    Tian, Jiyuan; Jia, Hongbing; Yu, Juan

    2016-07-01

    Alkaline phosphatases (APs) are non-specific phosphohydrolases, and they are widely used in clinical diagnostics and biological studies. APs are widespread in nature and exhibit different structural formulations. Based on the diversity of biogenetic sources, APs exhibit temperature-propensity traits, and they are classified as psychrophilic, mesophilic, and thermophilic. In this article, the characteristics of psychrophilic APs from marine organisms were described, accompanied by a simple description of APs from other organisms. This review will facilitate better utilization of marine APs in the biotechnology field.

  20. Promoting Uranium Immobilization by the Activities of Microbial Phosphatases

    SciTech Connect

    Martinez, Robert J.; Beazley, Melanie J.; Wilson, Jarad J.; Taillefert, Martial; Sobecky, Patricia A.

    2005-04-05

    The overall goal of this project is to examine the role of nonspecific phosphohydrolases present in naturally occurring subsurface microorganisms for the purpose of promoting the immobilization of radionuclides through the production of uranium [U(VI)] phosphate precipitates. Specifically, we hypothesize that the precipitation of U(VI) phosphate minerals may be promoted through the microbial release and/or accumulation of PO{sub 4}{sup 3-}. During this phase of the project we have been conducting assays to determine the effects of pH, inorganic anions and organic ligands on U(VI) mineral formation and precipitation when FRC bacterial isolates were grown in simulated groundwater medium. The molecular characterization of FRC isolates has also been undertaken during this phase of the project. Analysis of a subset of gram-positive FRC isolates cultured from FRC soils (Areas 1, 2 and 3) and background sediments have indicated a higher percentage of isolates exhibiting phosphatase phenotypes (i.e., in particular those surmised to be PO{sub 4}{sup 3-}-irrepressible) relative to isolates from the reference site. A high percentage of strains that exhibited such putatively PO{sub 4}{sup 3-}-irrepressible phosphatase phenotypes were also resistant to the heavy metals lead and cadmium. Previous work on FRC strains, including Arthrobacter, Bacillus and Rahnella spp., has demonstrated differences in tolerance to U(VI) toxicity (200 {micro}M) in the absence of organophosphate substrates. For example, Arthrobacter spp. exhibited the greatest tolerance to U(VI) while the Rahnella spp. have been shown to facilitate the precipitation of U(VI) from solution and the Bacillus spp. demonstrate the greatest sensitivity to acidic conditions and high concentrations of U(VI). PCR-based detection of FRC strains are being conducted to determine if non-specific acid phosphatases of the known molecular classes [i.e., classes A, B and C] are present in these FRC isolates. Additionally, these

  1. Graphical techniques for kinetic data analyses of alkaline phosphatase

    SciTech Connect

    Frazer, J.W.; Brand, H.R.

    1980-09-01

    The use of an automated reactor for the experimentation and on-line graphics for the rapid and exhaustive analysis of experimental data is described. Traditional (linear) methods are used for selecting the most promising model for the alkaline phosphatase catalyzed reaction from a set of ten models under consideration. Then, nonlinear techniques for model selection are used and compared with traditional techniques. In both approaches, interactive graphics techniques are used to advantage for evaluating various models and for examining the quality of the experimental data.

  2. Deactivation of free and stabilized acid phosphatase by urea.

    PubMed

    Gianfreda, L; Marrucci, G; Greco, G

    1986-11-01

    Tests on acid phosphatase (E.G. 3.1.3.2) deactivation by urea have been performed at two pH values. Two conditions have been used: native enzyme operating batch-wise in dilute solution and stabilized enzyme in continuous flow ultrafiltration membrane reactor. Stabilization is achieved by confining the enzyme within a concentrated solution of a linear chain polymer that forms a polarization layer over the membrane. The results provide significant information on the kinetics and thermodynamics of the complex phenomena taking place during deactivation. Deactivation by urea is also compared with thermal deactivation. PMID:18555278

  3. Regulation of Eye Development by Protein Serine/Threonine Phosphatases-1 and -2A.

    PubMed

    Wang, L; Yang, Y; Gong, X-D; Huang, Z-X; Nie, Q; Wang, Z-F; Ji, W-K; Hu, X-H; Hu, W-F; Gong, L-L; Zhang, L; Huang, S; Qi, R-L; Yang, T-H; Chen, Z-G; Liu, W-B; Liu, Y-Z; Li, D W-C

    2015-01-01

    The protein serine/threonine phosphatases-1 and -2A are major cellular phosphatases, playing a fundamental role in organisms from prokaryotes to eukaryotes. They contribute to 90% dephosphorylation in eukaryote proteins. In the eye, both phosphatases are highly expressed and display important functions in regulating normal eye development. Moreover, they are implicated in pathogenesis through modulation of stress-induced apoptosis. Here we review the recent progresses on these aspects. PMID:26592247

  4. Chemostat Culture of Escherichia coli K-12 Limited by the Activity of Alkaline Phosphatase

    PubMed Central

    King, Stagg L.; Francis, J. C.

    1975-01-01

    The growth-limiting reaction of a chemostat culture of Escherichia coli K-12 was the hydrolysis of β-glycerophosphate by alkaline phosphatase. The culture was buffered at pH 5.2 where alkaline phosphatase was unable to supply phosphate to the cell at a rate sufficient to sustain the maximum rate of growth. Alkaline phosphatase activity in this system is discussed in terms of the so-called Flip-Flop mechanism. PMID:240310

  5. The protein phosphatase-1/inhibitor-2 complex differentially regulates GSK3 dephosphorylation and increases sarcoplasmic/endoplasmic reticulum calcium ATPase 2 levels

    SciTech Connect

    King, Taj D.; Gandy, Johanna C.; Bijur, Gautam N. . E-mail: gautam@uab.edu

    2006-11-01

    The ubiquitously expressed protein glycogen synthase kinase-3 (GSK3) is constitutively active, however its activity is markedly diminished following phosphorylation of Ser21 of GSK3{alpha} and Ser9 of GSK3{beta}. Although several kinases are known to phosphorylate Ser21/9 of GSK3, for example Akt, relatively much less is known about the mechanisms that cause the dephosphorylation of GSK3 at Ser21/9. In the present study KCl-induced plasma membrane depolarization of SH-SY5Y cells, which increases intracellular calcium concentrations caused a transient decrease in the phosphorylation of Akt at Thr308 and Ser473, and GSK3 at Ser21/9. Overexpression of the selective protein phosphatase-1 inhibitor protein, inhibitor-2, increased basal GSK3 phosphorylation at Ser21/9 and significantly blocked the KCl-induced dephosphorylation of GSK3{beta}, but not GSK3{alpha}. The phosphorylation of Akt was not affected by the overexpression of inhibitor-2. GSK3 activity is known to affect sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) levels. Overexpression of inhibitor-2 or treatment of cells with the GSK3 inhibitors lithium and SB216763 increased the levels of SERCA2. These results indicate that the protein phosphatase-1/inhibitor-2 complex differentially regulates GSK3 dephosphorylation induced by KCl and that GSK3 activity regulates SERCA2 levels.

  6. [alpha]-Oxocarboxylic Acids

    ERIC Educational Resources Information Center

    Kerber, Robert C.; Fernando, Marian S.

    2010-01-01

    Several [alpha]-oxocarboxylic acids play key roles in metabolism in plants and animals. However, there are inconsistencies between the structures as commonly portrayed and the reported acid ionization constants, which result because the acids are predominantly hydrated in aqueous solution; that is, the predominant form is RC(OH)[subscript 2]COOH…

  7. From Alpha to Omega

    ERIC Educational Resources Information Center

    Czaja, Paul Clement

    2006-01-01

    The Alpha point of the authors' life as a Montessori educator began in 1959, when he was a graduate student studying philosophy at Fordham University in the Bronx, New York. While studying the works of the great American philosopher William James, the author came across the writings of Maria Montessori and immediately became captivated by her…

  8. Allosteric inhibitors of the Eya2 phosphatase are selective and inhibit Eya2-mediated cell migration.

    PubMed

    Krueger, Aaron B; Drasin, David J; Lea, Wendy A; Patrick, Aaron N; Patnaik, Samarjit; Backos, Donald S; Matheson, Christopher J; Hu, Xin; Barnaeva, Elena; Holliday, Michael J; Blevins, Melanie A; Robin, Tyler P; Eisenmesser, Elan Z; Ferrer, Marc; Simeonov, Anton; Southall, Noel; Reigan, Philip; Marugan, Juan; Ford, Heide L; Zhao, Rui

    2014-06-01

    Eya proteins are essential co-activators of the Six family of transcription factors and contain a unique tyrosine phosphatase domain belonging to the haloacid dehalogenase family of phosphatases. The phosphatase activity of Eya is important for the transcription of a subset of Six1-target genes, and also directs cells to the repair rather than apoptosis pathway upon DNA damage. Furthermore, Eya phosphatase activity has been shown to mediate transformation, invasion, migration, and metastasis of breast cancer cells, making it a potential new drug target for breast cancer. We have previously identified a class of N-arylidenebenzohydrazide compounds that specifically inhibit the Eya2 phosphatase. Herein, we demonstrate that these compounds are reversible inhibitors that selectively inhibit the phosphatase activity of Eya2, but not Eya3. Our mutagenesis results suggest that this class of compounds does not bind to the active site and the binding does not require the coordination with Mg(2+). Moreover, these compounds likely bind within a site on the opposite face of the active site, and function as allosteric inhibitors. We also demonstrate that this class of compounds inhibits Eya2 phosphatase-mediated cell migration, setting the foundation for these molecules to be developed into chemical probes for understanding the specific function of the Eya2 phosphatase and to serve as a prototype for the development of Eya2 phosphatase specific anti-cancer drugs. PMID:24755226

  9. Allosteric Inhibitors of the Eya2 Phosphatase Are Selective and Inhibit Eya2-mediated Cell Migration*

    PubMed Central

    Krueger, Aaron B.; Drasin, David J.; Lea, Wendy A.; Patrick, Aaron N.; Patnaik, Samarjit; Backos, Donald S.; Matheson, Christopher J.; Hu, Xin; Barnaeva, Elena; Holliday, Michael J.; Blevins, Melanie A.; Robin, Tyler P.; Eisenmesser, Elan Z.; Ferrer, Marc; Simeonov, Anton; Southall, Noel; Reigan, Philip; Marugan, Juan; Ford, Heide L.; Zhao, Rui

    2014-01-01

    Eya proteins are essential co-activators of the Six family of transcription factors and contain a unique tyrosine phosphatase domain belonging to the haloacid dehalogenase family of phosphatases. The phosphatase activity of Eya is important for the transcription of a subset of Six1-target genes, and also directs cells to the repair rather than apoptosis pathway upon DNA damage. Furthermore, Eya phosphatase activity has been shown to mediate transformation, invasion, migration, and metastasis of breast cancer cells, making it a potential new drug target for breast cancer. We have previously identified a class of N-arylidenebenzohydrazide compounds that specifically inhibit the Eya2 phosphatase. Herein, we demonstrate that these compounds are reversible inhibitors that selectively inhibit the phosphatase activity of Eya2, but not Eya3. Our mutagenesis results suggest that this class of compounds does not bind to the active site and the binding does not require the coordination with Mg2+. Moreover, these compounds likely bind within a site on the opposite face of the active site, and function as allosteric inhibitors. We also demonstrate that this class of compounds inhibits Eya2 phosphatase-mediated cell migration, setting the foundation for these molecules to be developed into chemical probes for understanding the specific function of the Eya2 phosphatase and to serve as a prototype for the development of Eya2 phosphatase specific anti-cancer drugs. PMID:24755226

  10. Viewing serine/threonine protein phosphatases through the eyes of drug designers

    PubMed Central

    Zhang, Mengmeng; Yogesha, S. D.; Mayfield, Joshua E.; Gill, Gordon N.; Zhang, Yan

    2015-01-01

    Protein phosphatases, as the counterpart to protein kinases, are essential for homeostatic balance of cell signaling. Small chemical compounds that modulate the specific activity of phosphatases can be powerful tools to elucidate the biological functions of these enzymes. More importantly, many phosphatases are central players in the development of pathological pathways where inactivation can reverse or delay the onset of human diseases. Therefore, potent inhibitors for such phosphatases can be of great therapeutic benefit. In contrast to the seemingly identical enzymatic mechanism and structural characterization of eukaryotic protein kinases, protein phosphatases evolved from diverse ancestors, resulting in different domain architectures, reaction mechanisms and active site properties. In this review, we will discuss for each family of serine/threonine protein phosphatases, their involvement in biological process and corresponding strategies for small chemical intervention. Recent advances in modern drug discovery technologies have markedly facilitated the identification of selective inhibitors for some members of the phosphatase family. Furthermore, the rapid growth in knowledge about structure-activity relationships related to possible new drug targets has aided the discovery of natural product inhibitors for phosphatase family. This review summarizes the current state of investigation of the small molecules that regulate the function of serine/threonine phosphatases, the challenges presented and also strategies to overcome these obstacles. PMID:23937612

  11. Prostatic acid phosphatase is the main acid phosphatase with 5'-ectonucleotidase activity in the male mouse saliva and regulates salivation.

    PubMed

    Araujo, César L; Quintero, Ileana B; Kipar, Anja; Herrala, Annakaisa M; Pulkka, Anitta E; Saarinen, Lilli; Hautaniemi, Sampsa; Vihko, Pirkko

    2014-06-01

    We have previously shown that in addition to the well-known secreted isoform of prostatic acid phosphatase (sPAP), a transmembrane isoform exists (TMPAP) that interacts with snapin (a SNARE-associated protein) and regulates the endo-/exocytic pathways. We have also shown that PAP has 5'-ectonucleotidase and thiamine monophosphatase activity and elicits antinociceptive effects in mouse models of chronic inflammatory and neuropathic pain. Therefore, to determine the physiological role of PAP in a typical exocrine organ, we studied the submandibular salivary gland (SMG) of PAP(-/-) and wild-type C57BL/6J mice by microarray analyses, microRNA sequencing, activity tests, immunohistochemistry, and biochemical and physiological analyses of saliva. We show that PAP is the main acid phosphatase in the wild-type male mouse saliva, accounting for 50% of the total acid phosphatase activity, and that it is expressed only in the granular convoluted tubules of the SMGs, where it is the only 5'-ectonucleotidase. The lack of PAP in male PAP(-/-) mice was associated with a significant increase in the salivation volume under secretagogue stimulation, overexpression of genes related to cell proliferation (Mki67, Aurkb, Birc5) and immune response (Irf7, Cxcl9, Ccl3, Fpr2), and upregulation of miR-146a in SMGs. An increased and sustained acinar cell proliferation was detected without signs of glandular hyperplasia. Our results indicate that in PAP(-/-) mice, SMG homeostasis is maintained by an innate immune response. Additionally, we suggest that in male mice, PAP via its 5'-ectonucleotidase activity and production of adenosine can elicit analgesic effects when animals lick their wounds. PMID:24717577

  12. Catalytic and substrate promiscuity: distinct multiple chemistries catalysed by the phosphatase domain of receptor protein tyrosine phosphatase.

    PubMed

    Srinivasan, Bharath; Marks, Hanna; Mitra, Sreyoshi; Smalley, David M; Skolnick, Jeffrey

    2016-07-15

    The presence of latent activities in enzymes is posited to underlie the natural evolution of new catalytic functions. However, the prevalence and extent of such substrate and catalytic ambiguity in evolved enzymes is difficult to address experimentally given the order-of-magnitude difference in the activities for native and, sometimes, promiscuous substrate/s. Further, such latent functions are of special interest when the activities concerned do not fall into the domain of substrate promiscuity. In the present study, we show a special case of such latent enzyme activity by demonstrating the presence of two mechanistically distinct reactions catalysed by the catalytic domain of receptor protein tyrosine phosphatase isoform δ (PTPRδ). The primary catalytic activity involves the hydrolysis of a phosphomonoester bond (C─O─P) with high catalytic efficiency, whereas the secondary activity is the hydrolysis of a glycosidic bond (C─O─C) with poorer catalytic efficiency. This enzyme also displays substrate promiscuity by hydrolysing diester bonds while being highly discriminative for its monoester substrates. To confirm these activities, we also demonstrated their presence on the catalytic domain of protein tyrosine phosphatase Ω (PTPRΩ), a homologue of PTPRδ. Studies on the rate, metal-ion dependence, pH dependence and inhibition of the respective activities showed that they are markedly different. This is the first study that demonstrates a novel sugar hydrolase and diesterase activity for the phosphatase domain (PD) of PTPRδ and PTPRΩ. This work has significant implications for both understanding the evolution of enzymatic activity and the possible physiological role of this new chemistry. Our findings suggest that the genome might harbour a wealth of such alternative latent enzyme activities in the same protein domain that renders our knowledge of metabolic networks incomplete. PMID:27208174

  13. Overexpression of {alpha}-catenin increases osteoblastic differentiation in mouse mesenchymal C3H10T1/2 cells

    SciTech Connect

    Kim, Dohee; Yang, Jae-Yeon; Shin, Chan Soo

    2009-05-15

    {alpha}- and {beta}-Catenin link cadherins to the actin-based cytoskeleton at adherens junctions and regulate cell-cell adhesion. Although roles of cadherins and canonical Wnt-/{beta}-catenin-signaling in osteoblastic differentiation have been extensively studied, the role of {alpha}-catenin is not known. Murine embryonic mesenchymal stem cells, C3H10T1/2 cells, were transduced with retrovirus encoding {alpha}-catenin (MSCV-{alpha}-catenin-HA-GFP). In the presence of Wnt-3A conditioned medium or osteogenic medium ({beta}-glycerol phosphate and ascorbic acid), cells overexpressing {alpha}-catenin showed enhanced osteoblastic differentiation as measured by alkaline phosphatase (ALP) staining and ALP activity assay compared to cells transduced with empty virus (MSCV-GFP). In addition, mRNA expression of osteocalcin and Runx2 was significantly increased compared to control. Cell aggregation assay revealed that {alpha}-catenin overexpression has significantly increased cell-cell aggregation. However, cellular {beta}-catenin levels (total, cytoplasmic-nuclear ratio) and {beta}-catenin-TCF/LEF transcriptional activity did not change by overexpression of {alpha}-catenin. Knock-down of {alpha}-catenin using siRNA decreased osteoblastic differentiation as measured by ALP assay. These results suggest that {alpha}-catenin overexpression increases osteoblastic differentiation by increasing cell-cell adhesion rather than Wnt-/{beta}-catenin-signaling.

  14. Functional Analysis of Dual-Specificity Protein Phosphatases in Angiogenesis.

    PubMed

    Amand, Mathieu; Erpicum, Charlotte; Gilles, Christine; Noël, Agnès; Rahmouni, Souad

    2016-01-01

    Therapeutic perspectives targeting angiogenesis in cancer stimulated an intense investigation of the mechanisms triggering and governing angiogenic processes. Several publications have highlighted the importance of typical dual-specificity phosphatases (DSPs) or MKPs in endothelial cells and their role in controlling different biological functions implicated in angiogenesis such as migration, proliferation, apoptosis, tubulogenesis, and cell adhesion. However, among atypical DSPs, the only one investigated in angiogenesis was DUSP3. We recently identified this DSP as a new key player in endothelial cells and angiogenesis. In this chapter we provide with detailed protocols and models used to investigate the role of DUSP3 in endothelial cells and angiogenesis. We start the chapter with an overview of the role of several DSPs in angiogenesis. We continue with providing a full description of a highly efficient transfection protocol to deplete DUSP3 using small interfering RNA (siRNA) in the primary human umbilical vein endothelial cells (HUVEC). We next describe the major assays used to investigate different processes involved in angiogenesis such as tube formation assay, proliferation assay and spheroids sprouting assay. We finish the chapter by validating our results in DUSP3-knockout mice using in vivo angiogenesis assays such as Matrigel plug and Lewis lung carcinoma cell subcutaneous xenograft model followed by anti-CD31 immunofluorescence and ex vivo aortic ring assay. All methods described can be adapted to other phosphatases and signaling molecules. PMID:27514814

  15. Protein phosphatase 1 suppresses androgen receptor ubiquitylation and degradation.

    PubMed

    Liu, Xiaming; Han, Weiwei; Gulla, Sarah; Simon, Nicholas I; Gao, Yanfei; Cai, Changmeng; Yang, Hongmei; Zhang, Xiaoping; Liu, Jihong; Balk, Steven P; Chen, Shaoyong

    2016-01-12

    The phosphoprotein phosphatases are emerging as important androgen receptor (AR) regulators in prostate cancer (PCa). We reported previously that the protein phosphatase 1 catalytic subunit (PP1α) can enhance AR activity by dephosphorylating a site in the AR hinge region (Ser650) and thereby decrease AR nuclear export. In this study we show that PP1α increases the expression of wildtype as well as an S650A mutant AR, indicating that it is acting through one or more additional mechanisms. We next show that PP1α binds primarily to the AR ligand binding domain and decreases its ubiquitylation and degradation. Moreover, we find that the PP1α inhibitor tautomycin increases phosphorylation of AR ubiquitin ligases including SKP2 and MDM2 at sites that enhance their activity, providing a mechanism by which PP1α may suppress AR degradation. Significantly, the tautomycin mediated decrease in AR expression was most pronounced at low androgen levels or in the presence of the AR antagonist enzalutamide. Consistent with this finding, the sensitivity of LNCaP and C4-2 PCa cells to tautomycin, as assessed by PSA synthesis and proliferation, was enhanced at low androgen levels or by treatment with enzalutamide. Together these results indicate that PP1α may contribute to stabilizing AR protein after androgen deprivation therapies, and that targeting PP1α or the AR-PP1α interaction may be effective in castration-resistant prostate cancer (CRPC). PMID:26636645

  16. The effect of vanadate on human kidney potassium dependent phosphatase.

    PubMed

    Nieder, G L; Corder, C N; Culp, P A

    1979-06-01

    This study examined the effects of vanadate on the potassium dependent phosphatase activity present in purified human kidney microsomal (Na+ + K+)-adenosine triphosphatase. Vanadate anion inhibited the K+-dependent phosphatase at a K1 of 35 nM. This inhibition was noncompetitive with the substrate, p-nitrophenylphosphate. The inhibition by vanadate at 1 mM K+ was only 45% of the inhibition that was observed at 10 mM K+. Neither preincubation of the enzyme with vanadate, nor changing the pH of the assay from 8.2 to 7.2 had any effect on the K1 for vanadate. The inclusion of 2.5 mM isoproterenol, to complex the yanadate, reversed the inhibition, as did diluting the enzymatic reaction. Vanadate also inhibited the overall (Na+ + K+)-ATPase reaction at a K1 of 1.91 microM. This inhibition was also reversible upon inclusion of isoproterenol in the assay. Increasing the level of magnesium from 6 mM to 30 mM lowered the K1 of vanadate to 0.25 microM. The possible role of vanadate as a physiological mediator of (Na+ + k+)-atpase activity is discussed. PMID:39261

  17. Plant species richness increases phosphatase activities in an experimental grassland

    NASA Astrophysics Data System (ADS)

    Hacker, Nina; Wilcke, Wolfgang; Oelmann, Yvonne

    2014-05-01

    Plant species richness has been shown to increase aboveground nutrient uptake requiring the mobilization of soil nutrient pools. For phosphorus (P) the underlying mechanisms for increased P release in soil under highly diverse grassland mixtures remain obscure because aboveground P storage and concentrations of inorganic and organic P in soil solution and differently reactive soil P pools are unrelated (Oelmann et al. 2011). The need of plants and soil microorganisms for P can increase the exudation of enzymes hydrolyzing organically bound P (phosphatases) which might represent an important release mechanism of inorganic P in a competitive environment such as highly diverse grassland mixtures. Our objectives were to test the effects of i) plant functional groups (legumes, grasses, non-leguminous tall and small herbs), and of (ii) plant species richness on microbial P (Pmic) and phosphatase activities in soil. In autumn 2013, we measured Pmic and alkaline phosphomonoesterase and phosphodiesterase activities in soil of 80 grassland mixtures comprising different community compositions and species richness (1, 2, 4, 8, 16, 60) in the Jena Experiment. In general, Pmic and enzyme activities were correlated (r = 0.59 and 0.46 for phosphomonoesterase and phosphodiesterase activities, respectively; p

  18. Functional Analysis of Protein Tyrosine Phosphatases in Thrombosis and Hemostasis.

    PubMed

    Rahmouni, Souad; Hego, Alexandre; Delierneux, Céline; Wéra, Odile; Musumeci, Lucia; Tautz, Lutz; Oury, Cécile

    2016-01-01

    Platelets are small blood cells derived from cytoplasmic fragments of megakaryocytes and play an essential role in thrombosis and hemostasis. Platelet activation depends on the rapid phosphorylation and dephosphorylation of key signaling molecules, and a number of kinases and phosphatases have been identified as major regulators of platelet function. However, the investigation of novel signaling proteins has suffered from technical limitations due to the anucleate nature of platelets and their very limited levels of mRNA and de novo protein synthesis. In the past, experimental methods were restricted to the generation of genetically modified mice and the development of specific antibodies. More recently, novel (phospho)proteomic technologies and pharmacological approaches using specific small-molecule inhibitors have added additional capabilities to investigate specific platelet proteins.In this chapter, we report methods for using genetic and pharmacological approaches to investigate the function of platelet signaling proteins. While the described experiments focus on the role of the dual-specificity phosphatase 3 (DUSP3) in platelet signaling, the presented methods are applicable to any signaling enzyme. Specifically, we describe a testing strategy that includes (1) aggregation and secretion experiments with mouse and human platelets, (2) immunoprecipitation and immunoblot assays to study platelet signaling events, (3) detailed protocols to use selected animal models in order to investigate thrombosis and hemostasis in vivo, and (4) strategies for utilizing pharmacological inhibitors on human platelets. PMID:27514813

  19. New functional aspects of the atypical protein tyrosine phosphatase VHZ

    PubMed Central

    Kuznetsov, Vyacheslav I.; Hengge, Alvan C.

    2013-01-01

    LDP3 (VHZ) is the smallest classical protein tyrosine phosphatase (PTP) known to date, and was originally misclassified as an atypical dual specificity phosphatase (DSP). Kinetic isotope effects with steady state and pre-steady state kinetics of VHZ and mutants with para-nitrophenol phosphate (pNPP) have revealed several unusual properties. VHZ is significantly more active than previously reported, but remains one of the least active PTPs. Highly unusual for a PTP, VHZ possesses two acidic residues (E134 and D65) in the active site. D65 occupies the position corresponding to the typical general acid in the PTP family. However, VHZ primarily utilizes E134 as the general acid, with D65 taking over this role when E134 is mutated. This unusual behavior is facilitated by two coexisting, but unequally populated, substrate binding modes. Unlike most classical PTPs, VHZ exhibits phosphotransferase activity. Despite the presence of the Q-loop that normally prevents alcoholysis of the phosphoenzyme intermediate in other classical PTPs, VHZ readily phosphorylates ethylene glycol. Although mutations to Q-loop residues affect this phosphotransferase activity, mutations on the IPD-loop that contains the general acid exert more control over this process. A single P68V substitution on this loop completely abolishes phosphotransferase activity. The ability of native VHZ to catalyze transphosphorylation may lead to an imbalance of intracellular phosphorylation, which could explain the correlation of its overexpression with several types of cancer. PMID:24073992

  20. Protein kinase and phosphatase activities of thylakoid membranes

    SciTech Connect

    Michel, H.; Shaw, E.K.; Bennett, J.

    1987-01-01

    Dephosphorylation of the 25 and 27 kDa light-harvesting Chl a/b proteins (LHCII) of the thylakoid membranes is catalyzed by a phosphatase which differs from previously reported thylakoid-bound phosphatases in having an alkaline pH optimum (9.0) and a requirement for Mg/sup 2 +/ ions. Dephosphorylation of the 8.3 kDa psb H gene product requires a Mg/sup 2 +/ ion concentration more than 200 fold higher than that for dephosphorylation of LHC II. The 8.3 kDa and 27 kDa proteins appear to be phosphorylated by two distinct kinases, which differ in substrate specificity and sensitivity to inhibitors. The plastoquinone antagonist 2,5-dibromo-3-methyl-6-isopropyl-benzoquinone (DBMIB) inhibits phosphorylation of the 27 kDa LHC II much more readily than phosphorylation of the 8.3 kDa protein. A similar pattern of inhibition is seen for two synthetic oligopeptides (MRKSATTKKAVC and ATQTLESSSRC) which are analogs of the phosphorylation sites of the two proteins. Possible modes of action of DBMIB are discussed. 45 refs., 7 figs., 3 tabs.

  1. Human Prostatic Acid Phosphatase: Structure, Function and Regulation

    PubMed Central

    Muniyan, Sakthivel; Chaturvedi, Nagendra K.; Dwyer, Jennifer G.; LaGrange, Chad A.; Chaney, William G.; Lin, Ming-Fong

    2013-01-01

    Human prostatic acid phosphatase (PAcP) is a 100 kDa glycoprotein composed of two subunits. Recent advances demonstrate that cellular PAcP (cPAcP) functions as a protein tyrosine phosphatase by dephosphorylating ErbB-2/Neu/HER-2 at the phosphotyrosine residues in prostate cancer (PCa) cells, which results in reduced tumorigenicity. Further, the interaction of cPAcP and ErbB-2 regulates androgen sensitivity of PCa cells. Knockdown of cPAcP expression allows androgen-sensitive PCa cells to develop the castration-resistant phenotype, where cells proliferate under an androgen-reduced condition. Thus, cPAcP has a significant influence on PCa cell growth. Interestingly, promoter analysis suggests that PAcP expression can be regulated by NF-κB, via a novel binding sequence in an androgen-independent manner. Further understanding of PAcP function and regulation of expression will have a significant impact on understanding PCa progression and therapy. PMID:23698773

  2. Role of polynucleotide kinase/phosphatase in mitochondrial DNA repair

    PubMed Central

    Tahbaz, Nasser; Subedi, Sudip; Weinfeld, Michael

    2012-01-01

    Mutations in mitochondrial DNA (mtDNA) are implicated in a broad range of human diseases and in aging. Compared to nuclear DNA, mtDNA is more highly exposed to oxidative damage due to its proximity to the respiratory chain and the lack of protection afforded by chromatin-associated proteins. While repair of oxidative damage to the bases in mtDNA through the base excision repair pathway has been well studied, the repair of oxidatively induced strand breaks in mtDNA has been less thoroughly examined. Polynucleotide kinase/phosphatase (PNKP) processes strand-break termini to render them chemically compatible for the subsequent action of DNA polymerases and ligases. Here, we demonstrate that functionally active full-length PNKP is present in mitochondria as well as nuclei. Downregulation of PNKP results in an accumulation of strand breaks in mtDNA of hydrogen peroxide-treated cells. Full restoration of repair of the H2O2-induced strand breaks in mitochondria requires both the kinase and phosphatase activities of PNKP. We also demonstrate that PNKP contains a mitochondrial-targeting signal close to the C-terminus of the protein. We further show that PNKP associates with the mitochondrial protein mitofilin. Interaction with mitofilin may serve to translocate PNKP into mitochondria. PMID:22210862

  3. Par-4: A New Activator of Myosin Phosphatase

    PubMed Central

    Vetterkind, Susanne; Lee, Eunhee; Sundberg, Eric; Poythress, Ransom H.; Tao, Terence C.; Preuss, Ute

    2010-01-01

    Myosin phosphatase (MP) is a key regulator of myosin light chain (LC20) phosphorylation, a process essential for motility, apoptosis, and smooth muscle contractility. Although MP inhibition is well studied, little is known about MP activation. We have recently demonstrated that prostate apoptosis response (Par)-4 modulates vascular smooth muscle contractility. Here, we test the hypothesis that Par-4 regulates MP activity directly. We show, by proximity ligation assays, surface plasmon resonance and coimmunoprecipitation, that Par-4 interacts with the targeting subunit of MP, MYPT1. Binding is mediated by the leucine zippers of MYPT1 and Par-4 and reduced by Par-4 phosphorylation. Overexpression of Par-4 leads to increased phosphatase activity of immunoprecipitated MP, whereas small interfering RNA knockdown of endogenous Par-4 significantly decreases MP activity and increases MYPT1 phosphorylation. LC20 phosphorylation assays demonstrate that overexpression of Par-4 reduces LC20 phosphorylation. In contrast, a phosphorylation site mutant, but not wild-type Par-4, interferes with zipper-interacting protein kinase (ZIPK)-mediated MP inhibition. We conclude from our results Par-4 operates through a “padlock” model in which binding of Par-4 to MYPT1 activates MP by blocking access to the inhibitory phosphorylation sites, and inhibitory phosphorylation of MYPT1 by ZIPK requires “unlocking” of Par-4 by phosphorylation and displacement of Par-4 from the MP complex. PMID:20130087

  4. Protein Phosphatase-1α Interacts with and Dephosphorylates Polycystin-1

    PubMed Central

    Parnell, Stephen C.; Puri, Sanjeev; Wallace, Darren P.; Calvet, James P.

    2012-01-01

    Polycystin signaling is likely to be regulated by phosphorylation. While a number of potential protein kinases and their target phosphorylation sites on polycystin-1 have been identified, the corresponding phosphatases have not been extensively studied. We have now determined that polycystin-1 is a regulatory subunit for protein phosphatase-1α (PP1α). Sequence analysis has revealed the presence of a highly conserved PP1-interaction motif in the cytosolic, C-terminal tail of polycystin-1; and we have shown that transfected PP1α specifically co-immunoprecipitates with a polycystin-1 C-tail construct. To determine whether PP1α dephosphorylates polycystin-1, a PKA-phosphorylated GST-polycystin-1 fusion protein was shown to be dephosphorylated by PP1α but not by PP2B (calcineurin). Mutations within the PP1-binding motif of polycystin-1, including an autosomal dominant polycystic kidney disease (ADPKD)-associated mutation, significantly reduced PP1α-mediated dephosphorylation of polycystin-1. The results suggest that polycystin-1 forms a holoenzyme complex with PP1α via a conserved PP1-binding motif within the polycystin-1 C-tail, and that PKA-phosphorylated polycystin-1 serves as a substrate for the holoenzyme. PMID:22675472

  5. Protein Phosphatase 1α Interacting Proteins in the Human Brain

    PubMed Central

    Esteves, Sara L.C.; Domingues, Sara C.; da Cruz e Silva, Odete A.B.; da Cruz e Silva, Edgar F.

    2012-01-01

    Abstract Protein Phosphatase 1 (PP1) is a major serine/threonine-phosphatase whose activity is dependent on its binding to regulatory subunits known as PP1 interacting proteins (PIPs), responsible for targeting PP1 to a specific cellular location, specifying its substrate or regulating its action. Today, more than 200 PIPs have been described involving PP1 in panoply of cellular mechanisms. Moreover, several PIPs have been identified that are tissue and event specific. In addition, the diversity of PP1/PIP complexes can further be achieved by the existence of several PP1 isoforms that can bind preferentially to a certain PIP. Thus, PP1/PIP complexes are highly specific for a particular function in the cell, and as such, they are excellent pharmacological targets. Hence, an in-depth survey was taken to identify specific PP1α PIPs in human brain by a high-throughput Yeast Two-Hybrid approach. Sixty-six proteins were recognized to bind PP1α, 39 being novel PIPs. A large protein interaction databases search was also performed to integrate with the results of the PP1α Human Brain Yeast Two-Hybrid and a total of 246 interactions were retrieved. PMID:22321011

  6. Ultrastructural localization of membrane phosphatases in teratocarcinoma and early embryos.

    PubMed Central

    Damjanov, I.; Cutler, L. S.; Solter, D.

    1977-01-01

    Ectodermal cells of the two- and three-germ layer-thick mouse egg-cylinders are considered to be the progenitors of embryonal carcinoma cells in embryo-derived teratocarcinomas. In an attempt to find differences between the tumor cells and equivalent embryonic cells, we have studied the electron microscopic cytochemical localization of alkaline phosphatase, 5'-nucleotidase, and Mg2+-activated adenosine triphosphatase (ATPase) in embryo-derived teratocarcinomas and mouse egg-cylinders. Alkaline phosphatase was detected in both embryonic and tumor cells, but its activity appeared much more intense in the tumor cells. No ATPase was demonstrated in embryonic ectodermal cells of 6-day-old embryos and only in occasional cells of 7- and 8-day-old embryos. No 5'-nucleotidase activity could be demonstrated in 6- to 8-day-old cylinders. There was marked ATPase and 5'-nucleotidase activity in the membranes of embryonal carcinoma cells. These data point out some differences on the plasma membrane between the embryonal carcinoma cells and equivalent embryonic cells. The potential significance of these differences is discussed with regards to the transformation of embryonic cells in tumor cells. (Am J Pathol 87:297-310, 1977). Images Figure 3 Figure 4 Figure 1 Figure 5 Figure 6 Figure 2 PMID:192083

  7. Summary of Alpha Particle Transport

    SciTech Connect

    Medley, S.S.; White, R.B.; Zweben, S.J.

    1998-08-19

    This paper summarizes the talks on alpha particle transport which were presented at the 5th International Atomic Energy Agency's Technical Committee Meeting on "Alpha Particles in Fusion Research" held at the Joint European Torus, England in September 1997.

  8. Alpha Condensates in Atomic Nuclei

    SciTech Connect

    Suzuki, Y.; Matsumura, H.

    2005-11-21

    Recent issues on Bose-Einstein condensation (BEC) of {alpha}-particles in nuclei are reviewed. A candidate of condensates is discussed for some states in 12C and 16O by defining the amount of {alpha} condensation.

  9. Alpha2-plasmin inhibitor and alpha2-macroglobulin-plasmin complexes in plasma. Quantitation by an enzyme-linked differential antibody immunosorbent assay.

    PubMed Central

    Harpel, P C

    1981-01-01

    An enzyme-linked differential antibody immunosorbent assay has been developed for the quantification of alpha2-plasmin inhibitor-plasmin and alpha2-macroglobulin-plasmin complexes. In this method the inhibitor-plasmin complex is bound to a surface by an inhibitor-specific antibody, and the plasmin bound to the inhibitor is quantified by a second antibody, rabbit antiplasminogen F(ab')2, labeled with alkaline phosphatase. The hydrolysis of p-nitrophenyl phosphate by the alkaline phosphatase is expressed in femtomoles of plasminogen per milliliter, by reference to a standard plasminogen curve. Inhibitor-enzyme complexes were generated in plasma by the addition of plasmin or of urokinase. The concentration of plasmin added was well below the plasma concentration of alpha2-plasmin inhibitor (1 microM) or of alpha2-macroglobulin (3.5 microM), so that neither inhibitor would be fully saturated with enzyme. Under these conditions increasing amounts of plasmin generated an increase in both alpha2-plasmin inhibitor-plasmin and alpha2-macroglobulin-plasmin complexes. Varying amounts of plasmin were incubated with each of the purified inhibitors in the concentration found in plasma, and the complexes. Varying amounts of plasmin were incubated with each of the purified inhibitors in the concentration found in plasma, and the complexes that formed were quantified by immunoassay. These studies made it possible to quantify the distribution of plasmin between the two inhibitors in plasmin or urokinase-treated plasma. In plasmin-treated plasma, 10% or less of the plasmin bound to both inhibitors was in complex with alpha2-macroglobulin. In contrast, between 19 and 51% of the plasmin generated in urokinase-activated plasma was bound to alpha2-macroglobulin. Thus, major changes in the distribution of plasma were observed, according to whether plasmin was added to plasma or whether plasminogen was activated endogenously. The pattern of inhibitor plasmin complexes generated in vivo by

  10. Development and identification of monoclonal antibodies against meso-Tetra (alpha,alpha,alpha,alpha,-O-phenylacetamide benzene) porphyrin.

    PubMed

    Wang, Fengyang; Huang, Xueying; Du, Li; Li, Weiguo; Qi, Chao

    2007-04-01

    The small molecule meso-Tetra (alpha,alpha,alpha,alpha-o-phenylacetamide benzene) porphyrin was synthesized through the condensation of o-nitrobenzaldehyde and pyrrole followed by reduction of the meso-tetra (o-nitrophenyl) porphyrin. The small molecule, without carrier, was used as complete antigen to immunize BALB/ C mice. Spleen cells producing high titer antibody were removed and fused with myeloma cells of SP2/0 origin. Using a conventional immunization protocol, stable murine monoclonal antibodies (MAbs) producing cell lines to meso-Tetra (alpha,alpha,alpha,alpha-o-phenylacetamide benzene) porphyrin 1F2 were obtained. Subclass determination showed that the clones produce IgG2a types of MAbs. The analytical results of HPLC and MALDI/TOFMS suggest that the purity of MAb 1F2 is 100%, and MAb 1F2 has a relative molecular weight of 156678.8 Da. Our results demonstrated that small molecule meso-Tetra (alpha,alpha,alpha,alpha-o-phenylacetamide benzene) porphyrin, as semiantigen without carrier, can elicit the formation of MAbs. PMID:17451352

  11. Alkaline Phosphatase, Soluble Extracellular Adenine Nucleotides, and Adenosine Production after Infant Cardiopulmonary Bypass

    PubMed Central

    Davidson, Jesse A.; Urban, Tracy; Tong, Suhong; Twite, Mark; Woodruff, Alan

    2016-01-01

    Rationale Decreased alkaline phosphatase activity after infant cardiac surgery is associated with increased post-operative cardiovascular support requirements. In adults undergoing coronary artery bypass grafting, alkaline phosphatase infusion may reduce inflammation. Mechanisms underlying these effects have not been explored but may include decreased conversion of extracellular adenine nucleotides to adenosine. Objectives 1) Evaluate the association between alkaline phosphatase activity and serum conversion of adenosine monophosphate to adenosine after infant cardiac surgery; 2) assess if inhibition/supplementation of serum alkaline phosphatase modulates this conversion. Methods and Research Pre/post-bypass serum samples were obtained from 75 infants <4 months of age. Serum conversion of 13C5-adenosine monophosphate to 13C5-adenosine was assessed with/without selective inhibition of alkaline phosphatase and CD73. Low and high concentration 13C5-adenosine monophosphate (simulating normal/stress concentrations) were used. Effects of alkaline phosphatase supplementation on adenosine monophosphate clearance were also assessed. Changes in serum alkaline phosphatase activity were strongly correlated with changes in 13C5-adenosine production with or without CD73 inhibition (r = 0.83; p<0.0001). Serum with low alkaline phosphatase activity (≤80 U/L) generated significantly less 13C5-adenosine, particularly in the presence of high concentration 13C5-adenosine monophosphate (10.4μmol/L vs 12.9μmol/L; p = 0.0004). Inhibition of alkaline phosphatase led to a marked decrease in 13C5-adenosine production (11.9μmol/L vs 2.7μmol/L; p<0.0001). Supplementation with physiologic dose human tissue non-specific alkaline phosphatase or high dose bovine intestinal alkaline phosphatase doubled 13C5-adenosine monophosphate conversion to 13C5-adenosine (p<0.0001). Conclusions Alkaline phosphatase represents the primary serum ectonucleotidase after infant cardiac surgery and low post

  12. Structure and chromosomal localization of the human gene of the phosphotyrosyl phosphatase activator (PTPA) of protein phosphatase 2A

    SciTech Connect

    Van Hoof, C.; Cayla, X.; Merlevede, W.; Goris, J.

    1995-07-20

    The PTPA gene encodes a specific phosphotyrosyl phosphatase activator of the dimeric form of protein phosphatase 2A. PTPA, cloned from human genomic libraries, is encoded by one single-copy gene, composed of 10 exons and 9 introns with a total length of about 60 kb. The transcription start site was determined, and the 5{prime} flanking sequence was analyzed for its potential as a promotor. This region lacks a TATA sequence in the appropriate position relative to the transcription start, is very GC-rich, and contains upstream of the transcription start four Sp1 sites, a feature common to many TATA-less promotors. Based on the homology with DNA binding consensus sequences of transcription factors, we identified in this promotor region several putative DNA binding sites for transcription factors, such as NF-{kappa}B, Myb, Ets-1, Myc, and ATF. Transfection experiments with a construct containing the PTPA promotor region inserted 5{prime} of a luciferase reporter gene revealed that the 5{prime} flanking sequence of the PTPA gene indeed displayed promotor activity that seems to be cell-line dependent. By fluorescence in situ hybridization and G-banding, the PTPA gene was localized to the 9q34 region. The PTPA gene is positioned centromeric of c-abl in a region embracing several genes implicated in oncogenesis. 28 refs., 8 figs., 1 tab.

  13. Protein phosphatase 2A dysfunction in Alzheimer’s disease

    PubMed Central

    Sontag, Jean-Marie; Sontag, Estelle

    2014-01-01

    Protein phosphatase 2A (PP2A) is a large family of enzymes that account for the majority of brain Ser/Thr phosphatase activity. While PP2A enzymes collectively modulate most cellular processes, sophisticated regulatory mechanisms are ultimately responsible for ensuring isoform-specific substrate specificity. Of particular interest to the Alzheimer’s disease (AD) field, alterations in PP2A regulators and PP2A catalytic activity, subunit expression, methylation and/or phosphorylation, have been reported in AD-affected brain regions. “PP2A” dysfunction has been linked to tau hyperphosphorylation, amyloidogenesis and synaptic deficits that are pathological hallmarks of this neurodegenerative disorder. Deregulation of PP2A enzymes also affects the activity of many Ser/Thr protein kinases implicated in AD. This review will more specifically discuss the role of the PP2A/Bα holoenzyme and PP2A methylation in AD pathogenesis. The PP2A/Bα isoform binds to tau and is the primary tau phosphatase. Its deregulation correlates with increased tau phosphorylation in vivo and in AD. Disruption of PP2A/Bα-tau protein interactions likely contribute to tau deregulation in AD. Significantly, alterations in one-carbon metabolism that impair PP2A methylation are associated with increased risk for sporadic AD, and enhanced AD-like pathology in animal models. Experimental studies have linked deregulation of PP2A methylation with down-regulation of PP2A/Bα, enhanced phosphorylation of tau and amyloid precursor protein, tau mislocalization, microtubule destabilization and neuritic defects. While it remains unclear what are the primary events that underlie “PP2A” dysfunction in AD, deregulation of PP2A enzymes definitely affects key players in the pathogenic process. As such, there is growing interest in developing PP2A-centric therapies for AD, but this may be a daunting task without a better understanding of the regulation and function of specific PP2A enzymes. PMID:24653673

  14. Protein tyrosine and serine–threonine phosphatases in the sea urchin, Strongylocentrotus purpuratus: Identification and potential functions

    PubMed Central

    Byrum, C.A.; Walton, K.D.; Robertson, A.J.; Carbonneau, S.; Thomason, R.T.; Coffman, J.A.; McClay, D.R.

    2011-01-01

    Protein phosphatases, in coordination with protein kinases, play crucial roles in regulation of signaling pathways. To identify protein tyrosine phosphatases (PTPs) and serine–threonine (ser–thr) phosphatases in the Strongylocentrotus purpuratus genome, 179 annotated sequences were studied (122 PTPs, 57 ser–thr phosphatases). Sequence analysis identified 91 phosphatases (33 conventional PTPs, 31 dual specificity phosphatases, 1 Class III Cysteine-based PTP, 1 Asp-based PTP, and 25 ser–thr phosphatases). Using catalytic sites, levels of conservation and constraint in amino acid sequence were examined. Nine of 25 receptor PTPs (RPTPs) corresponded to human, nematode, or fly homologues. Domain structure revealed that sea urchin-specific RPTPs including two, PTPRLec and PTPRscav, may act in immune defense. Embryonic transcription of each phosphatase was recorded from a high-density oligonucleotide tiling microarray experiment. Most RPTPs are expressed at very low levels, whereas nonreceptor PTPs (NRPTPs) are generally expressed at moderate levels. High expression was detected in MAP kinase phosphatases (MKPs) and numerous ser–thr phosphatases. For several expressed NRPTPs, MKPs, and ser–thr phosphatases, morpholino antisense-mediated knockdowns were performed and phenotypes obtained. Finally, to assess roles of annotated phosphatases in endomesoderm formation, a literature review of phosphatase functions in model organisms was superimposed on sea urchin developmental pathways to predict areas of functional activity. PMID:17087928

  15. Enhancing Potato System Sustainability: Crop Rotation Impacts on Soil Phosphatase Activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potato is a species with a low efficiency of acquiring soil P. Rotation crops may potentially influence P uptake by potato by increasing soil organic acids, phosphatase activity, and microbial biomass. However, this kind of information is very limited. We measured the activities of acid phosphatase,...

  16. Okadaic acid-sensitive protein phosphatases constrain phrenic long-term facilitation after sustained hypoxia.

    PubMed

    Wilkerson, Julia E R; Satriotomo, Irawan; Baker-Herman, Tracy L; Watters, Jyoti J; Mitchell, Gordon S

    2008-03-12

    Phrenic long-term facilitation (pLTF) is a serotonin-dependent form of pattern-sensitive respiratory plasticity induced by intermittent hypoxia (IH), but not sustained hypoxia (SH). The mechanism(s) underlying pLTF pattern sensitivity are unknown. SH and IH may differentially regulate serine/threonine protein phosphatase activity, thereby inhibiting relevant protein phosphatases uniquely during IH and conferring pattern sensitivity to pLTF. We hypothesized that spinal protein phosphatase inhibition would relieve this braking action of protein phosphatases, thereby revealing pLTF after SH. Anesthetized rats received intrathecal (C4) okadaic acid (25 nm) before SH (25 min, 11% O(2)). Unlike (vehicle) control rats, SH induced a significant pLTF in okadaic acid-treated rats that was indistinguishable from rats exposed to IH (three 5 min episodes, 11% O(2)). IH and SH with okadaic acid may elicit pLTF by similar, serotonin-dependent mechanisms, because intravenous methysergide blocks pLTF in rats receiving IH or okadaic acid plus SH. Okadaic acid did not alter IH-induced pLTF. In summary, pattern sensitivity in pLTF may reflect differential regulation of okadaic acid-sensitive serine/threonine phosphatases; presumably, these phosphatases are less active during/after IH versus SH. The specific okadaic acid-sensitive phosphatase(s) constraining pLTF and their spatiotemporal dynamics during and/or after IH and SH remain to be determined. PMID:18337426

  17. Sac2/INPP5F is an inositol 4-phosphatase that functions in the endocytic pathway

    PubMed Central

    Nakatsu, Fubito; Messa, Mirko; Nández, Ramiro; Czapla, Heather; Zou, Yixiao; Strittmatter, Stephen M.

    2015-01-01

    The recruitment of inositol phosphatases to endocytic membranes mediates dephosphorylation of PI(4,5)P2, a phosphoinositide concentrated in the plasma membrane, and prevents its accumulation on endosomes. The importance of the conversion of PI(4,5)P2 to PtdIns during endocytosis is demonstrated by the presence of both a 5-phosphatase and a 4-phosphatase (Sac domain) module in the synaptojanins, endocytic PI(4,5)P2 phosphatases conserved from yeast to humans and the only PI(4,5)P2 phosphatases in yeast. OCRL, another 5-phosphatase that couples endocytosis to PI(4,5)P2 dephosphorylation, lacks a Sac domain. Here we show that Sac2/INPP5F is a PI4P phosphatase that colocalizes with OCRL on endocytic membranes, including vesicles formed by clathrin-mediated endocytosis, macropinosomes, and Rab5 endosomes. An OCRL–Sac2/INPP5F interaction could be demonstrated by coimmunoprecipitation and was potentiated by Rab5, whose activity is required to recruit Sac2/INPP5F to endosomes. Sac2/INPP5F and OCRL may cooperate in the sequential dephosphorylation of PI(4,5)P2 at the 5 and 4 position of inositol in a partnership that mimics that of the two phosphatase modules of synaptojanin. PMID:25869668

  18. Fluorescence labelling of phosphatase activity in digestive glands of carnivorous plants.

    PubMed

    Płachno, B J; Adamec, L; Lichtscheidl, I K; Peroutka, M; Adlassnig, W; Vrba, J

    2006-11-01

    A new ELF (enzyme labelled fluorescence) assay was applied to detect phosphatase activity in glandular structures of 47 carnivorous plant species, especially Lentibulariaceae, in order to understand their digestive activities. We address the following questions: (1) Are phosphatases produced by the plants and/or by inhabitants of the traps? (2) Which type of hairs/glands is involved in the production of phosphatases? (3) Is this phosphatase production a common feature among carnivorous plants or is it restricted to evolutionarily advanced species? Our results showed activity of the phosphatases in glandular structures of the majority of the plants tested, both from the greenhouse and from sterile culture. In addition, extracellular phosphatases can also be produced by trap inhabitants. In Utricularia, activity of phosphatase was detected in internal glands of 27 species from both primitive and advanced sections and different ecological groups. Further positive reactions were found in Genlisea, Pinguicula, Aldrovanda, Dionaea, Drosera, Drosophyllum, Nepenthes, and Cephalotus. In Utricularia and Genlisea, enzymatic secretion was independent of stimulation by prey. Byblis and Roridula are usually considered as "proto-carnivores", lacking digestive enzymes. However, we found high activity of phosphatases in both species. Thus, they should be classified as true carnivores. We suggest that the inflorescence of Byblis and some Pinguicula species might also be an additional "carnivorous organ", which can trap a prey, digest it, and finally absorb available nutrients. PMID:16865659

  19. Relationship between phosphorus forms and phosphatase activity in soils amended with poultry manure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Up to 80% of the phosphorus (P) in poultry manure (PM) can be present in organic forms that require mineralization via phosphatase enzymes prior to plant utilization. To determine the correlation between soil P distribution and phosphatase activity we sequentially extracted two Maine soils amended...

  20. Enhanced cell adhesion on bioinert ceramics mediated by the osteogenic cell membrane enzyme alkaline phosphatase.

    PubMed

    Aminian, Alieh; Shirzadi, Bahareh; Azizi, Zahra; Maedler, Kathrin; Volkmann, Eike; Hildebrand, Nils; Maas, Michael; Treccani, Laura; Rezwan, Kurosch

    2016-12-01

    Functional bone and dental implant materials are required to guide cell response, offering cues that provide specific instructions to cells at the implant/tissue interface while maintaining full biocompatibility as well as the desired structural requirements and functions. In this work we investigate the influence of covalently immobilized alkaline phosphatase (ALP), an enzyme involved in bone mineralization, on the first contact and initial cell adhesion. To this end, ALP is covalently immobilized by carbodiimide-mediated chemoligation on two highly bioinert ceramics, alpha-alumina (Al2O3) and yttria-stabilized zirconia (Y-TZP) that are well-established for load-bearing applications. The physicochemical surface properties are evaluated by profilometry, zeta potential and water contact angle measurements. The initial cell adhesion of human osteoblasts (HOBs), human osteoblast-like cells (MG-63) and mesenchymal stromal cells (hMSCs) was investigated. Cell adhesion was assessed at serum free condition via quantification of percentage of adherent cells, adhesion area and staining of the focal adhesion protein vinculin. Our findings show that after ALP immobilization, the Al2O3 and Y-TZP surfaces gained a negative charge and their hydrophilicity was increased. In the presence of surface-immobilized ALP, a higher cell adhesion, more pronounced cell spreading and a higher number of focal contact points were found. Thereby, this work gives evidence that surface functionalization with ALP can be utilized to modify inert materials for biological conversion and faster bone regeneration on inert and potentially load-bearing implant materials. PMID:27612703

  1. Characterization of a soluble phosphatidic acid phosphatase in bitter melon (Momordica charantia).

    PubMed

    Cao, Heping; Sethumadhavan, Kandan; Grimm, Casey C; Ullah, Abul H J

    2014-01-01

    Momordica charantia is often called bitter melon, bitter gourd or bitter squash because its fruit has a bitter taste. The fruit has been widely used as vegetable and herbal medicine. Alpha-eleostearic acid is the major fatty acid in the seeds, but little is known about its biosynthesis. As an initial step towards understanding the biochemical mechanism of fatty acid accumulation in bitter melon seeds, this study focused on a soluble phosphatidic acid phosphatase (PAP, 3-sn-phosphatidate phosphohydrolase, EC 3.1.3.4) that hydrolyzes the phosphomonoester bond in phosphatidate yielding diacylglycerol and P(i). PAPs are typically categorized into two subfamilies: Mg(2+)-dependent soluble PAP and Mg(2+)-independent membrane-associated PAP. We report here the partial purification and characterization of an Mg(2+)-independent PAP activity from developing cotyledons of bitter melon. PAP protein was partially purified by successive centrifugation and UNOsphere Q and S columns from the soluble extract. PAP activity was optimized at pH 6.5 and 53-60 °C and unaffected by up to 0.3 mM MgCl2. The K(m) and Vmax values for dioleoyl-phosphatidic acid were 595.4 µM and 104.9 ηkat/mg of protein, respectively. PAP activity was inhibited by NaF, Na(3)VO(4), Triton X-100, FeSO4 and CuSO4, but stimulated by MnSO4, ZnSO4 and Co(NO3)2. In-gel activity assay and mass spectrometry showed that PAP activity was copurified with a number of other proteins. This study suggests that PAP protein is probably associated with other proteins in bitter melon seeds and that a new class of PAP exists as a soluble and Mg(2+)-independent enzyme in plants. PMID:25203006

  2. Characterization of a Soluble Phosphatidic Acid Phosphatase in Bitter Melon (Momordica charantia)

    PubMed Central

    Cao, Heping; Sethumadhavan, Kandan; Grimm, Casey C.; Ullah, Abul H. J.

    2014-01-01

    Momordica charantia is often called bitter melon, bitter gourd or bitter squash because its fruit has a bitter taste. The fruit has been widely used as vegetable and herbal medicine. Alpha-eleostearic acid is the major fatty acid in the seeds, but little is known about its biosynthesis. As an initial step towards understanding the biochemical mechanism of fatty acid accumulation in bitter melon seeds, this study focused on a soluble phosphatidic acid phosphatase (PAP, 3-sn-phosphatidate phosphohydrolase, EC 3.1.3.4) that hydrolyzes the phosphomonoester bond in phosphatidate yielding diacylglycerol and Pi. PAPs are typically categorized into two subfamilies: Mg2+-dependent soluble PAP and Mg2+-independent membrane-associated PAP. We report here the partial purification and characterization of an Mg2+-independent PAP activity from developing cotyledons of bitter melon. PAP protein was partially purified by successive centrifugation and UNOsphere Q and S columns from the soluble extract. PAP activity was optimized at pH 6.5 and 53–60°C and unaffected by up to 0.3 mM MgCl2. The Km and Vmax values for dioleoyl-phosphatidic acid were 595.4 µM and 104.9 ηkat/mg of protein, respectively. PAP activity was inhibited by NaF, Na3VO4, Triton X-100, FeSO4 and CuSO4, but stimulated by MnSO4, ZnSO4 and Co(NO3)2. In-gel activity assay and mass spectrometry showed that PAP activity was copurified with a number of other proteins. This study suggests that PAP protein is probably associated with other proteins in bitter melon seeds and that a new class of PAP exists as a soluble and Mg2+-independent enzyme in plants. PMID:25203006

  3. Alpha-globin loci in homozygous beta-thalassemia intermedia.

    PubMed

    Triadou, P; Lapoumeroulie, C; Girot, R; Labie, D

    1983-01-01

    Homozygous beta-thalassemia intermediate (TI) differs from thalassemia major (TM) in being less severe clinically. Associated alpha-thalassemia could account for the TI phenotype by reducing the alpha/non-alpha chain imbalance. We have analyzed the alpha loci of 9 TI and 11 TM patients by restriction endonuclease mapping. All the TM and 7 of the TI patients have the normal complement of four alpha-globin genes (alpha alpha/alpha alpha). One TI patient has three alpha-globin genes (alpha alpha/-alpha), and another TI patient has five alpha genes (alpha alpha/alpha alpha alpha). PMID:6305827

  4. Alkaline phosphatase activity in normal and inflamed dental pulps.

    PubMed

    Spoto, G; Fioroni, M; Rubini, C; Tripodi, D; Di Stilio, M; Piattelli, A

    2001-03-01

    Alkaline phosphatase (ALP) seems to be important in the formation of mineralized tissues. High levels of ALP have been demonstrated in dental pulp cells. In the present study ALP activity was analyzed in normal healthy human dental pulps, in reversible pulpitis, and in irreversible pulpitis. Enzymatic ALP control values for the normal healthy pulps were 110.96+/-20.93. In the reversible pulpitis specimens the ALP activity increased almost eight times to 853.6+/-148.27. In the irreversible pulpitis specimens the values decreased sharply to 137.15+/-21.28 and were roughly equivalent to those seen in normal healthy pulps. The differences between the groups (control vs. reversible pulpitis and reversible pulpitis vs. irreversible pulpitis) were statistically significant. These results could point to a role of ALP in the initial pulp response after injury. PMID:11487147

  5. Protein-Tyrosine Phosphatase 1B Substrates and Metabolic Regulation

    PubMed Central

    Bakke, Jesse; Haj, Fawaz G.

    2014-01-01

    Metabolic homeostasis requires integration of complex signaling networks which, when deregulated, contribute to metabolic syndrome and related disorders. Protein-tyrosine phosphatase 1B (PTP1B) has emerged as a key regulator of signaling networks that are implicated in metabolic diseases such as obesity and type 2 diabetes. In this review, we examine mechanisms that regulate PTP1B-substrate interaction, enzymatic activity and experimental approaches to identify PTP1B substrates. We then highlight findings that implicate PTP1B in metabolic regulation. In particular, insulin and leptin signaling are discussed as well as recently identified PTP1B substrates that are involved in endoplasmic reticulum stress response, cell-cell communication, energy balance and vesicle trafficking. In summary, PTP1B exhibits exquisite substrate specificity and is an outstanding pharmaceutical target for obesity and type 2 diabetes. PMID:25263014

  6. Decoding signals for membrane protein assembly using alkaline phosphatase fusions.

    PubMed Central

    McGovern, K; Ehrmann, M; Beckwith, J

    1991-01-01

    We have used genetic methods to investigate the role of the different domains of a bacterial cytoplasmic membrane protein, MalF, in determining its topology. This was done by analyzing the effects of MalF topology of deleting various domains of the protein using MalF-alkaline phosphatase fusion proteins. Our results show that the cytoplasmic domains of the protein are the pre-eminent topogenic signals. These domains contain information that determines their cytoplasmic location and, thus, the orientation of the membrane spanning segments surrounding them. Periplasmic domains do not appear to have equivalent information specifying their location and membrane spanning segments do not contain information defining their orientation in the membrane. The strength of cytoplasmic domains as topogenic signals varies, correlated with the density of positively charged amino acids within them. Images PMID:1915262

  7. Methods to monitor classical protein-tyrosine phosphatase oxidation

    PubMed Central

    Karisch, Robert; Neel, Benjamin G.

    2012-01-01

    SUMMARY Reactive oxygen species (ROS), particularly H2O2, act as intracellular second messengers in many signaling pathways. Protein-tyrosine phosphatases (PTPs) are now believed to be important targets of ROS. PTPs contain a conserved catalytic cysteine with an unusually low pKa. This property allows PTPs to execute nucleophilic attack on substrate phosphotyrosyl residues, but also renders them highly susceptible to oxidation. Reversible oxidation, which inactivates PTPs, is emerging as an important cellular regulatory mechanism and might contribute to human diseases, including cancer. Given their potential toxicity, it seems likely that ROS generation is highly controlled within cells to restrict oxidation to those PTPs that must be inactivated for signaling to proceed. Thus, identifying ROS-inactivated PTPs could be tantamount to finding the PTP(s) that critically regulate a specific signaling pathway. This article provides an overview of the methods currently available to identify and quantify PTP oxidation and outlines future challenges in redox signaling. PMID:22577968

  8. Intramolecular dynamics of structure of alkaline phosphatase from Escherichia coli

    NASA Astrophysics Data System (ADS)

    Mazhul, Vladimir M.; Mjakinnik, Igor V.; Volkova, Alena N.

    1995-01-01

    The luminescent analysis with nano- and millisecond time resolution of intramolecular dynamics of Escherichia coli alkaline phosphatase was carried out. The effect of pH within the range 7.2 - 9.0, thermal inactivation, limited proteolysis by trypsin, binding of pyrophosphate, interconversion of enzyme and apoenzyme, the replacement of Zn2+ and Mg2+ in the active site by Cd2+ and Ni2+ on the spectral and kinetic parameters of luminescence was investigated. The essential changes of the level of nano- and millisecond dynamics of protein structure were found to correlate with the shift of enzymatic activity. The importance of small- and large-scale flexibility of protein structure for the act of enzymatic catalysis realization was shown.

  9. The influence of complexing pharmaceutical compositions on alkaline phosphatase

    NASA Astrophysics Data System (ADS)

    Atyaksheva, L. F.; Chukhrai, E. S.; Stepina, N. D.; Novikova, N. N.; Yur'eva, E. A.

    2011-06-01

    It is established that the pharmaceutical compositions xydiphon, medifon, succimer, and EDTA, which are used as complexing agents for accelerating the excretion of heavy metals from human organism, at certain concentrations inhibit enzyme alkaline phosphatase (AP). It is concluded that xydiphon and EDTA have a noticeable effect on AP activity at concentrations over 0.01 mM; medifon and succimer, at concentrations of over 0.3-0.5 mM. The enzyme's inhibition constants and type of inhibition are determined. Xydiphon is found to manifest the highest affinity to AP ( K I = 0.35 mM). It is shown by kinetic analysis that dissociative chemoinactivation of the enzyme takes place under the action of complexing agents. The corresponding kinetic parameters are calculated.

  10. Establishing Quantitative Standards for Residual Alkaline Phosphatase in Pasteurized Milk.

    PubMed

    Kim, Dong-Hyeon; Chon, Jung-Whan; Lim, Jong-Soo; Kim, Hong-Seok; Kang, Il-Byeong; Jeong, Dana; Song, Kwang-Young; Kim, Hyunsook; Kim, Kwang-Yup; Seo, Kun-Ho

    2016-01-01

    The alkaline phosphatase (ALP) assay is a rapid and convenient method for verifying milk pasteurization. Since colorimetric ALP assays rely on subjective visual assessments, their results are especially unreliable near the detection limits. In this study, we attempted to establish quantitative criteria for residual ALP in milk by using a more objective method based on spectrophotometric measurements. Raw milk was heat-treated for 0, 10, 20, 30, and 40 min and then subjected to ALP assays. The quantitative criteria for residual ALP in the milk was determined as 2 μg phenol/mL of milk, which is just above the ALP value of milk samples heat-treated for 30 min. These newly proposed methodology and criteria could facilitate the microbiological quality control of milk. PMID:27194927

  11. Follow-up on the Berg acid phosphatase test.

    PubMed

    Schiff, A F

    1998-03-01

    Approximately 42 years ago, the Berg acid phosphatase (AP) test (1) was accepted in most rape treatment centers nationally as the standard to determine whether sexual intercourse or related actions in any form had occurred. More specifically, the test was designed to determine the presence of a certain enzyme. In October 1969, I published an article making the test simpler (2) and reviewing the history of various tests for the detection of AP, an enzyme found in great abundance in seminal fluid. Both AP-impregnated material and refrigerated reagents had been saved along with a quantity of seminal fluid used in the original tests. The objectives of this study were to determine whether 25-year-old seminal fluid in any form can still be identified by the AP test and whether 25-year-old chemicals have remained stable and are still usable. PMID:9539395

  12. Covalent Docking Predicts Substrates for Haloalkanoate Dehalogenase Superfamily Phosphatases

    PubMed Central

    2015-01-01

    Enzyme function prediction remains an important open problem. Though structure-based modeling, such as metabolite docking, can identify substrates of some enzymes, it is ill-suited to reactions that progress through a covalent intermediate. Here we investigated the ability of covalent docking to identify substrates that pass through such a covalent intermediate, focusing particularly on the haloalkanoate dehalogenase superfamily. In retrospective assessments, covalent docking recapitulated substrate binding modes of known cocrystal structures and identified experimental substrates from a set of putative phosphorylated metabolites. In comparison, noncovalent docking of high-energy intermediates yielded nonproductive poses. In prospective predictions against seven enzymes, a substrate was identified for five. For one of those cases, a covalent docking prediction, confirmed by empirical screening, and combined with genomic context analysis, suggested the identity of the enzyme that catalyzes the orphan phosphatase reaction in the riboflavin biosynthetic pathway of Bacteroides. PMID:25513739

  13. The effect of sorbitol on acid phosphatase deactivation.

    PubMed

    Gianfreda, L; Toscano, G; Pirozzi, D; Greco, G

    1991-12-01

    Acid phosphatase thermal deactivation follows a complex path: an initial decay toward an equilibrium distribution of at least two intermediate structures, mutually at the equilibrium, followed by a final breakdown toward a completely inactive enzyme configuration. The results obtained in the presence of sorbitol have been compared to those produced in the course of purely thermal deactivation of the native enzyme. For any sobitol concentration, an equivalent temperature is calculated that results in exactly the same activity-versus-time profile. This suggests enzyme deactivation to be controlled by a single, unchanging step. Immobilized enzyme runs have been performed, as well, by entrapping acid phosphates within a polymeric network formed onto the upstream surface of an ultrafiltration membrane. The stabilizing effect of entrapment cumulates with that produced by sorbitol. In this case, however, an equivalent temperature cannot be determined, thus indicating that a different deactivation mechanism is followed. PMID:18600710

  14. Establishing Quantitative Standards for Residual Alkaline Phosphatase in Pasteurized Milk

    PubMed Central

    Chon, Jung-Whan; Kim, Hyunsook; Kim, Kwang-Yup

    2016-01-01

    The alkaline phosphatase (ALP) assay is a rapid and convenient method for verifying milk pasteurization. Since colorimetric ALP assays rely on subjective visual assessments, their results are especially unreliable near the detection limits. In this study, we attempted to establish quantitative criteria for residual ALP in milk by using a more objective method based on spectrophotometric measurements. Raw milk was heat-treated for 0, 10, 20, 30, and 40 min and then subjected to ALP assays. The quantitative criteria for residual ALP in the milk was determined as 2 μg phenol/mL of milk, which is just above the ALP value of milk samples heat-treated for 30 min. These newly proposed methodology and criteria could facilitate the microbiological quality control of milk. PMID:27194927

  15. The involvement of glucose-6-phosphatase in mucilage secretion by root cap cells of Zea mays

    NASA Technical Reports Server (NTRS)

    Moore, R.; McClelen, C. E.

    1985-01-01

    In order to determine the involvement of glucose-6-phosphatase in mucilage secretion by root cap cells, we have cytochemically localized the enzyme in columella and peripheral cells of root caps of Zea mays. Glucose-6-phosphatase is associated with the plasmalemma and cell wall of columella cells. As columella cells differentiate into peripheral cells and begin to produce and secrete mucilage, glucose-6-phosphatase staining intensifies and becomes associated with the mucilage and, to a lesser extent, the cell wall. Cells being sloughed from the cap are characterized by glucose-6-phosphatase staining being associated with the vacuole and plasmalemma. These changes in enzyme localization during cellular differentiation in root caps suggest that glucose-6-phosphatase is involved in the production and/or secretion of mucilage by peripheral cells of Z. mays.

  16. Lack of relationship between activity of intestinal alkaline phosphatase and calcium or phosphate absorption.

    PubMed

    Asteggiano, C; Tolosa, N; Pereira, R; Moreno, J; Cañas, F

    1981-01-01

    The effects of vitamin D3 and the aqueous extract of Solanum malacoxylon on intestinal alkaline phosphatase and tissue phosphate content were studied on rachitic chicks treated with large doses of ethane-1-hydroxy-1,1 diphosphonate (EHDP). The EHDP treatment blocks the increase of intestinal calcium or phosphate absorption induced by the vitamin D3, while it has no effects on the rise of intestinal alkaline phosphatase activity or the increment in tissue phosphate content. The lack of correlation between the increment of alkaline phosphatase and that of Ca or phosphate absorption in vitamin D3 plus EHDP treated chicks excludes a participation of the alkaline phosphatase in the mechanism of Ca or P intestinal absorption. The Ca or phosphorus absorption are elicited specifically by 1,25-(OH)2-D3, while alkaline phosphatase activity and phosphate tissue concentration respond to a broader spectrum of stimuli. PMID:6316731

  17. Mannitol metabolism in brown algae involves a new phosphatase family.

    PubMed

    Groisillier, Agnès; Shao, Zhanru; Michel, Gurvan; Goulitquer, Sophie; Bonin, Patricia; Krahulec, Stefan; Nidetzky, Bernd; Duan, Delin; Boyen, Catherine; Tonon, Thierry

    2014-02-01

    Brown algae belong to a phylogenetic lineage distantly related to green plants and animals, and are found predominantly in the intertidal zone, a harsh and frequently changing environment. Because of their unique evolutionary history and of their habitat, brown algae feature several peculiarities in their metabolism. One of these is the mannitol cycle, which plays a central role in their physiology, as mannitol acts as carbon storage, osmoprotectant, and antioxidant. This polyol is derived directly from the photoassimilate fructose-6-phosphate via the action of a mannitol-1-phosphate dehydrogenase and a mannitol-1-phosphatase (M1Pase). Genome analysis of the brown algal model Ectocarpus siliculosus allowed identification of genes potentially involved in the mannitol cycle. Among these, two genes coding for haloacid dehalogenase (HAD)-like enzymes were suggested to correspond to M1Pase activity, and thus were named EsM1Pase1 and EsM1Pase2, respectively. To test this hypothesis, both genes were expressed in Escherichia coli. Recombinant EsM1Pase2 was shown to hydrolyse the phosphate group from mannitol-1-phosphate to produce mannitol but was not active on the hexose monophosphates tested. Gene expression analysis showed that transcription of both E. siliculosus genes was under the influence of the diurnal cycle. Sequence analysis and three-dimensional homology modelling indicated that EsM1Pases, and their orthologues in Prasinophytes, should be seen as founding members of a new family of phosphatase with original substrate specificity within the HAD superfamily of proteins. This is the first report describing the characterization of a gene encoding M1Pase activity in photosynthetic organisms. PMID:24323504

  18. Identification and enzymatic characterization of acid phosphatase from Burkholderia gladioli

    PubMed Central

    2014-01-01

    Background The genus Burkholderia is widespread in diverse ecological niches, the majority of known species are soil bacteria that exhibit different types of non-pathogenic interactions with plants. Burkholderia species are versatile organisms that solubilize insoluble minerals through the production of organic acids, which increase the availability of nutrients for the plant. Therefore these bacteria are promising candidates for biotechnological applications. Results Burkholderia sp. (R 3.25 isolate) was isolated from agricultural soil in Ponta Grossa-PR-Brazil and identified through analysis of the 16S rDNA as a strain classified as Burkholderia gladioli. The expression of membrane-bound acid phosphatase (MBAcP) was strictly regulated with optimal expression at a concentration of phosphorus 5 mM. The apparent optimum pH for the hydrolysis of p-nitrophenylphosphate (PNPP) was 6.0. The hydrolysis of PNPP by the enzyme exhibited a hyperbolic relationship with increasing concentration of substrate and no inhibition by excess of substrate was observed. Kinetic data revealed that the hydrolysis of PNPP exhibited cooperative kinetics with n = 1.3, Vm = 113.5 U/mg and K0.5 = 65 μM. The PNPPase activity was inhibited by vanadate, p-hydroxymercuribenzoate, arsenate and phosphate, however the activity was not inhibited by calcium, levamisole, sodium tartrate, EDTA, zinc, magnesium, cobalt, ouabain, oligomycin or pantoprazol. Conclusion The synthesis of membrane-bound non-specific acid phosphatase, strictly regulated by phosphate, and its properties suggest that this bacterium has a potential biotechnological application to solubilize phosphate in soils with low levels of this element, for specific crops. PMID:24713147

  19. Hyperphosphatemia, Phosphoprotein Phosphatases, and Microparticle Release in Vascular Endothelial Cells

    PubMed Central

    Abbasian, Nima; Burton, James O.; Herbert, Karl E.; Tregunna, Barbara-Emily; Brown, Jeremy R.; Ghaderi-Najafabadi, Maryam; Brunskill, Nigel J.; Goodall, Alison H.

    2015-01-01

    Hyperphosphatemia in patients with advanced CKD is thought to be an important contributor to cardiovascular risk, in part because of endothelial cell (EC) dysfunction induced by inorganic phosphate (Pi). Such patients also have an elevated circulating concentration of procoagulant endothelial microparticles (MPs), leading to a prothrombotic state, which may contribute to acute occlusive events. We hypothesized that hyperphosphatemia leads to MP formation from ECs through an elevation of intracellular Pi concentration, which directly inhibits phosphoprotein phosphatases, triggering a global increase in phosphorylation and cytoskeletal changes. In cultured human ECs (EAhy926), incubation with elevated extracellular Pi (2.5 mM) led to a rise in intracellular Pi concentration within 90 minutes. This was mediated by PiT1/slc20a1 Pi transporters and led to global accumulation of tyrosine- and serine/threonine-phosphorylated proteins, a marked increase in cellular Tropomyosin-3, plasma membrane blebbing, and release of 0.1- to 1-μm-diameter MPs. The effect of Pi was independent of oxidative stress or apoptosis. Similarly, global inhibition of phosphoprotein phosphatases with orthovanadate or fluoride yielded a global protein phosphorylation response and rapid release of MPs. The Pi-induced MPs expressed VE-cadherin and superficial phosphatidylserine, and in a thrombin generation assay, they displayed significantly more procoagulant activity than particles derived from cells incubated in medium with a physiologic level of Pi (1 mM). These data show a mechanism of Pi-induced cellular stress and signaling, which may be widely applicable in mammalian cells, and in ECs, it provides a novel pathologic link between hyperphosphatemia, generation of MPs, and thrombotic risk. PMID:25745026

  20. Hyperphosphatemia, Phosphoprotein Phosphatases, and Microparticle Release in Vascular Endothelial Cells.

    PubMed

    Abbasian, Nima; Burton, James O; Herbert, Karl E; Tregunna, Barbara-Emily; Brown, Jeremy R; Ghaderi-Najafabadi, Maryam; Brunskill, Nigel J; Goodall, Alison H; Bevington, Alan

    2015-09-01

    Hyperphosphatemia in patients with advanced CKD is thought to be an important contributor to cardiovascular risk, in part because of endothelial cell (EC) dysfunction induced by inorganic phosphate (Pi). Such patients also have an elevated circulating concentration of procoagulant endothelial microparticles (MPs), leading to a prothrombotic state, which may contribute to acute occlusive events. We hypothesized that hyperphosphatemia leads to MP formation from ECs through an elevation of intracellular Pi concentration, which directly inhibits phosphoprotein phosphatases, triggering a global increase in phosphorylation and cytoskeletal changes. In cultured human ECs (EAhy926), incubation with elevated extracellular Pi (2.5 mM) led to a rise in intracellular Pi concentration within 90 minutes. This was mediated by PiT1/slc20a1 Pi transporters and led to global accumulation of tyrosine- and serine/threonine-phosphorylated proteins, a marked increase in cellular Tropomyosin-3, plasma membrane blebbing, and release of 0.1- to 1-μm-diameter MPs. The effect of Pi was independent of oxidative stress or apoptosis. Similarly, global inhibition of phosphoprotein phosphatases with orthovanadate or fluoride yielded a global protein phosphorylation response and rapid release of MPs. The Pi-induced MPs expressed VE-cadherin and superficial phosphatidylserine, and in a thrombin generation assay, they displayed significantly more procoagulant activity than particles derived from cells incubated in medium with a physiologic level of Pi (1 mM). These data show a mechanism of Pi-induced cellular stress and signaling, which may be widely applicable in mammalian cells, and in ECs, it provides a novel pathologic link between hyperphosphatemia, generation of MPs, and thrombotic risk. PMID:25745026

  1. Pten (phosphatase and tensin homologue gene) haploinsufficiency promotes insulin hypersensitivity

    PubMed Central

    Wong, J. T.; Kim, P. T. W.; Peacock, J. W.; Yau, T. Y.; Mui, A. L.-F.; Chung, S. W.; Sossi, V.; Doudet, D.; Green, D.; Ruth, T. J.; Parsons, R.; Verchere, C. B.

    2006-01-01

    Aims/hypothesis Insulin controls glucose metabolism via multiple signalling pathways, including the phosphatidylinositol 3-kinase (PI3K) pathway in muscle and adipose tissue. The protein/lipid phosphatase Pten (phosphatase and tensin homologue deleted on chromosome 10) attenuates PI3K signalling by dephosphorylating the phosphatidylinositol 3,4,5-trisphosphate generated by PI3K. The current study was aimed at investigating the effect of haploinsufficiency for Pten on insulin-stimulated glucose uptake. Materials and methods Insulin sensitivity in Pten heterozygous (Pten+/−) mice was investigated in i.p. insulin challenge and glucose tolerance tests. Glucose uptake was monitored in vitro in primary cultures of myocytes from Pten+/− mice, and in vivo by positron emission tomography. The phosphorylation status of protein kinase B (PKB/Akt), a downstream signalling protein in the PI3K pathway, and glycogen synthase kinase 3β (GSK3β), a substrate of PKB/Akt, was determined by western immunoblotting. Results Following i.p. insulin challenge, blood glucose levels in Pten+/− mice remained depressed for up to 120 min, whereas glucose levels in wild-type mice began to recover after approximately 30 min. After glucose challenge, blood glucose returned to normal about twice as rapidly in Pten+/− mice. Enhanced glucose uptake was observed both in Pten+/− myocytes and in skeletal muscle of Pten+/− mice by PET. PKB and GSK3β phosphorylation was enhanced and prolonged in Pten+/− myocytes. Conclusions/interpretation Pten is a key negative regulator of insulin-stimulated glucose uptake in vitro and in vivo. The partial reduction of Pten due to Pten haploinsufficiency is enough to elicit enhanced insulin sensitivity and glucose tolerance in Pten+/− mice. PMID:17195063

  2. The variable subunit associated with protein phosphatase 2A0 defines a novel multimember family of regulatory subunits.

    PubMed Central

    Zolnierowicz, S; Van Hoof, C; Andjelković, N; Cron, P; Stevens, I; Merlevede, W; Goris, J; Hemmings, B A

    1996-01-01

    Two protein phosphatase 2A (PP2A) holoenzymes were isolated from rabbit skeletal muscle containing, in addition to the catalytic and PR65 regulatory subunits, proteins of apparent molecular masses of 61 and 56 kDa respectively. Both holoenzymes displayed low basal phosphorylase phosphatase activity, which could be stimulated by protamine to an extent similar to that of previously characterized PP2A holoenzymes. Protein micro-sequencing of tryptic peptides derived from the 61 kDa protein, termed PR61, yielded 117 residues of amino acid sequence. Molecular cloning by enrichment of specific mRNAs, followed by reverse transcription-PCR and cDNA library screening, revealed that this protein exists in multiple isoforms encoded by at least three genes, one of which gives rise to several splicing variants. Comparisons of these sequences with the available databases identified one more human gene and predicted another based on a rabbit cDNA-derived sequence, thus bringing the number of genes encoding PR61 family members to five. Peptide sequences derived from PR61 corresponded to the deduced amino acid sequences of either alpha or beta isoforms, indicating that the purified PP2A preparation was a mixture of at least two trimers. In contrast, the 56 kDa subunit (termed PR56) seems to correspond to the epsilon isoform of PR61. Several regulatory subunits of PP2A belonging to the PR61 family contain consensus sequences for nuclear localization and might therefore target PP2A to nuclear substrates. PMID:8694763

  3. Phosphatase activity in the limb bones of monkeys (Lagothrix humboldti) with hyperparathyroidism

    PubMed Central

    Jeffree, Grace M.

    1962-01-01

    The paper reports a study of the distribution of phosphatases in the femora of three specimens of Humboldt's woolly monkey (Lagothrix humboldti) suffering from chronic hyperparathyroidism. Bone structure ranged from the apparently normal to extreme osteitis fibrosa. Most marked changes were found in the distribution of alkaline phosphatase, which reached at least 10 times the normal levels in the bone of the second monkey in the series, dropping to levels still well above normal in that of the most severely affected animal. Very high concentrations were found in the deeper layers of hypertrophied growth cartilage and in the osteoblasts lining poorly calcified trabeculae, and high concentrations in the fibre bone of the third animal. Lack of mineralization and the development of osteitis fibrosa are thus associated with a marked increase in alkaline phosphatase activity. Osteoclasts reacted strongly for acid phosphatase but were negative for alkaline phosphatase. Acid phosphatase levels were comparatively high in fibre bone, but overall levels ranged from 1/20 to less than 1/100 those of alkaline phosphatase. Some slow staining for acid phosphatase probably represents residual activity at acid pH of the markedly increased alkaline phosphatase. There may be some association between a failure of mineralization and the presence of acid phosphatase in osteoclasts and osteoid. The aetiology of the monkeys' condition is discussed. It seems likely that the parathyroid hypertrophy and rachitic changes were caused by low blood calcium dependent on a low calcium diet and lack of vitamin D, in which the requirements of New World monkeys are reputedly high. Images PMID:14451521

  4. Alpha-mannosidosis

    PubMed Central

    Malm, Dag; Nilssen, Øivind

    2008-01-01

    Alpha-mannosidosis is an inherited lysosomal storage disorder characterized by immune deficiency, facial and skeletal abnormalities, hearing impairment, and intellectual disability. It occurs in approximately 1 of 500,000 live births. The children are often born apparently normal, and their condition worsens progressively. Some children are born with ankle equinus or develop hydrocephalus in the first year of life. Main features are immune deficiency (manifested by recurrent infections, especially in the first decade of life), skeletal abnormalities (mild-to-moderate dysostosis multiplex, scoliosis and deformation of the sternum), hearing impairment (moderate-to-severe sensorineural hearing loss), gradual impairment of mental functions and speech, and often, periods of psychosis. Associated motor function disturbances include muscular weakness, joint abnormalities and ataxia. The facial trait include large head with prominent forehead, rounded eyebrows, flattened nasal bridge, macroglossia, widely spaced teeth, and prognathism. Slight strabismus is common. The clinical variability is significant, representing a continuum in severity. The disorder is caused by lysosomal alpha-mannosidase deficiency. Alpha-mannosidosis is inherited in an autosomal recessive fashion and is caused by mutations in the MAN2B1 gene located on chromosome 19 (19 p13.2-q12). Diagnosis is made by measuring acid alpha-mannosidase activity in leukocytes or other nucleated cells and can be confirmed by genetic testing. Elevated urinary secretion of mannose-rich oligosaccharides is suggestive, but not diagnostic. Differential diagnoses are mainly the other lysosomal storage diseases like the mucopolysaccharidoses. Genetic counseling should be given to explain the nature of the disease and to detect carriers. Antenatal diagnosis is possible, based on both biochemical and genetic methods. The management should be pro-active, preventing complications and treating manifestations. Infections must be

  5. Protein tyrosine phosphatase alpha (PTP alpha) knockout mice show deficits in Morris water maze learning, decreased locomotor activity, and decreases in anxiety.

    PubMed

    Skelton, Matthew R; Ponniah, Sathivel; Wang, Dennis Z-M; Doetschman, Thomas; Vorhees, Charles V; Pallen, Catherine J

    2003-09-12

    Receptor PTPalpha is a widely expressed transmembrane enzyme enriched in brain. PTPalpha knockout (PTPalpha(-/-)) mice are viable and display no gross abnormalities. Brain and embryo derived fibroblast src and fyn activity is reduced to <50% in PTPalpha(-/-) mice. These protein kinases are implicated in multiple aspects of neuronal development and function. However, the effect of the loss of function of the PTPalpha gene on behavior has yet to be investigated. PTPalpha(-/-) and WT mice were tested for anxiety, swimming ability, spatial learning, cued learning, locomotor activity, and novel object recognition (NOR). PTPalpha(-/-) mice were indistinguishable from WT in swimming ability, cued learning and novel object recognition. Knockout mice showed decreased anxiety without an increase in head dips and stretch-attend movements. During Morris water maze (MWM) learning, PTPalpha(-/-) mice had increased latencies to reach the goal compared to WT on acquisition, but no memory deficit on probe trials. On reversal learning, knockout mice showed no significant effects. PTPalpha(-/-) mice showed decreased exploratory locomotor activity, but responded normally to a challenge dose of D-methamphetamine. The data suggest that PTPalpha serves a regulatory function in learning and other forms of neuroplasticity. PMID:12932834

  6. Background canceling surface alpha detector

    DOEpatents

    MacArthur, Duncan W.; Allander, Krag S.; Bounds, John A.

    1996-01-01

    A background canceling long range alpha detector which is capable of providing output proportional to both the alpha radiation emitted from a surface and to radioactive gas emanating from the surface. The detector operates by using an electrical field between first and second signal planes, an enclosure and the surface or substance to be monitored for alpha radiation. The first and second signal planes are maintained at the same voltage with respect to the electrically conductive enclosure, reducing leakage currents. In the presence of alpha radiation and radioactive gas decay, the signal from the first signal plane is proportional to both the surface alpha radiation and to the airborne radioactive gas, while the signal from the second signal plane is proportional only to the airborne radioactive gas. The difference between these two signals is proportional to the surface alpha radiation alone.

  7. Background canceling surface alpha detector

    DOEpatents

    MacArthur, D.W.; Allander, K.S.; Bounds, J.A.

    1996-06-11

    A background canceling long range alpha detector which is capable of providing output proportional to both the alpha radiation emitted from a surface and to radioactive gas emanating from the surface. The detector operates by using an electrical field between first and second signal planes, an enclosure and the surface or substance to be monitored for alpha radiation. The first and second signal planes are maintained at the same voltage with respect to the electrically conductive enclosure, reducing leakage currents. In the presence of alpha radiation and radioactive gas decay, the signal from the first signal plane is proportional to both the surface alpha radiation and to the airborne radioactive gas, while the signal from the second signal plane is proportional only to the airborne radioactive gas. The difference between these two signals is proportional to the surface alpha radiation alone. 5 figs.

  8. Proteinaceous alpha-amylase inhibitors.

    PubMed

    Svensson, Birte; Fukuda, Kenji; Nielsen, Peter K; Bønsager, Birgit C

    2004-02-12

    Proteins that inhibit alpha-amylases have been isolated from plants and microorganisms. These inhibitors can have natural roles in the control of endogenous alpha-amylase activity or in defence against pathogens and pests; certain inhibitors are reported to be antinutritional factors. The alpha-amylase inhibitors belong to seven different protein structural families, most of which also contain evolutionary related proteins without inhibitory activity. Two families include bifunctional inhibitors acting both on alpha-amylases and proteases. High-resolution structures are available of target alpha-amylases in complex with inhibitors from five families. These structures indicate major diversity but also some similarity in the structural basis of alpha-amylase inhibition. Mutational analysis of the mechanism of inhibition was performed in a few cases and various protein engineering and biotechnological approaches have been outlined for exploitation of the inhibitory function. PMID:14871655

  9. Lysophosphatidic acids are new substrates for the phosphatase domain of soluble epoxide hydrolase[S

    PubMed Central

    Oguro, Ami; Imaoka, Susumu

    2012-01-01

    Soluble epoxide hydrolase (sEH) is a bifunctional enzyme that has a C-terminus epoxide hydrolase domain and an N-terminus phosphatase domain. The endogenous substrates of epoxide hydrolase are known to be epoxyeicosatrienoic acids, but the endogenous substrates of the phosphatase activity are not well understood. In this study, to explore the substrates of sEH, we investigated the inhibition of the phosphatase activity of sEH toward 4-methylumbelliferyl phosphate by using lecithin and its hydrolyzed products. Although lecithin itself did not inhibit the phosphatase activity, the hydrolyzed lecithin significantly inhibited it, suggesting that lysophospholipid or fatty acid can inhibit it. Next, we investigated the inhibition of phosphatase activity by lysophosphatidyl choline, palmitoyl lysophosphatidic acid, monopalmitoyl glycerol, and palmitic acid. Palmitoyl lysophosphatidic acid and fatty acid efficiently inhibited phosphatase activity, suggesting that lysophosphatidic acids (LPAs) are substrates for the phosphatase activity of sEH. As expected, palmitoyl, stearoyl, oleoyl, and arachidonoyl LPAs were efficiently dephosphorylated by sEH (Km, 3–7 μM; Vmax, 150–193 nmol/min/mg). These results suggest that LPAs are substrates of sEH, which may regulate physiological functions of cells via their metabolism. PMID:22217705

  10. The dynamics of alkaline phosphatase activity during operculum regeneration in the polychaete Pomatoceros lamarckii.

    PubMed

    Szabó, Réka; Ferrier, David E K

    2014-01-01

    Alkaline phosphatase enzymes are found throughout the living world and fulfil a variety of functions. They have been linked to regeneration, stem cells and biomineralisation in a range of animals. Here we describe the pattern of alkaline phosphatase activity in a spiralian appendage, the operculum of the serpulid polychaete Pomatoceros lamarckii. The P. lamarckii operculum is reinforced by a calcified opercular plate and is capable of rapid regeneration, making it an ideal model system to study these key processes in annelids. Alkaline phosphatase activity is present in mesodermal tissues of both intact and regenerating opercular filaments, in a strongly regionalised pattern correlated with major morphological features. Based on the lack of epidermal activity and the broad distribution of staining in mesodermal tissues, calcification- or stem cell-specific roles are unlikely. Transcriptomic data reveal that at least four distinct genes contribute to the detected activity. Opercular alkaline phosphatase activity is sensitive to levamisole. Phylogenetic analysis of metazoan alkaline phosphatases indicates homology of the P. lamarckii sequences to other annelid alkaline phosphatases, and shows that metazoan alkaline phosphatase evolution was characterised by extensive lineage-specific duplications. PMID:25690977

  11. Alkaline phosphatase activity in salivary gland cells of Rhodnius neglectus and R. prolixus (Hemiptera, Triatominae).

    PubMed

    Lima-Oliveira, A P M; Alevi, K C C; Anhê, A C B; Azeredo-Oliveira, M T V

    2016-01-01

    Alkaline phosphatase activity was detected in salivary gland cells of the Rhodnius neglectus Lent, 1954, and R. prolixus Stal, 1859, vectors of Trypanosoma cruzi Chagas, 1909 (etiological agent of Chagas disease) and T. rangeli Tejera, 1920 (pathogenic to insect). The Gomori technique was used to demonstrate alkaline phosphatase activity. Alkaline phosphatase activity was observed throughout the entire gland, with an increased activity in the posterior region of the principal gland. In particular, phosphatase activity was found in the nucleolar corpuscles, suggesting a relationship with the rRNA transcription and ribosomal biogenesis. Alkaline phosphatase was also detected in the nuclear membrane and nuclear matrix, suggesting an association with the nucleo-cytoplasmic transport of ribonucleoproteins and the mechanisms of cell cycle and DNA replication, respectively. This study highlights the importance of alkaline phosphatase in the salivary gland of R. prolixus and R. neglectus and emphasizes its importance in secretory activity. Secretory activity is directly involved in hematophagy and, consequently, in development during metamorphosis. The observed presence of alkaline phosphatase suggests its involvement in the production of saliva allowing feeding of these insects that are important vectors of Chagas disease. PMID:27525888

  12. Inhibition of acid, alkaline, and tyrosine (PTP1B) phosphatases by novel vanadium complexes.

    PubMed

    McLauchlan, Craig C; Hooker, Jaqueline D; Jones, Marjorie A; Dymon, Zaneta; Backhus, Emily A; Greiner, Bradley A; Dorner, Nicole A; Youkhana, Mary A; Manus, Lisa M

    2010-03-01

    In the course of our investigations of vanadium-containing complexes for use as insulin-enhancing agents, we have generated a series of novel vanadium coordination complexes with bidentate ligands. Specifically we have focused on two ligands: anthranilate (anc(-)), a natural metabolite of tryptophan, and imidizole-4-carboxylate (imc(-)), meant to mimic naturally occurring N-donor ligands. For each ligand, we have generated a series of complexes containing the V(III), V(IV), and V(V) oxidation states. Each complex was investigated using phosphatase inhibition studies of three different phosphatases (acid, alkaline, and tyrosine (PTP1B) phosphatase) as prima facia evidence for potential use as an insulin-enhancing agent. Using p-nitrophenyl phosphate as an artificial phosphatase substrate, the levels of inhibition were determined by measuring the absorbance of the product at 405nm using UV/vis spectroscopy. Under our experimental conditions, for instance, V(imc)(3) appears to be as potent an inhibitor of alkaline phosphatase as sodium orthovanadate when comparing the K(cat)/K(m) term. VO(anc)(2) is as potent an inhibitor of acid phosphatase and tyrosine phosphatase as the Na(3)VO(4). Thus, use of these complexes can increase our mechanistic understanding of the effects of vanadium in vivo. PMID:20071031

  13. Biochemical localization of the alkaline phosphatase of Bacillus licheniformis as a function of culture age.

    PubMed Central

    Glynn, J A; Schaffel, S D; McNicholas, J M; Hulett, F M

    1977-01-01

    Biochemical localization of the enzyme as a function of age of cell culture showed the alkaline phosphatase (orthophosphoric monoester phosphohydrolase, EC 3.1.3.1) activity of Bacillus licheniformis MC14 predominantly in the particulate cell fraction in early- and mid-log cells. However, in late-log and stationary cells, increasing amounts of activity were found in the soluble fraction of lysed cells. Upon protoplast formation of these cells, the activity was released into the soluble fraction. No alkaline phosphatase activity was found in either the cytoplasmic fraction or in the cell medium during any phase of cell growth. The soluble fraction released on protoplast formation that contained alkaline phosphatase activity showed immunological cross-reactivity with antibody to the purified heat--salt-solubilized membrane alkaline phosphatase (F. M. Hulett-Cowling and L. L. Campbell, 1971). Theparticulate membrane fraction containing a firmly associated alkaline phosphatase also showed similar cross-reactivity. Further, the effectiveness of nonionic detergents, ionic detergents, bile salts, and various concentrations of magnesium and sodium as solubilizing agents for this membrane-bound alkaline phosphatase was investigated. Hexadecyl pyridinium chloride (0.03 M) and magnesium and sodium salts (above 0.2 M) were effective solubilizing agents. The substrate specificities of the various fractions were determined and compared to the substrate specificities of the purified membrane alkaline phosphatase. Images PMID:838674

  14. Biochemical localization of the alkaline phosphatase of Bacillus licheniformis as a function of culture age.

    PubMed

    Glynn, J A; Schaffel, S D; McNicholas, J M; Hulett, F M

    1977-02-01

    Biochemical localization of the enzyme as a function of age of cell culture showed the alkaline phosphatase (orthophosphoric monoester phosphohydrolase, EC 3.1.3.1) activity of Bacillus licheniformis MC14 predominantly in the particulate cell fraction in early- and mid-log cells. However, in late-log and stationary cells, increasing amounts of activity were found in the soluble fraction of lysed cells. Upon protoplast formation of these cells, the activity was released into the soluble fraction. No alkaline phosphatase activity was found in either the cytoplasmic fraction or in the cell medium during any phase of cell growth. The soluble fraction released on protoplast formation that contained alkaline phosphatase activity showed immunological cross-reactivity with antibody to the purified heat--salt-solubilized membrane alkaline phosphatase (F. M. Hulett-Cowling and L. L. Campbell, 1971). Theparticulate membrane fraction containing a firmly associated alkaline phosphatase also showed similar cross-reactivity. Further, the effectiveness of nonionic detergents, ionic detergents, bile salts, and various concentrations of magnesium and sodium as solubilizing agents for this membrane-bound alkaline phosphatase was investigated. Hexadecyl pyridinium chloride (0.03 M) and magnesium and sodium salts (above 0.2 M) were effective solubilizing agents. The substrate specificities of the various fractions were determined and compared to the substrate specificities of the purified membrane alkaline phosphatase. PMID:838674

  15. Long range alpha particle detector

    DOEpatents

    MacArthur, Duncan W.; Wolf, Michael A.; McAtee, James L.; Unruh, Wesley P.; Cucchiara, Alfred L.; Huchton, Roger L.

    1993-01-01

    An alpha particle detector capable of detecting alpha radiation from distant sources. In one embodiment, a high voltage is generated in a first electrically conductive mesh while a fan draws air containing air molecules ionized by alpha particles through an air passage and across a second electrically conductive mesh. The current in the second electrically conductive mesh can be detected and used for measurement or alarm. The detector can be used for area, personnel and equipment monitoring.

  16. Long range alpha particle detector

    DOEpatents

    MacArthur, D.W.; Wolf, M.A.; McAtee, J.L.; Unruh, W.P.; Cucchiara, A.L.; Huchton, R.L.

    1993-02-02

    An alpha particle detector capable of detecting alpha radiation from distant sources. In one embodiment, a high voltage is generated in a first electrically conductive mesh while a fan draws air containing air molecules ionized by alpha particles through an air passage and across a second electrically conductive mesh. The current in the second electrically conductive mesh can be detected and used for measurement or alarm. The detector can be used for area, personnel and equipment monitoring.

  17. Effects of interferon-gamma and tumor necrosis factor-alpha on macrophage enzyme levels

    NASA Technical Reports Server (NTRS)

    Pierangeli, Silvia S.; Sonnenfeld, Gerald

    1989-01-01

    Murine peritoneal macrophages were treated with interferon-gamma (IFN-gamma) or tumor necrosis factor-alpha (TNF). Measurements of changes in acid phosphatase and beta-glucuronidase levels were made as an indication of activation by cytokine treatment. IFN-gamma or TNF-gamma treatment resulted in a significant increase in the activities of both enzymes measured in the cell lysates. This increase was observable after 6 h of incubation, but reached its maximum level after 24 h of incubation. The effect of the treatment of the cell with both cytokines together was additive. No synergistic effect of addition of both cytokines on the enzyme levels was observed.

  18. Protein Phosphatases Decrease Their Activity during Capacitation: A New Requirement for This Event

    PubMed Central

    Signorelli, Janetti R.; Díaz, Emilce S.; Fara, Karla; Barón, Lina; Morales, Patricio

    2013-01-01

    There are few reports on the role of protein phosphatases during capacitation. Here, we report on the role of PP2B, PP1, and PP2A during human sperm capacitation. Motile sperm were resuspended in non-capacitating medium (NCM, Tyrode's medium, albumin- and bicarbonate-free) or in reconstituted medium (RCM, NCM plus 2.6% albumin/25 mM bicarbonate). The presence of the phosphatases was evaluated by western blotting and the subcellular localization by indirect immunofluorescence. The function of these phosphatases was analyzed by incubating the sperm with specific inhibitors: okadaic acid, I2, endothall, and deltamethrin. Different aliquots were incubated in the following media: 1) NCM; 2) NCM plus inhibitors; 3) RCM; and 4) RCM plus inhibitors. The percent capacitated sperm and phosphatase activities were evaluated using the chlortetracycline assay and a phosphatase assay kit, respectively. The results confirm the presence of PP2B and PP1 in human sperm. We also report the presence of PP2A, specifically, the catalytic subunit and the regulatory subunits PR65 and B. PP2B and PP2A were present in the tail, neck, and postacrosomal region, and PP1 was present in the postacrosomal region, neck, middle, and principal piece of human sperm. Treatment with phosphatase inhibitors rapidly (≤1 min) increased the percent of sperm depicting the pattern B, reaching a maximum of ∼40% that was maintained throughout incubation; after 3 h, the percent of capacitated sperm was similar to that of the control. The enzymatic activity of the phosphatases decreased during capacitation without changes in their expression. The pattern of phosphorylation on threonine residues showed a sharp increase upon treatment with the inhibitors. In conclusion, human sperm express PP1, PP2B, and PP2A, and the activity of these phosphatases decreases during capacitation. This decline in phosphatase activities and the subsequent increase in threonine phosphorylation may be an important requirement for the

  19. Modeling Solar Lyman Alpha Irradiance

    NASA Technical Reports Server (NTRS)

    Pap, J.; Hudson, H. S.; Rottman, G. J.; Willson, R. C.; Donnelly, R. F.; London, J.

    1990-01-01

    Solar Lyman alpha irradiance is estimated from various solar indices using linear regression analyses. Models developed with multiple linear regression analysis, including daily values and 81-day running means of solar indices, predict reasonably well both the short- and long-term variations observed in Lyman alpha. It is shown that the full disk equivalent width of the He line at 1083 nm offers the best proxy for Lyman alpha, and that the total irradiance corrected for sunspot effect also has a high correlation with Lyman alpha.

  20. ISS Update: Alpha Magnetic Spectrometer

    NASA Video Gallery

    NASA Public Affairs Officer Kelly Humphries interviews Trent Martin, Johnson Space Center project manager for the Alpha Magnetic Spectrometer (AMS) aboard the International Space Station. Questions...

  1. An inactive protein phosphatase 2A population is associated with methylesterase and can be re-activated by the phosphotyrosyl phosphatase activator.

    PubMed Central

    Longin, Sari; Jordens, Jan; Martens, Ellen; Stevens, Ilse; Janssens, Veerle; Rondelez, Evelien; De Baere, Ivo; Derua, Rita; Waelkens, Etienne; Goris, Jozef; Van Hoof, Christine

    2004-01-01

    We have described recently the purification and cloning of PP2A (protein phosphatase 2A) leucine carboxylmethyltransferase. We studied the purification of a PP2A-specific methylesterase that co-purifies with PP2A and found that it is tightly associated with an inactive dimeric or trimeric form of PP2A. These inactive enzyme forms could be reactivated as Ser/Thr phosphatase by PTPA (phosphotyrosyl phosphatase activator of PP2A). PTPA was described previously by our group as a protein that stimulates the in vitro phosphotyrosyl phosphatase activity of PP2A; however, PP2A-specific methyltransferase could not bring about the activation. The PTPA activation could be distinguished from the Mn2+ stimulation observed with some inactive forms of PP2A, also found associated with PME-1 (phosphatase methylesterase 1). We discuss a potential new function for PME-1 as an enzyme that stabilizes an inactivated pool of PP2A. PMID:14748741

  2. Uranium Biomineralization by Natural Microbial Phosphatase Activities in the Subsurface

    NASA Astrophysics Data System (ADS)

    Martinez, R.; Wu, C. H.; Beazley, M. J.; Andersen, G. L.; Hazen, T. C.; Taillefert, M.; Sobecky, P. A.

    2011-12-01

    Soils and groundwater contaminated with heavy metals and radionuclides remain a legacy of Cold War nuclear weapons development. Due to the scale of environmental contamination, in situ sequestration of heavy metals and radionuclides remain the most cost-effective strategy for remediation. We are currently investigating a remediation approach that utilizes periplasmic and extracellular microbial phosphatase activity of soil bacteria capable promoting in situ uranium phosphate sequestration. Our studies focus on the contaminated soils from the DOE Field Research Center (ORFRC) in Oak Ridge, TN. We have previously demonstrated that ORFRC strains with phosphatase-positive phenotypes were capable of promoting the precpitation of >95% U(VI) as a low solubility phosphate mineral during growth on glycerol phosphate as a sole carbon and phosphorus source. Here we present culture-independent soil slurry studies aimed at understanding microbial community dynamics resulting from exogenous organophosphate additions. Soil slurries containing glycerol-2-phosphate (G2P) or glycerol-3-phosphate (G3P) and nitrate as the sole C, P and N sources were incubated under oxic growth conditions at pH 5.5 or pH 6.8. Following treatments, total DNA was extracted and prokaryotic diversity was assessed using high-density 16S oligonucleotide microarray (PhyloChip) analysis. Treatments at pH 5.5 and pH 6.8 amended with G2P required 36 days to accumulate 4.8mM and 2.2 mM phosphate, respectively. In contrast, treatments at pH 5.5 and pH 6.8 amended with G3P accumulated 8.9 mM and 8.7 mM phosphate, respectively, after 20 days. A total of 2120 unique taxa representing 46 phyla, 66 classes, 110 orders, and 186 families were detected among all treatment conditions. The phyla that significantly (P<0.05) increased in abundance relative to incubations lacking organophosphate amendments included: Crenarchaeota, Euryarchaeota, Bacteroidetes, and Proteobacteria. Members from the classes Bacteroidetes

  3. The use of the tyrosine phosphatase antagonist orthovanadate in the study of a cell proliferation inhibitor

    NASA Technical Reports Server (NTRS)

    Enebo, D. J.; Hanek, G.; Fattaey, H. K.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    Incubation of murine fibroblasts with orthovanadate, a global tyrosine phosphatase inhibitor, was shown to confer a "pseudo-transformed" phenotype with regard to cell morphology and growth characteristics. This alteration was manifested by both an increasing refractile appearance of the cells, consistent with many transformed cell lines, as well as an increase in maximum cell density was attained. Despite the abrogation of cellular tyrosine phosphatase activity, orthovanadate-treated cells remained sensitive to the biological activity of a naturally occurring sialoglycopeptide (SGP) cell surface proliferation inhibitor. The results indicated that tyrosine phosphatase activity, inhibited by orthovanadate, was not involved in the signal transduction pathway of the SGP.

  4. Phosphonate derivatives of tetraazamacrocycles as new inhibitors of protein tyrosine phosphatases.

    PubMed

    Kobzar, Oleksandr L; Shevchuk, Michael V; Lyashenko, Alesya N; Tanchuk, Vsevolod Yu; Romanenko, Vadim D; Kobelev, Sergei M; Averin, Alexei D; Beletskaya, Irina P; Vovk, Andriy I; Kukhar, Valery P

    2015-07-21

    α,α-Difluoro-β-ketophosphonated derivatives of tetraazamacrocycles were synthesized and found to be potential inhibitors of protein tyrosine phosphatases. N-Substituted conjugates of cyclam and cyclen with bioisosteric phosphonate groups displayed good activities toward T-cell protein tyrosine phosphatase with IC50 values in the micromolar to nanomolar range and showed selectivity over PTP1B, CD45, SHP2, and PTPβ. Kinetic studies indicated that the inhibitors can occupy the region of the active site of TC-PTP. This study demonstrates a new approach which employs tetraazamacrocycles as a molecular platform for designing inhibitors of protein tyrosine phosphatases. PMID:26058329

  5. Alkaline phosphatase from Bacillus licheniformis. Solubility dependent on magnesium, purification and characterization.

    PubMed

    Schaffel, S D; Hulett, F M

    1978-10-12

    The membrane-associated alkaline phosphatase (orthophosphoric-monoester phosphohydrolase (alkaline optimum), EC 3.1.3.1) from Bacillus licheniformis MC14, a facultative thermophile, was purified to homogeneity in buffer containing 0.2 M Mg2+. The alkaline phosphatase purified in this manner is insoluble upon removal of the magnesium by dialysis. This insoluble alkaline phosphatase has been characterized and compared to the previously purified heat-solubilized enzyme (Hulett-Cowling, F.M. and Campbell, L.L. (1971) Biochemistry 10, 1364--1371). PMID:718947

  6. Alpha Kappa Alpha Sorority's Reading Improvement Program for Minorities.

    ERIC Educational Resources Information Center

    Marable, June Morehead

    This document discusses the founding and establishment of Alpha Kappa Alpha Sorority's reading experience pilot project. The efforts of this project were aligned with those of Right to Read and Reading Is Fundamental (RIF). Because of the response from parents and children, plans are being made to increase present operations within the next…

  7. NMR structure of a complex containing the TFIIF subunit RAP74 and the RNA polymerase II carboxyl-terminal domain phosphatase FCP1.

    PubMed

    Nguyen, Bao D; Abbott, Karen L; Potempa, Krzysztof; Kobor, Michael S; Archambault, Jacques; Greenblatt, Jack; Legault, Pascale; Omichinski, James G

    2003-05-13

    FCP1 [transcription factor IIF (TFIIF)-associated carboxyl-terminal domain (CTD) phosphatase] is the only identified phosphatase specific for the phosphorylated CTD of RNA polymerase II (RNAP II). The phosphatase activity of FCP1 is enhanced in the presence of the large subunit of TFIIF (RAP74 in humans). It has been demonstrated that the CTD of RAP74 (cterRAP74; residues 436-517) directly interacts with the highly acidic CTD of FCP1 (cterFCP; residues 879-961 in human). In this manuscript, we have determined a high-resolution solution structure of a cterRAP74cterFCP complex by NMR spectroscopy. Interestingly, the cterFCP protein is completely disordered in the unbound state, but forms an alpha-helix (H1'; E945-M961) in the complex. The cterRAP74cterFCP binding interface relies extensively on van der Waals contacts between hydrophobic residues from the H2 and H3 helices of cterRAP74 and hydrophobic residues from the H1' helix of cterFCP. The binding interface also contains two critical electrostatic interactions involving aspartic acid residues from H1' of cterFCP and lysine residues from both H2 and H3 of cterRAP74. There are also three additional polar interactions involving highly conserved acidic residues from the H1' helix. The cterRAP74cterFCP complex is the first high-resolution structure between an acidic residue-rich domain from a holoenzyme-associated regulatory protein and a general transcription factor. The structure defines a clear role for both hydrophobic and acidic residues in proteinprotein complexes involving acidic residue-rich domains in transcription regulatory proteins. PMID:12732728

  8. Microscopic cluster model of {alpha}+n, {alpha}+p, {alpha}+ {sup 3}He, and {alpha}+{alpha} elastic scattering from a realistic effective nuclear interaction

    SciTech Connect

    Dohet-Eraly, J.; Baye, D.

    2011-07-15

    An effective nucleon-nucleon interaction adapted to cluster-model calculations of collisions is derived from the realistic Argonne potential AV18 with the unitary correlation operator method. The unitary correlation is determined from the {alpha}+{alpha} elastic phase shifts calculated in a cluster approach by the generator coordinate method coupled with the microscopic R-matrix method. With this interaction, the elastic phase shifts for the {alpha}+n, {alpha}+p, and {alpha}+{sup 3}He collisions are calculated within the same model. Without further adjustment, a good agreement with experimental data is obtained with a small model space.

  9. Allosteric substrate switching in a voltage-sensing lipid phosphatase.

    PubMed

    Grimm, Sasha S; Isacoff, Ehud Y

    2016-04-01

    Allostery provides a critical control over enzyme activity, biasing the catalytic site between inactive and active states. We found that the Ciona intestinalis voltage-sensing phosphatase (Ci-VSP), which modifies phosphoinositide signaling lipids (PIPs), has not one but two sequential active states with distinct substrate specificities, whose occupancy is allosterically controlled by sequential conformations of the voltage-sensing domain (VSD). Using fast fluorescence resonance energy transfer (FRET) reporters of PIPs to monitor enzyme activity and voltage-clamp fluorometry to monitor conformational changes in the VSD, we found that Ci-VSP switches from inactive to a PIP3-preferring active state when the VSD undergoes an initial voltage-sensing motion and then into a second PIP2-preferring active state when the VSD activates fully. This two-step allosteric control over a dual-specificity enzyme enables voltage to shape PIP concentrations in time, and provides a mechanism for the complex modulation of PIP-regulated ion channels, transporters, cell motility, endocytosis and exocytosis. PMID:26878552

  10. Alkaline phosphatase from venom of the endoparasitoid wasp, Pteromalus puparum.

    PubMed

    Zhu, Jia-Ying; Yin Ye, Gong; Fang, Qi; Hu, Cui

    2010-01-01

    Using chromogenic substrates 5-bromo-4-chloro-3'-indolyl phosphate and nitro blue tetrazolium, alkaline phosphatase (ALPase) was histochemically detected in the venom apparatus of an endoparasitoid wasp, Pteromalus puparum L. (Hymenoptera: Pteromalidae). Ultrastructural observations demonstrated its presence in the secretory vesicles and nuclei of the venom gland secretory cells. Using p-nitrophenyl phosphate as substrate to measure enzyme activity, the venom ALPase was found to be temperature dependent with bivalent cation effects. The full-length cDNA sequence of ALPase was amplified from the cDNA library of the venom apparatus of P. puparum, providing the first molecular characterization of ALPase in the venom of a parasitoid wasp. The cDNA consisted of 2645 bp with a 1623 bp open reading frame coding for 541 deduced amino acids with a predicted molecular mass of 59.83 kDa and pI of 6.98. Using multiple sequence alignment, the deduced amino acid sequence shared high identity to its counterparts from other insects. A signal peptide and a long conserved ALPase gene family signature sequence were observed. The amino acid sequence of this venom protein was characterized with different potential glycosylation, myristoylation, phosphorylation sites and metal ligand sites. The transcript of the ALPase gene was detected by RT-PCR in the venom apparatus with development related expression after adult wasp emergence, suggesting a possible correlation with the oviposition process. PMID:20575745

  11. Uranium Biomineralization By Natural Microbial Phosphatase Activities in the Subsurface

    SciTech Connect

    Taillefert, Martial

    2015-04-01

    This project investigated the geochemical and microbial processes associated with the biomineralization of radionuclides in subsurface soils. During this study, it was determined that microbial communities from the Oak Ridge Field Research subsurface are able to express phosphatase activities that hydrolyze exogenous organophosphate compounds and result in the non-reductive bioimmobilization of U(VI) phosphate minerals in both aerobic and anaerobic conditions. The changes of the microbial community structure associated with the biomineralization of U(VI) was determined to identify the main organisms involved in the biomineralization process, and the complete genome of two isolates was sequenced. In addition, it was determined that both phytate, the main source of natural organophosphate compounds in natural environments, and polyphosphate accumulated in cells could also be hydrolyzed by native microbial population to liberate enough orthophosphate and precipitate uranium phosphate minerals. Finally, the minerals produced during this process are stable in low pH conditions or environments where the production of dissolved inorganic carbon is moderate. These findings suggest that the biomineralization of U(VI) phosphate minerals is an attractive bioremediation strategy to uranium bioreduction in low pH uranium-contaminated environments. These efforts support the goals of the SBR long-term performance measure by providing key information on "biological processes influencing the form and mobility of DOE contaminants in the subsurface".

  12. Carcinogenic Aspects of Protein Phosphatase 1 and 2A Inhibitors

    NASA Astrophysics Data System (ADS)

    Fujiki, Hirota; Suganuma, Masami

    Okadaic acid is functionally a potent tumor promoter working through inhibition of protein phosphatases 1 and 2A (PP1 and PP2A), resulting in sustained phosphorylation of proteins in cells. The mechanism of tumor promotion with oka-daic acid is thus completely different from that of the classic tumor promoter phorbol ester. Other potent inhibitors of PP1 and PP2A - such as dinophysistoxin-1, calyculins A-H, microcystin-LR and its derivatives, and nodularin - were isolated from marine organisms, and their structural features including the crystal structure of the PP1-inhibitor complex, tumor promoting activities, and biochemical and biological effects, are here reviewed. The compounds induced tumor promoting activity in three different organs, including mouse skin, rat glandular stomach and rat liver, initiated with three different carcinogens. The results indicate that inhibition of PP1 and PP2A is a general mechanism of tumor promotion applicable to various organs. This study supports the concept of endogenous tumor promoters in human cancer development.

  13. Structural basis of protein phosphatase 2A stable latency

    PubMed Central

    Jiang, Li; Stanevich, Vitali; Satyshur, Kenneth A; Kong, Mei; Watkins, Guy R.; Wadzinski, Brian E.; Sengupta, Rituparna; Xing, Yongna

    2013-01-01

    The catalytic subunit of protein phosphatase 2A (PP2Ac) is stabilized in a latent form by α4, a regulatory protein essential for cell survival and biogenesis of all PP2A complexes. Here we report the structure of α4 bound to the N-terminal fragment of PP2Ac. This structure suggests that α4 binding to the full-length PP2Ac requires local unfolding near the active site, which perturbs the scaffold subunit binding site at the opposite surface via allosteric relay. These changes stabilize an inactive conformation of PP2Ac and convert oligomeric PP2A complexes to the α4 complex upon perturbation of the active site. The PP2Ac–α4 interface is essential for cell survival and sterically hinders a PP2A ubiquitination site, important for the stability of cellular PP2Ac. Our results show that α4 is a scavenger chaperone that binds to and stabilizes partially folded PP2Ac for stable latency, and reveal a mechanism by which α4 regulates cell survival, and biogenesis and surveillance of PP2A holoenzymes. PMID:23591866

  14. Role of Striatal-Enriched Tyrosine Phosphatase in Neuronal Function.

    PubMed

    Kamceva, Marija; Benedict, Jessie; Nairn, Angus C; Lombroso, Paul J

    2016-01-01

    Striatal-enriched protein tyrosine phosphatase (STEP) is a CNS-enriched protein implicated in multiple neurologic and neuropsychiatric disorders. STEP regulates key signaling proteins required for synaptic strengthening as well as NMDA and AMPA receptor trafficking. Both high and low levels of STEP disrupt synaptic function and contribute to learning and behavioral deficits. High levels of STEP are present in human postmortem samples and animal models of Alzheimer's disease, Parkinson's disease, and schizophrenia and in animal models of fragile X syndrome. Low levels of STEP activity are present in additional disorders that include ischemia, Huntington's chorea, alcohol abuse, and stress disorders. Thus the current model of STEP is that optimal levels are required for optimal synaptic function. Here we focus on the role of STEP in Alzheimer's disease and the mechanisms by which STEP activity is increased in this illness. Both genetic lowering of STEP levels and pharmacological inhibition of STEP activity in mouse models of Alzheimer's disease reverse the biochemical and cognitive abnormalities that are present. These findings suggest that STEP is an important point for modulation of proteins required for synaptic plasticity. PMID:27190655

  15. Uranium Biomineralization by Natural Microbial Phosphatase Activities in the Subsurface

    SciTech Connect

    Sobecky, Patricia A.

    2015-04-06

    In this project, inter-disciplinary research activities were conducted in collaboration among investigators at The University of Alabama (UA), Georgia Institute of Technology (GT), Lawrence Berkeley National Laboratory (LBNL), Brookhaven National Laboratory (BNL), the DOE Joint Genome Institute (JGI), and the Stanford Synchrotron Radiation Light source (SSRL) to: (i) confirm that phosphatase activities of subsurface bacteria in Area 2 and 3 from the Oak Ridge Field Research Center result in solid U-phosphate precipitation in aerobic and anaerobic conditions; (ii) investigate the eventual competition between uranium biomineralization via U-phosphate precipitation and uranium bioreduction; (iii) determine subsurface microbial community structure changes of Area 2 soils following organophosphate amendments; (iv) obtain the complete genome sequences of the Rahnella sp. Y9-602 and the type-strain Rahnella aquatilis ATCC 33071 isolated from these soils; (v) determine if polyphosphate accumulation and phytate hydrolysis can be used to promote U(VI) biomineralization in subsurface sediments; (vi) characterize the effect of uranium on phytate hydrolysis by a new microorganism isolated from uranium-contaminated sediments; (vii) utilize positron-emission tomography to label and track metabolically-active bacteria in soil columns, and (viii) study the stability of the uranium phosphate mineral product. Microarray analyses and mineral precipitation characterizations were conducted in collaboration with DOE SBR-funded investigators at LBNL. Thus, microbial phosphorus metabolism has been shown to have a contributing role to uranium immobilization in the subsurface.

  16. Phosphatase and Tensin Homologue: Novel Regulation by Developmental Signaling

    PubMed Central

    Jerde, Travis J.

    2015-01-01

    Phosphatase and tensin homologue (PTEN) is a critical cell endogenous inhibitor of phosphoinositide signaling in mammalian cells. PTEN dephosphorylates phosphoinositide trisphosphate (PIP3), and by so doing PTEN has the function of negative regulation of Akt, thereby inhibiting this key intracellular signal transduction pathway. In numerous cell types, PTEN loss-of-function mutations result in unopposed Akt signaling, producing numerous effects on cells. Numerous reports exist regarding mutations in PTEN leading to unregulated Akt and human disease, most notably cancer. However, less is commonly known about nonmutational regulation of PTEN. This review focuses on an emerging literature on the regulation of PTEN at the transcriptional, posttranscriptional, translational, and posttranslational levels. Specifically, a focus is placed on the role developmental signaling pathways play in PTEN regulation; this includes insulin-like growth factor, NOTCH, transforming growth factor, bone morphogenetic protein, wnt, and hedgehog signaling. The regulation of PTEN by developmental mediators affects critical biological processes including neuronal and organ development, stem cell maintenance, cell cycle regulation, inflammation, response to hypoxia, repair and recovery, and cell death and survival. Perturbations of PTEN regulation consequently lead to human diseases such as cancer, chronic inflammatory syndromes, developmental abnormalities, diabetes, and neurodegeneration. PMID:26339505

  17. Structure of the Protein Phosphatase 2A Holoenzyme

    SciTech Connect

    Xu,Y.; Xing, Y.; Chen, Y.; Chao, Y.; Lin, Z.; Fan, E.; Yu, J.; Strack, S.; Jeffrey, P.; Shi, Y.

    2006-01-01

    Protein Phosphatase 2A (PP2A) plays an essential role in many aspects of cellular physiology. The PP2A holoenzyme consists of a heterodimeric core enzyme, which comprises a scaffolding subunit and a catalytic subunit, and a variable regulatory subunit. Here we report the crystal structure of the heterotrimeric PP2A holoenzyme involving the regulatory subunit B'/B56/PR61. Surprisingly, the B'/PR61 subunit has a HEAT-like (huntingtin-elongation-A subunit-TOR-like) repeat structure, similar to that of the scaffolding subunit. The regulatory B'/B56/PR61 subunit simultaneously interacts with the catalytic subunit as well as the conserved ridge of the scaffolding subunit. The carboxyterminus of the catalytic subunit recognizes a surface groove at the interface between the B'/B56/PR61 subunit and the scaffolding subunit. Compared to the scaffolding subunit in the PP2A core enzyme, formation of the holoenzyme forces the scaffolding subunit to undergo pronounced conformational rearrangements. This structure reveals significant ramifications for understanding the function and regulation of PP2A.

  18. Phosphoglycolate phosphatase of spinach acts as a phosphoenzyme

    SciTech Connect

    Rose, Z.B.; Seal, S.N.

    1987-05-01

    When /sup 32/P-glycolate and phosphoglycolate phosphatase from spinach are mixed, /sup 32/P is incorporated into acid precipitated protein. Properties that relate this phosphorylation to the enzyme are: The K/sub m/ value for P-glycolate is similar for protein phosphorylation and substrate hydrolysis; the /sup 32/P appearing in the phosphoenzyme is diluted by unlabeled P-glycolate or the alternative substrate, ethyl-P; the activator Cl/sup -/ enhances the effectiveness of ethyl-P as a substrate and as an inhibitor of the formation of /sup 32/P-enzyme; and /sup 32/P is lost from the enzyme when /sup 32/P-glycolate is consumed. The acid denatured phosphorylated protein is a molecule of 34,000 Da, which is half of the molecular weight of the native protein and is similar in size to the labeled band that is seen on SDS-polyacrylamide gels. The enzyme-bound phosphoryl group appears to be an acyl-phosphate from its pH stability, being quite stable at pH 1, less stable at pH 5, and very unstable above pH 5. The bond is readily hydrolyzed in acid molybdate and it is sensitive to cleavage by hydroxylamine at pH 6.8. The demonstration of enzyme phosphorylation by /sup 32/P-glycolate resolves the dilemma presented by initial rate studies in which alternative substrates appeared to have different mechanisms.

  19. Protein tyrosine phosphatase 1B inhibitors isolated from Artemisia roxburghiana.

    PubMed

    Shah, Muhammad Raza; Ishtiaq; Hizbullah, Syed Muhammad; Habtemariam, Solomon; Zarrelli, Armando; Muhammad, Akhtar; Collina, Simona; Khan, Inamulllah

    2016-08-01

    Artemisia roxburghiana is used in traditional medicine for treating various diseases including diabetes. The present study was designed to evaluate the antidiabetic potential of active constituents by using protein tyrosine phosphatase 1B (PTP1B) as a validated target for management of diabetes. Various compounds were isolated as active principles from the crude methanolic extract of aerial parts of A. roxburghiana. All compounds were screened for PTP1B inhibitory activity. Molecular docking simulations were performed to investigate the mechanism behind PTP1B inhibition of the isolated compound and positive control, ursolic acid. Betulinic acid, betulin and taraxeryl acetate were the active PTP1B principles with IC50 values 3.49 ± 0.02, 4.17 ± 0.03 and 87.52 ± 0.03 µM, respectively. Molecular docking studies showed significant molecular interactions of the triterpene inhibitors with Gly220, Cys215, Gly218 and Asp48 inside the active site of PTP1B. The antidiabetic activity of A. roxburghiana could be attributed due to PTP1B inhibition by its triterpene constituents, betulin, betulinic acid and taraxeryl acetate. Computational insights of this study revealed that the C-3 and C-17 positions of the compounds needs extensive optimization for the development of new lead compounds. PMID:26118418

  20. Protein tyrosine phosphatases expression during development of mouse superior colliculus.

    PubMed

    Reinhard, Jacqueline; Horvat-Bröcker, Andrea; Illes, Sebastian; Zaremba, Angelika; Knyazev, Piotr; Ullrich, Axel; Faissner, Andreas

    2009-12-01

    Protein tyrosine phosphatases (PTPs) are key regulators of different processes during development of the central nervous system. However, expression patterns and potential roles of PTPs in the developing superior colliculus remain poorly investigated. In this study, a degenerate primer-based reverse transcription-polymerase chain reaction (RT-PCR) approach was used to isolate seven different intracellular PTPs and nine different receptor-type PTPs (RPTPs) from embryonic E15 mouse superior colliculus. Subsequently, the expression patterns of 11 PTPs (TC-PTP, PTP1C, PTP1D, PTP-MEG2, PTP-PEST, RPTPJ, RPTPε, RPTPRR, RPTPσ, RPTPκ and RPTPγ) were further analyzed in detail in superior colliculus from embryonic E13 to postnatal P20 stages by quantitative real-time RT-PCR, Western blotting and immunohistochemistry. Each of the 11 PTPs exhibits distinct spatiotemporal regulation of mRNAs and proteins in the developing superior colliculus suggesting their versatile roles in genesis of neuronal and glial cells and retinocollicular topographic mapping. At E13, additional double-immunohistochemical analysis revealed the expression of PTPs in collicular nestin-positive neural progenitor cells and RC-2-immunoreactive radial glia cells, indicating the potential functional importance of PTPs in neurogenesis and gliogenesis. PMID:19727691

  1. Redox and zinc signalling pathways converging on protein tyrosine phosphatases.

    PubMed

    Bellomo, Elisa; Hogstrand, Christer; Maret, Wolfgang

    2014-10-01

    Zinc ions, though redox-inert, have either pro-antioxidant or pro-oxidant functions at critical junctures in redox metabolism and redox signalling. They are released from cells and in cells, e.g. from metallothionein, a protein that transduces redox signals into zinc signals (1). The released zinc ions inhibit enzymes such as protein tyrosine phosphatases (PTPs), key regulatory enzymes of cellular phosphorylation signalling. The Ki(Zn) value for inhibition of receptor PTPB is 21pM (2). The binding is about as tight as the binding of zinc to zinc metalloenzymes and suggests tonic zinc inhibition. PTP1-B (PTPN1), an enzyme regulating the insulin and leptin receptors and involved in cancer and diabetes pathobiochemistry, has a Ki(Zn) value of about 5nM (3). Zinc ions bind to the enzyme in the closed conformation when additional metal-binding ligands are brought into the vicinity of the active site. In contrast, redox reactions target cysteines in the active sites of PTPs in the open conformation. This work provides a molecular basis how hydrogen peroxide and free zinc ions generated by growth factor signalling stimulate phosphorylation signalling differentially. (Supported by the Biotechnology and Biological Sciences Research Council UK, grant BB/K001442/1.). PMID:26461422

  2. Protein Phosphatase-1 regulates Rift Valley fever virus replication.

    PubMed

    Baer, Alan; Shafagati, Nazly; Benedict, Ashwini; Ammosova, Tatiana; Ivanov, Andrey; Hakami, Ramin M; Terasaki, Kaori; Makino, Shinji; Nekhai, Sergei; Kehn-Hall, Kylene

    2016-03-01

    Rift Valley fever virus (RVFV), genus Phlebovirus family Bunyaviridae, is an arthropod-borne virus endemic throughout sub-Saharan Africa. Recent outbreaks have resulted in cyclic epidemics with an increasing geographic footprint, devastating both livestock and human populations. Despite being recognized as an emerging threat, relatively little is known about the virulence mechanisms and host interactions of RVFV. To date there are no FDA approved therapeutics or vaccines for RVF and there is an urgent need for their development. The Ser/Thr protein phosphatase 1 (PP1) has previously been shown to play a significant role in the replication of several viruses. Here we demonstrate for the first time that PP1 plays a prominent role in RVFV replication early on during the viral life cycle. Both siRNA knockdown of PP1α and a novel PP1-targeting small molecule compound 1E7-03, resulted in decreased viral titers across several cell lines. Deregulation of PP1 was found to inhibit viral RNA production, potentially through the disruption of viral RNA transcript/protein interactions, and indicates a potential link between PP1α and the viral L polymerase and nucleoprotein. These results indicate that PP1 activity is important for RVFV replication early on during the viral life cycle and may prove an attractive therapeutic target. PMID:26801627

  3. Phosphoglycosylation of a secreted acid phosphatase from Leishmania donovani.

    PubMed

    Lippert, D N; Dwyer, D W; Li, F; Olafson, R W

    1999-06-01

    The secreted acid phosphatase (SAcP) of L.donovani is a heterogeneous glycoprotein that displays a wide array of N- and O-linked glycosylations. The O-linked sugars are of particular interest due to their similarity to the phosphoglycan structures of the major lipophosphoglycan surface antigen and released phosphoglycan (Turco et al., 1987; Greis et al., 1992). This study describes a structural analysis of the SAcP O-linked glycosylations using mass spectroscopy, amino acid sequencing, and enzymatic carbohydrate sequencing. Analysis of glycan chain lengths and peptide glycosylation site distribution was performed, revealing that the average O-linked structure was approximately 32 repeat units in length. Amino acid sequence analysis of glycosylated peptides showed that phosphoglycosylations did not occur randomly but were localized to specific serine residues within an array of degenerate serine/threonine-rich repeat sequences localized in the C-terminus. No evidence was obtained for modification of threonine residues. The observed pattern suggested that a consensus sequence may exist for localization of phosphoglycan structures. PMID:10336996

  4. Role of Striatal-Enriched Tyrosine Phosphatase in Neuronal Function

    PubMed Central

    Lombroso, Paul J.

    2016-01-01

    Striatal-enriched protein tyrosine phosphatase (STEP) is a CNS-enriched protein implicated in multiple neurologic and neuropsychiatric disorders. STEP regulates key signaling proteins required for synaptic strengthening as well as NMDA and AMPA receptor trafficking. Both high and low levels of STEP disrupt synaptic function and contribute to learning and behavioral deficits. High levels of STEP are present in human postmortem samples and animal models of Alzheimer's disease, Parkinson's disease, and schizophrenia and in animal models of fragile X syndrome. Low levels of STEP activity are present in additional disorders that include ischemia, Huntington's chorea, alcohol abuse, and stress disorders. Thus the current model of STEP is that optimal levels are required for optimal synaptic function. Here we focus on the role of STEP in Alzheimer's disease and the mechanisms by which STEP activity is increased in this illness. Both genetic lowering of STEP levels and pharmacological inhibition of STEP activity in mouse models of Alzheimer's disease reverse the biochemical and cognitive abnormalities that are present. These findings suggest that STEP is an important point for modulation of proteins required for synaptic plasticity. PMID:27190655

  5. SERUM VALUES OF ALKALINE PHOSPHATASE AND LACTATE DEHYDROGENASE IN OSTEOSARCOMA

    PubMed Central

    ZUMÁRRAGA, JUAN PABLO; BAPTISTA, ANDRÉ MATHIAS; ROSA, LUIS PABLO DE LA; CAIERO, MARCELO TADEU; CAMARGO, OLAVO PIRES DE

    2016-01-01

    ABSTRACT Objective: To study the relationship between the pre and post chemotherapy (CT) serum levels of alkaline phosphatase (AP) and lactate dehydrogenase (LDH), and the percentage of tumor necrosis (TN) found in specimens after the pre surgical CT in patients with osteosarcoma. Methods: Series of cases with retrospective evaluation of patients diagnosed with osteosarcoma. Participants were divided into two groups according to serum values of both enzymes. The values of AP and LDH were obtained before and after preoperative CT. The percentage of tumor necrosis (TN) of surgical specimens of each patient was also included. Results: One hundred and thirty seven medical records were included from 1990 to 2013. Both the AP as LDH decreased in the patients studied, being the higher in pre CT than post CT. The average LHD decrease was 795.12U/L and AP decrease was 437.40 U/L. The average TN was 34.10 %. There was no statistically significant correlation between the serums values and the percentage of tumoral necrosis. Conclusion: The serum levels values of AP and LDH are not good predictors for the chemotherapy-induced necrosis in patients with osteosarcoma. Level of Evidence IV, Case Series. PMID:27217815

  6. Alpha glucosidase inhibitors.

    PubMed

    Kalra, Sanjay

    2014-04-01

    Alpha glucosidase inhibitors (AGIs) are a unique class of anti-diabetic drugs. Derived from bacteria, these oral drugs are enzyme inhibitors which do not have a pancreato -centred mechanism of action. Working to delay carbohydrate absorption in the gastrointestinal tract, they control postprandial hyperglycaemia and provide unquestioned cardiovascular benefit. Specially suited for a traditional Pakistani carbohydrate-rich diet, AGIs have been termed the 'untapped diamonds' of diabetology. The use of these oral antidiabetic drugs (OADs) that target pathophysiology in the early stages of type 2 diabetes, notably to reduce postprandial hyperglycaemia and hyperinsulinaemia will inevitably increase with time. This review describes the history of their development, mechanism of action, basic and clinical pharmacology, and suggests practical, evidence-based guidance for their optimal use. PMID:24864650

  7. DFT CONFORMATIONAL STUDIES OF ALPHA-MALTOTRIOSE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent DFT optimization studies on alpha-maltose improved our understanding of the preferred conformations of alpha-maltose and the present study extends these studies to alpha-maltotriose with three alpha-D-glucopyranose residues linked by two alpha-[1-4] bridges, denoted herein as DP-3's. Combina...

  8. Alpha particle emitters in medicine

    SciTech Connect

    Fisher, D.R.

    1989-09-01

    Radiation-induced cancer of bone, liver and lung has been a prominent harmful side-effect of medical applications of alpha emitters. In recent years, however, the potential use of antibodies labeled with alpha emitting radionuclides against cancer has seemed promising because alpha particles are highly effective in cell killing. High dose rates at high LET, effectiveness under hypoxic conditions, and minimal expectancy of repair are additional advantages of alpha emitters over antibodies labeled with beta emitting radionuclides for cancer therapy. Cyclotron-produced astatine-211 ({sup 211}At) and natural bismuth-212 ({sup 212}Bi) have been proposed and are under extensive study in the United States and Europe. Radium-223 ({sup 223}Ra) also has favorable properties as a potential alpha emitting label, including a short-lived daughter chain with four alpha emissions. The radiation dosimetry of internal alpha emitters is complex due to nonuniformly distributed sources, short particle tracks, and high relative specific ionization. The variations in dose at the cellular level may be extreme. Alpha-particle radiation dosimetry, therefore, must involve analysis of statistical energy deposition probabilities for cellular level targets. It must also account fully for nonuniform distributions of sources in tissues, source-target geometries, and particle-track physics. 18 refs., 4 figs.

  9. Prothymosin alpha in human blood.

    PubMed Central

    Panneerselvam, C; Haritos, A A; Caldarella, J; Horecker, B L

    1987-01-01

    The major cross-reacting peptide in human plasma detected with a radioimmunoassay (RIA) for thymosin alpha 1 was identified as prothymosin alpha, based on its elution properties in gel-filtration chromatography and its amino acid composition after purification by HPLC. A small quantity (less than 10%) of the total cross-reacting material was recovered in fractions corresponding to lower molecular weight thymosin alpha 1-like peptides. The total quantity of cross-reacting material detected in human blood, expressed as thymosin alpha 1 equivalents, was 11-14 pmol/ml (approximately 90% was recovered in the leukocyte fraction, approximately 10% was in the plasma fraction, and 1-2% was in the erythrocyte fraction). The peptide present in leukocytes was also identified as prothymosin alpha. After correction for the 5-times lower molar reactivity of prothymosin alpha in the thymosin alpha 1 RIA employed in these experiments, we estimate that the content of prothymosin alpha in human blood is 55-70 pmol/ml (0.6-0.8 microgram/ml). The relatively small quantities recovered in the erythrocyte and plasma fractions may be attributed to contamination of the former by leukocytes or to leakage from leukocytes into the plasma. PMID:3474615

  10. EEG Alpha Power and Intelligence.

    ERIC Educational Resources Information Center

    Doppelmayr, M.; Klimesch, W.; Stadler, W.; Pollhuber, D.; Heine, C.

    2002-01-01

    Tested whether alpha power in different sub-bands is selectively related to intelligence. For 74 Austrian subjects, the EEG was recorded during a resting session and 2 different intelligence tests were performed. Findings show a strong positive correlation between intelligence and alpha power. (SLD)

  11. Okadaic acid, a protein phosphatase inhibitor, blocks calcium changes, gene expression, and cell death induced by gibberellin in wheat aleurone cells.

    PubMed Central

    Kuo, A; Cappelluti, S; Cervantes-Cervantes, M; Rodriguez, M; Bush, D S

    1996-01-01

    The cereal aleurone functions during germination by secreting hydrolases, mainly alpha-amylase, into the starchy endosperm. Multiple signal transduction pathways exist in cereal aleurone cells that enable them to modulate hydrolase production in response to both hormonal and environmental stimuli. Gibberellic acid (GA) promotes hydrolase production, whereas abscisic acid (ABA), hypoxia, and osmotic stress reduce amylase production. In an effort to identify the components of transduction pathways in aleurone cells, we have investigated the effect of okadaic acid (OA), a protein phosphatase inhibitor, on stimulus-response coupling for GA, ABA, and hypoxia. We found that OA (100 nM) completely inhibited all the GA responses that we measured, from rapid changes in cytosolic Ca2+ through changes in gene expression and accelerated cell death. OA (100 nM) partially inhibited ABA responses, as measured by changes in the level of PHAV1, a cDNA for an ABA-induced mRNA in barley. In contrast, OA had no effect on the response to hypoxia, as measured by changes in cytosolic Ca2+ and by changes in enzyme activity and RNA levels of alcohol dehydrogenase. Our data indicate that OA-sensitive protein phosphatases act early in the transduction pathway of GA but are not involved in the response to hypoxia. These data provide a basis for a model of multiple transduction pathways in which the level of cytosolic Ca2+ is a key point of convergence controlling changes in stimulus-response coupling. PMID:8742711

  12. Control of placental alkaline phosphatase gene expression in HeLa cells: induction of synthesis by prednisolone and sodium butyrate

    SciTech Connect

    Chou, J.Y.; Takahashi, S.

    1987-06-16

    HeLa S/sub 3/ cells produce an alkaline phosphatase indistinguishable from the enzyme from human term placenta. The phosphatase activity in these cells was induced by both prednisolone and sodium butyrate. Both agents stimulated de novo synthesis of the enzyme. The increase in phosphatase activity paralleled the increase in immunoactivity and biosynthesis of placental alkaline phosphatase. The fully processed phosphatase monomer in control, prednisolone-treated or butyrate-treated cells was a 64.5 K polypeptide, measured by both incorporation of L-(/sup 35/S)methionine into enzyme protein and active-site labeling. The 64.5K polypeptide was formed by the incorporation of additional N-acetylneuraminic acid moieties to a precursor polypeptide of 61.5K. However, this biosynthetic pathway was identified only in butyrate-treated cells. In prednisolone-treated cells, the processing of 61.5K to 64.5K monomer was accelerated, and the presence of the 61.5 precursor could only be detected by either neuraminidase or monensin treatment. Phosphatase mRNA which comigrated with the term placental alkaline phosphatase mRNA of 2.7 kilobases was induced in the presence of either prednisolone or butyrate. Alkaline phosphatase mRNA is untreated HeLa S/sub 3/ cells migrated slightly faster than the term placental alkaline phosphatase mRNA. Butyrate also induced a second still faster migrating alkaline phosphatase mRNA. Both prednisolone and butyrate increased the steady-state levels of placental alkaline phosphatase mRNA. The data indicate that the increase in phosphatase mRNA by prednisolone and butyrate resulted in the induction of alkaline phosphatase activity and biosynthesis in HeLa S/sub 3/ cells. Furthermore, both agents induced the expression of different alkaline phosphatase gene transcripts without altering its protein product.

  13. Characterization of the threonine-phosphatase of mouse eyes absent 3.

    PubMed

    Sano, Teruyuki; Nagata, Shigekazu

    2011-09-01

    Eyes absent (EYA) has tyrosine- and threonine-phosphatase activities in their C-terminal and N-terminal regions, respectively. Using various mutants of mouse EYA3, we showed that the 68-amino acid domain between positions 53 and 120 was necessary and sufficient for its threonine-phosphatase activity. Point mutations were then introduced, and residues Cys-56, Tyr-77, His-79, and Tyr-90 were essential for the EYA3s threonine-phosphatase. The 68-amino acid domain is not well conserved among the four mouse EYA members, but is evolutionally highly conserved in the orthologous EYA members of different species, suggesting that the threonine-phosphatase of EYA3 has a function distinct from that of the other EYAs. PMID:21821028

  14. Protein phosphatase 2A in stretch-induced endothelial cell proliferation

    NASA Technical Reports Server (NTRS)

    Murata, K.; Mills, I.; Sumpio, B. E.

    1996-01-01

    We previously proposed that activation of protein kinase C is a key mechanism for control of cell growth enhanced by cyclic strain [Rosales and Sumpio (1992): Surgery 112:459-466]. Here we examined protein phosphatase 1 and 2A activity in bovine aortic endothelial cells exposed to cyclic stain. Protein phosphatase 2A activity in the cytosol was decreased by 36.1% in response to cyclic strain for 60 min, whereas the activity in the membrane did not change. Treatment with low concentration (0.1 nM) of okadaic acid enhanced proliferation of both static and stretched endothelial cells in 10% fetal bovine serum. These data suggest that protein phosphatase 2A acts as a growth suppressor and cyclic strain may enhance cellular proliferation by inhibiting protein phosphatase 2A as well as stimulating protein kinase C.

  15. Identification of a dual-specificity protein phosphatase that inactivates a MAP kinase from Arabidopsis

    NASA Technical Reports Server (NTRS)

    Gupta, R.; Huang, Y.; Kieber, J.; Luan, S.; Evans, M. L. (Principal Investigator)

    1998-01-01

    Mitogen-activated protein kinases (MAPKs) play a key role in plant responses to stress and pathogens. Activation and inactivation of MAPKs involve phosphorylation and dephosphorylation on both threonine and tyrosine residues in the kinase domain. Here we report the identification of an Arabidopsis gene encoding a dual-specificity protein phosphatase capable of hydrolysing both phosphoserine/threonine and phosphotyrosine in protein substrates. This enzyme, designated AtDsPTP1 (Arabidopsis thaliana dual-specificity protein tyrosine phosphatase), dephosphorylated and inactivated AtMPK4, a MAPK member from the same plant. Replacement of a highly conserved cysteine by serine abolished phosphatase activity of AtDsPTP1, indicating a conserved catalytic mechanism of dual-specificity protein phosphatases from all eukaryotes.

  16. A critical evaluation of a specific radioimmunoassay for prostatic acid phosphatase

    SciTech Connect

    Goldenberg, S.L.; Silver, H.K.; Sullivan, L.D.; Morse, M.J.; Archibald, E.L.

    1982-11-01

    A radioimmunoassay (RIA) method for acid phosphatase detection was compared to a standard enzyme assay using sera from 210 normal volunteers and 285 patients with prostatic disease. Statistical and clinical comparisons were made between defined subgroups. All 55 normal females had RIA detectable serum acid phosphatase, implying that this assay cannot be entirely specific for enzyme of prostatic origin. Urinary catheterization did not affect acid phosphatase levels. In all stages of carcinoma there were more acid phosphatase elevations by the RIA method than enzyme method, but neither assay could differentiate intercapsular cancer from benign prostatic hyperplasia. A small number of patients with biopsy proven negative nodules had marginally elevated values, suggesting an obligation for closer follow-up. The RIA method may be superior for monitoring patients with more advanced malignancy. Additional practical advantages of the RIA include relative simplicity and elimination of the special serum handling required for the enzyme assay.

  17. Structure of human dual-specificity phosphatase 7, a potential cancer drug target

    PubMed Central

    Lountos, George T.; Austin, Brian P.; Tropea, Joseph E.; Waugh, David S.

    2015-01-01

    Human dual-specificity phosphatase 7 (DUSP7/Pyst2) is a 320-residue protein that belongs to the mitogen-activated protein kinase phosphatase (MKP) subfamily of dual-specificity phosphatases. Although its precise biological function is still not fully understood, previous reports have demonstrated that DUSP7 is overexpressed in myeloid leukemia and other malignancies. Therefore, there is interest in developing DUSP7 inhibitors as potential therapeutic agents, especially for cancer. Here, the purification, crystallization and structure determination of the catalytic domain of DUSP7 (Ser141–Ser289/C232S) at 1.67 Å resolution are reported. The structure described here provides a starting point for structure-assisted inhibitor-design efforts and adds to the growing knowledge base of three-dimensional structures of the dual-specificity phosphatase family. PMID:26057789

  18. Structure of human dual-specificity phosphatase 27 at 2.38 Å resolution

    SciTech Connect

    Lountos, George T.; Tropea, Joseph E.; Waugh, David S.

    2011-05-01

    The X-ray crystal structure of human dual-specificity phosphatase 27 (DUSP27) is reported at 2.38 Å resolution. There are over 100 genes in the human genome that encode protein tyrosine phosphatases (PTPs) and approximately 60 of these are classified as dual-specificity phosphatases (DUSPs). Although many dual-specificity phosphatases are still not well characterized, novel functions have been discovered for some of them that have led to new insights into a variety of biological processes and the molecular basis for certain diseases. Indeed, as the functions of DUSPs continue to be elucidated, a growing number of them are emerging as potential therapeutic targets for diseases such as cancer, diabetes and inflammatory disorders. Here, the overexpression, purification and structure determination of DUSP27 at 2.38 Å resolution are presented.

  19. EX VIVIO DETECTION OF KINASE AND PHOSPHATASE ACTIVITIES IN HUMAN BRONCHIAL BIOPSIES

    EPA Science Inventory

    Protein phosphorylation is a posttranslational modification involved in every aspect cellular function. Levels of protein phosphotyrosine, phosphoserine and phosphothreonine are regulated by the opposing activities of kinases and phosphatases, the expression of which can be alt...

  20. Qualitative and Quantitative In Vitro Analysis of Phosphatidylinositol Phosphatase Substrate Specificity.

    PubMed

    Ip, Laura Ren Huey; Gewinner, Christina Anja

    2016-01-01

    Phosphoinositides compromise a family of eight membrane lipids which play important roles in many cellular signaling pathways. Signaling through phosphoinositides has been shown in a variety of cellular functions such cell proliferation, cell growth, apoptosis, and vesicle trafficking. Phospholipid phosphatases regulate cell signaling by modifying the concentration of phosphoinositides and their dephosphorylated products. To understand the role of individual lipid phosphatases in phosphoinositide turnover and functional signaling, it is crucial to determine the substrate specificity of the lipid phosphatase of interest. In this chapter we describe how the substrate specificity of an individual lipid phosphatase can be qualitatively and quantitatively measured in an in vitro radiometric assay. In addition, we specify the different expression systems and purification methods required to produce the necessary yield and functionality in order to further characterize these enzymes. The outstanding versatility and sensitivity of this assay system are yet unmatched and are therefore currently considered the standard of the field. PMID:26552675

  1. DL-Buthionine-S,R-sulfoximine affects intestinal alkaline phosphatase activity.

    PubMed

    Marchionatti, A; Alisio, A; Díaz de Barboza, G; Baudino, V; Tolosa de Talamoni, N

    2001-06-01

    The susceptibility of intestinal alkaline phosphatase to DL-buthionine-S,R-sulfoximine was investigated in chicks fed a commercial diet. The results show that DL-buthionine-S,R-sulfoximine produced inhibition of intestinal alkaline phosphatase activity. This effect showed dose- and time-dependency and it was caused by either in vivo DL-buthionine-S,R- sulfoximine administration or in vitro DL-buthionine-S,R-sulfoximine incubation with villus tip enterocytes. DL-Buthionine-S,R-sulfoximine did not act directly on intestinal alkaline phosphatase but it provoked glutathione depletion which led to changes in the redox state of the enterocyte as shown by the production of free hydroxyl radicals and an incremental increase in the carbonyl content of proteins. The reversibility of the buthionine sulfoximine effect on intestinal alkaline phosphatase was proved by addition of glutathione monoester to the duodenal loop. PMID:11423381

  2. Identification of the Interaction Sites of Inhibitor-3 for Protein Phosphatase-1

    PubMed Central

    Zhang, Lifang; Qi, Zhiqing; Gao, Yan; Lee, Ernest Y.C.

    2008-01-01

    Inhibitor-3 is a potent inhibitor of protein phosphatase-1, with an IC50 in the nanomolar range for the inhibition of the dephosphorylation of phosphorylase a. Human Inhibitor-3 possesses a putative protein phosphatase-1 binding motif, 39KKVEW43. We provide direct evidence that this sequence is involved in PP1 interaction by examining the effects of site-directed mutations of Inhibitor-3 on its ability to inhibit protein phosphatase-1. A second interaction site whose deletion led to loss of inhibitory potency was identified between residues 65–77. The existence of two interaction sites is consistent with the high inhibitory potency of Inhibitor-3, and with current models for other inhibitor and targeting proteins that interact with protein phosphatase-1 with high affinity. PMID:18951879

  3. Stabilization of glucose-6-phosphatase activity by a 21 000-dalton hepatic microsomal protein.

    PubMed Central

    Burchell, A; Burchell, B; Monaco, M; Walls, H E; Arion, W J

    1985-01-01

    Hepatic microsomal glucose-6-phosphatase activity was rendered extremely unstable by a variety of techniques: (a) incubation at pH 5.0; (b) extraction of the microsomal fraction in the presence of 1% Lubrol; (c) various purification procedures. These techniques all result in the removal of a 21 kDa polypeptide from the fraction containing glucose-6-phosphatase activity. The 21 kDa protein was purified to apparent homogeneity by solubilization in the detergent Lubrol 12A-9 and chromatography on Fractogel TSK DEAE-650(S) and centrifugation at 105 000 g. The 21 kDa protein stabilizes glucose-6-phosphatase activity, whereas other purified hepatic microsomal proteins do not. The 21 kDa protein appears to be a potential regulator of glucose-6-phosphatase activity. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:2996501

  4. Alpha Schottky junction energy source

    NASA Astrophysics Data System (ADS)

    Litz, Marc S.; Fan, Zhaoyang; Carroll, James J.; Bayne, Stephen

    2012-06-01

    Isotope batteries offer solutions for long-lived low-power sensor requirements. Alpha emitting isotopes have energy per decay 103 times that of beta emitters. Alpha particles are absorbed within 20 μm of most materials reducing shielding mitigation. However, damage to materials from the alphas limits their practical use. A Schottky Barrier Diode (SBD) geometry is considered with an alpha emitting contact-layer on a diamond-like crystal semiconductor region. The radiation tolerance of diamond, the safety of alpha particles, combined with the internal field of the SBD is expected to generate current useful for low-power electronic devices over decades. Device design parameters and calculations of the expected current are described.

  5. Dairy products and the French paradox: Could alkaline phosphatases play a role?

    PubMed

    Lallès, Jean-Paul

    2016-07-01

    The French paradox - high saturated fat consumption but low incidence of cardiovascular disease (CVD) and mortality - is still unresolved and continues to be a matter of debate and controversy. Recently, it was hypothesised that the high consumption of dairy products, and especially cheese by the French population might contribute to the explanation of the French paradox, in addition to the "(red) wine" hypothesis. Most notably this would involve milk bioactive peptides and biomolecules from cheese moulds. Here, we support the "dairy products" hypothesis further by proposing the "alkaline phosphatase" hypothesis. First, intestinal alkaline phosphatase (IAP), a potent endogenous anti-inflammatory enzyme, is directly stimulated by various components of milk (e.g. casein, calcium, lactose and even fat). This enzyme dephosphorylates and thus detoxifies pro-inflammatory microbial components like lipopolysaccharide, making them unable to trigger inflammatory responses and generate chronic low-grade inflammation leading to insulin resistance, glucose intolerance, type-2 diabetes, metabolic syndrome and obesity, known risk factors for CVD. Various vitamins present in high amounts in dairy products (e.g. vitamins A and D; methyl-donors: folate and vitamin B12), and also fermentation products such as butyrate and propionate found e.g. in cheese, all stimulate intestinal alkaline phosphatase. Second, moulded cheeses like Roquefort contain fungi producing an alkaline phosphatase. Third, milk itself contains a tissue nonspecific isoform of alkaline phosphatase that may function as IAP. Milk alkaline phosphatase is present in raw milk and dairy products increasingly consumed in France. It is deactivated by pasteurization but it can partially reactivate after thermal treatment. Experimental consolidation of the "alkaline phosphatase" hypothesis will require further work including: systematic alkaline phosphatase activity measurements in dairy products, live dairy ferments and

  6. Cancerous inhibitor of protein phosphatase 2A determines bortezomib-induced apoptosis in leukemia cells

    PubMed Central

    Liu, Chun-Yu; Shiau, Chung-Wai; Kuo, Hsin-Yu; Huang, Hsiang-Po; Chen, Ming-Huang; Tzeng, Cheng-Hwai; Chen, Kuen-Feng

    2013-01-01

    The multiple cellular targets affected by proteasome inhibition implicate a potential role for bortezomib, a first-in-class proteasome inhibitor, in enhancing antitumor activities in hematologic malignancies. Here, we examined the antitumor activity and drug targets of bortezomib in leukemia cells. Human leukemia cell lines were used for in vitro studies. Drug efficacy was evaluated by apoptosis assays and associated molecular events assessed by Western Blot. Gene silencing was performed by small interference RNA. Drug was tested in vivo in xenograft models of human leukemia cell lines and in primary leukemia cells. Clinical samples were assessed by immunohistochemical staining. Bortezomib differentially induced apoptosis in leukemia cells that was independent of its proteasome inhibition. Cancerous inhibitor of protein phosphatase 2A, a cellular inhibitor of protein phosphatase 2A, mediated the apoptotic effect of bortezomib. Bortezomib increased protein phosphatase 2A activity in sensitive leukemia cells (HL-60 and KG-1), but not in resistant cells (MOLT-3 and K562). Bortezomib’s downregulation of cancerous inhibitor of protein phosphatase 2A and phospho-Akt correlated with its drug sensitivity. Furthermore, cancerous inhibitor of protein phosphatase 2A negatively regulated protein phosphatase 2A activity. Ectopic expression of CIP2A up-regulated phospho-Akt and protected HL-60 cells from bortezomib-induced apoptosis, whereas silencing CIP2A overcame the resistance to bortezomib-induced apoptosis in MOLT3 and K562 cells. Importantly, bortezomib exerted in vivo antitumor activity in HL-60 xenografted tumors and induced cell death in some primary leukemic cells. Cancerous inhibitor of protein phosphatase 2A was expressed in leukemic blasts from bone marrow samples. Cancerous inhibitor of protein phosphatase 2A plays a major role in mediating bortezomib-induced apoptosis in leukemia cells. PMID:22983581

  7. Effects of multivalent cations on cell wall-associated acid phosphatase activity

    SciTech Connect

    Tu, S.I.; Brouillette, J.N.; Nagahashi, G.; Kumosinski, T.F.

    1988-09-01

    Primary cell walls, free from cytoplasmic contamination were prepared from corn (Zea mays L.) roots and potato (Solanum tuberosum) tubers. After EDTA treatment, the bound acid phosphatase activities were measured in the presence of various multivalent cations. Under the conditions of minimized Donnan effect and at pH 4.2, the bound enzyme activity of potato tuber cell walls (PCW) was stimulated by Cu/sup 2 +/, Mg/sup 2 +/, Za/sup 2 +/, and Mn/sup 2 +/; unaffected by Ba/sup 2 +/, Cd/sup 2 +/, and Pb/sup 2 +/; and inhibited by Al/sup 3 +/. The bound acid phosphatase of PCW was stimulated by a low concentration but inhibited by a higher concentration of Hg/sup 2 +/. On the other hand, in the case of corn root cells walls (CCW), only inhibition of the bound acid phosphatase by Al/sup 3 +/ and Hg/sup 2 +/ was observed. Kinetic analyses revealed that PCW acid phosphatase exhibited a negative cooperativity under all employed experimental conditions except in the presence of Mg/sup 2 +/. In contrast, CCW acid phosphatase showed no cooperative behavior. The presence of Ca/sup 2 +/ significantly reduced the effects of Hg/sup 2 +/ or Al/sup 3 +/, but not Mg/sup 2 +/, to the bound cell wall acid phosphatases. The salt solubilized (free) acid phosphatases from both PCW and CCW were not affected by the presence of tested cations except for Hg/sup 2 +/ or Al/sup 3 +/ which caused a Ca/sup 2 +/-insensitive inhibition of the enzymes. The induced stimulation or inhibition of bound acid phosphatases was quantitatively related to cation binding in the cell wall structure.

  8. Serum alkaline phosphatase negatively affects endothelium-dependent vasodilation in naïve hypertensive patients.

    PubMed

    Perticone, Francesco; Perticone, Maria; Maio, Raffaele; Sciacqua, Angela; Andreucci, Michele; Tripepi, Giovanni; Corrao, Salvatore; Mallamaci, Francesca; Sesti, Giorgio; Zoccali, Carmine

    2015-10-01

    Tissue nonspecific alkaline phosphatase, promoting arterial calcification in experimental models, is a powerful predictor of total and cardiovascular mortality in general population and in patients with renal or cardiovascular diseases. For this study, to evaluate a possible correlation between serum alkaline phosphatase levels and endothelial function, assessed by strain gauge plethysmography, we enrolled 500 naïve hypertensives divided into increasing tertiles of alkaline phosphatase. The maximal response to acetylcholine was inversely related to alkaline phosphatase (r=−0.55; P<0.001), and this association was independent (r=−0.61; P<0.001) of demographic and classical risk factors, body mass index, estimated glomerular filtration rate, serum phosphorus and calcium, C-reactive protein, and albuminuria. At multiple logistic regression analysis, the risk of endothelial dysfunction was ≈3-fold higher in patients in the third tertile than that of patients in the first tertile. We also tested the combined role of alkaline phosphatase and serum phosphorus on endothelial function. The steepness of the alkaline phosphatase/vasodilating response to acetylcholine relationship was substantially attenuated (P<0.001) in patients with serum phosphorus above the median value when compared with patients with serum phosphorus below the median (−5.0% versus −10.2% per alkaline phosphatase unit, respectively), and this interaction remained highly significant (P<0.001) after adjustment of all the previously mentioned risk factors. Our data support a strong and significant inverse relationship between alkaline phosphatase and endothelium-dependent vasodilation, which was attenuated by relatively higher serum phosphorus levels. PMID:26324506

  9. Phosphorus resorption by young beech trees and soil phosphatase activity as dependent on phosphorus availability.

    PubMed

    Hofmann, Kerstin; Heuck, Christine; Spohn, Marie

    2016-06-01

    Motivated by decreasing foliar phosphorus (P) concentrations in Fagus sylvatica L. forests, we studied P recycling depending on P fertilization in mesocosms with juvenile trees and soils of two contrasting F. sylvatica L. forests in a greenhouse. We hypothesized that forests with low soil P availability are better adapted to recycle P than forests with high soil P availability. The P resorption efficiency from senesced leaves was significantly higher at the P-poor site (70 %) than at the P-rich site (48 %). P fertilization decreased the resorption efficiency significantly at the P-poor site to 41 %, while it had no effect at the P-rich site. Both acid and alkaline phosphatase activity were higher in the rhizosphere of the P-poor than of the P-rich site by 53 and 27 %, respectively, while the activities did not differ in the bulk soil. Fertilization decreased acid phosphatase activity significantly at the P-poor site in the rhizosphere, but had no effect on the alkaline, i.e., microbial, phosphatase activity at any site. Acid phosphatase activity in the P-poor soil was highest in the rhizosphere, while in the P-rich soil, it was highest in the bulk soil. We conclude that F. sylvatica resorbed P more efficiently from senescent leaves at low soil P availability than at high P availability and that acid phosphatase activity in the rhizosphere but not in the bulk soil was increased at low P availability. Moreover, we conclude that in the P-rich soil, microbial phosphatases contributed more strongly to total phosphatase activity than plant phosphatases. PMID:26875186

  10. Lipid phosphate phosphatases regulate lysophosphatidic acid production and signaling in platelets: studies using chemical inhibitors of lipid phosphate phosphatase activity.

    PubMed

    Smyth, Susan S; Sciorra, Vicki A; Sigal, Yury J; Pamuklar, Zehra; Wang, Zuncai; Xu, Yong; Prestwich, Glenn D; Morris, Andrew J

    2003-10-31

    Blood platelets play an essential role in ischemic heart disease and stroke contributing to acute thrombotic events by release of potent inflammatory agents within the vasculature. Lysophosphatidic acid (LPA) is a bioactive lipid mediator produced by platelets and found in the blood and atherosclerotic plaques. LPA receptors on platelets, leukocytes, endothelial cells, and smooth muscle cells regulate growth, differentiation, survival, motility, and contractile activity. Definition of the opposing pathways of synthesis and degradation that control extracellular LPA levels is critical to understanding how LPA bioactivity is regulated. We show that intact platelets and platelet membranes actively dephosphorylate LPA and identify the major enzyme responsible as lipid phosphate phosphatase 1 (LPP1). Localization of LPP1 to the platelet surface is increased by exposure to LPA. A novel receptor-inactive sn-3-substituted difluoromethylenephosphonate analog of phosphatidic acid that is a potent competitive inhibitor of LPP1 activity potentiates platelet aggregation and shape change responses to LPA and amplifies LPA production by agonist-stimulated platelets. Our results identify LPP1 as a pivotal regulator of LPA signaling in the cardiovascular system. These findings are consistent with genetic and cell biological evidence implicating LPPs as negative regulators of lysophospholipid signaling and suggest that the mechanisms involve both attenuation of lysophospholipid actions at cell surface receptors and opposition of lysophospholipid production. PMID:12909631

  11. Rapidly diverging evolution of an atypical alkaline phosphatase (PhoAaty) in marine phytoplankton: insights from dinoflagellate alkaline phosphatases

    PubMed Central

    Lin, Xin; Wang, Lu; Shi, Xinguo; Lin, Senjie

    2015-01-01

    Alkaline phosphatase (AP) is a key enzyme that enables marine phytoplankton to scavenge phosphorus (P) from dissolved organic phosphorus (DOP) when inorganic phosphate is scarce in the ocean. Yet how the AP gene has evolved in phytoplankton, particularly dinoflagellates, is poorly understood. We sequenced full-length AP genes and corresponding complementary DNA (cDNA) from 15 strains (10 species), representing four classes of the core dinoflagellate lineage, Gymnodiniales, Prorocentrales, Suessiales, and Gonyaulacales. Dinoflagellate AP gene sequences exhibited high variability, containing variable introns, pseudogenes, single nucleotide polymorphisms and consequent variations in amino acid sequence, indicative of gene duplication events and consistent with the “birth-and-death” model of gene evolution. Further sequence comparison showed that dinoflagellate APs likely belong to an atypical type AP (PhoAaty), which shares conserved motifs with counterparts in marine bacteria, cyanobacteria, green algae, haptophytes, and stramenopiles. Phylogenetic analysis suggested that PhoAaty probably originated from an ancestral gene in bacteria and evolved divergently in marine phytoplankton. Because variations in AP amino acid sequences may lead to differential subcellular localization and potentially different metal ion requirements, the multiple types of APs in algae may have resulted from selection for diversifying strategies to utilize DOP in the P variable marine environment. PMID:26379645

  12. Identification of protein phosphatase 2A as an interacting protein of leucine-rich repeat kinase 2.

    PubMed

    Athanasopoulos, Panagiotis S; Jacob, Wright; Neumann, Sebastian; Kutsch, Miriam; Wolters, Dirk; Tan, Eng K; Bichler, Zoë; Herrmann, Christian; Heumann, Rolf

    2016-06-01

    Mutations in the gene coding for the multi-domain protein leucine-rich repeat kinase 2 (LRRK2) are the leading cause of genetically inherited Parkinson's disease (PD). Two of the common found mutations are the R1441C and G2019S. In this study we identified protein phosphatase 2A (PP2A) as an interacting partner of LRRK2. We were able to demonstrate that the Ras of complex protein (ROC) domain is sufficient to interact with the three subunits of PP2A in human neuroblastoma SH-SY5Y cells and in HeLa cells. The alpha subunit of PP2A is interacting with LRRK2 in the perinuclear region of HeLa cells. Silencing the catalytic subunit of PP2A by shRNA aggravated cellular degeneration induced by the pathogenic R1441C-LRRK2 mutant expressed in neuroblastoma SH-SY5Y cells. A similar enhancement of apoptotic nuclei was observed by downregulation of the catalytic subunit of PP2A in cultured cortical cells derived from neurons overexpressing the pathogenic mutant G2019S-LRRK2. Conversely, pharmacological activation of PP2A by sodium selenate showed a partial neuroprotection from R1441C-LRRK2-induced cellular degeneration. All these data suggest that PP2A is a new interacting partner of LRRK2 and reveal the importance of PP2A as a potential therapeutic target in PD. PMID:26894577

  13. Three Phosphatidylglycerol-phosphate Phosphatases in the Inner Membrane of Escherichia coli*

    PubMed Central

    Lu, Yi-Hsueh; Guan, Ziqiang; Zhao, Jinshi; Raetz, Christian R. H.

    2011-01-01

    The phospholipids of Escherichia coli consist mainly of phosphatidylethanolamine, phosphatidylglycerol (PG), and cardiolipin. PG makes up ∼25% of the cellular phospholipid and is essential for growth in wild-type cells. PG is synthesized on the inner surface of the inner membrane from cytidine diphosphate-diacylglycerol and glycerol 3-phosphate, generating the precursor phosphatidylglycerol-phosphate (PGP). This compound is present at low levels (∼0.1% of the total lipid). Dephosphorylation of PGP to PG is catalyzed by several PGP-phosphatases. The pgpA and pgpB genes, which encode structurally distinct PGP-phosphatases, were identified previously. Double deletion mutants lacking pgpA and pgpB are viable and still make PG, suggesting the presence of additional phosphatase(s). We have identified a third PGP-phosphatase gene (previously annotated as yfhB but renamed pgpC) using an expression cloning strategy. A mutant with deletions in all three phosphatase genes is not viable unless covered by a plasmid expressing either pgpA, pgpB, or pgpC. When the triple mutant is covered with the temperature-sensitive plasmid pMAK705 expressing any one of the three pgp genes, the cells grow at 30 but not 42 °C. As growth slows at 42 °C, PGP accumulates to high levels, and the PG content declines. PgpC orthologs are present in many other bacteria. PMID:21148555

  14. New protein kinase and protein phosphatase families mediate signal transduction in bacterial catabolite repression.

    PubMed

    Galinier, A; Kravanja, M; Engelmann, R; Hengstenberg, W; Kilhoffer, M C; Deutscher, J; Haiech, J

    1998-02-17

    Carbon catabolite repression (CCR) is the prototype of a signal transduction mechanism. In enteric bacteria, cAMP was considered to be the second messenger in CCR by playing a role reminiscent of its actions in eukaryotic cells. However, recent results suggest that CCR in Escherichia coli is mediated mainly by an inducer exclusion mechanism. In many Gram-positive bacteria, CCR is triggered by fructose-1,6-bisphosphate, which activates HPr kinase, presumed to be one of the most ancient serine protein kinases. We here report cloning of the Bacillus subtilis hprK and hprP genes and characterization of the encoded HPr kinase and P-Ser-HPr phosphatase. P-Ser-HPr phosphatase forms a new family of phosphatases together with bacterial phosphoglycolate phosphatase, yeast glycerol-3-phosphatase, and 2-deoxyglucose-6-phosphate phosphatase whereas HPr kinase represents a new family of protein kinases on its own. It does not contain the domain structure typical for eukaryotic protein kinases. Although up to now the HPr modifying/demodifying enzymes were thought to exist only in Gram-positive bacteria, a sequence comparison revealed that they also are present in several Gram-negative pathogenic bacteria. PMID:9465101

  15. Characterization of protein phosphatase 5 from three lepidopteran insects: Helicoverpa armigera, Mythimna separata and Plutella xylostella.

    PubMed

    Chen, Xi'en; Lü, Shumin; Zhang, Yalin

    2014-01-01

    Protein phosphatase 5 (PP5), a unique member of serine/threonine phosphatases, regulates a variety of biological processes. We obtained full-length PP5 cDNAs from three lepidopteran insects, Helicoverpa armigera, Mythimna separata and Plutella xylostella, encoding predicted proteins of 490 (55.98 kDa), 490 (55.82 kDa) and 491 (56.07 kDa) amino acids, respectively. These sequences shared a high identity with other insect PP5s and contained the TPR (tetratricopeptide repeat) domains at N-terminal regions and highly conserved C-terminal catalytic domains. Tissue- and stage-specific expression pattern analyses revealed these three PP5 genes were constitutively expressed in all stages and in tested tissues with predominant transcription occurring at the egg and adult stages. Activities of Escherichia coli-produced recombinant PP5 proteins could be enhanced by almost 2-fold by a known PP5 activator: arachidonic acid. Kinetic parameters of three recombinant proteins against substrate pNPP were similar both in the absence or presence of arachidonic acid. Protein phosphatases inhibitors, okadaic acid, cantharidin, and endothall strongly impeded the activities of the three recombinant PP5 proteins, as well as exerted an inhibitory effect on crude protein phosphatases extractions from these three insects. In summary, lepidopteran PP5s share similar characteristics and are all sensitive to the protein phosphatases inhibitors. Our results also imply protein phosphatase inhibitors might be used in the management of lepidopteran pests. PMID:24823652

  16. Suppression of cellular proliferation and invasion by the concerted lipid and protein phosphatase activities of PTEN

    PubMed Central

    Davidson, Lindsay; Maccario, Helene; Perera, Nevin M.; Yang, Xuesong; Spinelli, Laura; Tibarewal, Priyanka; Glancy, Ben; Gray, Alex; Weijer, Cornelis J.; Downes, C. Peter; Leslie, Nick R.

    2009-01-01

    PTEN is a tumour suppressor with phosphatase activity in vitro against both lipids and proteins and other potential non-enzymatic mechanisms of action. Although the importance of PTEN’s lipid phosphatase activity in regulating the PI3K signalling pathway is recognised, the significance of PTEN’s other mechanisms of action is currently unclear. Here, we describe the systematic identification of a PTEN mutant, PTEN Y138L, with activity against lipid, but not soluble substrates. Using this mutant we provide evidence for the interfacial activation of PTEN against lipid substrates. We also show that when re-expressed at physiological levels in PTEN null U87MG glioblastoma cells the protein phosphatase activity of PTEN is not required to regulate cellular PtdInsP3 levels or the downstream protein kinase Akt/PKB. Finally, in 3D Matrigel cultures of U87MG cells similarly re-expressing PTEN mutants, both the protein and lipid phosphatase activities were required to inhibit invasion, but either activity alone significantly inhibited proliferation, albeit only weakly for the protein phosphatase activity. Our data provides a novel tool to address the significance of PTEN’s separable lipid and protein phosphatase activities and suggest that both activities act to suppress proliferation and act together to suppress invasion. PMID:19915616

  17. Developmental regulation of hexosamine biosynthesis by protein phosphatases 2A and 2C in Blastocladiella emersonii.

    PubMed

    Etchebehere, L C; Simon, M N; Campanhã, R B; Zapella, P D; Véron, M; Maia, J C

    1993-08-01

    Extracts of the aquatic fungus Blastocladiella emersonii were found to contain protein phosphatases type 1, type 2A, and type 2C with properties analogous to those found in mammalian tissues. The activities of all three protein phosphatases are developmentally regulated, increasing during sporulation, with maximum level in zoospores. Protein phosphatases 2A and 2C, present in zoospore extracts, catalyze the dephosphorylation of L-glutamine:fructose-6-phosphate amidotransferase (EC 2.6.1.16, amidotransferase), a key regulatory enzyme in hexosamine biosynthesis. The protein phosphatase inhibitor okadaic acid induces encystment and inhibits germ tube formation but does not affect the synthesis of the chitinous cell wall. These results strongly suggest that phosphatase 2C is responsible for the dephosphorylation of amidotransferase in vivo. This dephosphorylation is inhibited by uridine-5'-diphospho-N-acetylglucosamine, the end product of hexosamine synthesis and the substrate for chitin synthesis. This result demonstrates a dual role of uridine-5'-diphospho-N-acetylglucosamine by inhibiting the activity of the phosphorylated form of amidotransferase and by preventing its dephosphorylation by protein phosphatases. PMID:8394312

  18. Pyruvate dehydrogenase/sub b/ phosphatase inhibition by NADH and dihydrolipoamide along with effects of and capacity for binding the phosphatase to the bovine kidney transacetylase-protein X subcomplex

    SciTech Connect

    Roche, T.E.; Rahmatullah, M.; Maher, J.

    1986-05-01

    NADH inhibits PDH/sub b/ phosphatase activity when /sup 32/P-PDH is associated with the intact complex but not when /sup 32/P-PDH is prepared free of other components of the complex. Addition of the transacetylase-protein X (E2-X) subcomplex both activated the phosphatase and restored NADH inhibition. Low levels of dihydrolipoyl dehydrogenase associated with the subcomplex might be required for NADH inhibition. Dihydrolipoamide gave inhibition of the phosphatase equivalent to NADH and the combination did not give additional inhibition suggesting a common mechanism. Pretreatment of phosphorylated complex and phosphatase with 2.0 mM dithiothreitol nearly eliminated inhibition of the phosphatase by NADH or dihydrolipoamide. Strong arsenite inhibition of phosphatase activity occurred only in the presence of NADH suggesting modification of thiols reduced by NADH can alter phosphatase activity. Only about 6 molecules of purified phosphatase could be activated by 1 molecule of E2-X subcomplex (initial velocities measured in 15s period). Since that corresponded to the number of protein X rather than E2 subunits, protein X may contribute to the Ca/sup 2 +/-dependent binding of the phosphatase. Since protein X also contains a lipoyl moiety, it may also contribute to NADH inhibition of the phosphatase.

  19. Genetics Home Reference: alpha-mannosidosis

    MedlinePlus

    ... Me Understand Genetics Home Health Conditions alpha-mannosidosis alpha-mannosidosis Enable Javascript to view the expand/collapse boxes. Download PDF Open All Close All Description Alpha-mannosidosis is a rare inherited disorder that causes ...

  20. Synthesis of functionalized fluorescent gold nanoclusters for acid phosphatase sensing

    NASA Astrophysics Data System (ADS)

    Sun, Jian; Yang, Fan; Yang, Xiurong

    2015-10-01

    A novel and convenient one-pot but two-step synthesis of fluorescent gold nanoclusters, incorporating glutathione (GSH) and 11-mercaptoundecanoic acid (MUA) as the functionalized ligands (i.e. AuNCs@GSH/MUA), is demonstrated. Herein, the mixing of HAuCl4 and GSH in aqueous solution results in the immediate formation of non-fluorescent GSH-Au+ complexes, and then a class of ~2.6 nm GSH-coated AuNCs (AuNCs@GSH) with mild orange-yellow fluorescence after several days. Interestingly, the intense orange-red emitting ~1.7 nm AuNCs@GSH/MUA can be synthesized within seconds by introducing an alkaline aqueous solution of MUA into the GSH-Au+ complexes or AuNC@GSH solution. Subsequently, a reliable AuNC@GSH/MUA-based real-time assay of acid phosphatase (ACP) is established for the first time, inspired by the selective coordination of Fe3+ with surface ligands of AuNCs, the higher binding affinity between the pyrophosphate ion (PPi) and Fe3+, and the hydrolysis of PPi into orthophosphate by ACP. Our fluorescent chemosensor can also be applied to assay ACP in a real biological sample and, furthermore, to screen the inhibitor of ACP. This report paves a new avenue for synthesizing AuNCs based on either the bottom-up reduction or top-down etching method, establishing real-time fluorescence assays for ACP by means of PPi as the substrate, and further exploring the sensing applications of fluorescent AuNCs.A novel and convenient one-pot but two-step synthesis of fluorescent gold nanoclusters, incorporating glutathione (GSH) and 11-mercaptoundecanoic acid (MUA) as the functionalized ligands (i.e. AuNCs@GSH/MUA), is demonstrated. Herein, the mixing of HAuCl4 and GSH in aqueous solution results in the immediate formation of non-fluorescent GSH-Au+ complexes, and then a class of ~2.6 nm GSH-coated AuNCs (AuNCs@GSH) with mild orange-yellow fluorescence after several days. Interestingly, the intense orange-red emitting ~1.7 nm AuNCs@GSH/MUA can be synthesized within seconds by

  1. Alkaline Phosphatase Activity in San Francisco and Monterey Bays

    NASA Astrophysics Data System (ADS)

    Nicholson, D. P.

    2002-12-01

    Phosphorus (P) is an essential nutrient utilized by all living organisms, and has been recognized as a limiting nutrient in some oceanic systems (Cotner et al., 1997; Karl et al., 1995; Michaels et al., 1996; Wu et al., 2000). However, relatively little is known about the extent of P limitation in natural environments, how P limitation varies spatially and temporally, and what determines how and when P becomes limiting (Benitez-Nelson, 2000). A more direct estimate of the degree of P limitation in a variety of oceanic systems is needed to better understand P cycling and dynamics within the ocean and how these have and will change in response to global climate and environmental perturbation. Accordingly, the objective this study is to assess the P-status of marine planktonic communities in Monterey and San Francisco Bays using the activity of alkaline phosphatase in the water column. Alkaline phosphatase (AP) is the most widely used enzyme that marine organisms use to hydrolize organic P compounds to biologically available orthophosphate. Accordingly it is expected that in areas where P is a limiting nutrient organisms will produce and release more AP to seawater so they can utilize the dissolved and particulate organic P compounds. Indeed it has been suggested that the AP activity is a reliable indicator of P-availability to planktonic communities (Ammerman and Azam, 1985; Cotner and Wetzel, 1991; Hong et al., 1998). High enzyme activities indicate low dissolved inorganic phosphate (DIP) availability while low levels suggest that DIP supply satisfies the community P-demand. This study examines AP activity in San Francisco and Monterey Bays over a 12 month period, from November, 2001 through November, 2002 using two enzyme assays. The study encompasses data from a three-station transect in Monterey Bay, at depths ranging from 0-60 meters. The stations range from coastal waters to open ocean depths of several thousand meters. In San Francisco Bay, surface water from

  2. A bioinformatic and computational study of myosin phosphatase subunit diversity

    PubMed Central

    Dippold, Rachael P.

    2014-01-01

    Variability in myosin phosphatase (MP) subunits may provide specificity in signaling pathways that regulate muscle tone. We utilized public databases and computational algorithms to investigate the phylogenetic diversity of MP regulatory (PPP1R12A-C) and inhibitory (PPP1R14A-D) subunits. The comparison of exonic coding sequences and expression data confirmed or refuted the existence of isoforms and their tissue-specific expression in different model organisms. The comparison of intronic and exonic sequences identified potential expressional regulatory elements. As examples, smooth muscle MP regulatory subunit (PPP1R12A) is highly conserved through evolution. Its alternative exon E24 is present in fish through mammals with two invariant features: 1) a reading frame shift generating a premature termination codon and 2) a hexanucleotide sequence adjacent to the 3′ splice site hypothesized to be a novel suppressor of exon splicing. A characteristic of the striated muscle MP regulatory subunit (PPP1R12B) locus is numerous and phylogenetically variable transcriptional start sites. In fish this locus only codes for the small (M21) subunit, suggesting the primordial function of this gene. Inhibitory subunits show little intragenic variability; their diversity is thought to have arisen by expansion and tissue-specific expression of different gene family members. We demonstrate differences in the regulatory landscape between smooth muscle enriched (PPP1R14A) and more ubiquitously expressed (PPP1R14B) family members and identify deeply conserved intronic sequence and predicted transcriptional cis-regulatory elements. This bioinformatic and computational study has uncovered a number of attributes of MP subunits that supports selection of ideal model organisms and testing of hypotheses regarding their physiological significance and regulated expression. PMID:24898838

  3. Modeling catalytic promiscuity in the alkaline phosphatase superfamily

    PubMed Central

    Duarte, Fernanda; Amrein, Beat Anton

    2013-01-01

    In recent years, it has become increasingly clear that promiscuity plays a key role in the evolution of new enzyme function. This finding has helped to elucidate fundamental aspects of molecular evolution. While there has been extensive experimental work on enzyme promiscuity, computational modeling of the chemical details of such promiscuity has traditionally fallen behind the advances in experimental studies, not least due to the nearly prohibitive computational cost involved in examining multiple substrates with multiple potential mechanisms and binding modes in atomic detail with a reasonable degree of accuracy. However, recent advances in both computational methodologies and power have allowed us to reach a stage in the field where we can start to overcome this problem, and molecular simulations can now provide accurate and efficient descriptions of complex biological systems with substantially less computational cost. This has led to significant advances in our understanding of enzyme function and evolution in a broader sense. Here, we will discuss currently available computational approaches that can allow us to probe the underlying molecular basis for enzyme specificity and selectivity, discussing the inherent strengths and weaknesses of each approach. As a case study, we will discuss recent computational work on different members of the alkaline phosphatase superfamily (AP) using a range of different approaches, showing the complementary insights they have provided. We have selected this particular superfamily, as it poses a number of significant challenges for theory, ranging from the complexity of the actual reaction mechanisms involved to the reliable modeling of the catalytic metal centers, as well as the very large system sizes. We will demonstrate that, through current advances in methodologies, computational tools can provide significant insight into the molecular basis for catalytic promiscuity, and, therefore, in turn, the mechanisms of protein

  4. Pharmacophore modeling for protein tyrosine phosphatase 1B inhibitors.

    PubMed

    Bharatham, Kavitha; Bharatham, Nagakumar; Lee, Keun Woo

    2007-05-01

    A three dimensional chemical feature based pharmacophore model was developed for the inhibitors of protein tyrosine phosphatase 1B (PTP1B) using the CATALYST software, which would provide useful knowledge for performing virtual screening to identify new inhibitors targeted toward type II diabetes and obesity. A dataset of 27 inhibitors, with diverse structural properties, and activities ranging from 0.026 to 600 microM, was selected as a training set. Hypol, the most reliable quantitative four featured pharmacophore hypothesis, was generated from a training set composed of compounds with two H-bond acceptors, one hydrophobic aromatic and one ring aromatic features. It has a correlation coefficient, RMSD and cost difference (null cost-total cost) of 0.946, 0.840 and 65.731, respectively. The best hypothesis (Hypol) was validated using four different methods. Firstly, a cross validation was performed by randomizing the data using the Cat-Scramble technique. The results confirmed that the pharmacophore models generated from the training set were valid. Secondly, a test set of 281 molecules was scored, with a correlation of 0.882 obtained between the experimental and predicted activities. Hypol performed well in correctly discriminating the active and inactive molecules. Thirdly, the model was investigated by mapping on two PTP1B inhibitors identified by different pharmaceutical companies. The Hypol model correctly predicted these compounds as being highly active. Finally, docking simulations were performed on few compounds to substantiate the role of the pharmacophore features at the binding site of the protein by analyzing their binding conformations. These multiple validation approaches provided confidence in the utility of this pharmacophore model as a 3D query for virtual screening to retrieve new chemical entities showing potential as potent PTP1B inhibitors. PMID:17615669

  5. Cloning of the canine glucose-6-phosphatase gene

    SciTech Connect

    Kishnani, P.; Bao, Y.; Brix, A.E.

    1994-09-01

    Two Maltese puppies with massive hepatomegaly and failure to thrive were found to have a markedly reduced Glucose-6-phosphatase (G-6-Pase) activity in the liver and kidney. Deficiency of G-6-Pase activity causes type 1a glycogen storage disease in humans. To further study the mutation responsible for the disease in dog, we cloned G-6-Pase canine cDNA from normal mixed breed dog liver RNA using reverse transcriptase and PCR amplification using primers derived from the published murine G-6-Pase gene sequence. Sequencing revealed an open reading frame of 1071 nucleotides that encodes a predicted 357 amino acid polypeptide in the canine G-6-Pase gene, same as mouse and human. We found more than 90% sequence homology between dog and human G-6-Pase sequence. Hydropathy analysis of the deduced canine G-6-Pase polypeptide shows six transmembrane-spanning segments similar to those seen in human and mouse. Endoplasmic reticulum (ER) localization is similarly predicted by the presence of the ER protein retention signal KK positioned 3 and 4 amino acids from the carboxy terminal. Potential asparagine-linked glycosylation sites are identified at positions 96, 203, and 276. Northern blot analysis revealed increased G-6-Pase mRNA in the deficient dog liver compared to control. This could possibly reflect upregulation of transcription due to the persistent hypoglycemic state. Further studies are directed at the identification of the mutation involved in this deficient dog strain. Characterization of the G-6-Pase gene and protein in the deficient dog model can pave the way for new understanding in the pathophysiology of this disease and for the trials of novel therapeutic approaches including gene therapy.

  6. Cellular Biochemistry Methods for Investigating Protein Tyrosine Phosphatases

    PubMed Central

    Stanford, Stephanie M.; Ahmed, Vanessa

    2014-01-01

    Abstract Significance: The protein tyrosine phosphatases (PTPs) are a family of proteins that play critical roles in cellular signaling and influence many aspects of human health and disease. Although a wealth of information has been collected about PTPs since their discovery, many questions regarding their regulation and function still remain. Critical Issues: Of particular importance are the elucidation of the biological substrates of individual PTPs and understanding of the chemical and biological basis for temporal and spatial resolution of PTP activity within a cell. Recent Advances: Drawing from recent advances in both biology and chemistry, innovative approaches have been developed to study the intracellular biochemistry and physiology of PTPs. We provide a summary of PTP-tailored techniques and approaches, emphasizing methodologies to study PTP activity within a cellular context. We first provide a discussion of methods for identifying PTP substrates, including substrate-trapping mutants and synthetic peptide libraries for substrate selectivity profiling. We next provide an overview of approaches for monitoring intracellular PTP activity, including a discussion of mechanistic-based probes, gel-based assays, substrates that can be used intracellularly, and assays tied to cell growth. Finally, we review approaches used for monitoring PTP oxidation, a key regulatory pathway for these enzymes, discussing the biotin switch method and variants of this approach, along with affinity trapping techniques and probes designed to detect PTP oxidation. Future Directions: Further development of approaches to investigate the intracellular PTP activity and functions will provide specific insight into their mechanisms of action and control of diverse signaling pathways. Antioxid. Redox Signal. 20, 2160–2178. PMID:24294920

  7. [Glucose-6-phosphatase from nuclear envelope in rat liver].

    PubMed

    González-Mujica, Freddy

    2008-06-01

    Nuclear envelope (NE) and microsomal glucosa-6-phosphatase (G-6-Pase) activities were compared. Intact microsomes were unable to hydrolyze mannose-6-phosphate (M-6-P), on the other hand, intact NE hydrolyzes this substrate. Galactose-6-phosphate showed to be a good substrate for both NE and microsomal enzymes, with similar latency to that obtained with M-6-P using microsomes. In consequence, this substrate was used to measure the NE integrity. The kinetic parameters (Kii and Kis) of the intact NE G-6-Pase for the phlorizin inhibition using glucose-6-phosphate (G-6-P) and M-6-P as substrates, were very similar. The NE T1 transporter was more sensitive to amiloride than the microsomal T1. The microsomal system was more sensitive to N-ethylmalemide (NEM) than the NE and the latter was insensitive to anion transport inhibitors DIDS and SITS, which strongly affect the microsomal enzyme. The above results allowed to postulate the presence of a hexose-6-phosphate transporter in the NE which is able to carry G-6-P and M-6-P, and perhaps other hexose-6-phosphate which could be different from that present in microsomes or, if it is the same, its activity could by modified by the membrane system where it is included. The higher PPi hydrolysis activity of the intact NE G-6-Pase in comparison to the intact microsomal, suggests differences between the Pi/PPi transport (T2) of both systems. The lower sensitivity of the NE G-6-Pase to NEM suggests that the catalytic subunit of this system has some differences with the microsomal isoform. PMID:18717264

  8. Degradation of potent Rubisco inhibitor by selective sugar phosphatase.

    PubMed

    Bracher, Andreas; Sharma, Anurag; Starling-Windhof, Amanda; Hartl, F Ulrich; Hayer-Hartl, Manajit

    2015-01-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyses the conversion of atmospheric carbon dioxide into organic compounds in photosynthetic organisms. Alongside carboxylating the five-carbon sugar ribulose-1,5-bisphosphate (RuBP)(1-3), Rubisco produces a small amount of xylulose-1,5-bisphosphate (XuBP), a potent inhibitor of Rubisco(4). The AAA+ protein Rubisco activase removes XuBP from the active site of Rubisco in an ATP-dependent process(5,6). However, free XuBP rapidly rebinds to Rubisco, perpetuating its inhibitory effect. Here, we combine biochemical and structural analyses to show that the CbbY protein of the photosynthetic bacterium Rhodobacter sphaeroides and Arabidopsis thaliana is a highly selective XuBP phosphatase. We also show that CbbY converts XuBP to the non-inhibitory compound xylulose-5-phosphate, which is recycled back to RuBP. We solve the crystal structures of CbbY from R. sphaeroides and A. thaliana, and through mutational analysis show that the cap domain of the protein confers the selectivity for XuBP over RuBP. Finally, in vitro experiments with CbbY from R. sphaeroides reveal that CbbY cooperates with Rubisco activase to prevent a detrimental build-up of XuBP at the Rubisco active site. We suggest that CbbY, which is conserved in algae and plants, is an important component of the cellular machinery that has evolved to deal with the shortcomings of the ancient enzyme Rubisco. PMID:27246049

  9. Phosphorylcholine Phosphatase: A Peculiar Enzyme of Pseudomonas aeruginosa

    PubMed Central

    Domenech, Carlos Eduardo; Otero, Lisandro Horacio; Beassoni, Paola Rita; Lisa, Angela Teresita

    2011-01-01

    Pseudomonas aeruginosa synthesizes phosphorylcholine phosphatase (PchP) when grown on choline, betaine, dimethylglycine or carnitine. In the presence of Mg2+ or Zn2+, PchP catalyzes the hydrolysis of p-nitrophenylphosphate (p-NPP) or phosphorylcholine (Pcho). The regulation of pchP gene expression is under the control of GbdR and NtrC; dimethylglycine is likely the metabolite directly involved in the induction of PchP. Therefore, the regulation of choline metabolism and consequently PchP synthesis may reflect an adaptive response of P. aeruginosa to environmental conditions. Bioinformatic and biochemistry studies shown that PchP contains two sites for alkylammonium compounds (AACs): one in the catalytic site near the metal ion-phosphoester pocket, and another in an inhibitory site responsible for the binding of the alkylammonium moiety. Both sites could be close to each other and interact through the residues 42E, 43E and 82YYY84. Zn2+ is better activator than Mg2+ at pH 5.0 and it is more effective at alleviating the inhibition produced by the entry of Pcho or different AACs in the inhibitory site. We postulate that Zn2+ induces at pH 5.0 a conformational change in the active center that is communicated to the inhibitory site, producing a compact or closed structure. However, at pH 7.4, this effect is not observed because to the hydrolysis of the [Zn2+L2−1L20(H2O)2] complex, which causes a change from octahedral to tetrahedral in the metal coordination geometry. This enzyme is also present in P. fluorescens, P. putida, P. syringae, and other organisms. We have recently crystallized PchP and solved its structure. PMID:21915373

  10. Expression of Prostatic Acid Phosphatase in Rat Circumvallate Papillae

    PubMed Central

    Nishida, Kentaro; Kubota, Teruyo; Matsumoto, Saki; Kato, Junki; Watanabe, Yu; Yamamoto, Atsuko; Furui, Mari; Ohishi, Akihiro; Nagasawa, Kazuki

    2016-01-01

    ATP and its metabolites are important for taste signaling in taste buds, and thus a clearance system for them would play critical roles in maintenance of gustatory function. A previous report revealed that mRNAs for ecto-5′-nucleotidase (NT5E) and prostatic acid phosphatase (PAP) were expressed by taste cells of taste buds, and NT5E-immunoreactivity was detected in taste cells. However, there was no information on PAP-immunoreactivity in taste buds. In this study, we examined the expression profile of PAP in rat taste buds. In the isolated rat taste buds, we detected expression of mRNA for PAP, but NT5E was not detected differing from the case of mouse ones (Dando et al., 2012, J Neuroscience). On immunohistochemical analysis, PAP-immunoreactivity was found predominantly in NTPDase2-positive type I and SNAP25-positive type III taste cells, while there were no apparent signals of it in PLC-β2-positive type II, α-gustducin-positive type II, AADC-positive type III and 5HT-positive type III ones. As for NT5E, we could not detect its immunoreactivity in rat taste buds, and co-localization of it with any taste cell markers, although mouse taste buds expressed NT5E as reported previously. These findings suggest that PAP expressed by type I and one of type III taste cells of rats may contribute to metabolic regulation of the extracellular levels of adenine nucleotides in the taste buds of circumvallate papillae, and the regulating mechanisms for adenine nucleotides in taste buds might be different between rats and mice. PMID:27348306

  11. Plasma intestinal alkaline phosphatase isoenzymes in neonates with bowel necrosis.

    PubMed Central

    McLachlan, R; Coakley, J; Murton, L; Campbell, N

    1993-01-01

    AIM--To determine if the intestinal isoenzymes of alkaline phosphatase (ALP) are biochemical markers of bowel necrosis in neonates. METHODS--Plasma ALP isoenzymes were measured in 22 babies with bowel necrosis, histologically confirmed, and in 22 matched controls. The isoenzymes were also measured in 16 infants with signs of necrotising enterocolitis, who recovered without histological confirmation of bowel necrosis. The isoenzymes were separated by polyacrylamide gel electrophoresis. Auxiliary tests for identification included neuraminidase digestion and treatment with monoclonal and polyclonal antiplacental antibodies. RESULTS--Intestinal ALP was detected in 16 infants with bowel necrosis--13 had fetal intestinal ALP (FI-ALP) and three had adult intestinal ALP (AI-ALP). FI-ALP was detected in nine of the controls. In the babies with bowel necrosis intestinal ALP was found over all gestations, but in the controls only in those less than 34 weeks. The percentages of total ALP activity due to intestinal ALP were significantly higher in those with bowel necrosis compared with matched controls (p = 0.028). In babies of all gestations diagnostic sensitivity for the presence of intestinal ALP as a marker of bowel necrosis was 73% and diagnostic specificity 59%. In babies greater than 34 weeks' gestation, diagnostic sensitivity fell to 60% but the test became completely specific. In two babies FI-ALP increased from zero/trace to high activity coincident with the episode of bowel necrosis. In 16 babies with signs of necrotising enterocolitis but unconfirmed bowel necrosis FI-ALP was detected in four. CONCLUSION--Intestinal ALP seems to be released into the circulation in some babies with bowel necrosis, but its detection does not have the diagnostic sensitivity and specificity to be a reliable biochemical marker of the condition. Images PMID:8157755

  12. Dephosphorylation of endotoxin by alkaline phosphatase in vivo.

    PubMed Central

    Poelstra, K.; Bakker, W. W.; Klok, P. A.; Kamps, J. A.; Hardonk, M. J.; Meijer, D. K.

    1997-01-01

    Natural substrates for alkaline phosphatase (AP) are at present not identified despite extensive investigations. Difficulties in imagining a possible physiological function involve its extremely high pH optimum for the usual exogenous substrates and its localization as an ecto-enzyme. As endotoxin is a substance that contains phosphate groups and is usually present in the extracellular space, we studied whether AP is able to dephosphorylate this bacterial product at physiological pH levels. We tested this in intestinal cryostat sections using histochemical methods with endotoxin from Escherichia coli and Salmonella minnesota R595 as substrate. Results show that dephosphorylation of both preparations occurs at pH 7.5 by AP activity. As phosphate residues in the lipid A moiety determine the toxicity of the molecule, we examined the effect of the AP inhibitor levamisole in vivo using a septicemia model in the rat. The results show that inhibition of endogenous AP by levamisole significantly reduces survival of rats intraperitoneally injected with E. coli bacteria, whereas this drug does not influence survival of rats receiving a sublethal dose of the gram-positive bacteria Staphylococcus aureus. In view of the endotoxin-dephosphorylating properties of AP demonstrated in vitro, we propose a crucial role for this enzyme in host defense. The effects of levamisole during gram-negative bacterial infections and the localization of AP as an ecto-enzyme in most organs as well as the induction of enzyme activity during inflammatory reactions and cholestasis is in accordance with such a protective role. Images Figure 1 Figure 5 PMID:9327750

  13. Downscaling Alkaline Phosphatase Activity in a Subtropical Reservoir

    NASA Astrophysics Data System (ADS)

    Tseng, Y.

    2011-12-01

    This research was conducted by downscaling study to understand phosphorus (P)-deficient status of different plankton and the role of alkaline phosphatase activity (APA) in subtropical Feitsui Reservoir. Results from field survey showed that bulk APA (1.6~95.2 nM h-1) was widely observed in the epilimnion (0~20 m) with an apparent seasonal variations, suggesting that plankton in the system were subjected to P-deficient seasonally. Mixed layer depth (an index of phosphate availability) is the major factor influencing the variation of bulk APA and specific APA (124~1,253 nmol mg C-1 h-1), based on multiple linear regression analysis. Size-fractionated APA assays showed that picoplankton (size 0.2~3 um) contributed most of the bulk APA in the system. In addition, single-cell APA detected by enzyme-labeled fluorescence (ELF) assay indicated that heterotrophic bacteria are the major contributors of APA. Thus, we can infer that bacteria play an important role in accelerating P-cycle within P-deficient systems. Light/nutrient manipulation bioassays showed that bacterial growth was directly controlled by phosphate, while picocyanobacterial growth is controlled by light and can out-compete bacteria under P-limited condition with the aid of light. Further analysis revealed that the strength of summer typhoon is a factor responsible for the inter-annual variability of bulk and specific APA. APA study demonstrated the episodic events (e.g. strong typhoon and extreme precipitation) had significant influence on APA variability in sub-tropical to tropical aquatic ecosystems. Hence, the results herein will allow future studies on monitoring typhoon disturbance (intensity and frequency) as well as the APA of plankton during summer-to-autumn in subtropical systems.

  14. Identification of a selective small-molecule inhibitor series targeting the eyes absent 2 (Eya2) phosphatase activity.

    PubMed

    Krueger, Aaron B; Dehdashti, Seameen J; Southall, Noel; Marugan, Juan J; Ferrer, Marc; Li, Xueni; Ford, Heide L; Zheng, Wei; Zhao, Rui

    2013-01-01

    Eya proteins are essential coactivators of the Six family of homeobox transcription factors and also contain a unique protein tyrosine phosphatase activity, belonging to the haloacid dehalogenase family of phosphatases. The phosphatase activity of Eya is important for a subset of Six1-mediated transcription, making this a unique type of transcriptional control. It is also responsible for directing cells to the repair instead of apoptosis pathway upon DNA damage. Furthermore, the phosphatase activity of Eya is critical for transformation, migration, invasion, and metastasis of breast cancer cells. Thus, inhibitors of the Eya phosphatase activity may be antitumorigenic and antimetastatic, as well as sensitize cancer cells to DNA damage-inducing therapies. In this article, we identified a previously unknown chemical series using high-throughput screening that inhibits the Eya2 phosphatase activity with IC(50)s ranging from 1.8 to 79 µM. Compound activity was confirmed using an alternative malachite green assay and H2AX, a known Eya substrate. Importantly, these Eya2 phosphatase inhibitors show specificity and do not significantly inhibit several other cellular phosphatases. Our studies identify the first selective Eya2 phosphatase inhibitors that can potentially be developed into chemical probes for functional studies of Eya phosphatase or into anticancer drugs in the future. PMID:22820394

  15. A Mg(2+)-dependent ecto-phosphatase activity on the external surface of Trypanosoma rangeli modulated by exogenous inorganic phosphate.

    PubMed

    Fonseca-de-Souza, André L; Dick, Claudia Fernanda; Dos Santos, André Luiz Araújo; Meyer-Fernandes, José Roberto

    2008-08-01

    In this work, we characterized a Mg(2+)-dependent ecto-phosphatase activity present in live Trypanosoma rangeli epimastigotes. This enzyme showed capacity to hydrolyze the artificial substrate for phosphatases, p-nitrophenylphosphate (p-NPP). At saturating concentration of p-NPP, half-maximal p-NPP hydrolysis was obtained with 0.23mM Mg(2+). Ca(2+) had no effect on the basal phosphatase activity, could not substitute Mg(2+) as an activator and in contrast inhibited the p-NPP hydrolysis stimulated by Mg(2+). The dependence on p-NPP concentration showed a normal Michaelis-Menten kinetics for this phosphatase activity with values of V(max) of 8.94+/-0.36 nmol p-NP x h(-1) x 10(-7) cells and apparent K(m) of 1.04+/-0.16 mM p-NPP. Mg(2+)-dependent ecto-phosphatase activity was stimulated by the alkaline pH range. Experiments using inhibitors, such as, sodium fluoride, sodium orthovanadate and ammonium molybdate, inhibited the Mg(2+)-dependent ecto-phosphatase activity. Inorganic phosphate (Pi), a product of phosphatases, inhibited reversibly in 50% this activity. Okadaic acid and microcystin-LR, specific phosphoserine/threonine phosphatase inhibitors, inhibited significantly the Mg(2+)-dependent ecto-phosphatase activity. In addition, this phosphatase activity was able to recognize as substrates only o-phosphoserine and o-phosphothreonine, while o-phosphotyrosine was not a good substrate for this phosphatase. Epimastigote forms of T. rangeli exhibit a typical growth curve, achieving the stationary phase around fifth or sixth day and the Mg(2+)-dependent ecto-phosphatase activity decreased around 10-fold with the cell growth progression. Cells maintained at Pi-deprived medium (2 mM Pi) present Mg(2+)-dependent ecto-phosphatase activity approximately threefold higher than that maintained at Pi-supplemented medium (50 mM Pi). PMID:18599005

  16. Induction of a germination specific, low molecular weight, acid phosphatase isozyme with specific phosphotyrosine phosphatase activity in lentil (Lens esculenta) seeds.

    PubMed

    Bose, S K; Taneja, V

    1998-09-29

    A germination specific isozyme of acid phosphatase (EC 3.1.3.2) hydrolysing O-phospho-L-Tyrosine, pH optima 5.5 is induced in lentil seeds. When seeds at 0 h, 24 h and 36 h of germination are electrophorezed, native PAGE on specific enzyme staining shows several constitutive isozymes of acid phosphatases. At 48 h, an isozyme is induced which gradually decreases and then disappears at 108 h of germination. The short lived, induced isozyme is present in the embryo and seed-coat but not in the plumule and the radical. Induction of this isozyme is inhibited by cycloheximide and actinomycin-D and increased by plant growth regulators such as heteroauxin and gibbrellic acid treatment during germination. The induced isozyme is a single 30 kD polypeptide, with subunit molecular mass of 25 kD, shows activity for O-phospho-L-Tyrosine. It is strongly inhibited by vanadate (microM), molybdate, tungustate as also by iodoacetate, p-chloromercuribenzoate and diethylpyrocarbonate. This study shows for the first time that the germination induced low molecular weight Acid phosphatase is a Tyrosine phosphatase super family class IV enzyme, having a role in cellular differentiation and development during seed germination. PMID:9784397

  17. Alpha-particle spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Gorenstein, P.; Bjorkholm, P.

    1972-01-01

    Mapping the radon emanation of the moon was studied to find potential areas of high activity by detection of radon isotopes and their daughter products. It was felt that based on observation of regions overflown by Apollo spacecraft and within the field of view of the alpha-particle spectrometer, a radon map could be constructed, identifying and locating lunar areas of outgassing. The basic theory of radon migration from natural concentrations of uranium and thorium is discussed in terms of radon decay and the production of alpha particles. The preliminary analysis of the results indicates no significant alpha emission.

  18. Generic phosphatase activity detection using zinc mediated aggregation modulation of polypeptide-modified gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Selegård, Robert; Enander, Karin; Aili, Daniel

    2014-11-01

    A challenge in the design of plasmonic nanoparticle-based colorimetric assays is that the change in colloidal stability, which generates the colorimetric response, is often directly linked to the biomolecular recognition event. New assay strategies are hence required for every type of substrate and enzyme of interest. Here, a generic strategy for monitoring of phosphatase activity is presented where substrate recognition is completely decoupled from the nanoparticle stability modulation mechanism, which enables detection of a wide range of enzymes using different natural substrates with a single simple detection scheme. Phosphatase activity generates inorganic phosphate that forms an insoluble complex with Zn2+. In a sample containing a preset concentration of Zn2+, phosphatase activity will markedly reduce the concentration of dissolved Zn2+ from the original value, which in turn affects the aggregation of gold nanoparticles functionalized with a designed Zn2+ responsive polypeptide. The change in nanoparticle stability thus provides a rapid and sensitive readout of the phosphatase activity. The assay is not limited to a particular enzyme or enzyme substrate, which is demonstrated using three completely different phosphatases and five different substrates, and thus constitutes a highly interesting system for drug screening and diagnostics.A challenge in the design of plasmonic nanoparticle-based colorimetric assays is that the change in colloidal stability, which generates the colorimetric response, is often directly linked to the biomolecular recognition event. New assay strategies are hence required for every type of substrate and enzyme of interest. Here, a generic strategy for monitoring of phosphatase activity is presented where substrate recognition is completely decoupled from the nanoparticle stability modulation mechanism, which enables detection of a wide range of enzymes using different natural substrates with a single simple detection scheme

  19. /sup 18/O isotope effect in /sup 13/C nuclear magnetic resonance spectroscopy. Part 9. Hydrolysis of benzyl phosphate by phosphatase enzymes and in acidic aqueous solutions

    SciTech Connect

    Parente, J.E.; Risley, J.M.; Van Etten, R.L.

    1984-12-26

    The /sup 18/O isotope-induced shifts in /sup 13/C and /sup 31/P nuclear magnetic resonance (NMR) spectroscopy were used to establish the position of bond cleavage in the phosphatase-catalyzed and acid-catalyzed hydrolysis reactions of benzyl phosphate. The application of the /sup 18/O-isotope effect in NMR spectroscopy affords a continuous, nondestructive assay method for following the kinetics and position of bond cleavage in the hydrolytic process. The technique provides advantages over most discontinuous methods in which the reaction components must be isolated and converted to volatile derivatives prior to analysis. In the present study, (..cap alpha..-/sup 13/C,ester-/sup 18/O)benzyl phosphate and (ester-/sup 18/O)benzyl phosphate were synthesized for use in enzymatic and nonenzymatic studies. Hydrolysis reactions catalyzed by the alkaline phosphatase from E. coli and by the acid phosphatases isolated from human prostate and human liver were all accompanied by cleavage of the substrate phosphorus-oxygen bond consistent with previously postulated mechanisms involving covalent phosphoenzyme intermediates. An extensive study of the acid-catalyzed hydrolysis of benzyl phosphate at 75/sup 0/C revealed that the site of bond cleavage is dependent on pH. At pH less than or equal to 1.3, the hydrolysis proceeds with C-O bond cleavage; at 1.3 < pH < 2.0, there is a mixture of C-O and P-O bond scission, the latter progressively predominating as the pH is raised; at pH greater than or equal to 2.0, the hydrolysis proceeds with exclusive P-O bond scission. (S)-(+)-(..cap alpha..-/sup 2/H)Benzyl phosphate was also synthesized. Hydrolysis of this chiral benzyl derivative demonstrated that the acid-catalyzed C-O bond scission of benzyl phosphate proceeds by an A-1 (S/sub N/1) mechanism with 70% racemization and 30% inversion at carbon. 37 references, 4 figures, 2 tables.

  20. TCTEX1D4, a novel protein phosphatase 1 interactor: connecting the phosphatase to the microtubule network

    PubMed Central

    Korrodi-Gregório, Luís; Vieira, Sandra I.; Esteves, Sara L. C.; Silva, Joana V.; Freitas, Maria João; Brauns, Ann-Kristin; Luers, Georg; Abrantes, Joana; Esteves, Pedro J.; da Cruz e Silva, Odete A. B.; Fardilha, Margarida; da Cruz e Silva, Edgar F.

    2013-01-01

    Summary Reversible phosphorylation plays an important role as a mechanism of intracellular control in eukaryotes. PPP1, a major eukaryotic Ser/Thr-protein phosphatase, acquires its specificity by interacting with different protein regulators, also known as PPP1 interacting proteins (PIPs). In the present work we characterized a physiologically relevant PIP in testis. Using a yeast two-hybrid screen with a human testis cDNA library, we identified a novel PIP of PPP1CC2 isoform, the T-complex testis expressed protein 1 domain containing 4 (TCTEX1D4) that has recently been described as a Tctex1 dynein light chain family member. The overlay assays confirm that TCTEX1D4 interacts with the different spliced isoforms of PPP1CC. Also, the binding domain occurs in the N-terminus, where a consensus PPP1 binding motif (PPP1BM) RVSF is present. The distribution of TCTEX1D4 in testis suggests its involvement in distinct functions, such as TGFβ signaling at the blood–testis barrier and acrosome cap formation. Immunofluorescence in human ejaculated sperm shows that TCTEX1D4 is present in the flagellum and in the acrosome region of the head. Moreover, TCTEX1D4 and PPP1 co-localize in the microtubule organizing center (MTOC) and microtubules in cell cultures. Importantly, the TCTEX1D4 PPP1BM seems to be relevant for complex formation, for PPP1 retention in the MTOC and movement along microtubules. These novel results open new avenues to possible roles of this dynein, together with PPP1. In essence TCTEX1D4/PPP1C complex appears to be involved in microtubule dynamics, sperm motility, acrosome reaction and in the regulation of the blood–testis barrier. PMID:23789093

  1. Binding of tumor necrosis factor alpha to activated forms of human plasma alpha 2 macroglobulin.

    PubMed Central

    Wollenberg, G. K.; LaMarre, J.; Rosendal, S.; Gonias, S. L.; Hayes, M. A.

    1991-01-01

    We tested the hypothesis that human plasma alpha 2 macroglobulin (alpha 2M) is a latent binding glycoprotein for human tumor necrosis factor alpha (TNF-alpha). Human recombinant 125I-TNF-alpha was incubated for 2 hours (37 degrees C) with purified native alpha 2M and with alpha 2M that was modified by reaction with methylamine or various proteinases. 125I-TNF-alpha/alpha 2M complexes were detected by nondenaturing polyacrylamide gel electrophoresis after autoradiography or by liquid chromatography on Superose-6. 125I-TNF-alpha bound strongly but noncovalently to alpha 2M-plasmin and alpha 2M-methylamine. There was minimal binding of 125I-TNF-alpha to native alpha 2M, alpha 2M-trypsin, or alpha 2M-thrombin. A 10(6) molar excess of porcine heparin did not reduce the binding of 125I-TNF-alpha to alpha 2M-methylamine or alpha 2M-plasmin. alpha 2M-plasmin or alpha 2M-methylamine added to human plasma or serum preferentially bound 125I-TNF-alpha in the presence of native alpha 2M. 125I-TNF-alpha also bound to 'fast' alpha-macroglobulins in methylamine-reacted human, rat, mouse, swine, equine, and bovine plasma. However, TNF-alpha, preincubated with either alpha 2M-plasmin or alpha 2M-methylamine, remained a potent necrogen for cultured L929 cells. Purified 125I-TNF-alpha/alpha 2M-plasmin complex injected intravenously in CD-1 mice rapidly cleared from the circulation, unless the alpha 2M-receptor pathway was blocked by coinjection of excess alpha 2M-trypsin. These findings demonstrate that alpha 2M is a latent plasmin-activated binding glycoprotein for TNF-alpha and that TNF-alpha/alpha 2M-plasmin complexes can be removed from the circulation by the alpha 2M-receptor pathway. This suggests that alpha 2M may be an important regulator of the activity and distribution of TNF-alpha in vivo. Images Figure 1 Figure 3 PMID:1704186

  2. Effects of precipitation on soil acid phosphatase activity in three successional forests in Southern China

    NASA Astrophysics Data System (ADS)

    Huang, W.; Liu, J.; Zhou, G.; Zhang, D.; Deng, Q.

    2011-01-01

    Phosphorus (P) is often a limiting nutrient for plant growth in tropical and subtropical forests. Global climate change has led to alterations in precipitation in the recent years, which inevitably influences P cycling. Soil acid phosphatase plays a vital role in controlling P mineralization, and its activity reflects the capacity of P supply to ecosystems. In order to study the effects of precipitation on soil acid phosphatase activity, an experiment of precipitation treatments (no precipitation, natural precipitation and doubled precipitation) in three forests of early-, mid- and advanced-successional stages in Southern China was carried out. Results showed that driven by seasonality of precipitation, changes in soil acid phosphatase activities coincided with the seasonal climate pattern, with significantly higher values in the wet season than in the dry season. Soil acid phosphatase activities were closely linked to forest successional stages, with enhanced values in the later stages of forest succession. In the dry season, soil acid phosphatase activities in the three forests showed a rising trend with increasing precipitation treatments. In the wet season, no precipitation treatment depressed soil acid phosphatase activity, while doubled precipitation treatment exerted no positive effects on it, and even significantly lowered it in the advanced forest. These indicate the potential transformation rate of organic P might be more dependent on water in the dry season than in the wet season. The negative responses of soil acid phosphatase activity to precipitation suggest that P supply in subtropical ecosystems might be reduced if there was a drought in a whole year or more rainfall in the wet season in the future. NP, no precipitation; Control, natural precipitation; DP, double precipitation.

  3. Alpha Magnetic Spectrometer (AMS) Overview

    NASA Video Gallery

    The Alpha Magnetic Spectrometer (AMS) is flying to the station on STS-134. The AMS experiment is a state-of-the-art particle physics detector being operated by an international team composed of 60 ...

  4. Genetics Home Reference: alpha thalassemia

    MedlinePlus

    ... in each cell. Each copy is called an allele. For each gene, one allele is inherited from a person's father, and the ... person's mother. As a result, there are four alleles that produce alpha-globin. The different types of ...

  5. International Space Station (ISS) Alpha

    NASA Technical Reports Server (NTRS)

    1994-01-01

    An artist's concept of a fully deployed International Space Station (ISS) Alpha. The ISS-A is a multidisciplinary laboratory, technology test bed, and observatory that will provide an unprecedented undertaking in scientific, technological, and international experiments.

  6. Detecting Alpha-1 Antitrypsin Deficiency.

    PubMed

    Stoller, James K

    2016-08-01

    Alpha-1 antitrypsin deficiency is a widely underrecognized condition, with evidence of persisting long diagnostic delays and patients' frequent need to see multiple physicians before initial diagnosis. Reasons for underrecognition include inadequate understanding of alpha-1 antitrypsin deficiency by physicians and allied health care providers; failure to implement available, guideline-based practice recommendations; and the belief that effective therapy is unavailable. Multiple studies have described both the results of screening and targeted detection of individuals with alpha-1 antitrypsin deficiency, with both varying strategies employed to identify at-risk individuals and varying results of testing. Also, various strategies to enhance detection of affected individuals have been examined, including use of the electronic medical record to prompt testing and empowerment of allied health providers, especially respiratory therapists, to promote testing for alpha-1 antitrypsin deficiency. Such efforts are likely to enhance detection with the expected result that the harmful effects of delayed diagnosis can be mitigated. PMID:27564667

  7. Alpha decay in electron surrounding

    SciTech Connect

    Igashov, S. Yu.; Tchuvil’sky, Yu. M.

    2013-12-15

    The influence of atomic electron shells on the constant of alpha decay of heavy and mediummass nuclei was considered in detail. A method for simultaneously taking into account the change in the potential-barrier shape and the effect of reflection of a diverging Coulomb wave in the classically allowed region was developed. The ratios of decay probabilities per unit time for a bare nucleus and the respective neutral atom were found for some alpha-decaying isotopes.

  8. Voltage-sensing phosphatase modulation by a C2 domain

    PubMed Central

    Castle, Paul M.; Zolman, Kevin D.; Kohout, Susy C.

    2015-01-01

    The voltage-sensing phosphatase (VSP) is the first example of an enzyme controlled by changes in membrane potential. VSP has four distinct regions: the transmembrane voltage-sensing domain (VSD), the inter-domain linker, the cytosolic catalytic domain, and the C2 domain. The VSD transmits the changes in membrane potential through the inter-domain linker activating the catalytic domain which then dephosphorylates phosphatidylinositol phosphate (PIP) lipids. The role of the C2, however, has not been established. In this study, we explore two possible roles for the C2: catalysis and membrane-binding. The Ci-VSP crystal structures show that the C2 residue Y522 lines the active site suggesting a contribution to catalysis. When we mutated Y522 to phenylalanine, we found a shift in the voltage dependence of activity. This suggests hydrogen bonding as a mechanism of action. Going one step further, when we deleted the entire C2 domain, we found voltage-dependent enzyme activity was no longer detectable. This result clearly indicates the entire C2 is necessary for catalysis as well as for modulating activity. As C2s are known membrane-binding domains, we tested whether the VSP C2 interacts with the membrane. We probed a cluster of four positively charged residues lining the top of the C2 and suggested by previous studies to interact with phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] (Kalli et al., 2014). Neutralizing those positive charges significantly shifted the voltage dependence of activity to higher voltages. We tested membrane binding by depleting PI(4,5)P2 from the membrane using the 5HT2C receptor and found that the VSD motions as measured by voltage clamp fluorometry (VCF) were not changed. These results suggest that if the C2 domain interacts with the membrane to influence VSP function it may not occur exclusively through PI(4,5)P2. Together, this data advances our understanding of the VSP C2 by demonstrating a necessary and critical role for the C2 domain in

  9. Cloning and characterization of three Eimeria tenella lipid phosphate phosphatases.

    PubMed

    Guo, Aijiang; Cai, Jianping; Luo, Xuenong; Zhang, Shaohua; Hou, Junling; Li, Hui; Cai, Xuepeng

    2015-01-01

    Although lipid phosphate phosphatases (LPPs) play an important role in cellular signaling in addition to lipid biosynthesis, little is thus far known about parasite LPPs. In this study, we characterized three Eimeria tenella cDNA clones encoding LPP named EtLPP1, EtLPP2 and EtLPP3. Key structural features previously described in LPPs, including the three conserved domains proposed as catalytic sites, a single conserved N-glycosylation site, and putative transmembrane domains were discovered in the three resulting EtLPP amino acid sequences. Expression of His6-tagged EtLPP1, -2, and -3 in HEK293 cells produced immunoreactive proteins with variable molecular sizes, suggesting the presence of multiple forms of each of the three EtLPPs. The two faster-migrating protein bands below each of the three EtLPP proteins were found to be very similar to the porcine 35-kDa LPP enzyme in their molecular size and the extent of their N-glycosylation, suggesting that the three EtLPPs are partially N-glycosylated. Kinetic analyses of the activity of the three enzymes against PA, LPA, C1P and S1P showed that Km values for each of the substrates were (in μM) 284, 46, 28, and 22 for EtLPP1; 369, 179, 237, and 52 for EtLPP2; and 355, 83, and 260 for EtLPP3. However, EtLPP3 showed negligible activity on S1P. These results confirmed that the three EtLPPs have broad substrate specificity. The results also indicated that despite structural similarities, the three EtLPPs may play distinct functions through their different models of substrate preference. Furthermore, particularly high expression levels of the three EtLPP genes were detected in the sporozoite stage of the E. tenella life cycle (p<0.001), suggesting that their encoded proteins might play an important biological function in the sporozoite stage. PMID:25861032

  10. Cloning and Characterization of Three Eimeria tenella Lipid Phosphate Phosphatases

    PubMed Central

    Guo, Aijiang; Cai, Jianping; Luo, Xuenong; Zhang, Shaohua; Hou, Junling; Li, Hui; Cai, Xuepeng

    2015-01-01

    Although lipid phosphate phosphatases (LPPs) play an important role in cellular signaling in addition to lipid biosynthesis, little is thus far known about parasite LPPs. In this study, we characterized three Eimeria tenella cDNA clones encoding LPP named EtLPP1, EtLPP2 and EtLPP3. Key structural features previously described in LPPs, including the three conserved domains proposed as catalytic sites, a single conserved N-glycosylation site, and putative transmembrane domains were discovered in the three resulting EtLPP amino acid sequences. Expression of His6-tagged EtLPP1, -2, and -3 in HEK293 cells produced immunoreactive proteins with variable molecular sizes, suggesting the presence of multiple forms of each of the three EtLPPs. The two faster-migrating protein bands below each of the three EtLPP proteins were found to be very similar to the porcine 35-kDa LPP enzyme in their molecular size and the extent of their N-glycosylation, suggesting that the three EtLPPs are partially N-glycosylated. Kinetic analyses of the activity of the three enzymes against PA, LPA, C1P and S1P showed that Km values for each of the substrates were (in μM) 284, 46, 28, and 22 for EtLPP1; 369, 179, 237, and 52 for EtLPP2; and 355, 83, and 260 for EtLPP3. However, EtLPP3 showed negligible activity on S1P. These results confirmed that the three EtLPPs have broad substrate specificity. The results also indicated that despite structural similarities, the three EtLPPs may play distinct functions through their different models of substrate preference. Furthermore, particularly high expression levels of the three EtLPP genes were detected in the sporozoite stage of the E. tenella life cycle (p<0.001), suggesting that their encoded proteins might play an important biological function in the sporozoite stage. PMID:25861032

  11. Associations between Renal Hyperfiltration and Serum Alkaline Phosphatase

    PubMed Central

    Oh, Se Won; Han, Kum Hyun; Han, Sang Youb

    2015-01-01

    Renal hyperfiltration, which is associated with renal injury, occurs in diabetic or obese individuals. Serum alkaline phosphatase (ALP) level is also elevated in patients with diabetes (DM) or metabolic syndrome (MS), and increased urinary excretion of ALP has been demonstrated in patients who have hyperfiltration and tubular damage. However, little was investigated about the association between hyperfiltration and serum ALP level. A retrospective observational study of the 21,308 adults in the Korea National Health and Nutrition Examination Survey IV-V databases (2008–2011) was performed. Renal hyperfiltration was defined as exceeding the age- and sex-specific 97.5th percentile. We divided participants into 4 groups according to their estimated glomerular filtration rate (eGFR): >120, 90–119, 60–89, and <60 mL/min/1.73 m2. The participants with eGFR >120 mL/min/1.73 m2 showed the highest risk for MS, in the highest ALP quartiles (3.848, 95% CI, 1.876–7.892), compared to the lowest quartile. Similarly, the highest risk for DM, in the highest ALP quartiles, was observed in participants with eGFR >120 ml/min/1.73 m2 (2.166, 95% CI, 1.084–4.329). ALP quartiles were significantly associated with albuminuria in participants with eGFR ≥ 60 ml/min/1.73m2. The highest ALP quartile had a 1.631-fold risk elevation for albuminuria with adjustment of age and sex. (95% CI, 1.158-2.297, P = 0.005). After adjustment, the highest ALP quartile had a 1.624-fold risk elevation, for renal hyperfiltration (95% CI, 1.204–2.192, P = 0.002). In addition, hyperfiltration was significantly associated with hemoglobin, triglyceride, white blood cell count, DM, smoking, and alcohol consumption (P<0.05). The relationship between serum ALP and metabolic disorders is stronger in participants with an upper-normal range of eGFR. Higher ALP levels are significantly associated with renal hyperfiltration in Korean general population. PMID:25853240

  12. Molecular Cloning and Functional Expression of a Protein-Serine/Threonine Phosphatase from the Hyperthermophilic Archaeon Pyrodictium abyssi TAG11

    PubMed Central

    Mai, Bianca; Frey, Gerhard; Swanson, Ronald V.; Mathur, Eric J.; Stetter, K. O.

    1998-01-01

    An open reading frame coding for a putative protein-serine/threonine phosphatase was identified in the hyperthermophilic archaeon Pyrodictium abyssi TAG11 and named Py-PP1. Py-PP1 was expressed in Escherichia coli, purified from inclusion bodies, and biochemically characterized. The phosphatase gene is part of an operon which may provide, for the first time, insight into a physiological role for archaeal protein phosphatases in vivo. PMID:9696747

  13. Isoform specific changes in PPAR{alpha} and {beta} in colon and breast cancer with differentiation

    SciTech Connect

    Aung, Cho S.; Faddy, Helen M.; Lister, Erin J.; Monteith, Gregory R.; Roberts-Thomson, Sarah J. . E-mail: S.Roberts-Thomson@pharmacy.uq.edu.au

    2006-02-10

    To investigate the role of peroxisome proliferator-activated receptors (PPARs) {alpha} and {beta} in the differentiation of colon cancer cells, we differentiated HT-29 cells using sodium butyrate (NaB) and culturing post-confluence and assessed differentiation using the marker intestinal alkaline phosphatase. While PPAR{alpha} levels only changed with culturing post confluence, PPAR{beta} levels increased independent of the method of differentiation. To explore further the differences induced by NaB, we assessed changes in both PPAR isoforms in MCF-7 breast cancer cells cultured in the presence of NaB over 48 h. Again a very different expression pattern was observed with PPAR{alpha} increasing after 4 h and remaining elevated, while PPAR{beta} increased transiently. Our studies suggest that the expression of PPARs is dependent upon both the method of differentiation and on time. Moreover, these studies show that changes in PPAR{alpha} levels are not required for the differentiation of colon cancer cell lines, whereas changes in PPAR{beta} are more closely associated with differentiation.

  14. 21 CFR 882.1610 - Alpha monitor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Alpha monitor. 882.1610 Section 882.1610 Food and... NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1610 Alpha monitor. (a) Identification. An alpha... electroencephalogram which is referred to as the alpha wave. (b) Classification. Class II (performance standards)....

  15. 21 CFR 882.1610 - Alpha monitor.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Alpha monitor. 882.1610 Section 882.1610 Food and... NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1610 Alpha monitor. (a) Identification. An alpha... electroencephalogram which is referred to as the alpha wave. (b) Classification. Class II (performance standards)....

  16. 21 CFR 882.1610 - Alpha monitor.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Alpha monitor. 882.1610 Section 882.1610 Food and... NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1610 Alpha monitor. (a) Identification. An alpha... electroencephalogram which is referred to as the alpha wave. (b) Classification. Class II (performance standards)....

  17. 21 CFR 882.1610 - Alpha monitor.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Alpha monitor. 882.1610 Section 882.1610 Food and... NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1610 Alpha monitor. (a) Identification. An alpha... electroencephalogram which is referred to as the alpha wave. (b) Classification. Class II (performance standards)....

  18. 21 CFR 882.1610 - Alpha monitor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Alpha monitor. 882.1610 Section 882.1610 Food and... NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1610 Alpha monitor. (a) Identification. An alpha... electroencephalogram which is referred to as the alpha wave. (b) Classification. Class II (performance standards)....

  19. An insect farnesyl phosphatase homologous to the N-terminal domain of soluble epoxide hydrolase

    PubMed Central

    Cao, Li; Zhang, Ping; Grant, David F.

    2009-01-01

    In insects, farnesyl pyrophosphate (FPP) is converted to juvenile hormone (JH) via a conserved pathway consisting of isoprenoid derived metabolites. The first step of this pathway is presumed to be hydrolysis of FPP to farnesol in the ring gland. Based on alignment of putative phosphatases from D. melanogaster with the phosphatase domain of soluble epoxide hydrolase, Phos2680 and Phos15739 with conserved phosphatase motifs were identified, cloned and purified. Both D. melanogaster phosphatases hydrolyzed para-nitrophenyl phosphate, however, Phos15739 also hydrolyzed FPP with a Kcat/Km of 2.1 X 105 M−1s−1. RT-PCR analysis revealed that Phos15739 was expressed in the ring gland and its expression was correlated with JHIII titer during development of D. melanogaster. N-acetyl-S-geranylgeranyl-L-cysteine was found to be a potent inhibitor of Phos15739 with an IC50 value of 4.4 μM. Thus, our data identify Phos15739 as a FPP phosphatase that likely catalyzes the hydrolysis of FPP to farnesol in D. melanogaster. PMID:19168029

  20. PrpE, a PPP protein phosphatase from Bacillus subtilis with unusual substrate specificity.

    PubMed Central

    Iwanicki, Adam; Herman-Antosiewicz, Anna; Pierechod, Marcin; Séror, Simone J; Obuchowski, Michał

    2002-01-01

    Bacillus subtilis is a Gram-positive bacterium with a relatively large number of protein phosphatases. Previous studies have shown that some Ser/Thr phosphatases play an important role in the life cycle of this bacterium [Losick and Stragier (1992) Nature (London) 355, 601-604; Yang, Kang, Brody and Price (1996) Genes Dev. 10, 2265-2275]. In this paper, we report the biochemical properties of a putative, previously uncharacterized phosphatase, PrpE, belonging to the PPP family. This enzyme shares homology with other PPP phosphatases as well as with symmetrical diadenosine tetraphosphatases related to ApaH (symmetrical Ap(4)A hydrolase) from Escherichia coli. A His-tagged recombinant PrpE was purified from E. coli and shown to have Ni(2+)-dependent and okadaic acid-resistant phosphatase activity against a synthetic phosphorylated peptide and hydrolase activity against diadenosine 5',5"'-tetraphosphate. Unexpectedly, PrpE was able to remove phosphate from phosphotyrosine, but not from phosphothreonine or phosphoserine. PMID:12059787

  1. Structure of human PIR1, an atypical dual-specificity phosphatase.

    PubMed

    Sankhala, Rajeshwer Singh; Lokareddy, Ravi Kumar; Cingolani, Gino

    2014-02-11

    PIR1 is an atypical dual-specificity phosphatase (DSP) that dephosphorylates RNA with a higher specificity than phosphoproteins. Here we report the atomic structure of a catalytically inactive mutant (C152S) of the human PIR1 phosphatase core (PIR1-core, residues 29-205), refined at 1.20 Å resolution. PIR1-core shares structural similarities with DSPs related to Vaccinia virus VH1 and with RNA 5'-phosphatases such as the baculovirus RNA triphosphatase and the human mRNA capping enzyme. The PIR1 active site cleft is wider and deeper than that of VH1 and contains two bound ions: a phosphate trapped above the catalytic cysteine C152 exemplifies the binding mode expected for the γ-phosphate of RNA, and ∼6 Å away, a chloride ion coordinates the general base R158. Two residues in the PIR1 phosphate-binding loop (P-loop), a histidine (H154) downstream of C152 and an asparagine (N157) preceding R158, make close contacts with the active site phosphate, and their nonaliphatic side chains are essential for phosphatase activity in vitro. These residues are conserved in all RNA 5'-phosphatases that, analogous to PIR1, lack a "general acid" residue. Thus, a deep active site crevice, two active site ions, and conserved P-loop residues stabilizing the γ-phosphate of RNA are defining features of atypical DSPs that specialize in dephosphorylating 5'-RNA. PMID:24447265

  2. MALDI mass sequencing and biochemical characterization of Setaria cervi protein tyrosine phosphatase.

    PubMed

    Rai, Reeta; Singh, Neetu; Elesela, Srikanth; Tiwari, Savitri; Rathaur, Sushma

    2013-01-01

    A 30-kDa acid phosphatase with protein tyrosine phosphatase activity was identified in Setaria cervi (ScPTP). The enzyme was purified to homogeneity using three-step column chromatography. Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) analysis of purified ScPTP yielded a total of eight peptides matching most closely to phosphoprotein phosphatase of Ricinus communis (RcPP). A hydrophilicity plot of RcPP revealed the presence of these peptides in the hydrophilic region, suggesting their antigenic nature. The substrate specificity of ScPTP with ortho-phospho-L-tyrosine and inhibition with sodium orthovanadate and ammonium molybdate affirmed it as a protein tyrosine phosphatase. ScPTP was also found to be tartrate resistant. The Km and Vmax were 6.60 mM and 83.3 μM/ml/min, respectively, with pNPP and 8.0 mM and 111 μM/ml/min, respectively, with ortho-phospho-L-tyrosine as the substrate. The Ki value with sodium orthovanadate was calculated to be 16.10 mM. Active site modification with DEPC, EDAC and pHMB suggested the presence of histidine, cysteine and aspartate at its active site. Thus, on the basis of MALDI-TOF and biochemical studies, it was confirmed that purified acid phosphatase is a PTP. PMID:23052758

  3. Root surface acid phosphatases and their role in phosphorus assimilation by Eriophorum vaginatum

    SciTech Connect

    Kroehler, C.J.; Linkins, A.E.

    1988-01-01

    Eriophorum vaginatum is a dominant plant in much of the arctic tundra ecosystem where phosphorus is frequently a limiting nutrient. The mineralization of this organic phosphorus was thought to be principally controlled by microbial respiration, however, more recent work shows that extracellular soil phosphatases are the principal regulators. The existence of plant root and mycorrhizal surface phosphatases which are capable of hydrolyzing organic phosphorus compounds, suggests that soil organic phosphorus may be directly utilized by plants. Since E. vaginatum is a tussock forming sedge with a very dense annually produced rooting system which can exploit most of the tussock soil volume, its surface phosphatases may play a dominant role in organic phosphorus hydrolysis into inorganic phosphorus. Of equal significance would be the potential for this activity to contribute to the phosphorus nutrition through the coupling of phosphorus hydrolysis on the root and root uptake of the resultant inorganic phosphorus. Phosphatase activity was investigated and found to be uniformly distributed along the surface of the root. Kinetic analysis of the enzyme gave estimates of 9.23 mM for the apparent Km and 1.61 * 10/sup -3/ ..mu..moles mm-2 hr/sup -1/ for the apparent Vmax. Saturation values for E. vaginatum phosphatases are about 3 times higher than average soil solution organic phosphorus concentrations. 12 refs., 4 figs.

  4. The PPH1 phosphatase is specifically involved in LHCII dephosphorylation and state transitions in Arabidopsis

    PubMed Central

    Shapiguzov, Alexey; Ingelsson, Björn; Samol, Iga; Andres, Charles; Kessler, Felix; Rochaix, Jean-David; Vener, Alexander V.; Goldschmidt-Clermont, Michel

    2010-01-01

    The ability of plants to adapt to changing light conditions depends on a protein kinase network in the chloroplast that leads to the reversible phosphorylation of key proteins in the photosynthetic membrane. Phosphorylation regulates, in a process called state transition, a profound reorganization of the electron transfer chain and remodeling of the thylakoid membranes. Phosphorylation governs the association of the mobile part of the light-harvesting antenna LHCII with either photosystem I or photosystem II. Recent work has identified the redox-regulated protein kinase STN7 as a major actor in state transitions, but the nature of the corresponding phosphatases remained unknown. Here we identify a phosphatase of Arabidopsis thaliana, called PPH1, which is specifically required for the dephosphorylation of light-harvesting complex II (LHCII). We show that this single phosphatase is largely responsible for the dephosphorylation of Lhcb1 and Lhcb2 but not of the photosystem II core proteins. PPH1, which belongs to the family of monomeric PP2C type phosphatases, is a chloroplast protein and is mainly associated with the stroma lamellae of the thylakoid membranes. We demonstrate that loss of PPH1 leads to an increase in the antenna size of photosystem I and to a strong impairment of state transitions. Thus phosphorylation and dephosphorylation of LHCII appear to be specifically mediated by the kinase/phosphatase pair STN7 and PPH1. These two proteins emerge as key players in the adaptation of the photosynthetic apparatus to changes in light quality and quantity. PMID:20176943

  5. Protein phosphatase 2C dephosphorylates and inactivates cystic fibrosis transmembrane conductance regulator

    PubMed Central

    Travis, Sue M.; Berger, Herbert A.; Welsh, Michael J.

    1997-01-01

    cAMP-dependent phosphorylation activates the cystic fibrosis transmembrane conductance regulator (CFTR) in epithelia. However, the protein phosphatase (PP) that dephosphorylates and inactivates CFTR in airway and intestinal epithelia, two major sites of disease, is not certain. We found that in airway and colonic epithelia, neither okadaic acid nor FK506 prevented inactivation of CFTR when cAMP was removed. These results suggested that a phosphatase distinct from PP1, PP2A, and PP2B was responsible. Because PP2C is insensitive to these inhibitors, we tested the hypothesis that it regulates CFTR. We found that PP2Cα is expressed in airway and T84 intestinal epithelia. To test its activity on CFTR, we generated recombinant human PP2Cα and found that it dephosphorylated CFTR and an R domain peptide in vitro. Moreover, in cell-free patches of membrane, addition of PP2Cα inactivated CFTR Cl− channels; reactivation required readdition of kinase. Finally, coexpression of PP2Cα with CFTR in epithelia reduced the Cl− current and increased the rate of channel inactivation. These results suggest that PP2C may be the okadaic acid-insensitive phosphatase that regulates CFTR in human airway and T84 colonic epithelia. It has been suggested that phosphatase inhibitors could be of therapeutic value in cystic fibrosis; our data suggest that PP2C may be an important phosphatase to target. PMID:9380758

  6. [Inhibition of alkaline phosphatase I of Pichia guilliermondii yeast in vitro and in vivo].

    PubMed

    Sibirnyi, A A; Shavlovskii, G M

    1978-01-01

    The rate of p-nitrophenyl phosphate and flavin mononucleotide (FMN) hydrolysis by the partially purified preparation of alkaline phosphatase I of Pichia guilliermondii flavinogenic yeast was studied as affected by different substrates and inorganic ions. Their Km was established to be 2.0 X 10(-4) m and 2.5 X 10(-4) M, respectively. Dephosphorylation of p-nitrophenylphosphate and FMN was inhibited competitively by beta-glycerophosphate (Ki = 3.1 X 10(-3) M, respectively). The presence of inorganic phosphate ions in the reaction mixture decreases or removes inhibition of these compounds hydrolysis by other substrates of alkaline phosphatase I. The activity of alkaline phosphatase I increases in the presence of Mg2+ and was strongly inhibited in the presence of Be2+, Cu2+, Zn2+, Cd2+ and inorganic phosphate, the mixture of Be2+ and F- being the most effective. This mixture inhibited the phosphatase activity of the partially purified preparation of alkaline phosphatase I of the cell-free extract as well as of intact cells in both the alkaline and acid zones of pH (8.6 and 5.5, respectively). Incubation of the washed iron-deficient P. guilliermondii cells in the presence of Be2+ and F- did not result in accumulation of FMN in the yeast culture. A possible role of nonspecific phosphomonoesterases in hydrolysis of FMN in vivo is discussed. PMID:208203

  7. The PPH1 phosphatase is specifically involved in LHCII dephosphorylation and state transitions in Arabidopsis.

    PubMed

    Shapiguzov, Alexey; Ingelsson, Björn; Samol, Iga; Andres, Charles; Kessler, Felix; Rochaix, Jean-David; Vener, Alexander V; Goldschmidt-Clermont, Michel

    2010-03-01

    The ability of plants to adapt to changing light conditions depends on a protein kinase network in the chloroplast that leads to the reversible phosphorylation of key proteins in the photosynthetic membrane. Phosphorylation regulates, in a process called state transition, a profound reorganization of the electron transfer chain and remodeling of the thylakoid membranes. Phosphorylation governs the association of the mobile part of the light-harvesting antenna LHCII with either photosystem I or photosystem II. Recent work has identified the redox-regulated protein kinase STN7 as a major actor in state transitions, but the nature of the corresponding phosphatases remained unknown. Here we identify a phosphatase of Arabidopsis thaliana, called PPH1, which is specifically required for the dephosphorylation of light-harvesting complex II (LHCII). We show that this single phosphatase is largely responsible for the dephosphorylation of Lhcb1 and Lhcb2 but not of the photosystem II core proteins. PPH1, which belongs to the family of monomeric PP2C type phosphatases, is a chloroplast protein and is mainly associated with the stroma lamellae of the thylakoid membranes. We demonstrate that loss of PPH1 leads to an increase in the antenna size of photosystem I and to a strong impairment of state transitions. Thus phosphorylation and dephosphorylation of LHCII appear to be specifically mediated by the kinase/phosphatase pair STN7 and PPH1. These two proteins emerge as key players in the adaptation of the photosynthetic apparatus to changes in light quality and quantity. PMID:20176943

  8. Lipophosphoglycan and secreted acid phosphatase of Leishmania tropica share species-specific epitopes.

    PubMed

    Jaffe, C L; Perez, L; Schnur, L F

    1990-06-01

    Several species-specific monoclonal antibodies (T11, T13-T15) which only react with Leishmania tropica, recognize phosphorlated carbohydrate epitopes on lipophosphoglycan and the structurally related molecule, phosphoglycan, which is shed by promastigotes into spent culture medium. During immunoaffinity isolation of [32P]orthophosphate-labeled phosphoglycan on monoclonal antibody T15 conjugated to Sepharose 4B, a high-Mr component (approx. 200,000) was co-purified. The latter material is metabolically labeled with [35S]methionine and [3H]glucosamine. This glycoprotein was separated from phosphoglycan by chromatography on lentil lectin resin. The glycoprotein exhibited a L-tatrate-sensitive acid phosphatase activity, typical of secreted acid phosphatase (EC 3.1.3.2) from Leishmania. Monospecific antibodies to Leishmania donovani-secreted acid phosphatase selectively precipitated the L. tropica enzyme from immunoaffinity purified mixtures of the two antigens, and monoclonal antibodies to lipophosphoglycan precipitate the pure enzyme. Species-specific monoclonal antibodies to L. major lipophosphoglycan also recognized both L. tropica antigens. Treatment of the acid phosphatase with periodate or phosphodiesterase I abolished binding by the monoclonal antibodies to the pure enzyme. These results demonstrate that the two major secreted glycoconjugates of Leishmania tropica, the lipophosphoglycan and the acid phosphatase, share species-specific phosphorylated carbohydrate epitope(s). PMID:1697935

  9. An immunochemical approach to detect oxidized protein tyrosine phosphatases using a selective C-nucleophile tag.

    PubMed

    Garcia, Francisco J; Carroll, Kate S

    2016-05-24

    Protein tyrosine phosphatases are crucial regulators of signal transduction and function as antagonists towards protein tyrosine kinases to control reversible tyrosine phosphorylation, thereby regulating fundamental physiological processes. Growing evidence has supported the notion that reversible oxidative inactivation of the catalytic cysteine residue in protein tyrosine phosphatases serves as an oxidative post-translational modification that regulates its activity to influence downstream signaling by promoting phosphorylation and induction of the signaling cascade. The oxidation of cysteine to the sulfenic acid is often transient and difficult to detect, thus making it problematic in understanding the role that this oxidative post-translational modification plays in redox-biology and pathogenesis. Several methods to detect cysteine oxidation in biological systems have been developed, though targeted approaches to directly detect oxidized phosphatases are still lacking. Herein we describe the development of a novel immunochemical approach to directly profile oxidized phosphatases. This immunochemical approach consists of an antibody designed to recognize the conserved sequence of the PTP active site (VHCDMDSAG) harboring the catalytic cysteine modified with dimedone (CDMD), a nucleophile that chemoselectively reacts with cysteine sulfenic acids to form a stable thioether adduct. Additionally, we provide biochemical and mass spectrometry workflows to be used in conjugation with this newly developed immunochemical approach to assist in the identification and quantification of basal and oxidized phosphatases. PMID:26757830

  10. Binding of actin to lens alpha crystallins

    NASA Technical Reports Server (NTRS)

    Gopalakrishnan, S.; Takemoto, L.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    Actin has been coupled to a cyanogen bromide-activated Sepharose 4B column, then tested for binding to alpha, beta, and gamma crystallin preparations from the bovine lens. Alpha, but not beta or gamma, crystallins bound to the actin affinity column in a time dependent and saturable manner. Subfractionation of the alpha crystallin preparation into the alpha-A and alpha-B species, followed by incubation with the affinity column, demonstrated that both species bound approximately the same. Together, these studies demonstrate a specific and saturable binding of lens alpha-A and alpha-B with actin.

  11. Modulation of gene expression by alpha-tocopherol and alpha-tocopheryl phosphate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The naturally occurring vitamin E analogue, alpha-tocopheryl phosphate (alphaTP), has been reported to be more potent in reducing cell proliferation and the expression of the CD36 scavenger receptor than the un-phosphorylated alpha-tocopherol (alpha T). We have now assessed the effects of alpha T an...

  12. Mechanism of alpha-tocopheryl-phosphate (alpha-TP) transport across the cell membrane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have reported that alpha-TP is synthesized and hydrolyzed in animal cells and tissues; it modulates also several cell functions (FRBM 39:970, and UBMB Life, 57:23, 2005). While it is similar to alpha-tocopherol (alpha-T), alpha-TP appears to be more potent than alpha-T in inhibiting cell prolifer...

  13. Binding of a protein to an AU-rich domain of tumour necrosis factor alpha mRNA as a 35 kDa complex and its regulation in primary rat astrocytes.

    PubMed

    Kim, Y U; Rus, H G; Fisher, S N; Pitha, P M; Shin, M L

    1996-06-01

    Newcastle disease virus (NDV) induces tumour necrosis factor alpha (TNF alpha) gene transcription and increases the mRNA stability. NDV stabilizes TNF alpha mRNA by preventing poly(A) shortening in a protein kinase C-dependent manner. TNF alpha 3'-untranslated region (UTR) contains an AU-rich domain (ARD) with seven AUUUA pentamers, a motif implicated in poly(A) removal and mRNA degradation. In this report, protein binding to TNF alpha ARD and the effects of NDV and kinases on ARD-binding activity were investigated in primary rat astrocytes. Both nuclear and cytoplasmic extracts contained proteins binding to centrally located 27 nt AUUUAUUAUUUAUUUAUUAUUUAUUUA, within TNF alpha ARD. Portions of ARD with a single AUUUA did not show ARD-binding activity. The ARD-protein complexes migrated as two bands on electrophoretic mobility-shift assay. The slower moving complexes appeared either as a broader band or doublets. The UV cross-linked ARD-protein complexes, however, migrated as a single 35 kDa band on SDS/PAGE. In cytoplasmic extracts treated with alkaline phosphatase there was a decrease in the faster moving complex and an increase in the slower moving complex, whereas NDV infection produced the reverse effect. In addition, the faster moving complex was decreased when cytoplasmic extracts from NDV-infected cells were treated with protein phosphatase 1 or 2A. Neither NDV infection nor phosphatase treatment affected the mobility pattern of nuclear extracts. The data indicate that a protein of molecular mass less than 35 kDa binds to a segment of TNF alpha ARD containing primarily UUAUUUAUU motifs, and the ARD-binding activity in cytoplasmic compartment is post-transcriptionally modified. PMID:8687387

  14. Binding of a protein to an AU-rich domain of tumour necrosis factor alpha mRNA as a 35 kDa complex and its regulation in primary rat astrocytes.

    PubMed Central

    Kim, Y U; Rus, H G; Fisher, S N; Pitha, P M; Shin, M L

    1996-01-01

    Newcastle disease virus (NDV) induces tumour necrosis factor alpha (TNF alpha) gene transcription and increases the mRNA stability. NDV stabilizes TNF alpha mRNA by preventing poly(A) shortening in a protein kinase C-dependent manner. TNF alpha 3'-untranslated region (UTR) contains an AU-rich domain (ARD) with seven AUUUA pentamers, a motif implicated in poly(A) removal and mRNA degradation. In this report, protein binding to TNF alpha ARD and the effects of NDV and kinases on ARD-binding activity were investigated in primary rat astrocytes. Both nuclear and cytoplasmic extracts contained proteins binding to centrally located 27 nt AUUUAUUAUUUAUUUAUUAUUUAUUUA, within TNF alpha ARD. Portions of ARD with a single AUUUA did not show ARD-binding activity. The ARD-protein complexes migrated as two bands on electrophoretic mobility-shift assay. The slower moving complexes appeared either as a broader band or doublets. The UV cross-linked ARD-protein complexes, however, migrated as a single 35 kDa band on SDS/PAGE. In cytoplasmic extracts treated with alkaline phosphatase there was a decrease in the faster moving complex and an increase in the slower moving complex, whereas NDV infection produced the reverse effect. In addition, the faster moving complex was decreased when cytoplasmic extracts from NDV-infected cells were treated with protein phosphatase 1 or 2A. Neither NDV infection nor phosphatase treatment affected the mobility pattern of nuclear extracts. The data indicate that a protein of molecular mass less than 35 kDa binds to a segment of TNF alpha ARD containing primarily UUAUUUAUU motifs, and the ARD-binding activity in cytoplasmic compartment is post-transcriptionally modified. PMID:8687387

  15. O- and N-glycosylation of the Leishmania mexicana-secreted acid phosphatase. Characterization of a new class of phosphoserine-linked glycans.

    PubMed

    Ilg, T; Overath, P; Ferguson, M A; Rutherford, T; Campbell, D G; McConville, M J

    1994-09-30

    The protozoan parasite Leishmania mexicana secretes a heavily glycosylated 100-kDa acid phosphatase (sAP) which is associated with one or more polydisperse proteophosphoglycans. Most of the glycans in this complex were released using mild acid hydrolysis conditions that preferentially cleave phosphodiester linkages. The released saccharides were shown to consist of monomeric mannose and a series of neutral and phosphorylated glycans by Dionex high performance liquid chromatography, methylation analysis, exoglycosidase digestions, and one-dimensional 1H NMR spectroscopy. The neutral species comprised a linear series of oligosaccharides with the structures [Man alpha 1-2]1-5Man. The phosphorylated oligosaccharides were characterized as PO4-6Gal beta 1-4Man and PO4-6[Glc beta 1-3]Gal beta 1-4Man. The attachment of these glycans to the polypeptide backbone via the linkage, Man alpha 1-PO4-Ser, is suggested by: 1) the finding that more than 60% of the serine residues in the polypeptide are phosphorylated and 2) the resistance of the phosphoserine residues to alkaline phosphatase digestion unless the sAP was first treated with either mild acid (to release all glycans) or jack bean alpha-mannosidase (to release neutral mannose glycans). Analysis of the partially resolved components of the complex indicated that the most of the O-linked glycans on the 100-kDa phosphoglycoprotein comprised mannose and the mannose-oligosaccharides. In contrast the major O-linked glycans on the proteophosphoglycan were short phosphoglycan chains, containing on average two repeat units per chain. In addition to the O-linked glycans, both components in the sAP complex contained N-linked glycans. The N-glycanase F-released glycans were characterized by Bio-Gel P4 chromatography and exoglycosidase digestions to be the biantennary oligomannose type with the structures Glc1Man6GlcNAc2 and Man6GlcNAc2. The O-linked glycans of the sAP complex are similar to those found in the phosphoglycan chains of

  16. Eya protein phosphatase activity regulates Six1-Dach-Eya transcriptional effects in mammalian organogenesis.

    PubMed

    Li, Xue; Oghi, Kenneth A; Zhang, Jie; Krones, Anna; Bush, Kevin T; Glass, Christopher K; Nigam, Sanjay K; Aggarwal, Aneel K; Maas, Richard; Rose, David W; Rosenfeld, Michael G

    2003-11-20

    The precise mechanistic relationship between gene activation and repression events is a central question in mammalian organogenesis, as exemplified by the evolutionarily conserved sine oculis (Six), eyes absent (Eya) and dachshund (Dach) network of genetically interacting proteins. Here, we report that Six1 is required for the development of murine kidney, muscle and inner ear, and that it exhibits synergistic genetic interactions with Eya factors. We demonstrate that the Eya family has a protein phosphatase function, and that its enzymatic activity is required for regulating genes encoding growth control and signalling molecules, modulating precursor cell proliferation. The phosphatase function of Eya switches the function of Six1-Dach from repression to activation, causing transcriptional activation through recruitment of co-activators. The gene-specific recruitment of a co-activator with intrinsic phosphatase activity provides a molecular mechanism for activation of specific gene targets, including those regulating precursor cell proliferation and survival in mammalian organogenesis. PMID:14628042

  17. Application of intracellular alkaline phosphatase activity measurement in detection of neutrophil adherence in vitro.

    PubMed

    Bednarska, Katarzyna; Klink, Magdalena; Sulowska, Zofia

    2006-01-01

    We have proposed the use of the fluorimetric method with 4-methylumbelliferyl phosphate (4-MUP) specific substrate for the alkaline phosphatase determination in the neutrophil adhesion assay. We provide evidence that the endogenous neutrophil alkaline phosphatase (NAP) activity evaluation is reliable to quantify neutrophil adhesion at a wide range of cell numbers (10(4)-10(6)). The results obtained by fluorimetric NAP activity test correlate to the results of adherence evaluated using the MTT reduction assay. The fluorimetric NAP activity test may be applied for resting as well as activated neutrophils without the risk of the activators interferences into the test. The alkaline phosphatase survey with the use of 4-MUP substrate is recommended herein as a sensitive, repeatable, simple, and reliable method of the neutrophil adherence determination in vitro. PMID:17047286

  18. PP2A Phosphatase as a Regulator of ROS Signaling in Plants

    PubMed Central

    Rahikainen, Moona; Pascual, Jesús; Alegre, Sara; Durian, Guido; Kangasjärvi, Saijaliisa

    2016-01-01

    Reactive oxygen species (ROS) carry out vital functions in determining appropriate stress reactions in plants, but the molecular mechanisms underlying the sensing, signaling and response to ROS as signaling molecules are not yet fully understood. Recent studies have underscored the role of Protein Phosphatase 2A (PP2A) in ROS-dependent responses involved in light acclimation and pathogenesis responses in Arabidopsis thaliana. Genetic, proteomic and metabolomic studies have demonstrated that trimeric PP2A phosphatases control metabolic changes and cell death elicited by intracellular and extracellular ROS signals. Associated with this, PP2A subunits contribute to transcriptional and post-translational regulation of pro-oxidant and antioxidant enzymes. This review highlights the emerging role of PP2A phosphatases in the regulatory ROS signaling networks in plants. PMID:26950157

  19. Electrochemical detection of DNA 3'-phosphatases based on surface-extended DNA nanotail strategy.

    PubMed

    Wu, Dan; Li, Chao; Hu, Xiaolu; Mao, Xiaoxia; Li, Genxi

    2016-06-14

    Determination of DNA dephosphorylation is of great value due to its vital role in many cellular processes. Here we report a surface-extended DNA nanotail strategy for simple and ultrasensitive detection of DNA 3'-phosphatases by terminal deoxynucleotidyl transferase (TdT) mediated signal amplification. In this work, DNA probes labeled with thiols at their 5' terminals and phosphoryls at 3' terminals are immobilized on gold electrode and are used as substrates for DNA 3'-phosphatases, taking T4 polynucleotide kinase phosphatase (T4PNKP) as an example. T4PNKP can catalyze the dephosphorylation reaction of the substrate DNA, followed by the formation of a long DNA strand by TdT on its 3' terminal hydroxyl, leading to an evident chronocoulometry signal enhancement. The proposal presents a considerable analytical performance with low detection limit and wide linear range, making it promise to be applied in the fields of DNA dephosphorylation related processes, drug discovery, and clinical diagnostics. PMID:27181641

  20. PP2A Phosphatase as a Regulator of ROS Signaling in Plants.

    PubMed

    Rahikainen, Moona; Pascual, Jesús; Alegre, Sara; Durian, Guido; Kangasjärvi, Saijaliisa

    2016-01-01

    Reactive oxygen species (ROS) carry out vital functions in determining appropriate stress reactions in plants, but the molecular mechanisms underlying the sensing, signaling and response to ROS as signaling molecules are not yet fully understood. Recent studies have underscored the role of Protein Phosphatase 2A (PP2A) in ROS-dependent responses involved in light acclimation and pathogenesis responses in Arabidopsis thaliana. Genetic, proteomic and metabolomic studies have demonstrated that trimeric PP2A phosphatases control metabolic changes and cell death elicited by intracellular and extracellular ROS signals. Associated with this, PP2A subunits contribute to transcriptional and post-translational regulation of pro-oxidant and antioxidant enzymes. This review highlights the emerging role of PP2A phosphatases in the regulatory ROS signaling networks in plants. PMID:26950157

  1. Structure of human dual-specificity phosphatase 27 at 2.38 Å resolution

    SciTech Connect

    Lountos, George T.; Tropea, Joseph E.; Waugh, David S.

    2012-03-26

    There are over 100 genes in the human genome that encode protein tyrosine phosphatases (PTPs) and approximately 60 of these are classified as dual-specificity phosphatases (DUSPs). Although many dual-specificity phosphatases are still not well characterized, novel functions have been discovered for some of them that have led to new insights into a variety of biological processes and the molecular basis for certain diseases. Indeed, as the functions of DUSPs continue to be elucidated, a growing number of them are emerging as potential therapeutic targets for diseases such as cancer, diabetes and inflammatory disorders. Here, the overexpression, purification and structure determination of DUSP27 at 2.38 {angstrom} resolution are presented.

  2. Fructose 1,6-bisphosphate aldolase/phosphatase may be an ancestral gluconeogenic enzyme.

    PubMed

    Say, Rafael F; Fuchs, Georg

    2010-04-15

    Most archaeal groups and deeply branching bacterial lineages harbour thermophilic organisms with a chemolithoautotrophic metabolism. They live at high temperatures in volcanic habitats at the expense of inorganic substances, often under anoxic conditions. These autotrophic organisms use diverse carbon dioxide fixation mechanisms generating acetyl-coenzyme A, from which gluconeogenesis must start. Here we show that virtually all archaeal groups as well as the deeply branching bacterial lineages contain a bifunctional fructose 1,6-bisphosphate (FBP) aldolase/phosphatase with both FBP aldolase and FBP phosphatase activity. This enzyme is missing in most other Bacteria and in Eukaryota, and is heat-stabile even in mesophilic marine Crenarchaeota. Its bifunctionality ensures that heat-labile triosephosphates are quickly removed and trapped in stabile fructose 6-phosphate, rendering gluconeogenesis unidirectional. We propose that this highly conserved, heat-stabile and bifunctional FBP aldolase/phosphatase represents the pace-making ancestral gluconeogenic enzyme, and that in evolution gluconeogenesis preceded glycolysis. PMID:20348906

  3. Cloning and characterization of the Bacillus licheniformis gene coding for alkaline phosphatase.

    PubMed Central

    Hulett, F M

    1984-01-01

    The structural gene for alkaline phosphatase (orthophosphoric monoester phosphohydrolase; EC 3.1.3.1) of Bacillus licheniformis MC14 was cloned into the Pst1 site of pMK2004 from chromosomal DNA. The gene was cloned on an 8.5-kilobase DNA fragment. A restriction map was developed, and the gene was subcloned on a 4.2-kilobase DNA fragment. The minimum coding region of the gene was localized to a 1.3-kilobase region. Western blot analysis was used to show that the gene coded for a 60,000-molecular-weight protein which cross-reacts with anti-alkaline phosphatase prepared against the salt-extractable membrane alkaline phosphatase of B. licheniformis MC14 . Images PMID:6327655

  4. Cloning and characterization of the Bacillus licheniformis gene coding for alkaline phosphatase.

    PubMed

    Hulett, F M

    1984-06-01

    The structural gene for alkaline phosphatase (orthophosphoric monoester phosphohydrolase; EC 3.1.3.1) of Bacillus licheniformis MC14 was cloned into the Pst1 site of pMK2004 from chromosomal DNA. The gene was cloned on an 8.5-kilobase DNA fragment. A restriction map was developed, and the gene was subcloned on a 4.2-kilobase DNA fragment. The minimum coding region of the gene was localized to a 1.3-kilobase region. Western blot analysis was used to show that the gene coded for a 60,000-molecular-weight protein which cross-reacts with anti-alkaline phosphatase prepared against the salt-extractable membrane alkaline phosphatase of B. licheniformis MC14 . PMID:6327655

  5. A single domain of human prostatic acid phosphatase shows antibody-mediated restoration of catalytic activity.

    PubMed Central

    Choe, B K; Dong, M K; Walz, D; Gleason, S; Rose, N R

    1982-01-01

    By limited proteolysis with mouse submaxillaris protease, human prostatic acid phosphatase (EC 3.1.3.2) was cleaved into three fragments, Sp1, Sp2, and Sp3, which individually had no enzymatic activity. One of the fragments, Sp3, regained enzymatic activity after interaction with rabbit antibody to prostatic acid phosphatase. The Sp3 fragment was purified and characterized as to its molecular weight, amino acid composition, and carbohydrate content. The Sp3 fragment behaved like the parent molecule in L(+)-tartrate affinity and in trapping of a phosphoryl intermediate. The same Sp3 fragment also bears the most prominent antigenic determinants. This evidence suggest that Sp3 is the enzymatically active domain of prostatic acid phosphatase. Images PMID:6193513

  6. The Baculovirus Uses a Captured Host Phosphatase to Induce Enhanced Locomotory Activity in Host Caterpillars

    PubMed Central

    Katsuma, Susumu; Koyano, Yasue; Kang, WonKyung; Kokusho, Ryuhei; Kamita, Shizuo George; Shimada, Toru

    2012-01-01

    The baculovirus is a classic example of a parasite that alters the behavior or physiology of its host so that progeny transmission is maximized. Baculoviruses do this by inducing enhanced locomotory activity (ELA) that causes the host caterpillars to climb to the upper foliage of plants. We previously reported that this behavior is not induced in silkworms that are infected with a mutant baculovirus lacking its protein tyrosine phosphatase (ptp) gene, a gene likely captured from an ancestral host. Here we show that the product of the ptp gene, PTP, associates with baculovirus ORF1629 as a virion structural protein, but surprisingly phosphatase activity associated with PTP was not required for the induction of ELA. Interestingly, the ptp knockout baculovirus showed significantly reduced infectivity of larval brain tissues. Collectively, we show that the modern baculovirus uses the host-derived phosphatase to establish adequate infection for ELA as a virion-associated structural protein rather than as an enzyme. PMID:22496662

  7. Protein Tyrosine Phosphatases: From Housekeeping Enzymes to Master-Regulators of Signal Transduction

    PubMed Central

    Tonks, Nicholas K.

    2013-01-01

    There are many misconceptions surrounding the roles of protein phosphatases in the regulation of signal transduction, perhaps the most damaging of which is the erroneous view that these enzymes exert their effects merely as constitutively active housekeeping enzymes. On the contrary, the phosphatases are critical, specific regulators of signaling in their own right and serve an essential function, in a coordinated manner with the kinases, to determine the response to a physiological stimulus. This review is a personal perspective on the development of our understanding of the protein tyrosine phosphatase (PTP) family of enzymes. I have discussed various aspects of the structure, regulation and function of the PTP family, which I hope will illustrate the fundamental importance of these enzymes to the control of signal transduction. PMID:23176256

  8. Effect of nutrient limitation on biofilm formation and phosphatase activity of a Citrobacter sp.

    PubMed

    Allan, Victoria J M; Callow, Maureen E; Macaskie, Lynne E; Paterson-Beedle, Marion

    2002-01-01

    A phosphatase-overproducing Citrobacter sp. (NCIMB 40259) was grown in an air-lift reactor in steady-state continuous culture under limitation of carbon, phosphorus or nitrogen. Substantial biofilm formation, and the highest phosphatase activity, were observed under lactose limitation. However, the total amount of biofilm wet biomass and the phosphatase specific activity were reduced in phosphorus- or nitrogen-limited cultures or when glucose was substituted for lactose as the limiting carbon source. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM) showed differences in cell and biofilm morphology in relation to medium composition. Electron microscopy suggested that the differences in biofilm formation may relate to differential expression of fimbriae on the cell surface. PMID:11782520

  9. Mycobacterium avium subsp. paratuberculosis PtpA Is an Endogenous Tyrosine Phosphatase Secreted during Infection▿

    PubMed Central

    Bach, Horacio; Sun, Jim; Hmama, Zakaria; Av-Gay, Yossef

    2006-01-01

    Adaptive gene expression in prokaryotes is mediated by protein kinases and phosphatases. These regulatory proteins mediate phosphorylation of histidine or aspartate in two-component systems and serine/threonine or tyrosine in eukaryotic and eukaryote-like protein kinase systems. The genome sequence of Mycobacterium avium subsp. paratuberculosis, the causative agent of Johne's disease, does not possess a defined tyrosine kinase. Nevertheless, it encodes for protein tyrosine phosphatases. Here, we report that Map1985, is a functional low-molecular tyrosine phosphatase that is secreted intracellularly upon macrophage infection. This finding suggests that Map1985 might contribute to the pathogenesis of Mycobacterium avium subsp. paratuberculosis by dephosphorylating essential macrophage signaling and/or adaptor molecules. PMID:16982836

  10. Workshop on Precision Measurements of $\\alpha_s$

    SciTech Connect

    Bethke, Siegfried; Hoang, Andre H.; Kluth, Stefan; Schieck, Jochen; Stewart, Iain W.; Aoki, S.; Beneke, M.; Bethke, S.; Blumlein, J.; Brambilla, N.; Brodsky, S.; /MIT, LNS

    2011-10-01

    These are the proceedings of the Workshop on Precision Measurements of {alpha}{sub s} held at the Max-Planck-Institute for Physics, Munich, February 9-11, 2011. The workshop explored in depth the determination of {alpha}{sub s}(m{sub Z}) in the {ovr MS} scheme from the key categories where high precision measurements are currently being made, including DIS and global PDF fits, {tau}-decays, electro-weak precision observables and Z-decays, event-shapes, and lattice QCD. These proceedings contain a short summary contribution from the speakers, as well as the lists of authors, conveners, participants, and talks.

  11. Immunodiagnosis of alpha chain disease.

    PubMed Central

    Doe, W F; Danon, F; Seligmann, M

    1979-01-01

    Since the early diagnosis of alpha chain disease (alphaCD)) is essential to successful treatment and to epidemiological studies, the available immunodiagnostic techniques were compared for their sensitivity, specificity and ease of performance on a panel of sixteen sera, comprising ten alphaCD sera and six control sera containing either IgA myeloma protein or high levels of polyclonal IgA. Immunoselection by immunoelectrophoresis into gel containing a specially developed anti-Fabalpha antiserum provided the most sensitive and specific detection system for alphaCD protein. The same technique using anti-light chain antiserum for immunoselection was also highly sensitive, but proved less specific, being prone to false positives with difficult IgA myeloma proteins. Somewhat less sensitive, but specific and simple to perform, was immunoelectrophoresis using an antiserum recognizing the conformational specificities of Fabalpha as well as those of the constant region of alpha chains. Immunoselection using the Ouchterlony or rocket techniques proved to be less sensitive and prone to false positives when some IgA myeloma sera were tested. Images FIG. 1 FIG. 2 FIG. 3 FIG. 4 FIG. 5 FIG. 6 FIG. 7 PMID:113152

  12. Crystallization of a newly discovered histidine acid phosphatase from Francisella tularensis

    SciTech Connect

    Felts, Richard L.; Reilly, Thomas J.; Calcutt, Michael J.; Tanner, John J.

    2006-01-01

    A histidine acid phosphatase from the CDC Category A pathogen F. tularensis has been crystallized in space group P4{sub 1}2{sub 1}2, with unit-cell parameters a = 61.96, c = 210.78 Å. A 1.75 Å resolution data set was collected at Advanced Light Source beamline 4.2.2. Francisella tularensis is a highly infectious bacterial pathogen that is considered by the Centers for Disease Control and Prevention to be a potential bioterrorism weapon. Here, the crystallization of a 37.2 kDa phosphatase encoded by the genome of F. tularensis subsp. holarctica live vaccine strain is reported. This enzyme shares 41% amino-acid sequence identity with Legionella pneumophila major acid phosphatase and contains the RHGXRXP motif that is characteristic of the histidine acid phosphatase family. Large diffraction-quality crystals were grown in the presence of Tacsimate, HEPES and PEG 3350. The crystals belong to space group P4{sub 1}2{sub 1}2, with unit-cell parameters a = 61.96, c = 210.78 Å. The asymmetric unit is predicted to contain one protein molecule, with a solvent content of 53%. A 1.75 Å resolution native data set was recorded at beamline 4.2.2 of the Lawrence Berkeley National Laboratory Advanced Light Source. Molecular-replacement trials using the human prostatic acid phosphatase structure as the search model (28% amino-acid sequence identity) did not produce a satisfactory solution. Therefore, the structure of F. tularensis histidine acid phosphatase will be determined by multiwavelength anomalous dispersion phasing using a selenomethionyl derivative.

  13. 2,3-diphosphoglycerate phosphatase activity of phosphoglycerate mutase: stimulation by vanadate and phosphate

    SciTech Connect

    Stankiewicz, P.J.; Gresser, M.J.; Tracey, A.S.; Hass, L.F.

    1987-03-10

    The binding of inorganic vanadate (V/sub i/) to rabbit muscle phosphoglycerate mutase (PGM), studied by using /sup 51/V nuclear magnetic resonance spectroscopy, shows a sigmoidal dependence on vanadate concentration with a stoichiometry of four vanadium atoms per PGM molecule at saturating (V/sub i/). The data are consistent with binding of one divanadate ion to each of the two subunits of PGM in a noncooperative manner with an intrinsic dissociation constant of 4 x 10/sup -6/ M. The relevance of this result to other studies which have shown that the V/sub i/-stimulated 2,3-diphosphoglycerate (2,3-DPG) phosphatase activity of PGM has a sigmoidal dependence on (V/sub i/) with a Hill coefficient of 2.0 is discussed. At pH 7.0, inorganic phosphate has little effect on the 2,3-DPG phosphatase activity of PGM, even at concentrations as high as 50 mM. Similarly, 25 ..mu..M V/sub i/ has little effect on the phosphatase activity. However, in the presence of 25 ..mu..M V/sub i/, a phosphate concentration of 20 mM increases the phosphatase activity by more than 3-fold. This behavior is rationalized in terms of activation of the phosphatase activity by a phosphate/vanadate mixed anhydride. This interpretation is supported by the observation of strong activation of the phosphatase activity by inorganic pyrophosphate. A molecular mechanism for the observed effects of vanadate is proposed, and the relevance of this study to the possible use of vanadate as a therapeutic agent for the treatment of sickle cell anemia is discussed.

  14. Probing Mechanistic Similarities between Response Regulator Signaling Proteins and Haloacid Dehalogenase Phosphatases.

    PubMed

    Immormino, Robert M; Starbird, Chrystal A; Silversmith, Ruth E; Bourret, Robert B

    2015-06-01

    Response regulator signaling proteins and phosphatases of the haloacid dehalogenase (HAD) superfamily share strikingly similar folds, active site geometries, and reaction chemistry. Proteins from both families catalyze the transfer of a phosphoryl group from a substrate to one of their own aspartyl residues, and subsequent hydrolysis of the phosphoprotein. Notable differences include an additional Asp that functions as an acid/base catalyst and an active site well-structured prior to phosphorylation in HAD phosphatases. Both features contribute to reactions substantially faster than those for response regulators. To investigate mechanisms underlying the functional differences between response regulators and HAD phosphatases, we characterized five double mutants of the response regulator CheY designed to mimic HAD phosphatases. Each mutant contained the extra Asp paired with a phosphatase-inspired substitution to potentially position the Asp properly. Only CheY DR (Arg as the anchor) exhibited enhanced rates of both autophosphorylation with phosphoramidate and autodephosphorylation compared to those of wild-type CheY. Crystal structures of CheY DR complexed with MoO4(2-) or WO4(2-) revealed active site hydrogen bonding networks similar to those in HAD·substrate complexes, with the extra Asp positioned for direct interaction with the leaving group (phosphorylation) or nucleophile (dephosphorylation). However, CheY DR reaction kinetics did not exhibit the pH sensitivities expected for acid/base catalysis. Biochemical analysis indicated CheY DR had an enhanced propensity to adopt the active conformation without phosphorylation, but a crystal structure revealed unphosphorylated CheY DR was not locked in the active conformation. Thus, the enhanced reactivity of CheY DR reflected partial acquisition of catalytic and structural features of HAD phosphatases. PMID:25928369

  15. Effects of precipitation on soil acid phosphatase activity in three successional forests in southern China

    NASA Astrophysics Data System (ADS)

    Huang, W.; Liu, J.; Zhou, G.; Zhang, D.; Deng, Q.

    2011-07-01

    Phosphorus (P) is often a limiting nutrient for plant growth in tropical and subtropical forests. Global climate change has led to alterations in precipitation in the recent years, which inevitably influences P cycling. Soil acid phosphatase plays a vital role in controlling P mineralization, and its activity reflects the capacity of organic P mineralization potential in soils. In order to study the effects of precipitation on soil acid phosphatase activity, an experiment with precipitation treatments (no precipitation, natural precipitation and doubled precipitation) in three successional forests in southern China was carried out. The three forests include Masson pine forest (MPF), coniferous and broad-leaved mixed forest (MF) and monsoon evergreen broad-leaved forest (MEBF). Results showed that driven by seasonality of precipitation, changes in soil acid phosphatase activities coincided with the seasonal climate pattern, with significantly higher values in the wet season than in the dry season. Soil acid phosphatase activities were closely linked to forest successional stages, with enhanced values in the later stages of forest succession. In the dry season, soil acid phosphatase activities in the three forests showed a rising trend with increasing precipitation treatments. In the wet season, soil acid phosphatase activity was depressed by no precipitation treatment in the three forests. However, doubled precipitation treatment exerted a significantly negative effect on it only in MEBF. These results indicate that the potential transformation rate of organic P might be more dependent on water in the dry season than in the wet season. A decrease in organic P turnover would occur in the three forests if there was a drought in a whole year in the future. More rainfall in the wet season would also be adverse to organic P turnover in MEBF due to its high soil moisture.

  16. Association of phosphoenolpyruvate phosphatase activity with the cytosolic pyruvate kinase of germinating mung beans.

    PubMed

    Podestá, F E; Plaxton, W C

    1991-12-01

    The procedure of Malhotra and Kayastha ([1990] Plant Physiology 93: 194-200) for the purification to homogeneity of a phosphoenolpyruvate-specific alkaline phosphatase (PEP phosphatase) from germinating mung beans (Vigna radiata) was followed. Although a higher specific activity of 1.4 micromoles pyruvate produced per minute per milligram protein was obtained, the final preparation was less than 10% pure as judged by polyacrylamide gel electrophoresis. Attempts to further purify the enzyme resulted in loss of activity. The partially purified enzyme contained significant pyruvate kinase activity (0.13 micromole pyruvate produced per minute per milligram protein) when assayed at pH 7.2, but not at pH 8.5. The PEP phosphatase activity of the final preparation exhibited hysteresis; a lag time of 5 to 6 minutes was required before a steady-state reaction rate was attained. A western blot of the final preparation revealed an immunoreactive 57 kilodalton polypeptide when probed with monospecific rabbit polyclonal antibodies prepared against germinating castor bean cytosolic pyruvate kinase. No antigenic cross-reaction of the final preparation was observed with antibodies against castor bean leucoplast pyruvate kinase, or black mustard PEP-specific acid phosphatase. Nondenaturing polyacrylamide gel electrophoresis of the final preparation resulted in a single PEP phosphatase activity band; when this band was excised and subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blotting, a 57 kilodalton silver-staining polypeptide was obtained that strongly cross-reacted with the anti-(cytosolic pyruvate kinase) immunoglobulin G. It is suggested that mung bean PEP-specific alkaline phosphatase activity is due to cytosolic pyruvate kinase, in which pyruvate and ortho-phosphate are formed in the absence of ADP. PMID:16668551

  17. Association of Phosphoenolpyruvate Phosphatase Activity with the Cytosolic Pyruvate Kinase of Germinating Mung Beans 1

    PubMed Central

    Podestá, Florencio E.; Plaxton, William C.

    1991-01-01

    The procedure of Malhotra and Kayastha ([1990] Plant Physiology 93: 194-200) for the purification to homogeneity of a phosphoenolpyruvate-specific alkaline phosphatase (PEP phosphatase) from germinating mung beans (Vigna radiata) was followed. Although a higher specific activity of 1.4 micromoles pyruvate produced per minute per milligram protein was obtained, the final preparation was less than 10% pure as judged by polyacrylamide gel electrophoresis. Attempts to further purify the enzyme resulted in loss of activity. The partially purified enzyme contained significant pyruvate kinase activity (0.13 micromole pyruvate produced per minute per milligram protein) when assayed at pH 7.2, but not at pH 8.5. The PEP phosphatase activity of the final preparation exhibited hysteresis; a lag time of 5 to 6 minutes was required before a steady-state reaction rate was attained. A western blot of the final preparation revealed an immunoreactive 57 kilodalton polypeptide when probed with monospecific rabbit polyclonal antibodies prepared against germinating castor bean cytosolic pyruvate kinase. No antigenic cross-reaction of the final preparation was observed with antibodies against castor bean leucoplast pyruvate kinase, or black mustard PEP-specific acid phosphatase. Nondenaturing polyacrylamide gel electrophoresis of the final preparation resulted in a single PEP phosphatase activity band; when this band was excised and subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blotting, a 57 kilodalton silver-staining polypeptide was obtained that strongly cross-reacted with the anti-(cytosolic pyruvate kinase) immunoglobulin G. It is suggested that mung bean PEP-specific alkaline phosphatase activity is due to cytosolic pyruvate kinase, in which pyruvate and ortho-phosphate are formed in the absence of ADP. ImagesFigure 1Figure 2 PMID:16668551

  18. Differential regulation of single CFTR channels by PP2C, PP2A, and other phosphatases.

    PubMed

    Luo, J; Pato, M D; Riordan, J R; Hanrahan, J W

    1998-05-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel activity declines rapidly when excised from transfected Chinese hamster ovary (CHO) or human airway cells because of membrane-associated phosphatase activity. In the present study, we found that CFTR channels usually remained active in patches excised from baby hamster kidney (BHK) cells overexpressing CFTR. Those patches with stable channel activity were used to investigate the regulation of CFTR by exogenous protein phosphatases (PP). Adding PP2A, PP2C, or alkaline phosphatase to excised patches reduced CFTR channel activity by > 90% but did not abolish it completely. PP2B caused weak deactivation, whereas PP1 had no detectable effect on open probability (Po). Interestingly, the time course of deactivation by PP2C was identical to that of the spontaneous rundown observed in some patches after excision. PP2C and PP2A had distinct effects on channel gating Po declined during exposure to exogenous PP2C (and during spontaneous rundown, when it was observed) without any change in mean burst duration. By contrast, deactivation by exogenous PP2A was associated with a dramatic shortening of burst duration similar to that reported previously in patches from cardiac cells during deactivation of CFTR by endogenous phosphatases. Rundown of CFTR-mediated current across intact T84 epithelial cell monolayers was insensitive to toxic levels of the PP2A inhibitor calyculin A. These results demonstrate that exogenous PP2C is a potent regulator of CFTR activity, that its effects on single-channel gating are distinct from those of PP2A but similar to those of endogenous phosphatases in CHO, BHK, and T84 epithelial cells, and that multiple protein phosphatases may be required for complete deactivation of CFTR channels. PMID:9612228

  19. Depression of liver microsomal glucose 6-phosphatase activity in carbon tetrachloride-poisoned rats. Potential synergistic effects of lipid peroxidation and of covalent binding of haloalkane-derived free radicals to cellular components in the process.

    PubMed

    González Padrón, A; de Toranzo, E G; Castro, J A

    1996-01-01

    Depression of liver microsomal glucose-6-phosphatase (G6Pase) activity is a relevant feature of CCl4 poisoning. In vitro studies from several laboratories led to the hypothesis that a CCl4 promoted lipid peroxidation (LP) process is responsible for that effect. In vivo studies from our laboratory with potent antioxidants in dosage regimes inhibiting LP, however, were in contrast with that hypothesis. In this work we studied the potential preventive effects of Pyrazole (Pyr), alpha-tocopherol (alpha T), and 3-amino-1,2,4-triazole (AT) against CCl4-induced depression of G6Pase activity. Pyr decreases the intensity of the covalent binding (CB) of CCl4 reactive metabolites to cellular components but does not inhibit LP in vitro or in vivo. alpha T inhibits LP in vitro and in vivo and AT inhibits both CB and LP. Our present studies give evidence that AT but neither Pyr nor alpha T are able to prevent the CCl4-induced depression of G6Pase activity. Results are compatible with the hypothesis that the cooperation of both factors is critical to explain the observed effects, and suggest that under in vitro experimental conditions used by others the relevance of LP might be artifactually promoted. PMID:8791095

  20. An okadaic acid-sensitive phosphatase negatively controls the cyclin degradation pathway in amphibian eggs.

    PubMed Central

    Lorca, T; Fesquet, D; Zindy, F; Le Bouffant, F; Cerruti, M; Brechot, C; Devauchelle, G; Dorée, M

    1991-01-01

    Inhibition of okadaic acid-sensitive phosphatases released the cyclin degradation pathway from its inhibited state in extracts prepared from unfertilized Xenopus eggs arrested at the second meiotic metaphase. It also switched on cyclin protease activity in a permanent fashion in interphase extracts prepared from activated eggs. Even after cdc2 kinase inactivation, microinjection of okadaic acid-treated interphase extracts pushed G2-arrested recipient oocytes into the M phase, suggesting that the phosphatase inhibitor stabilizes the activity of an unidentified factor which shares in common with cdc2 kinase the maturation-promoting factor activity. Images PMID:1846666

  1. Synthesis of benzopentathiepin analogs and their evaluation as inhibitors of the phosphatase STEP

    PubMed Central

    Baguley, Tyler D.; Nairn, Angus C.; Lombroso, Paul J.; Ellman, Jonathan A.

    2015-01-01

    Striatal-enriched protein tyrosine phosphatase (STEP) is a brain specific protein tyrosine phosphatase that has been implicated in many neurodegenerative diseases, such as Alzheimer’s disease. We recently reported the benzopentathiepin TC-2153 as a potent inhibitor of STEP in vitro, cells and animals. Herein, we report the synthesis and evaluation of TC-2153 analogs in order to define what structural features are important for inhibition and to identify positions tolerant of substitution for further study. The trifluoromethyl substitution is beneficial for inhibitor potency, and the amine is tolerant of acylation, and thus provides a convenient handle for introducing additional functionality such as reporter groups. PMID:25666825

  2. Exploiting Acid Phosphatases in the Synthesis of Phosphorylated Monoalcohols and Diols

    PubMed Central

    Tasnádi, Gábor; Lukesch, Michael; Zechner, Michaela; Jud, Wolfgang; Hall, Mélanie; Ditrich, Klaus; Baldenius, Kai; Hartog, Aloysius F.; Wever, Ron

    2015-01-01

    Abstract A set of phosphatases was evaluated for their potential to catalyze the regio‐ and stereoselective phosphorylation of alcohols using a high‐energy inorganic phosphate donor, such as di‐, tri‐ and polyphosphate. Parameters such as type and amount of phosphate donor and pH of the reaction were investigated in order to minimize the thermodynamically favored hydrolysis of the phosphate donor and the formed phosphate ester. Diols were monophosphorylated with high selectivities. This biocatalytic phosphorylation method provides selectively activated and/or protected synthetic intermediates for further chemical and/or enzymatic transformations and is applicable to a large scale (6.86 g) in a flow setup with immobilized phosphatase.

  3. Autosomal dominant aniridia: probable linkage to acid phosphatase-1 locus on chromosome 2.

    PubMed Central

    Ferrell, R E; Chakravarti, A; Hittner, H M; Riccardi, V M

    1980-01-01

    Maximum likelihood analysis for linkage between autosomal dominant aniridia and 12 biochemical and serological markers in a single large family showed a probable linkage between autosomal dominant aniridia and the enzyme acid phosphatase-1. The presence of an autosomal dominant aniridia gene linked to acid phosphatase-1 on chromosome arm 2p and the existence of an aniridia syndrome resulting from deletion of band 13 of the short arm of chromosome 11 establishes a chromosome basis for genetic heterogeneity of aniridia phenotypes. PMID:6929510

  4. Identification of a macro-alkaline phosphatase complex in a patient with inflammatory bowel disease.

    PubMed

    McTaggart, Malcolm P; Rawson, Catherine; Lawrence, David; Raney, Barbara S; Jaundrill, Linnet; Miller, Lorna A; Murtinho-Braga, Joseph; Kearney, Edward M

    2012-07-01

    We report the rare finding of a macro-alkaline phosphatase (macroALP) complex in a patient with a previously unexplained raised alkaline phosphatase activity. The clinical symptoms were persistent, daily diarrhoea for two months with blood in the stool. The patient was subsequently diagnosed with inflammatory bowel disease, specifically ulcerative colitis, following a rectal biopsy and colonoscopy. Two cases of macroALP associated with ulcerative colitis have been reported before, suggesting there could be an increased prevalence of macroALP in these patients. PMID:22454544

  5. Comparison of methods for determining DNase and phosphatase activities of staphylococci.

    PubMed Central

    Langlois, B E; Harmon, R J; Akers, K; Aaron, D K

    1989-01-01

    A greater percentage of DNase-positive strains was detected with DNase test agar than with DNase test agar containing 0.005% methyl green or 0.005% toluidine blue (P less than 0.01). No significant differences were obtained in the percentage of phosphatase-positive strains with the four methods compared. On the basis of ease of use, P agar containing para-nitrophenylphosphate disodium (0.495 mg/ml) would be the preferred method for determining phosphatase activity of staphylococci. PMID:2545741

  6. A New Fluorescence-Based Method Identifies Protein Phosphatases Regulating Lipid Droplet Metabolism

    PubMed Central

    Bozaquel-Morais, Bruno L.; Madeira, Juliana B.; Maya-Monteiro, Clarissa M.; Masuda, Claudio A.; Montero-Lomeli, Mónica

    2010-01-01

    In virtually every cell, neutral lipids are stored in cytoplasmic structures called lipid droplets (LDs) and also referred to as lipid bodies or lipid particles. We developed a rapid high-throughput assay based on the recovery of quenched BODIPY-fluorescence that allows to quantify lipid droplets. The method was validated by monitoring lipid droplet turnover during growth of a yeast culture and by screening a group of strains deleted in genes known to be involved in lipid metabolism. In both tests, the fluorimetric assay showed high sensitivity and good agreement with previously reported data using microscopy. We used this method for high-throughput identification of protein phosphatases involved in lipid droplet metabolism. From 65 yeast knockout strains encoding protein phosphatases and its regulatory subunits, 13 strains revealed to have abnormal levels of lipid droplets, 10 of them having high lipid droplet content. Strains deleted for type I protein phosphatases and related regulators (ppz2, gac1, bni4), type 2A phosphatase and its related regulator (pph21 and sap185), type 2C protein phosphatases (ptc1, ptc4, ptc7) and dual phosphatases (pps1, msg5) were catalogued as high-lipid droplet content strains. Only reg1, a targeting subunit of the type 1 phosphatase Glc7p, and members of the nutrient-sensitive TOR pathway (sit4 and the regulatory subunit sap190) were catalogued as low-lipid droplet content strains, which were studied further. We show that Snf1, the homologue of the mammalian AMP-activated kinase, is constitutively phosphorylated (hyperactive) in sit4 and sap190 strains leading to a reduction of acetyl-CoA carboxylase activity. In conclusion, our fast and highly sensitive method permitted us to catalogue protein phosphatases involved in the regulation of LD metabolism and present evidence indicating that the TOR pathway and the SNF1/AMPK pathway are connected through the Sit4p-Sap190p pair in the control of lipid droplet biogenesis. PMID:21060891

  7. The activity of some phosphatases in tissues of adult Hymenolepis nana Siebold (Csetoda).

    PubMed

    Humiczewska, M

    1989-01-01

    Histochemical methods were used to study the localization and activity of acid and alkaline phosphatases, ATP-ase, 5-nucleotidase, and glucose-6-phosphatase in tissues of the mature form of Hymenolepis nana. Considerable differences in activity and localization of particular enzymes were observed in the organs of the parasite. The results obtained permit the statement that the integument is the most active enzymatically; in connection with the literature data, this gives grounds for the thesis that the integument of the cestodes functions as an absorbent-digestive organ. PMID:2558920

  8. Interaction between insulin-like growth factor-I receptor and alphaVbeta3 integrin linked signaling pathways: cellular responses to changes in multiple signaling inputs.

    PubMed

    Clemmons, D R; Maile, L A

    2005-01-01

    Integrins are heterodimeric transmembrane proteins that mediate cell attachment to extracellular matrix, migration, division, and inhibition of apoptosis. Because growth factors are also important for these processes, there has been interest in cooperative signaling between growth factor receptors and integrins. IGF-I is an important growth factor for vascular cells. One integrin, alphaVbeta3, that is expressed in smooth muscle cells modulates IGF-I actions. Ligand occupancy of alphaVbeta3 is required for IGF-I to stimulate cell migration and division. Src homology 2 containing tyrosine phosphatase (SHP-2) is a tyrosine phosphatase whose recruitment to signaling molecules is stimulated by growth factors including IGF-I. If alphaVbeta3 ligand occupancy is inhibited, there is no recruitment of SHP-2 to alphaVbeta3 and its transfer to downstream signaling molecules is blocked. Ligand occupancy of alphaVbeta3 stimulates tyrosine phosphorylation of the beta3-subunit, resulting in recruitment of SHP-2. This transfer is mediated by an insulin receptor substrate-1-related protein termed DOK-1. Subsequently, SHP-2 is transferred to another transmembrane protein, SHPS-1. This transfer requires IGF-I receptor-mediated tyrosine phosphorylation of SHPS-1, which contains two YXXL motifs that mediate SHP-2 binding. The transfer of SHP-2 to SHPS-1 is also required for recruitment of Shc to SHPS-1. Ligand occupancy of alphaVbeta3 results in sustained Shc phosphorylation and enhanced Shc recruitment. Shc activation results in induction of MAPK. Inhibition of the Shc/SHPS-1 complex formation results in failure to achieve sustained MAPK activation and an attenuated mitogenic response. Thus, within the vessel wall, a mechanism exists whereby ligand occupancy of the alphaVbeta3 integrin is required for assembly of a multicomponent membrane signaling complex that is necessary for cells to respond optimally to IGF-I. PMID:15528274

  9. Space Station alpha joint bearing

    NASA Technical Reports Server (NTRS)

    Everman, Michael R.; Jones, P. Alan; Spencer, Porter A.

    1987-01-01

    Perhaps the most critical structural system aboard the Space Station is the Solar Alpha Rotary Joint which helps align the power generation system with the sun. The joint must provide structural support and controlled rotation to the outboard transverse booms as well as power and data transfer across the joint. The Solar Alpha Rotary Joint is composed of two transition sections and an integral, large diameter bearing. Alpha joint bearing design presents a particularly interesting problem because of its large size and need for high reliability, stiffness, and on orbit maintability. The discrete roller bearing developed is a novel refinement to cam follower technology. It offers thermal compensation and ease of on-orbit maintenance that are not found in conventional rolling element bearings. How the bearing design evolved is summarized. Driving requirements are reviewed, alternative concepts assessed, and the selected design is described.

  10. alpha-Thalassemia caused by an unstable alpha-globin mutant.

    PubMed Central

    Liebhaber, S A; Kan, Y W

    1983-01-01

    In a previous study, molecular cloning of the alpha-globin genes from a patient with nondeletion Hb-H disease (genotype--/alpha alpha) showed that a single nucleotide mutation (CTG to CCG) in one of the genes resulted in a leucine to proline substitution. This paper describes the approach we used to detect the abnormal alpha-globin chain. The chain was identified using a cell-free translation system. It turned over rapidly both in vitro and in vivo in the patient's reticulocytes. The unusual feature of this unstable alpha-globin is that the alpha-globin deficiency causes alpha-thalassemia. Simple heterozygotes for this lesion (alpha Pro alpha/alpha alpha) resemble alpha-thalassemia carriers and do not exhibit the hemolytic anemia usually associated with unstable hemoglobins. Images PMID:6826718

  11. Relationship of changing delta 4-steroid 5 alpha-reductase activity to (125I)iododeoxyuridine uptake during regeneration of involuted rat prostates

    SciTech Connect

    Kitahara, S.; Higashi, Y.; Takeuchi, S.; Oshima, H. )

    1989-04-01

    To elucidate the phenotypic expression of proliferating prostatic cells, rats were castrated, and the regenerating process of involuted ventral prostates during testosterone propionate (TP) administration was investigated by examining morphology, (5-{sup 125}I)iododeoxyuridine ({sup 125}I-UdR) uptake, DNA content, weight, acid phosphatase, and delta 4-steroid 5 alpha-reductase (5 alpha-reductase) activities. Morphologically, TP treatment initially increased the number of epithelial cells lining glandular lobules and subsequently restored the shape of epithelial cells. {sup 125}I-UdR uptake peaked on Day 3 of TP treatment and stayed at higher levels than for uncastrated controls until Day 14 of treatment. Prostatic weight, protein content, acid phosphatase, and DNA content returned to uncastrated control levels by Day 14 of TP treatment. TP administration markedly stimulated prostatic 5 alpha-reductase activity, which peaked on the Day 5 of treatment and decreased to uncastrated control levels by Day 14 of treatment. It is concluded that TP administration to castrated rats initially induced active mitotic division of the remaining stem cells, followed by formation of differentiated functional epithelial cells. Prostatic 5 alpha-reductase was highly active at the initial phase of active mitotic cell division. The major portion of the increased enzyme activity can be regarded as a phenotypic expression of stem or transient cells of prostatic epithelium.

  12. Test chamber for alpha spectrometry

    DOEpatents

    Larsen, Robert P.

    1977-01-01

    Alpha emitters for low-level radiochemical analysis by measurement of alpha spectra are positioned precisely with respect to the location of a surface-barrier detector by means of a chamber having a removable threaded planchet holder. A pedestal on the planchet holder holds a specimen in fixed engagement close to the detector. Insertion of the planchet holder establishes an O-ring seal that permits the chamber to be pumped to a desired vacuum. The detector is protected against accidental contact and resulting damage.

  13. Bremsstrahlung in {alpha} Decay Reexamined

    SciTech Connect

    Boie, H.; Scheit, H.; Jentschura, U. D.; Koeck, F.; Lauer, M.; Schwalm, D.; Milstein, A. I.; Terekhov, I. S.

    2007-07-13

    A high-statistics measurement of bremsstrahlung emitted in the {alpha} decay of {sup 210}Po has been performed, which allows us to follow the photon spectra up to energies of {approx}500 keV. The measured differential emission probability is in good agreement with our theoretical results obtained within the quasiclassical approximation as well as with the exact quantum mechanical calculation. It is shown that, due to the small effective electric dipole charge of the radiating system, a significant interference between the electric dipole and quadrupole contributions occurs, which is altering substantially the angular correlation between the {alpha} particle and the emitted photon.

  14. NACA Physicist Studying Alpha Rays

    NASA Technical Reports Server (NTRS)

    1957-01-01

    NACA Physicits studying Alpha Rays in a continuous cloud chamber. A cloud chamber is used by Lewis scientists to obtain information aimed at minimizing undesirable effects of radiation on nuclear-powered aircraft components. Here, alpha particles from a polonium source emit in a flower-like pattern at the cloud chamber's center. The particles are made visible by means of alcohol vapor diffusing from an area at room temperature to an area at minus -78 deg. Centigrade. Nuclear-powered aircraft were never developed and aircraft nuclear propulsion systems were canceled in the early 1960s.

  15. Post-translational disulfide modifications in cell signaling--role of inter-protein, intra-protein, S-glutathionyl, and S-cysteaminyl disulfide modifications in signal transmission.

    PubMed

    O'Brian, Catherine A; Chu, Feng

    2005-05-01

    Cell signaling entails a host of post-translational modifications of effector-proteins. These modifications control signal transmission by regulating the activity, localization or half-life of the effector-protein. Prominent oxidative modifications induced by cell-signaling reactive oxygen species (ROS) are cysteinyl modifications such as S-nitrosylation, sulfenic acid and disulfide formation. Disulfides protect protein sulfhydryls against oxidative destruction and simultaneously influence cell signaling by engaging redox-regulatory sulfhydryls in effector-proteins. The types of disulfides implicated in signaling span (1) protein S-glutathionylation, e.g. as a novel mode of Ras activation through S-glutathionylation at Cys-118 in response to a hydrogen-peroxide burst, (2) intra-protein disulfides, e.g. in the regulation of the stability of the protein phosphatase Cdc25C by hydrogen-peroxide, (3) inter-protein disulfides, e.g. in the hydrogen peroxide-mediated inactivation of receptor protein-tyrosine phosphatase alpha (RPTPalpha) by dimerization and (4) protein S-cysteaminylation by cystamine. Cystamine is a byproduct of pantetheinase-catalyzed pantothenic acid recycling from pantetheine for biosynthesis of Coenzyme A (CoA), a ubiquitous and metabolically indispensable cofactor. Cystamine inactivates protein kinase C-epsilon (PKCepsilon), gamma-glutamylcysteine synthetase and tissue transglutaminase by S-cysteaminylation-triggered mechanisms. The importance of protein S-cysteaminylation in signal transmission in vivo is evident from the ability of cystamine administration to rescue the intestinal inflammatory-response deficit of pantetheinase knockout mice. These mice lack the predominant epithelial pantetheinase isoform and have sharply reduced levels of cystamine/cysteamine in epithelial tissues. In addition, intraperitoneal administration of cystamine significantly delays neurodegenerative pathogenesis in a Huntington's disease mouse model. Thus, cystamine may

  16. Alpha-adrenergic blocker mediated osteoblastic stem cell differentiation

    SciTech Connect

    Choi, Yoon Jung; Lee, Jue Yeon; Lee, Seung Jin; Chung, Chong-Pyoung; Park, Yoon Jeong

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer Doxazocin directly up-regulated bone metabolism at a low dose. Black-Right-Pointing-Pointer Doxazocin induced osteoblastic stem cell differentiation without affecting cell proliferation. Black-Right-Pointing-Pointer This osteogenic stem cell differentiation is mediated by ERK-signal dependent pathway. -- Abstract: Recent researches have indicated a role for antihypertensive drugs including alpha- or beta-blockers in the prevention of bone loss. Some epidemiological studies reported the protective effects of those agents on fracture risk. However, there is limited information on the association with those agents especially at the mechanism of action. In the present study, we investigated the effects of doxazosin, an alpha-blocker that is clinically used for the treatment of benign prostatic hyperplasia (BPH) along with antihypertensive medication, on the osteogenic stem cell differentiation. We found that doxazosin increased osteogenic differentiation of human mesenchymal stem cells, detected by Alizarin red S staining and calcein. Doxazosin not only induced expression of alkaline phosphatase, type I collagen, osteopontin, and osteocalcin, it also resulted in increased phosphorylation of extracellular signal-regulated kinase (ERK1/2), a MAP kinase involved in osteoblastic differentiation. Treatment with U0126, a MAP kinase inhibitor, significantly blocked doxazosin-induced osteoblastic differentiation. Unrelated to activation of osteogenic differentiation by doxazosin, we found that there were no significant changes in adipogenic differentiation or in the expression of adipose-specific genes, including peroxisome proliferator-activated receptor {gamma}, aP2, or LPL. In this report, we suggest that doxazosin has the ability to increase osteogenic cell differentiation via ERK1/2 activation in osteogenic differentiation of adult stem cells, which supports the protective effects of antihypertensive drug on fracture risk and

  17. Extreme Elevation of Alkaline Phosphatase in a Pregnancy Complicated by Gestational Diabetes and Infant with Neonatal Alloimmune Thrombocytopenia.

    PubMed

    Lozo, Svjetlana; Atabeygi, Amir; Healey, Michael

    2016-01-01

    There have been few case reports of isolated elevation of alkaline phosphatase beyond the normal physiologic amount with subsequent return to baseline after delivery. Here we present a similar case of extreme elevation of alkaline phosphatase in a pregnancy complicated by gestational diabetes and subsequently by neonatal alloimmune thrombocytopenia (NAIT). PMID:27610256

  18. PURIFICATION AND PARTIAL CHARACTERIZATION OF AN ACID PHOSPHATASE FROM SPIRODELA OLIGORRHIZA AND ITS AFFINITY FOR SELECTED ORGANOPHOSPHATE PESTICIDES

    EPA Science Inventory

    An acid phosphatase from the aquatic plant Spirodela oligorrhiza (duckweed) was isolated by fast protein liquid chromatography (FPLC) and partially characterized. The enzyme was purified 1871-fold with a total yield of 40%. SDS-PAGE electrophoresis of the pure acid phosphatase ...

  19. Extreme Elevation of Alkaline Phosphatase in a Pregnancy Complicated by Gestational Diabetes and Infant with Neonatal Alloimmune Thrombocytopenia

    PubMed Central

    Healey, Michael

    2016-01-01

    There have been few case reports of isolated elevation of alkaline phosphatase beyond the normal physiologic amount with subsequent return to baseline after delivery. Here we present a similar case of extreme elevation of alkaline phosphatase in a pregnancy complicated by gestational diabetes and subsequently by neonatal alloimmune thrombocytopenia (NAIT). PMID:27610256

  20. Transcriptional responses to cantharidin a protein phosphatase inhibitor in Arabidopsis thaliana reveal the involvement of multiple signal transduction pathways

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cantharidin is a natural compound isolated from the blister beetle (Epicauta spp.). It is a very potent inhibitor of serine/threonine protein phosphatases PPP, especially PP2A and PP4. Protein phosphatases and kinases maintain a sensitive balance between phosphorylated and dephosphorylated forms of ...

  1. Detection of Extant Life in Extreme Environmentsby Phosphatase ActivitiesDetection of Extant Life in Extreme Environments by Measuring Phosphatase Activities

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kensei; Sato, Shuji; Naganawa, Kazuki; Itoh, Yuki; Kurihara, Hironari; Kaneko, Takeo; Takano, Yoshinori; Yoshimura, Yoshitaka; Kawasaki, Yukishige

    Since phosphate esters are essential for the terrestrial life, phosphatase activity can be a candidate for biosignatures of biological activity. It has been recognized that terrestrial biosphere expands to such extreme environments as deep subsurface lithosphere, high temperature hot springs and stratosphere. We analyzed phosphatase activities in the samples obtained in extreme environments such as submarine hydrothermal systems and Antarctica soils, and discussed whether they can be used as biosignatures for extant life. Core samples and chimney samples were collected at the Suiyo Seamount, Izu-Bonin Arc, the Pacific Ocean in 2001 and 2002, and in South Mariana hydrothermal systems, the Pacific Ocean in 2003, both in a part of the Archaean Park Project. Surface soil samples are obtained at the Sites 1-8 near Showa Base in Antarctica during the 47th Japan Antarctic exploration mission in 2005-6. Alkaline (or acid) Phosphatase activity in solid samples was measured spectrometrically by using 25 mM p-nitrophenyl phosphate (pH 8.0 (or pH 6.5)) as a substrate. Phosphatase activities in extracts were measured fluorometrically by using 4-methylumberyferryl phosphate as a substrate. Concentration of amino acids and their enantiomeric ratios were also determined by HPLC and GC/MS. Significant enzymatic activities were revealed in both some of the hydrothermal sub-vent systems and Antarctica soils, which is crucial evidence of vigorous microbial oasis. It is consistent with the fact that large enantiomeric excess of L-form amino acids were found in the same core sequences. The ALP activity was diminished with EDTA and was recovered with addition of zinc ion. The present results showed that zinc-containing metalloenzymes are present in such environments as hydrothermal vent chimneys and Antarctica soils. Optimum temperatures of ALP in the chimney, Antarctica soil and YNU campus soil were 353 K, 313 K, and 333 K, respectively. The present results suggested that phosphatase

  2. Essential Role of Protein-tyrosine Phosphatase 1B in the Modulation of Insulin Signaling by Acetaminophen in Hepatocytes*

    PubMed Central

    Mobasher, Maysa Ahmed; de Toro-Martín, Juan; González-Rodríguez, Águeda; Ramos, Sonia; Letzig, Lynda G.; James, Laura P.; Muntané, Jordi; Álvarez, Carmen; Valverde, Ángela M.

    2014-01-01

    Many drugs are associated with the development of glucose intolerance or deterioration in glycemic control in patients with pre-existing diabetes. We have evaluated the cross-talk between signaling pathways activated by acetaminophen (APAP) and insulin signaling in hepatocytes with or without expression of the protein-tyrosine phosphatase 1B (PTP1B) and in wild-type and PTP1B-deficient mice chronically treated with APAP. Human primary hepatocytes, Huh7 hepatoma cells with silenced PTP1B, mouse hepatocytes from wild-type and PTP1B-deficient mice, and a mouse model of chronic APAP treatment were used to examine the mechanisms involving PTP1B in the effects of APAP on glucose homeostasis and hepatic insulin signaling. In APAP-treated human hepatocytes at concentrations that did not induce death, phosphorylation of JNK and PTP1B expression and enzymatic activity were increased. APAP pretreatment inhibited activation of the early steps of insulin signaling and decreased Akt phosphorylation. The effects of APAP in insulin signaling were prevented by suramin, a PTP1B inhibitor, or rosiglitazone that decreased PTP1B levels. Likewise, PTP1B deficiency in human or mouse hepatocytes protected against APAP-mediated impairment in insulin signaling. These signaling pathways were modulated in mice with chronic APAP treatment, resulting in protection against APAP-mediated hepatic insulin resistance and alterations in islet alpha/beta cell ratio in PTP1B−/− mice. Our results demonstrate negative cross-talk between signaling pathways triggered by APAP and insulin signaling in hepatocytes, which is in part mediated by PTP1B. Moreover, our in vivo data suggest that chronic use of APAP may be associated with insulin resistance in the liver. PMID:25204659

  3. Defects in energy homeostasis in Leigh syndrome French Canadian variant through PGC-1alpha/LRP130 complex.

    PubMed

    Cooper, Marcus P; Qu, Lishu; Rohas, Lindsay M; Lin, Jiandie; Yang, Wenli; Erdjument-Bromage, Hediye; Tempst, Paul; Spiegelman, Bruce M

    2006-11-01

    Leigh syndrome French Canadian variant (LSFC) is an autosomal recessive neurodegenerative disorder due to mutation in the LRP130 (leucine-rich protein 130 kDa) gene. Unlike classic Leigh syndrome, the French Canadian variant spares the heart, skeletal muscle, and kidneys, but severely affects the liver. The precise role of LRP130 in cytochrome c oxidase deficiency and hepatic lactic acidosis that accompanies this disorder is unknown. We show here that LRP130 is a component of the PGC-1alpha (peroxisome proliferator-activated receptor coactivator 1-alpha) transcriptional coactivator holocomplex and regulates expression of PEPCK (phosphoenolpyruvate carboxykinase), G6P (glucose-6-phosphatase), and certain mitochondrial genes through PGC-1alpha. Reduction of LRP130 in fasted mice via adenoviral RNA interference (RNAi) vector blocks the induction of PEPCK and G6P, and blunts hepatic glucose output. LRP130 is also necessary for PGC-1alpha-dependent transcription of several mitochondrial genes in vivo. These data link LRP130 and PGC-1alpha to defective hepatic energy homeostasis in LSFC, and reveal a novel regulatory mechanism of glucose homeostasis. PMID:17050673

  4. Alcoholism, Alpha Production, and Biofeedback

    ERIC Educational Resources Information Center

    Jones, Frances W.; Holmes, David S.

    1976-01-01

    Electroencephalograms of 20 alcoholics and 20 nonalcoholics were obtained. Data indicated that alcoholics produced less alpha than nonalcoholics. In one training condition subjects were given accurate biofeedback, whereas in the other condition subjects were given random (noncontingent) feedback. Accurate biofeedback did not result in greater…

  5. Alpha proton x ray spectrometer

    NASA Technical Reports Server (NTRS)

    Rieder, Rudi; Waeke, H.; Economou, T.

    1994-01-01

    Mars Pathfinder will carry an alpha-proton x ray spectrometer (APX) for the determination of the elemental chemical composition of Martian rocks and soils. The instrument will measure the concentration of all major and some minor elements, including C, N, and O at levels above typically 1 percent.

  6. Meet the Alpha-Pets.

    ERIC Educational Resources Information Center

    Zitlaw, Jo Ann Bruce; Frank, Cheryl Standish

    1985-01-01

    "Alpha-Pets" are the focal point of an integrated, multidisciplinary curriculum. Each pet is featured for a week in a vocabulary-rich story and introduces related activities beginning with the featured letter, such as the four food groups during Freddie Fish's week or universe during Ulysses Unicorn's week. (MT)

  7. Sparse Coding for Alpha Matting

    NASA Astrophysics Data System (ADS)

    Johnson, Jubin; Varnousfaderani, Ehsan Shahrian; Cholakkal, Hisham; Rajan, Deepu

    2016-07-01

    Existing color sampling based alpha matting methods use the compositing equation to estimate alpha at a pixel from pairs of foreground (F) and background (B) samples. The quality of the matte depends on the selected (F,B) pairs. In this paper, the matting problem is reinterpreted as a sparse coding of pixel features, wherein the sum of the codes gives the estimate of the alpha matte from a set of unpaired F and B samples. A non-parametric probabilistic segmentation provides a certainty measure on the pixel belonging to foreground or background, based on which a dictionary is formed for use in sparse coding. By removing the restriction to conform to (F,B) pairs, this method allows for better alpha estimation from multiple F and B samples. The same framework is extended to videos, where the requirement of temporal coherence is handled effectively. Here, the dictionary is formed by samples from multiple frames. A multi-frame graph model, as opposed to a single image as for image matting, is proposed that can be solved efficiently in closed form. Quantitative and qualitative evaluations on a benchmark dataset are provided to show that the proposed method outperforms current state-of-the-art in image and video matting.

  8. Alpha Testing Escape from Diab

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alpha testing was conducted of sessions 2 and 3 from Diab to assess whether the activities worked as expected, and whether children in the target ages enjoyed it. Data include both RA observations of child performance while playing the games and cognitive interview responses from the players after t...

  9. Drosophila EYA regulates the immune response against DNA through an evolutionarily conserved threonine phosphatase motif.

    PubMed

    Liu, Xi; Sano, Teruyuki; Guan, Yongsheng; Nagata, Shigekazu; Hoffmann, Jules A; Fukuyama, Hidehiro

    2012-01-01

    Innate immune responses against DNA are essential to counter both pathogen infections and tissue damages. Mammalian EYAs were recently shown to play a role in regulating the innate immune responses against DNA. Here, we demonstrate that the unique Drosophila eya gene is also involved in the response specific to DNA. Haploinsufficiency of eya in mutants deficient for lysosomal DNase activity (DNaseII) reduces antimicrobial peptide gene expression, a hallmark for immune responses in flies. Like the mammalian orthologues, Drosophila EYA features a N-terminal threonine and C-terminal tyrosine phosphatase domain. Through the generation of a series of mutant EYA fly strains, we show that the threonine phosphatase domain, but not the tyrosine phosphatase domain, is responsible for the innate immune response against DNA. A similar role for the threonine phosphatase domain in mammalian EYA4 had been surmised on the basis of in vitro studies. Furthermore EYA associates with IKKβ and full-length RELISH, and the induction of the IMD pathway-dependent antimicrobial peptide gene is independent of SO. Our data provide the first in vivo demonstration for the immune function of EYA and point to their conserved immune function in response to endogenous DNA, throughout evolution. PMID:22916150

  10. Purification and characterization of a protein phosphatase that dephosphorylates pyruvate kinase in an anoxia tolerant animal.

    PubMed

    Brooks, S P; Storey, K B

    1996-05-01

    A protein phosphatase that dephosphorylates pyruvate kinase (PK) in vitro was purified and characterized from the foot muscle of the anoxia tolerant gastropod mollusc Busycon canaliculatum. Purification involved three steps: negative chromatography through Blue Dextran and CM Sephadex, affinity chromatography on DEAE Sephadex and gel exclusion chromatography on Sephacryl S-400. Pyruvate kinase phosphatase (PK-Pase) activity was monitored by following changes in PK I50 values for L-alanine that had previously been linked to changes in the degree of PK phosphorylation. The purified PK-Pase gave a single band on SDS-polyacrylamide gel electrophoresis with a molecular weight of 41 +/- 1 kdaltons. Isoelectric focusing analysis showed that the PK-Pase had an isoelectric point of 4.2 +/- 0.1. Kinetic analysis showed that the enzyme was a Type 2C protein phosphatase with a pH optimum of 6.5. Maximal activity required the presence of magnesium ions (KM = 7.9 +/- 0.6 microM) although high concentrations of Mg2+ were inhibitory (I50 = 2.3 +/- 0.4 mM). The protein phosphatase activity was not affected by either spermine, cAMP, cGMP, potassium phosphate, tartrate, NaF, HgCl2, citrate or concentrations of CaCl2 less than 10 mM. The enzyme could also use ATP, ADP, and GTP as substrates. PMID:8739044

  11. Systematic Global Analysis of Genes Encoding Protein Phosphatases in Aspergillus fumigatus

    PubMed Central

    Winkelströter, Lizziane K.; Dolan, Stephen K.; Fernanda dos Reis, Thaila; Bom, Vinícius Leite Pedro; Alves de Castro, Patrícia; Hagiwara, Daisuke; Alowni, Raneem; Jones, Gary W.; Doyle, Sean; Brown, Neil Andrew; Goldman, Gustavo H.

    2015-01-01

    Aspergillus fumigatus is a fungal pathogen that causes several invasive and noninvasive diseases named aspergillosis. This disease is generally regarded as multifactorial, considering that several pathogenicity determinants are present during the establishment of this illness. It is necessary to obtain an increased knowledge of how, and which, A. fumigatus signal transduction pathways are engaged in the regulation of these processes. Protein phosphatases are essential to several signal transduction pathways. We identified 32 phosphatase catalytic subunit-encoding genes in A. fumigatus, of which we were able to construct 24 viable deletion mutants. The role of nine phosphatase mutants in the HOG (high osmolarity glycerol response) pathway was evaluated by measuring phosphorylation of the p38 MAPK (SakA) and expression of osmo-dependent genes. We were also able to identify 11 phosphatases involved in iron assimilation, six that are related to gliotoxin resistance, and three implicated in gliotoxin production. These results present the creation of a fundamental resource for the study of signaling in A. fumigatus and its implications in the regulation of pathogenicity determinants and virulence in this important pathogen. PMID:25943523

  12. Phosphatase activities in soil after repeated untreated and alum-treated poultry litter applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Repeated additions of untreated and aluminum sulfate (alum)-treated poultry litter to soil affect ecology and consequent nutrient dynamics. The objective of this study was to determine how repeated annual poultry litter additions affected phosphatase activities in concert with changes in soil phosph...

  13. A human phospholipid phosphatase activated by a transmembrane control module[S

    PubMed Central

    Halaszovich, Christian R.; Leitner, Michael G.; Mavrantoni, Angeliki; Le, Audrey; Frezza, Ludivine; Feuer, Anja; Schreiber, Daniela N.; Villalba-Galea, Carlos A.; Oliver, Dominik

    2012-01-01

    In voltage-sensitive phosphatases (VSPs), a transmembrane voltage sensor domain (VSD) controls an intracellular phosphoinositide phosphatase domain, thereby enabling immediate initiation of intracellular signals by membrane depolarization. The existence of such a mechanism in mammals has remained elusive, despite the presence of VSP-homologous proteins in mammalian cells, in particular in sperm precursor cells. Here we demonstrate activation of a human VSP (hVSP1/TPIP) by an intramolecular switch. By engineering a chimeric hVSP1 with enhanced plasma membrane targeting containing the VSD of a prototypic invertebrate VSP, we show that hVSP1 is a phosphoinositide-5-phosphatase whose predominant substrate is PI(4,5)P2. In the chimera, enzymatic activity is controlled by membrane potential via hVSP1’s endogenous phosphoinositide binding motif. These findings suggest that the endogenous VSD of hVSP1 is a control module that initiates signaling through the phosphatase domain and indicate a role for VSP-mediated phosphoinositide signaling in mammals. PMID:22896666

  14. Identification of soybean purple acid phosphatase genes and their expression responses to phosphorus availability and symbiosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background and Aims Purple acid phosphatases (PAPs) are members of the metallo-phosphoesterase family and have been known to play important roles in phosphorus (P) acquisition and recycling in plants. Low P availability is a major constraint to growth and production of soybean, Glycine max. Comparat...

  15. Vanadate inhibition of fungal phyA and bacterial appA2 histidine acid phosphatases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungal PhyA protein, which was first identified as an acid optimum phosphomonoesterase (EC 3.1.3.8), could also serve as a vanadate haloperoxidase (EC 1.11.1.10) provided the acid phosphatase activity is shutdown by vanadate. To understand how vanadate inhibits both phytate and pNPP degrading ac...

  16. Recognition of Nucleoside Monophosphate Substrates by Haemophilus influenzae Class C Acid Phosphatase

    PubMed Central

    Singh, Harkewal; Schuermann, Jonathan P.; Reilly, Thomas J.; Calcutt, Michael J.; Tanner, John J.

    2010-01-01

    Summary The e (P4) phosphatase from Haemophilus influenzae functions in a vestigial NAD+ utilization pathway by dephosphorylating NMN to nicotinamide riboside. P4 is also the prototype of class C acid phosphatases, which are nonspecific 5′-, 3′-nucleotidases localized to the bacterial outer membrane. To understand substrate recognition by P4 and other class C phosphatases, we have determined the crystal structures of a substrate-trapping mutant P4 enzyme complexed with NMN, 5′-AMP, 3′-AMP, and 2′-AMP. The structures reveal an anchor-shaped substrate-binding cavity comprising a conserved hydrophobic box that clamps the nucleotide base, a buried phosphoryl binding site, and three solvent-filled pockets that contact the ribose and hydrogen-bonding edge of the base. The span between the hydrophobic box and phosphoryl site is optimal for recognizing nucleoside monophosphates, which explains the general preference for this class of substrate. The base makes no hydrogen bonds with the enzyme, which is consistent with observed lack of base specificity. Two solvent-filled pockets flanking the ribose are key to the dual recognition of 5′- and 3′-nucleotides. These pockets minimize the enzyme’s direct interactions with the ribose and provide sufficient space to accommodate 5′ substrates in an anti conformation and 3′ substrates in a syn conformation. Finally, the structures suggest that class B and C acid phosphatases share a common strategy for nucleotide recognition. PMID:20934434

  17. Cdk1 orders mitotic events through coordination of a chromosome-associated phosphatase switch

    PubMed Central

    Qian, Junbin; Beullens, Monique; Huang, Jin; De Munter, Sofie; Lesage, Bart; Bollen, Mathieu

    2015-01-01

    RepoMan is a scaffold for signalling by mitotic phosphatases at the chromosomes. During (pro)metaphase, RepoMan-associated protein phosphatases PP1 and PP2A-B56 regulate the chromosome targeting of Aurora-B kinase and RepoMan, respectively. Here we show that this task division is critically dependent on the phosphorylation of RepoMan by protein kinase Cyclin-dependent kinase 1 (Cdk1), which reduces the binding of PP1 but facilitates the recruitment of PP2A-B56. The inactivation of Cdk1 in early anaphase reverses this phosphatase switch, resulting in the accumulation of PP1-RepoMan to a level that is sufficient to catalyse its own chromosome targeting in a PP2A-independent and irreversible manner. Bulk-targeted PP1-RepoMan also inactivates Aurora B and initiates nuclear-envelope reassembly through dephosphorylation-mediated recruitment of Importin β. Bypassing the Cdk1 regulation of PP1-RepoMan causes the premature dephosphorylation of its mitotic-exit substrates in prometaphase. Hence, the regulation of RepoMan-associated phosphatases by Cdk1 is essential for the timely dephosphorylation of their mitotic substrates. PMID:26674376

  18. High osmolarity glycerol response PtcB phosphatase is important for Aspergillus fumigatus virulence.

    PubMed

    Winkelströter, Lizziane K; Bom, Vinícius Leite Pedro; de Castro, Patrícia Alves; Ramalho, Leandra Naira Zambelli; Goldman, Maria Helena S; Brown, Neil Andrew; Rajendran, Ranjith; Ramage, Gordon; Bovier, Elodie; Dos Reis, Thaila Fernanda; Savoldi, Marcela; Hagiwara, Daisuke; Goldman, Gustavo H

    2015-04-01

    Aspergillus fumigatus is a fungal pathogen that is capable of adapting to different host niches and to avoid host defenses. An enhanced understanding of how, and which, A. fumigatus signal transduction pathways are engaged in the regulation of these processes is essential for the development of improved disease control strategies. Protein phosphatases are central to numerous signal transduction pathways. To comprehend the functions of protein phosphatases in A. fumigatus, 32 phosphatase catalytic subunit encoding genes were identified. We have recognized PtcB as one of the phosphatases involved in the high osmolarity glycerol response (HOG) pathway. The ΔptcB mutant has both increased phosphorylation of the p38 MAPK (SakA) and expression of osmo-dependent genes. The ΔptcB strain was more sensitive to cell wall damaging agents, had increased chitin and β-1,3-glucan, and impaired biofilm formation. The ΔptcB strain was avirulent in a murine model of invasive pulmonary aspergillosis. These results stress the importance of the HOG pathway in the regulation of pathogenicity determinants and virulence in A. fumigatus. PMID:25597841

  19. Systematic Global Analysis of Genes Encoding Protein Phosphatases in Aspergillus fumigatus.

    PubMed

    Winkelströter, Lizziane K; Dolan, Stephen K; Fernanda Dos Reis, Thaila; Bom, Vinícius Leite Pedro; Alves de Castro, Patrícia; Hagiwara, Daisuke; Alowni, Raneem; Jones, Gary W; Doyle, Sean; Brown, Neil Andrew; Goldman, Gustavo H

    2015-07-01

    Aspergillus fumigatus is a fungal pathogen that causes several invasive and noninvasive diseases named aspergillosis. This disease is generally regarded as multifactorial, considering that several pathogenicity determinants are present during the establishment of this illness. It is necessary to obtain an increased knowledge of how, and which, A. fumigatus signal transduction pathways are engaged in the regulation of these processes. Protein phosphatases are essential to several signal transduction pathways. We identified 32 phosphatase catalytic subunit-encoding genes in A. fumigatus, of which we were able to construct 24 viable deletion mutants. The role of nine phosphatase mutants in the HOG (high osmolarity glycerol response) pathway was evaluated by measuring phosphorylation of the p38 MAPK (SakA) and expression of osmo-dependent genes. We were also able to identify 11 phosphatases involved in iron assimilation, six that are related to gliotoxin resistance, and three implicated in gliotoxin production. These results present the creation of a fundamental resource for the study of signaling in A. fumigatus and its implications in the regulation of pathogenicity determinants and virulence in this important pathogen. PMID:25943523

  20. Therapeutic strategies for anchored kinases and phosphatases: exploiting short linear motifs and intrinsic disorder

    PubMed Central

    Nygren, Patrick J.; Scott, John D.

    2015-01-01

    Phosphorylation events that occur in response to the second messenger cAMP are controlled spatially and temporally by protein kinase A (PKA) interacting with A-kinase anchoring proteins (AKAPs). Recent advances in understanding the structural basis for this interaction have reinforced the hypothesis that AKAPs create spatially constrained signaling microdomains. This has led to the realization that the PKA/AKAP interface is a potential drug target for modulating a plethora of cell-signaling events. Pharmacological disruption of kinase–AKAP interactions has previously been explored for disease treatment and remains an interesting area of research. However, disrupting or enhancing the association of phosphatases with AKAPs is a therapeutic concept of equal promise, particularly since they oppose the actions of many anchored kinases. Accordingly, numerous AKAPs bind phosphatases such as protein phosphatase 1 (PP1), calcineurin (PP2B), and PP2A. These multimodal signaling hubs are equally able to control the addition of phosphate groups onto target substrates, as well as the removal of these phosphate groups. In this review, we describe recent advances in structural analysis of kinase and phosphatase interactions with AKAPs, and suggest future possibilities for targeting these interactions for therapeutic benefit. PMID:26283967

  1. Crystal structure and putative substrate identification for the Entamoeba histolytica low molecular weight tyrosine phosphatase.

    PubMed

    Linford, Alicia S; Jiang, Nona M; Edwards, Thomas E; Sherman, Nicholas E; Van Voorhis, Wesley C; Stewart, Lance J; Myler, Peter J; Staker, Bart L; Petri, William A

    2014-01-01

    Entamoeba histolytica is a eukaryotic intestinal parasite of humans, and is endemic in developing countries. We have characterized the E. histolytica putative low molecular weight protein tyrosine phosphatase (LMW-PTP). The structure for this amebic tyrosine phosphatase was solved, showing the ligand-induced conformational changes necessary for binding of substrate. In amebae, it was expressed at low but detectable levels as detected by immunoprecipitation followed by immunoblotting. A mutant LMW-PTP protein in which the catalytic cysteine in the active site was replaced with a serine lacked phosphatase activity, and was used to identify a number of trapped putative substrate proteins via mass spectrometry analysis. Seven of these putative substrate protein genes were cloned with an epitope tag and overexpressed in amebae. Five of these seven putative substrate proteins were demonstrated to interact specifically with the mutant LMW-PTP. This is the first biochemical study of a small tyrosine phosphatase in Entamoeba, and sets the stage for understanding its role in amebic biology and pathogenesis. PMID:24548880

  2. Activation of a protein tyrosine phosphatase and inactivation of Raf-1 by somatostatin.

    PubMed Central

    Reardon, D B; Wood, S L; Brautigan, D L; Bell, G I; Dent, P; Sturgill, T W

    1996-01-01

    Human somatostatin receptor 3 ('hsstr3') was transiently expressed in NIH 3T3 cells stably transformed with Ha-Ras (G12V). Somatostatin activated a protein tyrosine phosphatase and inactivated the constitutively active, membrane-associated form of the Raf-1 serine kinase present in these cells in vivo and in vitro. PMID:8670047

  3. Crystal structure and putative substrate identification for the Entamoeba histolytica low molecular weight tyrosine phosphatase

    PubMed Central

    Linford, Alicia S.; Jiang, Nona M.; Edwards, Thomas E.; Sherman, Nicholas E.; Van Voorhis, Wesley C.; Stewart, Lance J.; Myler, Peter J.; Staker, Bart L.; Petri, William A.

    2014-01-01

    Entamoeba histolytica is a eukaryotic intestinal parasite of humans, and is endemic in developing countries. We have characterized the E. histolytica putative low molecular weight protein tyrosine phosphatase (LMW-PTP). The structure for this amebic tyrosine phosphatase was solved, showing the ligand-induced conformational changes necessary for binding of substrate. In amebae, it was expressed at low but detectable levels as detected by immunoprecipitation followed by immunoblotting. A mutant LMW-PTP protein in which the catalytic cysteine in the active site was replaced with a serine lacked phosphatase activity, and was used to identify a number of trapped putative substrate proteins via mass spectrometry analysis. Seven of these putative substrate protein genes were cloned with an epitope tag and overexpressed in amebae. Five of these seven putative substrate proteins were demonstrated to interact specifically with the mutant LMW-PTP. This is the first biochemical study of a small tyrosine phosphatase in Entamoeba, and sets the stage for understanding its role in amebic biology and pathogenesis. PMID:24548880

  4. The Phosphatase Ptc7 Induces Coenzyme Q Biosynthesis by Activating the Hydroxylase Coq7 in Yeast*

    PubMed Central

    Martín-Montalvo, Alejandro; González-Mariscal, Isabel; Pomares-Viciana, Teresa; Padilla-López, Sergio; Ballesteros, Manuel; Vazquez-Fonseca, Luis; Gandolfo, Pablo; Brautigan, David L.; Navas, Placido; Santos-Ocaña, Carlos

    2013-01-01

    The study of the components of mitochondrial metabolism has potential benefits for health span and lifespan because the maintenance of efficient mitochondrial function and antioxidant capacity is associated with improved health and survival. In yeast, mitochondrial function requires the tight control of several metabolic processes such as coenzyme Q biosynthesis, assuring an appropriate energy supply and antioxidant functions. Many mitochondrial processes are regulated by phosphorylation cycles mediated by protein kinases and phosphatases. In this study, we determined that the mitochondrial phosphatase Ptc7p, a Ser/Thr phosphatase, was required to regulate coenzyme Q6 biosynthesis, which in turn activated aerobic metabolism and enhanced oxidative stress resistance. We showed that Ptc7p phosphatase specifically activated coenzyme Q6 biosynthesis through the dephosphorylation of the demethoxy-Q6 hydroxylase Coq7p. The current findings revealed that Ptc7p is a regulator of mitochondrial metabolism that is essential to maintain proper function of the mitochondria by regulating energy metabolism and oxidative stress resistance. PMID:23940037

  5. Heat stable alkaline phosphatase from thermophiles. Final report, March-October 1993

    SciTech Connect

    Combie, J.D.; Runnion, K.N.; Williamson, M.L.

    1994-07-01

    Alkaline phosphatase has been the most widely used enzyme for colorimetric immunoassays. The current potential for this enzyme lies in biosensors, fieldable assay kits, biotechnology applications, degradation of certain nerve agents and pesticides and detoxification of heavy metal waste streams. While the commercial source of this enzyme is predominantly from mammalian tissues, expanded commercial application is restricted by the enzyme's instability at elevated temperatures. Although alkaline phosphatases are ubiquitous in nature, two isolates out of 44 alkaline phosphatase producing isolates occurring in habitats at 50 deg C and above have been isolated possessing extremely stable enzymes. One enzyme retained 98% of original activity following boiling for 1 hr. The secretion of the enzyme by the organism is an added benefit promoting efficient and economical production capability. Procedures for the screening, isolation, and optimal growth and fermentation of organisms acquired from geothermal sources located in Yellowstone National Park, WY are described. Purification was most effectively achieved using size exclusion chromatography where 101% of the activity and 33% of the crude mother liquor protein were recovered. Although the presence of manganese in the assay buffer was observed to significantly elevate the enzyme's catalytic activity, a precipitate incompatibility with calcium chloride, a requirement for high temperature stability, prohibits its use. Bacteria, Fermentation, Alkaline phosphatase, Biosensors, Biotechnology, Heat stable enzymes, Biochemistry, Bioremediation, Thermophilic microorganisms.

  6. Possible protein phosphatase inhibition by bis(hydroxyethyl) sulfide, a hydrolysis product of mustard gas

    SciTech Connect

    Brimfield, A.A.

    1995-12-31

    Recently, the natural vesicant cantharidin was shown to bind exclusively to and inhibit protein phosphatase 2A (PP2A) in mouse tissue extracts (Li and Casida (1992) Proc. Nati. Acad. Sci. USA 89, 11867-11870). To explore the generality of this effect in vesicant action, we measured the protein serinelthreonine phosphatase activity in mouse liver cytosol (in the form of the okadaic acid inhibitable increment of p-nitrophenyl phosphate (p-NPP) phosphatase activity) in the presence of aqueous sulfur mustard or its hydrolysis product, bis(hydroxyethyl)sulfide (TDG). Sulfur mustard inhibited p-NPP hydrolysis. However, inhibition correlated with the time elapsed between thawing and the addition of mustard to the enzyme preparation, not with concentration. TDG exhibited a direct, concentration-related inhibition of p-NPP hydrolysis between 30 and 300 1LM. We conclude that sulfur mustard also has an inhibitory effect on protein serinelthreonine phosphatases. However, the inhibition is an effect of its non-alkykating hydrolysis product TDG, not of sulfur mustard itself.

  7. 21 CFR 862.1050 - Alkaline phosphatase or isoenzymes test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Alkaline phosphatase or isoenzymes test system. 862.1050 Section 862.1050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  8. 21 CFR 862.1020 - Acid phosphatase (total or prostatic) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Acid phosphatase (total or prostatic) test system. 862.1020 Section 862.1020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  9. 21 CFR 862.1020 - Acid phosphatase (total or prostatic) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Acid phosphatase (total or prostatic) test system. 862.1020 Section 862.1020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  10. 21 CFR 862.1020 - Acid phosphatase (total or prostatic) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Acid phosphatase (total or prostatic) test system. 862.1020 Section 862.1020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  11. 21 CFR 862.1050 - Alkaline phosphatase or isoenzymes test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Alkaline phosphatase or isoenzymes test system. 862.1050 Section 862.1050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  12. 21 CFR 862.1020 - Acid phosphatase (total or prostatic) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Acid phosphatase (total or prostatic) test system. 862.1020 Section 862.1020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  13. 21 CFR 862.1050 - Alkaline phosphatase or isoenzymes test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Alkaline phosphatase or isoenzymes test system. 862.1050 Section 862.1050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  14. 21 CFR 862.1020 - Acid phosphatase (total or prostatic) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Acid phosphatase (total or prostatic) test system. 862.1020 Section 862.1020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  15. Characterization of New Substrates Targeted By Yersinia Tyrosine Phosphatase YopH

    PubMed Central

    de la Puerta, María Luisa; Trinidad, Antonio G.; del Carmen Rodríguez, María; Bogetz, Jori; Sánchez Crespo, Mariano; Mustelin, Tomas; Alonso, Andrés; Bayón, Yolanda

    2009-01-01

    YopH is an exceptionally active tyrosine phosphatase that is essential for virulence of Yersinia pestis, the bacterium causing plague. YopH breaks down signal transduction mechanisms in immune cells and inhibits the immune response. Only a few substrates for YopH have been characterized so far, for instance p130Cas and Fyb, but in view of YopH potency and the great number of proteins involved in signalling pathways it is quite likely that more proteins are substrates of this phosphatase. In this respect, we show here YopH interaction with several proteins not shown before, such as Gab1, Gab2, p85, and Vav and analyse the domains of YopH involved in these interactions. Furthermore, we show that Gab1, Gab2 and Vav are not dephosphorylated by YopH, in contrast to Fyb, Lck, or p85, which are readily dephosphorylated by the phosphatase. These data suggests that YopH might exert its actions by interacting with adaptors involved in signal transduction pathways, what allows the phosphatase to reach and dephosphorylate its susbstrates. PMID:19221593

  16. ZN2+ INDUCES COX-2 EXPRESSION THROUGH DOWNREGULATION OF LIPID PHOSPHATASE PTEN

    EPA Science Inventory

    Zn2+ Induces COX-2 Expression through Downregulation of Lipid Phosphatase PTEN
    Weidong Wu*, James M. Samet, Philip A. Bromberg*?, Young E. Whang?, and Lee M. Graves* ?
    *CEMALB, ?Department of Medicine, and ?Department of Pharmacology, UNC-Chapel Hill, NC27599; Human Studie...

  17. MECHANISM OF PROTEIN TYROSINE PHOSPHATASE INHIBITION IN HUMAN AIRWAY EPITHELIAL CELLS (HAEC) EXPOSED TO ZN2+

    EPA Science Inventory

    A number of studies have implicated zinc in the toxicity of ambient particulate matter (PM) inhalation. We previously showed that exposure to Zn2+ inhibits protein tyrosine phosphatase (PTP) activity and leads to activation of epidermal growth factor receptor (EGFR) signaling in ...

  18. ISOLATION AND PARTIAL CHARACTERIZATION OF AN ACID PHOSPHATASE ACTIVITY FROM SPIRODELA OLIGORHIZA

    EPA Science Inventory

    An acid phosphatase activity from the aquatic plant Spirodela oligorhiza (duckweed) was isolated and partially characterized. S. oligorhiza was grown in a hydroponic growth medium, harvested, and ground up in liquid nitrogen. The ground plant material was added to a biological ...

  19. Serine/threonine protein phosphatases: multi-purpose enzymes in control of defense mechanisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Serine/threonine protein phosphatases are a group of enzymes involved in the regulation of defense mechanisms in plants. This paper describes the effects of an inhibitor of these enzymes on the expression of all of the genes associated with these defense mechanisms. The results suggest that inhibi...

  20. Recognition of Nucleoside Monophosphate Substrates by Haemophilus influenzae Class C Acid Phosphatase

    SciTech Connect

    Singh, Harkewal; Schuermann, Jonathan P.; Reilly, Thomas J.; Calcutt, Michael J.; Tanner, John J.

    2010-12-08

    The e (P4) phosphatase from Haemophilus influenzae functions in a vestigial NAD{sup +} utilization pathway by dephosphorylating nicotinamide mononucleotide to nicotinamide riboside. P4 is also the prototype of class C acid phosphatases (CCAPs), which are nonspecific 5{prime},3{prime}-nucleotidases localized to the bacterial outer membrane. To understand substrate recognition by P4 and other class C phosphatases, we have determined the crystal structures of a substrate-trapping mutant P4 enzyme complexed with nicotinamide mononucleotide, 5{prime}-AMP, 3{prime}-AMP, and 2{prime}-AMP. The structures reveal an anchor-shaped substrate-binding cavity comprising a conserved hydrophobic box that clamps the nucleotide base, a buried phosphoryl binding site, and three solvent-filled pockets that contact the ribose and the hydrogen-bonding edge of the base. The span between the hydrophobic box and the phosphoryl site is optimal for recognizing nucleoside monophosphates, explaining the general preference for this class of substrate. The base makes no hydrogen bonds with the enzyme, consistent with an observed lack of base specificity. Two solvent-filled pockets flanking the ribose are key to the dual recognition of 5{prime}-nucleotides and 3{prime}-nucleotides. These pockets minimize the enzyme's direct interactions with the ribose and provide sufficient space to accommodate 5{prime} substrates in an anti conformation and 3{prime} substrates in a syn conformation. Finally, the structures suggest that class B acid phosphatases and CCAPs share a common strategy for nucleotide recognition.

  1. The Structure of Fcp1, an Essential RNA Polymerase II CTD Phosphatase

    SciTech Connect

    Ghosh, A.; Shuman, S.; Lima, C.D.

    2009-03-27

    Kinases and phosphatases regulate mRNA synthesis and processing by phosphorylating and dephosphorylating the C-terminal domain (CTD) of the largest subunit of RNA polymerase II. Fcp1 is an essential CTD phosphatase that preferentially hydrolyzes Ser2-PO{sub 4} of the tandem YSPTSPS CTD heptad array. Fcp1 crystal structures were captured at two stages of the reaction pathway: a Mg-BeF{sub 3} complex that mimics the aspartylphosphate intermediate and a Mg-AlF{sub 4}{sup -} complex that mimics the transition state of the hydrolysis step. Fcp1 is a Y-shaped protein composed of an acylphosphatase domain located at the base of a deep canyon formed by flanking modules that are missing from the small CTD phosphatase (SCP) clade: an Fcp1-specific helical domain and a C-terminal BRCA1 C-terminal (BRCT) domain. The structure and mutational analysis reveals that Fcp1 and Scp1 (a Ser5-selective phosphatase) adopt different CTD-binding modes; we surmise the CTD threads through the Fcp1 canyon to access the active site.

  2. Functional Diversity of Haloacid Dehalogenase Superfamily Phosphatases from Saccharomyces cerevisiae: BIOCHEMICAL, STRUCTURAL, AND EVOLUTIONARY INSIGHTS.

    PubMed

    Kuznetsova, Ekaterina; Nocek, Boguslaw; Brown, Greg; Makarova, Kira S; Flick, Robert; Wolf, Yuri I; Khusnutdinova, Anna; Evdokimova, Elena; Jin, Ke; Tan, Kemin; Hanson, Andrew D; Hasnain, Ghulam; Zallot, Rémi; de Crécy-Lagard, Valérie; Babu, Mohan; Savchenko, Alexei; Joachimiak, Andrzej; Edwards, Aled M; Koonin, Eugene V; Yakunin, Alexander F

    2015-07-24

    The haloacid dehalogenase (HAD)-like enzymes comprise a large superfamily of phosphohydrolases present in all organisms. The Saccharomyces cerevisiae genome encodes at least 19 soluble HADs, including 10 uncharacterized proteins. Here, we biochemically characterized 13 yeast phosphatases from the HAD superfamily, which includes both specific and promiscuous enzymes active against various phosphorylated metabolites and peptides with several HADs implicated in detoxification of phosphorylated compounds and pseudouridine. The crystal structures of four yeast HADs provided insight into their active sites, whereas the structure of the YKR070W dimer in complex with substrate revealed a composite substrate-binding site. Although the S. cerevisiae and Escherichia coli HADs share low sequence similarities, the comparison of their substrate profiles revealed seven phosphatases with common preferred substrates. The cluster of secondary substrates supporting significant activity of both S. cerevisiae and E. coli HADs includes 28 common metabolites that appear to represent the pool of potential activities for the evolution of novel HAD phosphatases. Evolution of novel substrate specificities of HAD phosphatases shows no strict correlation with sequence divergence. Thus, evolution of the HAD superfamily combines the conservation of the overall substrate pool and the substrate profiles of some enzymes with remarkable biochemical and structural flexibility of other superfamily members. PMID:26071590

  3. Cold-active alkaline phosphatase is irreversibly transformed into an inactive dimer by low urea concentrations.

    PubMed

    Hjörleifsson, Jens Guðmundur; Ásgeirsson, Bjarni

    2016-07-01

    Alkaline phosphatase is a homodimeric metallo-hydrolase where both Zn(2+) and Mg(2+) are important for catalysis and stability. Cold-adapted alkaline phosphatase variants have high activity at low temperatures and lower thermal stability compared with variants from mesophilic hosts. The instability, and thus inactivation, could be due to loose association of the dimers and/or loosely bound Mg(2)(+) in the active site, but this has not been studied in detail for the cold-adapted variants. Here, we focus on using the intrinsic fluorescence of Trp in alkaline phosphatase from the marine bacterium Vibrio splendidus (VAP) to probe for dimerization. Trp→Phe substitutions showed that two out of the five native Trp residues contributed mostly to the fluorescence emission. One residue, 15Å away from the active site (W460) and highly solvent excluded, was phosphorescent and had a distant role in substrate binding. An additional Trp residue was introduced to the dimer interface to act as a possible probe for dimerization. Urea denaturation curves indicated that an inactive dimer intermediate, structurally equivalent to the native state, was formed before dimer dissociation took place. This is the first example of the transition of a native dimer to an inactive dimer intermediate for alkaline phosphatase without using mutagenesis, ligands, or competitive inhibition. PMID:27043172

  4. Recognition of nucleoside monophosphate substrates by Haemophilus influenzae class C acid phosphatase.

    PubMed

    Singh, Harkewal; Schuermann, Jonathan P; Reilly, Thomas J; Calcutt, Michael J; Tanner, John J

    2010-12-10

    The e (P4) phosphatase from Haemophilus influenzae functions in a vestigial NAD(+) utilization pathway by dephosphorylating nicotinamide mononucleotide to nicotinamide riboside. P4 is also the prototype of class C acid phosphatases (CCAPs), which are nonspecific 5',3'-nucleotidases localized to the bacterial outer membrane. To understand substrate recognition by P4 and other class C phosphatases, we have determined the crystal structures of a substrate-trapping mutant P4 enzyme complexed with nicotinamide mononucleotide, 5'-AMP, 3'-AMP, and 2'-AMP. The structures reveal an anchor-shaped substrate-binding cavity comprising a conserved hydrophobic box that clamps the nucleotide base, a buried phosphoryl binding site, and three solvent-filled pockets that contact the ribose and the hydrogen-bonding edge of the base. The span between the hydrophobic box and the phosphoryl site is optimal for recognizing nucleoside monophosphates, explaining the general preference for this class of substrate. The base makes no hydrogen bonds with the enzyme, consistent with an observed lack of base specificity. Two solvent-filled pockets flanking the ribose are key to the dual recognition of 5'-nucleotides and 3'-nucleotides. These pockets minimize the enzyme's direct interactions with the ribose and provide sufficient space to accommodate 5' substrates in an anti conformation and 3' substrates in a syn conformation. Finally, the structures suggest that class B acid phosphatases and CCAPs share a common strategy for nucleotide recognition. PMID:20934434

  5. Reduced expression of PNUTS leads to activation of Rb-phosphatase and caspase-mediated apoptosis.

    PubMed

    De Leon, Gabriel; Sherry, Tara C; Krucher, Nancy A

    2008-06-01

    There is abundant evidence that Retinoblastoma (Rb) activity is important in the control of cell proliferation and apoptosis. Reversible phosphorylation of the Rb protein that is carried out by cyclin dependent kinases and Protein phosphatase 1 (PP1) regulates its functions. A PP1 interacting protein, PNUTS (Phosphatase Nuclear Targeting Subunit) is proposed to be a regulator of Rb phosphorylation. In this study, PNUTS knockdown in MCF7, SKA and HCT116 cancer cells causes a reduction in viability due to increased apoptosis. However, normal cells (MCF10A breast and CCD-18Co colon) do not exhibit reduced viability when PNUTS expression is diminished. PNUTS knockdown has no effect in Rb-null Saos-2 cells. However, when Rb is stably expressed in Saos-2 cells, PNUTS knockdown reduces cell number. Knockdown of PNUTS in p53-/- HCT116 cells indicates that p53 is dispensable for the induction of apoptosis. Loss of PNUTS expression results in increased Rb-phosphatase activity and Rb dephosphorylation. E2F1 dissociates from Rb in cells depleted of PNUTS and the resulting apoptosis is dependent on caspase-8. These results indicate that Rb phosphorylation state can be manipulated by targeting Rb phosphatase activity and suggest that PNUTS may be a potential target for therapeutic pro-apoptotic strategies. PMID:18360108

  6. Bacillus licheniformis MC14 alkaline phosphatase I gene with an extended COOH-terminus.

    PubMed

    Kim, J W; Peterson, T; Bee, G; Hulett, F M

    1998-02-01

    Bacterial alkaline phosphatases (APases), except those isolated from Bacillus licheniformis, are approximately 45-kDa proteins while eucaryotic alkaline phosphatases are 60 kDa. To answer the question of whether the apparent 60-kDa alkaline phosphatase from Bacillus licheniformis accurately reflected the size of the protein, the entire gene was analyzed. DNA sequence analysis of the alkaline phosphatase I (APaseI) gene of B. licheniformis MC14 indicated that the gene could code for a 60-kDa protein of 553 amino acids. The deduced protein sequence of APaseI showed about 32% identity to those of B. subtilis APase III and IV and had apparent sequence homologies in the core structure and active sites that are conserved among APases of various sources. The extra carboxy-terminal sequence of APaseI, which made the enzyme bigger than other procaryotic APases, was not homologous to those of eucaryotic APases. The amino acid composition of APaseI was most similar to that of salt-dependent APase among the isozymes of B. licheniformis MC14. Another open reading frame of 261 amino acids was present 142 nucleotide upstream of the APaseI gene and its predicted amino acid sequence showed 68% identity to that of glucose dehydrogenase of B. megaterium. PMID:9485594

  7. Effect of cobalt on synthesis and activation of Bacillus licheniformis alkaline phosphatase.

    PubMed Central

    Spencer, D B; Chen, C P; Hulett, F M

    1981-01-01

    The effect of CO2+ on the synthesis and activation of Bacillus licheniformis MC14 alkaline phosphatase has been shown by the development of a defined minimal salts medium in which this organism produces 35 times more (assayable) alkaline phosphatase than when grown in a low-phosphate complex medium or in the defined medium without cobalt. Stimulation of enzyme activity with cobalt is dependent on a low phosphate concentration in the medium (below 0.075 mM) and continued protein synthesis. Cobalt stimulation resulted in alkaline phosphate production being a major portion of total protein synthesized during late-logarithmic and early-stationary-phase culture growth. Cells cultured in the defined medium minus cobalt, or purified enzyme partially inactivated with a chelating agent, showed a 2.5-fold increase in activity when assayed in the presence of cobalt. Atomic spectral analysis indicated the presence of 3.65 +/- 0.45 g-atoms of cobalt associated with each mole of purified active alkaline phosphatase. A biochemical localization as a function of culture age in this medium showed that alkaline phosphatase was associated with the cytoplasmic membrane and was also found as a soluble enzyme in the periplasmic region and secreted into the growth medium. PMID:7462163

  8. Effect of cobalt on synthesis and activation of Bacillus licheniformis alkaline phosphatase.

    PubMed

    Spencer, D B; Chen, C P; Hulett, F M

    1981-02-01

    The effect of CO2+ on the synthesis and activation of Bacillus licheniformis MC14 alkaline phosphatase has been shown by the development of a defined minimal salts medium in which this organism produces 35 times more (assayable) alkaline phosphatase than when grown in a low-phosphate complex medium or in the defined medium without cobalt. Stimulation of enzyme activity with cobalt is dependent on a low phosphate concentration in the medium (below 0.075 mM) and continued protein synthesis. Cobalt stimulation resulted in alkaline phosphate production being a major portion of total protein synthesized during late-logarithmic and early-stationary-phase culture growth. Cells cultured in the defined medium minus cobalt, or purified enzyme partially inactivated with a chelating agent, showed a 2.5-fold increase in activity when assayed in the presence of cobalt. Atomic spectral analysis indicated the presence of 3.65 +/- 0.45 g-atoms of cobalt associated with each mole of purified active alkaline phosphatase. A biochemical localization as a function of culture age in this medium showed that alkaline phosphatase was associated with the cytoplasmic membrane and was also found as a soluble enzyme in the periplasmic region and secreted into the growth medium. PMID:7462163

  9. Measurement of bone specific alkaline phosphatase in the horse: a comparison of two techniques.

    PubMed

    Jackson, B; Eastell, R; Russell, R G; Lanyon, L E; Price, J S

    1996-09-01

    For many years total alkaline phosphatase (AP) activity in serum has been used to monitor bone metabolism in different species. However, total AP lacks bone specificity because the total activity in serum is made up of several isoenzymes, of which the liver and bone isoforms predominate. The aim of the present study was to evaluate an immunoradiometric assay for measuring bone specific alkaline phosphatase (BAP) in horses. BAP, a specific marker of bone formation, was measured in sera from thoroughbred horses by using a previously characterised wheat germ lectin (WGL) precipitation assay and an immunoradiometric assay. The levels of immunoreactive BAP (iBAP) and WGL precipitated BAP (wBAP) were related to the serum levels of total AP and another marker of bone formation, the carboxy-terminal propeptide of type 1 collagen (PICP). In horses over one year old, iBAP correlated at least as strongly with total AP as with wBAP, which suggests that the immunoradiometric assay may partially cross-react with liver alkaline phosphatase in horse serum. This possibility was supported by the observation that there was a weaker correlation between iBAP and PICP than between wBAP and PICP. These data indicate that WGL precipitation is currently the most specific method for measuring bone specific alkaline phosphatase in horses. PMID:8880988

  10. Crystal Structure of Colicin M, a Novel Phosphatase Specifically Imported by Escherichia coli*>

    PubMed Central

    Zeth, Kornelius; Römer, Christin; Patzer, Silke I.; Braun, Volkmar

    2008-01-01

    Colicins are cytotoxic proteins secreted by certain strains of Escherichia coli. Colicin M is unique among these toxins in that it acts in the periplasm and specifically inhibits murein biosynthesis by hydrolyzing the pyrophosphate linkage between bactoprenol and the murein precursor. We crystallized colicin M and determined the structure at 1.7Å resolution using x-ray crystallography. The protein has a novel structure composed of three domains with distinct functions. The N-domain is a short random coil and contains the exposed TonB box. The central domain includes a hydrophobic α-helix and binds presumably to the FhuA receptor. The C-domain is composed of a mixed α/β-fold and forms the phosphatase. The architectures of the individual modules show no similarity to known structures. Amino acid replacements in previously isolated inactive colicin M mutants are located in the phosphatase domain, which contains a number of surface-exposed residues conserved in predicted bacteriocins of other bacteria. The novel phosphatase domain displays no sequence similarity to known phosphatases. The N-terminal and central domains are not conserved among bacteriocins, which likely reflect the distinct import proteins required for the uptake of the various bacteriocins. The homology pattern supports our previous proposal that colicins evolved by combination of distinct functional domains. PMID:18640984

  11. Immunochemical detection of serum prostatic acid phosphatase. Methodology and clinical evaluation.

    PubMed

    Chu, T M; Wang, M C; Scott, W W; Gibbons, R P; Johnson, D E; Schmidt, J D; Loening, S A; Prout, G R; Murphy, G P

    1978-01-01

    An immunochemical method for detection of prostatic acid prosphatase is described. Purified acid phosphatase was isolated from cancerous human prostate. A specific antiserum to the purified enzyme was produced in rabbits. The antiserum to postatic acid phosphatase did not react with acid phosphatase originating from other tissues. A counter immunolectrophoresis, utilizing the specific antibodies and a chemical staining technique, has been developed and clinically evaluated. Sera from patients with prostatic carcinoma (6/20 of stage B, 27/49 of stage C, and 98/125 of stage D) gave positive results. Sera from 19 patients with benign prostatic hypertrophy, from 89 patients with other tumors, from 12 patients with Gaucher's disease, from 107 healthy volunteers, and from 50 normal age-matched men all gave negative results. The sensitivity of this method was 0.4 IU of enzyme activity or 20 ng per ml of prostatic acid phosphatase protein. Further clinical evaluation of patients in the early stage of prostatic cancer and of patients undergoing chemotherapy is in progress. PMID:75196

  12. UIS2: A Unique Phosphatase Required for the Development of Plasmodium Liver Stages.

    PubMed

    Zhang, Min; Mishra, Satish; Sakthivel, Ramanavelan; Fontoura, Beatriz M A; Nussenzweig, Victor

    2016-01-01

    Plasmodium salivary sporozoites are the infectious form of the malaria parasite and are dormant inside salivary glands of Anopheles mosquitoes. During dormancy, protein translation is inhibited by the kinase UIS1 that phosphorylates serine 59 in the eukaryotic initiation factor 2α (eIF2α). De-phosphorylation of eIF2α-P is required for the transformation of sporozoites into the liver stage. In mammalian cells, the de-phosphorylation of eIF2α-P is mediated by the protein phosphatase 1 (PP1). Using a series of genetically knockout parasites we showed that in malaria sporozoites, contrary to mammalian cells, the eIF2α-P phosphatase is a member of the PP2C/PPM phosphatase family termed UIS2. We found that eIF2α was highly phosphorylated in uis2 conditional knockout sporozoites. These mutant sporozoites maintained the crescent shape after delivery into mammalian host and lost their infectivity. Both uis1 and uis2 were highly transcribed in the salivary gland sporozoites but uis2 expression was inhibited by the Pumilio protein Puf2. The repression of uis2 expression was alleviated when sporozoites developed into liver stage. While most eukaryotic phosphatases interact transiently with their substrates, UIS2 stably bound to phosphorylated eIF2α, raising the possibility that high-throughput searches may identify chemicals that disrupt this interaction and prevent malaria infection. PMID:26735921

  13. Golgi-mediated post-translational processing of secretory acid phosphatase by Leishmania donovani promastigotes.

    PubMed

    Bates, P A; Hermes, I; Dwyer, D M

    1990-03-01

    Monensin, an inhibitor of Golgi function, was used to investigate the role of this cell compartment in the glycosylation of Leishmania donovani promastigote secretory acid phosphatase (EC 3.1.3.2). Monensin-treated cells demonstrated morphological changes in the Golgi complex and secreted enzyme with an altered electrophoretic mobility: two discrete bands of approximately 95 and 110 kDa were found, as compared to the heterodisperse nature of the enzyme from untreated controls. Chemical deglycosylation by mild acid hydrolysis resulted in a similar effect on the electrophoretic mobility of purified extracellular enzyme. Acid phosphatase was also treated with N-glycosidase F (EC 3.5.1.52) to remove N-linked oligosaccharides. The altered lectin-binding properties of the enzyme after these two treatments demonstrated that an unusual type of galactose-containing acid-labile carbohydrate was present in secretory acid phosphatase in addition to the N-linked oligosaccharides. Further, experiments with 32P-labelled enzyme indicated that phosphodiester bonds were the structural component responsible for the sensitivity of this carbohydrate to mild acid hydrolysis. Cumulatively, these results demonstrated that a novel form of Golgi-mediated posttranslational modification had occurred to the secretory acid phosphatase presumably by the addition of an acid-labile phosphoglycan. PMID:2320058

  14. Control of Sty1 MAPK activity through stabilisation of the Pyp2 MAPK phosphatase.

    PubMed

    Kowalczyk, Katarzyna M; Hartmuth, Sonya; Perera, David; Stansfield, Peter; Petersen, Janni

    2013-08-01

    In all eukaryotes tight control of mitogen-activated protein kinase (MAPK) activity plays an important role in modulating intracellular signalling in response to changing environments. The fission yeast MAPK Sty1 (also known as Spc1 or Phh1) is highly activated in response to a variety of external stresses. To avoid segregation of damaged organelles or chromosomes, strong Sty1 activation transiently blocks mitosis and cell division until such stresses have been dealt with. MAPK phosphatases dephosphorylate Sty1 to reduce kinase activity. Therefore, tight control of MAPK phosphatases is central for stress adaptation and for cell division to resume. In contrast to Pyp1, the fission yeast Pyp2 MAPK phosphatase is under environmental control. Pyp2 has a unique sequence (the linker region) between the catalytic domain and the N-terminal MAPK-binding site. Here we show that the Pyp2 linker region is a destabilisation domain. Furthermore, the linker region is highly phosphorylated to increase Pyp2 protein stability and this phosphorylation is Sty1 dependent. Our data suggests that Sty1 activation promotes Pyp2 phosphorylation to increase the stability of the phosphatase. This MAPK-dependent Pyp2 stabilisation allows cells to attenuate MAPK signalling and resume cell division, once stresses have been dealt with. PMID:23690545

  15. A potent and selective inhibitor for the UBLCP1 proteasome phosphatase

    PubMed Central

    He, Yantao; Guo, Xing; Yu, Zhi-Hong; Wu, Li; Gunawan, Andrea M.; Zhang, Yan; Dixon, Jack E.; Zhang, Zhong-Yin

    2015-01-01

    The ubiquitin-like domain-containing C-terminal domain phosphatase 1 (UBLCP1) has been implicated as a negative regulator of the proteasome, a key mediator in the ubiquitin-dependent protein degradation. Small molecule inhibitors that block UBLCP1 activity would be valuable as research tools and potential therapeutics for human diseases caused by the cellular accumulation of misfold/damaged proteins. We report a salicylic acid fragment-based library approach aimed at targeting both the phosphatase active site and its adjacent binding pocket for enhanced affinity and selectivity. Screening of the focused libraries led to the identification of the first potent and selective UBLCP1 inhibitor 13. Compound 13 exhibits an IC50 of 1.0 μM for UBLCP1 and greater than 5-fold selectivity against a large panel of protein phosphatases from several distinct families. Importantly, the inhibitor possesses efficacious cellular activity and is capable of inhibiting UBLCP1 function in cells, which in turn up-regulates nuclear proteasome activity. These studies set the groundwork for further developing compound 13 into chemical probes or potential therapeutic agents targeting the UBLCP1 phosphatase. PMID:25907364

  16. Purification and properties of catalytic subunit of branched-chain -keto acid dehydrogenase phosphatase

    SciTech Connect

    Reed, L.J.; Damuni, Z.

    1987-05-01

    The catalytic subunit of the branched-chain -keto acid dehydrogenase (BCKDH) phosphatase has been purified over 50,000-fold from extracts of bovine kidney mitochondria. The apparently homogeneous protein consists of a single polypeptide chain with an apparent M/sub r/ of about 33,000 as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. BCKDH phosphatase, with apparent M/sub r/ of 460,000 was dissociated to its catalytic subunit, with no apparent change in activity, at an early stage in the purification procedure by treatment with 6 M urea. The specific activity of the catalytic subunit was 1500-2500 units/mg. The catalytic subunit exhibited approx.10% maximal activity with TSP-labeled pyruvate dehydrogenase complex, but was inactive with phosphorylase a and with p-nitrophenyl phosphate. The catalytic subunit, like the M/sub r/ 460,000 species, was inhibited by nanomolar concentrations of BCKDH phosphatase inhibitor protein, was unaffected by protein phosphatase inhibitor 1 and inhibitor 2, and was inhibited by nucleoside tri- and diphosphates, but not by nucleoside monophosphates.

  17. UIS2: A Unique Phosphatase Required for the Development of Plasmodium Liver Stages

    PubMed Central

    Zhang, Min; Mishra, Satish; Sakthivel, Ramanavelan; Fontoura, Beatriz M. A.; Nussenzweig, Victor

    2016-01-01

    Plasmodium salivary sporozoites are the infectious form of the malaria parasite and are dormant inside salivary glands of Anopheles mosquitoes. During dormancy, protein translation is inhibited by the kinase UIS1 that phosphorylates serine 59 in the eukaryotic initiation factor 2α (eIF2α). De-phosphorylation of eIF2α-P is required for the transformation of sporozoites into the liver stage. In mammalian cells, the de-phosphorylation of eIF2α-P is mediated by the protein phosphatase 1 (PP1). Using a series of genetically knockout parasites we showed that in malaria sporozoites, contrary to mammalian cells, the eIF2α-P phosphatase is a member of the PP2C/PPM phosphatase family termed UIS2. We found that eIF2α was highly phosphorylated in uis2 conditional knockout sporozoites. These mutant sporozoites maintained the crescent shape after delivery into mammalian host and lost their infectivity. Both uis1 and uis2 were highly transcribed in the salivary gland sporozoites but uis2 expression was inhibited by the Pumilio protein Puf2. The repression of uis2 expression was alleviated when sporozoites developed into liver stage. While most eukaryotic phosphatases interact transiently with their substrates, UIS2 stably bound to phosphorylated eIF2α, raising the possibility that high-throughput searches may identify chemicals that disrupt this interaction and prevent malaria infection. PMID:26735921

  18. Cdk1 orders mitotic events through coordination of a chromosome-associated phosphatase switch.

    PubMed

    Qian, Junbin; Beullens, Monique; Huang, Jin; De Munter, Sofie; Lesage, Bart; Bollen, Mathieu

    2015-01-01

    RepoMan is a scaffold for signalling by mitotic phosphatases at the chromosomes. During (pro)metaphase, RepoMan-associated protein phosphatases PP1 and PP2A-B56 regulate the chromosome targeting of Aurora-B kinase and RepoMan, respectively. Here we show that this task division is critically dependent on the phosphorylation of RepoMan by protein kinase Cyclin-dependent kinase 1 (Cdk1), which reduces the binding of PP1 but facilitates the recruitment of PP2A-B56. The inactivation of Cdk1 in early anaphase reverses this phosphatase switch, resulting in the accumulation of PP1-RepoMan to a level that is sufficient to catalyse its own chromosome targeting in a PP2A-independent and irreversible manner. Bulk-targeted PP1-RepoMan also inactivates Aurora B and initiates nuclear-envelope reassembly through dephosphorylation-mediated recruitment of Importin β. Bypassing the Cdk1 regulation of PP1-RepoMan causes the premature dephosphorylation of its mitotic-exit substrates in prometaphase. Hence, the regulation of RepoMan-associated phosphatases by Cdk1 is essential for the timely dephosphorylation of their mitotic substrates. PMID:26674376

  19. Ecto-phosphatase activity on the external surface of Rhodnius prolixus salivary glands: modulation by carbohydrates and Trypanosoma rangeli.

    PubMed

    Gomes, Suzete A O; Fonseca de Souza, André L; Kiffer-Moreira, Tina; Dick, Claudia F; dos Santos, André L A; Meyer-Fernandes, José R

    2008-05-01

    The salivary glands of insect's vectors are target organs to study the vectors-pathogens interactions. Rhodnius prolixus an important vector of Trypanosoma cruzi can also transmit Trypanosoma rangeli by bite. In the present study we have investigated ecto-phosphatase activity on the surface of R. prolixus salivary glands. Ecto-phosphatases are able to hydrolyze phosphorylated substrates in the extracellular medium. We characterized these ecto-enzyme activities on the salivary glands external surface and employed it to investigate R. prolixus-T. rangeli interaction. Salivary glands present a low level of hydrolytic activity (4.30+/-0.35 nmol p-nitrophenol (p-NP)xh(-1)xgland pair(-1)). The salivary glands ecto-phosphatase activity was not affected by pH variation; and it was insensitive to alkaline inhibitor levamisole and inhibited approximately 50% by inorganic phosphate (Pi). MgCl2, CaCl2 and SrCl2 enhanced significantly the ecto-phosphatase activity detected on the surface of salivary glands. The ecto-phosphatase from salivary glands surface efficiently releases phosphate groups from different phosphorylated amino acids, giving a higher rate of phosphate release when phospho-tyrosine is used as a substrate. This ecto-phosphatase activity was inhibited by carbohydrates as d-galactose and d-mannose. Living short epimastigotes of T. rangeli inhibited salivary glands ecto-phosphatase activity at 75%, while boiled parasites did not. Living long epimastigote forms induced a lower, but significant inhibitory effect on the salivary glands phosphatase activity. Interestingly, boiled long epimastigote forms did not loose the ability to modulate salivary glands phosphatase activity. Taken together, these data suggest a possible role for ecto-phosphatase on the R. prolixus salivary glands-T. rangeli interaction. PMID:18407240

  20. Dual 4- and 5-phosphatase activities regulate SopB-dependent phosphoinositide dynamics to promote bacterial entry.

    PubMed

    Piscatelli, Heather L; Li, Menghan; Zhou, Daoguo

    2016-05-01

    Salmonella are able to invade non-phagocytic cells such as intestinal epithelial cells by modulating the host actin cytoskeleton to produce membrane ruffles. Two type III effector proteins SopB and SopE play key roles to this modulation. SopE is a known guanine nucleotide exchange factor (GEF) capable of activating Rac1 and CDC42. SopB is a phosphatidylinositol 4-phosphatase and 5-phosphatase promoting membrane ruffles and invasion of Salmonella through undefined mechanisms. Previous studies have demonstrated that the 4-phosphatase activity of SopB is required for PtdIns-3-phosphate (PtdIns(3)P) accumulation and SopB-mediated invasion. We show here that both the 4-phosphatase as well as the 5-phosphatase activities of SopB are essential in ruffle formation and subsequent invasion. We found that the 5-phosphatase activity of SopB is likely responsible for generating PtdIns-3,4-bisphosphate (PtdIns(3,4)P2 ) and subsequent recruitment of sorting nexin 9 (SNX9), an actin modulating protein. Intriguingly, the 4-phosphatase activity is responsible for the dephosphorylation of PtdIns(3,4)P2 into PtdIns(3)P. Alone, neither activity is sufficient for ruffling but when acting in conjunction with one another, the 4-phosphatase and 5-phosphatase activities led to SNX9-mediated ruffling and Salmonella invasion. This work reveals the unique ability of bacterial effector protein SopB to utilize both its 4- and 5-phosphatase activities to regulate phosphoinositide dynamics to promote bacterial entry. PMID:26537021