Sample records for phosphatases tc-ptp shp1

  1. Downregulation of PTP1B and TC-PTP phosphatases potentiate dendritic cell-based immunotherapy through IL-12/IFNγ signaling.

    PubMed

    Penafuerte, Claudia; Feldhammer, Matthew; Mills, John R; Vinette, Valerie; Pike, Kelly A; Hall, Anita; Migon, Eva; Karsenty, Gerard; Pelletier, Jerry; Zogopoulos, George; Tremblay, Michel L

    2017-01-01

    PTP1B and TC-PTP are highly related protein-tyrosine phosphatases (PTPs) that regulate the JAK/STAT signaling cascade essential for cytokine-receptor activation in immune cells. Here, we describe a novel immunotherapy approach whereby monocyte-derived dendritic cell (moDC) function is enhanced by modulating the enzymatic activities of PTP1B and TC-PTP. To downregulate or delete the activity/expression of these PTPs, we generated mice with PTP-specific deletions in the dendritic cell compartment or used PTP1B and TC-PTP specific inhibitor. While total ablation of PTP1B or TC-PTP expression leads to tolerogenic DCs via STAT3 hyperactivation, downregulation of either phosphatase remarkably shifts the balance toward an immunogenic DC phenotype due to hyperactivation of STAT4, STAT1 and Src kinase. The resulting increase in IL-12 and IFNγ production subsequently amplifies the IL-12/STAT4/IFNγ/STAT1/IL-12 positive autocrine loop and enhances the therapeutic potential of mature moDCs in tumor-bearing mice. Furthermore, pharmacological inhibition of both PTPs improves the maturation of defective moDCs derived from pancreatic cancer (PaC) patients. Our study provides a new advance in the use of DC-based cancer immunotherapy that is complementary to current cancer therapeutics.

  2. Inhibitory Activity of Iron Chelators ATA and DFO on MCF-7 Breast Cancer Cells and Phosphatases PTP1B and SHP2.

    PubMed

    Kuban-Jankowska, Alicja; Sahu, Kamlesh K; Gorska-Ponikowska, Magdalena; Tuszynski, Jack A; Wozniak, Michal

    2017-09-01

    Rapidly-dividing cancer cells have higher requirement for iron compared to non-transformed cells, making iron chelating a potential anticancer strategy. In the present study we compared the anticancer activity of uncommon iron chelator aurintricarboxylic acid (ATA) with the known deferoxamine (DFO). We investigated the impact of ATA and DFO on the viability and proliferation of MCF-7 cancer cells. Moreover we performed enzymatic activity assays and computational analysis of the ATA and DFO effects on pro-oncogenic phosphatases PTP1B and SHP2. ATA and DFO decrease the viability and proliferation of breast cancer cells, but only ATA considerably reduces the activity of PTP1B and SHP2 phosphatases. Our studies indicated that ATA strongly inactivates and binds in the PTP1B and SHP2 active site, interacting with arginine residue essential for enzyme activity. We confirmed that iron chelating can be considered as a potential strategy for the adjunctive treatment of breast cancer. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  3. Lipoic Acid Decreases the Viability of Breast Cancer Cells and Activity of PTP1B and SHP2.

    PubMed

    Kuban-Jankowska, Alicja; Gorska-Ponikowska, Magdalena; Wozniak, Michal

    2017-06-01

    Protein tyrosine phosphatases PTP1B and SHP2 are potential targets for anticancer therapy, because of the essential role they play in the development of tumors. PTP1B and SHP2 are overexpressed in breast cancer cells, thus inhibition of their activity can be potentially effective in breast cancer therapy. Lipoic acid has been previously reported to inhibit the proliferation of colon, breast and thyroid cancer cells. We investigated the effect of alpha-lipoic acid (ALA) and its reduced form of dihydrolipoic acid (DHLA) on the viability of MCF-7 cancer cells and on the enzymatic activity of PTP1B and SHP2 phosphatases. ALA and DHLA decrease the activity of PTP1B and SHP2, and have inhibitory effects on the viability and proliferation of breast cancer cells. ALA and DHLA can be considered as potential agents for the adjunctive treatment of breast cancer. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  4. PTP1B and SHP2 in POMC neurons reciprocally regulate energy balance in mice

    PubMed Central

    Banno, Ryoichi; Zimmer, Derek; De Jonghe, Bart C.; Atienza, Marybless; Rak, Kimberly; Yang, Wentian; Bence, Kendra K.

    2010-01-01

    Protein tyrosine phosphatase 1B (PTP1B) and SH2 domain–containing protein tyrosine phosphatase–2 (SHP2) have been shown in mice to regulate metabolism via the central nervous system, but the specific neurons mediating these effects are unknown. Here, we have shown that proopiomelanocortin (POMC) neuron–specific deficiency in PTP1B or SHP2 in mice results in reciprocal effects on weight gain, adiposity, and energy balance induced by high-fat diet. Mice with POMC neuron–specific deletion of the gene encoding PTP1B (referred to herein as POMC-Ptp1b–/– mice) had reduced adiposity, improved leptin sensitivity, and increased energy expenditure compared with wild-type mice, whereas mice with POMC neuron–specific deletion of the gene encoding SHP2 (referred to herein as POMC-Shp2–/– mice) had elevated adiposity, decreased leptin sensitivity, and reduced energy expenditure. POMC-Ptp1b–/– mice showed substantially improved glucose homeostasis on a high-fat diet, and hyperinsulinemic-euglycemic clamp studies revealed that insulin sensitivity in these mice was improved on a standard chow diet in the absence of any weight difference. In contrast, POMC-Shp2–/– mice displayed impaired glucose tolerance only secondary to their increased weight gain. Interestingly, hypothalamic Pomc mRNA and α–melanocyte-stimulating hormone (αMSH) peptide levels were markedly reduced in POMC-Shp2–/– mice. These studies implicate PTP1B and SHP2 as important components of POMC neuron regulation of energy balance and point to what we believe to be a novel role for SHP2 in the normal function of the melanocortin system. PMID:20160350

  5. TC-PTP and PTP1B: Regulating JAK-STAT signaling, controlling lymphoid malignancies.

    PubMed

    Pike, Kelly A; Tremblay, Michel L

    2016-06-01

    Lymphoid malignancies are characterized by an accumulation of genetic lesions that act co-operatively to perturb signaling pathways and alter gene expression programs. The Janus kinases (JAK)-signal transducers and activators of transcription (STATs) pathway is one such pathway that is frequently mutated in leukemia and lymphoma. In response to cytokines and growth factors, a cascade of reversible tyrosine phosphorylation events propagates the JAK-STAT pathway from the cell surface to the nucleus. Activated STAT family members then play a fundamental role in establishing the transcriptional landscape of the cell. In leukemia and lymphoma, somatic mutations have been identified in JAK and STAT family members, as well as, negative regulators of the pathway. Most recently, inactivating mutations in the protein tyrosine phosphatase (PTP) genes PTPN1 (PTP1B) and PTPN2 (TC-PTP) were sequenced in B cell lymphoma and T cell acute lymphoblastic leukemia (T-ALL) respectively. The loss of PTP1B and TC-PTP phosphatase activity is associated with an increase in cytokine sensitivity, elevated JAK-STAT signaling, and changes in gene expression. As inactivation mutations in PTPN1 and PTPN2 are restricted to distinct subsets of leukemia and lymphoma, a future challenge will be to identify in which cellular contexts do they contributing to the initiation or maintenance of leukemogenesis or lymphomagenesis. As well, the molecular mechanisms by which PTP1B and TC-PTP loss co-operates with other genetic aberrations will need to be elucidated to design more effective therapeutic strategies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Structure of the Trypanosoma cruzi protein tyrosine phosphatase TcPTP1, a potential therapeutic target for Chagas' disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lountos, George T.; Tropea, Joseph E.; Waugh, David S.

    2013-06-05

    Chagas’ disease, a neglected tropical affliction transmitted by the flagellated protozoan Trypanosoma cruzi, is prevalent in Latin America and affects nearly 18 million people worldwide, yet few approved drugs are available to treat the disease. Moreover, the currently available drugs exhibit severe toxicity or are poorly effective in the chronic phase of the disease. This limitation, along with the large population at risk, underscores the urgent need to discover new molecular targets and novel therapeutic agents. Recently, the T. cruzi protein tyrosine phosphatase TcPTP1 has been implicated in the cellular differentiation and infectivity of the parasite and is therefore amore » promising target for the design of novel anti-parasitic drugs. Here, we report the X-ray crystal structure of TcPTP1 refined to a resolution of 2.18 Å, which provides structural insights into the active site environment that can be used to initiate structure-based drug design efforts to develop specific TcPTP1 inhibitors. Potential strategies to develop such inhibitors are also discussed.« less

  7. Effects of SOV-induced phosphatase inhibition and expression of protein tyrosine phosphatases in rat corneal endothelial cells.

    PubMed

    Chen, Wei-Li; Harris, Deshea L; Joyce, Nancy C

    2005-11-01

    Contact inhibition is an important mechanism for maintaining corneal endothelium in a non-replicative state. Protein tyrosine phosphatases (PTPs) play a role in regulating the integrity of cell-cell contacts, differentiation, and growth. In this study, we aimed to evaluate whether phosphatases are involved in the maintenance of contact-dependent inhibition of proliferation in corneal endothelial cells and to identify candidate PTPs that are expressed in these cells and might be involved in regulation of contact inhibition. Confluent cultures of rat corneal endothelial cells or endothelium in ex vivo corneas were treated with the general phosphatase inhibitor, sodium orthovanadate (SOV). Immunocytochemistry (ICC) evaluated the effect of SOV on cell-cell contacts by staining for ZO-1, and on cell cycle progression by staining for Ki67. Transverse sections of rat cornea and cultured rat corneal endothelial cells were used to test for expression of the candidate PTPs: PTP-mu, PTP-LAR, PTP1B, SHP-1, SHP-2, and PTEN using ICC and either Western blots or RT-PCR. ZO-1 staining demonstrated that SOV induced a time-dependent release of cell-cell contacts in confluent cultures of corneal endothelial cells and in the endothelium of ex vivo corneas. Staining for Ki67 indicated that SOV promoted limited cell cycle progression in the absence of serum. PTP-mu, PTP1B, SHP-1, SHP-2, and PTEN, but not PTP-LAR, were expressed in rat corneal endothelial cells in situ and in culture. The subcellular location of PTP-mu and PTP1B differed in subconfluent and confluent cells, while that of SHP-1, SHP-2, and PTEN was similar, regardless of confluent status. Western blots confirmed the expression of PTP1B, SHP-1, SHP-2, and PTEN. RT-PCR confirmed expression of PTP-mu mRNA. Phosphatases are involved in regulation of junctional integrity and of cell proliferation in corneal endothelial cells. PTP-mu, PTP1B, SHP-1, SHP-2, and PTEN are expressed in rat corneal endothelium and may be involved in

  8. Protein ISG15 Modification in the Development and the Treatment of Chronic Myeloid Leukemia

    DTIC Science & Technology

    2007-06-01

    lysosomal path- way, dephosphorylation of JAKs and the receptor by SHP-1 and SHP-2, dephosphorylation of STATs by TC45 and PTP1B , inhibition of STAT1...like other known negative regulators of signal transduction, such as phosphatases (SHP-1, SHP-2, TC45, and PTP1B ), SOCS and PIAS proteins, Ubp43

  9. An extract of Perilla stem inhibits Src homology phosphatase-1 (SHP)-1 and influences insulin signaling.

    PubMed

    Peng, Liu; Lei, Zhang; Xiao-na, Xie; Deli, Wang; Jing, Sun; Yong-sen, Wang; Zhi, Wang; Shu, Xing; Jun-feng, Ma; Wan-nan, Li; Xue-qi, Fu

    2015-03-01

    Protein tyrosine phosphatases (PTPs) are enzymes that catalyze protein tyrosine dephosphorylation of which Src homology phosphatase-1 (SHP-1) is one of the best-validated, a widely distributed intracellular tyrosine phosphatase that contains two SH2 domains. Down regulation of SHP-1 tyrosine phosphatases was significantly increased sensitivity to insulin in insulin signaling pathway. Through in vitro enzymatic reaction kinetics experiment, we found that the extract of Perilla stem was a potential inhibitor to δSHP-1, the catalytic domain of SHP-1 protein tyrosine phosphatase, and its IC(50) was 4ug/ml, and was more sensitive towards SHP-1than other PTPs, which indicated that SHP-1 might be a target of the extract of Perilla stem. It can strengthened the level of tyrosine phosphorylation of insulin receptor (IR) and extracellular signal-regulated protein kinase (ERK) in HepG2 cells, and then activated the insulin signaling pathway through inhibiting the protein phosphorylation of SHP-1. These results demonstrated that the extract of Perilla stem could play an important role for diabetes treatment through inhibiting the level of SHP-1 in insulin signaling pathway.

  10. Allosteric Inhibition of SHP2: Identification of a Potent, Selective, and Orally Efficacious Phosphatase Inhibitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia Fortanet, Jorge; Chen, Christine Hiu-Tung; Chen, Ying-Nan P.

    SHP2 is a nonreceptor protein tyrosine phosphatase (PTP) encoded by the PTPN11 gene involved in cell growth and differentiation via the MAPK signaling pathway. SHP2 also purportedly plays an important role in the programmed cell death pathway (PD-1/PD-L1). Because it is an oncoprotein associated with multiple cancer-related diseases, as well as a potential immunomodulator, controlling SHP2 activity is of significant therapeutic interest. Recently in our laboratories, a small molecule inhibitor of SHP2 was identified as an allosteric modulator that stabilizes the autoinhibited conformation of SHP2. A high throughput screen was performed to identify progressable chemical matter, and X-ray crystallography revealedmore » the location of binding in a previously undisclosed allosteric binding pocket. Structure-based drug design was employed to optimize for SHP2 inhibition, and several new protein–ligand interactions were characterized. These studies culminated in the discovery of 6-(4-amino-4-methylpiperidin-1-yl)-3-(2,3-dichlorophenyl)pyrazin-2-amine (SHP099, 1), a potent, selective, orally bioavailable, and efficacious SHP2 inhibitor.« less

  11. Detection of Intracellular Reduced (Catalytically Active) SHP-1 and Analyses of Catalytically Inactive SHP-1 after Oxidation by Pervanadate or H2O2.

    PubMed

    Choi, Seeyoung; Love, Paul E

    2018-01-05

    Oxidative inactivation of cysteine-dependent Protein Tyrosine Phosphatases (PTPs) by cellular reactive oxygen species (ROS) plays a critical role in regulating signal transduction in multiple cell types. The phosphatase activity of most PTPs depends upon a 'signature' cysteine residue within the catalytic domain that is maintained in the de-protonated state at physiological pH rendering it susceptible to ROS-mediated oxidation. Direct and indirect techniques for detection of PTP oxidation have been developed (Karisch and Neel, 2013). To detect catalytically active PTPs, cell lysates are treated with iodoacetyl-polyethylene glycol-biotin (IAP-biotin), which irreversibly binds to reduced (S - ) cysteine thiols. Irreversible oxidation of SHP-1 after treatment of cells with pervanadate or H 2 O 2 is detected with antibodies specific for the sulfonic acid (SO 3 H) form of the conserved active site cysteine of PTPs. In this protocol, we describe a method for the detection of the reduced (S - ; active) or irreversibly oxidized (SO 3 H; inactive) form of the hematopoietic PTP SHP-1 in thymocytes, although this method is applicable to any cysteine-dependent PTP in any cell type.

  12. Targeting SHP-1, 2 and SHIP Pathways: A Novel Strategy for Cancer Treatment?

    PubMed

    Dempke, Wolfram C M; Uciechowski, Peter; Fenchel, Klaus; Chevassut, Timothy

    2018-06-20

    Well-balanced levels of tyrosine phosphorylation, maintained by the reversible and coordinated actions of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs), are critical for a wide range of cellular processes including growth, differentiation, metabolism, migration, and survival. Aberrant tyrosine phosphorylation, as a result of a perturbed balance between the activities of PTKs and PTPs, is linked to the pathogenesis of numerous human diseases, including cancer, suggesting that PTPs may be innovative molecular targets for cancer treatment. Two PTPs that have an important inhibitory role in haematopoietic cells are SHP-1 and SHP-2. SHP-1, 2 promote cell growth and act by both upregulating positive signaling pathways and by downregulating negative signaling pathways. SHIP is another inhibitory phosphatase that is specific for the inositol phospholipid phosphatidylinositol-3,4,5-trisphosphate (PIP3). SHIP acts as a negative regulator of immune response by hydrolysing PIP3, and SHIP deficiency results in myeloproliferation and B-cell lymphoma in mice. The validation of SHP-1, 2 and SHIP as oncology targets has generated interest in the development of inhibitors as potential therapeutic agents for cancers; however, SHP-1, 2 and SHIP have proven to be an extremely difficult target for drug discovery, primarily due to the highly conserved and positively charged nature of their PTP active site, and many PTP inhibitors lack either appro-priate selectivity or membrane permeability. To overcome these caveats, novel techniques have been employed to synthesise new inhibitors that specifically attenuate the PTP-dependent signaling inside the cell and amongst them; some are already in clinical development which are discussed in this review. © 2018 S. Karger AG, Basel.

  13. Molecular Basis of Gain-of-Function LEOPARD Syndrome-Associated SHP2 Mutations

    PubMed Central

    2015-01-01

    The Src homology 2 (SH2) domain-containing protein tyrosine phosphatase 2 (SHP2) is a critical signal transducer downstream of growth factors that promotes the activation of the RAS-ERK1/2 cascade. In its basal state, SHP2 exists in an autoinhibited closed conformation because of an intramolecular interaction between its N-SH2 and protein tyrosine phosphatase (PTP) domains. Binding to pTyr ligands present on growth factor receptors and adaptor proteins with its N-SH2 domain localizes SHP2 to its substrates and frees the active site from allosteric inhibition. Germline mutations in SHP2 are known to cause both Noonan syndrome (NS) and LEOPARD syndrome (LS), two clinically similar autosomal dominant developmental disorders. NS-associated SHP2 mutants display elevated phosphatase activity, while LS-associated SHP2 mutants exhibit reduced catalytic activity. A conundrum in how clinically similar diseases result from mutations to SHP2 that have opposite effects on this enzyme’s catalytic functionality exists. Here we report a comprehensive investigation of the kinetic, structural, dynamic, and biochemical signaling properties of the wild type as well as all reported LS-associated SHP2 mutants. The results reveal that LS-causing mutations not only affect SHP2 phosphatase activity but also induce a weakening of the intramolecular interaction between the N-SH2 and PTP domains, leading to mutants that are more readily activated by competing pTyr ligands. Our data also indicate that the residual phosphatase activity associated with the LS SHP2 mutant is required for enhanced ERK1/2 activation. Consequently, catalytically impaired SHP2 mutants could display gain-of-function properties because of their ability to localize to the vicinity of substrates for longer periods of time, thereby affording the opportunity for prolonged substrate turnover and sustained RAS-ERK1/2 activation. PMID:24935154

  14. Regulation of Src homology 2-containing tyrosine phosphatase 1 during activation of human neutrophils. Role of protein kinase C.

    PubMed

    Brumell, J H; Chan, C K; Butler, J; Borregaard, N; Siminovitch, K A; Grinstein, S; Downey, G P

    1997-01-10

    The tyrosine phosphorylation of several proteins induced in neutrophils by soluble and particulate stimuli is thought to be crucial for initiating antimicrobial responses. Although activation of tyrosine kinases is thought to mediate this event, the role of tyrosine phosphatases in the initiation and modulation of neutrophil responses remains largely undefined. We investigated the role of Src homology 2-containing tyrosine phosphatase 1 (SHP-1; also known as protein tyrosine phosphatase 1C (PTP1C), hematopoetic cell phosphatase, PTP-N6, and SHPTP-1), a phosphatase expressed primarily in hemopoietic cells, in the activation of human neutrophils. SHP-1 mRNA and protein were detected in these cells, and the enzyme was found to be predominantly localized to the cytosol in unstimulated cells. Following stimulation with neutrophil agonists such as phorbol ester, chemotactic peptide, or opsonized zymosan, a fraction of the phosphatase redistributed to the cytoskeleton. Agonist treatment also induced significant decreases (30-60%) in SHP-1 activity, which correlated temporally with increases in the cellular phosphotyrosine content. Phosphorylation of SHP-1 on serine residues was associated with the inhibition of its enzymatic activity, suggesting a causal relationship. Accordingly, both the agonist-evoked phosphorylation of SHP-1 and the inhibition of its catalytic activity were blocked by treatment with bisindolylmaleimide I, a potent and specific inhibitor of protein kinase C (PKC) activity. Immunoprecipitated SHP-1 was found to be phosphorylated efficiently by purified PKC in vitro. Such phosphorylation also caused a decrease in the phosphatase activity of SHP-1. Together, these data suggest that inhibition of SHP-1 by PKC-mediated serine phosphorylation plays a role in facilitating the accumulation of tyrosine-phosphorylated proteins following neutrophil stimulation. These findings provide a new link between the PKC and tyrosine phosphorylation branches of the

  15. Protein-tyrosine phosphatase Shp2 positively regulates macrophage oxidative burst.

    PubMed

    Li, Xing Jun; Goodwin, Charles B; Nabinger, Sarah C; Richine, Briana M; Yang, Zhenyun; Hanenberg, Helmut; Ohnishi, Hiroshi; Matozaki, Takashi; Feng, Gen-Sheng; Chan, Rebecca J

    2015-02-13

    Macrophages are vital to innate immunity and express pattern recognition receptors and integrins for the rapid detection of invading pathogens. Stimulation of Dectin-1 and complement receptor 3 (CR3) activates Erk- and Akt-dependent production of reactive oxygen species (ROS). Shp2, a protein-tyrosine phosphatase encoded by Ptpn11, promotes activation of Ras-Erk and PI3K-Akt and is crucial for hematopoietic cell function; however, no studies have examined Shp2 function in particulate-stimulated ROS production. Maximal Dectin-1-stimulated ROS production corresponded kinetically to maximal Shp2 and Erk phosphorylation. Bone marrow-derived macrophages (BMMs) from mice with a conditionally deleted allele of Ptpn11 (Shp2(flox/flox);Mx1Cre+) produced significantly lower ROS levels compared with control BMMs. Although YFP-tagged phosphatase dead Shp2-C463A was strongly recruited to the early phagosome, its expression inhibited Dectin-1- and CR3-stimulated phospho-Erk and ROS levels, placing Shp2 phosphatase function and Erk activation upstream of ROS production. Further, BMMs expressing gain of function Shp2-D61Y or Shp2-E76K and peritoneal exudate macrophages from Shp2D61Y/+;Mx1Cre+ mice produced significantly elevated levels of Dectin-1- and CR3-stimulated ROS, which was reduced by pharmacologic inhibition of Erk. SIRPα (signal regulatory protein α) is a myeloid inhibitory immunoreceptor that requires tyrosine phosphorylation to exert its inhibitory effect. YFP-Shp2C463A-expressing cells have elevated phospho-SIRPα levels and an increased Shp2-SIRPα interaction compared with YFP-WT Shp2-expressing cells. Collectively, these findings indicate that Shp2 phosphatase function positively regulates Dectin-1- and CR3-stimulated ROS production in macrophages by dephosphorylating and thus mitigating the inhibitory function of SIRPα and by promoting Erk activation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Shp-1 dephosphorylates TRPV1 in dorsal root ganglion neurons and alleviates CFA-induced inflammatory pain in rats.

    PubMed

    Xiao, Xing; Zhao, Xiao-Tao; Xu, Ling-Chi; Yue, Lu-Peng; Liu, Feng-Yu; Cai, Jie; Liao, Fei-Fei; Kong, Jin-Ge; Xing, Guo-Gang; Yi, Ming; Wan, You

    2015-04-01

    Transient receptor potential vanilloid 1 (TRPV1) receptors are expressed in nociceptive neurons of rat dorsal root ganglions (DRGs) and mediate inflammatory pain. Nonspecific inhibition of protein-tyrosine phosphatases (PTPs) increases the tyrosine phosphorylation of TRPV1 and sensitizes TRPV1. However, less is known about tyrosine phosphorylation's implication in inflammatory pain, compared with that of serine/threonine phosphorylation. Src homology 2 domain-containing tyrosine phosphatase 1 (Shp-1) is a key phosphatase dephosphorylating TRPV1. In this study, we reported that Shp-1 colocalized with and bound to TRPV1 in nociceptive DRG neurons. Shp-1 inhibitors, including sodium stibogluconate and PTP inhibitor III, sensitized TRPV1 in cultured DRG neurons. In naive rats, intrathecal injection of Shp-1 inhibitors increased both TRPV1 and tyrosine-phosphorylated TRPV1 in DRGs and induced thermal hyperalgesia, which was abolished by pretreatment with TRPV1 antagonists capsazepine, BCTC, or AMG9810. Complete Freund's adjuvant (CFA)-induced inflammatory pain in rats significantly increased the expression of Shp-1, TRPV1, and tyrosine-phosphorylated TRPV1, as well as the colocalization of Shp-1 and TRPV1 in DRGs. Intrathecal injection of sodium stibogluconate aggravated CFA-induced inflammatory pain, whereas Shp-1 overexpression in DRG neurons alleviated it. These results suggested that Shp-1 dephosphorylated and inhibited TRPV1 in DRG neurons, contributing to maintain thermal nociceptive thresholds in normal rats, and as a compensatory mechanism, Shp-1 increased in DRGs of rats with CFA-induced inflammatory pain, which was involved in protecting against excessive thermal hyperalgesia.

  17. Targeted disruption of TC-PTP in the proliferative compartment augments STAT3 and AKT signaling and skin tumor development.

    PubMed

    Lee, Hyunseung; Kim, Mihwa; Baek, Minwoo; Morales, Liza D; Jang, Ik-Soon; Slaga, Thomas J; DiGiovanni, John; Kim, Dae Joon

    2017-03-21

    Tyrosine phosphorylation is a vital mechanism that contributes to skin carcinogenesis. It is regulated by the counter-activities of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). Here, we report the critical role of T-cell protein tyrosine phosphatase (TC-PTP), encoded by Ptpn2, in chemically-induced skin carcinogenesis via the negative regulation of STAT3 and AKT signaling. Using epidermal specific TC-PTP knockout (K14Cre.Ptpn2 fl/fl ) mice, we demonstrate loss of TC-PTP led to a desensitization to tumor initiator 7,12-dimethylbenz[a]anthracene (DMBA)-induced apoptosis both in vivo epidermis and in vitro keratinocytes. TC-PTP deficiency also resulted in a significant increase in epidermal thickness and hyperproliferation following exposure to the tumor promoter, 12-O-tetradecanoylphorbol-13-acetate (TPA). Western blot analysis showed that both phosphorylated STAT3 and phosphorylated AKT expressions were significantly increased in epidermis of TC-PTP-deficient mice compared to control mice following TPA treatment. Inhibition of STAT3 or AKT reversed the effects of TC-PTP deficiency on apoptosis and proliferation. Finally, TC-PTP knockout mice showed a shortened latency of tumorigenesis and significantly increased numbers of tumors during two-stage skin carcinogenesis. Our findings reveal that TC-PTP has potential as a novel target for the prevention of skin cancer through its role in the regulation of STAT3 and AKT signaling.

  18. Targeted disruption of TC-PTP in the proliferative compartment augments STAT3 and AKT signaling and skin tumor development

    PubMed Central

    Lee, Hyunseung; Kim, Mihwa; Baek, Minwoo; Morales, Liza D.; Jang, Ik-Soon; Slaga, Thomas J.; DiGiovanni, John; Kim, Dae Joon

    2017-01-01

    Tyrosine phosphorylation is a vital mechanism that contributes to skin carcinogenesis. It is regulated by the counter-activities of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). Here, we report the critical role of T-cell protein tyrosine phosphatase (TC-PTP), encoded by Ptpn2, in chemically-induced skin carcinogenesis via the negative regulation of STAT3 and AKT signaling. Using epidermal specific TC-PTP knockout (K14Cre.Ptpn2fl/fl) mice, we demonstrate loss of TC-PTP led to a desensitization to tumor initiator 7,12-dimethylbenz[a]anthracene (DMBA)-induced apoptosis both in vivo epidermis and in vitro keratinocytes. TC-PTP deficiency also resulted in a significant increase in epidermal thickness and hyperproliferation following exposure to the tumor promoter, 12-O-tetradecanoylphorbol-13-acetate (TPA). Western blot analysis showed that both phosphorylated STAT3 and phosphorylated AKT expressions were significantly increased in epidermis of TC-PTP-deficient mice compared to control mice following TPA treatment. Inhibition of STAT3 or AKT reversed the effects of TC-PTP deficiency on apoptosis and proliferation. Finally, TC-PTP knockout mice showed a shortened latency of tumorigenesis and significantly increased numbers of tumors during two-stage skin carcinogenesis. Our findings reveal that TC-PTP has potential as a novel target for the prevention of skin cancer through its role in the regulation of STAT3 and AKT signaling. PMID:28322331

  19. Expression, prognostic significance and mutational analysis of protein tyrosine phosphatase SHP-1 in chronic myeloid leukemia.

    PubMed

    Papadopoulou, Vasiliki; Kontandreopoulou, Elina; Panayiotidis, Panayiotis; Roumelioti, Maria; Angelopoulou, Maria; Kyriazopoulou, Lydia; Diamantopoulos, Panagiotis T; Vaiopoulos, George; Variami, Eleni; Kotsianidis, Ioannis; Athina Viniou, Nora

    2016-05-01

    The protein tyrosine phosphatase SHP-1 dephosphorylates BCR-ABL1, thereby serving as a potential control mechanism of BCR-ABL1 kinase activity. Pathways regulating SHP-1 expression, which could be exploited in the therapeutics of TKI-resistant chronic myeloid leukemia (CML), remain unknown. Moreover, the questions of whether there is any kind of SHP-1 deregulation in CML, contributing to disease initiation or evolution, as well as the question of prognostic significance of SHP-1, have not been definitively answered. This study shows moderately lower SHP-1 mRNA expression in chronic phase CML patients in comparison to healthy individuals and no change in SHP-1 mRNA levels after successful TKI treatment. Mutational analysis of the aminoterminal and phosphatase domains of SHP-1 in patients did not reveal genetic lesions. This study also found no correlation of SHP-1 expression at diagnosis with response to treatment, although a trend for lower SHP-1 expression was noted in the very small non-responders' group of the 3-month therapeutic milestone.

  20. TC-PTP directly interacts with connexin43 to regulate gap junction intercellular communication

    PubMed Central

    Li, Hanjun; Spagnol, Gaelle; Naslavsky, Naava; Caplan, Steve; Sorgen, Paul L.

    2014-01-01

    ABSTRACT Protein kinases have long been reported to regulate connexins; however, little is known about the involvement of phosphatases in the modulation of intercellular communication through gap junctions and the subsequent downstream effects on cellular processes. Here, we identify an interaction between the T-cell protein tyrosine phosphatase (TC-PTP, officially known as PTPN2) and the carboxyl terminus of connexin43 (Cx43, officially known as GJA1). Two cell lines, normal rat kidney (NRK) cells endogenously expressing Cx43 and an NRK-derived cell line expressing v-Src with temperature-sensitive activity, were used to demonstrate that EGF and v-Src stimulation, respectively, induced TC-PTP to colocalize with Cx43 at the plasma membrane. Cell biology experiments using phospho-specific antibodies and biophysical assays demonstrated that the interaction is direct and that TC-PTP dephosphorylates Cx43 residues Y247 and Y265, but does not affect v-Src. Transfection of TC-PTP also indirectly led to the dephosphorylation of Cx43 S368, by inactivating PKCα and PKCδ, with no effect on the phosphorylation of S279 and S282 (MAPK-dependent phosphorylation sites). Dephosphorylation maintained Cx43 gap junctions at the plaque and partially reversed the channel closure caused by v-Src-mediated phosphorylation of Cx43. Understanding dephosphorylation, along with the well-documented roles of Cx43 phosphorylation, might eventually lead to methods to modulate the regulation of gap junction channels, with potential benefits for human health. PMID:24849651

  1. Hematopoietic colony formation from human growth factor-dependent TF1 cells and human cord blood myeloid progenitor cells depends on SHP2 phosphatase function.

    PubMed

    Broxmeyer, Hal E; Etienne-Julan, Maryse; Gotoh, Akihiko; Braun, Stephen E; Lu, Li; Cooper, Scott; Feng, Gen-Sheng; Li, Xing Jun; Chan, Rebecca J

    2013-03-15

    The protein tyrosine phosphatase, SHP2, is widely expressed; however, previous studies demonstrated that hematopoietic cell development more stringently requires Shp2 expression compared to other tissues. Furthermore, somatic gain-of-function SHP2 mutants are commonly found in human myeloid leukemias. Given that pharmacologic inhibitors to SHP2 phosphatase activity are currently in development as putative antileukemic agents, we conducted a series of experiments examining the necessity of SHP2 phosphatase activity for human hematopoiesis. Anti-sense oligonucleotides to human SHP2 coding sequences reduced human cord blood- and human cell line, TF1-derived colony formation. Expression of truncated SHP2 bearing its Src homology 2 (SH2) domains, but lacking the phosphatase domain similarly reduced human cord blood- and TF1-derived colony formation. Mechanistically, expression of truncated SHP2 reduced the interaction between endogenous, full-length SHP2 with the adapter protein, Grb2. To verify the role of SHP2 phosphatase function in human hematopoietic cell development, human cord blood CD34+ cells were transduced with a leukemia-associated phosphatase gain-of-function SHP2 mutant or with a phosphatase dead SHP2 mutant, which indicated that increased phosphatase function enhanced, while decreased SHP2 phosphatase function reduced, human cord blood-derived colonies. Collectively, these findings indicate that SHP2 phosphatase function regulates human hematopoietic cell development and imply that the phosphatase component of SHP2 may serve as a pharmacologic target in human leukemias bearing increased SHP2 phosphatase activity.

  2. Hematopoietic Colony Formation from Human Growth Factor-Dependent TF1 Cells and Human Cord Blood Myeloid Progenitor Cells Depends on SHP2 Phosphatase Function

    PubMed Central

    Etienne-Julan, Maryse; Gotoh, Akihiko; Braun, Stephen E.; Lu, Li; Cooper, Scott; Feng, Gen-Sheng; Li, Xing Jun

    2013-01-01

    The protein tyrosine phosphatase, SHP2, is widely expressed; however, previous studies demonstrated that hematopoietic cell development more stringently requires Shp2 expression compared to other tissues. Furthermore, somatic gain-of-function SHP2 mutants are commonly found in human myeloid leukemias. Given that pharmacologic inhibitors to SHP2 phosphatase activity are currently in development as putative antileukemic agents, we conducted a series of experiments examining the necessity of SHP2 phosphatase activity for human hematopoiesis. Anti-sense oligonucleotides to human SHP2 coding sequences reduced human cord blood- and human cell line, TF1-derived colony formation. Expression of truncated SHP2 bearing its Src homology 2 (SH2) domains, but lacking the phosphatase domain similarly reduced human cord blood- and TF1-derived colony formation. Mechanistically, expression of truncated SHP2 reduced the interaction between endogenous, full-length SHP2 with the adapter protein, Grb2. To verify the role of SHP2 phosphatase function in human hematopoietic cell development, human cord blood CD34+ cells were transduced with a leukemia-associated phosphatase gain-of-function SHP2 mutant or with a phosphatase dead SHP2 mutant, which indicated that increased phosphatase function enhanced, while decreased SHP2 phosphatase function reduced, human cord blood-derived colonies. Collectively, these findings indicate that SHP2 phosphatase function regulates human hematopoietic cell development and imply that the phosphatase component of SHP2 may serve as a pharmacologic target in human leukemias bearing increased SHP2 phosphatase activity. PMID:23082805

  3. Inhibition of Shp2 suppresses mutant EGFR-induced lung tumors in transgenic mouse model of lung adenocarcinoma

    PubMed Central

    Schneeberger, Valentina E.; Ren, Yuan; Luetteke, Noreen; Huang, Qingling; Chen, Liwei; Lawrence, Harshani R.; Lawrence, Nicholas J.; Haura, Eric B.; Koomen, John M.; Coppola, Domenico; Wu, Jie

    2015-01-01

    Epidermal growth factor receptor (EGFR) mutants drive lung tumorigenesis and are targeted for therapy. However, resistance to EGFR inhibitors has been observed, in which the mutant EGFR remains active. Thus, it is important to uncover mediators of EGFR mutant-driven lung tumors to develop new treatment strategies. The protein tyrosine phosphatase (PTP) Shp2 mediates EGF signaling. Nevertheless, it is unclear if Shp2 is activated by oncogenic EGFR mutants in lung carcinoma or if inhibiting the Shp2 PTP activity can suppress EGFR mutant-induced lung adenocarcinoma. Here, we generated transgenic mice containing a doxycycline (Dox)-inducible PTP-defective Shp2 mutant (tetO-Shp2CSDA). Using the rat Clara cell secretory protein (CCSP)-rtTA-directed transgene expression in the type II lung pneumocytes of transgenic mice, we found that the Gab1-Shp2 pathway was activated by EGFRL858R in the lungs of transgenic mice. Consistently, the Gab1-Shp2 pathway was activated in human lung adenocarcinoma cells containing mutant EGFR. Importantly, Shp2CSDA inhibited EGFRL858R-induced lung adenocarcinoma in transgenic animals. Analysis of lung tissues showed that Shp2CSDA suppressed Gab1 tyrosine phosphorylation and Gab1-Shp2 association, suggesting that Shp2 modulates a positive feedback loop to regulate its own activity. These results show that inhibition of the Shp2 PTP activity impairs mutant EGFR signaling and suppresses EGFRL858R-driven lung adenocarcinoma. PMID:25730908

  4. Protein tyrosine phosphatases as potential therapeutic targets

    PubMed Central

    He, Rong-jun; Yu, Zhi-hong; Zhang, Ruo-yu; Zhang, Zhong-yin

    2014-01-01

    Protein tyrosine phosphorylation is a key regulatory process in virtually all aspects of cellular functions. Dysregulation of protein tyrosine phosphorylation is a major cause of human diseases, such as cancers, diabetes, autoimmune disorders, and neurological diseases. Indeed, protein tyrosine phosphorylation-mediated signaling events offer ample therapeutic targets, and drug discovery efforts to date have brought over two dozen kinase inhibitors to the clinic. Accordingly, protein tyrosine phosphatases (PTPs) are considered next-generation drug targets. For instance, PTP1B is a well-known targets of type 2 diabetes and obesity, and recent studies indicate that it is also a promising target for breast cancer. SHP2 is a bona-fide oncoprotein, mutations of which cause juvenile myelomonocytic leukemia, acute myeloid leukemia, and solid tumors. In addition, LYP is strongly associated with type 1 diabetes and many other autoimmune diseases. This review summarizes recent findings on several highly recognized PTP family drug targets, including PTP1B, Src homology phosphotyrosyl phosphatase 2(SHP2), lymphoid-specific tyrosine phosphatase (LYP), CD45, Fas associated phosphatase-1 (FAP-1), striatal enriched tyrosine phosphatases (STEP), mitogen-activated protein kinase/dual-specificity phosphatase 1 (MKP-1), phosphatases of regenerating liver-1 (PRL), low molecular weight PTPs (LMWPTP), and CDC25. Given that there are over 100 family members, we hope this review will serve as a road map for innovative drug discovery targeting PTPs. PMID:25220640

  5. Requirement of SH2-containing protein tyrosine phosphatases SHP-1 and SHP-2 for paired immunoglobulin-like receptor B (PIR-B)-mediated inhibitory signal.

    PubMed

    Maeda, A; Kurosaki, M; Ono, M; Takai, T; Kurosaki, T

    1998-04-20

    Paired immunoglobulin-like receptor B (PIR-B) (p91) molecule has been proposed to function as an inhibitory receptor in B cells and myeloid lineage cells. We demonstrate here that the cytoplasmic region of PIR-B is capable of inhibiting B cell activation. Mutational analysis of five cytoplasmic tyrosines indicate that tyrosine 771 in the motif VxYxxL plays the most crucial role in mediating the inhibitory signal. PIR-B-mediated inhibition was markedly reduced in the SH2-containing protein tyrosine phosphatases SHP-1 and SHP-2 double-deficient DT40 B cells, whereas this inhibition was unaffected in the inositol polyphosphate 5'-phosphatase SHIP-deficient cells. These data demonstrate that PIR-B can negatively regulate B cell receptor activation and that this PIR-B-mediated inhibition requires redundant functions of SHP-1 and SHP-2.

  6. Docking of oxalyl aryl amino benzoic acid derivatives into PTP1B

    PubMed Central

    Verma, Neelam; Mittal, Minakshi; Verma, Raman kumar

    2008-01-01

    Protein Tyrosine Phosphatases (PTPs) that function as negative regulators of the insulin signaling cascade have been identified as novel targets for the therapeutic enhancement of insulin action in insulin resistant disease states. Reducing Protein Tyrosine Phosphatase1B (PTP1B) abundance not only enhances insulin sensitivity and improves glucose metabolism but also protects against obesity induced by high fat feeding. PTP1B inhibitors such as Formylchromone derivatives, 1, 2-Naphthoquinone derivatives and Oxalyl aryl amino benzoic derivatives may eventually find an important clinical role as insulin sensitizers in the management of Type-II Diabetes and metabolic syndrome. We have carried out docking of modified oxalyl aryl amino benzoic acid derivatives into three dimensional structure of PTP1B using BioMed CAChe 6.1. These compounds exhibit good selectivity for PTP1B over most of phosphatases in selectivity panel such as SHP-2, LAR, CD45 and TCPTP found in literature. This series of compounds identified the amino acid residues such as Gly220 and Arg221 are important for achieving specificity via H-bonding interactions. Lipophilic side chain of methionine in modified oxalyl aryl amino benzoic acid derivative [1b (a2, b2, c1, d)] lies in closer vicinity of hydrophobic region of protein consisted of Meth258 and Phe52 in comparison to active ligand. Docking Score in [1b (a2, b2, c1, d)] is -131.740Kcal/mol much better than active ligand score -98.584Kcal/mol. This information can be exploited to design PTP1B specific inhibitors. PMID:19238234

  7. Studies of the mechanism of selectivity of protein tyrosine phosphatase 1B (PTP1B) bidentate inhibitors using molecular dynamics simulations and free energy calculations.

    PubMed

    Fang, Lei; Zhang, Huai; Cui, Wei; Ji, Mingjun

    2008-10-01

    Bidentate inhibitors of protein tyrosine phosphatase 1B (PTP1B) are considered as a group of ideal inhibitors with high binding potential and high selectivity in treating type II diabetes. In this paper, the binding models of five bidentate inhibitors to PTP1B, TCPTP, and SHP-2 were investigated and compared by using molecular dynamics (MD) simulations and free energy calculations. The binding free energies were computed using the Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) methodology. The calculation results show that the predicted free energies of the complexes are well consistent with the experimental data. The Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) free energy decomposition analysis indicates that the residues ARG24, ARG254, and GLN262 in the second binding site of PTP1B are essential for the high selectivity of inhibitors. Furthermore, the residue PHE182 close to the active site is also important for the selectivity and the binding affinity of the inhibitors. According to our analysis, it can be concluded that in most cases the polarity of the portion of the inhibitor that binds to the second binding site of the protein is positive to the affinity of the inhibitors while negative to the selectivity of the inhibitors. We expect that the information we obtained here can help to develop potential PTP1B inhibitors with more promising specificity.

  8. Natural products possessing protein tyrosine phosphatase 1B (PTP1B) inhibitory activity found in the last decades

    PubMed Central

    Jiang, Cheng-shi; Liang, Lin-fu; Guo, Yue-wei

    2012-01-01

    This article provides an overview of approximately 300 secondary metabolites with inhibitory activity against protein tyrosine phosphatase 1B (PTP1B), which were isolated from various natural sources or derived from synthetic process in the last decades. The structure-activity relationship and the selectivity of some compounds against other protein phosphatases were also discussed. Potential pharmaceutical applications of several PTP1B inhibitors were presented. PMID:22941286

  9. Effect of angiotensin II type 2 receptor on tyrosine kinase Pyk2 and c-Jun NH2-terminal kinase via SHP-1 tyrosine phosphatase activity: evidence from vascular-targeted transgenic mice of AT2 receptor.

    PubMed

    Matsubara, H; Shibasaki, Y; Okigaki, M; Mori, Y; Masaki, H; Kosaki, A; Tsutsumi, Y; Uchiyama, Y; Fujiyama, S; Nose, A; Iba, O; Tateishi, E; Hasegawa, T; Horiuchi, M; Nahmias, C; Iwasaka, T

    2001-04-20

    Angiotensin II (Ang II) has two major receptor isoforms, AT1 and AT2. AT1 transphosphorylates Ca(2+)-sensitive tyrosine kinase Pyk2 to activate c-Jun NH2-terminal kinase (JNK). Although AT2 inactivates extracellular signal-regulated kinase (ERK) via tyrosine phosphatases (PTP), the action of AT2 on Pyk2 and JNK remains undefined. Using AT2-overexpressing vascular smooth muscle cells (AT2-VSMC) from AT2-transgenic mice, we studied these undefined actions of AT2. AT1-mediated JNK activity was increased 2.2-fold by AT2 inhibition, which was abolished by orthovanadate. AT2 did not affect AT1-mediated Pyk2 phosphorylation, but attenuated c-Jun mRNA accumulation by 32%. The activity of src-homology 2 domain-containing PTP (SHP-1) was significantly upregulated 1 min after AT2 stimulation. Stable overexpression of SHP-1 dominant negative mutant in AT2-VSMC completely abolished AT2-mediated inhibition of JNK activation and c-Jun expression. These findings suggest that AT2 inhibits JNK activity by affecting the downstream signal of Pyk2 in a SHP-1-dependent manner, leading to a decrease in c-Jun expression. Copyright 2001 Academic Press.

  10. Sprouty proteins are in vivo targets of Corkscrew/SHP-2 tyrosine phosphatases.

    PubMed

    Jarvis, Lesley A; Toering, Stephanie J; Simon, Michael A; Krasnow, Mark A; Smith-Bolton, Rachel K

    2006-03-01

    Drosophila Corkscrew protein and its vertebrate ortholog SHP-2 (now known as Ptpn11) positively modulate receptor tyrosine kinase (RTK) signaling during development, but how these tyrosine phosphatases promote tyrosine kinase signaling is not well understood. Sprouty proteins are tyrosine-phosphorylated RTK feedback inhibitors, but their regulation and mechanism of action are also poorly understood. Here, we show that Corkscrew/SHP-2 proteins control Sprouty phosphorylation and function. Genetic experiments demonstrate that Corkscrew/SHP-2 and Sprouty proteins have opposite effects on RTK-mediated developmental events in Drosophila and an RTK signaling process in cultured mammalian cells, and the genes display dose-sensitive genetic interactions. In cultured cells, inactivation of SHP-2 increases phosphorylation on the critical tyrosine of Sprouty 1. SHP-2 associates in a complex with Sprouty 1 in cultured cells and in vitro, and a purified SHP-2 protein dephosphorylates the critical tyrosine of Sprouty 1. Substrate-trapping forms of Corkscrew bind Sprouty in cultured Drosophila cells and the developing eye. These results identify Sprouty proteins as in vivo targets of Corkscrew/SHP-2 tyrosine phosphatases and show how Corkscrew/SHP-2 proteins can promote RTK signaling by inactivating a feedback inhibitor. We propose that this double-negative feedback circuit shapes the output profile of RTK signaling events.

  11. Increased PTP1B expression and phosphatase activity in colorectal cancer results in a more invasive phenotype and worse patient outcome.

    PubMed

    Hoekstra, Elmer; Das, Asha M; Swets, Marloes; Cao, Wanlu; van der Woude, C Janneke; Bruno, Marco J; Peppelenbosch, Maikel P; Kuppen, Peter J K; Ten Hagen, Timo L M; Fuhler, Gwenny M

    2016-04-19

    Cell signaling is dependent on the balance between phosphorylation of proteins by kinases and dephosphorylation by phosphatases. This balance if often disrupted in colorectal cancer (CRC), leading to increased cell proliferation and invasion. For many years research has focused on the role of kinases as potential oncogenes in cancer, while phosphatases were commonly assumed to be tumor suppressive. However, this dogma is currently changing as phosphatases have also been shown to induce cancer growth. One of these phosphatases is protein tyrosine phosphatase 1B (PTP1B). Here we report that the expression of PTP1B is increased in colorectal cancer as compared to normal tissue, and that the intrinsic enzymatic activity of the protein is also enhanced. This suggests a role for PTP1B phosphatase activity in CRC formation and progression. Furthermore, we found that increased PTP1B expression is correlated to a worse patient survival and is an independent prognostic marker for overall survival and disease free survival. Knocking down PTP1B in CRC cell lines results in a less invasive phenotype with lower adhesion, migration and proliferation capabilities. Together, these results suggest that inhibition of PTP1B activity is a promising new target in the treatment of colorectal cancer and the prevention of metastasis.

  12. Coordinated Regulation of Insulin Signaling by the Protein Tyrosine Phosphatases PTP1B and TCPTP

    PubMed Central

    Galic, Sandra; Hauser, Christine; Kahn, Barbara B.; Haj, Fawaz G.; Neel, Benjamin G.; Tonks, Nicholas K.; Tiganis, Tony

    2005-01-01

    The protein tyrosine phosphatase PTP1B is a negative regulator of insulin signaling and a therapeutic target for type 2 diabetes. Our previous studies have shown that the closely related tyrosine phosphatase TCPTP might also contribute to the regulation of insulin receptor (IR) signaling in vivo (S. Galic, M. Klingler-Hoffmann, M. T. Fodero-Tavoletti, M. A. Puryer, T. C. Meng, N. K. Tonks, and T. Tiganis, Mol. Cell. Biol. 23:2096-2108, 2003). Here we show that PTP1B and TCPTP function in a coordinated and temporally distinct manner to achieve an overall regulation of IR phosphorylation and signaling. Whereas insulin-induced phosphatidylinositol 3-kinase/Akt signaling was prolonged in both TCPTP−/− and PTP1B−/− immortalized mouse embryo fibroblasts (MEFs), mitogen-activated protein kinase ERK1/2 signaling was elevated only in PTP1B-null MEFs. By using phosphorylation-specific antibodies, we demonstrate that both IR β-subunit Y1162/Y1163 and Y972 phosphorylation are elevated in PTP1B−/− MEFs, whereas Y972 phosphorylation was elevated and Y1162/Y1163 phosphorylation was sustained in TCPTP−/− MEFs, indicating that PTP1B and TCPTP differentially contribute to the regulation of IR phosphorylation and signaling. Consistent with this, suppression of TCPTP protein levels by RNA interference in PTP1B−/− MEFs resulted in no change in ERK1/2 signaling but caused prolonged Akt activation and Y1162/Y1163 phosphorylation. These results demonstrate that PTP1B and TCPTP are not redundant in insulin signaling and that they act to control both common as well as distinct insulin signaling pathways in the same cell. PMID:15632081

  13. The Caenorhabditis elegans SH2 domain-containing protein tyrosine phosphatase PTP-2 participates in signal transduction during oogenesis and vulval development

    PubMed Central

    Gutch, Michael J.; Flint, Andrew J.; Keller, James; Tonks, Nicholas K.; Hengartner, Michael O.

    1998-01-01

    Src homology-2 (SH2) domain-containing protein tyrosine phosphatases (SHPs) have been identified as either positive or negative regulators of signaling events downstream of receptor protein tyrosine kinases (R-PTKs). We describe here our characterization of ptp-2, a Caenorhabditis elegans gene that encodes a 668-amino-acid SHP. We isolated a recessive ptp-2 loss-of-function allele, op194, that lacks the conserved protein tyrosine phosphatase catalytic domain by screening for transposon-mediated deletion mutations. Homozygous ptp-2(op194) hermaphrodites exhibit a completely penetrant zygotic semisterile/maternal effect lethal phenotype, characterized by the presence of abnormally large oocytes in the zygotic semisterile animals. These phenotypes indicate that PTP-2 activity is essential for proper oogenesis. Gain-of-function let-60 ras alleles rescued the defects associated with ptp-2(op194), suggesting that LET-60 Ras acts downstream of, or in parallel to, PTP-2 during oogenesis. Although ptp-2 function is not required for normal vulval development, ptp-2(op194) altered significantly the vulval phenotypes caused by mutations in several genes of the inductive signaling pathway. The penetrance of the multivulva phenotype caused by loss-of-function mutations in lin-15, and gain-of-function mutations in let-23 or let-60 ras, was reduced by ptp-2(op194). Moreover, ptp-2(op194) increased the penetrance of the vulvaless phenotype conferred by a weak loss-of-function sem-5 allele. Taken together, our genetic data positions PTP-2 activity downstream of LET-23 in the vulval induction signaling pathway. Although PTP-2 functions to transmit a requisite signal during oogenesis, PTP-2 function during C. elegans vulval cell differentiation appears to be directed at regulating the overall strength of the inductive signal, which may contribute to the quantitative differences in signaling required for the proper specification of the 1°, 2°, and 3° vulval cell fates. PMID:9472025

  14. Phosphorylation-mediated regulation of the Staphylococcus aureus secreted tyrosine phosphatase PtpA.

    PubMed

    Brelle, Solène; Baronian, Grégory; Huc-Brandt, Sylvaine; Zaki, Laila Gannoun; Cohen-Gonsaud, Martin; Bischoff, Markus; Molle, Virginie

    2016-01-15

    Due to the emergence of methicillin-resistant strains, Staphylococcus aureus has become as major public-health threat. Studies aimed at deciphering the molecular mechanism of virulence are thus required to identify new targets and develop efficient therapeutic agents. Protein phosphorylations are known to play key regulatory functions and their roles in pathogenesis are under intense scrutiny. Here we analyzed the protein tyrosine phosphatase PtpA of S. aureus, a member of the family of low molecular weight protein tyrosine phosphatases that are often secreted by pathogenic bacteria. We report for the first time that PtpA is phosphorylated in vitro by the S. aureus tyrosine kinase CapA1B2. A mass spectrometry approach allowed determining that Tyr122 and Tyr123 were the only two residues phosphorylated by this kinase. This result was confirmed by analysis of a double PtpA_Y122A/Y123A mutant that showed no phosphorylation by CapA1B2. Interestingly, PtpA phosphatase activity was abrogated in this mutant, suggesting a key regulatory function for these two tyrosine residues. This was further reinforced by the observation that CapA1B2-mediated phosphorylation significantly increased PtpA phosphatase activity. Moreover, we provide evidence that PtpA is secreted during growth of S. aureus. Together our results suggest that PtpA is an exported S. aureus signaling molecule controlled by tyrosine phosphorylation which may interfere with host cell signaling. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Ras-Induced and Extracellular Signal-Regulated Kinase 1 and 2 Phosphorylation-Dependent Isomerization of Protein Tyrosine Phosphatase (PTP)-PEST by PIN1 Promotes FAK Dephosphorylation by PTP-PEST ▿

    PubMed Central

    Zheng, Yanhua; Yang, Weiwei; Xia, Yan; Hawke, David; Liu, David X.; Lu, Zhimin

    2011-01-01

    Protein tyrosine phosphatase (PTP)-PEST is a critical regulator of cell adhesion and migration. However, the mechanism by which PTP-PEST is regulated in response to oncogenic signaling to dephosphorylate its substrates remains unclear. Here, we demonstrate that activated Ras induces extracellular signal-regulated kinase 1 and 2-dependent phosphorylation of PTP-PEST at S571, which recruits PIN1 to bind to PTP-PEST. Isomerization of the phosphorylated PTP-PEST by PIN1 increases the interaction between PTP-PEST and FAK, which leads to the dephosphorylation of FAK Y397 and the promotion of migration, invasion, and metastasis of v-H-Ras-transformed cells. These findings uncover an important mechanism for the regulation of PTP-PEST in activated Ras-induced tumor progression. PMID:21876001

  16. Cell surface expression of channel catfish leukocyte immune-type receptors (IpLITRs) and recruitment of both Src homology 2 domain-containing protein tyrosine phosphatase (SHP)-1 and SHP-2.

    PubMed

    Montgomery, Benjamin C S; Mewes, Jacqueline; Davidson, Chelsea; Burshtyn, Deborah N; Stafford, James L

    2009-04-01

    Channel catfish leukocyte immune-type receptors (IpLITRs) are immunoglobulin superfamily (IgSF) members believed to play a role in the control and coordination of cellular immune responses in teleost. Putative stimulatory and inhibitory IpLITRs are co-expressed by different types of catfish immune cells (e.g. NK cells, T cells, B cells, and macrophages) but their signaling potential has not been determined. Following cationic polymer-mediated transfections into human cell lines we examined the surface expression, tyrosine phosphorylation, and phosphatase recruitment potential of two types of putative inhibitory IpLITRs using 'chimeric' expression constructs and an epitope-tagged 'native' IpLITR. We also cloned and expressed the teleost Src homology 2 domain-containing protein tyrosine phosphatases (SHP)-1 and SHP-2 and examined their expression in adult tissues and developing zebrafish embryos. Co-immunoprecipitation experiments support the inhibitory signaling potential of distinct IpLITR-types that bound both SHP-1 and SHP-2 following the phosphorylation of tyrosine residues within their cytoplasmic tail (CYT) regions. Phosphatase recruitment by IpLITRs represents an important first step in understanding their influence on immune cell effector functions and suggests that certain inhibitory signaling pathways are conserved among vertebrates.

  17. Crystal structure of SP-PTP, a low molecular weight protein tyrosine phosphatase from Streptococcus pyogenes.

    PubMed

    Ku, Bonsu; Keum, Chae Won; Lee, Hye Seon; Yun, Hye-Yeoung; Shin, Ho-Chul; Kim, Bo Yeon; Kim, Seung Jun

    2016-09-23

    Streptococcus pyogenes, or Group A Streptococcus (GAS), is a pathogenic bacterium that causes a variety of infectious diseases. The GAS genome encodes one protein tyrosine phosphatase, SP-PTP, which plays an essential role in the replication and virulence maintenance of GAS. Herein, we present the crystal structure of SP-PTP at 1.9 Å resolution. Although SP-PTP has been reported to have dual phosphatase specificity for both phosphorylated tyrosine and serine/threonine, three-dimensional structural analysis showed that SP-PTP shares high similarity with typical low molecular weight protein tyrosine phosphatases (LMWPTPs), which are specific for phosphotyrosine, but not with dual-specificity phosphatases, in overall folding and active site composition. In the dephosphorylation activity test, SP-PTP consistently acted on phosphotyrosine substrates, but not or only minimally on phosphoserine/phosphothreonine substrates. Collectively, our structural and biochemical analyses verified SP-PTP as a canonical tyrosine-specific LMWPTP. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Deficiency in Protein Tyrosine Phosphatase PTP1B Shortens Lifespan and Leads to Development of Acute Leukemia.

    PubMed

    Le Sommer, Samantha; Morrice, Nicola; Pesaresi, Martina; Thompson, Dawn; Vickers, Mark A; Murray, Graeme I; Mody, Nimesh; Neel, Benjamin G; Bence, Kendra K; Wilson, Heather M; Delibegović, Mirela

    2018-01-01

    Protein tyrosine phosphatase PTP1B is a critical regulator of signaling pathways controlling metabolic homeostasis, cell proliferation, and immunity. In this study, we report that global or myeloid-specific deficiency of PTP1B in mice decreases lifespan. We demonstrate that myeloid-specific deficiency of PTP1B is sufficient to promote the development of acute myeloid leukemia. LysM-PTP1B -/- mice lacking PTP1B in the innate myeloid cell lineage displayed a dysregulation of bone marrow cells with a rapid decline in population at midlife and a concomitant increase in peripheral blood blast cells. This phenotype manifested further with extramedullary tumors, hepatic macrophage infiltration, and metabolic reprogramming, suggesting increased hepatic lipid metabolism prior to overt tumor development. Mechanistic investigations revealed an increase in anti-inflammatory M2 macrophage responses in liver and spleen, as associated with increased expression of arginase I and the cytokines IL10 and IL4. We also documented STAT3 hypersphosphorylation and signaling along with JAK-dependent upregulation of antiapoptotic proteins Bcl2 and BclXL. Our results establish a tumor suppressor role for PTP1B in the myeloid lineage cells, with evidence that its genetic inactivation in mice is sufficient to drive acute myeloid leukemia. Significance: This study defines a tumor suppressor function for the protein tyrosine phosphatase PTP1B in myeloid lineage cells, with evidence that its genetic inactivation in mice is sufficient to drive acute myeloid leukemia. Cancer Res; 78(1); 75-87. ©2017 AACR . ©2017 American Association for Cancer Research.

  19. The LDL Receptor-Related Protein 1 (LRP1) Regulates the PDGF Signaling Pathway by Binding the Protein Phosphatase SHP-2 and Modulating SHP-2- Mediated PDGF Signaling Events

    PubMed Central

    Craig, Julie; Mikhailenko, Irina; Noyes, Nathaniel; Migliorini, Mary; Strickland, Dudley K.

    2013-01-01

    Background The PDGF signaling pathway plays a major role in several biological systems, including vascular remodeling that occurs following percutaneous transluminal coronary angioplasty. Recent studies have shown that the LDL receptor-related protein 1 (LRP1) is a physiological regulator of the PDGF signaling pathway. The underlying mechanistic details of how this regulation occurs have yet to be resolved. Activation of the PDGF receptor β (PDGFRβ) leads to tyrosine phosphorylation of the LRP1 cytoplasmic domain within endosomes and generates an LRP1 molecule with increased affinity for adaptor proteins such as SHP-2 that are involved in signaling pathways. SHP-2 is a protein tyrosine phosphatase that positively regulates the PDGFRβ pathway, and is required for PDGF-mediated chemotaxis. We investigated the possibility that LRP1 may regulate the PDGFRβ signaling pathway by binding SHP-2 and competing with the PDGFRβ for this molecule. Methodology/Principal Findings To quantify the interaction between SHP-2 and phosphorylated forms of the LRP1 intracellular domain, we utilized an ELISA with purified recombinant proteins. These studies revealed high affinity binding of SHP-2 to phosphorylated forms of both LRP1 intracellular domain and the PDGFRβ kinase domain. By employing the well characterized dynamin inhibitor, dynasore, we established that PDGF-induced SHP-2 phosphorylation primarily occurs within endosomal compartments, the same compartments in which LRP1 is tyrosine phosphorylated by activated PDGFRβ. Immunofluorescence studies revealed colocalization of LRP1 and phospho-SHP-2 following PDGF stimulation of fibroblasts. To define the contribution of LRP1 to SHP-2-mediated PDGF chemotaxis, we employed fibroblasts expressing LRP1 and deficient in LRP1 and a specific SHP-2 inhibitor, NSC-87877. Our results reveal that LRP1 modulates SHP-2-mediated PDGF-mediated chemotaxis. Conclusions/Significance Our data demonstrate that phosphorylated forms of LRP1 and

  20. Regulated binding of PTP1B-like phosphatase to N-cadherin: control of cadherin-mediated adhesion by dephosphorylation of beta-catenin

    PubMed Central

    1996-01-01

    Cadherins are a family of cell-cell adhesion molecules which play a central role in controlling morphogenetic movements during development. Cadherin function is regulated by its association with the actin containing cytoskeleton, an association mediated by a complex of cytoplasmic proteins, the catenins: alpha, beta, and gamma. Phosphorylated tyrosine residues on beta-catenin are correlated with loss of cadherin function. Consistent with this, we find that only nontyrosine phosphorylated beta-catenin is associated with N-cadherin in E10 chick retina tissue. Moreover, we demonstrate that a PTP1B-like tyrosine phosphatase associates with N-cadherin and may function as a regulatory switch controlling cadherin function by dephosphorylating beta-catenin, thereby maintaining cells in an adhesion-competent state. The PTP1B-like phosphatase is itself tyrosine phosphorylated. Moreover, both direct binding experiments performed with phosphorylated and dephosphorylated molecules, and treatment of cells with tyrosine kinase inhibitors indicate that the interaction of the PTP1B-like phosphatase with N-cadherin depends on its tyrosine phosphorylation. Concomitant with the tyrosine kinase inhibitor-induced loss of the PTP1B-like phosphatase from its association with N-cadherin, phosphorylated tyrosine residues are retained on beta-catenin, the association of N- cadherin with the actin containing cytoskeleton is lost and N-cadherin- mediated cell adhesion is prevented. Tyrosine phosphatase inhibitors also result in the accumulation of phosphorylated tyrosine residues on beta-catenin, loss of the association of N-cadherin with the actin- containing cytoskeleton, and prevent N-cadherin mediated adhesion, presumably by directly blocking the function of the PTP1B-like phosphatase. We previously showed that the binding of two ligands to the cell surface N-acetylgalactosaminylphosphotransferase (GalNAcPTase), the monoclonal antibody 1B11 and a proteoglycan with a 250-kD core protein

  1. Protein tyrosine phosphatase 1B (PTP1B) is required for cardiac lineage differentiation of mouse embryonic stem cells.

    PubMed

    Eshkiki, Zahra Shokati; Ghahremani, Mohammad Hossein; Shabani, Parisa; Firuzjaee, Sattar Gorgani; Sadeghi, Asie; Ghanbarian, Hossein; Meshkani, Reza

    2017-01-01

    Protein tyrosine phosphatase 1B (PTP1B) has been shown to regulate multiple cellular events such as differentiation, cell growth, and proliferation; however, the role of PTP1B in differentiation of embryonic stem (ES) cells into cardiomyocytes remains unexplored. In the present study, we investigated the effects of PTP1B inhibition on differentiation of ES cells into cardiomyocytes. PTP1B mRNA and protein levels were increased during the differentiation of ES cells into cardiomyocytes. Accordingly, a stable ES cell line expressing PTP1B shRNA was established. In vitro, the number and size of spontaneously beating embryoid bodies were significantly decreased in PTP1B-knockdown cells, compared with the control cells. Decreased expression of cardiac-specific markers Nkx2-5, MHC-α, cTnT, and CX43, as assessed by real-time PCR analysis, was further confirmed by immunocytochemistry of the markers. The results also showed that PTP1B inhibition induced apoptosis in both differentiated and undifferentiated ES cells, as presented by increasing the level of cleaved caspase-3, cytochrome C, and cleaved PARP. Further analyses revealed that PTP1B inhibition did not change proliferation and pluripotency of undifferentiated ES cells. Taken together, the data presented here suggest that PTP1B is essential for proper differentiation of ES cells into cardiomyocytes.

  2. Protein Kinase A (PKA) Phosphorylation of Shp2 Protein Inhibits Its Phosphatase Activity and Modulates Ligand Specificity

    PubMed Central

    Burmeister, Brian T.; Wang, Li; Gold, Matthew G.; Skidgel, Randal A.; O'Bryan, John P.; Carnegie, Graeme K.

    2015-01-01

    Pathological cardiac hypertrophy (an increase in cardiac mass resulting from stress-induced cardiac myocyte growth) is a major factor underlying heart failure. Src homology 2 domain-containing phosphatase (Shp2) is critical for cardiac function because mutations resulting in loss of Shp2 catalytic activity are associated with congenital cardiac defects and hypertrophy. We identified a novel mechanism of Shp2 inhibition that may promote cardiac hypertrophy. We demonstrate that Shp2 is a component of the protein kinase A anchoring protein (AKAP)-Lbc complex. AKAP-Lbc facilitates PKA phosphorylation of Shp2, which inhibits Shp2 phosphatase activity. We identified two key amino acids in Shp2 that are phosphorylated by PKA. Thr-73 contributes a helix cap to helix αB within the N-terminal SH2 domain of Shp2, whereas Ser-189 occupies an equivalent position within the C-terminal SH2 domain. Utilizing double mutant PKA phosphodeficient (T73A/S189A) and phosphomimetic (T73D/S189D) constructs, in vitro binding assays, and phosphatase activity assays, we demonstrate that phosphorylation of these residues disrupts Shp2 interaction with tyrosine-phosphorylated ligands and inhibits its protein-tyrosine phosphatase activity. Overall, our data indicate that AKAP-Lbc integrates PKA and Shp2 signaling in the heart and that AKAP-Lbc-associated Shp2 activity is reduced in hypertrophic hearts in response to chronic β-adrenergic stimulation and PKA activation. Therefore, although induction of cardiac hypertrophy is a multifaceted process, inhibition of Shp2 activity through AKAP-Lbc-anchored PKA is a previously unrecognized mechanism that may promote this compensatory response. PMID:25802336

  3. Protein Kinase A (PKA) Phosphorylation of Shp2 Protein Inhibits Its Phosphatase Activity and Modulates Ligand Specificity.

    PubMed

    Burmeister, Brian T; Wang, Li; Gold, Matthew G; Skidgel, Randal A; O'Bryan, John P; Carnegie, Graeme K

    2015-05-08

    Pathological cardiac hypertrophy (an increase in cardiac mass resulting from stress-induced cardiac myocyte growth) is a major factor underlying heart failure. Src homology 2 domain-containing phosphatase (Shp2) is critical for cardiac function because mutations resulting in loss of Shp2 catalytic activity are associated with congenital cardiac defects and hypertrophy. We identified a novel mechanism of Shp2 inhibition that may promote cardiac hypertrophy. We demonstrate that Shp2 is a component of the protein kinase A anchoring protein (AKAP)-Lbc complex. AKAP-Lbc facilitates PKA phosphorylation of Shp2, which inhibits Shp2 phosphatase activity. We identified two key amino acids in Shp2 that are phosphorylated by PKA. Thr-73 contributes a helix cap to helix αB within the N-terminal SH2 domain of Shp2, whereas Ser-189 occupies an equivalent position within the C-terminal SH2 domain. Utilizing double mutant PKA phosphodeficient (T73A/S189A) and phosphomimetic (T73D/S189D) constructs, in vitro binding assays, and phosphatase activity assays, we demonstrate that phosphorylation of these residues disrupts Shp2 interaction with tyrosine-phosphorylated ligands and inhibits its protein-tyrosine phosphatase activity. Overall, our data indicate that AKAP-Lbc integrates PKA and Shp2 signaling in the heart and that AKAP-Lbc-associated Shp2 activity is reduced in hypertrophic hearts in response to chronic β-adrenergic stimulation and PKA activation. Therefore, although induction of cardiac hypertrophy is a multifaceted process, inhibition of Shp2 activity through AKAP-Lbc-anchored PKA is a previously unrecognized mechanism that may promote this compensatory response. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Structural Basis of Substrate Recognition by Hematopoietic Tyrosine Phosphatase (HePTP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Critton, D.; Tortajada, A; Stetson, G

    2008-01-01

    Hematopoietic tyrosine phosphatase (HePTP) is one of three members of the kinase interaction motif (KIM) phosphatase family which also includes STEP and PCPTP1. The KIM-PTPs are characterized by a 15 residue sequence, the KIM, which confers specific high-affinity binding to their only known substrates, the MAP kinases Erk and p38, an interaction which is critical for their ability to regulate processes such as T cell differentiation (HePTP) and neuronal signaling (STEP). The KIM-PTPs are also characterized by a unique set of residues in their PTP substrate binding loops, where 4 of the 13 residues are differentially conserved among the KIM-PTPsmore » as compared to more than 30 other class I PTPs. One of these residues, T106 in HePTP, is either an aspartate or asparagine in nearly every other PTP. Using multiple techniques, we investigate the role of these KIM-PTP specific residues in order to elucidate the molecular basis of substrate recognition by HePTP. First, we used NMR spectroscopy to show that Erk2-derived peptides interact specifically with HePTP at the active site. Next, to reveal the molecular details of this interaction, we solved the high-resolution three-dimensional structures of two distinct HePTP-Erk2 peptide complexes. Strikingly, we were only able to obtain crystals of these transient complexes using a KIM-PTP specific substrate-trapping mutant, in which the KIM-PTP specific residue T106 was mutated to an aspartic acid (T106D). The introduced aspartate side chain facilitates the coordination of the bound peptides, thereby stabilizing the active dephosphorylation complex. These structures establish the essential role of HePTP T106 in restricting HePTP specificity to only those substrates which are able to interact with KIM-PTPs via the KIM (e.g., Erk2, p38). Finally, we describe how this interaction of the KIM is sufficient for overcoming the otherwise weak interaction at the active site of KIM-PTPs.« less

  5. Protein tyrosine phosphatase, PTP1B, expression and activity in rat corneal endothelial cells

    PubMed Central

    Harris, Deshea L.

    2007-01-01

    Purpose The current studies were conducted to determine whether the protein tyrosine phosphatase, PTP1B, plays a role in regulating epidermal growth factor receptor (EGFR) Tyr992 phosphorylation and cell cycle entry in rat corneal endothelial cells. Methods Corneas were obtained from male Sprague-Dawley rats. PTP1B mRNA and protein expression were compared in confluent and subconfluent cells by RT-PCR and western blots. Immunocytochemistry was used to determine the subcellular localization of both PTP1B and EGFR following epidermal growth factor (EGF) stimulation. Western blots were used to analyze the time-dependent effect of EGF on phosphorylation of EGFR Tyr992 plus or minus CinnGEL 2Me, an inhibitor of PTP1B activity. The effect of PTP1B inhibition on cell cycle entry was determined by calculating the percent of Ki67-positive cells following EGF treatment. Results PTP1B mRNA expression was similar in confluent and subconfluent cells, but PTP1B protein was expressed at 3 fold higher levels in subconfluent cells. Positive staining for PTP1B was localized in vesicular structures below the plasma membrane. EGFR staining was located at cell-cell borders in untreated endothelium, but was mainly cytoplasmic by 15 min after EGF treatment. In control cultures, phosphorylation of EGFR Tyr992 peaked by 5 min following EGF stimulation and rapidly decreased to basal levels by 30 min. In cultures pretreated with CinnGEL 2Me, Tyr992 phosphorylation peaked 2 min following EGF addition and was consistently sustained at a higher level than controls until 60 min after treatment. By 18 h following EGF treatment, cultures pretreated with CinnGEL 2Me exhibited a 1.7 fold increase in the number of Ki67-positive cells compared with control cultures. Conclusions Comparison of PTP1B mRNA and protein levels indicates that PTP1B expression is regulated mainly at the protein level and is higher in subconfluent cells. PTP1B was located in vesicles below the plasma membrane. The fact that

  6. Inhibition of SHP2 ameliorates the pathogenesis of systemic lupus erythematosus

    PubMed Central

    Wang, Jianxun; Zeng, Li-Fan; Bronson, Roderick; Finnell, Michele; Terhorst, Cox; Kyttaris, Vasileios C.; Zhang, Zhong-Yin; Kontaridis, Maria I.

    2016-01-01

    Systemic lupus erythematosus (SLE) is a devastating multisystemic autoimmune disorder. However, the molecular mechanisms underlying its pathogenesis remain elusive. Some patients with Noonan syndrome, a congenital disorder predominantly caused by gain-of-function mutations in the protein tyrosine phosphatase SH2 domain–containing PTP (SHP2), have been shown to develop SLE, suggesting a functional correlation between phosphatase activity and systemic autoimmunity. To test this directly, we measured SHP2 activity in spleen lysates isolated from lupus-prone MRL/lpr mice and found it was markedly increased compared with that in control mice. Similar increases in SHP2 activity were seen in peripheral blood mononuclear cells isolated from lupus patients relative to healthy patients. To determine whether SHP2 alters autoimmunity and related immunopathology, we treated MRL/lpr mice with an SHP2 inhibitor and found increased life span, suppressed crescentic glomerulonephritis, reduced spleen size, and diminished skin lesions. SHP2 inhibition also reduced numbers of double-negative T cells, normalized ERK/MAPK signaling, and decreased production of IFN-γ and IL-17A/F, 2 cytokines involved in SLE-associated organ damage. Moreover, in cultured human lupus T cells, SHP2 inhibition reduced proliferation and decreased production of IFN-γ and IL-17A/F, further implicating SHP2 in lupus-associated immunopathology. Taken together, these data identify SHP2 as a critical regulator of SLE pathogenesis and suggest targeting of its activity as a potent treatment for lupus patients. PMID:27183387

  7. Inhibition of SHP2 ameliorates the pathogenesis of systemic lupus erythematosus.

    PubMed

    Wang, Jianxun; Mizui, Masayuki; Zeng, Li-Fan; Bronson, Roderick; Finnell, Michele; Terhorst, Cox; Kyttaris, Vasileios C; Tsokos, George C; Zhang, Zhong-Yin; Kontaridis, Maria I

    2016-06-01

    Systemic lupus erythematosus (SLE) is a devastating multisystemic autoimmune disorder. However, the molecular mechanisms underlying its pathogenesis remain elusive. Some patients with Noonan syndrome, a congenital disorder predominantly caused by gain-of-function mutations in the protein tyrosine phosphatase SH2 domain-containing PTP (SHP2), have been shown to develop SLE, suggesting a functional correlation between phosphatase activity and systemic autoimmunity. To test this directly, we measured SHP2 activity in spleen lysates isolated from lupus-prone MRL/lpr mice and found it was markedly increased compared with that in control mice. Similar increases in SHP2 activity were seen in peripheral blood mononuclear cells isolated from lupus patients relative to healthy patients. To determine whether SHP2 alters autoimmunity and related immunopathology, we treated MRL/lpr mice with an SHP2 inhibitor and found increased life span, suppressed crescentic glomerulonephritis, reduced spleen size, and diminished skin lesions. SHP2 inhibition also reduced numbers of double-negative T cells, normalized ERK/MAPK signaling, and decreased production of IFN-γ and IL-17A/F, 2 cytokines involved in SLE-associated organ damage. Moreover, in cultured human lupus T cells, SHP2 inhibition reduced proliferation and decreased production of IFN-γ and IL-17A/F, further implicating SHP2 in lupus-associated immunopathology. Taken together, these data identify SHP2 as a critical regulator of SLE pathogenesis and suggest targeting of its activity as a potent treatment for lupus patients.

  8. Covalent Allosteric Inactivation of Protein Tyrosine Phosphatase 1B (PTP1B) by an Inhibitor-Electrophile Conjugate.

    PubMed

    Punthasee, Puminan; Laciak, Adrian R; Cummings, Andrea H; Ruddraraju, Kasi Viswanatharaju; Lewis, Sarah M; Hillebrand, Roman; Singh, Harkewal; Tanner, John J; Gates, Kent S

    2017-04-11

    Protein tyrosine phosphatase 1B (PTP1B) is a validated drug target, but it has proven difficult to develop medicinally useful, reversible inhibitors of this enzyme. Here we explored covalent strategies for the inactivation of PTP1B using a conjugate composed of an active site-directed 5-aryl-1,2,5-thiadiazolidin-3-one 1,1-dioxide inhibitor connected via a short linker to an electrophilic α-bromoacetamide moiety. Inhibitor-electrophile conjugate 5a caused time-dependent loss of PTP1B activity consistent with a covalent inactivation mechanism. The inactivation occurred with a second-order rate constant of (1.7 ± 0.3) × 10 2 M -1 min -1 . Mass spectrometric analysis of the inactivated enzyme indicated that the primary site of modification was C121, a residue distant from the active site. Previous work provided evidence that covalent modification of the allosteric residue C121 can cause inactivation of PTP1B [Hansen, S. K., Cancilla, M. T., Shiau, T. P., Kung, J., Chen, T., and Erlanson, D. A. (2005) Biochemistry 44, 7704-7712]. Overall, our results are consistent with an unusual enzyme inactivation process in which noncovalent binding of the inhibitor-electrophile conjugate to the active site of PTP1B protects the nucleophilic catalytic C215 residue from covalent modification, thus allowing inactivation of the enzyme via selective modification of allosteric residue C121.

  9. Uncoupling of the ITIM receptor G6b-B from the tyrosine phosphatases Shp1 and Shp2 disrupts platelet homeostasis in mice.

    PubMed

    Geer, Mitchell J; van Geffen, Johanna P; Gopalasingam, Piraveen; Vögtle, Timo; Smith, Christopher W; Heising, Silke; Kuijpers, Marijke J E; Tullemans, Bibian M E; Jarvis, Gavin E; Eble, Johannes A; Jeeves, Mark; Overduin, Michael; Heemskerk, Johan W M; Mazharian, Alexandra; Senis, Yotis A

    2018-06-11

    The immunoreceptor tyrosine-based inhibitory motif (ITIM)-containing receptor G6b-B has emerged as a key regulator of platelet homeostasis. However, it remains unclear how it mediates its effects. Tyrosine phosphorylation of the ITIM and immunoreceptor tyrosine-based switch motif (ITSM) within the cytoplasmic tail of G6b-B provides a docking site for SH2 domain-containing protein-tyrosine phosphatases Shp1 and Shp2, which are also critical regulators of platelet production and function. In this study, we investigate the physiological consequences of uncoupling G6b-B from Shp1 and Shp2. To address this, we generated a transgenic mouse model expressing a mutant form of G6b-B in which tyrosine (Y) residues 212 and 238 within the ITIM and ITSM were mutated to phenylalanine (F), respectively. Mice homozygous for the mutation (G6b-B diY/F) were macrothrombocytopenic, due to a reduction in platelet production, had large clusters of megakaryocytes and myelofibrosis at sites of hematopoiesis, similar to that observed in G6b knockout (G6b KO) mice. Platelets from G6b-B diY/F mice were hypo-responsive to collagen, due to a significant reduction in expression of the immunoreceptor tyrosine-based activation motif (ITAM)-containing collagen receptor complex GPVI-FcR γ-chain, and thrombin, that could be partially rescued by co-stimulating the platelets with ADP. In contrast, platelets from G6b-B diY/F, G6b KO and megakaryocyte-specific Shp2 KO mice were hyper-responsive to antibody-mediated cross-linking of the hemi-ITAM-containing podoplanin receptor CLEC-2, suggesting that G6b-B inhibits CLEC-2-mediated platelet activation through Shp2. Findings from this study demonstrate that G6b-B must engage with Shp1 and Shp2 in order to mediate its regulatory effects on platelet homeostasis. Copyright © 2018 American Society of Hematology.

  10. Protein tyrosine phosphatase PTP1 negatively regulates Dictyostelium STATa and is required for proper cell-type proportioning.

    PubMed

    Early, A; Gamper, M; Moniakis, J; Kim, E; Hunter, T; Williams, J G; Firtel, R A

    2001-04-01

    The protein tyrosine phosphatase PTP1, which mediates reversible phosphorylation on tyrosine, has been shown to play an important regulatory role during Dictyostelium development. Mutants lacking PTP1 develop more rapidly than normal, while strains that overexpress PTP1 display aberrant morphology. However, the signalling pathways involved have not been characterised. In reexamining these strains, we have found that there is an inverse correlation between levels of PTP1 activity, the extent of tyrosine phosphorylation on Dictyostelium STATa after treatment with cAMP, and the proportion of the slug population exhibiting STATa nuclear enrichment in vivo. This suggests that PTP1 acts to attenuate the tyrosine phosphorylation of STATa and downstream STATa-mediated pathways. Consistent with this, we show that when PTP1 is overexpressed, there is increased expression of a prestalk cell marker at the slug posterior, a phenocopy of STATa null slugs. In ptp1 null strains, STATa tyrosine phosphorylation and nuclear enrichment in the slug anterior is increased. There is also a change in the prestalk to prespore cell ratio. Synergy experiments suggest that this is due to a cell-autonomous defect in forming the subset of prespore cells that are located in the anterior prespore region. Copyright 2001 Academic Press.

  11. Structural Basis for Selective Inhibition of Mycobacterium tuberculosis Protein Tyrosine Phosphatase PtpB

    PubMed Central

    Grundner, Christoph; Perrin, Dominique; van Huijsduijnen, Rob Hooft; Swinnen, Dominique; Gonzalez, Jérome; Gee, Christine L.; Wells, Timothy N.; Alber, Tom

    2007-01-01

    Tyrosine kinases and phosphatases establish the crucial balance of tyrosine phosphorylation in cellular signaling, but creating specific inhibitors of protein Tyr phosphatases (PTPs) remains a challenge. Here we report the development of a potent, selective inhibitor of Mycobacterium tuberculosis PtpB, a bacterial PTP that is secreted into host cells where it disrupts unidentified signaling pathways. The inhibitor, (oxalylamino-methylene)-thiophene sulfonamide (OMTS), showed an IC50 of 440 +/− 50 nM and >60-fold specificity for PtpB over six human PTPs. The 2-Å resolution crystal structure of PtpB in complex with OMTS revealed a large rearrangement of the enzyme, with some residues shifting >27 Å relative to the PtpB:PO4 complex. Extensive contacts with the catalytic loop provide a potential basis for inhibitor selectivity. Two OMTS molecules bound adjacent to each other, raising the possibility of a second substrate phosphotyrosine binding site in PtpB. The PtpB:OMTS structure provides an unanticipated framework to guide inhibitor improvement. PMID:17437721

  12. Protein tyrosine phosphatase-1B (PTP1B) helps regulate EGF-induced stimulation of S-phase entry in human corneal endothelial cells

    PubMed Central

    Ishino, Yutaka; Zhu, Cheng; Harris, Deshea L.

    2008-01-01

    Purpose Human corneal endothelial cells (HCEC), particularly from older donors, only proliferate weakly in response to EGF. The protein tyrosine phosphatase, PTP1B, is known to negatively regulate EGF-induced signaling in several cell types by dephosphorylating the epidermal growth factor receptor (EGFR). The current studies were conducted to determine whether PTP1B plays a role in regulating cell cycle entry in HCEC in response to EGF stimulation. Methods Donor corneas were obtained from the National Disease Research Interchange and accepted for study based on established exclusion criteria. PTP1B was localized in the endothelium of ex vivo corneas and in cultured cells by immunocytochemistry. Western blot analysis verified PTP1B protein expression in HCEC and then compared the relative expression of EGFR and PTP1B in HCEC from young (<3 years old) and older donors (>60 years old). The effect of inhibiting the activity of PTP1B on S-phase entry was tested by comparing time-dependent BrdU incorporation in subconfluent HCEC incubated in the presence or absence of the PTP1B inhibitor, CinnGEL 2Me, before EGF stimulation. Results PTP1B was localized in a punctate pattern mainly within the cytoplasm of HCEC in ex vivo corneas and cultured cells. Western blots revealed the presence of three PTP1B-positive bands in HCEC and the control. Further western blot analysis showed no significant age-related difference in expression of EGFR (p=0.444>0.05); however, PTP1B expression was significantly higher in HCEC from older donors (p=0.024<0.05). Pre-incubation of HCEC with the PTP1B inhibitor significantly increased (p=0.019<0.05) the number of BrdU positive cells by 48 h after EGF stimulation. Conclusions Both immunolocalization and western blot studies confirmed that PTP1B is expressed in HCEC. Staining patterns strongly suggest that at least a subset of PTP1B is localized to the cytoplasm and most likely to the endoplasmic reticulum, the known site of EGFR/PTP1B interaction

  13. Synthesis and Biological Evaluation of Novel N-Aryl-ω-(Benzoazol-2-yl)-Sulfanylalkanamides as Dual Inhibitors of α-Glucosidase and Protein Tyrosine Phosphatase 1B.

    PubMed

    Wang, Mei-Yan; Cheng, Xian-Chao; Chen, Xiu-Bo; Li, Yu; Zang, Lan-Lan; Duan, Yu-Qing; Chen, Ming-Zhu; Yu, Peng; Sun, Hua; Wang, Run-Ling

    2018-05-09

    α-Glucosidase is known to catalyze the digestion of carbohydrates and release free glucose into the digestive tract. Protein tyrosine phosphatase 1B (PTP1B) is engaged in the dephosphorylation of the insulin receptor and regulation of insulin sensitivity. Therefore, dual antagonists by targeting both α-glucosidase and PTP1B may be potential candidates for type 2 diabetes therapy. In this work, three series of novel N-aryl-ω-(benzoazol-2-yl)-sulfanylalkanamides were synthesized and assayed for their α-glucosidase and PTP1B inhibitory activities, respectively. Compound 3l, exhibiting the most effective α-glucosidase inhibitory activity (IC 50 = 10.96 μM (3l), IC 50 = 51.32 μM (Acarbose), IC 50 = 18.22 μM (Ursolic acid)) and potent PTP1B inhibitory activity (IC 50 = 13.46 μM (3l), IC 50 = 14.50 μM (Ursolic acid)), was identified as a novel dual inhibitor of α-glucosidase and PTP1B. Furthermore, 3l is a highly selective PTP1B inhibitor since no inhibition was showed by 3l at 100 μM against PTP-MEG2, TCPTP, SHP2, or SHP1. Subsequent kinetic analysis revealed 3l inhibited α-glucosidase in a reversible and mixed manner. Molecular docking study indicated that hydrogen bonds, van der Waals, charge interactions and Pi-cation interactions all contributed to interactions between 3l and α-glucosidase/PTP1B. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. Protein tyrosine phosphatase 1B (PTP1B) is dispensable for IgE-mediated cutaneous reaction in vivo.

    PubMed

    Yang, Ting; Xie, Zhongping; Li, Hua; Yue, Lei; Pang, Zheng; MacNeil, Adam J; Tremblay, Michel L; Tang, Jin-Tian; Lin, Tong-Jun

    2016-01-01

    Mast cells play a critical role in allergic reactions. The cross-linking of FcεRI-bound IgE with multivalent antigen initiates a cascade of signaling events leading to mast cell activation. It has been well-recognized that cross linking of FcεRI mediates tyrosine phosphorylation. However, the mechanism involved in tyrosine dephosphorylation in mast cells is less clear. Here we demonstrated that protein tyrosine phosphatase 1B (PTP1B)-deficient mast cells showed increased IgE-mediated phosphorylation of the signal transducer and activator of transcription 5 (STAT5) and enhanced production of CCL9 (MIP-1γ) and IL-6 in IgE-mediated mast cells activation in vitro. However, IgE-mediated calcium mobilization, β-hexaosaminidase release (degranulation), and phosphorylation of IκB and MAP kinases were not affected by PTP1B deficiency. Furthermore, PTP1B deficient mice showed normal IgE-dependent passive cutaneous anaphylaxis and late phase cutaneous reactions in vivo. Thus, PTP1B specifically regulates IgE-mediated STAT5 pathway, but is redundant in influencing mast cell function in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Inhibition of protein tyrosine phosphatase (PTP1B) and α-glucosidase by geranylated flavonoids from Paulownia tomentosa.

    PubMed

    Song, Yeong Hun; Uddin, Zia; Jin, Young Min; Li, Zuopeng; Curtis-Long, Marcus John; Kim, Kwang Dong; Cho, Jung Keun; Park, Ki Hun

    2017-12-01

    Protein tyrosine phosphatase 1B (PTP1B) and α-glucosidase are important targets to treat obesity and diabetes, due to their deep correlation with insulin and leptin signalling, and glucose regulation. The methanol extract of Paulownia tomentosa fruits showed potent inhibition against both enzymes. Purification of this extract led to eight geranylated flavonoids (1-8) displaying dual inhibition of PTP1B and α-glucosidase. The isolated compounds were identified as flavanones (1-5) and dihydroflavonols (6-8). Inhibitory potencies of these compounds varied accordingly, but most of the compounds were highly effective against PTP1B (IC 50  = 1.9-8.2 μM) than α-glucosidase (IC 50  = 2.2-78.9 μM). Mimulone (1) was the most effective against PTP1B with IC 50  = 1.9 μM, whereas 6-geranyl-3,3',5,5',7-pentahydroxy-4'-methoxyflavane (8) displayed potent inhibition against α-glucosidase (IC 50  = 2.2 μM). All inhibitors showed mixed type Ι inhibition toward PTP1B, and were noncompetitive inhibitors of α-glucosidase. This mixed type behavior against PTP1B was fully demonstrated by showing a decrease in V max , an increase of K m , and K ik /K iv ratio ranging between 2.66 and 3.69.

  16. The Nonreceptor Protein Tyrosine Phosphatase PTP1B Binds to the Cytoplasmic Domain of N-Cadherin and Regulates the Cadherin–Actin Linkage

    PubMed Central

    Balsamo, Janne; Arregui, Carlos; Leung, TinChung; Lilien, Jack

    1998-01-01

    Cadherin-mediated adhesion depends on the association of its cytoplasmic domain with the actin-containing cytoskeleton. This interaction is mediated by a group of cytoplasmic proteins: α-and β- or γ- catenin. Phosphorylation of β-catenin on tyrosine residues plays a role in controlling this association and, therefore, cadherin function. Previous work from our laboratory suggested that a nonreceptor protein tyrosine phosphatase, bound to the cytoplasmic domain of N-cadherin, is responsible for removing tyrosine-bound phosphate residues from β-catenin, thus maintaining the cadherin–actin connection (Balsamo et al., 1996). Here we report the molecular cloning of the cadherin-associated tyrosine phosphatase and identify it as PTP1B. To definitively establish a causal relationship between the function of cadherin-bound PTP1B and cadherin-mediated adhesion, we tested the effect of expressing a catalytically inactive form of PTP1B in L cells constitutively expressing N-cadherin. We find that expression of the catalytically inactive PTP1B results in reduced cadherin-mediated adhesion. Furthermore, cadherin is uncoupled from its association with actin, and β-catenin shows increased phosphorylation on tyrosine residues when compared with parental cells or cells transfected with the wild-type PTP1B. Both the transfected wild-type and the mutant PTP1B are found associated with N-cadherin, and recombinant mutant PTP1B binds to N-cadherin in vitro, indicating that the catalytically inactive form acts as a dominant negative, displacing endogenous PTP1B, and rendering cadherin nonfunctional. Our results demonstrate a role for PTP1B in regulating cadherin-mediated cell adhesion. PMID:9786960

  17. Identification of YB-1 as a regulator of PTP1B expression: implications for regulation of insulin and cytokine signaling

    PubMed Central

    Fukada, Toshiyuki; Tonks, Nicholas K.

    2003-01-01

    Changes in expression of PTP1B, the prototypic protein tyrosine phosphatase, have been associated with various human diseases; however, the mechanisms by which PTP1B expression is regulated have not been defined. We have identified an enhancer sequence within the PTP1B promoter which serves as a binding site for the transcription factor Y box-binding protein-1 (YB-1). Overexpression of YB-1 resulted in increased levels of PTP1B. Furthermore, depletion of YB-1 protein, by expression of a specific antisense construct, led to an ∼70% decrease in expression of PTP1B, but no change in the level of its closest relative, TC-PTP. Expression of antisense YB-1 resulted in increased sensitivity to insulin and enhanced signaling through the cytokine receptor gp130, which was suppressed by re-expression of PTP1B. Finally, we observed a correlation between the expression of PTP1B and that of YB-1 in cancer cell lines and an animal model of type II diabetes. Our data reveal an important role for YB-1 as a regulator of PTP1B expression, and further highlight PTP1B as a critical regulator of insulin- and cytokine-mediated signal transduction. PMID:12554649

  18. Mechanisms underlying the inhibitory effects of arsenic compounds on protein tyrosine phosphatase (PTP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rehman, Kanwal; Chen, Zhe; Wang, Wen Wen

    2012-09-15

    Arsenic binding to biomolecules is considered one of the major toxic mechanisms, which may also be related to the carcinogenic risks of arsenic in humans. At the same time, arsenic is also known to activate the phosphorylation-dependent signaling pathways including the epidermal growth factor receptor, the mitogen-activated protein kinase and insulin/insulin-like growth factor-1 pathways. These signaling pathways originate at the level of receptor tyrosine kinases whose phosphorylation status is regulated by opposing protein tyrosine phosphatase (PTP) activity. Reversible tyrosine phosphorylation, which is governed by the balanced action of protein tyrosine kinases and phosphatases, regulates important signaling pathways that are involvedmore » in the control of cell proliferation, adhesion and migration. In the present study, we have focused on the interaction of cellular PTPs with toxic trivalent arsenite (iAs{sup III}) and its intermediate metabolites such as monomethylarsonous acid (MMA{sup III}) and dimethylarsinous acid (DMA{sup III}) in vitro, and then determined the arsenic binding site in PTP by the use of recombinant PTPs (e.g., PTP1B and CD45). Interestingly, the activities of PTP1B (cytoplasm-form) or CD45 (receptor-linked form) were observed to be strongly inhibited by both methylated metabolites (i.e., MMA{sup III} and DMA{sup III}) but not by iAs{sup III}. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) has clearly confirmed that the organic intermediate, DMA{sup III} directly bound to the active site cysteine residue of PTP1B (e.g., Cys215), resulting in inhibition of enzyme activity. These results suggest that arsenic exposure may disturb the cellular signaling pathways through PTP inactivation. Highlights: ► This study focused on the interaction of PTPs with trivalent arsenicals in vitro. ► We for the first time confirmed that DMA{sup III} strongly inhibited activity of PTP1B. ► DMA{sup III

  19. Protein tyrosine phosphatase-1B regulates the tyrosine phosphorylation of the adapter Grb2-associated binder 1 (Gab1) in the retina

    PubMed Central

    2013-01-01

    Background Gab1 (Grb2-associated binder 1) is a key coordinator that belongs to the insulin receptor substrate-1 like family of adaptor molecules and is tyrosine phosphorylated in response to various growth factors, cytokines, and numerous other molecules. Tyrosine phosphorylated Gab1 is able to recruit a number of signaling effectors including PI3K, SHP2 and PLC-γ. In this study, we characterized the localization and regulation of tyrosine phosphorylation of Gab1 in the retina. Results Our immuno localization studies suggest that Gab1 is expressed in rod photoreceptor inner segments. We found that hydrogen peroxide activates the tyrosine phosphorylation of Gab1 ex vivo and hydrogen peroxide has been shown to inhibit the protein tyrosine phosphatase PTP1B activity. We found a stable association between the D181A substrate trap mutant of PTP1B and Gab1. Our studies suggest that PTP1B interacts with Gab1 through Tyrosine 83 and this residue may be the major PTP1B target residue on Gab1. We also found that Gab1 undergoes a light-dependent tyrosine phosphorylation and PTP1B regulates the phosphorylation state of Gab1. Consistent with these observations, we found an enhanced Gab1 tyrosine phosphorylation in PTP1B deficient mice and also in retinas treated ex vivo with a PTP1B specific allosteric inhibitor. Conclusions Our laboratory has previously reported that retinas deficient of PTP1B are resistant to light damage compared to wild type mice. Since Gab1 is negatively regulated by PTP1B, a part of the retinal neuroprotective effect we have observed previously in PTP1B deficient mice could be contributed by Gab1 as well. In summary, our data suggest that PTP1B regulates the phosphorylation state of retinal Gab1 in vivo. PMID:23521888

  20. Liver-Specific Deletion of Protein-Tyrosine Phosphatase 1B (PTP1B) Improves Metabolic Syndrome and Attenuates Diet-Induced Endoplasmic Reticulum Stress

    PubMed Central

    Delibegovic, Mirela; Zimmer, Derek; Kauffman, Caitlin; Rak, Kimberly; Hong, Eun-Gyoung; Cho, You-Ree; Kim, Jason K.; Kahn, Barbara B.; Neel, Benjamin G.; Bence, Kendra K.

    2009-01-01

    OBJECTIVE—The protein tyrosine phosphatase PTP1B is a negative regulator of insulin signaling; consequently, mice deficient in PTP1B are hypersensitive to insulin. Because PTP1B−/− mice have diminished fat stores, the extent to which PTP1B directly regulates glucose homeostasis is unclear. Previously, we showed that brain-specific PTP1B−/− mice are protected against high-fat diet–induced obesity and glucose intolerance, whereas muscle-specific PTP1B−/− mice have increased insulin sensitivity independent of changes in adiposity. Here we studied the role of liver PTP1B in glucose homeostasis and lipid metabolism. RESEARCH DESIGN AND METHODS—We analyzed body mass/adiposity, insulin sensitivity, glucose tolerance, and lipid metabolism in liver-specific PTP1B−/− and PTP1Bfl/fl control mice, fed a chow or high-fat diet. RESULTS—Compared with normal littermates, liver-specific PTP1B−/− mice exhibit improved glucose homeostasis and lipid profiles, independent of changes in adiposity. Liver-specific PTP1B−/− mice have increased hepatic insulin signaling, decreased expression of gluconeogenic genes PEPCK and G-6-Pase, enhanced insulin-induced suppression of hepatic glucose production, and improved glucose tolerance. Liver-specific PTP1B−/− mice exhibit decreased triglyceride and cholesterol levels and diminished expression of lipogenic genes SREBPs, FAS, and ACC. Liver-specific PTP1B deletion also protects against high-fat diet–induced endoplasmic reticulum stress response in vivo, as evidenced by decreased phosphorylation of p38MAPK, JNK, PERK, and eIF2α and lower expression of the transcription factors C/EBP homologous protein and spliced X box-binding protein 1. CONCLUSIONS—Liver PTP1B plays an important role in glucose and lipid metabolism, independent of alterations in adiposity. Inhibition of PTP1B in peripheral tissues may be useful for the treatment of metabolic syndrome and reduction of cardiovascular risk in addition to

  1. Protein Tyrosine Phosphatase 1B (PTP1B): A Potential Target for Alzheimer's Therapy?

    PubMed

    Vieira, Marcelo N N; Lyra E Silva, Natalia M; Ferreira, Sergio T; De Felice, Fernanda G

    2017-01-01

    Despite significant advances in current understanding of mechanisms of pathogenesis in Alzheimer's disease (AD), attempts at drug development based on those discoveries have failed to translate into effective, disease-modifying therapies. AD is a complex and multifactorial disease comprising a range of aberrant cellular/molecular processes taking part in different cell types and brain regions. As a consequence, therapeutics for AD should be able to block or compensate multiple abnormal pathological events. Here, we examine recent evidence that inhibition of protein tyrosine phosphatase 1B (PTP1B) may represent a promising strategy to combat a variety of AD-related detrimental processes. Besides its well described role as a negative regulator of insulin and leptin signaling, PTB1B recently emerged as a modulator of various other processes in the central nervous system (CNS) that are also implicated in AD. These include signaling pathways germane to learning and memory, regulation of synapse dynamics, endoplasmic reticulum (ER) stress and microglia-mediated neuroinflammation. We propose that PTP1B inhibition may represent an attractive and yet unexplored therapeutic approach to correct aberrant signaling pathways linked to AD.

  2. Noonan syndrome-associated SHP2/PTPN11 mutants cause EGF-dependent prolonged GAB1 binding and sustained ERK2/MAPK1 activation.

    PubMed

    Fragale, Alessandra; Tartaglia, Marco; Wu, Jie; Gelb, Bruce D

    2004-03-01

    Noonan syndrome is a developmental disorder with dysmorphic facies, short stature, cardiac defects, and skeletal anomalies, which can be caused by missense PTPN11 mutations. PTPN11 encodes Src homology 2 domain-containing tyrosine phosphatase 2 (SHP2 or SHP-2), a protein tyrosine phosphatase that acts in signal transduction downstream to growth factor, hormone, and cytokine receptors. We compared the functional effects of three Noonan syndrome-causative PTPN11 mutations on SHP2's phosphatase activity, interaction with a binding partner, and signal transduction. All SHP2 mutants had significantly increased basal phosphatase activity compared to wild type, but that activity varied significantly between mutants and was further increased after epidermal growth factor stimulation. Cells expressing SHP2 mutants had prolonged extracellular signal-regulated kinase 2 activation, which was ligand-dependent. Binding of SHP2 mutants to Grb2-associated binder-1 was increased and sustained, and tyrosine phosphorylation of both proteins was prolonged. Coexpression of Grb2-associated binder-1-FF, which lacks SHP2 binding motifs, blocked the epidermal growth factor-mediated increase in SHP2's phosphatase activity and resulted in a dramatic reduction of extracellular signal-regulated kinase 2 activation. Taken together, these results document that Noonan syndrome-associated PTPN11 mutations increase SHP2's basal phosphatase activity, with greater activation when residues directly involved in binding at the interface between the N-terminal Src homology 2 and protein tyrosine phosphatase domains are altered. The SHP2 mutants prolonged signal flux through the RAS/mitogen-activated protein kinase (ERK2/MAPK1) pathway in a ligand-dependent manner that required docking through Grb2-associated binder-1 (GAB1), leading to increased cell proliferation. Copyright 2004 Wiley-Liss, Inc.

  3. Reactivation of oxidized PTP1B and PTEN by Thioredoxin 1

    PubMed Central

    Schwertassek, Ulla; Haque, Aftabul; Krishnan, Navasona; Greiner, Romy; Weingarten, Lars; Dick, Tobias P.; Tonks, Nicholas K.

    2014-01-01

    The transient inactivation of protein phosphatases contributes to the efficiency and temporal control of kinase-dependent signal transduction. In particular, members of the protein tyrosine phosphatase family are known to undergo reversible oxidation of their active site cysteine. The thiol oxidation step requires activation of co-localized NADPH oxidases and is mediated by locally produced ROS, in particular H2O2. How oxidized phosphatases are returned to the reduced active state is less well studied. Both major thiol reductive systems, the thioredoxin and the glutathione systems, have been implicated in the reactivation of phosphatases. Here, we show that the protein tyrosine phosphatase PTP1B and the dual-specificity phosphatase PTEN are preferentially reactivated by the thioredoxin system. We show that inducible depletion of TRX1 slows down PTEN re-activation in intact living cells. Finally, using a mechanism-based trapping approach we demonstrate direct thiol disulfide exchange between the active sites of thioredoxin and either phosphatase. The application of thioredoxin trapping mutants represents a complementary approach to direct assays of PTP oxidation in elucidating the significance of redox regulation of PTP function in the control of cell signaling. PMID:24976139

  4. Polycyclic phloroglucinols as PTP1B inhibitors from Hypericum longistylum: Structures, PTP1B inhibitory activities, and interactions with PTP1B.

    PubMed

    Cao, Xiangrong; Yang, Xueyuan; Wang, Peixia; Liang, Yue; Liu, Feng; Tuerhong, Muhetaer; Jin, Da-Qing; Xu, Jing; Lee, Dongho; Ohizumi, Yasushi; Guo, Yuanqiang

    2017-12-01

    Protein tyrosine phosphatase 1B (PTP1B) has been regarded asa target for the research and development of new drugs to treat type II diabetes and PTP1B inhibitors are potential lead compounds for this type of new drugs. A phytochemical investigation to obtain new PTP1B inhibitors resulted in the isolation of four new phloroglucinols, longistyliones A-D (1-4) from the aerial parts of Hypericum longistylum. The structures of 1-4 were elucidated on the basis of extensive 1D and 2D NMR spectroscopic data analysis, and the absolute configurations of these compounds were established by comparing their experimental electronic circular dichroism (ECD) spectra with those calculated by the time-dependent density functional theory method. Compounds 1-4 possess a rare polycyclic phloroglucinol skeleton. The following biological evaluation revealed that all of the compounds showed PTP1B inhibitory effects. The further molecular docking studies indicated the strong interactions between these bioactive compounds with the PTP1B protein, which revealed the possible mechanism of PTP1B inhibition of bioactive compounds. All of the results implied that these compounds are potentially useful for the treatment of type II diabetes. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Modulation of fatty acid synthase degradation by concerted action of p38 MAP kinase, E3 ligase COP1, and SH2-tyrosine phosphatase Shp2.

    PubMed

    Yu, Jianxiu; Deng, Rong; Zhu, Helen H; Zhang, Sharon S; Zhu, Changhong; Montminy, Marc; Davis, Roger; Feng, Gen-Sheng

    2013-02-08

    The Src-homology 2 (SH2) domain-containing tyrosine phosphatase Shp2 has been known to regulate various signaling pathways triggered by receptor and cytoplasmic tyrosine kinases. Here we describe a novel function of Shp2 in control of lipid metabolism by mediating degradation of fatty acid synthase (FASN). p38-phosphorylated COP1 accumulates in the cytoplasm and subsequently binds FASN through Shp2 here as an adapter, leading to FASN-Shp2-COP1 complex formation and FASN degradation mediated by ubiquitination pathway. By fasting p38 is activated and stimulates FASN protein degradation in mice. Consistently, the FASN protein levels are dramatically elevated in mouse liver and pancreas in which Shp2/Ptpn11 is selectively deleted. Thus, this study identifies a new activity for Shp2 in lipid metabolism.

  6. The design strategy of selective PTP1B inhibitors over TCPTP.

    PubMed

    Li, XiangQian; Wang, LiJun; Shi, DaYong

    2016-08-15

    Protein tyrosine phosphatase 1B (PTP1B) has already been well studied as a highly validated therapeutic target for diabetes and obesity. However, the lack of selectivity limited further studies and clinical applications of PTP1B inhibitors, especially over T-cell protein tyrosine phosphatase (TCPTP). In this review, we enumerate the published specific inhibitors of PTP1B, discuss the structure-activity relationships by analysis of their X-ray structures or docking results, and summarize the characteristic of selectivity related residues and groups. Furthermore, the design strategy of selective PTP1B inhibitors over TCPTP is also proposed. We hope our work could provide an effective way to gain specific PTP1B inhibitors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Protein tyrosine phosphatase-PEST (PTP-PEST) regulates mast cell-activating signals in PTP activity-dependent and -independent manners.

    PubMed

    Motohashi, Satoru; Koizumi, Karen; Honda, Reika; Maruyama, Atsuko; Palmer, Helen E F; Mashima, Keisuke

    2014-01-01

    Aggregation of the high-affinity IgE receptor (FcεRI) in mast cells leads to degranulation and production of numerous cytokines and lipid mediators that promote allergic inflammation. Tyrosine phosphorylation of proteins in response to FcεRI aggregation has been implicated in mast cell activation. Here, we determined the role of PTP-PEST (encoded by PTPN12) in the regulation of mast cell activation using the RBL-2H3 rat basophilic leukemia cell line as a model. PTP-PEST expression was significantly induced upon FcεRI-crosslinking, and aggregation of FcεRI induced the phosphorylation of PTP-PEST at Ser39, thus resulting in the suppression of PTP activity. By overexpressing a phosphatase-dead mutant (PTP-PEST CS) and a constitutively active mutant (PTP-PEST SA) in RBL-2H3 cells, we showed that PTP-PEST decreased degranulation and enhanced IL-4 and IL-13 transcription in FcεRI-crosslinked RBL-2H3 cells, but PTP activity of PTP-PEST was not necessary for this regulation. However, FcεRI-induced TNF-α transcription was increased by the overexpression of PTP-PEST SA and suppressed by the overexpression of PTP-PEST CS. Taken together, these results suggest that PTP-PEST is involved in the regulation of FcεRI-mediated mast cell activation through at least two different processes represented by PTP activity-dependent and -independent pathways. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Dock/Nck facilitates PTP61F/PTP1B regulation of insulin signalling.

    PubMed

    Wu, Chia-Lun; Buszard, Bree; Teng, Chun-Hung; Chen, Wei-Lin; Warr, Coral G; Tiganis, Tony; Meng, Tzu-Ching

    2011-10-01

    PTP1B (protein tyrosine phosphatase 1B) is a negative regulator of IR (insulin receptor) activation and glucose homoeostasis, but the precise molecular mechanisms governing PTP1B substrate selectivity and the regulation of insulin signalling remain unclear. In the present study we have taken advantage of Drosophila as a model organism to establish the role of the SH3 (Src homology 3)/SH2 adaptor protein Dock (Dreadlocks) and its mammalian counterpart Nck in IR regulation by PTPs. We demonstrate that the PTP1B orthologue PTP61F dephosphorylates the Drosophila IR in S2 cells in vitro and attenuates IR-induced eye overgrowth in vivo. Our studies indicate that Dock forms a stable complex with PTP61F and that Dock/PTP61F associate with the IR in response to insulin. We report that Dock is required for effective IR dephosphorylation and inactivation by PTP61F in vitro and in vivo. Furthermore, we demonstrate that Nck interacts with PTP1B and that the Nck/PTP1B complex inducibly associates with the IR for the attenuation of IR activation in mammalian cells. Our studies reveal for the first time that the adaptor protein Dock/Nck attenuates insulin signalling by recruiting PTP61F/PTP1B to its substrate, the IR.

  9. Src homology domain 2-containing protein-tyrosine phosphatase-1 (SHP-1) binds and dephosphorylates G(alpha)-interacting, vesicle-associated protein (GIV)/Girdin and attenuates the GIV-phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway.

    PubMed

    Mittal, Yash; Pavlova, Yelena; Garcia-Marcos, Mikel; Ghosh, Pradipta

    2011-09-16

    GIV (Gα-interacting vesicle-associated protein, also known as Girdin) is a bona fide enhancer of PI3K-Akt signals during a diverse set of biological processes, e.g. wound healing, macrophage chemotaxis, tumor angiogenesis, and cancer invasion/metastasis. We recently demonstrated that tyrosine phosphorylation of GIV by receptor and non-receptor-tyrosine kinases is a key step that is required for GIV to directly bind and enhance PI3K activity. Here we report the discovery that Src homology 2-containing phosphatase-1 (SHP-1) is the major protein-tyrosine phosphatase that targets two critical phosphotyrosines within GIV and antagonizes phospho-GIV-dependent PI3K enhancement in mammalian cells. Using phosphorylation-dephosphorylation assays, we demonstrate that SHP-1 is the major and specific protein-tyrosine phosphatase that catalyzes the dephosphorylation of tyrosine-phosphorylated GIV in vitro and inhibits ligand-dependent tyrosine phosphorylation of GIV downstream of both growth factor receptors and GPCRs in cells. In vitro binding and co-immunoprecipitation assays demonstrate that SHP-1 and GIV interact directly and constitutively and that this interaction occurs between the SH2 domain of SHP-1 and the C terminus of GIV. Overexpression of SHP-1 inhibits tyrosine phosphorylation of GIV and formation of phospho-GIV-PI3K complexes, and specifically suppresses GIV-dependent activation of Akt. Consistently, depletion of SHP-1 enhances peak tyrosine phosphorylation of GIV, which coincides with an increase in peak Akt activity. We conclude that SHP-1 antagonizes the action of receptor and non-receptor-tyrosine kinases on GIV and down-regulates the phospho-GIV-PI3K-Akt axis of signaling.

  10. Legionella pneumophila effector WipA, a bacterial PPP protein phosphatase with PTP activity.

    PubMed

    Jia, Qian; Lin, Yun; Gou, Xuejing; He, Lei; Shen, Dong; Chen, Dongni; Xie, Wei; Lu, Yongjun

    2018-04-26

    The gram-negative bacterium Legionella pneumophila invades human's lung and causes Legionnaires' disease. To benefit its survival and replication in cellular milieu, L. pneumophila secrets at least 330 effector proteins into host cells. We found that the effector WipA has the protein tyrosine phosphatase (PTP) activity but does not depend on the classical CX5R motif for activity, suggesting that WipA is an unconventional PTP. Meanwhile, the presence of three other highly conserved motifs typically seen in protein serine/threonine phosphatases and the poor inhibition of WipA activity by okadaic acid led us to propose that WipA is a bacterial protein phosphatase. In addition, the determination of the 2.55-Å crystal structure of WipA revealed that WipA resembles cold-active protein tyrosine phosphatase (CAPTPase), and therefore very likely shares the same catalytic mechanism.

  11. SHP2 Is Required for BCR-ABL1-Induced Hematologic Neoplasia

    PubMed Central

    Gu, Shengqing; Sayad, Azin; Chan, Gordon; Yang, Wentian; Lu, Zhibin; Virtanen, Carl; Van Etten, Richard A.; Neel, Benjamin G.

    2017-01-01

    BCR-ABL1-targeting tyrosine kinase inhibitors (TKIs) have revolutionized treatment of Philadelphia chromosome-positive (Ph+) hematologic neoplasms. Nevertheless, acquired TKI resistance remains a major problem in chronic myeloid leukemia (CML), and TKIs are less effective against Ph+ B-cell acute lymphoblastic leukemia (B-ALL). GAB2, a scaffolding adaptor that binds and activates SHP2, is essential for leukemogenesis by BCR-ABL1, and a GAB2 mutant lacking SHP2 binding cannot mediate leukemogenesis. Using a genetic loss-of-function approach and bone marrow transplantation (BMT) models for CML and BCR-ABL1+ B-ALL, we show that SHP2 is required for BCR-ABL1-evoked myeloid and lymphoid neoplasia. Ptpn11 deletion impairs initiation and maintenance of CML-like myeloproliferative neoplasm, and compromises induction of BCR-ABL1+ B-ALL. SHP2, and specifically, its SH2 domains, PTP activity and C-terminal tyrosines, is essential for BCR-ABL1+, but not WT, pre-B cell proliferation. The MEK/ERK pathway is regulated by SHP2 in WT and BCR-ABL1+ pre-B cells, but is only required for the proliferation of BCR-ABL1+ cells. SHP2 is required for SRC family kinase (SFK) activation only in BCR-ABL1+ pre-B cells. RNAseq reveals distinct SHP2-dependent transcriptional programs in BCR-ABL1+ and WT pre-B cells. Our results suggest that SHP2, via SFKs and ERK, represses MXD3/4 to facilitate a MYC-dependent proliferation program in BCR-ABL1-transformed pre-B cells. PMID:28804122

  12. Protein Phosphotyrosine Phosphatase 1B (PTP1B) in Calpain-dependent Feedback Regulation of Vascular Endothelial Growth Factor Receptor (VEGFR2) in Endothelial Cells

    PubMed Central

    Zhang, Yixuan; Li, Qiang; Youn, Ji Youn; Cai, Hua

    2017-01-01

    The VEGF/VEGFR2/Akt/eNOS/NO pathway is essential to VEGF-induced angiogenesis. We have previously discovered a novel role of calpain in mediating VEGF-induced PI3K/AMPK/Akt/eNOS activation through Ezrin. Here, we sought to identify possible feedback regulation of VEGFR2 by calpain via its substrate protein phosphotyrosine phosphatase 1B (PTP1B), and the relevance of this pathway to VEGF-induced angiogenesis, especially in diabetic wound healing. Overexpression of PTP1B inhibited VEGF-induced VEGFR2 and Akt phosphorylation in bovine aortic endothelial cells, while PTP1B siRNA increased both, implicating negative regulation of VEGFR2 by PTP1B. Calpain inhibitor ALLN induced VEGFR2 activation, which can be completely blocked by PTP1B overexpression. Calpain activation induced by overexpression or Ca/A23187 resulted in PTP1B cleavage, which can be blocked by ALLN. Moreover, calpain activation inhibited VEGF-induced VEGFR2 phosphorylation, which can be restored by PTP1B siRNA. These data implicate calpain/PTP1B negative feedback regulation of VEGFR2, in addition to the primary signaling pathway of VEGF/VEGFR2/calpain/PI3K/AMPK/Akt/eNOS. We next examined a potential role of PTP1B in VEGF-induced angiogenesis. Endothelial cells transfected with PTP1B siRNA showed faster wound closure in response to VEGF. Aortic discs isolated from PTP1B siRNA-transfected mice also had augmented endothelial outgrowth. Importantly, PTP1B inhibition and/or calpain overexpression significantly accelerated wound healing in STZ-induced diabetic mice. In conclusion, our data for the first time demonstrate a calpain/PTP1B/VEGFR2 negative feedback loop in the regulation of VEGF-induced angiogenesis. Modulation of local PTP1B and/or calpain activities may prove beneficial in the treatment of impaired wound healing in diabetes. PMID:27872190

  13. Site-Selective Regulation of Platelet-Derived Growth Factor β Receptor Tyrosine Phosphorylation by T-Cell Protein Tyrosine Phosphatase

    PubMed Central

    Persson, Camilla; Sävenhed, Catrine; Bourdeau, Annie; Tremblay, Michel L.; Markova, Boyka; Böhmer, Frank D.; Haj, Fawaz G.; Neel, Benjamin G.; Elson, Ari; Heldin, Carl-Henrik; Rönnstrand, Lars; Östman, Arne; Hellberg, Carina

    2004-01-01

    The platelet-derived growth factor (PDGF) β receptor mediates mitogenic and chemotactic signals. Like other tyrosine kinase receptors, the PDGF β receptor is negatively regulated by protein tyrosine phosphatases (PTPs). To explore whether T-cell PTP (TC-PTP) negatively regulates the PDGF β receptor, we compared PDGF β receptor tyrosine phosphorylation in wild-type and TC-PTP knockout (ko) mouse embryos. PDGF β receptors were hyperphosphorylated in TC-PTP ko embryos. Fivefold-higher ligand-induced receptor phosphorylation was observed in TC-PTP ko mouse embryo fibroblasts (MEFs) as well. Reexpression of TC-PTP partly abolished this difference. As determined with site-specific phosphotyrosine antibodies, the extent of hyperphosphorylation varied among different autophosphorylation sites. The phospholipase Cγ1 binding site Y1021, previously implicated in chemotaxis, displayed the largest increase in phosphorylation. The increase in Y1021 phosphorylation was accompanied by increased phospholipase Cγ1 activity and migratory hyperresponsiveness to PDGF. PDGF β receptor tyrosine phosphorylation in PTP-1B ko MEFs but not in PTPɛ ko MEFs was also higher than that in control cells. This increase occurred with a site distribution different from that seen after TC-PTP depletion. PDGF-induced migration was not increased in PTP-1B ko cells. In summary, our findings identify TC-PTP as a previously unrecognized negative regulator of PDGF β receptor signaling and support the general notion that PTPs display site selectivity in their action on tyrosine kinase receptors. PMID:14966296

  14. THE UNCOVERING OF A NOVEL REGULATORY MECHANISM FOR PLD2: FORMATION OF A TERNARY COMPLEX WITH PROTEIN TYROSINE PHOSPHATASE PTP1B AND GROWTH FACTOR RECEPTOR-BOUND PROTEIN GRB2

    PubMed Central

    Horn, Jeff; Lopez, Isabel; Miller, Mill; Gomez-Cambronero, Julian

    2011-01-01

    The regulation of PLD2 activation is poorly understood at present. Transient transfection of COS-7 with a mycPLD2 construct results in elevated levels of PLD2 enzymatic activity and tyrosyl phosphorylation. To investigate whether this phosphorylation affects PLD2 enzymatic activity, anti-myc immunoprecipitates were treated with recombinant protein tyrosine phosphatase PTP1B. Surprisingly, lipase activity and PY levels both increased over a range of PTP1B concentrations. These increases occurred in parallel to a measurable PTP1B-associated phosphatase activity. Inhibitor studies demonstrated that an EGF-receptor type kinase is involved in phosphorylation. In a COS-7 cell line created in the laboratory that stably expressed myc-PLD2, PTP1B induced a robust (>6-fold) augmentation of myc-PLD2 phosphotyrosine content. The addition of growth factor receptor-bound protein 2 (Grb2) to cell extracts also elevated PY levels of myc-PLD (>10-fold). Systematic co-immunoprecipitation-immunoblotting experiments pointed at a physical association between PLD2, Grb2 and PTP1B in both physiological conditions and in overexpressed cells. This is the first report of a demonstration of the mammalian isoform PLD2 existing in a ternary complex with a protein tyrosine phosphatase, PTP1b, and the docking protein Grb2 which greatly enhances tyrosyl phosphorylation of the lipase. PMID:15896299

  15. Increased expression of tyrosine phosphatase SHP-2 in Helicobacter pylori-infected gastric cancer

    PubMed Central

    Jiang, Jing; Jin, Mei-Shan; Kong, Fei; Wang, Yin-Ping; Jia, Zhi-Fang; Cao, Dong-Hui; Ma, Hong-Xi; Suo, Jian; Cao, Xue-Yuan

    2013-01-01

    AIM: To explore the alteration of tyrosine phosphatase SHP-2 protein expression in gastric cancer and to assess its prognostic values. METHODS: Three hundred and five consecutive cases of gastric cancer were enrolled into this study. SHP-2 expression was carried out in 305 gastric cancer specimens, of which 83 were paired adjacent normal gastric mucus samples, using a tissue microarray immunohistochemical method. Correlations were analyzed between expression levels of SHP-2 protein and tumor parameters or clinical outcomes. Serum anti-Helicobacter pylori (H. pylori) immunoglobulin G was detected with enzyme-linked immunosorbent assay. Cox proportional hazards model was used to evaluate prognostic values by compassion of the expression levels of SHP-2 and disease-specific survivals in patients. RESULTS: SHP-2 staining was found diffuse mainly in the cytoplasm and the weak staining was also observed in the nucleus in gastric mucosa cells. Thirty-two point five percent of normal epithelial specimen and 62.6% of gastric cancer specimen were identified to stain with SHP-2 antibody positively (P < 0.001). Though SHP-2 staining intensities were stronger in the H. pylori (+) group than in the H. pylori (-) group, no statistically significant difference was found in the expression levels of SHP-2 between H. pylori (+) and H. pylori (-) gastric cancer (P = 0.40). The SHP-2 expression in gastric cancer was not significantly associated with cancer stages, lymph node metastases, and distant metastasis of the tumors (P = 0.34, P = 0.17, P = 0.52). Multivariate analysis demonstrated no correlation between SHP-2 expression and disease-free survival (P = 0.86). CONCLUSION: Increased expression of SHP-2 protein in gastric cancer specimen suggesting the aberrant up-regulation of SHP-2 protein might play an important role in the gastric carcinogenesis. PMID:23382639

  16. UVB-induced nuclear translocation of TC-PTP by AKT/14-3-3σ axis inhibits keratinocyte survival and proliferation.

    PubMed

    Kim, Mihwa; Morales, Liza D; Baek, Minwoo; Slaga, Thomas J; DiGiovanni, John; Kim, Dae Joon

    2017-10-31

    Understanding protein subcellular localization is important to determining the functional role of specific proteins. T-cell protein tyrosine phosphatase (TC-PTP) contains bipartite nuclear localization signals (NLSI and NLSII) in its C-terminus. We previously have demonstrated that the nuclear form of TC-PTP (TC45) is mainly localized to the cytoplasm in keratinocytes and it is translocated to the nucleus following UVB irradiation. Here, we report that TC45 is translocated by an AKT/14-3-3σ-mediated mechanism in response to UVB exposure, resulting in increased apoptosis and decreased keratinocyte proliferation. We demonstrate that UVB irradiation increased phosphorylation of AKT and induced nuclear translocation of 14-3-3σ and TC45. However, inhibition of AKT blocked nuclear translocation of TC45 and 14-3-3σ. Site-directed mutagenesis of 14-3-3σ binding sites within TC45 showed that a substitution at Threonine 179 (TC45/T179A) effectively blocked UVB-induced nuclear translocation of ectopic TC45 due to the disruption of the direct binding between TC45 and 14-3-3σ. Overexpression of TC45/T179A in keratinocytes resulted in a decrease of UVB-induced apoptosis which corresponded to an increase in nuclear phosphorylated STAT3, and cell proliferation was higher in TC45/T179A-overexpressing keratinocytes compared to control keratinocytes following UVB irradiation. Furthermore, deletion of TC45 NLSII blocked its UVB-induced nuclear translocation, indicating that both T179 and NLSII are required. Taken together, our findings suggest that AKT and 14-3-3σ cooperatively regulate TC45 nuclear translocation in a critical step of an early protective mechanism against UVB exposure that signals the deactivation of STAT3 in order to promote keratinocyte cell death and inhibit keratinocyte proliferation.

  17. Shp1 regulates T cell homeostasis by limiting IL-4 signals

    PubMed Central

    Johnson, Dylan J.; Pao, Lily I.; Dhanji, Salim; Murakami, Kiichi

    2013-01-01

    The protein-tyrosine phosphatase Shp1 is expressed ubiquitously in hematopoietic cells and is generally viewed as a negative regulatory molecule. Mutations in Ptpn6, which encodes Shp1, result in widespread inflammation and premature death, known as the motheaten (me) phenotype. Previous studies identified Shp1 as a negative regulator of TCR signaling, but the severe systemic inflammation in me mice may have confounded our understanding of Shp1 function in T cell biology. To define the T cell–intrinsic role of Shp1, we characterized mice with a T cell–specific Shp1 deletion (Shp1fl/fl CD4-cre). Surprisingly, thymocyte selection and peripheral TCR sensitivity were unaltered in the absence of Shp1. Instead, Shp1fl/fl CD4-cre mice had increased frequencies of memory phenotype T cells that expressed elevated levels of CD44. Activation of Shp1-deficient CD4+ T cells also resulted in skewing to the Th2 lineage and increased IL-4 production. After IL-4 stimulation of Shp1-deficient T cells, Stat 6 activation was sustained, leading to enhanced Th2 skewing. Accordingly, we observed elevated serum IgE in the steady state. Blocking or genetic deletion of IL-4 in the absence of Shp1 resulted in a marked reduction of the CD44hi population. Therefore, Shp1 is an essential negative regulator of IL-4 signaling in T lymphocytes. PMID:23797092

  18. The Role of PTP1B O-GlcNAcylation in Hepatic Insulin Resistance.

    PubMed

    Zhao, Yun; Tang, Zhuqi; Shen, Aiguo; Tao, Tao; Wan, Chunhua; Zhu, Xiaohui; Huang, Jieru; Zhang, Wanlu; Xia, Nana; Wang, Suxin; Cui, Shiwei; Zhang, Dongmei

    2015-09-22

    Protein tyrosine phosphatase 1B (PTP1B), which can directly dephosphorylate both the insulin receptor and insulin receptor substrate 1 (IRS-1), thereby terminating insulin signaling, reportedly plays an important role in insulin resistance. Accumulating evidence has demonstrated that O-GlcNAc modification regulates functions of several important components of insulin signal pathway. In this study, we identified that PTP1B is modified by O-GlcNAcylation at three O-GlcNAc sites (Ser104, Ser201, and Ser386). Palmitate acid (PA) impaired the insulin signaling, indicated by decreased phosphorylation of both serine/threonine-protein kinase B (Akt) and glycogen synthase kinase 3 beta (GSK3β) following insulin administration, and upregulated PTP1B O-GlcNAcylation in HepG2 cells. Compared with the wild-type, intervention PTP1B O-GlcNAcylation by site-directed gene mutation inhibited PTP1B phosphatase activity, resulted in a higher level of phosphorylated Akt and GSK3β, recovered insulin sensitivity, and improved lipid deposition in HepG2 cells. Taken together, our research showed that O-GlcNAcylation of PTP1B can influence insulin signal transduction by modulating its own phosphatase activity, which participates in the process of hepatic insulin resistance.

  19. Somatostatin/somatostatin receptor signalling: phosphotyrosine phosphatases.

    PubMed

    Florio, Tullio

    2008-05-14

    Activation of phosphotyrosine phosphatases (PTPs) by somatostatin receptor (SSTR) represents one of the main intracellular mechanisms involved in the antiproliferative effect of somatostatin (SST) and analogues. Since their molecular cloning, the role of PTPs is emerging as a major regulator of different cell functions including cell proliferation, differentiation, cell to cell interactions, cell matrix adhesion and cell migration. It was demonstrated that PTPs possess high substrate specificity and their activity is tightly regulated. Importantly, different G protein-coupled receptors transduce their biological activities through PTPs. PTPs were identified as down-stream effectors of SSTRs to transduce antiproliferative signals, and so far, three family members (SHP-1, SHP-2 and DEP-1/PTPeta) have been identified as selective SSTR intracellular effectors. Here, the molecular mechanisms leading SSTRs to regulate PTP activity are discussed, focusing on recent data showing a close interplay between PTPs and tyrosine kinases to transduce tumoral cell growth arrest following SST analogs administration.

  20. A potent, selective, and orally bioavailable inhibitor of the protein-tyrosine phosphatase PTP1B improves insulin and leptin signaling in animal models.

    PubMed

    Krishnan, Navasona; Konidaris, Konstantis F; Gasser, Gilles; Tonks, Nicholas K

    2018-02-02

    The protein-tyrosine phosphatase PTP1B is a negative regulator of insulin and leptin signaling and a highly validated therapeutic target for diabetes and obesity. Conventional approaches to drug development have produced potent and specific PTP1B inhibitors, but these inhibitors lack oral bioavailability, which limits their potential for drug development. Here, we report that DPM-1001, an analog of the specific PTP1B inhibitor trodusquemine (MSI-1436), is a potent, specific, and orally bioavailable inhibitor of PTP1B. DPM-1001 also chelates copper, which enhanced its potency as a PTP1B inhibitor. DPM-1001 displayed anti-diabetic properties that were associated with enhanced signaling through insulin and leptin receptors in animal models of diet-induced obesity. Therefore, DPM-1001 represents a proof of concept for a new approach to therapeutic intervention in diabetes and obesity. Although the PTPs have been considered undruggable, the findings of this study suggest that allosteric PTP inhibitors may help reinvigorate drug development efforts that focus on this important family of signal-transducing enzymes. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Competitive protein tyrosine phosphatase 1B (PTP1B) inhibitors, prenylated caged xanthones from Garcinia hanburyi and their inhibitory mechanism.

    PubMed

    Tan, Xue Fei; Uddin, Zia; Park, Chanin; Song, Yeong Hun; Son, Minky; Lee, Keun Woo; Park, Ki Hun

    2017-04-15

    Protein tyrosine phosphatase 1B (PTP1B) plays important role in diabetes, obesity and cancer. The methanol extract of the gum resin of Garcinia hanburyi (G. hanburyi) showed potent PTP1B inhibition at 10µg/ml. The active compounds were identified as prenylated caged xanthones (1-9) which inhibited PTP1B in dose-dependent manner. Carboxybutenyl group within caged motif (A ring) was found to play a critical role in enzyme inhibition such as 1-6 (IC 50 s=0.47-4.69µM), whereas compounds having hydroxymethylbutenyl 7 (IC 50 =70.25µM) and methylbutenyl 8 (IC 50 >200µM) showed less activity. The most potent inhibitor, gambogic acid 1 (IC 50 =0.47µM) showed 30-fold more potency than ursolic acid (IC 50 =15.5µM), a positive control. In kinetic study, all isolated xanthones behaved as competitive inhibitors which were fully demonstrated with K m , V max and K ik /K iv ratio. It was also proved that inhibitor 1 operated under the enzyme isomerization model having k 5 =0.0751µM - 1 S - 1 , k 6 =0.0249µM - 1 S - 1 and K i app =0.499µM. To develop a pharmacophore model, we explored the binding sites of compound 1 and 7 in PTP1B. These modeling results were in agreement with our findings, which revealed that the inhibitory activities are tightly related to caged motif and prenyl group in A ring. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. PTP1B antisense oligonucleotide lowers PTP1B protein, normalizes blood glucose, and improves insulin sensitivity in diabetic mice.

    PubMed

    Zinker, Bradley A; Rondinone, Cristina M; Trevillyan, James M; Gum, Rebecca J; Clampit, Jill E; Waring, Jeffrey F; Xie, Nancy; Wilcox, Denise; Jacobson, Peer; Frost, Leigh; Kroeger, Paul E; Reilly, Regina M; Koterski, Sandra; Opgenorth, Terry J; Ulrich, Roger G; Crosby, Seth; Butler, Madeline; Murray, Susan F; McKay, Robert A; Bhanot, Sanjay; Monia, Brett P; Jirousek, Michael R

    2002-08-20

    The role of protein-tyrosine phosphatase 1B (PTP1B) in diabetes was investigated using an antisense oligonucleotide in ob/ob and db/db mice. PTP1B antisense oligonucleotide treatment normalized plasma glucose levels, postprandial glucose excursion, and HbA(1C). Hyperinsulinemia was also reduced with improved insulin sensitivity. PTP1B protein and mRNA were reduced in liver and fat with no effect in skeletal muscle. Insulin signaling proteins, insulin receptor substrate 2 and phosphatidylinositol 3 (PI3)-kinase regulatory subunit p50alpha, were increased and PI3-kinase p85alpha expression was decreased in liver and fat. These changes in protein expression correlated with increased insulin-stimulated protein kinase B phosphorylation. The expression of liver gluconeogenic enzymes, phosphoenolpyruvate carboxykinase, and fructose-1,6-bisphosphatase was also down-regulated. These findings suggest that PTP1B modulates insulin signaling in liver and fat, and that therapeutic modalities targeting PTP1B inhibition may have clinical benefit in type 2 diabetes.

  3. SHP-2 expression negatively regulates NK cell function1,2

    PubMed Central

    Purdy, Amanda K.; Campbell, Kerry S.

    2009-01-01

    Src homology region 2-containing protein tyrosine phosphatase-2 (SHP-2)4 is required for full activation of Ras/ERK in many cytokine and growth factor receptor signaling pathways. In contrast, SHP-2 inhibits activation of human natural killer (NK) cells upon recruitment to killer cell Ig-like receptors (KIR)4. To determine how SHP-2 impacts NK cell activation in KIR-dependent or KIR-independent signaling pathways, we employed knockdown and overexpression strategies in NK-like cell lines and analyzed the consequences on functional responses. In response to stimulation with susceptible target cells, SHP-2-silenced NK cells had elevated cytolytic activity and IFN-γ production, whereas cells overexpressing wild type or gain-of-function mutants of SHP-2 exhibited dampened activities. Increased levels of SHP-2 expression over this range significantly suppressed microtubule organizing center (MTOC)4 polarization and granzyme B release in response to target cells. Interestingly, NK-target cell conjugation was only reduced by overexpressing SHP-2, but not potentiated in SHP-2-silenced cells, indicating that conjugation is not influenced by physiological levels of SHP-2 expression. KIR-dependent inhibition of cytotoxicity was unaffected by significant reductions in SHP-2 levels, presumably because KIR were still capable of recruiting the phosphatase under these limiting conditions. In contrast, the general suppressive effect of SHP-2 on cytotoxicity and cytokine release was much more sensitive to changes in cellular SHP-2 levels. In summary, our studies have identified a new, KIR-independent role for SHP-2 in dampening NK cell activation in response to tumor target cells in a concentration-dependent manner. This suppression of activation impacts MTOC-based cytoskeletal rearrangement and granule release. PMID:19915046

  4. LOW MOLECULAR WEIGHT PROTEIN TYROSINE PHOSPHATASE (LMW-PTP) AND ITS POSSIBLE PHYSIOLOGICAL FUNCTIONS OF REDOX SIGNALING IN THE EYE LENS*

    PubMed Central

    Xing, Kuiyi; Raza, Ashraf; Löfgren, Stefan.; Fernando, M. Rohan.; Ho, Ye-Shih; Lou, Marjorie F.

    2007-01-01

    Low molecular weight protein tyrosine phosphatase (LMW-PTP) was cloned from human lens epithelial B3 cells (HLE B3) and the recombinant enzyme was purified to homogeneity. The pure enzyme reacted positively with anti-LMW-PTP antibody, displayed tyrosine-specific phosphatase activity and was extremely sensitive to H2O2. The inactivated LMW-PTP could be regenerated by thioltransferase (TTase)/GSH system as demonstrated by both activity assay and by mass spectrometry (MS). The MS study also showed that an intramolecular disulfide bond was formed between C13 and C18 at the active site, and was reduced by the TTase/GSH system. The putative role of LMW-PTP in regulating platelet derived growth factor (PDGF)-stimulated cell signaling was demonstrated in wild type mouse lens epithelial cells (LEC) in which LMW-PTP was transiently inactivated, corroborated with the transient phosphorylation of Tyr857 at the active site of PDGF receptor and the downstream signaling components of Akt and ERK1/2. In contrast, LMW-PTP activity in PDGF-stimulated LEC from TTase −/− mice was progressively lost, concomitant with the high basal and sustained high phosphorylation levels at Tyr857, Akt and ERK1/2. We conclude that the reversible LMW-PTP activity regulated by ROS-mediated oxidation and TTase/GSH reduction is the likely mechanism of redox signaling in lens epithelial cells. PMID:17428749

  5. Activation of T-cell Protein-tyrosine Phosphatase Suppresses Keratinocyte Survival and Proliferation following UVB Irradiation*

    PubMed Central

    Lee, Hyunseung; Morales, Liza D.; Slaga, Thomas J.; Kim, Dae Joon

    2015-01-01

    Chronic exposure to UV radiation can contribute to the development of skin cancer by promoting protein-tyrosine kinase (PTK) signaling. Studies show that exposure to UV radiation increases the ligand-independent activation of PTKs and induces protein-tyrosine phosphatase (PTP) inactivation. In the present work, we report that T-cell PTP (TC-PTP) activity is stimulated during the initial response to UVB irradiation, which leads to suppression of keratinocyte cell survival and proliferation via the down-regulation of STAT3 signaling. Our results show that TC-PTP-deficient keratinocyte cell lines expressed a significantly increased level of phosphorylated STAT3 after exposure to low dose UVB. This increase corresponded with increased cell proliferation in TC-PTP-deficient keratinocytes following UVB irradiation. Loss of TC-PTP also reduced UVB-induced apoptosis. Corroborating with these results, overexpression of TC-PTP in keratinocyte cell lines yielded a decrease in phosphorylated STAT3 levels, which corresponded with a significant decrease in cell proliferation in response to low dose UVB. We demonstrate that TC-PTP activity was increased upon UVB exposure, and overexpression of TC-PTP in keratinocyte cell lines further increased its activity in the presence of UVB. Treatment of TC-PTP-deficient keratinocytes with the STAT3 inhibitor STA21 significantly reduced cell viability following UVB exposure in comparison with untreated TC-PTP-deficient keratinocytes, confirming that the effect of TC-PTP on cell viability is mediated by STAT3 dephosphorylation. Combined, our results indicate that UVB-mediated activation of TC-PTP plays an important role in the STAT3-dependent regulation of keratinocyte cell proliferation and survival. Furthermore, these results suggest that TC-PTP may be a novel potential target for the prevention of UVB-induced skin cancer. PMID:25406309

  6. Differential interaction of the tyrosine phosphatases PTP-SL, STEP and HePTP with the mitogen-activated protein kinases ERK1/2 and p38alpha is determined by a kinase specificity sequence and influenced by reducing agents.

    PubMed Central

    Muñoz, Juan José; Tárrega, Céline; Blanco-Aparicio, Carmen; Pulido, Rafael

    2003-01-01

    The protein tyrosine phosphatases (PTPs) PTP-SL, STEP and HePTP are mitogen-activated protein kinase (MAPK) substrates and regulators that bind to MAPKs through a kinase-interaction motif (KIM) located in their non-catalytic regulatory domains. We have found that the binding of these PTPs to the MAPKs extracellular-signal-regulated kinase 1 and 2 (ERK1/2), and p38alpha is differentially determined by the KIM-adjacent C-terminal regions of the PTPs, which have been termed kinase-specificity sequences, and is influenced by reducing agents. Under control conditions, PTP-SL bound preferentially to ERK1/2, whereas STEP and HePTP bound preferentially to p38alpha. Under reducing conditions, the association of p38alpha with STEP or HePTP was impaired, whereas the association with PTP-SL was unaffected. On the other hand, the association of ERK1/2 with HePTP was increased under reducing conditions, whereas the association with STEP or PTP-SL was unaffected. In intact cells, PTP-SL and STEP distinctively regulated the kinase activity and the nuclear translocation of ERK1/2 and p38alpha. Our results suggest that intracellular redox conditions could modulate the activity and subcellular location of ERK1/2 and p38alpha by controlling their association with their regulatory PTPs. PMID:12583813

  7. Caged xanthones displaying protein tyrosine phosphatase 1B (PTP1B) inhibition from Cratoxylum cochinchinense.

    PubMed

    Li, Zuo Peng; Lee, Hyeong-Hwan; Uddin, Zia; Song, Yeong Hun; Park, Ki Hun

    2018-08-01

    Four new caged xanthones (1-4) and two known compounds (5, 6) were isolated from the roots of Cratoxylum cochinchinense, a polyphenol rich plant, collected in China. The structures of the isolated compounds (1-6) were characterized by obtaining their detailed spectroscopic data. In particular, compounds 1 and 6 were fully identified by X-ray crystallographic data. The isolated compounds (1-6) were evaluated against protein tyrosine phosphatase 1B (PTP1B), which plays an important role in diabetes, obesity, and cancer. Among these compounds, 3, 4, and 6 displayed significant inhibition with IC 50 values of 76.3, 43.2, and 6.6 µM, respectively. A detailed kinetic study was conducted by determining K m , V max , and the ratio of K ik and K iv , which revealed that all the compounds behaved as competitive inhibitors. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Inhibition of protein tyrosine phosphatase 1B (PTP1B) and α-glucosidase by xanthones from Cratoxylum cochinchinense, and their kinetic characterization.

    PubMed

    Li, Zuo Peng; Song, Yeong Hun; Uddin, Zia; Wang, Yan; Park, Ki Hun

    2018-02-01

    Cratoxylum cochinchinense displayed significant inhibition against protein tyrosine phosphatase 1B (PTP1B) and α-glucosidase, both of which are key target enzymes to attenuate diabetes and obesity. The compounds responsible for both enzymes inhibition were identified as twelve xanthones (1-12) among which compounds 1 and 2 were found to be new ones. All of them simultaneously inhibited PTP1B with IC 50 s of (2.4-52.5 µM), and α-glucosidase with IC 50 values of (1.7-72.7 µM), respectively. Cratoxanthone A (3) and γ-mangostin (7) were estimated to be most active inhibitors against both PTP1B (IC 50  = 2.4 µM for 3, 2.8 µM for 7) and α-glucosidase (IC 50  = 4.8 µM for 3, 1.7 µM for 7). In kinetic studies, all isolated xanthones emerged to be mixed inhibitors of α-glucosidase, whereas they behaved as competitive inhibitors of PTP1B. In time dependent experiments, compound 3 showed isomerization inhibitory behavior with following kinetic parameters: K i app  = 2.4 µM; k 5  = 0.05001 µM -1  S -1 and k 6  = 0.02076 µM -1  S -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. PTP1B antisense oligonucleotide lowers PTP1B protein, normalizes blood glucose, and improves insulin sensitivity in diabetic mice

    PubMed Central

    Zinker, Bradley A.; Rondinone, Cristina M.; Trevillyan, James M.; Gum, Rebecca J.; Clampit, Jill E.; Waring, Jeffrey F.; Xie, Nancy; Wilcox, Denise; Jacobson, Peer; Frost, Leigh; Kroeger, Paul E.; Reilly, Regina M.; Koterski, Sandra; Opgenorth, Terry J.; Ulrich, Roger G.; Crosby, Seth; Butler, Madeline; Murray, Susan F.; McKay, Robert A.; Bhanot, Sanjay; Monia, Brett P.; Jirousek, Michael R.

    2002-01-01

    The role of protein-tyrosine phosphatase 1B (PTP1B) in diabetes was investigated using an antisense oligonucleotide in ob/ob and db/db mice. PTP1B antisense oligonucleotide treatment normalized plasma glucose levels, postprandial glucose excursion, and HbA1C. Hyperinsulinemia was also reduced with improved insulin sensitivity. PTP1B protein and mRNA were reduced in liver and fat with no effect in skeletal muscle. Insulin signaling proteins, insulin receptor substrate 2 and phosphatidylinositol 3 (PI3)-kinase regulatory subunit p50α, were increased and PI3-kinase p85α expression was decreased in liver and fat. These changes in protein expression correlated with increased insulin-stimulated protein kinase B phosphorylation. The expression of liver gluconeogenic enzymes, phosphoenolpyruvate carboxykinase, and fructose-1,6-bisphosphatase was also down-regulated. These findings suggest that PTP1B modulates insulin signaling in liver and fat, and that therapeutic modalities targeting PTP1B inhibition may have clinical benefit in type 2 diabetes. PMID:12169659

  10. Cell Transformation by PTP1B Truncated Mutants Found in Human Colon and Thyroid Tumors.

    PubMed

    Mei, Wenhan; Wang, Kemin; Huang, Jian; Zheng, Xinmin

    2016-01-01

    Expression of wild-type protein tyrosine phosphatase (PTP) 1B may act either as a tumor suppressor by dysregulation of protein tyrosine kinases or a tumor promoter through Src dephosphorylation at Y527 in human breast cancer cells. To explore whether mutated PTP1B is involved in human carcinogenesis, we have sequenced PTP1B cDNAs from human tumors and found splice mutations in ~20% of colon and thyroid tumors. The PTP1BΔE6 mutant expressed in these two tumor types and another PTP1BΔE5 mutant expressed in colon tumor were studied in more detail. Although PTP1BΔE6 revealed no phosphatase activity compared with wild-type PTP1B and the PTP1BΔE5 mutant, its expression induced oncogenic transformation of rat fibroblasts without Src activation, indicating that it involved signaling pathways independent of Src. The transformed cells were tumourigenic in nude mice, suggesting that the PTP1BΔE6 affected other molecule(s) in the human tumors. These observations may provide a novel therapeutic target for colon and thyroid cancer.

  11. Determination of the catalytic activity of LEOPARD syndrome-associated SHP2 mutants toward parafibromin, a bona fide SHP2 substrate involved in Wnt signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noda, Saori; Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba; Takahashi, Atsushi

    SHP2, encoded by the PTPN11 gene, is a protein tyrosine phosphatase that plays a key role in the proliferation of cells via RAS-ERK activation. SHP2 also promotes Wnt signaling by dephosphorylating parafibromin. Germline missense mutations of PTPN11 are found in more than half of patients with Noonan syndrome (NS) and LEOPARD syndrome (LS), both of which are congenital developmental disorders with multiple common symptoms. However, whereas NS-associated PTPN11 mutations give rise to gain-of-function SHP2 mutants, LS-associated SHP2 mutants are reportedly loss-of-function mutants. To determine the phosphatase activity of LS-associated SHP2 more appropriately, we performed an in vitro phosphatase assay using tyrosine-phosphorylatedmore » parafibromin, a biologically relevant substrate of SHP2 and the positive regulator of Wnt signaling that is activated through SHP2-mediated dephosphorylation. We found that LS-associated SHP2 mutants (Y279C, T468M, Q506P, and Q510E) exhibited a substantially reduced phosphatase activity toward parafibromin when compared with wild-type SHP2. Furthermore, each of the LS-associated mutants displayed a differential degree of decrease in phosphatase activity. Deviation of the SHP2 catalytic activity from a certain range, either too strong or too weak, may therefore lead to similar clinical outcomes in NS and LS, possibly through an imbalanced Wnt signal caused by inadequate dephosphorylation of parafibromin. - Highlights: • LS-associated SHP2 mutants dephosphorylate parafibromin on Y290, Y293, and Y315. • LS-associated SHP2 mutants display a reduced tyrosine phosphatase activity. • LS-specific SHP2-Y279C is catalytically less active than LS-specific SHP2-T468M. • NS/LS-associated SHP2-Q506P has both hyper- and hypomorphic enzymatic properties.« less

  12. Optimization of extraction parameters of PTP1β (protein tyrosine phosphatase 1β), inhibitory polyphenols, and anthocyanins from Zea mays L. using response surface methodology (RSM).

    PubMed

    Hwang, Seung Hwan; Kwon, Shin Hwa; Wang, Zhiqiang; Kim, Tae Hyun; Kang, Young-Hee; Lee, Jae-Yong; Lim, Soon Sung

    2016-08-26

    Protein tyrosine phosphatase expressed in insulin-sensitive tissues (such as liver, muscle, and adipose tissue) has a key role in the regulation of insulin signaling and pathway activation, making protein tyrosine phosphatase a promising target for the treatment of type 2 diabetes mellitus and obesity and response surface methodology (RSM) is an effective statistical technique for optimizing complex processes using a multi-variant approach. In this study, Zea mays L. (Purple corn kernel, PCK) and its constituents were investigated for protein tyrosine phosphatase 1β (PTP1β) inhibitory activity including enzyme kinetic study and to improve total yields of anthocyanins and polyphenols, four extraction parameters, including temperature, time, solid-liquid ratio, and solvent volume, were optimized by RSM. Isolation of seven polyphenols and five anthocyanins was achieved by PTP1β assay. Among them, cyanidin-3-(6"malonylglucoside) and 3'-methoxyhirsutrin showed the highest PTP1β inhibition with IC50 values of 54.06 and 64.04 μM, respectively and 4.52 mg gallic acid equivalent/g (GAE/g) of total polyphenol content (TPC) and 43.02 mg cyanidin-3-glucoside equivalent/100 g (C3GE/100g) of total anthocyanin content (TAC) were extracted at 40 °C for 8 h with a 33 % solid-liquid ratio and a 1:15 solvent volume. Yields were similar to predictions of 4.58 mg GAE/g of TPC and 42.28 mg C3GE/100 g of TAC. These results indicated that PCK and 3'-methoxyhirsutrin and cyanidin-3-(6"malonylglucoside) might be active natural compounds and could be apply by optimizing of extraction process using response surface methodology.

  13. A salicylic acid-based small molecule inhibitor for the oncogenic Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2)

    PubMed Central

    Zhang, Xian; He, Yantao; Liu, Sijiu; Yu, Zhihong; Jiang, Zhong-Xing; Yang, Zhenyun; Dong, Yuanshu; Nabinger, Sarah C.; Wu, Li; Gunawan, Andrea M.; Wang, Lina; Chan, Rebecca J.; Zhang, Zhong-Yin

    2010-01-01

    The Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2) plays a pivotal role in growth factor and cytokine signaling. Gain-of-function SHP2 mutations are associated with Noonan syndrome, various kinds of leukemias and solid tumors. Thus there is considerable interest in SHP2 as a potential target for anti-cancer and anti-leukemia therapy. We report a salicylic acid-based combinatorial library approach aimed to bind both active site and unique nearby sub-pockets for enhanced affinity and selectivity. Screening of the library led to the identification of a SHP2 inhibitor II-B08 (compound 9) with highly efficacious cellular activity. Compound 9 blocks growth factor stimulated ERK1/2 activation and hematopoietic progenitor proliferation, providing supporting evidence that chemical inhibition of SHP2 may be therapeutically useful for anti-cancer and anti-leukemia treatment. X-ray crystallographic analysis of the structure of SHP2 in complex with 9 reveals molecular determinants that can be exploited for the acquisition of more potent and selective SHP2 inhibitors. PMID:20170098

  14. Crystal structure of human dual specificity phosphatase, JNK stimulatory phosphatase-1, at 1.5 A resolution.

    PubMed

    Yokota, Takehiro; Nara, Yukinori; Kashima, Akiko; Matsubara, Keiko; Misawa, Satoru; Kato, Ryohei; Sugio, Shigetoshi

    2007-02-01

    Human JNK stimulatory phosphatase-1 (JSP-1) is a novel member of dual specificity phosphatases. A C-terminus truncated JSP-1 was expressed in Escherichia coli and was crystallized using the sitting-drop vapor diffusion method. Thin-plate crystals obtained at 278 K belong to a monoclinic space group, C2, with unit-cell parameters a = 84.0 A, b = 49.3 A, c = 47.3 A, and beta = 119.5 degrees , and diffract up to 1.5 A resolution at 100 K. The structure of JSP-1 has a single compact (alpha/beta) domain, which consists of six alpha-helices and five beta-strands, and shows a conserved structural scaffold in regard to both DSPs and PTPs. A cleft formed by a PTP-loop at the active site is very shallow, and is occupied by one sulfonate compound, MES, at the bottom. In the binary complex structure of JSP-1 with MES, the conformations of three important segments in regard to the catalytic mechanism are not similar to those in PTP1B. JSP-1 has no loop corresponding to the Lys120-loop of PTP1B, and tryptophan residue corresponding to the substrate-stacking in PTP1B is substituted by alanine residue in JSP-1. Copyright 2006 Wiley-Liss, Inc.

  15. Role of PTP1B in HER2 Signaling in Breast Cancer

    DTIC Science & Technology

    2011-10-01

    AD_________________ Award Number: W81XWH-10-1-1005 TITLE: Role of PTP1B in HER2 Signaling in...AND SUBTITLE 5a. CONTRACT NUMBER Role of PTP1B in HER2 Signaling in Breast Cancer 5b. GRANT NUMBER W81XWH-10-1-1005 5c. PROGRAM ELEMENT...pathways. Recent reports have shown that Protein Tyrosine Phosphatase 1B ( PTP1B ) plays a positive role in ErbB2-induced breast cancer in vitroand

  16. SHP-1-dependent macrophage differentiation exacerbates virus-induced myositis.

    PubMed

    Watson, Neva B; Schneider, Karin M; Massa, Paul T

    2015-03-15

    Virus-induced myositis is an emerging global affliction that remains poorly characterized with few treatment options. Moreover, muscle-tropic viruses often spread to the CNS, causing dramatically increased morbidity. Therefore, there is an urgent need to explore genetic factors involved in this class of human disease. This report investigates critical innate immune pathways affecting murine virus-induced myositis. Of particular importance, the key immune regulator src homology region 2 domain-containing phosphatase 1 (SHP-1), which normally suppresses macrophage-mediated inflammation, is a major factor in promoting clinical disease in muscle. We show that Theiler's murine encephalomyelitis virus (TMEV) infection of skeletal myofibers induces inflammation and subsequent dystrophic calcification, with loss of ambulation in wild-type (WT) mice. Surprisingly, although similar extensive myofiber infection and inflammation are observed in SHP-1(-/-) mice, these mice neither accumulate dead calcified myofibers nor lose ambulation. Macrophages were the predominant effector cells infiltrating WT and SHP-1(-/-) muscle, and an increased infiltration of immature monocytes/macrophages correlated with an absence of clinical disease in SHP-1(-/-) mice, whereas mature M1-like macrophages corresponded with increased myofiber degeneration in WT mice. Furthermore, blocking SHP-1 activation in WT macrophages blocked virus-induced myofiber degeneration, and pharmacologic ablation of macrophages inhibited muscle calcification in TMEV-infected WT animals. These data suggest that, following TMEV infection of muscle, SHP-1 promotes M1 differentiation of infiltrating macrophages, and these inflammatory macrophages are likely involved in damaging muscle fibers. These findings reveal a pathological role for SHP-1 in promoting inflammatory macrophage differentiation and myofiber damage in virus-infected skeletal muscle, thus identifying SHP-1 and M1 macrophages as essential mediators of virus

  17. Prostate anatomy in motheaten viable (me(v)) mice with mutations in the protein tyrosine phosphatase SHP-1.

    PubMed

    García-Tello, A; Angulo, J C; Rodriguez-Ubreva, J; Andrés, G; López, J I; Sánchez-Chapado, M; López-Ruiz, P; Colás, B

    2014-09-01

    To study prostate and seminal vesicle anatomy in viable motheaten (mev) with mutations in PTPN6 gene leading to a severe reduction in the activity of protein tyrosine phosphatase SHP-1. Homozygous mev mice exhibit multiple anomalies that include immunodeficiencies, increased proliferation of macrophage, neutrophil, and erythrocyte progenitors, decreased bone density and sterility. We analyzed macro- and microscopic anatomy of the seminal vesicle and prostate macro- and microscopic anatomy of 5 mev/mev and 8 wt/wt adult 7 week old mice. Computerized morphometric analysis was performed to measure the relative changes appearing in the epithelial volume of the different prostatic lobes. All mice studied revealed normal genital organs (penis, testis, epididymis, vas deferens) and bladder. The seminal vesicle was absent in all mev/mev individuals analyzed, being normal and very noticeable in wt/wt mice. The different glands that compose the prostatic complex (anterior, ventral and dorso-lateral prostate) were atrophied in mev/mev mice: anterior prostate 0.4 times, ventral 0.19 times, dorsal 0.35 times and lateral 0.28 times those of the respective regions in wt/wt mice. Microscopically, mev/mev mice revealed scarce and large prostatic ducts, acini severely atrophic with empty lumen and scarce loose epithelial component forming tufts and infoldings, and hyperplastic changes in fibromuscular stroma. The prostate of mev/mev mice exhibits signs of aberrant differentiation and the resulting phenotype may be related to the loss of function of SHP-1. Prostatic anomalies in these mice affect, together with defects in sperm maduration, for their sterility. These data suggest SHP-1 plays an important role in prostate epithelial morphogenesis. Copyright © 2014 AEU. Published by Elsevier Espana. All rights reserved.

  18. Sulfone-stabilized carbanions for the reversible covalent capture of a posttranslationally-generated cysteine oxoform found in protein tyrosine phosphatase 1B (PTP1B).

    PubMed

    Parsons, Zachary D; Ruddraraju, Kasi Viswanatharaju; Santo, Nicholas; Gates, Kent S

    2016-06-15

    Redox regulation of protein tyrosine phosphatase 1B (PTP1B) involves oxidative conversion of the active site cysteine thiolate into an electrophilic sulfenyl amide residue. Reduction of the sulfenyl amide by biological thiols regenerates the native cysteine residue. Here we explored fundamental chemical reactions that may enable covalent capture of the sulfenyl amide residue in oxidized PTP1B. Various sulfone-containing carbon acids were found to react readily with a model peptide sulfenyl amide via attack of the sulfonyl carbanion on the electrophilic sulfur center in the sulfenyl amide. Both the products and the rates of these reactions were characterized. The results suggest that capture of a peptide sulfenyl amide residue by sulfone-stabilized carbanions can slow, but not completely prevent, thiol-mediated generation of the corresponding cysteine-containing peptide. Sulfone-containing carbon acids may be useful components in the construction of agents that knock down PTP1B activity in cells via transient covalent capture of the sulfenyl amide oxoform generated during insulin signaling processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Isolation and Characterization of Protein Tyrosine Phosphatase 1B (PTP1B) Inhibitory Polyphenolic Compounds From Dodonaea viscosa and Their Kinetic Analysis.

    PubMed

    Uddin, Zia; Song, Yeong Hun; Ullah, Mahboob; Li, Zuopeng; Kim, Jeong Yoon; Park, Ki Hun

    2018-01-01

    Diabetes mellitus is one of a major worldwide concerns, regulated by either defects in secretion or action of insulin, or both. Insulin signaling down-regulation has been related with over activity of protein tyrosine phosphatase 1B (PTP1B) enzyme, which has been a promising target for the treatment of diabetes mellitus. Herein, activity guided separation of methanol extract (95%) of Dodonaea viscosa aerial parts afforded nine ( 1 - 9 ) polyphenolic compounds, all of them were identified through spectroscopic data including 2D NMR and HREIMS. Subsequently, their PTP1B inhibitory potentials were evaluated, in which all of the isolates exhibited significant dose-dependent inhibition with IC 50 13.5-57.9 μM. Among them, viscosol ( 4 ) was found to be the most potent compound having IC 50 13.5 μM. In order to unveil the mechanistic behavior, detailed kinetic study was carried out, in which compound 4 was observed as a reversible, and mixed type I inhibitor of PTP1B with inhibitory constant ( K i ) value of 4.6 μM. Furthermore, we annotated the major metabolites through HPLC-DAD-ESI/MS analysis, in which compounds 3 , 6 , 7 , and 9 were found to be the most abundant metabolites in D. viscosa extract.

  20. Isolation and characterization of protein tyrosine phosphatase 1B (PTP1B) inhibitory polyphenolic compounds from Dodonaea viscosa and their kinetic analysis

    NASA Astrophysics Data System (ADS)

    Uddin, Zia; Song, Yeong Hun; Ullah, Mahboob; Li, Zuopeng; Kim, Jeong Yoon; Park, Ki Hun

    2018-03-01

    Diabetes mellitus is one of a major worldwide concerns, regulated by either defects in secretion or action of insulin, or both. Insulin signaling down-regulation has been related with over activity of protein tyrosine phosphatase 1B (PTP1B) enzyme, which has been a promising target for the treatment of diabetes mellitus. Herein, activity guided separation of methanol extract (95%) of Dodonaea viscosa aerial parts afforded nine (1-9) polyphenolic compounds, all of them were identified through spectroscopic data including 2D NMR and HREIMS. Subsequently, their PTP1B inhibitory potentials were evaluated, in which all of the isolates exhibited significant dose-dependent inhibition with IC50 13.5-57.9 μM. Among them, viscosol (4) was found to be the most potent compound having IC50 13.5 μM. In order to unveil the mechanistic behavior, detailed kinetic study was carried out, in which compound 4 was observed as a reversible, and mixed type I inhibitor of PTP1B with inhibitory constant (Ki) value of 4.6 μM. Furthermore, we annotated the major metabolites through HPLC-DAD-ESI/MS analysis, in which compounds 3, 6, 7 and 9 were found to be the most abundant metabolites in D.viscosa extract.

  1. Frequent amplification of PTP1B is associated with poor survival of gastric cancer patients.

    PubMed

    Wang, Na; She, Junjun; Liu, Wei; Shi, Jing; Yang, Qi; Shi, Bingyin; Hou, Peng

    2015-01-01

    The protein tyrosine phosphatase 1B (PTP1B), a non-transmembrane protein tyrosine phosphatase, has been implicated in gastric pathogenesis. Several lines of recent evidences have shown that PTP1B is highly amplified in breast and prostate cancers. The aim of this study was to investigate PTP1B amplification in gastric cancer and its association with poor prognosis of gastric cancer patients, and further determine the role of PTP1B in gastric tumorigenesis. Our data demonstrated that PTP1B was significantly up-regulated in gastric cancer tissues as compared with matched normal gastric tissues by using quantitative RT-PCR (qRT-PCR) assay. In addition, copy number analysis showed that PTP1B was amplified in 68/131 (51.9%) gastric cancer cases, whereas no amplification was found in the control subjects. Notably, PTP1B amplification was positively associated with its protein expression, and was significantly related to poor survival of gastric cancer patients. Knocking down PTP1B expression in gastric cancer cells significantly inhibited cell proliferation, colony formation, migration and invasion, and induced cell cycle arrested and apoptosis. Mechanically, PTP1B promotes gastric cancer cell proliferation, survival and invasiveness through modulating Src-related signaling pathways, such as Src/Ras/MAPK and Src/phosphatidylinositol-3-kinase (PI3K)/Akt pathways. Collectively, our data demonstrated frequent overexpression and amplification PTP1B in gastric cancer, and further determined the oncogenic role of PTP1B in gastric carcinogenesis. Importantly, PTP1B amplification predicts poor survival of gastric cancer patients.

  2. Association of 3BP2 with SHP-1 regulates SHP-1-mediated production of TNF-α in RBL-2H3 cells.

    PubMed

    Chihara, Kazuyasu; Nakashima, Kenji; Takeuchi, Kenji; Sada, Kiyonao

    2011-12-01

    Adaptor protein 3BP2, a c-Abl Src homology 3 (SH3) domain-binding protein, is tyrosine phosphorylated and positively regulates mast cell signal transduction after the aggregation of the high affinity IgE receptor (FcεRI). Overexpression of the Src homology 2 (SH2) domain of 3BP2 results in the dramatic suppression of antigen-induced degranulation in rat basophilic leukemia RBL-2H3 cells. Previously, a linker for activation of T cells (LAT) was identified as one of the 3BP2 SH2 domain-binding protein. In this report, to further understand the functions of 3BP2 in FcεRI-mediated activation of mast cell, we explored the protein that associates with the SH2 domain of 3BP2 and found that SH2 domain-containing phosphatase-1 (SHP-1) inducibly interacts with the SH2 domain of 3BP2 after the aggregation of FcεRI. The phosphorylation of Tyr(564) in the carboxy (C)-terminal tail region of SHP-1 is required for the direct interaction of SHP-1 to the SH2 domain of 3BP2. The expression of the mutant form of SHP-1 which was unable to interact with 3BP2 resulted in the significant reduction in SHP-1-mediated tumor necrosis factor-α (TNF-α) production without any effects on the degranulation in antigen-stimulated RBL-2H3 cells. These findings suggest that 3BP2 directly interacts with Tyr(564) -phosphorylated form of SHP-1 and positively regulates the function of SHP-1 in FcεRI-mediated signaling in mast cells. © 2011 The Authors. Journal compilation © 2011 by the Molecular Biology Society of Japan/Blackwell Publishing Ltd.

  3. PTP1B promotes aggressiveness of breast cancer cells by regulating PTEN but not EMT.

    PubMed

    Liu, Xue; Chen, Qian; Hu, Xu-Gang; Zhang, Xian-Chao; Fu, Ti-Wei; Liu, Qing; Liang, Yan; Zhao, Xi-Long; Zhang, Xia; Ping, Yi-Fang; Bian, Xiu-Wu

    2016-10-01

    Metastasis is a complicated, multistep process and remains the major cause of cancer-related mortality. Exploring the molecular mechanisms underlying tumor metastasis is crucial for development of new strategies for cancer prevention and treatment. In this study, we found that protein tyrosine phosphatase 1B (PTP1B) promoted breast cancer metastasis by regulating phosphatase and tensin homolog (PTEN) but not epithelial-mesenchymal transition (EMT). By detecting PTP1B expression of the specimens from 128 breast cancer cases, we found that the level of PTP1B was higher in breast cancer tissues than the corresponding adjacent normal tissues. Notably, PTP1B was positively associated with lymph node metastasis (LNM) and estrogen receptor (ER) status. In vitro, disturbing PTP1B expression obviously attenuated cell migration and invasion. On the contrary, PTP1B overexpression significantly increased migration and invasion of breast cancer cells. Mechanistically, PTP1B knockdown upregulated PTEN, accompanied with an abatement of AKT phosphorylation and the expression of matrix metalloproteinase 2 (MMP2) and MMP7. Conversely, forced expression of PTP1B reduced PTEN and increased AKT phosphorylation as well as the expression of MMP2 and MMP7. Notably, neither EMT nor stemness of breast cancer cells was regulated by PTP1B. We also found that PTP1B acted as an independent prognostic factor and predicted poor prognosis in ER-positive breast cancer patients. Taken together, our findings provide advantageous evidence for the development of PTP1B as a potential therapeutic target for breast cancer, especially for ER-positive breast cancer patients.

  4. Advanced glycation end product Nε-carboxymethyllysine induces endothelial cell injury: the involvement of SHP-1-regulated VEGFR-2 dephosphorylation.

    PubMed

    Liu, Shing Hwa; Sheu, Wayne Huey Herng; Lee, Maw Rong; Lee, Wen Jane; Yi, Yu Chiao; Yang, Tzung Jie; Jen, Jen Fon; Pan, Hung Chuan; Shen, Chin Chang; Chen, Wen Bao; Tien, Hsing Ru; Sheu, Meei Ling

    2013-06-01

    N(ε)-carboxymethyllysine (CML), a major advanced glycation end product, plays a crucial role in diabetes-induced vascular injury. The roles of protein tyrosine phosphatases and vascular endothelial growth factor (VEGF) receptors in CML-related endothelial cell injury are still unclear. Human umbilical vein endothelial cells (HUVECs) are a commonly used human EC type. Here, we tested the hypothesis that NADPH oxidase/reactive oxygen species (ROS)-mediated SH2 domain-containing tyrosine phosphatase-1 (SHP-1) activation by CML inhibits the VEGF receptor-2 (VEGFR-2, KDR/Flk-1) activation, resulting in HUVEC injury. CML significantly inhibited cell proliferation and induced apoptosis and reduced VEGFR-2 activation in parallel with the increased SHP-1 protein expression and activity in HUVECs. Adding recombinant VEGF increased forward biological effects, which were attenuated by CML. The effects of CML on HUVECs were abolished by SHP-1 siRNA transfection. Exposure of HUVECs to CML also remarkably escalated the integration of SHP-1 with VEGFR-2. Consistently, SHP-1 siRNA transfection and pharmacological inhibitors could block this interaction and elevating [(3)H]thymidine incorporation. CML also markedly activated the NADPH oxidase and ROS production. The CML-increased SHP-1 activity in HUVECs was effectively attenuated by antioxidants. Moreover, the immunohistochemical staining of SHP-1 and CML was increased, but phospho-VEGFR-2 staining was decreased in the aortic endothelium of streptozotocin-induced and high-fat diet-induced diabetic mice. We conclude that a pathway of tyrosine phosphatase SHP-1-regulated VEGFR-2 dephosphorylation through NADPH oxidase-derived ROS is involved in the CML-triggered endothelial cell dysfunction/injury. These findings suggest new insights into the development of therapeutic approaches to reduce diabetic vascular complications. Copyright © 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  5. Shp2 Acts Downstream of SDF-1α/CXCR4 in Guiding Granule Cell Migration During Cerebellar Development

    PubMed Central

    Hagihara, Kazuki; Zhang, Eric E.; Ke, Yue-Hai; Liu, Guofa; Liu, Jan-Jan; Rao, Yi; Feng, Gen-Sheng

    2009-01-01

    Shp2 is a non-receptor protein tyrosine phosphatase containing two Src homology 2 (SH2) domains that is implicated in intracellular signaling events controlling cell proliferation, differentiation and migration. To examine the role of Shp2 in brain development, we created mice with Shp2 selectively deleted in neural stem/progenitor cells. Homozygous mutant mice exhibited early postnatal lethality with defects in neural stem cell self-renewal and neuronal/glial cell fate specification. Here we report a critical role of Shp2 in guiding neuronal cell migration in the cerebellum. In homozygous mutants, we observed reduced and less foliated cerebellum, ectopic presence of external granule cells and mispositioned Purkinje cells, a phenotype very similar to that of mutant mice lacking either SDF-1α or CXCR4. Consistently, Shp2-deficient granule cells failed to migrate toward SDF-1α in an in vitro cell migration assay, and SDF-1α treatment triggered a robust induction of tyrosyl phosphorylation on Shp2. Together, these results suggest that although Shp2 is involved in multiple signaling events during brain development, a prominent role of the phosphatase is to mediate SDF-1α/CXCR4 signal in guiding cerebellar granule cell migration. PMID:19635473

  6. PTP1B Inhibitors from the Entomogenous Fungi Isaria fumosorosea.

    PubMed

    Zhang, Jun; Meng, Lin-Lin; Wei, Jing-Jing; Fan, Peng; Liu, Sha-Sha; Yuan, Wei-Yu; Zhao, You-Xing; Luo, Du-Qiang

    2017-11-24

    Protein tyrosine phosphatase 1B (PTP1B) is implicated as a negative regulator of insulin receptor (IR) signaling and a potential drug target for the treatment of type II diabetes and other associated metabolic syndromes. Thus, small molecule inhibitors of PTP1B can be considered as an attractive approach for the design of new therapeutic agents of type II diabetes and cancer diseases. In a continuing search for new PTP1B inhibitors, a new tetramic acid possessing a rare pyrrolidinedione skeleton named fumosorinone A ( 1 ), together with five known ones 2 - 6 were isolated from the entomogenous fungus Isaria fumosorosea. The structures of 2 - 6 were elucidated by extensive spectroscopic analysis. Fumosorinone A ( 1 ) and beauvericin ( 6 ) showed significant PTP1B inhibitory activity with IC 50 value of 3.24 μM and 0.59 μM.

  7. Regulation of tumor cell migration by protein tyrosine phosphatase (PTP)-proline-, glutamate-, serine-, and threonine-rich sequence (PEST)

    PubMed Central

    Zheng, Yanhua; Lu, Zhimin

    2013-01-01

    Protein tyrosine phosphatase (PTP)–proline-, glutamate-, serine-, and threonine-rich sequence (PEST) is ubiquitously expressed and is a critical regulator of cell adhesion and migration. PTP-PEST activity can be regulated transcriptionally via gene deletion or mutation in several types of human cancers or via post-translational modifications, including phosphorylation, oxidation, and caspase-dependent cleavage. PTP-PEST interacts with and dephosphorylates cytoskeletal and focal adhesion-associated proteins. Dephosphorylation of PTP-PEST substrates regulates their enzymatic activities and/or their interaction with other proteins and plays an essential role in the tumor cell migration process. PMID:23237212

  8. Ecdysone-Induced Receptor Tyrosine Phosphatase PTP52F Regulates Drosophila Midgut Histolysis by Enhancement of Autophagy and Apoptosis

    PubMed Central

    Santhanam, Abirami; Peng, Wen-Hsin; Yu, Ya-Ting; Sang, Tzu-Kang

    2014-01-01

    The rapid removal of larval midgut is a critical developmental process directed by molting hormone ecdysone during Drosophila metamorphosis. To date, it remains unclear how the stepwise events can link the onset of ecdysone signaling to the destruction of larval midgut. This study investigated whether ecdysone-induced expression of receptor protein tyrosine phosphatase PTP52F regulates this process. The mutation of the Ptp52F gene caused significant delay in larval midgut degradation. Transitional endoplasmic reticulum ATPase (TER94), a regulator of ubiquitin proteasome system, was identified as a substrate and downstream effector of PTP52F in the ecdysone signaling. The inducible expression of PTP52F at the puparium formation stage resulted in dephosphorylation of TER94 on its Y800 residue, ensuring the rapid degradation of ubiquitylated proteins. One of the proteins targeted by dephosphorylated TER94 was found to be Drosophila inhibitor of apoptosis 1 (DIAP1), which was rapidly proteolyzed in cells with significant expression of PTP52F. Importantly, the reduced level of DIAP1 in response to inducible PTP52F was essential not only for the onset of apoptosis but also for the initiation of autophagy. This study demonstrates a novel function of PTP52F in regulating ecdysone-directed metamorphosis via enhancement of autophagic and apoptotic cell death in doomed Drosophila midguts. PMID:24550005

  9. The Gab1 docking protein links the b cell antigen receptor to the phosphatidylinositol 3-kinase/Akt signaling pathway and to the SHP2 tyrosine phosphatase.

    PubMed

    Ingham, R J; Santos, L; Dang-Lawson, M; Holgado-Madruga, M; Dudek, P; Maroun, C R; Wong, A J; Matsuuchi, L; Gold, M R

    2001-04-13

    B cell antigen receptor (BCR) signaling causes tyrosine phosphorylation of the Gab1 docking protein. This allows phosphatidylinositol 3-kinase (PI3K) and the SHP2 tyrosine phosphatase to bind to Gab1. In this report, we tested the hypothesis that Gab1 acts as an amplifier of PI3K- and SHP2-dependent signaling in B lymphocytes. By overexpressing Gab1 in the WEHI-231 B cell line, we found that Gab1 can potentiate BCR-induced phosphorylation of Akt, a PI3K-dependent response. Gab1 expression also increased BCR-induced tyrosine phosphorylation of SHP2 as well as the binding of Grb2 to SHP2. We show that the pleckstrin homology (PH) domain of Gab1 is required for BCR-induced phosphorylation of Gab1 and for Gab1 participation in BCR signaling. Moreover, using confocal microscopy, we show that BCR ligation can induce the translocation of Gab1 from the cytosol to the plasma membrane and that this requires the Gab1 PH domain as well as PI3K activity. These findings are consistent with a model in which the binding of the Gab1 PH domain to PI3K-derived lipids brings Gab1 to the plasma membrane, where it can be tyrosine-phosphorylated and then act as an amplifier of BCR signaling.

  10. SHP-1 Binds and Negatively Modulates the c-Kit Receptor by Interaction with Tyrosine 569 in the c-Kit Juxtamembrane Domain

    PubMed Central

    Kozlowski, Maya; Larose, Louise; Lee, Fai; Le, Duc Mingh; Rottapel, Robert; Siminovitch, Katherine A.

    1998-01-01

    The SH2 domain-containing SHP-1 tyrosine phosphatase has been shown to negatively regulate a broad spectrum of growth factor- and cytokine-driven mitogenic signaling pathways. Included among these is the cascade of intracellular events evoked by stem cell factor binding to c-Kit, a tyrosine kinase receptor which associates with and is dephosphorylated by SHP-1. Using a series of glutathione S-transferase (GST) fusion proteins containing either tyrosine-phosphorylated segments of the c-Kit cytosolic region or the SH2 domains of SHP-1, we have shown that SHP-1 interacts with c-Kit by binding selectively to the phosphorylated c-Kit juxtamembrane region and that the association of c-Kit with the larger of the two SHP-1 isoforms may be mediated through either the N-terminal or C-terminal SHP-1 SH2 domain. The results of binding assays with mutagenized GST-Kit juxtamembrane fusion proteins and competitive inhibition assays with phosphopeptides encompassing each c-Kit juxtamembrane region identified the tyrosine residue at position 569 as the major site for binding of SHP-1 to c-Kit and suggested that tyrosine 567 contributes to, but is not required for, this interaction. By analysis of Ba/F3 cells retrovirally transduced to express c-Kit receptors, phenylalanine substitution of c-Kit tyrosine residue 569 was shown to be associated with disruption of c-Kit–SHP-1 binding and induction of hyperproliferative responses to stem cell factor. Although phenylalanine substitution of c-Kit tyrosine residue 567 in the Ba/F3–c-Kit cells did not alter SHP-1 binding to c-Kit, the capacity of a second c-Kit-binding tyrosine phosphatase, SHP-2, to associate with c-Kit was markedly reduced, and the cells again showed hyperproliferative responses to stem cell factor. These data therefore identify SHP-1 binding to tyrosine 569 on c-Kit as an interaction pivotal to SHP-1 inhibitory effects on c-Kit signaling, but they indicate as well that cytosolic protein tyrosine phosphatases other

  11. Identification of protein tyrosine phosphatase SHP-2 as a new target of perfluoroalkyl acids in HepG2 cells.

    PubMed

    Yang, Yu; Lv, Qi-Yan; Guo, Liang-Hong; Wan, Bin; Ren, Xiao-Min; Shi, Ya-Li; Cai, Ya-Qi

    2017-04-01

    Perfluoroalkyl acids (PFAAs) are widespread environmental contaminants which have been detected in humans and linked to adverse health effects. Previous toxicological studies mostly focused on nuclear receptor-mediated pathways and did not support the observed toxic effects. In this study, we aimed to investigate the molecular mechanisms of PFAA toxicities by identifying their biological targets in cells. Using a novel electrochemical biosensor, 16 PFAAs were evaluated for inhibition of protein tyrosine phosphatase SHP-2 activity. Their potency increased with PFAA chain length, with perfluorooctadecanoic acid (PFODA) showing the strongest inhibition. Three selected PFAAs, 25 μM perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid, and PFODA, also inhibited SHP-2 activity in HepG2 cells and increased paxillin phosphorylation level. PFOA was detected in the immunoprecipitated SHP-2 from the cells exposed to 250 μM PFOA, providing unequivocal evidence for the direct binding of PFOA with SHP-2 in the cell. Molecular docking rationalized the formation of PFAA/SHP-2 complex and chain length-dependent inhibition potency. Our results have established SHP-2 as a new cellular target of PFAAs.

  12. Macrophage fusion is controlled by the cytoplasmic protein tyrosine phosphatase PTP-PEST/PTPN12.

    PubMed

    Rhee, Inmoo; Davidson, Dominique; Souza, Cleiton Martins; Vacher, Jean; Veillette, André

    2013-06-01

    Macrophages can undergo cell-cell fusion, leading to the formation of multinucleated giant cells and osteoclasts. This process is believed to promote the proteolytic activity of macrophages toward pathogens, foreign bodies, and extracellular matrices. Here, we examined the role of PTP-PEST (PTPN12), a cytoplasmic protein tyrosine phosphatase, in macrophage fusion. Using a macrophage-targeted PTP-PEST-deficient mouse, we determined that PTP-PEST was not needed for macrophage differentiation or cytokine production. However, it was necessary for interleukin-4-induced macrophage fusion into multinucleated giant cells in vitro. It was also needed for macrophage fusion following implantation of a foreign body in vivo. Moreover, in the RAW264.7 macrophage cell line, PTP-PEST was required for receptor activator of nuclear factor kappa-B ligand (RANKL)-triggered macrophage fusion into osteoclasts. PTP-PEST had no impact on expression of fusion mediators such as β-integrins, E-cadherin, and CD47, which enable macrophages to become fusion competent. However, it was needed for polarization of macrophages, migration induced by the chemokine CC chemokine ligand 2 (CCL2), and integrin-induced spreading, three key events in the fusion process. PTP-PEST deficiency resulted in specific hyperphosphorylation of the protein tyrosine kinase Pyk2 and the adaptor paxillin. Moreover, a fusion defect was induced upon treatment of normal macrophages with a Pyk2 inhibitor. Together, these data argue that macrophage fusion is critically dependent on PTP-PEST. This function is seemingly due to the ability of PTP-PEST to control phosphorylation of Pyk2 and paxillin, thereby regulating cell polarization, migration, and spreading.

  13. Impaired Integrin-mediated Adhesion and Signaling in Fibroblasts Expressing a Dominant-negative Mutant PTP1B

    PubMed Central

    Arregui, Carlos O.; Balsamo, Janne; Lilien, Jack

    1998-01-01

    To investigate the role of nonreceptor protein tyrosine phosphatase 1B (PTP1B) in β1-integrin– mediated adhesion and signaling, we transfected mouse L cells with normal and catalytically inactive forms of the phosphatase. Parental cells and cells expressing the wild-type or mutant PTP1B were assayed for (a) adhesion, (b) spreading, (c) presence of focal adhesions and stress fibers, and (d) tyrosine phosphorylation. Parental cells and cells expressing wild-type PTP1B show similar morphology, are able to attach and spread on fibronectin, and form focal adhesions and stress fibers. In contrast, cells expressing the inactive PTP1B have a spindle-shaped morphology, reduced adhesion and spreading on fibronectin, and almost a complete absence of focal adhesions and stress fibers. Attachment to fibronectin induces tyrosine phosphorylation of focal adhesion kinase (FAK) and paxillin in parental cells and cells transfected with the wild-type PTP1B, while in cells transfected with the mutant PTP1B, such induction is not observed. Additionally, in cells expressing the mutant PTP1B, tyrosine phosphorylation of Src is enhanced and activity is reduced. Lysophosphatidic acid temporarily reverses the effects of the mutant PTP1B, suggesting the existence of a signaling pathway triggering focal adhesion assembly that bypasses the need for active PTP1B. PTP1B coimmunoprecipitates with β1-integrin from nonionic detergent extracts and colocalizes with vinculin and the ends of actin stress fibers in focal adhesions. Our data suggest that PTP1B is a critical regulatory component of integrin signaling pathways, which is essential for adhesion, spreading, and formation of focal adhesions. PMID:9813103

  14. Unbiased identification of substrates of protein tyrosine phosphatase ptp-3 in C. elegans.

    PubMed

    Mitchell, Christopher J; Kim, Min-Sik; Zhong, Jun; Nirujogi, Raja Sekhar; Bose, Anjun K; Pandey, Akhilesh

    2016-06-01

    The leukocyte antigen related (LAR) family of receptor-like protein tyrosine phosphatases has three members in humans - PTPRF, PTPRD and PTPRS - that have been implicated in diverse processes including embryonic development, inhibition of cell growth and axonal guidance. Mutations in the LAR family are associated with developmental defects such as cleft palate as well as various cancers including breast, neck, lung, colon and brain. Although this family of tyrosine phosphatases is important for many developmental processes, little is known of their substrates. This is partially due to functional redundancy within the LAR family, as deletion of a single gene in the LAR family does not have an appreciable phenotype, but a dual knockout is embryonically lethal in mouse models. To circumvent the inability to knockout multiple members of the LAR family in mouse models, we used a knockout of ptp-3, which is the only known ortholog of the LAR family in Caenorhabditis elegans and allows for the study of the LAR family at the organismal level. Using SILAC-based quantitative phosphoproteomics, we identified 255 putative substrates of ptp-3, which included four of the nine known annotated substrates of the LAR family. A motif analysis of the identified phosphopeptides allowed for the determination of sequences that appear to be preferentially dephosphorylated. Finally, we discovered that kinases were overrepresented in the list of identified putative substrates and tyrosine residues whose phosphorylation is known to increase kinase activity were dephosphorylated by ptp-3. These data are suggestive of ptp-3 as a potential negative regulator of several kinase families, such as the mitogen activated kinases (MAPKs), and multiple tyrosine kinases including FER, MET, and NTRK2. Copyright © 2016 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  15. Food intake reductions and increases in energetic responses by hindbrain leptin and melanotan II are enhanced in mice with POMC-specific PTP1B deficiency.

    PubMed

    De Jonghe, Bart C; Hayes, Matthew R; Zimmer, Derek J; Kanoski, Scott E; Grill, Harvey J; Bence, Kendra K

    2012-09-01

    Leptin regulates energy balance through central circuits that control food intake and energy expenditure, including proopiomelanocortin (POMC) neurons. POMC neuron-specific deletion of protein tyrosine phosphatase 1B (PTP1B) (Ptpn1(loxP/loxP) POMC-Cre), a negative regulator of CNS leptin signaling, results in resistance to diet-induced obesity and improved peripheral leptin sensitivity in mice, thus establishing PTP1B as an important component of POMC neuron regulation of energy balance. POMC neurons are expressed in the pituitary, the arcuate nucleus of the hypothalamus (ARH), and the nucleus of the solitary tract (NTS) in the hindbrain, and it is unknown how each population might contribute to the phenotype of POMC-Ptp1b(-/-) mice. It is also unknown whether improved leptin sensitivity in POMC-Ptp1b(-/-) mice involves altered melanocortin receptor signaling. Therefore, we examined the effects of hindbrain administration (4th ventricle) of leptin (1.5, 3, and 6 μg) or the melanocortin 3/4R agonist melanotan II (0.1 and 0.2 nmol) in POMC-Ptp1b(-/-) (KO) and control PTP1B(fl/fl) (WT) mice on food intake, body weight, spontaneous physical activity (SPA), and core temperature (T(C)). The results show that KO mice were hypersensitive to hindbrain leptin- and MTII-induced food intake and body weight suppression and SPA compared with WT mice. Greater increases in leptin- but not MTII-induced T(C) were also observed in KO vs. WT animals. In addition, KO mice displayed elevated hindbrain and hypothalamic MC4R mRNA expression. These studies are the first to show that hindbrain administration of leptin or a melanocortin receptor agonist alters energy balance in mice likely via participation of hindbrain POMC neurons.

  16. Protein Phosphotyrosine Phosphatase 1B (PTP1B) in Calpain-dependent Feedback Regulation of Vascular Endothelial Growth Factor Receptor (VEGFR2) in Endothelial Cells: IMPLICATIONS IN VEGF-DEPENDENT ANGIOGENESIS AND DIABETIC WOUND HEALING.

    PubMed

    Zhang, Yixuan; Li, Qiang; Youn, Ji Youn; Cai, Hua

    2017-01-13

    The VEGF/VEGFR2/Akt/eNOS/NO pathway is essential to VEGF-induced angiogenesis. We have previously discovered a novel role of calpain in mediating VEGF-induced PI3K/AMPK/Akt/eNOS activation through Ezrin. Here, we sought to identify possible feedback regulation of VEGFR2 by calpain via its substrate protein phosphotyrosine phosphatase 1B (PTP1B), and the relevance of this pathway to VEGF-induced angiogenesis, especially in diabetic wound healing. Overexpression of PTP1B inhibited VEGF-induced VEGFR2 and Akt phosphorylation in bovine aortic endothelial cells, while PTP1B siRNA increased both, implicating negative regulation of VEGFR2 by PTP1B. Calpain inhibitor ALLN induced VEGFR2 activation, which can be completely blocked by PTP1B overexpression. Calpain activation induced by overexpression or Ca/A23187 resulted in PTP1B cleavage, which can be blocked by ALLN. Moreover, calpain activation inhibited VEGF-induced VEGFR2 phosphorylation, which can be restored by PTP1B siRNA. These data implicate calpain/PTP1B negative feedback regulation of VEGFR2, in addition to the primary signaling pathway of VEGF/VEGFR2/calpain/PI3K/AMPK/Akt/eNOS. We next examined a potential role of PTP1B in VEGF-induced angiogenesis. Endothelial cells transfected with PTP1B siRNA showed faster wound closure in response to VEGF. Aortic discs isolated from PTP1B siRNA-transfected mice also had augmented endothelial outgrowth. Importantly, PTP1B inhibition and/or calpain overexpression significantly accelerated wound healing in STZ-induced diabetic mice. In conclusion, our data for the first time demonstrate a calpain/PTP1B/VEGFR2 negative feedback loop in the regulation of VEGF-induced angiogenesis. Modulation of local PTP1B and/or calpain activities may prove beneficial in the treatment of impaired wound healing in diabetes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. 5-hydroxy-2-methyl-1,4-naphthoquinone, a vitamin K3 analogue, suppresses STAT3 activation pathway through induction of protein tyrosine phosphatase, SHP-1: potential role in chemosensitization.

    PubMed

    Sandur, Santosh K; Pandey, Manoj K; Sung, Bokyung; Aggarwal, Bharat B

    2010-01-01

    The activation of signal transducers and activators of transcription 3 (STAT3) has been linked with carcinogenesis through survival, proliferation, and angiogenesis of tumor cells. Agents that can suppress STAT3 activation have potential not only for prevention but also for treatment of cancer. In the present report, we investigated whether 5-hydroxy-2-methyl-1,4-naphthoquinone (plumbagin), an analogue of vitamin K, and isolated from chitrak (Plumbago zeylanica), an Ayurvedic medicinal plant, can modulate the STAT3 pathway. We found that plumbagin inhibited both constitutive and interleukin 6-inducible STAT3 phosphorylation in multiple myeloma (MM) cells and this correlated with the inhibition of c-Src, Janus-activated kinase (JAK)1, and JAK2 activation. Vanadate, however, reversed the plumbagin-induced downregulation of STAT3 activation, suggesting the involvement of a protein tyrosine phosphatase. Indeed, we found that plumbagin induced the expression of the protein tyrosine phosphatase, SHP-1, and silencing of the SHP-1 abolished the effect of plumbagin. This agent also downregulated the expression of STAT3-regulated cyclin D1, Bcl-xL, and vascular endothelial growth factor; activated caspase-3; induced poly (ADP ribose) polymerase cleavage; and increased the sub-G(1) population of MM cells. Consistent with these results, overexpression of constitutive active STAT3 significantly reduced the plumbagin-induced apoptosis. When compared with AG490, a rationally designed STAT3/JAK2 inhibitor, plumbagin was found more potent in suppressing the proliferation of cells. Plumbagin also significantly potentiated the apoptotic effects of thalidomide and bortezomib in MM cells. Overall, these results suggest that the plumbagin inhibits STAT3 activation pathway through the induction of SHP-1 and this may mediate the sensitization of STAT3 overexpressing cancers to chemotherapeutic agents.

  18. Myeloid protein tyrosine phosphatase 1B (PTP1B) deficiency protects against atherosclerotic plaque formation in the ApoE-/- mouse model of atherosclerosis with alterations in IL10/AMPKα pathway.

    PubMed

    Thompson, D; Morrice, N; Grant, L; Le Sommer, S; Ziegler, K; Whitfield, P; Mody, N; Wilson, H M; Delibegović, M

    2017-08-01

    Cardiovascular disease (CVD) is the most prevalent cause of mortality among patients with Type 1 or Type 2 diabetes, due to accelerated atherosclerosis. Recent evidence suggests a strong link between atherosclerosis and insulin resistance due to impaired insulin receptor (IR) signaling. Moreover, inflammatory cells, in particular macrophages, play a key role in pathogenesis of atherosclerosis and insulin resistance in humans. We hypothesized that inhibiting the activity of protein tyrosine phosphatase 1B (PTP1B), the major negative regulator of the IR, specifically in macrophages, would have beneficial anti-inflammatory effects and lead to protection against atherosclerosis and CVD. We generated novel macrophage-specific PTP1B knockout mice on atherogenic background (ApoE -/- /LysM-PTP1B). Mice were fed standard or pro-atherogenic diet, and body weight, adiposity (echoMRI), glucose homeostasis, atherosclerotic plaque development, and molecular, biochemical and targeted lipidomic eicosanoid analyses were performed. Myeloid-PTP1B knockout mice on atherogenic background (ApoE -/- /LysM-PTP1B) exhibited a striking improvement in glucose homeostasis, decreased circulating lipids and decreased atherosclerotic plaque lesions, in the absence of body weight/adiposity differences. This was associated with enhanced phosphorylation of aortic Akt, AMPKα and increased secretion of circulating anti-inflammatory cytokine interleukin-10 (IL-10) and prostaglandin E2 (PGE 2 ), without measurable alterations in IR phosphorylation, suggesting a direct beneficial effect of myeloid-PTP1B targeting. Here we demonstrate that inhibiting the activity of PTP1B specifically in myeloid lineage cells protects against atherosclerotic plaque formation, under atherogenic conditions, in an ApoE -/- mouse model of atherosclerosis. Our findings suggest for the first time that macrophage PTP1B targeting could be a therapeutic target for atherosclerosis treatment and reduction of CVD risk.

  19. New and Unexpected Biological Functions for the Src-Homology 2 Domain-Containing Phosphatase SHP-2 in the Gastrointestinal Tract.

    PubMed

    Coulombe, Geneviève; Rivard, Nathalie

    2016-01-01

    SHP-2 is a tyrosine phosphatase expressed in most embryonic and adult tissues. SHP-2 regulates many cellular functions including growth, differentiation, migration, and survival. Genetic and biochemical evidence show that SHP-2 is required for rat sarcoma viral oncogene/extracellular signal-regulated kinases mitogen-activated protein kinase pathway activation by most tyrosine kinase receptors, as well as by G-protein-coupled and cytokine receptors. In addition, SHP-2 can regulate the Janus kinase/signal transducers and activators of transcription, nuclear factor-κB, phosphatidyl-inositol 3-kinase/Akt, RhoA, Hippo, and Wnt/β-catenin signaling pathways. Emerging evidence has shown that SHP-2 dysfunction represents a key factor in the pathogenesis of gastrointestinal diseases, in particular in chronic inflammation and cancer. Variations within the gene locus encoding SHP-2 have been associated with increased susceptibility to develop ulcerative colitis and gastric atrophy. Furthermore, mice with conditional deletion of SHP-2 in intestinal epithelial cells rapidly develop severe colitis. Similarly, hepatocyte-specific deletion of SHP-2 induces hepatic inflammation, resulting in regenerative hyperplasia and development of tumors in aged mice. However, the SHP-2 gene initially was suggested to be a proto-oncogene because activating mutations of this gene were found in pediatric leukemias and certain forms of liver and colon cancers. Moreover, SHP-2 expression is up-regulated in gastric and hepatocellular cancers. Notably, SHP-2 functions downstream of cytotoxin-associated antigen A (CagA), the major virulence factor of Helicobacter pylori , and is associated with increased risks of gastric cancer. Further compounding this complexity, most recent findings suggest that SHP-2 also coordinates carbohydrate, lipid, and bile acid synthesis in the liver and pancreas. This review aims to summarize current knowledge and recent data regarding the biological functions of SHP-2

  20. Macrophage Fusion Is Controlled by the Cytoplasmic Protein Tyrosine Phosphatase PTP-PEST/PTPN12

    PubMed Central

    Rhee, Inmoo; Davidson, Dominique; Souza, Cleiton Martins; Vacher, Jean

    2013-01-01

    Macrophages can undergo cell-cell fusion, leading to the formation of multinucleated giant cells and osteoclasts. This process is believed to promote the proteolytic activity of macrophages toward pathogens, foreign bodies, and extracellular matrices. Here, we examined the role of PTP-PEST (PTPN12), a cytoplasmic protein tyrosine phosphatase, in macrophage fusion. Using a macrophage-targeted PTP-PEST-deficient mouse, we determined that PTP-PEST was not needed for macrophage differentiation or cytokine production. However, it was necessary for interleukin-4-induced macrophage fusion into multinucleated giant cells in vitro. It was also needed for macrophage fusion following implantation of a foreign body in vivo. Moreover, in the RAW264.7 macrophage cell line, PTP-PEST was required for receptor activator of nuclear factor kappa-B ligand (RANKL)-triggered macrophage fusion into osteoclasts. PTP-PEST had no impact on expression of fusion mediators such as β-integrins, E-cadherin, and CD47, which enable macrophages to become fusion competent. However, it was needed for polarization of macrophages, migration induced by the chemokine CC chemokine ligand 2 (CCL2), and integrin-induced spreading, three key events in the fusion process. PTP-PEST deficiency resulted in specific hyperphosphorylation of the protein tyrosine kinase Pyk2 and the adaptor paxillin. Moreover, a fusion defect was induced upon treatment of normal macrophages with a Pyk2 inhibitor. Together, these data argue that macrophage fusion is critically dependent on PTP-PEST. This function is seemingly due to the ability of PTP-PEST to control phosphorylation of Pyk2 and paxillin, thereby regulating cell polarization, migration, and spreading. PMID:23589331

  1. Deficiency of PTP1B in leptin receptor-expressing neurons leads to decreased body weight and adiposity in mice.

    PubMed

    Tsou, Ryan C; Zimmer, Derek J; De Jonghe, Bart C; Bence, Kendra K

    2012-09-01

    Protein tyrosine phosphatase 1B (PTP1B) is a ubiquitously expressed tyrosine phosphatase implicated in the negative regulation of leptin and insulin receptor signaling. PTP1B(-/-) mice possess a lean metabolic phenotype attributed at least partially to improved hypothalamic leptin sensitivity. Interestingly, mice lacking both leptin and PTP1B (ob/ob:PTP1B(-/-)) have reduced body weight compared with mice lacking leptin only, suggesting that PTP1B may have important leptin-independent metabolic effects. We generated mice with PTP1B deficiency specifically in leptin receptor (LepRb)-expressing neurons (LepRb-PTP1B(-/-)) and compared them with LepRb-Cre-only wild-type (WT) controls and global PTP1B(-/-) mice. Consistent with PTP1B's role as a negative regulator of leptin signaling, our results show that LepRb-PTP1B(-/-) mice are leptin hypersensitive and have significantly reduced body weight when maintained on chow or high-fat diet (HFD) compared with WT controls. LepRb-PTP1B(-/-) mice have a significant decrease in adiposity on HFD compared with controls. Notably, the extent of attenuated body weight gain on HFD, as well as the extent of leptin hypersensitivity, is similar between LepRb-PTP1B(-/-) mice and global PTP1B(-/-) mice. Overall, these results demonstrate that PTP1B deficiency in LepRb-expressing neurons results in reduced body weight and adiposity compared with WT controls and likely underlies the improved metabolic phenotype of global and brain-specific PTP1B-deficient models. Subtle phenotypic differences between LepRb-PTP1B(-/-) and global PTP1B(-/-) mice, however, suggest that PTP1B independent of leptin signaling may also contribute to energy balance in mice.

  2. PTP1B Regulates Cortactin Tyrosine Phosphorylation by Targeting Tyr446*S⃞

    PubMed Central

    Stuible, Matthew; Dubé, Nadia; Tremblay, Michel L.

    2008-01-01

    The emergence of protein-tyrosine phosphatase 1B (PTP1B) as a potential drug target for treatment of diabetes, obesity, and cancer underlies the importance of understanding its full range of cellular functions. Here, we have identified cortactin, a central regulator of actin cytoskeletal dynamics, as a substrate of PTP1B. A trapping mutant of PTP1B binds cortactin at the phosphorylation site Tyr446, the regulation and function of which have not previously been characterized. We show that phosphorylation of cortactin Tyr446 is induced by hyperosmolarity and potentiates apoptotic signaling during prolonged hyperosmotic stress. This study advances the importance of Tyr446 in the regulation of cortactin and provides a potential mechanism to explain the effects of PTP1B on processes including cell adhesion, migration, and tumorigenesis. PMID:18387954

  3. Harnessing insulin- and leptin-induced oxidation of PTP1B for therapeutic development.

    PubMed

    Krishnan, Navasona; Bonham, Christopher A; Rus, Ioana A; Shrestha, Om Kumar; Gauss, Carla M; Haque, Aftabul; Tocilj, Ante; Joshua-Tor, Leemor; Tonks, Nicholas K

    2018-01-18

    The protein tyrosine phosphatase PTP1B is a major regulator of glucose homeostasis and energy metabolism, and a validated target for therapeutic intervention in diabetes and obesity. Nevertheless, it is a challenging target for inhibitor development. Previously, we generated a recombinant antibody (scFv45) that recognizes selectively the oxidized, inactive conformation of PTP1B. Here, we provide a molecular basis for its interaction with reversibly oxidized PTP1B. Furthermore, we have identified a small molecule inhibitor that mimics the effects of scFv45. Our data provide proof-of-concept that stabilization of PTP1B in an inactive, oxidized conformation by small molecules can promote insulin and leptin signaling. This work illustrates a novel paradigm for inhibiting the signaling function of PTP1B that may be exploited for therapeutic intervention in diabetes and obesity.

  4. Function-Oriented Synthesis of Marine Phidianidine Derivatives as Potential PTP1B Inhibitors with Specific Selectivity.

    PubMed

    Liu, Jin; Chen, Yu; Li, Jing-Ya; Luo, Cheng; Li, Jia; Chen, Kai-Xian; Li, Xu-Wen; Guo, Yue-Wei

    2018-03-20

    Phidianidines A and B are two novel marine indole alkaloids bearing an uncommon 1,2,4-oxadiazole ring and exhibiting various biological activities. Our previous research showed that the synthesized phidianidine analogs had the potential to inhibit the activity of protein tyrosine phosphatase 1B (PTP1B), a validated target for Type II diabetes, which indicates that these analogs are worth further structural modification. Therefore, in this paper, a series of phidianidine derivatives were designed and rapidly synthesized with a function-oriented synthesis (FOS) strategy. Their inhibitory effects on PTP1B and T-cell protein tyrosine phosphatase (TCPTP) were evaluated, and several compounds displayed significant inhibitory potency and specific selectivity over PTP1B. The structure-activity relationship (SAR) and molecular docking analyses are also described.

  5. Function-Oriented Synthesis of Marine Phidianidine Derivatives as Potential PTP1B Inhibitors with Specific Selectivity

    PubMed Central

    Liu, Jin; Chen, Yu; Li, Jing-Ya; Luo, Cheng; Li, Jia; Chen, Kai-Xian; Li, Xu-Wen

    2018-01-01

    Phidianidines A and B are two novel marine indole alkaloids bearing an uncommon 1,2,4-oxadiazole ring and exhibiting various biological activities. Our previous research showed that the synthesized phidianidine analogs had the potential to inhibit the activity of protein tyrosine phosphatase 1B (PTP1B), a validated target for Type II diabetes, which indicates that these analogs are worth further structural modification. Therefore, in this paper, a series of phidianidine derivatives were designed and rapidly synthesized with a function-oriented synthesis (FOS) strategy. Their inhibitory effects on PTP1B and T-cell protein tyrosine phosphatase (TCPTP) were evaluated, and several compounds displayed significant inhibitory potency and specific selectivity over PTP1B. The structure–activity relationship (SAR) and molecular docking analyses are also described. PMID:29558377

  6. Reduced expression of CD45 Protein-Tyrosine Phosphatase Pr

    DTIC Science & Technology

    2009-05-08

    H S /D T R A on A ugust 19, 2009 w w w .jbc.org D ow nloaded from PTP1B , CD45, TCPTP, LMPTP-A, LMPTP-B, MEG1, MEG2, HePTP, PTP), three belong to...the dual specificity phosphatase VHR or the protein-tyrosine phosphatase PTP1B . Given these FIGURE 5. Mice expressing intermediate CD45 levels survive

  7. Activation of the protein tyrosine phosphatase SHP2 via the interleukin-6 signal transducing receptor protein gp130 requires tyrosine kinase Jak1 and limits acute-phase protein expression.

    PubMed

    Schaper, F; Gendo, C; Eck, M; Schmitz, J; Grimm, C; Anhuf, D; Kerr, I M; Heinrich, P C

    1998-11-01

    Stimulation of the interleukin-6 (IL-6) signalling pathway occurs via the IL-6 receptor-glycoprotein 130 (IL-6R-gp130) receptor complex and results in the regulation of acute-phase protein genes in liver cells. Ligand binding to the receptor complex leads to tyrosine phosphorylation and activation of Janus kinases (Jak), phosphorylation of the signal transducing subunit gp130, followed by recruitment and phosphorylation of the signal transducer and activator of transcription factors STAT3 and STAT1 and the src homology domain (SH2)-containing protein tyrosine phosphatase (SHP2). The tyrosine phosphorylated STAT factors dissociate from the receptor, dimerize and translocate to the nucleus where they bind to enhancer sequences of IL-6 target genes. Phosphorylated SHP2 is able to bind growth factor receptor bound protein (grb2) and thus might link the Jak/STAT pathway to the ras/raf/mitogen-activated protein kinase pathway. Here we present data on the dose-dependence, kinetics and kinase requirements for SHP2 phosphorylation after the activation of the signal transducer, gp130, of the IL-6-type family receptor complex. When human fibrosarcoma cell lines deficient in Jak1, Jak2 or tyrosine kinase 2 (Tyk2) were stimulated with IL-6-soluble IL-6R complexes it was found that only in Jak1-, but not in Jak 2- or Tyk2-deficient cells, SHP2 activation was greatly impaired. It is concluded that Jak1 is required for the tyrosine phosphorylation of SHP2. This phosphorylation depends on Tyr-759 in the cytoplasmatic domain of gp130, since a Tyr-759-->Phe exchange abrogates SHP2 activation and in turn leads to elevated and prolonged STAT3 and STAT1 activation as well as enhanced acute-phase protein gene induction. Therefore, SHP2 plays an important role in acute-phase gene regulation.

  8. Macrophages of multiple sclerosis patients display deficient SHP-1 expression and enhanced inflammatory phenotype.

    PubMed

    Christophi, George P; Panos, Michael; Hudson, Chad A; Christophi, Rebecca L; Gruber, Ross C; Mersich, Akos T; Blystone, Scott D; Jubelt, Burk; Massa, Paul T

    2009-07-01

    Recent studies in mice have demonstrated that the protein tyrosine phosphatase SHP-1 is a crucial negative regulator of proinflammatory cytokine signaling, TLR signaling, and inflammatory gene expression. Furthermore, mice genetically lacking SHP-1 (me/me) display a profound susceptibility to inflammatory CNS demyelination relative to wild-type mice. In particular, SHP-1 deficiency may act predominantly in inflammatory macrophages to increase CNS demyelination as SHP-1-deficient macrophages display coexpression of inflammatory effector molecules and increased demyelinating activity in me/me mice. Recently, we reported that PBMCs of multiple sclerosis (MS) patients have a deficiency in SHP-1 expression relative to normal control subjects indicating that SHP-1 deficiency may play a similar role in MS as to that seen in mice. Therefore, it became essential to examine the specific expression and function of SHP-1 in macrophages from MS patients. Herein, we document that macrophages of MS patients have deficient SHP-1 protein and mRNA expression relative to those of normal control subjects. To examine functional consequences of the lower SHP-1, the activation of STAT6, STAT1, and NF-kappaB was quantified and macrophages of MS patients showed increased activation of these transcription factors. In accordance with this observation, several STAT6-, STAT1-, and NF-kappaB-responsive genes that mediate inflammatory demyelination were increased in macrophages of MS patients following cytokine and TLR agonist stimulation. Supporting a direct role of SHP-1 deficiency in altered macrophage function, experimental depletion of SHP-1 in normal subject macrophages resulted in an increased STAT/NF-kappaB activation and increased inflammatory gene expression to levels seen in macrophages of MS patients. In conclusion, macrophages of MS patients display a deficiency of SHP-1 expression, heightened activation of STAT6, STAT1, and NF-kappaB and a corresponding inflammatory profile that

  9. 2,4-Dihydroxychalcone derivatives as novel potent cell division cycle 25B phosphatase inhibitors and protein tyrosine phosphatase 1B inhibitors.

    PubMed

    Xie, Chao; Sun, Yuan; Pan, Cheng-Yan; Tang, Li-Ming; Guan, Li-Ping

    2014-04-01

    Eleven 2,4-dihydroxychalcone compounds were synthesized and identified as reversible and competitive cell division cycle 25 (CDC25) B and protein tyrosine phosphatase (PTP) 1B inhibitors with inhibition values in the micromolar range. The results showed that nine compounds significantly inhibited CDC25B phosphatase, whereas seven compounds inhibited the activity against PTP1B in vitro. Compound 8 had the greatest inhibition activity against CDC25B and PTP1B in vitro, with percentage inhibition values of 97.5% and 96.3% at a dose of 20 microg/mL, respectively. Cytotoxic activity assays revealed that compound 8 was the most potent against HCT116, HeLa, and A549 cells. Furthermore, compound 8 exhibited potent antitumor activity in a colo205 xenograft model.

  10. Design and synthesis of paracaseolide A analogues as selective protein tyrosine phosphatase 1B inhibitors.

    PubMed

    Yin, Jian-Peng; Tang, Chun-Lan; Gao, Li-Xin; Ma, Wei-Ping; Li, Jing-Ya; Li, Ying; Li, Jia; Nan, Fa-Jun

    2014-06-07

    A series of structurally related analogues of the natural product paracaseolide A were synthesized and identified as potent PTP1B inhibitors. Among these analogues, compound 10 in particular showed improved PTP1B enzyme inhibitory activity, high selectivity for PTP1B over TC-PTP, and improved cellular effects.

  11. Obatoclax analog SC-2001 inhibits STAT3 phosphorylation through enhancing SHP-1 expression and induces apoptosis in human breast cancer cells.

    PubMed

    Liu, Chun-Yu; Su, Jung-Chen; Ni, Mei-Huei; Tseng, Ling-Ming; Chu, Pei-Yi; Wang, Duen-Shian; Tai, Wei-Tien; Kao, Yuan-Ping; Hung, Man-Hsin; Shiau, Chung-Wai; Chen, Kuen-Feng

    2014-07-01

    Interfering oncogenic STAT3 signaling is a promising anti-cancer strategy. We examined the efficacy and drug mechanism of an obatoclax analog SC-2001, a novel STAT3 inhibitor, in human breast cancer cells. Human breast cancer cell lines were used for in vitro studies. Apoptosis was examined by both flow cytometry and western blot. Signaling pathways were assessed by western blot. In vivo efficacy of SC-2001 was tested in xenograft nude mice. SC-2001 inhibited cell growth and induced apoptosis in association with downregulation of p-STAT3 (Tyr 705) in breast cancer cells. STAT3-regulated proteins, including Mcl-1, survivin, and cyclin D1, were repressed by SC-2001. Over-expression of STAT3 in MDA-MB-468 cells protected cells from SC-2001-induced apoptosis. Moreover, SC-2001 enhanced the expression of protein tyrosine phosphatase SHP-1, a negative regulator of STAT3. Furthermore, the enhanced SHP-1 expression, in conjunction with increased SHP-1 phosphatase activity, was mediated by upregulated transcription by RFX-1. Chromatin immunoprecipitation assay revealed that SC-2001 increased the binding capacity of RFX-1 to the SHP-1 promoter. Knockdown of either RFX-1 or SHP-1 reduced SC-2001-induced apoptosis, whereas ectopic expression of RFX-1 increased SHP-1 expression and enhanced the apoptotic effect of SC-2001. Importantly, SC-2001 suppressed tumor growth in association with enhanced RFX-1 and SHP-1 expression and p-STAT3 downregulation in MDA-MB-468 xenograft tumors. SC-2001 induced apoptosis in breast cancer cells, an effect that was mediated by RFX-1 upregulated SHP-1 expression and SHP-1-dependent STAT3 inactivation. Our study indicates targeting STAT3 signaling pathway may be a useful approach for the development of targeted agents for anti-breast cancer.

  12. Improved metabolic phenotype of hypothalamic PTP1B-deficiency is dependent upon the leptin receptor.

    PubMed

    Tsou, Ryan C; Rak, Kimberly S; Zimmer, Derek J; Bence, Kendra K

    2014-06-01

    Protein tyrosine phosphatase 1B (PTP1B) is a known regulator of central metabolic signaling, and mice with whole brain-, leptin receptor (LepRb) expressing cell-, or proopiomelanocortin neuron-specific PTP1B-deficiency are lean, leptin hypersensitive, and display improved glucose homeostasis. However, whether the metabolic effects of central PTP1B-deficiency are due to action within the hypothalamus remains unclear. Moreover, whether or not these effects are exclusively due to enhanced leptin signaling is unknown. Here we report that mice with hypothalamic PTP1B-deficiency (Nkx2.1-PTP1B(-/-)) display decreased body weight and adiposity on high-fat diet with no associated improvements in glucose tolerance. Consistent with previous reports, we find that hypothalamic deletion of the LepRb in mice (Nkx2.1-LepRb(-/-)) results in extreme hyperphagia and obesity. Interestingly, deletion of hypothalamic PTP1B and LepRb (Nkx2.1-PTP1B(-/-):LepRb(-/-)) does not rescue the hyperphagia or obesity of Nkx2.1-LepRb(-/-) mice, suggesting that hypothalamic PTP1B contributes to the central control of energy balance through a leptin receptor-dependent pathway.

  13. ACTH Modulates PTP-PEST Activity and Promotes Its Interaction With Paxillin.

    PubMed

    Gorostizaga, Alejandra Beatriz; Mori Sequeiros Garcia, M Mercedes; Acquier, Andrea B; Lopez-Costa, Juan J; Mendez, Carlos F; Maloberti, Paula M; Paz, Cristina

    2016-09-01

    Adrenocorticotropic hormone (ACTH) treatment has been proven to promote paxillin dephosphorylation and increase soluble protein tyrosine phosphatase (PTP) activity in rat adrenal zona fasciculata (ZF). Also, in-gel PTP assays have shown the activation of a 115-kDa PTP (PTP115) by ACTH. In this context, the current work presents evidence that PTP115 is PTP-PEST, a PTP that recognizes paxillin as substrate. PTP115 was partially purified from rat adrenal ZF and PTP-PEST was detected through Western blot in bioactive samples taken in each purification step. Immunohistochemical and RT-PCR studies revealed PTP-PEST expression in rat ZF and Y1 adrenocortical cells. Moreover, a PTP-PEST siRNA decreased the expression of this phosphatase. PKA phosphorylation of purified PTP115 isolated from non-ACTH-treated rats increased KM and VM . Finally, in-gel PTP assays of immunoprecipitated paxillin from control and ACTH-treated rats suggested a hormone-mediated increase in paxillin-PTP115 interaction, while PTP-PEST and paxillin co-localize in Y1 cells. Taken together, these data demonstrate PTP-PEST expression in adrenal ZF and its regulation by ACTH/PKA and also suggest an ACTH-induced PTP-PEST-paxillin interaction. J. Cell. Biochem. 117: 2170-2181, 2016. © 2016 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc. © 2016 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc.

  14. The Protein Tyrosine Phosphatase Shp2 Is Required for the Generation of Oligodendrocyte Progenitor Cells and Myelination in the Mouse Telencephalon

    PubMed Central

    Ehrman, Lisa A.; Nardini, Diana; Ehrman, Sarah; Rizvi, Tilat A.; Gulick, James; Krenz, Maike; Dasgupta, Biplab; Robbins, Jeffrey; Ratner, Nancy; Nakafuku, Masato

    2014-01-01

    The protein tyrosine phosphatase Shp2 (PTPN11) is crucial for normal brain development and has been implicated in dorsal telencephalic neuronal and astroglia cell fate decisions. However, its roles in the ventral telencephalon and during oligodendrogenesis in the telencephalon remain largely unknown. Shp2 gain-of-function (GOF) mutations are observed in Noonan syndrome, a type of RASopathy associated with multiple phenotypes, including cardiovascular, craniofacial, and neurocognitive abnormalities. To gain insight into requirements for Shp2 (LOF) and the impact of abnormal Shp2 GOF mutations, we used a Shp2 conditional mutant allele (LOF) and a cre inducible Shp2-Q79R GOF transgenic mouse in combination with Olig2cre/+ mice to target embryonic ventral telencephalic progenitors and the oligodendrocyte lineage. In the absence of Shp2 (LOF), neuronal cell types originating from progenitors in the ventral telencephalon were generated, but oligodendrocyte progenitor cell (OPC) generation was severely impaired. Late embryonic and postnatal Shp2 cKOs showed defects in the generation of OPCs throughout the telencephalon and subsequent reductions in white matter myelination. Conversely, transgenic expression of the Shp2 GOF Noonan syndrome mutation resulted in elevated OPC numbers in the embryo and postnatal brain. Interestingly, expression of this mutation negatively influenced myelination as mice displayed abnormal myelination and fewer myelinated axons in the white matter despite elevated OPC numbers. Increased proliferating OPCs and elevated MAPK activity were also observed during oligodendrogenesis after expression of Shp2 GOF mutation. These results support the notion that appropriate Shp2 activity levels control the number as well as the differentiation of oligodendrocytes during development. PMID:24599474

  15. The protein tyrosine phosphatase Shp2 is required for the generation of oligodendrocyte progenitor cells and myelination in the mouse telencephalon.

    PubMed

    Ehrman, Lisa A; Nardini, Diana; Ehrman, Sarah; Rizvi, Tilat A; Gulick, James; Krenz, Maike; Dasgupta, Biplab; Robbins, Jeffrey; Ratner, Nancy; Nakafuku, Masato; Waclaw, Ronald R

    2014-03-05

    The protein tyrosine phosphatase Shp2 (PTPN11) is crucial for normal brain development and has been implicated in dorsal telencephalic neuronal and astroglia cell fate decisions. However, its roles in the ventral telencephalon and during oligodendrogenesis in the telencephalon remain largely unknown. Shp2 gain-of-function (GOF) mutations are observed in Noonan syndrome, a type of RASopathy associated with multiple phenotypes, including cardiovascular, craniofacial, and neurocognitive abnormalities. To gain insight into requirements for Shp2 (LOF) and the impact of abnormal Shp2 GOF mutations, we used a Shp2 conditional mutant allele (LOF) and a cre inducible Shp2-Q79R GOF transgenic mouse in combination with Olig2(cre/+) mice to target embryonic ventral telencephalic progenitors and the oligodendrocyte lineage. In the absence of Shp2 (LOF), neuronal cell types originating from progenitors in the ventral telencephalon were generated, but oligodendrocyte progenitor cell (OPC) generation was severely impaired. Late embryonic and postnatal Shp2 cKOs showed defects in the generation of OPCs throughout the telencephalon and subsequent reductions in white matter myelination. Conversely, transgenic expression of the Shp2 GOF Noonan syndrome mutation resulted in elevated OPC numbers in the embryo and postnatal brain. Interestingly, expression of this mutation negatively influenced myelination as mice displayed abnormal myelination and fewer myelinated axons in the white matter despite elevated OPC numbers. Increased proliferating OPCs and elevated MAPK activity were also observed during oligodendrogenesis after expression of Shp2 GOF mutation. These results support the notion that appropriate Shp2 activity levels control the number as well as the differentiation of oligodendrocytes during development.

  16. Shp-2 Is Dispensable for Establishing T Cell Exhaustion and for PD-1 Signaling In Vivo.

    PubMed

    Rota, Giorgia; Niogret, Charlène; Dang, Anh Thu; Barros, Cristina Ramon; Fonta, Nicolas Pierre; Alfei, Francesca; Morgado, Leonor; Zehn, Dietmar; Birchmeier, Walter; Vivier, Eric; Guarda, Greta

    2018-04-03

    In chronic infection and cancer, T cells acquire a dysfunctional state characterized by the expression of inhibitory receptors. In vitro studies implicated the phosphatase Shp-2 downstream of these receptors, including PD-1. However, whether Shp-2 is responsible in vivo for such dysfunctional responses remains elusive. To address this, we generated T cell-specific Shp-2-deficient mice. These mice did not show differences in controlling chronic viral infections. In this context, Shp-2-deleted CD8 + T lymphocytes expanded moderately better but were less polyfunctional than control cells. Mice with Shp-2-deficient T cells also showed no significant improvement in controlling immunogenic tumors and responded similarly to controls to α-PD-1 treatment. We therefore showed that Shp-2 is dispensable in T cells for globally establishing exhaustion and for PD-1 signaling in vivo. These results reveal the existence of redundant mechanisms downstream of inhibitory receptors and represent the foundation for defining these relevant molecular events. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Src homology 2 domain-containing phosphatase 2 (Shp2) is a component of the A-kinase-anchoring protein (AKAP)-Lbc complex and is inhibited by protein kinase A (PKA) under pathological hypertrophic conditions in the heart.

    PubMed

    Burmeister, Brian T; Taglieri, Domenico M; Wang, Li; Carnegie, Graeme K

    2012-11-23

    AKAP-Lbc is a scaffold protein that coordinates cardiac hypertrophic signaling. AKAP-Lbc interacts with Shp2, facilitating its regulation by PKA. AKAP-Lbc integrates PKA and Shp2 signaling in the heart. Under pathological hypertrophic conditions Shp2 is phosphorylated by PKA, and phosphatase activity is inhibited. Inhibition of Shp2 activity through AKAP-Lbc-anchored PKA is a previously unrecognized mechanism that may promote pathological cardiac hypertrophy. Pathological cardiac hypertrophy (an increase in cardiac mass resulting from stress-induced cardiac myocyte growth) is a major factor underlying heart failure. Our results identify a novel mechanism of Shp2 inhibition that may promote cardiac hypertrophy. We demonstrate that the tyrosine phosphatase, Shp2, is a component of the A-kinase-anchoring protein (AKAP)-Lbc complex. AKAP-Lbc facilitates PKA phosphorylation of Shp2, which inhibits its protein-tyrosine phosphatase activity. Given the important cardiac roles of both AKAP-Lbc and Shp2, we investigated the AKAP-Lbc-Shp2 interaction in the heart. AKAP-Lbc-tethered PKA is implicated in cardiac hypertrophic signaling; however, mechanism of PKA action is unknown. Mutations resulting in loss of Shp2 catalytic activity are also associated with cardiac hypertrophy and congenital heart defects. Our data indicate that AKAP-Lbc integrates PKA and Shp2 signaling in the heart and that AKAP-Lbc-associated Shp2 activity is reduced in hypertrophic hearts in response to chronic β-adrenergic stimulation and PKA activation. Thus, while induction of cardiac hypertrophy is a multifaceted process, inhibition of Shp2 activity through AKAP-Lbc-anchored PKA is a previously unrecognized mechanism that may promote compensatory cardiac hypertrophy.

  18. Experimental and Theoretical Study of the Movement of the Wpd Flexible Loop of Human Protein Tyrosine Phosphatase PTP1B in Complex with Halide Ions

    NASA Astrophysics Data System (ADS)

    Katz, Aline; Saenz-Méndez, Patricia; Cousido-Siah, Alexandra; Podjarny, Alberto D.; Ventura, Oscar N.

    2012-11-01

    Protein tyrosine phosphorylation is a post-translational modification mechanism, crucial for the regulation of nearly all aspects of cell life. This dynamic, reversible process is regulated by the balanced opposing activity of protein tyrosine kinases and protein tyrosine phosphatases. In particular, the protein tyrosine phosphatase 1B (PTP1B) is implicated in the regulation of the insulin-receptor activity, leptin-stimulated signal transduction pathways and other clinically relevant metabolic routes, and it has been found overexpressed or overregulated in human breasts, colon and ovary cancers. The WPD loop of the enzyme presents an inherent flexibility, and it plays a fundamental role in the enzymatic catalysis, turning it into a potential target in the design of new efficient PTP1B inhibitors. In order to determine the interactions that control the spatial conformation adopted by the WPD loop, complexes between the enzyme and halide ions (Br- and I- in particular) were crystallized and their crystallographic structure determined, and the collective movements of the aforementioned complexes were studied through Molecular Dynamics (MD) simulations. Both studies yielded concordant results, indicating the existence of a relationship between the identity of the ion present in the complex and the strength of the interactions it establishes with the surrounding protein residues.

  19. Superoxide anion radicals induce IGF-1 resistance through concomitant activation of PTP1B and PTEN

    PubMed Central

    Singh, Karmveer; Maity, Pallab; Krug, Linda; Meyer, Patrick; Treiber, Nicolai; Lucas, Tanja; Basu, Abhijit; Kochanek, Stefan; Wlaschek, Meinhard; Geiger, Hartmut; Scharffetter-Kochanek, Karin

    2015-01-01

    The evolutionarily conserved IGF-1 signalling pathway is associated with longevity, metabolism, tissue homeostasis, and cancer progression. Its regulation relies on the delicate balance between activating kinases and suppressing phosphatases and is still not very well understood. We report here that IGF-1 signalling in vitro and in a murine ageing model in vivo is suppressed in response to accumulation of superoxide anions () in mitochondria, either by chemical inhibition of complex I or by genetic silencing of -dismutating mitochondrial Sod2. The -dependent suppression of IGF-1 signalling resulted in decreased proliferation of murine dermal fibroblasts, affected translation initiation factors and suppressed the expression of α1(I), α1(III), and α2(I) collagen, the hallmarks of skin ageing. Enhanced led to activation of the phosphatases PTP1B and PTEN, which via dephosphorylation of the IGF-1 receptor and phosphatidylinositol 3,4,5-triphosphate dampened IGF-1 signalling. Genetic and pharmacologic inhibition of PTP1B and PTEN abrogated -induced IGF-1 resistance and rescued the ageing skin phenotype. We thus identify previously unreported signature events with , PTP1B, and PTEN as promising targets for drug development to prevent IGF-1 resistance-related pathologies. PMID:25520316

  20. PTP1B inhibitor promotes endothelial cell motility by activating the DOCK180/Rac1 pathway.

    PubMed

    Wang, Yuan; Yan, Feng; Ye, Qing; Wu, Xiao; Jiang, Fan

    2016-04-07

    Promoting endothelial cell (EC) migration is important not only for therapeutic angiogenesis, but also for accelerating re-endothelialization after vessel injury. Several recent studies have shown that inhibition of protein tyrosine phosphatase 1B (PTP1B) may promote EC migration and angiogenesis by enhancing the vascular endothelial growth factor receptor-2 (VEGFR2) signalling. In the present study, we demonstrated that PTP1B inhibitor could promote EC adhesion, spreading and migration, which were abolished by the inhibitor of Rac1 but not RhoA GTPase. PTP1B inhibitor significantly increased phosphorylation of p130Cas, and the interactions among p130Cas, Crk and DOCK180; whereas the phosphorylation levels of focal adhesion kinase, Src, paxillin, or Vav2 were unchanged. Gene silencing of DOCK180, but not Vav2, abrogated the effects of PTP1B inhibitor on EC motility. The effects of PTP1B inhibitor on EC motility and p130Cas/DOCK180 activation persisted in the presence of the VEGFR2 antagonist. In conclusion, we suggest that stimulation of the DOCK180 pathway represents an alternative mechanism of PTP1B inhibitor-stimulated EC motility, which does not require concomitant VEGFR2 activation as a prerequisite. Therefore, PTP1B inhibitor may be a useful therapeutic strategy for promoting EC migration in cardiovascular patients in which the VEGF/VEGFR functions are compromised.

  1. Analysis of in vitro interactions of protein tyrosine phosphatase 1B with insulin receptors.

    PubMed

    Wang, X Y; Bergdahl, K; Heijbel, A; Liljebris, C; Bleasdale, J E

    2001-02-28

    One strategy to treat the insulin resistance that is central to type II diabetes mellitus may be to maintain insulin receptors (IR) in the active (tyrosine phosphorylated) form. Because protein tyrosine phosphatase 1B (PTP1B) binds and subsequently dephosphorylates IR, inhibitors of PTP1B-IR binding are potential insulin 'sensitizers.' A Scintillation Proximity Assay (SPA) was developed to characterize and quantitate PTP1B-IR binding. Human IR were solubilized and captured on wheat germ agglutinin (WGA)-coated SPA beads. Subsequent binding of human, catalytically inactive [35S] PTP1B Cys(215)/Ser (PTP1B(C215S)) to the lectin-anchored IR results in scintillation from the SPA beads that can be quantitated. Binding of PTP1B to IR was pH- and divalent cation-sensitive. Ca(2+) and Mn(2+), but not Mg(2+), dramatically attenuated the loss of PTP1B-IR binding observed when pH was raised from 6.2 to 7.8. PTP1B binding to IR from insulin-stimulated cells was much greater than to IR from unstimulated cells and was inhibited by either an antiphosphotyrosine antibody or treatment of IR with alkaline phosphatase, suggesting that tyrosine phosphorylation of IR is required for PTP1B binding. Phosphopeptides modeled after various IR phosphotyrosine domains each only partially inhibited PTP1B-IR binding, indicating that multiple domains of IR are likely involved in binding PTP1B. However, competitive displacement of [35S]PTP1B(C215S) by PTP1B(C215S) fitted best to a single binding site with a K(d) in the range 100-1000 nM, depending upon pH and divalent cations. PNU-200898, a potent and selective inhibitor of PTP1B whose orientation in the active site of PTP1B has been solved, competitively inhibited catalysis and PTP1B-IR binding with equal potency. The results of this novel assay for PTP1B-IR binding suggest that PTP1B binds preferentially to tyrosine phosphorylated IR through its active site and that binding may be susceptible to therapeutic disruption by small molecules.

  2. Microtubule and Cell Contact Dependency of ER-bound PTP1B Localization in Growth Cones

    PubMed Central

    Fuentes, Federico

    2009-01-01

    PTP1B is an ER-bound protein tyrosine phosphatase implied in the regulation of cell adhesion. Here we investigated mechanisms involved in the positioning and dynamics of PTP1B in axonal growth cones and evaluated the role of this enzyme in axons. In growth cones, PTP1B consistently localizes in the central domain, and occasionally at the peripheral region and filopodia. Live imaging of GFP-PTP1B reveals dynamic excursions of fingerlike processes within the peripheral region and filopodia. PTP1B and GFP-PTP1B colocalize with ER markers and coalign with microtubules at the peripheral region and redistribute to the base of the growth cone after treatment with nocodazole, a condition that is reversible. Growth cone contact with cellular targets is accompanied by invasion of PTP1B and stable microtubules in the peripheral region aligned with the contact axis. Functional impairment of PTP1B causes retardation of axon elongation, as well as reduction of growth cone filopodia lifetime and Src activity. Our results highlight the role of microtubules and cell contacts in the positioning of ER-bound PTP1B to the peripheral region of growth cones, which may be required for the positive role of PTP1B in axon elongation, filopodia stabilization, and Src activity. PMID:19158394

  3. Erythroblast Transformation by the Friend Spleen Focus-Forming Virus Is Associated with a Block in Erythropoietin-Induced STAT1 Phosphorylation and DNA Binding and Correlates with High Expression of the Hematopoietic Phosphatase SHP-1

    PubMed Central

    Nishigaki, Kazuo; Hanson, Charlotte; Ohashi, Takashi; Spadaccini, Angelo; Ruscetti, Sandra

    2006-01-01

    Infection of mice with Friend spleen focus-forming virus (SFFV) results in a multistage erythroleukemia. In the first stage, the SFFV envelope glycoprotein interacts with the erythropoietin receptor and a short form of the receptor tyrosine kinase sf-Stk, resulting in constitutive activation of signal transducing molecules and the development of erythropoietin (Epo)-independent erythroid hyperplasia and polycythemia. The second stage results from the outgrowth of a rare virus-infected erythroid cell that expresses nonphysiological levels of the myeloid transcription factor PU.1. These cells exhibit a differentiation block and can be grown as murine erythroleukemia (MEL) cell lines. In this study, we examined SFFV MEL cells to determine whether their transformed phenotype was associated with a block in the activation of any Epo signal-transducing molecules. Our studies indicate that Epo- or SFFV-induced activation of STAT1/3 DNA binding activity is blocked in SFFV MEL cells. The block is at the level of tyrosine phosphorylation of STAT1, although Jak2 phosphorylation is not blocked in these cells. In contrast to Epo, alpha interferon can induce STAT1 phosphorylation and DNA binding in SFFV MEL cells. The SFFV-transformed cells were shown to express elevated levels of the hematopoietic phosphatase SHP-1, and treatment of the cells with a phosphatase inhibitor restored STAT1 tyrosine phosphorylation. MEL cells derived from Friend murine leukemia virus (MuLV) or ME26 MuLV-infected mice, which do not express PU.1, express lower levels of SHP-1 and are not blocked in STAT1/3 DNA-binding activity. Our studies suggest that SFFV-infected erythroid cells become transformed when differentiation signals activated by STAT1/3 are blocked due to high SHP-1 levels induced by inappropriate expression of the PU.1 protein. PMID:16731906

  4. Immunoreactivity of protein tyrosine phosphatase A (PtpA) in sera from sheep infected with Mycobacterium avium subspecies paratuberculosis.

    PubMed

    Gurung, Ratna B; Begg, Douglas J; Purdie, Auriol C; Bach, Horacio; Whittington, Richard J

    2014-07-15

    Evasion of host defense mechanisms and survival inside infected host macrophages are features of pathogenic mycobacteria including Mycobacterium avium subspecies paratuberculosis, the causative agent of Johne's disease in ruminants. Protein tyrosine phosphatase A (PtpA) has been identified as a secreted protein critical for survival of mycobacteria within infected macrophages. The host may mount an immune response to such secreted proteins. In this study, the humoral immune response to purified recombinant M. avium subsp. paratuberculosis PtpA was investigated using sera from a cohort of sheep infected with M. avium subsp. paratuberculosis and compared with uninfected healthy controls. A significantly higher level of reactivity to PtpA was observed in sera collected from M. avium subspecies paratuberculosis infected sheep when compared to those from uninfected healthy controls. PtpA could be a potential candidate antigen for detection of humoral immune responses in sheep infected with M. avium subspecies paratuberculosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Discovery of novel high potent and cellular active ADC type PTP1B inhibitors with selectivity over TC-PTP via modification interacting with C site.

    PubMed

    Du, Yongli; Zhang, Yanhui; Ling, Hao; Li, Qunyi; Shen, Jingkang

    2018-01-20

    PTP1B serving as a key negative regulator of insulin signaling is a novel target for type 2 diabetes and obesity. Modification at ring B of N-{4-[(3-Phenyl-ureido)-methyl]-phenyl}-methane-sulfonamide template to interact with residues Arg47 and Lys41 in the C site of PTP1B by molecular docking aided design resulted in the discovery of a series of novel high potent and selective inhibitors of PTP1B. The structure activity relationship interacting with the C site of PTP1B was well illustrated. Compounds 8 and 18 were shown to be the high potent and most promising PTP1B inhibitors with cellular activity and great selectivity over the highly homologous TCPTP and other PTPs. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. PTP1B is a negative regulator of interleukin 4–induced STAT6 signaling

    PubMed Central

    Lu, Xiaoqing; Malumbres, Raquel; Shields, Benjamin; Jiang, Xiaoyu; Sarosiek, Kristopher A.; Natkunam, Yasodha

    2008-01-01

    Protein tyrosine phosphatase 1B (PTP1B) is a ubiquitously expressed enzyme shown to negatively regulate multiple tyrosine phosphorylation-dependent signaling pathways. PTP1B can modulate cytokine signaling pathways by dephosphorylating JAK2, TYK2, and STAT5a/b. Herein, we report that phosphorylated STAT6 may serve as a cytoplasmic substrate for PTP1B. Overexpression of PTP1B led to STAT6 dephosphorylation and the suppression of STAT6 transcriptional activity, whereas PTP1B knockdown or deficiency augmented IL-4–induced STAT6 signaling. Pretreatment of these cells with the PTK inhibitor staurosporine led to sustained STAT6 phosphorylation consistent with STAT6 serving as a direct substrate of PTP1B. Furthermore, PTP1B-D181A “substrate-trapping” mutants formed stable complexes with phosphorylated STAT6 in a cellular context and endogenous PTP1B and STAT6 interacted in an interleukin 4 (IL-4)–inducible manner. We delineate a new negative regulatory loop of IL-4–JAK-STAT6 signaling. We demonstrate that IL-4 induces PTP1B mRNA expression in a phosphatidylinositol 3-kinase–dependent manner and enhances PTP1B protein stability to suppress IL-4–induced STAT6 signaling. Finally, we show that PTP1B expression may be preferentially elevated in activated B cell–like diffuse large B-cell lymphomas. These observations identify a novel regulatory loop for the regulation of IL-4–induced STAT6 signaling that may have important implications in both neoplastic and inflammatory processes. PMID:18716132

  7. The Phosphatase PTP-PEST/PTPN12 Regulates Endothelial Cell Migration and Adhesion, but Not Permeability, and Controls Vascular Development and Embryonic Viability*

    PubMed Central

    Souza, Cleiton Martins; Davidson, Dominique; Rhee, Inmoo; Gratton, Jean-Philippe; Davis, Elaine C.; Veillette, André

    2012-01-01

    Protein-tyrosine phosphatase (PTP)-PEST (PTPN12) is ubiquitously expressed. It is essential for normal embryonic development and embryonic viability in mice. Herein we addressed the involvement of PTP-PEST in endothelial cell functions using a combination of genetic and biochemical approaches. By generating primary endothelial cells from an inducible PTP-PEST-deficient mouse, we found that PTP-PEST is not needed for endothelial cell differentiation and proliferation or for the control of endothelial cell permeability. Nevertheless, it is required for integrin-mediated adhesion and migration of endothelial cells. PTP-PEST-deficient endothelial cells displayed increased tyrosine phosphorylation of Cas, paxillin, and Pyk2, which were previously also implicated in integrin functions. By eliminating PTP-PEST in endothelial cells in vivo, we obtained evidence that expression of PTP-PEST in endothelial cells is required for normal vascular development and embryonic viability. Therefore, PTP-PEST is a key regulator of integrin-mediated functions in endothelial cells seemingly through its capacity to control Cas, paxillin, and Pyk2. This function explains at least in part the essential role of PTP-PEST in embryonic development and viability. PMID:23105101

  8. Sirt1 negatively regulates FcεRI-mediated mast cell activation through AMPK- and PTP1B-dependent processes.

    PubMed

    Li, Xian; Lee, Youn Ju; Jin, Fansi; Park, Young Na; Deng, Yifeng; Kang, Youra; Yang, Ju Hye; Chang, Jae-Hoon; Kim, Dong-Young; Kim, Jung-Ae; Chang, Young-Chae; Ko, Hyun-Jeong; Kim, Cheorl-Ho; Murakami, Makoto; Chang, Hyeun Wook

    2017-07-25

    Sirt1, a key regulator of metabolism and longevity, has recently been implicated in the regulation of allergic reactions, although the underlying mechanism remains unclear. Here we show that Sirt1 negatively regulates FcεRI-stimulated mast cell activation and anaphylaxis through two mutually regulated pathways involving AMP-activated protein kinase (AMPK) and protein tyrosine phosphatase 1B (PTP1B). Mast cell-specific knockout of Sirt1 dampened AMPK-dependent suppression of FcεRI signaling, thereby augmenting mast cell activation both in vitro and in vivo. Sirt1 inhibition of FcεRI signaling also involved an alternative component, PTP1B, which attenuated the inhibitory AMPK pathway and conversely enhanced the stimulatory Syk pathway, uncovering a novel role of this phosphatase. Moreover, a Sirt1 activator resveratrol stimulated the inhibitory AMPK axis, with reciprocal suppression of the stimulatory PTP1B/Syk axis, thus potently inhibiting anaphylaxis. Overall, our results provide a molecular explanation for the beneficial role of Sirt1 in allergy and underscore a potential application of Sirt1 activators as a new class of anti-allergic agents.

  9. Gain-of-function mutations in the gene encoding the tyrosine phosphatase SHP2 induce hydrocephalus in a catalytically dependent manner.

    PubMed

    Zheng, Hong; Yu, Wen-Mei; Waclaw, Ronald R; Kontaridis, Maria I; Neel, Benjamin G; Qu, Cheng-Kui

    2018-03-20

    Catalytically activating mutations in Ptpn11 , which encodes the protein tyrosine phosphatase SHP2, cause 50% of Noonan syndrome (NS) cases, whereas inactivating mutations in Ptpn11 are responsible for nearly all cases of the similar, but distinct, developmental disorder Noonan syndrome with multiple lentigines (NSML; formerly called LEOPARD syndrome). However, both types of disease mutations are gain-of-function mutations because they cause SHP2 to constitutively adopt an open conformation. We found that the catalytic activity of SHP2 was required for the pathogenic effects of gain-of-function, disease-associated mutations on the development of hydrocephalus in the mouse. Targeted pan-neuronal knockin of a Ptpn11 allele encoding the active SHP2 E76K mutant resulted in hydrocephalus due to aberrant development of ependymal cells and their cilia. These pathogenic effects of the E76K mutation were suppressed by the additional mutation C459S, which abolished the catalytic activity of SHP2. Moreover, ependymal cells in NSML mice bearing the inactive SHP2 mutant Y279C were also unaffected. Mechanistically, the SHP2 E76K mutant induced developmental defects in ependymal cells by enhancing dephosphorylation and inhibition of the transcription activator STAT3. Whereas STAT3 activity was reduced in Ptpn11 E76K/+ cells, the activities of the kinases ERK and AKT were enhanced, and neural cell-specific Stat3 knockout mice also manifested developmental defects in ependymal cells and cilia. These genetic and biochemical data demonstrate a catalytic-dependent role of SHP2 gain-of-function disease mutants in the pathogenesis of hydrocephalus. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  10. IRE1α links Nck1 deficiency to attenuated PTP1B expression in HepG2 cells.

    PubMed

    Li, Hui; Li, Bing; Larose, Louise

    2017-08-01

    PTP1B, a prototype of the non-receptor subfamily of the protein tyrosine phosphatase superfamily, plays a key role in regulating intracellular signaling from various receptor and non-receptor protein tyrosine kinases. Previously, we reported that silencing Nck1 in human hepatocellular carcinoma HepG2 cells enhances basal and growth factor-induced activation of the PI3K-Akt pathway through attenuating PTP1B expression. However, the underlying mechanism by which Nck1 depletion represses PTP1B expression remains unclear. In this study, we found that silencing Nck1 attenuates PTP1B expression in HepG2 cells through down-regulation of IRE1α. Indeed, we show that silencing Nck1 in HepG2 cells leads to decreased IRE1α expression and signaling. Accordingly, IRE1α depletion using siRNA in HepG2 cells enhances PI3K-dependent basal and growth factor-induced Akt activation, reproducing the effects of silencing Nck1 on activation of this pathway. In addition, depletion of IRE1α also leads to reduced PTP1B expression, which was rescued by ectopic expression of IRE1α in Nck1-depleted cells. Mechanistically, we found that silencing either Nck1 or IRE1α in HepG2 cells decreases PTP1B mRNA levels and stability. However, despite miR-122 levels, a miRNA targeting PTP1B 3' UTR and inducing PTP1B mRNA degradation in HepG2 cells, are increased in both Nck1- and IRE1α-depleted HepG2 cells, a miR-122 antagomir did not rescue PTP1B expression in these cells. Overall, this study highlights an important role for Nck1 in fine-tuning IRE1α expression and signaling that regulate PTP1B expression and subsequent activation of the PI3K-Akt pathway in HepG2 cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Molecular characterization of a tyrosine-specific protein phosphatase encoded by a stress-responsive gene in Arabidopsis.

    PubMed Central

    Xu, Q; Fu, H H; Gupta, R; Luan, S

    1998-01-01

    Protein tyrosine kinases and phosphatases play a vital role in the regulation of cell growth and differentiation in animal systems. However, none of these enzymes has been characterized from higher plants. In this study, we isolated a cDNA encoding a putative protein tyrosine phosphatase (PTPase) from Arabidopsis (referred to as AtPTP1). The expression level of AtPTP1 is highly sensitive to environmental stresses. High-salt conditions increased AtPTP1 mRNA levels, whereas cold treatment rapidly eliminated the AtPTP1 transcript. The recombinant AtPTP1 protein specifically hydrolyzed phosphotyrosine, but not phosphoserine/threonine, in protein substrates. Site-directed mutagenesis defined two highly conserved amino acids, cysteine-265 and aspartate-234, as being essential for the phosphatase activity of the AtPTP1 protein, suggesting a common catalytic mechanism for PTPases from all eukaryotic systems. In summary, we have identified AtPTP1 as a tyrosine-specific protein phosphatase that may function in stress responses of higher plants. PMID:9596642

  12. Reduction of PTP1B induces differential expression of PI3-kinase (p85alpha) isoforms.

    PubMed

    Rondinone, Cristina M; Clampit, Jill; Gum, Rebecca J; Zinker, Bradley A; Jirousek, Michael R; Trevillyan, James M

    2004-10-15

    Protein tyrosine phosphatase 1B (PTP1B) inhibition increases insulin sensitivity and normalizes blood glucose levels in animals. The molecular events associated with PTP1B inhibition that increase insulin sensitivity remain controversial. Insulin resistant, diabetic ob/ob mice, dosed with PTP1B antisense for 3 weeks exhibited a decrease in PTP1B protein levels and a change in the expression level of p85alpha isoforms in liver, characterized by a reduction in p85alpha and an upregulation of the p50alpha and p55alpha isoforms. Transfection of mouse hepatocytes with PTP1B antisense caused a downregulation PTP1B and p85alpha protein levels. Furthermore, transfection of mouse hepatocytes with PTP1B siRNA downregulated p85alpha protein expression and enhanced insulin-induced PKB phosphorylation. Treatment of mouse hepatocytes with p85alpha antisense oligonucleotide caused a reduction of p85alpha and an increase in p50alpha and p55alpha isoforms and enhanced insulin-stimulated PKB activation. These results demonstrate that PTP1B inhibition causes a direct differential regulation of p85alpha isoforms of PI3-kinase in liver and that reduction of p85alpha may be one mechanism by which PTP1B inhibition improves insulin sensitivity and glucose metabolism in insulin-resistant states. Copyright 2004 Elsevier Inc.

  13. Contribution of Protein Tyrosine Phosphateses to the Ontogeny and Progression of Chronic Myeloid Leukemia

    DTIC Science & Technology

    2006-04-01

    activates STATs. The protein tyrosine phosphatases TC-PTP and PTP1B are negative regulators of JAK/STAT signaling molecules and it is possible that...these two PTPs could impede the ability of CML cells to survive and proliferate in response to p210 BCR-Abl. We examined the role of TC-PTP and PTP1b in...contributing to the CML phenotype and found that in some CML cell lines the levels of TC-PTP and PTP1b is increased suggesting that they may be

  14. Identification of PTP1B and α-Glucosidase Inhibitory Serrulatanes from Eremophila spp. by Combined use of Dual High-Resolution PTP1B and α-Glucosidase Inhibition Profiling and HPLC-HRMS-SPE-NMR.

    PubMed

    Wubshet, Sileshi G; Tahtah, Yousof; Heskes, Allison M; Kongstad, Kenneth T; Pateraki, Irini; Hamberger, Björn; Møller, Birger L; Staerk, Dan

    2016-04-22

    According to the International Diabetes Federation, type 2 diabetes (T2D) has reached epidemic proportions, affecting more than 382 million people worldwide. Inhibition of protein tyrosine phosphatase-1B (PTP1B) and α-glucosidase is a recognized therapeutic approach for management of T2D and its associated complications. The lack of clinical drugs targeting PTP1B and side effects of the existing α-glucosidase drugs, emphasize the need for new drug leads for these T2D targets. In the present work, dual high-resolution PTP1B and α-glucosidase inhibition profiles of Eremophila gibbosa, E. glabra, and E. aff. drummondii "Kalgoorlie" were used for pinpointing α-glucosidase and/or PTP1B inhibitory constituents directly from the crude extracts. A subsequent targeted high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy (HPLC-HRMS-SPE-NMR) analysis and preparative-scale HPLC isolation led to identification of 21 metabolites from the three species, of which 16 were serrulatane-type diterpenoids (12 new) associated with either α-glucosidase and/or PTP1B inhibition. This is the first report of serrulatane-type diterpenoids as potential α-glucosidase and/or PTP1B inhibitors.

  15. One bis-indole alkaloid-voacamine from Voacanga africana Stapf: biological activity evaluation of PTP1B in vitro utilizing enzymology method based on SPRi expriment.

    PubMed

    Wang, Yan-Qiu; Li, Hong-Xiang; Liu, Xiao-Chun; Zhao, Jin-Shuang; Liu, Rong-Qiang; Huai, Wen-Ying; Ding, Wei-Jun; Zhang, Tian-E; Deng, Yun

    2018-05-31

    One known bis-indole alkaloid-voacamine was isolated from Voacanga africana Stapf and Surface Plasmon Resonance imaging (SPRi) exprement showed that this alkaloid could be combine with Protein Tyrosine Phosphatase1B (PTP1B). Then the PTP1B activity inhibition experiment display that the compound showed an outstanding promoting activity to PTP1B.

  16. Regulation of the Src Kinase-associated Phosphoprotein 55 Homologue by the Protein Tyrosine Phosphatase PTP-PEST in the Control of Cell Motility*

    PubMed Central

    Ayoub, Emily; Hall, Anita; Scott, Adam M.; Chagnon, Mélanie J.; Miquel, Géraldine; Hallé, Maxime; Noda, Masaharu; Bikfalvi, Andreas; Tremblay, Michel L.

    2013-01-01

    PTP-PEST is a cytosolic ubiquitous protein tyrosine phosphatase (PTP) that contains, in addition to its catalytic domain, several protein-protein interaction domains that allow it to interface with several signaling pathways. Among others, PTP-PEST is a key regulator of cellular motility and cytoskeleton dynamics. The complexity of the PTP-PEST interactome underscores the necessity to identify its interacting partners and physiological substrates in order to further understand its role in focal adhesion complex turnover and actin organization. Using a modified yeast substrate trapping two-hybrid system, we identified a cytosolic adaptor protein named Src kinase-associated phosphoprotein 55 homologue (SKAP-Hom) as a novel substrate of PTP-PEST. To confirm PTP-PEST interaction with SKAP-Hom, in vitro pull down assays were performed demonstrating that the PTP catalytic domain and Proline-rich 1 (P1) domain are respectively binding to the SKAP-Hom Y260 and Y297 residues and its SH3 domain. Subsequently, we generated and rescued SKAP-Hom-deficient mouse embryonic fibroblasts (MEFs) with WT SKAP-Hom, SKAP-Hom tyrosine mutants (Y260F, Y260F/Y297F), or SKAP-Hom SH3 domain mutant (W335K). Given the role of PTP-PEST, wound-healing and trans-well migration assays were performed using the generated lines. Indeed, SKAP-Hom-deficient MEFs showed a defect in migration compared with WT-rescued MEFs. Interestingly, the SH3 domain mutant-rescued MEFs showed an enhanced cell migration corresponding potentially with higher tyrosine phosphorylation levels of SKAP-Hom. These findings suggest a novel role of SKAP-Hom and its phosphorylation in the regulation of cellular motility. Moreover, these results open new avenues by which PTP-PEST regulates cellular migration, a hallmark of metastasis. PMID:23897807

  17. Src Homology 2 Domain-containing Phosphatase 2 (Shp2) Is a Component of the A-kinase-anchoring Protein (AKAP)-Lbc Complex and Is Inhibited by Protein Kinase A (PKA) under Pathological Hypertrophic Conditions in the Heart*

    PubMed Central

    Burmeister, Brian T.; Taglieri, Domenico M.; Wang, Li; Carnegie, Graeme K.

    2012-01-01

    Pathological cardiac hypertrophy (an increase in cardiac mass resulting from stress-induced cardiac myocyte growth) is a major factor underlying heart failure. Our results identify a novel mechanism of Shp2 inhibition that may promote cardiac hypertrophy. We demonstrate that the tyrosine phosphatase, Shp2, is a component of the A-kinase-anchoring protein (AKAP)-Lbc complex. AKAP-Lbc facilitates PKA phosphorylation of Shp2, which inhibits its protein-tyrosine phosphatase activity. Given the important cardiac roles of both AKAP-Lbc and Shp2, we investigated the AKAP-Lbc-Shp2 interaction in the heart. AKAP-Lbc-tethered PKA is implicated in cardiac hypertrophic signaling; however, mechanism of PKA action is unknown. Mutations resulting in loss of Shp2 catalytic activity are also associated with cardiac hypertrophy and congenital heart defects. Our data indicate that AKAP-Lbc integrates PKA and Shp2 signaling in the heart and that AKAP-Lbc-associated Shp2 activity is reduced in hypertrophic hearts in response to chronic β-adrenergic stimulation and PKA activation. Thus, while induction of cardiac hypertrophy is a multifaceted process, inhibition of Shp2 activity through AKAP-Lbc-anchored PKA is a previously unrecognized mechanism that may promote compensatory cardiac hypertrophy. PMID:23045525

  18. Redox regulation of protein tyrosine phosphatase 1B (PTP1B): Importance of steric and electronic effects on the unusual cyclization of the sulfenic acid intermediate to a sulfenyl amide

    NASA Astrophysics Data System (ADS)

    Sarma, Bani Kanta

    2013-09-01

    The redox regulation of protein tyrosine phosphatase 1B (PTP1B) via the unusual transformation of its sulfenic acid (PTP1B-SOH) to a cyclic sulfenyl amide intermediate is studied by using small molecule chemical models. These studies suggest that the sulfenic acids derived from the H2O2-mediated reactions o-amido thiophenols do not efficiently cyclize to sulfenyl amides and the sulfenic acids produced in situ can be trapped by using methyl iodide. Theoretical calculations suggest that the most stable conformer of such sulfenic acids are stabilized by nO → σ*S-OH orbital interactions, which force the -OH group to adopt a position trans to the S⋯O interaction, leading to an almost linear arrangement of the O⋯S-O moiety and this may be the reason for the slow cyclization of such sulfenic acids to their corresponding sulfenyl amides. On the other hand, additional substituents at the 6-position of o-amido phenylsulfenic acids that can induce steric environment and alter the electronic properties around the sulfenic acid moiety by S⋯N or S⋯O nonbonded interactions destabilize the sulfenic acids by inducing strain in the molecule. This may lead to efficient the cyclization of such sulfenic acids. This model study suggests that the amino acid residues in the close proximity of the sulfenic acid moiety in PTP1B may play an important role in the cyclization of PTP1B-SOH to produce the corresponding sulfenyl amide.

  19. The HSV-1 mechanisms of cell-to-cell spread and fusion are critically dependent on host PTP1B.

    PubMed

    Carmichael, Jillian C; Yokota, Hiroki; Craven, Rebecca C; Schmitt, Anthony; Wills, John W

    2018-05-01

    All herpesviruses have mechanisms for passing through cell junctions, which exclude neutralizing antibodies and offer a clear path to neighboring, uninfected cells. In the case of herpes simplex virus type 1 (HSV-1), direct cell-to-cell transmission takes place between epithelial cells and sensory neurons, where latency is established. The spreading mechanism is poorly understood, but mutations in four different HSV-1 genes can dysregulate it, causing neighboring cells to fuse to produce syncytia. Because the host proteins involved are largely unknown (other than the virus entry receptor), we were intrigued by an earlier discovery that cells infected with wild-type HSV-1 will form syncytia when treated with salubrinal. A biotinylated derivative of this drug was used to pull down cellular complexes, which were analyzed by mass spectrometry. One candidate was a protein tyrosine phosphatase (PTP1B), and although it ultimately proved not to be the target of salubrinal, it was found to be critical for the mechanism of cell-to-cell spread. In particular, a highly specific inhibitor of PTP1B (CAS 765317-72-4) blocked salubrinal-induced fusion, and by itself resulted in a dramatic reduction in the ability of HSV-1 to spread in the presence of neutralizing antibodies. The importance of this phosphatase was confirmed in the absence of drugs by using PTP1B-/- cells. Importantly, replication assays showed that virus titers were unaffected when PTP1B was inhibited or absent. Only cell-to-cell spread was altered. We also examined the effects of salubrinal and the PTP1B inhibitor on the four Syn mutants of HSV-1, and strikingly different responses were found. That is, both drugs individually enhanced fusion for some mutants and reduced fusion for others. PTP1B is the first host factor identified to be specifically required for cell-to-cell spread, and it may be a therapeutic target for preventing HSV-1 reactivation disease.

  20. Inhibition of T Cell Protein Tyrosine Phosphatase Enhances Interleukin-18-Dependent Hematopoietic Stem Cell Expansion

    PubMed Central

    Bourdeau, Annie; Trop, Sébastien; Doody, Karen M; Dumont, Daniel J; Tremblayef, Michel L

    2013-01-01

    The clinical application of hematopoietic progenitor cell-based therapies for the treatment of hematological diseases is hindered by current protocols, which are cumbersome and have limited efficacy to augment the progenitor cell pool. We report that inhibition of T-cell protein tyrosine phosphatase (TC-PTP), an enzyme involved in the regulation of cytokine signaling, through gene knockout results in a ninefold increase in the number of hematopoietic progenitors in murine bone marrow (BM). This effect could be reproduced using a short (48 hours) treatment with a pharmacological inhibitor of TC-PTP in murine BM, as well as in human BM, peripheral blood, and cord blood. We also demonstrate that the ex vivo use of TC-PTP inhibitor only provides a temporary effect on stem cells and did not alter their capacity to reconstitute all hematopoietic components in vivo. We establish that one of the mechanisms whereby inhibition of TC-PTP mediates its effects involves the interleukin-18 (IL-18) signaling pathway, leading to increased production of IL-12 and interferon-gamma by progenitor cells. Together, our results reveal a previously unrecognized role for IL-18 in contributing to the augmentation of the stem cell pool and provide a novel and simple method to rapidly expand progenitor cells from a variety of sources using a pharmacological compound. Stem Cells 2013;31:293–304 PMID:23135963

  1. Conformational Rigidity and Protein Dynamics at Distinct Timescales Regulate PTP1B Activity and Allostery.

    PubMed

    Choy, Meng S; Li, Yang; Machado, Luciana E S F; Kunze, Micha B A; Connors, Christopher R; Wei, Xingyu; Lindorff-Larsen, Kresten; Page, Rebecca; Peti, Wolfgang

    2017-02-16

    Protein function originates from a cooperation of structural rigidity, dynamics at different timescales, and allostery. However, how these three pillars of protein function are integrated is still only poorly understood. Here we show how these pillars are connected in Protein Tyrosine Phosphatase 1B (PTP1B), a drug target for diabetes and cancer that catalyzes the dephosphorylation of numerous substrates in essential signaling pathways. By combining new experimental and computational data on WT-PTP1B and ≥10 PTP1B variants in multiple states, we discovered a fundamental and evolutionarily conserved CH/π switch that is critical for positioning the catalytically important WPD loop. Furthermore, our data show that PTP1B uses conformational and dynamic allostery to regulate its activity. This shows that both conformational rigidity and dynamics are essential for controlling protein activity. This connection between rigidity and dynamics at different timescales is likely a hallmark of all enzyme function. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. PTP1B-dependent regulation of receptor tyrosine kinase signaling by the actin-binding protein Mena

    PubMed Central

    Hughes, Shannon K.; Oudin, Madeleine J.; Tadros, Jenny; Neil, Jason; Del Rosario, Amanda; Joughin, Brian A.; Ritsma, Laila; Wyckoff, Jeff; Vasile, Eliza; Eddy, Robert; Philippar, Ulrike; Lussiez, Alisha; Condeelis, John S.; van Rheenen, Jacco; White, Forest; Lauffenburger, Douglas A.; Gertler, Frank B.

    2015-01-01

    During breast cancer progression, alternative mRNA splicing produces functionally distinct isoforms of Mena, an actin regulator with roles in cell migration and metastasis. Aggressive tumor cell subpopulations express MenaINV, which promotes tumor cell invasion by potentiating EGF responses. However, the mechanism by which this occurs is unknown. Here we report that Mena associates constitutively with the tyrosine phosphatase PTP1B and mediates a novel negative feedback mechanism that attenuates receptor tyrosine kinase signaling. On EGF stimulation, complexes containing Mena and PTP1B are recruited to the EGFR, causing receptor dephosphorylation and leading to decreased motility responses. Mena also interacts with the 5′ inositol phosphatase SHIP2, which is important for the recruitment of the Mena-PTP1B complex to the EGFR. When MenaINV is expressed, PTP1B recruitment to the EGFR is impaired, providing a mechanism for growth factor sensitization to EGF, as well as HGF and IGF, and increased resistance to EGFR and Met inhibitors in signaling and motility assays. In sum, we demonstrate that Mena plays an important role in regulating growth factor–induced signaling. Disruption of this attenuation by MenaINV sensitizes tumor cells to low–growth factor concentrations, thereby increasing the migration and invasion responses that contribute to aggressive, malignant cell phenotypes. PMID:26337385

  3. Design, synthesis and biological evaluation of uncharged catechol derivatives as selective inhibitors of PTP1B.

    PubMed

    Li, Xiang-Qian; Xu, Qi; Luo, Jiao; Wang, Li-Jun; Jiang, Bo; Zhang, Ren-Shuai; Shi, Da-Yong

    2017-08-18

    Protein tyrosine phosphatases 1B (PTP1B) is a promising and validated therapeutic target to effectively treat T2DM and obesity. However, the development of charged PTP1B inhibitors was restricted due to their low cell permeability and poor bioavailability. Based on active natural products, two series of uncharged catechol derivatives were identified as PTP1B inhibitors by targeting a secondary aryl phosphate-binding site as well as the catalytic site. The most potent inhibitor 22 showed an IC 50 of 0.487 μM against PTP1B and strong selectivity (27-fold) over TCPTP. Kinetic studies were also performed that 22 act as a competitive PTP1B inhibitor. The treatment of C2C12 myotubes with 22 markedly increased the phosphorylation levels of IRβ, Akt and IRS1 phosphorylation. The similarity of its action profiling with that produced by insulin suggested its potential as a new non-insulin-dependent drug candidate. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Discovery of novel, high potent, ABC type PTP1B inhibitors with TCPTP selectivity and cellular activity.

    PubMed

    Liu, Peihong; Du, Yongli; Song, Lianhua; Shen, Jingkang; Li, Qunyi

    2016-08-08

    Protein tyrosine phosphatase 1B (PTP1B) as a key negative regulator of both insulin and leptin receptor pathways has been an attractive therapeutic target for the treatment of type 2 diabetes mellitus (T2DM) and obesity. With the goal of enhancing potency and selectivity of the PTP1B inhibitors, a series of methyl salicylate derivatives as ABC type PTP1B inhibitors (P1-P7) were discovered. More importantly, compound P6 exhibited high potent inhibitory activity (IC50 = 50 nM) for PTP1B with 15-fold selectivity over T-cell PTPase (TCPTP). Further studies on cellular activities revealed that compound P6 could enhance insulin-mediated insulin receptor β (IRβ) phosphorylation and insulin-stimulated glucose uptake. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Investigating the Impact of Asp181 Point Mutations on Interactions between PTP1B and Phosphotyrosine Substrate

    NASA Astrophysics Data System (ADS)

    Liu, Mengyuan; Wang, Lushan; Sun, Xun; Zhao, Xian

    2014-05-01

    Protein tyrosine phosphatase 1B (PTP1B) is a key negative regulator of insulin and leptin signaling, which suggests that it is an attractive therapeutic target in type II diabetes and obesity. The aim of this research is to explore residues which interact with phosphotyrosine substrate can be affected by D181 point mutations and lead to increased substrate binding. To achieve this goal, molecular dynamics simulations were performed on wild type (WT) and two mutated PTP1B/substrate complexes. The cross-correlation and principal component analyses show that point mutations can affect the motions of some residues in the active site of PTP1B. Moreover, the hydrogen bond and energy decomposition analyses indicate that apart from residue 181, point mutations have influence on the interactions of substrate with several residues in the active site of PTP1B.

  6. Geometrical criteria for characterizing open and closed states of WPD-loop in PTP1B

    NASA Astrophysics Data System (ADS)

    Shinde, Ranajit Nivrutti; Elizabeth Sobhia, M.

    2012-06-01

    Distinctive movement of WPD-loop occurs during the catalysis of phosphotyrosine by protein tyrosine phosphatase 1B (PTP1B). This loop is in the "open" state in apo-form whereas it is catalytically competent in the "closed" state. During the closure of this loop, unique hydrogen bond interactions are formed between different residues of the PTP1B. Present study examines such interactions from the available 118 crystal structures of PTP1B. It gives insights into the five novel hydrogen bonds essentially formed in the "closed" loop structures. Additionally, the study provides distance ranges between the atoms involved in the hydrogen bonds. This information can be used as a geometrical criterion in the characterization of conformational state of the WPD-loop especially in the molecular dynamics simulations.

  7. PTP1B controls non-mitochondrial oxygen consumption by regulating RNF213 to promote tumour survival during hypoxia.

    PubMed

    Banh, Robert S; Iorio, Caterina; Marcotte, Richard; Xu, Yang; Cojocari, Dan; Rahman, Anas Abdel; Pawling, Judy; Zhang, Wei; Sinha, Ankit; Rose, Christopher M; Isasa, Marta; Zhang, Shuang; Wu, Ronald; Virtanen, Carl; Hitomi, Toshiaki; Habu, Toshiyuki; Sidhu, Sachdev S; Koizumi, Akio; Wilkins, Sarah E; Kislinger, Thomas; Gygi, Steven P; Schofield, Christopher J; Dennis, James W; Wouters, Bradly G; Neel, Benjamin G

    2016-07-01

    Tumours exist in a hypoxic microenvironment and must limit excessive oxygen consumption. Hypoxia-inducible factor (HIF) controls mitochondrial oxygen consumption, but how/if tumours regulate non-mitochondrial oxygen consumption (NMOC) is unknown. Protein-tyrosine phosphatase-1B (PTP1B) is required for Her2/Neu-driven breast cancer (BC) in mice, although the underlying mechanism and human relevance remain unclear. We found that PTP1B-deficient HER2(+) xenografts have increased hypoxia, necrosis and impaired growth. In vitro, PTP1B deficiency sensitizes HER2(+) BC lines to hypoxia by increasing NMOC by α-KG-dependent dioxygenases (α-KGDDs). The moyamoya disease gene product RNF213, an E3 ligase, is negatively regulated by PTP1B in HER2(+) BC cells. RNF213 knockdown reverses the effects of PTP1B deficiency on α-KGDDs, NMOC and hypoxia-induced death of HER2(+) BC cells, and partially restores tumorigenicity. We conclude that PTP1B acts via RNF213 to suppress α-KGDD activity and NMOC. This PTP1B/RNF213/α-KGDD pathway is critical for survival of HER2(+) BC, and possibly other malignancies, in the hypoxic tumour microenvironment.

  8. Inhibition of PTP1B Restores IRS1-Mediated Hepatic Insulin Signaling in IRS2-Deficient Mice

    PubMed Central

    González-Rodríguez, Águeda; Gutierrez, Jose A. Mas; Sanz-González, Silvia; Ros, Manuel; Burks, Deborah J.; Valverde, Ángela M.

    2010-01-01

    OBJECTIVE Mice with complete deletion of insulin receptor substrate 2 (IRS2) develop hyperglycemia, impaired hepatic insulin signaling, and elevated gluconeogenesis, whereas mice deficient for protein tyrosine phosphatase (PTP)1B display an opposing hepatic phenotype characterized by increased sensitivity to insulin. To define the relationship between these two signaling pathways in the regulation of liver metabolism, we used genetic and pharmacological approaches to study the effects of inhibiting PTP1B on hepatic insulin signaling and expression of gluconeogenic enzymes in IRS2−/− mice. RESEARCH DESIGN AND METHODS We analyzed glucose homeostasis and insulin signaling in liver and isolated hepatocytes from IRS2−/− and IRS2−/−/PTP1B−/− mice. Additionally, hepatic insulin signaling was assessed in control and IRS2−/− mice treated with resveratrol, an antioxidant present in red wine. RESULTS In livers of hyperglycemic IRS2−/− mice, the expression levels of PTP1B and its association with the insulin receptor (IR) were increased. The absence of PTP1B in the double-mutant mice restored hepatic IRS1-mediated phosphatidylinositol (PI) 3-kinase/Akt/Foxo1 signaling. Moreover, resveratrol treatment of hyperglycemic IRS2−/− mice decreased hepatic PTP1B mRNA and inhibited PTP1B activity, thereby restoring IRS1-mediated PI 3-kinase/Akt/Foxo1 signaling and peripheral insulin sensitivity. CONCLUSIONS By regulating the phosphorylation state of IR, PTB1B determines sensitivity to insulin in liver and exerts a unique role in the interplay between IRS1 and IRS2 in the modulation of hepatic insulin action. PMID:20028942

  9. Discovery and study of novel protein tyrosine phosphatase 1B inhibitors

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Chen, Xi; Feng, Changgen

    2017-10-01

    Protein tyrosine phosphatase 1B (PTP1B) is considered to be a target for therapy of type II diabetes and obesity. So it is of great significance to take advantage of a computer aided drug design protocol involving the structured-based virtual screening with docking simulations for fast searching small molecule PTP1B inhibitors. Based on optimized complex structure of PTP1B bound with specific inhibitor of IX1, structured-based virtual screening against a library of natural products containing 35308 molecules, which was constructed based on Traditional Chinese Medicine database@ Taiwan (TCM database@ Taiwan), was conducted to determine the occurrence of PTP1B inhibitors using the Lubbock module and CDOCKER module from Discovery Studio 3.1 software package. The results were further filtered by predictive ADME simulation and predictive toxic simulation. As a result, 2 good drug-like molecules, namely para-benzoquinone compound 1 and Clavepictine analogue 2 were identified ultimately with the dock score of original inhibitor (IX1) and the receptor as a threshold. Binding model analyses revealed that these two candidate compounds have good interactions with PTP1B. The PTP1B inhibitory activity of compound 2 hasn't been reported before. The optimized compound 2 has higher scores and deserves further study.

  10. Roux-en-Y gastric bypass surgery suppresses hypothalamic PTP1B protein level and alleviates leptin resistance in obese rats

    PubMed Central

    Liu, Jia-Yu; Mu, Song; Zhang, Shu-Ping; Guo, Wei; Li, Qi-Fu; Xiao, Xiao-Qiu; Zhang, Jun; Wang, Zhi-Hong

    2017-01-01

    The present study aimed to explore the effect of Roux-en-Y gastric bypass (RYGB) surgery on protein tyrosine phosphatase 1B (PTP1B) expression levels and leptin activity in hypothalami of obese rats. Obese rats induced by a high-fat diet (HFD) that underwent RYGB (n=11) or sham operation (SO, n=9), as well as an obese control cohort (Obese, n=10) and an additional normal-diet group (ND, n=10) were used. Food efficiency was measured at 8 weeks post-operation. Plasma leptin levels were evaluated and hypothalamic protein tyrosine phosphatase 1B (PTP1B) levels and leptin signaling activity were examined at the genetic and protein levels. The results indicated that food efficiency was typically lower in RYGB rats compared with that in the Obese and SO rats. In the RYGB group, leptin receptor expression and proopiomelanocortin was significantly higher, while Neuropeptide Y levels were lower than those in the Obese and SO groups. Furthermore, the gene and protein expression levels of PTP1B in the RYGB group were lower, while levels of phosphorylated signal transducer and activator of transcription 3 protein were much higher compared with those in the Obese and SO groups. In conclusion, RYGB surgery significantly suppressed hypothalamic PTP1B protein expression. PTP1B regulation may partially alleviate leptin resistance. PMID:28947917

  11. Roux-en-Y gastric bypass surgery suppresses hypothalamic PTP1B protein level and alleviates leptin resistance in obese rats.

    PubMed

    Liu, Jia-Yu; Mu, Song; Zhang, Shu-Ping; Guo, Wei; Li, Qi-Fu; Xiao, Xiao-Qiu; Zhang, Jun; Wang, Zhi-Hong

    2017-09-01

    The present study aimed to explore the effect of Roux-en-Y gastric bypass (RYGB) surgery on protein tyrosine phosphatase 1B (PTP1B) expression levels and leptin activity in hypothalami of obese rats. Obese rats induced by a high-fat diet (HFD) that underwent RYGB (n=11) or sham operation (SO, n=9), as well as an obese control cohort (Obese, n=10) and an additional normal-diet group (ND, n=10) were used. Food efficiency was measured at 8 weeks post-operation. Plasma leptin levels were evaluated and hypothalamic protein tyrosine phosphatase 1B (PTP1B) levels and leptin signaling activity were examined at the genetic and protein levels. The results indicated that food efficiency was typically lower in RYGB rats compared with that in the Obese and SO rats. In the RYGB group, leptin receptor expression and proopiomelanocortin was significantly higher, while Neuropeptide Y levels were lower than those in the Obese and SO groups. Furthermore, the gene and protein expression levels of PTP1B in the RYGB group were lower, while levels of phosphorylated signal transducer and activator of transcription 3 protein were much higher compared with those in the Obese and SO groups. In conclusion, RYGB surgery significantly suppressed hypothalamic PTP1B protein expression. PTP1B regulation may partially alleviate leptin resistance.

  12. Toward the identification of a reliable 3D-QSAR model for the protein tyrosine phosphatase 1B inhibitors

    NASA Astrophysics Data System (ADS)

    Wang, Fangfang; Zhou, Bo

    2018-04-01

    Protein tyrosine phosphatase 1B (PTP1B) is an intracellular non-receptor phosphatase that is implicated in signal transduction of insulin and leptin pathways, thus PTP1B is considered as potential target for treating type II diabetes and obesity. The present article is an attempt to formulate the three-dimensional quantitative structure-activity relationship (3D-QSAR) modeling of a series of compounds possessing PTP1B inhibitory activities using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) techniques. The optimum template ligand-based models are statistically significant with great CoMFA (R2cv = 0.600, R2pred = 0.6760) and CoMSIA (R2cv = 0.624, R2pred = 0.8068) values. Molecular docking was employed to elucidate the inhibitory mechanisms of this series of compounds against PTP1B. In addition, the CoMFA and CoMSIA field contour maps agree well with the structural characteristics of the binding pocket of PTP1B active site. The knowledge of structure-activity relationship and ligand-receptor interactions from 3D-QSAR model and molecular docking will be useful for better understanding the mechanism of ligand-receptor interaction and facilitating development of novel compounds as potent PTP1B inhibitors.

  13. Protein Tyrosine Phosphatase 1B Regulates Pyruvate Kinase M2 Tyrosine Phosphorylation*

    PubMed Central

    Bettaieb, Ahmed; Bakke, Jesse; Nagata, Naoto; Matsuo, Kosuke; Xi, Yannan; Liu, Siming; AbouBechara, Daniel; Melhem, Ramzi; Stanhope, Kimber; Cummings, Bethany; Graham, James; Bremer, Andrew; Zhang, Sheng; Lyssiotis, Costas A.; Zhang, Zhong-Yin; Cantley, Lewis C.; Havel, Peter J.; Haj, Fawaz G.

    2013-01-01

    Protein-tyrosine phosphatase 1B (PTP1B) is a physiological regulator of glucose homeostasis and adiposity and is a drug target for the treatment of obesity and diabetes. Here we identify pyruvate kinase M2 (PKM2) as a novel PTP1B substrate in adipocytes. PTP1B deficiency leads to increased PKM2 total tyrosine and Tyr105 phosphorylation in cultured adipocytes and in vivo. Substrate trapping and mutagenesis studies identify PKM2 Tyr-105 and Tyr-148 as key sites that mediate PTP1B-PKM2 interaction. In addition, in vitro analyses illustrate a direct effect of Tyr-105 phosphorylation on PKM2 activity in adipocytes. Importantly, PTP1B pharmacological inhibition increased PKM2 Tyr-105 phosphorylation and decreased PKM2 activity. Moreover, PKM2 Tyr-105 phosphorylation is regulated nutritionally, decreasing in adipose tissue depots after high-fat feeding. Further, decreased PKM2 Tyr-105 phosphorylation correlates with the development of glucose intolerance and insulin resistance in rodents, non-human primates, and humans. Together, these findings identify PKM2 as a novel substrate of PTP1B and provide new insights into the regulation of adipose PKM2 activity. PMID:23640882

  14. miR-338-3p functions as a tumor suppressor in gastric cancer by targeting PTP1B.

    PubMed

    Sun, Feng; Yu, Mengchao; Yu, Jing; Liu, Zhijian; Zhou, Xinyan; Liu, Yanqing; Ge, Xiaolong; Gao, Haidong; Li, Mei; Jiang, Xiaohong; Liu, Song; Chen, Xi; Guan, Wenxian

    2018-05-09

    Gastric cancer (GC) is one of the most common malignant tumors and peritoneal metastasis is the primary cause for advanced GC's mortality. Protein-tyrosine phosphatase 1B (PTP1B) functions as an oncogene and involves in carcinogenesis and cancer dissemination. However, the function and regulation of PTP1B in GC remain poorly understood. In this study, we found that PTP1B was upregulated in GC tissues and overexpression of PTP1B in vitro promoted cell migration and prevented apoptosis. Then, we predicted that PTP1B was a target of miR-338-3p and we revealed an inverse correlation between miR-338-3p levels and PTP1B protein levels in GC tissues. Next, we verified that PTP1B was inhibited by miR-338-3p via direct targeting to its 3'-untranslated regions. Moreover, overexpression of miR-338-3p in vitro attenuated GC cell migration and promoted apoptosis, and these effects could be partially reversed by reintroduction of PTP1B. Finally, we established an orthotopic xenograft model and a peritoneal dissemination model of GC to demonstrate that miR-338-3p restrained tumor growth and dissemination in vivo by targeting PTP1B. Taken together, our results highlight that PTP1B is an oncogene and is negatively regulated by miR-338-3p in GC, which may provide new insights into novel molecular therapeutic targets for GC.

  15. Disruption of protein-tyrosine phosphatase 1B expression in the pancreas affects β-cell function.

    PubMed

    Liu, Siming; Xi, Yannan; Bettaieb, Ahmed; Matsuo, Kosuke; Matsuo, Izumi; Kulkarni, Rohit N; Haj, Fawaz G

    2014-09-01

    Protein-tyrosine phosphatase 1B (PTP1B) is a physiological regulator of glucose homeostasis and energy balance. However, the role of PTP1B in pancreatic endocrine function remains largely unknown. To investigate the metabolic role of pancreatic PTP1B, we generated mice with pancreas PTP1B deletion (panc-PTP1B KO). Mice were fed regular chow or a high-fat diet, and metabolic parameters, insulin secretion and glucose tolerance were determined. On regular chow, panc-PTP1B KO and control mice exhibited comparable glucose tolerance whereas aged panc-PTP1B KO exhibited mild glucose intolerance. Furthermore, high-fat feeding promoted earlier impairment of glucose tolerance and attenuated glucose-stimulated insulin secretion in panc-PTP1B KO mice. The secretory defect in glucose-stimulated insulin secretion was recapitulated in primary islets ex vivo, suggesting that the effects were likely cell-autonomous. At the molecular level, PTP1B deficiency in vivo enhanced basal and glucose-stimulated tyrosyl phosphorylation of EphA5 in islets. Consistently, PTP1B overexpression in the glucose-responsive MIN6 β-cell line attenuated EphA5 tyrosyl phosphorylation, and substrate trapping identified EphA5 as a PTP1B substrate. In summary, these studies identify a novel role for PTP1B in pancreatic endocrine function.

  16. Inhibition of PTP1B disrupts cell-cell adhesion and induces anoikis in breast epithelial cells.

    PubMed

    Hilmarsdottir, Bylgja; Briem, Eirikur; Halldorsson, Skarphedinn; Kricker, Jennifer; Ingthorsson, Sævar; Gustafsdottir, Sigrun; Mælandsmo, Gunhild M; Magnusson, Magnus K; Gudjonsson, Thorarinn

    2017-05-11

    Protein tyrosine phosphatase 1B (PTP1B) is a well-known inhibitor of insulin signaling pathways and inhibitors against PTP1B are being developed as promising drug candidates for treatment of obesity. PTP1B has also been linked to breast cancer both as a tumor suppressor and as an oncogene. Furthermore, PTP1B has been shown to be a regulator of cell adhesion and migration in normal and cancer cells. In this study, we analyzed the PTP1B expression in normal breast tissue, primary breast cells and the breast epithelial cell line D492. In normal breast tissue and primary breast cells, PTP1B is widely expressed in both epithelial and stromal cells, with highest expression in myoepithelial cells and fibroblasts. PTP1B is widely expressed in branching structures generated by D492 when cultured in 3D reconstituted basement membrane (3D rBM). Inhibition of PTP1B in D492 and another mammary epithelial cell line HMLE resulted in reduced cell proliferation and induction of anoikis. These changes were seen when cells were cultured both in monolayer and in 3D rBM. PTP1B inhibition affected cell attachment, expression of cell adhesion proteins and actin polymerization. Moreover, epithelial to mesenchymal transition (EMT) sensitized cells to PTP1B inhibition. A mesenchymal sublines of D492 and HMLE (D492M and HMLEmes) were more sensitive to PTP1B inhibition than D492 and HMLE. Reversion of D492M to an epithelial state using miR-200c-141 restored resistance to detachment induced by PTP1B inhibition. In conclusion, we have shown that PTP1B is widely expressed in the human breast gland with highest expression in myoepithelial cells and fibroblasts. Inhibition of PTP1B in D492 and HMLE affects cell-cell adhesion and induces anoikis-like effects. Finally, cells with an EMT phenotype are more sensitive to PTP1B inhibitors making PTP1B a potential candidate for further studies as a target for drug development in cancer involving the EMT phenotype.

  17. Inhibition of PTP1B disrupts cell–cell adhesion and induces anoikis in breast epithelial cells

    PubMed Central

    Hilmarsdottir, Bylgja; Briem, Eirikur; Halldorsson, Skarphedinn; Kricker, Jennifer; Ingthorsson, Sævar; Gustafsdottir, Sigrun; Mælandsmo, Gunhild M; Magnusson, Magnus K; Gudjonsson, Thorarinn

    2017-01-01

    Protein tyrosine phosphatase 1B (PTP1B) is a well-known inhibitor of insulin signaling pathways and inhibitors against PTP1B are being developed as promising drug candidates for treatment of obesity. PTP1B has also been linked to breast cancer both as a tumor suppressor and as an oncogene. Furthermore, PTP1B has been shown to be a regulator of cell adhesion and migration in normal and cancer cells. In this study, we analyzed the PTP1B expression in normal breast tissue, primary breast cells and the breast epithelial cell line D492. In normal breast tissue and primary breast cells, PTP1B is widely expressed in both epithelial and stromal cells, with highest expression in myoepithelial cells and fibroblasts. PTP1B is widely expressed in branching structures generated by D492 when cultured in 3D reconstituted basement membrane (3D rBM). Inhibition of PTP1B in D492 and another mammary epithelial cell line HMLE resulted in reduced cell proliferation and induction of anoikis. These changes were seen when cells were cultured both in monolayer and in 3D rBM. PTP1B inhibition affected cell attachment, expression of cell adhesion proteins and actin polymerization. Moreover, epithelial to mesenchymal transition (EMT) sensitized cells to PTP1B inhibition. A mesenchymal sublines of D492 and HMLE (D492M and HMLEmes) were more sensitive to PTP1B inhibition than D492 and HMLE. Reversion of D492M to an epithelial state using miR-200c-141 restored resistance to detachment induced by PTP1B inhibition. In conclusion, we have shown that PTP1B is widely expressed in the human breast gland with highest expression in myoepithelial cells and fibroblasts. Inhibition of PTP1B in D492 and HMLE affects cell–cell adhesion and induces anoikis-like effects. Finally, cells with an EMT phenotype are more sensitive to PTP1B inhibitors making PTP1B a potential candidate for further studies as a target for drug development in cancer involving the EMT phenotype. PMID:28492548

  18. Endothelial cell SHP-2 negatively regulates neutrophil adhesion and promotes transmigration by enhancing ICAM-1-VE-cadherin interaction.

    PubMed

    Yan, Meiping; Zhang, Xinhua; Chen, Ao; Gu, Wei; Liu, Jie; Ren, Xiaojiao; Zhang, Jianping; Wu, Xiaoxiong; Place, Aaron T; Minshall, Richard D; Liu, Guoquan

    2017-11-01

    Intercellular adhesion molecule-1 (ICAM-1) mediates the firm adhesion of leukocytes to endothelial cells and initiates subsequent signaling that promotes their transendothelial migration (TEM). Vascular endothelial (VE)-cadherin plays a critical role in endothelial cell-cell adhesion, thereby controlling endothelial permeability and leukocyte transmigration. This study aimed to determine the molecular signaling events that originate from the ICAM-1-mediated firm adhesion of neutrophils that regulate VE-cadherin's role as a negative regulator of leukocyte transmigration. We observed that ICAM-1 interacts with Src homology domain 2-containing phosphatase-2 (SHP-2), and SHP-2 down-regulation via silencing of small interfering RNA in endothelial cells enhanced neutrophil adhesion to endothelial cells but inhibited neutrophil transmigration. We also found that VE-cadherin associated with the ICAM-1-SHP-2 complex. Moreover, whereas the activation of ICAM-1 leads to VE-cadherin dissociation from ICAM-1 and VE-cadherin association with actin, SHP-2 down-regulation prevented ICAM-1-VE-cadherin association and promoted VE-cadherin-actin association. Furthermore, SHP-2 down-regulation in vivo promoted LPS-induced neutrophil recruitment in mouse lung but delayed neutrophil extravasation. These results suggest that SHP-2- via association with ICAM-1-mediates ICAM-1-induced Src activation and modulates VE-cadherin switching association with ICAM-1 or actin, thereby negatively regulating neutrophil adhesion to endothelial cells and enhancing their TEM.-Yan, M., Zhang, X., Chen, A., Gu, W., Liu, J., Ren, X., Zhang, J., Wu, X., Place, A. T., Minshall, R. D., Liu, G. Endothelial cell SHP-2 negatively regulates neutrophil adhesion and promotes transmigration by enhancing ICAM-1-VE-cadherin interaction. © FASEB.

  19. Docking simulations and in vitro assay unveil potent inhibitory action of papaverine against protein tyrosine phosphatase 1B.

    PubMed

    Bustanji, Yasser; Taha, Mutasem Omar; Al-Masri, Ihab Mustafa; Mohammad, Mohammad Khalil

    2009-04-01

    The structural similarity between papaverine and berberine, a known inhibitor of human protein tyrosine phosphatase 1B (h-PTP 1B), prompted us to investigate the potential of papaverine as h-PTP 1B inhibitor. The investigation included simulated docking experiments to fit papaverine into the binding pocket of h-PTP 1B. Papaverine was found to readily dock within the binding pocket of h-PTP 1B in a low energy orientation via an optimal set of attractive interactions. Experimentally, papaverine illustrated potent in vitro inhibitory effect against recombinant h-PTP 1B (IC(50)=1.20 microM). In vivo, papaverine significantly decreased fasting blood glucose level of Balb/c mice. Our findings should encourage screening of other natural alkaloids for possible anti-h-PTP 1B activities.

  20. Screening and identification of potential PTP1B allosteric inhibitors using in silico and in vitro approaches.

    PubMed

    Shinde, Ranajit Nivrutti; Kumar, G Siva; Eqbal, Shahbaz; Sobhia, M Elizabeth

    2018-01-01

    Protein tyrosine phosphatase 1B (PTP1B) is a validated therapeutic target for Type 2 diabetes due to its specific role as a negative regulator of insulin signaling pathways. Discovery of active site directed PTP1B inhibitors is very challenging due to highly conserved nature of the active site and multiple charge requirements of the ligands, which makes them non-selective and non-permeable. Identification of the PTP1B allosteric site has opened up new avenues for discovering potent and selective ligands for therapeutic intervention. Interactions made by potent allosteric inhibitor in the presence of PTP1B were studied using Molecular Dynamics (MD). Computationally optimized models were used to build separate pharmacophore models of PTP1B and TCPTP, respectively. Based on the nature of interactions the target residues offered, a receptor based pharmacophore was developed. The pharmacophore considering conformational flexibility of the residues was used for the development of pharmacophore hypothesis to identify potentially active inhibitors by screening large compound databases. Two pharmacophore were successively used in the virtual screening protocol to identify potential selective and permeable inhibitors of PTP1B. Allosteric inhibition mechanism of these molecules was established using molecular docking and MD methods. The geometrical criteria values confirmed their ability to stabilize PTP1B in an open conformation. 23 molecules that were identified as potential inhibitors were screened for PTP1B inhibitory activity. After screening, 10 molecules which have good permeability values were identified as potential inhibitors of PTP1B. This study confirms that selective and permeable inhibitors can be identified by targeting allosteric site of PTP1B.

  1. Midgut-enriched receptor protein tyrosine phosphatase PTP52F is required for Drosophila development during larva-pupa transition.

    PubMed

    Santhanam, Abirami; Liang, Suh-Yuen; Chen, Dong-Yuan; Chen, Guang-Chao; Meng, Tzu-Ching

    2013-01-01

    To date our understanding of Drosophila receptor protein tyrosine phosphatases (R-PTPs) in the regulation of signal transduction is limited. Of the seven R-PTPs identified in flies, six are involved in the axon guidance that occurs during embryogenesis. However, whether and how R-PTPs may control key steps of Drosophila development is not clear. In this study we investigated the potential role of Drosophila R-PTPs in developmental processes outside the neuronal system and beyond the embryogenesis stage. Through systematic data mining of available microarray databases, we found the mRNA level of PTP52F to be highly enriched in the midgut of flies at the larva-pupa transition. This finding was confirmed by gut tissue staining with a specific antibody. The unique spatiotemporal expression of PTP52F suggests that it is possibly involved in regulating metamorphosis during the transformation from larva to pupa. To test this hypothesis, we employed RNA interference to examine the defects of transgenic flies. We found that ablation of endogenous PTP52F led to high lethality characterized by the pharate adult phenotype, occurring due to post pupal eclosion failure. These results show that PTP52F plays an indispensable role during the larva-pupa transition. We also found that PTP52F could be reclassified as a member of the subtype R3 PTPs instead of as an unclassified R-PTP without a human ortholog, as suggested previously. Together, these findings suggest that Drosophila R-PTPs may control metamorphosis and other biological processes beyond our current knowledge. © 2012 The Authors Journal compilation © 2012 FEBS.

  2. Involvement of Tyrosine Phosphatases in Insulin Signaling and Apoptosis in Breast Cancer

    DTIC Science & Technology

    2002-06-01

    translocation of PTP1B , a tyrosine phosphatase proposed to regulate signaling by insulin, IGF-1 and other cytokines. Cytoplasmic translocation of PTP1B results...signaling. In this scheme, calcium-mediated apoptosis and growth inhibition may be directed through mobilization of PTP1B .

  3. Src kinase regulation by phosphorylation and dephosphorylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roskoski, Robert

    2005-05-27

    Src and Src-family protein-tyrosine kinases are regulatory proteins that play key roles in cell differentiation, motility, proliferation, and survival. The initially described phosphorylation sites of Src include an activating phosphotyrosine 416 that results from autophosphorylation, and an inhibiting phosphotyrosine 527 that results from phosphorylation by C-terminal Src kinase (Csk) and Csk homologous kinase. Dephosphorylation of phosphotyrosine 527 increases Src kinase activity. Candidate phosphotyrosine 527 phosphatases include cytoplasmic PTP1B, Shp1 and Shp2, and transmembrane enzymes include CD45, PTP{alpha}, PTP{epsilon}, and PTP{lambda}. Dephosphorylation of phosphotyrosine 416 decreases Src kinase activity. Thus far PTP-BL, the mouse homologue of human PTP-BAS, has been shownmore » to dephosphorylate phosphotyrosine 416 in a regulatory fashion. The platelet-derived growth factor receptor protein-tyrosine kinase mediates the phosphorylation of Src Tyr138; this phosphorylation has no direct effect on Src kinase activity. The platelet-derived growth factor receptor and the ErbB2/HER2 growth factor receptor protein-tyrosine kinases mediate the phosphorylation of Src Tyr213 and activation of Src kinase activity. Src kinase is also a substrate for protein-serine/threonine kinases including protein kinase C (Ser12), protein kinase A (Ser17), and CDK1/cdc2 (Thr34, Thr46, and Ser72). Of the three protein-serine/threonine kinases, only phosphorylation by CDK1/cdc2 has been demonstrated to increase Src kinase activity. Although considerable information on the phosphoprotein phosphatases that catalyze the hydrolysis of Src phosphotyrosine 527 is at hand, the nature of the phosphatases that mediate the hydrolysis of phosphotyrosine 138 and 213, and phosphoserine and phosphothreonine residues has not been determined.« less

  4. Synthesis of three bromophenols from red algae as PTP1B inhibitors

    NASA Astrophysics Data System (ADS)

    Guo, Shuju; Li, Jing; Li, Ting; Shi, Dayong; Han, Lijun

    2011-01-01

    Bromophenols are a set of natural products widely distributed in seaweed, most of which exhibit interesting and useful biological activities. To develop a reliable and efficient synthetic route to these natural bromophenols, three of them, 3,4-dibromo-5-(2'-bromo-3',4'-dihydroxy-6'-methoxymethyl-benzyl)-benzene-1,2-diol (compound 9), 3,4-dibromo-5-(2'-bromo-6'-ethoxy methyl-3',4'-dihydroxybenzyl)-benzene-1,2-diol (compound 10), and 3-bromo-4-(3'-bromo-4',5'-dihydroxy benzyl)-5-(ethoxymethyl)-benzene-1,2-diol (compound 14), isolated from red marine algae, have been synthesized in eight steps with an overall yield of 14.4%, 14.4%, and 18.2% respectively, via a practical approach employing bromination, Wolff-Kishner-Huang reduction and a Friedel-Crafts reaction as key steps. The protein tyrosine phosphatase 1B (PTP1B) inhibitory activities of the synthetic compounds were evaluated by the colorimetric assay. The results show that these compounds are moderate PTP1B inhibitors. The synthesis of these bromophenol derivatives makes in vivo studies of their structure-activity relationships and inhibition activity against PTP1B possible.

  5. Varic acid analogues from fungus as PTP1B inhibitors: Biological evaluation and structure-activity relationships.

    PubMed

    Sun, Wenlong; Zhuang, Chunlin; Li, Xia; Zhang, Bowei; Lu, Xinhua; Zheng, Zhihui; Dong, Yuesheng

    2017-08-01

    Protein tyrosine phosphatase 1B (PTP1B) inhibitors as potential therapies for diabetes and obesity have attracted much attention in recent years. Six varic acid analogues were isolated from two strains of fungi and evaluated for PTP1B inhibition activities. The structure-activity relationships were also characterized and predicted by molecular modeling. Further kinetic studies indicated the reversible and competitive inhibition manner of varic acid analogues. Trivaric acid showed insulin-sensitizing effect not only in vitro but also in vivo, representing a promising lead compound for further optimization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The use of SHP-2 gene transduced bone marrow mesenchymal stem cells to promote osteogenic differentiation and bone defect repair in rat.

    PubMed

    Fan, Dapeng; Liu, Shen; Jiang, Shichao; Li, Zhiwei; Mo, Xiumei; Ruan, Hongjiang; Zou, Gang-Ming; Fan, Cunyi

    2016-08-01

    Bone tissue engineering is a promising approach for bone regeneration, in which growth factors play an important role. The tyrosine phosphatase Src-homology region 2-containing protein tyrosine phosphatase 2 (SHP2), encoded by the PTPN11 gene, is essential for the differentiation, proliferation and metabolism of osteoblasts. However, SHP-2 has never been systematically studied for its effect in osteogenesis. We predicted that overexpression of SHP-2 could promote bone marrow-derived mesenchymal stem cell (BMSC)osteogenic differentiation and SHP-2 transduced BMSCs could enhance new bone formation, determined using the following study groups: (1) BMSCs transduced with SHP-2 and induced with osteoblast-inducing liquid (BMSCs/SHP-2/OL); (2) BMSCs transduced with SHP-2 (BMSCs/-SHP-2); (3) BMSCs induced with osteoblast-inducing liquid (BMSCs/OL) and (4) pure BMSCs. Cells were assessed for osteogenic differentiation by quantitative real-time polymerase chain reaction analysis, western blot analysis, alkaline phosphatase activity and alizarin red S staining. For in vivo assessment, cells were combined with beta-tricalcium phosphate scaffolds and transplanted into rat calvarial defects for 8 weeks. Following euthanasia, skull samples were explanted for osteogenic evaluation, including micro-computed tomography measurement, histology and immunohistochemistry staining. SHP-2 and upregulation of its gene promoted BMSC osteogenic differentiation and therefore represents a potential new therapeutic approach to bone repair. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1871-1881, 2016. © 2016 Wiley Periodicals, Inc.

  7. Discovery of core-structurally novel PTP1B inhibitors with specific selectivity containing oxindole-fused spirotetrahydrofurochroman by one-pot reaction.

    PubMed

    Dong, Suzhen; Lei, Yubing; Jia, Shikun; Gao, Lixin; Li, Jia; Zhu, Tong; Liu, Shunying; Hu, Wenhao

    2017-02-15

    Protein tyrosine phosphatase 1B (PTP1B) has been proposed to be an ideal target for treatment of type II diabetes and obesity. However, no druggable PTP1B inhibitor has been established and there is still an urgent demand for the development of structurally novel PTPIB inhibitor. Herein, we reported core-structurally novel PTP1B inhibitors with low micromole-ranged inhibitory activity by one-pot reaction from simple starting materials. Further studies demonstrated some of these active compounds had a specific selectivity over other PTPs. The structure and activity relationship was also described. The best active and selective compound 5e inhibited PTP1B activity with an IC 50 of 4.53μM. Molecular docking analysis further demonstrated that compound 5e bound to the active pocket of PTP1B. The results might provide some insights for further development of new drugs for type II diabetes and obesity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Steered Molecular Dynamics for Investigating the Interactions Between Insulin Receptor Tyrosine Kinase (IRK) and Variants of Protein Tyrosine Phosphatase 1B (PTP1B).

    PubMed

    Nguyen, Hung; Do, Nhat; Phan, Tuyn; Pham, Tri

    2018-02-01

    The aim of this study is to use steered molecular dynamics to investigate the dissociation process between IRK and PTP1Bs for wild type and five mutants (consisting of p.D181E, p.D181A, p.Q262A, p.D181A-Y46F, and p.D181A-Q262A). The gained results are observed not only the unbinding mechanism of IRK-PTP1B complexes came from pulling force profile, number of hydrogen bonds, and interaction energy between IRK and PTP1Bs but also described PTP1B's point mutations could variably change its binding affinity towards IRK. Additionally, the binding free energy calculated by Molecular Mechanics/Poisson-Boltzmann Surface Area (MM-PBSA) is also revealed that electrostatic energy and polar solvation energy mainly made up the binding free energy of PTP1B-IRK complexes.

  9. Phosphatase inhibition augments anti-CD22-mediated signaling and cytotoxicity in non-hodgkin's lymphoma cells.

    PubMed

    O'Donnell, Robert T; Pearson, David; McKnight, Hayes C; Ma, Ya Peng; Tuscano, Joseph M

    2009-07-01

    CD22 is a cell-surface molecule found on most B-cell lymphomas (NHL). HB22.7 is an anti-CD22 antibody that blocks CD22 ligand binding, initiates signaling, and kills NHL cells. The SHP-1 tyrosine phosphatase is disproportionately associated with the cytoplasmic domain of CD22. Sodium orthovanadate (NaV) and dephostatin (DP) are phosphatase inhibitors. The interaction of SHP-1 with CD22 presents an opportunity to manipulate CD22-mediated signaling effects. NaV caused dose dependent killing of NHL cells in vitro; when HB22.7 was given with NaV, antibody-mediated cell death increased. NaV caused a substantial increase in CD22-mediated SAPK and ERK-1/2 activation when CD22 was crosslinked by HB22.7; NaV did not significantly affect IgM-mediated signals. Studies using Raji NHL cells stably transfected with a SHP-1 dominant negative (DN) confirmed that these observations were due to SHP-1 inhibition. The relatively specific association of SHP-1 with CD22 suggests that CD22-specific signaling may be altered by phosphatase inhibition in ways that could prove useful for anti-CD22-based immunotherapy.

  10. Targeting the yin and the yang: combined inhibition of the tyrosine kinase c-Src and the tyrosine phosphatase SHP-2 disrupts pancreatic cancer signaling and biology in vitro and tumor formation in vivo.

    PubMed

    Gomes, Evan G; Connelly, Sarah F; Summy, Justin M

    2013-07-01

    Although c-Src (Src) has emerged as a potential pancreatic cancer target in preclinical studies, Src inhibitors have not demonstrated a significant therapeutic benefit in clinical trials. The objective of these studies was to examine the effects of combining Src inhibition with inhibition of the protein tyrosine phosphatase SHP-2 in pancreatic cancer cells in vitro and in vivo. SHP-2 and Src functions were inhibited by siRNA or small molecule inhibitors. The effects of dual Src/SHP-2 functional inhibition were evaluated by Western blot analysis of downstream signaling pathways; cell biology assays to examine caspase activity, viability, adhesion, migration, and invasion in vitro; and an orthotopic nude mouse model to observe pancreatic tumor formation in vivo. Dual targeting of Src and SHP-2 induces an additive or supra-additive loss of phosphorylation of Akt and ERK-1/2 and corresponding increases in expression of apoptotic markers, relative to targeting either protein individually. Combinatorial inhibition of Src and SHP-2 significantly reduces viability, adhesion, migration, and invasion of pancreatic cancer cells in vitro and tumor formation in vivo, relative to individual Src/SHP-2 inhibition. These data suggest that the antitumor effects of Src inhibition in pancreatic cancer may be enhanced through simultaneous inhibition of SHP-2.

  11. Role of Zinc and Magnesium Ions in the Modulation of Phosphoryl Transfer in Protein Tyrosine Phosphatase 1B.

    PubMed

    Bellomo, Elisa; Abro, Asma; Hogstrand, Christer; Maret, Wolfgang; Domene, Carmen

    2018-03-28

    While the majority of phosphatases are metalloenzymes, the prevailing model for the reactions catalyzed by protein tyrosine phosphatases does not involve any metal ion, yet both metal cations and oxoanions affect their enzymatic activity. Mg 2+ and Zn 2+ activate and inhibit, respectively, protein tyrosine phosphatase 1B (PTP1B). Molecular dynamics simulations, metadynamics, and quantum chemical calculations in combination with experimental investigations demonstrate that Mg 2+ and Zn 2+ compete for the same binding site in the active site only in the closed conformation of the enzyme in its phosphorylated state. The two cations have different effects on the arrangements and activities of water molecules that are necessary for the hydrolysis of the phosphocysteine intermediate in the second catalytic step of the reaction. Remarkable differences between the established structural enzymology of PTP1B investigated ex vivo and the function of PTP1B in vivo become evident. Different reaction pathways are viable when the presence of metal ions and their cellular concentrations are considered. The findings suggest that the substrate delivers the inhibitory Zn 2+ ion to the active site. The inhibition and activation can be ascribed to the different coordination chemistries of Zn 2+ and Mg 2+ ions and the orientation of the metal-coordinated water molecules. Metallochemistry adds an additional dimension to the regulation of PTP1B and presumably other members of this enzyme family.

  12. Penostatin derivatives, a novel kind of protein phosphatase 1b inhibitors isolated from solid cultures of the entomogenous fungus Isaria tenuipes.

    PubMed

    Chen, Yu-Peng; Yang, Chun-Gui; Wei, Pei-Yao; Li, Lin; Luo, Du-Qiang; Zheng, Zhi-Hui; Lu, Xin-Hua

    2014-01-29

    Protein tyrosine phosphatase 1B (PTP1B) is implicated as a negative regulator of insulin receptor (IR) signaling and a potential drug target for the treatment of type II diabetes and other associated metabolic syndromes. Therefore, small molecular inhibitors of PTP1B can be considered as an attractive approach for the design of new therapeutic agents of type II diabetes diseases. In a continuing search for new protein phosphatase inhibitors from fungi, we have isolated a new compound, named penostatin J (1), together with three known ones, penostatin C (2), penostatin A (3), and penostatin B (4), from cultures of the entomogenous fungus Isaria tenuipes. The structure of penostatin J (1) was elucidated by extensive spectroscopic analysis. We also demonstrate for the first time that penostatin derivatives exhibit the best PTP1B inhibitory action. These findings suggest that penostatin derivatives are a potential novel kind of PTP1B inhibitors.

  13. Serendipitous discovery of light-induced (In Situ) formation of an Azo-bridged dimeric sulfonated naphthol as a potent PTP1B inhibitor.

    PubMed

    Bongard, Robert D; Lepley, Michael; Thakur, Khushabu; Talipov, Marat R; Nayak, Jaladhi; Lipinski, Rachel A Jones; Bohl, Chris; Sweeney, Noreena; Ramchandran, Ramani; Rathore, Rajendra; Sem, Daniel S

    2017-05-31

    Protein tyrosine phosphatases (PTPs) like dual specificity phosphatase 5 (DUSP5) and protein tyrosine phosphatase 1B (PTP1B) are drug targets for diseases that include cancer, diabetes, and vascular disorders such as hemangiomas. The PTPs are also known to be notoriously difficult targets for designing inihibitors that become viable drug leads. Therefore, the pipeline for approved drugs in this class is minimal. Furthermore, drug screening for targets like PTPs often produce false positive and false negative results. Studies presented herein provide important insights into: (a) how to detect such artifacts, (b) the importance of compound re-synthesis and verification, and (c) how in situ chemical reactivity of compounds, when diagnosed and characterized, can actually lead to serendipitous discovery of valuable new lead molecules. Initial docking of compounds from the National Cancer Institute (NCI), followed by experimental testing in enzyme inhibition assays, identified an inhibitor of DUSP5. Subsequent control experiments revealed that this compound demonstrated time-dependent inhibition, and also a time-dependent change in color of the inhibitor that correlated with potency of inhibition. In addition, the compound activity varied depending on vendor source. We hypothesized, and then confirmed by synthesis of the compound, that the actual inhibitor of DUSP5 was a dimeric form of the original inhibitor compound, formed upon exposure to light and oxygen. This compound has an IC 50 of 36 μM for DUSP5, and is a competitive inhibitor. Testing against PTP1B, for selectivity, demonstrated the dimeric compound was actually a more potent inhibitor of PTP1B, with an IC 50 of 2.1 μM. The compound, an azo-bridged dimer of sulfonated naphthol rings, resembles previously reported PTP inhibitors, but with 18-fold selectivity for PTP1B versus DUSP5. We report the identification of a potent PTP1B inhibitor that was initially identified in a screen for DUSP5, implying common

  14. Actin retrograde flow controls natural killer cell response by regulating the conformation state of SHP-1.

    PubMed

    Matalon, Omri; Ben-Shmuel, Aviad; Kivelevitz, Jessica; Sabag, Batel; Fried, Sophia; Joseph, Noah; Noy, Elad; Biber, Guy; Barda-Saad, Mira

    2018-03-01

    Natural killer (NK) cells are a powerful weapon against viral infections and tumor growth. Although the actin-myosin (actomyosin) cytoskeleton is crucial for a variety of cellular processes, the role of mechanotransduction, the conversion of actomyosin mechanical forces into signaling cascades, was never explored in NK cells. Here, we demonstrate that actomyosin retrograde flow (ARF) controls the immune response of primary human NK cells through a novel interaction between β-actin and the SH2-domain-containing protein tyrosine phosphatase-1 (SHP-1), converting its conformation state, and thereby regulating NK cell cytotoxicity. Our results identify ARF as a master regulator of the NK cell immune response. Since actin dynamics occur in multiple cellular processes, this mechanism might also regulate the activity of SHP-1 in additional cellular systems. © 2018 The Authors.

  15. SH2 domain-containing phosphatase 1 regulates pyruvate kinase M2 in hepatocellular carcinoma.

    PubMed

    Tai, Wei-Tien; Hung, Man-Hsin; Chu, Pei-Yi; Chen, Yao-Li; Chen, Li-Ju; Tsai, Ming-Hsien; Chen, Min-Husan; Shiau, Chung-Wai; Boo, Yin-Pin; Chen, Kuen-Feng

    2016-04-19

    Pyruvate kinase M2 (PKM2) is known to promote tumourigenesis through dimer formation of p-PKM2Y105. Here, we investigated whether SH2-containing protein tyrosine phosphatase 1 (SHP-1) decreases p-PKM2Y105 expression and, thus, determines the sensitivity of sorafenib through inhibiting the nuclear-related function of PKM2. Immunoprecipitation and immunoblot confirmed the effect of SHP-1 on PKM2Y105 dephosphorylation. Lactate production was assayed in cells and tumor samples to determine whether sorafenib reversed the Warburg effect. Clinical hepatocellular carcinoma (HCC) tumor samples were assessed for PKM2 expression. SHP-1 directly dephosphorylated PKM2 at Y105 and further decreased the proliferative activity of PKM2; similar effects were found in sorafenib-treated HCC cells. PKM2 was also found to determine the sensitivity of targeted drugs, such as sorafenib, brivanib, and sunitinib, by SHP-1 activation. Significant sphere-forming activity was found in HCC cells stably expressing PKM2. Clinical findings suggest that PKM2 acts as a predicting factor of early recurrence in patients with HCC, particularly those without known risk factors (63.6%). SHP-1 dephosphorylates PKM2 at Y105 to inhibit nuclear function of PKM2 and determines the efficacy of targeted drugs. Targeting PKM2 by SHP-1 might provide new therapeutic insights for patients with HCC.

  16. Neuroprotective Effects of Protein Tyrosine Phosphatase 1B Inhibition against ER Stress-Induced Toxicity

    PubMed Central

    Jeon, Yu-Mi; Lee, Shinrye; Kim, Seyeon; Kwon, Younghwi; Kim, Kiyoung; Chung, Chang Geon; Lee, Seongsoo; Lee, Sung Bae; Kim, Hyung-Jun

    2017-01-01

    Several lines of evidence suggest that endoplasmic reticulum (ER) stress plays a critical role in the pathogenesis of many neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Protein tyrosine phosphatase 1B (PTP1B) is known to regulate the ER stress signaling pathway, but its role in neuronal systems in terms of ER stress remains largely unknown. Here, we showed that rotenone-induced toxicity in human neuroblastoma cell lines and mouse primary cortical neurons was ameliorated by PTP1B inhibition. Moreover, the increase in the level of ER stress markers (eIF2α phosphorylation and PERK phosphorylation) induced by rotenone treatment was obviously suppressed by concomitant PTP1B inhibition. However, the rotenone-induced production of reactive oxygen species (ROS) was not affected by PTP1B inhibition, suggesting that the neuroprotective effect of the PTP1B inhibitor is not associated with ROS production. Moreover, we found that MG132-induced toxicity involving proteasome inhibition was also ameliorated by PTP1B inhibition in a human neuroblastoma cell line and mouse primary cortical neurons. Consistently, downregulation of the PTP1B homologue gene in Drosophila mitigated rotenone- and MG132-induced toxicity. Taken together, these findings indicate that PTP1B inhibition may represent a novel therapeutic approach for ER stress-mediated neurodegenerative diseases. PMID:28359145

  17. Trivaric acid, a new inhibitor of PTP1b with potent beneficial effect on diabetes.

    PubMed

    Sun, Wenlong; Zhang, Bowei; Zheng, Haizhou; Zhuang, Chunlin; Li, Xia; Lu, Xinhua; Quan, Chunshan; Dong, Yuesheng; Zheng, Zhihui; Xiu, Zhilong

    2017-01-15

    To screen a potential PTP1b inhibitor from the microbial origin-based compound library and to investigate the potential anti-diabetic effects of the inhibitor in vivo and determine its primary anti-diabetic mechanism in vitro and in silico. PTP1b inhibitory activity was measured using recombination protein as the enzyme and p-NPP as the substrate. The binding of the inhibitor to PTP1b was analysed by docking in silico and confirmed by ITC experiments. The intracellular signalling pathway was detected by Western blot analysis in HepG2 cells. The anti-diabetic effects were evaluated using a diabetic mice model in vivo. Among 545 microbial origin-based pure compounds tested, trivaric acid, a tridepside, was selected as a PTP1B inhibitor exhibiting strong inhibitory activity with an IC 50 of 173nM. Docking and ITC studies showed that trivaric acid was able to spontaneously bind to PTP1b and may inhibit PTP1b by blocking the catalytic domain of the phosphatase. Trivaric acid also enhanced the ability of insulin to stimulate the IR/IRS/Akt/GLUT2 pathway and increase the glucose consumption in HepG2 cells. In diabetic mice, trivaric acid that had been encapsulated into Eudrgit L100-5.5 showed significant anti-diabetic effects, improving insulin resistance, leptin resistance and lipid profile and weight control at doses of 5mg/kg and 50mg/kg. Trivaric acid is a potential lead compound in the search for anti-diabetic agents targeting PTP1b. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Reduction of protein tyrosine phosphatase 1B increases insulin-dependent signaling in ob/ob mice.

    PubMed

    Gum, Rebecca J; Gaede, Lori L; Koterski, Sandra L; Heindel, Matthew; Clampit, Jill E; Zinker, Bradley A; Trevillyan, James M; Ulrich, Roger G; Jirousek, Michael R; Rondinone, Cristina M

    2003-01-01

    Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of insulin receptor (IR) signal transduction and a drug target for treatment of type 2 diabetes. Using PTP1B antisense oligonucleotides (ASOs), effects of decreased PTP1B levels on insulin signaling in diabetic ob/ob mice were examined. Insulin stimulation, prior to sacrifice, resulted in no significant activation of insulin signaling pathways in livers from ob/ob mice. However, in PTP1B ASO-treated mice, in which PTP1B protein was decreased by 60% in liver, similar stimulation with insulin resulted in increased tyrosine phosphorylation of the IR and IR substrate (IRS)-1 and -2 by threefold, fourfold, and threefold, respectively. IRS-2-associated phosphatidylinositol 3-kinase activity was also increased threefold. Protein kinase B (PKB) serine phosphorylation was increased sevenfold in liver of PTP1B ASO-treated mice upon insulin stimulation, while phosphorylation of PKB substrates, glycogen synthase kinase (GSK)-3alpha and -3beta, was increased more than twofold. Peripheral insulin signaling was increased by PTP1B ASO, as evidenced by increased phosphorylation of PKB in muscle of insulin-stimulated PTP1B ASO-treated animals despite the lack of measurable effects on muscle PTP1B protein. These results indicate that reduction of PTP1B is sufficient to increase insulin-dependent metabolic signaling and improve insulin sensitivity in a diabetic animal model.

  19. Synthesis and biological evaluation of novel bis-aromatic amides as novel PTP1B inhibitors.

    PubMed

    Wang, Wen-Long; Huang, Chao; Gao, Li-Xin; Tang, Chun-Lan; Wang, Jun-Qing; Wu, Min-Chen; Sheng, Li; Chen, Hai-Jun; Nan, Fa-Jun; Li, Jing-Ya; Li, Jia; Feng, Bainian

    2014-04-15

    A series of bis-aromatic amides was designed, synthesized, and evaluated as a new class of inhibitors with IC50 values in the micromolar range against protein tyrosine phosphatase 1B (PTP1B). Among them, compound 15 displayed an IC50 value of 2.34±0.08 μM with 5-fold preference over TCPTP. More importantly, the treatment of CHO/HIR cells with compound 15 resulted in increased phosphorylation of insulin receptor (IR), which suggested extensive cellular activity of compound 15. These results provided novel lead compounds for the design of inhibitors of PTP1B as well as other PTPs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Protection against gamma-radiation injury by protein tyrosine phosphatase 1B.

    PubMed

    Mojena, Marina; Pimentel-Santillana, María; Povo-Retana, Adrián; Fernández-García, Victoria; González-Ramos, Silvia; Rada, Patricia; Tejedor, Alberto; Rico, Daniel; Martín-Sanz, Paloma; Valverde, Angela M; Boscá, Lisardo

    2018-07-01

    Protein tyrosine phosphatase 1B (PTP1B) is widely expressed in mammalian tissues, in particular in immune cells, and plays a pleiotropic role in dephosphorylating many substrates. Moreover, PTP1B expression is enhanced in response to pro-inflammatory stimuli and to different cell stressors. Taking advantage of the use of mice deficient in PTP1B we have investigated the effect of γ-radiation in these animals and found enhanced lethality and decreased respiratory exchange ratio vs. the corresponding wild type animals. Using bone-marrow derived macrophages and mouse embryonic fibroblasts (MEFs) from wild-type and PTP1B-deficient mice, we observed a differential response to various cell stressors. PTP1B-deficient macrophages exhibited an enhanced response to γ-radiation, UV-light, LPS and S-nitroso-glutathione. Macrophages exposed to γ-radiation show DNA damage and fragmentation, increased ROS production, a lack in GSH elevation and enhanced acidic β-galactosidase activity. Interestingly, these differences were not observed in MEFs. Differential gene expression analysis of WT and KO macrophages revealed that the main pathways affected after irradiation were an up-regulation of protein secretion, TGF-β signaling and angiogenesis among other, and downregulation of Myc targets and Hedgehog signaling. These results demonstrate a key role for PTP1B in the protection against the cytotoxicity of irradiation in intact animal and in macrophages, which might be therapeutically relevant. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  1. SHP2 sails from physiology to pathology.

    PubMed

    Tajan, Mylène; de Rocca Serra, Audrey; Valet, Philippe; Edouard, Thomas; Yart, Armelle

    2015-10-01

    Over the two past decades, mutations of the PTPN11 gene, encoding the ubiquitous protein tyrosine phosphatase SHP2 (SH2 domain-containing tyrosine phosphatase 2), have been identified as the causal factor of several developmental diseases (Noonan syndrome (NS), Noonan syndrome with multiple lentigines (NS-ML), and metachondromatosis), and malignancies (juvenile myelomonocytic leukemia). SHP2 plays essential physiological functions in organism development and homeostasis maintenance by regulating fundamental intracellular signaling pathways in response to a wide range of growth factors and hormones, notably the pleiotropic Ras/Mitogen-Activated Protein Kinase (MAPK) and the Phosphoinositide-3 Kinase (PI3K)/AKT cascades. Analysis of the biochemical impacts of PTPN11 mutations first identified both loss-of-function and gain-of-function mutations, as well as more subtle defects, highlighting the major pathophysiological consequences of SHP2 dysregulation. Then, functional genetic studies provided insights into the molecular dysregulations that link SHP2 mutants to the development of specific traits of the diseases, paving the way for the design of specific therapies for affected patients. In this review, we first provide an overview of SHP2's structure and regulation, then describe its molecular roles, notably its functions in modulating the Ras/MAPK and PI3K/AKT signaling pathways, and its physiological roles in organism development and homeostasis. In the second part, we describe the different PTPN11 mutation-associated pathologies and their clinical manifestations, with particular focus on the biochemical and signaling outcomes of NS and NS-ML-associated mutations, and on the recent advances regarding the pathophysiology of these diseases. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  2. PTP1B triggers integrin-mediated repression of myosin activity and modulates cell contractility

    PubMed Central

    González Wusener, Ana E.; González, Ángela; Nakamura, Fumihiko; Arregui, Carlos O.

    2016-01-01

    ABSTRACT Cell contractility and migration by integrins depends on precise regulation of protein tyrosine kinase and Rho-family GTPase activities in specific spatiotemporal patterns. Here we show that protein tyrosine phosphatase PTP1B cooperates with β3 integrin to activate the Src/FAK signalling pathway which represses RhoA-myosin-dependent contractility. Using PTP1B null (KO) cells and PTP1B reconstituted (WT) cells, we determined that some early steps following cell adhesion to fibronectin and vitronectin occurred robustly in WT cells, including aggregation of β3 integrins and adaptor proteins, and activation of Src/FAK-dependent signalling at small puncta in a lamellipodium. However, these events were significantly impaired in KO cells. We established that cytoskeletal strain and cell contractility was highly enhanced at the periphery of KO cells compared to WT cells. Inhibition of the Src/FAK signalling pathway or expression of constitutive active RhoA in WT cells induced a KO cell phenotype. Conversely, expression of constitutive active Src or myosin inhibition in KO cells restored the WT phenotype. We propose that this novel function of PTP1B stimulates permissive conditions for adhesion and lamellipodium assembly at the protruding edge during cell spreading and migration. PMID:26700725

  3. Treatment with insulin uncovers the motogenic capacity of nitric oxide in aortic smooth muscle cells: dependence on Gab1 and Gab1-SHP2 association.

    PubMed

    Dixit, Madhulika; Zhuang, Daming; Ceacareanu, Bogdan; Hassid, Aviv

    2003-11-14

    Contrary to the antimotogenic effect of NO in dedifferentiated vascular smooth muscle cells (VSMCs), we have reported that NO stimulates the motility of differentiated cultured VSMC isolated from adult rats. This process involves upregulation of protein tyrosine phosphatase SHP2, followed by downregulation of RhoA activity. In the present study, we tested the hypothesis that insulin alters the motogenic phenotype of cultured rat aortic smooth muscle cells exposed to NO from inhibition to stimulation of cell motility. We demonstrate for the first time that NO stimulates the motility of VSMCs cultured for several days in the presence but not the absence of insulin. Moreover, we show that NO blocks PDGF-induced cell motility in insulin-naive but not in insulin-treated cells. We also demonstrate that the scaffold adapter protein Gab1, considered a physiological activator of protein tyrosine phosphatase SHP2, increases cell motility in the presence but not the absence of insulin. In cells cultured in the presence of insulin, overexpression of Gab1 mimics, whereas a dominant-negative allele of Gab1 (Gab1YF) blocks, the motility-stimulatory effect of NO. Cotransfection experiments with dominant-negative Gab1 and wild-type SHP2 or wild-type Gab1 and dominant-negative SHP2 indicate that the two proteins work together as a functional unit to induce motility. Because chronic insulin can increase the levels of phosphatidylinositol 3 (PI3) kinase in several models of hyperinsulinemia, we also tested the potential involvement of this enzyme in mechanisms leading to increased cell motility. We found that the motogenic effect of NO, Gab1, and SHP2 was blocked by the selective PI3 kinase inhibitor LY294002, suggesting a requirement of PI3 kinase in mediating motogenesis. These observations may be relevant to molecular mechanisms related to the pathogenesis of vascular disease in hyperinsulinemic diabetes. The full text of this article is available online at http://www.circresaha.org.

  4. Spinal SIRPα1-SHP2 interaction regulates spinal nerve ligation-induced neuropathic pain via PSD-95-dependent NR2B activation in rats.

    PubMed

    Peng, Hsien-Yu; Chen, Gin-Den; Lai, Cheng-Yuang; Hsieh, Ming-Chun; Lin, Tzer-Bin

    2012-05-01

    The fact that neuropathic pain mechanisms are not well understood is a major impediment in the development of effective clinical treatments. We examined whether the interaction between signal regulatory protein alpha 1 (SIRPα1) and Src homology-2 domain-containing protein tyrosine phosphatase 2 (SHP2), and the downstream spinal SHP2/postsynaptic density 95 (PSD-95)/N-methyl-d-aspartate receptor NR2B subunit signaling cascade play a role in neuropathic pain. Following spinal nerve ligation (L5), we assessed tactile allodynia using the von Frey filament test and analyzed dorsal horn samples (L4-5) by Western blotting, reverse transcription polymerase chain reaction, coimmunoprecipitation, and immunofluorescence. Nerve ligation induced allodynia, SIRPα1, SHP2, phosphorylated SHP2 (pSHP2), and phosphorylated NR2B (pNR2B) expression, and SHP2-PSD-95, pSHP2-PSD-95, PSD-95-NR2B, and PSD-95-pNR2B coimmunoprecipitation in the ipsilateral dorsal horn. In allodynic rats, injury-induced SHP2 immunoreactivity was localized in the ipsilateral dorsal horn neurons and coincident with PSD-95 and NR2B immunoreactivity. SIRPα1 silencing using small interfering RNA (siRNA; 1, 3, or 5μg/rat for 7days) prevented injury-induced allodynia and the associated changes in protein expression, phosphorylation, and coimmunoprecipitation. Intrathecal administration of NSC-87877 (an SHP2 antagonist; 1, 10, or 100μM/rat) and SIRPα1-neutralizing antibodies (1, 10, or 30μg/rat) suppressed spinal nerve ligation-induced allodynia, spinal SHP2 and NR2B phosphorylation, and SHP2/phosphorylated SHP2-PSD-95 and PSD-95-NR2B/phosphorylated NR2B coprecipitation. SHP2 siRNA led to similar effects as the NSC-87877 and SIRPα1 antibody treatments, except it prevented the allodynia-associated spinal SHP2 expression. In conclusion, our results suggest that a spinal SIRPα1-SHP2 interaction exists that subsequently triggers SHP2/PSD-95/NR2B signaling, thereby playing a role in neuropathic pain development

  5. PTP1B-dependent regulation of receptor tyrosine kinase signaling by the actin-binding protein Mena.

    PubMed

    Hughes, Shannon K; Oudin, Madeleine J; Tadros, Jenny; Neil, Jason; Del Rosario, Amanda; Joughin, Brian A; Ritsma, Laila; Wyckoff, Jeff; Vasile, Eliza; Eddy, Robert; Philippar, Ulrike; Lussiez, Alisha; Condeelis, John S; van Rheenen, Jacco; White, Forest; Lauffenburger, Douglas A; Gertler, Frank B

    2015-11-01

    During breast cancer progression, alternative mRNA splicing produces functionally distinct isoforms of Mena, an actin regulator with roles in cell migration and metastasis. Aggressive tumor cell subpopulations express Mena(INV), which promotes tumor cell invasion by potentiating EGF responses. However, the mechanism by which this occurs is unknown. Here we report that Mena associates constitutively with the tyrosine phosphatase PTP1B and mediates a novel negative feedback mechanism that attenuates receptor tyrosine kinase signaling. On EGF stimulation, complexes containing Mena and PTP1B are recruited to the EGFR, causing receptor dephosphorylation and leading to decreased motility responses. Mena also interacts with the 5' inositol phosphatase SHIP2, which is important for the recruitment of the Mena-PTP1B complex to the EGFR. When Mena(INV) is expressed, PTP1B recruitment to the EGFR is impaired, providing a mechanism for growth factor sensitization to EGF, as well as HGF and IGF, and increased resistance to EGFR and Met inhibitors in signaling and motility assays. In sum, we demonstrate that Mena plays an important role in regulating growth factor-induced signaling. Disruption of this attenuation by Mena(INV) sensitizes tumor cells to low-growth factor concentrations, thereby increasing the migration and invasion responses that contribute to aggressive, malignant cell phenotypes. © 2015 Hughes, Oudin, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  6. Protein tyrosine phosphatase 1B as a target for the treatment of impaired glucose tolerance and type II diabetes.

    PubMed

    Liu, Gang; Trevillyan, James M

    2002-11-01

    Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of the insulin signal transduction cascade, initiated when insulin binds to the insulin receptor. PTP1B-deficient mice are more sensitive to insulin, and have improved glycemic control and resistance to diet-induced obesity than wild-type control mice. Diabetic mice treated with PTP1B antisense oligonucleotides intraperitoneally have lower PTP1B protein levels in liver and fat, reduced plasma insulin, blood glucose and hemoglobin A1c (HbA1c) levels. These studies validate PTP1B as a promising drug discovery target for the treatment of insulin resistance, diabetes and obesity. Herein we review the recent advances in the structure-based design of potent and selective small molecule inhibitors of PTP1B, and discuss th e challenge of developing compounds with improved cell permeability and bioavailability.

  7. Resveratrol inhibits PDGF receptor mitogenic signaling in mesangial cells: role of PTP1B

    PubMed Central

    Venkatesan, Balachandar; Ghosh-Choudhury, Nandini; Das, Falguni; Mahimainathan, Lenin; Kamat, Amrita; Kasinath, Balakuntalam S.; Abboud, Hanna E.; Choudhury, Goutam Ghosh

    2008-01-01

    Mesangioproliferative glomerulonephritis is associated with overactive PDGF receptor signal transduction. We show that the phytoalexin resveratrol dose dependently inhibits PDGF-induced DNA synthesis in mesangial cells with an IC50 of 10 μM without inducing apoptosis. Remarkably, the increased SIRT1 deacetylase activity induced by resveratrol was not necessary for this inhibitory effect. Resveratrol significantly blocked PDGF-stimulated c-Src and Akt kinase activation, resulting in reduced cyclin D1 expression and attenuated pRb phosphorylation and cyclin-dependent kinase-2 (CDK2) activity. Furthermore, resveratrol inhibited PDGFR phosphorylation at the PI 3 kinase and Grb-2 binding sites tyrosine-751 and tyrosine-716, respectively. This deficiency in PDGFR phosphorylation resulted in significant inhibition of PI 3 kinase and Erk1/2 MAPK activity. Interestingly, resveratrol increased the activity of protein tyrosine phosphatase PTP1B, which dephosphorylates PDGF-stimulated phosphorylation at tyrosine-751 and tyrosine-716 on PDGFR with concomitant reduction in Akt and Erk1/2 kinase activity. PTP1B significantly inhibited PDGF-induced DNA synthesis without inducing apoptosis. These results for the first time provide evidence that the stilbene resveratrol targets PTP1B to inhibit PDGFR mitogenic signaling.—Venkatesan, B., Ghosh-Choudhury, N., Das, F., Mahimainathan, L., Kamat, A., Kasinath, B. S., Abboud, H. E., Choudhury, G. G. Resveratrol inhibits PDGF receptor mitogenic signaling in mesangial cells: role of PTP1B. PMID:18567737

  8. Using mass spectrometry to study the photo-affinity labeling of protein tyrosine phosphatase 1B

    NASA Astrophysics Data System (ADS)

    Leriche, Tammy; Skorey, Kathryn; Roy, Patrick; McKay, Dan; Bateman, Kevin P.

    2004-11-01

    Protein tyrosine phosphatase 1B (PTP1B) is a potential target for the treatment of Type II diabetes and several companies are developing small molecule inhibitors of this enzyme. Part of the characterization of these compounds as PTP1B inhibitors is the understanding of how they bind in the enzyme active site. The use of photo-activated inhibitors that target the active site can provide such insight. This paper describes the characterization of a photoprobe directed at the active site of PTP1B. Mass spectrometry revealed the specific binding of the probe to the intact protein. Digestion of the labeled protein followed by LC-MS and LC-MS/MS was used to show that the photoprobe binds to a specific active site amino acid. This was confirmed by comparison with the X-ray structure of PTP1B with a PTP1B inhibitor. The probe labels a conserved acidic residue (Asp) that is required for catalytic activity. This photoprobe may prove to be a useful tool for the development of a PTP1B inhibitor or for the study of PTPs in general.

  9. Characterization of Protein Tyrosine Phosphatase 1B Inhibition by Chlorogenic Acid and Cichoric Acid.

    PubMed

    Lipchock, James M; Hendrickson, Heidi P; Douglas, Bonnie B; Bird, Kelly E; Ginther, Patrick S; Rivalta, Ivan; Ten, Nicholas S; Batista, Victor S; Loria, J Patrick

    2017-01-10

    Protein tyrosine phosphatase 1B (PTP1B) is a known regulator of the insulin and leptin signaling pathways and is an active target for the design of inhibitors for the treatment of type II diabetes and obesity. Recently, cichoric acid (CHA) and chlorogenic acid (CGA) were predicted by docking methods to be allosteric inhibitors that bind distal to the active site. However, using a combination of steady-state inhibition kinetics, solution nuclear magnetic resonance experiments, and molecular dynamics simulations, we show that CHA is a competitive inhibitor that binds in the active site of PTP1B. CGA, while a noncompetitive inhibitor, binds in the second aryl phosphate binding site, rather than the predicted benzfuran binding pocket. The molecular dynamics simulations of the apo enzyme and cysteine-phosphoryl intermediate states with and without bound CGA suggest CGA binding inhibits PTP1B by altering hydrogen bonding patterns at the active site. This study provides a mechanistic understanding of the allosteric inhibition of PTP1B.

  10. Adiponectin inhibits leptin-induced oncogenic signalling in oesophageal cancer cells by activation of PTP1B.

    PubMed

    Beales, Ian L P; Garcia-Morales, Carla; Ogunwobi, Olorunseun O; Mutungi, Gabriel

    2014-01-25

    Obesity is characterised by hyperleptinaemia and hypoadiponectinaemia and these metabolic abnormalities may contribute to the progression of several obesity-associated cancers including oesophageal adenocarcinoma (OAC). We have examined the effects of leptin and adiponectin on OE33 OAC cells. Leptin stimulated proliferation, invasion and migration and inhibited apoptosis in a STAT3-dependant manner. Leptin-stimulated MMP-2 secretion in a partly STAT3-dependent manner and MMP-9 secretion via a STAT3-independent pathway. Adiponectin inhibited leptin-induced proliferation, migration, invasion, MMP secretion and reduced the anti-apoptotic effects: these effects of adiponectin were ameliorated by both a non-specific tyrosine phosphatase inhibitor and a specific PTP1B inhibitor. Adiponectin reduced leptin-stimulated JAK2 activation and STAT3 transcriptional activity in a PTP1B-sensitive manner and adiponectin increased both PTP1B protein and activity. We conclude that adiponectin restrains leptin-induced signalling and pro-carcinogenic behaviour by inhibiting the early events in leptin-induced signal transduction by activating PTP1B. Relative adiponectin deficiency in obesity may contribute to the promotion of OAC. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. High-Resolution Inhibition Profiling Combined with HPLC-HRMS-SPE-NMR for Identification of PTP1B Inhibitors from Vietnamese Plants.

    PubMed

    Trinh, Binh Thi Dieu; Jäger, Anna K; Staerk, Dan

    2017-07-20

    Protein tyrosine phosphatase 1B (PTP1B) plays a key role as a negative regulator in insulin signal transduction by deactivating the insulin receptor. Thus, PTP1B inhibition has emerged as a potential therapeutic strategy for curing insulin resistance. In this study, 40 extracts from 18 different plant species were investigated for PTP1B inhibitory activity in vitro. The most promising one, the EtOAc extract of Ficus racemosa , was investigated by high-resolution PTP1B inhibition profiling combined with HPLC-HRMS-SPE-NMR analysis. This led to the identification of isoderrone ( 1 ), derrone ( 2 ), alpinumisoflavone ( 3 ) and mucusisoflavone B ( 4 ) as PTP1B inhibitors. IC 50 of these compounds were 22.7 ± 1.7, 12.6 ± 1.6, 21.2 ± 3.8 and 2.5 ± 0.2 µM, respectively. Kinetics analysis revealed that these compounds inhibited PTP1B non-competitively with K i values of 21.3 ± 2.8, 7.9 ± 1.9, 14.3 ± 2.0, and 3.0 ± 0.5 µM, respectively. These findings support the important role of F. racemosa as a novel source of new drugs and/or as a herbal remedy for treatment of type 2 diabetes.

  12. Ptp1b deletion in pro-opiomelanocortin neurons increases energy expenditure and impairs endothelial function via TNF-α dependent mechanisms.

    PubMed

    Bruder-Nascimento, Thiago; Kennard, Simone; Antonova, Galina; Mintz, James D; Bence, Kendra K; Belin de Chantemèle, Eric J

    2016-06-01

    Protein tyrosine phosphatase 1b (Ptp1b) is a negative regulator of leptin and insulin-signalling pathways. Its targeted deletion in proopiomelanocortin (POMC) neurons protects mice from obesity and diabetes by increasing energy expenditure. Inflammation accompanies increased energy expenditure. Therefore, the present study aimed to determine whether POMC-Ptp1b deletion increases energy expenditure via an inflammatory process, which would impair endothelial function. We characterized the metabolic and cardiovascular phenotypes of Ptp1b+/+ and POMC-Ptp1b-/- mice. Clamp studies revealed that POMC-Ptp1b deletion reduced body fat and increased energy expenditure as evidenced by a decrease in feed efficiency and an increase in oxygen consumption and respiratory exchange ratio. POMC-Ptp1b deletion induced a 2.5-fold increase in plasma tumour necrosis factor α (TNF-α) levels and elevated body temperature. Vascular studies revealed an endothelial dysfunction in POMC-Ptp1b-/- mice. Nitric oxide synthase inhibition [N-nitro-L-arginine methyl ester (L-NAME)] reduced relaxation to a similar extent in Ptp1b+/+ and POMC-Ptp1b-/- mice. POMC-Ptp1b deletion decreased ROS-scavenging enzymes [superoxide dismutases (SODs)] whereas it increased ROS-generating enzymes [NADPH oxidases (NOXs)] and cyclooxygenase-2 (COX-1) expression, in aorta. ROS scavenging or NADPH oxidase inhibition only partially improved relaxation whereas COX-2 inhibition and thromboxane-A2 (TXA2) antagonism fully restored relaxation in POMC-Ptp1b-/- mice Chronic treatment with the soluble TNF-α receptor etanercept decreased body temperature, restored endothelial function and reestablished aortic COX-2, NOXs and SOD expression to their baseline levels in POMC-Ptp1b-/- mice. However, etanercept promoted body weight gain and decreased energy expenditure in POMC-Ptp1b-/- mice. POMC-Ptp1b deletion increases plasma TNF-α levels, which contribute to body weight regulation via increased energy expenditure and impair

  13. Deficiency of PTP1B Attenuates Hypothalamic Inflammation via Activation of the JAK2-STAT3 Pathway in Microglia.

    PubMed

    Tsunekawa, Taku; Banno, Ryoichi; Mizoguchi, Akira; Sugiyama, Mariko; Tominaga, Takashi; Onoue, Takeshi; Hagiwara, Daisuke; Ito, Yoshihiro; Iwama, Shintaro; Goto, Motomitsu; Suga, Hidetaka; Sugimura, Yoshihisa; Arima, Hiroshi

    2017-02-01

    Protein tyrosine phosphatase 1B (PTP1B) regulates leptin signaling in hypothalamic neurons via the JAK2-STAT3 pathway. PTP1B has also been implicated in the regulation of inflammation in the periphery. However, the role of PTP1B in hypothalamic inflammation, which is induced by a high-fat diet (HFD), remains to be elucidated. Here, we showed that STAT3 phosphorylation (p-STAT3) was increased in microglia in the hypothalamic arcuate nucleus of PTP1B knock-out mice (KO) on a HFD, accompanied by decreased Tnf and increased Il10 mRNA expression in the hypothalamus compared to wild-type mice (WT). In hypothalamic organotypic cultures, incubation with TNFα led to increased p-STAT3, accompanied by decreased Tnf and increased Il10 mRNA expression, in KO compared to WT. Incubation with p-STAT3 inhibitors or microglial depletion eliminated the differences in inflammation between genotypes. These data indicate an important role of JAK2-STAT3 signaling negatively regulated by PTP1B in microglia, which attenuates hypothalamic inflammation under HFD conditions. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  14. HF diets increase hypothalamic PTP1B and induce leptin resistance through both leptin-dependent and -independent mechanisms

    PubMed Central

    White, Christy L.; Whittington, Amy; Barnes, Maria J.; Wang, Zhong; Bray, George A.; Morrison, Christopher D.

    2009-01-01

    Protein tyrosine phosphatase 1B (PTP1B) contributes to leptin resistance by inhibiting intracellular leptin receptor signaling. Mice with whole body or neuron-specific deletion of PTP1B are hypersensitive to leptin and resistant to diet-induced obesity. Here we report a significant increase in PTP1B protein levels in the mediobasal hypothalamus (P = 0.003) and a concomitant reduction in leptin sensitivity following 28 days of high-fat (HF) feeding in rats. A significant increase in PTP1B mRNA levels was also observed in rats chronically infused with leptin (3 μg/day icv) for 14 days (P = 0.01) and in leptin-deficient ob/ob mice infused with leptin (5 μg/day sc for 14 days; P = 0.003). When saline-infused ob/ob mice were placed on a HF diet for 14 days, an increase in hypothalamic PTP1B mRNA expression was detected (P = 0.001) despite the absence of circulating leptin. In addition, although ob/ob mice were much more sensitive to leptin on a low-fat (LF) diet, a reduction in this sensitivity was still observed following exposure to a HF diet. Taken together, these data indicate that hypothalamic PTP1B is specifically increased during HF diet-induced leptin resistance. This increase in PTP1B is due in part to chronic hyperleptinemia, suggesting that hyperleptinemia is one mechanism contributing to the development of leptin resistance. However, these data also indicate that leptin is not required for the increase in hypothalamic PTP1B or the development of leptin resistance. Therefore, additional, leptin-independent mechanisms must exist that increase hypothalamic PTP1B and contribute to leptin resistance. PMID:19017730

  15. Loss of PTEN causes SHP2 activation, making lung cancer cells unresponsive to IFN-γ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chia-Ling; Chiang, Tzu-Hui; Tseng, Po-Chun

    Src homology-2 domain-containing phosphatase (SHP) 2, an oncogenic phosphatase, inhibits type II immune interferon (IFN)-γ signaling by subverting signal transducers and activators of transcription 1 tyrosine phosphorylation and activation. For cancer immunoediting, this study aimed to investigate the decrease of phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a tumor suppressor protein, leading to cellular impairment of IFN-γ signaling. In comparison with human lung adenocarcinoma A549 cells, the natural PTEN loss in another human lung adenocarcinoma line, PC14PE6/AS2 cells, presents reduced responsiveness in IFN-γ-induced IFN regulatory factor 1 activation and CD54 expression. Artificially silencing PTEN expression in A549 cellsmore » also caused cells to be unresponsive to IFN-γ without affecting IFN-γ receptor expression. IFN-γ-induced inhibition of cell proliferation and cytotoxicity were demonstrated in A549 cells but were defective in PC14PE6/AS2 cells and in PTEN-deficient A549 cells. Aberrant activation of SHP2 by ROS was specifically shown in PC14PE6/AS2 cells and PTEN-deficient A549 cells. Inhibiting ROS and SHP2 rescued cellular responses to IFN-γ-induced cytotoxicity and inhibition of cell proliferation in PC14PE6/AS2 cells. These results demonstrate that a decrease in PTEN facilitates ROS/SHP2 signaling, causing lung cancer cells to become unresponsive to IFN-γ. - Highlights: • This study demonstrates that PTEN decrease causes cellular unresponsive to IFN-γ. • Lung cancer cells with PTEN deficiency show unresponsive to IFN-γ signaling. • PTEN decrease inhibits IFN-γ-induced CD54, cell proliferation inhibition, and cytotoxicity. • ROS-mediated SHP2 activation makes PTEN-deficient cells unresponsive to IFN-γ.« less

  16. SHP-2 inhibits tyrosine phosphorylation of Cas-L and regulates cell migration.

    PubMed

    Yo, Koji; Iwata, Satoshi; Hashizume, Yutaka; Kondo, Shunsuke; Nomura, Sayaka; Hosono, Osamu; Kawasaki, Hiroshi; Tanaka, Hirotoshi; Dang, Nam H; Morimoto, Chikao

    2009-04-24

    The Src homology 2 (SH2) domain-containing protein tyrosine phosphatase, SHP-2, plays an important role in cell migration by interacting with various proteins. In this report, we demonstrated that SHP-2 inhibits tyrosine phosphorylation of Crk-associated substrate lymphocyte type (Cas-L), a docking protein which mediates cell migration, and found that SHP-2 negatively regulates migration of A549 lung adenocarcinoma cells induced by fibronectin (FN). We showed that overexpressed SHP-2 co-localizes with Cas-L at focal adhesions and that exogenous expression of SHP-2 abrogates cell migration mediated by Cas-L. SHP-2 inhibits tyrosine phosphorylation of Cas-L, and associates with Cas-L to form a complex in a tyrosine phosphorylation-dependent manner. Finally, immunoprecipitation experiments with deletion mutants revealed that both SH2 domains of SHP-2 are necessary for this association. These results suggest that SHP-2 regulates tyrosine phosphorylation of Cas-L, hence opposing the effect of kinases, and SHP-2 is a negative regulator of cell migration mediated by Cas-L.

  17. Zinc-induced Dnmt1 expression involves antagonism between MTF-1 and nuclear receptor SHP

    PubMed Central

    Zhang, Yuxia; Andrews, Glen K.; Wang, Li

    2012-01-01

    Dnmt1 is frequently overexpressed in cancers, which contributes significantly to cancer-associated epigenetic silencing of tumor suppressor genes. However, the mechanism of Dnmt1 overexpression remains elusive. Herein, we elucidate a pathway through which nuclear receptor SHP inhibits zinc-dependent induction of Dnmt1 by antagonizing metal-responsive transcription factor-1 (MTF-1). Zinc treatment induces Dnmt1 transcription by increasing the occupancy of MTF-1 on the Dnmt1 promoter while decreasing SHP expression. SHP in turn represses MTF-1 expression and abolishes zinc-mediated changes in the chromatin configuration of the Dnmt1 promoter. Dnmt1 expression is increased in SHP-knockout (sko) mice but decreased in SHP-transgenic (stg) mice. In human hepatocellular carcinoma (HCC), increased DNMT1 expression is negatively correlated with SHP levels. Our study provides a molecular explanation for increased Dnmt1 expression in HCC and highlights SHP as a potential therapeutic target. PMID:22362755

  18. SHP2 regulates osteoclastogenesis by promoting preosteoclast fusion

    USDA-ARS?s Scientific Manuscript database

    Genes that regulate osteoclast development and function under physiological and disease conditions remain incompletely understood. Shp2, a ubiquitously expressed cytoplasmic protein tyrosine phosphatase, was implicated in regulating M-CSF and RANKL-evoked signaling, its role in osteoclastogenesis an...

  19. Impaired insulin signaling and spatial learning in middle-aged rats: The role of PTP1B.

    PubMed

    Kuga, Gabriel Keine; Muñoz, Vitor Rosetto; Gaspar, Rafael Calais; Nakandakari, Susana Castelo Branco Ramos; da Silva, Adelino Sanchez Ramos; Botezelli, José Diego; Leme, José Alexandre Curiacos de Almeida; Gomes, Ricardo José; de Moura, Leandro Pereira; Cintra, Dennys Esper; Ropelle, Eduardo Rochete; Pauli, José Rodrigo

    2018-04-01

    The insulin and Brain-Derived Neurotrophic Factor (BDNF) signaling in the hippocampus promotes synaptic plasticity and memory formation. On the other hand, aging is related to the cognitive decline and is the main risk factor for Alzheimer's Disease (AD). The Protein-Tyrosine Phosphatase 1B (PTP1B) is related to several deleterious processes in neurons and emerges as a promising target for new therapies. In this context, our study aims to investigate the age-related changes in PTP1B content, insulin signaling, β-amyloid content, and Tau phosphorylation in the hippocampus of middle-aged rats. Young (3 months) and middle-aged (17 months) Wistar rats were submitted to Morris-water maze (MWM) test, insulin tolerance test, and molecular analysis in the hippocampus. Aging resulted in increased body weight, and insulin resistance and decreases learning process in MWM. Interestingly, the middle-aged rats have higher levels of PTP-1B, lower phosphorylation of IRS-1, Akt, GSK3β, mTOR, and TrkB. Also, the aging process increased Tau phosphorylation and β-amyloid content in the hippocampus region. In summary, this study provides new evidence that aging-related PTP1B increasing, contributing to insulin resistance and the onset of the AD. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Discovery and structure-activity relationship of oxalylarylaminobenzoic acids as inhibitors of protein tyrosine phosphatase 1B.

    PubMed

    Liu, Gang; Szczepankiewicz, Bruce G; Pei, Zhonghua; Janowick, David A; Xin, Zhili; Hajduk, Philip J; Abad-Zapatero, Cele; Liang, Heng; Hutchins, Charles W; Fesik, Stephen W; Ballaron, Steve J; Stashko, Mike A; Lubben, Tom; Mika, Amanda K; Zinker, Bradley A; Trevillyan, James M; Jirousek, Michael R

    2003-05-22

    Protein Tyrosine phosphatase 1B (PTP1B) has been implicated as a key negative regulator of both insulin and leptin signaling pathways. Using an NMR-based screening approach with 15N- and 13C-labeled PTP1B, we have identified 2,3-dimethylphenyloxalylaminobenzoic acid (1) as a general, reversible, and competitive PTPase inhibitor. Structure-based approach guided by X-ray crystallography facilitated the development of 1 into a novel series of potent and selective PTP1B inhibitors occupying both the catalytic site and a portion of the noncatalytic, second phosphotyrosine binding site. Interestingly, oral biovailability has been observed in rats for some compounds. Furthermore, we demonstrated in vivo plasma glucose lowering effects with compound 12d in ob/ob mice.

  1. Identification of caffeoylquinic acid derivatives as natural protein tyrosine phosphatase 1B inhibitors from Artemisia princeps.

    PubMed

    Zhang, Jie; Sasaki, Tatsunori; Li, Wei; Nagata, Kazuya; Higai, Koji; Feng, Feng; Wang, Jian; Cheng, Maosheng; Koike, Kazuo

    2018-04-15

    Considerable attention has been paid to protein tyrosine phosphatase 1B (PTP1B) inhibitors as a potential therapy for diabetes, obesity, and cancer. Ten caffeoylquinic acid derivatives (1-10) from leaves of Artemisia princeps Pamp. (Asteraceae) were identified as natural PTP1B inhibitors. Among them, chlorogenic acid (3) showed the most potent inhibitory activity (IC 50 11.1 μM). Compound 3 was demonstrated to be a noncompetitive inhibitor by a kinetic analysis. Molecular docking simulation suggested that compound 3 bound to the allosteric site of PTP1B. Furthermore, compound 3 showed remarkable selectivity against four homologous PTPs. According to these findings, compound 3 might be potentially valuable for further drug development. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Identification of a human src homology 2-containing protein-tyrosine-phosphatase: a putative homolog of Drosophila corkscrew.

    PubMed Central

    Freeman, R M; Plutzky, J; Neel, B G

    1992-01-01

    src homology 2 (SH2) domains direct binding to specific phosphotyrosyl proteins. Recently, SH2-containing protein-tyrosine-phosphatases (PTPs) were identified. Using degenerate oligonucleotides and the PCR, we have cloned a cDNA for an additional PTP, SH-PTP2, which contains two SH2 domains and is expressed ubiquitously. When expressed in Escherichia coli, SH-PTP2 displays tyrosine-specific phosphatase activity. Strong sequence similarity between SH-PTP2 and the Drosophila gene corkscrew (csw) and their similar patterns of expression suggest that SH-PTP2 is the human corkscrew homolog. Sequence comparisons between SH-PTP2, SH-PTP1, corkscrew, and other SH2-containing proteins suggest the existence of a subfamily of SH2 domains found specifically in PTPs, whereas comparison of the PTP domains of the SH2-containing PTPs with other tyrosine phosphatases suggests the existence of a subfamily of PTPs containing SH2 domains. Since corkscrew, a member of the terminal class signal transduction pathway, acts in concert with D-raf to positively transduce the signal generated by the receptor tyrosine kinase torso, these findings suggest several mechanisms by which SH-PTP2 may participate in mammalian signal transduction. Images PMID:1280823

  3. Computational revelation of binding mechanisms of inhibitors to endocellular protein tyrosine phosphatase 1B using molecular dynamics simulations.

    PubMed

    Yan, Fangfang; Liu, Xinguo; Zhang, Shaolong; Su, Jing; Zhang, Qinggang; Chen, Jianzhong

    2017-11-06

    Endocellular protein tyrosine phosphatase 1B (PTP1B) is one of the most promising target for designing and developing drugs to cure type-II diabetes and obesity. Molecular dynamics (MD) simulations combined with molecular mechanics generalized Born surface area (MM-GBSA) and solvated interaction energy methods were applied to study binding differences of three inhibitors (ID: 901, 941, and 968) to PTP1B, the calculated results show that the inhibitor 901 has the strongest binding ability to PTP1B among the current inhibitors. Principal component (PC) analysis was also carried out to investigate the conformational change of PTP1B, and the results indicate that the associations of inhibitors with PTP1B generate a significant effect on the motion of the WPD-loop. Free energy decomposition method was applied to study the contributions of individual residues to inhibitor bindings, it is found that three inhibitors can generate hydrogen bonding interactions and hydrophobic interactions with different residues of PTP1B, which provide important forces for associations of inhibitors with PTP1B. This research is expected to give a meaningfully theoretical guidance to design and develop of effective drugs curing type-II diabetes and obesity.

  4. Multiple machine learning based descriptive and predictive workflow for the identification of potential PTP1B inhibitors.

    PubMed

    Chandra, Sharat; Pandey, Jyotsana; Tamrakar, Akhilesh Kumar; Siddiqi, Mohammad Imran

    2017-01-01

    In insulin and leptin signaling pathway, Protein-Tyrosine Phosphatase 1B (PTP1B) plays a crucial controlling role as a negative regulator, which makes it an attractive therapeutic target for both Type-2 Diabetes (T2D) and obesity. In this work, we have generated classification models by using the inhibition data set of known PTP1B inhibitors to identify new inhibitors of PTP1B utilizing multiple machine learning techniques like naïve Bayesian, random forest, support vector machine and k-nearest neighbors, along with structural fingerprints and selected molecular descriptors. Several models from each algorithm have been constructed and optimized, with the different combination of molecular descriptors and structural fingerprints. For the training and test sets, most of the predictive models showed more than 90% of overall prediction accuracies. The best model was obtained with support vector machine approach and has Matthews Correlation Coefficient of 0.82 for the external test set, which was further employed for the virtual screening of Maybridge small compound database. Five compounds were subsequently selected for experimental assay. Out of these two compounds were found to inhibit PTP1B with significant inhibitory activity in in-vitro inhibition assay. The structural fragments which are important for PTP1B inhibition were identified by naïve Bayesian method and can be further exploited to design new molecules around the identified scaffolds. The descriptive and predictive modeling strategy applied in this study is capable of identifying PTP1B inhibitors from the large compound libraries. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Synthesis, biological evaluation and in silico studies of 5-(3-methoxybenzylidene)thiazolidine-2,4-dione analogues as PTP1B inhibitors.

    PubMed

    Mahapatra, Manoj Kumar; Kumar, Rajnish; Kumar, Manoj

    2017-04-01

    PTP1B (protein tyrosine phosphatase 1B) dephosphorylates the insulin receptor substrate and thus acts as a negative regulator of the insulin and leptin signalling pathway. Recently, it has been considered as a new therapeutic target of intervention for the treatment of type2 diabetes. A series of aryl/alkylsulfonyloxy-5-(3-methoxybenzylidene)thiazolidine-2,4-dione derivatives were synthesized, screened in vitro for their PTP1B inhibitory activity and in vivo for anti-hyperglycaemic activity. Docking results further helped in understanding the nature of interactions governing the binding mode of ligands inside the active site of PTP1B. Among the synthesized compounds, 13 and 16 were found to be potent PTP1B inhibitors having IC 50 of 7.31 and 8.73μM respectively. Significant lowering of blood glucose level was observed in some of the synthesized compounds in in vivo study. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Flavonoids as potent allosteric inhibitors of protein tyrosine phosphatase 1B: molecular dynamics simulation and free energy calculation.

    PubMed

    Zargari, Farshid; Lotfi, Maryam; Shahraki, Omolbanin; Nikfarjam, Zahra; Shahraki, Jafar

    2017-12-11

    Protein tyrosine phosphatase 1B (PTP1B) is a member of the PTP superfamily which is considered to be a negative regulator of insulin receptor (IR) signaling pathway. PTP1B is a promising drug target for the treatment of type 2 diabetes, obesity, and cancer. The existence of allosteric site in PTP1B has turned the researcher's attention to an alternate strategy for inhibition of this enzyme. Herein, the molecular interactions between the allosteric site of PTP1B with three non-competitive flavonoids, (MOR), (MOK), and (DPO) have been investigated. Three ligands were docked into allosteric site of the enzyme. The resulting protein-ligand complexes were used for molecular dynamics studies. Principal component and free-energy landscape (FEL) as well as cluster analyses were used to investigate the conformational and dynamical properties of the protein and identify representative enzyme substrates bounded to the inhibitors. Per residue energy decomposition analysis attributed dissimilar affinities of three inhibitors to the several hydrogen bonds and non-bonded interactions. In conclusion, our results exhibited an inhibitory pattern of the ligands against PTP1B.

  7. SHP-2 acts via ROCK to regulate the cardiac actin cytoskeleton

    PubMed Central

    Langdon, Yvette; Tandon, Panna; Paden, Erika; Duddy, Jennifer; Taylor, Joan M.; Conlon, Frank L.

    2012-01-01

    Noonan syndrome is one of the most common causes of human congenital heart disease and is frequently associated with missense mutations in the protein phosphatase SHP-2. Interestingly, patients with acute myelogenous leukemia (AML), acute lymphoblastic leukemia (ALL), juvenile myelomonocytic leukemia (JMML) and LEOPARD syndrome frequently carry a second, somatically introduced subset of missense mutations in SHP-2. To determine the cellular and molecular mechanisms by which SHP-2 regulates heart development and, thus, understand how Noonan-associated mutations affect cardiogenesis, we introduced SHP-2 encoding the most prevalent Noonan syndrome and JMML mutations into Xenopus embryos. Resulting embryos show a direct relationship between a Noonan SHP-2 mutation and its ability to cause cardiac defects in Xenopus; embryos expressing Noonan SHP-2 mutations exhibit morphologically abnormal hearts, whereas those expressing an SHP-2 JMML-associated mutation do not. Our studies indicate that the cardiac defects associated with the introduction of the Noonan-associated SHP-2 mutations are coupled with a delay or arrest of the cardiac cell cycle in M-phase and a failure of cardiomyocyte progenitors to incorporate into the developing heart. We show that these defects are a result of an underlying malformation in the formation and polarity of cardiac actin fibers and F-actin deposition. We show that these defects can be rescued in culture and in embryos through the inhibition of the Rho-associated, coiled-coil-containing protein kinase 1 (ROCK), thus demonstrating a direct relationship between SHP-2N308D and ROCK activation in the developing heart. PMID:22278918

  8. SHP-2 acts via ROCK to regulate the cardiac actin cytoskeleton.

    PubMed

    Langdon, Yvette; Tandon, Panna; Paden, Erika; Duddy, Jennifer; Taylor, Joan M; Conlon, Frank L

    2012-03-01

    Noonan syndrome is one of the most common causes of human congenital heart disease and is frequently associated with missense mutations in the protein phosphatase SHP-2. Interestingly, patients with acute myelogenous leukemia (AML), acute lymphoblastic leukemia (ALL), juvenile myelomonocytic leukemia (JMML) and LEOPARD syndrome frequently carry a second, somatically introduced subset of missense mutations in SHP-2. To determine the cellular and molecular mechanisms by which SHP-2 regulates heart development and, thus, understand how Noonan-associated mutations affect cardiogenesis, we introduced SHP-2 encoding the most prevalent Noonan syndrome and JMML mutations into Xenopus embryos. Resulting embryos show a direct relationship between a Noonan SHP-2 mutation and its ability to cause cardiac defects in Xenopus; embryos expressing Noonan SHP-2 mutations exhibit morphologically abnormal hearts, whereas those expressing an SHP-2 JMML-associated mutation do not. Our studies indicate that the cardiac defects associated with the introduction of the Noonan-associated SHP-2 mutations are coupled with a delay or arrest of the cardiac cell cycle in M-phase and a failure of cardiomyocyte progenitors to incorporate into the developing heart. We show that these defects are a result of an underlying malformation in the formation and polarity of cardiac actin fibers and F-actin deposition. We show that these defects can be rescued in culture and in embryos through the inhibition of the Rho-associated, coiled-coil-containing protein kinase 1 (ROCK), thus demonstrating a direct relationship between SHP-2(N308D) and ROCK activation in the developing heart.

  9. PTP1B inhibitors from Selaginella tamariscina (Beauv.) Spring and their kinetic properties and molecular docking simulation.

    PubMed

    Le, Duc Dat; Nguyen, Duc Hung; Zhao, Bing Tian; Seong, Su Hui; Choi, Jae Sue; Kim, Seok Kyu; Kim, Jeong Ah; Min, Byung Sun; Woo, Mi Hee

    2017-06-01

    Diabetes is one of the most popular worldwide diseases, regulated by the defects in insulin secretion, insulin action, or both. The overexpression of protein tyrosine phosphatase 1B (PTP1B) was found to down-regulate the insulin-receptor activation. PTP1B has been known as a strategy for the treatment of diabetes via the regulation of insulin signal transduction pathway. Herein, we investigated the PTP1B inhibitors isolated from natural sources. The chemical investigation of Selaginella tamariscina (Beauv.) Spring revealed seven unsaturated alkynyl phenols 1-7, four new selaginellins T-W 1-4 together with three known compounds 5-7 isolated from the aerial parts. The structures of the isolates were determined by spectroscopic techniques (1D/2D-NMR, MS, and CD). The inhibitory effects of these isolates on the PTP1B enzyme activity were investigated. Among them, compounds 2-7 significantly exhibited the inhibitory effects with the IC 50 values ranging from 4.8 to 15.9μM. Compound 1 moderately displayed the inhibitory activity with an IC 50 of 57.9μM. Furthermore, active compounds were discovered from their kinetic and molecular docking analysis. The results revealed that compounds 2 and 4-7 were mixed-competitive inhibitors, whereas compound 3 was a non-competitive inhibitor. This data confirm that these compounds exhibited potential inhibitory effect on the PTP1B enzyme activity. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Increased hypothalamic protein tyrosine phosphatase 1B contributes to leptin resistance with age.

    PubMed

    Morrison, Christopher D; White, Christy L; Wang, Zhong; Lee, Seung-Yub; Lawrence, David S; Cefalu, William T; Zhang, Zhong-Yin; Gettys, Thomas W

    2007-01-01

    Animals at advanced ages exhibit a reduction in central leptin sensitivity. However, changes in growth, metabolism, and obesity risk occur much earlier in life, particularly during the transition from youth to middle age. To determine when initial decreases in central leptin sensitivity occur, leptin-dependent suppression of food intake was tested in 8-, 12-, and 20-wk-old male, chow-fed Sprague Dawley rats. Intracerebroventricular leptin injection (3 microg) suppressed 24-h food intake in 8- and 12-wk-old rats (P < 0.05) but not 20-wk-old rats. To identify potential cellular mediators of this resistance, we focused on protein tyrosine phosphatase 1B (PTP1B), a recently described inhibitor of leptin signaling. PTP1B protein levels, as determined by Western blot, were significantly higher in mediobasal hypothalamic punches collected from 20-wk-old rats, compared with 8-wk-old rats (P < 0.05). When 20-wk-old rats were fasted for 24 h, levels of hypothalamic PTP1B decreased (P < 0.05), coincident with a restoration of leptin sensitivity. To directly test whether inhibition of PTP1B restores leptin sensitivity, 20-wk-old chow-fed rats were pretreated with a pharmacological PTP1B inhibitor 1 h before leptin, and 24-h food intake was recorded. As expected, leptin alone produced a small but nonsignificant reduction in food intake. However, pretreatment with the PTP1B inhibitor resulted in a marked improvement in leptin-dependent suppression of food intake (P < 0.05). These data are consistent with the hypothesis that increases in PTP1B contribute to hypothalamic leptin resistance as rats transition into middle age.

  11. Early growth response-1 negative feedback regulates skeletal muscle postprandial insulin sensitivity via activating Ptp1b transcription.

    PubMed

    Wu, Jing; Tao, Wei-Wei; Chong, Dan-Yang; Lai, Shan-Shan; Wang, Chuang; Liu, Qi; Zhang, Tong-Yu; Xue, Bin; Li, Chao-Jun

    2018-03-15

    Postprandial insulin desensitization plays a critical role in maintaining whole-body glucose homeostasis by avoiding the excessive absorption of blood glucose; however, the detailed mechanisms that underlie how the major player, skeletal muscle, desensitizes insulin action remain to be elucidated. Herein, we report that early growth response gene-1 ( Egr-1) is activated by insulin in skeletal muscle and provides feedback inhibition that regulates insulin sensitivity after a meal. The inhibition of the transcriptional activity of Egr-1 enhanced the phosphorylation of the insulin receptor (InsR) and Akt, thus increasing glucose uptake in L6 myotubes after insulin stimulation, whereas overexpression of Egr-1 decreased insulin sensitivity. Furthermore, deletion of Egr-1 in the skeletal muscle improved systemic insulin sensitivity and glucose tolerance, which resulted in lower blood glucose levels after refeeding. Mechanistic analysis demonstrated that EGR-1 inhibited InsR phosphorylation and glucose uptake in skeletal muscle by binding to the proximal promoter region of protein tyrosine phosphatase-1B (PTP1B) and directly activating transcription. PTP1B knockdown largely restored insulin sensitivity and enhanced glucose uptake, even under conditions of EGR-1 overexpression. Our results indicate that EGR-1/PTP1B signaling negatively regulates postprandial insulin sensitivity and suggest a potential therapeutic target for the prevention and treatment of excessive glucose absorption.-Wu, J., Tao, W.-W., Chong, D.-Y., Lai, S.-S., Wang, C., Liu, Q., Zhang, T.-Y., Xue, B., Li, C.-J. Early growth response-1 negative feedback regulates skeletal muscle postprandial insulin sensitivity via activating Ptp1b transcription.

  12. SHP-1 is directly activated by the aryl hydrocarbon receptor and regulates BCL-6 in the presence of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phadnis-Moghe, Ashwini S.; Li, Jinpeng

    2016-11-01

    The environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which is a strong AHR agonist, causes significant suppression of human B cell activation and differentiation. The current studies describe the identification of Src homology phosphatase 1 (SHP-1) encoded by the gene PTPN6 as a putative regulator of TCDD-mediated suppression of B cell activation. Shp-1 was initially identified through a genome-wide analysis of AHR binding in mouse B cells in the presence of TCDD. The binding of AHR to the PTPN6 promoter was further confirmed using electrophoretic mobility shift assays in which, specific binding of AHR was detected at four putative DRE sites within PTPN6more » promoter. Time-course measurements performed in human B cells highlighted a significant increase in SHP-1 mRNA and protein levels in the presence of TCDD. The changes in the protein levels of SHP-1 were also observed in a TCDD concentration-dependent manner. The increase in SHP-1 levels was also seen to occur due to a change in early signaling events in the presence of TCDD. We have shown that BCL-6 regulates B cell activation by repressing activation marker CD80 in the presence of TCDD. TCDD-treatment led to a significant increase in the double positive (SHP-1{sup hi} BCL-6{sup hi}) population. Interestingly, treatment of naïve human B cells with SHP-1 inhibitor decreased BCL-6 protein levels suggesting possible regulation of BCL-6 by SHP-1 for the first time. Collectively, these results suggest that SHP-1 is regulated by AHR in the presence of TCDD and may, in part through BCL-6, regulate TCDD-mediated suppression of human B cell activation. - Highlights: • SHP-1 encoded by the gene PTPN6 is directly activated by the AHR. • AHR binds to dioxin response elements within the SHP-1 promoter in a TCDD-inducible manner. • TCDD-mediated increase in SHP-1 levels is observed in primary human B cells. • Higher SHP-1 levels help in maintaining high BCL-6 levels in the presence of TCDD

  13. Crystal structure of low-molecular-weight protein tyrosine phosphatase from Mycobacterium tuberculosis at 1.9-A resolution.

    PubMed

    Madhurantakam, Chaithanya; Rajakumara, Eerappa; Mazumdar, Pooja Anjali; Saha, Baisakhee; Mitra, Devrani; Wiker, Harald G; Sankaranarayanan, Rajan; Das, Amit Kumar

    2005-03-01

    The low-molecular-weight protein tyrosine phosphatase (LMWPTPase) belongs to a distinctive class of phosphotyrosine phosphatases widely distributed among prokaryotes and eukaryotes. We report here the crystal structure of LMWPTPase of microbial origin, the first of its kind from Mycobacterium tuberculosis. The structure was determined to be two crystal forms at 1.9- and 2.5-A resolutions. These structural forms are compared with those of the LMWPTPases of eukaryotes. Though the overall structure resembles that of the eukaryotic LMWPTPases, there are significant changes around the active site and the protein tyrosine phosphatase (PTP) loop. The variable loop forming the wall of the crevice leading to the active site is conformationally unchanged from that of mammalian LMWPTPase; however, differences are observed in the residues involved, suggesting that they have a role in influencing different substrate specificities. The single amino acid substitution (Leu12Thr [underlined below]) in the consensus sequence of the PTP loop, CTGNICRS, has a major role in the stabilization of the PTP loop, unlike what occurs in mammalian LMWPTPases. A chloride ion and a glycerol molecule were modeled in the active site where the chloride ion interacts in a manner similar to that of phosphate with the main chain nitrogens of the PTP loop. This structural study, in addition to identifying specific mycobacterial features, may also form the basis for exploring the mechanism of the substrate specificities of bacterial LMWPTPases.

  14. In silico modelling and molecular dynamics simulation studies of thiazolidine based PTP1B inhibitors.

    PubMed

    Mahapatra, Manoj Kumar; Bera, Krishnendu; Singh, Durg Vijay; Kumar, Rajnish; Kumar, Manoj

    2018-04-01

    Protein tyrosine phosphatase 1B (PTP1B) has been identified as a negative regulator of insulin and leptin signalling pathway; hence, it can be considered as a new therapeutic target of intervention for the treatment of type 2 diabetes. Inhibition of this molecular target takes care of both diabetes and obesity, i.e. diabestiy. In order to get more information on identification and optimization of lead, pharmacophore modelling, atom-based 3D QSAR, docking and molecular dynamics studies were carried out on a set of ligands containing thiazolidine scaffold. A six-point pharmacophore model consisting of three hydrogen bond acceptor (A), one negative ionic (N) and two aromatic rings (R) with discrete geometries as pharmacophoric features were developed for a predictive 3D QSAR model. The probable binding conformation of the ligands within the active site was studied through molecular docking. The molecular interactions and the structural features responsible for PTP1B inhibition and selectivity were further supplemented by molecular dynamics simulation study for a time scale of 30 ns. The present investigation has identified some of the indispensible structural features of thiazolidine analogues which can further be explored to optimize PTP1B inhibitors.

  15. Treatment of non-Hodgkin's lymphoma xenografts with the HB22.7 anti-CD22 monoclonal antibody and phosphatase inhibitors improves efficacy.

    PubMed

    O'Donnell, Robert T; Pearson, David; McKnight, Hayes C; Ma, Ya Peng; Tuscano, Joseph M

    2009-10-01

    To examine the role of phosphatase inhibition on anti-CD22, HB22.7-mediated lymphomacidal effects. CD22 is a cell-surface molecule expressed on most B cell lymphomas (NHL). HB22.7 is an anti-CD22 monoclonal antibody that binds a unique CD22-epitope, blocks ligand binding, initiates signaling, and has demonstrated lymphomacidal activity. The SHP-1 tyrosine phosphatase is associated with the cytoplasmic domain of CD22. Sodium orthovanadate (NaV) is a phosphatase inhibitor. The SHP-1-CD22 interaction presents an opportunity to manipulate CD22-mediated signaling effects. In vitro cell culture assays and in vivo human NHL xenograft studies were used to assess the effects of phosphatase inhibition. NaV caused dose dependent killing of NHL cells in vitro; when HB22.7 was given with NaV, antibody-mediated cell death was augmented. Flow cytometry showed that NaV-pretreatment resulted in less CD22 internalization after ligation with HB22.7 than did control cells. Studies in mice bearing Raji NHL xenografts showed that the combination of NaV and HB22.7 shrank NHL tumors more rapidly, had a higher complete response rate (80%), and produced the best survival compared to controls; no toxicity was detected. Studies using Raji cells stably transfected with SHP-1DN confirmed that these observations were due to SHP-1 inhibition. The relatively specific association of SHP-1 with CD22 suggests that CD22-specific signal augmentation by phosphatase inhibitors can improve the clinical outcome of anti-CD22 based immunotherapy.

  16. Synthesis, bioactivity, 3D-QSAR studies of novel dibenzofuran derivatives as PTP-MEG2 inhibitors

    PubMed Central

    Zhang, Yu-Ze; Jin, Wen-Yan; Li, Hong-Lian; Zhou, Hui; Cheng, Xian-Chao; Wang, Run-Ling

    2017-01-01

    PTP-MEG2 plays a critical role in the diverse cell signalling processes, so targeting PTP-MEG2 is a promising strategy for various human diseases treatments. In this study, a series of novel dibenzofuran derivatives was synthesized and assayed for their PTP-MEG2 inhibitory activities. 10a with highest inhibitory activity (320 nM) exhibited significant selectivity for PTP-MEG2 over its close homolog SHP2, CDC25 (IC50 > 50 μM). By means of the powerful “HipHop” technique, a 3D-QSAR study was carried out to explore structure activity relationship of these molecules. The generated pharmacophore model revealed that the one RA, three Hyd, and two HBA features play an important role in binding to the active site of the target protein-PTP-MEG2. Docking simulation study indicated that 10a achieved its potency and specificity for PTP-MEG2 by targeting unique nearby peripheral binding pockets and the active site. The absorption, distribution, metabolism and excretion (ADME) predictions showed that the 11 compounds hold high potential to be novel lead compounds for targeting PTP-MEG2. Our findings here can provide a new strategy or useful insights for designing the effective PTP-MEG2 inhibitors. PMID:28388567

  17. Identification of a dual-specificity protein phosphatase that inactivates a MAP kinase from Arabidopsis

    NASA Technical Reports Server (NTRS)

    Gupta, R.; Huang, Y.; Kieber, J.; Luan, S.; Evans, M. L. (Principal Investigator)

    1998-01-01

    Mitogen-activated protein kinases (MAPKs) play a key role in plant responses to stress and pathogens. Activation and inactivation of MAPKs involve phosphorylation and dephosphorylation on both threonine and tyrosine residues in the kinase domain. Here we report the identification of an Arabidopsis gene encoding a dual-specificity protein phosphatase capable of hydrolysing both phosphoserine/threonine and phosphotyrosine in protein substrates. This enzyme, designated AtDsPTP1 (Arabidopsis thaliana dual-specificity protein tyrosine phosphatase), dephosphorylated and inactivated AtMPK4, a MAPK member from the same plant. Replacement of a highly conserved cysteine by serine abolished phosphatase activity of AtDsPTP1, indicating a conserved catalytic mechanism of dual-specificity protein phosphatases from all eukaryotes.

  18. Magnolia officinalis Extract Contains Potent Inhibitors against PTP1B and Attenuates Hyperglycemia in db/db Mice

    PubMed Central

    Sun, Jing; Wang, Yongsen; Fu, Xueqi; Chen, Yingli; Wang, Deli; Li, Wannan; Xing, Shu; Li, Guodong

    2015-01-01

    Protein tyrosine phosphatase 1B (PTP1B) is an established therapeutic target for type 2 diabetes mellitus (T2DM) and obesity. The aim of this study was to investigate the inhibitory activity of Magnolia officinalis extract (ME) on PTP1B and its anti-T2DM effects. Inhibition assays and inhibition kinetics of ME were performed in vitro. 3T3-L1 adipocytes and C2C12 myotubes were stimulated with ME to explore its bioavailability in cell level. The in vivo studies were performed on db/db mice to probe its anti-T2DM effects. In the present study, ME inhibited PTP1B in a reversible competitive manner and displayed good selectivity against PTPs in vitro. Furthermore, ME enhanced tyrosine phosphorylation levels of cellular proteins, especially the insulin-induced tyrosine phosphorylations of insulin receptor β-subunit (IRβ) and ERK1/2 in a dose-dependent manner in stimulated 3T3-L1 adipocytes and C2C12 myotubes. Meanwhile, ME enhanced insulin-stimulated GLUT4 translocation. More importantly, there was a significant decrease in fasting plasma glucose level of db/db diabetic mice treated orally with 0.5 g/kg ME for 4 weeks. These findings indicated that improvement of insulin sensitivity and hypoglycemic effects of ME may be attributed to the inhibition of PTP1B. Thereby, we pioneered the inhibitory potential of ME targeted on PTP1B as anti-T2DM drug discovery. PMID:26064877

  19. A novel PTP1B inhibitor extracted from Ganoderma lucidum ameliorates insulin resistance by regulating IRS1-GLUT4 cascades in the insulin signaling pathway.

    PubMed

    Yang, Zhou; Wu, Fan; He, Yanming; Zhang, Qiang; Zhang, Yuan; Zhou, Guangrong; Yang, Hongjie; Zhou, Ping

    2018-01-24

    Insulin resistance caused by the overexpression of protein tyrosine phosphatase 1 B (PTP1B) as well as the dephosphorylation of its target is one of the main causes of type 2 diabetes (T2D). A newly discovered proteoglycan, Fudan-Yueyang Ganoderma lucidum (FYGL) extracted from Ganoderma lucidum, was first reported to be capable of competitively inhibiting PTP1B activity in vitro in our previous work. In the present study, we sought to reveal the mechanism of PTP1B inhibition by FYGL at the animal and cellular levels. We found that FYGL can decrease blood glucose, reduce body weight and ameliorate insulin resistance in ob/ob mice. Decrease of PTP1B expression and increase of the phosphorylation of PTP1B targets in the insulin signaling pathway of skeletal muscles were observed. In order to clearly reveal the underlying mechanism of the hypoglycemic effect caused by FYGL, we further investigated the effects of FYGL on the PTP1B-involved insulin signaling pathway in rat myoblast L6 cells. We demonstrated that FYGL had excellent cell permeability by using a confocal laser scanning microscope and a flow cytometer. We found that FYGL had a positive effect on insulin-stimulated glucose uptake by using the 2-deoxyglucose (2-DG) method. FYGL could inhibit PTP1B expression at the mRNA level, phosphorylating insulin receptor substrate-1 (IRS1), as well as activating phosphatidylinositol-3 kinase (PI3K) and protein kinase B (Akt). Finally, FYGL increased the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and consequently up-regulated the expression of glucose transporter type 4 (GLUT4), promoting GLUT4 transportation to the plasma membrane in PTP1B-transfected L6 cells. Our study provides theoretical evidence for FYGL to be potentially used in T2D management.

  20. Antisense protein tyrosine phosphatase 1B reverses activation of p38 mitogen-activated protein kinase in liver of ob/ob mice.

    PubMed

    Gum, Rebecca J; Gaede, Lori L; Heindel, Matthew A; Waring, Jeffrey F; Trevillyan, James M; Zinker, Bradley A; Stark, Margery E; Wilcox, Denise; Jirousek, Michael R; Rondinone, Cristina M; Ulrich, Roger G

    2003-06-01

    Phosphorylation of stress-activated kinase p38, a MAPK family member, was increased in liver of ob/ob diabetic mice relative to lean littermates. Treatment of ob/ob mice with protein tyrosine phosphatase 1B (PTP1B) antisense oligonucleotides (ASO) reduced phosphorylation of p38 in liver-to below lean littermate levels-and normalized plasma glucose while reducing plasma insulin. Phosphorylation of ERK, but not JNK, was also decreased in ASO-treated mice. PTP1B ASO decreased TNFalpha protein levels and phosphorylation of the transcription factor cAMP response element binding protein (CREB) in liver, both of which can occur through decreased phosphorylation of p38 and both of which have been implicated in insulin resistance or hyperglycemia. Decreased p38 phosphorylation was not directly due to decreased phosphorylation of the kinases that normally phosphorylate p38-MKK3 and MKK6. Additionally, p38 phosphorylation was not enhanced in liver upon insulin stimulation of ASO-treated ob/ob mice (despite increased activation of other signaling molecules) corroborating that p38 is not directly affected via the insulin receptor. Instead, decreased phosphorylation of p38 may be due to increased expression of MAPK phosphatases, particularly the p38/ERK phosphatase PAC1 (phosphatase of activated cells). This study demonstrates that reduction of PTP1B protein using ASO reduces activation of p38 and its substrates TNFalpha and CREB in liver of diabetic mice, which correlates with decreased hyperglycemia and hyperinsulinemia.

  1. Novel Mixed-Type Inhibitors of Protein Tyrosine Phosphatase 1B. Kinetic and Computational Studies.

    PubMed

    Sarabia-Sánchez, Marie Jazmín; Trejo-Soto, Pedro Josué; Velázquez-López, José Miguel; Carvente-García, Carlos; Castillo, Rafael; Hernández-Campos, Alicia; Avitia-Domínguez, Claudia; Enríquez-Mendiola, Daniel; Sierra-Campos, Erick; Valdez-Solana, Mónica; Salas-Pacheco, José Manuel; Téllez-Valencia, Alfredo

    2017-12-20

    The Atlas of Diabetes reports 415 million diabetics in the world, a number that has surpassed in half the expected time the twenty year projection. Type 2 diabetes is the most frequent form of the disease; it is characterized by a defect in the secretion of insulin and a resistance in its target organs. In the search for new antidiabetic drugs, one of the principal strategies consists in promoting the action of insulin. In this sense, attention has been centered in the protein tyrosine phosphatase 1B (PTP1B), a protein whose overexpression or increase of its activity has been related in many studies with insulin resistance. In the present work, a chemical library of 250 compounds was evaluated to determine their inhibition capability on the protein PTP1B. Ten molecules inhibited over the 50% of the activity of the PTP1B, the three most potent molecules were selected for its characterization, reporting Ki values of 5.2, 4.2 and 41.3 µM, for compounds 1 , 2 , and 3 , respectively. Docking and molecular dynamics studies revealed that the three inhibitors made interactions with residues at the secondary binding site to phosphate, exclusive for PTP1B. The data reported here support these compounds as hits for the design more potent and selective inhibitors against PTP1B in the search of new antidiabetic treatment.

  2. Knocking down amygdalar PTP1B in diet-induced obese rats improves insulin signaling/action, decreases adiposity and may alter anxiety behavior.

    PubMed

    Mendes, Natalia Ferreira; Castro, Gisele; Guadagnini, Dioze; Tobar, Natalia; Cognuck, Susana Quiros; Elias, Lucila Leico Kagohara; Boer, Patricia Aline; Prada, Patricia Oliveira

    2017-05-01

    Protein tyrosine phosphatase 1B (PTP1B) has been extensively implicated in the regulation of body weight, food intake, and energy expenditure. The role of PTP1B appears to be cell and brain region dependent. Herein, we demonstrated that chronic high-fat feeding enhanced PTP1B expression in the central nucleus of the amygdala (CeA) of rats compared to rats on chow. Knocking down PTP1B with oligonucleotide antisense (ASO) decreased its expression and was sufficient to improve the anorexigenic effect of insulin through IR/Akt signaling in the CeA. ASO treatment reduces body weight, fat mass, serum leptin levels, and food intake and also increases energy expenditure, without altering ambulatory activity. These changes were explained, at least in part, by the improvement of insulin sensitivity in the CeA, decreasing NPY and enhancing oxytocin expression. There was a slight decline in fasting blood glucose and serum insulin levels possibly due to leanness in rats treated with ASO. Surprisingly, the elevated plus maze test revealed an anxiolytic behavior after reduction of PTP1B in the CeA. Thus, the present study highlights the deleterious role that the amygdalar PTP1B has on energy homeostasis in obesity states. The reduction of PTP1B in the CeA may be a strategy for the treatment of obesity, insulin resistance and anxiety disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. PTP1B inhibitors from the seeds of Iris sanguinea and their insulin mimetic activities via AMPK and ACC phosphorylation.

    PubMed

    Yang, Jun Li; Ha, Thi Kim Quy; Lee, Ba Wool; Kim, Jinwoong; Oh, Won Keun

    2017-11-15

    To find PTP1B inhibitors from natural products, two new compounds (1 and 2), along with nine known compounds (3-11), were isolated from a methanol-soluble extract of Iris sanguinea seeds. The structures of compounds 1 and 2 were determined based on extensive spectroscopic data analysis including UV, IR, NMR, and MS. The IC 50 value of compound 5 on protein tyrosine phosphatase 1B (PTP1B) inhibitory activity is 7.30±0.88µM with a little activity compared to the IC 50 values of the tested positive compound. Compound 5 significantly enhanced glucose uptake and activation of pACC, pAMPK and partially Erk1/2 signaling. These results suggest that compound 5 from Iris sanguinea seeds are utilized as both PTP1B inhibitors and regulators of glucose uptake. These beneficial effects could be applied to treat metabolic diseases such as diabetes and obesity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Inhibition of protein tyrosine phosphatase 1B by flavonoids: A structure - activity relationship study.

    PubMed

    Proença, Carina; Freitas, Marisa; Ribeiro, Daniela; Sousa, Joana L C; Carvalho, Félix; Silva, Artur M S; Fernandes, Pedro A; Fernandes, Eduarda

    2018-01-01

    The classical non-transmembrane protein tyrosine phosphatase 1B (PTP1B) has emerged as a key negative regulator of insulin signaling pathways that leads to insulin resistance, turning this enzyme a promising therapeutic target in the management of type 2 diabetes mellitus (T2DM). In the present work, the in vitro inhibitory activity of a panel of structurally related flavonoids, for recombinant human PTP1B was studied and the type of inhibition of the most active compounds further evaluated. The majority of the studied flavonoids was tested in this work for the first time, including flavonoid C13, which was the most potent inhibitor. It was observed that the ability to inhibit PTP1B depends on the nature, position and number of substituents in the flavonoid structure, as the presence of both 7- and 8-OBn groups in the A ring, together with the presence of both 3' and 4'-OMe groups in the B ring and the 3-OH group in the C ring; these substituents increase the flavonoids' ability to inhibit PTP1B. In conclusion, some of the tested flavonoids seem to be promising PTP1B inhibitors and potential effective agents in the management of T2DM, by increasing insulin sensitivity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Molecular dynamics simulation study of PTP1B with allosteric inhibitor and its application in receptor based pharmacophore modeling

    NASA Astrophysics Data System (ADS)

    Bharatham, Kavitha; Bharatham, Nagakumar; Kwon, Yong Jung; Lee, Keun Woo

    2008-12-01

    Allosteric inhibition of protein tyrosine phosphatase 1B (PTP1B), has paved a new path to design specific inhibitors for PTP1B, which is an important drug target for the treatment of type II diabetes and obesity. The PTP1B1-282-allosteric inhibitor complex crystal structure lacks α7 (287-298) and moreover there is no available 3D structure of PTP1B1-298 in open form. As the interaction between α7 and α6-α3 helices plays a crucial role in allosteric inhibition, α7 was modeled to the PTP1B1-282 in open form complexed with an allosteric inhibitor (compound-2) and a 5 ns MD simulation was performed to investigate the relative orientation of the α7-α6-α3 helices. The simulation conformational space was statistically sampled by clustering analyses. This approach was helpful to reveal certain clues on PTP1B allosteric inhibition. The simulation was also utilized in the generation of receptor based pharmacophore models to include the conformational flexibility of the protein-inhibitor complex. Three cluster representative structures of the highly populated clusters were selected for pharmacophore model generation. The three pharmacophore models were subsequently utilized for screening databases to retrieve molecules containing the features that complement the allosteric site. The retrieved hits were filtered based on certain drug-like properties and molecular docking simulations were performed in two different conformations of protein. Thus, performing MD simulation with α7 to investigate the changes at the allosteric site, then developing receptor based pharmacophore models and finally docking the retrieved hits into two distinct conformations will be a reliable methodology in identifying PTP1B allosteric inhibitors.

  6. Src-homology 2 domain-containing tyrosine phosphatase 2 promotes oral cancer invasion and metastasis

    PubMed Central

    2014-01-01

    Background Tumor invasion and metastasis represent a major unsolved problem in cancer pathogenesis. Recent studies have indicated the involvement of Src-homology 2 domain-containing tyrosine phosphatase 2 (SHP2) in multiple malignancies; however, the role of SHP2 in oral cancer progression has yet to be elucidated. We propose that SHP2 is involved in the progression of oral cancer toward metastasis. Methods SHP2 expression was evaluated in paired oral cancer tissues by using immunohistochemical staining and real-time reverse transcription polymerase chain reaction. Isogenic highly invasive oral cancer cell lines from their respective low invasive parental lines were established using a Boyden chamber assay, and changes in the hallmarks of the epithelial-mesenchymal transition (EMT) were assessed to evaluate SHP2 function. SHP2 activity in oral cancer cells was reduced using si-RNA knockdown or enforced expression of a catalytically deficient mutant to analyze migratory and invasive ability in vitro and metastasis toward the lung in mice in vivo. Results We observed the significant upregulation of SHP2 in oral cancer tissues and cell lines. Following SHP2 knockdown, the oral cancer cells markedly attenuated migratory and invasion ability. We observed similar results in phosphatase-dead SHP2 C459S mutant expressing cells. Enhanced invasiveness was associated with significant upregulation of E-cadherin, vimentin, Snail/Twist1, and matrix metalloproteinase-2 in the highly invasive clones. In addition, we determined that SHP2 activity is required for the downregulation of phosphorylated ERK1/2, which modulates the downstream effectors, Snail and Twist1 at a transcript level. In lung tissue sections of mice, we observed that HSC3 tumors with SHP2 deletion exhibited significantly reduced metastatic capacity, compared with tumors administered control si-RNA. Conclusions Our data suggest that SHP2 promotes the invasion and metastasis of oral cancer cells. These results

  7. A derivative of epigallocatechin-3-gallate induces apoptosis via SHP-1-mediated suppression of BCR-ABL and STAT3 signalling in chronic myelogenous leukaemia

    PubMed Central

    Jung, Ji Hoon; Yun, Miyong; Choo, Eun-Jeong; Kim, Sun-Hee; Jeong, Myoung-Seok; Jung, Deok-Beom; Lee, Hyemin; Kim, Eun-Ok; Kato, Nobuo; Kim, Bonglee; Srivastava, Sanjay K; Kaihatsu, Kunihiro; Kim, Sung-Hoon

    2015-01-01

    Background and Purpose Epigallocatechin-3-gallate (EGCG) is a component of green tea known to have chemo-preventative effects on several cancers. However, EGCG has limited clinical application, which necessitates the development of a more effective EGCG prodrug as an anticancer agent. Experimental Approach Derivatives of EGCG were evaluated for their stability and anti-tumour activity in human chronic myeloid leukaemia (CML) K562 and KBM5 cells. Key Results EGCG-mono-palmitate (EGCG-MP) showed most prolonged stability compared with other EGCG derivatives. EGCG-MP exerted greater cytotoxicity and apoptosis in K562 and KBM5 cells than the other EGCG derivatives. EGCG-MP induced Src-homology 2 domain-containing tyrosine phosphatase 1 (SHP-1) leading decreased oncogenic protein BCR-ABL and STAT3 phosphorylation in CML cells, compared with treatment with EGCG. Furthermore, EGCG-MP reduced phosphorylation of STAT3 and survival genes in K562 cells, compared with EGCG. Conversely, depletion of SHP-1 or application of the tyrosine phosphatase inhibitor pervanadate blocked the ability of EGCG-MP to suppress phosphorylation of BCR-ABL and STAT3, and the expression of survival genes downstream of STAT3. In addition, EGCG-MP treatment more effectively suppressed tumour growth in BALB/c athymic nude mice compared with untreated controls or EGCG treatment. Immunohistochemistry revealed increased caspase 3 and SHP-1 activity and decreased phosphorylation of BCR-ABL in the EGCG-MP-treated group relative to that in the EGCG-treated group. Conclusions and Implications EGCG-MP induced SHP-1-mediated inhibition of BCR-ABL and STAT3 signalling in vitro and in vivo more effectively than EGCG. This derivative may be a potent chemotherapeutic agent for CML treatment. PMID:25825203

  8. Essential Role of Protein-tyrosine Phosphatase 1B in the Modulation of Insulin Signaling by Acetaminophen in Hepatocytes*

    PubMed Central

    Mobasher, Maysa Ahmed; de Toro-Martín, Juan; González-Rodríguez, Águeda; Ramos, Sonia; Letzig, Lynda G.; James, Laura P.; Muntané, Jordi; Álvarez, Carmen; Valverde, Ángela M.

    2014-01-01

    Many drugs are associated with the development of glucose intolerance or deterioration in glycemic control in patients with pre-existing diabetes. We have evaluated the cross-talk between signaling pathways activated by acetaminophen (APAP) and insulin signaling in hepatocytes with or without expression of the protein-tyrosine phosphatase 1B (PTP1B) and in wild-type and PTP1B-deficient mice chronically treated with APAP. Human primary hepatocytes, Huh7 hepatoma cells with silenced PTP1B, mouse hepatocytes from wild-type and PTP1B-deficient mice, and a mouse model of chronic APAP treatment were used to examine the mechanisms involving PTP1B in the effects of APAP on glucose homeostasis and hepatic insulin signaling. In APAP-treated human hepatocytes at concentrations that did not induce death, phosphorylation of JNK and PTP1B expression and enzymatic activity were increased. APAP pretreatment inhibited activation of the early steps of insulin signaling and decreased Akt phosphorylation. The effects of APAP in insulin signaling were prevented by suramin, a PTP1B inhibitor, or rosiglitazone that decreased PTP1B levels. Likewise, PTP1B deficiency in human or mouse hepatocytes protected against APAP-mediated impairment in insulin signaling. These signaling pathways were modulated in mice with chronic APAP treatment, resulting in protection against APAP-mediated hepatic insulin resistance and alterations in islet alpha/beta cell ratio in PTP1B−/− mice. Our results demonstrate negative cross-talk between signaling pathways triggered by APAP and insulin signaling in hepatocytes, which is in part mediated by PTP1B. Moreover, our in vivo data suggest that chronic use of APAP may be associated with insulin resistance in the liver. PMID:25204659

  9. Four new neolignans isolated from Eleutherococcus senticosus and their protein tyrosine phosphatase 1B inhibitory activity (PTP1B).

    PubMed

    Zhang, Le; Li, Ban-Ban; Li, Hao-Ze; Meng, Xiao; Lin, Xin; Jiang, Yi-Yu; Ahn, Jong-Seog; Cui, Long

    2017-09-01

    Four new compounds, erythro-7'E-4-hydroxy-3,3'-dimethoxy-8,5'-oxyneoligna-7'-ene-7,9-diol-9'-al (1), (7S,8S)-4-hydroxy-3,1',3'-trimethoxy-4',7-epoxy-8,5'-neolign-9-ol (5), (7S,8S,7'E)-5-hydroxy-3,3'-dimethoxy-4',7-epoxy-8,5'-neolign-7'-ene-9,9'-diol (6) and (7S,8S,7'E)-5-hydroxy-3,3',9'-trimethoxy-4'-7-epoxy-8,5'-neolign-7'-ene-9-ol (7). Along with four known compounds (2-4, 8) were isolated from the EtOAc-soluble extract of Eleutherococcus senticosus. Their structures were elucidated on the basis of spectroscopic and physicochemical analyses. All the compounds were evaluated for in vitro inhibitory activity against PTP1B, VHR and PP1. Among them, compounds 1-4 and 6-8 were found to exhibit selective inhibitory activity on PTP1B with IC 50 values ranging from 17.2±1.6 to 32.7±1.2μM. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Effects of protein tyrosine phosphatase-PEST are reversed by Akt in T cells.

    PubMed

    Arimura, Yutaka; Shimizu, Kazuhiko; Koyanagi, Madoka; Yagi, Junji

    2014-12-01

    T cell activation is regulated by a balance between phosphorylation and dephosphorylation that is under the control of kinases and phosphatases. Here, we examined the role of a non-receptor-type protein tyrosine phosphatase, PTP-PEST, using retrovirus-mediated gene transduction into murine T cells. Based on observations of vector markers (GFP or Thy1.1), exogenous PTP-PEST-positive CD4(+) T cells appeared within 2 days after gene transduction; the percentage of PTP-PEST-positive cells tended to decrease during a resting period in the presence of IL-2 over the next 2 days. These vector markers also showed much lower expression intensities, compared with control cells, suggesting a correlation between the percent reduction and the low marker expression intensity. A catalytically inactive PTP-PEST mutant also showed the same tendency, and stepwise deletion mutants gradually lost their ability to induce the above phenomenon. On the other hand, these PTP-PEST-transduced cells did not have an apoptotic phenotype. No difference in the total cell numbers was found in the wells of a culture plate containing VEC- and PTP-PEST-transduced T cells. Moreover, serine/threonine kinase Akt, but not the anti-apoptotic molecules Bcl-2 and Bcl-XL, reversed the phenotype induced by PTP-PEST. We discuss the novel mechanism by which Akt interferes with PTP-PEST. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Protein tyrosine phosphatase 1B inhibitory activity of lavandulyl flavonoids from roots of Sophora flavescens.

    PubMed

    Sasaki, Tatsunori; Li, Wei; Higai, Koji; Quang, Tran Hong; Kim, Young Ho; Koike, Kazuo

    2014-05-01

    Protein tyrosine phosphatase 1B is a non-transmembrane protein tyrosine phosphatase and major negative regulator in insulin signaling cascades, and much attention has been paid to protein tyrosine phosphatase 1B inhibitors as potential therapies for diabetes. The screening of a natural compound library led to the discovery of five lavandulyl flavonoids, which were isolated from the roots of Sophora flavescens, as novel PTP1B inhibitors: kuraridin (1), norkurarinone (2), kurarinone (3), 2'-methoxykurarinone (4), and kushenol T (5). The three most potent compounds, 1, 2, and 4 (IC50 < 30 µM), were demonstrated to be noncompetitive inhibitors of protein tyrosine phosphatase 1B based on a kinetic analysis, and they exhibited different inhibitory selectivities against four homologous protein tyrosine phosphatases (T cell protein tyrosine phosphatase, vaccinia H1-related phosphatase, and Src homology domain 2-containing protein tyrosine phosphatases 1 and 2). Compounds 1, 2, and 4 also exhibited cellular activity in the insulin signaling pathway by increasing the insulin-stimulated Akt phosphorylation level in human hepatocellular liver carcinoma HepG2 cells, suggesting their potential for new anti-insulin-resistant drug developments. Georg Thieme Verlag KG Stuttgart · New York.

  12. Antiobesity and Antidiabetes Effects of a Cudrania tricuspidata Hydrophilic Extract Presenting PTP1B Inhibitory Potential

    PubMed Central

    Kim, Dae Hoon; Lee, Sooung; Chung, Youn Wook; Kim, Byeong Mo; Kim, Hanseul; Kim, Kunhong; Yang, Kyung Mi

    2016-01-01

    Diabetes and obesity represent the major health problems and the most age-related metabolic diseases. Protein-tyrosine phosphatase 1B (PTP1B) has emerged as an important regulator of insulin signal transduction and is regarded as a pharmaceutical target for metabolic disorders. To find novel natural materials presenting therapeutic activities against diabetes and obesity, we screened various herb extracts using a chip screening allowing the determination of PTP1B inhibitory effects of the tested compounds using insulin receptor (IR) as the substrate. Cudrania tricuspidata leaves (CTe) had a strong inhibitory effect on PTP1B activity and substantially inhibited fat accumulation in 3T3-L1 cells. CTe was orally administrated to diet-induced obesity (DIO) mice once daily for 3 weeks after which changes in glucose, insulin metabolism, and fat accumulation were examined. Hepatic enzyme markers (aspartate aminotransferase, AST, and alanine aminotransferase, ALT) and total fat mass and triglyceride levels decreased in CTe-treated mice, whereas body weight and total cholesterol concentration slightly decreased. CTe increased the phosphorylation of IRS-1 and Akt in liver tissue. Furthermore, CTe treatment significantly lowered blood glucose levels and improved insulin secretion in DIO mice. Our results strongly suggest that CTe may represent a promising therapeutic substance against diabetes and obesity. PMID:26989693

  13. Inhibition of protein tyrosine phosphatase 1B as a potential treatment of diabetes and obesity.

    PubMed

    Pei, Zhonghua; Liu, Gang; Lubben, Thomas H; Szczepankiewicz, Bruce G

    2004-01-01

    Diabetes is a prevalent disease which effects over 150 million people worldwide and there is a great medical need for new therapeutic agents to treat it. Inhibition of protein tyrosine phosphatase 1B (PTP1B) has emerged as a highly validated, attractive target for treatment of not only diabetes but also obesity. Discovery of small-molecule inhibitors has been pursued extensively in both academia and industry and a number of very potent and selective inhibitors have been identified. With X-ray crystallography, the binding interactions of several classes of inhibitors have been elucidated. This has resulted in significant progress in understanding important interactions between inhibitors and specific residues of PTP1B, which could help the design of future inhibitors. However, since the active site of PTP1B that most of these inhibitors bind to is highly hydrophilic, it remains a challenge to identify inhibitors with both excellent in vitro potency and drug-like physiochemical properties which would lead to good in vivo activities.

  14. Computational Insight into Protein Tyrosine Phosphatase 1B Inhibition: A Case Study of the Combined Ligand- and Structure-Based Approach.

    PubMed

    Zhang, Xiangyu; Jiang, Hailun; Li, Wei; Wang, Jian; Cheng, Maosheng

    2017-01-01

    Protein tyrosine phosphatase 1B (PTP1B) is an attractive target for treating cancer, obesity, and type 2 diabetes. In our work, the way of combined ligand- and structure-based approach was applied to analyze the characteristics of PTP1B enzyme and its interaction with competitive inhibitors. Firstly, the pharmacophore model of PTP1B inhibitors was built based on the common feature of sixteen compounds. It was found that the pharmacophore model consisted of five chemical features: one aromatic ring (R) region, two hydrophobic (H) groups, and two hydrogen bond acceptors (A). To further elucidate the binding modes of these inhibitors with PTP1B active sites, four docking programs (AutoDock 4.0, AutoDock Vina 1.0, standard precision (SP) Glide 9.7, and extra precision (XP) Glide 9.7) were used. The characteristics of the active sites were then described by the conformations of the docking results. In conclusion, a combination of various pharmacophore features and the integration information of structure activity relationship (SAR) can be used to design novel potent PTP1B inhibitors.

  15. Role of PTP1B in POMC neurons during chronic high-fat diet: sex differences in regulation of liver lipids and glucose tolerance.

    PubMed

    Aberdein, Nicola; Dambrino, Robert J; do Carmo, Jussara M; Wang, Zhen; Mitchell, Laura E; Drummond, Heather A; Hall, John E

    2018-03-01

    Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of leptin receptor signaling and may contribute to leptin resistance in diet-induced obesity. Although PTP1B inhibition has been suggested as a potential weight loss therapy, the role of specific neuronal PTP1B signaling in cardiovascular and metabolic regulation and the importance of sex differences in this regulation are still unclear. In this study, we investigated the impact of proopiomelanocortin (POMC) neuronal PTP1B deficiency in cardiometabolic regulation in male and female mice fed a high-fat diet (HFD). When compared with control mice (PTP1B flox/flox ), male and female mice deficient in POMC neuronal PTP1B (PTP1B flox/flox /POMC-Cre) had attenuated body weight gain (males: -18%; females: -16%) and fat mass (males: -33%; female: -29%) in response to HFD. Glucose tolerance was improved by 40%, and liver lipid accumulation was reduced by 40% in PTP1B/POMC-Cre males but not in females. When compared with control mice, deficiency of POMC neuronal PTP1B did not alter mean arterial pressure (MAP) in male or female mice (males: 112 ± 1 vs. 112 ± 1 mmHg in controls; females: 106 ± 3 vs. 109 ± 3 mmHg in controls). Deficiency of POMC neuronal PTP1B also did not alter MAP response to acute stress in males or females compared with control mice (males: Δ32 ± 0 vs. Δ29 ± 4 mmHg; females: Δ22 ± 2 vs. Δ27 ± 4 mmHg). These data demonstrate that POMC-specific PTP1B deficiency improved glucose tolerance and attenuated diet-induced fatty liver only in male mice and attenuated weight gain in males and females but did not enhance the MAP and HR responses to a HFD or to acute stress.

  16. BPN, a marine-derived PTP1B inhibitor, activates insulin signaling and improves insulin resistance in C2C12 myotubes.

    PubMed

    Xu, Qi; Luo, Jiao; Wu, Ning; Zhang, Renshuai; Shi, Dayong

    2018-01-01

    Insulin resistance is a key feature of type 2 diabetes mellitus (T2DM) and is characterized by defects in insulin signaling. Protein tyrosine phosphatase 1B (PTP1B) is a major negative regulator of insulin signaling cascade and has attracted intensive investigation in recent T2DM therapy study. BPN, a marine-derived bromophenol compound, was isolated from the red alga Rhodomela confervoides. This study investigated the effects of BPN on the insulin signaling pathway in insulin-resistant C2C12 myotubes by inhibiting PTP1B. Molecular docking study and analysis of small- molecule interaction with PTP1B all showed BPN inhibited PTP1B activity via binding to the catalytic site through hydrogen bonds. We then found that BPN permeated into C2C12 myotubes, on the one hand, activated insulin signaling in an insulin-independent manner in C2C12 cells; on the other hand, ameliorated palmitate-induced insulin resistance through augmenting insulin sensitivity. Moreover, our studies also showed that PTP1B inhibition by BPN increased glucose uptake in normal and insulin-resistant C2C12 myotubes through glucose transporter 4 (GLUT4) translocation. Taken together, BPN activates insulin signaling and alleviates insulin resistance and represents a potential candidate for further development as an antidiabetic agent. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Protein tyrosine phosphatases: Ligand interaction analysis and optimisation of virtual screening.

    PubMed

    Ghattas, Mohammad A; Atatreh, Noor; Bichenkova, Elena V; Bryce, Richard A

    2014-07-01

    Docking-based virtual screening is an established component of structure-based drug discovery. Nevertheless, scoring and ranking of computationally docked ligand libraries still suffer from many false positives. Identifying optimal docking parameters for a target protein prior to virtual screening can improve experimental hit rates. Here, we examine protocols for virtual screening against the important but challenging class of drug target, protein tyrosine phosphatases. In this study, common interaction features were identified from analysis of protein-ligand binding geometries of more than 50 complexed phosphatase crystal structures. It was found that two interactions were consistently formed across all phosphatase inhibitors: (1) a polar contact with the conserved arginine residue, and (2) at least one interaction with the P-loop backbone amide. In order to investigate the significance of these features on phosphatase-ligand binding, a series of seeded virtual screening experiments were conducted on three phosphatase enzymes, PTP1B, Cdc25b and IF2. It was observed that when the conserved arginine and P-loop amide interactions were used as pharmacophoric constraints during docking, enrichment of the virtual screen significantly increased in the three studied phosphatases, by up to a factor of two in some cases. Additionally, the use of such pharmacophoric constraints considerably improved the ability of docking to predict the inhibitor's bound pose, decreasing RMSD to the crystallographic geometry by 43% on average. Constrained docking improved enrichment of screens against both open and closed conformations of PTP1B. Incorporation of an ordered water molecule in PTP1B screening was also found to generally improve enrichment. The knowledge-based computational strategies explored here can potentially inform structure-based design of new phosphatase inhibitors using docking-based virtual screening. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Asperentin B, a New Inhibitor of the Protein Tyrosine Phosphatase 1B.

    PubMed

    Wiese, Jutta; Aldemir, Hülya; Schmaljohann, Rolf; Gulder, Tobias A M; Imhoff, Johannes F

    2017-06-21

    In the frame of studies on secondary metabolites produced by fungi from deep-sea environments we have investigated inhibitors of enzymes playing key roles in signaling cascades of biochemical pathways relevant for the treatment of diseases. Here we report on a new inhibitor of the human protein tyrosine phosphatase 1B (PTP1B), a target in the signaling pathway of insulin. A new asperentin analog is produced by an Aspergillus sydowii strain isolated from the sediment of the deep Mediterranean Sea. Asperentin B ( 1 ) contains an additional phenolic hydroxy function at C-6 and exhibits an IC 50 value against PTP1B of 2 μM in vitro, which is six times stronger than the positive control, suramin. Interestingly, asperentin ( 2 ) did not show any inhibition of this enzymatic activity. Asperentin B ( 1 ) is discussed as possible therapeutic agents for type 2 diabetes and sleeping sickness.

  19. Asperentin B, a New Inhibitor of the Protein Tyrosine Phosphatase 1B

    PubMed Central

    Wiese, Jutta; Aldemir, Hülya; Schmaljohann, Rolf; Gulder, Tobias A. M.; Imhoff, Johannes F.

    2017-01-01

    In the frame of studies on secondary metabolites produced by fungi from deep-sea environments we have investigated inhibitors of enzymes playing key roles in signaling cascades of biochemical pathways relevant for the treatment of diseases. Here we report on a new inhibitor of the human protein tyrosine phosphatase 1B (PTP1B), a target in the signaling pathway of insulin. A new asperentin analog is produced by an Aspergillus sydowii strain isolated from the sediment of the deep Mediterranean Sea. Asperentin B (1) contains an additional phenolic hydroxy function at C-6 and exhibits an IC50 value against PTP1B of 2 μM in vitro, which is six times stronger than the positive control, suramin. Interestingly, asperentin (2) did not show any inhibition of this enzymatic activity. Asperentin B (1) is discussed as possible therapeutic agents for type 2 diabetes and sleeping sickness. PMID:28635658

  20. A protein tyrosine phosphatase-like protein from baculovirus has RNA 5′-triphosphatase and diphosphatase activities

    PubMed Central

    Takagi, Toshimitsu; Taylor, Gregory S.; Kusakabe, Takahiro; Charbonneau, Harry; Buratowski, Stephen

    1998-01-01

    The superfamily of protein tyrosine phosphatases (PTPs) includes at least one enzyme with an RNA substrate. We recently showed that the RNA triphosphatase domain of the Caenorhabditis elegans mRNA capping enzyme is related to the PTP enzyme family by sequence similarity and mechanism. The PTP most similar in sequence to the capping enzyme triphosphatase is BVP, a dual-specificity PTP encoded by the Autographa californica nuclear polyhedrosis virus. Although BVP previously has been shown to have modest tyrosine and serine/threonine phosphatase activity, we find that it is much more potent as an RNA 5′-phosphatase. BVP sequentially removes γ and β phosphates from the 5′ end of triphosphate-terminated RNA, leaving a 5′-monophosphate end. The activity was specific for polynucleotides; nucleotide triphosphates were not hydrolyzed. A mutant protein in which the active site cysteine was replaced with serine was inactive. Three other dual-specificity PTPs (VH1, VHR, and Cdc14) did not exhibit detectable RNA phosphatase activity. Therefore, capping enzyme and BVP are members of a distinct PTP-like subfamily that can remove phosphates from RNA. PMID:9707557

  1. Inhibitor of the Tyrosine Phosphatase STEP Reverses Cognitive Deficits in a Mouse Model of Alzheimer's Disease

    PubMed Central

    Xu, Jian; Chatterjee, Manavi; Baguley, Tyler D.; Brouillette, Jonathan; Kurup, Pradeep; Ghosh, Debolina; Kanyo, Jean; Zhang, Yang; Seyb, Kathleen; Ononenyi, Chimezie; Foscue, Ethan; Anderson, George M.; Gresack, Jodi; Cuny, Gregory D.; Glicksman, Marcie A.; Greengard, Paul; Lam, TuKiet T.; Tautz, Lutz; Nairn, Angus C.; Ellman, Jonathan A.; Lombroso, Paul J.

    2014-01-01

    STEP (STriatal-Enriched protein tyrosine Phosphatase) is a neuron-specific phosphatase that regulates N-methyl-D-aspartate receptor (NMDAR) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) trafficking, as well as ERK1/2, p38, Fyn, and Pyk2 activity. STEP is overactive in several neuropsychiatric and neurodegenerative disorders, including Alzheimer's disease (AD). The increase in STEP activity likely disrupts synaptic function and contributes to the cognitive deficits in AD. AD mice lacking STEP have restored levels of glutamate receptors on synaptosomal membranes and improved cognitive function, results that suggest STEP as a novel therapeutic target for AD. Here we describe the first large-scale effort to identify and characterize small-molecule STEP inhibitors. We identified the benzopentathiepin 8-(trifluoromethyl)-1,2,3,4,5-benzopentathiepin-6-amine hydrochloride (known as TC-2153) as an inhibitor of STEP with an IC50 of 24.6 nM. TC-2153 represents a novel class of PTP inhibitors based upon a cyclic polysulfide pharmacophore that forms a reversible covalent bond with the catalytic cysteine in STEP. In cell-based secondary assays, TC-2153 increased tyrosine phosphorylation of STEP substrates ERK1/2, Pyk2, and GluN2B, and exhibited no toxicity in cortical cultures. Validation and specificity experiments performed in wild-type (WT) and STEP knockout (KO) cortical cells and in vivo in WT and STEP KO mice suggest specificity of inhibitors towards STEP compared to highly homologous tyrosine phosphatases. Furthermore, TC-2153 improved cognitive function in several cognitive tasks in 6- and 12-mo-old triple transgenic AD (3xTg-AD) mice, with no change in beta amyloid and phospho-tau levels. PMID:25093460

  2. Isothiazolidinone (IZD) as a phosphoryl mimetic in inhibitors of the Yersinia pestis protein tyrosine phosphatase YopH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sung-Eun; Bahta, Medhanit; Lountos, George T.

    2011-07-01

    The first X-ray crystal structure of the Y. pestis protein tyrosine phosphatase YopH in complex with an isothiazolidinone-based lead-fragment compound is reported. Isothiazolidinone (IZD) heterocycles can act as effective components of protein tyrosine phosphatase (PTP) inhibitors by simultaneously replicating the binding interactions of both a phosphoryl group and a highly conserved water molecule, as exemplified by the structures of several PTP1B–inhibitor complexes. In the first unambiguous demonstration of IZD interactions with a PTP other than PTP1B, it is shown by X-ray crystallography that the IZD motif binds within the catalytic site of the Yersinia pestis PTP YopH by similarly displacingmore » a highly conserved water molecule. It is also shown that IZD-based bidentate ligands can inhibit YopH in a nonpromiscuous fashion at low micromolar concentrations. Hence, the IZD moiety may represent a useful starting point for the development of YopH inhibitors.« less

  3. Fucosterol activates the insulin signaling pathway in insulin resistant HepG2 cells via inhibiting PTP1B.

    PubMed

    Jung, Hyun Ah; Bhakta, Himanshu Kumar; Min, Byung-Sun; Choi, Jae Sue

    2016-10-01

    Insulin resistance is a characteristic feature of type 2 diabetes mellitus (T2DM) and is characterized by defects in insulin signaling. This study investigated the modulatory effects of fucosterol on the insulin signaling pathway in insulin-resistant HepG2 cells by inhibiting protein tyrosine phosphatase 1B (PTP1B). In addition, molecular docking simulation studies were performed to predict binding energies, the specific binding site of fucosterol to PTP1B, and to identify interacting residues using Autodock 4.2 software. Glucose uptake was determined using a fluorescent D-glucose analogue and the glucose tracer 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxyglucose, and the signaling pathway was detected by Western blot analysis. We found that fucosterol enhanced insulin-provoked glucose uptake and conjointly decreased PTP1B expression level in insulin-resistant HepG2 cells. Moreover, fucosterol significantly reduced insulin-stimulated serine (Ser307) phosphorylation of insulin receptor substrate 1 (IRS1) and increased phosphorylation of Akt, phosphatidylinositol-3-kinase, and extracellular signal- regulated kinase 1 at concentrations of 12.5, 25, and 50 µM in insulin-resistant HepG2 cells. Fucosterol inhibited caspase-3 activation and nuclear factor kappa B in insulin-resistant hepatocytes. These results suggest that fucosterol stimulates glucose uptake and improves insulin resistance by downregulating expression of PTP1B and activating the insulin signaling pathway. Thus, fucosterol has potential for development as an anti-diabetic agent.

  4. Inhibition of SHP2-mediated dephosphorylation of Ras suppresses oncogenesis

    PubMed Central

    Bunda, Severa; Burrell, Kelly; Heir, Pardeep; Zeng, Lifan; Alamsahebpour, Amir; Kano, Yoshihito; Raught, Brian; Zhang, Zhong-Yin; Zadeh, Gelareh; Ohh, Michael

    2015-01-01

    Ras is phosphorylated on a conserved tyrosine at position 32 within the switch I region via Src kinase. This phosphorylation inhibits the binding of effector Raf while promoting the engagement of GTPase-activating protein (GAP) and GTP hydrolysis. Here we identify SHP2 as the ubiquitously expressed tyrosine phosphatase that preferentially binds to and dephosphorylates Ras to increase its association with Raf and activate downstream proliferative Ras/ERK/MAPK signalling. In comparison to normal astrocytes, SHP2 activity is elevated in astrocytes isolated from glioblastoma multiforme (GBM)-prone H-Ras(12V) knock-in mice as well as in glioma cell lines and patient-derived GBM specimens exhibiting hyperactive Ras. Pharmacologic inhibition of SHP2 activity attenuates cell proliferation, soft-agar colony formation and orthotopic GBM growth in NOD/SCID mice and decelerates the progression of low-grade astrocytoma to GBM in a spontaneous transgenic glioma mouse model. These results identify SHP2 as a direct activator of Ras and a potential therapeutic target for cancers driven by a previously ‘undruggable' oncogenic or hyperactive Ras. PMID:26617336

  5. Synthesis and biological evaluation of some N-(3-(1H-tetrazol-5-yl) phenyl)acetamide derivatives as novel non-carboxylic PTP1B inhibitors designed through bioisosteric modulation.

    PubMed

    Maheshwari, Neelesh; Karthikeyan, Chandrabose; Bhadada, Shraddha V; Sahi, Chandan; Verma, Amit K; Hari Narayana Moorthy, N S; Trivedi, Piyush

    2018-06-08

    Described herein is the synthesis and biological evaluation of a series of non-carboxylic inhibitors of Protein Tyrosine Phosphatase 1B designed using bioisosteric replacement strategy. Six N-(3-(1H-tetrazol-5-yl)phenyl)acetamide derivatives designed employing the aforementioned strategy were synthesized and screened for PTP1B inhibitory activity. Among the synthesized compounds, compound NM-03 exhibited the most potent inhibitory activity with IC 50 value of 4.48 µM. Docking studies with NM-03 revealed the key interactions with desired amino acids in the binding site of PTP1B. Furthermore, compound NM-03 also elicited good in vivo activity. Taken together, the results of this study establish N-(3-(1H-tetrazole-5-yl)phenyl)-2-(benzo[d]oxazol-2-ylthio)acetamide (NM-03) as a valuable lead molecule with great potential for PTP1B inhibitor development targeting diabetes. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Shp2 deletion in hepatocytes suppresses hepatocarcinogenesis driven by oncogenic β-Catenin, PIK3CA and MET.

    PubMed

    Liu, Jacey J; Li, Yanjie; Chen, Wendy S; Liang, Yan; Wang, Gaowei; Zong, Min; Kaneko, Kota; Xu, Ruiyun; Karin, Michael; Feng, Gen-Sheng

    2018-07-01

    Shp2 is an SH2-tyrosine phosphatase acting downstream of receptor tyrosine kinases (RTKs). Most recent data demonstrated a liver tumor-suppressing role for Shp2, as ablating Shp2 in hepatocytes aggravated hepatocellular carcinoma (HCC) induced by chemical carcinogens or Pten loss. We further investigated the effect of Shp2 deficiency on liver tumorigenesis driven by classical oncoproteins c-Met (receptor for HGF), β-catenin and PIK3CA. We performed hydrodynamic tail vein injection of two pairs of plasmids expressing c-Met and ΔN90-β-catenin (MET/CAT), or c-Met and PIK3CA H1047R (MET/PIK), into WT and Shp2 hep-/- mice. We compared liver tumor loads and investigated the pathogenesis and molecular mechanisms involved using multidisciplinary approaches. Despite the induction of oxidative and metabolic stresses, Shp2 deletion in hepatocytes suppressed hepatocarcinogenesis driven by overexpression of oncoproteins MET/CAT or MET/PIK. Shp2 loss inhibited proliferative signaling from c-Met, Wnt/β-catenin, Ras/Erk and PI3K/Akt pathways, but triggered cell senescence following exogenous expression of the oncogenes. Shp2, acting downstream of RTKs, is positively required for hepatocyte-intrinsic tumorigenic signaling from these oncoproteins, even if Shp2 deficiency induces a tumor-promoting hepatic microenvironment. These data suggest a new and more effective therapeutic strategy for HCCs driven by oncogenic RTKs and other upstream molecules, by inhibiting Shp2 and also suppressing any tumor-enhancing stromal factors produced because of Shp2 inhibition. Primary liver cancer is a malignant disease with poor prognosis, largely because there are limited systemic therapies available. We show here that a cytoplasmic tyrosine phosphatase Shp2 is required for liver tumorigenesis. This tumorigenesis is driven by two oncoproteins that are implicated in human liver cancer. This, together with our previous studies, uncovers the complexity of liver tumorigenesis, by elucidating the

  7. Role of Shp2 in forebrain neurons in regulating metabolic and cardiovascular functions and responses to leptin.

    PubMed

    do Carmo, J M; da Silva, A A; Sessums, P O; Ebaady, S H; Pace, B R; Rushing, J S; Davis, M T; Hall, J E

    2014-06-01

    We examined whether deficiency of Src homology 2 containing phosphatase (Shp2) signaling in forebrain neurons alters metabolic and cardiovascular regulation under various conditions and if it attenuates the anorexic and cardiovascular effects of leptin. We also tested whether forebrain Shp2 deficiency alters blood pressure (BP) and heart rate (HR) responses to acute stress. Forebrain Shp2(-/-) mice were generated by crossing Shp2(flox/flox) mice with CamKIIα-cre mice. At 22-24 weeks of age, the mice were instrumented for telemetry for measurement of BP, HR and body temperature (BT). Oxygen consumption (VO2), energy expenditure and motor activity were monitored by indirect calorimetry. Shp2/CamKIIα-cre mice were heavier (46±3 vs 32±1 g), hyperglycemic, hyperleptinemic, hyperinsulinemic and hyperphagic compared to Shp2(flox/flox) control mice. Shp2/CamKIIα-cre mice exhibited reduced food intake responses to fasting/refeeding and impaired regulation of BT when exposed to 15 and 30 °C ambient temperatures. Despite being obese and having many features of metabolic syndrome, Shp2/CamKIIα-cre mice had similar daily average BP and HR compared to Shp2(flox/flox) mice (112±2 vs 113±1 mm Hg and 595±34 vs 650±40 b.p.m.), but exhibited increased BP and HR responses to cold exposure and acute air-jet stress test. Leptin's ability to reduce food intake and to raise BP were markedly attenuated in Shp2/CamKIIα-cre mice. These results suggest that forebrain Shp2 signaling regulates food intake, appetite responses to caloric deprivation and thermogenic control of body temperature during variations in ambient temperature. Deficiency of Shp2 signaling in the forebrain is associated with augmented cardiovascular responses to cold and acute stress but attenuated BP responses to leptin.

  8. Protein tyrosine phosphatase 1B negatively regulates S100A9-mediated lung damage during respiratory syncytial virus exacerbations.

    PubMed

    Foronjy, R F; Ochieng, P O; Salathe, M A; Dabo, A J; Eden, E; Baumlin, N; Cummins, N; Barik, S; Campos, M; Thorp, E B; Geraghty, P

    2016-09-01

    Protein tyrosine phosphatase 1B (PTP1B) has anti-inflammatory potential but PTP1B responses are desensitized in the lung by prolonged cigarette smoke exposure. Here we investigate whether PTP1B expression affects lung disease severity during respiratory syncytial viral (RSV) exacerbations of chronic obstructive pulmonary disease (COPD). Ptp1b(-/-) mice infected with RSV exhibit exaggerated immune cell infiltration, damaged epithelial cell barriers, cytokine production, and increased apoptosis. Elevated expression of S100A9, a damage-associated molecular pattern molecule, was observed in the lungs of Ptp1b(-/-) mice during RSV infection. Utilizing a neutralizing anti-S100A9 IgG antibody, it was determined that extracellular S100A9 signaling significantly affects lung damage during RSV infection. Preexposure to cigarette smoke desensitized PTP1B activity that coincided with enhanced S100A9 secretion and inflammation in wild-type animals during RSV infection. S100A9 levels in human bronchoalveolar lavage fluid had an inverse relationship with lung function in healthy subjects, smokers, and COPD subjects. Fully differentiated human bronchial epithelial cells isolated from COPD donors cultured at the air liquid interface secreted more S100A9 than cells from healthy donors or smokers following RSV infection. Together, these findings show that reduced PTP1B responses contribute to disease symptoms in part by enhancing S100A9 expression during viral-associated COPD exacerbations.

  9. Shp2 in Forebrain Neurons Regulates Synaptic Plasticity, Locomotion, and Memory Formation in Mice

    PubMed Central

    Kusakari, Shinya; Saitow, Fumihito; Ago, Yukio; Shibasaki, Koji; Sato-Hashimoto, Miho; Matsuzaki, Yasunori; Kotani, Takenori; Murata, Yoji; Hirai, Hirokazu; Matsuda, Toshio; Suzuki, Hidenori

    2015-01-01

    Shp2 (Src homology 2 domain-containing protein tyrosine phosphatase 2) regulates neural cell differentiation. It is also expressed in postmitotic neurons, however, and mutations of Shp2 are associated with clinical syndromes characterized by mental retardation. Here we show that conditional-knockout (cKO) mice lacking Shp2 specifically in postmitotic forebrain neurons manifest abnormal behavior, including hyperactivity. Novelty-induced expression of immediate-early genes and activation of extracellular-signal-regulated kinase (Erk) were attenuated in the cerebral cortex and hippocampus of Shp2 cKO mice, suggestive of reduced neuronal activity. In contrast, ablation of Shp2 enhanced high-K+-induced Erk activation in both cultured cortical neurons and synaptosomes, whereas it inhibited that induced by brain-derived growth factor in cultured neurons. Posttetanic potentiation and paired-pulse facilitation were attenuated and enhanced, respectively, in hippocampal slices from Shp2 cKO mice. The mutant mice also manifested transient impairment of memory formation in the Morris water maze. Our data suggest that Shp2 contributes to regulation of Erk activation and synaptic plasticity in postmitotic forebrain neurons and thereby controls locomotor activity and memory formation. PMID:25713104

  10. The MADS Box Genes ABS, SHP1, and SHP2 Are Essential for the Coordination of Cell Divisions in Ovule and Seed Coat Development and for Endosperm Formation in Arabidopsis thaliana

    PubMed Central

    Tekleyohans, Dawit G.; Wittkop, Benjamin; Snowdon, Rod J.

    2016-01-01

    Seed formation is a pivotal process in plant reproduction and dispersal. It begins with megagametophyte development in the ovule, followed by fertilization and subsequently coordinated development of embryo, endosperm, and maternal seed coat. Two closely related MADS-box genes, SHATTERPROOF 1 and 2 (SHP1 and SHP2) are involved in specifying ovule integument identity in Arabidopsis thaliana. The MADS box gene ARABIDOPSIS BSISTER (ABS or TT16) is required, together with SEEDSTICK (STK) for the formation of endothelium, part of the seed coat and innermost tissue layer formed by the maternal plant. Little is known about the genetic interaction of SHP1 and SHP2 with ABS and the coordination of endosperm and seed coat development. In this work, mutant and expression analysis shed light on this aspect of concerted development. Triple tt16 shp1 shp2 mutants produce malformed seedlings, seed coat formation defects, fewer seeds, and mucilage reduction. While shp1 shp2 mutants fail to coordinate the timely development of ovules, tt16 mutants show less peripheral endosperm after fertilization. Failure in coordinated division of the innermost integument layer in early ovule stages leads to inner seed coat defects in tt16 and tt16 shp1 shp2 triple mutant seeds. An antagonistic action of ABS and SHP1/SHP2 is observed in inner seed coat layer formation. Expression analysis also indicates that ABS represses SHP1, SHP2, and FRUITFUL expression. Our work shows that the evolutionary conserved Bsister genes are required not only for endothelium but also for endosperm development and genetically interact with SHP1 and SHP2 in a partially antagonistic manner. PMID:27776173

  11. Shp2 signaling in POMC neurons is important for leptin's actions on blood pressure, energy balance, and glucose regulation.

    PubMed

    do Carmo, Jussara M; da Silva, Alexandre A; Ebaady, Sabira E; Sessums, Price O; Abraham, Ralph S; Elmquist, Joel K; Lowell, Bradford B; Hall, John E

    2014-12-15

    Previous studies showed that Src homology-2 tyrosine phosphatase (Shp2) is an important regulator of body weight. In this study, we examined the impact of Shp2 deficiency specifically in proopiomelanocortin (POMC) neurons on metabolic and cardiovascular function and on chronic blood pressure (BP) and metabolic responses to leptin. Mice with Shp2 deleted in POMC neurons (Shp2/Pomc-cre) and control mice (Shp2(flox/flox)) were implanted with telemetry probes and venous catheters for measurement of mean arterial pressure (MAP) and leptin infusion. After at least 5 days of stable control measurements, mice received leptin infusion (2 μg·kg(-1)·day(-1) iv) for 7 days. Compared with Shp2(flox/flox) controls, Shp2/Pomc-cre mice at 22 wk of age were slightly heavier (34 ± 1 vs. 31 ± 1 g) but consumed a similar amount of food (3.9 ± 0.3 vs. 3.8 ± 0.2 g/day). Leptin infusion reduced food intake in Shp2(flox/flox) mice (2.6 ± 0.5 g) and Shp2/Pomc-cre mice (3.2 ± 0.3 g). Despite decreasing food intake, leptin infusion increased MAP in control mice, whereas no significant change in MAP was observed in Shp2/Pomc-cre mice. Leptin infusion also decreased plasma glucose and insulin levels in controls (12 ± 1 to 6 ± 1 μU/ml and 142 ± 12 to 81 ± 8 mg/100 ml) but not in Shp2/Pomc-cre mice. Leptin increased V̇o2 by 16 ± 2% in controls and 7 ± 1% in Shp2/Pomc-cre mice. These results indicate that Shp2 signaling in POMC neurons contributes to the long-term BP and antidiabetic actions of leptin and may play a modest role in normal regulation of body weight. Copyright © 2014 the American Physiological Society.

  12. Increased SHP-1 Protein Expression by High Glucose Levels Reduces Nephrin Phosphorylation in Podocytes*

    PubMed Central

    Denhez, Benoit; Lizotte, Farah; Guimond, Marie-Odile; Jones, Nina; Takano, Tomoko; Geraldes, Pedro

    2015-01-01

    Nephrin, a critical podocyte membrane component that is reduced in diabetic nephropathy, has been shown to activate phosphotyrosine signaling pathways in human podocytes. Nephrin signaling is important to reduce cell death induced by apoptotic stimuli. We have shown previously that high glucose level exposure and diabetes increased the expression of SHP-1, causing podocyte apoptosis. SHP-1 possesses two Src homology 2 domains that serve as docking elements to dephosphorylate tyrosine residues of target proteins. However, it remains unknown whether SHP-1 interacts with nephrin and whether its elevated expression affects the nephrin phosphorylation state in diabetes. Here we show that human podocytes exposed to high glucose levels exhibited elevated expression of SHP-1, which was associated with nephrin. Coexpression of nephrin-CD16 and SHP-1 reduced nephrin tyrosine phosphorylation in transfected human embryonic kidney 293 cells. A single tyrosine-to-phenylalanine mutation revealed that rat nephrin Tyr1127 and Tyr1152 are required to allow SHP-1 interaction with nephrin. Overexpression of dominant negative SHP-1 in human podocytes prevented high glucose-induced reduction of nephrin phosphorylation. In vivo, immunoblot analysis demonstrated that nephrin expression and phosphorylation were decreased in glomeruli of type 1 diabetic Akita mice (Ins2+/C96Y) compared with control littermate mice (Ins2+/+), and this was associated with elevated SHP-1 and cleaved caspase-3 expression. Furthermore, immunofluorescence analysis indicated increased colocalization of SHP-1 with nephrin in diabetic mice compared with control littermates. In conclusion, our results demonstrate that high glucose exposure increases SHP-1 interaction with nephrin, causing decreased nephrin phosphorylation, which may, in turn, contribute to diabetic nephropathy. PMID:25404734

  13. Protein-Tyrosine Phosphatase-1B Mediates Sleep Fragmentation-Induced Insulin Resistance and Visceral Adipose Tissue Inflammation in Mice.

    PubMed

    Gozal, David; Khalyfa, Abdelnaby; Qiao, Zhuanghong; Akbarpour, Mahzad; Maccari, Rosanna; Ottanà, Rosaria

    2017-09-01

    Sleep fragmentation (SF) is highly prevalent and has emerged as an important contributing factor to obesity and metabolic syndrome. We hypothesized that SF-induced increases in protein tyrosine phosphatase-1B (PTP-1B) expression and activity underlie increased food intake, inflammation, and leptin and insulin resistance. Wild-type (WT) and ObR-PTP-1b-/- mice (Tg) were exposed to SF and control sleep (SC), and food intake was monitored. WT mice received a PTP-1B inhibitor (RO-7d; Tx) or vehicle (Veh). Upon completion of exposures, systemic insulin and leptin sensitivity tests were performed as well as assessment of visceral white adipose tissue (vWAT) insulin receptor sensitivity and macrophages (ATM) polarity. SF increased food intake in either untreated or Veh-treated WT mice. Leptin-induced hypothalamic STAT3 phosphorylation was decreased, PTP-1B activity was increased, and reduced insulin sensitivity emerged both systemic and in vWAT, with the latter displaying proinflammatory ATM polarity changes. All of the SF-induced effects were abrogated following PTP-1B inhibitor treatment and in Tg mice. SF induces increased food intake, reduced leptin signaling in hypothalamus, systemic insulin resistance, and reduced vWAT insulin sensitivity and inflammation that are mediated by increased PTP-1B activity. Thus, PTP-1B may represent a viable therapeutic target in the context of SF-induced weight gain and metabolic dysfunction. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  14. A low molecular weight protein tyrosine phosphatase from Synechocystis sp. strain PCC 6803: enzymatic characterization and identification of its potential substrates

    PubMed Central

    Mukhopadhyay, Archana; Kennelly, Peter J.

    2011-01-01

    The predicted protein product of open reading frame slr0328 from Synechocystis sp. PCC 6803, SynPTP, possesses significant amino acid sequence similarity with known low molecular weight protein tyrosine phosphatases (PTPs). To determine the functional properties of this hypothetical protein, open reading frame slr0328 was expressed in Escherichia coli. The purified recombinant protein, SynPTP, displayed its catalytic phosphatase activity towards several tyrosine, but not serine, phosphorylated exogenous protein substrates. The protein phosphatase activity of SynPTP was inhibited by sodium orthovanadate, a known inhibitor of tyrosine phosphatases, but not by okadaic acid, an inhibitor for many serine/threonine phosphatases. Kinetic analysis indicated that the Km and Vmax values for SynPTP towards p-nitrophenyl phosphate are similar to those of other known bacterial low molecular weight PTPs. Mutagenic alteration of the predicted catalytic cysteine of PTP, Cys7, to serine abolished enzyme activity. Using a combination of immunodetection, mass spectrometric analysis and mutagenically altered Cys7SerAsp125Ala-SynPTP, we identified PsaD (photosystem I subunit II), CpcD (phycocyanin rod linker protein) and phycocyanin-α and -β subunits as possible endogenous substrates of SynPTP in this cyanobacterium. These results indicate that SynPTP might be involved in the regulation of photosynthesis in Synechocystis sp. PCC 6803. PMID:21288886

  15. Deletion of protein tyrosine phosphatase 1B obliterates endoplasmic reticulum stress-induced myocardial dysfunction through regulation of autophagy.

    PubMed

    Wang, Shuyi; Chen, Xiyao; Nair, Sreejayan; Sun, Dongdong; Wang, Xiaoming; Ren, Jun

    2017-12-01

    Endoplasmic reticulum (ER) stress has been demonstrated to prompt various cardiovascular risks although the underlying mechanism remains elusive. Protein tyrosine phosphatase-1B (PTP1B) serves as an essential negative regulator for insulin signaling. This study examined the role of PTP1B in ER stress-induced myocardial anomalies and underlying mechanism involved with a focus on autophagy. WT and PTP1B knockout mice were subjected to the ER stress inducer tunicamycin (1mg/kg). Cardiac function was evaluated with echocardiography and an Ion-Optix MyoCam system. Western blot analysis was used to monitor the levels of ER stress, autophagy and insulin signaling including insulin receptor substrate (IRS), tribbles homolog 3 (TRIB3), Atg5/7, p62 and LC3-II. Our results showed that ER stress resulted in compromised echocardiographic and cardiomyocyte contractile function, intracellular Ca 2+ mishandling, ER stress, O 2 - production, apoptosis, the effects of which (with the exception of ER stress) were significantly attenuated or negated by PTP1B ablation. Levels of serine phosphorylation of IRS-1, TRIB3, Atg5/7, LC3B and the autophagy adaptor p62 were significantly upregulated while IRS-1 tyrosine phosphorylation was reduced by tunicamycin, the effect of which were obliterated by PTP1B ablation. In vitro study revealed that the autophagy inducer rapamycin and TRIB3 overexpression cancelled PTP1B ablation-offered beneficial effects on cardiomyocyte function or O 2 - production in murine cardiomyocytes or H9C2 myoblasts. Antioxidant or gene silencing of TRIB3 mimicked PTP1B ablation-induced protective effects. These findings collectively suggested that PTP1B ablation protects against ER stress-induced cardiac anomalies through regulation of autophagy. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. PTP1B Inhibitory and Anti-Inflammatory Effects of Secondary Metabolites Isolated from the Marine-Derived Fungus Penicillium sp. JF-55

    PubMed Central

    Lee, Dong-Sung; Jang, Jae-Hyuk; Ko, Wonmin; Kim, Kyoung-Su; Sohn, Jae Hak; Kang, Myeong-Suk; Ahn, Jong Seog; Kim, Youn-Chul; Oh, Hyuncheol

    2013-01-01

    Protein tyrosine phosphatase 1B (PTP1B) plays a major role in the negative regulation of insulin signaling, and is thus considered as an attractive therapeutic target for the treatment of diabetes. Bioassay-guided investigation of the methylethylketone extract of marine-derived fungus Penicillium sp. JF-55 cultures afforded a new PTP1B inhibitory styrylpyrone-type metabolite named penstyrylpyrone (1), and two known metabolites, anhydrofulvic acid (2) and citromycetin (3). Compounds 1 and 2 inhibited PTP1B activity in a dose-dependent manner, and kinetic analyses of PTP1B inhibition suggested that these compounds inhibited PTP1B activity in a competitive manner. In an effort to gain more biological potential of the isolated compounds, the anti-inflammatory effects of compounds 1–3 were also evaluated. Among the tested compounds, only compound 1 inhibited the production of NO and PGE2, due to the inhibition of the expression of iNOS and COX-2. Penstyrylpyrone (1) also reduced TNF-α and IL-1β production, and these anti-inflammatory effects were shown to be correlated with the suppression of the phosphorylation and degradation of IκB-α, NF-κB nuclear translocation, and NF-κB DNA binding activity. In addition, using inhibitor tin protoporphyrin (SnPP), an inhibitor of HO-1, it was verified that the inhibitory effects of penstyrylpyrone (1) on the pro-inflammatory mediators and NF-κB DNA binding activity were associated with the HO-1 expression. Therefore, these results suggest that penstyrylpyrone (1) suppresses PTP1B activity, as well as the production of pro-inflammatory mediators via NF-κB pathway, through expression of anti-inflammatory HO-1. PMID:23612372

  17. Design and synthesis of new potent PTP1B inhibitors with the skeleton of 2-substituted imino-3-substituted-5-heteroarylidene-1,3-thiazolidine-4-one: Part I.

    PubMed

    Meng, Ge; Zheng, Meilin; Wang, Mei; Tong, Jing; Ge, Weijuan; Zhang, Jiehe; Zheng, Aqun; Li, Jingya; Gao, Lixin; Li, Jia

    2016-10-21

    A new series of 2-substituted imino-3-substituted-5- heteroarylidene-1,3-thiazolidine-4-ones as the potent bidentate PTP1B inhibitors were designed and synthesized in this paper. All of the new compounds were characterized and identified by spectra analysis. The biological screening test against PTP1B showed that some of these compounds have the positive inhibitory activity against PTP1B. The activity of the compounds with 5-substituted pyrrole on 5-postion of 1,3-thiazolidine-4-one are more potent than that of those compounds with 5-substituted pyridine group. Compound 14b, 14h and 14i showed IC50 values of 8.66 μM, 6.83 μM and 6.09 μM against PTP1B, respectively. Docking analysis of these active compounds with PTP1B showed the possible interaction modes of these biheterocyclic compounds with the active sites of PTP1B. The inhibition tests against oncogenetic CDC25B were also conducted on this set of compounds to evaluate the selectivity and possible anti-neoplastic activity. Compound 14b also showed the lowest IC50 of 1.66 μM against CDC25B among all the possible inhibitors, including 14g, 14h, 14i and 15c. Some pharmacological parameters including VolSurf, steric and electric descriptors of all the compounds were calculated to give some hints about the relative relationship with the biological activity. The result of this study might give some light on designing the possible anti-cancer drugs targeting at phosphatases. The most active compound 14i might be used as the lead compound for further structure modification of the new low molecular weight PTP1B inhibitors with the N-containing heterocyclic skeleton. Copyright © 2016. Published by Elsevier Masson SAS.

  18. The Roles of Protein Tyrosine Phosphatases in Hepatocellular Carcinoma

    PubMed Central

    Huang, Yide; Zhang, Yafei; Ge, Lilin

    2018-01-01

    The protein tyrosine phosphatase (PTP) family is involved in multiple cellular functions and plays an important role in various pathological and physiological processes. In many chronic diseases, for example cancer, PTP is a potential therapeutic target for cancer treatment. In the last two decades, dozens of PTP inhibitors which specifically target individual PTP molecules were developed as therapeutic agents. Hepatocellular carcinoma (HCC) is one of the most common malignant tumors and is the second most lethal cancer worldwide due to a lack of effective therapies. Recent studies have unveiled both oncogenic and tumor suppressive functions of PTP in HCC. Here, we review the current knowledge on the involvement of PTP in HCC and further discuss the possibility of targeting PTP in HCC. PMID:29558404

  19. Structure-Based Virtual Screening of Protein Tyrosine Phosphatase Inhibitors: Significance, Challenges, and Solutions.

    PubMed

    Reddy, Rallabandi Harikrishna; Kim, Hackyoung; Cha, Seungbin; Lee, Bongsoo; Kim, Young Jun

    2017-05-28

    Phosphorylation, a critical mechanism in biological systems, is estimated to be indispensable for about 30% of key biological activities, such as cell cycle progression, migration, and division. It is synergistically balanced by kinases and phosphatases, and any deviation from this balance leads to disease conditions. Pathway or biological activity-based abnormalities in phosphorylation and the type of involved phosphatase influence the outcome, and cause diverse diseases ranging from diabetes, rheumatoid arthritis, and numerous cancers. Protein tyrosine phosphatases (PTPs) are of prime importance in the process of dephosphorylation and catalyze several biological functions. Abnormal PTP activities are reported to result in several human diseases. Consequently, there is an increased demand for potential PTP inhibitory small molecules. Several strategies in structure-based drug designing techniques for potential inhibitory small molecules of PTPs have been explored along with traditional drug designing methods in order to overcome the hurdles in PTP inhibitor discovery. In this review, we discuss druggable PTPs and structure-based virtual screening efforts for successful PTP inhibitor design.

  20. Lysophosphatidic acid modulates the association of PTP1B with N-cadherin/catenin complex in SKOV3 ovarian cancer cells.

    PubMed

    Huang, Ruby Yun-Ju; Wen, Chen-Chen; Liao, Chih-Kai; Wang, Shu-Huei; Chou, Liang-Yin; Wu, Jiahn-Chun

    2012-09-01

    LPA (lysophosphatidic acid) is a natural phospholipid that plays important roles in promoting cancer cell proliferation, invasion and metastases. We previously reported that LPA induces ovarian cancer cell dispersal and disruption of AJ (adherens junction) through the activation of SFK (Src family kinases). In this study, we have investigated the regulatory mechanisms during the early phase of LPA-induced cell dispersal. An in vitro model of the ovarian cancer cell line SKOV3 for cell dispersal was used. LPA induces rapid AJ disruption by increasing the internalization of N-cadherin-β-catenin. By using immunoprecipitations, LPA was shown to induce increased tyrosine phosphorylation of β-catenin and alter the balance of β-catenin-bound SFK and PTP1B (phosphotyrosine phosphatase 1B). The altered balance of tyrosine kinase/phosphatase correlated with a concomitant disintegration of the β-catenin-α-catenin, but not the β-catenin-N-cadherin complex. This disintegration of β-catenin from α-catenin and the cell dispersal caused by LPA can be rescued by blocking SFK activity with the chemical inhibitor, PP2. More importantly, PP2 also restores the level of PTP1B bound to β-catenin. We propose that LPA signalling alters AJ stability by changing the dynamics of tyrosine kinase/phosphatase bound to AJ proteins. This work provides further understanding of the early signalling events regulating ovarian cancer cell dispersal and AJ disruption induced by LPA. © The Author(s) Journal compilation © 2012 International Federation for Cell Biology.

  1. Inducible Knockdown of Endothelial Protein Tyrosine Phosphatase-1B Promotes Neointima Formation in Obese Mice by Enhancing Endothelial Senescence.

    PubMed

    Jäger, Marianne; Hubert, Astrid; Gogiraju, Rajinikanth; Bochenek, Magdalena L; Münzel, Thomas; Schäfer, Katrin

    2018-02-01

    Protein tyrosine phosphatase-1B (PTP1B) is a negative regulator of receptor tyrosine kinase signaling. In this study, we determined the importance of PTP1B expressed in endothelial cells for the vascular response to arterial injury in obesity. Morphometric analysis of vascular lesions generated by 10% ferric chloride (FeCl 3 ) revealed that tamoxifen-inducible endothelial PTP1B deletion (Tie2.ER T2 -Cre × PTP1B fl/fl ; End.PTP1B knockout, KO) significantly increased neointima formation, and reduced numbers of (endothelial lectin-positive) luminal cells in End.PTP1B-KO mice suggested impaired lesion re-endothelialization. Significantly higher numbers of proliferating cell nuclear antigen (PCNA)-positive proliferating cells as well as smooth muscle actin (SMA)-positive or vascular cell adhesion molecule-1 (VCAM1)-positive activated smooth muscle cells or vimentin-positive myofibroblasts were detected in neointimal lesions of End.PTP1B-KO mice, whereas F4/80-positive macrophage numbers did not differ. Activated receptor tyrosine kinase and transforming growth factor-beta (TGFβ) signaling and oxidative stress markers were also significantly more abundant in End.PTP1B-KO mouse lesions. Genetic knockdown or pharmacological inhibition of PTP1B in endothelial cells resulted in increased expression of caveolin-1 and oxidative stress, and distinct morphological changes, elevated numbers of senescence-associated β-galactosidase-positive cells, and increased expression of tumor suppressor protein 53 (p53) or the cell cycle inhibitor cyclin-dependent kinase inhibitor-2A (p16INK4A) suggested senescence, all of which could be attenuated by small interfering RNA (siRNA)-mediated downregulation of caveolin-1. In vitro, senescence could be prevented and impaired re-endothelialization restored by preincubation with the antioxidant Trolox. Our results reveal a previously unknown role of PTP1B in endothelial cells and provide mechanistic insights how PTP1B deletion or inhibition

  2. Further New Diterpenoids as PTP1B Inhibitors from the Xisha Soft Coral Sinularia polydactyla.

    PubMed

    Ye, Fei; Zhu, Zheng-Dan; Gu, Yu-Cheng; Li, Jia; Zhu, Wei-Liang; Guo, Yue-Wei

    2018-03-25

    A new prenyleudesmane type diterpene, sinupol ( 8 ), and a new capnosane type diterpenoid, sinulacetate ( 9 ), were isolated from the Xisha soft coral Sinularia polydactyla along with five known related diterpenes ( 4 - 7 and 10 ). Their structures, including absolute configurations, were determined by extensive spectroscopic analysis, the comparison of their NMR data with those of related compounds, and time-dependent density functional theory electronic circular dichroism (TDDFT ECD) calculations. Both new compounds ( 8 and 9 ) exhibited promising inhibitory activity against protein tyrosine phosphatase 1B (PTP1B), a potential drug target for the treatment of type II diabetes and obesity.

  3. PTP1B Deficiency Enables the Ability of a High-Fat Diet to Drive the Invasive Character of PTEN-Deficient Prostate Cancers.

    PubMed

    Labbé, David P; Uetani, Noriko; Vinette, Valérie; Lessard, Laurent; Aubry, Isabelle; Migon, Eva; Sirois, Jacinthe; Haigh, Jody J; Bégin, Louis R; Trotman, Lloyd C; Paquet, Marilène; Tremblay, Michel L

    2016-06-01

    Diet affects the risk and progression of prostate cancer, but the interplay between diet and genetic alterations in this disease is not understood. Here we present genetic evidence in the mouse showing that prostate cancer progression driven by loss of the tumor suppressor Pten is mainly unresponsive to a high-fat diet (HFD), but that coordinate loss of the protein tyrosine phosphatase Ptpn1 (encoding PTP1B) enables a highly invasive disease. Prostate cancer in Pten(-/-)Ptpn1(-/-) mice was characterized by increased cell proliferation and Akt activation, interpreted to reflect a heightened sensitivity to IGF-1 stimulation upon HFD feeding. Prostate-specific overexpression of PTP1B was not sufficient to initiate prostate cancer, arguing that it acted as a diet-dependent modifier of prostate cancer development in Pten(-/-) mice. Our findings offer a preclinical rationale to investigate the anticancer effects of PTP1B inhibitors currently being studied clinically for diabetes treatment as a new modality for management of prostate cancer. Cancer Res; 76(11); 3130-5. ©2016 AACR. ©2016 American Association for Cancer Research.

  4. EGCG evokes Nrf2 nuclear translocation and dampens PTP1B expression to ameliorate metabolic misalignment under insulin resistance condition.

    PubMed

    Mi, Yashi; Zhang, Wentong; Tian, Haoyu; Li, Runnan; Huang, Shuxian; Li, Xingyu; Qi, Guoyuan; Liu, Xuebo

    2018-03-01

    As a major nutraceutical component of green tea (-)-epigallocatechin-3-gallate (EGCG) has attracted interest from scientists due to its well-documented antioxidant and antiobesity bioactivities. In the current study, we aimed to investigate the protective effect of EGCG on metabolic misalignment and in balancing the redox status in mice liver and HepG2 cells under insulin resistance condition. Our results indicated that EGCG accelerates the glucose uptake and evokes IRS-1/Akt/GLUT2 signaling pathway via dampening the expression of protein tyrosine phosphatase 1B (PTP1B). Consistently, ectopic expression of PTP1B by Ad-PTP1B substantially impaired EGCG-elicited IRS-1/Akt/GLUT2 signaling pathway. Moreover, EGCG co-treatment stimulated nuclear translocation of Nrf2 by provoking P13K/AKT signaling pathway and thus modulated the downstream expressions of antioxidant enzymes such as HO-1 and NQO-1 in HepG2 cells. Furthermore, knockdown Nrf2 by small interfering RNA (siRNA) notably enhanced the expression of PTP1B and blunt EGCG-stimulated glucose uptake. Consistent with these results, in vivo study revealed that EGCG supplement significantly ameliorated high-fat and high-fructose diet (HFFD)-triggered insulin resistance and oxidative stress by up-regulating the IRS-1/AKT and Keap1/Nrf2 transcriptional pathways. Administration of an appropriate chemopreventive agent, such as EGCG, could potentially serve as an additional therapeutic intervention in the arsenal against obesity.

  5. Ion channel TRPV1-dependent activation of PTP1B suppresses EGFR-associated intestinal tumorigenesis

    PubMed Central

    de Jong, Petrus R.; Takahashi, Naoki; Harris, Alexandra R.; Lee, Jihyung; Bertin, Samuel; Jeffries, James; Jung, Michael; Duong, Jen; Triano, Amy I.; Lee, Jongdae; Niv, Yaron; Herdman, David S.; Taniguchi, Koji; Kim, Chang-Whan; Dong, Hui; Eckmann, Lars; Stanford, Stephanie M.; Bottini, Nunzio; Corr, Maripat; Raz, Eyal

    2014-01-01

    The intestinal epithelium has a high rate of turnover, and dysregulation of pathways that regulate regeneration can lead to tumor development; however, the negative regulators of oncogenic events in the intestinal epithelium are not fully understood. Here we identified a feedback loop between the epidermal growth factor receptor (EGFR), a known mediator of proliferation, and the transient receptor potential cation channel, subfamily V, member 1 (TRPV1), in intestinal epithelial cells (IECs). We found that TRPV1 was expressed by IECs and was intrinsically activated upon EGFR stimulation. Subsequently, TRPV1 activation inhibited EGFR-induced epithelial cell proliferation via activation of Ca2+/calpain and resulting activation of protein tyrosine phosphatase 1B (PTP1B). In a murine model of multiple intestinal neoplasia (ApcMin/+ mice), TRPV1 deficiency increased adenoma formation, and treatment of these animals with an EGFR kinase inhibitor reversed protumorigenic phenotypes, supporting a functional association between TRPV1 and EGFR signaling in IECs. Administration of a TRPV1 agonist suppressed intestinal tumorigenesis in ApcMin/+ mice, similar to — as well as in conjunction with — a cyclooxygenase-2 (COX-2) inhibitor, which suggests that targeting both TRPV1 and COX-2 has potential as a therapeutic approach for tumor prevention. Our findings implicate TRPV1 as a regulator of growth factor signaling in the intestinal epithelium through activation of PTP1B and subsequent suppression of intestinal tumorigenesis. PMID:25083990

  6. Acetaldehyde dissociates the PTP1B–E-cadherin–β-catenin complex in Caco-2 cell monolayers by a phosphorylation-dependent mechanism

    PubMed Central

    Sheth, Parimal; Seth, Ankur; Atkinson, Katherine J.; Gheyi, Tarun; Kale, Gautam; Giorgianni, Francesco; Desiderio, Dominic M.; Li, Chunying; Naren, Anjaparavanda; Rao, Radhakrishna

    2006-01-01

    Interactions between E-cadherin, β-catenin and PTP1B (protein tyrosine phosphatase 1B) are crucial for the organization of AJs (adherens junctions) and epithelial cell–cell adhesion. In the present study, the effect of acetaldehyde on the AJs and on the interactions between E-cadherin, β-catenin and PTP1B was determined in Caco-2 cell monolayers. Treatment of cell monolayers with acetaldehyde induced redistribution of E-cadherin and β-catenin from the intercellular junctions by a tyrosine phosphorylation-dependent mechanism. The PTPase activity associated with E-cadherin and β-catenin was significantly reduced and the interaction of PTP1B with E-cadherin and β-catenin was attenuated by acetaldehyde. Acetaldehyde treatment resulted in phosphorylation of β-catenin on tyrosine residues, and abolished the interaction of β-catenin with E-cadherin by a tyrosine kinase-dependent mechanism. Protein binding studies showed that the treatment of cells with acetaldehyde reduced the binding of β-catenin to the C-terminal region of E-cadherin. Pairwise binding studies using purified proteins indicated that the direct interaction between E-cadherin and β-catenin was reduced by tyrosine phosphorylation of β-catenin, but was unaffected by tyrosine phosphorylation of E-cadherin-C. Treatment of cells with acetaldehyde also reduced the binding of E-cadherin to GST (glutathione S-transferase)–PTP1B. The pairwise binding study showed that GST–E-cadherin-C binds to recombinant PTP1B, but this binding was significantly reduced by tyrosine phosphorylation of E-cadherin. Acetaldehyde increased the phosphorylation of β-catenin on Tyr-331, Tyr-333, Tyr-654 and Tyr-670. These results show that acetaldehyde induces disruption of interactions between E-cadherin, β-catenin and PTP1B by a phosphorylation-dependent mechanism. PMID:17087658

  7. Hepatic Src Homology Phosphatase 2 Regulates Energy Balance in Mice

    PubMed Central

    Nagata, Naoto; Matsuo, Kosuke; Bettaieb, Ahmed; Bakke, Jesse; Matsuo, Izumi; Graham, James; Xi, Yannan; Liu, Siming; Tomilov, Alexey; Tomilova, Natalia; Gray, Susan; Jung, Dae Young; Ramsey, Jon J.; Kim, Jason K.; Cortopassi, Gino; Havel, Peter J.

    2012-01-01

    The Src homology 2 domain-containing protein-tyrosine phosphatase Src homology phosphatase 2 (Shp2) is a negative regulator of hepatic insulin action in mice fed regular chow. To investigate the role of hepatic Shp2 in lipid metabolism and energy balance, we determined the metabolic effects of its deletion in mice challenged with a high-fat diet (HFD). We analyzed body mass, lipid metabolism, insulin sensitivity, and glucose tolerance in liver-specific Shp2-deficient mice (referred to herein as LSHKO) and control mice fed HFD. Hepatic Shp2 protein expression is regulated by nutritional status, increasing in mice fed HFD and decreasing during fasting. LSHKO mice gained less weight and exhibited increased energy expenditure compared with control mice. In addition, hepatic Shp2 deficiency led to decreased liver steatosis, enhanced insulin-induced suppression of hepatic glucose production, and impeded the development of insulin resistance after high-fat feeding. At the molecular level, LSHKO exhibited decreased hepatic endoplasmic reticulum stress and inflammation compared with control mice. In addition, tyrosine and serine phosphorylation of total and mitochondrial signal transducer and activator of transcription 3 were enhanced in LSHKO compared with control mice. In line with this observation and the increased energy expenditure of LSHKO, oxygen consumption rate was higher in liver mitochondria of LSHKO compared with controls. Collectively, these studies identify hepatic Shp2 as a novel regulator of systemic energy balance under conditions of high-fat feeding. PMID:22619361

  8. Inhibition of RhoA GTPase and the subsequent activation of PTP1B protects cultured hippocampal neurons against amyloid β toxicity

    PubMed Central

    2011-01-01

    Background Amyloid beta (Aβ) is the main agent responsible for the advent and progression of Alzheimer's disease. This peptide can at least partially antagonize nerve growth factor (NGF) signalling in neurons, which may be responsible for some of the effects produced by Aβ. Accordingly, better understanding the NGF signalling pathway may provide clues as to how to protect neurons from the toxic effects of Aβ. Results We show here that Aβ activates the RhoA GTPase by binding to p75NTR, thereby preventing the NGF-induced activation of protein tyrosine phosphatase 1B (PTP1B) that is required for neuron survival. We also show that the inactivation of RhoA GTPase and the activation of PTP1B protect cultured hippocampal neurons against the noxious effects of Aβ. Indeed, either pharmacological inhibition of RhoA with C3 ADP ribosyl transferase or the transfection of cultured neurons with a dominant negative form of RhoA protects cultured hippocampal neurons from the effects of Aβ. In addition, over-expression of PTP1B also prevents the deleterious effects of Aβ on cultured hippocampal neurons. Conclusion Our findings indicate that potentiating the activity of NGF at the level of RhoA inactivation and PTP1B activation may represent a new means to combat the noxious effects of Aβ in Alzheimer's disease. PMID:21294893

  9. Gain-of-function mutations of Ptpn11 (Shp2) cause aberrant mitosis and increase susceptibility to DNA damage-induced malignancies

    PubMed Central

    Liu, Xia; Zheng, Hong; Li, Xiaobo; Wang, Siying; Meyerson, Howard J.; Yang, Wentian; Neel, Benjamin G.; Qu, Cheng-Kui

    2016-01-01

    Gain-of-function (GOF) mutations of protein tyrosine phosphatase nonreceptor type 11 Ptpn11 (Shp2), a protein tyrosine phosphatase implicated in multiple cell signaling pathways, are associated with childhood leukemias and solid tumors. The underlying mechanisms are not fully understood. Here, we report that Ptpn11 GOF mutations disturb mitosis and cytokinesis, causing chromosomal instability and greatly increased susceptibility to DNA damage-induced malignancies. We find that Shp2 is distributed to the kinetochore, centrosome, spindle midzone, and midbody, all of which are known to play critical roles in chromosome segregation and cytokinesis. Mouse embryonic fibroblasts with Ptpn11 GOF mutations show a compromised mitotic checkpoint. Centrosome amplification and aberrant mitosis with misaligned or lagging chromosomes are significantly increased in Ptpn11-mutated mouse and patient cells. Abnormal cytokinesis is also markedly increased in these cells. Further mechanistic analyses reveal that GOF mutant Shp2 hyperactivates the Polo-like kinase 1 (Plk1) kinase by enhancing c-Src kinase-mediated tyrosine phosphorylation of Plk1. This study provides novel insights into the tumorigenesis associated with Ptpn11 GOF mutations and cautions that DNA-damaging treatments in Noonan syndrome patients with germ-line Ptpn11 GOF mutations could increase the risk of therapy-induced malignancies. PMID:26755576

  10. Aglaiabbrevins A-D, New Prenylated Bibenzyls from the Leaves of Aglaia abbreviata with Potent PTP1B Inhibitory Activity.

    PubMed

    Sun, Pan; Jiang, Chang-Sheng; Zhang, Yi; Liu, Ai-Hong; Liang, Tong-Jun; Li, Jia; Guo, Yue-Wei; Jiang, Jian-Mei; Mao, Shui-Chun; Wang, Bin

    2017-01-01

    Four new prenylated bibenzyls, named aglaiabbrevins A-D (2, 4-6), were isolated from the leaves of Aglaia abbreviata, along with two known related analogues, 3,5-dihydroxy-2-[3,7-dimethyl-2(E),6-octadienyl]bibenzyl (7) and 3,5-dihydroxy-2-(3-methyl-2-butenyl)bibenzyl (8). The structures of the new compounds were elucidated on the basis of extensive spectroscopic experiments, mainly one and two dimensional (1D- and 2D)-NMR, and the absolute configuration of 5 was determined by the measurement of specific rotation. The isolated compounds were evaluated for their protein tyrosine phosphatase-1B (PTP1B) inhibitory activity. The results showed that compounds 5-7 exhibited more potent PTP1B inhibitory effects with IC 50 values of 2.58±0.52, 2.44±0.35, and 2.23±0.14 µM, respectively, than the positive control oleanolic acid (IC 50 =2.74±0.20 µM). On the basis of the data obtained, these bibenzyls with the longer C-2 prenyl groups may be considered as potential lead compounds for the development of new anti-obesity and anti-diabetic agents. Also, the PTP1B inhibitory effects for prenylated bibenzyls are being reported for the first time.

  11. [Phosphatase activity in Amoeba proteus at pH 9.0].

    PubMed

    Sopina, V A

    2007-01-01

    In the free-living amoeba Amoeba proteus (strain B), after PAAG disk-electrophoresis of the homogenate supernatant, at using 1-naphthyl phosphate as a substrate and pH 9.0, three forms of phosphatase activity were revealed; they were arbitrarily called "fast", "intermediate", and "slow" phosphatases. The fast phosphatase has been established to be a fraction of lysosomal acid phosphatase that preserves some low activity at alkaline pH. The question as to which particular class the intermediate phosphatase belongs to has remained unanswered: it can be both acid phosphatase and protein tyrosine phosphatase (PTP). Based on data of inhibitor analysis, large substrate specificity, results of experiments with reactivation by Zn ions after inactivation with EDTA, other than in the fast and intermediate phosphatases localization in the amoeba cell, it is concluded that only slow phosphatase can be classified as alkaline phosphatase (EC 3.1.3.1).

  12. Effects of protonation state of Asp181 and position of active site water molecules on the conformation of PTP1B.

    PubMed

    Ozcan, Ahmet; Olmez, Elif Ozkirimli; Alakent, Burak

    2013-05-01

    In protein tyrosine phosphatase 1B (PTP1B), the flexible WPD loop adopts a closed conformation (WPDclosed ) in the active state of PTP1B, bringing the catalytic Asp181 close to the active site pocket, while WPD loop is in an open conformation (WPDopen ) in the inactive state. Previous studies showed that Asp181 may be protonated at physiological pH, and ordered water molecules exist in the active site. In the current study, molecular dynamics simulations are employed at different Asp181 protonation states and initial positions of active site water molecules, and compared with the existing crystallographic data of PTP1B. In WPDclosed conformation, the active site is found to maintain its conformation only in the protonated state of Asp181 in both free and liganded states, while Asp181 is likely to be deprotonated in WPDopen conformation. When the active site water molecule network that is a part of the free WPDclosed crystal structure is disrupted, intermediate WPD loop conformations, similar to that in the PTPRR crystal structure, are sampled in the MD simulations. In liganded PTP1B, one active site water molecule is found to be important for facilitating the orientation of Cys215 and the phosphate ion, thus may play a role in the reaction. In conclusion, conformational stability of WPD loop, and possibly catalytic activity of PTP1B, is significantly affected by the protonation state of Asp181 and position of active site water molecules, showing that these aspects should be taken into consideration both in MD simulations and inhibitor design. Copyright © 2013 Wiley Periodicals, Inc.

  13. Vanillic acid derivatives from the green algae Cladophora socialis as potent protein tyrosine phosphatase 1B inhibitors.

    PubMed

    Feng, Yunjiang; Carroll, Anthony R; Addepalli, Rama; Fechner, Gregory A; Avery, Vicky M; Quinn, Ronald J

    2007-11-01

    A novel vanillic acid derivative (1) and its sulfate adduct (2) were isolated from a green algae, Cladophora socialis. The structures of 1 and 2 were elucidated from NMR and HRESIMS experiments. Both compounds showed potent inhibitory activity against protein tyrosine phosphatase 1B (PTP1B), an enzyme involved in the regulation of insulin cell signaling. Compounds 1 and 2 had IC50 values of 3.7 and 1.7 microM, respectively.

  14. PTP1B deficiency improves hypothalamic insulin sensitivity resulting in the attenuation of AgRP mRNA expression under high-fat diet conditions.

    PubMed

    Sugiyama, Mariko; Banno, Ryoichi; Mizoguchi, Akira; Tominaga, Takashi; Tsunekawa, Taku; Onoue, Takeshi; Hagiwara, Daisuke; Ito, Yoshihiro; Morishita, Yoshiaki; Iwama, Shintaro; Goto, Motomitsu; Suga, Hidetaka; Arima, Hiroshi

    2017-06-17

    Hypothalamic insulin receptor signaling regulates energy balance and glucose homeostasis via agouti-related protein (AgRP). While protein tyrosine phosphatase 1B (PTP1B) is classically known to be a negative regulator of peripheral insulin signaling by dephosphorylating both insulin receptor β (IRβ) and insulin receptor substrate, the role of PTP1B in hypothalamic insulin signaling remains to be fully elucidated. In the present study, we investigated the role of PTP1B in hypothalamic insulin signaling using PTP1B deficient (KO) mice in vivo and ex vivo. For the in vivo study, hypothalamic insulin resistance induced by a high-fat diet (HFD) improved in KO mice compared to wild-type (WT) mice. Hypothalamic AgRP mRNA expression levels were also significantly decreased in KO mice independent of body weight changes. In an ex vivo study using hypothalamic organotypic cultures, insulin treatment significantly increased the phosphorylation of both IRβ and Akt in the hypothalamus of KO mice compared to WT mice, and also significantly decreased AgRP mRNA expression levels in KO mice. While incubation with inhibitors of phosphatidylinositol-3 kinase (PI3K) had no effect on basal levels of Akt phosphorylation, these suppressed insulin induction of Akt phosphorylation to almost basal levels in WT and KO mice. The inhibition of the PI3K-Akt pathway blocked the downregulation of AgRP mRNA expression in KO mice treated with insulin. These data suggest that PTP1B acts on the hypothalamic insulin signaling via the PI3K-Akt pathway. Together, our results suggest a deficiency of PTP1B improves hypothalamic insulin sensitivity resulting in the attenuation of AgRP mRNA expression under HFD conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Protein Tyrosine Phosphatase-PEST and β8 Integrin Regulate Spatiotemporal Patterns of RhoGDI1 Activation in Migrating Cells

    PubMed Central

    Lee, Hye Shin; Cheerathodi, Mujeeburahiman; Chaki, Sankar P.; Reyes, Steve B.; Zheng, Yanhua; Lu, Zhimin; Paidassi, Helena; DerMardirossian, Celine; Lacy-Hulbert, Adam; Rivera, Gonzalo M.

    2015-01-01

    Directional cell motility is essential for normal development and physiology, although how motile cells spatiotemporally activate signaling events remains largely unknown. Here, we have characterized an adhesion and signaling unit comprised of protein tyrosine phosphatase (PTP)-PEST and the extracellular matrix (ECM) adhesion receptor β8 integrin that plays essential roles in directional cell motility. β8 integrin and PTP-PEST form protein complexes at the leading edge of migrating cells and balance patterns of Rac1 and Cdc42 signaling by controlling the subcellular localization and phosphorylation status of Rho GDP dissociation inhibitor 1 (RhoGDI1). Translocation of Src-phosphorylated RhoGDI1 to the cell's leading edge promotes local activation of Rac1 and Cdc42, whereas dephosphorylation of RhoGDI1 by integrin-bound PTP-PEST promotes RhoGDI1 release from the membrane and sequestration of inactive Rac1/Cdc42 in the cytoplasm. Collectively, these data reveal a finely tuned regulatory mechanism for controlling signaling events at the leading edge of directionally migrating cells. PMID:25666508

  16. Presence of ecto-protein tyrosine phosphatase activity is vital for survival of Setaria cervi, a bovine filarial parasite.

    PubMed

    Singh, Neetu; Heneberg, Petr; Rathaur, Sushma

    2014-10-01

    The ecto protein tyrosine phosphatases (PTP) are known to play a crucial role in the pathogenesis and survival of the intracellular parasites. However, their presence and role in filarial parasites is still unknown. We found a significant amount of tyrosine phosphatase activity in the surface antigen fraction extracted from Setaria cervi (S. cervi), a bovine filarial parasite. An antibody designed against the conserved catalytic core of human protein tyrosine phosphatases, PTP1B cross reacted with a 63 kDa band in the surface antigen. We detected a significant amount of PTP activity in the intact S. cervi adult parasites as well as microfilariae in this study for the first time. This PTP may be localized on the surface of the parasite with an exposed active site available for the external substrates. The PTP activity was also inhibited by sodium orthovanadate and phenyl arsine oxide, specific inhibitors of PTP in both the life stages. The Km and Vmax for PTP in the adult parasites and microfilariae were determined to be 2.574 ± 0.14 mM; 206.3 ± 2.75 μM Pi/h/two parasites and 5.510 ± 0.59 mM; 62.27 ± 2.27 μM Pi/h/10(6) parasites respectively using O-P-L-Tyrosine as substrate. Interestingly, a positive correlation was observed between the inhibition in PTP activity and reduction in the motility/ viability of the parasites when they were subjected to the specific PTP inhibitors (Orthovanadate and Phenyl arsine oxide) for 4 h in the KRB maintenance medium. The activity was also significantly inhibited in the parasites exposed to antifilarial drug/compounds for e.g. Diethylcarbamazine, Acetylsalicylic Acid and SK7, a methyl chalcone. Therefore suggesting a possible role played by PTP in the survival of the parasite, its interaction with the host as well as in the screening of newly synthesized antifilarials/drugs.

  17. Besides an ITIM/SHP-1-dependent pathway, CD22 collaborates with Grb2 and plasma membrane calcium-ATPase in an ITIM/SHP-1-independent pathway of attenuation of Ca2+i signal in B cells

    PubMed Central

    Chen, Jie; Wang, Hong; Xu, Wei-Ping; Wei, Si-Si; Li, Hui Joyce; Mei, Yun-Qing; Li, Yi-Gang; Wang, Yue-Peng

    2016-01-01

    CD22 is a surface immunoglobulin implicated in negative regulation of B cell receptor (BCR) signaling; particularly inhibiting intracellular Ca2+ (Ca2+i)signals. Its cytoplasmic tail contains six tyrosine residues (Y773/Y783/Y817/Y828/Y843/Y863, designated Y1~Y6 respectively), including three (Y2/5/6) lying within immunoreceptor tyrosine-based inhibitory motifs (ITIMs) that serve to recruit the protein tyrosine phosphatase SHP-1 after BCR activation-induced phosphorylation. The mechanism of inhibiting Ca2+i by CD22 has been poorly understood. Previous study demonstrated that CD22 associated with plasma membrane calcium-ATPase (PMCA) and enhanced its activity (Chen, J. et al. Nat Immunol 2004;5:651-7). The association is dependent on BCR activation-induced cytoplasmic tyrosine phosphorylation, because CD22 with either all six tyrosines mutated to phenylalanines or cytoplasmic tail truncated loses its ability to associate with PMCA. However, which individual or a group of tyrosine residues determine the association and how CD22 and PMCA interacts, are still unclear. In this study, by using a series of CD22 tyrosine mutants, we found that ITIM Y2/5/6 accounts for 34.3~37.1% Ca2+i inhibition but is irrelevant for CD22/PMCA association. Non-ITIM Y4 and its YEND motif contribute to the remaining 69.4~71.7% Ca2+i inhibition and is the binding site for PMCA-associated Grb2. Grb2, independently of BCR cross-linking, is constitutively associated with and directly binds to PMCA in both chicken and human B cells. Knockout of Grb2 by CRISPR/Cas9 completely disrupted the CD22/PMCA association. Thus, our results demonstrate for the first time that in addition to previously-identified ITIM/SHP-1-dependent pathway, CD22 holds a major pathway of negative regulation of Ca2+i signal, which is ITIM/SHP-1-independent, but Y4/Grb2/PMCA-dependent. PMID:27276708

  18. Besides an ITIM/SHP-1-dependent pathway, CD22 collaborates with Grb2 and plasma membrane calcium-ATPase in an ITIM/SHP-1-independent pathway of attenuation of Ca2+i signal in B cells.

    PubMed

    Chen, Jie; Wang, Hong; Xu, Wei-Ping; Wei, Si-Si; Li, Hui Joyce; Mei, Yun-Qing; Li, Yi-Gang; Wang, Yue-Peng

    2016-08-30

    CD22 is a surface immunoglobulin implicated in negative regulation of B cell receptor (BCR) signaling; particularly inhibiting intracellular Ca2+ (Ca2+i)signals. Its cytoplasmic tail contains six tyrosine residues (Y773/Y783/Y817/Y828/Y843/Y863, designated Y1~Y6 respectively), including three (Y2/5/6) lying within immunoreceptor tyrosine-based inhibitory motifs (ITIMs) that serve to recruit the protein tyrosine phosphatase SHP-1 after BCR activation-induced phosphorylation. The mechanism of inhibiting Ca2+i by CD22 has been poorly understood. Previous study demonstrated that CD22 associated with plasma membrane calcium-ATPase (PMCA) and enhanced its activity (Chen, J. et al. Nat Immunol 2004;5:651-7). The association is dependent on BCR activation-induced cytoplasmic tyrosine phosphorylation, because CD22 with either all six tyrosines mutated to phenylalanines or cytoplasmic tail truncated loses its ability to associate with PMCA. However, which individual or a group of tyrosine residues determine the association and how CD22 and PMCA interacts, are still unclear. In this study, by using a series of CD22 tyrosine mutants, we found that ITIM Y2/5/6 accounts for 34.3~37.1% Ca2+i inhibition but is irrelevant for CD22/PMCA association. Non-ITIM Y4 and its YEND motif contribute to the remaining 69.4~71.7% Ca2+i inhibition and is the binding site for PMCA-associated Grb2. Grb2, independently of BCR cross-linking, is constitutively associated with and directly binds to PMCA in both chicken and human B cells. Knockout of Grb2 by CRISPR/Cas9 completely disrupted the CD22/PMCA association. Thus, our results demonstrate for the first time that in addition to previously-identified ITIM/SHP-1-dependent pathway, CD22 holds a major pathway of negative regulation of Ca2+i signal, which is ITIM/SHP-1-independent, but Y4/Grb2/PMCA-dependent.

  19. Fumosorinone, a novel PTP1B inhibitor, activates insulin signaling in insulin-resistance HepG2 cells and shows anti-diabetic effect in diabetic KKAy mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhi-Qin; College of Pharmaceutical Sciences, key laboratory of pharmaceutical quality control of Hebei province, Hebei University, Baoding 071002; Liu, Ting

    Insulin resistance is a characteristic feature of type 2 diabetes mellitus (T2DM) and is characterized by defects in insulin signaling. Protein tyrosine phosphatase 1B (PTP1B) is a key negative regulator of the insulin signaling pathways, and its increased activity and expression are implicated in the pathogenesis of insulin resistance. Therefore, the inhibition of PTP1B is anticipated to become a potential therapeutic strategy to treat T2DM. Fumosorinone (FU), a new natural product isolated from insect fungi Isaria fumosorosea, was found to inhibit PTP1B activity in our previous study. Herein, the effects of FU on insulin resistance and mechanism in vitro andmore » in vivo were investigated. FU increased the insulin-provoked glucose uptake in insulin-resistant HepG2 cells, and also reduced blood glucose and lipid levels of type 2 diabetic KKAy mice. FU decreased the expression of PTP1B both in insulin-resistant HepG2 cells and in liver tissues of diabetic KKAy mice. Furthermore, FU increased the phosphorylation of IRβ, IRS-2, Akt, GSK3β and Erk1/2 in insulin-resistant HepG2 cells, as well as the phosphorylation of IRβ, IRS-2, Akt in liver tissues of diabetic KKAy mice. These results showed that FU increased glucose uptake and improved insulin resistance by down-regulating the expression of PTP1B and activating the insulin signaling pathway, suggesting that it may possess antidiabetic properties. - Highlights: • Fumosorinone is a new PTP1B inhibitor isolated from insect pathogenic fungi. • Fumosorinone attenuated the insulin resistance both in vitro and in vivo. • Fumosorinone decreased the expression of PTP1B both in vitro and in vivo. • Fumosorinone activated the insulin signaling pathway both in vitro and in vivo.« less

  20. Alternative translation initiation of Caveolin-2 desensitizes insulin signaling through dephosphorylation of insulin receptor by PTP1B and causes insulin resistance.

    PubMed

    Kwon, Hayeong; Jang, Donghwan; Choi, Moonjeong; Lee, Jaewoong; Jeong, Kyuho; Pak, Yunbae

    2018-06-01

    Insulin resistance, defined as attenuated sensitivity responding to insulin, impairs insulin action. Direct causes and molecular mechanisms of insulin resistance have thus far remained elusive. Here we show that alternative translation initiation (ATI) of Caveolin-2 (Cav-2) regulates insulin sensitivity. Cav-2β isoform yielded by ATI desensitizes insulin receptor (IR) via dephosphorylation by protein-tyrosine phosphatase 1B (PTP1B), and subsequent endocytosis and lysosomal degradation of IR, causing insulin resistance. Blockage of Cav-2 ATI protects against insulin resistance by preventing Cav-2β-PTP1B-directed IR desensitization, thereby normalizing insulin sensitivity and glucose uptake. Our findings show that Cav-2β is a negative regulator of IR signaling, and identify a mechanism causing insulin resistance through control of insulin sensitivity via Cav-2 ATI. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Interactions Between Nuclear Receptor SHP and FOXA1 Maintain Oscillatory Homocysteine Homeostasis in Mice.

    PubMed

    Tsuchiya, Hiroyuki; da Costa, Kerry-Ann; Lee, Sangmin; Renga, Barbara; Jaeschke, Hartmut; Yang, Zhihong; Orena, Stephen J; Goedken, Michael J; Zhang, Yuxia; Kong, Bo; Lebofsky, Margitta; Rudraiah, Swetha; Smalling, Rana; Guo, Grace; Fiorucci, Stefano; Zeisel, Steven H; Wang, Li

    2015-05-01

    Hyperhomocysteinemia is often associated with liver and metabolic diseases. We studied nuclear receptors that mediate oscillatory control of homocysteine homeostasis in mice. We studied mice with disruptions in Nr0b2 (called small heterodimer partner [SHP]-null mice), betaine-homocysteine S-methyltransferase (Bhmt), or both genes (BHMT-null/SHP-null mice), along with mice with wild-type copies of these genes (controls). Hyperhomocysteinemia was induced by feeding mice alcohol (National Institute on Alcohol Abuse and Alcoholism binge model) or chow diets along with water containing 0.18% DL-homocysteine. Some mice were placed on diets containing cholic acid (1%) or cholestyramine (2%) or high-fat diets (60%). Serum and livers were collected during a 24-hour light-dark cycle and analyzed by RNA-seq, metabolomic, and quantitative polymerase chain reaction, immunoblot, and chromatin immunoprecipitation assays. SHP-null mice had altered timing in expression of genes that regulate homocysteine metabolism compared with control mice. Oscillatory production of S-adenosylmethionine, betaine, choline, phosphocholine, glyceophosphocholine, cystathionine, cysteine, hydrogen sulfide, glutathione disulfide, and glutathione, differed between SHP-null mice and control mice. SHP inhibited transcriptional activation of Bhmt and cystathionine γ-lyase by FOXA1. Expression of Bhmt and cystathionine γ-lyase was decreased when mice were fed cholic acid but increased when they were placed on diets containing cholestyramine or high-fat content. Diets containing ethanol or homocysteine induced hyperhomocysteinemia and glucose intolerance in control, but not SHP-null, mice. In BHMT-null and BHMT-null/SHP-null mice fed a control liquid, lipid vacuoles were observed in livers. Ethanol feeding induced accumulation of macrovesicular lipid vacuoles to the greatest extent in BHMT-null and BHMT-null/SHP-null mice. Disruption of Shp in mice alters timing of expression of genes that regulate

  2. New sesquiterpenoids from the edible mushroom Pleurotus cystidiosus and their inhibitory activity against α-glucosidase and PTP1B.

    PubMed

    Tao, Qiao-Qiao; Ma, Ke; Bao, Li; Wang, Kai; Han, Jun-Jie; Zhang, Jin-Xia; Huang, Chen-Yang; Liu, Hong-Wei

    2016-06-01

    Nine new sesquiterpenoids, clitocybulol derivatives, clitocybulols G-O (1-9) and three known sesquiterpenoids, clitocybulols C-E (10-12), were isolated from the solid culture of the edible fungus Pleurotus cystidiosus. The structures of compounds 1-12 were determined by spectroscopic methods. The absolute configurations of compounds 1-9 were assigned via the circular dichroism (CD) data analysis. Compounds 1, 6 and 10 showed moderate inhibitory activity against protein tyrosine phosphatase-1B (PTP1B) with IC50 values of 49.5, 38.1 and 36.0μM, respectively. Copyright © 2016. Published by Elsevier B.V.

  3. Targeting the disordered C-terminus of PTP1B with an allosteric inhibitor

    PubMed Central

    Krishnan, Navasona; Koveal, Dorothy; Miller, Daniel H.; Xue, Bin; Akshinthala, Sai Dipikaa; Kragelj, Jaka; Jensen, Malene Ringkjøbing; Gauss, Carla-Maria; Page, Rebecca; Blackledge, Martin; Muthuswamy, Senthil K.; Peti, Wolfgang; Tonks, Nicholas K.

    2014-01-01

    PTP1B, a validated therapeutic target for diabetes and obesity, plays a critical positive role in HER2 signaling in breast tumorigenesis. Efforts to develop therapeutic inhibitors of PTP1B have been frustrated by the chemical properties of the active site. We defined a novel mechanism of allosteric inhibition that targets the C-terminal, non-catalytic segment of PTP1B. We present the first ensemble structure of PTP1B containing this intrinsically disordered segment, within which we identified a binding site for the small molecule inhibitor, MSI-1436. We demonstrate binding to a second site close to the catalytic domain, with cooperative effects between the two sites locking PTP1B in an inactive state. MSI-1436 antagonized HER2 signaling, inhibited tumorigenesis in xenografts and abrogated metastasis in the NDL2 mouse model of breast cancer, validating inhibition of PTP1B as a therapeutic strategy in breast cancer. This new approach to inhibition of PTP1B emphasizes the potential of disordered segments of proteins as specific binding sites for therapeutic small molecules. PMID:24845231

  4. Oleanane triterpenes with protein tyrosine phosphatase 1B inhibitory activity from aerial parts of Lantana camara collected in Indonesia and Japan.

    PubMed

    Abdjul, Delfly B; Yamazaki, Hiroyuki; Maarisit, Wilmar; Rotinsulu, Henki; Wewengkang, Defny S; Sumilat, Deiske A; Kapojos, Magie M; Losung, Fitje; Ukai, Kazuyo; Namikoshi, Michio

    2017-12-01

    During the search for new protein tyrosine phosphatase (PTP) 1B inhibitors, EtOH extracts from the aerial parts of Lantana camara L. (lantana) collected at Manado (Indonesia) and two subtropical islands in Japan (Ishigaki and Iriomote Islands, Okinawa) exhibited potent inhibitory activities against PTP1B in an enzyme assay. Four previously undescribed oleanane triterpenes were isolated together with known triterpenes and flavones from the Indonesian lantana. The EtOH extracts of lantana collected in Ishigaki and Iriomote Islands exhibited different phytochemical profiles from each other and the Indonesian lantana. Triterpenes with a 24-OH group were isolated from the Indonesian lantana only. Five known triterpene compounds were detected in the Ishigaki lantana, and two oleanane triterpenes with an ether linkage between 3β and 25 were the main components together with five known triterpenes as minor components in the Iriomote lantana. The structures of previously undescribed compounds were assigned on the basis of their spectroscopic data. Among the compounds obtained in this study, oleanolic acid exhibited the most potent activity against PTP1B, and is used as a positive control in studies on PTP1B. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Eicosapentaenoic acid abolishes inhibition of insulin-induced mTOR phosphorylation by LPS via PTP1B downregulation in skeletal muscle.

    PubMed

    Wei, Hong-Kui; Deng, Zhao; Jiang, Shu-Zhong; Song, Tong-Xing; Zhou, Yuan-Fei; Peng, Jian; Tao, Ya-Xiong

    2017-01-05

    Dietary n-3 polyunsaturated fatty acids (n-3 PUFAs) increase insulin signaling in skeletal muscle. In the current study, we investigated the effect of eicosapentaenoic acid (EPA) on insulin-induced mammalian target of rapamycin (mTOR) phosphorylation in myotubes. We showed that EPA did not affect basal and insulin-induced mTOR phosphorylation in myotubes. However, EPA abolished lipopolysaccharide (LPS) -induced deficiency in insulin signaling (P < 0.05). Pre-incubation of nuclear factor κB (NF-κΒ) and c-Jun N-terminal kinases (JNK) inhibitors prevented the decreased insulin-induced mTOR phosphorylation elicited by LPS (P < 0.05). In addition, in protein tyrosine phosphatase-1B (PTP1B) knockdown myotubes, LPS failed to decrease insulin-induced mammalian target of rapamycin (mTOR) phosphorylation in myotubes (P > 0.05). In myotubes, LPS stimulated PTP1B expression via NF-κB and activation protein-1 (AP1). Pre-incubation of 50 μM EPA prevented the LPS-induced activation of AP1 and NF-κΒ as well as PTP1B expression (P < 0.05). Interestingly, incubation of peroxisome proliferator-activated receptor γ (PPARγ) antagonist (GW9662) prior to EPA treatment, the effect of EPA on insulin-induced mTOR phosphorylation was blocked. Accordingly, EPA did not inhibit the LPS-induced activation of AP1 or NF-κΒ as well as PTP1B expression when incubation of GW9662 prior to EPA treatment. The in vivo study showed that EPA prevented LPS-induced PTPT1B expression and a decrease in insulin-induced mTOR phosphorylation in muscle of mice. In summary, EPA abolished LPS inhibition of insulin-induced mTOR phosphorylation in myotubes, and one of the key mechanisms was to inhibit AP1 and NF-κB activation and PTP1B transcription. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. 4-Hydroxynonenal activates Src through a non-canonical pathway that involves EGFR/PTP1B

    PubMed Central

    Zhang, Hongqiao; Forman, Henry Jay

    2015-01-01

    Src, a non-receptor protein tyrosine kinase involved in many biological processes, can be activated through both redox-dependent and independent mechanisms. 4-Hydroxy-2-nonenal (HNE) is a lipid peroxidation product that is increased in pathophysiological conditions associated with Src activation. This study examined how HNE activates human c-Src. In the canonical pathway Src activation is initiated by dephosphorylation of pTyr530 followed by conformational change that causes Src auto-phosphorylation at Tyr419 and its activation. HNE increased Src activation in both dose- and time-dependent manner, while it also increased Src phosphorylation at Tyr530 (pTyr530 Src), suggesting that HNE activated Src via a non-canonical mechanism. Protein tyrosine phosphatase 1B inhibitor (539741), at concentrations that increased basal pTyr530 Src, also increased basal Src activity and significantly reduced HNE-mediated Src activation. The EGFR inhibitor, AG1478, and EGFR silencing, abrogated HNE-mediated EGFR activation and inhibited basal and HNE-induced Src activity. In addition, AG1478 also eliminated the increase of basal Src activation by a PTP1B inhibitor. Taken together these data suggest that HNE can activate Src partly through a non-canonical pathway involving activation of EGFR and inhibition of PTP1B. PMID:26453921

  7. Isothiazolidinone (IZD) as a phosphoryl mimetic in inhibitors of the Yersinia pestis protein tyrosine phosphatase YopH

    PubMed Central

    Kim, Sung-Eun; Bahta, Medhanit; Lountos, George T.; Ulrich, Robert G.; Burke, Terrence R.; Waugh, David S.

    2011-01-01

    Isothiazolidinone (IZD) heterocycles can act as effective components of protein tyrosine phosphatase (PTP) inhibitors by simultaneously replicating the binding interactions of both a phosphoryl group and a highly conserved water molecule, as exemplified by the structures of several PTP1B–inhibitor complexes. In the first unambiguous demonstration of IZD interactions with a PTP other than PTP1B, it is shown by X-ray crystallography that the IZD motif binds within the catalytic site of the Yersinia pestis PTP YopH by similarly displacing a highly conserved water molecule. It is also shown that IZD-based bidentate ligands can inhibit YopH in a nonpromiscuous fashion at low micromolar concentrations. Hence, the IZD moiety may represent a useful starting point for the development of YopH inhibitors. PMID:21697602

  8. α-Methyl artoflavanocoumarin from Juniperus chinensis exerts anti-diabetic effects by inhibiting PTP1B and activating the PI3K/Akt signaling pathway in insulin-resistant HepG2 cells.

    PubMed

    Jung, Hee Jin; Seong, Su Hui; Ali, Md Yousof; Min, Byung-Sun; Jung, Hyun Ah; Choi, Jae Sue

    2017-12-01

    Diabetes mellitus is one of the greatest global health issues and much research effort continues to be directed toward identifying novel therapeutic agents. Insulin resistance is a challenging integrally related topic and molecules capable of overcoming it are of considerable therapeutic interest in the context of type 2 diabetes mellitus (T2DM). Protein tyrosine phosphatase 1B (PTP1B) negatively regulates insulin signaling transduction and is regarded a novel therapeutic target in T2DM. Here, we investigated the inhibitory effect of α-methyl artoflavanocoumarin (MAFC), a natural flavanocoumarin isolated from Juniperus chinensis, on PTP1B in insulin-resistant HepG2 cells. MAFC was found to potently inhibit PTP1B with an IC 50 of 25.27 ± 0.14 µM, and a kinetics study revealed MAFC is a mixed type PTP1B inhibitor with a K i value of 13.84 µM. Molecular docking simulations demonstrated MAFC can bind to catalytic and allosteric sites of PTP1B. Furthermore, MAFC significantly increased glucose uptake and decreased the expression of PTP1B in insulin-resistant HepG2 cells, down-regulated the phosphorylation of insulin receptor substrate (IRS)-1 (Ser307), and dose-dependently enhanced the protein levels of IRS-1, phosphorylated phosphoinositide 3-kinase (PI3K), Akt, and ERK1. These results suggest that MAFC from J. chinensis has therapeutic potential in T2DM by inhibiting PTP1B and activating insulin signaling pathways.

  9. Differential regulation of protein tyrosine kinase signalling by Dock and the PTP61F variants.

    PubMed

    Willoughby, Lee F; Manent, Jan; Allan, Kirsten; Lee, Han; Portela, Marta; Wiede, Florian; Warr, Coral; Meng, Tzu-Ching; Tiganis, Tony; Richardson, Helena E

    2017-07-01

    Tyrosine phosphorylation-dependent signalling is coordinated by the opposing actions of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). There is a growing list of adaptor proteins that interact with PTPs and facilitate the dephosphorylation of substrates. The extent to which any given adaptor confers selectivity for any given substrate in vivo remains unclear. Here we have taken advantage of Drosophila melanogaster as a model organism to explore the influence of the SH3/SH2 adaptor protein Dock on the abilities of the membrane (PTP61Fm)- and nuclear (PTP61Fn)-targeted variants of PTP61F (the Drosophila othologue of the mammalian enzymes PTP1B and TCPTP respectively) to repress PTK signalling pathways in vivo. PTP61Fn effectively repressed the eye overgrowth associated with activation of the epidermal growth factor receptor (EGFR), PTK, or the expression of the platelet-derived growth factor/vascular endothelial growth factor receptor (PVR) or insulin receptor (InR) PTKs. PTP61Fn repressed EGFR and PVR-induced mitogen-activated protein kinase signalling and attenuated PVR-induced STAT92E signalling. By contrast, PTP61Fm effectively repressed EGFR- and PVR-, but not InR-induced tissue overgrowth. Importantly, coexpression of Dock with PTP61F allowed for the efficient repression of the InR-induced eye overgrowth, but did not enhance the PTP61Fm-mediated inhibition of EGFR and PVR-induced signalling. Instead, Dock expression increased, and PTP61Fm coexpression further exacerbated the PVR-induced eye overgrowth. These results demonstrate that Dock selectively enhances the PTP61Fm-mediated attenuation of InR signalling and underscores the specificity of PTPs and the importance of adaptor proteins in regulating PTP function in vivo. © 2017 Federation of European Biochemical Societies.

  10. SMILE, a new orphan nuclear receptor SHP-interacting protein, regulates SHP-repressed estrogen receptor transactivation.

    PubMed

    Xie, Yuan-Bin; Lee, Ok-Hee; Nedumaran, Balachandar; Seong, Hyun-A; Lee, Kyeong-Min; Ha, Hyunjung; Lee, In-Kyu; Yun, Yungdae; Choi, Hueng-Sik

    2008-12-15

    SHP (small heterodimer partner) is a well-known NR (nuclear receptor) co-regulator. In the present study, we have identified a new SHP-interacting protein, termed SMILE (SHP-interacting leucine zipper protein), which was previously designated as ZF (Zhangfei) via a yeast two-hybrid system. We have determined that the SMILE gene generates two isoforms [SMILE-L (long isoform of SMILE) and SMILE-S (short isoform of SMILE)]. Mutational analysis has demonstrated that the SMILE isoforms arise from the alternative usage of initiation codons. We have confirmed the in vivo interaction and co-localization of the SMILE isoforms and SHP. Domain-mapping analysis indicates that the entire N-terminus of SHP and the middle region of SMILE-L are involved in this interaction. Interestingly, the SMILE isoforms counteract the SHP repressive effect on the transactivation of ERs (estrogen receptors) in HEK-293T cells (human embryonic kidney cells expressing the large T-antigen of simian virus 40), but enhance the SHP-repressive effect in MCF-7, T47D and MDA-MB-435 cells. Knockdown of SMILE gene expression using siRNA (small interfering RNA) in MCF-7 cells increases ER-mediated transcriptional activity. Moreover, adenovirus-mediated overexpression of SMILE and SHP down-regulates estrogen-induced mRNA expression of the critical cell-cycle regulator E2F1. Collectively, these results indicate that SMILE isoforms regulate the inhibition of ER transactivation by SHP in a cell-type-specific manner and act as a novel transcriptional co-regulator in ER signalling.

  11. Deletion of protein tyrosine phosphatase 1B rescues against myocardial anomalies in high fat diet-induced obesity: Role of AMPK-dependent autophagy.

    PubMed

    Kandadi, Machender R; Panzhinskiy, Evgeniy; Roe, Nathan D; Nair, Sreejayan; Hu, Dahai; Sun, Aijun

    2015-02-01

    Obesity-induced cardiomyopathy may be mediated by alterations in multiple signaling cascades involved in glucose and lipid metabolism. Protein tyrosine phosphatase-1B (PTP1B) is an important negative regulator of insulin signaling. This study was designed to evaluate the role of PTP1B in high fat diet-induced cardiac contractile anomalies. Wild-type and PTP1B knockout mice were fed normal (10%) or high (45%) fat diet for 5months prior to evaluation of cardiac function. Myocardial function was assessed using echocardiography and an Ion-Optix MyoCam system. Western blot analysis was employed to evaluate levels of AMPK, mTOR, raptor, Beclin-1, p62 and LC3-II. RT-PCR technique was employed to assess genes involved in hypertrophy and lipid metabolism. Our data revealed increased LV thickness and LV chamber size as well as decreased fractional shortening following high fat diet intake, the effect was nullified by PTP1B knockout. High fat diet intake compromised cardiomyocyte contractile function as evidenced by decreased peak shortening, maximal velocity of shortening/relengthening, intracellular Ca²⁺ release as well as prolonged duration of relengthening and intracellular Ca²⁺ decay, the effects of which were alleviated by PTP1B knockout. High fat diet resulted in enlarged cardiomyocyte area and increased lipid accumulation, which were attenuated by PTP1B knockout. High fat diet intake dampened myocardial autophagy as evidenced by decreased LC3-II conversion and Beclin-1, increased p62 levels as well as decreased phosphorylation of AMPK and raptor, the effects of which were significantly alleviated by PTP1B knockout. Pharmacological inhibition of AMPK using compound C disengaged PTP1B knockout-conferred protection against fatty acid-induced cardiomyocyte contractile anomalies. Taken together, our results suggest that PTP1B knockout offers cardioprotection against high fat diet intake through activation of AMPK. This article is part of a Special Issue entitled

  12. Combination of PKCε Activation and PTP1B Inhibition Effectively Suppresses Aβ-Induced GSK-3β Activation and Tau Phosphorylation.

    PubMed

    Kanno, Takeshi; Tsuchiya, Ayako; Tanaka, Akito; Nishizaki, Tomoyuki

    2016-09-01

    Glycogen synthase kinase-3β (GSK-3β) is a key element to phosphorylate tau and form neurofibrillary tangles (NFTs) found in tauopathies including Alzheimer's disease (AD). A current topic for AD therapy is focused upon how to prevent tau phosphorylation. In the present study, PKCε activated Akt and inactivated GSK-3β by directly interacting with each protein. Inhibition of protein tyrosine phosphatase 1B (PTP1B), alternatively, caused an enhancement in the tyrosine phosphorylation of insulin receptor substrate 1 (IRS-1), allowing activation of Akt through a pathway along an IRS-1/phosphatidylinositol 3 kinase (PI3K)/3-phosphoinositide-dependent protein kinase-1 (PDK1)/Akt axis, to phosphorylate and inactivate GSK-3β. Combination of PKCε activation and PTP1B inhibition more sufficiently activated Akt and inactivated GSK-3β than each independent treatment, to suppress amyloid β (Aβ)-induced tau phosphorylation and ameliorate spatial learning and memory impairment in 5xFAD transgenic mice, an animal model of AD. This may represent an innovative strategy for AD therapy.

  13. The KIM-family protein-tyrosine phosphatases use distinct reversible oxidation intermediates: Intramolecular or intermolecular disulfide bond formation.

    PubMed

    Machado, Luciana E S F; Shen, Tun-Li; Page, Rebecca; Peti, Wolfgang

    2017-05-26

    The kinase interaction motif (KIM) family of protein-tyrosine phosphatases (PTPs) includes hematopoietic protein-tyrosine phosphatase (HePTP), striatal-enriched protein-tyrosine phosphatase (STEP), and protein-tyrosine phosphatase receptor type R (PTPRR). KIM-PTPs bind and dephosphorylate mitogen-activated protein kinases (MAPKs) and thereby critically modulate cell proliferation and differentiation. PTP activity can readily be diminished by reactive oxygen species (ROS), e.g. H 2 O 2 , which oxidize the catalytically indispensable active-site cysteine. This initial oxidation generates an unstable sulfenic acid intermediate that is quickly converted into either a sulfinic/sulfonic acid (catalytically dead and irreversible inactivation) or a stable sulfenamide or disulfide bond intermediate (reversible inactivation). Critically, our understanding of ROS-mediated PTP oxidation is not yet sufficient to predict the molecular responses of PTPs to oxidative stress. However, identifying distinct responses will enable novel routes for PTP-selective drug design, important for managing diseases such as cancer and Alzheimer's disease. Therefore, we performed a detailed biochemical and molecular study of all KIM-PTP family members to determine their H 2 O 2 oxidation profiles and identify their reversible inactivation mechanism(s). We show that despite having nearly identical 3D structures and sequences, each KIM-PTP family member has a unique oxidation profile. Furthermore, we also show that whereas STEP and PTPRR stabilize their reversibly oxidized state by forming an intramolecular disulfide bond, HePTP uses an unexpected mechanism, namely, formation of a reversible intermolecular disulfide bond. In summary, despite being closely related, KIM-PTPs significantly differ in oxidation profiles. These findings highlight that oxidation protection is critical when analyzing PTPs, for example, in drug screening. © 2017 by The American Society for Biochemistry and Molecular Biology

  14. Protein tyrosine phosphatase 1B inhibitory activity of alkaloids from Rhizoma Coptidis and their molecular docking studies.

    PubMed

    Choi, Jae Sue; Ali, Md Yousof; Jung, Hyun Ah; Oh, Sang Ho; Choi, Ran Joo; Kim, Eon Ji

    2015-08-02

    Rhizoma Coptidis (the rhizome of Coptis chinensis Franch) has commonly been used for treatment of diabetes mellitus in traditional Chinese medicine due to its blood sugar-lowering properties and therapeutic benefits which highly related to the alkaloids therein. However, a limited number of studies focused on the Coptis alkaloids other than berberine. In the present study, we investigated the anti-diabetic potential of Coptis alkaloids, including berberine (1), epiberberine (2), magnoflorine (3), and coptisine (4), by evaluating the ability of these compounds to inhibit protein tyrosine phosphatase 1B (PTP1B), and ONOO(-)-mediated protein tyrosine nitration. We scrutinized the potentials of Coptis alkaloids as PTP1B inhibitors via enzyme kinetics and molecular docking simulation. The Coptis alkaloids 1-4 exhibited remarkable inhibitory activities against PTP1B with the IC50 values of 16.43, 24.19, 28.14, and 51.04 μM, respectively, when compared to the positive control ursolic acid. These alkaloids also suppressed ONOO(-)-mediated tyrosine nitration effectively in a dose dependent manner. In addition, our kinetic study using the Lineweaver-Burk and Dixon plots revealed that 1 and 2 showed a mixed-type inhibition against PTP1B, while 3 and 4 noncompetitively inhibited PTP1B. Moreover, molecular docking simulation of these compounds demonstrated negative binding energies (Autodock 4.0=-6.7 to -7.8 kcal/mol; Fred 2.0=-59.4 to -68.2 kcal/mol) and a high proximity to PTP1B residues, including Phe182 and Asp181 in the WPD loop, Cys215 in the active sites and Tyr46, Arg47, Asp48, Val49, Ser216, Ala217, Gly218, Ile219, Gly220, Arg221 and Gln262 in the pocket site, indicating a higher affinity and tighter binding capacity of these alkaloids for the active site of the enzyme. Our results clearly indicate the promising anti-diabetic potential of Coptis alkaloids as inhibitors on PTP1B as well as suppressors of ONOO(-)-mediated protein tyrosine nitration, and thus hold

  15. Role of PTP1B in HER2 Signaling in Breast Cancer

    DTIC Science & Technology

    2012-10-01

    AD_________________ Award Number: W81XWH-10-1-1005 TITLE: Role of PTP1B in HER2 Signaling in...AND SUBTITLE 5a. CONTRACT NUMBER Role of PTP1B in HER2 Signaling in Breast Cancer 5b. GRANT NUMBER W81XWH-10-1-1005 5c. PROGRAM ELEMENT NUMBER...2009, Postdoctoral Fellowship Award W81XWH-10-1-1005, “Role of PTP1B in HER2 Signaling in Breast Cancer" INTRODUCTION  The receptor tyrosine

  16. Pharmacological inhibition of protein tyrosine phosphatase 1B: a promising strategy for the treatment of obesity and type 2 diabetes mellitus.

    PubMed

    Panzhinskiy, E; Ren, J; Nair, S

    2013-01-01

    Obesity and metabolic syndrome represent major public health problems, and are the biggest preventable causes of death worldwide. Obesity is the leading risk factor for type 2 diabetes mellitus (T2DM), cardiovascular diseases and non-alcoholic fatty liver disease. Obesity-associated insulin resistance, which is characterized by reduced uptake and utilization of glucose in muscle, adipose and liver tissues, is a key predictor of metabolic syndrome and T2DM. With increasing prevalence of obesity in adults and children, the need to identify and characterize potential targets for treating metabolic syndrome is imminent. Emerging evidence from animal models, clinical studies and cell lines studies suggest that protein tyrosine phosphatase 1B (PTP1B), an enzyme that negatively regulates insulin signaling, is likely to be involved in the pathways leading to insulin resistance. PTP1B is tethered to the cytosolic surface of endoplasmic reticulum (ER), an organelle that is responsible for folding, modification, and trafficking of proteins. Recent evidence links the disruption of ER homeostasis, referred to as ER stress, to the pathogenesis of obesity and T2DM. PTP1B has been recognized as an important player linking ER stress and insulin resistance in obese subjects. This review highlights recent advances in the research related to the role of PTP1B in signal transduction processes implicated in pathophysiology of obesity and type 2 diabetes, and focuses on the potential therapeutic exploitation of PTP1B inhibitors for the management of these conditions.

  17. Myeloid-cell protein tyrosine phosphatase-1B deficiency in mice protects against high-fat diet and lipopolysaccharide-induced inflammation, hyperinsulinemia, and endotoxemia through an IL-10 STAT3-dependent mechanism.

    PubMed

    Grant, Louise; Shearer, Kirsty D; Czopek, Alicja; Lees, Emma K; Owen, Carl; Agouni, Abdelali; Workman, James; Martin-Granados, Cristina; Forrester, John V; Wilson, Heather M; Mody, Nimesh; Delibegovic, Mirela

    2014-02-01

    Protein tyrosine phosphatase-1B (PTP1B) negatively regulates insulin and leptin signaling, rendering it an attractive drug target for treatment of obesity-induced insulin resistance. However, some studies suggest caution when targeting macrophage PTP1B, due to its potential anti-inflammatory role. We assessed the role of macrophage PTP1B in inflammation and whole-body metabolism using myeloid-cell (LysM) PTP1B knockout mice (LysM PTP1B). LysM PTP1B mice were protected against lipopolysaccharide (LPS)-induced endotoxemia and hepatic damage associated with decreased proinflammatory cytokine secretion in vivo. In vitro, LPS-treated LysM PTP1B bone marrow-derived macrophages (BMDMs) displayed increased interleukin (IL)-10 mRNA expression, with a concomitant decrease in TNF-α mRNA levels. These anti-inflammatory effects were associated with increased LPS- and IL-10-induced STAT3 phosphorylation in LysM PTP1B BMDMs. Chronic inflammation induced by high-fat (HF) feeding led to equally beneficial effects of macrophage PTP1B deficiency; LysM PTP1B mice exhibited improved glucose and insulin tolerance, protection against LPS-induced hyperinsulinemia, decreased macrophage infiltration into adipose tissue, and decreased liver damage. HF-fed LysM PTP1B mice had increased basal and LPS-induced IL-10 levels, associated with elevated STAT3 phosphorylation in splenic cells, IL-10 mRNA expression, and expansion of cells expressing myeloid markers. These increased IL-10 levels negatively correlated with circulating insulin and alanine transferase levels. Our studies implicate myeloid PTP1B in negative regulation of STAT3/IL-10-mediated signaling, highlighting its inhibition as a potential anti-inflammatory and antidiabetic target in obesity.

  18. Antidiabetic effect of polyphenolic extracts from selected edible plants as α-amylase, α -glucosidase and PTP1B inhibitors, and β pancreatic cells cytoprotective agents - a comparative study.

    PubMed

    Zakłos-Szyda, Małgorzata; Majewska, Iwona; Redzynia, Małgorzata; Koziołkiewicz, Maria

    2015-01-01

    Type 2 diabetes mellitus, which is usually a result of wrong dietary habits and reduced physical activity, represents 85-95% of all diabetes cases and among other diet related diseases is the major cause of deaths. The disease is characterized mainly by hyperglycemia, which is associated with attenuated insulin sensitivity or beta cells dysfunction caused by multiple stimuli, including oxidative stress and loss of insulin secretion. Since polyphenols possess multiple biological activities and constitute an important part of the human diet, they have recently emerged as critical phytochemicals in type 2 diabetes prevention and treatment. Their hypoglycemic action results from their antioxidative effect involved in recovering of altered antioxidant defenses and restoring insulin secreting machinery in pancreatic cells, or abilities to inhibit the activity of carbohydrates hydrolyzing enzymes (α-amylase and α-glucosidase) or protein tyrosine phosphatase 1B (PTP1B), which is known as the major negative regulator in insulin signaling. This study investigates the total phenolic content (Folin-Ciocalteu and HPLC methods) and antioxidant capacity (ABTS) of 20 polyphenolic extracts obtained from selected edible plants, which were screened in terms of α -amylase, α - glucosidase and protein tyrosine phosphatase 1B inhibitors or protective agents against oxidative stress induced by tertbutylhydroperoxide (t-BOOH) in βTC3 pancreatic beta cells used as a model target for antidiabetes drugs. The study concludes that Chaenomeles japonica, Oenothera paradoxa and Viburnum opulus may be promising natural sources for active compounds with antidiabetic properties.

  19. PTP-PEST controls EphA3 activation and ephrin-induced cytoskeletal remodelling.

    PubMed

    Mansour, Mariam; Nievergall, Eva; Gegenbauer, Kristina; Llerena, Carmen; Atapattu, Lakmali; Hallé, Maxime; Tremblay, Michel L; Janes, Peter W; Lackmann, Martin

    2016-01-15

    Eph receptors and their corresponding membrane-bound ephrin ligands regulate cell positioning and establish tissue patterns during embryonic and oncogenic development. Emerging evidence suggests that assembly of polymeric Eph signalling clusters relies on cytoskeletal reorganisation and underlies regulation by protein tyrosine phosphatases (PTPs). PTP-PEST (also known as PTPN12) is a central regulator of actin cytoskeletal dynamics. Here, we demonstrate that an N-terminal fragment of PTP-PEST, generated through an ephrinA5-triggered and spatially confined cleavage mediated by caspase-3, attenuates EphA3 receptor activation and its internalisation. Isolation of EphA3 receptor signalling clusters within intact plasma membrane fragments obtained by detergent-free cell fractionation reveals that stimulation of cells with ephrin triggers effective recruitment of this catalytically active truncated form of PTP-PEST together with key cytoskeletal and focal adhesion proteins. Importantly, modulation of actin polymerisation using pharmacological and dominant-negative approaches affects EphA3 phosphorylation in a similar manner to overexpression of PTP-PEST. We conclude that PTP-PEST regulates EphA3 activation both by affecting cytoskeletal remodelling and through its direct action as a PTP controlling EphA3 phosphorylation, indicating its multifaceted regulation of Eph signalling. © 2016. Published by The Company of Biologists Ltd.

  20. Ferulic acid attenuates diabetes-induced cognitive impairment in rats via regulation of PTP1B and insulin signaling pathway.

    PubMed

    Wang, Hao; Sun, Xiaoxu; Zhang, Ning; Ji, Zhouye; Ma, Zhanqiang; Fu, Qiang; Qu, Rong; Ma, Shiping

    2017-12-01

    Cognitive impairment has been recognized as a typical characteristic of neurodegenerative disease in diabetes mellitus (DM) and this cognitive dysfunction may be a risk factor for Alzheimer's disease (AD). Ferulic acid, a phenolic compound commonly found in a range of plants, has emerged various properties including anti-inflammatory and neuroprotective effects. In the present study, the protective activities and relevant mechanisms of ferulic acid were evaluated in diabetic rats with cognitive deficits, which were induced by a high-glucose-fat (HGF) diet and low dose of streptozotocin (STZ). It was observed that ferulic acid significantly increased body weight and decreased blood glucose levels. Meanwhile, ferulic acid could markedly ameliorate spatial memory of diabetic rats in Morris water maze (MWM) and decrease AD-like pathologic changes (Aβ deposition and Tau phosphorylation) in the hippocampus, which might be correlated with the inhibition of inflammatory cytokines release and reduction of protein tyrosine phosphatase 1B (PTP1B) expression. Moreover, the levels of brain insulin signal molecules p-IRS, p-Akt and p-GSK3β were also investigated. We found that ferulic acid administration restored the alterations in insulin signaling. In conclusion, ferulic acid exhibited beneficial effects on diabetes-induced cognition lesions, which was involved in the regulation of PTP1B and insulin signaling pathway. We suppose that PTP1B inhibition may represent a promising approach to correct abnormal signaling linked to diabetes-induced cognitive impairment. Copyright © 2017. Published by Elsevier Inc.

  1. Transient expression of protein tyrosine phosphatases encoded in Cotesia plutellae bracovirus inhibits insect cellular immune responses

    NASA Astrophysics Data System (ADS)

    Ibrahim, Ahmed M. A.; Kim, Yonggyun

    2008-01-01

    Several immunosuppressive factors are associated with parasitism of an endoparasitoid wasp, Cotesia plutellae, on the diamondback moth, Plutella xylostella. C. plutellae bracovirus (CpBV) encodes a large number of putative protein tyrosine phosphatases (PTPs), which may play a role in inhibiting host cellular immunity. To address this inhibitory hypothesis of CpBV-PTPs, we performed transient expression of individual CpBV-PTPs in hemocytes of the beet armyworm, Spodoptera exigua, and analyzed their cellular immune responses. Two different forms of CpBV-PTPs were chosen and cloned into a eukaryotic expression vector under the control of the p10 promoter of baculovirus: one with the normal cysteine active site (CpBV-PTP1) and the other with a mutated active site (CpBV-PTP5). The hemocytes transfected with CpBV-PTP1 significantly increased in PTP activity compared to control hemocytes, but those with CpBV-PTP5 exhibited a significant decrease in the PTP activity. All transfected hemocytes exhibited a significant reduction in both cell spreading and encapsulation activities compared to control hemocytes. Co-transfection of CpBV-PTP1 together with its double-stranded RNA reduced the messenger RNA (mRNA) level of CpBV-PTP1 and resulted in recovery of both hemocyte behaviors. This is the first report demonstrating that the polydnaviral PTPs can manipulate PTP activity of the hemocytes to interrupt cellular immune responses.

  2. Microsporidian polar tube proteins: highly divergent but closely linked genes encode PTP1 and PTP2 in members of the evolutionarily distant Antonospora and Encephalitozoon groups.

    PubMed

    Polonais, Valérie; Prensier, Gérard; Méténier, Guy; Vivarès, Christian P; Delbac, Frédéric

    2005-09-01

    The spore polar tube is a unique organelle required for cell invasion by fungi-related microsporidian parasites. Two major polar tube proteins (PTP1 and PTP2) are encoded by two tandemly arranged genes in Encephalitozoon species. A look at Antonospora (Nosema) locustae contigs (http://jbpc.mbl.edu/Nosema/Contigs/) revealed significant conservation in the order and orientation of various genes, despite high sequence divergence features, when comparing with Encephalitozoon cuniculi complete genome. This syntenic relationship between distantly related Encephalitozoon and Antonospora genera has been successfully exploited to identify ptp1 and ptp2 genes in two insect-infecting species assigned to the Antonospora clade (A. locustae and Paranosema grylli). Targeting of respective proteins to the polar tube was demonstrated through immunolocalization experiments with antibodies raised against recombinant proteins. Both PTPs were extracted from spores with 100mM dithiothreitol. Evidence for PTP1 mannosylation was obtained in studied species, supporting a key role of PTP1 in interactions with host cell surface.

  3. Function of PTP1B in Neuroendocrine Differentiation of Prostate Cancer

    DTIC Science & Technology

    2008-01-01

    Annual 3. DATES COVERED 1 JAN 2007 - 31 DEC 2007 4. TITLE AND SUBTITLE Function of PTP1B in Neuroendocrine Differentiation of Prostate Cancer 5a...particularly the relationship of PTP1B to IL-8 signaling through its receptors CXCR1 and CXCR2, to IGF-1 receptor signaling through PI3 kinase/AKT/mTOR pathway

  4. Protein Tyrosine Phosphatases: From Housekeeping Enzymes to Master-Regulators of Signal Transduction

    PubMed Central

    Tonks, Nicholas K.

    2013-01-01

    There are many misconceptions surrounding the roles of protein phosphatases in the regulation of signal transduction, perhaps the most damaging of which is the erroneous view that these enzymes exert their effects merely as constitutively active housekeeping enzymes. On the contrary, the phosphatases are critical, specific regulators of signaling in their own right and serve an essential function, in a coordinated manner with the kinases, to determine the response to a physiological stimulus. This review is a personal perspective on the development of our understanding of the protein tyrosine phosphatase (PTP) family of enzymes. I have discussed various aspects of the structure, regulation and function of the PTP family, which I hope will illustrate the fundamental importance of these enzymes to the control of signal transduction. PMID:23176256

  5. LEOPARD syndrome-associated SHP2 mutation confers leanness and protection from diet-induced obesity.

    PubMed

    Tajan, Mylène; Batut, Aurélie; Cadoudal, Thomas; Deleruyelle, Simon; Le Gonidec, Sophie; Saint Laurent, Céline; Vomscheid, Maëlle; Wanecq, Estelle; Tréguer, Karine; De Rocca Serra-Nédélec, Audrey; Vinel, Claire; Marques, Marie-Adeline; Pozzo, Joffrey; Kunduzova, Oksana; Salles, Jean-Pierre; Tauber, Maithé; Raynal, Patrick; Cavé, Hélène; Edouard, Thomas; Valet, Philippe; Yart, Armelle

    2014-10-21

    LEOPARD syndrome (multiple Lentigines, Electrocardiographic conduction abnormalities, Ocular hypertelorism, Pulmonary stenosis, Abnormal genitalia, Retardation of growth, sensorineural Deafness; LS), also called Noonan syndrome with multiple lentigines (NSML), is a rare autosomal dominant disorder associating various developmental defects, notably cardiopathies, dysmorphism, and short stature. It is mainly caused by mutations of the PTPN11 gene that catalytically inactivate the tyrosine phosphatase SHP2 (Src-homology 2 domain-containing phosphatase 2). Besides its pleiotropic roles during development, SHP2 plays key functions in energetic metabolism regulation. However, the metabolic outcomes of LS mutations have never been examined. Therefore, we performed an extensive metabolic exploration of an original LS mouse model, expressing the T468M mutation of SHP2, frequently borne by LS patients. Our results reveal that, besides expected symptoms, LS animals display a strong reduction of adiposity and resistance to diet-induced obesity, associated with overall better metabolic profile. We provide evidence that LS mutant expression impairs adipogenesis, triggers energy expenditure, and enhances insulin signaling, three features that can contribute to the lean phenotype of LS mice. Interestingly, chronic treatment of LS mice with low doses of MEK inhibitor, but not rapamycin, resulted in weight and adiposity gains. Importantly, preliminary data in a French cohort of LS patients suggests that most of them have lower-than-average body mass index, associated, for tested patients, with reduced adiposity. Altogether, these findings unravel previously unidentified characteristics for LS, which could represent a metabolic benefit for patients, but may also participate to the development or worsening of some traits of the disease. Beyond LS, they also highlight a protective role of SHP2 global LS-mimicking modulation toward the development of obesity and associated disorders.

  6. LEOPARD syndrome-associated SHP2 mutation confers leanness and protection from diet-induced obesity

    PubMed Central

    Tajan, Mylène; Batut, Aurélie; Cadoudal, Thomas; Deleruyelle, Simon; Le Gonidec, Sophie; Saint Laurent, Céline; Vomscheid, Maëlle; Wanecq, Estelle; Tréguer, Karine; De Rocca Serra-Nédélec, Audrey; Vinel, Claire; Marques, Marie-Adeline; Pozzo, Joffrey; Kunduzova, Oksana; Salles, Jean-Pierre; Tauber, Maithé; Raynal, Patrick; Cavé, Hélène; Edouard, Thomas; Valet, Philippe; Yart, Armelle

    2014-01-01

    LEOPARD syndrome (multiple Lentigines, Electrocardiographic conduction abnormalities, Ocular hypertelorism, Pulmonary stenosis, Abnormal genitalia, Retardation of growth, sensorineural Deafness; LS), also called Noonan syndrome with multiple lentigines (NSML), is a rare autosomal dominant disorder associating various developmental defects, notably cardiopathies, dysmorphism, and short stature. It is mainly caused by mutations of the PTPN11 gene that catalytically inactivate the tyrosine phosphatase SHP2 (Src-homology 2 domain-containing phosphatase 2). Besides its pleiotropic roles during development, SHP2 plays key functions in energetic metabolism regulation. However, the metabolic outcomes of LS mutations have never been examined. Therefore, we performed an extensive metabolic exploration of an original LS mouse model, expressing the T468M mutation of SHP2, frequently borne by LS patients. Our results reveal that, besides expected symptoms, LS animals display a strong reduction of adiposity and resistance to diet-induced obesity, associated with overall better metabolic profile. We provide evidence that LS mutant expression impairs adipogenesis, triggers energy expenditure, and enhances insulin signaling, three features that can contribute to the lean phenotype of LS mice. Interestingly, chronic treatment of LS mice with low doses of MEK inhibitor, but not rapamycin, resulted in weight and adiposity gains. Importantly, preliminary data in a French cohort of LS patients suggests that most of them have lower-than-average body mass index, associated, for tested patients, with reduced adiposity. Altogether, these findings unravel previously unidentified characteristics for LS, which could represent a metabolic benefit for patients, but may also participate to the development or worsening of some traits of the disease. Beyond LS, they also highlight a protective role of SHP2 global LS-mimicking modulation toward the development of obesity and associated disorders

  7. Schistosoma mansoni Soluble Egg Antigens Induce Expression of the Negative Regulators SOCS1 and SHP1 in Human Dendritic Cells via Interaction with the Mannose Receptor

    PubMed Central

    Klaver, Elsenoor J.; Kuijk, Loes M.; Lindhorst, Thisbe K.; Cummings, Richard D.; van Die, Irma

    2015-01-01

    Schistosomiasis is a common debilitating human parasitic disease in (sub)tropical areas, however, schistosome infections can also protect against a variety of inflammatory diseases. This has raised broad interest in the mechanisms by which Schistosoma modulate the immune system into an anti-inflammatory and regulatory state. Human dendritic cells (DCs) show many phenotypic changes upon contact with Schistosoma mansoni soluble egg antigens (SEA). We here show that oxidation of SEA glycans, but not heat-denaturation, abrogates the capacity of SEA to suppress both LPS-induced cytokine secretion and DC proliferation, indicating an important role of SEA glycans in these processes. Remarkably, interaction of SEA glycans with DCs results in a strongly increased expression of Suppressor Of Cytokine Signalling1 (SOCS1) and SH2-containing protein tyrosine Phosphatase-1 (SHP1), important negative regulators of TLR4 signalling. In addition, SEA induces the secretion of transforming growth factor β (TGF-β), and the surface expression of the costimulatory molecules Programmed Death Ligand-1 (PD-L1) and OX40 ligand (OX40L), which are known phenotypic markers for the capacity of DCs to polarize naïve T cells into Th2/Treg cell subsets. Inhibition of mannose receptor (MR)-mediated internalization of SEA into DCs by blocking with allyl α-D-mannoside or anti-MR antibodies, significantly reduced SOCS1 and SHP1 expression. In conclusion, we demonstrate that SEA glycans are essential for induction of enhanced SOCS1 and SHP1 levels in DCs via the MR. Our data provide novel mechanistic evidence for the potential of S. mansoni SEA glycans to modulate human DCs, which may contribute to the capacity of SEA to down-regulate inflammatory responses. PMID:25897665

  8. Schistosoma mansoni Soluble Egg Antigens Induce Expression of the Negative Regulators SOCS1 and SHP1 in Human Dendritic Cells via Interaction with the Mannose Receptor.

    PubMed

    Klaver, Elsenoor J; Kuijk, Loes M; Lindhorst, Thisbe K; Cummings, Richard D; van Die, Irma

    2015-01-01

    Schistosomiasis is a common debilitating human parasitic disease in (sub)tropical areas, however, schistosome infections can also protect against a variety of inflammatory diseases. This has raised broad interest in the mechanisms by which Schistosoma modulate the immune system into an anti-inflammatory and regulatory state. Human dendritic cells (DCs) show many phenotypic changes upon contact with Schistosoma mansoni soluble egg antigens (SEA). We here show that oxidation of SEA glycans, but not heat-denaturation, abrogates the capacity of SEA to suppress both LPS-induced cytokine secretion and DC proliferation, indicating an important role of SEA glycans in these processes. Remarkably, interaction of SEA glycans with DCs results in a strongly increased expression of Suppressor Of Cytokine Signalling1 (SOCS1) and SH2-containing protein tyrosine Phosphatase-1 (SHP1), important negative regulators of TLR4 signalling. In addition, SEA induces the secretion of transforming growth factor β (TGF-β), and the surface expression of the costimulatory molecules Programmed Death Ligand-1 (PD-L1) and OX40 ligand (OX40L), which are known phenotypic markers for the capacity of DCs to polarize naïve T cells into Th2/Treg cell subsets. Inhibition of mannose receptor (MR)-mediated internalization of SEA into DCs by blocking with allyl α-D-mannoside or anti-MR antibodies, significantly reduced SOCS1 and SHP1 expression. In conclusion, we demonstrate that SEA glycans are essential for induction of enhanced SOCS1 and SHP1 levels in DCs via the MR. Our data provide novel mechanistic evidence for the potential of S. mansoni SEA glycans to modulate human DCs, which may contribute to the capacity of SEA to down-regulate inflammatory responses.

  9. Camellianols A-G, Barrigenol-like Triterpenoids with PTP1B Inhibitory Effects from the Endangered Ornamental Plant Camellia crapnelliana.

    PubMed

    Xiong, Juan; Wan, Jiang; Ding, Jie; Wang, Pei-Pei; Ma, Guang-Lei; Li, Jia; Hu, Jin-Feng

    2017-11-22

    Seven new naturally occurring barrigenol-like compounds, camellianols A-G (1-7), and 10 known triterpenoids were isolated from the twigs and leaves of the cultivated endangered ornamental plant Camellia crapnelliana. According to the ECD octant rule for saturated cyclohexanones, the absolute configurations of camellianols D (4) and E (5) were defined. The backbones of the remaining new isolates are assumed to have the same absolute configuration as compounds 4, 5, and harpullone (12). Compounds 2, 3, 9, 10, 13, and 16 exhibited inhibitory effects on the protein tyrosine phosphatase 1B (PTP1B) enzyme, with IC 50 values less than 10 μM.

  10. Rapamycin reverses hypertrophic cardiomyopathy in a mouse model of LEOPARD syndrome–associated PTPN11 mutation

    PubMed Central

    Marin, Talita M.; Keith, Kimberly; Davies, Benjamin; Conner, David A.; Guha, Prajna; Kalaitzidis, Demetrios; Wu, Xue; Lauriol, Jessica; Wang, Bo; Bauer, Michael; Bronson, Roderick; Franchini, Kleber G.; Neel, Benjamin G.; Kontaridis, Maria I.

    2011-01-01

    LEOPARD syndrome (LS) is an autosomal dominant “RASopathy” that manifests with congenital heart disease. Nearly all cases of LS are caused by catalytically inactivating mutations in the protein tyrosine phosphatase (PTP), non-receptor type 11 (PTPN11) gene that encodes the SH2 domain-containing PTP-2 (SHP2). RASopathies typically affect components of the RAS/MAPK pathway, yet it remains unclear how PTPN11 mutations alter cellular signaling to produce LS phenotypes. We therefore generated knockin mice harboring the Ptpn11 mutation Y279C, one of the most common LS alleles. Ptpn11Y279C/+ (LS/+) mice recapitulated the human disorder, with short stature, craniofacial dysmorphia, and morphologic, histologic, echocardiographic, and molecular evidence of hypertrophic cardiomyopathy (HCM). Heart and/or cardiomyocyte lysates from LS/+ mice showed enhanced binding of Shp2 to Irs1, decreased Shp2 catalytic activity, and abrogated agonist-evoked Erk/Mapk signaling. LS/+ mice also exhibited increased basal and agonist-induced Akt and mTor activity. The cardiac defects in LS/+ mice were completely reversed by treatment with rapamycin, an inhibitor of mTOR. Our results demonstrate that LS mutations have dominant-negative effects in vivo, identify enhanced mTOR activity as critical for causing LS-associated HCM, and suggest that TOR inhibitors be considered for treatment of HCM in LS patients. PMID:21339643

  11. Simultaneous regulation of apoptotic gene silencing and angiogenic gene expression for myocardial infarction therapy: Single-carrier delivery of SHP-1 siRNA and VEGF-expressing pDNA.

    PubMed

    Kim, Dongkyu; Ku, Sook Hee; Kim, Hyosuk; Jeong, Ji Hoon; Lee, Minhyung; Kwon, Ick Chan; Choi, Donghoon; Kim, Sun Hwa

    2016-12-10

    Gene therapy is aimed at selectively knocking up or knocking down the target genes involved in the development of diseases. In many human diseases, dysregulation of disease-associated genes is occurred concurrently: some genes are abnormally turned up and some are turned down. In the field of non-viral gene therapy, plasmid DNA (pDNA) and small interfering RNA (siRNA) are suggested as representative regulation tools for activating and silencing the expression of genes of interest, representatively. Herein, we simultaneously loaded both siRNA (Src homology region 2 domain-containing tyrosine phosphatase-1 siRNA, siSHP-1) for anti-apoptosis and pDNA (hypoxia-inducible vascular endothelial growth factor expression vector, pHI-VEGF) for angiogenesis in a single polymeric nanocarrier and used to synergistically attenuate ischemia-reperfusion (IR)-induced myocardial infarction, which is mainly caused by dysregulating of cardiac apoptosis and angiogenesis. For dual-modality cardiac gene delivery, siSHP-1 and pHI-VEGF were sequentially incorporated into a stable nanocomplex by using deoxycholic acid-modified polyethylenimine (DA-PEI). The resulting DA-PEI/siSHP-1/pHI-VEGF complexes exhibited the high structural stability against polyanion competition and the improved resistance to digestion by nucleases. The cardiac administration of DA-PEI/siSHP-1/pHI-VEGF reduced cardiomyocyte apoptosis and enhanced cardiac microvessel formation, thereby reducing infarct size in rat ischemia-reperfusion model. The simultaneous anti-apoptotic and angiogenic gene therapies synergized the cardioprotective effects of each strategy; thus our dual-modal single-carrier gene delivery system can be considered as a promising candidate for treating ischemic heart diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. The nucleus- and endoplasmic reticulum-targeted forms of protein tyrosine phosphatase 61F regulate Drosophila growth, life span, and fecundity.

    PubMed

    Buszard, Bree J; Johnson, Travis K; Meng, Tzu-Ching; Burke, Richard; Warr, Coral G; Tiganis, Tony

    2013-04-01

    The protein tyrosine phosphatases (PTPs) T cell PTP (TCPTP) and PTP1B share a high level of catalytic domain sequence and structural similarity yet display distinct differences in substrate recognition and function. Their noncatalytic domains contribute to substrate selectivity and function by regulating TCPTP nucleocytoplasmic shuttling and targeting PTP1B to the endoplasmic reticulum (ER). The Drosophila TCPTP/PTP1B orthologue PTP61F has two variants with identical catalytic domains that are differentially targeted to the ER and nucleus. Here we demonstrate that the PTP61F variants differ in their ability to negatively regulate insulin signaling in vivo, with the nucleus-localized form (PTP61Fn) being more effective than the ER-localized form (PTP61Fm). We report that PTP61Fm is reliant on the adaptor protein Dock to attenuate insulin signaling in vivo. Also, we show that the PTP61F variants differ in their capacities to regulate growth, with PTP61Fn but not PTP61Fm attenuating cellular proliferation. Furthermore, we generate a mutant lacking both PTP61F variants, which displays a reduction in median life span and a decrease in female fecundity, and show that both variants are required to rescue these mutant phenotypes. Our findings define the role of PTP61F in life span and fecundity and reinforce the importance of subcellular localization in mediating PTP function in vivo.

  13. Noonan syndrome-causing SHP2 mutants impair ERK-dependent chondrocyte differentiation during endochondral bone growth.

    PubMed

    Tajan, Mylène; Pernin-Grandjean, Julie; Beton, Nicolas; Gennero, Isabelle; Capilla, Florence; Neel, Benjamin G; Araki, Toshiyuki; Valet, Philippe; Tauber, Maithé; Salles, Jean-Pierre; Yart, Armelle; Edouard, Thomas

    2018-04-12

    Growth retardation is a constant feature of Noonan syndrome (NS) but its physiopathology remains poorly understood. We previously reported that hyperactive NS-causing SHP2 mutants impair the systemic production of insulin-like growth factor 1 (IGF1) through hyperactivation of the RAS/extracellular signal-regulated kinases (ERK) signalling pathway. Besides endocrine defects, a direct effect of these mutants on growth plate has not been explored, although recent studies have revealed an important physiological role for SHP2 in endochondral bone growth. We demonstrated that growth plate length was reduced in NS mice, mostly due to a shortening of the hypertrophic zone and to a lesser extent of the proliferating zone. These histological features were correlated with decreased expression of early chondrocyte differentiation markers, and with reduced alkaline phosphatase staining and activity, in NS murine primary chondrocytes. Although IGF1 treatment improved growth of NS mice, it did not fully reverse growth plate abnormalities, notably the decreased hypertrophic zone. In contrast, we documented a role of RAS/ERK hyperactivation at the growth plate level since 1) NS-causing SHP2 mutants enhance RAS/ERK activation in chondrocytes in vivo (NS mice) and in vitro (ATDC5 cells) and 2) inhibition of RAS/ERK hyperactivation by U0126 treatment alleviated growth plate abnormalities and enhanced chondrocyte differentiation. Similar effects were obtained by chronic treatment of NS mice with statins.In conclusion, we demonstrated that hyperactive NS-causing SHP2 mutants impair chondrocyte differentiation during endochondral bone growth through a local hyperactivation of the RAS/ERK signalling pathway, and that statin treatment may be a possible therapeutic approach in NS.

  14. Protein tyrosine phosphatase 1B (PTP1B) inhibitors from Morinda citrifolia (Noni) and their insulin mimetic activity.

    PubMed

    Nguyen, Phi-Hung; Yang, Jun-Li; Uddin, Mohammad N; Park, So-Lim; Lim, Seong-Il; Jung, Da-Woon; Williams, Darren R; Oh, Won-Keun

    2013-11-22

    As part of our ongoing search for new antidiabetic agents from medicinal plants, we found that a methanol extract of Morinda citrifolia showed potential stimulatory effects on glucose uptake in 3T3-L1 adipocyte cells. Bioassay-guided fractionation of this active extract yielded two new lignans (1 and 2) and three new neolignans (9, 10, and 14), as well as 10 known compounds (3-8, 11-13, and 15). The absolute configurations of compounds 9, 10, and 14 were determined by ECD spectra analysis. Compounds 3, 6, 7, and 15 showed inhibitory effects on PTP1B enzyme with IC50 values of 21.86 ± 0.48, 15.01 ± 0.20, 16.82 ± 0.42, and 4.12 ± 0.09 μM, respectively. Furthermore, compounds 3, 6, 7, and 15 showed strong stimulatory effects on 2-NBDG uptake in 3T3-L1 adipocyte cells. This study indicated the potential of compounds 3, 6, 7, and 15 as lead molecules for antidiabetic agents.

  15. Roux-en-Y Gastric Bypass Improves Hepatic Glucose Metabolism Involving Down-Regulation of Protein Tyrosine Phosphatase 1B in Obese Rats

    PubMed Central

    Mu, Song; Liu, Jiayu; Guo, Wei; Zhang, Shuping; Xiao, Xiaoqiu; Wang, Zhihong; Zhang, Jun

    2017-01-01

    Objective This study was initiated to investigate the effects of Roux-en-Y gastric bypass (RYGB) surgery on hepatic glucose metabolism and hepatic expression of protein tyrosine phosphatase 1B (PTP1B) in obese rats. Methods Body weight, glucose, intraperitoneal glucose, insulin, and pyruvate tolerance tests were performed pre- and postoperatively, and plasma lipid, insulin and glucagon-like peptide 1 (GLP-1) were measured. The mRNA levels of G6Pase, Pepck, Gsk-3β and Gys-2, and the expression levels of PTP1B mRNA, protein, and other components of the insulin signaling pathway were measured by using RT-PCR and western blotting. The intracellular localization of PTP1B and hepatic glycogen deposition was also observed. Results RYGB surgery-treated rats showed persistent weight loss, significantly improved glucose tolerance, pyruvate tolerance, and dyslipidemia, as well as increased insulin sensitivity, hepatic glycogen deposition and increased plasma GLP-1 in obese rats. RT-PCR analyses showed Pepck, G6Pase, and Gsk-3β mRNA to be significantly decreased, and Gys-2 mRNA to be significantly increased in liver tissue in the RYGB group (p < 0.05 vs. high-fat diet (HFD) or HFD + sham group); in addition, the expression of PTP1B were significantly decreased and insulin signaling were improved in the RYGB group (p < 0.05 vs. HFD or HFD + sham group). Conclusion RYGB can improve hepatic glucose metabolism and down-regulate PTP1B in obese rats. An increased circulating GLP-1 concentration may be correlated with the effects following RYGB in obese rats. PMID:28564652

  16. Establishing MALDI-TOF as Versatile Drug Discovery Readout to Dissect the PTP1B Enzymatic Reaction.

    PubMed

    Winter, Martin; Bretschneider, Tom; Kleiner, Carola; Ries, Robert; Hehn, Jörg P; Redemann, Norbert; Luippold, Andreas H; Bischoff, Daniel; Büttner, Frank H

    2018-07-01

    Label-free, mass spectrometric (MS) detection is an emerging technology in the field of drug discovery. Unbiased deciphering of enzymatic reactions is a proficient advantage over conventional label-based readouts suffering from compound interference and intricate generation of tailored signal mediators. Significant evolvements of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS, as well as associated liquid handling instrumentation, triggered extensive efforts in the drug discovery community to integrate the comprehensive MS readout into the high-throughput screening (HTS) portfolio. Providing speed, sensitivity, and accuracy comparable to those of conventional, label-based readouts, combined with merits of MS-based technologies, such as label-free parallelized measurement of multiple physiological components, emphasizes the advantages of MALDI-TOF for HTS approaches. Here we describe the assay development for the identification of protein tyrosine phosphatase 1B (PTP1B) inhibitors. In the context of this precious drug target, MALDI-TOF was integrated into the HTS environment and cross-compared with the well-established AlphaScreen technology. We demonstrate robust and accurate IC 50 determination with high accordance to data generated by AlphaScreen. Additionally, a tailored MALDI-TOF assay was developed to monitor compound-dependent, irreversible modification of the active cysteine of PTP1B. Overall, the presented data proves the promising perspective for the integration of MALDI-TOF into drug discovery campaigns.

  17. A protein-tyrosine phosphatase with sequence similarity to the SH2 domain of the protein-tyrosine kinases.

    PubMed

    Shen, S H; Bastien, L; Posner, B I; Chrétien, P

    1991-08-22

    The phosphorylation of proteins at tyrosine residues is critical in cellular signal transduction, neoplastic transformation and control of the mitotic cycle. These mechanisms are regulated by the activities of both protein-tyrosine kinases (PTKs) and protein-tyrosine phosphatases (PTPases). As in the PTKs, there are two classes of PTPases: membrane associated, receptor-like enzymes and soluble proteins. Here we report the isolation of a complementary DNA clone encoding a new form of soluble PTPase, PTP1C. The enzyme possesses a large noncatalytic region at the N terminus which unexpectedly contains two adjacent copies of the Src homology region 2 (the SH2 domain) found in various nonreceptor PTKs and other cytoplasmic signalling proteins. As with other SH2 sequences, the SH2 domains of PTP1C formed high-affinity complexes with the activated epidermal growth factor receptor and other phosphotyrosine-containing proteins. These results suggest that the SH2 regions in PTP1C may interact with other cellular components to modulate its own phosphatase activity against interacting substrates. PTPase activity may thus directly link growth factor receptors and other signalling proteins through protein-tyrosine phosphorylation.

  18. Association of PTP1B with Outcomes of Breast Cancer Patients Who Underwent Neoadjuvant Chemotherapy.

    PubMed

    Rivera Franco, Monica M; Leon Rodriguez, Eucario; Martinez Benitez, Braulio; Villanueva Rodriguez, Luisa G; de la Luz Sevilla Gonzalez, Maria; Armengol Alonso, Alejandra

    2016-01-01

    PTP1B is involved in the oncogenesis of breast cancer. In addition, neoadjuvant therapy has been widely used in breast cancer; thus, a measurement to assess survival improvement could be pathological complete response (pCR). Our objective was to associate PTP1B overexpression with outcomes of breast cancer patients who underwent neoadjuvant chemotherapy. Forty-six specimens were included. Diagnostic biopsies were immunostained using anti-PTP1B antibody. Expression was categorized as negative (<5%) and overexpression (≥5%). Patients' responses were graded according to the Miller-Payne system. Sixty-three percent of patients overexpressed PTP1B. There was no significant association between PTP1B overexpression and pCR ( P = 0.2). However, when associated with intrinsic subtypes, overexpression was higher in human epidermal growth factor receptor 2-positive-enriched specimens ( P = 0.02). Ten-year progression-free survival showed no differences. Our preliminary results do not show an association between PTP1B over-expression and pCR; however, given the limited sample and heterogeneous treatment in our cohort, this hypothesis cannot be excluded.

  19. PTP1B inhibitory secondary metabolites from marine-derived fungal strains Penicillium spp. and Eurotium sp.

    PubMed

    Sohn, Jae Hak; Lee, Yu-Ri; Lee, Dong-Sung; Kim, Youn-Chul; Oh, Hyuncheol

    2013-09-28

    The selective inhibition of PTP1B has been widely recognized as a potential drug target for the treatment of type 2 diabetes and obesity. In the course of screening for PTP1B inhibitory fungal metabolites, the organic extracts of several fungal species isolated from marine environments were found to exhibit significant inhibitory effects, and the bioassay-guided investigation of these extracts resulted in the isolation of fructigenine A (1), cyclopenol (2), echinulin (3), flavoglaucin (4), and viridicatol (5). The structures of these compounds were determined mainly by analysis of NMR and MS data. These compounds inhibited PTP1B activity with 50% inhibitory concentration values of 10.7, 30.0, 29.4, 13.4, and 64.0 micrometer, respectively. Furthermore, the kinetic analysis of PTP1B inhibition by compounds 1 and 5 suggested that compound 1 inhibited PTP1B activity in a noncompetitive manner, whereas compound 5 inhibited PTP1B activity in a competitive manner.

  20. PTP-PEST targets a novel tyrosine site in p120 catenin to control epithelial cell motility and Rho GTPase activity.

    PubMed

    Espejo, Rosario; Jeng, Yowjiun; Paulucci-Holthauzen, Adriana; Rengifo-Cam, William; Honkus, Krysta; Anastasiadis, Panos Z; Sastry, Sarita K

    2014-02-01

    Tyrosine phosphorylation is implicated in regulating the adherens junction protein, p120 catenin (p120), however, the mechanisms are not well defined. Here, we show, using substrate trapping, that p120 is a direct target of the protein tyrosine phosphatase, PTP-PEST, in epithelial cells. Stable shRNA knockdown of PTP-PEST in colon carcinoma cells results in an increased cytosolic pool of p120 concomitant with its enhanced tyrosine phosphorylation and decreased association with E-cadherin. Consistent with this, PTP-PEST knockdown cells exhibit increased motility, enhanced Rac1 and decreased RhoA activity on a collagen substrate. Furthermore, p120 localization is enhanced at actin-rich protrusions and lamellipodia and has an increased association with the guanine nucleotide exchange factor, VAV2, and cortactin. Exchange factor activity of VAV2 is enhanced by PTP-PEST knockdown whereas overexpression of a VAV2 C-terminal domain or DH domain mutant blocks cell motility. Analysis of point mutations identified tyrosine 335 in the N-terminal domain of p120 as the site of PTP-PEST dephosphorylation. A Y335F mutant of p120 failed to induce the 'p120 phenotype', interact with VAV2, stimulate cell motility or activate Rac1. Together, these data suggest that PTP-PEST affects epithelial cell motility by controlling the distribution and phosphorylation of p120 and its availability to control Rho GTPase activity.

  1. Docking analysis targeted to the whole enzyme: an application to the prediction of inhibition of PTP1B by thiomorpholine and thiazolyl derivatives.

    PubMed

    Ganou, C A; Eleftheriou, P Th; Theodosis-Nobelos, P; Fesatidou, M; Geronikaki, A A; Lialiaris, T; Rekka, E A

    2018-02-01

    PTP1b is a protein tyrosine phosphatase involved in the inactivation of insulin receptor. Since inhibition of PTP1b may prolong the action of the receptor, PTP1b has become a drug target for the treatment of type II diabetes. In the present study, prediction of inhibition using docking analysis targeted specifically to the active or allosteric site was performed on 87 compounds structurally belonging to 10 different groups. Two groups, consisting of 15 thiomorpholine and 10 thiazolyl derivatives exhibiting the best prediction results, were selected for in vitro evaluation. All thiomorpholines showed inhibitory action (with IC 50 = 4-45 μΜ, Ki = 2-23 μM), while only three thiazolyl derivatives showed low inhibition (best IC 50 = 18 μΜ, Ki = 9 μΜ). However, free binding energy (E) was in accordance with the IC 50 values only for some compounds. Docking analysis targeted to the whole enzyme revealed that the compounds exhibiting IC 50 values higher than expected could bind to other peripheral sites with lower free energy, E o , than when bound to the active/allosteric site. A prediction factor, E- (Σ Eo × 0.16), which takes into account lower energy binding to peripheral sites, was proposed and was found to correlate well with the IC 50 values following an asymmetrical sigmoidal equation with r 2 = 0.9692.

  2. NOX4-dependent Hydrogen peroxide promotes shear stress-induced SHP2 sulfenylation and eNOS activation.

    PubMed

    Sánchez-Gómez, Francisco J; Calvo, Enrique; Bretón-Romero, Rosa; Fierro-Fernández, Marta; Anilkumar, Narayana; Shah, Ajay M; Schröder, Katrin; Brandes, Ralf P; Vázquez, Jesús; Lamas, Santiago

    2015-12-01

    Laminar shear stress (LSS) triggers signals that ultimately result in atheroprotection and vasodilatation. Early responses are related to the activation of specific signaling cascades. We investigated the participation of redox-mediated modifications and in particular the role of hydrogen peroxide (H2O2) in the sulfenylation of redox-sensitive phosphatases. Exposure of vascular endothelial cells to short periods of LSS (12 dyn/cm(2)) resulted in the generation of superoxide radical anion as detected by the formation of 2-hydroxyethidium by HPLC and its subsequent conversion to H2O2, which was corroborated by the increase in the fluorescence of the specific peroxide sensor HyPer. By using biotinylated dimedone we detected increased total protein sulfenylation in the bovine proteome, which was dependent on NADPH oxidase 4 (NOX4)-mediated generation of peroxide. Mass spectrometry analysis allowed us to identify the phosphatase SHP2 as a protein susceptible to sulfenylation under LSS. Given the dependence of FAK activity on SHP2 function, we explored the role of FAK under LSS conditions. FAK activation and subsequent endothelial NO synthase (eNOS) phosphorylation were promoted by LSS and both processes were dependent on NOX4, as demonstrated in lung endothelial cells isolated from NOX4-null mice. These results support the idea that LSS elicits redox-sensitive signal transduction responses involving NOX4-dependent generation of hydrogen peroxide, SHP2 sulfenylation, and ulterior FAK-mediated eNOS activation. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. A dimeric urea of the bisabolene sesquiterpene from the Okinawan marine sponge Axinyssa sp. inhibits protein tyrosine phosphatase 1B activity in Huh-7 human hepatoma cells.

    PubMed

    Abdjul, Delfly B; Kanno, Syu-Ichi; Yamazaki, Hiroyuki; Ukai, Kazuyo; Namikoshi, Michio

    2016-01-15

    Protein tyrosine phosphatase 1B (PTP1B) plays an important role as a negative regulator of the insulin and leptin signaling pathways. Therefore, this enzyme is regarded as an attractive therapeutic target for the treatment of type 2 diabetes and obesity. Our screening program for PTP1B inhibitors led to the isolation of four sesquiterpenes and sterol: N,N'-bis[(6R,7S)-7-amino-7,8-dihydro-α-bisabolen-7-yl]urea (1), (6R,7S)-7-amino-7,8-dihydro-α-bisabolene (2), (1R,6S,7S,10S)-10-isothiocyanato-4-amorphene (3), axinisothiocyanate J (4), and axinysterol (5) from the marine sponge Axinyssa sp. collected at Iriomote Island. Of these, compound 1 was the most potent inhibitor of PTP1B activity (IC50=1.9μM) without cytotoxicity at 50μM in two human cancer cell lines, hepatoma Huh-7 and bladder carcinoma EJ-1 cells. Compound 1 also moderately enhanced the insulin-stimulated phosphorylation levels of Akt in Huh-7 cells. Therefore, compound 1 has potential as a new type of anti-diabetic drug candidate possessing PTP1B inhibitory activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Tripeptide inhibitors of Yersinia protein-tyrosine phosphatase.

    PubMed

    Lee, Kyeong; Gao, Yang; Yao, Zhu-Jun; Phan, Jason; Wu, Li; Liang, Jiao; Waugh, David S; Zhang, Zhong-Yin; Burke, Terrence R

    2003-08-04

    The protein-tyrosine phosphatase (PTP) 'YopH' is a virulence factor of Yersinia pestis, the causative agent of plague. Potential use of Yersinia as a bioterrorism agent renders YopH inhibitors of therapeutic importance. Previously, we had examined the inhibitory potencies of a variety of phosphotyrosyl (pTyr) mimetics against the human PTP1B enzyme by displaying them in the EGFR-derived hexapeptide sequence, 'Ac-Asp-Ala-Asp-Glu-Xxx-Leu-amide', where Xxx=pTyr mimetic. The poor inhibitory potencies of certain of these pTyr mimetics were attributed to restricted orientation within the PTP1B catalytic pocket incurred by extensive peripheral interaction of the hexapeptide platform. Utilizing the smaller tripeptide platform, 'Fmoc-Glu-Xxx-Leu-amide' we demonstrate herein that several of the low affinity hexapeptide-expressed pTyr mimetics exhibit high PTP1B affinity within the context of the tripeptide platform. Of particular note, the mono-anionic 4-(carboxydifluoromethyl)Phe residue exhibits affinity equivalent to the di-anionic F(2)Pmp residue, which had previously been among the most potent PTP-binding motifs. Against YopH, it was found that all tripeptides having Glu residues with an unprotected side chain carboxyl were inactive. Alternatively, in their Glu-OBn ester forms, several of the tripeptides exhibited good YopH affinity with the mono-anionic peptide, Fmoc-Glu(OBn)-Xxx-Leu-amide, where Xxx=4-(carboxymethyloxy)Phe providing an IC(50) value of 2.8 microM. One concern with such inhibitors is that they may potentially function by non-specific mechanisms. Studies with representative inhibitors, while failing to provide evidence of a non-specific promiscuous mode of inhibition, did indicate that non-classical inhibition may be involved.

  5. A Cross-Species Study of PI3K Protein-Protein Interactions Reveals the Direct Interaction of P85 and SHP2

    NASA Astrophysics Data System (ADS)

    Breitkopf, Susanne B.; Yang, Xuemei; Begley, Michael J.; Kulkarni, Meghana; Chiu, Yu-Hsin; Turke, Alexa B.; Lauriol, Jessica; Yuan, Min; Qi, Jie; Engelman, Jeffrey A.; Hong, Pengyu; Kontaridis, Maria I.; Cantley, Lewis C.; Perrimon, Norbert; Asara, John M.

    2016-02-01

    Using a series of immunoprecipitation (IP) - tandem mass spectrometry (LC-MS/MS) experiments and reciprocal BLAST, we conducted a fly-human cross-species comparison of the phosphoinositide-3-kinase (PI3K) interactome in a drosophila S2R+ cell line and several NSCLC and human multiple myeloma cell lines to identify conserved interacting proteins to PI3K, a critical signaling regulator of the AKT pathway. Using H929 human cancer cells and drosophila S2R+ cells, our data revealed an unexpected direct binding of Corkscrew, the drosophila ortholog of the non-receptor protein tyrosine phosphatase type II (SHP2) to the Pi3k21B (p60) regulatory subunit of PI3K (p50/p85 human ortholog) but no association with Pi3k92e, the human ortholog of the p110 catalytic subunit. The p85-SHP2 association was validated in human cell lines, and formed a ternary regulatory complex with GRB2-associated-binding protein 2 (GAB2). Validation experiments with knockdown of GAB2 and Far-Western blots proved the direct interaction of SHP2 with p85, independent of adaptor proteins and transfected FLAG-p85 provided evidence that SHP2 binding on p85 occurred on the SH2 domains. A disruption of the SHP2-p85 complex took place after insulin/IGF1 stimulation or imatinib treatment, suggesting that the direct SHP2-p85 interaction was both independent of AKT activation and positively regulates the ERK signaling pathway.

  6. Molecular Genetic Studies of Bone Mechanical Strain and of Pedigrees with Very High Bone Density

    DTIC Science & Technology

    2006-11-01

    PTP1B . Recruitment of STAT3 to the phosphorylated tyr(pY)-1138 residue leads to its rapid phosphorylation, dimerization, and translocation to the... PTP1B is a critical downstream negative regulator of the Lepr pathway. Deletion of PTP1B gene enhanced leptin sensitivity in mice (11). PTP1B ...interactions between the Lepr and the integrin signaling pathways. Specifically, the recruitment of SHP2 and/or PTP1B to integrin is essential for the

  7. Structural, Functional, and Clinical Characterization of a Novel PTPN11 Mutation Cluster Underlying Noonan Syndrome.

    PubMed

    Pannone, Luca; Bocchinfuso, Gianfranco; Flex, Elisabetta; Rossi, Cesare; Baldassarre, Giuseppina; Lissewski, Christina; Pantaleoni, Francesca; Consoli, Federica; Lepri, Francesca; Magliozzi, Monia; Anselmi, Massimiliano; Delle Vigne, Silvia; Sorge, Giovanni; Karaer, Kadri; Cuturilo, Goran; Sartorio, Alessandro; Tinschert, Sigrid; Accadia, Maria; Digilio, Maria C; Zampino, Giuseppe; De Luca, Alessandro; Cavé, Hélène; Zenker, Martin; Gelb, Bruce D; Dallapiccola, Bruno; Stella, Lorenzo; Ferrero, Giovanni B; Martinelli, Simone; Tartaglia, Marco

    2017-04-01

    Germline mutations in PTPN11, the gene encoding the Src-homology 2 (SH2) domain-containing protein tyrosine phosphatase (SHP2), cause Noonan syndrome (NS), a relatively common, clinically variable, multisystem disorder. Here, we report on the identification of five different PTPN11 missense changes affecting residues Leu 261 , Leu 262 , and Arg 265 in 16 unrelated individuals with clinical diagnosis of NS or with features suggestive for this disorder, specifying a novel disease-causing mutation cluster. Expression of the mutant proteins in HEK293T cells documented their activating role on MAPK signaling. Structural data predicted a gain-of-function role of substitutions at residues Leu 262 and Arg 265 exerted by disruption of the N-SH2/PTP autoinhibitory interaction. Molecular dynamics simulations suggested a more complex behavior for changes affecting Leu 261 , with possible impact on SHP2's catalytic activity/selectivity and proper interaction of the PTP domain with the regulatory SH2 domains. Consistent with that, biochemical data indicated that substitutions at codons 262 and 265 increased the catalytic activity of the phosphatase, while those affecting codon 261 were only moderately activating but impacted substrate specificity. Remarkably, these mutations underlie a relatively mild form of NS characterized by low prevalence of cardiac defects, short stature, and cognitive and behavioral issues, as well as less evident typical facial features. © 2017 WILEY PERIODICALS, INC.

  8. Dissection of the BCR-ABL signaling network using highly specific monobody inhibitors to the SHP2 SH2 domains.

    PubMed

    Sha, Fern; Gencer, Emel Basak; Georgeon, Sandrine; Koide, Akiko; Yasui, Norihisa; Koide, Shohei; Hantschel, Oliver

    2013-09-10

    The dysregulated tyrosine kinase BCR-ABL causes chronic myelogenous leukemia in humans and forms a large multiprotein complex that includes the Src-homology 2 (SH2) domain-containing phosphatase 2 (SHP2). The expression of SHP2 is necessary for BCR-ABL-dependent oncogenic transformation, but the precise signaling mechanisms of SHP2 are not well understood. We have developed binding proteins, termed monobodies, for the N- and C-terminal SH2 domains of SHP2. Intracellular expression followed by interactome analysis showed that the monobodies are essentially monospecific to SHP2. Two crystal structures revealed that the monobodies occupy the phosphopeptide-binding sites of the SH2 domains and thus can serve as competitors of SH2-phosphotyrosine interactions. Surprisingly, the segments of both monobodies that bind to the peptide-binding grooves run in the opposite direction to that of canonical phosphotyrosine peptides, which may contribute to their exquisite specificity. When expressed in cells, monobodies targeting the N-SH2 domain disrupted the interaction of SHP2 with its upstream activator, the Grb2-associated binder 2 adaptor protein, suggesting decoupling of SHP2 from the BCR-ABL protein complex. Inhibition of either N-SH2 or C-SH2 was sufficient to inhibit two tyrosine phosphorylation events that are critical for SHP2 catalytic activity and to block ERK activation. In contrast, targeting the N-SH2 or C-SH2 revealed distinct roles of the two SH2 domains in downstream signaling, such as the phosphorylation of paxillin and signal transducer and activator of transcription 5. Our results delineate a hierarchy of function for the SH2 domains of SHP2 and validate monobodies as potent and specific antagonists of protein-protein interactions in cancer cells.

  9. Shp2 Associates with and Enhances Nephrin Tyrosine Phosphorylation and Is Necessary for Foot Process Spreading in Mouse Models of Podocyte Injury.

    PubMed

    Verma, Rakesh; Venkatareddy, Madhusudan; Kalinowski, Anne; Patel, Sanjeevkumar R; Salant, David J; Garg, Puneet

    2016-02-15

    In most forms of glomerular diseases, loss of size selectivity by the kidney filtration barrier is associated with changes in the morphology of podocytes. The kidney filtration barrier is comprised of the endothelial lining, the glomerular basement membrane, and the podocyte intercellular junction, or slit diaphragm. The cell adhesion proteins nephrin and neph1 localize to the slit diaphragm and transduce signals in a Src family kinase Fyn-mediated tyrosine phosphorylation-dependent manner. Studies in cell culture suggest nephrin phosphorylation-dependent signaling events are primarily involved in regulation of actin dynamics and lamellipodium formation. Nephrin phosphorylation is a proximal event that occurs both during development and following podocyte injury. We hypothesized that abrogation of nephrin phosphorylation following injury would prevent nephrin-dependent actin remodeling and foot process morphological changes. Utilizing a biased screening approach, we found nonreceptor Src homology 2 (sh2) domain-containing phosphatase Shp2 to be associated with phosphorylated nephrin. We observed an increase in nephrin tyrosine phosphorylation in the presence of Shp2 in cell culture studies. In the human glomerulopathies minimal-change nephrosis and membranous nephropathy, there is an increase in Shp2 phosphorylation, a marker of increased Shp2 activity. Mouse podocytes lacking Shp2 do not develop foot process spreading when subjected to podocyte injury in vivo using protamine sulfate or nephrotoxic serum (NTS). In the NTS model, we observed a lack of foot process spreading in mouse podocytes with Shp2 deleted and smaller amounts of proteinuria. Taken together, these results suggest that Shp2-dependent signaling events are necessary for changes in foot process structure and function following injury. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  10. Shp2 Associates with and Enhances Nephrin Tyrosine Phosphorylation and Is Necessary for Foot Process Spreading in Mouse Models of Podocyte Injury

    PubMed Central

    Verma, Rakesh; Venkatareddy, Madhusudan; Kalinowski, Anne; Patel, Sanjeevkumar R.; Salant, David J.

    2015-01-01

    In most forms of glomerular diseases, loss of size selectivity by the kidney filtration barrier is associated with changes in the morphology of podocytes. The kidney filtration barrier is comprised of the endothelial lining, the glomerular basement membrane, and the podocyte intercellular junction, or slit diaphragm. The cell adhesion proteins nephrin and neph1 localize to the slit diaphragm and transduce signals in a Src family kinase Fyn-mediated tyrosine phosphorylation-dependent manner. Studies in cell culture suggest nephrin phosphorylation-dependent signaling events are primarily involved in regulation of actin dynamics and lamellipodium formation. Nephrin phosphorylation is a proximal event that occurs both during development and following podocyte injury. We hypothesized that abrogation of nephrin phosphorylation following injury would prevent nephrin-dependent actin remodeling and foot process morphological changes. Utilizing a biased screening approach, we found nonreceptor Src homology 2 (sh2) domain-containing phosphatase Shp2 to be associated with phosphorylated nephrin. We observed an increase in nephrin tyrosine phosphorylation in the presence of Shp2 in cell culture studies. In the human glomerulopathies minimal-change nephrosis and membranous nephropathy, there is an increase in Shp2 phosphorylation, a marker of increased Shp2 activity. Mouse podocytes lacking Shp2 do not develop foot process spreading when subjected to podocyte injury in vivo using protamine sulfate or nephrotoxic serum (NTS). In the NTS model, we observed a lack of foot process spreading in mouse podocytes with Shp2 deleted and smaller amounts of proteinuria. Taken together, these results suggest that Shp2-dependent signaling events are necessary for changes in foot process structure and function following injury. PMID:26644409

  11. The PTPN11 loss-of-function mutation Q510E-Shp2 causes hypertrophic cardiomyopathy by dysregulating mTOR signaling.

    PubMed

    Schramm, Christine; Fine, Deborah M; Edwards, Michelle A; Reeb, Ashley N; Krenz, Maike

    2012-01-01

    The identification of mutations in PTPN11 (encoding the protein tyrosine phosphatase Shp2) in families with congenital heart disease has facilitated mechanistic studies of various cardiovascular defects. However, the roles of normal and mutant Shp2 in the developing heart are still poorly understood. Furthermore, it remains unclear how Shp2 loss-of-function (LOF) mutations cause LEOPARD Syndrome (also termed Noonan Syndrome with multiple lentigines), which is characterized by congenital heart defects such as pulmonary valve stenosis and hypertrophic cardiomyopathy (HCM). In normal hearts, Shp2 controls cardiomyocyte size by regulating signaling through protein kinase B (Akt) and mammalian target of rapamycin (mTOR). We hypothesized that Shp2 LOF mutations dysregulate this pathway, resulting in HCM. For our studies, we chose the Shp2 mutation Q510E, a dominant-negative LOF mutation associated with severe early onset HCM. Newborn mice with cardiomyocyte-specific overexpression of Q510E-Shp2 starting before birth displayed increased cardiomyocyte sizes, heart-to-body weight ratios, interventricular septum thickness, and cardiomyocyte disarray. In 3-mo-old hearts, interstitial fibrosis was detected. Echocardiographically, ventricular walls were thickened and contractile function was depressed. In ventricular tissue samples, signaling through Akt/mTOR was hyperactivated, indicating that the presence of Q510E-Shp2 led to upregulation of this pathway. Importantly, rapamycin treatment started shortly after birth rescued the Q510E-Shp2-induced phenotype in vivo. If rapamycin was started at 6 wk of age, HCM was also ameliorated. We also generated a second mouse model in which cardiomyocyte-specific Q510E-Shp2 overexpression started after birth. In contrast to the first model, these mice did not develop HCM. In summary, our studies establish a role for mTOR signaling in HCM caused by Q510E-Shp2. Q510E-Shp2 overexpression in the cardiomyocyte population alone was sufficient to

  12. Repeat region of Brugia malayi sheath protein (Shp-1) carries Dominant B epitopes recognized in filarial endemic population.

    PubMed

    Jawaharlal, Jeya Prita Parasurama; Madhumathi, Jayaprakasam; Prince, Rajaiah Prabhu; Kaliraj, Perumal

    2014-09-01

    Transmission of lymphatic filariasis is mediated through microfilariae (L1 stage of the parasite) which is encased in an eggshell called sheath. The sheath protein Shp-1 stabilizes the structure due to the unique repeat region with Met-Pro-Pro-Gln-Gly sequences. Microfilarial proteins could be used as transmission blocking vaccines. Since the repeat region of Shp-1 was predicted to carry putative B epitopes, this region was used to analyze its reactivity with clinical samples towards construction of peptide vaccine. In silico analysis of Shp-1 showed the presence of B epitopes in the region 49-107. The polypeptide epitopic region Shp-149-107 was cloned and expressed in Escherichia coli. Antibody reactivity of the Shp-149-107 construct was evaluated in filarial endemic population by ELISA. Putatively immune endemic normals (EN) showed significantly high reactivity (P < 0.05) when compared to all the other categories. Antibody reactivity of Shp-1 repeat region was similar to that of whole protein proving that this region carries B epitopes responsible for its humoral response in humans. Thus this can be employed for inducing anti-microfilarial immunity in the infected population that may lead to reduction in transmission intensity and also it could be used along with other epitopes from different stages of the parasite in order to manage the disease effectively.

  13. Shp2-Dependent ERK Signaling Is Essential for Induction of Bergmann Glia and Foliation of the Cerebellum

    PubMed Central

    Li, Kairong; Leung, Alan W.; Guo, Qiuxia; Yang, Wentian

    2014-01-01

    Folding of the cortex and the persistence of radial glia (RG)-like cells called Bergmann glia (BG) are hallmarks of the mammalian cerebellum. Similar to basal RG in the embryonic neocortex, BG maintain only basal processes and continuously express neural stem cell markers. Past studies had focused on the function of BG in granule cell migration and how granule cell progenitors (GCP) regulate cerebellar foliation. The molecular control of BG generation and its role in cerebellar foliation are less understood. Here, we have analyzed the function of the protein tyrosine phosphatase Shp2 in mice by deleting its gene Ptpn11 in the entire cerebellum or selectively in the GCP lineage. Deleting Ptpn11 in the entire cerebellum by En1-cre blocks transformation of RG into BG but preserves other major cerebellar cell types. In the absence of BG, inward invagination of GCP persists but is uncoupled from the folding of the Purkinje cell layer and the basement membrane, leading to disorganized lamination and an absence of cerebellar folia. In contrast, removing Ptpn11 in the GCP lineage by Atoh1-cre has no effect on cerebellar development, indicating that Shp2 is not cell autonomously required in GCP. Furthermore, we demonstrate that Ptpn11 interacts with Fgf8 and is essential for ERK activation in RG and nascent BG. Finally, expressing constitutively active MEK1 rescues BG formation and cerebellar foliation in Shp2-deficient cerebella. Our results demonstrate an essential role of Shp2 in BG specification via fibroblast growth factor/extracellular signal-regulated protein kinase signaling, and reveal a crucial function of BG in organizing cerebellar foliation. PMID:24431450

  14. Novel mesenchymal and haematopoietic cell isoforms of the SHP-2 docking receptor, PZR: identification, molecular cloning and effects on cell migration.

    PubMed Central

    Zannettino, Andrew C W; Roubelakis, Maria; Welldon, Katie J; Jackson, Denise E; Simmons, Paul J; Bendall, Linda J; Henniker, Anthony; Harrison, Kate L; Niutta, Silvana; Bradstock, Kenneth F; Watt, Suzanne M

    2003-01-01

    SHP-2 (Src homology phosphatase type-2) is essential for haematopoietic skeletal and vascular development. Thus the identification of its binding partners is critically important. In the present study, we describe a unique monoclonal antibody, WM78, which interacts with PZR, a SHP-2 binding partner. Furthermore, we identify two novel isoforms of PZR, PZRa and PZRb, derived by differential splicing from a single gene transcription unit on human chromosome 1q24. All are type 1 transmembrane glycoproteins with identical extracellular and transmembrane domains, but differ in their cytoplasmic tails. The PZR intracellular domain contains two SHP-2 binding immunoreceptor tyrosine-based inhibitory motifs (VIY(246)AQL and VVY(263)ADI) which are not present in PZRa and PZRb. Using the WM78 monoclonal antibody, which recognizes the common extracellular domain of the PZR isoforms, we demonstrate that the PZR molecules are expressed on mesenchymal and haematopoietic cells, being present on the majority of CD34(+)CD38(+) and early clonogenic progenitors, and at lower levels on CD34(+)CD38(-) cells and the hierarchically more primitive pre-colony forming units. Interestingly, we show by reverse transcriptase-PCR that the PZR isoforms are differentially expressed in haematopoietic, endothelial and mesenchymal cells. Both PZR and PZRb are present in CD133(+) precursors and endothelial cells, PZRb predominates in mesenchymal and committed myelomonocytic progenitor cells, and all three isoforms occur in erythroid precursor cell lines. Importantly, using SHP-2 mutant (Delta 46-110) and SHP-2 rescue of embryonic fibroblasts stably expressing the PZR isoforms, we demonstrate for the first time that PZR, but not PZRa or PZRb, facilitates fibronectin- dependent migration of cells expressing a competent SHP-2 molecule. These observations will be instrumental in determining the mechanisms whereby PZR isoforms regulate cell motility. PMID:12410637

  15. PTP-PEST targets a novel tyrosine site in p120 catenin to control epithelial cell motility and Rho GTPase activity

    PubMed Central

    Espejo, Rosario; Jeng, Yowjiun; Paulucci-Holthauzen, Adriana; Rengifo-Cam, William; Honkus, Krysta; Anastasiadis, Panos Z.; Sastry, Sarita K.

    2014-01-01

    ABSTRACT Tyrosine phosphorylation is implicated in regulating the adherens junction protein, p120 catenin (p120), however, the mechanisms are not well defined. Here, we show, using substrate trapping, that p120 is a direct target of the protein tyrosine phosphatase, PTP-PEST, in epithelial cells. Stable shRNA knockdown of PTP-PEST in colon carcinoma cells results in an increased cytosolic pool of p120 concomitant with its enhanced tyrosine phosphorylation and decreased association with E-cadherin. Consistent with this, PTP-PEST knockdown cells exhibit increased motility, enhanced Rac1 and decreased RhoA activity on a collagen substrate. Furthermore, p120 localization is enhanced at actin-rich protrusions and lamellipodia and has an increased association with the guanine nucleotide exchange factor, VAV2, and cortactin. Exchange factor activity of VAV2 is enhanced by PTP-PEST knockdown whereas overexpression of a VAV2 C-terminal domain or DH domain mutant blocks cell motility. Analysis of point mutations identified tyrosine 335 in the N-terminal domain of p120 as the site of PTP-PEST dephosphorylation. A Y335F mutant of p120 failed to induce the ‘p120 phenotype’, interact with VAV2, stimulate cell motility or activate Rac1. Together, these data suggest that PTP-PEST affects epithelial cell motility by controlling the distribution and phosphorylation of p120 and its availability to control Rho GTPase activity. PMID:24284071

  16. Phosphorylation of tyrosine 720 in the platelet-derived growth factor alpha receptor is required for binding of Grb2 and SHP-2 but not for activation of Ras or cell proliferation.

    PubMed Central

    Bazenet, C E; Gelderloos, J A; Kazlauskas, A

    1996-01-01

    Following binding of platelet-derived growth factor (PDGF), the PDGF alpha receptor (alphaPDGFR) becomes tyrosine phosphorylated and associates with a number of signal transduction molecules, including phospholipase Cgamma-1 (PLCgamma-1), phosphatidylinositol 3-kinase (PI3K), the phosphotyrosine phosphatase SHP-2, Grb2, and Src. Here, we present data identifying a novel phosphorylation site in the kinase insert domain of the alphaPDGFR at tyrosine (Y) 720. We replaced this residue with phenylalanine and expressed the mutated receptor (F720) in Patch fibroblasts that do not express the alphaPDGFR. Characterization of the F720 mutant indicated that binding of two proteins, SHP-2 and Grb2, was severely impaired, whereas PLCgamma-1 and PI3K associated to wild-type levels. In addition, mutating Y720 to phenylalanine dramatically reduced PDGF-dependent tyrosine phosphorylation of SHP-2. Since Y720 was required for recruitment of two proteins, we investigated the mechanism by which these two proteins associated with the alphaPDGFR. SHP-2 bound the alphaPDGFR directly, whereas Grb2 associated indirectly, most probably via SHP-2, as Grb2 and SHP-2 coimmunoprecipitated when SHP-2 was tyrosine phosphorylated. We also compared the ability of the wild-type and F720 alphaPDGFRs to mediate a number of downstream events. Preventing the alphaPDGFR from recruiting SHP-2 and Grb2 did not compromise PDGF-AA-induced activation of Ras, initiation of DNA synthesis, or growth of cells in soft agar. We conclude that phosphorylation of the alphaPDGFR at Y720 is required for association of SHP-2 and Grb2 and tyrosine phosphorylation of SHP-2; however, these events are not required for the alphaPDGFR to activate Ras or initiate a proliferative response. In addition, these findings reveal that while SHP-2 binds to both of the receptors, it binds in different locations: to the carboxy terminus of the betaPDGFR but to the kinase insert of the alphaPDGFR. PMID:8943348

  17. A food-derived synergist of NGF signaling: identification of protein tyrosine phosphatase 1B as a key regulator of NGF receptor-initiated signal transduction.

    PubMed

    Shibata, Takahiro; Nakahara, Hiroko; Kita, Narumi; Matsubara, Yui; Han, Chunguang; Morimitsu, Yasujiro; Iwamoto, Noriko; Kumagai, Yoshito; Nishida, Motohiro; Kurose, Hitoshi; Aoki, Naohito; Ojika, Makoto; Uchida, Koji

    2008-12-01

    Neurotrophins, such as the nerve growth factor (NGF), play an essential role in the growth, development, survival and functional maintenance of neurons in the central and peripheral systems. They also prevent neuronal cell death under various stressful conditions, such as ischemia and neurodegenerative disorders. NGF induces cell differentiation and neurite outgrowth by binding with and activating the NGF receptor tyrosine kinase followed by activation of a variety of signaling cascades. We have investigated the NGF-dependent neuritogenesis enhancer potential of a food-derived small molecule contained in Brassica vegetables and identified the protein tyrosine phosphatase (PTP) 1B as a key regulator of the NGF receptor-initiated signal transduction. Based on an extensive screening of Brassica vegetable extracts for the neuritogenic-promoting activity in the rat pheochromocytoma cell line PC12, we found the Japanese horseradish, wasabi (Wasabia japonica, syn. Eutrema wasabi), as the richest source and identified 6-methylsulfinylhexyl isothiocyanate (6-HITC), an analogue of sulforaphane isolated from broccoli, as one of the major neuritogenic enhancers in the wasabi. 6-HITC strongly enhanced the neurite outgrowth and neurofilament expression elicited by a low-concentration of NGF that alone was insufficient to induce neuronal differentiation. 6-HITC also facilitated the sustained-phosphorylation of the extracellular signal-regulated kinase and the autophosphorylation of the NGF receptor TrkA. It was found that PTP1B act as a phosphatase capable of dephosphorylating Tyr-490 of TrkA and was inactivated by 6-HITC in a redox-dependent manner. The identification of PTP1B as a regulator of NGF signaling may provide new clues about the chemoprotective potential of food components, such as isothiocyanates.

  18. Sorafenib Action in Hepatitis B Virus X-Activated Oncogenic Androgen Pathway in Liver through SHP-1.

    PubMed

    Wang, Sheng-Han; Yeh, Shiou-Hwei; Shiau, Chung-Wai; Chen, Kuen-Feng; Lin, Wei-Hsiang; Tsai, Ting-Fen; Teng, Yuan-Chi; Chen, Ding-Shinn; Chen, Pei-Jer

    2015-10-01

    Hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) shows a higher incidence in men, mainly because of hepatitis B X (HBx)-mediated enhancement of androgen receptor (AR) activity. We aimed to examine this pathway in hepatocarcinogenesis and to identify drug(s) specifically blocking this carcinogenic event in the liver. HBx transgenic mice that spontaneously develop HCC (n = 28-34 per group) were used, either by knockout of hepatic AR or by castration. Efficacy of several HCC-targeted drugs in suppressing HBx-induced AR activity was evaluated, and cellular factors mediating suppression were investigated in cultured cells. Tissue specificity of the candidate drug was validated using mouse tissues. Data were analyzed with Chi-square and Student's t tests. All statistical tests were two-sided. The androgen pathway was shown to be important in early stage hepatocarcinogenesis of HBx transgenic mice. The tumor incidence was decreased from 80% to 32% by AR knockout (P < .001) and from 90% to 25% by early castration (P < .001). Sorafenib markedly inhibited the HBx-enhanced AR activity through activating the SHP-1 phosphatase, which antagonized the activation of Akt/GSK3β and c-Src by HBx. Moreover, SHP-1 protein level was much higher in the liver than in testis, which enabled sorafenib to inhibit aberrant AR activity in the HBx-expressing liver, while not affecting the physiological AR function in normal liver or testis. The androgen pathway may be a druggable target for the chemoprevention of HBV-related HCC, and sorafenib might be used as a tissue- and disease-specific regimen for the chemoprevention of HBV-related HCC. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Protein tyrosine phosphatases as wardens of STAT signaling

    PubMed Central

    Böhmer, Frank-D; Friedrich, Karlheinz

    2014-01-01

    Signaling by signal transducers and activators of transcription (STATs) is controlled at many levels of the signaling cascade. Protein tyrosine phosphatases (PTPs) regulate STAT activation at several layers, including direct pSTAT dephosphorylation in both cytoplasm and nucleus. Despite the importance of this regulation mode, many aspects are still incompletely understood, e.g., the identity of PTPs acting on certain members of the STAT family. After a brief introduction into the STAT and PTP families, we discuss here the current knowledge on PTP mediated regulation of STAT activity, focusing on the interaction of individual STATs with specific PTPs. Finally, we highlight open questions and propose important tasks of future research. PMID:24778927

  20. Targeting SHP2 for EGFR inhibitor resistant non-small cell lung carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Jie; Zeng, Li-Fan; Shen, Weihua

    Highlights: •SHP2 is required for EGFR inhibitor resistant NSCLC H1975 cell proliferation. •SHP2 inhibitor blocks EGF-stimulated ERK1/2 activation and proliferation. •SHP2 inhibitor exhibits marked anti-tumor activity in H1975 xenograft mice. •SHP2 inhibitor synergizes with PI3K inhibitor in suppressing cell growth. •Targeting SHP2 represents a novel strategy for EGFR inhibitor resistant NSCLCs. -- Abstract: Targeted therapy with inhibitors of epidermal growth factor receptor (EGFR) has produced a noticeable benefit to non-small cell lung cancer (NSCLC) patients whose tumors carry activating mutations (e.g. L858R) in EGFR. Unfortunately, these patients develop drug resistance after treatment, due to acquired secondary gatekeeper mutations in EGFRmore » (e.g. T790M). Given the critical role of SHP2 in growth factor receptor signaling, we sought to determine whether targeting SHP2 could have therapeutic value for EGFR inhibitor resistant NSCLC. We show that SHP2 is required for EGF-stimulated ERK1/2 phosphorylation and proliferation in EGFR inhibitor resistant NSCLC cell line H1975, which harbors the EGFR T790M/L858R double-mutant. We demonstrate that treatment of H1975 cells with II-B08, a specific SHP2 inhibitor, phenocopies the observed growth inhibition and reduced ERK1/2 activation seen in cells treated with SHP2 siRNA. Importantly, we also find that II-B08 exhibits marked anti-tumor activity in H1975 xenograft mice. Finally, we observe that combined inhibition of SHP2 and PI3K impairs both the ERK1/2 and PI3K/AKT signaling axes and produces significantly greater effects on repressing H1975 cell growth than inhibition of either protein individually. Collectively, these results suggest that targeting SHP2 may represent an effective strategy for treatment of EGFR inhibitor resistant NSCLCs.« less

  1. Proteases and phosphatases during Leishmania-macrophage interaction: paving the road for pathogenesis.

    PubMed

    Gómez, María Adelaida; Olivier, Martin

    2010-01-01

    The outcome of Leishmania infection depends both on host and pathogen factors. Macrophages, the specialized host cells for uptake and intracellular development of Leishmania, play a central role in the control of infection. Leishmania has evolved strategies to downregulate host cell functions, largely mediated by the parasite-induced activation of macrophage protein tyrosine phosphatases (PTPs). We have recently identified PTP1B and TCPTP as two additional PTPs engaged upon Leishmania infection and have unraveled an intimate interaction between the Leishmania surface protease GP63 and host PTPs, which mediates a mechanism of cleavage-dependent PTP activation. Here we discuss new perspectives for GP63-mediated parasite virulence and propose putative mechanisms of GP63 internalization into host macrophages and access to intracellular substrates.

  2. An expanded allosteric network in PTP1B by multitemperature crystallography, fragment screening, and covalent tethering.

    PubMed

    Keedy, Daniel A; Hill, Zachary B; Biel, Justin T; Kang, Emily; Rettenmaier, T Justin; Brandao-Neto, Jose; Pearce, Nicholas M; von Delft, Frank; Wells, James A; Fraser, James S

    2018-06-07

    Allostery is an inherent feature of proteins, but it remains challenging to reveal the mechanisms by which allosteric signals propagate. A clearer understanding of this intrinsic circuitry would afford new opportunities to modulate protein function. Here we have identified allosteric sites in protein tyrosine phosphatase 1B (PTP1B) by combining multiple-temperature X-ray crystallography experiments and structure determination from hundreds of individual small-molecule fragment soaks. New modeling approaches reveal 'hidden' low-occupancy conformational states for protein and ligands. Our results converge on allosteric sites that are conformationally coupled to the active-site WPD loop and are hotspots for fragment binding. Targeting one of these sites with covalently tethered molecules or mutations allosterically inhibits enzyme activity. Overall, this work demonstrates how the ensemble nature of macromolecular structure, revealed here by multitemperature crystallography, can elucidate allosteric mechanisms and open new doors for long-range control of protein function. © 2018, Keedy et al.

  3. Protein Tyrosine Phosphatase 1B Inhibitors from the Roots of Cudrania tricuspidata.

    PubMed

    Quang, Tran Hong; Ngan, Nguyen Thi Thanh; Yoon, Chi-Su; Cho, Kwang-Ho; Kang, Dae Gill; Lee, Ho Sub; Kim, Youn-Chul; Oh, Hyuncheol

    2015-06-17

    A chemical investigation of the methanol extract from the roots of Cudrania tricuspidata resulted in the isolation of 16 compounds, including prenylated xanthones 1-9 and flavonoids 10-16. Their structures were identified by NMR spectroscopy and mass spectrometry and comparisons with published data. Compounds 1-9 and 13-16 significantly inhibited PTP1B activity in a dose dependent manner, with IC50 values ranging from 1.9-13.6 μM. Prenylated xanthones showed stronger PTP1B inhibitory effects than the flavonoids, suggesting that they may be promising targets for the future discovery of novel PTP1B inhibitors. Furthermore, kinetic analyses indicated that compounds 1 and 13 inhibited PTP1B in a noncompetitive manner; therefore, they may be potential lead compounds in the development of anti-obesity and -diabetic agents.

  4. Co-clustering of Fcgamma and B cell receptors induces dephosphorylation of the Grb2-associated binder 1 docking protein.

    PubMed

    Koncz, G; Tóth, G K; Bökönyi, G; Kéri, G; Pecht, I; Medgyesi, D; Gergely, J; Sármay, G

    2001-07-01

    The immunoreceptor tyrosine-based inhibitory motif (ITIM) of human type IIb Fcgamma receptor (FcgammaRIIb) is phosphorylated on its tyrosine upon co-clustering with the B cell receptor (BCR). The phosphorylated ITIM (p-ITIM) binds to the SH2 domains of polyphosphoinositol 5-phosphatase (SHIP) and the tyrosine phosphatase, SHP-2. We investigated the involvement of the molecular complex composed of the phosphorylated SHIP and FcgammaRIIb in the activation of SHP-2. As a model compound, we synthesized a bisphosphopeptide, combining the sequences of p-ITIM and the N-terminal tyrosine phosphorylated motif of SHIP with a flexible spacer. This compound bound to the recombinant SH2 domains of SHP-2 with high affinity and activated the phosphatase in an in vitro assay. These data suggest that the phosphorylated FcgammaRII-SHIP complexes formed in the intact cells may also activate SHP-2. Grb2-associated binder 1 (Gab1) is a multisite docking protein, which becomes tyrosine-phosphorylated in response to various types of signaling, including BCR. In turn it binds to the SH2 domains of SHP-2, SHIP and the p85 subunit of phosphatidyl inositol 3-kinase (PtdIns3-K) and may regulate their activity. Gab1 is a potential substrate of SHP-2, thus its binding to FcgammaRIIb may modify the Gab1-bound signaling complex. We show here that Gab1 is part of the multiprotein complex assembled by FcgammaRIIb upon its co-clustering with BCR. Gab1 may recruit SH2 domain-containing molecules to the phosphorylated FcgammaRIIb. SHP-2, activated upon the binding to FcgammaRIIb-SHIP complex, partially dephosphorylates Gab1, resulting in the release of PtdIns3-K and ultimately in the inhibition of downstream activation pathways in BCR/FcgammaRIIb co-aggregated cells.

  5. Maintenance of murine platelet homeostasis by the kinase Csk and phosphatase CD148

    PubMed Central

    Di Nunzio, Giada; Smith, Christopher W.; Al Ghaithi, Rashid; van Geffen, Johanna P.; Heising, Silke; Tullemans, Bibian M. E.; Tee, Louise; Heemskerk, Johan W. M.; Tarakhovsky, Alexander

    2018-01-01

    Src family kinases (SFKs) coordinate the initiating and propagating activation signals in platelets, but it remains unclear how they are regulated. Here, we show that ablation of C-terminal Src kinase (Csk) and receptor-like protein tyrosine-phosphatase CD148 in mice results in a dramatic increase in platelet SFK activity, demonstrating that these proteins are essential regulators of platelet reactivity. Paradoxically, Csk/CD148-deficient mice exhibit reduced in vivo and ex vivo thrombus formation and increased bleeding following injury rather than a prothrombotic phenotype. This is a consequence of multiple negative feedback mechanisms, including downregulation of the immunoreceptor tyrosine-based activation motif (ITAM)– and hemi-ITAM–containing receptors glycoprotein VI (GPVI)-Fc receptor (FcR) γ-chain and CLEC-2, respectively and upregulation of the immunoreceptor tyrosine-based inhibition motif (ITIM)–containing receptor G6b-B and its interaction with the tyrosine phosphatases Shp1 and Shp2. Results from an analog-sensitive Csk mouse model demonstrate the unconventional role of SFKs in activating ITIM signaling. This study establishes Csk and CD148 as critical molecular switches controlling the thrombotic and hemostatic capacity of platelets and reveals cell-intrinsic mechanisms that prevent pathological thrombosis from occurring. PMID:29301754

  6. Visualizing Active-Site Dynamics in Single Crystals of HePTP: Opening of the WPD Loop Involves Coordinated Movement of the E Loop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D Critton; L Tautz; R Page

    2011-12-31

    Phosphotyrosine hydrolysis by protein tyrosine phosphatases (PTPs) involves substrate binding by the PTP loop and closure over the active site by the WPD loop. The E loop, located immediately adjacent to the PTP and WPD loops, is conserved among human PTPs in both sequence and structure, yet the role of this loop in substrate binding and catalysis is comparatively unexplored. Hematopoietic PTP (HePTP) is a member of the kinase interaction motif (KIM) PTP family. Compared to other PTPs, KIM-PTPs have E loops that are unique in both sequence and structure. In order to understand the role of the E loopmore » in the transition between the closed state and the open state of HePTP, we identified a novel crystal form of HePTP that allowed the closed-state-to-open-state transition to be observed within a single crystal form. These structures, which include the first structure of the HePTP open state, show that the WPD loop adopts an 'atypically open' conformation and, importantly, that ligands can be exchanged at the active site, which is critical for HePTP inhibitor development. These structures also show that tetrahedral oxyanions bind at a novel secondary site and function to coordinate the PTP, WPD, and E loops. Finally, using both structural and kinetic data, we reveal a novel role for E-loop residue Lys182 in enhancing HePTP catalytic activity through its interaction with Asp236 of the WPD loop, providing the first evidence for the coordinated dynamics of the WPD and E loops in the catalytic cycle, which, as we show, is relevant to multiple PTP families.« less

  7. Protein Tyrosine Phosphatase 1B Inhibitors from the Stems of Akebia quinata.

    PubMed

    An, Jin-Pyo; Ha, Thi Kim Quy; Kim, Jinwoong; Cho, Tae Oh; Oh, Won Keun

    2016-08-19

    PTP1B deficiency in mouse mammary tumor virus (MMTV)-NeuNT transgenic mice inhibited the onset of MMTV-NeuNT-evoked breast cancer, while its overexpression was observed in breast cancer. Thus, PTP1B inhibitors are considered chemopreventative agents for breast cancer. As part of our program to find PTP1B inhibitors, one new diterpene glycoside (1) and 13 known compounds (2-14) were isolated from the methanol extract of the stems of Akebia quinata. All isolates were identified based on extensive spectroscopic data analysis, including UV, IR, NMR and MS. Compounds 2, 3, 6, 8 and 11 showed significant inhibitory effects on the PTP1B enzyme, with IC50 values ranging from 4.08 ± 1.09 to 21.80 ± 4.74 μM. PTP1B inhibitors also had concentration-dependent cytotoxic effects on breast cancer cell lines, such as MCF7, MDA-MB-231 and tamoxifen-resistant MCF7 (MCF7/TAMR) (IC50 values ranging from 0.84 ± 0.04 to 7.91 ± 0.39 μM). These results indicate that compounds 6 and 8 from Akebia quinata may be lead compounds acting as anti-breast cancer agents.

  8. Rapid Identification of Flavonoid Constituents Directly from PTP1B Inhibitive Extract of Raspberry (Rubus idaeus L.) Leaves by HPLC–ESI–QTOF–MS-MS

    PubMed Central

    Li, Zhuan-Hong; Guo, Han; Xu, Wen-Bin; Ge, Juan; Li, Xin; Alimu, Mireguli; He, Da-Jun

    2016-01-01

    Many potential health benefits of raspberry (Rubus idaeus L.) leaves were attributed to polyphenolic compounds, especially flavonoids. In this study, the methanol extract of R. idaeus leaves showed significant protein tyrosine phosphatase-1B (PTP1B) inhibitory activity with IC50 value of 3.41 ± 0.01 µg mL−1. Meanwhile, a rapid and reliable method, employed high-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry, was established for structure identification of flavonoids from PTP1B inhibitive extract of R. idaeus leaves using accurate mass measurement and characteristic fragmentation patterns. A total of 16 flavonoids, including 4 quercetin derivatives, 2 luteolin derivatives, 8 kaempferol derivatives and 2 isorhamnetin derivatives, were identified. Compounds 3 and 4, Compounds 6 and 7 and Compounds 15 and 16 were isomers with different aglycones and different saccharides. Compounds 8, 9 and 10 were isomers with the same aglycone and the same saccharide but different substituent positions. Compounds 11 and 12 were isomers with the same aglycone but different saccharides. Compounds 2, 8, 9 and 10 possessed the same substituent saccharide of glycuronic acid. Most of them were reported in R. idaeus for the first time. PMID:26896347

  9. Sulfonamide-containing PTP 1B inhibitors: Docking studies, synthesis and model validation

    NASA Astrophysics Data System (ADS)

    Niu, Enli; Gan, Qiang; Chen, Xi; Feng, Changgen

    2017-01-01

    PTP 1B plays an important role in regulating insulin signaling pathway and is regarded as a valid target for curing diabetes and obesity. In this paper, two novel sulfonamide-containing PTP 1B inhibitors were designed, synthesized in mild condition, and characterized by FT-IR, 1H NMR, 13C NMR and elemental analysis. The single crystal of compounds 7 and 8 were obtained and their structures were determined by X-ray single crystal diffraction analysis. In addition, their inhibitory activity were predicted by genetic algorithm, and carried on in vitro enzyme activity test. Of which compound 8 showed good inhibitory activity, in consistent with docking studies.

  10. SH2 domain-containing protein tyrosine phosphatase 2 and focal adhesion kinase protein interactions regulate pulmonary endothelium barrier function.

    PubMed

    Chichger, Havovi; Braza, Julie; Duong, Huetran; Harrington, Elizabeth O

    2015-06-01

    Enhanced protein tyrosine phosphorylation is associated with changes in vascular permeability through formation and dissolution of adherens junctions and regulation of stress fiber formation. Inhibition of the protein tyrosine phosphorylase SH2 domain-containing protein tyrosine phosphatase 2 (SHP2) increases tyrosine phosphorylation of vascular endothelial cadherin and β-catenin, resulting in disruption of the endothelial monolayer and edema formation in the pulmonary endothelium. Vascular permeability is a hallmark of acute lung injury (ALI); thus, enhanced SHP2 activity offers potential therapeutic value for the pulmonary vasculature in diseases such as ALI, but this has not been characterized. To assess whether SHP2 activity mediates protection against edema in the endothelium, we assessed the effect of molecular activation of SHP2 on lung endothelial barrier function in response to the edemagenic agents LPS and thrombin. Both LPS and thrombin reduced SHP2 activity, correlated with decreased focal adhesion kinase (FAK) phosphorylation (Y(397) and Y(925)) and diminished SHP2 protein-protein associations with FAK. Overexpression of constitutively active SHP2 (SHP2(D61A)) enhanced baseline endothelial monolayer resistance and completely blocked LPS- and thrombin-induced permeability in vitro and significantly blunted pulmonary edema formation induced by either endotoxin (LPS) or Pseudomonas aeruginosa exposure in vivo. Chemical inhibition of FAK decreased SHP2 protein-protein interactions with FAK concomitant with increased permeability; however, overexpression of SHP2(D61A) rescued the endothelium and maintained FAK activity and FAK-SHP2 protein interactions. Our data suggest that SHP2 activation offers the pulmonary endothelium protection against barrier permeability mediators downstream of the FAK signaling pathway. We postulate that further studies into the promotion of SHP2 activation in the pulmonary endothelium may offer a therapeutic approach for patients

  11. Mutational analysis of the PTPN11 gene in Egyptian patients with Noonan syndrome.

    PubMed

    Essawi, Mona L; Ismail, Manal F; Afifi, Hanan H; Kobesiy, Maha M; El Kotoury, Ahmed; Barakat, Maged M

    2013-11-01

    Noonan syndrome (NS) is inherited as an autosomal dominant disorder with dysmorphic facies, short stature, and cardiac defects, which can be caused by missense mutations in the protein tyrosine phosphatase nonreceptor type 11 (PTPN11) gene, which encodes src homology region 2 domain containing tyrosine phosphatase-2 (SHP-2), a protein tyrosine phosphatase that acts in signal transduction downstream to growth factors and cytokines. The current study aimed to study the molecular characterization of the PTPN11 gene among Egyptian patients with Noonan syndrome. Eleven exons of the PTPN11 gene were amplified and screened by single stranded conformational polymorphism (SSCP). DNA samples showing band shift in SSCP were subjected to sequencing. Mutational analysis of the PTPN11 gene revealed T→C transition at position 854 in exon 8, predicting Phe285Ser substitution within PTP domain of SHP-2 protein, in one NS patient and -21C→T polymorphism in intron 7 in four other cases. Knowing that NS is phenotypically heterogeneous, molecular characterization of the PTPN11 gene should serve to establish NS diagnosis in patients with atypical features, although lack of a mutation does not exclude the possibility of NS. Copyright © 2012. Published by Elsevier B.V.

  12. SHP-1, a novel peptide isolated from seahorse inhibits collagen release through the suppression of collagenases 1 and 3, nitric oxide products regulated by NF-kappaB/p38 kinase.

    PubMed

    Ryu, BoMi; Qian, Zhong-Ji; Kim, Se-Kwon

    2010-01-01

    Considerable efforts have been taken to identify natural peptides as potential bioactive substances. In this study, novel peptide (SHP-1) derived from seahorse (Hippocampus, Syngnathidae) hydrolysate was explored for its inhibitory effects on collagen release in arthritis with the investigation of its underlying mechanism of action. The efficacy of SHP-1 was determined on cartilage protective effects such as inhibition of collagen and GAG release. SHP-1 was able to suppress not only the expression of collagenases 1 and 3, but also the production of NO via down-regulation of iNOS. However, it presented an irrelevant effect on the level of GAG release in chondrocytic and osteoblastic cells. Inhibition of collagen release by SHP-1 is associated with restraining the phosphorylation of NF-kappaB and p38 kinase cascade. Therefore, it could be suggested that SHP-1 has a potential to be used in arthritis treatment.

  13. Severe energy deficit upregulates leptin receptors, leptin signaling, and PTP1B in human skeletal muscle.

    PubMed

    Perez-Suarez, Ismael; Ponce-González, Jesús Gustavo; de La Calle-Herrero, Jaime; Losa-Reyna, Jose; Martin-Rincon, Marcos; Morales-Alamo, David; Santana, Alfredo; Holmberg, Hans-Christer; Calbet, Jose A L

    2017-11-01

    In obesity, leptin receptors (OBR) and leptin signaling in skeletal muscle are downregulated. To determine whether OBR and leptin signaling are upregulated with a severe energy deficit, 15 overweight men were assessed before the intervention (PRE), after 4 days of caloric restriction (3.2 kcal·kg body wt -1 ·day -1 ) in combination with prolonged exercise (CRE; 8 h walking + 45 min single-arm cranking/day) to induce an energy deficit of ~5,500 kcal/day, and following 3 days of control diet (isoenergetic) and reduced exercise (CD). During CRE, the diet consisted solely of whey protein ( n = 8) or sucrose ( n = 7; 0.8 g·kg body wt -1 ·day -1 ). Muscle biopsies were obtained from the exercised and the nonexercised deltoid muscles and from the vastus lateralis. From PRE to CRE, serum glucose, insulin, and leptin were reduced. OBR expression was augmented in all examined muscles associated with increased maximal fat oxidation. Compared with PRE, after CD, phospho-Tyr 1141 OBR, phospho-Tyr 985 OBR, JAK2, and phospho-Tyr 1007/1008 JAK2 protein expression were increased in all muscles, whereas STAT3 and phospho-Tyr 705 STAT3 were increased only in the arms. The expression of protein tyrosine phosphatase 1B (PTP1B) in skeletal muscle was increased by 18 and 45% after CRE and CD, respectively ( P < 0.05). Suppressor of cytokine signaling 3 (SOCS3) tended to increase in the legs and decrease in the arm muscles (ANOVA interaction: P < 0.05). Myosin heavy chain I isoform was associated with OBR protein expression ( r  = -0.75), phospho-Tyr 985 OBR ( r  = 0.88), and phospho-Tyr 705 STAT3/STAT3 ( r = 0.74). In summary, despite increased PTP1B expression, skeletal muscle OBR and signaling are upregulated by a severe energy deficit with greater response in the arm than in the legs likely due to SOCS3 upregulation in the leg muscles. NEW & NOTEWORTHY This study shows that the skeletal muscle leptin receptors and their corresponding signaling cascade are upregulated in

  14. Xanthium strumarium as an Inhibitor of α-Glucosidase, Protein Tyrosine Phosphatase 1β, Protein Glycation and ABTS⁺ for Diabetic and Its Complication.

    PubMed

    Hwang, Seung Hwan; Wang, Zhiqiang; Yoon, Ha Na; Lim, Soon Sung

    2016-09-16

    Phytochemical investigation of the natural products from Xanthium strumarium led to the isolation of fourteen compounds including seven caffeoylquinic acid (CQA) derivatives. The individual compounds were screened for inhibition of α-glucosidase, protein tyrosine phosphatase 1β (PTP1β), advanced glycation end products (AGEs), and ABTS⁺ radical scavenging activity using in vitro assays. Among the isolated compounds, methyl-3,5-di-caffeoyquinic acid exhibited significant inhibitory activity against α-glucosidase (18.42 μM), PTP1β (1.88 μM), AGEs (82.79 μM), and ABTS⁺ (6.03 μM). This effect was marked compared to that of the positive controls (acarbose 584.79 μM, sumarin 5.51 μM, aminoguanidine 1410.00 μM, and trolox 29.72 μM respectively). In addition, 3,5-di-O-CQA (88.14 μM) and protocatechuic acid (32.93 μM) had a considerable inhibitory effect against α-glucosidase and ABTS⁺. Based on these findings, methyl-3,5-di-caffeoyquinic acid was assumed to be potentially responsible for the anti-diabetic actions of X. strumarium.

  15. Dissociation of VE-PTP from VE-cadherin is required for leukocyte extravasation and for VEGF-induced vascular permeability in vivo

    PubMed Central

    Broermann, Andre; Winderlich, Mark; Block, Helena; Frye, Maike; Rossaint, Jan; Zarbock, Alexander; Cagna, Giuseppe; Linnepe, Ruth; Schulte, Dörte; Nottebaum, Astrid Fee

    2011-01-01

    We have recently shown that vascular endothelial protein tyrosine phosphatase (VE-PTP), an endothelial membrane protein, associates with VE-cadherin and is required for optimal VE-cadherin function and endothelial cell contact integrity. The dissociation of VE-PTP from VE-cadherin is triggered by vascular endothelial growth factor (VEGF) and by the binding of leukocytes to endothelial cells in vitro, suggesting that this dissociation is a prerequisite for the destabilization of endothelial cell contacts. Here, we show that VE-cadherin/VE-PTP dissociation also occurs in vivo in response to LPS stimulation of the lung or systemic VEGF stimulation. To show that this dissociation is indeed necessary in vivo for leukocyte extravasation and VEGF-induced vascular permeability, we generated knock-in mice expressing the fusion proteins VE-cadherin-FK 506 binding protein and VE-PTP-FRB* under the control of the endogenous VE-cadherin promoter, thus replacing endogenous VE-cadherin. The additional domains in both fusion proteins allow the heterodimeric complex to be stabilized by a chemical compound (rapalog). We found that intravenous application of the rapalog strongly inhibited VEGF-induced (skin) and LPS-induced (lung) vascular permeability and inhibited neutrophil extravasation in the IL-1β inflamed cremaster and the LPS-inflamed lung. We conclude that the dissociation of VE-PTP from VE-cadherin is indeed required in vivo for the opening of endothelial cell contacts during induction of vascular permeability and leukocyte extravasation. PMID:22025303

  16. Antidiabetic Bis-Maltolato-OxoVanadium(IV): Conversion of inactive trans- to bioactive cis-BMOV for possible binding to target PTP-1B

    PubMed Central

    Scior, Thomas; Mack, Hans-Georg; García, José Antonio Guevara; Koch, Wolfhard

    2008-01-01

    The postulated transition of Bis-Maltolato-OxoVanadium(IV) (BMOV) from its inactive trans- into its cis-aquo-BMOV isomeric form in solution was simulated by means of computational molecular modeling. The rotational barrier was calculated with DFT – B3LYP under a stepwise optimization protocol with STO-3G, 3-21G, 3-21G*, and 6-31G ab initio basis sets. Our computed results are consistent with reports on the putative molecular mechanism of BMOV triggering the insulin-like cellular response (insulin mimetic) as a potent inhibitor of the protein tyrosine phosphatase-1B (PTP-1B). Initially, trans-BMOV is present in its solid dosage form but in aqueous solution, and during oral administration, it is readily converted into a mixture of “open-type” and “closed-type” complexes of cis-aquo-BMOV under equilibrium conditions. However, in the same measure as the “closed-type” complex binds to the cytosolic PTP-1B, it disappears from solution, and the equilibrium shifts towards the “closed-type” species. In full accordance, the computed binding mode of cis-BMOV is energetically favored over sterically hindered trans-BMOV. In view of our earlier report on prodrug hypothesis of vanadium organic compounds the present results suggest that cis-BMOV is the bioactive species. PMID:19920909

  17. T cell protein tyrosine phosphatase (TCPTP) deficiency in muscle does not alter insulin signalling and glucose homeostasis in mice.

    PubMed

    Loh, K; Merry, T L; Galic, S; Wu, B J; Watt, M J; Zhang, S; Zhang, Z-Y; Neel, B G; Tiganis, T

    2012-02-01

    Insulin activates insulin receptor protein tyrosine kinase and downstream phosphatidylinositol-3-kinase (PI3K)/Akt signalling in muscle to promote glucose uptake. The insulin receptor can serve as a substrate for the protein tyrosine phosphatase (PTP) 1B and T cell protein tyrosine phosphatase (TCPTP), which share a striking 74% sequence identity in their catalytic domains. PTP1B is a validated therapeutic target for the alleviation of insulin resistance in type 2 diabetes. PTP1B dephosphorylates the insulin receptor in liver and muscle to regulate glucose homeostasis, whereas TCPTP regulates insulin receptor signalling and gluconeogenesis in the liver. In this study we assessed for the first time the role of TCPTP in the regulation of insulin receptor signalling in muscle. We generated muscle-specific TCPTP-deficient (Mck-Cre;Ptpn2(lox/lox)) mice (Mck, also known as Ckm) and assessed the impact on glucose homeostasis and muscle insulin receptor signalling in chow-fed versus high-fat-fed mice. Blood glucose and insulin levels, insulin and glucose tolerance, and insulin-induced muscle insulin receptor activation and downstream PI3K/Akt signalling remained unaltered in chow-fed Mck-Cre;Ptpn2(lox/lox) versus Ptpn2(lox/lox) mice. In addition, body weight, adiposity, energy expenditure, insulin sensitivity and glucose homeostasis were not altered in high-fat-fed Mck-Cre;Ptpn2(lox/lox) versus Ptpn2(lox/lox) mice. These results indicate that TCPTP deficiency in muscle has no effect on insulin signalling and glucose homeostasis, and does not prevent high-fat diet-induced insulin resistance. Thus, despite their high degree of sequence identity, PTP1B and TCPTP contribute differentially to insulin receptor regulation in muscle. Our results are consistent with the notion that these two highly related PTPs make distinct contributions to insulin receptor regulation in different tissues.

  18. Death Receptor 5—Targeted Depletion of Interleukin-23—Producing Macrophages, Th17, and Th1/17 Associated With Defective Tyrosine Phosphatase in Mice and Patients with Rheumatoid Arthritis

    PubMed Central

    Li, Jun; Yang, PingAr; Wu, Qi; Li, Hao; Ding, Yana; Hsu, Hui-Chen; Spalding, David M.; Mountz, John D.

    2014-01-01

    Objective. Bidirectional interactions between granulocyte-macrophage colony-stimulating factor–positive (GM-CSF+) T cell and interferon regulatory factor 5–positive (IRF-5+) macrophages play a major role in autoimmunity. In the absence of SH2 domain-containing phosphatase 1 (SHP-1), GM-CSF–stimulated cells are resistant to death receptor (DR)–mediated apoptosis. The objective of this study was to determine whether TRA-8, an anti-DR5 agonistic antibody, can eliminate inflammatory macrophages and CD4 T cells in the SHP-1–defective condition. Methods. Ubiquitous Cre (Ubc.Cre) human/mouse-chimeric DR5-transgenic mice were crossed with viable SHP-1–defective motheaten (mev/mev) mice. TRA-8 was administered weekly for up to 4 weeks. The clinical scores, histopathologic severity, and macrophage and CD4 T cell phenotypes were evaluated. The role of TRA-8 in depleting inflammatory macrophages and CD4 T cells was also evaluated, using synovial fluid obtained from patients with rheumatoid arthritis (RA). Results. The levels of Inflammatory macrophages (interleukine-23–positive [IL-23+] IRF5+) and CD4 T (IL-17+GM-CSF+) cells were elevated in mev/mev mice. In DR5-transgenic mev/mev mice, DR5 expression was up-regulated in these 2 cell populations. TRA-8 treatment depleted these cells and resulted in a significant reduction of inflammation and in the titers of autoantibodies. In synovial cells from patients with RA, the expression of IRF5 and DR5 was negatively correlated with the expression of PTPN6. TRA-8, but not TRAIL, suppressed RA inflammatory macrophages and Th17 cells under conditions in which the expression of SHP-1is low. Conclusion. In contrast with TRAIL, which lacks the capability to counteract the survival signal in the absence of SHP-1, TRA-8 eliminated both IRF5+ IL-23+ M1 macrophages and pathogenic GM-CSF+ IL-17+ CD4 T cells in a SHP-1-independent manner. The results of the current study suggest that TRA-8 can deplete inflammatory cell populations

  19. Global methylation and promoter-specific methylation of the P16, SOCS-1, E-cadherin, P73 and SHP-1 genes and their expression in patients with multiple myeloma during active disease and remission

    PubMed Central

    Martínez-Baños, Déborah; Sánchez-Hernández, Beatríz; Jiménez, Guadalupe; Barrera-Lumbreras, Georgina; Barrales-Benítez, Olga

    2017-01-01

    Tumor suppressor gene promoter CpG island methylation is a well-recognized mechanism in cancer pathogenesis, but its role in multiple myeloma (MM) is controversial. The present study investigated the methylation status and expression of P16, suppressor of cytokine signaling 1 (SOCS-1), P73, E-cadherin and Src homology region 2 domain-containing phosphatase 1 (SHP-1), as well as global methylation in patients with MM during active disease and remission. Bone marrow samples were obtained from 43 patients at the Multiple Myeloma Clinic, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (Mexico City, Mexico) during active disease and remission. Methylation-specific polymerase chain reaction and ELISA were performed on bisulfite-treated or untreated DNA to determine promoter-specific or genomic methylation, respectively. Gene expression was measured using reverse-transcription polymerase chain reaction. The results indicated that SOCS-1 methylation occurred more frequently during active disease than remission [29 vs. 3.2% (P=0.021)] and was associated with more advanced forms of the disease [international staging system (ISS) 3, 16.67% vs. ISS 1, 8.3% (P=0.037)]. SHP-1 methylation during active disease was associated with a lower probability of survival at 39-month follow up (median), 52.5 vs. 87.5% (P=0.025). The percentage of methylation was associated with active disease at remission, but this was not significant. Global hypomethylation at remission was a negative predictor factor for overall survival (OS). The results indicated that methylated P16, SOCS-1 and SHP-1 were associated with clinical variables of poor prognosis in MM, likewise the persistence of global hypomethylation at remission. The negative impact on OS of global hypomethylation at remission must be confirmed in a larger sample. Future studies are necessary to investigate whether patients with global hypermethylation at remission should receive more aggressive treatments to

  20. Global methylation and promoter-specific methylation of the P16, SOCS-1, E-cadherin, P73 and SHP-1 genes and their expression in patients with multiple myeloma during active disease and remission.

    PubMed

    Martínez-Baños, Déborah; Sánchez-Hernández, Beatríz; Jiménez, Guadalupe; Barrera-Lumbreras, Georgina; Barrales-Benítez, Olga

    2017-05-01

    Tumor suppressor gene promoter CpG island methylation is a well-recognized mechanism in cancer pathogenesis, but its role in multiple myeloma (MM) is controversial. The present study investigated the methylation status and expression of P16 , suppressor of cytokine signaling 1 ( SOCS-1 ), P73, E-cadherin and Src homology region 2 domain-containing phosphatase 1 ( SHP-1 ), as well as global methylation in patients with MM during active disease and remission. Bone marrow samples were obtained from 43 patients at the Multiple Myeloma Clinic, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (Mexico City, Mexico) during active disease and remission. Methylation-specific polymerase chain reaction and ELISA were performed on bisulfite-treated or untreated DNA to determine promoter-specific or genomic methylation, respectively. Gene expression was measured using reverse-transcription polymerase chain reaction. The results indicated that SOCS-1 methylation occurred more frequently during active disease than remission [29 vs. 3.2% (P=0.021)] and was associated with more advanced forms of the disease [international staging system (ISS) 3, 16.67% vs. ISS 1, 8.3% (P=0.037)]. SHP-1 methylation during active disease was associated with a lower probability of survival at 39-month follow up (median), 52.5 vs. 87.5% (P=0.025). The percentage of methylation was associated with active disease at remission, but this was not significant. Global hypomethylation at remission was a negative predictor factor for overall survival (OS). The results indicated that methylated P16 , SOCS-1 and SHP-1 were associated with clinical variables of poor prognosis in MM, likewise the persistence of global hypomethylation at remission. The negative impact on OS of global hypomethylation at remission must be confirmed in a larger sample. Future studies are necessary to investigate whether patients with global hypermethylation at remission should receive more aggressive treatments to

  1. Protein tyrosine phosphatase 1B is a mediator of cyclic ADP ribose-induced Ca2+ signaling in ventricular myocytes.

    PubMed

    Park, Seon-Ah; Hong, Bing-Zhe; Ha, Ki-Chan; Kim, Uh-Hyun; Han, Myung-Kwan; Kwak, Yong-Geun

    2017-06-02

    Cyclic ADP-ribose (cADPR) releases Ca 2+ from ryanodine receptor (RyR)-sensitive calcium pools in various cell types. In cardiac myocytes, the physiological levels of cADPR transiently increase the amplitude and frequency of Ca 2+ (that is, a rapid increase and decrease of calcium within one second) during the cardiac action potential. In this study, we demonstrated that cADPR levels higher than physiological levels induce a slow and gradual increase in the resting intracellular Ca 2+ ([Ca 2+ ] i ) level over 10 min by inhibiting the sarcoendoplasmic reticulum Ca 2+ ATPase (SERCA). Higher cADPR levels mediate the tyrosine-dephosphorylation of α-actin by protein tyrosine phosphatase 1B (PTP1B) present in the endoplasmic reticulum. The tyrosine dephosphorylation of α-actin dissociates phospholamban, the key regulator of SERCA, from α-actin and results in SERCA inhibition. The disruption of the integrity of α-actin by cytochalasin B and the inhibition of α-actin tyrosine dephosphorylation by a PTP1B inhibitor block cADPR-mediated Ca 2+ increase. Our results suggest that levels of cADPR that are relatively higher than normal physiological levels modify calcium homeostasis through the dephosphorylation of α-actin by PTB1B and the subsequent inhibition of SERCA in cardiac myocytes.

  2. A Drosophila protein-tyrosine phosphatase associates with an adapter protein required for axonal guidance.

    PubMed

    Clemens, J C; Ursuliak, Z; Clemens, K K; Price, J V; Dixon, J E

    1996-07-19

    We have used the yeast two-hybrid system to isolate a novel Drosophila adapter protein, which interacts with the Drosophila protein-tyrosine phosphatase (PTP) dPTP61F. Absence of this protein in Drosophila causes the mutant photoreceptor axon phenotype dreadlocks (dock) (Garrity, P. A., Rao, Y., Salecker, I., and Zipursky, S. L.(1996) Cell 85, 639-650). Dock is similar to the mammalian oncoprotein Nck and contains three Src homology 3 (SH3) domains and one Src homology 2 (SH2) domain. The interaction of dPTP61F with Dock was confirmed in vivo by immune precipitation experiments. A sequence containing five PXXP motifs from the non-catalytic domain of the PTP is sufficient for interaction with Dock. This suggests that binding to the PTP is mediated by one or more of the SH3 domains of Dock. Immune precipitations of Dock also co-precipitate two tyrosine-phosphorylated proteins having molecular masses of 190 and 145 kDa. Interactions between Dock and these tyrosine-phosphorylated proteins are likely mediated by the Dock SH2 domain. These findings identify potential signal-transducing partners of Dock and propose a role for dPTP61F and the unidentified phosphoproteins in axonal guidance.

  3. Tyrosine Phosphorylation Regulates Maturation of Receptor Tyrosine Kinases

    PubMed Central

    Schmidt-Arras, Dirk-E.; Böhmer, Annette; Markova, Boyka; Choudhary, Chunaram; Serve, Hubert; Böhmer, Frank-D.

    2005-01-01

    Constitutive activation of receptor tyrosine kinases (RTKs) is a frequent event in human cancer cells. Activating mutations in Fms-like tyrosine kinase 3 (FLT-3), notably, internal tandem duplications in the juxtamembrane domain (FLT-3 ITD), have been causally linked to acute myeloid leukemia. As we describe here, FLT-3 ITD exists predominantly in an immature, underglycosylated 130-kDa form, whereas wild-type FLT-3 is expressed predominantly as a mature, complex glycosylated 150-kDa molecule. Endogenous FLT-3 ITD, but little wild-type FLT-3, is detectable in the endoplasmic reticulum (ER) compartment. Conversely, cell surface expression of FLT-3 ITD is less efficient than that of wild-type FLT-3. Inhibition of FLT-3 ITD kinase by small molecules, inactivating point mutations, or coexpression with the protein-tyrosine phosphatases (PTPs) SHP-1, PTP1B, and PTP-PEST but not RPTPα promotes complex glycosylation and surface localization. However, PTP coexpression has no effect on the maturation of a surface glycoprotein of vesicular stomatitis virus. The maturation of wild-type FLT-3 is impaired by general PTP inhibition or by suppression of endogenous PTP1B. Enhanced complex formation of FLT-3 ITD with the ER-resident chaperone calnexin indicates that its retention in the ER is related to inefficient folding. The regulation of RTK maturation by tyrosine phosphorylation was observed with other RTKs as well, defines a possible role for ER-resident PTPs, and may be related to the altered signaling quality of constitutively active, transforming RTK mutants. PMID:15831474

  4. Three-dimensional structure and ligand interactions of the low molecular weight protein tyrosine phosphatase from Campylobacter jejuni.

    PubMed

    Tolkatchev, Dmitri; Shaykhutdinov, Rustem; Xu, Ping; Plamondon, Josée; Watson, David C; Young, N Martin; Ni, Feng

    2006-10-01

    A putative low molecular weight protein tyrosine phosphatase (LMW-PTP) was identified in the genome sequence of the bacterial pathogen, Campylobacter jejuni. This novel gene, cj1258, has sequence homology with a distinctive class of phosphatases widely distributed among prokaryotes and eukaryotes. We report here the solution structure of Cj1258 established by high-resolution NMR spectroscopy using NOE-derived distance restraints, hydrogen bond data, and torsion angle restraints. The three-dimensional structure consists of a central four-stranded parallel beta-sheet flanked by five alpha-helices, revealing an overall structural topology similar to those of the eukaryotic LMW-PTPs, such as human HCPTP-A, bovine BPTP, and Saccharomyces cerevisiae LTP1, and to those of the bacterial LMW-PTPs MPtpA from Mycobacterium tuberculosis and YwlE from Bacillus subtilis. The active site of the enzyme is flexible in solution and readily adapts to the binding of ligands, such as the phosphate ion. An NMR-based screen was carried out against a number of potential inhibitors and activators, including phosphonomethylphenylalanine, derivatives of the cinnamic acid, 2-hydroxy-5-nitrobenzaldehyde, cinnamaldehyde, adenine, and hypoxanthine. Despite its bacterial origin, both the three-dimensional structure and ligand-binding properties of Cj1258 suggest that this novel phosphatase may have functional roles close to those of eukaryotic and mammalian tyrosine phosphatases. The three-dimensional structure along with mapping of small-molecule binding will be discussed in the context of developing high-affinity inhibitors of this novel LMW-PTP.

  5. Expression of receptor-type protein tyrosine phosphatase in developing and adult renal vasculature

    PubMed Central

    Takahashi, Keiko; Kim, Rachel; Lauhan, Colette; Park, Yuna; Nguyen, Nghiep G.; Vestweber, Dietmar; Dominguez, Melissa G.; Valenzuela, David M.; Murphy, Andrew J.; Yancopoulos, George D.; Gale, Nicholas W.; Takahashi, Takamune

    2017-01-01

    Renal vascular development is a coordinated process that requires ordered endothelial cell proliferation, migration, intercellular adhesion, and morphogenesis. In recent decades, studies have defined the pivotal role of endothelial receptor tyrosine kinases (RPTKs) in the development and maintenance of renal vasculature. However, the expression and the role of receptor tyrosine phosphatases (RPTPs) in renal endothelium are poorly understood, though coupled and counterbalancing roles of RPTKs and RPTPs are well defined in other systems. In this study, we evaluated the promoter activity and immunolocalization of two endothelial RPTPs, VE-PTP and PTPμ, in developing and adult renal vasculature using the heterozygous LacZ knock-in mice and specific antibodies. In adult kidneys, both VE-PTP and PTPμ were expressed in the endothelium of arterial, glomerular, and medullary vessels, while their expression was highly limited in peritubular capillaries and venous endothelium. VE-PTP and PTPμ promoter activity was also observed in medullary tubular segments in adult kidneys. In embryonic (E12.5, E13.5, E15.5, E17.5) and postnatal (P0, P3, P7) kidneys, these RPTPs were expressed in ingrowing renal arteries, developing glomerular microvasculature (as early as the S-shaped stage), and medullary vessels. Their expression became more evident as the vasculatures matured. Peritubular capillary expression of VE-PTP was also noted in embryonic and postnatal kidneys. Compared to VE-PTP, PTPμ immunoreactivity was relatively limited in embryonic and neonatal renal vasculature and evident immunoreactivity was observed from the P3 stage. These findings indicate 1) VE-PTP and PTPμ are expressed in endothelium of arterial, glomerular, and medullary renal vasculature, 2) their expression increases as renal vascular development proceeds, suggesting that these RPTPs play a role in maturation and maintenance of these vasculatures, and 3) peritubular capillary VE-PTP expression is down

  6. Chlorogenic Acid Prevents Osteoporosis by Shp2/PI3K/Akt Pathway in Ovariectomized Rats

    PubMed Central

    Zuo, Hui Ling; Yao, Fen Fen; Ruan, Hui Bing; Xu, Jin; Song, Wei; Zhou, Yi Cheng; Wen, Shi Yao; Dai, Jiang Hua; Zhu, Mei Lan; Luo, Jun

    2016-01-01

    Cortex Eucommiae is used worldwide in traditional medicine, various constituents of Cortex Eucommiae, such as chlorogenic acid (CGA), has been reported to exert anti-osteoporosis activity in China, but the mechanism about their contribution to the overall activity is limited. The aims of this study were to determine whether chlorogenic acid can prevent estrogen deficiency-induced osteoporosis and to analyze the mechanism of CGA bioactivity. The effect of CGA on estrogen deficiency-induced osteoporosis was performed in vivo. Sixty female Sprague-Dawley rats were divided randomly among a sham-operated group and five ovariectomy (OVX) plus treatment subgroups: saline vehicle, 17α-ethinylestradiol (E2), or CGA at 9, 27, or 45 mg/kg/d. The rats’ femoral metaphyses were evaluated by micro-computed tomography (μCT). The mechanism of CGA bioactivity was investigated in vitro. Bone mesenchymal stem cells (BMSCs) were treated with CGA, with or without phosphoinositide 3-kinase (PI3K) inhibitor LY294002. BMSCs proliferation and osteoblast differentiation were assessed with 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and alkaline phosphatase, with or without Shp2 interfering RNA (RNAi). The results display that CGA at 27 and 45 mg/kg/day inhibited the decrease of bone mineral density (BMD) that induced by OVX in femur (p< 0.01), significantly promoted the levels of bone turnover markers, and prevented bone volume fraction (BV/TV), connectivity density (CoonD), trabecular number (Tb.N), trabecular thickness (Tb.Th) (all p< 0.01) to decrease and prevented the trabecular separation (Tb.Sp), structure model index (SMI)(both p< 0.01) to increase. CGA at 1 or 10 μM enhanced BMSC proliferation in a dose-dependent manner. CGA at 0.1 to 10 μM increased phosphorylated Akt (p-Akt) and cyclin D1. These effects were reversed by LY294002. CGA at 1 or 10 μM increased BMSC differentiation to osteoblasts (p< 0.01), Shp2 RNAi suppressed CGA-induced osteoblast

  7. Rapid Identification of Flavonoid Constituents Directly from PTP1B Inhibitive Extract of Raspberry (Rubus idaeus L.) Leaves by HPLC-ESI-QTOF-MS-MS.

    PubMed

    Li, Zhuan-Hong; Guo, Han; Xu, Wen-Bin; Ge, Juan; Li, Xin; Alimu, Mireguli; He, Da-Jun

    2016-01-01

    Many potential health benefits of raspberry (Rubus idaeus L.) leaves were attributed to polyphenolic compounds, especially flavonoids. In this study, the methanol extract of R. idaeus leaves showed significant protein tyrosine phosphatase-1B (PTP1B) inhibitory activity with IC50 value of 3.41 ± 0.01 µg mL(-1) Meanwhile, a rapid and reliable method, employed high-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry, was established for structure identification of flavonoids from PTP1B inhibitive extract of R. idaeus leaves using accurate mass measurement and characteristic fragmentation patterns. A total of 16 flavonoids, including 4 quercetin derivatives, 2 luteolin derivatives, 8 kaempferol derivatives and 2 isorhamnetin derivatives, were identified. Compounds 3: and 4: , Compounds 6: and 7: and Compounds 15: and 16: were isomers with different aglycones and different saccharides. Compounds 8: , 9: and 10: were isomers with the same aglycone and the same saccharide but different substituent positions. Compounds 11: and 12: were isomers with the same aglycone but different saccharides. Compounds 2: , 8: , 9: and 10: possessed the same substituent saccharide of glycuronic acid. Most of them were reported inR. idaeus for the first time. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Chondroitin sulfatases differentially regulate Wnt signaling in prostate stem cells through effects on SHP2, phospho-ERK1/2, and Dickkopf Wnt signaling pathway inhibitor (DKK3)

    PubMed Central

    Bhattacharyya, Sumit; Feferman, Leo; Tobacman, Joanne K.

    2017-01-01

    The chondroitin sulfatases N-acetylgalactosamine-4-sulfatase (ARSB) and galactosamine-N-acetyl-6-sulfatase (GALNS) remove either the 4-sulfate group at the non-reducing end of chondroitin 4-sulfate (C4S) and dermatan sulfate, or the 6-sulfate group of chondroitin 6-sulfate, chondroitin 4,6-disulfate (chondroitin sulfate E), or keratan sulfate. In human prostate cancer tissues, the ARSB activity was reduced and the GALNS activity was increased, compared to normal prostate tissue. In human prostate stem cells, when ARSB was reduced by silencing or GALNS was increased by overexpression, activity of SHP2, the ubiquitous non-receptor tyrosine phosphatase, declined, attributable to increased binding of SHP2 with C4S. This led to increases in phospho-ERK1/2, Myc/Max nuclear DNA binding, DNA methyltransferase (DNMT) activity and expression, and methylation of the Dickkopf Wnt signaling pathway inhibitor (DKK)3 promoter and to reduced DKK3 expression. Since DKK3 negatively regulates Wnt/β-catenin signaling, silencing of ARSB or overexpression of GALNS disinhibited (increased) Wnt/β-catenin signaling. These findings indicate that the chondroitin sulfatases can exert profound effects on Wnt-mediated processes, due to epigenetic effects that modulate Wnt signaling. PMID:29245974

  9. Synthesis and biological evaluation of novel thiadiazole amides as potent Cdc25B and PTP1B inhibitors.

    PubMed

    Li, Yingjun; Yu, Yang; Jin, Kun; Gao, Lixin; Luo, Tongchuan; Sheng, Li; Shao, Xin; Li, Jia

    2014-09-01

    A series of novel thiadiazole amide derivatives have been synthesized and evaluated for inhibitory activities against Cdc25B and PTP1B. Most of them showed inhibitory activities against Cdc25B (IC50=1.18-8.01 μg/mL) and PTP1B (IC50=0.85-8.75 μg/mL), respectively. Moreover, compounds 5b and 4l were most potent with IC50 values of 1.18 and 0.85 μg/mL for Cdc25B and PTP1B, respectively, compared with reference drugs Na3VO4 (IC50=0.93 μg/mL) and oleanolic acid (IC50=0.85 μg/mL). The results of selectivity experiments showed that the target compounds were selective inhibitors against PTP1B and Cdc25B. Enzyme kinetic experiments demonstrated that compound 5k was a specific inhibitor with the typical characteristics of a mixed inhibitor. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. New compounds from acid hydrolyzed products of the fruits of Momordica charantia L. and their inhibitory activity against protein tyrosine phosphatas 1B.

    PubMed

    Zeng, Ke; He, Yan-Ni; Yang, Di; Cao, Jia-Qing; Xia, Xi-Chun; Zhang, Shi-Jun; Bi, Xiu-Li; Zhao, Yu-Qing

    2014-06-23

    Four new cucurbitane-type triterpene sapogenins, compounds 1-4, together with other eight known compounds were isolated from the acid-hydrolyzed fruits extract of Momordica charantia L. Their chemical structures were established by NMR, mass spectrometry and X-ray crystallography. Compounds 1-7 and 9-12 were evaluated for their inhibitory activities toward protein tyrosine phosphatase 1B (PTP1B), a tyrosine phosphatase that has been implicated as a key target for therapy against type II diabetes. Compounds 1, 2, 4, 7 and 9 were shown inhibitory activities of 77%, 62%, 62% 60% and 68% against PTP1B, respectively. All of these tested compounds were exhibited higher PTP1B inhibition activities than that of the Na3VO4, a known PTP1B inhibitor used as positive control in present study. Structure activity relationship (SAR) analysis indicated that the inhibition activity of PTP1B was associated with the presence and number of -OH groups. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  11. A Loss-of-Function Screen for Phosphatases that Regulate Neurite Outgrowth Identifies PTPN12 as a Negative Regulator of TrkB Tyrosine Phosphorylation

    PubMed Central

    Ambjørn, Malene; Dubreuil, Véronique; Miozzo, Federico; Nigon, Fabienne; Møller, Bente; Issazadeh-Navikas, Shohreh; Berg, Jacob; Lees, Michael; Sap, Jan

    2013-01-01

    Alterations in function of the neurotrophin BDNF are associated with neurodegeneration, cognitive decline, and psychiatric disorders. BDNF promotes axonal outgrowth and branching, regulates dendritic tree morphology and is important for axonal regeneration after injury, responses that largely result from activation of its tyrosine kinase receptor TrkB. Although intracellular neurotrophin (NT) signaling presumably reflects the combined action of kinases and phosphatases, little is known about the contributions of the latter to TrkB regulation. The issue is complicated by the fact that phosphatases belong to multiple independently evolved families, which are rarely studied together. We undertook a loss-of-function RNA-interference-based screen of virtually all known (254) human phosphatases to understand their function in BDNF/TrkB-mediated neurite outgrowth in differentiated SH-SY5Y cells. This approach identified phosphatases from diverse families, which either positively or negatively modulate BDNF-TrkB-mediated neurite outgrowth, and most of which have little or no previously established function related to NT signaling. “Classical” protein tyrosine phosphatases (PTPs) accounted for 13% of the candidate regulatory phosphatases. The top classical PTP identified as a negative regulator of BDNF-TrkB-mediated neurite outgrowth was PTPN12 (also called PTP-PEST). Validation and follow-up studies showed that endogenous PTPN12 antagonizes tyrosine phosphorylation of TrkB itself, and the downstream activation of ERK1/2. We also found PTPN12 to negatively regulate phosphorylation of p130cas and FAK, proteins with previously described functions related to cell motility and growth cone behavior. Our data provide the first comprehensive survey of phosphatase function in NT signaling and neurite outgrowth. They reveal the complexity of phosphatase control, with several evolutionarily unrelated phosphatase families cooperating to affect this biological response, and hence

  12. Chronic Sleep Fragmentation During the Sleep Period Induces Hypothalamic Endoplasmic Reticulum Stress and PTP1b-Mediated Leptin Resistance in Male Mice

    PubMed Central

    Hakim, Fahed; Wang, Yang; Carreras, Alba; Hirotsu, Camila; Zhang, Jing; Peris, Eduard; Gozal, David

    2015-01-01

    Background: Sleep fragmentation (SF) is highly prevalent and may constitute an important contributing factor to excessive weight gain and the metabolic syndrome. Increased endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR) leading to the attenuation of leptin receptor signaling in the hypothalamus leads to obesity and metabolic dysfunction. Methods: Mice were exposed to SF and sleep control (SC) for varying periods of time during which ingestive behaviors were monitored. UPR pathways and leptin receptor signaling were assessed in hypothalami. To further examine the mechanistic role of ER stress, changes in leptin receptor (ObR) signaling were also examined in wild-type mice treated with the ER chaperone tauroursodeoxycholic acid (TUDCA), as well as in CHOP −/+ transgenic mice. Results: Fragmented sleep in male mice induced increased food intake starting day 3 and thereafter, which was preceded by increases in ER stress and activation of all three UPR pathways in the hypothalamus. Although ObR expression was unchanged, signal transducer and activator of transcription 3 (STAT3) phosphorylation was decreased, suggesting reduced ObR signaling. Unchanged suppressor of cytokine signaling-3 (SOCS3) expression and increases in protein-tyrosine phosphatase 1B (PTP1B) expression and activity emerged with SF, along with reduced p-STAT3 responses to exogenous leptin. SF-induced effects were reversed following TUDCA treatment and were absent in CHOP −/+ mice. Conclusions: Sleep fragmentation (SF) induces hyperphagic behaviors and reduced leptin signaling in hypothalamus that are mediated by activation of endoplasmic reticulum (ER) stress, and ultimately lead to increased PTP1B activity. ER stress pathways are therefore potentially implicated in SF-induced weight gain and metabolic dysfunction, and may represent a viable therapeutic target. Citation: Hakim F, Wang Y, Carreras A, Hirotsu C, Zhang J, Peris E, Gozal D. Chronic sleep

  13. Cadherin 2/4 signaling via PTP1B and catenins is crucial for nucleokinesis during radial neuronal migration in the neocortex

    PubMed Central

    Martinez-Garay, Isabel; Gil-Sanz, Cristina; Franco, Santos J.; Espinosa, Ana; Molnár, Zoltán

    2016-01-01

    Cadherins are crucial for the radial migration of excitatory projection neurons into the developing neocortical wall. However, the specific cadherins and the signaling pathways that regulate radial migration are not well understood. Here, we show that cadherin 2 (CDH2) and CDH4 cooperate to regulate radial migration in mouse brain via the protein tyrosine phosphatase 1B (PTP1B) and α- and β-catenins. Surprisingly, perturbation of cadherin-mediated signaling does not affect the formation and extension of leading processes of migrating neocortical neurons. Instead, movement of the cell body and nucleus (nucleokinesis) is disrupted. This defect is partially rescued by overexpression of LIS1, a microtubule-associated protein that has previously been shown to regulate nucleokinesis. Taken together, our findings indicate that cadherin-mediated signaling to the cytoskeleton is crucial for nucleokinesis of neocortical projection neurons during their radial migration. PMID:27151949

  14. Dynamin and PTP-PEST cooperatively regulate Pyk2 dephosphorylation in osteoclasts

    PubMed Central

    Eleniste, Pierre P.; Du, Liping; Shivanna, Mahesh; Bruzzaniti, Angela

    2012-01-01

    Bone loss is caused by the dysregulated activity of osteoclasts which degrade the extracellular bone matrix. The tyrosine kinase Pyk2 is highly expressed in osteoclasts, and mice lacking Pyk2 exhibit an increase in bone mass, in part due to impairment of osteoclast function. Pyk2 is activated by phosphorylation at Y402 following integrin activation, but the mechanisms leading to Pyk2 dephosphorylation are poorly understood. In the current study, we examined the mechanism of action of the dynamin GTPase on Pyk2 dephosphorylation. Our studies reveal a novel mechanism for the interaction of Pyk2 with dynamin, which involves the binding of Pyk2’s FERM domain with dynamin’s plextrin homology domain. In addition, we demonstrate that the dephosphorylation of Pyk2 requires dynamin’s GTPase activity and is mediated by the tyrosine phosphatase PTP-PEST. The dephosphorylation of Pyk2 by dynamin and PTP-PEST may be critical for terminating outside-in integrin signaling, and for stabilizing cytoskeletal reorganization during osteoclast bone resorption. PMID:22342188

  15. INHIBITION OF PROTEIN TYROSINE PHOSPHATASE ACTIVITY MEDIATES EPIDERMAL GROWTH FACTOR RECEPTOR SIGNALING IN HUMAN AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    Epidemiological studies have implicated zinc in the toxicity of ambient particulate matter (PM) inhalation. We previously showed that exposure to metal-laden PM inhibits protein tyrosine phosphatase (PTP) activity in human primary bronchial epithelial cells (HAEC) and leads t...

  16. MECHANISM OF PROTEIN TYROSINE PHOSPHATASE INHIBITION IN HUMAN AIRWAY EPITHELIAL CELLS (HAEC) EXPOSED TO ZN2+

    EPA Science Inventory

    A number of studies have implicated zinc in the toxicity of ambient particulate matter (PM) inhalation. We previously showed that exposure to Zn2+ inhibits protein tyrosine phosphatase (PTP) activity and leads to activation of epidermal growth factor receptor (EGFR) signaling in ...

  17. PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine

    PubMed Central

    Okazaki, Taku; Maeda, Akito; Nishimura, Hiroyuki; Kurosaki, Tomohiro; Honjo, Tasuku

    2001-01-01

    PD-1 is an immunoreceptor that belongs to the immunoglobulin (Ig) superfamily and contains two tyrosine residues in the cytoplasmic region. Studies on PD-1-deficient mice have shown that PD-1 plays critical roles in establishment and/or maintenance of peripheral tolerance, but the mode of action is totally unknown. To study the molecular mechanism for negative regulation of lymphocytes through the PD-1 receptor, we generated chimeric molecules composed of the IgG Fc receptor type IIB (FcγRIIB) extracellular region and the PD-1 cytoplasmic region and expressed them in a B lymphoma cell line, IIA1.6. Coligation of the cytoplasmic region of PD-1 with the B cell receptor (BCR) in IIA1.6 transformants inhibited BCR-mediated growth retardation, Ca2+ mobilization, and tyrosine phosphorylation of effector molecules, including Igβ, Syk, phospholipase C-γ2 (PLCγ2), and ERK1/2, whereas phosphorylation of Lyn and Dok was not affected. Mutagenesis studies indicated that these inhibitory effects do not require the N-terminal tyrosine in the immunoreceptor tyrosine-based inhibitory motif-like sequence, but do require the other tyrosine residue in the C-terminal tail. This tyrosine was phosphorylated and recruited src homology 2-domain-containing tyrosine phosphatase 2 (SHP-2) on coligation of PD-1 with BCR. These results show that PD-1 can inhibit BCR signaling by recruiting SHP-2 to its phosphotyrosine and dephosphorylating key signal transducers of BCR signaling. PMID:11698646

  18. Molecular mechanism of serine/threonine protein phosphatase 1 (PP1cα-PP1r7) in spermatogenesis of Toxocara canis.

    PubMed

    Ma, Guang Xu; Zhou, Rong Qiong; Song, Zhen Hui; Zhu, Hong Hong; Zhou, Zuo Yong; Zeng, Yuan Qin

    2015-09-01

    Toxocariasis is one of the most important, but neglected, zoonoses, which is mainly caused by Toxocara canis. To better understand the role of serine/threonine protein phosphatase 1 (PP1) in reproductive processes of male adult T. canis, differential expression analysis was used to reveal the profiles of PP1 catalytic subunit α (PP1cα) gene Tc-stp-1 and PP1 regulatory subunit 7 (PP1r7) gene TcM-1309. Indirect fluorescence immunocytochemistry was carried out to determine the subcellular distribution of PP1cα. Double-stranded RNA interference (RNAi) assays were employed to illustrate the function and mechanism of PP1cα in male adult reproduction. Real-time quantitative PCR (qPCR) showed transcriptional consistency of Tc-stp-1 and TcM-1309 in sperm-producing germline tissues and localization research showed cytoplasmic distribution of PP1cα in sf9 cells, which indicated relevant involvements of PP1cα and PP1r7 in spermatogenesis. Moreover, spatiotemporal transcriptional differences of Tc-stp-1 were determined by gene knockdown analysis, which revealed abnormal morphologies and blocked meiotic divisions of spermatocytes by phenotypic aberration scanning, thereby highlighting the crucial involvement of PP1cα in spermatogenesis. These results revealed a PP1cα-PP1r7 mechanism by which PP1 regulates kinetochore-microtubule interactions in spermatogenesis and provided important clues to identify novel drug or vaccine targets for toxocariasis control. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Cadherin 2/4 signaling via PTP1B and catenins is crucial for nucleokinesis during radial neuronal migration in the neocortex.

    PubMed

    Martinez-Garay, Isabel; Gil-Sanz, Cristina; Franco, Santos J; Espinosa, Ana; Molnár, Zoltán; Mueller, Ulrich

    2016-06-15

    Cadherins are crucial for the radial migration of excitatory projection neurons into the developing neocortical wall. However, the specific cadherins and the signaling pathways that regulate radial migration are not well understood. Here, we show that cadherin 2 (CDH2) and CDH4 cooperate to regulate radial migration in mouse brain via the protein tyrosine phosphatase 1B (PTP1B) and α- and β-catenins. Surprisingly, perturbation of cadherin-mediated signaling does not affect the formation and extension of leading processes of migrating neocortical neurons. Instead, movement of the cell body and nucleus (nucleokinesis) is disrupted. This defect is partially rescued by overexpression of LIS1, a microtubule-associated protein that has previously been shown to regulate nucleokinesis. Taken together, our findings indicate that cadherin-mediated signaling to the cytoskeleton is crucial for nucleokinesis of neocortical projection neurons during their radial migration. © 2016. Published by The Company of Biologists Ltd.

  20. Levodopa/Benserazide Loaded Microspheres Alleviate L-dopa Induced Dyskinesia through Preventing the Over-Expression of D1R/Shp-2/ERK1/2 Signaling Pathway in a Rat Model of Parkinson's Disease

    PubMed Central

    Wan, Ying; Wu, Na; Song, Lu; Wang, Xijin; Liu, Zhenguo; Yuan, Weien; Gan, Jing

    2017-01-01

    Background: The long-term intermittent Levodopa (L-dopa) stimulation contributes to an aberrant activation of D1 receptor (D1R) mediated extracellular signal-regulated kinases1/2 (ERK1/2) in the striatal medium spiny neurons, resulting in the occurrence of L-dopa induced dyskinesia (LID). Recently, a novel signaling pathway, D1R/Shp-2/ERK1/2, was proposed to be required for the occurrence of LID. Here we designed the study in which two different methods of L-dopa delivery [continuous dopamine stimulation (CDS) vs. intermittent dopamine stimulation] were used to further identify: (1) the role of D1R/Shp-2/ERK1/2 signaling pathway in the occurrence of LID; (2) whether CDS alleviated LID though preventing the over-expression of the D1R/Shp-2/ERK1/2 signaling pathway. Methods: 6-OHDA-lesioned rat models of Parkinson's disease (PD) were randomly divided into two groups to receive intermittent L-dopa stimulation (L-dopa/benserazide standard group, LS group) or CDS (L-dopa/benserazide loaded microspheres, LBM group) for 21 days. Dyskinesia and anti-parkinsonian effect were compared between the two groups through the AIMs assessment and cylinder test. The critical protein changes in the D1R/Shp-2/ERK1/2 signaling pathway were compared between the two groups through Western blotting. Results: Intermittent L-dopa administration induced serious dyskinetic movements in the 6-OHDA-lesioned rats, and the anti-parkinsonian effect of L-dopa was gradually counteracted by the occurrence of dyskinesia. Intermittent L-dopa administration enhanced the expression of membrane D1R, and induced a robust increase of phosphorylation of Shp-2, Src, DARPP-32, and ERK1/2 in the 6-OHDA-lesioned striatum. In contrast, CDS played a dose-dependent anti-parkinsonian role, without inducing such apparent dyskinetic movements. Moreover, CDS induced no change of membrane D1R expression or phosphorylation of Shp-2, Src, DARPP-32, and ERK1/2 in the 6-OHDA-lesioned striatum. Conclusion: The aberrant

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ying-Nan P.; LaMarche, Matthew J.; Chan, Ho Man

    The non-receptor protein tyrosine phosphatase SHP2, encoded by PTPN11, has an important role in signal transduction downstream of growth factor receptor signalling and was the first reported oncogenic tyrosine phosphatase1. Activating mutations of SHP2 have been associated with developmental pathologies such as Noonan syndrome and are found in multiple cancer types, including leukaemia, lung and breast cancer and neuroblastoma1, 2, 3, 4, 5. SHP2 is ubiquitously expressed and regulates cell survival and proliferation primarily through activation of the RAS–ERK signalling pathway2, 3. It is also a key mediator of the programmed cell death 1 (PD-1) and B- and T-lymphocyte attenuatormore » (BTLA) immune checkpoint pathways6, 7. Reduction of SHP2 activity suppresses tumour cell growth and is a potential target of cancer therapy8, 9. Here we report the discovery of a highly potent (IC50 = 0.071 μM), selective and orally bioavailable small-molecule SHP2 inhibitor, SHP099, that stabilizes SHP2 in an auto-inhibited conformation. SHP099 concurrently binds to the interface of the N-terminal SH2, C-terminal SH2, and protein tyrosine phosphatase domains, thus inhibiting SHP2 activity through an allosteric mechanism. SHP099 suppresses RAS–ERK signalling to inhibit the proliferation of receptor-tyrosine-kinase-driven human cancer cells in vitro and is efficacious in mouse tumour xenograft models. Together, these data demonstrate that pharmacological inhibition of SHP2 is a valid therapeutic approach for the treatment of cancers.« less

  2. Nuclear magnetic resonance and restrained molecular dynamics studies of the interaction of an epidermal growth factor-derived peptide with protein tyrosine phosphatase 1B.

    PubMed

    Glover, N R; Tracey, A S

    1999-04-20

    The epidermal growth factor-derived (EGFR988) fluorophosphonate peptide, DADE(F2Pmp)L, is a potent (30 pM) inhibitor of the protein tyrosine phosphatase PTP1B. Nuclear magnetic resonance (NMR) transferred nuclear Overhauser effect (nOe) experiments have been used to determine the conformation of DADE(F2Pmp)L while bound in the active site of PTP1B. When bound, the peptide adopts an extended beta-strand conformation. Molecular modeling and molecular dynamics simulations allowed the elucidation of the sources of many of the interactions leading to binding of this inhibitor. Electrostatic, hydrophobic, and hydrogen-bonding interactions were all found to contribute significantly to its binding. However, despite the overall tight binding of this inhibitor, the N-terminal and adjacent residue of the peptide were virtually unrestrained in their motion. The major contributions to binding arose from hydrophobic interactions at the leucine and at the aromatic center, hydrogen bonding to the pro-R fluorine of the fluorophosphonomethyl group, and electrostatic interactions involving the carboxylate functionalities of the aspartate and glutamate residues. These latter two residues were found to form tight contacts with surface recognition elements (arginine and lysine) situated near the active-site cleft.

  3. Beta-catenin interacts with low-molecular-weight protein tyrosine phosphatase leading to cadherin-mediated cell-cell adhesion increase.

    PubMed

    Taddei, Maria Letizia; Chiarugi, Paola; Cirri, Paolo; Buricchi, Francesca; Fiaschi, Tania; Giannoni, Elisa; Talini, Doriana; Cozzi, Giacomo; Formigli, Lucia; Raugei, Giovanni; Ramponi, Giampietro

    2002-11-15

    Beta-catenin plays a dual role as a major constituent of cadherin-based adherens junctions and also as a transcriptional coactivator. In normal ephitelial cells, at adherens junction level, beta-catenin links cadherins to the actin cytoskeleton. The structure of adherens junctions is dynamically regulated by tyrosine phosphorylation. In particular, cell-cell adhesion can be negatively regulated through the tyrosine phosphorylation of beta-catenin. Furthermore, the loss of beta-catenin-cadherin association has been correlated with the transition from a benign tumor to an invasive, metastatic cancer. Low-molecular-weight protein tyrosine phosphatase (LMW-PTP) is a ubiquitous PTP implicated in the regulation of mitosis and cytoskeleton rearrangement. Here we demonstrate that the amount of free cytoplasmic beta-catenin is decreased in NIH3T3, which overexpresses active LMW-PTP, and this results in a stronger association between cadherin complexes and the actin-based cytoskeleton with respect to control cells. Confocal microscopy analysis shows that beta-catenin colocalizes with LMW-PTP at the plasma membrane. Furthermore, we provide evidence that beta-catenin is able to associate with LMW-PTP both in vitro and in vivo. Moreover, overexpression of active LMW-PTP strongly potentiates cadherin-mediated cell-cell adhesion, whereas a dominant-negative form of LMW-PTP induces the opposite phenotype, both in NIH3T3 and in MCF-7 carcinoma cells. On the basis of these results, we propose that the stability of cell-cell contacts at the adherens junction level is positively influenced by LMW-PTP expression, mainly because of the beta-catenin and LMW-PTP interaction at the plasma membrane level with consequent dephosphorylation.

  4. Dataset on the kinetics of the inhibition of PTP1B by the flavonoids and pheophytin A from Allophylus cominia.

    PubMed

    Semaan, D G; Igoli, J O; Young, L; Marrero, E; Gray, A I; Rowan, E G

    2018-04-01

    The data presented in this article are related to the research article under the title "in vitro anti-diabetic activity of flavonoids and pheophytins from Allophylus cominia Sw. on PTP1B, DPPIV, alpha-glucosidase and alpha-amylase enzymes" (Semaan et al., 2017) [3]. This article defines the kinetics of inhibition of flavonoids and pheophytin A extracts from A. cominia which showed an inhibition of the PTP1B enzyme activity. The main reason to make these results public is to confirm that this study was followed up and no more experiments are needed, also to confirm that these compounds can be reported as PTP1B inhibitors.

  5. 3-Phenylpropanoic acid-based phosphotyrosine (pTyr) mimetics: hit evolution to a novel orally active protein tyrosine phosphatase 1B (PTP1B) inhibitor.

    PubMed

    Tang, Yan-Bo; Liu, Jun-Zheng; Zhang, Shu-En; Du, Xin; Nie, Feilin; Tian, Jin-Ying; Ye, Fei; Huang, Kai; Hu, Jin-Ping; Li, Yan; Xiao, Zhiyan

    2014-05-01

    Protein tyrosine phosphatase 1B (PTP1B) is a promising therapeutic target for type 2 diabetes. Herein, we report the evolution of a previously identified 3-phenylpropanoic acid-based PTP1B inhibitor to an orally active lead compound. A series of 3-phenylpropanoic acid-based PTP1B inhibitors were synthesized, and three of them, 3-(4-(9H-carbazol-9-yl)phenyl)-5-(3,5-di-tert-butyl-4-methoxyphenyl)-5-oxopentanoic acid (9), 3-(4-(9H-carbazol-9-yl)phenyl)-5-(4'-bromo-[1,1'-biphenyl]-4-yl)-5-oxopentanoic acid (10) and 3-(4-(9H-carbazol-9-yl)-2-fluorophenyl)-5-(4-cyclohexylphenyl)-5-oxopentanoic acid (16), showed IC50 values at sub-micromolar level. Further in vivo evaluation indicated the sodium salt of 9 not only exhibited significant insulin-sensitizing and hypoglycemia effects, but also decreased the serum levels of triglyceride and total cholesterol in high-fat-diet-induced insulin resistance model mice. Preliminary in vivo pharmacokinetic studies on the sodium salt of 9 revealed its pharmacokinetic profile after oral administration in rats. These results provide proof-of-concept for the dual effects of PTP1B inhibitors on both glucose and lipid metabolisms. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Chimeric design, synthesis, and biological assays of a new nonpeptide insulin-mimetic vanadium compound to inhibit protein tyrosine phosphatase 1B.

    PubMed

    Scior, Thomas; Guevara-García, José Antonio; Melendez, F J; Abdallah, Hassan H; Do, Quoc-Tuan; Bernard, Philippe

    2010-09-24

    Prior to its total synthesis, a new vanadium coordination compound, called TSAG0101, was computationally designed to inhibit the enzyme protein tyrosine phosphatase 1B (PTP1B). The PTP1B acts as a negative regulator of insulin signaling by blocking the active site where phosphate hydrolysis of the insulin receptor takes place. TSAG001, [V(V)O(2)(OH)(picolinamide)], was characterized by infrared (IR) and nuclear magnetic resonance (NMR) spectroscopy; IR: ν/cm(-1) 3,570 (NH), 1,627 (C=O, coordinated), 1,417 (C-N), 970/842 (O=V=O), 727 δ̣ (pyridine ring); (13)C NMR: 5 bands between 122 and 151 ppm and carbonyl C shifted to 180 ppm; and (1)H NMR: 4 broad bands from 7.6 to 8.2 ppm and NH(2) shifted to 8.8 ppm. In aqueous solution, in presence or absence of sodium citrate as a biologically relevant and ubiquitous chelator, TSAG0101 undergoes neither ligand exchange nor reduction of its central vanadium atom during 24 hours. TSAG0101 shows blood glucose lowering effects in rats but it produced no alteration of basal- or glucose-induced insulin secretion on β cells during in vitro tests, all of which excludes a direct mechanism evidencing the extrapancreatic nature of its activity. The lethal dose (LD(50)) of TSAG0101 was determined in Wistar mice yielding a value of 412 mg/kg. This value is one of the highest among vanadium compounds and classifies it as a mild toxicity agent when compared with literature data. Due to its nonsubstituted, small-sized scaffold design, its remarkable complex stability, and low toxicity; TSAG0101 should be considered as an innovative insulin-mimetic principle with promising properties and, therefore, could become a new lead compound for potential nonpeptide PTP1B inhibitors in antidiabetic drug research. In view of the present work, the inhibitory concentration (IC(50)) and extended solution stability will be tested.

  7. Chimeric design, synthesis, and biological assays of a new nonpeptide insulin-mimetic vanadium compound to inhibit protein tyrosine phosphatase 1B

    PubMed Central

    Scior, Thomas; Guevara-García, José Antonio; Melendez, FJ; Abdallah, Hassan H; Do, Quoc-Tuan; Bernard, Philippe

    2010-01-01

    Prior to its total synthesis, a new vanadium coordination compound, called TSAG0101, was computationally designed to inhibit the enzyme protein tyrosine phosphatase 1B (PTP1B). The PTP1B acts as a negative regulator of insulin signaling by blocking the active site where phosphate hydrolysis of the insulin receptor takes place. TSAG001, [VVO2(OH)(picolinamide)], was characterized by infrared (IR) and nuclear magnetic resonance (NMR) spectroscopy; IR: ν/cm−1 3,570 (NH), 1,627 (C=O, coordinated), 1,417 (C–N), 970/842 (O=V=O), 727 δ̣ (pyridine ring); 13C NMR: 5 bands between 122 and 151 ppm and carbonyl C shifted to 180 ppm; and 1H NMR: 4 broad bands from 7.6 to 8.2 ppm and NH2 shifted to 8.8 ppm. In aqueous solution, in presence or absence of sodium citrate as a biologically relevant and ubiquitous chelator, TSAG0101 undergoes neither ligand exchange nor reduction of its central vanadium atom during 24 hours. TSAG0101 shows blood glucose lowering effects in rats but it produced no alteration of basal- or glucose-induced insulin secretion on β cells during in vitro tests, all of which excludes a direct mechanism evidencing the extrapancreatic nature of its activity. The lethal dose (LD50) of TSAG0101 was determined in Wistar mice yielding a value of 412 mg/kg. This value is one of the highest among vanadium compounds and classifies it as a mild toxicity agent when compared with literature data. Due to its nonsubstituted, small-sized scaffold design, its remarkable complex stability, and low toxicity; TSAG0101 should be considered as an innovative insulin-mimetic principle with promising properties and, therefore, could become a new lead compound for potential nonpeptide PTP1B inhibitors in antidiabetic drug research. In view of the present work, the inhibitory concentration (IC50) and extended solution stability will be tested. PMID:20957214

  8. Punicalagin, a PTP1B inhibitor, induces M2c phenotype polarization via up-regulation of HO-1 in murine macrophages.

    PubMed

    Xu, Xiaolong; Guo, Yuhong; Zhao, Jingxia; He, Shasha; Wang, Yan; Lin, Yan; Wang, Ning; Liu, Qingquan

    2017-09-01

    Current data have shown that punicalagin (PUN), an ellagitannin isolated from pomegranate, possesses anti-inflammatory and anti-oxidant properties; however, its direct targets have not yet been reported. This is the first report that PTP1B serves as a direct target of PUN, with IC 50 value of 1.04μM. Results from NPOI further showed that the K on and K off of PUN-PTP1B complex were 3.38e2M -1 s -1 and 4.13e-3s -1 , respectively. The active site Arg24 of PTP1B was identified as a key binding site of PUN by computation simulation and point mutation. Moreover, inhibition of PTP1B by PUN promoted an M2c-like macrophage polarization and enhanced anti-inflammatory cytokines expression, including IL-10 and M-CSF. Based on gene expression profile, we elucidated that PUN treatment significantly up-regulated 275 genes and down-regulated 1059 genes. M1-like macrophage marker genes, such as Tlr4, Irf1/2, Hmgb1, and Stat1 were down-regulated, while M2 marker genes, including Tmem171, Gpr35, Csf1, Il1rn, Cebpb, Fos, Vegfα, Slc11a1, and Bhlhe40 were up-regulated in PUN-treated macrophages. Hmox-1, a gene encoding HO-1 protein, was preferentially expressed with 16-fold change. Inhibition of HO-1 obviously restored PUN-induced M2 polarization and IL-10 secretion. In addition, phosphorylation of both Akt and STAT3 contributed to PUN-induced HO-1 expression. This study provided new insights into the mechanisms of PUN-mediated anti-inflammatory and anti-oxidant activities and provided new therapeutic strategies for inflammatory diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Glutaredoxin modulates platelet-derived growth factor-dependent cell signaling by regulating the redox status of low molecular weight protein-tyrosine phosphatase.

    PubMed

    Kanda, Munetake; Ihara, Yoshito; Murata, Hiroaki; Urata, Yoshishige; Kono, Takaaki; Yodoi, Junji; Seto, Shinji; Yano, Katsusuke; Kondo, Takahito

    2006-09-29

    Glutaredoxin (GRX) is a glutathione-disulfide oxidoreductase involved in various cellular functions, including the redox-dependent regulation of certain integral proteins. Here we demonstrated that overexpression of GRX suppressed the proliferation of myocardiac H9c2 cells treated with platelet-derived growth factor (PDGF)-BB. After stimulation with PDGF-BB, the phosphorylation of PDGF receptor (PDGFR) beta was suppressed in GRX gene-transfected cells, compared with controls. Conversely, the phosphorylation was enhanced by depletion of GRX by RNA interference. In this study we focused on the role of low molecular weight protein-tyrosine phosphatase (LMW-PTP) in the dephosphorylation of PDGFRbeta via a redox-dependent mechanism. We found that depletion of LMW-PTP using RNA interference enhanced the PDGF-BB-induced phosphorylation of PDGFRbeta, indicating that LMW-PTP works for PDGFRbeta. The enhancement of the phosphorylation of PDGFRbeta was well correlated with inactivation of LMW-PTP by cellular peroxide generated in the cells stimulated with PDGF-BB. In vitro, with hydrogen peroxide treatment, LMW-PTP showed decreased activity with the concomitant formation of dithiothreitol-reducible oligomers. GRX protected LMW-PTP from hydrogen peroxide-induced oxidation and inactivation in concert with glutathione, NADPH, and glutathione disulfide reductase. This strongly suggests that retention of activity of LMW-PTP by enhanced GRX expression suppresses the proliferation of cells treated with PDGF-BB via enhanced dephosphorylation of PDGFRbeta. Thus, GRX plays an important role in PDGF-BB-dependent cell proliferation by regulating the redox state of LMW-PTP.

  10. Calcium-Mediated Apoptosis and Apoptotic Sensitization in Prostate Cancer

    DTIC Science & Technology

    2003-06-01

    tyrosine phosphatase, PTP1B . To study their direct involvement in apoptosis and signaling, PC cells were transfected with dominant negative caspase 7...and inducible constructs of activated PTP1B B. Dominant negative caspase 7 suppressed activation of endogenous caspase 7 by calcium ionophore...supporting a role for its recruitment into the calcium initiated apoptotic process. Activated PTP1B expression (but not a phosphatase-dead mutant

  11. Regulation of receptor-type protein tyrosine phosphatases by their C-terminal tail domains.

    PubMed

    Barnea, Maayan; Olender, Tsviya; Bedford, Mark T; Elson, Ari

    2016-10-15

    Protein tyrosine phosphatases (PTPs) perform specific functions in vivo, despite being vastly outnumbered by their substrates. Because of this and due to the central roles PTPs play in regulating cellular function, PTP activity is regulated by a large variety of molecular mechanisms. We review evidence that indicates that the divergent C-terminal tail sequences (C-terminal domains, CTDs) of receptor-type PTPs (RPTPs) help regulate RPTP function by controlling intermolecular associations in a way that is itself subject to physiological regulation. We propose that the CTD of each RPTP defines an 'interaction code' that helps determine molecules it will interact with under various physiological conditions, thus helping to regulate and diversify PTP function. © 2016 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  12. Osteopontin inhibits osteoblast responsiveness through the down-regulation of focal adhesion kinase mediated by the induction of low-molecular weight protein tyrosine phosphatase.

    PubMed

    Kusuyama, Joji; Bandow, Kenjiro; Ohnishi, Tomokazu; Hisadome, Mitsuhiro; Shima, Kaori; Semba, Ichiro; Matsuguchi, Tetsuya

    2017-05-15

    Osteopontin (OPN) is an osteogenic marker protein. Osteoblast functions are affected by inflammatory cytokines and pathological conditions. OPN is highly expressed in bone lesions such as those in rheumatoid arthritis. However, local regulatory effects of OPN on osteoblasts remain ambiguous. Here we examined how OPN influences osteoblast responses to mechanical stress and growth factors. Expression of NO synthase 1 ( Nos1 ) and Nos2 was increased by low-intensity pulsed ultrasound (LIPUS) in MC3T3-E1 cells and primary osteoblasts. The increase of Nos1/2 expression was abrogated by both exogenous OPN overexpression and recombinant OPN treatment, whereas it was promoted by OPN-specific siRNA and OPN antibody. Moreover, LIPUS-induced phosphorylation of focal adhesion kinase (FAK), a crucial regulator of mechanoresponses, was down-regulated by OPN treatments. OPN also attenuated hepatocyte growth factor-induced vitamin D receptor ( Vdr ) expression and platelet-derived growth factor-induced cell mobility through the repression of FAK activity. Of note, the expression of low-molecular weight protein tyrosine phosphatase (LMW-PTP), a FAK phosphatase, was increased in both OPN-treated and differentiated osteoblasts. CD44 was a specific OPN receptor for LWW-PTP induction. Consistently, the suppressive influence of OPN on osteoblast responsiveness was abrogated by LMW-PTP knockdown. Taken together, these results reveal novel functions of OPN in osteoblast physiology. © 2017 Kusuyama et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  13. Serotonin suppresses β-casein expression via PTP1B activation in human mammary epithelial cells.

    PubMed

    Chiba, Takeshi; Maeda, Tomoji; Sanbe, Atsushi; Kudo, Kenzo

    2016-04-22

    Serotonin (5-hydroxytriptamine, 5-HT) has an important role in milk volume homeostasis within the mammary gland during lactation. We have previously shown that the expression of β-casein, a differentiation marker in mammary epithelial cells, is suppressed via 5-HT-mediated inhibition of signal transduction and activator of transcription 5 (STAT5) phosphorylation in the human mammary epithelial MCF-12A cell line. In addition, the reduction of β-casein in turn was associated with 5-HT7 receptor expression in the cells. The objective of this study was to determine the mechanisms underlying the 5-HT-mediated suppression of β-casein and STAT5 phosphorylation. The β-casein level and phosphorylated STAT5 (pSTAT5)/STAT5 ratio in the cells co-treated with 5-HT and a protein kinase A (PKA) inhibitor (KT5720) were significantly higher than those of cells treated with 5-HT alone. Exposure to 100 μM db-cAMP for 6 h significantly decreased the protein levels of β-casein and pSTAT5 and the pSTAT5/STAT5 ratio, and significantly increased PTP1B protein levels. In the cells co-treated with 5-HT and an extracellular signal-regulated kinase1/2 (ERK) inhibitor (FR180294) or Akt inhibitor (124005), the β-casein level and pSTAT5/STAT5 ratio were equal to those of cells treated with 5-HT alone. Treatment with 5-HT significantly induced PTP1B protein levels, whereas its increase was inhibited by KT5720. In addition, the PTP1B inhibitor sc-222227 increased the expression levels of β-casein and the pSTAT5/STAT5 ratio. Our observations indicate that PTP1B directly regulates STAT5 phosphorylation and that its activation via the cAMP/PKA pathway downstream of the 5-HT7 receptor is involved in the suppression of β-casein expression in MCF-12A cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Chronic sleep fragmentation during the sleep period induces hypothalamic endoplasmic reticulum stress and PTP1b-mediated leptin resistance in male mice.

    PubMed

    Hakim, Fahed; Wang, Yang; Carreras, Alba; Hirotsu, Camila; Zhang, Jing; Peris, Eduard; Gozal, David

    2015-01-01

    Sleep fragmentation (SF) is highly prevalent and may constitute an important contributing factor to excessive weight gain and the metabolic syndrome. Increased endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR) leading to the attenuation of leptin receptor signaling in the hypothalamus leads to obesity and metabolic dysfunction. Mice were exposed to SF and sleep control (SC) for varying periods of time during which ingestive behaviors were monitored. UPR pathways and leptin receptor signaling were assessed in hypothalami. To further examine the mechanistic role of ER stress, changes in leptin receptor (ObR) signaling were also examined in wild-type mice treated with the ER chaperone tauroursodeoxycholic acid (TUDCA), as well as in CHOP-/+ transgenic mice. Fragmented sleep in male mice induced increased food intake starting day 3 and thereafter, which was preceded by increases in ER stress and activation of all three UPR pathways in the hypothalamus. Although ObR expression was unchanged, signal transducer and activator of transcription 3 (STAT3) phosphorylation was decreased, suggesting reduced ObR signaling. Unchanged suppressor of cytokine signaling-3 (SOCS3) expression and increases in protein-tyrosine phosphatase 1B (PTP1B) expression and activity emerged with SF, along with reduced p-STAT3 responses to exogenous leptin. SF-induced effects were reversed following TUDCA treatment and were absent in CHOP -/+ mice. SF induces hyperphagic behaviors and reduced leptin signaling in hypothalamus that are mediated by activation of ER stress, and ultimately lead to increased PTP1B activity. ER stress pathways are therefore potentially implicated in SF-induced weight gain and metabolic dysfunction, and may represent a viable therapeutic target. © 2014 Associated Professional Sleep Societies, LLC.

  15. Streptococcal heme binding protein (Shp) promotes virulence and contributes to the pathogenesis of group A Streptococcus infection.

    PubMed

    Zhang, Xiaolan; Lu, Chunmei; Zhang, Fengmin; Song, Yingli; Cai, Minghui; Zhu, Hui

    2017-09-29

    Streptococcal heme binding protein (Shp) is involved in the process of heme acquisition in group A Streptococcus (GAS). However, no research thus far has examined the contribution of Shp to the virulence of GAS. To this end, we generated an isogenic strain lacking the shp gene (Δshp) and its complemented strain (Δshp-c) using the parent strain MGAS5005 (WT). Deletion of shp increased survival rates and neutrophil recruitment and reduced skin lesion sizes and GAS loads in the blood and the liver, lung, kidney and spleen in subcutaneous infections of mice. These results indicate that Shp significantly contributes to the skin and systemic invasion of GAS. The growth of the Δshp mutant was significantly slower than MGAS5005 and Δshp-c than in non-immune human blood and in incubation with isolated rat neutrophils. Microarray transcriptional analyses found no alteration in expression of virulence genes, indicating that the phenotype of the Δshp mutant was directly linked to the lack of Shp. The findings indicate that Shp significantly contributes to GAS skin invasion, systemic infection and virulence and that these contributions of Shp are mediated by the effects of Shp on systemic GAS growth and neutrophil responses. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Immunization with Streptococcal Heme Binding Protein (Shp) Protects Mice Against Group A Streptococcus Infection.

    PubMed

    Zhang, Xiaolan; Song, Yingli; Li, Yuanmeng; Cai, Minghui; Meng, Yuan; Zhu, Hui

    2017-01-01

    Streptococcal heme binding protein (Shp) is a surface protein of the heme acquisition system that is an essential iron nutrient in Group A Streptococcus (GAS). Here, we tested whether Shp immunization protects mice from subcutaneous infection. Mice were immunized subcutaneously with recombinant Shp and then challenged with GAS. The protective effects against GAS challenge were evaluated two weeks after the last immunization. Immunization with Shp elicited a robust IgG response, resulting in high anti-Shp IgG titers in the serum. Immunized mice had a higher survival rate and smaller skin lesions than adjuvant control mice. Furthermore, immunized mice had lower GAS numbers at the skin lesions and in the liver, spleen and lung. Histological analysis with Gram staining showed that GAS invaded the surrounding area of the inoculation sites in the skin in control mice, but not in immunized mice. Thus, Shp immunization enhances GAS clearance and reduces GAS skin invasion and systemic dissemination. These findings indicate that Shp is a protective antigen.

  17. Protein Tyrosine Phosphatase 1B Inhibition and Glucose Uptake Potentials of Mulberrofuran G, Albanol B, and Kuwanon G from Root Bark of Morus alba L. in Insulin-Resistant HepG2 Cells: An In Vitro and In Silico Study.

    PubMed

    Paudel, Pradeep; Yu, Ting; Seong, Su Hui; Kuk, Eun Bi; Jung, Hyun Ah; Choi, Jae Sue

    2018-05-22

    Type II diabetes mellitus (T2DM) is the most common form of diabetes and has become a major health problem across the world. The root bark of Morus alba L. is widely used in Traditional Chinese Medicine for treatment and management of diabetes. The aim of the present study was to evaluate the enzyme inhibitory potentials of three principle components, mulberrofuran G ( 1 ), albanol B ( 2 ), and kuwanon G ( 3 ) in M. alba root bark against diabetes, establish their enzyme kinetics, carry out a molecular docking simulation, and demonstrate the glucose uptake activity in insulin-resistant HepG2 cells. Compounds 1 ⁻ 3 showed potent mixed-type enzyme inhibition against protein tyrosine phosphatase 1B (PTP1B) and α-glucosidase. In particular, molecular docking simulations of 1 ⁻ 3 demonstrated negative binding energies in both enzymes. Moreover, 1 ⁻ 3 were non-toxic up to 5 µM concentration in HepG2 cells and enhanced glucose uptake significantly and decreased PTP1B expression in a dose-dependent manner in insulin-resistant HepG2 cells. Our overall results depict 1 ⁻ 3 from M. alba root bark as dual inhibitors of PTP1B and α-glucosidase enzymes, as well as insulin sensitizers. These active constituents in M. alba may potentially be utilized as an effective treatment for T2DM.

  18. Conformational motions regulate phosphoryl transfer in related protein tyrosine phosphatases

    PubMed Central

    Whittier, Sean K.; Hengge, Alvan C.; Loria, J. Patrick

    2014-01-01

    Many studies have implicated a role for conformational motions during the catalytic cycle, acting to optimize the binding pocket or facilitate product release, but a more intimate role in the chemical reaction has not been described. We address this by monitoring active-site loop motion in two protein tyrosine phosphatases (PTPs) using NMR spectroscopy. The PTPs, YopH and PTP1B, have very different catalytic rates, however we find in both that the active-site loop closes to its catalytically competent position at rates that mirror the phosphotyrosine cleavage kinetics. This loop contains the catalytic acid, suggesting that loop closure occurs concomitantly with the protonation of the leaving group tyrosine and explains the different kinetics of two otherwise chemically and mechanistically indistinguishable enzymes. PMID:23970698

  19. Phylogenetic and genetic linkage between novel atypical dual-specificity phosphatases from non-metazoan organisms.

    PubMed

    Romá-Mateo, Carlos; Sacristán-Reviriego, Almudena; Beresford, Nicola J; Caparrós-Martín, José Antonio; Culiáñez-Macià, Francisco A; Martín, Humberto; Molina, María; Tabernero, Lydia; Pulido, Rafael

    2011-04-01

    Dual-specificity phosphatases (DSPs) constitute a large protein tyrosine phosphatase (PTP) family, with examples in distant evolutive phyla. PFA-DSPs (Plant and Fungi Atypical DSPs) are a group of atypical DSPs present in plants, fungi, kinetoplastids, and slime molds, the members of which share structural similarity with atypical- and lipid phosphatase DSPs from mammals. The analysis of the PFA-DSPs from the plant Arabidopsis thaliana (AtPFA-DSPs) showed differential tissue mRNA expression, substrate specificity, and catalytic activity for these proteins, suggesting different functional roles among plant PFA-DSPs. Bioinformatic analysis revealed the existence of novel PFA-DSP-related proteins in fungi (Oca1, Oca2, Oca4 and Oca6 in Saccharomyces cerevisiae) and protozoa, which were segregated from plant PFA-DSPs. The closest yeast homolog for these proteins was the PFA-DSP from S. cerevisiae ScPFA-DSP1/Siw14/Oca3. Oca1, Oca2, Siw14/Oca3, Oca4, and Oca6 were involved in the yeast response to caffeine and rapamycin stresses. Siw14/Oca3 was an active phosphatase in vitro, whereas no phosphatase activity could be detected for Oca1. Remarkably, overexpression of Siw14/Oca3 suppressed the caffeine sensitivity of oca1, oca2, oca4, and oca6 deleted strains, indicating a genetic linkage and suggesting a functional relationship for these proteins. Functional studies on mutations targeting putative catalytic residues from the A. thaliana AtPFA-DSP1/At1g05000 protein indicated the absence of canonical amino acids acting as the general acid/base in the phosphor-ester hydrolysis, which suggests a specific mechanism of reaction for PFA-DSPs and related enzymes. Our studies demonstrate the existence of novel phosphatase protein families in fungi and protozoa, with active and inactive enzymes linked in common signaling pathways. This illustrates the catalytic and functional complexity of the expanding family of atypical dual-specificity phosphatases in non-metazoans, including

  20. Induction of SHP2 deficiency in chondrocytes causes severe scoliosis and kyphosis in mice.

    PubMed

    Kim, Harry K W; Aruwajoye, Olumide; Sucato, Daniel; Richards, B Stephens; Feng, Gen-Sheng; Chen, Di; King, Philip D; Kamiya, Nobuhiro

    2013-10-01

    Genetic engineering techniques were used to develop an animal model of juvenile scoliosis during a postnatal skeletal-growth stage. To investigate the effect of targeted SHP2 (Src homology-2) deficiency in chondrocytes on the development of scoliosis during a juvenile growth stage in mice. Juvenile idiopathic scoliosis can lead to progressive severe spinal deformity. The pathophysiology and molecular mechanisms responsible for the deformity are unknown. Here, we investigated the role of SHP2 deficiency in chondrocytes as a potential cause of juvenile scoliosis. Genetically engineered mice with inducible deletion of SHP2 in chondrocytes were generated. The SHP2 function in chondrocytes was inactivated during a juvenile growth stage from the mouse age of 4 weeks. Radiographical, micro-computed tomographic, and histological assessments were used to analyze spinal changes. When SHP2 deficiency was induced during the juvenile stage, a progressive kyphoscoliotic deformity (thoracic lordosis and thoracolumbar kyphoscoliosis) developed within 2 weeks of the initiation of SHP2 deficiency. The 3-dimensional micro-computed tomography analysis confirmed the kyphoscoliotic deformity with a rotational deformity of the spine and osteophyte formation. The histological analysis revealed disorganization of the vertebral growth plate cartilage. Interestingly, when SHP2 was disrupted during the adolescent to adult stages, no spinal deformity developed. SHP2 plays an important role in normal spine development during skeletal maturation. Chondrocyte-specific deletion of SHP2 at a juvenile stage produced a kyphoscoliotic deformity. This new mouse model will be useful for future investigations of the role of SHP2 deficiency in chondrocytes as a mechanism leading to the development of juvenile scoliosis. N/A.

  1. Extraction and PTP1B inhibitory activity of bromophenols from the marine red alga Symphyocladia latiuscula

    NASA Astrophysics Data System (ADS)

    Liu, Xu; Li, Xiaoming; Gao, Lixin; Cui, Chuanming; Li, Chunshun; Li, Jia; Wang, Bingui

    2011-05-01

    Previously, we had characterized several structurally interesting brominated phenols from the marine red alga Symphyocladia latiuscula collected from various sites. However, Phytochemical investigations on this species collected from the Weihai coastline of Shandong Province remains blank. Therefore, we characterized the chemical constituents of individuals of this species collected from the region. Eight bromophenols were isolated and identified. Using detailed spectroscopic techniques and comparisons with published data, these compounds were identified as 2,3-dibromo-4,5-dihydroxybenzyl methyl ether ( 1), 3,5-dibromo-4-hydroxybenzoic acid ( 2), 2,3,6-tribromo-4,5-dihydroxymethylbenzene ( 3), 2,3,6-tribromo-4,5-dihydroxybenzaldehyde ( 4), 2,3,6-tribromo-4,5-dihydroxybenzyl methyl ether ( 5), bis(2,3,6-tribromo-4,5-dihydroxyphenyl)methane ( 6), 1,2-bis(2,3,6-tribromo-4,5-dihydroxyphenyl)-ethane ( 7), and 1-(2,3,6-tribromo-4,5-dihydroxybenzyl)-pyrrolidin-2-one ( 8). Among these compounds, 1 and 2 were isolated for the first time from S. latiuscula. Each compound was evaluated on the ability to inhibit protein tyrosine phosphatase 1B (PTP1B), which is a potential therapeutic target in the treatment of type 2 diabetes. Bromophenols 5, 6, and 7 showed strong activities with IC50 values of 3.9, 4.3, and 3.5 μmol/L, respectively. This study provides further evidence that bromophenols are predominant among the chemical constituents of Symphyocladia, and that some of these compounds may be candidates for the development of anti-diabetes drugs.

  2. Identification and evaluation of magnolol and chrysophanol as the principle protein tyrosine phosphatase-1B inhibitory compounds in a Kampo medicine, Masiningan.

    PubMed

    Onoda, Toshihisa; Li, Wei; Sasaki, Tatsunori; Miyake, Megumi; Higai, Koji; Koike, Kazuo

    2016-06-20

    Masiningan is a traditional medicine consisting of six crude drugs that have been used for treating constipation and diabetes mellitus in both Japan and China. Masiningan has been reported to have significant PTP1B inhibitory activity and to affect cells in the insulin-signaling pathway. The aim of the present study is to identify the PTP1B inhibitory compounds in Masiningan. Bioactivity peaks were identified by analytical HPLC profiling and PTP1B inhibitory activity profiling of sub-fractions from Masiningan extract. The bioactive compounds were isolated by tracking two identified bioactive peaks, and the chemical structures were determined by spectroscopic analyses. The bioactive compounds were further investigated for their inhibitory effect against PTP1B by enzymatic kinetic analysis, molecular docking simulation, inhibitory selectivity against other PTPs, and cellular activity in the insulin signal transduction pathway. From Masiningan, magnolol (1) and chrysophanol (2) were isolated as compounds that exhibited significant dose-dependent inhibitory activities against PTP1B, with IC50 values of 24.6 and 12.3μM, respectively. Kinetic analysis revealed that 1 is a non-competitive and that 2 is a competitive PTP1B inhibitor. In the molecular docking simulation, compound 2 was stably positioned in the active pocket of PTP1B, and the CDOCKER energy was calculated to be 24.3411kcal/mol. Both compounds demonstrated remarkably high selectivity against four PTPs and revealed cellular activity against the insulin signal transduction pathway. Magnolol (1) and chrysophanol (2) were identified as the principle PTP1B inhibitory active compounds in Masiningan, and their actions were investigated in detail. These findings demonstrated the effectiveness of Masiningan on diabetes mellitus through the inhibition of PTP1B at a molecular level as well as the potential of magnolol (1) and chrysophanol (2) as lead compounds in future anti-diabetes drug development. Copyright © 2016

  3. Nuclear Receptor SHP Activates miR-206 Expression via a Cascade Dual Inhibitory Mechanism

    PubMed Central

    Song, Guisheng; Wang, Li

    2009-01-01

    MicroRNAs play a critical role in many essential cellular functions in the mammalian species. However, limited information is available regarding the regulation of miRNAs gene transcription. Microarray profiling and real-time PCR analysis revealed a marked down-regulation of miR-206 in nuclear receptor SHP−/− mice. To understand the regulatory function of SHP with regard to miR-206 gene expression, we determined the putative transcriptional initiation site of miR-206 and also its full length primary transcript using a database mining approach and RACE. We identified the transcription factor AP1 binding sites on the miR-206 promoter and further showed that AP1 (c-Jun and c-Fos) induced miR-206 promoter transactivity and expression which was repressed by YY1. ChIP analysis confirmed the physical association of AP1 (c-Jun) and YY1 with the endogenous miR-206 promoter. In addition, we also identified nuclear receptor ERRγ (NR3B3) binding site on the YY1 promoter and showed that YY1 promoter was transactivated by ERRγ, which was inhibited by SHP (NROB2). ChIP analysis confirmed the ERRγ binding to the YY1 promoter. Forced expression of SHP and AP1 induced miR-206 expression while overexpression of ERRγ and YY1 reduced its expression. The effects of AP1, ERRγ, and YY1 on miR-206 expression were reversed by siRNA knockdown of each gene, respectively. Thus, we propose a novel cascade “dual inhibitory” mechanism governing miR-206 gene transcription by SHP: SHP inhibition of ERRγ led to decreased YY1 expression and the de-repression of YY1 on AP1 activity, ultimately leading to the activation of miR-206. This is the first report to elucidate a cascade regulatory mechanism governing miRNAs gene transcription. PMID:19721712

  4. Zinc-ion-dependent acid phosphatase exhibits magnesium-ion-dependent myo-inositol-1-phosphatase activity.

    PubMed

    Fujimoto, S; Okano, I; Tanaka, Y; Sumida, Y; Tsuda, J; Kawakami, N; Shimohama, S

    1996-06-01

    We have purified bovine brain Zn(2+)-dependent acid phosphatase (Zn(2+)-APase), which requires Zn2+ ions to hydrolyze the substrate p-nitrophenyl phosphate (pNPP) in an acidic environment. The substrate specificity and metal requirement of Zn(2+)-APase at a physiological pH was also studied. The enzyme exhibited hydrolytic activity on myo-inositol-1- and -2-monophosphates, 2'-adenosine monophosphate, 2'-guanosine monophosphate, and the alpha- and beta-glycerophosphates, glucose-1-phosphate, and fructose-6-phosphate in 50 mM Tris-HCl buffer (pH 7.4) in the presence of Mg2+ ions, but not on pNPP and phosphotyrosine. Zn2+, Mn2+ and Co2+ ions were less effective for activation. Among the above substrates, myo-inositol-1-phosphate was the most susceptible to hydrolysis by the enzyme in the presence of 3 mM Mg2+ ions. The enzyme exhibited an optimum pH at around 8 for myo-inositol-1-phosphate in the presence of 3 mM Mg2+ ions. The Mg(2+)-dependent myo-inositol-1-phosphatase activity of the enzyme was significantly inhibited by Li+ ions. The Zn(2+)-dependent p-nitrophenyl phosphatase activity and Mg(2+)-dependent myo-inositol-1-phosphatase activity of the purified enzyme fraction exhibited similar behavior on Sephadex G-100 and Mono Q colomns. These findings suggest that Zn(2+)-APase also exhibits Mg(2+)-dependent myo-inositol-1-phosphatase activity under physiological conditions.

  5. Tanzawaic acid derivatives from a marine isolate of Penicillium sp. (SF-6013) with anti-inflammatory and PTP1B inhibitory activities.

    PubMed

    Quang, Tran Hong; Ngan, Nguyen Thi Thanh; Ko, Wonmin; Kim, Dong-Cheol; Yoon, Chi-Su; Sohn, Jae Hak; Yim, Joung Han; Kim, Youn-Chul; Oh, Hyuncheol

    2014-12-15

    Chemical investigation of a marine-derived fungus Penicillium sp. SF-6013 resulted in the discovery of a new tanzawaic acid derivative, 2E,4Z-tanzawaic acid D (1), together with four known analogues, tanzawaic acids A (2) and D (3), a salt form of tanzawaic acid E (4), and tanzawaic acid B (5). Their structures were mainly determined by analysis of NMR and MS data, along with chemical methods. Preliminary screening for anti-inflammatory effects in lipopolysaccharide (LPS)-activated microglial BV-2 cells showed that compounds 1, 2, and 5 inhibited the production of nitric oxide (NO) with IC50 values of 37.8, 7.1, and 42.5 μM, respectively. Compound 2 also inhibited NO production in LPS-stimulated RAW264.7 murine macrophages with an IC50 value of 27.0 μM. Moreover, these inhibitory effects correlated with the suppressive effect of compound 2 on inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression in LPS-stimulated RAW264.7 and BV2 cells. In addition, compounds 2 and 5 significantly inhibited the activity of protein tyrosine phosphatase 1B (PTP1B) with the same IC50 value (8.2 μM). Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Potential of Polygonum cuspidatum Root as an Antidiabetic Food: Dual High-Resolution α-Glucosidase and PTP1B Inhibition Profiling Combined with HPLC-HRMS and NMR for Identification of Antidiabetic Constituents.

    PubMed

    Zhao, Yong; Chen, Martin Xiaoyong; Kongstad, Kenneth Thermann; Jäger, Anna Katharina; Staerk, Dan

    2017-06-07

    The worldwide increasing incidence of type 2 diabetes has fueled an intensified search for food and herbal remedies with preventive and/or therapeutic properties. Polygonum cuspidatum Siebold & Zucc. (Polygonaceae) is used as a functional food in Japan and South Korea, and it is also a well-known traditional antidiabetic herb used in China. In this study, dual high-resolution α-glucosidase and protein-tyrosine phosphatase 1B (PTP1B) inhibition profiling was used for the identification of individual antidiabetic constituents directly from the crude ethyl acetate extract and fractions of P. cuspidatum. Subsequent preparative-scale HPLC was used to isolate a series of α-glucosidase inhibitors, which after HPLC-HRMS and NMR analysis were identified as procyanidin B2 3,3″-O-digallate (3) and (-)-epicatechin gallate (5) with IC 50 values of 0.42 ± 0.02 and 0.48 ± 0.0004 μM, respectively, as well as a series of stilbene analogues with IC 50 value in the range from 6.05 ± 0.05 to 116.10 ± 2.04 μM. In addition, (trans)-emodin-physcion bianthrone (15b) and (cis)-emodin-physcion bianthrone (15c) were identified as potent PTP1B inhibitors with IC 50 values of 2.77 ± 1.23 and 7.29 ± 2.32 μM, respectively. These findings show that P. cuspidatum is a potential functional food for management of type 2 diabetes.

  7. Scaffold-based novel SHP2 allosteric inhibitors design using Receptor-Ligand pharmacophore model, virtual screening and molecular dynamics.

    PubMed

    Jin, Wen-Yan; Ma, Ying; Li, Wei-Ya; Li, Hong-Lian; Wang, Run-Ling

    2018-04-01

    SHP2 is a potential target for the development of novel therapies for SHP2-dependent cancers. In our research, with the aid of the 'Receptor-Ligand Pharmacophore' technique, a 3D-QSAR method was carried out to explore structure activity relationship of SHP2 allosteric inhibitors. Structure-based drug design was employed to optimize SHP099, an efficacious, potent, and selective SHP2 allosteric inhibitor. A novel class of selective SHP2 allosteric inhibitors was discovered by using the powerful 'SBP', 'ADMET' and 'CDOCKER' techniques. By means of molecular dynamics simulations, it was observed that these novel inhibitors not only had the same function as SHP099 did in inhibiting SHP2, but also had more favorable conformation for binding to the receptor. Thus, this report may provide a new method in discovering novel and selective SHP2 allosteric inhibitors. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Isoprenylated phenolic compounds with PTP1B inhibition from Morus alba.

    PubMed

    Huang, Qing-Hua; Lei, Chun; Wang, Pei-Pei; Li, Jing-Ya; Li, Jia; Hou, Ai-Jun

    2017-10-01

    Two new Diels-Alder adducts, albasins A and B (1 and 2), one new isoprenylated 2-arylbenzofuran, albasin C (3), one new isoprenylated flavone, albasin D (4), together with sixteen known phenolic compounds, were isolated from the root bark of Morus alba. Their structures were elucidated by extensive spectroscopic analysis, including NMR, MS, and ECD data. All the new compounds and most of the known ones showed significant inhibitory effects on PTP1B in vitro with IC 50 values ranging from 0.57 to 7.49μM. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Targeting density-enhanced phosphatase-1 (DEP-1) with antisense oligonucleotides improves the metabolic phenotype in high-fat diet-fed mice

    PubMed Central

    2013-01-01

    Background Insulin signaling is tightly controlled by tyrosine dephosphorylation of the insulin receptor through protein-tyrosine-phosphatases (PTPs). DEP-1 is a PTP dephosphorylating tyrosine residues in a variety of receptor tyrosine kinases. Here, we analyzed whether DEP-1 activity is differentially regulated in liver, skeletal muscle and adipose tissue under high-fat diet (HFD), examined the role of DEP-1 in insulin resistance in vivo, and its function in insulin signaling. Results Mice were fed an HFD for 10 weeks to induce obesity-associated insulin resistance. Thereafter, HFD mice were subjected to systemic administration of specific antisense oligonucleotides (ASOs), highly accumulating in hepatic tissue, against DEP-1 or control ASOs. Targeting DEP-1 led to improvement of insulin sensitivity, reduced basal glucose level, and significant reduction of body weight. This was accompanied by lower insulin and leptin serum levels. Suppression of DEP-1 in vivo also induced hyperphosphorylation in the insulin signaling cascade of the liver. Moreover, DEP-1 physically associated with the insulin receptor in situ, and recombinant DEP-1 dephosphorylated the insulin receptor in vitro. Conclusions These results indicate that DEP-1 acts as an endogenous antagonist of the insulin receptor, and downregulation of DEP-1 results in an improvement of insulin sensitivity. DEP-1 may therefore represent a novel target for attenuation of metabolic diseases. PMID:23889985

  10. Evaluating transition state structures of vanadium-phosphatase protein complexes using shape analysis.

    PubMed

    Sánchez-Lombardo, Irma; Alvarez, Santiago; McLauchlan, Craig C; Crans, Debbie C

    2015-06-01

    Shape analysis of coordination complexes is well-suited to evaluate the subtle distortions in the trigonal bipyramidal (TBPY-5) geometry of vanadium coordinated in the active site of phosphatases and characterized by X-ray crystallography. Recent studies using the tau (τ) analysis support the assertion that vanadium is best described as a trigonal bipyramid, because this geometry is the ideal transition state geometry of the phosphate ester substrate hydrolysis (C.C. McLauchlan, B.J. Peters, G.R. Willsky, D.C. Crans, Coord. Chem. Rev. http://dx.doi.org/10.1016/j.ccr.2014.12.012 ; D.C. Crans, M.L. Tarlton, C.C. McLauchlan, Eur. J. Inorg. Chem. 2014, 4450-4468). Here we use continuous shape measures (CShM) analysis to investigate the structural space of the five-coordinate vanadium-phosphatase complexes associated with mechanistic transformations between the tetrahedral geometry and the five-coordinate high energy TBPY-5 geometry was discussed focusing on the protein tyrosine phosphatase 1B (PTP1B) enzyme. No evidence for square pyramidal geometries was observed in any vanadium-protein complexes. The shape analysis positioned the metal ion and the ligands in the active site reflecting the mechanism of the cleavage of the organic phosphate in a phosphatase. We identified the umbrella distortions to be directly on the reaction path between tetrahedral phosphate and the TBPY-5-types of high-energy species. The umbrella distortions of the trigonal bipyramid are therefore identified as being the most relevant types of transition state structures for the phosphoryl group transfer reactions for phosphatases and this may be related to the possibility that vanadium is an inhibitor for enzymes that support both exploded and five-coordinate transition states. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Clinical study of esophageal foreign bodies attributable to PTP material.

    PubMed

    Sakakura, A; Yamamoto, Y; Terada, M; Takenaka, H; Ueda, N; Furuya, T

    1997-10-01

    Retrospective survey of patients with esophageal foreign bodies who were treated in the Osaka Medical College over the past 21 years, and the patients with esophageal foreign bodies attributed to press through package (PTP) who were treated at the Osaka Central Emergency Clinic, a representative holiday emergency institution in Japan, was carried out. The incidence of foreign bodies attributed to PTP material tends to increase throughout the period reviewed. The patients over 60 years of age accounted for 25/28 (89%) of all PTP patients in Osaka Medical College and 27/32 (84%) in Osaka Central Emergency Clinic, strongly suggesting that PTP dysphagia is most common in elderly patients. Diagnostic methods and preventive measures against PTP foreign bodies were discussed.

  12. Transmembrane proteins UNC-40/DCC, PTP-3/LAR, and MIG-21 control anterior-posterior neuroblast migration with left-right functional asymmetry in Caenorhabditis elegans.

    PubMed

    Sundararajan, Lakshmi; Lundquist, Erik A

    2012-12-01

    Migration of neurons and neural crest cells is of central importance to the development of nervous systems. In Caenorhabditis elegans, the QL neuroblast on the left migrates posteriorly, and QR on the right migrates anteriorly, despite similar lineages and birth positions with regard to the left-right axis. Initial migration is independent of a Wnt signal that controls later anterior-posterior Q descendant migration. Previous studies showed that the transmembrane proteins UNC-40/DCC and MIG-21, a novel thrombospondin type I repeat containing protein, act redundantly in left-side QL posterior migration. Here we show that the LAR receptor protein tyrosine phosphatase PTP-3 acts with MIG-21 in parallel to UNC-40 in QL posterior migration. We also show that in right-side QR, the UNC-40 and PTP-3/MIG-21 pathways mutually inhibit each other's role in posterior migration, allowing anterior QR migration. Finally, we present evidence that these proteins act autonomously in the Q neuroblasts. These studies indicate an inherent left-right asymmetry in the Q neuroblasts with regard to UNC-40, PTP-3, and MIG-21 function that results in posterior vs. anterior migration.

  13. Transmembrane Proteins UNC-40/DCC, PTP-3/LAR, and MIG-21 Control Anterior–Posterior Neuroblast Migration with Left–Right Functional Asymmetry in Caenorhabditis elegans

    PubMed Central

    Sundararajan, Lakshmi; Lundquist, Erik A.

    2012-01-01

    Migration of neurons and neural crest cells is of central importance to the development of nervous systems. In Caenorhabditis elegans, the QL neuroblast on the left migrates posteriorly, and QR on the right migrates anteriorly, despite similar lineages and birth positions with regard to the left–right axis. Initial migration is independent of a Wnt signal that controls later anterior–posterior Q descendant migration. Previous studies showed that the transmembrane proteins UNC-40/DCC and MIG-21, a novel thrombospondin type I repeat containing protein, act redundantly in left-side QL posterior migration. Here we show that the LAR receptor protein tyrosine phosphatase PTP-3 acts with MIG-21 in parallel to UNC-40 in QL posterior migration. We also show that in right-side QR, the UNC-40 and PTP-3/MIG-21 pathways mutually inhibit each other’s role in posterior migration, allowing anterior QR migration. Finally, we present evidence that these proteins act autonomously in the Q neuroblasts. These studies indicate an inherent left–right asymmetry in the Q neuroblasts with regard to UNC-40, PTP-3, and MIG-21 function that results in posterior vs. anterior migration. PMID:23051647

  14. The role of the inhibitors of interleukin-6 signal transduction SHP2 and SOCS3 for desensitization of interleukin-6 signalling.

    PubMed Central

    Fischer, Patrick; Lehmann, Ute; Sobota, Radoslaw M; Schmitz, Jochen; Niemand, Claudia; Linnemann, Sonja; Haan, Serge; Behrmann, Iris; Yoshimura, Akihiko; Johnston, James A; Müller-Newen, Gerhard; Heinrich, Peter C; Schaper, Fred

    2004-01-01

    The immediate early response of cells treated with IL-6 (interleukin-6) is the activation of the signal transducer and activator of transcription (STAT)3. The Src homology domain 2 (SH2)-containing protein tyrosine phosphatase SHP2 and the feedback inhibitor SOCS3 (suppressor of cytokine signalling) are potent inhibitors of IL-6 signal transduction. Impaired function of SOCS3 or SHP2 leads to enhanced and prolonged IL-6 signalling. The inhibitory function of both proteins depends on their recruitment to the tyrosine motif 759 within glycoprotein gp130. In contrast to inactivation, desensitization of signal transduction is regarded as impaired responsiveness due to prestimulation. Usually, after activation the sensing receptor becomes inactivated by modifications such as phosphorylation, internalization or degradation. We designed an experimental approach which allows discrimination between desensitization and inactivation of IL-6 signal transduction. We observed that pre-stimulation with IL-6 renders cells less sensitive to further stimulation with IL-6. After several hours, the cells become sensitive again. We show that not only signal transduction through previously activated receptors is affected by desensitization but signalling through receptors which were not targeted by the first stimulation was also attenuated ( trans -desensitization). Interestingly, in contrast to inhibition, desensitization does not depend on the presence of functional SHP2. Furthermore, cells lacking SOCS3 show constitutive STAT3 activation which is not affected by pre-stimulation with IL-6. All these observations suggest that desensitization and inhibition of signalling are mechanistically distinct. PMID:14611646

  15. Concise synthesis and PTP1B inhibitory activity of (R)- and (S)-dihydroresorcylide.

    PubMed

    Jiang, Cheng-Shi; Zhang, Li; Gong, Jing-Xu; Li, Jing-Ya; Yao, Li-Gong; Li, Jia; Guo, Yue-Wei

    2017-12-01

    The present study was designed to develop a concise synthetic route for macrolide, with the purpose of confirming the absolute configuration of natural dihydroresorcylide (1) and making it more easily accessible for biological evaluation. The absolute configuration of C-3 in natural 1 was revised to be R by comparison of the rotation sign of synthetic (R)- and (S)-1. The synthetic (R)-1 was found to be a novel highly specific PTP1B inhibitor with an IC 50 value of 17.06 μM.

  16. Selective Inhibition of PTP1B by Vitalboside A from Syzygium cumini Enhances Insulin Sensitivity and Attenuates Lipid Accumulation Via Partial Agonism to PPARγ: In Vitro and In Silico Investigation.

    PubMed

    Thiyagarajan, Gopal; Muthukumaran, Padmanaban; Sarath Kumar, Baskaran; Muthusamy, Velusamy Shanmuganathan; Lakshmi, Baddireddi Subhadra

    2016-08-01

    Although antidiabetic drugs show good insulin-sensitizing property for T2DM, they also exhibit undesirable side-effects. Partial peroxisome proliferator-activated receptor γ agonism with protein tyrosine phosphatase 1B inhibition is considered as an alternative therapeutic approach toward the development of a safe insulin sensitizer. Bioactivity-based fractionation and purification of Syzygium cumini seeds led to the isolation and identification of bifunctional Vitalboside A, which showed antidiabetic and anti-adipogenic activities, as measured by glucose uptake in L6 and 3T3-L1 adipocytes and Nile red assay. A non-competitive allosteric inhibition of protein tyrosine phosphatase 1B by Vitalboside A was observed, which was confirmed by docking studies. Inhibitor studies with wortmannin and genistein showed an IRTK- and PI3K-dependent glucose uptake. A PI3K/AKT-dependent activation of GLUT4 translocation and an inactivation of GSK3β were observed, confirming its insulin-sensitizing potential. Vitalboside A exhibited partial transactivation of peroxisome proliferator-activated receptor γ with an increase in adiponectin secretion, which was confirmed using docking analysis. Vitalboside A is a bifunctional molecule derived from edible plant showing inhibition of PTP1B and partial agonism to peroxisome proliferator-activated receptor γ which could be a promising therapeutic agent in the management of obesity and diabetes. © 2016 John Wiley & Sons A/S.

  17. Loss of Ptpn11 (Shp2) drives satellite cells into quiescence

    PubMed Central

    Griger, Joscha; Schneider, Robin; Lahmann, Ines; Schöwel, Verena; Keller, Charles; Spuler, Simone; Nazare, Marc; Birchmeier, Carmen

    2017-01-01

    The equilibrium between proliferation and quiescence of myogenic progenitor and stem cells is tightly regulated to ensure appropriate skeletal muscle growth and repair. The non-receptor tyrosine phosphatase Ptpn11 (Shp2) is an important transducer of growth factor and cytokine signals. Here we combined complex genetic analyses, biochemical studies and pharmacological interference to demonstrate a central role of Ptpn11 in postnatal myogenesis of mice. Loss of Ptpn11 drove muscle stem cells out of the proliferative and into a resting state during muscle growth. This Ptpn11 function was observed in postnatal but not fetal myogenic stem cells. Furthermore, muscle repair was severely perturbed when Ptpn11 was ablated in stem cells due to a deficit in stem cell proliferation and survival. Our data demonstrate a molecular difference in the control of cell cycle withdrawal in fetal and postnatal myogenic stem cells, and assign to Ptpn11 signaling a key function in satellite cell activity. DOI: http://dx.doi.org/10.7554/eLife.21552.001 PMID:28463680

  18. Involvement of Tyrosine Phosphatses in Insulin Signaling and Apoptosis in Breast Cancer

    DTIC Science & Technology

    2003-06-01

    a role in both diseases and investigated the role of a tyrosine phosphatase, PTP1B , previously reported to be a regulator of both insulin signaling...and breast cancer. We noted that calcium flux into breast cancer cells suppressed tyrosine phosphorylation and induced partial proteolysis of PTP1B ...resulting in liberation of PTP1B from its membranous anchor. To investigate the role of the cytoplasmic form of PTP1B (tPTP1B) in breast cancer cells

  19. Shp2–Mitogen-Activated Protein Kinase Signaling Drives Proliferation during Zebrafish Embryo Caudal Fin Fold Regeneration

    PubMed Central

    Hale, Alexander James

    2017-01-01

    ABSTRACT Regeneration of the zebrafish caudal fin following amputation occurs through wound healing, followed by formation of a blastema, which produces cells to replace the lost tissue in the final phase of regenerative outgrowth. We show that ptpn11a−/− ptpn11b−/− zebrafish embryos, lacking functional Shp2, fail to regenerate their caudal fin folds. Rescue experiments indicated that Shp2a has a functional signaling role, requiring its catalytic activity and SH2 domains but not the two C-terminal tyrosine phosphorylation sites. Surprisingly, expression of Shp2a variants with increased and reduced catalytic activity, respectively, rescued caudal fin fold regeneration to similar extents. Expression of mmp9 and junbb, indicative of formation of the wound epidermis and distal blastema, respectively, suggested that these processes occurred in ptpn11a−/− ptpn11b−/− zebrafish embryos. However, cell proliferation and MAPK phosphorylation were reduced. Pharmacological inhibition of MEK1 in wild-type zebrafish embryos phenocopied loss of Shp2. Our results suggest an essential role for Shp2a–mitogen-activated protein kinase (MAPK) signaling in promoting cell proliferation during zebrafish embryo caudal fin fold regeneration. PMID:29203641

  20. The microsporidian polar tube: evidence for a third polar tube protein (PTP3) in Encephalitozoon cuniculi.

    PubMed

    Peuvel, Isabelle; Peyret, Pierre; Méténier, Guy; Vivarès, Christian P; Delbac, Frédéric

    2002-06-01

    The invasion strategy used by microsporidia is primarily related to spore germination. Small differentiated spores of these fungi-related parasites inject their contents into target cells through the lumen of a rapidly extruded polar tube, as a prerequisite to obligate intracellular development. Previous studies in Encephalitozoon species that infect mammals have identified two major antigenic polar tube proteins (PTP1 and PTP2) which are predicted to contribute to the high tensile strength of the polar tube via an assembly process dependent on disulfide linkages. By immunoscreening of a cDNA library, we found that a novel PTP is encoded by a single transcription unit (3990 bp) located on the chromosome XI of E. cuniculi. PTP3 is predicted to be synthesized as a 1256-amino acid precursor with a cleavable signal peptide. The mature protein lacks cysteine residue and its large acidic core is flanked by highly basic N- and C-terminal regions. Immunolocalization data indicated that PTP3 is involved in the sporoblast-to-spore polar tube biogenesis. A transcriptional up-regulation during sporogony is supported by a strong increase in the relative amount of Ecptp mRNAs within host cells sampled at late post-infection times. To begin to explore polar tube-associated protein interactions, spore proteins were extracted in the presence of SDS and dithiothreitol then incubated with a chemical cross-linker (DSP or sulfo-EGS). A large multimeric complex was formed and shown to contain PTP1, PTP2 and PTP3 with a few other proteins. PTP3 is hypothesized to play a role in the control of the polar tube extrusion as part of a specific response to ionic stimuli.

  1. Increased hepatic FAT/CD36, PTP1B and decreased HNF4A expression contributes to dyslipidemia associated with ethanol-induced liver dysfunction: Rescue effect of ginger extract.

    PubMed

    Shirpoor, Alireza; Heshmati, Elaheh; Kheradmand, Fatemeh; Gharalari, Farzaneh Hosseini; Chodari, Leila; Naderi, Roya; Majd, Farideh Nezami; Samadi, Mahrokh

    2018-05-28

    The association between chronic alcohol consumption and the development of alcpholic liver disease is a very well known phenomenon, but the precise underlying molecular mediators involved in ethanol-induced liver disease remain elusive. This study aimed to characterize the lipid metabolism alterations and the molecular mediators which are related to lipid metabolism in liver under the heavy ethanol exposure alone or combined with ginger extract. Twenty-four male wistar rats were assigned into three groups, namely control, ethanol, and ginger extract treated ethanol (GETE) groups. Six weeks after the treatment, the ethanol group showed a significant increase in fatty acid translocase (FAT)/CD36, protein tyrosine phosphatase 1B (PTP1B) and decrease hepatocyte nuclear factor 4 Alpha (HNF4A) genes expressions compared to the control group. The ethanol administration also significantly increased plasma LDL, cholesterol, triglyceride, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) compared to the control group. Moreover, compared to the control group, the ethanol group showed liver histhological changes, such as fibrosis, focal microvesicular steatosis, some apoptotic hepatocytes, spotty necrosis, portal lymphocytic inflammation, mallory-denk bodies, giant mitochondria, piecemeal necrosis. Consumption of ginger extract along with ethanol, partially ameliorated gene expression alteration and histological changes, improved undesirable lipid profile and liver enzymes changes compare to those in the ethanol group. These findings indicate that ethanol-induced liver abnormalities may in part be associated with lipid homeostasis changes mediated by overexpression of FAT/CD36, PTP1B and downexpressionof HNF4A genes. It also show that these effects can be reduced by using ginger extract as an antioxidant and anti-inflammatory agent. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  2. An evaluation of the effects of three laryngeal lubricants on phonation threshold pressure (PTP).

    PubMed

    Roy, Nelson; Tanner, Kristine; Gray, Steven D; Blomgren, Michael; Fisher, Kimberly V

    2003-09-01

    Clinicians frequently offer advice to performers and voice-disordered patients aimed ostensibly to manipulate the water content and/or viscosity of the mucus blanket covering the vocal folds. To evaluate the relative effects of three potential laryngeal lubricants on phonatory function (ie, water, Mannitol--an osmotic agent, and Entertainer's Secret Throat Relief (Kli Corp., Carmel, IN)--a glycerin-based product), phonation threshold pressure (PTP) was measured in 18 healthy, vocally normal female participants twice before (baseline) and then four times after 2 ml of each substance were nebulized. PTP is the minimum subglottal pressure required to initiate vocal fold oscillation, and the lowering of PTP is assumed to correspond to physiologically more efficient phonation and reduced phonatory effort. Over a 3-week period, participants were tested on three separate occasions (at 1-week intervals). On each occasion, a different nebulized treatment was administered. PTP for both comfortable and high fundamental frequency productions was measured using an oral pressure-flow system (Perci-Sars, MicroTronics Corp., Chapel Hill, NC). Analysis of the results revealed that Mannitol, an agent that encourages osmotic water flux to the luminal airway surface, lowered PTP immediately after its administration (ie, p = 0.071, for high-pitched productions only). However, the duration of its PTP lowering effect was less than 20 minutes. The other two substances did not demonstrate any significant postadministration effect on PTP.

  3. P-TEN, the tumor suppressor from human chromosome 10q23, is a dual-specificity phosphatase

    PubMed Central

    Myers, Michael P.; Stolarov, Javor P.; Eng, Charis; Li, Jing; Wang, Steven I.; Wigler, Michael H.; Parsons, Ramon; Tonks, Nicholas K.

    1997-01-01

    Protein tyrosine phosphatases (PTPs) have long been thought to play a role in tumor suppression due to their ability to antagonize the growth promoting protein tyrosine kinases. Recently, a candidate tumor suppressor from 10q23, termed P-TEN, was isolated, and sequence homology was demonstrated with members of the PTP family, as well as the cytoskeletal protein tensin. Here we show that recombinant P-TEN dephosphorylated protein and peptide substrates phosphorylated on serine, threonine, and tyrosine residues, indicating that P-TEN is a dual-specificity phosphatase. In addition, P-TEN exhibited a high degree of substrate specificity, showing selectivity for extremely acidic substrates in vitro. Furthermore, we demonstrate that mutations in P-TEN, identified from primary tumors, tumor cells lines, and a patient with Bannayan–Zonana syndrome, resulted in the ablation of phosphatase activity, demonstrating that enzymatic activity of P-TEN is necessary for its ability to function as a tumor suppressor. PMID:9256433

  4. PTP1B, α-glucosidase, and DPP-IV inhibitory effects for chromene derivatives from the leaves of Smilax china L.

    PubMed

    Zhao, Bing Tian; Le, Duc Dat; Nguyen, Phi Hung; Ali, Md Yousof; Choi, Jae-Sue; Min, Byung Sun; Shin, Heung Mook; Rhee, Hae Ik; Woo, Mi Hee

    2016-06-25

    Two new flavonoids, bismilachinone (11) and smilachinin (14), were isolated from the leaves of Smilax china L. together with 14 known compounds. Their structures were elucidated using spectroscopic methods. The PTP1B, α-glucosidase, and DPP-IV inhibitory activities of compounds 1-16 were evaluated at the molecular level. Among them, compounds 4, 7, and 10 showed moderate DPP-IV inhibitory activities with IC50 values of 20.81, 33.12, and 32.93 μM, respectively. Compounds 3, 4, 6, 11, 12, and 16 showed strong PTP1B inhibitory activities, with respective IC50 values of 7.62, 10.80, 0.92, 2.68, 9.77, and 24.17 μM compared with the IC50 value for the positive control (ursolic acid: IC50 = 1.21 μM). Compounds 2-7, 11, 12, 15, and 16 showed potent α-glucosidase inhibitory activities, with respective IC50 values of 8.70, 81.66, 35.11, 35.92, 7.99, 26.28, 11.28, 62.68, 44.32, and 70.12 μM. The positive control, acarbose, displayed an IC50 value of 175.84 μM. In the kinetic study for the PTP1B enzyme, compounds 6, 11, and 12 displayed competitive inhibition with Ki values of 3.20, 8.56, and 5.86 μM, respectively. Compounds 3, 4, and 16 showed noncompetitive inhibition with Ki values of 18.75, 5.95, and 22.86 μM, respectively. Molecular docking study for the competitive inhibitors (6, 11, and 12) radically corroborates the binding affinities and inhibition of PTP1B enzymes. These results indicated that the leaves of Smilax china L. may contain compounds with anti-diabetic activity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Molecular characterization and functional analysis of serine/threonine protein phosphatase of Toxocara canis.

    PubMed

    Ma, Guang Xu; Zhou, Rong Qiong; Hu, Shi Jun; Huang, Han Cheng; Zhu, Tao; Xia, Qing You

    2014-06-01

    Toxocara canis (T. canis) is a widely prevalent zoonotic parasite that infects a wide range of mammalian hosts, including humans. We generated the full-length complementary DNA (cDNA) of the serine/threonine phosphatase gene of T. canis (Tc stp) using 5' rapid amplification of the cDNA ends. The 1192-bp sequence contained a continuous 942-nucleotide open reading frame, encoding a 313-amino-acid polypeptide. The Tc STP polypeptide shares a high level of amino-acid sequence identity with the predicted STPs of Loa loa (89%), Brugia malayi (86%), Oesophagostomum columbianum (76%), and Oesophagostomumdentatum (76%). The Tc STP contains GDXHG, GDXVDRG, GNHE motifs, which are characteristic of members of the phosphoprotein phosphatase family. Our quantitative real-time polymerase chain reaction analysis showed that the Tc STP was expressed in six different tissues in the adult male, with high-level expression in the spermary, vas deferens, and musculature, but was not expressed in the adult female, suggesting that Tc STP might be involved in spermatogenesis and mating behavior. Thus, STP might represent a potential molecular target for controlling T. canis reproduction. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Two receptor tyrosine phosphatases dictate the depth of axonal stabilizing layer in the visual system

    PubMed Central

    Takechi, Hiroki; Kawamura, Hinata

    2017-01-01

    Formation of a functional neuronal network requires not only precise target recognition, but also stabilization of axonal contacts within their appropriate synaptic layers. Little is known about the molecular mechanisms underlying the stabilization of axonal connections after reaching their specifically targeted layers. Here, we show that two receptor protein tyrosine phosphatases (RPTPs), LAR and Ptp69D, act redundantly in photoreceptor afferents to stabilize axonal connections to the specific layers of the Drosophila visual system. Surprisingly, by combining loss-of-function and genetic rescue experiments, we found that the depth of the final layer of stable termination relied primarily on the cumulative amount of LAR and Ptp69D cytoplasmic activity, while specific features of their ectodomains contribute to the choice between two synaptic layers, M3 and M6, in the medulla. These data demonstrate how the combination of overlapping downstream but diversified upstream properties of two RPTPs can shape layer-specific wiring. PMID:29116043

  7. Geranylated 2-arylbenzofurans from Morus alba var. tatarica and their α-glucosidase and protein tyrosine phosphatase 1B inhibitory activities.

    PubMed

    Zhang, Ya-Long; Luo, Jian-Guang; Wan, Chuan-Xing; Zhou, Zhong-Bo; Kong, Ling-Yi

    2014-01-01

    Ten new geranylated 2-arylbenzofuran derivatives, including two monoterpenoid 2-arylbenzofurans (1 and 2), two geranylated 2-arylbenzofuran enantiomers (3a and 3b), and six geranylated 2-arylbenzofurans (4-9), along with four known 2-arylbenzofurans (10-13) were isolated from the root bark of Morus alba var. tatarica. Their structures and relative configurations were established on the basis of spectroscopic data analysis. Compounds 3-7 with one asymmetric carbon at C-7″ were supposed to be enantiomeric mixtures confirmed by chiral HPLC analysis, and the absolute configurations of each enantiomer in 3-7 were determined by Rh2(OCOCF3)4-induced CD and Snatzke's method. The enantiomers with the substituting group at C-2' exhibited better resolutions on a Chiralpak AD-H column than those with the substituting group at C-4'. Compounds 1-7, 10, 11 and 13, showed α-glucosidase inhibitory activities with IC50 values of 11.9-131.9 μM, and compounds 1 and 9-13 inhibited protein tyrosine phosphatase 1B (PTP1B) with IC50 values of 7.9-38.1 μM. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Hepatocyte nuclear receptor SHP suppresses inflammation and fibrosis in a mouse model of nonalcoholic steatohepatitis.

    PubMed

    Zou, An; Magee, Nancy; Deng, Fengyan; Lehn, Sarah; Zhong, Cuncong; Zhang, Yuxia

    2018-06-01

    Nonalcoholic fatty liver disease (NAFLD) is a burgeoning health problem worldwide, ranging from nonalcoholic fatty liver (NAFL, steatosis without hepatocellular injury) to the more aggressive nonalcoholic steatohepatitis (NASH, steatosis with ballooning, inflammation, or fibrosis). Although many studies have greatly contributed to the elucidation of NAFLD pathogenesis, the disease progression from NAFL to NASH remains incompletely understood. Nuclear receptor small heterodimer partner (Nr0b2, SHP ) is a transcriptional regulator critical for the regulation of bile acid, glucose, and lipid metabolism. Here, we show that SHP levels are decreased in the livers of patients with NASH and in diet-induced mouse NASH. Exposing primary mouse hepatocytes to palmitic acid and lipopolysaccharide in vitro , we demonstrated that the suppression of Shp expression in hepatocytes is due to c-Jun N-terminal kinase (JNK) activation, which stimulates c-Jun-mediated transcriptional repression of Shp Interestingly, in vivo induction of hepatocyte-specific SHP in steatotic mouse liver ameliorated NASH progression by attenuating liver inflammation and fibrosis, but not steatosis. Moreover, a key mechanism linking the anti-inflammatory role of hepatocyte-specific SHP expression to inflammation involved SHP-induced suppression of NF-κB p65-mediated induction of chemokine (C-C motif) ligand 2 (CCL2), which activates macrophage proinflammatory polarization and migration. In summary, our results indicate that a JNK/SHP/NF-κB/CCL2 regulatory network controls communications between hepatocytes and macrophages and contributes to the disease progression from NAFL to NASH. Our findings may benefit the development of new management or prevention strategies for NASH. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Functional requirements for inhibitory signal transmission by the immunomodulatory receptor CD300a.

    PubMed

    DeBell, Karen E; Simhadri, Venkateswara R; Mariano, John L; Borrego, Francisco

    2012-04-26

    Activation signals can be negatively regulated by cell surface receptors bearing immunoreceptor tyrosine-based inhibitory motifs (ITIMs). CD300a, an ITIM bearing type I transmembrane protein, is expressed on many hematopoietic cells, including subsets of lymphocytes. We have taken two approaches to further define the mechanism by which CD300a acts as an inhibitor of immune cell receptor signaling. First, we have expressed in Jurkat T cells a chimeric receptor consisting of the extracellular domains of killer-cell immunoglobulin-like receptor (KIR)2DL2 fused to the transmembrane and cytoplasmic segments of CD300a (KIR-CD300a) to explore surrogate ligand-stimulated inhibition of superantigen stimulated T cell receptor (TCR) mediated cell signaling. We found that intact CD300a ITIMs were essential for inhibition and that the tyrosine phosphorylation of these ITIMs required the src tyrosine kinase Lck. Tyrosine phosphorylation of the CD300a ITIMs created docking sites for both src homology 2 domain containing protein tyrosine phosphatase (SHP)-1 and SHP-2. Suppression of SHP-1 and SHP-2 expression in KIR-CD300a Jurkat T cells with siRNA and the use of DT40 chicken B cell lines expressing CD300a and deficient in several phosphatases revealed that SHP-1, but not SHP-2 or the src homology 2 domain containing inositol 5' phosphatase SHIP, was utilized by CD300a for its inhibitory activity. These studies provide new insights into the function of CD300a in tuning T and B cell responses.

  10. 3D QSAR studies on protein tyrosine phosphatase 1B inhibitors: comparison of the quality and predictivity among 3D QSAR models obtained from different conformer-based alignments.

    PubMed

    Pandey, Gyanendra; Saxena, Anil K

    2006-01-01

    A set of 65 flexible peptidomimetic competitive inhibitors (52 in the training set and 13 in the test set) of protein tyrosine phosphatase 1B (PTP1B) has been used to compare the quality and predictive power of 3D quantitative structure-activity relationship (QSAR) comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) models for the three most commonly used conformer-based alignments, namely, cocrystallized conformer-based alignment (CCBA), docked conformer-based alignment (DCBA), and global minima energy conformer-based alignment (GMCBA). These three conformers of 5-[(2S)-2-({(2S)-2-[(tert-butoxycarbonyl)amino]-3-phenylpropanoyl}amino)3-oxo-3-pentylamino)propyl]-2-(carboxymethoxy)benzoic acid (compound number 66) were obtained from the X-ray structure of its cocrystallized complex with PTP1B (PDB ID: 1JF7), its docking studies, and its global minima by simulated annealing. Among the 3D QSAR models developed using the above three alignments, the CCBA provided the optimal predictive CoMFA model for the training set with cross-validated r2 (q2)=0.708, non-cross-validated r2=0.902, standard error of estimate (s)=0.165, and F=202.553 and the optimal CoMSIA model with q2=0.440, r2=0.799, s=0.192, and F=117.782. These models also showed the best test set prediction for the 13 compounds with predictive r2 values of 0.706 and 0.683, respectively. Though the QSAR models derived using the other two alignments also produced statistically acceptable models in the order DCBA>GMCBA in terms of the values of q2, r2, and predictive r2, they were inferior to the corresponding models derived using CCBA. Thus, the order of preference for the alignment selection for 3D QSAR model development may be CCBA>DCBA>GMCBA, and the information obtained from the CoMFA and CoMSIA contour maps may be useful in designing specific PTP1B inhibitors.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Pei-Jie; Cai, Shuang-Peng; Yang, Yang

    Liver fibrosis is a reversible wound-healing response to chronic hepatic injuries. Activation of hepatic stellate cells (HSCs) plays a pivotal role in the development of hepatic fibrosis. The currently accepted mechanism for the resolution of liver fibrosis is the apoptosis and inactivation of activated HSCs. Protein tyrosine phosphatase 1B (PTP1B), a prototype of non-receptor protein tyrosine phosphatase, is proved to be a vital modulator in cardiac fibrogenesis. However, the precise role of PTP1B on liver fibrosis and HSC activation is still unclear. Our study showed that the expression of PTP1B was elevated in fibrotic liver but reduced after spontaneous recovery.more » Moreover, stimulation of HSC-T6 cells with transforming growth factor-β1 (TGF-β1) resulted in a dose/time-dependent increase of PTP1B mRNA and protein. Co-incubation of HSC-T6 cells with PTP1B-siRNA inhibited the cell proliferation and activation induced by TGF-β1. Additionally, both mRNA and protein of PTP1B were dramatically decreased in inactivated HSCs after treated with adipogenic differentiation mixture (MDI). Over-expression of PTP1B hindered the inactivation of HSC-T6 cells induced by MDI. These observations revealed a regulatory role of PTP1B in liver fibrosis and implied PTP1B as a potential therapeutic target. - Highlights: • The expression of PTP1B in the fibrotic livers and recovery livers • The expression of PTP1B in activated and inactivated HSCs • Blockade of PTP1B inhibited the TGF-β1-induced proliferation and activation of HSCs. • Over-expression of PTP1B abolished the inactivation of HSCs induced by MDI.« less

  12. Characterizing SHP2 as a Novel Therapeutic Target in Breast Cancer

    DTIC Science & Technology

    2014-04-01

    data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this...1   Supporting Data ............................................................................................................................ 1...unprecedented in the design of small molecule inhibitors. Therefore, the substrate-derived peptide was shown to be significantly more selective for SHP2

  13. Highly sensitive electrochemical assay for Nosema bombycis gene DNA PTP1 via conformational switch of DNA nanostructures regulated by H+ from LAMP.

    PubMed

    Zhao, Jianmin; Gao, Jiaxi; Zheng, Ting; Yang, Zhehan; Chai, Yaqin; Chen, Shihong; Yuan, Ruo; Xu, Wenju

    2018-05-30

    The portable and rapid detection of biomolecules via pH meters to monitor the concentration of hydrogen ions (H + ) from biological reactions (e.g. loop-mediated isothermal amplification, LAMP) has attracted research interest. However, this assay strategy suffered from inherent drawback of low sensitivity, resulting in great limitations in practical applications. Herein, a novel electrochemical biosensor was constructed for highly sensitive detection of Nosema bombycis gene DNA (PTP1) through transducing chemical stimuli H + from PTP1-based LAMP into electrochemical output signal of electroactive ferrocene (Fc). With use of target PTP1 as the template, the H + from LAMP induced the conformational switch of pH-responsive DNA nanostructures (DNA NSs, Fc-Sp@Ts) that was assembled by the hybridization of Fc-labeled signal probe (Fc-Sp) with DNA-based receptor (Ts). Due to the folding of Ts into stable triplex structure at decreased pH, the configuration change of Fc-Sp@Ts led to the releasing of Fc-Sp, which was subsequently immobilized in the electrode interface through the hybridization with the capture probe modified with -SH (SH-Cp), generating amplified electrochemical signal from Fc. The developed biosensor for PTP1 exhibited a reliable linear range of 1 fg µL -1 to 50 ng µL -1 with the limit of detection of 0.31 fg µL -1 . Thus, by the regulation of H + from LAMP reaction on DNA NSs allostery, this novel and simple transduction scheme would be interesting and promising to open up a novel analytical route for sensitive monitoring of different target DNAs in related disease diagnosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Evidence for a latent form of protein phosphatase 1 associated with cardiac myofibrils.

    PubMed

    Schlender, K K; Wang, W; Wilson, S E

    1989-02-28

    Detergent-purified myofibrils from bovine heart contained very little spontaneously active protein phosphatase 1 activity. Phosphatase 1, extracted from the myofibrils by freeze-thawing in the presence of 500 mM KCl, was markedly activated by cobalt/trypsin treatment. Myofibril phosphatase 1 was separated from phosphatase 2A by chromatography on heparin-Sepharose. The phosphatase 1 was isolated in a latent form. Pretreatment with trypsin released free catalytic subunit and increased activity about 25-fold. Addition of cobalt with the trypsin increased activity another 2-fold. The latent myofibril phosphatase 1 did not appear to be the same as previously characterized forms of protein phosphatase 1. We suggest that cardiac myofibril phosphatase 1 contains a unique inhibitory subunit which directs the enzyme to the myofibril and regulates the dephosphorylation of myofibril phosphoproteins.

  15. A randomized multicenter clinical trial of 99 Tc-methylene diphosphonate in treatment of rheumatoid arthritis.

    PubMed

    Mu, Rong; Liang, Jun; Sun, Lingyun; Zhang, Zhuoli; Liu, Xiangyuan; Huang, Cibo; Zhu, Ping; Zuo, Xiaoxia; Gu, Jieruo; Li, Xiangpei; Li, Xingfu; Liu, Yi; Feng, Ping; Li, Zhanguo

    2018-01-01

    To investigate the efficacy and safety of technetium-99 conjugated with methylene diphosphonate ( 99 Tc-MDP, Yunke Pharmaceutical industry) in the treatment of rheumatoid arthritis (RA). A total of 120 patients with active RA were randomly divided into three groups: Group A (receiving oral meloxicam tablets); Group B (receiving intravenous drip of 99 TC-MDP); Group C (receiving combination treatment of intravenous drip of 99 Tc-MDP and oral meloxicam tablets). The main clinical and laboratory parameters were evaluated at baseline and after 14 days of therapy. After 14 days of treatment, American College of Rheumatology 20 response was 15.62%, 34.04% and 48.78% in the three groups, respectively. The incidence of adverse events in three groups were 3.13%, 8.51% and 9.76% respectly, and has no significant difference. In addition, biochemical markers of bone metabolism including bone alkaline phosphatase (BAP), tartrate resistant acid phosphatase (TRAP) and dickkopf-1 (DKK-1), all improved in the three groups, although more significant in Group B than Group A, and more significant in the combination group than monotherapy groups. 99 Tc-MDP has good efficacy and safety in the treatment of active RA patients; the benefit was more remarkable when 99 Tc-MDP was combined with NSAIDs. 99 Tc-MDP may also have potential to improve bone metabolism. © 2017 Asia Pacific League of Associations for Rheumatology and John Wiley & Sons Australia, Ltd.

  16. Quadruple high-resolution α-glucosidase/α-amylase/PTP1B/radical scavenging profiling combined with high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy for identification of antidiabetic constituents in crude root bark of Morus alba L.

    PubMed

    Zhao, Yong; Kongstad, Kenneth Thermann; Jäger, Anna Katharina; Nielsen, John; Staerk, Dan

    2018-06-29

    In this paper, quadruple high-resolution α-glucosidase/α-amylase/PTP1B/radical scavenging profiling combined with HPLC-HRMS-SPE-NMR were used for studying the polypharmacological properties of crude root bark extract of Morus alba L. This species is used as an anti-diabetic principle in many traditional treatment systems around the world, and the crude ethyl acetate extract of M. alba root bark was found to inhibit α-glucosidase, α-amylase and protein-tyrosine phosphatase 1B (PTP1B) with IC 50 values of 1.70 ± 0.72, 5.16 ± 0.69, and 5.07 ± 0.68 μg/mL as well as showing radical scavenging activity equaling a TEAC value of (3.82 ± 0.14) × 10 4  mM per gram extract. Subsequent investigation of the crude extract using quadruple high-resolution α-glucosidase/α-amylase/PTP1B/radical scavenging profiling provided a quadruple biochromatogram that allowed direct correlation of the HPLC peaks with one or more of the tested bioactivities. This was used to target subsequent HPLC-HRMS-SPE-NMR analysis towards peaks representing bioactive analytes, and led to identification of a new Diels-Alder adduct named Moracenin E as well as a series of Diels-Alder adducts and isoprenylated flavonoids as potent α-glucosidase and α-amylase inhibitors with IC 50 values in the range of 0.60-27.15 μM and 1.22-69.38 μM, respectively. In addition, these compounds and two 2-arylbenzofurans were found to be potent PTP1B inhibitors with IC 50 values ranging from 4.04 to 21.67 μM. The high-resolution radical scavenging profile also revealed that almost all of the compounds possess radical scavenging activity. In conclusion the quadruple high-resolution profiling method presented here allowed a detailed profiling of individual constituents in crude root bark extract of M. alba, and the method provides a general tool for detailed mapping of bioactive constituents in polypharmacological herbal remedies. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. CuAAC click chemistry accelerates the discovery of novel chemical scaffolds as promising protein tyrosine phosphatases inhibitors.

    PubMed

    He, X-P; Xie, J; Tang, Y; Li, J; Chen, G-R

    2012-01-01

    Protein tyrosine phosphatases (PTPs) are crucial regulators for numerous biological processes in nature. The dysfunction and overexpression of many PTP members have been demonstrated to cause fatal human diseases such as cancers, diabetes, obesity, neurodegenerative diseases and autoimmune disorders. In the past decade, considerable efforts have been devoted to the production of PTPs inhibitors by both academia and the pharmaceutical industry. However, there are only limited drug candidates in clinical trials and no commercial drugs have been approved, implying that further efficient discovery of novel chemical entities competent for inhibition of the specific PTP target in vivo remains yet a challenge. In light of the click-chemistry paradigm which advocates the utilization of concise and selective carbon-heteroatom ligation reactions for the modular construction of useful compound libraries, the Cu(I)-catalyzed azidealkyne 1,3-dipolar cycloaddition reaction (CuAAC) has fueled enormous energy into the modern drug discovery. Recently, this ingenious chemical ligation tool has also revealed efficacious and expeditious in establishing large combinatorial libraries for the acquisition of novel PTPs inhibitors with promising pharmacological profiles. We thus offer here a comprehensive review highlighting the development of PTPs inhibitors accelerated by the CuAAC click chemistry.

  18. [Tartrate-resistant acid phosphatase in free-living Amoeba proteus].

    PubMed

    Sopina, V A

    2002-01-01

    Tartrate-resistant acid phosphatase (TRAP) of Amoeba proteus (strain B) was represented by 3 of 6 bands (= electromorphs) revealed after disc-electrophoresis in polyacrylamide gels with the use of 2-naphthyl phosphate as a substrate at pH 4.0. The presence of MgCl2, CaCl2 or ZnCl2 (50 mM) in the incubation mixture used for gel staining stimulated activities of all 3 TRAP electromorphs or of two of them (in the case of ZnCl2). When gels were treated with MgCl2, CaCl2 or ZnCl2 (10 and 100 mM, 30 min) before their staining activity of TRAP electromorphs also increased. But unlike 1 M MgCl2 or 1 M CaCl2, 1 M ZnCl2 partly inactivated two of the three TRAP electromorphs. EDTA and EGTA (5 mM), and H2O2 (10 mM) completely inhibited TRAP electromorphs after gel treatment for 10, 20 and 30 min, resp. Of 5 tested ions (Mg2+, Ca2+, Fe2+, Fe3+ and Zn2+), only the latter reactivated the TRAP electromorphs previously inactivated by EDTA or EGTA treatment. In addition, after EDTA inactivation, TRAP electromorphs were reactivated better than after EGTA. The resistance of TRAP electromorphs to okadaic acid and phosphatase inhibitor cocktail 1 used in different concentrations is indicative of the absence of PP1 and PP2A among these electromorphs. Mg2+, Ca2+ and Zn2+ dependence of TRAP activity, and the resistance of its electromorphs to vanadate and phosphatase inhibitor cocktail 2 prevents these electromorphs from being classified as PTP. It is suggested that the active center of A. proteus TRAP contains zinc ion, which is essential for catalytic activity of the enzyme. Thus, TRAP of these amoebae is metallophosphatase showing phosphomonoesterase activity in acidic medium. This metalloenzyme differs from both mammalian tartrate-resistant PAPs and tartrate-resistant metallophosphatase of Rana esculenta.

  19. Ppm1E is an in cellulo AMP-activated protein kinase phosphatase.

    PubMed

    Voss, Martin; Paterson, James; Kelsall, Ian R; Martín-Granados, Cristina; Hastie, C James; Peggie, Mark W; Cohen, Patricia T W

    2011-01-01

    Activation of 5'-AMP-activated protein kinase (AMPK) is believed to be the mechanism by which the pharmaceuticals, metformin and phenformin, exert their beneficial effects for treatment of type 2 diabetes. These biguanide drugs elevate 5'-AMP, which allosterically activates AMPK and promotes phosphorylation on Thr172 of AMPK catalytic α subunits. Although kinases phosphorylating this site have been identified, phosphatases that dephosphorylate it are unknown. The aim of this study is to identify protein phosphatase(s) that dephosphorylate AMPKα-Thr172 within cells. Our initial data indicated that members of the protein phosphatase Mg/Mn(2+)-dependent [corrected] (PPM) family and not those of the PPP family of protein serine/threonine phosphatases may be directly or indirectly inhibited by phenformin. Using antibodies raised to individual Ppm phosphatases that facilitated the assessment of their activities, phenformin stimulation of cells was found to decrease the Mg(2+)/Mn(2+)-dependent [corrected] protein serine/threonine phosphatase activity of Ppm1E and Ppm1F, but not that attributable to other PPM family members, including Ppm1A/PP2Cα. Depletion of Ppm1E, but not Ppm1A, using lentiviral-mediated stable gene silencing, increased AMPKα-Thr172 phosphorylation approximately three fold in HEK293 cells. In addition, incubation of cells with low concentrations of phenformin and depletion of Ppm1E increased AMPK phosphorylation synergistically. Ppm1E and the closely related Ppm1F interact weakly with AMPK and assays with lysates of cells stably depleted of Ppm1F suggest [corrected] that this phosphatase contributes to dephosphorylation of AMPK. The data indicate that Ppm1E and probably PpM1F are in cellulo AMPK phosphatases and that Ppm1E is a potential anti-diabetic drug target. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Metformin ameliorates IL-6-induced hepatic insulin resistance via induction of orphan nuclear receptor small heterodimer partner (SHP) in mouse models.

    PubMed

    Kim, Y D; Kim, Y H; Cho, Y M; Kim, D K; Ahn, S W; Lee, J M; Chanda, D; Shong, M; Lee, C H; Choi, H S

    2012-05-01

    IL-6 is a proinflammatory cytokine associated with the pathogenesis of hepatic diseases. Metformin is an anti-diabetic drug used for the treatment of type 2 diabetes, and orphan nuclear receptor small heterodimer partner (SHP, also known as NR0B2), a transcriptional co-repressor, plays an important role in maintaining metabolic homeostasis. Here, we demonstrate that metformin-mediated activation of AMP-activated protein kinase (AMPK) increases SHP protein production and regulates IL-6-induced hepatic insulin resistance. We investigated metformin-mediated SHP production improved insulin resistance through the regulation of an IL-6-dependent pathway (involving signal transducer and activator of transcription 3 [STAT3] and suppressor of cytokine signalling 3 [SOCS3]) in both Shp knockdown and Shp null mice. IL-6-induced STAT3 transactivation and SOCS3 production were significantly repressed by metformin, adenoviral constitutively active AMPK (Ad-CA-AMPK), and adenoviral SHP (Ad-SHP), but not in Shp knockdown, or with the adenoviral dominant negative form of AMPK (Ad-DN-AMPK). Chromatin immunoprecipitation (ChIP), co-immunoprecipitation (Co-IP) and protein localisation studies showed that SHP inhibits DNA binding of STAT3 on the Socs3 gene promoter via interaction and colocalisation within the nucleus. Upregulation of inflammatory genes and downregulation of hepatic insulin signalling by acute IL-6 treatment were observed in wild-type mice but not in Shp null mice. Finally, chronic IL-6 exposure caused hepatic insulin resistance, leading to impaired insulin tolerance and elevated gluconeogenesis, and these phenomena were aggravated in Shp null mice. Our results demonstrate that SHP upregulation by metformin may prevent hepatic disorders by regulating the IL-6-dependent pathway, and that this pathway can help to ameliorate the pathogenesis of cytokine-mediated metabolic dysfunction.

  1. Molecular cloning and expression of a unique receptor-like protein-tyrosine-phosphatase in the leucocyte-common-antigen-related phosphate family.

    PubMed Central

    Zhang, W R; Hashimoto, N; Ahmad, F; Ding, W; Goldstein, B J

    1994-01-01

    Protein-tyrosine-phosphatases (PTPases) have been implicated in the regulation of certain tyrosine kinase growth factor receptors in that they dephosphorylate the activated (autophosphorylated) form of the receptors. In order to identify PTPases that potentially act on receptor targets in liver, we used the human leucocyte common antigen-related PTPase (LAR) cDNA [Streuli, Krueger, Hall, Schlossman and Saito (1988) J. Exp. Med. 168, 1523-1530] and isolated two closely related transmembrane PTPase homologues from a rat hepatic cDNA library. Both PTPases had large extracellular domains that contained three immunoglobulin-like repeats and eight type-III fibronectin repeats. Both enzymes had tandem homologous PTPase domains following a single hydrophobic transmembrane domain. One sequence encoded the rat homologue of LAR. The second PTPase, designated LAR-PTP2, had 79 and 90% identity with rat LAR in the respective cytoplasmic PTPase domains, with only 57% sequence similarity in the extracellular domain. The catalytic domains of LAR and LAR-PTP2 prepared by bacterial expression were active in dephosphorylating a variety of phosphotyrosyl substrates but did not hydrolyse phosphoserine or phosphothreonine residues of labelled casein. Both enzymes exhibited rapid turnover numbers of 4-7 s-1 for myelin basic protein and 78-150 s-1 for derivatized lysozyme. LAR and LAR-PTP2 displayed similar PTPase activity towards the simultaneous dephosphorylation of receptors of intact insulin and epidermal growth factor from liver membranes. These data indicate that there is a family of LAR-related PTPases that may regulate the phosphorylation state of receptor tyrosine kinases in liver and other tissues. Images Figure 1 Figure 4 Figure 5 Figure 6 PMID:8068021

  2. On the role of adenylate cyclase, tyrosine kinase, and tyrosine phosphatase in the response of nerve and glial cells to photodynamic impact

    NASA Astrophysics Data System (ADS)

    Kolosov, Mikhail S.; Bragin, D. E.; Dergacheva, Olga Y.; Vanzha, O.; Oparina, L.; Uzdensky, Anatoly B.

    2004-08-01

    The role of different intercellular signaling pathways involving adenylate cyclase (AC), receptor tyrosine kinase (RTK), tyrosine and serine/threonine protein phosphatases (PTP or PP, respectively) in the response of crayfish mechanoreceptor neuron (MRN) and surrounding glial cells to photodynamic effect of aluminum phthalocyanine Photosens have been studied. AC inhibition by MDL-12330A decreased neuron lifetime, whereas AC activation by forskolin increase it. Thus, increase in cAMP produced by activated AC protects SRN against photodynamic inactivation. Similarly, RTK inhibition by genistein decreased neuron lifetime, while inhibition of PTP or PP that remove phosphate groups from proteins, prolonged neuronal activity. AC inhibition reduced photoinduced damage of the plasma membrane, and, therefore, necrosis in neuronal and glial cells. RTK inhibition protected only neurons against PDT-induced membrane permeabilization while glial cells became lesser permeable under ortovanadate-mediated PTP inhibition. AC activation also prevented PDT-induced apoptosis in glial cells. PP inhibition enhanced apoptotic processes in photosensitized glial cells. Therefore, both intercellular signaling pathways involving AC and TRK are involved in the maintenance of neuronal activity, integrity of the neuronal and glial plasma membranes and in apoptotic processes in glia under photosensitization.

  3. Effect of protocatechuic acid on insulin responsiveness and inflammation in visceral adipose tissue from obese individuals: possible role for PTP1B.

    PubMed

    Ormazabal, Paulina; Scazzocchio, Beatrice; Varì, Rosaria; Santangelo, Carmela; D'Archivio, Massimo; Silecchia, Gianfranco; Iacovelli, Annunziata; Giovannini, Claudio; Masella, Roberta

    2018-05-16

    The occurrence of chronic inflammation in visceral adipose tissue (VAT) in obese subjects precipitates the development of insulin resistance and type 2 diabetes (T2D). Anthocyanins and their main metabolite protocatechuic acid (PCA) have been demonstrated to stimulate insulin signaling in human adipocytes. The aim of this study was to investigate whether PCA is able to modulate insulin responsiveness and inflammation in VAT from obese (OB) and normal weight (NW) subjects. VATs obtained from NW and OB subjects were incubated or not (control) with 100 μM PCA for 24 h. After incubation, tissues untreated and treated with PCA were acutely stimulated with insulin (20 nM, 20 min). PTP1B, p65 NF-κB, phospho-p65 NF-κB, IRS-1, IRβ, Akt, GLUT4 as well as basal and insulin-stimulated Tyr-IRS-1 and Ser-Akt phosphorylations were assessed by Western blotting in NW- and OB-VAT. Samples were assessed for PTP1B activity and adipocytokine secretion. PCA restored insulin-induced phosphorylation in OB-VAT by increasing phospho-Tyr-IRS-1 and phospho-Ser-Akt after insulin stimulation as observed in NW-VAT (p < 0.05). PTP1B activity was lower in OB-VAT treated with PCA with respect to untreated (p < 0.05). Compared to non-treated tissues, PCA reduced phospho-p65 NF-κB and IL-6 in OB-VAT, and IL-1β in NW-VAT (p < 0.05); and increased adiponectin secretion in NW-VAT (p < 0.05). PCA restores the insulin responsiveness of OB-VAT by increasing IRS-1 and Akt phosphorylation which could be related with the lower PTP1B activity found in PCA-treated OB-VAT. Furthermore, PCA diminishes inflammation in VAT. These results support the beneficial role of an anthocyanin-rich diet against inflammation and insulin resistance in obesity.

  4. Evidence for a role of platelet endothelial cell adhesion molecule-1 in endothelial cell mechanosignal transduction: is it a mechanoresponsive molecule?

    PubMed

    Osawa, Masaki; Masuda, Michitaka; Kusano, Ken-ichi; Fujiwara, Keigi

    2002-08-19

    Fluid shear stress (FSS) induces many forms of responses, including phosphorylation of extracellular signal-regulated kinase (ERK) in endothelial cells (ECs). We have earlier reported rapid tyrosine phosphorylation of platelet endothelial cell adhesion molecule-1 (PECAM-1) in ECs exposed to FSS. Osmotic changes also induced similar PECAM-1 and ERK phosphorylation with nearly identical kinetics. Because both FSS and osmotic changes should mechanically perturb the cell membrane, they might activate the same mechanosignaling cascade. When PECAM-1 is tyrosine phosphorylated by FSS or osmotic changes, SHP-2 binds to it. Here we show that ERK phosphorylation by FSS or osmotic changes depends on PECAM-1 tyrosine phosphorylation, SHP-2 binding to phospho-PECAM-1, and SHP-2 phosphatase activity. In ECs under flow, detectable amounts of SHP-2 and Gab1 translocated from the cytoplasm to the EC junction. When magnetic beads coated with antibodies against the extracellular domain of PECAM-1 were attached to ECs and tugged by magnetic force for 10 min, PECAM-1 associated with the beads was tyrosine phosphorylated. ERK was also phosphorylated in these cells. Binding of the beads by itself or pulling on the cell surface using poly-l-coated beads did not induce phosphorylation of PECAM-1 and ERK. These results suggest that PECAM-1 is a mechanotransduction molecule.

  5. Immunogenicity of PtpA secreted during Mycobacterium avium ssp. paratuberculosis infection in cattle.

    PubMed

    Bach, Eviatar; Raizman, Eran A; Vanderwal, Rich; Soto, Paolete; Chaffer, Marcelo; Keefe, Greg; Pogranichniy, Roman; Bach, Horacio

    2018-04-01

    Mycobacterium avium subsp. paratuberculosis (MAP) is the etiological agent of Johne's disease. To survive within host macrophages, the pathogen secretes a battery of proteins to interfere with the immunological response of the host. One of these proteins is tyrosine phosphate A (PtpA), which has been identified as a secreted protein critical for survival of its close relative M. tuberculosis within infected macrophages. In this study, the immune response to recombinant PtpA used as an antigen was investigated in a cohort of ∼1000 cows infected with MAP compared to negative control animals using ELISA. The sera from MAP-infected cows had significantly higher levels of antibodies against PtpA when compared to uninfected cows. The data presented here indicate that the antibodies produced against PtpA are sensitive enough to detect infected animals before the appearance of the disease symptoms. The use of PtpA as an antigen can be developed as an early diagnostic test. Moreover, PtpA is a candidate antigen for detection of humoral immune responses in cows infected with MAP. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. SHP465 Mixed Amphetamine Salts in the Treatment of Attention-Deficit/Hyperactivity Disorder in Children and Adolescents: Results of a Randomized, Double-Blind Placebo-Controlled Study

    PubMed Central

    Childress, Ann C.; Greenbaum, Michael; Yu, Ming; Yan, Brian; Jaffee, Margo; Robertson, Brigitte

    2018-01-01

    Abstract Objective: The aim of this study was to evaluate the efficacy, safety, and tolerability of SHP465 mixed amphetamine salts (MAS) in children and adolescents with attention-deficit/hyperactivity disorder (ADHD). Methods: This randomized, double-blind dose-optimization study enrolled children and adolescents (6–17 years) meeting Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision ADHD criteria and having baseline ADHD Rating Scale IV (ADHD-RS-IV) total scores ≥28. Participants were randomized 1:1 to placebo or dose-optimized SHP465 MAS (12.5–25 mg) for 4 weeks. Total score change (baseline to week 4) on the ADHD-RS-IV (primary endpoint) and the Clinical Global Impressions-Improvement (CGI-I) scale score at week 4 (key secondary endpoint) were assessed using linear mixed-effects models for repeated measures. Safety and tolerability assessments (secondary endpoints) included treatment-emergent adverse events (TEAEs) and vital sign changes. Results: Of 264 randomized participants (placebo, n = 132; SHP465 MAS, n = 132), 234 (placebo, n = 118; SHP465 MAS, n = 116) completed the study. The least squares mean (95% confidence interval) treatment difference significantly favored SHP465 MAS over placebo for ADHD-RS-IV total score change from baseline to week 4 (−9.9 [−13.0, −6.8]; p < 0.001; effect size = 0.80) and CGI-I score at week 4 (−0.8 [−1.1, −0.5]; p < 0.001; effect size = 0.65). TEAE frequency was 46.6% (61/131) with placebo and 67.4% (89/132) with SHP465 MAS; no serious TEAEs were reported. TEAEs reported at a frequency of ≥5% and ≥2 times the placebo rate were decreased appetite, insomnia, irritability, nausea, and decreased weight. Mean ± standard deviation increases (baseline to final on-treatment assessment) were higher with SHP465 MAS than placebo for pulse (5.7 ± 11.78 vs. 0.7 ± 10.79), systolic blood pressure (3.8 ± 9.15 vs. 2.1 ± 8

  7. PTEN is a protein phosphatase that targets active PTK6 and inhibits PTK6 oncogenic signaling in prostate cancer.

    PubMed

    Wozniak, Darren J; Kajdacsy-Balla, Andre; Macias, Virgilia; Ball-Kell, Susan; Zenner, Morgan L; Bie, Wenjun; Tyner, Angela L

    2017-11-15

    PTEN activity is often lost in prostate cancer. We show that the tyrosine kinase PTK6 (BRK) is a PTEN substrate. Phosphorylation of PTK6 tyrosine 342 (PY342) promotes activation, while phosphorylation of tyrosine 447 (PY447) regulates auto-inhibition. Introduction of PTEN into a PTEN null prostate cancer cell line leads to dephosphorylation of PY342 but not PY447 and PTK6 inhibition. Conversely, PTEN knockdown promotes PTK6 activation in PTEN positive cells. Using a variety of PTEN mutant constructs, we show that protein phosphatase activity of PTEN targets PTK6, with efficiency similar to PTP1B, a phosphatase that directly dephosphorylates PTK6 Y342. Conditional disruption of Pten in the mouse prostate leads to tumorigenesis and increased phosphorylation of PTK6 Y342, and disruption of Ptk6 impairs tumorigenesis. In human prostate tumor tissue microarrays, loss of PTEN correlates with increased PTK6 PY342 and poor outcome. These data suggest PTK6 activation promotes invasive prostate cancer induced by PTEN loss.

  8. A strategy based on gas chromatography-mass spectrometry and virtual molecular docking for analysis and prediction of bioactive composition in natural product essential oil.

    PubMed

    Wang, Haiyang; Gu, Dongyu; Wang, Miao; Guo, Hong; Wu, Huijuan; Tian, Guangliang; Li, Qian; Yang, Yi; Tian, Jing

    2017-06-09

    The discovery of leads from medicinal plants is crucial to drug development. The present study presents a strategy based on GC-MS coupled with molecular docking for analysis, identification and prediction of protein tyrosine phosphatase 1B inhibitors in the essential oil from Himalayan Cedar (HC). The essential oil with IC 50 value of 120.71±0.26μg/mL exhibited potential activity against protein tyrosine phosphatase 1B (PTP1B) in vitro. After GC-MS analysis, 35 compounds were identified from this oil. The identified compounds were individually docked with PTP1B. Caryophyllene oxide with the lowest binding energy of -6.28kcal/mol was completely wrapped by the active site of PTP1B. The docking results indicated that caryophyllene oxide has potential PTP1B inhibitory activity and may be responsible for the PTP1B inhibitory activity of the essential oil. Caryophyllene oxide in the essential oil of Himalayan Cedar was isolated by HSCCC and the PTP1B inhibitory activity of this compound was then evaluated; the IC 50 value was 31.32±0.38μM. The result revealed that the present strategy can effectively discover the active composition from the complex mixture of medicinal plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Wushenziye Formula Improves Skeletal Muscle Insulin Resistance in Type 2 Diabetes Mellitus via PTP1B-IRS1-Akt-GLUT4 Signaling Pathway.

    PubMed

    Tian, Chunyu; Chang, Hong; La, Xiaojin; Li, Ji-An

    2017-01-01

    Background. Wushenziye formula (WSZYF) is an effective traditional Chinese medicine in the treatment of type 2 diabetes mellitus (T2DM). Aim. This study aimed to identify the effects and underlying mechanisms of WSZYF on improving skeletal muscle insulin resistance in T2DM. Methods. An animal model of T2DM was induced by Goto-Kakizaki diabetes prone rats fed with high fat and sugar for 4 weeks. Insulin resistance model was induced in skeletal muscle cell. Results. In vivo , WSZYF improved general conditions and decreased significantly fasting blood glucose, glycosylated serum protein, glycosylated hemoglobin, insulin concentration, and insulin resistance index of T2DM rats. In vitro , WSZYF enhanced glucose consumption in insulin resistance model of skeletal muscle cell. Furthermore, WSZYF affected the expressions of molecules in regulating T2DM, including increasing the expressions of p-IRS1, p-Akt, and GLUT4, reducing PTP1B expression. Conclusion . These findings displayed the potential of WSZYF as a new drug candidate in the treatment of T2DM and the antidiabetic mechanism of WSZYF is probably mediated through modulating the PTP1B-IRS1-Akt-GLUT4 signaling pathway.

  10. Wushenziye Formula Improves Skeletal Muscle Insulin Resistance in Type 2 Diabetes Mellitus via PTP1B-IRS1-Akt-GLUT4 Signaling Pathway

    PubMed Central

    La, Xiaojin; Li, Ji-an

    2017-01-01

    Background. Wushenziye formula (WSZYF) is an effective traditional Chinese medicine in the treatment of type 2 diabetes mellitus (T2DM). Aim. This study aimed to identify the effects and underlying mechanisms of WSZYF on improving skeletal muscle insulin resistance in T2DM. Methods. An animal model of T2DM was induced by Goto-Kakizaki diabetes prone rats fed with high fat and sugar for 4 weeks. Insulin resistance model was induced in skeletal muscle cell. Results. In vivo, WSZYF improved general conditions and decreased significantly fasting blood glucose, glycosylated serum protein, glycosylated hemoglobin, insulin concentration, and insulin resistance index of T2DM rats. In vitro, WSZYF enhanced glucose consumption in insulin resistance model of skeletal muscle cell. Furthermore, WSZYF affected the expressions of molecules in regulating T2DM, including increasing the expressions of p-IRS1, p-Akt, and GLUT4, reducing PTP1B expression. Conclusion. These findings displayed the potential of WSZYF as a new drug candidate in the treatment of T2DM and the antidiabetic mechanism of WSZYF is probably mediated through modulating the PTP1B-IRS1-Akt-GLUT4 signaling pathway. PMID:29479370

  11. Exploring the effect of D61G mutation on SHP2 cause gain of function activity by a molecular dynamics study.

    PubMed

    Li, Hong-Lian; Ma, Ying; Zheng, Chang-Jie; Jin, Wen-Yan; Liu, Wen-Shan; Wang, Run-Ling

    2017-11-24

    Noonan syndrome (NS) is a common autosomal dominant congenital disorder which could cause the congenital cardiopathy and cancer predisposition. Previous studies reported that the knock-in mouse models of the mutant D61G of SHP2 exhibited the major features of NS, which demonstrated that the mutation D61G of SHP2 could cause NS. To explore the effect of D61G mutation on SHP2 and explain the high activity of the mutant, molecular dynamic simulations were performed on wild type (WT) of SHP2 and the mutated SHP2-D61G, respectively. The principal component analysis and dynamic cross-correlation mapping, associated with secondary structure, showed that the D61G mutation affected the motions of two regions (residues Asn 58-Thr 59 and Val 460-His 462) in SHP2 from β to turn. Moreover, the residue interaction networks analysis, the hydrogen bond occupancy analysis and the binding free energies were calculated to gain detailed insight into the influence of the mutant D61G on the two regions, revealing that the major differences between SHP2-WT and SHP2-D61G were the different interactions between Gly 61 and Gly 462, Gly 61 and Ala 461, Gln 506 and Ile 463, Gly 61 and Asn 58, Ile 463 and Thr 466, Gly 462 and Cys 459. Consequently, our findings here may provide knowledge to understand the increased activity of SHP2 caused by the mutant D61G.

  12. AhR and SHP regulate phosphatidylcholine and S-adenosylmethionine levels in the one-carbon cycle.

    PubMed

    Kim, Young-Chae; Seok, Sunmi; Byun, Sangwon; Kong, Bo; Zhang, Yang; Guo, Grace; Xie, Wen; Ma, Jian; Kemper, Byron; Kemper, Jongsook Kim

    2018-02-07

    Phosphatidylcholines (PC) and S-adenosylmethionine (SAM) are critical determinants of hepatic lipid levels, but how their levels are regulated is unclear. Here, we show that Pemt and Gnmt, key one-carbon cycle genes regulating PC/SAM levels, are downregulated after feeding, leading to decreased PC and increased SAM levels, but these effects are blunted in small heterodimer partner (SHP)-null or FGF15-null mice. Further, aryl hydrocarbon receptor (AhR) is translocated into the nucleus by insulin/PKB signaling in the early fed state and induces Pemt and Gnmt expression. This induction is blocked by FGF15 signaling-activated SHP in the late fed state. Adenoviral-mediated expression of AhR in obese mice increases PC levels and exacerbates steatosis, effects that are blunted by SHP co-expression or Pemt downregulation. PEMT, AHR, and PC levels are elevated in simple steatosis patients, but PC levels are robustly reduced in steatohepatitis-fibrosis patients. This study identifies AhR and SHP as new physiological regulators of PC/SAM levels.

  13. The kunitz protease inhibitor form of the amyloid precursor protein (KPI/APP) inhibits the proneuropeptide processing enzyme prohormone thiol protease (PTP). Colocalization of KPI/APP and PTP in secretory vesicles.

    PubMed

    Hook, V Y; Sei, C; Yasothornsrikul, S; Toneff, T; Kang, Y H; Efthimiopoulos, S; Robakis, N K; Van Nostrand, W

    1999-01-29

    Proteolytic processing of proenkephalin and proneuropeptides is required for the production of active neurotransmitters and peptide hormones. Variations in the extent of proenkephalin processing in vivo suggest involvement of endogenous protease inhibitors. This study demonstrates that "protease nexin 2 (PN2)," the secreted form of the kunitz protease inhibitor (KPI) of the amyloid precursor protein (APP), potently inhibited the proenkephalin processing enzyme known as prohormone thiol protease (PTP), with a Ki,app of 400 nM. Moreover, PTP and PN2 formed SDS-stable complexes that are typical of kunitz protease inhibitor interactions with target proteases. In vivo, KPI/APP (120 kDa), as well as a truncated form of KPI/APP that resembles PN2 in apparent molecular mass (110 kDa), were colocalized with PTP and (Met)enkephalin in secretory vesicles of adrenal medulla (chromaffin granules). KPI/APP (110-120 kDa) was also detected in pituitary secretory vesicles that contain PTP. In chromaffin cells, calcium-dependent secretion of KPI/APP with PTP and (Met)enkephalin demonstrated the colocalization of these components in functional secretory vesicles. These results suggest a role for KPI/APP inhibition of PTP in regulated secretory vesicles. In addition, these results are the first to identify an endogenous protease target of KPI/APP, which is developmentally regulated in aging and Alzheimer's disease.

  14. Melatonin protects cardiac microvasculature against ischemia/reperfusion injury via suppression of mitochondrial fission-VDAC1-HK2-mPTP-mitophagy axis.

    PubMed

    Zhou, Hao; Zhang, Ying; Hu, Shunying; Shi, Chen; Zhu, Pingjun; Ma, Qiang; Jin, Qinhua; Cao, Feng; Tian, Feng; Chen, Yundai

    2017-08-01

    The cardiac microvascular system, which is primarily composed of monolayer endothelial cells, is the site of blood supply and nutrient exchange to cardiomyocytes. However, microvascular ischemia/reperfusion injury (IRI) following percutaneous coronary intervention is a woefully neglected topic, and few strategies are available to reverse such pathologies. Here, we studied the effects of melatonin on microcirculation IRI and elucidated the underlying mechanism. Melatonin markedly reduced infarcted area, improved cardiac function, restored blood flow, and lower microcirculation perfusion defects. Histological analysis showed that cardiac microcirculation endothelial cells (CMEC) in melatonin-treated mice had an unbroken endothelial barrier, increased endothelial nitric oxide synthase expression, unobstructed lumen, reduced inflammatory cell infiltration, and less endothelial damage. In contrast, AMP-activated protein kinase α (AMPKα) deficiency abolished the beneficial effects of melatonin on microvasculature. In vitro, IRI activated dynamin-related protein 1 (Drp1)-dependent mitochondrial fission, which subsequently induced voltage-dependent anion channel 1 (VDAC1) oligomerization, hexokinase 2 (HK2) liberation, mitochondrial permeability transition pore (mPTP) opening, PINK1/Parkin upregulation, and ultimately mitophagy-mediated CMEC death. However, melatonin strengthened CMEC survival via activation of AMPKα, followed by p-Drp1 S616 downregulation and p-Drp1 S37 upregulation, which blunted Drp1-dependent mitochondrial fission. Suppression of mitochondrial fission by melatonin recovered VDAC1-HK2 interaction that prevented mPTP opening and PINK1/Parkin activation, eventually blocking mitophagy-mediated cellular death. In summary, this study confirmed that melatonin protects cardiac microvasculature against IRI. The underlying mechanism may be attributed to the inhibitory effects of melatonin on mitochondrial fission-VDAC1-HK2-mPTP-mitophagy axis via activation

  15. Probing the origins of catalytic discrimination between phosphate and sulfate monoester hydrolysis: comparative analysis of alkaline phosphatase and protein tyrosine phosphatases.

    PubMed

    Andrews, Logan D; Zalatan, Jesse G; Herschlag, Daniel

    2014-11-04

    Catalytic promiscuity, the ability of enzymes to catalyze multiple reactions, provides an opportunity to gain a deeper understanding of the origins of catalysis and substrate specificity. Alkaline phosphatase (AP) catalyzes both phosphate and sulfate monoester hydrolysis reactions with a ∼10(10)-fold preference for phosphate monoester hydrolysis, despite the similarity between these reactions. The preponderance of formal positive charge in the AP active site, particularly from three divalent metal ions, was proposed to be responsible for this preference by providing stronger electrostatic interactions with the more negatively charged phosphoryl group versus the sulfuryl group. To test whether positively charged metal ions are required to achieve a high preference for the phosphate monoester hydrolysis reaction, the catalytic preference of three protein tyrosine phosphatases (PTPs), which do not contain metal ions, were measured. Their preferences ranged from 5 × 10(6) to 7 × 10(7), lower than that for AP but still substantial, indicating that metal ions and a high preponderance of formal positive charge within the active site are not required to achieve a strong catalytic preference for phosphate monoester over sulfate monoester hydrolysis. The observed ionic strength dependences of kcat/KM values for phosphate and sulfate monoester hydrolysis are steeper for the more highly charged phosphate ester with both AP and the PTP Stp1, following the dependence expected based on the charge difference of these two substrates. However, the dependences for AP were not greater than those of Stp1 and were rather shallow for both enzymes. These results suggest that overall electrostatics from formal positive charge within the active site is not the major driving force in distinguishing between these reactions and that substantial discrimination can be attained without metal ions. Thus, local properties of the active site, presumably including multiple positioned dipolar

  16. PREFACE: 2014 Joint IMEKO TC1-TC7-TC13 Symposium: Measurement Science Behind Safety and Security

    NASA Astrophysics Data System (ADS)

    Sousa, João A.; Ribeiro, Álvaro S.; Filipe, Eduarda

    2015-02-01

    The 2014 Joint IMEKO (International Measurement Confederation) TC1-TC7-TC13 Symposium was organized by RELACRE - Portuguese Association of Accredited Laboratories and the Portuguese Society for Metrology, on 3-5 September 2014. The work of this symposium is reported in this volume. The scope of the symposium includes the main topics covered by the above Technical Committees: - TC1 Education and Training in measurement and Instrumentation - TC7 Measurement Science - TC13 Measurements in Biology and Medicine The effort towards excellence of previous events, in this well established series, is maintained. There has been a special focus on measurement science behind safety and security, with the aim of highlighting the interdisciplinary character of measurement science and the importance of metrology in our daily lives. The discussion was introduced by keynote lectures on measurement challenges in biometrics, health monitoring and social sciences, to promote useful interactions with scientists from different disciplines. The Symposium was attended by experts working in these areas from 18 countries, including USA, Japan and China, and provided a useful forum for them to share and exchange their work and ideas. In total over fifty papers are included in the volume, organized according to the presentation sessions. Each paper was independently peer-reviewed by two reviewers from a distinguished international panel. The Symposium was held in Funchal, capital of Madeira Islands, known as the Atlantic Pearl. This wonderful Atlantic archipelago, formed by Madeira and Porto Santo islands, discovered in the 14th century, was chosen to host the 2014 IMEKO TC1-TC7-TC13 Joint Symposium ''Measurement Science behind Safety and Security''. It was the first territory discovered by the Portuguese sailors, when set out to discover a new world, in an epic journey where instrumentation and quality of measurement played a central role in the success of the enterprise, and gave an

  17. DUSP11 – An RNA phosphatase that regulates host and viral non-coding RNAs in mammalian cells

    PubMed Central

    Burke, James M.; Sullivan, Christopher S.

    2017-01-01

    ABSTRACT Dual-specificity phosphatase 11 (DUSP11) is a conserved protein tyrosine phosphatase (PTP) in metazoans. The cellular substrates and physiologic activities of DUSP11 remain largely unknown. In nematodes, DUSP11 is required for normal development and RNA interference against endogenous RNAs (endo-RNAi) via molecular mechanisms that are not well understood. However, mammals lack analogous endo-RNAi pathways and consequently, a role for DUSP11 in mammalian RNA silencing was unanticipated. Recent work from our laboratory demonstrated that DUSP11 activity alters the silencing potential of noncanonical viral miRNAs in mammalian cells. Our studies further uncovered direct cellular substrates of DUSP11 and suggest that DUSP11 is part of regulatory pathway that controls the abundance of select triphosphorylated noncoding RNAs. Here, we highlight recent findings and present new data that advance understanding of mammalian DUSP11 during gene silencing and discuss the emerging biological activities of DUSP11 in mammalian cells. PMID:28296624

  18. Resistance to collagen-induced arthritis in SHPS-1 mutant mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okuzawa, Chie; Kaneko, Yoriaki; Murata, Yoji

    SHPS-1 is a transmembrane protein that binds the protein tyrosine phosphatases SHP-1 and SHP-2 through its cytoplasmic region and is abundantly expressed on dendritic cells and macrophages. Here we show that mice expressing a mutant form of SHPS-1 fail to develop type-II collagen (CII)-induced arthritis (CIA), a model for rheumatoid arthritis in humans. Histological examinations of the arthritic paws from immunized wild-type mice revealed that cartilage was destroyed in association with marked mononuclear cell infiltration, while only mild cell infiltration was observed in immunized SHPS-1 mutant mice. Consistently, the serum levels of both IgG and IgG2a specific to CII andmore » of IL-1{beta} in immunized SHPS-1 mutant mice were markedly reduced compared with those apparent for wild-type mice. The CII-induced proliferation of, and production of cytokines by, T cells from immunized SHPS-1 mutant mice were reduced compared to wild-type cells. These results suggest that SHPS-1 is essential for development of CIA.« less

  19. Molecular and biochemical characterisation of two aspartic proteinases TcAP1 and TcAP2 from Theobroma cacao seeds.

    PubMed

    Laloi, Maryse; McCarthy, James; Morandi, Olivia; Gysler, Christof; Bucheli, Peter

    2002-09-01

    Aspartic proteinase (EC 3.4.23) activity plays a pivotal role in the degradation of Theobroma cacao L. seed proteins during the fermentation step of cacao bean processing. Therefore, this enzyme is believed to be critical for the formation of the peptide and amino acid cocoa flavor precursors that occurs during fermentation. Using cDNA cloning and northern blot analysis, we show here that there are at least two distinct aspartic proteinase genes ( TcAP1 and TcAP2) expressed during cacao seed development. Both genes are expressed early during seed development and their mRNA levels decrease towards the end of seed maturation. TcAP2 is expressed at a much higher level than TcAP1, although the expression of TcAP1 increases slightly during germination. The proteins encoded by TcAP1 and TcAP2 are relatively different from each other (73% identity). This, and the fact that the two corresponding genes have different expression patterns, suggests that the TcAP1 and TcAP2 proteins may have different functions in the maturing seeds and during germination. Because the TcAP2 gene is expressed at a much higher level during seed development than TcAP1, it is likely that the TcAP2 protein is primarily responsible for the majority of the industrially important protein hydrolysis that occurs during cacao bean fermentation. Finally, TcAP2 has been functionally expressed in the yeast Yarrowia lipolytica. The secreted recombinant protein is able to hydrolyse bovine haemoglobin at acidic pH and is sensitive to pepstatin A, confirming that TcAP2 encodes an aspartic proteinase, and strongly suggests that this gene encodes the well-characterized aspartic proteinase of mature cacao seeds.

  20. Grape seed procyanidins improve atherosclerotic risk index and induce liver CYP7A1 and SHP expression in healthy rats.

    PubMed

    Del Bas, Josep Maria; Fernández-Larrea, Juan; Blay, Mayte; Ardèvol, Anna; Salvadó, Maria Josepa; Arola, Lluis; Bladé, Cinta

    2005-03-01

    Moderate consumption of red wine reduces risk of death from cardiovascular disease. The polyphenols in red wine are ultimately responsible for this effect, exerting antiatherogenic actions through their antioxidant capacities and modulating intracellular signaling pathways and transcriptional activities. Lipoprotein metabolism is crucial in atherogenesis, and liver is the principal organ controlling lipoprotein homeostasis. This study was intended to identify the primary effects of procyanidins, the most abundant polyphenols in red wine, on both plasma lipoprotein profile and the expression of genes controlling lipoprotein homeostasis in the liver. We show that procyanidins lowered plasma triglyceride, free fatty acids, apolipoprotein B (apoB), LDL-cholesterol and nonHDL:nonLDL-cholesterol levels and slightly increased HDL-cholesterol. Liver mRNA levels of small heterodimer partner (SHP), cholesterol 7alpha-hydroxylase (CYP7A1), and cholesterol biosynthetic enzymes increased, whereas those of apoAII, apoCI, and apoCIII decreased. Lipoprotein lipase (LPL) mRNA levels increased in muscle and decreased in adipose tissue. In conclusion, procyanidins improve the atherosclerotic risk index in the postprandial state, inducing in the liver the overexpression of CYP7A1 (suggesting an increase of cholesterol elimination via bile acids) and SHP, a nuclear receptor emerging as a key regulator of lipid homeostasis at the transcriptional level. These results could explain, at least in part, the beneficial long-term effects associated with moderate red wine consumption.

  1. Targeted nanoconjugate co-delivering siRNA and tyrosine kinase inhibitor to KRAS mutant NSCLC dissociates GAB1-SHP2 post oncogene knockdown

    PubMed Central

    Srikar, R.; Suresh, Dhananjay; Zambre, Ajit; Taylor, Kristen; Chapman, Sarah; Leevy, Matthew; Upendran, Anandhi; Kannan, Raghuraman

    2016-01-01

    A tri-block nanoparticle (TBN) comprising of an enzymatically cleavable porous gelatin nanocore encapsulated with gefitinib (tyrosine kinase inhibitor (TKI)) and surface functionalized with cetuximab-siRNA conjugate has been synthesized. Targeted delivery of siRNA to undruggable KRAS mutated non-small cell lung cancer cells would sensitize the cells to TKI drugs and offers an efficient therapy for treating cancer; however, efficient delivery of siRNA and releasing it in cytoplasm remains a major challenge. We have shown TBN can efficiently deliver siRNA to cytoplasm of KRAS mutant H23 Non-Small Cell Lung Cancer (NSCLC) cells for oncogene knockdown; subsequently, sensitizing it to TKI. In the absence of TKI, the nanoparticle showed minimal toxicity suggesting that the cells adapt a parallel GAB1 mediated survival pathway. In H23 cells, activated ERK results in phosphorylation of GAB1 on serine and threonine residues to form GAB1-p85 PI3K complex. In the absence of TKI, knocking down the oncogene dephosphorylated ERK, and negated the complex formation. This event led to tyrosine phosphorylation at Tyr627 domain of GAB1 that regulated EGFR signaling by recruiting SHP2. In the presence of TKI, GAB1-SHP2 dissociation occurs, leading to cell death. The outcome of this study provides a promising platform for treating NSCLC patients harboring KRAS mutation. PMID:27530552

  2. Targeted nanoconjugate co-delivering siRNA and tyrosine kinase inhibitor to KRAS mutant NSCLC dissociates GAB1-SHP2 post oncogene knockdown.

    PubMed

    Srikar, R; Suresh, Dhananjay; Zambre, Ajit; Taylor, Kristen; Chapman, Sarah; Leevy, Matthew; Upendran, Anandhi; Kannan, Raghuraman

    2016-08-17

    A tri-block nanoparticle (TBN) comprising of an enzymatically cleavable porous gelatin nanocore encapsulated with gefitinib (tyrosine kinase inhibitor (TKI)) and surface functionalized with cetuximab-siRNA conjugate has been synthesized. Targeted delivery of siRNA to undruggable KRAS mutated non-small cell lung cancer cells would sensitize the cells to TKI drugs and offers an efficient therapy for treating cancer; however, efficient delivery of siRNA and releasing it in cytoplasm remains a major challenge. We have shown TBN can efficiently deliver siRNA to cytoplasm of KRAS mutant H23 Non-Small Cell Lung Cancer (NSCLC) cells for oncogene knockdown; subsequently, sensitizing it to TKI. In the absence of TKI, the nanoparticle showed minimal toxicity suggesting that the cells adapt a parallel GAB1 mediated survival pathway. In H23 cells, activated ERK results in phosphorylation of GAB1 on serine and threonine residues to form GAB1-p85 PI3K complex. In the absence of TKI, knocking down the oncogene dephosphorylated ERK, and negated the complex formation. This event led to tyrosine phosphorylation at Tyr627 domain of GAB1 that regulated EGFR signaling by recruiting SHP2. In the presence of TKI, GAB1-SHP2 dissociation occurs, leading to cell death. The outcome of this study provides a promising platform for treating NSCLC patients harboring KRAS mutation.

  3. Targeted nanoconjugate co-delivering siRNA and tyrosine kinase inhibitor to KRAS mutant NSCLC dissociates GAB1-SHP2 post oncogene knockdown

    NASA Astrophysics Data System (ADS)

    Srikar, R.; Suresh, Dhananjay; Zambre, Ajit; Taylor, Kristen; Chapman, Sarah; Leevy, Matthew; Upendran, Anandhi; Kannan, Raghuraman

    2016-08-01

    A tri-block nanoparticle (TBN) comprising of an enzymatically cleavable porous gelatin nanocore encapsulated with gefitinib (tyrosine kinase inhibitor (TKI)) and surface functionalized with cetuximab-siRNA conjugate has been synthesized. Targeted delivery of siRNA to undruggable KRAS mutated non-small cell lung cancer cells would sensitize the cells to TKI drugs and offers an efficient therapy for treating cancer; however, efficient delivery of siRNA and releasing it in cytoplasm remains a major challenge. We have shown TBN can efficiently deliver siRNA to cytoplasm of KRAS mutant H23 Non-Small Cell Lung Cancer (NSCLC) cells for oncogene knockdown; subsequently, sensitizing it to TKI. In the absence of TKI, the nanoparticle showed minimal toxicity suggesting that the cells adapt a parallel GAB1 mediated survival pathway. In H23 cells, activated ERK results in phosphorylation of GAB1 on serine and threonine residues to form GAB1-p85 PI3K complex. In the absence of TKI, knocking down the oncogene dephosphorylated ERK, and negated the complex formation. This event led to tyrosine phosphorylation at Tyr627 domain of GAB1 that regulated EGFR signaling by recruiting SHP2. In the presence of TKI, GAB1-SHP2 dissociation occurs, leading to cell death. The outcome of this study provides a promising platform for treating NSCLC patients harboring KRAS mutation.

  4. [Alkaline phosphatase in Amoeba proteus].

    PubMed

    Sopina, V A

    2005-01-01

    In free-living Amoeba proteus (strain B), 3 phosphatase were found after disc-electrophoresis of 10 microg of protein in PAGE and using 1-naphthyl phosphate as a substrate a pH 9.0. These phosphatases differed in their electrophoretic mobilities - "slow" (1-3 bands), "middle" (one band) and "fast" (one band). In addition to 1-naphthyl phosphate, "slow" phosphatases were able to hydrolyse 2-naphthyl phosphate and p-nitrophenyl phosphate. They were slightly activated by Mg2+, completely inhibited by 3 chelators (EDTA, EGTA and 1,10-phenanthroline), L-cysteine, sodium dodecyl sulfate and Fe2+, Zn2+ and Mn2+ (50 mM), considerably inactivated by orthovanadate, molybdate, phosphatase inhibitor cocktail 1, p-nitrophenyl phosphate, Na2HPO4, DL-dithiothreitol and urea and partly inhibited by H2O2, DL-phenylalanine, 2-mercaptoethanol, phosphatase inhibitor cocktail 2 and Ca2+. Imidazole, L-(+)-tartrate, okadaic acid, NaF and sulfhydryl reagents -p-(hydroxy-mercuri)benzoate and N-ethylmaleimide - had no influence on the activity of "slow" phosphatases. "Middle" and "fast" phosphatases, in contrast to "slow" ones, were not inactivated by 3 chelators. The "middle" phosphatase differed from the "fast" one by smaller resistance to urea, Ca2+, Mn2+, phosphates and H2O2 and greater resistance to dithiothreitol and L-(+)-tartrate. In addition, the "fast" phosphatase was inhibited by L-cysteine but the "middle" one was activated by it. Of 5 tested ions (Mg2+, Cu2+, Mn2+, Ca2+ and Zn2+), only Zn2+ reactivated "slow" phosphatases after their inactivation by EDTA treatment. The reactivation of apoenzyme was only partial (about 35 %). Thus, among phosphatases found in amoebae at pH 9.0, only "slow" ones are Zn-metalloenzymes and may be considered as alkaline phosphatases (EC 3.1.3.1). It still remains uncertain, to which particular phosphatase class "middle" and "fast" phosphatases (pH 9.0) may belong.

  5. In Vitro-Generated Tc17 Cells Present a Memory Phenotype and Serve As a Reservoir of Tc1 Cells In Vivo

    PubMed Central

    Flores-Santibáñez, Felipe; Cuadra, Bárbara; Fernández, Dominique; Rosemblatt, Mariana V.; Núñez, Sarah; Cruz, Pablo; Gálvez-Cancino, Felipe; Cárdenas, J. César; Lladser, Alvaro; Rosemblatt, Mario; Bono, María Rosa; Sauma, Daniela

    2018-01-01

    Memory CD8+ T cells are ideal candidates for cancer immunotherapy because they can mediate long-term protection against tumors. However, the therapeutic potential of different in vitro-generated CD8+ T cell effector subsets to persist and become memory cells has not been fully characterized. Type 1 CD8+ T (Tc1) cells produce interferon-γ and are endowed with high cytotoxic capacity, whereas IL-17-producing CD8+ T (Tc17) cells are less cytotoxic but display enhanced self-renewal capacity. We sought to evaluate the functional properties of in vitro-generated Tc17 cells and elucidate their potential to become long lasting memory cells. Our results show that in vitro-generated Tc17 cells display a greater in vivo persistence and expansion in response to secondary antigen stimulation compared to Tc1 cells. When transferred into recipient mice, Tc17 cells persist in secondary lymphoid organs, present a recirculation behavior consistent with central memory T cells, and can shift to a Tc1 phenotype. Accordingly, Tc17 cells are endowed with a higher mitochondrial spare respiratory capacity than Tc1 cells and express higher levels of memory-related molecules than Tc1 cells. Together, these results demonstrate that in vitro-generated Tc17 cells acquire a central memory program and provide a lasting reservoir of Tc1 cells in vivo, thus supporting the use of Tc17 lymphocytes in the design of novel and more effective therapies. PMID:29472932

  6. Gab1 Acts as an Adapter Molecule Linking the Cytokine Receptor gp130 to ERK Mitogen-Activated Protein Kinase

    PubMed Central

    Takahashi-Tezuka, Mariko; Yoshida, Yuichi; Fukada, Toshiyuki; Ohtani, Takuya; Yamanaka, Yojiro; Nishida, Keigo; Nakajima, Koichi; Hibi, Masahiko; Hirano, Toshio

    1998-01-01

    Gab1 has structural similarities with Drosophila DOS (daughter of sevenless), which is a substrate of the protein tyrosine phosphatase Corkscrew. Both Gab1 and DOS have a pleckstrin homology domain and tyrosine residues, potential binding sites for various SH2 domain-containing adapter molecules when they are phosphorylated. We found that Gab1 was tyrosine phosphorylated in response to various cytokines, such as interleukin-6 (IL-6), IL-3, alpha interferon (IFN-α), and IFN-γ. Upon the stimulation of IL-6 or IL-3, Gab1 was found to form a complex with phosphatidylinositol (PI)-3 kinase and SHP-2, a homolog of Corkscrew. Mutational analysis of gp130, the common subunit of IL-6 family cytokine receptors, revealed that neither tyrosine residues of gp130 nor its carboxy terminus was required for tyrosine phosphorylation of Gab1. Expression of Gab1 enhanced gp130-dependent mitogen-activated protein (MAP) kinase ERK2 activation. A mutation of tyrosine 759, the SHP-2 binding site of gp130, abrogated the interactions of Gab1 with SHP-2 and PI-3 kinase as well as ERK2 activation. Furthermore, ERK2 activation was inhibited by a dominant negative p85 PI-3 kinase, wortmannin, or a dominant negative Ras. These observations suggest that Gab1 acts as an adapter molecule in transmitting signals to ERK MAP kinase for the cytokine receptor gp130 and that SHP-2, PI-3 kinase, and Ras are involved in Gab1-mediated ERK activation. PMID:9632795

  7. Protein-tyrosine-phosphatase-mediated epidermal growth factor (EGF) receptor transinactivation and EGF receptor-independent stimulation of mitogen-activated protein kinase by bradykinin in A431 cells.

    PubMed Central

    Graness, A; Hanke, S; Boehmer, F D; Presek, P; Liebmann, C

    2000-01-01

    Transactivation of the epidermal growth factor (EGF) receptor (EGFR) has been proposed to represent an essential link between G-protein-coupled receptors and the mitogen-activated protein kinase (MAPK) pathway in various cell types. In the present work we report, in contrast, that in A431 cells bradykinin transinactivates the EGFR and stimulates MAPK activity independently of EGFR tyrosine phosphorylation. Both effects of bradykinin are mediated by a pertussis-toxin-insensitive G-protein. Three lines of evidence suggest the activation of a protein tyrosine phosphatase (PTP) by bradykinin: (i) treatment of A431 cells with bradykinin decreases both basal and EGF-induced EGFR tyrosine phosphorylation, (ii) this effect of bradykinin can be blocked by two different PTP inhibitors, and (iii) bradykinin significantly increased the PTP activity in total A431 cell lysates when measured in vitro. The transmembrane receptor PTP sigma was identified as a putative mediator of bradykinin-induced downregulation of EGFR autophosphorylation. Activation of MAPK in response to bradykinin was insensitive towards AG 1478, a specific inhibitor of EGFR tyrosine kinase, but was blocked by wortmannin or bisindolylmaleimide, inhibitors of phosphatidylinositol 3-kinase (PI3-K) and protein kinase C (PKC) respectively. These results also suggest that the bradykinin-induced activation of MAPK is independent of EGFR and indicate a pathway involving PI3-K and PKC. In addition, bradykinin evokes a rapid and transient increase in Src kinase activity. Although Src does not participate in bradykinin-induced stimulation of PTP activity, inhibition of Src by 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo(3,4-d)pyrimidine leads to an increase in MAPK activation by bradykinin. Our results suggest that in A431 cells the G(q/11)-protein-coupled bradykinin B(2) receptor may stimulate PTP activity and thereby transinactivate the EGFR, and may simultaneously activate MAPK by an alternative signalling pathway

  8. Gab2 Phosphorylation by RSK Inhibits Shp2 Recruitment and Cell Motility

    PubMed Central

    Zhang, Xiaocui; Lavoie, Genevieve; Fort, Loic; Huttlin, Edward L.; Tcherkezian, Joseph; Galan, Jacob A.; Gu, Haihua; Gygi, Steven P.; Carreno, Sebastien

    2013-01-01

    The scaffolding adapter protein Gab2 (Grb2-associated binder) participates in the signaling response evoked by various growth factors and cytokines. Gab2 is overexpressed in several human malignancies, including breast cancer, and was shown to promote mammary epithelial cell migration. The role of Gab2 in the activation of different signaling pathways is well documented, but less is known regarding the feedback mechanisms responsible for its inactivation. We now demonstrate that activation of the Ras/mitogen-activated protein kinase (MAPK) pathway promotes Gab2 phosphorylation on basic consensus motifs. More specifically, we show that RSK (p90 ribosomal S6 kinase) phosphorylates Gab2 on three conserved residues, both in vivo and in vitro. Mutation of these phosphorylation sites does not alter Gab2 binding to Grb2, but instead, we show that Gab2 phosphorylation inhibits the recruitment of the tyrosine phosphatase Shp2 in response to growth factors. Expression of an unphosphorylatable Gab2 mutant in mammary epithelial cells promotes an invasion-like phenotype and increases cell motility. Taken together, these results suggest that RSK is part of a negative-feedback loop that restricts Gab2-dependent epithelial cell motility. On the basis of the widespread role of Gab2 in receptor signaling, these findings also suggest that RSK plays a regulatory function in diverse receptor systems. PMID:23401857

  9. TULA-2, a novel histidine phosphatase regulates bone remodeling by modulating osteoclast function

    PubMed Central

    Back, Steven H.; Adapala, Naga Suresh; Barbe, Mary F.; Carpino, Nick C.; Tsygankov, Alexander Y.; Sanjay, Archana

    2013-01-01

    Bone is a dynamic tissue that depends on the intricate relationship between protein tyrosine kinases (PTK) and protein tyrosine phosphatases (PTP) for maintaining homeostasis. PTKs and PTPs act like molecular on and off switches and help modulate differentiation and the attachment of osteoclasts to bone matrix regulating bone resorption. The novel protein T-cell Ubiquitin Ligand-2 (TULA-2), which is abundantly expressed in osteoclasts, is a novel histidine phosphatase. Our results show that of the two family members only TULA-2 is expressed in osteoclasts and that its expression is sustained throughout the course of osteoclast differentiation suggesting that TULA-2 may play a role during early as well late stages of osteoclast differentiation. Skeletal analysis of mice that do not express TULA or TULA-2 proteins (DKO Mice) revealed that there was a decrease in bone volume due to increased osteoclast numbers and function. Furthermore, in vitro experiments indicated that bone marrow precursor cells from DKO mice have an increased potential to form osteoclasts. At the molecular level, the absence of TULA-2 in osteoclasts results in increased Syk phosphorylation at the Y352 and Y525/526 residues and activation of phospholipase C gamma 2 (PLCγ2) upon engagement of Immune-receptor-Tyrosine-based-Activation-Motif (ITAM)–mediated signaling. Furthermore, expression of a phosphatase-dead TULA-2 leads to increased osteoclast function. Taken together, these results suggest that TULA-2 negatively regulates osteoclast differentiation and function. PMID:23149425

  10. TULA-2, a novel histidine phosphatase, regulates bone remodeling by modulating osteoclast function.

    PubMed

    Back, Steven H; Adapala, Naga Suresh; Barbe, Mary F; Carpino, Nick C; Tsygankov, Alexander Y; Sanjay, Archana

    2013-04-01

    Bone is a dynamic tissue that depends on the intricate relationship between protein tyrosine kinases (PTK) and protein tyrosine phosphatases (PTP) for maintaining homeostasis. PTKs and PTPs act like molecular on and off switches and help modulate differentiation and the attachment of osteoclasts to bone matrix regulating bone resorption. The protein T cell ubiquitin ligand-2 (TULA-2), which is abundantly expressed in osteoclasts, is a novel histidine phosphatase. Our results show that of the two family members, only TULA-2 is expressed in osteoclasts and that its expression is sustained throughout the course of osteoclast differentiation, suggesting that TULA-2 may play a role during early as well late stages of osteoclast differentiation. Skeletal analysis of mice that do not express TULA or TULA-2 proteins (DKO mice) revealed that there was a decrease in bone volume due to increased osteoclast numbers and function. Furthermore, in vitro experiments indicated that bone marrow precursor cells from DKO mice have an increased potential to form osteoclasts. At the molecular level, the absence of TULA-2 in osteoclasts results in increased Syk phosphorylation at the Y352 and Y525/526 residues and activation of phospholipase C gamma 2 (PLCγ2) upon engagement of immune-receptor-tyrosine-based-activation-motif (ITAM)-mediated signaling. Furthermore, expression of a phosphatase-dead TULA-2 leads to increased osteoclast function. Taken together, these results suggest that TULA-2 negatively regulates osteoclast differentiation and function.

  11. Sesquiterpenoids with PTP1B Inhibitory Activity and Cytotoxicity from the Edible Mushroom Pleurotus citrinopileatus.

    PubMed

    Tao, Qiao-Qiao; Ma, Ke; Bao, Li; Wang, Kai; Han, Jun-Jie; Wang, Wen-Zhao; Zhang, Jin-Xia; Huang, Chen-Yang; Liu, Hong-Wei

    2016-05-01

    One new perhydrobenzannulated 5,5-spiroketal sesquiterpene, pleurospiroketal F (1), as well as six new modified bisabolene sesquiterpenes pleurotins A-F (2-7) were isolated from solid-state fermentation of Pleurotus citrinopileatus. The structures of compounds 1-7 were determined by NMR and MS spectroscopic analysis. The absolute configuration of 1 was determined by X-ray diffraction analysis, while the absolute configurations of 3-7 were assigned using the in situ dimolybdenum circular dichroism method and circular dichroism data comparison. Protein tyrosine phosphatase 1B plays a crucial role as a negative regulator of the insulin-dependent signal cascades. Therefore, the protein tyrosine phosphatase 1B inhibitor can be used for treating type 2 diabetes mellitus and obesity. Compounds 2 and 6 showed moderate inhibitory effects on protein tyrosine phosphatase 1B with IC50 s of 32.1 µM and 30.5 µM, respectively. The kinetic study confirmed compound 2 to be a noncompetitive inhibitor. Compounds 1-7 did not show cytotoxic activity against cancer cell lines (IC50 > 50 µM). Georg Thieme Verlag KG Stuttgart · New York.

  12. The RCN1-encoded A subunit of protein phosphatase 2A increases phosphatase activity in vivo

    NASA Technical Reports Server (NTRS)

    Deruere, J.; Jackson, K.; Garbers, C.; Soll, D.; Delong, A.; Evans, M. L. (Principal Investigator)

    1999-01-01

    Protein phosphatase 2A (PP2A), a heterotrimeric serine/threonine-specific protein phosphatase, comprises a catalytic C subunit and two distinct regulatory subunits, A and B. The RCN1 gene encodes one of three A regulatory subunits in Arabidopsis thaliana. A T-DNA insertion mutation at this locus impairs root curling, seedling organ elongation and apical hypocotyl hook formation. We have used in vivo and in vitro assays to gauge the impact of the rcn1 mutation on PP2A activity in seedlings. PP2A activity is decreased in extracts from rcn1 mutant seedlings, and this decrease is not due to a reduction in catalytic subunit expression. Roots of mutant seedlings exhibit increased sensitivity to the phosphatase inhibitors okadaic acid and cantharidin in organ elongation assays. Shoots of dark-grown, but not light-grown seedlings also show increased inhibitor sensitivity. Furthermore, cantharidin treatment of wild-type seedlings mimics the rcn1 defect in root curling, root waving and hypocotyl hook formation assays. In roots of wild-type seedlings, RCN1 mRNA is expressed at high levels in root tips, and accumulates to lower levels in the pericycle and lateral root primordia. In shoots, RCN1 is expressed in the apical hook and the basal, rapidly elongating cells in etiolated hypocotyls, and in the shoot meristem and leaf primordia of light-grown seedlings. Our results show that the wild-type RCN1-encoded A subunit functions as a positive regulator of the PP2A holoenzyme, increasing activity towards substrates involved in organ elongation and differential cell elongation responses such as root curling.

  13. Miklós Bodanszky Award Lecture: Advances in the selective targeting of protein phosphatase-1 and phosphatase-2A with peptides.

    PubMed

    Köhn, Maja

    2017-10-01

    Protein phosphatase-1 and phosphatase-2A are two ubiquitously expressed enzymes known to catalyze the majority of dephosphorylation reactions on serine and threonine inside cells. They play roles in most cellular processes and are tightly regulated by regulatory subunits in holoenzymes. Their misregulation and malfunction contribute to disease development and progression, such as in cancer, diabetes, viral infections, and neurological as well as heart diseases. Therefore, targeting these phosphatases for therapeutic use would be highly desirable; however, their complex regulation and high conservation of the active site have been major hurdles for selectively targeting them in the past. In the last decade, new approaches have been developed to overcome these hurdles and have strongly revived the field. I will focus here on peptide-based approaches, which contributed to showing that these phosphatases can be targeted selectively and aided in rethinking the design of selective phosphatase modulators. Finally, I will give a perspective on www.depod.org, the human dephosphorylation database, and how it can aid phosphatase modulator design. © 2017 The Authors. Journal of Peptide Science published by European Peptide Society and John Wiley & Sons Ltd. © 2017 The Authors. Journal of Peptide Science published by European Peptide Society and John Wiley & Sons Ltd.

  14. Proteomic analysis of protein phosphatase Z1 from Candida albicans

    PubMed Central

    Pfliegler, Walter P.; Petrényi, Katalin; Boros, Enikő; Pócsi, István; Tőzsér, József; Dombrádi, Viktor

    2017-01-01

    Protein phosphatase Z is a “novel type” fungus specific serine/threonine protein phosphatase. Previously our research group identified the CaPPZ1 gene in the opportunistic pathogen Candida albicans and reported that the gene deletion had several important physiological consequences. In order to reveal the protein targets and the associated mechanisms behind the functions of the phosphatase a proteomic method was adopted for the comparison of the cappz1 deletion mutant and the genetically matching QMY23 control strain. Proteins extracted from the control and deletion mutant strains were separated by two-dimensional gel electrophoresis and the protein spots were stained with RuBPS and Pro-Q Diamond in order to visualize the total proteome and the phosphoproteome, respectively. The alterations in spot intensities were determined by densitometry and were analysed with the Delta2D (Decodon) software. Spots showing significantly different intensities between the mutant and control strains were excised from the gels and were digested with trypsin. The resulting peptides were identified by LC-MS/MS mass spectrometry. As many as 15 protein spots were found that exhibited significant changes in their intensity upon the deletion of the phosphatase and 20 phosphoproteins were identified in which the level of phosphorylation was modified significantly in the mutant. In agreement with previous findings we found that the affected proteins function in protein synthesis, oxidative stress response, regulation of morphology and metabolism. Among these proteins we identified two potential CaPpz1 substrates (Eft2 and Rpp0) that may regulate the elongation step of translation. RT-qPCR experiments revealed that the expression of the genes coding for the affected proteins was not altered significantly. Thus, the absence of CaPpz1 exerted its effects via protein synthesis/degradation and phosphorylation/dephosphorylation. In addition, our proteomics data strongly suggested a role for

  15. Tyrosine Phosphatases ε and α Perform Specific and Overlapping Functions in Regulation of Voltage-gated Potassium Channels in Schwann Cells

    PubMed Central

    Tiran, Zohar; Peretz, Asher; Sines, Tal; Shinder, Vera; Sap, Jan; Attali, Bernard

    2006-01-01

    Tyrosine phosphatases (PTPs) ε and α are closely related and share several molecular functions, such as regulation of Src family kinases and voltage-gated potassium (Kv) channels. Functional interrelationships between PTPε and PTPα and the mechanisms by which they regulate K+ channels and Src were analyzed in vivo in mice lacking either or both PTPs. Lack of either PTP increases Kv channel activity and phosphorylation in Schwann cells, indicating these PTPs inhibit Kv current amplitude in vivo. Open probability and unitary conductance of Kv channels are unchanged, suggesting an effect on channel number or organization. PTPα inhibits Kv channels more strongly than PTPε; this correlates with constitutive association of PTPα with Kv2.1, driven by membranal localization of PTPα. PTPα, but not PTPε, activates Src in sciatic nerve extracts, suggesting Src deregulation is not responsible exclusively for the observed phenotypes and highlighting an unexpected difference between both PTPs. Developmentally, sciatic nerve myelination is reduced transiently in mice lacking either PTP and more so in mice lacking both PTPs, suggesting both PTPs support myelination but are not fully redundant. We conclude that PTPε and PTPα differ significantly in their regulation of Kv channels and Src in the system examined and that similarity between PTPs does not necessarily result in full functional redundancy in vivo. PMID:16870705

  16. A randomized, double-blind study of SHP465 mixed amphetamine salts extended-release in adults with ADHD using a simulated adult workplace design.

    PubMed

    Wigal, Timothy; Brams, Matthew; Frick, Glen; Yan, Brian; Madhoo, Manisha

    2018-06-18

    The objective of this paper was to evaluate the efficacy, duration of effect, and tolerability of SHP465 mixed amphetamine salts (MAS) extended-release versus placebo and immediate-release MAS (MAS IR) in adults with attention-deficit/hyperactivity disorder (ADHD). Adults with ADHD Rating Scale, Version IV (ADHD-RS-IV) scores ≥24 were randomized to SHP465 MAS (50 or 75 mg), placebo, or 25 mg MAS IR in a double-blind, three-period, crossover study using a simulated adult workplace environment. On the final day of each 7-day treatment period, efficacy was assessed for 16 h postdose. Primary efficacy analyses for Permanent Product Measure of Performance (PERMP) total score averaged across all postdose assessments and each postdose time point were conducted in the intent-to-treat population using a mixed linear model. Secondary end-points included PERMP problems attempted and answered correctly and ADHD-RS-IV scores based on clinician ratings of counselor observations using the Time Segment Rating System and participant self-report. Tolerability assessments included treatment-emergent adverse events (TEAEs) and vital signs. Least squares mean (95% CI) treatment differences (combined 50/75 mg SHP465 MAS-placebo) significantly favored SHP465 MAS over placebo for PERMP total score averaged across all postdose assessments (18.38 [11.28, 25.47]; P < .0001) and at each postdose assessment (all P < .02). Nominal superiority of MAS IR over placebo for PERMP total score averaged across all postdose assessments was observed (nominal P = .0001); treatment differences between SHP465 MAS and MAS IR were not significant (nominal P = .2443). The two most frequently reported TEAEs associated with SHP465 MAS were insomnia (36.5%) and anorexia (21.2%). Mean increases in pulse and blood pressure with SHP465 MAS exceeded those of placebo. SHP465 MAS (combined 50/75 mg) significantly improved PERMP total score versus placebo, with superiority observed from 2 to 16

  17. CypD-mPTP axis regulates mitochondrial functions contributing to osteogenic dysfunction of MC3T3-E1 cells in inflammation.

    PubMed

    Gan, Xueqi; Zhang, Ling; Liu, Beilei; Zhu, Zhuoli; He, Yuting; Chen, Junsheng; Zhu, Junfei; Yu, Haiyang

    2018-04-20

    Bone is a dynamic organ, the bone-forming osteoblasts and bone-resorbing osteoclasts form the physiological basis of bone remodeling process. During pathological process of numerous inflammatory diseases, these two aspects are uncoupled and the balance is usually tipped in favor of bone destruction. Evidence suggests that the inflammatory destruction of bone is mainly attributed to oxidative stress and is closely related to mitochondrial dysfunction. The mechanisms underlying osteogenic dysfunction in inflammation still need further investigation. Reactive oxygen species (ROS) is associated with mitochondrial dysfunction and cellular damage. Here, we reported an unexplored role of cyclophilin D (CypD), the major modulator of mitochondrial permeability transition pore (mPTP), and the CypD-mPTP axis in inflammation-induced mitochondrial dysfunction and bone damage. And the protective effects of knocking down CypD by siRNA interference or the addition of cyclosporin A (CsA), an inhibitor of CypD, were evidenced by rescued mitochondrial function and osteogenic function of osteoblast under tumor necrosis factor-α (TNF-α) treatment. These findings provide new insights into the role of CypD-mPTP-dependent mitochondrial pathway in the inflammatory bone injury. The protective effect of CsA or other moleculars affecting the mPTP formation may hold promise as a potential novel therapeutic strategy for inflammation-induced bone damage via mitochondrial pathways.

  18. Cellular prostatic acid phosphatase, a PTEN-functional homologue in prostate epithelia, functions as a prostate-specific tumor suppressor

    PubMed Central

    Muniyan, Sakthivel; Ingersoll, Matthew A.; Batra, Surinder K.; Lin, Ming-Fong

    2014-01-01

    The inactivation of tumor suppressor genes (TSGs) plays a vital role in the progression of human cancers. Nevertheless, those ubiquitous TSGs have been shown with limited roles in various stages of diverse carcinogenesis. Investigation on identifying unique TSG, especially for early stage of carcinogenesis, is imperative. As such, the search for organ-specific TSGs has emerged as a major strategy in cancer research. Prostate cancer (PCa) has the highest incidence in solid tumors in US males. Cellular prostatic acid phosphatase (cPAcP) is a prostate-specific differentiation antigen. Despite intensive studies over the past several decades on PAcP as a PCa biomarker, the role of cPAcP as a PCa-specific tumor suppressor has only recently been emerged and validated. The mechanism underlying the pivotal role of cPAcP as a prostate-specific TSG is, in part, due to its function as a protein tyrosine phosphatase (PTP) as well as a phosphoinositide phosphatase (PIP), an apparent functional homologue to Phosphatase and tensin homolog (PTEN) in PCa cells. This review is focused on discussing the function of this authentic prostate-specific tumor suppressor and the mechanism behind the loss of cPAcP expression leading to prostate carcinogenesis. We review other phosphatases’ roles as TSGs which regulate oncogenic PI3K signaling in PCa and discuss the functional similarity between cPAcP and PTEN in prostate carcinogenesis. PMID:24747769

  19. Cloning and characterization of rat density-enhanced phosphatase-1, a protein tyrosine phosphatase expressed by vascular cells.

    PubMed

    Borges, L G; Seifert, R A; Grant, F J; Hart, C E; Disteche, C M; Edelhoff, S; Solca, F F; Lieberman, M A; Lindner, V; Fischer, E H; Lok, S; Bowen-Pope, D F

    1996-09-01

    We have cloned from cultured vascular smooth muscle cells a protein tyrosine phosphatase, rat density-enhanced phosphatase-1 (rDEP-1), which is a probable rat homologue of DEP-1/HPTP eta. rDEP-1 is encoded by an 8.7-kb transcript and is expressed as a 180- to 220-kD protein. The rDEP-1 gene is located on human chromosome 11 (region p11.2) and on mouse chromosome 2 (region 2E). The cDNA sequence predicts a transmembrane protein consisting of a single phosphatase catalytic domain in the intracellular region, a single transmembrane domain, and eight fibronectin type III repeats in the extracellular region (GenBank accession number U40790). In situ hybridization analysis demonstrates that rDEP-1 is widely expressed in vivo but that expression is highest in cells that form epithelioid monolayers. In cultured cells with epitheliod morphology, including endothelial cells and newborn smooth muscle cells, but not in fibroblast-like cells, rDEP-1 transcript levels are dramatically upregulated as population density increases. In vivo, quiescent endothelial cells in normal arteries express relatively high levels of rDEP-1. During repair of vascular injury, expression of rDEP-1 is downregulated in migrating and proliferating endothelial cells. In vivo, rDEP-1 transcript levels are present in very high levels in megakaryocytes, and circulating plates have high levels of the rDEP-1 protein. In vitro, initiation of differentiation of the human megakaryoblastic cell line CHRF-288-11 with phorbol 12-myristate 13-acetate leads to a very strong upregulation of rDEP-1 transcripts. The deduced structure and the regulation of expression of rDEP-1 suggest that it may play a role in adhesion and/or signaling events involving cell-cell and cell-matrix contact.

  20. Autophagy Facilitates IFN-γ-induced Jak2-STAT1 Activation and Cellular Inflammation*

    PubMed Central

    Chang, Yu-Ping; Tsai, Cheng-Chieh; Huang, Wei-Ching; Wang, Chi-Yun; Chen, Chia-Ling; Lin, Yee-Shin; Kai, Jui-In; Hsieh, Chia-Yuan; Cheng, Yi-Lin; Choi, Pui-Ching; Chen, Shun-Hua; Chang, Shih-Ping; Liu, Hsiao-Sheng; Lin, Chiou-Feng

    2010-01-01

    Autophagy is regulated for IFN-γ-mediated antimicrobial efficacy; however, its molecular effects for IFN-γ signaling are largely unknown. Here, we show that autophagy facilitates IFN-γ-activated Jak2-STAT1. IFN-γ induces autophagy in wild-type but not in autophagy protein 5 (Atg5−/−)-deficient mouse embryonic fibroblasts (MEFs), and, autophagy-dependently, IFN-γ induces IFN regulatory factor 1 and cellular inflammatory responses. Pharmacologically inhibiting autophagy using 3-methyladenine, a known inhibitor of class III phosphatidylinositol 3-kinase, confirms these effects. Either Atg5−/− or Atg7−/− MEFs are, independent of changes in IFN-γ receptor expression, resistant to IFN-γ-activated Jak2-STAT1, which suggests that autophagy is important for IFN-γ signal transduction. Lentivirus-based short hairpin RNA for Atg5 knockdown confirmed the importance of autophagy for IFN-γ-activated STAT1. Without autophagy, reactive oxygen species increase and cause SHP2 (Src homology-2 domain-containing phosphatase 2)-regulated STAT1 inactivation. Inhibiting SHP2 reversed both cellular inflammation and the IFN-γ-induced activation of STAT1 in Atg5−/− MEFs. Our study provides evidence that there is a link between autophagy and both IFN-γ signaling and cellular inflammation and that autophagy, because it inhibits the expression of reactive oxygen species and SHP2, is pivotal for Jak2-STAT1 activation. PMID:20592027